WorldWideScience

Sample records for high optically thin

  1. Enhancement of absorption and color contrast in ultra-thin highly absorbing optical coatings

    Science.gov (United States)

    Kats, Mikhail A.; Byrnes, Steven J.; Blanchard, Romain; Kolle, Mathias; Genevet, Patrice; Aizenberg, Joanna; Capasso, Federico

    2013-09-01

    Recently a new class of optical interference coatings was introduced which comprises ultra-thin, highly absorbing dielectric layers on metal substrates. We show that these lossy coatings can be augmented by an additional transparent subwavelength layer. We fabricated a sample comprising a gold substrate, an ultra-thin film of germanium with a thickness gradient, and several alumina films. The experimental reflectivity spectra showed that the additional alumina layer increases the color range that can be obtained, in agreement with calculations. More generally, this transparent layer can be used to enhance optical absorption, protect against erosion, or as a transparent electrode for optoelectronic devices.

  2. Third-order optical susceptibility in polythiophene thin films prepared by spin-coating from high-boiling-point solvents

    International Nuclear Information System (INIS)

    Kobayashi, Takashi; Shinke, Wataru; Nagase, Takashi; Murakami, Shuichi; Naito, Hiroyoshi

    2014-01-01

    We examined the enhancements in the third-order optical susceptibility (χ (3) ) of spin-coated thin films of poly(3-hexylthiophene) using an anhydrous solvent with a high boiling point. The χ (3) value was found to be enhanced as the boiling point of the solvent increased. In this study, the largest value of χ (3) was obtained for thin films that were spin-coated in an inert atmosphere using anhydrous dichlorobenzene and then was subsequently exposed to its vapor for 1 h. The maximum value of the imaginary part of χ (3) was determined to be 1.8 × 10 -9 esu, which is more than three times greater than that of thin films spin-coated in an ambient atmosphere using a solvent with a low boiling point, such as chloroform. - Highlights: • Enhancements in nonlinear optical properties of a conjugated polymer were examined. • Thin films were fabricated by spin-coating using a solvent with a high boiling point. • The third-order optical susceptibility increased with increasing boiling point. • An additional enhancement was obtained by the vapor-treatment technique. • These thin films were sufficiently homogeneous for use in nonlinear optical devices

  3. Thin films for precision optics

    International Nuclear Information System (INIS)

    Araujo, J.F.; Maurici, N.; Castro, J.C. de

    1983-01-01

    The technology of producing dielectric and/or metallic thin films for high precision optical components is discussed. Computer programs were developed in order to calculate and register, graphically, reflectance and transmittance spectra of multi-layer films. The technology of vacuum evaporation of several materials was implemented in our thin-films laboratory; various films for optics were then developed. The possibility of first calculate film characteristics and then produce the film is of great advantage since it reduces the time required to produce a new type of film and also reduces the cost of the project. (C.L.B.) [pt

  4. Tunable thin-film optical filters for hyperspectral microscopy

    Science.gov (United States)

    Favreau, Peter F.; Rich, Thomas C.; Prabhat, Prashant; Leavesley, Silas J.

    2013-02-01

    Hyperspectral imaging was originally developed for use in remote sensing applications. More recently, it has been applied to biological imaging systems, such as fluorescence microscopes. The ability to distinguish molecules based on spectral differences has been especially advantageous for identifying fluorophores in highly autofluorescent tissues. A key component of hyperspectral imaging systems is wavelength filtering. Each filtering technology used for hyperspectral imaging has corresponding advantages and disadvantages. Recently, a new optical filtering technology has been developed that uses multi-layered thin-film optical filters that can be rotated, with respect to incident light, to control the center wavelength of the pass-band. Compared to the majority of tunable filter technologies, these filters have superior optical performance including greater than 90% transmission, steep spectral edges and high out-of-band blocking. Hence, tunable thin-film optical filters present optical characteristics that may make them well-suited for many biological spectral imaging applications. An array of tunable thin-film filters was implemented on an inverted fluorescence microscope (TE 2000, Nikon Instruments) to cover the full visible wavelength range. Images of a previously published model, GFP-expressing endothelial cells in the lung, were acquired using a charge-coupled device camera (Rolera EM-C2, Q-Imaging). This model sample presents fluorescently-labeled cells in a highly autofluorescent environment. Linear unmixing of hyperspectral images indicates that thin-film tunable filters provide equivalent spectral discrimination to our previous acousto-optic tunable filter-based approach, with increased signal-to-noise characteristics. Hence, tunable multi-layered thin film optical filters may provide greatly improved spectral filtering characteristics and therefore enable wider acceptance of hyperspectral widefield microscopy.

  5. Feasibility of Ultra-Thin Fiber-Optic Dosimeters for Radiotherapy Dosimetry.

    Science.gov (United States)

    Lee, Bongsoo; Kwon, Guwon; Shin, Sang Hun; Kim, Jaeseok; Yoo, Wook Jae; Ji, Young Hoon; Jang, Kyoung Won

    2015-11-17

    In this study, prototype ultra-thin fiber-optic dosimeters were fabricated using organic scintillators, wavelength shifting fibers, and plastic optical fibers. The sensor probes of the ultra-thin fiber-optic dosimeters consisted of very thin organic scintillators with thicknesses of 100, 150 and 200 μm. These types of sensors cannot only be used to measure skin or surface doses but also provide depth dose measurements with high spatial resolution. With the ultra-thin fiber-optic dosimeters, surface doses for gamma rays generated from a Co-60 therapy machine were measured. Additionally, percentage depth doses in the build-up regions were obtained by using the ultra-thin fiber-optic dosimeters, and the results were compared with those of external beam therapy films and a conventional fiber-optic dosimeter.

  6. Optical thin film deposition

    International Nuclear Information System (INIS)

    Macleod, H.A.

    1979-01-01

    The potential usefulness in the production of optical thin-film coatings of some of the processes for thin film deposition which can be classified under the heading of ion-assisted techniques is examined. Thermal evaporation is the process which is virtually universally used for this purpose and which has been developed to a stage where performance is in almost all respects high. Areas where further improvements would be of value, and the possibility that ion-assisted deposition might lead to such improvements, are discussed. (author)

  7. Optical Instruments Synergy in Determination of Optical Depth of Thin Clouds

    Energy Technology Data Exchange (ETDEWEB)

    Vladutescu, Daniela V.; Schwartz, Stephen E.

    2017-06-25

    Optically thin clouds have a strong radiative effect and need to be represented accurately in climate models. Cloud optical depth of thin clouds was retrieved using high resolution digital photography, lidar, and a radiative transfer model. The Doppler Lidar was operated at 1.5 μm, minimizing return from Rayleigh scattering, emphasizing return from aerosols and clouds. This approach examined cloud structure on scales 3 to 5 orders of magnitude finer than satellite products, opening new avenues for examination of cloud structure and evolution.

  8. Optical thin films and coatings from materials to applications

    CERN Document Server

    Flory, Francois

    2013-01-01

    Optical coatings, including mirrors, anti-reflection coatings, beam splitters, and filters, are an integral part of most modern optical systems. This book provides an overview of thin film materials, the properties, design and manufacture of optical coatings and their use across a variety of application areas.$bOptical coatings, including mirrors, anti-reflection coatings, beam splitters, and filters, are an integral part of most modern optical systems. Optical thin films and coatings provides an overview of thin film materials, the properties, design and manufacture of optical coatings and their use across a variety of application areas. Part one explores the design and manufacture of optical coatings. Part two highlights unconventional features of optical thin films including scattering properties of random structures in thin films, optical properties of thin film materials at short wavelengths, thermal properties and colour effects. Part three focusses on novel materials for optical thin films and coatings...

  9. Choroidal thinning in high myopia measured by optical coherence tomography

    Directory of Open Access Journals (Sweden)

    Ikuno Y

    2013-05-01

    Full Text Available Yasushi Ikuno, Satoko Fujimoto, Yukari Jo, Tomoko Asai, Kohji NishidaDepartment of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, JapanPurpose: To investigate the rate of choroidal thinning in highly myopic eyes.Patients and methods: A retrospective observational study of 37 eyes of 26 subjects (nine males and 17 females, mean age 39.6 ± 7.7 years with high myopia but no pathologies who had undergone spectral domain optical coherence tomography and repeated the test 1 year later (1 ± 0.25 year at Osaka University Hospital, Osaka, Japan. Patients older than 50 years with visual acuity worse than 20/40 or with whitish chorioretinal atrophy involving the macula were excluded. Two masked raters measured the choroidal thicknesses (CTs at the foveda, 3 mm superiorly, inferiorly, temporally, and nasally on the images and averaged the values. The second examination was about 365 days after the baseline examination. The CT reduction per year (CTRPY was defined as (CT 1 year after - baseline CT/days between the two examinations × 365. The retinal thicknesses were also investigated.Results: The CTRPY at the fovea was −1.0 ± 22.0 µm (range –50.2 to 98.5 at the fovea, –6.5 ± 24.3 µm (range −65.8 to 90.2 temporally, –0.5 ± 22.3 µm (range –27.1 to 82.5 nasally, –9.7 ± 21.7 µm (range –40.1 to 60.1 superiorly, and –1.4 ± 25.5 µm (range –85.6 to 75.2 inferiorly. There were no significant differences in the CTRPY at each location (P = 0.34. The CT decreased significantly (P < 0.05 only superiorly. The superior CTRPY was negatively correlated with the axial length (P < 0.05. The retinal thickness at the fovea did not change. Stepwise analysis for CTRPY selected axial length (P = 0.04, R2 = 0.13 and age (P = 0.08, R2 = 0.21 as relevant factors.Conclusions: The highly myopic choroid might gradually thin and be affected by many factors. Location and axial length are key factors to regulate the rate of choroidal

  10. Optical characterizations of silver nanoprisms embedded in polymer thin film layers

    Science.gov (United States)

    Carlberg, Miriam; Pourcin, Florent; Margeat, Olivier; Le Rouzo, Judikael; Berginc, Gerard; Sauvage, Rose-Marie; Ackermann, Jorg; Escoubas, Ludovic

    2017-10-01

    The precise control of light-matter interaction has a wide range of applications and is currently driven by the use of nanoparticles (NPs) by the recent advances in nanotechnology. Taking advantage of the material, size, shape, and surrounding media dependence of the optical properties of plasmonic NPs, thin film layers with tunable optical properties are achieved. The NPs are synthesized by wet chemistry and embedded in a polyvinylpyrrolidone (PVP) polymer thin film layer. Spectrophotometer and spectroscopic ellipsometry measurements are coupled to finite-difference time domain numerical modeling to optically characterize the heterogeneous thin film layers. Silver nanoprisms of 10 to 50 nm edge size exhibit high absorption through the visible wavelength range. A simple optical model composed of a Cauchy law and a Lorentz law, accounting for the optical properties of the nonabsorbing polymer and the absorbing property of the nanoprisms, fits the spectroscopic ellipsometry measurements. Knowing the complex optical indices of heterogeneous thin film layers let us design layers of any optical properties.

  11. Development of optical thin film technology for lasers and synchrotron radiation

    International Nuclear Information System (INIS)

    Apparao, K.V.S.R.; Bagchi, T.C.; Sahoo, N.K.

    1985-01-01

    Dielectric multilayer optical thin film devices play an important role not only in the working of lasers but also in different front line research activities using high power lasers and high intensity synchrotron radiation sources. Facilities are set up recently in the Spectroscopy Division to develop the optical thin film design and fabrication technologies indigeneously. Using the facilities thin film devices for different laser applications working in the wavelength range from 300 nm to 1064 nm were developed. Different technical aspects involved in the technology development are briefly described. (author)

  12. Research on precision grinding technology of large scale and ultra thin optics

    Science.gov (United States)

    Zhou, Lian; Wei, Qiancai; Li, Jie; Chen, Xianhua; Zhang, Qinghua

    2018-03-01

    The flatness and parallelism error of large scale and ultra thin optics have an important influence on the subsequent polishing efficiency and accuracy. In order to realize the high precision grinding of those ductile elements, the low deformation vacuum chuck was designed first, which was used for clamping the optics with high supporting rigidity in the full aperture. Then the optics was planar grinded under vacuum adsorption. After machining, the vacuum system was turned off. The form error of optics was on-machine measured using displacement sensor after elastic restitution. The flatness would be convergenced with high accuracy by compensation machining, whose trajectories were integrated with the measurement result. For purpose of getting high parallelism, the optics was turned over and compensation grinded using the form error of vacuum chuck. Finally, the grinding experiment of large scale and ultra thin fused silica optics with aperture of 430mm×430mm×10mm was performed. The best P-V flatness of optics was below 3 μm, and parallelism was below 3 ″. This machining technique has applied in batch grinding of large scale and ultra thin optics.

  13. On the Nature and Extent of Optically Thin Marine low Clouds

    Science.gov (United States)

    Leahy, L. V.; Wood, R.; Charlson, R. J.; Hostetler, C. A.; Rogers, R. R.; Vaughan, M. A.; Winker, D. M.

    2012-01-01

    Macrophysical properties of optically thin marine low clouds over the nonpolar oceans (60 deg S-60 deg N) are measured using 2 years of full-resolution nighttime data from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP). Optically thin clouds, defined as the subset of marine low clouds that do not fully attenuate the lidar signal, comprise almost half of the low clouds over the marine domain. Regionally, the fraction of low clouds that are optically thin (f(sub thin,cld)) exhibits a strong inverse relationship with the low-cloud cover, with maxima in the tropical trades (f(sub thin,cld) greater than 0.8) and minima in regions of persistent marine stratocumulus and in midlatitudes (f(sub thin,cld) less than 0.3). Domain-wide, a power law fit describes the cloud length distribution, with exponent beta = 2.03 +/- 0.06 (+/-95% confidence interval). On average, the fraction of a cloud that is optically thin decreases from approximately 1 for clouds smaller than 2 km to less than 0.3 for clouds larger than 30 km. This relationship is found to be independent of region, so that geographical variations in the cloud length distribution explain three quarters of the variance in f(sub thin,cld). Comparing collocated trade cumulus observations from CALIOP and the airborne High Spectral Resolution Lidar reveals that clouds with lengths smaller than are resolvable with CALIOP contribute approximately half of the low clouds in the region sampled. A bounded cascade model is constructed to match the observations from the trades. The model shows that the observed optically thin cloud behavior is consistent with a power law scaling of cloud optical depth and suggests that most optically thin clouds only partially fill the CALIOP footprint.

  14. Non-linear optics of nano-scale pentacene thin film

    Science.gov (United States)

    Yahia, I. S.; Alfaify, S.; Jilani, Asim; Abdel-wahab, M. Sh.; Al-Ghamdi, Attieh A.; Abutalib, M. M.; Al-Bassam, A.; El-Naggar, A. M.

    2016-07-01

    We have found the new ways to investigate the linear/non-linear optical properties of nanostructure pentacene thin film deposited by thermal evaporation technique. Pentacene is the key material in organic semiconductor technology. The existence of nano-structured thin film was confirmed by atomic force microscopy and X-ray diffraction. The wavelength-dependent transmittance and reflectance were calculated to observe the optical behavior of the pentacene thin film. It has been observed the anomalous dispersion at wavelength λ 800. The non-linear refractive index of the deposited films was investigated. The linear optical susceptibility of pentacene thin film was calculated, and we observed the non-linear optical susceptibility of pentacene thin film at about 6 × 10-13 esu. The advantage of this work is to use of spectroscopic method to calculate the liner and non-liner optical response of pentacene thin films rather than expensive Z-scan. The calculated optical behavior of the pentacene thin films could be used in the organic thin films base advanced optoelectronic devices such as telecommunications devices.

  15. Nonlinear optical parameters of nanocrystalline AZO thin film measured at different substrate temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Jilani, Asim, E-mail: asim.jilane@gmail.com [Centre of Nanotechnology, King Abdulaziz University, Jeddah (Saudi Arabia); Abdel-wahab, M.Sh [Centre of Nanotechnology, King Abdulaziz University, Jeddah (Saudi Arabia); Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni -Suef University, Beni-Suef (Egypt); Al-ghamdi, Attieh A. [Centre of Nanotechnology, King Abdulaziz University, Jeddah (Saudi Arabia); Dahlan, Ammar sadik [Department of architecture, faculty of environmental design, King Abdulaziz University, Jeddah (Saudi Arabia); Yahia, I.S. [Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha (Saudi Arabia); Nano-Science & Semiconductor Labs, Department of Physics, Faculty of Education, Ain Shams University, Roxy, 11757 Cairo (Egypt)

    2016-01-15

    The 2.2 wt% of aluminum (Al)-doped zinc oxide (AZO) transparent and preferential c-axis oriented thin films were prepared by using radio frequency (DC/RF) magnetron sputtering at different substrate temperature ranging from room temperature to 200 °C. For structural analysis, X-ray Diffraction (XRD) and Atomic Force Electron Microscope (AFM) was used for morphological studies. The optical parameters such as, optical energy gap, refractive index, extinction coefficient, dielectric loss, tangent loss, first and third order nonlinear optical properties of transparent films were investigated. High transmittance above 90% and highly homogeneous surface were observed in all samples. The substrate temperature plays an important role to get the best transparent conductive oxide thin films. The substrate temperature at 150 °C showed the growth of highly transparent AZO thin film. Energy gap increased with the increased in substrate temperature of Al doped thin films. Dielectric constant and loss were found to be photon energy dependent with substrate temperature. The change in substrate temperature of Al doped thin films also affect the non-liner optical properties of thin films. The value of χ{sup (3)} was found to be changed with the grain size of the thin films that directly affected by the substrate temperature of the pure and Al doped ZnO thin films.

  16. Magneto-Optical Thin Films for On-Chip Monolithic Integration of Non-Reciprocal Photonic Devices.

    Science.gov (United States)

    Bi, Lei; Hu, Juejun; Jiang, Peng; Kim, Hyun Suk; Kim, Dong Hun; Onbasli, Mehmet Cengiz; Dionne, Gerald F; Ross, Caroline A

    2013-11-08

    Achieving monolithic integration of nonreciprocal photonic devices on semiconductor substrates has been long sought by the photonics research society. One way to achieve this goal is to deposit high quality magneto-optical oxide thin films on a semiconductor substrate. In this paper, we review our recent research activity on magneto-optical oxide thin films toward the goal of monolithic integration of nonreciprocal photonic devices on silicon. We demonstrate high Faraday rotation at telecommunication wavelengths in several novel magnetooptical oxide thin films including Co substituted CeO₂ -δ , Co- or Fe-substituted SrTiO 3- δ , as well as polycrystalline garnets on silicon. Figures of merit of 3~4 deg/dB and 21 deg/dB are achieved in epitaxial Sr(Ti 0.2 Ga 0.4 Fe 0.4 )O 3- δ and polycrystalline (CeY₂)Fe₅O 12 films, respectively. We also demonstrate an optical isolator on silicon, based on a racetrack resonator using polycrystalline (CeY₂)Fe₅O 12 /silicon strip-loaded waveguides. Our work demonstrates that physical vapor deposited magneto-optical oxide thin films on silicon can achieve high Faraday rotation, low optical loss and high magneto-optical figure of merit, therefore enabling novel high-performance non-reciprocal photonic devices monolithically integrated on semiconductor substrates.

  17. Coating Thin Mirror Segments for Lightweight X-ray Optics

    Science.gov (United States)

    Chan, Kai-Wing; Sharpe, Marton V.; Zhang, William; Kolosc, Linette; Hong, Melinda; McClelland, Ryan; Hohl, Bruce R.; Saha, Timo; Mazzarellam, James

    2013-01-01

    Next generations lightweight, high resolution, high throughput optics for x-ray astronomy requires integration of very thin mirror segments into a lightweight telescope housing without distortion. Thin glass substrates with linear dimension of 200 mm and thickness as small as 0.4 mm can now be fabricated to a precision of a few arc-seconds for grazing incidence optics. Subsequent implementation requires a distortion-free deposition of metals such as iridium or platinum. These depositions, however, generally have high coating stresses that cause mirror distortion. In this paper, we discuss the coating stress on these thin glass mirrors and the effort to eliminate their induced distortion. It is shown that balancing the coating distortion either by coating films with tensile and compressive stresses, or on both sides of the mirrors is not sufficient. Heating the mirror in a moderately high temperature turns out to relax the coated films reasonably well to a precision of about a second of arc and therefore provide a practical solution to the coating problem.

  18. Optical and electro-optic anisotropy of epitaxial PZT thin films

    Science.gov (United States)

    Zhu, Minmin; Du, Zehui; Jing, Lin; Yoong Tok, Alfred Iing; Tong Teo, Edwin Hang

    2015-07-01

    Strong optical and electro-optic (EO) anisotropy has been investigated in ferroelectric Pb(Zr0.48Ti0.52)O3 thin films epitaxially grown on Nb-SrTiO3 (001), (011), and (111) substrates using magnetron sputtering. The refractive index, electro-optic, and ferroelectric properties of the samples demonstrate the significant dependence on the growth orientation. The linear electro-optic coefficients of the (001), (011), and (111)-oriented PZT thin films were 270.8, 198.8, and 125.7 pm/V, respectively. Such remarkable anisotropic EO behaviors have been explained according to the structure correlation between the orientation dependent distribution, spontaneous polarization, epitaxial strain, and domain pattern.

  19. Structural and Optical Properties of Ultra-high Pure Hot Water Processed Ga2O3 Thin Film

    Directory of Open Access Journals (Sweden)

    Subramani SHANMUGAN

    2016-05-01

    Full Text Available Thin film based gas sensor is an advanced application of thin film especially Ga2O3 (GO thin film gas sensor is useful for high temperature gas sensor. The effect of moisture or environment on thin film properties has more influence on gas sensing properties. Radio Frequency sputtered Ga2O3 thin film was synthesized and processed in ultra-high pure hot water at 95 °C for different time durations. The structural properties were verified by the Xray Diffraction technique and the observed spectra revealed the formation of hydroxyl compound of Gallium (Gallium Oxide Dueterate – GOD on the surface of the thin film and evidenced for structural defects as an effect of moisture. Decreased crystallite size and increased dislocation density was showed the crystal defects of prepared film. From the Ultra Violet – Visible spectra, decreased optical transmittance was noticed for various processing time. The formation of needle like GOD was confirmed using Field Emission Secondary Electron Microscope (FESEM images.DOI: http://dx.doi.org/10.5755/j01.ms.22.2.7186

  20. Thin Film Solar Cells and their Optical Properties

    Directory of Open Access Journals (Sweden)

    Stanislav Jurecka

    2006-01-01

    Full Text Available In this work we report on the optical parameters of the semiconductor thin film for solar cell applications determination. The method is based on the dynamical modeling of the spectral reflectance function combined with the stochastic optimization of the initial reflectance model estimation. The spectral dependency of the thin film optical parameters computations is based on the optical transitions modeling. The combination of the dynamical modeling and the stochastic optimization of the initial theoretical model estimation enable comfortable analysis of the spectral dependencies of the optical parameters and incorporation of the microstructure effects on the solar cell properties. The results of the optical parameters ofthe i-a-Si thin film determination are presented.

  1. Optical modeling and simulation of thin-film photovoltaic devices

    CERN Document Server

    Krc, Janez

    2013-01-01

    In wafer-based and thin-film photovoltaic (PV) devices, the management of light is a crucial aspect of optimization since trapping sunlight in active parts of PV devices is essential for efficient energy conversions. Optical modeling and simulation enable efficient analysis and optimization of the optical situation in optoelectronic and PV devices. Optical Modeling and Simulation of Thin-Film Photovoltaic Devices provides readers with a thorough guide to performing optical modeling and simulations of thin-film solar cells and PV modules. It offers insight on examples of existing optical models

  2. Magneto-Optical Thin Films for On-Chip Monolithic Integration of Non-Reciprocal Photonic Devices

    Directory of Open Access Journals (Sweden)

    Mehmet Cengiz Onbasli

    2013-11-01

    Full Text Available Achieving monolithic integration of nonreciprocal photonic devices on semiconductor substrates has been long sought by the photonics research society. One way to achieve this goal is to deposit high quality magneto-optical oxide thin films on a semiconductor substrate. In this paper, we review our recent research activity on magneto-optical oxide thin films toward the goal of monolithic integration of nonreciprocal photonic devices on silicon. We demonstrate high Faraday rotation at telecommunication wavelengths in several novel magnetooptical oxide thin films including Co substituted CeO2−δ, Co- or Fe-substituted SrTiO3−δ, as well as polycrystalline garnets on silicon. Figures of merit of 3~4 deg/dB and 21 deg/dB are achieved in epitaxial Sr(Ti0.2Ga0.4Fe0.4O3−δ and polycrystalline (CeY2Fe5O12 films, respectively. We also demonstrate an optical isolator on silicon, based on a racetrack resonator using polycrystalline (CeY2Fe5O12/silicon strip-loaded waveguides. Our work demonstrates that physical vapor deposited magneto-optical oxide thin films on silicon can achieve high Faraday rotation, low optical loss and high magneto-optical figure of merit, therefore enabling novel high-performance non-reciprocal photonic devices monolithically integrated on semiconductor substrates.

  3. AZO Thin Films by Sol-Gel Process for Integrated Optics

    Directory of Open Access Journals (Sweden)

    Azzedine Boudrioua

    2013-07-01

    Full Text Available Undoped and aluminum-doped zinc oxide (AZO thin films are prepared by the sol-gel process. Zinc acetate dihydrate, ethanol, and monoethanolamine are used as precursor, solvent, and stabilizer, respectively. In the case of AZO, aluminum nitrate nonahydrate is added to the precursor solution with an atomic percentage equal to 1 and 2 at.% Al. The multi thin layers are deposited by spin-coating onto glass substrates, and are transformed into ZnO upon annealing at 550 °C. Films display a strong preferential orientation, with high values for the Texture Coefficients (TC of the (002 direction (TC(002 ≈ 3. The structural, morphological, and optical properties of the thin films as a function of aluminum content have been investigated using X-Ray Diffraction (XRD, Atomic Force Microscopy (AFM, and Scanning Electronic Microscopy (SEM. Waveguiding properties of the thin films have been also studied using m-lines spectroscopy. The results indicate that the films are monomodes at 632.8 nm with optical propagation optical losses estimated around 1.6 decibel per cm (dB/cm.

  4. Fast Industrial Inspection of Optical Thin Film Using Optical Coherence Tomography

    Directory of Open Access Journals (Sweden)

    Muhammad Faizan Shirazi

    2016-09-01

    Full Text Available An application of spectral domain optical coherence tomography (SD-OCT was demonstrated for a fast industrial inspection of an optical thin film panel. An optical thin film sample similar to a liquid crystal display (LCD panel was examined. Two identical SD-OCT systems were utilized for parallel scanning of a complete sample in half time. Dual OCT inspection heads were utilized for transverse (fast scanning, while a stable linear motorized translational stage was used for lateral (slow scanning. The cross-sectional and volumetric images of an optical thin film sample were acquired to detect the defects in glass and other layers that are difficult to observe using visual inspection methods. The rapid inspection enabled by this setup led to the early detection of product defects on the manufacturing line, resulting in a significant improvement in the quality assurance of industrial products.

  5. Two-dimensional models for the optical response of thin films

    Science.gov (United States)

    Li, Yilei; Heinz, Tony F.

    2018-04-01

    In this work, we present a systematic study of 2D optical models for the response of thin layers of material under excitation by normally incident light. The treatment, within the framework of classical optics, analyzes a thin film supported by a semi-infinite substrate, with both the thin layer and the substrate assumed to exhibit local, isotropic linear response. Starting from the conventional three-dimensional (3D) slab model of the system, we derive a two-dimensional (2D) sheet model for the thin film in which the optical response is described by a sheet optical conductivity. We develop criteria for the applicability of this 2D sheet model for a layer with an optical thickness far smaller than the wavelength of the light. We examine in detail atomically thin semi-metallic and semiconductor van-der-Waals layers and ultrathin metal films as representative examples. Excellent agreement of the 2D sheet model with the 3D slab model is demonstrated over a broad spectral range from the radio frequency limit to the near ultraviolet. A linearized version of system response for the 2D model is also presented for the case where the influence of the optically thin layer is sufficiently weak. Analytical expressions for the applicability and accuracy of the different optical models are derived, and the appropriateness of the linearized treatment for the materials is considered. We discuss the advantages, as well as limitations, of these models for the purpose of deducing the optical response function of the thin layer from experiment. We generalize the theory to take into account in-plane anisotropy, layered thin film structures, and more general substrates. Implications of the 2D model for the transmission of light by the thin film and for the implementation of half- and totally absorbing layers are discussed.

  6. Defect enhanced optic and electro-optic properties of lead zirconate titanate thin films

    Directory of Open Access Journals (Sweden)

    M. M. Zhu

    2011-12-01

    Full Text Available Pb(Zr1-xTixO3 (PZT thin films near phase morphotropic phase boundary were deposited on (Pb0.86La0.14TiO3-coated glass by radio frequency sputtering. A retrieved analysis shows that the lattice parameters of the as-grown PZT thin films were similar to that of monoclinic PZT structure. Moreover, the PZT thin films possessed refractive index as high as 2.504 in TE model and 2.431 in TM model. The as-grown PZT thin film had one strong absorption peak at 632.6 nm, which attributed to lead deficiency by quantitative XPS analysis. From the attractive properties achieved, electro-optic and photovoltaic characteristic of the films were carried out.

  7. Optical response of Cu3Ge thin films

    OpenAIRE

    Aboelfotoh, M. O.; Guizzetti, G.; Marabelli, F.; Pellegrino, Paolo; Sassella, A.

    1996-01-01

    We report an investigation on the optical properties of Cu3Ge thin films displaying very high conductivity, with thickness ranging from 200 to 2000 Å, deposited on Ge substrates. Reflectance, transmittance, and ellipsometric spectroscopy measurements were performed at room temperature in the 0.01-6.0, 0.01-0.6, and 1.4-5.0 eV energy range, respectively. The complex dielectric function, the optical conductivity, the energy-loss function, and the effective charge density were obtained over the ...

  8. Characterization of ion-assisted induced absorption in A-Si thin-films used for multivariate optical computing

    Science.gov (United States)

    Nayak, Aditya B.; Price, James M.; Dai, Bin; Perkins, David; Chen, Ding Ding; Jones, Christopher M.

    2015-06-01

    Multivariate optical computing (MOC), an optical sensing technique for analog calculation, allows direct and robust measurement of chemical and physical properties of complex fluid samples in high-pressure/high-temperature (HP/HT) downhole environments. The core of this MOC technology is the integrated computational element (ICE), an optical element with a wavelength-dependent transmission spectrum designed to allow the detector to respond sensitively and specifically to the analytes of interest. A key differentiator of this technology is it uses all of the information present in the broadband optical spectrum to determine the proportion of the analyte present in a complex fluid mixture. The detection methodology is photometric in nature; therefore, this technology does not require a spectrometer to measure and record a spectrum or a computer to perform calculations on the recorded optical spectrum. The integrated computational element is a thin-film optical element with a specific optical response function designed for each analyte. The optical response function is achieved by fabricating alternating layers of high-index (a-Si) and low-index (SiO2) thin films onto a transparent substrate (BK7 glass) using traditional thin-film manufacturing processes (e.g., ion-assisted e-beam vacuum deposition). A proprietary software and process are used to control the thickness and material properties, including the optical constants of the materials during deposition to achieve the desired optical response function. The ion-assisted deposition is useful for controlling the densification of the film, stoichiometry, and material optical constants as well as to achieve high deposition growth rates and moisture-stable films. However, the ion-source can induce undesirable absorption in the film; and subsequently, modify the optical constants of the material during the ramp-up and stabilization period of the e-gun and ion-source, respectively. This paper characterizes the unwanted

  9. Optical properties of titanium trisulphide (TiS3) thin films

    International Nuclear Information System (INIS)

    Ferrer, I.J.; Ares, J.R.; Clamagirand, J.M.; Barawi, M.; Sánchez, C.

    2013-01-01

    Titanium trisulphide thin films have been grown on quartz substrates by sulphuration of electron-beam evaporated Ti layers (d ∼ 300 nm) in a vacuum sealed ampoule in the presence of sulphur powder at 550 °C for different periods of time (1 to 20 h). Thin films were characterized by X-ray diffraction, energy dispersive analyses of X-ray and scanning electron microscopy. Results demonstrate that films are composed by monoclinic titanium trisulphide. Films show n-type conductivity with a relatively high resistivity (ρ ∼ 4 ± 2 Ω·cm) and high values of the Seebeck coefficient (− 600 μV/K) at room temperature. Values of the optical absorption coefficient about α ∼ 10 5 cm −1 , determined from reflectance and transmittance measurements, have been obtained at photon energies hυ > 2 eV. The absorption coefficient dependence on the photon energy in the range of 1.6–3.0 eV hints the existence of a direct transition with an energy gap between 1.35 and 1.50 eV. By comparing these results with those obtained from bulk TiS 3 , a direct transition with lower energy is also found which could have been hidden due to the low value of the absorption coefficient in this energy range. - Highlights: ► Thin films of TiS 3 have been obtained by sulphuration of Ti layers. ► Optical properties of TiS 3 thin films have been determined. ► Optical energy gap of TiS 3 has been obtained. ► Optical properties of bulk TiS 3 have been measured and compared with those of films

  10. Synthesis, microstructural, optical and mechanical properties of yttria stabilized zirconia thin films

    International Nuclear Information System (INIS)

    Amézaga-Madrid, P.; Hurtado-Macías, A.; Antúnez-Flores, W.; Estrada-Ortiz, F.; Pizá-Ruiz, P.; Miki-Yoshida, M.

    2012-01-01

    Highlights: ► Thin films of YSZ obtained by AACVD have high quality. ► They are uniform, very transparent, and have high hardness. ► Optical characterization were performed in detail, optical constants and band gap energy were determined as a function of dopant content. - Abstract: Thin films of yttria-stabilized zirconia (YSZ) exhibit exceptional properties, such as high thermal, chemical and mechanical stability. Here, we report the synthesis of YSZ thin films by aerosol assisted chemical vapour deposition onto borosilicate glass and fused silica substrates. Optimum deposition temperature was 673 ± 5 K. In addition, different Y content was tried to analyse its influence in the microstructure and properties of the films. The films were uniform, transparent and non-light scattering. Surface morphology and cross sectional microstructure were studied by field emission scanning electron microscopy. The microstructure of the films was characterized by grazing incidence X-ray diffraction. Crystallite size and lattice parameter were obtained. Optical properties were analysed from reflectance and transmittance spectra; from these measurements, optical constants and band gap were obtained. Quantum confinement effect, due to the small grain size of the films, was evident in the high band gap energy obtained. Nanoindentation tests were realized at room temperature employing the continuous stiffness measurement method, to determine the hardness and elastic modulus as a function of Y content.

  11. Silicon-integrated thin-film structure for electro-optic applications

    Science.gov (United States)

    McKee, Rodney A.; Walker, Frederick Joseph

    2000-01-01

    A crystalline thin-film structure suited for use in any of an number of electro-optic applications, such as a phase modulator or a component of an interferometer, includes a semiconductor substrate of silicon and a ferroelectric, optically-clear thin film of the perovskite BaTiO.sub.3 overlying the surface of the silicon substrate. The BaTiO.sub.3 thin film is characterized in that substantially all of the dipole moments associated with the ferroelectric film are arranged substantially parallel to the surface of the substrate to enhance the electro-optic qualities of the film.

  12. Influence of sputtering power on the optical properties of ITO thin films

    Energy Technology Data Exchange (ETDEWEB)

    K, Aijo John; M, Deepak, E-mail: manju.thankamoni@gmail.com; T, Manju, E-mail: manju.thankamoni@gmail.com [Department of Physics, Sree Sankara College, Kalady P. O., Ernakulam Dist., Kerala (India); Kumar, Vineetha V. [Dept. of Physics, K. E. College, Mannanam, Kottayam Dist., Kerala (India)

    2014-10-15

    Tin doped indium oxide films are widely used in transparent conducting coatings such as flat panel displays, crystal displays and in optical devices such as solar cells and organic light emitting diodes due to the high electrical resistivity and optical transparency in the visible region of solar spectrum. The deposition parameters have a commendable influence on the optical and electrical properties of the thin films. In this study, ITO thin films were prepared by RF magnetron sputtering. The properties of the films prepared under varying sputtering power were compared using UV- visible spectrophotometry. Effect of sputtering power on the energy band gap, absorption coefficient and refractive index are investigated.

  13. Pulsed laser deposited Al-doped ZnO thin films for optical applications

    Directory of Open Access Journals (Sweden)

    Gurpreet Kaur

    2015-02-01

    Full Text Available Highly transparent and conducting Al-doped ZnO (Al:ZnO thin films were grown on glass substrates using pulsed laser deposition technique. The profound effect of film thickness on the structural, optical and electrical properties of Al:ZnO thin films was observed. The X-ray diffraction depicts c-axis, plane (002 oriented thin films with hexagonal wurtzite crystal structure. Al-doping in ZnO introduces a compressive stress in the films which increase with the film thickness. AFM images reveal the columnar grain formation with low surface roughness. The versatile optical properties of Al:ZnO thin films are important for applications such as transparent electromagnetic interference (EMI shielding materials and solar cells. The obtained optical band gap (3.2–3.08 eV was found to be less than pure ZnO (3.37 eV films. The lowering in the band gap in Al:ZnO thin films could be attributed to band edge bending phenomena. The photoluminescence spectra gives sharp visible emission peaks, enables Al:ZnO thin films for light emitting devices (LEDs applications. The current–voltage (I–V measurements show the ohmic behavior of the films with resistivity (ρ~10−3 Ω cm.

  14. Optical and magneto-optical characterization of TbFeCo and GdFeCo thin films for high-density recording

    International Nuclear Information System (INIS)

    Hendren, W R; Atkinson, R; Pollard, R J; Salter, I W; Wright, C D; Clegg, W W; Jenkins, D F L

    2003-01-01

    Thin, optically semi-infinite films of amorphous TbFeCo and GdFeCo, suitable for magneto-optical recording, have been deposited by DC magnetron sputtering onto glass. Ellipsometric techniques have been used to determine the complex refractive index and complex magneto-optical parameter of the films in the wavelength range 400-900 nm, thus characterizing the materials. A review of the literature is presented and shows that the results for the TbFeCo films compare favourably with published results obtained from measurements conducted in situ, with the films protected with ZnS barrier layers. It is found that GdFeCo and TbFeCo are optically very similar, but magneto-optically the materials are quite different

  15. Optical and magneto-optical characterization of TbFeCo and GdFeCo thin films for high-density recording

    Energy Technology Data Exchange (ETDEWEB)

    Hendren, W R [Department of Pure and Applied Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom); Atkinson, R [Department of Pure and Applied Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom); Pollard, R J [Department of Pure and Applied Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom); Salter, I W [Department of Pure and Applied Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom); Wright, C D [School of Engineering and Computer Science, University of Exeter, Exeter EX4 4QF (United Kingdom); Clegg, W W [CRIST, University of Plymouth, Plymouth PL4 8AA (United Kingdom); Jenkins, D F L [CRIST, University of Plymouth, Plymouth PL4 8AA (United Kingdom)

    2003-03-12

    Thin, optically semi-infinite films of amorphous TbFeCo and GdFeCo, suitable for magneto-optical recording, have been deposited by DC magnetron sputtering onto glass. Ellipsometric techniques have been used to determine the complex refractive index and complex magneto-optical parameter of the films in the wavelength range 400-900 nm, thus characterizing the materials. A review of the literature is presented and shows that the results for the TbFeCo films compare favourably with published results obtained from measurements conducted in situ, with the films protected with ZnS barrier layers. It is found that GdFeCo and TbFeCo are optically very similar, but magneto-optically the materials are quite different.

  16. Thickness and microstructure effects in the optical and electrical properties of silver thin films

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Guowen, E-mail: gding@intermolecular.com; Clavero, César; Schweigert, Daniel; Le, Minh [Intermolecular, Inc., 3011 North First Street, San Jose, CA 95134 (United States)

    2015-11-15

    The optical and electrical response of metal thin films approaching thicknesses in the range of the electron mean free path is highly affected by electronic scattering with the interfaces and defects. Here, we present a theoretical and experimental study on how thickness and microstructure affect the properties of Ag thin films. We are able to successfully model the electrical resistivity and IR optical response using a thickness dependent electronic scattering time. Remarkably, the product of electronic scattering time and resistivity remains constant regardless of the thickness (τx ρ = C), with a value of 59 ± 2 μΩ cm ⋅ fs for Ag films in the investigated range from 3 to 74 nm. Our findings enable us to develop a theoretically framework that allows calculating the optical response of metal thin films in the IR by using their measured thickness and resistivity. An excellent agreement is found between experimental measurements and predicted values. This study also shows the theoretical lower limit for emissivity in Ag thin films according to their microstructure and thickness. Application of the model presented here will allow rapid characterization of the IR optical response of metal thin films, with important application in a broad spectrum of fundamental and industrial applications, including optical coatings, low-emissivity windows and semiconductor industry.

  17. The physics of thin film optical spectra an introduction

    CERN Document Server

    Stenzel, Olaf

    2016-01-01

    The book bridges the gap between fundamental physics courses (such as optics, electrodynamics, quantum mechanics and solid state physics) and highly specialized literature on the spectroscopy, design, and application of optical thin film coatings. Basic knowledge from the above-mentioned courses is therefore presumed. Starting from fundamental physics, the book enables the reader derive the theory of optical coatings and to apply it to practically important spectroscopic problems. Both classical and semiclassical approaches are included. Examples describe the full range of classical optical coatings in various spectral regions as well as highly specialized new topics such as rugate filters and resonant grating waveguide structures.The second edition has been updated and extended with respect to probing matter in different spectral regions, homogenous and inhomogeneous line broadening mechanisms and the Fresnel formula for the effect of planar interfaces.

  18. Nanostructured pyronin Y thin films as a new organic semiconductor: Linear/nonlinear optics, band gap and dielectric properties

    Energy Technology Data Exchange (ETDEWEB)

    Zahran, H.Y. [Metallurgical Lab.1, Nanoscience Laboratory for Environmental and Bio-medical Applications (NLEBA), Semiconductor Lab., Department of Physics, Faculty of Education, Ain Shams University, Roxy, 11757 Cairo (Egypt); Advanced Functional Materials & Optoelectronic Laboratory (AFMOL), Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha (Saudi Arabia); Yahia, I.S., E-mail: dr_isyahia@yahoo.com [Metallurgical Lab.1, Nanoscience Laboratory for Environmental and Bio-medical Applications (NLEBA), Semiconductor Lab., Department of Physics, Faculty of Education, Ain Shams University, Roxy, 11757 Cairo (Egypt); Advanced Functional Materials & Optoelectronic Laboratory (AFMOL), Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha (Saudi Arabia); Alamri, F.H. [Advanced Functional Materials & Optoelectronic Laboratory (AFMOL), Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha (Saudi Arabia)

    2017-05-15

    Pyronin Y dye (PY) is a kind of xanthene derivatives. Thin films of pyronin Y were deposited onto highly cleaned glass substrates using low-cost/spin coating technique. The structure properties of pyronin Y thin films with different thicknesses were investigated by using X-ray diffraction (XRD) and atomic force microscope (AFM). PY thin films for all the studied thicknesses have an amorphous structure supporting the short range order of the grain size. AFM supports the nanostructure with spherical/clusters morphologies of the investigated thin films. The optical constants of pyronin Y thin films for various thicknesses were studied by using UV–vis–NIR spectrophotometer in the wavelength range 350–2500 nm. The transmittance T(λ), reflectance R(λ) spectral and absorbance (abs(λ)) were obtained for all film thicknesses at room temperature and the normal light incident. These films showed a high transmittance in the wide scale wavelengths. For different thicknesses of the studied thin films, the optical band gaps were determined and their values around 2 eV. Real and imaginary dielectric constants, dissipation factor and the nonlinear optical parameters were calculated in the wavelengths to the range 300–2500 nm. The pyronin Y is a new organic semiconductor with a good optical absorption in UV–vis regions and it is suitable for nonlinear optical applications. - Highlights: • Pyronin Y (PY) nanostructured thin films were deposited by using spin coating technique. • XRD/AFM were used to study the structure of PY films. • The optical band gap was calculated on the basis of Tauc's model. • Linear/nonlinear optical parameters are calculated and interpreted via the applied optical theories. • PY thin films is a new organic semiconductor for its application in optoelectronic devices.

  19. Optical properties of CeO 2 thin films

    Indian Academy of Sciences (India)

    Cerium oxide (CeO2) thin films have been prepared by electron beam evaporation technique onto glass substrate at a pressure of about 6 × 10-6 Torr. The thickness of CeO2 films ranges from 140–180 nm. The optical properties of cerium oxide films are studied in the wavelength range of 200–850 nm. The film is highly ...

  20. Thickness and microstructure effects in the optical and electrical properties of silver thin films

    Directory of Open Access Journals (Sweden)

    Guowen Ding

    2015-11-01

    Full Text Available The optical and electrical response of metal thin films approaching thicknesses in the range of the electron mean free path is highly affected by electronic scattering with the interfaces and defects. Here, we present a theoretical and experimental study on how thickness and microstructure affect the properties of Ag thin films. We are able to successfully model the electrical resistivity and IR optical response using a thickness dependent electronic scattering time. Remarkably, the product of electronic scattering time and resistivity remains constant regardless of the thickness (τx ρ = C, with a value of 59 ± 2 μΩ cm ⋅ fs for Ag films in the investigated range from 3 to 74 nm. Our findings enable us to develop a theoretically framework that allows calculating the optical response of metal thin films in the IR by using their measured thickness and resistivity. An excellent agreement is found between experimental measurements and predicted values. This study also shows the theoretical lower limit for emissivity in Ag thin films according to their microstructure and thickness. Application of the model presented here will allow rapid characterization of the IR optical response of metal thin films, with important application in a broad spectrum of fundamental and industrial applications, including optical coatings, low-emissivity windows and semiconductor industry.

  1. Structural and optical properties of DC reactive magnetron sputtered zinc aluminum oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, B. Rajesh, E-mail: rajphyind@gmail.com [Department of Physics, GITAM Institute of Technology, GITAM University, Visakhapatnam - 530 045, A.P. (India); Rao, T. Subba, E-mail: thotasubbarao6@gmail.com [Department of Physics, Sri Krishnadevaraya University, Anantapuramu - 515 003, A.P. (India)

    2014-10-15

    Highly transparent conductive Zinc Aluminum Oxide (ZAO) thin films have been deposited on glass substrates using DC reactive magnetron sputtering method. The thin films were deposited at 200 °C and post-deposition annealing from 15 to 90 min. XRD patterns of ZAO films exhibit only (0 0 2) diffraction peak, indicating that they have c-axis preferred orientation perpendicular to the substrate. Scanning electron microscopy (SEM) is used to study the surface morphology of the films. The grain size obtained from SEM images of ZAO thin films are found to be in the range of 20 - 26 nm. The minimum resistivity of 1.74 × 10{sup −4} Ω cm and an average transmittance of 92% are obtained for the thin film post annealed for 30 min. The optical band gap of ZAO thin films increased from 3.49 to 3.60 eV with the increase of annealing time due to Burstein-Moss effect. The optical constants refractive index (n) and extinction coefficient (k) were also determined from the optical transmission spectra.

  2. High index glass thin film processing for photonics and photovoltaic (PV) applications

    Science.gov (United States)

    Ogbuu, Okechukwu Anthony

    To favorably compete with fossil-fuel technology, the greatest challenge for thin film solar-cells is to improve efficiency and reduce material cost. Thickness scaling to thin film reduces material cost but affects the light absorption in the cells; therefore a concept that traps incident photons and increases its optical path length is needed to boost absorption in thin film solar cells. One approach is the integration of low symmetric gratings (LSG), using high index material, on either the front-side or backside of 30 um thin c-Si cells. In this study, Multicomponent TeO2--Bi2O 3--ZnO (TBZ) glass thin films were prepared using RF magnetron sputtering under different oxygen flow rates. The influences of oxygen flow rate on the structural and optical properties of the resulting thin films were investigated. The structural origin of the optical property variation was studied using X-ray diffraction, X-ray photoelectron spectroscopy, Raman Spectroscopy, and transmission electron microscopy. The results indicate that TBZ glass thin film is a suitable material for front side LSG material photovoltaic and photonics applications due to their amorphous nature, high refractive index (n > 2), broad band optical transparency window, low processing temperature. We developed a simple maskless method to pattern sputtered tellurite based glass thin films using unconventional agarose hydrogel mediated wet etching. Conventional wet etching process, while claiming low cost and high throughput, suffers from reproducibility and pattern fidelity issues due to the isotropic nature of wet chemical etching when applied to glasses and polymers. This method overcomes these challenges by using an agarose hydrogel stamp to mediate a conformal etching process. In our maskless method, agarose hydrogel stamps are patterned following a standard soft lithography and replica molding process from micropatterned masters and soaked in a chemical etchant. The micro-scale features on the stamp are

  3. Thin Film Magnetless Faraday Rotators for Compact Heterogeneous Integrated Optical Isolators (Postprint)

    Science.gov (United States)

    2017-06-15

    AFRL-RX-WP-JA-2017-0348 THIN-FILM MAGNETLESS FARADAY ROTATORS FOR COMPACT HETEROGENEOUS INTEGRATED OPTICAL ISOLATORS (POSTPRINT) Dolendra Karki...Interim 9 May 2016 – 1 December 2016 4. TITLE AND SUBTITLE THIN-FILM MAGNETLESS FARADAY ROTATORS FOR COMPACT HETEROGENEOUS INTEGRATED OPTICAL...transfer of ultra-compact thin-film magnetless Faraday rotators to silicon photonic substrates. Thin films of magnetization latching bismuth

  4. Optical and structural properties of thin films of ZnO at elevated temperature

    International Nuclear Information System (INIS)

    Kayani, Zohra N.; Afzal, Tosif; Riaz, Saira; Naseem, Shahzad

    2014-01-01

    Highlights: • Thin films of ZnO are prepared on glass substrates using dip-coating. • The X-ray diffraction showed that films are crystalline. • Optical measurements show that the film possesses high transmittance in visible region. • The transmission decreased with increased withdrawal speed. • The films has direct band gap in range 3.78-3.48 eV. - Abstract: Zinc oxide (ZnO) thin films were prepared on glass substrate by sol–gel dip-coating method. The paper presents the properties of zinc oxide thin films deposited on soda-lime-glass substrate via dip-coating technique, using zinc acetate dehydrate and ethanol as raw materials. The effect of withdrawal speed on the crystalline structure, surface morphology and optical properties of the thin films has been investigated using XRD, SEM and UV–Vis spectrophotometer. X-ray diffraction study shows that all the films have hexagonal wurtzite structure with preferred orientation in (0 0 2) direction and transmission spectra showed highly transparent films with band gap ranging from 3.78 to 3.48 eV

  5. Optically transparent super-hydrophobic thin film fabricated by reusable polyurethane-acrylate (PUA) mold

    Science.gov (United States)

    Park, J.-S.; Park, J.-H.; Lee, D.-W.

    2018-02-01

    In this paper, we describe a simple manufacturing method for producing an optically transparent super-hydrophobic polymer thin film using a reusable photo-curable polymer mold. Soluble photoresist (PR) molds were prepared with under-exposed and under-baked processes, which created unique hierarchical micro/nano structures. The reverse phase of the PR mold was replicated on the surface of polydimethylsiloxane (PDMS) substrates. The unique patterns on the replicated PDMS molds were successfully transferred back to the UV curable polyurethane-acrylate (PUA) using a laboratory-made UV exposure system. Continuous production of the super-hydrophobic PDMS thin film was demonstrated using the reusable PUA mold. In addition, hydrophobic nano-silica powder was sprayed onto the micro/nano structured PDMS surfaces to further improve hydrophobicity. The fabricated PDMS thin films with hierarchical surface texturing showed a water contact angle  ⩾150°. Excellent optical transmittance within the range of visible light of wavelengths between 400-800 nm was experimentally confirmed using a spectrophotometer. High efficiency of the super-hydrophobic PDMS film in optical transparency was also confirmed using solar panels. The fabricated PUA molds are very suitable for use in roll-to-roll or roll-to-plate systems which allow continuous production of super-hydrophobic thin films with an excellent optical transparency.

  6. Fabrication of bright and thin Zn₂SiO₄ luminescent film for electron beam excitation-assisted optical microscope.

    Science.gov (United States)

    Furukawa, Taichi; Kanamori, Satoshi; Fukuta, Masahiro; Nawa, Yasunori; Kominami, Hiroko; Nakanishi, Yoichiro; Sugita, Atsushi; Inami, Wataru; Kawata, Yoshimasa

    2015-07-13

    We fabricated a bright and thin Zn₂SiO₄ luminescent film to serve as a nanometric light source for high-spatial-resolution optical microscopy based on electron beam excitation. The Zn₂SiO₄ luminescent thin film was fabricated by annealing a ZnO film on a Si₃N₄ substrate at 1000 °C in N₂. The annealed film emitted bright cathodoluminescence compared with the as-deposited film. The film is promising for nano-imaging with electron beam excitation-assisted optical microscopy. We evaluated the spatial resolution of a microscope developed using this Zn₂SiO₄ luminescent thin film. This is the first report of the investigation and application of ZnO/Si₃N₄ annealed at a high temperature (1000 °C). The fabricated Zn₂SiO₄ film is expected to enable high-frame-rate dynamic observation with ultra-high resolution using our electron beam excitation-assisted optical microscopy.

  7. Optical characterisation of sputtered hydrogenated amorphous silicon thin films

    International Nuclear Information System (INIS)

    Mellassi, K.; Chafik El Idrissi, M.; Chouiyakh, A.; Rjeb, A.; Barhdadi, A.

    2000-09-01

    The present work is devoted to the study of some optical properties of hydrogenated amorphous silicon (a-Si:H) thin films prepared by radio-frequency cathodic sputtering technique. It is essentially focused on investigating separately the effects of increasing partial hydrogen pressure during the deposition stage, and the effects of post deposition thermal annealing on the main optical parameters of the deposited layers (refraction index, optical gap Urbach energy, etc.). We show that low hydrogen pressures allow a saturation of the dangling bonds in the material, while high pressures lead to the creation of new defects. We also show that thermal annealing under moderate temperatures allows a good improvement of the structural quality of deposited films. (author)

  8. Optical constant of thin gold films

    DEFF Research Database (Denmark)

    Yakubovsky, D. I.; Fedyanin, D. Yu; Arsenin, A. V.

    2017-01-01

    The performance of metal-based devices is limited by ohmic losses in the metal, which are determined by electron scattering. The structural properties of gold thin films also play an important role in the film quality, which may affect its' optical properties and the overall capability...... and spectroscopic ellipsometry, the structural morphology and optical properties of polycrystalline gold thin films (fabricated by e-beam deposition at a low sputtering rate smooth gold) in the thickness range of 20 - 200 nm. By extracting the real and imaginary dielectric function and the Drude parameter...... of the device. At the same time, metal films of different thicknesses are needed for different applications and, since these films are polycrystalline, their internal properties and surface roughness can greatly vary from one thickness to another. In this work, we study, using atomic force microscopy...

  9. Magneto-optic properties and optical parameter of thin MnCo films

    Directory of Open Access Journals (Sweden)

    E Attaran Kakhki

    2009-09-01

    Full Text Available Having precise hysterics loop of thin ferroelectric and ferromagnetic layers for optical switching and optical storages are important. A hysterieses loop can be achieved from a phenomenon call the magneto-optic effect. The magneto-optic effect is the rotation of a linear polarized electromagnetic wave propagated through a ferromagnetic medium. When light is transmitted through a layer of magnetic material the result is called the Faraday effects and in the reflection mode Kerr effect. In the present work we prepared a thin layer of MnxCo3-xO4 (0≤ x ≤ 1 and a binary form of MnO/Co3O4 by the spray pyrolysis method. The films have been characterized by a special set up of magneto-optic hysterics loop plotter containing a polarized He- Ne laser beam and a special electronic circuit. Faraday rotation were measured for these films by hysterics loop plotter and their optical properties were also obtained by spatial software designed for this purpose according to Swane Poel theoretical method. The measurements show that the samples at diluted Mn study has are ferromagnetic and the magneto-optic rotation show a good enhance respect to the single Co layers. Also, the study has shown that the MnCo oxide layer have two different energy gaps and by increasing of Mn this energy decreases and fall to 0.13 eV.

  10. Raman spectroscopy of optical properties in CdS thin films

    Directory of Open Access Journals (Sweden)

    Trajić J.

    2015-01-01

    Full Text Available Properties of CdS thin films were investigated applying atomic force microscopy (AFM and Raman spectroscopy. CdS thin films were prepared by using thermal evaporation technique under base pressure 2 x 10-5 torr. The quality of these films was investigated by AFM spectroscopy. We apply Raman scattering to investigate optical properties of CdS thin films, and reveal existence of surface optical phonon (SOP mode at 297 cm-1. Effective permittivity of mixture were modeled by Maxwell - Garnet approximation. [Projekat Ministarstva nauke Republike Srbije, br. 45003

  11. Optical characterization of a-Si:H thin films grown by Hg-Photo-CVD

    International Nuclear Information System (INIS)

    Barhdadi, A.; Karbal, S.; M'Gafad, N.; Benmakhlouf, A.; Chafik El Idrissi, M.; Aka, B.M.

    2006-08-01

    Mercury-Sensitized Photo-Assisted Chemical Vapor Deposition (Hg-Photo-CVD) technique opens new possibilities for reducing thin film growth temperature and producing novel semiconductor materials suitable for the future generation of high efficiency thin film solar cells onto low cost flexible plastic substrates. This paper provides some experimental data resulting from the optical characterization of hydrogenated amorphous silicon thin films grown by this deposition technique. Experiments have been performed on both as-deposited layers and thermal annealed ones. (author) [fr

  12. Excitation of epsilon-near-zero resonance in ultra-thin indium tin oxide shell embedded nanostructured optical fiber.

    Science.gov (United States)

    Minn, Khant; Anopchenko, Aleksei; Yang, Jingyi; Lee, Ho Wai Howard

    2018-02-05

    We report a novel optical waveguide design of a hollow step index fiber modified with a thin layer of indium tin oxide (ITO). We show an excitation of highly confined waveguide mode in the proposed fiber near the wavelength where permittivity of ITO approaches zero. Due to the high field confinement within thin ITO shell inside the fiber, the epsilon-near-zero (ENZ) mode can be characterized by a peak in modal loss of the hybrid waveguide. Our results show that such in-fiber excitation of ENZ mode is due to the coupling of the guided core mode to the thin-film ENZ mode. We also show that the phase matching wavelength, where the coupling takes place, varies depending on the refractive index of the constituents inside the central bore of the fiber. These ENZ nanostructured optical fibers have many potential applications, for example, in ENZ nonlinear and magneto-optics, as in-fiber wavelength-dependent filters, and as subwavelength fluid channel for optical and bio-photonic sensing.

  13. Optical and electrical properties of chemical bath deposited cobalt sulphide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Govindasamy, Geetha [R& D Centre, Bharathiar University, Coimbatore (India); Murugasen, Priya, E-mail: priyamurugasen15@gmail.com [Department of Physics, Saveetha Engineering, Chennai, Tamil Nadu (India); Sagadevan, Suresh [Department of Physics, AMET University, Chennai, Tamil Nadu (India)

    2017-01-15

    Cobalt sulphide (CoS) thin films were synthesized using the Chemical Bath Deposition (CBD) technique. X-ray diffraction (XRD) analysis was used to study the structure and the crystallite size of CoS thin film. Scanning Electron Microscope (SEM) studies reveal the surface morphology of these films. The optical properties of the CoS thin films were determined using UV-Visible absorption spectrum. The optical band gap of the thin films was found to be 1.6 eV. Optical constants such as the refractive index, the extinction coefficient and the electric susceptibility were determined. The dielectric studies were carried out at different frequencies and at different temperatures for the prepared CoS thin films. In addition, the plasma energy of the valence electron, Penn gap or average energy gap, the Fermi energy and electronic polarizability of the thin films were determined. The AC electrical conductivity measurement was also carried out for the thin films. The activation energy was determined by using DC electrical conductivity measurement. (author)

  14. Physical and dispersive optical characteristics of ZrON/Si thin-film system

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Yew Hoong [University of Malaya, Centre of Advanced Materials, Department of Mechanical Engineering, Faculty of Engineering, Kuala Lumpur (Malaysia); University of Malaya, Centre of Advanced Manufacturing and Material Processing, Kuala Lumpur (Malaysia); Atuchin, V.V. [Institute of Semiconductor Physics, SB RAS, Laboratory of Optical Materials and Structures, Novosibirsk (Russian Federation); Kruchinin, V.N. [Institute of Semiconductor Physics, SB RAS, Laboratory for Ellipsometry of Semiconductor Materials and Structures, Novosibirsk (Russian Federation); Cheong, Kuan Yew [Universiti Sains Malaysia, Electronic Materials Research Group, School of Materials and Mineral Resources Engineering, Engineering Campus, Seberang Perai Selatan, Penang (Malaysia)

    2014-06-15

    To date, the complex evaluation of physical and dispersive optical characteristics of the ZrON/Si film system has yet been reported. Hence, ZrON thin films have been formed on Si(100) substrates through oxidation/nitridation of sputtered metallic Zr in N{sub 2}O environment at 500, 700, and 900 C. Physical properties of the deposited films have been characterized by X-ray diffractometry (XRD), Fourier transform infrared (FTIR) spectroscopy, reflection high-energy electron diffraction (RHEED), and spectroscopic ellipsometry (SE). It has been shown that ZrON/Si thin films without optical absorption can be prepared by oxidation/nitridation reaction in N{sub 2}O environment at 700-900 C. (orig.)

  15. Studies on nonlocal optical nonlinearity of Sr–CuO–polyvinyl alcohol nanocomposite thin films

    International Nuclear Information System (INIS)

    Tamgadge, Y.S.; Talwatkar, S.S.; Sunatkari, A.L.; Pahurkar, V.G.; Muley, G.G.

    2015-01-01

    Thermally induced nonlocal nonlinear optical properties of strontium (Sr) doped CuO-polyvinyl alcohol (PVA) nanocomposite thin films under continuous wave Helium–Neon laser illumination are investigated by single beam Z-scan method. Undoped and Sr doped CuO nanoparticles (NPs) using L-arginine as surface modifying agent have been synthesized by wet chemical method and their thin films with PVA as host matrix have been obtained by spin coating technique. Structure, morphology and purity of prepared CuO NPs and thin films have been studied by X-ray diffraction, high-resolution transmission electron microscopy, field emission scanning electron microscopy and energy dispersive X-ray absorption spectroscopy. Fourier transform infra-red spectrum attests the role of L-arginine as surface modifier and ultraviolet–visible absorption studies reveal that the excitonic absorption wavelengths are blue shifted for strontium doped CuO NPs. Sr doped CuO NPs with average particle size of 7 nm and calculated optical band gap up to 2.54 eV have been reported. All Sr doped CuO–PVA nanocomposite thin films show enhanced nonlinear refraction and absorption best suited for optical limiting applications. Observed effects have been attributed to thermal lensing effect. - Highlights: • Pure and strontium doped CuO–polyvinyl alcohol nanocomposite thin films are prepared. • Z-scan studies of thin films are performed under continuous wave helium–neon laser. • Enhanced values of third order nonlinear optical coefficients are obtained for all films. • Thermally induced self-defocusing and reverse saturable absorption have been discussed.

  16. Studies on nonlocal optical nonlinearity of Sr–CuO–polyvinyl alcohol nanocomposite thin films

    Energy Technology Data Exchange (ETDEWEB)

    Tamgadge, Y.S. [Department of Physics, Mahatma Fule Arts, Commerce and S C Science Mahavidyalaya, Warud, Dist. Amravati (MS), 444906 (India); Talwatkar, S.S. [Department of Physics, D K Marathe and N G Acharya College, Chembur, Mumbai (MS) 440071 (India); Sunatkari, A.L. [Department of Physics, Siddharth College of Arts, Science and Commerce, Fort, Mumbai (MS) 440001 (India); Pahurkar, V.G. [Department of Physics, Sant Gadge Baba Amravati University, Amravati (MS), 444602 (India); Muley, G.G., E-mail: gajananggm@yahoo.co.in [Department of Physics, Sant Gadge Baba Amravati University, Amravati (MS), 444602 (India)

    2015-11-30

    Thermally induced nonlocal nonlinear optical properties of strontium (Sr) doped CuO-polyvinyl alcohol (PVA) nanocomposite thin films under continuous wave Helium–Neon laser illumination are investigated by single beam Z-scan method. Undoped and Sr doped CuO nanoparticles (NPs) using L-arginine as surface modifying agent have been synthesized by wet chemical method and their thin films with PVA as host matrix have been obtained by spin coating technique. Structure, morphology and purity of prepared CuO NPs and thin films have been studied by X-ray diffraction, high-resolution transmission electron microscopy, field emission scanning electron microscopy and energy dispersive X-ray absorption spectroscopy. Fourier transform infra-red spectrum attests the role of L-arginine as surface modifier and ultraviolet–visible absorption studies reveal that the excitonic absorption wavelengths are blue shifted for strontium doped CuO NPs. Sr doped CuO NPs with average particle size of 7 nm and calculated optical band gap up to 2.54 eV have been reported. All Sr doped CuO–PVA nanocomposite thin films show enhanced nonlinear refraction and absorption best suited for optical limiting applications. Observed effects have been attributed to thermal lensing effect. - Highlights: • Pure and strontium doped CuO–polyvinyl alcohol nanocomposite thin films are prepared. • Z-scan studies of thin films are performed under continuous wave helium–neon laser. • Enhanced values of third order nonlinear optical coefficients are obtained for all films. • Thermally induced self-defocusing and reverse saturable absorption have been discussed.

  17. Determination of the optical absorption spectra of thin layers from their photoacoustic spectra

    Science.gov (United States)

    Bychto, Leszek; Maliński, Mirosław; Patryn, Aleksy; Tivanov, Mikhail; Gremenok, Valery

    2018-05-01

    This paper presents a new method for computations of the optical absorption coefficient spectra from the normalized photoacoustic amplitude spectra of thin semiconductor samples deposited on the optically transparent and thermally thick substrates. This method was tested on CuIn(Te0.7Se0.3)2 thin films. From the normalized photoacoustic amplitude spectra, the optical absorption coefficient spectra were computed with the new formula as also with the numerical iterative method. From these spectra, the value of the energy gap of the thin film material and the type of the optical transitions were determined. From the experimental optical transmission spectra, the optical absorption coefficient spectra were computed too, and compared with the optical absorption coefficient spectra obtained from photoacoustic spectra.

  18. Structural and optical properties of ITO and Cu doped ITO thin films

    Science.gov (United States)

    Chakraborty, Deepannita; Kaleemulla, S.; Rao, N. Madhusudhana; Subbaravamma, K.; Rao, G. Venugopal

    2018-04-01

    (In0.95Sn0.05)2O3 and (In0.90Cu0.05Sn0.05)2O3 thin films were coated onto glass substrate by electron beam evaporation technique. The structural and optical properties of ITO and Cu doped ITO thin films have been studied by X-ray diffractometer (XRD) and UV-Vis-NIR spectrophotometer. The crystallite size obtained for ITO and Cu doped ITO thin films was in the range of 24 nm to 22 nm. The optical band gap of 4 eV for ITO thin film sample has been observed. The optical band gap decreases to 3.85 eV by doping Cu in ITO.

  19. Studies on the Optical Properties and Surface Morphology of Cobalt Phthalocyanine Thin Films

    Directory of Open Access Journals (Sweden)

    Benny Joseph

    2008-01-01

    Full Text Available Thin films of Cobalt Phthalocyanine (CoPc are fabricated at a base pressure of 10-5 m.bar using Hind-Hivac thermal evaporation plant. The films are deposited on to glass substrates at various temperatures 318, 363, 408 and 458K. The optical absorption spectra of these thin films are measured. The present studies reveal that the optical band gap energies of CoPc thin films are almost same on substrate temperature variation. The structure and surface morphology of the films deposited on glass substrates of temperatures 303, 363 and 458K are studied using X-ray diffractograms and Scanning Electron Micrographs (SEM, which show that there is a change in the crystallinity and surface morphology due to change in the substrate temperatures. Full width at half maximum (FWHM intensity of the diffraction peaks is also found reduced with increasing substrate temperatures. Scanning electron micrographs show that these crystals are needle like, which are interconnected at high substrate temperatures. The optical band gap energy is almost same on substrate temperature variation. Trap energy levels are also observed for these films.

  20. Genetic algorithm approach to thin film optical parameters determination

    International Nuclear Information System (INIS)

    Jurecka, S.; Jureckova, M.; Muellerova, J.

    2003-01-01

    Optical parameters of thin film are important for several optical and optoelectronic applications. In this work the genetic algorithm proposed to solve optical parameters of thin film values. The experimental reflectance is modelled by the Forouhi - Bloomer dispersion relations. The refractive index, the extinction coefficient and the film thickness are the unknown parameters in this model. Genetic algorithm use probabilistic examination of promissing areas of the parameter space. It creates a population of solutions based on the reflectance model and then operates on the population to evolve the best solution by using selection, crossover and mutation operators on the population individuals. The implementation of genetic algorithm method and the experimental results are described too (Authors)

  1. Evaluation of space environmental effects on metals and optical thin films on EOIM-3

    Energy Technology Data Exchange (ETDEWEB)

    Vaughn, J.A.; Linton, R.C.; Finckenor, M.M.; Kamenetzky, R.R.

    1995-02-01

    Metals and optical thin films exposed to the space environment on the Third Flight of the Evaluation of Oxygen Interactions with Materials (EOIM-3) payload, onboard Space Shuttle mission STS-46 were evaluated. The materials effects described in this paper include the effects of space exposure on various pure metals, optical thin films, and optical thin film metals. The changes induced by exposure to the space environment in the material properties were evaluated using bidirectional reflectance distribution function (BRDF), specular reflectance (250 nm to 2500 nm), ESCA, VUV reflectance (120 nm to 200 nm), ellipsometry, FTIR and optical properties. Using these analysis techniques gold optically thin film metal mirrors with nickel undercoats were observed to darken due to nickel diffusion through the gold to the surface. Also, thin film nickel mirrors formed nickel oxide due to exposure to both the atmosphere and space.

  2. Evaluation of space environmental effects on metals and optical thin films on EOIM-3

    Science.gov (United States)

    Vaughn, Jason A.; Linton, Roger C.; Finckenor, Miria M.; Kamenetzky, Rachel R.

    1995-01-01

    Metals and optical thin films exposed to the space environment on the Third Flight of the Evaluation of Oxygen Interactions with Materials (EOIM-3) payload, onboard Space Shuttle mission STS-46 were evaluated. The materials effects described in this paper include the effects of space exposure on various pure metals, optical thin films, and optical thin film metals. The changes induced by exposure to the space environment in the material properties were evaluated using bidirectional reflectance distribution function (BRDF), specular reflectance (250 nm to 2500 nm), ESCA, VUV reflectance (120 nm to 200 nm), ellipsometry, FTIR and optical properties. Using these analysis techniques gold optically thin film metal mirrors with nickel undercoats were observed to darken due to nickel diffusion through the gold to the surface. Also, thin film nickel mirrors formed nickel oxide due to exposure to both the atmosphere and space.

  3. The influence of monomer concentration on the optical properties of electrochemically synthesized polypyrrole thin films

    International Nuclear Information System (INIS)

    Thombare, J. V.; Fulari, V. J.; Rath, M. C.; Han, S. H.

    2013-01-01

    Polypyrrole (PPy) thin films were deposited on stainless steel and ITO coated glass substrate at a constant deposition potential of 0.8 V versus saturated calomel electrode (SCE) by using the electrochemical polymerization method. The PPy thin films were deposited at room temperature at various monomer concentrations ranging from 0.1 M to 0.3 M pyrrole. The structural and optical properties of the polypyrrole thin films were investigated using an X-ray diffractometer (XRD), FTIR spectroscopy, scanning electron microscopy (SEM), and ultraviolet—visible (UV—vis) spectroscopy. The XRD results show that polypyrrole thin films have a semi crystalline structure. Higher monomer concentration results in a slight increase of crystallinity. The polypyrrole thin films deposited at higher monomer concentration exhibit high visible absorbance. The refractive indexes of the polypyrrole thin films are found to be in the range of 1 to 1.3 and vary with monomer concentration as well as wavelength. The extinction coefficient decreases slightly with monomer concentration. The electrochemically synthesized polypyrrole thin film shows optical band gap energy of 2.14 eV. (semiconductor materials)

  4. Determination and analysis of dispersive optical constants of some organic thin films

    International Nuclear Information System (INIS)

    Kaya, Y.; Taysioglu, A. A.; Peksoez, A.; Irez, G.; Derebasi, N.; Kaynak, G.

    2010-01-01

    Schiff bases are an important class of ligands in coordination chemistry and find extensive application in different fields. Recently, increased interest in organic thin film materials has arisen due to their extensive applications in the fields of mechanics, flexible electronics and optics. Optoelectronics is the area in which organic films and organic-inorganic nanostructures have found their main applications in the last decade. These organic thin films have been also used in a wide variety of applications such as Schottky diodes, solid state devices and optical sensors. The optical constants (refractive index, n; extinction coefficient, k and dielectric constant, e) of some organic thin films were determined using reflectance and transmittance spectra. Analysis of the basis absorption spectra was also carried out to determine optical band gap (Eg) and Urbach parameter (E0). A surface observation of these thin films was also carried out by an Atomic Force Microscope.

  5. Structural and optical properties of furfurylidenemalononitrile thin films

    Science.gov (United States)

    Ali, H. A. M.

    2013-03-01

    Thin films of furfurylidenemalononitrile (FMN) were deposited on different substrates at room temperature by thermal evaporation technique under a high vacuum. The structure of the powder was confirmed by Fourier transformation infrared (FTIR) technique. The unit cell dimensions were determined from X-ray diffraction (XRD) studies. The optical properties were investigated using spectrophotometric measurements of the transmittance and reflectance at normal incidence of light in the wavelength range from 200 to 2500 nm. The refractive index (n), the absorption index (k) and the absorption coefficient (α) were calculated. The analysis of the spectral behavior of the absorption coefficient in the absorption region revealed an indirect allowed transition. The refractive index dispersion was analyzed using the single oscillator model. Some dispersion parameters were estimated. Complex dielectric function and optical conductivity were determined. The influence of the irradiation with high-energy X-rays (6 MeV) on the studied properties was also investigated.

  6. Metal-Organic Framework Thin Film Coated Optical Fiber Sensors: A Novel Waveguide-Based Chemical Sensing Platform.

    Science.gov (United States)

    Kim, Ki-Joong; Lu, Ping; Culp, Jeffrey T; Ohodnicki, Paul R

    2018-02-23

    Integration of optical fiber with sensitive thin films offers great potential for the realization of novel chemical sensing platforms. In this study, we present a simple design strategy and high performance of nanoporous metal-organic framework (MOF) based optical gas sensors, which enables detection of a wide range of concentrations of small molecules based upon extremely small differences in refractive indices as a function of analyte adsorption within the MOF framework. Thin and compact MOF films can be uniformly formed and tightly bound on the surface of etched optical fiber through a simple solution method which is critical for manufacturability of MOF-based sensor devices. The resulting sensors show high sensitivity/selectivity to CO 2 gas relative to other small gases (H 2 , N 2 , O 2 , and CO) with rapid (optical fiber platform which results in an amplification of inherent optical absorption present within the MOF-based sensing layer with increasing values of effective refractive index associated with adsorption of gases.

  7. Chemically deposited Sb2S3 thin films for optical recording

    International Nuclear Information System (INIS)

    Shaji, S; Arato, A; Castillo, G Alan; Palma, M I Mendivil; Roy, T K Das; Krishnan, B; O'Brien, J J; Liu, J

    2010-01-01

    Laser induced changes in the properties of Sb 2 S 3 thin films prepared by chemical bath deposition are described in this paper. Sb 2 S 3 thin films of thickness 550 nm were deposited from a solution containing SbCl 3 and Na 2 S 2 O 3 at 27 0 C for 5 h. These thin films were irradiated by a 532 nm continuous wave laser beam under different conditions at ambient atmosphere. X-ray diffraction analysis showed amorphous to polycrystalline transformation due to laser exposure of these thin films. Morphology and composition of these films were described. Optical properties of these films before and after laser irradiation were analysed. The optical band gap of the material was decreased due to laser induced crystallization. The results obtained confirm that there is further scope for developing this material as an optical recording media.

  8. Spectral evolution of soft x-ray emission from optically thin, high electron temperature platinum plasmas

    Directory of Open Access Journals (Sweden)

    Hiroyuki Hara

    2017-08-01

    Full Text Available The soft x-ray spectra of heavy element plasmas are frequently dominated by unresolved transition array (UTA emission. We describe the spectral evolution of an intense UTA under optically thin conditions in platinum plasmas. The UTA was observed to have a peak wavelength around 4.6 nm at line-of-sight averaged electron temperatures less than 1.4 keV at electron densities of (2.5–7.5 × 1013 cm−3. The UTA spectral structure was due to emission from 4d–4f transitions in highly charged ions with average charge states of q = 20–40. A numerical simulation successfully reproduced the observed spectral behavior.

  9. Structural and optical investigations of sol–gel derived lithium titanate thin films

    International Nuclear Information System (INIS)

    Łapiński, M.; Kościelska, B.; Sadowski, W.

    2012-01-01

    Highlights: ► Lithium titanate thin films were deposited on glass substrates by sol–gel method. ► After annealing at 550 °C samples had lithium titanate spinel structure. ► Above 80 h of annealing mixture of lithium titanate and titanium oxides was appeared. ► Optical transmittance decreased with increasing of annealing time. - Abstract: In this paper structural and optical studies of lithium titanate (LTO) thin films are presented. Nanocrystalline thin films with 800 nm thickness were prepared by sol–gel method. To examine the influence of the annealing time on as-prepared films crystallization, the coatings were heated at 550 °C for 10, 20 and 80 h. Structure of manufactured thin films was investigated using X-ray diffraction (XRD). The most visible lithium titanate phase was obtained after 20 h annealing. Increasing of annealing time over 20 h revealed appearance of titanium oxides phase. On the basis of transmission characteristic optical properties were calculated. It was found that transmission through the thin films was reduced and position of the fundamental absorption edge was shifted toward a longer wavelength with increasing of annealing time. The optical band gap was calculated for direct allowed and indirect allowed transitions from optical absorption spectra.

  10. Magneto-optical effect in Mn-Sb thin films

    International Nuclear Information System (INIS)

    Attaran, E.; Sadabadi, M.

    2003-01-01

    The magneto-optic Kerr and Faraday effect of Mn-Sb thin films have been studied. The single and multilayer of this film have grown on glass substrate by evaporation. The optical rotation of linear polarized light has been measured by an optical hysteresis plotter in a I/O converter amplifier circuit. Our results indicate a polar Kerr rotation up to 0.5 degree and in a double Mn S b this rotation research to maximum

  11. Application of Thinned-Skull Cranial Window to Mouse Cerebral Blood Flow Imaging Using Optical Microangiography

    Science.gov (United States)

    Wang, Ruikang K.

    2014-01-01

    In vivo imaging of mouse brain vasculature typically requires applying skull window opening techniques: open-skull cranial window or thinned-skull cranial window. We report non-invasive 3D in vivo cerebral blood flow imaging of C57/BL mouse by the use of ultra-high sensitive optical microangiography (UHS-OMAG) and Doppler optical microangiography (DOMAG) techniques to evaluate two cranial window types based on their procedures and ability to visualize surface pial vessel dynamics. Application of the thinned-skull technique is found to be effective in achieving high quality images for pial vessels for short-term imaging, and has advantages over the open-skull technique in available imaging area, surgical efficiency, and cerebral environment preservation. In summary, thinned-skull cranial window serves as a promising tool in studying hemodynamics in pial microvasculature using OMAG or other OCT blood flow imaging modalities. PMID:25426632

  12. Determination of optical properties in nanostructured thin films using the Swanepoel method

    International Nuclear Information System (INIS)

    Sanchez-Gonzalez, J.; Diaz-Parralejo, A.; Ortiz, A.L.; Guiberteau, F.

    2006-01-01

    We present the methodological framework of the Swanepoel method for the spectrophotometric determination of optical properties in thin films using transmittance data. As an illustrative case study, we determined the refractive index, thickness, absorption index, and extinction coefficient of a nanostructured 3 mol% Y 2 O 3 -doped ZrO 2 (yttria stabilized zirconia, 3YSZ) thin film prepared by the sol-gel method and deposited by dipping onto a soda-lime glass substrate. In addition, using the absorption index obtained with the Swanepoel method, we calculated the optical band gap of the film. The refractive index was found to increase, then decrease, and finally stabilize with increasing wavelength of the radiation, while the absorption index and extinction coefficient decreased monotonically to zero. These trends are explained in terms of the location of the absorption bands. We also deduced that this 3YSZ thin film has a direct optical band gap of 4.6 eV. All these results compared well with those given in the literature for similar thin films. This suggests that the Swanepoel method has an important role to play in the optical characterization of ceramic thin films

  13. Determination of optical properties in nanostructured thin films using the Swanepoel method

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Gonzalez, J. [Departamento de Electronica e Ingenieria Electromecanica, Escuela de Ingenierias Industriales, Universidad de Extremadura, Badajoz 06071 (Spain); Diaz-Parralejo, A. [Departamento de Electronica e Ingenieria Electromecanica, Escuela de Ingenierias Industriales, Universidad de Extremadura, Badajoz 06071 (Spain); Ortiz, A.L. [Departamento de Electronica e Ingenieria Electromecanica, Escuela de Ingenierias Industriales, Universidad de Extremadura, Badajoz 06071 (Spain)]. E-mail: alortiz@unex.es; Guiberteau, F. [Departamento de Electronica e Ingenieria Electromecanica, Escuela de Ingenierias Industriales, Universidad de Extremadura, Badajoz 06071 (Spain)

    2006-06-30

    We present the methodological framework of the Swanepoel method for the spectrophotometric determination of optical properties in thin films using transmittance data. As an illustrative case study, we determined the refractive index, thickness, absorption index, and extinction coefficient of a nanostructured 3 mol% Y{sub 2}O{sub 3}-doped ZrO{sub 2} (yttria stabilized zirconia, 3YSZ) thin film prepared by the sol-gel method and deposited by dipping onto a soda-lime glass substrate. In addition, using the absorption index obtained with the Swanepoel method, we calculated the optical band gap of the film. The refractive index was found to increase, then decrease, and finally stabilize with increasing wavelength of the radiation, while the absorption index and extinction coefficient decreased monotonically to zero. These trends are explained in terms of the location of the absorption bands. We also deduced that this 3YSZ thin film has a direct optical band gap of 4.6 eV. All these results compared well with those given in the literature for similar thin films. This suggests that the Swanepoel method has an important role to play in the optical characterization of ceramic thin films.

  14. The structural and optical characterizations of tetraphenylporphyrin thin films

    Energy Technology Data Exchange (ETDEWEB)

    Makhlouf, M.M., E-mail: m_makhlof@hotmail.com [Physics Department, Faculty of Applied Medical Science at Turabah branch, Taif University, Turabah, 21995 (Saudi Arabia); Department of Physics, Faculty of Science at New Damietta, Damietta University, New Damietta 34517 (Egypt); El-Denglawey, A. [Physics Department, Faculty of Applied Medical Science at Turabah branch, Taif University, Turabah, 21995 (Saudi Arabia); Physics Department, Faculty of Science, South Valley University, Qena 83523 (Egypt); Zeyada, H.M. [Department of Physics, Faculty of Science at New Damietta, Damietta University, New Damietta 34517 (Egypt); El-Nahass, M.M. [Physics Department, Faculty of Education, Ain Shams University, Cairo (Egypt)

    2014-03-15

    X-rays diffraction and scanning electron microscope were used to investigate the structural properties of tetraphenylporphyrin, TPP, which is polycrystalline in a synthesized condition. It turns to amorphous structure upon thermal deposition. Annealing temperature ranging from 295 to 473 K does not influence the amorphous structure of films. The optical properties of TPP were investigated using spectrophotometric measurements of the transmittance and reflectance at normal incidence in the wavelength range of 200–2200 nm. The absorption spectra were recorded in UV–visible region of spectra for the as-deposited and annealed samples show different absorption bands, namely four bands labeled as Q-band in visible region of spectra and a more intense band termed as the Soret band in near UV region of spectra. The Soret band shows its splitting (Davydov splitting). Two other bands labeled N and M appear in UV region. The film thickness has no influence on optical properties of films while annealing temperatures have a slight influence on optical properties of TPP films. The type of optical transition in as deposited and annealed conditions of films was found to be indirect allowed band-gap. Both fundamental and onset energy gap decreases upon annealing. -- Highlights: • Tetraphenylporphyrin (TPP) is polycrystalline in powder form, while the as-deposited and annealed TPP thin films have amorphous structure. • The absorption spectra of TPP in UV–visible region consists of Q-bands, Soret band and two other bands labeled N and M. • The optical parameters of TPP thin film were measured. • Thermal annealing influences optical properties of TPP thin films.

  15. The structural and optical characterizations of tetraphenylporphyrin thin films

    International Nuclear Information System (INIS)

    Makhlouf, M.M.; El-Denglawey, A.; Zeyada, H.M.; El-Nahass, M.M.

    2014-01-01

    X-rays diffraction and scanning electron microscope were used to investigate the structural properties of tetraphenylporphyrin, TPP, which is polycrystalline in a synthesized condition. It turns to amorphous structure upon thermal deposition. Annealing temperature ranging from 295 to 473 K does not influence the amorphous structure of films. The optical properties of TPP were investigated using spectrophotometric measurements of the transmittance and reflectance at normal incidence in the wavelength range of 200–2200 nm. The absorption spectra were recorded in UV–visible region of spectra for the as-deposited and annealed samples show different absorption bands, namely four bands labeled as Q-band in visible region of spectra and a more intense band termed as the Soret band in near UV region of spectra. The Soret band shows its splitting (Davydov splitting). Two other bands labeled N and M appear in UV region. The film thickness has no influence on optical properties of films while annealing temperatures have a slight influence on optical properties of TPP films. The type of optical transition in as deposited and annealed conditions of films was found to be indirect allowed band-gap. Both fundamental and onset energy gap decreases upon annealing. -- Highlights: • Tetraphenylporphyrin (TPP) is polycrystalline in powder form, while the as-deposited and annealed TPP thin films have amorphous structure. • The absorption spectra of TPP in UV–visible region consists of Q-bands, Soret band and two other bands labeled N and M. • The optical parameters of TPP thin film were measured. • Thermal annealing influences optical properties of TPP thin films

  16. Optical Properties and Surface Morphology of Nano-composite PMMA: TiO2 Thin Films

    International Nuclear Information System (INIS)

    Lyly Nyl Ismail; Ahmad Fairoz Aziz; Habibah Zulkefle

    2011-01-01

    There are two nano-composite PMMA: TiO 2 solutions were prepared in this research. First solution is nano-composite PMMA commercially available TiO 2 nanopowder and the second solution is nano-composite PMMA with self-prepared TiO 2 powder. The self-prepared TiO 2 powder is obtained by preparing the TiO 2 sol-gel. Solvo thermal method were used to dry the TiO 2 sol-gel and obtained TiO 2 crystal. Ball millers were used to grind the TiO 2 crystal in order to obtained nano sized powder. Triton-X was used as surfactant to stabilizer the composite between PMMA: TiO 2 . Besides comparing the nano-composite solution, we also studied the effect of the thin films thickness on the optical properties and surface morphology of the thin films. The thin films were deposited by sol-gel spin coating method on glass substrates. The optical properties and surface characterization were measured with UV-VIS spectrometer equipment and atomic force microscopy (AFM). The result showed that nano-composite PMMA with self prepared TiO 2 give high optical transparency than nano-composite PMMA with commercially available TiO 2 nano powder. The results also indicate as the thickness is increased the optical transparency are decreased. Both AFM images showed that the agglomerations of TiO 2 particles are occurred on the thin films and the surface roughness is increased when the thickness is increased. High agglomeration particles exist in the AFM images for nano-composite PMMA: TiO 2 with TiO 2 nano powder compare to the other nano-composite solution. (author)

  17. Optical conductivity of topological insulator thin films

    International Nuclear Information System (INIS)

    Li, L. L.; Xu, W.; Peeters, F. M.

    2015-01-01

    We present a detailed theoretical study on the optoelectronic properties of topological insulator thin film (TITFs). The k·p approach is employed to calculate the energy spectra and wave functions for both the bulk and surface states in the TITF. With these obtained results, the optical conductivities induced by different electronic transitions among the bulk and surface states are evaluated using the energy-balance equation derived from the Boltzmann equation. We find that for Bi 2 Se 3 -based TITFs, three characteristic regimes for the optical absorption can be observed. (i) In the low radiation frequency regime (photon energy ℏω<200 meV), the free-carrier absorption takes place due to intraband electronic transitions. An optical absorption window can be observed. (ii) In the intermediate radiation frequency regime (200<ℏω<300 meV), the optical absorption is induced mainly by interband electronic transitions from surface states in the valance band to surface states in the conduction band and an universal value σ 0 =e 2 /(8ℏ) for the optical conductivity can be obtained. (iii) In the high radiation frequency regime (ℏω>300 meV), the optical absorption can be achieved via interband electronic transitions from bulk and surface states in the valance band to bulk and surface states in the conduction band. A strong absorption peak can be observed. These interesting findings indicate that optical measurements can be applied to identify the energy regimes of bulk and surface states in the TITF

  18. Structural, optical and nonlinear optical studies of AZO thin film prepared by SILAR method for electro-optic applications

    Science.gov (United States)

    Edison, D. Joseph; Nirmala, W.; Kumar, K. Deva Arun; Valanarasu, S.; Ganesh, V.; Shkir, Mohd.; AlFaify, S.

    2017-10-01

    Aluminium doped (i.e. 3 at%) zinc oxide (AZO) thin films were prepared by simple successive ionic layer adsorption and reaction (SILAR) method with different dipping cycles. The structural and surface morphology of AZO thin films were studied by using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The optical parameters such as, transmittance, band gap, refractive index, extinction coefficient, dielectric constant and nonlinear optical properties of AZO films were investigated. XRD pattern revealed the formation of hexagonal phase ZnO and the intensity of the film was found to increase with increasing dipping cycle. The crystallite size was found to be in the range of 29-37 nm. Scanning Electron Microscope (SEM) images show the presence of small sized grains, revealing that the smoothest surface was obtained at all the films. The EDAX spectrum of AZO conforms the presence of Zn, O and Al. The optical transmittance in the visible region is high 87% and the band gap value is 3.23 eV. The optical transmittance is decreased with respect to dipping cycles. The room temperature PL studies revealed that the AZO films prepared at (30 cycles) has good film quality with lesser defect density. The third order nonlinear optical parameters were also studied using Z-scan technique to know the applications of deposited films in nonlinear devices. The third order nonlinear susceptibility value is found to be 1.69 × 10-7, 3.34 × 10-8, 1.33 × 10-7and 2.52 × 10-7 for AZO films deposited after 15, 20, 25 and 30 dipping cycles.

  19. Electrical and optical properties of Zn–In–Sn–O transparent conducting thin films

    International Nuclear Information System (INIS)

    Carreras, Paz; Antony, Aldrin; Rojas, Fredy; Bertomeu, Joan

    2011-01-01

    Indium tin oxide (ITO) is one of the widely used transparent conductive oxides (TCO) for application as transparent electrode in thin film silicon solar cells or thin film transistors owing to its low resistivity and high transparency. Nevertheless, indium is a scarce and expensive element and ITO films require high deposition temperature to achieve good electrical and optical properties. On the other hand, although not competing as ITO, doped Zinc Oxide (ZnO) is a promising and cheaper alternative. Therefore, our strategy has been to deposit ITO and ZnO multicomponent thin films at room temperature by radiofrequency (RF) magnetron co-sputtering in order to achieve TCOs with reduced indium content. Thin films of the quaternary system Zn–In–Sn–O (ZITO) with improved electrical and optical properties have been achieved. The samples were deposited by applying different RF powers to ZnO target while keeping a constant RF power to ITO target. This led to ZITO films with zinc content ratio varying between 0 and 67%. The optical, electrical and morphological properties have been thoroughly studied. The film composition was analysed by X-ray Photoelectron Spectroscopy. The films with 17% zinc content ratio showed the lowest resistivity (6.6 × 10 −4 Ω cm) and the highest transmittance (above 80% in the visible range). Though X-ray Diffraction studies showed amorphous nature for the films, using High Resolution Transmission Electron Microscopy we found that the microstructure of the films consisted of nanometric crystals embedded in a compact amorphous matrix. The effect of post deposition annealing on the films in both reducing and oxidizing atmospheres were studied. The changes were found to strongly depend on the zinc content ratio in the films.

  20. Optical constants and band edge of amorphous zinc oxide thin films

    International Nuclear Information System (INIS)

    Khoshman, Jebreel M.; Kordesch, Martin E.

    2007-01-01

    The optical characteristics of amorphous zinc oxide (a-ZnO) thin films grown by radio frequency reactive magnetron sputtering on various substrates at temperature -8 -0.32, respectively. The band edge of the films on Si (100) and quartz has been determined by spectroscopic ellipsometry (3.39 ± 0.05 eV) and spectrophotometric (3.35 ± 0.05 eV) methods, respectively. From the angle dependence of the p-polarized reflectivity we deduce a Brewster angle of 60.5 deg. Measurement of the polarized optical properties shows a high transmissivity (81%-99%) and low absorptivity (< 5%) in the visible and near infrared regions at different angles of incidence. Also, we found that there was a higher absorptivity for wavelength < 370 nm. This wavelength, ∼ 370 nm, therefore indicated that the band edge for a-ZnO thin films is about 3.35 eV

  1. Electrical and optical properties of spray - deposited CdSe thin films

    International Nuclear Information System (INIS)

    Bedir, M.; Oeztas, M.; Bakkaloglu, O. F.

    2002-01-01

    The CdSe thin films were developed by using spray-deposition technique at different substrate temperatures of 380C, 400C and, 420C on the glass substrate. All spraying processes involved CdCI 2 (0.05 moles/liter) and SeO 2 (0.05 moles/liter ) and were carried out in atmospheric condition. The CdSe thin film samples were characterized using x-ray diffractometer and optical absorption measurements. The electrical properties of the thin film samples were investigated via Wander Pauw method. XRD patterns indicated that the CdSe thin film samples have a hexagonal structure. The direct band gap of the CdSe thin film samples were determined from optical absorption and spectral response measurements of 1.76 eV. The resistivity of the CdSe thin film samples were found to vary in the range from 5.8x10''5 to 7.32x10''5 Ωcm depending to the substrate temperature

  2. Growth of KNN thin films for non-linear optical applications

    International Nuclear Information System (INIS)

    Sharma, Shweta; Gupta, Reema; Gupta, Vinay; Tomar, Monika

    2018-01-01

    Two-wave mixing is a remarkable area of research in the field of non-linear optics, finding various applications in the development of opto-electronic devices, photorefractive waveguides, real time holography, etc. Non-linear optical properties of ferroelectric potassium sodium niobate (KNN) thin films have been interrogated using two-wave mixing phenomenon. Regarding this, a-axis oriented K 0.35 Na (1-0.35) NbO 3 thin films were successfully grown on epitaxial matched (100) SrTiO 3 substrate using pulsed laser deposition (PLD) technique. The uniformly distributed Au micro-discs of 200 μm diameter were integrated with KNN/STO thin film to study the plasmonic enhancement in the optical response. Beam amplification has been observed as a result of the two-wave mixing. This is due to the alignment of ferroelectric domains in KNN films and the excitement of plasmons at the metal-dielectric (Au-KNN) interface. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Growth of KNN thin films for non-linear optical applications

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Shweta; Gupta, Reema; Gupta, Vinay [Department of Physics and Astrophysics, University of Delhi (India); Tomar, Monika [Department of Physics, Miranda House University of Delhi (India)

    2018-02-15

    Two-wave mixing is a remarkable area of research in the field of non-linear optics, finding various applications in the development of opto-electronic devices, photorefractive waveguides, real time holography, etc. Non-linear optical properties of ferroelectric potassium sodium niobate (KNN) thin films have been interrogated using two-wave mixing phenomenon. Regarding this, a-axis oriented K{sub 0.35}Na{sub (1-0.35)}NbO{sub 3} thin films were successfully grown on epitaxial matched (100) SrTiO{sub 3} substrate using pulsed laser deposition (PLD) technique. The uniformly distributed Au micro-discs of 200 μm diameter were integrated with KNN/STO thin film to study the plasmonic enhancement in the optical response. Beam amplification has been observed as a result of the two-wave mixing. This is due to the alignment of ferroelectric domains in KNN films and the excitement of plasmons at the metal-dielectric (Au-KNN) interface. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Low-temperature preparation of rutile-type TiO2 thin films for optical coatings by aluminum doping

    Science.gov (United States)

    Ishii, Akihiro; Kobayashi, Kosei; Oikawa, Itaru; Kamegawa, Atsunori; Imura, Masaaki; Kanai, Toshimasa; Takamura, Hitoshi

    2017-08-01

    A rutile-type TiO2 thin film with a high refractive index (n), a low extinction coefficient (k) and small surface roughness (Ra) is required for use in a variety of optical coatings to improve the controllability of the reflection spectrum. In this study, Al-doped TiO2 thin films were prepared by pulsed laser deposition, and the effects of Al doping on their phases, optical properties, surface roughness and nanoscale microstructure, including Al distribution, were investigated. By doping 5 and 10 mol%Al, rutile-type TiO2 was successfully prepared under a PO2 of 0.5 Pa at 350-600 °C. The nanoscale phase separation in the Al-doped TiO2 thin films plays an important role in the formation of the rutile phase. The 10 mol%Al-doped rutile-type TiO2 thin film deposited at 350 °C showed excellent optical properties of n ≈ 3.05, k ≈ 0.01 (at λ = 400 nm) and negligible surface roughness, at Ra ≈ 0.8 nm. The advantages of the superior optical properties and small surface roughness of the 10 mol%Al-doped TiO2 thin film were confirmed by fabricating a ten-layered dielectric mirror.

  5. Advances in thin film diffraction instrumentation by X-ray optics

    International Nuclear Information System (INIS)

    Haase, A.

    1996-01-01

    The structural characterisation of thin films requires a parallel X-ray beam of high intensity. Parallel beam geometry is commonly used in high resolution and single crystal experiments, but also in the field of X-ray diffraction for polycrystalline material (e.g. in phase, texture and stress analysis). For grazing incidence diffraction (GID), the use of small slits on the primary side and of long soller slits with a flat monochromator on the secondary side is standard. New optical elements have been introduced with polychromatic or monochromatic radiation. By means of different applications the results are compared with those of classical beam optics. X-ray fiber optics utilize total external reflection of X-rays on smooth surfaces. Effects of monochromatization are presented. In many fields of application, fiber optics may replace conventional collimators. The use of primary and secondary channel cut crystals can also produce a high parallel monochromatic X-ray beam. A parabolically bent graded multilayer produces a monochromatic parallel beam of high intensity. Compared with classical Bragg-Brentano (focussing) geometry, excellent results have been obtained, especially for samples with an irregular shape. In combination with a channel cut monochromator there is a substantial gain in intensity leading to an increase of the dynamic intensity range of rocking curves

  6. Advances in thin film diffraction instrumentation by X-ray optics

    Energy Technology Data Exchange (ETDEWEB)

    Haase, A [Rich. Seifert and Co., Analytical X-ray Systems, Ahrensburg (Germany)

    1996-09-01

    The structural characterisation of thin films requires a parallel X-ray beam of high intensity. Parallel beam geometry is commonly used in high resolution and single crystal experiments, but also in the field of X-ray diffraction for polycrystalline material (e.g. in phase, texture and stress analysis). For grazing incidence diffraction (GID), the use of small slits on the primary side and of long soller slits with a flat monochromator on the secondary side is standard. New optical elements have been introduced with polychromatic or monochromatic radiation. By means of different applications the results are compared with those of classical beam optics. X-ray fiber optics utilize total external reflection of X-rays on smooth surfaces. Effects of monochromatization are presented. In many fields of application, fiber optics may replace conventional collimators. The use of primary and secondary channel cut crystals can also produce a high parallel monochromatic X-ray beam. A parabolically bent graded multilayer produces a monochromatic parallel beam of high intensity. Compared with classical Bragg-Brentano (focussing) geometry, excellent results have been obtained, especially for samples with an irregular shape. In combination with a channel cut monochromator there is a substantial gain in intensity leading to an increase of the dynamic intensity range of rocking curves.

  7. Nanomechanical Behavior of High Gas Barrier Multilayer Thin Films.

    Science.gov (United States)

    Humood, Mohammad; Chowdhury, Shahla; Song, Yixuan; Tzeng, Ping; Grunlan, Jaime C; Polycarpou, Andreas A

    2016-05-04

    Nanoindentation and nanoscratch experiments were performed on thin multilayer films manufactured using the layer-by-layer (LbL) assembly technique. These films are known to exhibit high gas barrier, but little is known about their durability, which is an important feature for various packaging applications (e.g., food and electronics). Films were prepared from bilayer and quadlayer sequences, with varying thickness and composition. In an effort to evaluate multilayer thin film surface and mechanical properties, and their resistance to failure and wear, a comprehensive range of experiments were conducted: low and high load indentation, low and high load scratch. Some of the thin films were found to have exceptional mechanical behavior and exhibit excellent scratch resistance. Specifically, nanobrick wall structures, comprising montmorillonite (MMT) clay and polyethylenimine (PEI) bilayers, are the most durable coatings. PEI/MMT films exhibit high hardness, large elastic modulus, high elastic recovery, low friction, low scratch depth, and a smooth surface. When combined with the low oxygen permeability and high optical transmission of these thin films, these excellent mechanical properties make them good candidates for hard coating surface-sensitive substrates, where polymers are required to sustain long-term surface aesthetics and quality.

  8. Structural and optical properties of ZnO–SnO{sub 2} mixed thin films deposited by spray pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Tharsika, T., E-mail: tharsika@siswa.um.edu.my; Haseeb, A.S.M.A., E-mail: haseeb@um.edu.my; Sabri, M.F.M., E-mail: faizul@um.edu.my

    2014-05-02

    Nanocrystalline ZnO–SnO{sub 2} mixed thin films were deposited by the spray pyrolysis technique at various substrate temperatures during deposition. The mixed films were prepared in the range of 20.9 at.% to 73.4 at.% by altering the Zn/(Sn + Zn) atomic ratio in the starting solution. Morphology, crystal structures, and optical properties of the films were characterized by field-emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), and ultraviolet–visible and photoluminescence (PL) spectroscopy. XRD analysis reveals that the crystallinity of the Sn-rich mixed thin films increases with increasing substrate temperatures. FESEM images show that the grain size of mixed thin films is smaller compared to that of pure ZnO and SnO{sub 2} thin films. A drop in the thickness and optical bandgap of the film was observed for films fabricated at high temperatures, which coincided with the increased crystallinity of the films. The average optical transmission of mixed thin films increased from 70% to 95% within the visible range (400–800 nm) as the substrate temperature increases. Optical bandgap of the films was determined to be in the range of 3.21–3.96 eV. The blue shift in the PL spectra from the films was supported by the fact that grain size of the mixed thin films is much smaller than that of the pure ZnO and SnO{sub 2} thin films. Due to the improved transmission and reduced grain size, the ZnO–SnO{sub 2} mixed thin films can have potential use in photovoltaic and gas sensing applications. - Highlights: • ZnO–SnO{sub 2} mixed thin films were deposited on glass substrate by spray pyrolysis. • Crystallinity of the thin films increases with substrate temperature. • Grain size of the mixed thin films is smaller than that of the pure thin films. • Reduction of grain size depends on mixed atomic ratios of precursor solution. • Optical band gap of films could be engineered by changing substrate temperature.

  9. Thermo-optic characteristic of DNA thin solid film and its application as a biocompatible optical fiber temperature sensor.

    Science.gov (United States)

    Hong, Seongjin; Jung, Woohyun; Nazari, Tavakol; Song, Sanggwon; Kim, Taeoh; Quan, Chai; Oh, Kyunghwan

    2017-05-15

    We report unique thermo-optical characteristics of DNA-Cetyl tri-methyl ammonium (DNA-CTMA) thin solid film with a large negative thermo-optical coefficient of -3.4×10-4/°C in the temperature range from 20°C to 70°C without any observable thermal hysteresis. By combining this thermo-optic DNA film and fiber optic multimode interference (MMI) device, we experimentally demonstrated a highly sensitive compact temperature sensor with a large spectral shift of 0.15 nm/°C. The fiber optic MMI device was a concatenated structure with single-mode fiber (SMF)-coreless silica fiber (CSF)-single mode fiber (SMF) and the DNA-CTMA film was deposited on the CSF. The spectral shifts of the device in experiments were compared with the beam propagation method, which showed a good agreement.

  10. Sputter deposition of PZT piezoelectric films on thin glass substrates for adjustable x-ray optics.

    Science.gov (United States)

    Wilke, Rudeger H T; Johnson-Wilke, Raegan L; Cotroneo, Vincenzo; Davis, William N; Reid, Paul B; Schwartz, Daniel A; Trolier-McKinstry, Susan

    2013-05-10

    Piezoelectric PbZr(0.52)Ti(0.48)O(3) (PZT) thin films deposited on thin glass substrates have been proposed for adjustable optics in future x-ray telescopes. The light weight of these x-ray optics enables large collecting areas, while the capability to correct mirror figure errors with the PZT thin film will allow much higher imaging resolution than possible with conventional lightweight optics. However, the low strain temperature and flexible nature of the thin glass complicate the use of chemical-solution deposition due to warping of the substrate at typical crystallization temperatures for the PZT. RF magnetron sputtering enabled preparation of PZT films with thicknesses up to 3 μm on Schott D263 glass substrates with much less deformation. X-ray diffraction analysis indicated that the films crystallized with the perovskite phase and showed no indication of secondary phases. Films with 1 cm(2) electrodes exhibited relative permittivity values near 1100 and loss tangents below 0.05. In addition, the remanent polarization was 26 μC/cm(2) with coercive fields of 33 kV/cm. The transverse piezoelectric coefficient was as high as -6.1±0.6 C/m(2). To assess influence functions for the x-ray optics application, the piezoelectrically induced deflection of individual cells was measured and compared with finite-element-analysis calculations. The good agreement between the results suggests that actuation of PZT thin films can control mirror figure errors to a precision of about 5 nm, allowing sub-arcsecond imaging.

  11. Theoretical simulations of protective thin film Fabry-Pérot filters for integrated optical elements of diode pumped alkali lasers (DPAL

    Directory of Open Access Journals (Sweden)

    L. Quarrie

    2014-09-01

    Full Text Available The lifetime of Diode-Pumped Alkali Lasers (DPALs is limited by damage initiated by reaction of the glass envelope of its gain medium with rubidium vapor. Rubidium is absorbed into the glass and the rubidium cations diffuse through the glass structure, breaking bridging Si-O bonds. A damage-resistant thin film was developed enhancing high-optical transmission at natural rubidium resonance input and output laser beam wavelengths of 780 nm and 795 nm, while protecting the optical windows of the gain cell in a DPAL. The methodology developed here can be readily modified for simulation of expected transmission performance at input pump and output laser wavelengths using different combination of thin film materials in a DPAL. High coupling efficiency of the light through the gas cell was accomplished by matching the air-glass and glass-gas interfaces at the appropriate wavelengths using a dielectric stack of high and low index of refraction materials selected to work at the laser energies and protected from the alkali metal vapor in the gain cell. Thin films as oxides of aluminum, zirconium, tantalum, and silicon were selected allowing the creation of Fabry-Perot optical filters on the optical windows achieving close to 100% laser transmission in a solid optic combination of window and highly reflective mirror. This approach allows for the development of a new whole solid optic laser.

  12. Hard X-ray quantum optics in thin films nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Haber, Johann Friedrich Albert

    2017-05-15

    This thesis describes quantum optical experiments with X-rays with the aim of reaching the strong-coupling regime of light and matter. We make use of the interaction which arises between resonant matter and X-rays in specially designed thin-film nanostructures which form X-ray cavities. Here, the resonant matter are Tantalum atoms and the Iron isotope {sup 57}Fe. Both limit the number of modes available to the resonant atoms for interaction, and enhances the interaction strength. Thus we have managed to observe a number of phenomena well-known in quantum optics, which are the building blocks for sophisticated applications in e.g. metrology. Among these are the strong coupling of light and matter and the concurrent exchange of virtual photons, often called Rabi oscillations. Furthermore we have designed and tested a type of cavity hitherto unused in X-ray optics. Finally, we develop a new method for synchrotron Moessbauer spectroscopy, which not only promises to yield high-resolution spectra, but also enables the retrieval of the phase of the scattered light. The results open new avenues for quantum optical experiments with X-rays, particularly with regards to the ongoing development of high-brilliance X-ray free-electron lasers.

  13. Hard X-ray quantum optics in thin films nanostructures

    International Nuclear Information System (INIS)

    Haber, Johann Friedrich Albert

    2017-05-01

    This thesis describes quantum optical experiments with X-rays with the aim of reaching the strong-coupling regime of light and matter. We make use of the interaction which arises between resonant matter and X-rays in specially designed thin-film nanostructures which form X-ray cavities. Here, the resonant matter are Tantalum atoms and the Iron isotope "5"7Fe. Both limit the number of modes available to the resonant atoms for interaction, and enhances the interaction strength. Thus we have managed to observe a number of phenomena well-known in quantum optics, which are the building blocks for sophisticated applications in e.g. metrology. Among these are the strong coupling of light and matter and the concurrent exchange of virtual photons, often called Rabi oscillations. Furthermore we have designed and tested a type of cavity hitherto unused in X-ray optics. Finally, we develop a new method for synchrotron Moessbauer spectroscopy, which not only promises to yield high-resolution spectra, but also enables the retrieval of the phase of the scattered light. The results open new avenues for quantum optical experiments with X-rays, particularly with regards to the ongoing development of high-brilliance X-ray free-electron lasers.

  14. synthesis and optical characterization of acid-doped polyaniline thin

    African Journals Online (AJOL)

    HOD

    SYNTHESIS AND OPTICAL CHARACTERIZATION OF ACID-DOPED. POLYANILINE THIN .... MATERIALS AND METHODS .... Characterization of Se Doped Polyaniline”,Current. Applied ... with Silver Nanoparticles”, Advances in Materials.

  15. All-optically tunable EIT-like dielectric metasurfaces hybridized with thin phase change material layers

    Science.gov (United States)

    Petronijevic, Emilija; Sibilia, Concita

    2017-05-01

    Electromagnetically induced transparency (EIT), a pump-induced narrow transparency window within the absorption region of a probe, had offered new perspectives in slow-light control in atomic physics. For applications in nanophotonics, the implementation on chip-scaled devices has later been obtained by mimicking this effect by metallic metamaterials. High losses in visible and near infrared range of metal-based metamaterialls have recently opened a new field of all-dielectric metamaterials; a proper configuration of high refractive index dielectric nanoresonators can mimick this effect without losses to get high Q, slow-light response. The next step would be the ability to tune their optical response, and in this work we investigate thin layers of phase change materials (PCM) for all-optical control of EIT-like all-dielectric metamaterials. PCM can be nonvolatively and reversibly switched between two stable phases that differ in optical properties by applying a visible laser pulse. The device is based on Si nanoresonators covered by a thin layer of PCM GeTe; optical and transient thermal simulations have been done to find and optimize the fabrication parameters and switching parameters such as the intensity and duration of the pulse. We have found that the EIT-like response can be switched on and off by applying the 532nm laser pulse to change the phase of the upper GeTe layer. We strongly believe that such approach could open new perspectives in all-optically controlled slow-light metamaterials.

  16. Dataset on electro-optically tunable smart-supercapacitors based on oxygen-excess nanograin tungsten oxide thin film

    Directory of Open Access Journals (Sweden)

    Akbar I. Inamdar

    2017-10-01

    Full Text Available The dataset presented here is related to the research article entitled “Highly Efficient Electro-optically Tunable Smart-supercapacitors Using an Oxygen-excess Nanograin Tungsten Oxide Thin Film” (Akbar et al., 2017 [9] where we have presented a nanograin WO3 film as a bifunctional electrode for smart supercapacitor devices. In this article we provide additional information concerning nanograin tungsten oxide thin films such as atomic force microscopy, Raman spectroscopy, and X-ray diffraction spectroscopy. Moreover, their electrochemical properties such as cyclic voltammetry, electrochemical supercapacitor properties, and electrochromic properties including coloration efficiency, optical modulation and electrochemical impedance spectroscopy are presented.

  17. Lanthanide-Assisted Deposition of Strongly Electro-optic PZT Thin Films on Silicon: Toward Integrated Active Nanophotonic Devices.

    Science.gov (United States)

    George, J P; Smet, P F; Botterman, J; Bliznuk, V; Woestenborghs, W; Van Thourhout, D; Neyts, K; Beeckman, J

    2015-06-24

    The electro-optical properties of lead zirconate titanate (PZT) thin films depend strongly on the quality and crystallographic orientation of the thin films. We demonstrate a novel method to grow highly textured PZT thin films on silicon using the chemical solution deposition (CSD) process. We report the use of ultrathin (5-15 nm) lanthanide (La, Pr, Nd, Sm) based intermediate layers for obtaining preferentially (100) oriented PZT thin films. X-ray diffraction measurements indicate preferentially oriented intermediate Ln2O2CO3 layers providing an excellent lattice match with the PZT thin films grown on top. The XRD and scanning electron microscopy measurements reveal that the annealed layers are dense, uniform, crack-free and highly oriented (>99.8%) without apparent defects or secondary phases. The EDX and HRTEM characterization confirm that the template layers act as an efficient diffusion barrier and form a sharp interface between the substrate and the PZT. The electrical measurements indicate a dielectric constant of ∼650, low dielectric loss of ∼0.02, coercive field of 70 kV/cm, remnant polarization of 25 μC/cm(2), and large breakdown electric field of 1000 kV/cm. Finally, the effective electro-optic coefficients of the films are estimated with a spectroscopic ellipsometer measurement, considering the electric field induced variations in the phase reflectance ratio. The electro-optic measurements reveal excellent linear effective pockels coefficients of 110 to 240 pm/V, which makes the CSD deposited PZT thin film an ideal candidate for Si-based active integrated nanophotonic devices.

  18. Electronic excitation induced modifications of optical and morphological properties of PCBM thin films

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, T. [Department of Physics and Materials Research Centre, Malaviya National Institute of Technology, Jaipur 302017 (India); Singhal, R., E-mail: rsinghal.phy@mnit.ac.in [Department of Physics and Materials Research Centre, Malaviya National Institute of Technology, Jaipur 302017 (India); Vishnoi, R. [Department of Physics and Materials Research Centre, Malaviya National Institute of Technology, Jaipur 302017 (India); Department of Physics, Vardhman (P.G.) College, Bijnor 246701, U.P. (India); Sharma, P. [Department of Physics and Materials Research Centre, Malaviya National Institute of Technology, Jaipur 302017 (India); Patra, A.; Chand, S. [National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012 (India); Lakshmi, G.B.V.S. [Inter University Accelerator Centre, Post Box No. 10502, New Delhi 110067 (India); Biswas, S.K. [Department of Metallurgical and Materials Engineering, Malaviya National Institute of Technology, Jaipur 302017 (India)

    2016-07-15

    Highlights: • Spin casted PCBM thin films are irradiated by 90 MeV Ni{sup 7+} ion beam. • The decrease in band gap was found after irradiation. • There is a decomposition of molecular bond due to ion irradiation. • Roughness is also found to be dependent on incident ion fluence. - Abstract: Phenyl C{sub 61} butyric acid methyl ester (PCBM) is a fullerene derivative and most commonly used in organic photovoltaic devices both as electron acceptor and transporting material due to high electron mobility. PCBM is easy to spin caste on some substrate as it is soluble in chlorobenzene. In this study, the spin coated thin films of PCBM (on two different substrate, glass and double sided silicon) were irradiated using 90 MeV Ni{sup 7+} swift heavy ion beam at low fluences ranging from 1 × 10{sup 9} to 1 × 10{sup 11} ions/cm{sup 2} to study the effect of ion beam irradiation. The pristine and irradiated PCBM thin films were characterized by UV–visible absorption spectroscopy and fourier transform infrared spectroscopy (FTIR) to investigate the optical properties before and after irradiation. These thin films were further analyzed using atomic force microscopy (AFM) to investigate the morphological modifications which are induced by energetic ions. The variation in optical band gap after irradiation was measured using Tauc’s relation from UV–visible absorption spectra. A considerable change was observed with increasing fluence in optical band gap of irradiated thin films of PCBM with respect to the pristine film. The decrease in FTIR band intensity of C{sub 60} cage reveals the polymerization reaction due to high energy ion impact. The roughness is also found to be dependent on incident fluences. This study throws light for the application of PCBM in organic solar cells in form of ion irradiation induced nanowires of PCBM for efficient charge carrier transportation in active layer.

  19. Optical spectroscopy, optical conductivity, dielectric properties and new methods for determining the gap states of CuSe thin films

    International Nuclear Information System (INIS)

    Sakr, G.B.; Yahia, I.S.; Fadel, M.; Fouad, S.S.; Romcevic, N.

    2010-01-01

    Research highlights: → The structural, optical dispersion parameters and the Raman spectroscopy have been studied for CuSe thin films. → X-ray diffraction results indicate the amorphous nature of the thermally evaporated CuSe thin films. → The refractive index shows an anomalous dispersion at the lower wavelength (absorption region) and a normal dispersion at the higher wavelengths (transparent region). → The refractive index dispersion obeys the single oscillator model proposed by Wemple and DiDomenico WDD model and the single oscillator parameters were determined. → The band gap of CuSe thin films was determined by three novel methods i.e. (relaxation time, real and imaginary dielectric constant and real and imaginary optical conductivity) which in a good agreement with the Tauc band gap value. - Abstract: The paper describes the structural and optical properties of CuSe thin films. X-ray diffraction pattern indicates that CuSe thin film has an amorphous structure. Transmittance T(λ) and reflectance R(λ) measurements in the wavelength range (300-1700 nm) were used to calculate the refractive index n(λ), the absorption index and the optical dispersion parameters according to Wemple and Didomenico WDD model. The dispersion curve of the refractive index shows an anomalous dispersion in the absorption region and a normal dispersion in the transparent region. The optical bandgap has been estimated and confirmed by four different methods. The value for the direct bandgap for the as-deposited CuSe thin film approximately equals 2.7 eV. The Raman spectroscopy was used to identify and quantify the individual phases presented in the CuSe films.

  20. Optical switching and photoluminescence in erbium-implanted vanadium dioxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Herianto, E-mail: mail@heriantolim.com; Stavrias, Nikolas; Johnson, Brett C.; McCallum, Jeffrey C. [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Marvel, Robert E.; Haglund, Richard F. [Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37240 (United States)

    2014-03-07

    Vanadium dioxide (VO{sub 2}) is under intensive consideration for optical switching due to its reversible phase transition, which features a drastic and rapid shift in infrared reflectivity. Classified as an insulator–to–metal transition, the phase transition in VO{sub 2} can be induced thermally, electrically, and optically. When induced optically, the transition can occur on sub-picosecond time scales. It is interesting to dope VO{sub 2} with erbium ions (Er{sup 3+}) and observe their combined properties. The first excited-state luminescence of Er{sup 3+} lies within the wavelength window of minimal transmission-loss in silicon and has been widely utilized for signal amplification and generation in silicon photonics. The incorporation of Er{sup 3+} into VO{sub 2} could therefore result in a novel photonic material capable of simultaneous optical switching and amplification. In this work, we investigate the optical switching and photoluminescence in Er-implanted VO{sub 2} thin films. Thermally driven optical switching is demonstrated in the Er-implanted VO{sub 2} by infrared reflectometry. Photoluminescence is observed in the thin films annealed at ∼800 °C or above. In addition, Raman spectroscopy and a statistical analysis of switching hysteresis are carried out to assess the effects of the ion implantation on the VO{sub 2} thin films. We conclude that Er-implanted VO{sub 2} can function as an optical switch and amplifier, but with reduced switching quality compared to pure VO{sub 2}.

  1. Structural, morphological and optical properties of thermal annealed TiO thin films

    International Nuclear Information System (INIS)

    Zribi, M.; Kanzari, M.; Rezig, B.

    2008-01-01

    Structural, morphological and optical properties of TiO thin films grown by single source thermal evaporation method were studied. The films were annealed from 300 to 520 deg. C in air after evaporation. Qualitative film analysis was performed with X-ray diffraction, atomic force microscopy and optical transmittance and reflectance spectra. A correlation was established between the optical properties, surface roughness and growth morphology of the evaporated TiO thin films. The X-ray diffraction spectra indicated the presence of the TiO 2 phase for the annealing temperature above 400 deg. C

  2. Structural and optical properties of nano-structured CdS thin films prepared by chemical bath deposition

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Rekha, E-mail: rekha.mittal07@gmail.com; Kumar, Dinesh; Chaudhary, Sujeet; Pandya, Dinesh K. [Thin Film Laboratory, Physics Department, Indian Institute of Technology Delhi, New Delhi-110016 (India)

    2016-05-06

    Cadmium sulfide (CdS) thin films have been deposited on conducting glass substrates by chemical bath deposition (CBD) technique. The effect of precursor concentration on the structural, morphological, compositional, and optical properties of the CdS films has been studied. Crystal structure of these CdS films is characterized by X-ray diffraction (XRD) and it reveals polycrystalline structure with mixture of cubic and wurtzite phases with grain size decreasing as precursor concentration is increased. Optical studies reveal that the CdS thin films have high transmittance in visible spectral region reaching 90% and the films possess direct optical band gap that decreases from 2.46 to 2.39 eV with decreasing bath concentration. Our study suggests that growth is nucleation controlled.

  3. Structural and optical properties of nano-structured CdS thin films prepared by chemical bath deposition

    International Nuclear Information System (INIS)

    Bai, Rekha; Kumar, Dinesh; Chaudhary, Sujeet; Pandya, Dinesh K.

    2016-01-01

    Cadmium sulfide (CdS) thin films have been deposited on conducting glass substrates by chemical bath deposition (CBD) technique. The effect of precursor concentration on the structural, morphological, compositional, and optical properties of the CdS films has been studied. Crystal structure of these CdS films is characterized by X-ray diffraction (XRD) and it reveals polycrystalline structure with mixture of cubic and wurtzite phases with grain size decreasing as precursor concentration is increased. Optical studies reveal that the CdS thin films have high transmittance in visible spectral region reaching 90% and the films possess direct optical band gap that decreases from 2.46 to 2.39 eV with decreasing bath concentration. Our study suggests that growth is nucleation controlled.

  4. Optical characterization of thin solid films

    CERN Document Server

    Ohlídal, Miloslav

    2018-01-01

    This book is an up-to-date survey of the major optical characterization techniques for thin solid films. Emphasis is placed on practicability of the various approaches. Relevant fundamentals are briefly reviewed before demonstrating the application of these techniques to practically relevant research and development topics. The book is written by international top experts, all of whom are involved in industrial research and development projects.

  5. Optical coupling between atomically thin black phosphorus and a two dimensional photonic crystal nanocavity

    Science.gov (United States)

    Ota, Yasutomo; Moriya, Rai; Yabuki, Naoto; Arai, Miho; Kakuda, Masahiro; Iwamoto, Satoshi; Machida, Tomoki; Arakawa, Yasuhiko

    2017-05-01

    Atomically thin black phosphorus (BP) is an emerging two dimensional (2D) material exhibiting bright photoluminescence in the near infrared region. Coupling its radiation to photonic nanostructures will be an important step toward the realization of 2D material based nanophotonic devices that operate efficiently in the near infrared region, which includes the technologically important optical telecommunication wavelength bands. In this letter, we demonstrate the optical coupling between atomically thin BP and a 2D photonic crystal nanocavity. We employed a home-build dry transfer apparatus for placing a thin BP flake on the surface of the nanocavity. Their optical coupling was analyzed through measuring cavity mode emission under optical carrier injection at room temperature.

  6. On the dielectric and optical properties of surface-anchored metal-organic frameworks: A study on epitaxially grown thin films

    Science.gov (United States)

    Redel, Engelbert; Wang, Zhengbang; Walheim, Stefan; Liu, Jinxuan; Gliemann, Hartmut; Wöll, Christof

    2013-08-01

    We determine the optical constants of two highly porous, crystalline metal-organic frameworks (MOFs). Since it is problematic to determine the optical constants for the standard powder modification of these porous solids, we instead use surface-anchored metal-organic frameworks (SURMOFs). These MOF thin films are grown using liquid phase epitaxy (LPE) on modified silicon substrates. The produced SURMOF thin films exhibit good optical properties; these porous coatings are smooth as well as crack-free, they do not scatter visible light, and they have a homogenous interference color over the entire sample. Therefore, spectroscopic ellipsometry (SE) can be used in a straightforward fashion to determine the corresponding SURMOF optical properties. After careful removal of the solvent molecules used in the fabrication process as well as the residual water adsorbed in the voids of this highly porous solid, we determine an optical constant of n = 1.39 at a wavelength of 750 nm for HKUST-1 (stands for Hong Kong University of Science and Technology-1; and was first discovered there) or [Cu3(BTC)2]. After exposing these SURMOF thin films to moisture/EtOH atmosphere, the refractive index (n) increases to n = 1.55-1.6. This dependence of the optical properties on water/EtOH adsorption demonstrates the potential of such SURMOF materials for optical sensing.

  7. Preparation and optical properties of gold-dispersed BaTiO3 thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kineri, T; Mori, M [TDK Corp., Tokyo (Japan). R and D Center; Kadono, K; Sakaguchi, T; Miya, M; Wakabayashi, H [Osaka National Research Inst., Osaka (Japan); Tsuchiya, T [Science Univ. of Tokyo, Tokyo (Japan). Faculty of Industrial Science and Technology

    1993-12-01

    Recently, metal or semiconductor-doped glasses were widely studied because of their large resonant third-order nonlinearity. These glasses are utilized in an optical information field as all optical logic devices in the future. The gold-doped glass films or thin layers have a large third-order nonlinear susceptibility [chi] and are prepared by r.f. sputtering method, etc. The optical properties, particularly the refractive index or dielectric constant of the matrix, are very important for the optical nonlinearity of these materials. In this study, gold-dispersed BaTiO3 thin films and gold-dispersed SiO2 thin films are prepared using r.f. magnetron sputtering method, and the optical properties of the films are compared. The [chi] of the films are measured and the effect of the matrix of the films on [chi] is investigated. The headings in the paper are: Introduction, Experimental procedure, Results, Discussion, and Conclusion. 13 refs., 9 figs.

  8. Thin Films for X-ray Optics

    Science.gov (United States)

    Conley, Raymond

    Focusing x-rays with refraction requires an entire array of lens instead of a single element, each contributing a minute amount of focusing to the system. In contrast to their visible light counterparts, diffractive optics require a certain depth along the optical axis in order to provide sufficient phase shift. Mirrors reflect only at very shallow angles. In order to increase the angle of incidence, contribution from constructive interference within many layers needs to be collected. This requires a multilayer coating. Thin films have become a central ingredient for many x-ray optics due to the ease of which material composition and thickness can be controlled. Chapter 1 starts with a short introduction and survey of the field of x-ray optics. This begins with an explanation of reflective multilayers. Focusing optics are presented next, including mirrors, zone plates, refractive lenses, and multilayer Laue lens (MLL). The strengths and weaknesses of each "species" of optic are briefly discussed, alongside fabrication issues and the ultimate performance for each. Practical considerations on the use of thin-films for x-ray optics fabrication span a wide array of topics including material systems selection and instrumentation design. Sputter deposition is utilized exclusively for the work included herein because this method of thin-film deposition allows a wide array of deposition parameters to be controlled. This chapter also includes a short description of two deposition systems I have designed. Chapter 2 covers a small sampling of some of my work on reflective multilayers, and outlines two of the deposition systems I have designed and built at the Advanced Photon Source. A three-stripe double multilayer monochromator is presented as a case study in order to detail specifications, fabrication, and performance of this prolific breed of x-ray optics. The APS Rotary Deposition System was the first deposition system in the world designed specifically for multilayer

  9. An investigation on linear and non-linear optical constants of nano-spherical CuPc thin films for optoelectronic applications

    Energy Technology Data Exchange (ETDEWEB)

    Yahia, I.S. [Nano-Science & Semiconductor Labs, Metallurgical Lab., Department of Physics, Faculty of Education, Ain Shams University, Roxy, Cairo (Egypt); Advanced Functional Materials & Optoelectronic Laboratory (AFMOL), Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha (Saudi Arabia); Ganesh, V. [Advanced Functional Materials & Optoelectronic Laboratory (AFMOL), Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha (Saudi Arabia); Shkir, M., E-mail: shkirphysics@gmail.com [Advanced Functional Materials & Optoelectronic Laboratory (AFMOL), Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha (Saudi Arabia); AlFaify, S. [Advanced Functional Materials & Optoelectronic Laboratory (AFMOL), Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha (Saudi Arabia); Zahran, H.Y. [Nano-Science & Semiconductor Labs, Metallurgical Lab., Department of Physics, Faculty of Education, Ain Shams University, Roxy, Cairo (Egypt); Advanced Functional Materials & Optoelectronic Laboratory (AFMOL), Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha (Saudi Arabia); Algarni, H. [Advanced Functional Materials & Optoelectronic Laboratory (AFMOL), Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha (Saudi Arabia); Abutalib, M.M.; Al-Ghamdi, Attieh A. [Centre of Nanotechnology, Physics Department-Faculty of Science-AL Faisaliah Campus, King Abdulaziz University, Jeddah (Saudi Arabia); El-Naggar, A.M.; AlBassam, A.M. [Research Chair of Exploitation of Renewable Energy Applications in Saudi Arabia, Physics & Astronomy Dept., College of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia)

    2016-09-01

    In the current work, the authors present the systematic study on linear and nonlinear optical properties of Copper-phathalocyanine thin film deposited by thermal evaporation system for the first time. The thickness of the prepared thin film was measured and found to be ~300 nm. X-ray diffraction and AFM study confirms that the prepared thin film possess good quality. The orientation of the grown thin film is found to be along (100). UV–vis-NIR study shows that the deposited thin film is highly transparent (>80%) in the wavelength range of 700–2500 nm. Further, the recorded optical data was used to determine the various linear and nonlinear optical parameters. The calculated value of refractive index is found to be in the range of 0.4–1.0. The direct and indirect band gap value is found to be 2.9 and 3.25 eV, respectively. The value of linear and nonlinear susceptibilities is found to be in order of 10{sup −12}. The higher value of linear and nonlinear parameters makes it suitable for optoelectronic applications.

  10. An investigation on linear and non-linear optical constants of nano-spherical CuPc thin films for optoelectronic applications

    Science.gov (United States)

    Yahia, I. S.; Ganesh, V.; Shkir, M.; AlFaify, S.; Zahran, H. Y.; Algarni, H.; Abutalib, M. M.; Al-Ghamdi, Attieh A.; El-Naggar, A. M.; AlBassam, A. M.

    2016-09-01

    In the current work, the authors present the systematic study on linear and nonlinear optical properties of Copper-phathalocyanine thin film deposited by thermal evaporation system for the first time. The thickness of the prepared thin film was measured and found to be ~300 nm. X-ray diffraction and AFM study confirms that the prepared thin film possess good quality. The orientation of the grown thin film is found to be along (100). UV-vis-NIR study shows that the deposited thin film is highly transparent (>80%) in the wavelength range of 700-2500 nm. Further, the recorded optical data was used to determine the various linear and nonlinear optical parameters. The calculated value of refractive index is found to be in the range of 0.4-1.0. The direct and indirect band gap value is found to be 2.9 and 3.25 eV, respectively. The value of linear and nonlinear susceptibilities is found to be in order of 10-12. The higher value of linear and nonlinear parameters makes it suitable for optoelectronic applications.

  11. A novel fiber-optic temperature sensor based on high temperature-dependent optical properties of ZnO film on sapphire fiber-ending

    International Nuclear Information System (INIS)

    Cai Pinggen; Zhen Dong; Xu Xiaojun; Liu Yulin; Chen Naibo; Wei Gaorao; Sui Chenghua

    2010-01-01

    We report the growth of high-quality thin films of ZnO via an electron-beam evaporation technique. Studies of the transmittance spectra have revealed a sharp optical absorption edge and a significant redshift. After annealing at 673 K, the ZnO films again demonstrated a sharp absorption edge in a manner similar to the as-deposited samples. This illustrates the excellent thermal stability of the thin films and, as such, demonstrates their potential as fiber-optic temperature sensors. Utilizing the influence of optical absorption spectra at different temperatures, a novel fiber-optic temperature sensor based on this material has been designed and tested. This technique could offer a simple, robust and cost-effective method to be used in high temperature sensing applications.

  12. Synthesis of Cu2O from CuO thin films: Optical and electrical properties

    Directory of Open Access Journals (Sweden)

    Dhanya S. Murali

    2015-04-01

    Full Text Available Hole conducting, optically transparent Cu2O thin films on glass substrates have been synthesized by vacuum annealing (5×10−6 mbar at 700 K for 1 hour of magnetron sputtered (at 300 K CuO thin films. The Cu2O thin films are p-type and show enhanced properties: grain size (54.7 nm, optical transmission 72% (at 600 nm and Hall mobility 51 cm2/Vs. The bulk and surface Valence band spectra of Cu2O and CuO thin films are studied by temperature dependent Hall effect and Ultra violet photo electron Spectroscopy (UPS. CuO thin films show a significant band bending downwards (due to higher hole concentration than Cu2O thin films.

  13. Structural and optical properties of electrodeposited culnSe2 thin films for photovoltaic solar cells

    International Nuclear Information System (INIS)

    Guillen, C.; Herrero, J.; Galiano, F.

    1990-01-01

    Optical an structural properties of electrodeposited copper indium diselenide, CulnSe2, thin films were studied for its application in photovoltaic devices. X-ray diffraction patterns showed that thin films were grown in chalcopyrite phase after suitable treatments. Values of Eg for the CulnSe2 thin films showed a dependence on the deposition potential as determined by optical measurements. (Author) 47 refs

  14. Structural, morphological and optical studies of F doped SnO2 thin films

    Science.gov (United States)

    Chandel, Tarun; Thakur, Vikas; Dwivedi, Shailendra Kumar; Zaman, M. Burhanuz; Rajaram, Poolla

    2018-05-01

    Highly conducting and transparent FTO (flourine doped tin Oxide) thin films were grown on the glass substrates using a low cost spray pyrolysis technique. The films were characterized for their structural, morphological and optical studies using XRD, SEM and UV-Vis spectroscopy. XRD studies show that the FTO films crystallize in Tetragonal cassiterite structure. Morphological analysis using SEM show that the films are uniformly covered with spherical grains albeit high in surface roughness. The average optical transmission greater than 80% in the visible region along with the appearance of interference fringes in the transmission curves confirms the high quality of the films. Electrical studies show that the films exhibit sheet resistance below 10 Ω ϒ-1.

  15. Active x-ray optics for high resolution space telescopes

    Science.gov (United States)

    Doel, Peter; Atkins, Carolyn; Brooks, D.; Feldman, Charlotte; Willingale, Richard; Button, Tim; Rodriguez Sanmartin, Daniel; Meggs, Carl; James, Ady; Willis, Graham; Smith, Andy

    2017-11-01

    The Smart X-ray Optics (SXO) Basic Technology project started in April 2006 and will end in October 2010. The aim is to develop new technologies in the field of X-ray focusing, in particular the application of active and adaptive optics. While very major advances have been made in active/adaptive astronomical optics for visible light, little was previously achieved for X-ray optics where the technological challenges differ because of the much shorter wavelengths involved. The field of X-ray astronomy has been characterized by the development and launch of ever larger observatories with the culmination in the European Space Agency's XMM-Newton and NASA's Chandra missions which are currently operational. XMM-Newton uses a multi-nested structure to provide modest angular resolution ( 10 arcsec) but large effective area, while Chandra sacrifices effective area to achieve the optical stability necessary to provide sub-arc second resolution. Currently the European Space Agency (ESA) is engaged in studies of the next generation of X-ray space observatories, with the aim of producing telescopes with increased sensitivity and resolution. To achieve these aims several telescopes have been proposed, for example ESA and NASA's combined International X-ray Observatory (IXO), aimed at spectroscopy, and NASA's Generation-X. In the field of X-ray astronomy sub 0.2 arcsecond resolution with high efficiency would be very exciting. Such resolution is unlikely to be achieved by anything other than an active system. The benefits of a such a high resolution would be important for a range of astrophysics subjects, for example the potential angular resolution offered by active X-ray optics could provide unprecedented structural imaging detail of the Solar Wind bowshock interaction of comets, planets and similar objects and auroral phenomena throughout the Solar system using an observing platform in low Earth orbit. A major aim of the SXO project was to investigate the production of thin

  16. Optical properties of silver sulphide thin films formed on evaporated Ag by a simple sulphurization method

    Energy Technology Data Exchange (ETDEWEB)

    Barrera-Calva, E., E-mail: ebc@xanum.uam.m [Departamento de Ingenieria de Procesos e hidraulica, Universidad Autonoma Metropolitana - Iztapalapa, Av. Purisima Esq. Michoacan, Col. Vicentina, Mexico, D.F., 09340 (Mexico); Ortega-Lopez, M.; Avila-Garcia, A.; Matsumoto-Kwabara, Y. [Departamento de Ingenieria Electrica, Centro de Investigacion y de Estudios Avanzados del IPN, Mexico DF 07360 (Mexico)

    2010-01-31

    Silver sulphide (Ag{sub 2}S) thin films were grown on the surface of silver films (Ag) deposited on glass substrate by using a simple chemical sulphurization method. According to X-ray diffraction analysis, the Ag{sub 2}S thin films display low intensity peaks at 34.48{sup o}, 36.56{sup o}, and 44.28{sup o}, corresponding to diffraction from (100), (112) and (103) planes of the acanthite phase (monoclinic). A model of the type Ag{sub 2}S/Ag/glass was deduced from spectroscopic ellipsometric measurements. Also, the optical constants (n, k) of the system were determined. Furthermore, the optical properties as solar selective absorber for collector applications were assessed. The optical reflectance of the Ag{sub 2}S/Ag thin film systems exhibits the expected behavior for an ideal selective absorber, showing a low reflectance in the wavelength range below 2 {mu}m and a high reflectance for wavelengths higher than that value. An absorptance about 70% and an emittance about 3% or less were calculated for several samples.

  17. Structural-optical study of high-dielectric-constant oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Losurdo, M. [Institute of Inorganic Methodologies and Plasmas, IMIP-CNR, Department of Chemistry and INSTM Universita di bari, Via Orabona 4, 70126 Bari (Italy)]. E-mail: maria.losurdo@ba.imip.cnr.it; Giangregorio, M.M. [Institute of Inorganic Methodologies and Plasmas, IMIP-CNR, Department of Chemistry and INSTM Universita di bari, Via Orabona 4, 70126 Bari (Italy); Luchena, M. [Institute of Inorganic Methodologies and Plasmas, IMIP-CNR, Department of Chemistry and INSTM Universita di bari, Via Orabona 4, 70126 Bari (Italy); Capezzuto, P. [Institute of Inorganic Methodologies and Plasmas, IMIP-CNR, Department of Chemistry and INSTM Universita di bari, Via Orabona 4, 70126 Bari (Italy); Bruno, G. [Institute of Inorganic Methodologies and Plasmas, IMIP-CNR, Department of Chemistry and INSTM Universita di bari, Via Orabona 4, 70126 Bari (Italy); Toro, R.G. [Dipartimento di Scienze Chimiche, Universita di Catania, and INSTM-UdR Catania, Viale A. Doria 6, I-95125 Catania (Italy); Malandrino, G. [Dipartimento di Scienze Chimiche, Universita di Catania, and INSTM-UdR Catania, Viale A. Doria 6, I-95125 Catania (Italy); Fragala, I.L. [Dipartimento di Scienze Chimiche, Universita di Catania, and INSTM-UdR Catania, Viale A. Doria 6, I-95125 Catania (Italy); Nigro, R. Lo [Istituto di Microelettronica e Microsistemi, IMM-CNR, Stradale Primosole 50, I-95121 Catania (Italy)

    2006-10-31

    High-k polycrystalline Pr{sub 2}O{sub 3} and amorphous LaAlO{sub 3} oxide thin films deposited on Si(0 0 1) are studied. The microstructure is investigated using X-ray diffraction and scanning electron microscopy. Optical properties are determined in the 0.75-6.5 eV photon energy range using spectroscopic ellipsometry. The polycrystalline Pr{sub 2}O{sub 3} films have an optical gap of 3.86 eV and a dielectric constant of 16-26, which increases with film thickness. Similarly, very thin amorphous LaAlO{sub 3} films have the optical gap of 5.8 eV, and a dielectric constant below 14 which also increases with film thickness. The lower dielectric constant compared to crystalline material is an intrinsic characteristic of amorphous films.

  18. Summary of the recent conference on thin-film neutron optical devices

    International Nuclear Information System (INIS)

    Majkrzak, C.F.

    1989-01-01

    The proceedings of the conference of the International Society for Optical Engineering on Thin-Film Neutron Optical Devices: Mirrors, Supermirrors, Multilayer Monochromators, Polarizers and Beam Guides, which was held in San Diego, California in August, 1988, are summarized here. 2 refs

  19. Chemically deposited Sb{sub 2}S{sub 3} thin films for optical recording

    Energy Technology Data Exchange (ETDEWEB)

    Shaji, S; Arato, A; Castillo, G Alan; Palma, M I Mendivil; Roy, T K Das; Krishnan, B [Facultad de IngenierIa Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Nuevo Leon, C.P- 66450 (Mexico); O' Brien, J J; Liu, J, E-mail: bkrishnan@fime.uanl.m [Center for Nanoscience and Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One Univ. Blvd., St. Louis, MO - 63121 (United States)

    2010-02-24

    Laser induced changes in the properties of Sb{sub 2}S{sub 3} thin films prepared by chemical bath deposition are described in this paper. Sb{sub 2}S{sub 3} thin films of thickness 550 nm were deposited from a solution containing SbCl{sub 3} and Na{sub 2}S{sub 2}O{sub 3} at 27 {sup 0}C for 5 h. These thin films were irradiated by a 532 nm continuous wave laser beam under different conditions at ambient atmosphere. X-ray diffraction analysis showed amorphous to polycrystalline transformation due to laser exposure of these thin films. Morphology and composition of these films were described. Optical properties of these films before and after laser irradiation were analysed. The optical band gap of the material was decreased due to laser induced crystallization. The results obtained confirm that there is further scope for developing this material as an optical recording media.

  20. High-energy ion treatments of amorphous As40Se60 thin films for optical applications

    Directory of Open Access Journals (Sweden)

    Rashmi Chauhan

    2014-06-01

    Full Text Available The treatment of 100 MeV Ag swift-heavy ion (SHI irradiation with five different fluences (3×1010, 1×1011, 3×1011, 1×1012, and 3×1012 ions/cm2 was used to design optical and structural properties of amorphous (a- As40Se60 chalcogenide thin films. Swanepoel method was applied on transmission measurements to determine the changes in optical bandgap, Tauc parameter and linear optical parameters, i.e., linear optical absorption, extinction coefficient and linear refractive index. Dispersion of the material was determined by Wemple–DiDomenico relation. Changes in nonlinear optical parameters of third-order optical susceptibility and nonlinear refractive index were determined using semi-empirical relations. Changes in surface morphology of the films were investigated using SEM observation, which indicated that fluence 3×1012 ions/cm2 was upper threshold limit for these films for ion treatment. It is observed that optical bandgap reduces from 1.76 eV to 1.64 eV, and nonlinear refractive index increases from 1.31×10−10 [esu] to 1.74×10−10 [esu]. Linear refractive index initially increases from 2.80 to 3.52 (for fluence 3×1010 ions/cm2 and then keeps decreasing. The observed changes in optical properties upon irradiation were explained in terms of structural rearrangements by Raman measurement. The study was compiled with the previous literature to propose SHI as an effective optical engineering technique to achieve desired changes according to the need of optical/photonic applications.

  1. A nanohole in a thin metal film as an efficient nonlinear optical element

    International Nuclear Information System (INIS)

    Konstantinova, T. V.; Melent’ev, P. N.; Afanas’ev, A. E.; Kuzin, A. A.; Starikov, P. A.; Baturin, A. S.; Tausenev, A. V.; Konyashchenko, A. V.; Balykin, V. I.

    2013-01-01

    The nonlinear optical properties of single nanoholes and nanoslits fabricated in gold and aluminum nanofilms are studied by third harmonic generation (THG). It is shown that the extremely high third-order optical susceptibility of aluminum and the presence of strong plasmon resonance of a single nanohole in an aluminum film make possible an efficient nanolocalized radiation source at the third harmonic frequency. The THG efficiency for a single nanohole in a thin metal film can be close to unity for an exciting laser radiation intensity on the order of 10 13 W/cm 2

  2. Optical properties of PbS thin films

    Energy Technology Data Exchange (ETDEWEB)

    Akhmedov, O. R., E-mail: orucahmedov@mail.ru; Guseinaliyev, M. G. [National Academy of Azerbaijan, Nakhichevan Branch (Azerbaijan); Abdullaev, N. A.; Abdullaev, N. M.; Babaev, S. S.; Kasumov, N. A. [National Academy of Sciences of Azerbaijan, Abdullaev Institute of Physics (Azerbaijan)

    2016-01-15

    The complex dielectric function of PbS thin films is studied by spectroscopic ellipsometry in the spectral range from 0.74 to 6.45 eV at a temperature of 293 K. The critical energies are determined to be E{sub 1} = 3.53 eV and E{sub 2} = 4.57 eV. For both energy regions, the best fit is attained at the critical point 2D (m = 0). In addition, the Raman spectra and the optical-absorption spectra of PbS thin films are studied. From the dependence of the quantity (αhν){sup 2} on the photon energy hν, the band gap is established at E{sub g} = 0.37 eV.

  3. Analysis of a Thin Optical Lens Model

    Science.gov (United States)

    Ivchenko, Vladimir V.

    2011-01-01

    In this article a thin optical lens model is considered. It is shown that the limits of its applicability are determined not only by the ratio between the thickness of the lens and the modules of the radii of curvature, but above all its geometric type. We have derived the analytical criteria for the applicability of the model for different types…

  4. Domain Engineered Magnetoelectric Thin Films for High Sensitivity Resonant Magnetic Field Sensors

    Science.gov (United States)

    2011-12-01

    band gap of highly textured PZT thin films. The deposition process variables were - argon and oxygen flows, chamber pressure, RF power (DC Bias...needed another parameter to equate with the number of unknowns in the resultant model equations. From Figure 24, electronic polarizability affects the... Polarizability and Optical dielectric response of a thin.film , ., ,__~--~---\\- 000 01’ "󈧶 Ots Tncnt.re"’°l Effective Polarizability = Reddy

  5. Optical anisotropy, molecular orientations, and internal stresses in thin sulfonated poly(ether ether ketone) films

    NARCIS (Netherlands)

    Koziara, B.T.; Nijmeijer, K.; Benes, N.E.

    2015-01-01

    The thickness, the refractive index, and the optical anisotropy of thin sulfonated poly(ether ether ketone) films, prepared by spin-coating or solvent deposition, have been investigated with spectroscopic ellipsometry. For not too high polymer concentrations (≤5 wt%) and not too low spin speeds

  6. Optical anisotropy, molecular orientations, and internal stresses in thin sulfonated poly(ether ether ketone) films

    NARCIS (Netherlands)

    Koziara, Beata; Nijmeijer, Dorothea C.; Benes, Nieck Edwin

    2015-01-01

    The thickness, the refractive index, and the optical anisotropy of thin sulfonated poly(ether ether ketone) films, prepared by spin-coating or solvent deposition, have been investigated with spectroscopic ellipsometry. For not too high polymer concentrations (B5 wt%) and not too low spin speeds

  7. Thin film optical coatings for the ultraviolet spectral region

    Science.gov (United States)

    Torchio, P.; Albrand, G.; Alvisi, M.; Amra, C.; Rauf, H.; Cousin, B.; Otrio, G.

    2017-11-01

    The applications and innovations related to the ultraviolet field are today in strong growth. To satisfy these developments which go from biomedical to the large equipment like the Storage Ring Free Electron Laser, it is crucial to control with an extreme precision the optical performances, in using the substrates and the thin film materials impossible to circumvent in this spectral range. In particular, the reduction of the losses by electromagnetic diffusion, Joule effect absorption, or the behavior under UV luminous flows of power, resistance to surrounding particulate flows... become top priority which concerns a broad European and international community. Our laboratory has the theoretical, experimental and technological tools to design and fabricate numerous multilayer coatings with desirable optical properties in the visible and infrared spectral ranges. We have extended our expertise to the ultraviolet. We present here some results on high reflectivity multidielectric mirrors towards 250 nm in wavelength, produced by Ion Plating Deposition. The latter technique allows us to obtain surface treatments with low absorption and high resistance. We give in this study the UV transparent materials and the manufacturing technology which have been the best suited to meet requirements. Single UV layers were deposited and characterized. HfO2/SiO2 mirrors with a reflectance higher than 99% at 300 nm were obtained. Optical and non-optical characterizations such as UV spectrophotometric measurements, X-Ray Diffraction spectra, Scanning Electron Microscope and Atomic Force Microscope images were performed

  8. Relationships among surface processing at the nanometer scale, nanostructure and optical properties of thin oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Losurdo, Maria

    2004-05-01

    Spectroscopic ellipsometry is used to study the optical properties of nanostructured semiconductor oxide thin films. Various examples of models for the dielectric function, based on Lorentzian oscillators combined with the Drude model, are given based on the band structure of the analyzed oxide. With this approach, the optical properties of thin films are determined independent of the dielectric functions of the corresponding bulk materials, and correlation between the optical properties and nanostructure of thin films is investigated. In particular, in order to discuss the dependence of optical constants on grain size, CeO{sub 2} nanostructured films are considered and parameterized by two-Lorentzian oscillators or two-Tauc-Lorentz model depending on the nanostructure and oxygen deficiency. The correlation among anisotropy, crystalline fraction and optical properties parameterized by a four-Lorentz oscillator model is discussed for nanocrystalline V{sub 2}O{sub 5} thin films. Indium tin oxide thin films are discussed as an example of the presence of graded optical properties related to interfacial reactivity activated by processing conditions. Finally, the example of ZnO shows the potential of ellipsometry in discerning crystal and epitaxial film polarity through the analysis of spectra and the detection of surface reactivity of the two polar faces, i.e. Zn-polarity and O-polarity.

  9. Optical properties of diamond like carbon nanocomposite thin films

    Science.gov (United States)

    Alam, Md Shahbaz; Mukherjee, Nillohit; Ahmed, Sk. Faruque

    2018-05-01

    The optical properties of silicon incorporated diamond like carbon (Si-DLC) nanocomposite thin films have been reported. The Si-DLC nanocomposite thin film deposited on glass and silicon substrate by radio frequency plasma enhanced chemical vapor deposition (RF-PECVD) process. Fourier transformed infrared spectroscopic analysis revealed the presence of different bonding within the deposited films and deconvolution of FTIR spectra gives the chemical composition i.e., sp3/sp2 ratio in the films. Optical band gap calculated from transmittance spectra increased from 0.98 to 2.21 eV with a variation of silicon concentration from 0 to 15.4 at. %. Due to change in electronic structure by Si incorporation, the Si-DLC film showed a broad photoluminescence (PL) peak centered at 467 nm, i.e., in the visible range and its intensity was found to increase monotonically with at. % of Si.

  10. Spectroscopic ellipsometry investigations of optical anisotropy in obliquely deposited hafnia thin films

    Energy Technology Data Exchange (ETDEWEB)

    Tokas, R. B., E-mail: tokasstar@gmail.com; Jena, Shuvendu; Thakur, S.; Sahoo, N. K. [Atomic & Molecular Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai-85 (India); Haque, S. Maidul; Rao, K. Divakar [Photonics & Nanotechnology Section, Atomic & Molecular Physics Division, Bhabha Atomic Research Centre facility, Visakhapatnam-530012 (India)

    2016-05-23

    In present work, HfO{sub 2} thin films have been deposited at various oblique incidences on Si substrates by electron beam evaporation. These refractory oxide films exhibited anisotropy in refractive index predictably due to special columnar microstructure. Spectroscopic ellipsometry being a powerful tool for optical characterization has been employed to investigate optical anisotropy. It was observed that the film deposited at glancing angle (80°) exhibits the highest optical anisotropy. Further, anisotropy was noticed to decrease with lower values of deposition angles while effective refractive index depicts opposite trend. Variation in refractive index and anisotropy has been explained in light of atomic shadowing during growth of thin films at oblique angles.

  11. An inexpensive high-temperature optical fiber thermometer

    International Nuclear Information System (INIS)

    Moore, Travis J.; Jones, Matthew R.; Tree, Dale R.; Allred, David D.

    2017-01-01

    An optical fiber thermometer consists of an optical fiber whose tip is coated with a highly conductive, opaque material. When heated, this sensing tip becomes an isothermal cavity that emits like a blackbody. This emission is used to predict the sensing tip temperature. In this work, analytical and experimental research has been conducted to further advance the development of optical fiber thermometry. An inexpensive optical fiber thermometer is developed by applying a thin coating of a high-temperature cement onto the tip of a silica optical fiber. An FTIR spectrometer is used to detect the spectral radiance exiting the fiber. A rigorous mathematical model of the irradiation incident on the detection system is developed. The optical fiber thermometer is calibrated using a blackbody radiator and inverse methods are used to predict the sensing tip temperature when exposed to various heat sources. - Highlights: • An inexpensive coating for an optical fiber thermometer sensing tip is tested. • Inverse heat transfer methods are used to estimate the sensing tip temperature. • An FTIR spectrometer is used as the detector to test the optical fiber thermometer using various heat sources.

  12. Structure and optical properties of nanocrystalline NiO thin film synthesized by sol-gel spin-coating method

    Energy Technology Data Exchange (ETDEWEB)

    Al-Ghamdi, A.A. [King Abdulaziz University, Faculty of Science, Physics Department, Jeddah (Saudi Arabia); Mahmoud, Waleed E., E-mail: w_e_mahmoud@yahoo.co [King Abdulaziz University, Faculty of Science, Physics Department, Jeddah (Saudi Arabia); Suez Canal University, Faculty of Science, Physics Department, Ismailia (Egypt); Yaghmour, S.J.; Al-Marzouki, F.M. [King Abdulaziz University, Faculty of Science, Physics Department, Jeddah (Saudi Arabia)

    2009-11-03

    NiO thin film was prepared by sol-gel spin-coating method. This thin film annealed at T = 600 deg. C. The structure of NiO thin film was investigated by means of X-ray diffraction (XRD) technique and scanning electron microscopy (SEM). The optical properties of the deposited film were characterized from the analysis of the experimentally recorded transmittance and reflectance data in the spectral wavelength range of 300-800 nm. The values of some important parameters of the studied films are determined, such as refractive index (n), extinction coefficient (k), optical absorption coefficient (alpha) and band energy gap (E{sub g}). According to the analysis of dispersion curves, it has been found that the dispersion data obeyed the single oscillator of the Wemple-DiDomenico model, from which the dispersion parameters and high-frequency dielectric constant were determined. In such work, from the transmission spectra, the dielectric constant (epsilon{sub i}nfinity), the third-order optical nonlinear susceptibility chi{sup (3)}, volume energy loss function (VELF) and surface energy loss function (SELF) were determined.

  13. Optical properties of Cd Se thin films obtained by pyrolytic dew

    International Nuclear Information System (INIS)

    Perez G, A.M.; Tepantlan, C.S.; Renero C, F.

    2006-01-01

    In this paper the optical properties of Cd Se thin films obtained by spray pyrolysis are presented. The films are prepared by Sodium Seleno sulphate (Na 2 SSeO 3 ) and Cadmium Chloride (CdC 12 ) mixing in aqueous environment. Optical parameters of the films (refractive index, absorption coefficient and optical ban gap) were calculated from transmittance spectra. The obtained values of the optical ban gap are compared with the result obtained by other deposition method. (Author)

  14. On the structural and optical properties of sputtered hydrogenated amorphous silicon thin films

    International Nuclear Information System (INIS)

    Barhdadi, A.; Chafik El ldrissi, M.

    2002-08-01

    The present work is essentially focused on the study of optical and structural properties of hydrogenated amorphous silicon thin films (a-Si:H) prepared by radio-frequency cathodic sputtering. We examine separately the influence of hydrogen partial pressure during film deposition, and the effect of post-deposition thermal annealings on the main optical characteristics of the layers such as refraction index, optical gap and Urbach energy. Using the grazing X-rays reflectometry technique, thin film structural properties are examined immediately after films deposition as well as after surface oxidation or annealing. We show that low hydrogen pressures allow a saturation of dangling bonds in the layers, while high doses lead to the creation of new defects. We show also that thermal annealing under moderate temperatures improves the structural quality of the deposited layers. For the films examined just after deposition, the role of hydrogen appears in the increase of their density. For those analysed after a short stay in the ambient, hydrogen plays a protective role against the oxidation of their surfaces. This role disappears for a long time stay in the ambient. (author)

  15. Optical and morphological characterization of bispyrazole thin films for gas sensing applications

    Directory of Open Access Journals (Sweden)

    Rachid Touzani

    2014-11-01

    Full Text Available The optical gas recognition capabilities of thin film layer of 4-[bis[(3,5-dimethyl-1H-pyrazol-1-ylmethyl]-amino]phenol deposed on quartz substrates were studied. The dynamic gas responses to the following analytes have been investigated as air pollutants (SO2, NO2, CO, CH4 and NH3. The spin-coated bispyrazole layer appears to have reversible response towards SO2 and a very low and irreversible response to NO2. The selectivity of the thin film based on bispyrazole layer with respect to other analytes was also examined and the present data show that the thin sensing layer in the presence of CO, CH4 and NH3 in low concentration does not influence its optical properties.

  16. Effect of Target Density on Microstructural, Electrical, and Optical Properties of Indium Tin Oxide Thin Films

    Science.gov (United States)

    Zhu, Guisheng; Zhi, Li; Yang, Huijuan; Xu, Huarui; Yu, Aibing

    2012-09-01

    In this paper, indium tin oxide (ITO) targets with different densities were used to deposit ITO thin films. The thin films were deposited from these targets at room temperature and annealed at 750°C. Microstructural, electrical, and optical properties of the as-prepared films were studied. It was found that the target density had no effect on the properties or deposition rate of radiofrequency (RF)-sputtered ITO thin films, different from the findings for direct current (DC)-sputtered films. Therefore, when using RF sputtering, the target does not require a high density and may be reused.

  17. Optical properties of CdS thin films by (SILAR) method

    International Nuclear Information System (INIS)

    Ates, A.; Gurbulak, B.; Yildirim, M.

    2004-01-01

    Full text: CdS thin film was grown by Successive ionic layer adsorption and reaction (SILAR) technique on quartz substrate. The film homogeneous of film is good and the film colour obtained as orange. Optical properties of CdS thin film has been investigated as a function of temperature in the temperature range 10-320 K with 10 K steps. The band gap energy decreased with increasing temperature

  18. Optical constants of CH3NH3PbBr3 perovskite thin films measured by spectroscopic ellipsometry

    KAUST Repository

    Alias, Mohd Sharizal

    2016-07-14

    The lack of optical constants information for hybrid perovskite of CH3NH3PbBr3 in thin films form can delay the progress of efficient LED or laser demonstration. Here, we report on the optical constants (complex refractive index and dielectric function) of CH3NH3PbBr3 perovskite thin films using spectroscopic ellipsometry. Due to the existence of voids, the refractive index of the thin films is around 8% less than the single crystals counterpart. The energy bandgap is around 2.309 eV as obtained from photoluminescence and spectrophotometry spectra, and calculated from the SE analysis. The precise measurement of optical constants will be useful in designing optical devices using CH3NH3PbBr3 thin films.

  19. Nonlinear optical properties of poly(methyl methacrylate) thin films doped with Bixa Orellana dye

    Energy Technology Data Exchange (ETDEWEB)

    Zongo, S., E-mail: sidiki@tlabs.ac.za [UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, POBox 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 OldFaure road, Somerset West 7129, POBox 722, Somerset West, Western Cape Province (South Africa); Kerasidou, A.P. [LUNAM Université, Université d’Angers, CNRS UMR 6200, Laboratoire MOLTECH-Anjou, 2 Bd Lavoisier, 49045 Angers Cedex (France); Sone, B.T.; Diallo, A. [UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, POBox 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 OldFaure road, Somerset West 7129, POBox 722, Somerset West, Western Cape Province (South Africa); Mthunzi, P. [Council for Scientific and Industrial Research, P O Box 395, Pretoria 0001 (South Africa); Iliopoulos, K. [LUNAM Université, Université d’Angers, CNRS UMR 6200, Laboratoire MOLTECH-Anjou, 2 Bd Lavoisier, 49045 Angers Cedex (France); Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas (FORTH/ICE-HT), 26504 Patras (Greece); Nkosi, M. [Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 OldFaure road, Somerset West 7129, POBox 722, Somerset West, Western Cape Province (South Africa); and others

    2015-06-15

    Highlights: • We studied the linear and nonlinear optical properties of hybrid Bixa Orellana dye doped PMMA thin film. • We investigated the linear optical properties by means of UV/Vis, FTIR and Fluorescence. • We used Tauc - Lorentz model to evaluate linear optical parameters (n &k) with relative maximum of 1.456 at 508.5, 523.79 and 511.9 nm for n is observed while the maximum of k varies from 0.070 to 0.080. • We evaluated nonlinear third order susceptibility which was found to be 1.00 × 10{sup −21} m{sup 2} V{sup −2} or 0.72 × 10{sup −13} esu. - Abstract: Natural dyes with highly delocalized π-electron systems are considered as promising organic materials for nonlinear optical applications. Among these dyes, Bixa Orellana dye with extended π-electron delocalization is one of the most attractive dyes. Bixa Orellana dye-doped Poly(methyl methacrylate) (PMMA) thin films were prepared through spin coating process for linear and nonlinear optical properties investigation. Atomic force microscopy (AFM) was used to evaluate the roughness of the thin films. The optical constants n and k were evaluated by ellipsometric spectroscopy. The refractive index had a maximum of about 1.456 at 508.5, 523.79 and 511.9 nm, while the maximum of k varies from 0.070 to 0.080 with the thickness. The third order nonlinear optical properties of the hybrid Bixa Orellana dye-PMMA polymer were investigated under 30 ps laser irradiation at 1064 nm with a repetition rate of 10 Hz. In particular the third-order nonlinear susceptibility has been determined by means of the Maker Fringes technique. The nonlinear third order susceptibility was found to be 1.00 × 10{sup −21} m{sup 2} V{sup −2} or 0.72 × 10{sup −13} esu. Our studies provide concrete evidence that the hybrid-PMMA composites of Bixa dye are prospective candidates for nonlinear material applications.

  20. Optical and Morphological Studies of Thermally Evaporated PTCDI-C8 Thin Films for Organic Solar Cell Applications

    Directory of Open Access Journals (Sweden)

    Ronak Rahimi

    2013-01-01

    Full Text Available PTCDI-C8 due to its relatively high photosensitivity and high electron mobility has attracted much attention in organic semiconductor devices. In this work, thin films of PTCDI-C8 with different thicknesses were deposited on silicon substrates with native silicon dioxide using a vacuum thermal evaporator. Several material characterization techniques have been utilized to evaluate the structure, morphology, and optical properties of these films. Their optical constants (refractive index and extinction coefficient have been extracted from the spectroscopic ellipsometry (SE. X-ray reflectivity (XRR and atomic force microscopy (AFM were employed to determine the morphology and structure as well as the thickness and roughness of the PTCDI-C8 thin films. These films revealed a high degree of structural ordering within the layers. All the experimental measurements were performed under ambient conditions. PTCDI-C8 films have shown to endure ambient condition which allows pots-deposition characterization.

  1. A nanohole in a thin metal film as an efficient nonlinear optical element

    Energy Technology Data Exchange (ETDEWEB)

    Konstantinova, T. V.; Melent' ev, P. N.; Afanas' ev, A. E. [Russian Academy of Sciences, Institute of Spectroscopy (Russian Federation); Kuzin, A. A.; Starikov, P. A.; Baturin, A. S. [Moscow Institute of Physics and Technology (Russian Federation); Tausenev, A. V.; Konyashchenko, A. V. [OOO Avesta-proekt (Russian Federation); Balykin, V. I., E-mail: balykin@isan.tyroitsk.ru [Russian Academy of Sciences, Institute of Spectroscopy (Russian Federation)

    2013-07-15

    The nonlinear optical properties of single nanoholes and nanoslits fabricated in gold and aluminum nanofilms are studied by third harmonic generation (THG). It is shown that the extremely high third-order optical susceptibility of aluminum and the presence of strong plasmon resonance of a single nanohole in an aluminum film make possible an efficient nanolocalized radiation source at the third harmonic frequency. The THG efficiency for a single nanohole in a thin metal film can be close to unity for an exciting laser radiation intensity on the order of 10{sup 13} W/cm{sup 2}.

  2. Optical Analysis of Iron-Doped Lead Sulfide Thin Films for Opto-Electronic Applications

    Science.gov (United States)

    Chidambara Kumar, K. N.; Khadeer Pasha, S. K.; Deshmukh, Kalim; Chidambaram, K.; Shakil Muhammad, G.

    Iron-doped lead sulfide thin films were deposited on glass substrates using successive ionic layer adsorption and reaction method (SILAR) at room temperature. The X-ray diffraction pattern of the film shows a well formed crystalline thin film with face-centered cubic structure along the preferential orientation (1 1 1). The lattice constant is determined using Nelson Riley plots. Using X-ray broadening, the crystallite size is determined by Scherrer formula. Morphology of the thin film was studied using a scanning electron microscope. The optical properties of the film were investigated using a UV-vis spectrophotometer. We observed an increase in the optical band gap from 2.45 to 3.03eV after doping iron in the lead sulfide thin film. The cutoff wavelength lies in the visible region, and hence the grown thin films can be used for optoelectronic and sensor applications. The results from the photoluminescence study show the emission at 500-720nm. The vibrating sample magnetometer measurements confirmed that the lead sulfide thin film becomes weakly ferromagnetic material after doping with iron.

  3. Optical properties of the c-axis oriented LiNbO3 thin film

    International Nuclear Information System (INIS)

    Shandilya, Swati; Sharma, Anjali; Tomar, Monika; Gupta, Vinay

    2012-01-01

    C-axis oriented Lithium Niobate (LiNbO 3 ) thin films have been deposited onto epitaxially matched (001) sapphire substrate using pulsed laser deposition technique. Structural and optical properties of the thin films have been studied using the X-ray diffraction (XRD) and UV–Visible spectroscopy respectively. Raman spectroscopy has been used to study the optical phonon modes and defects in the c-axis oriented LiNbO 3 thin films. XRD analysis indicates the presence of stress in the as-grown LiNbO 3 thin films and is attributed to the small lattice mismatch between LiNbO 3 and sapphire. Refractive index (n = 2.13 at 640 nm) of the (006) LiNbO 3 thin films was found to be slightly lower from the corresponding bulk value (n = 2.28). Various factors responsible for the deviation in the refractive index of (006) LiNbO 3 thin films from the corresponding bulk value are discussed and the deviation is mainly attributed to the lattice contraction due to the presence of stress in deposited film.

  4. Optical, structural and electrochromic behavior studies on nanocomposite thin film of aniline, o-toluidine and WO3

    Science.gov (United States)

    Najafi-Ashtiani, Hamed; Bahari, Ali

    2016-08-01

    In the field of materials for electrochromic (EC) applications much attention was paid to the derivatives of aniline. We report on the optical, structural and electrochromic properties of electrochromic thin film based on composite of WO3 nanoparticles and copolymer of aniline and o-toluidine prepared by electrochemical polymerization method on fluorine doped tin oxide (FTO) coated glass. The thin film was studied by X-ray diffraction (XRD) and Fourier transforms infrared (FTIR) spectroscopy. The morphology of prepared thin film was characterized by field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM) and the thermal gravimetric analysis (TGA) as well. The optical spectra of nanocomposite thin film were characterized in the 200-900 nm wavelength range and EC properties of nanocomposite thin film were studied by cyclic voltammetry (CV). The calculation of optical band gaps of thin film exhibited that the thin film has directly allowed transition with the values of 2.63 eV on first region and 3.80 eV on second region. Dispersion parameters were calculated based on the single oscillator model. Finally, important parameters such as dispersion energy, oscillator energy and lattice dielectric constant were determined and compared with the data from other researchers. The nonlinear optical properties such as nonlinear optical susceptibility, nonlinear absorption coefficient and nonlinear refractive index were extracted. The obtained results of nanocomposite thin film can be useful for the optoelectronic applications.

  5. Gold and silver thin film analysis by optical and neutron activation techniques

    International Nuclear Information System (INIS)

    Moharram, B.M.; El-Khatib, A.M.; Ammar, E.A.

    1989-01-01

    Thicknesses of gold and silver thin films have been determined by NAA technique. Reasonable agreement with conventional optical methods has been obtained, but the lower detection limit in the case of NAA is far better than in the optical method. (author)

  6. Optical and electrical properties of nickel xanthate thin films

    Indian Academy of Sciences (India)

    Administrator

    metal-xanthate thin films' production, nor their optical, electrical properties and .... vibration of –CH3 at 894 cm–1, (vii) the symmetric bend- ing vibration of C–O–C at 458 .... vity values are the two most important factors, affecting band width.

  7. Analysis of structural and optical properties of annealed fullerene thin films

    Science.gov (United States)

    El-Nahass, M. M.; Ali, H. A. M.; Gadallah, A.-S.; Atta Khedr, M.; Afify, H. A.

    2015-08-01

    Fullerene thin films were thermally deposited onto different substrates. The films annealed at 523 K for 10 h. X-ray diffraction technique was used to examine the structure of the films. The morphology of films was examined by field emission scanning electron microscopy. Fourier transform infrared spectra were recorded in wavenumber range 400-2000 cm-1. The optical characteristics were analyzed using UV- Vis-NIR spectrophotometric measurements in the spectral range 200-2500 nm. The refractive index and extinction coefficient were determined. Some dispersion parameters were calculated such as single oscillator energy, dispersion energy, dielectric constant at high frequency and lattice dielectric constant. As well as, the nonlinear optical susceptibility χ(3) and nonlinear refractive index n2 were determined.

  8. Optical and morphological characterizations of pyronin dye-poly (vinyl alcohol) thin films formed on glass substrates

    International Nuclear Information System (INIS)

    Meral, Kadem; Arik, Mustafa; Onganer, Yavuz

    2016-01-01

    Thin films of pyronin dye mixed with poly(vinyl alcohol) (PVA) on glass substrate were prepared by using spin-coating technique. The optical and morphological properties of the thin films were studied by UV-Vis., steady-state fluorescence spectroscopies and atomic force microscopy (AFM). The thin films on glass substrate were fabricated at various [PVA]/[dye] (P/D) ratios. Hence, the monomeric and H-aggregates thin films of pyronin dye mixed with PVA were formed as a function of the dye and PVA concentration. It was determined that while the monomeric thin films showed strong fluorescence, the formation of H-aggregates in the thin film caused to decreasing the fluorescence intensity. AFM studies demonstrated that the morphology of the thin film was drastically varied with changing the optical property of the thin film such as monomeric and H-aggregates thin films.

  9. Optical and morphological characterizations of pyronin dye-poly (vinyl alcohol) thin films formed on glass substrates

    Energy Technology Data Exchange (ETDEWEB)

    Meral, Kadem, E-mail: kademm@atauni.edu.tr; Arik, Mustafa, E-mail: marik@tatauni.edu.tr; Onganer, Yavuz, E-mail: yonganer@atauni.edu.tr [Department of Chemistry, Faculty of Sciences, Atatürk University, 25240 Erzurum (Turkey)

    2016-04-18

    Thin films of pyronin dye mixed with poly(vinyl alcohol) (PVA) on glass substrate were prepared by using spin-coating technique. The optical and morphological properties of the thin films were studied by UV-Vis., steady-state fluorescence spectroscopies and atomic force microscopy (AFM). The thin films on glass substrate were fabricated at various [PVA]/[dye] (P/D) ratios. Hence, the monomeric and H-aggregates thin films of pyronin dye mixed with PVA were formed as a function of the dye and PVA concentration. It was determined that while the monomeric thin films showed strong fluorescence, the formation of H-aggregates in the thin film caused to decreasing the fluorescence intensity. AFM studies demonstrated that the morphology of the thin film was drastically varied with changing the optical property of the thin film such as monomeric and H-aggregates thin films.

  10. Structural and optical characteristics of in-situ sputtered highly oriented 15R-SiC thin films on different substrates

    Science.gov (United States)

    Mourya, Satyendra; Jaiswal, Jyoti; Malik, Gaurav; Kumar, Brijesh; Chandra, Ramesh

    2018-01-01

    In this work, we have reported the in-situ fabrication of nanocrystalline rhombohedral silicon carbide (15R-SiC) thin films by RF-magnetron sputtering at 800 °C substrate temperature. The structural and optical properties were investigated for the films grown on four different substrates (ZrO2, MgO, SiC, and Si). The contact angle measurement was performed on all the substrates to investigate the role of interfacial surface energy in nucleation and growth of the films. The XRD measurement revealed the growth of (1 0 10) orientation for all the samples and demonstrated better crystallinity on Si substrate, which was further corroborated by the TEM results. The Raman spectroscopy confirmed the growth of rhombohedral phase with 15R polytype. Surface characteristics of the films have been investigated by energy dispersive x-ray spectroscopy, FTIR, and atomic force microscope (AFM) to account for chemical composition, bonding, and root mean square surface roughness (δrms). The optical dispersion behavior of 15R-SiC thin films was examined by variable angle spectroscopic ellipsometry in the wide spectral range (246-1688 nm), including the surface characteristics in the optical model. The non-linear optical parameters (χ3 and n2) of the samples have been calculated by the Tichy and Ticha relation using a single effective oscillator model of Wemple and Didomenico. Additionally, our optical results provided an alternative way to measure the ratio of carrier concentration to the effective mass (N/m*). These investigated optical parameters allow one to design and fabricate optoelectronic, photonic, and telecommunication devices for deployment in extreme environment.

  11. Thickness Dependent Optical Properties of Sol-gel based MgF2 – TiO2 Thin Films

    Directory of Open Access Journals (Sweden)

    Siddarth Krishnaraja Achar

    2018-04-01

    Full Text Available MgF2 – TiO2 thin films were prepared by cost effective solgel technique onto glass substrates and optical parameters were determined by envelope technique. Thin films were characterized by optical transmission spectroscopy in the spectral range 290 – 1000 nm. The refractive index, extinction coefficient, Optical thickness and band gap dependency on thickness were evaluated. Thickness dependency of thin films showed direct allowed transition with band gap of 3.66 to 3.73 eV.

  12. Magnetic and magneto-optical properties of FeRh thin films

    International Nuclear Information System (INIS)

    Inoue, Sho; Nam, Nguyen T.; Phuoc, Nguyen N.; Cao Jiangwei; Yu Ko, Hnin Yu; Suzuki, Takao

    2008-01-01

    The magnetic and magneto-optical properties of FeRh thin films epitaxially deposited onto MgO(1 0 0) substrates by RF sputter-deposition system have been investigated in conjunction with the structure. An intriguing virgin effect has been found in the M-T curves of the as-deposited FeRh thin films, which is presumably interpreted in term of a change in structural phase when heating. Also, a (negative) maximum peak of Kerr rotation at around 3.8 eV has been observed when FeRh thin films are in ferromagnetic state. The polar Kerr rotation angle is found to increase at temperatures above 100 deg. C, which corresponds to the antiferromagnet (AF)-ferromagnet (FM) transition of FeRh thin films

  13. Optical response from functionalized atomically thin nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Malic, Ermin; Berghaeuser, Gunnar; Feierabend, Maja [Department of Physics, Chalmers University of Technology, Gothenburg (Sweden); Knorr, Andreas [Institut fuer Theoretische Physik, Technische Universitaet Berlin (Germany)

    2017-10-15

    Chemical functionalization of atomically thin nanostructures presents a promising strategy to create new hybrid nanomaterials with remarkable and externally controllable properties. Here, we review our research in the field of theoretical modeling of carbon nanotubes, graphene, and transition metal dichalcogenides located in molecular dipole fields. In particular, we provide a microscopic view on the change of the optical response of these technologically promising nanomaterials due to the presence of photo-active spiropyran molecules. The feature article presents a review of recent theoretical work providing microscopic view on the optical response of chemically functionalized carbon nanotubes, graphene, and monolayered transition metal dichalcogenides. In particular, we propose a novel sensor mechanism based on the molecule-induced activation of dark excitons. This results in a pronounced additional peak presenting an unambiguous optical fingerprint for the attached molecules. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Evaluating interfacial adhesion properties of Pt/Ti thin-film by using acousto-optic technique

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hae Sung [Graduate School of Automotive Engineering, Seoul National University of Science and Technology, Seoul (Korea, Republic of); Didie, David; Yoshida, Sanichiro [Dept. of Chemistry and Physics, Southeastern Louisiana University, Hammond (United States); Park, Ik Keun [Dept. of Mechanical and Automotive Engineering, Seoul National University of Science and Technology, Seoul (Korea, Republic of)

    2016-06-15

    We propose an acousto-optic technique for the nondestructive evaluation of adhesion properties of a Pt/Ti thin-film interface. Since there are some problems encountered when using prevailing techniques to nondestructively evaluate the interfacial properties of micro/nano-scale thin-films, we applied an interferometer that combined the acoustic and optical methods. This technique is based on the Michelson interferometer but the resultant surface of the thin film specimen makes interference instead of the mirror when the interface is excited from the acoustic transducer at the driving frequency. The thin film shows resonance-like behavior at a certain frequency range, resulting in a low-contrast fringe pattern. Therefore, we represented quantitatively the change in fringe pattern as a frequency spectrum and discovered the possibility that the interfacial adhesion properties of a thin film can be evaluated using the newly proposed technique.

  15. Effect of iron doping on structural and optical properties of TiO2 thin film by sol–gel routed spin coating technique

    Directory of Open Access Journals (Sweden)

    Stephen Lourduraj

    2017-08-01

    Full Text Available Thin films of iron (Fe-doped titanium dioxide (Fe:TiO2 were prepared by sol–gel spin coating technique and further calcined at 450∘C. The structural and optical properties of Fe-doped TiO2 thin films were investigated by X-ray diffraction (XRD, scanning electron microscopy (SEM, ultraviolet–visible spectroscopy (UV–vis and atomic force microscopic (AFM techniques. The XRD results confirm the nanostructured TiO2 thin films having crystalline nature with anatase phase. The characterization results show that the calcined thin films having high crystallinity and the effect of iron substitution lead to decreased crystallinity. The SEM investigations of Fe-doped TiO2 films also gave evidence that the films were continuous spherical shaped particles with a nanometric range of grain size and film was porous in nature. AFM analysis establishes that the uniformity of the TiO2 thin film with average roughness values. The optical measurements show that the films having high transparency in the visible region and the optical band gap energy of Fe-doped TiO2 film with iron (Fe decrease with increase in iron content. These important requirements for the Fe:TiO2 films are to be used as window layers in solar cells.

  16. Fabrication of Au/graphene oxide/Ag sandwich structure thin film and its tunable energetics and tailorable optical properties

    OpenAIRE

    Ruijin Hong; Jialin Ji; Chunxian Tao; Daohua Zhang; Dawei Zhang

    2017-01-01

    Au/graphene oxide/Ag sandwich structure thin film was fabricated. The effects of graphene oxide (GO) and bimetal on the structure and optical properties of metal silver films were investigated by X-ray diffraction (XRD), optical absorption, and Raman intensity measurements, respectively. Compared to silver thin film, Au/graphene oxide/Ag sandwich structure composite thin films were observed with wider optical absorption peak and enhanced absorption intensity. The Raman signal for Rhodamine B ...

  17. Relationship between tribology and optics in thin films of mechanically oriented nanocrystals.

    Science.gov (United States)

    Wong, Liana; Hu, Chunhua; Paradise, Ruthanne; Zhu, Zina; Shtukenberg, Alexander; Kahr, Bart

    2012-07-25

    Many crystalline dyes, when rubbed unidirectionally with cotton on glass slides, can be organized as thin films of highly aligned nanocrystals. Commonly, the linear birefringence and linear dichroism of these films resemble the optical properties of single crystals, indicating precisely oriented particles. Of 186 colored compounds, 122 showed sharp extinction and 50 were distinctly linearly dichroic. Of the latter 50 compounds, 88% were more optically dense when linearly polarized light was aligned with the rubbing axis. The mechanical properties of crystals that underlie the nonstatistical correlation between tribological processes and the direction of electron oscillations in absorption bands are discussed. The features that give rise to the orientation of dye crystallites naturally extend to colorless molecular crystals.

  18. Investigations of electrical and optical properties of functional TCO thin films

    Directory of Open Access Journals (Sweden)

    Domaradzki Jarosław

    2015-06-01

    Full Text Available Transparent conducting oxide (TCO films of indium-tin-oxide were evaporated on the surface of silicon wafers after phosphorous diffusion and on the reference glass substrates. The influence of deposition process parameters (electron beam current, oxygen flow and the substrate temperature on optical and electrical properties of evaporated thin films were investigated by means of resistivity measurements and optical spectrophotometry. The performance of prepared thin films was judged by calculated figure of merit and the best result was obtained for the sample deposited on the substrate heated to the 100 °C and then removed from the deposition chamber and annealed in an air for 5 minutes at 400 °C. Refractive index and extinction coefficient were evaluated based on measured transmission spectra and used for designing of antireflection coating for solar cell. The obtained results showed that prepared TCO thin films are promising as a part of counter electrode in crystalline silicon solar cell construction.

  19. Giant magneto-optical faraday effect in HgTe thin films in the terahertz spectral range.

    Science.gov (United States)

    Shuvaev, A M; Astakhov, G V; Pimenov, A; Brüne, C; Buhmann, H; Molenkamp, L W

    2011-03-11

    We report the observation of a giant Faraday effect, using terahertz (THz) spectroscopy on epitaxial HgTe thin films at room temperature. The effect is caused by the combination of the unique band structure and the very high electron mobility of HgTe. Our observations suggest that HgTe is a high-potential material for applications as optical isolator and modulator in the THz spectral range.

  20. Transparent thin film polarizing and optical control systems

    Directory of Open Access Journals (Sweden)

    Nelson V. Tabiryan

    2011-06-01

    Full Text Available We show that a diffractive waveplate can be combined with a phase retardation film for fully converting light of arbitrary polarization state into a polarized light. Incorporating a photonic bandgap layer into a system of such polarizers that unify different polarization states in the input light into a single polarization state at its output, rather than absorbing or reflecting half of it, we developed and demonstrated a polarization-independent optical controller capable of switching between transmittive and reflective states. The transition between those states is smoothly controlled with low-voltage and low-power sources. Using versatile fabrication methods, this “universally polarizing optical controller” can be integrated into a thin package compatible with a variety of display, spatial light modulation, optical communication, imaging and other photonics systems.

  1. Determining thin film properties by fitting optical transmittance

    International Nuclear Information System (INIS)

    Klein, J.D.; Yen, A.; Cogan, S.F.

    1990-01-01

    The optical transmission spectra of rf sputtered tungsten oxide films on glass substrates were modeled to determine absorption edge behavior, film thickness, and index of refraction. Removal of substrate reflection and absorption phenomena from the experimental spectra allowed direct examination of thin film optical characteristics. The interference fringe pattern allows determination of the film thickness and the dependence of the real index of refraction on wavelength. Knowledge of the interference fringe behavior in the vicinity of the absorption edge was found essential to unambiguous determination of the optical band gap. In particular, the apparently random deviations commonly observed in the extrapolation of as-acquired data are eliminated by explicitly considering interference fringe phenomena. The multivariable optimization fitting scheme employed allows air-film-substrate reflection losses to be compensated without making reflectance measurements

  2. Optimization of nanocomposite Au/TiO2 thin films towards LSPR optical-sensing

    Science.gov (United States)

    Rodrigues, M. S.; Costa, D.; Domingues, R. P.; Apreutesei, M.; Pedrosa, P.; Martin, N.; Correlo, V. M.; Reis, R. L.; Alves, E.; Barradas, N. P.; Sampaio, P.; Borges, J.; Vaz, F.

    2018-04-01

    Nanomaterials based on Localized Surface Plasmon Resonance (LSPR) phenomena are revealing to be an important solution for several applications, namely those of optical biosensing. The main reasons are mostly related to their high sensitivity, with label-free detection, and to the simplified optical systems that can be implemented. For the present work, the optical sensing capabilities were tailored by optimizing LSPR absorption bands of nanocomposite Au/TiO2 thin films. These were grown by reactive DC magnetron sputtering. The main deposition parameters changed were the number of Au pellets placed in the Ti target, the deposition time, and DC current applied to the Ti-Au target. Furthermore, the Au NPs clustering, a key feature to have biosensing responses, was induced by several post-deposition in-air annealing treatments at different temperatures, and investigated via SEM analysis. Results showed that the Au/TiO2 thin films with a relatively low thickness (∼100 nm), revealing concentrations of Au close to 13 at.%, and annealed at temperatures above 600 °C, had the most well-defined LSPR absorption band and thus, the most promising characteristics to be explored as optical sensors. The NPs formation studies revealed an incomplete aggregation at 300 and 500 ⁰C and well-defined spheroidal NPs for higher temperatures. Plasma treatment with Ar led to a gradual blue-shift of the LSPR absorption band, which demonstrates the sensitivity of the films to changes in the dielectric environment surrounding the NPs (essential for optical sensing applications) and the exposure of the Au nanoparticles (crucial for a higher sensitivity).

  3. Two-dimensional photonic crystal bandedge laser with hybrid perovskite thin film for optical gain

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Hyungrae [Department of Biophysics and Chemical Biology, Seoul National University, Seoul 08826 (Korea, Republic of); Inter-University Semiconductor Research Center, Seoul National University, Seoul 08826 (Korea, Republic of); Bae, Seunghwan [Department of Materials Science and Engineering, Seoul National University, Seoul 08826 (Korea, Republic of); Lee, Myungjae [Inter-University Semiconductor Research Center, Seoul National University, Seoul 08826 (Korea, Republic of); Department of Physics and Astronomy, Seoul National University, Seoul 08826 (Korea, Republic of); Jeon, Heonsu, E-mail: hsjeon@snu.ac.kr [Department of Biophysics and Chemical Biology, Seoul National University, Seoul 08826 (Korea, Republic of); Inter-University Semiconductor Research Center, Seoul National University, Seoul 08826 (Korea, Republic of); Department of Physics and Astronomy, Seoul National University, Seoul 08826 (Korea, Republic of)

    2016-05-02

    We report optically pumped room temperature single mode laser that contains a thin film of hybrid perovskite, an emerging photonic material, as gain medium. Two-dimensional square lattice photonic crystal (PhC) backbone structure enables single mode laser operation via a photonic bandedge mode, while a thin film of methyl-ammonium lead iodide (CH{sub 3}NH{sub 3}PbI{sub 3}) spin-coated atop provides optical gain for lasing. Two kinds of bandedge modes, Γ and M, are employed, and both devices laser in single mode at similar laser thresholds of ∼200 μJ/cm{sup 2} in pulse energy density. Polarization dependence measurements reveal a clear difference between the two kinds of bandedge lasers: isotropic for the Γ-point laser and highly anisotropic for the M-point laser. These observations are consistent with expected modal properties, confirming that the lasing actions indeed originate from the corresponding PhC bandedge modes.

  4. Experimental and theoretical investigations of structural and optical properties of CIGS thin films

    Energy Technology Data Exchange (ETDEWEB)

    Chandramohan, M., E-mail: chandramohan59@yahoo.co.in [Department of Physics, Park college of Engineering and Tecknology, Coimbatore-641 659 (India); Velumani, S., E-mail: vels64@yahoo.com [Centro de Investigacion y de Estudios Avanzados del I.P.N.(CINVESTAV), Av. Instituto Politecnico Nacional 2508 Col. San Pedro Zacatenco 07360, Mexico D.F (Mexico); Venkatachalam, T., E-mail: atvenkatachalam@yahoo.com [Department of Physics, Coimbatore Institute of Technology, Coimbatore-14. India (India)

    2010-10-25

    Experimental and theoretical studies of the structural and optical properties of Copper Indium Gallium diSelenide thin films have been performed. Thin films of CIGS were deposited on glass substrates by chemical bath deposition. From the XRD results of the films, it is found that the films are of chalcopyrite type structure. The lattice parameter were determined as a = 5.72 A and c = 11.462 A. The optical properties of the thin films were carried out with the help of spectrophotometer. First principles density functional theory calculations of the band structure, density of states and effective masses of electrons and holes of the CIGS crystals have been done by computer simulations. The experimental data and theoretically calculated data have demonstrated good agreement.

  5. Electrode patterning of ITO thin films by high repetition rate fiber laser

    International Nuclear Information System (INIS)

    Lin, H.K.; Hsu, W.C.

    2014-01-01

    Indium tin oxide (ITO) thin films are deposited on glass substrates using a radio frequency magnetron sputtering system. As-deposited ITO thin film was 100 nm in thickness and a transmittance of ITO film on glass substrate was 79% at 550 nm. Conductive electrodes are then patterned on the ITO films using a high repetition rate fiber laser system followed by a wet chemical etching process. The electrical, optical and structural properties of the patterned samples are evaluated by means of a four-point probe technique, spectrophotometer, X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The results show that the samples annealed with a pulse repetition rate of 150 kHz or 400 kHz have a low sheet resistivity of 21 Ω/□ and a high optical transmittance of 90%. In addition, it is shown that a higher pulse repetition rate reduces both the residual stress and the surface roughness of the patterned specimens. Therefore, the present results suggest that a pulse repetition rate of 400 kHz represents the optimal processing condition for the patterning of crack-free ITO-coated glass substrates with good electrical and optical properties.

  6. Electrode patterning of ITO thin films by high repetition rate fiber laser

    Energy Technology Data Exchange (ETDEWEB)

    Lin, H.K., E-mail: HKLin@mail.npust.edu.tw; Hsu, W.C.

    2014-07-01

    Indium tin oxide (ITO) thin films are deposited on glass substrates using a radio frequency magnetron sputtering system. As-deposited ITO thin film was 100 nm in thickness and a transmittance of ITO film on glass substrate was 79% at 550 nm. Conductive electrodes are then patterned on the ITO films using a high repetition rate fiber laser system followed by a wet chemical etching process. The electrical, optical and structural properties of the patterned samples are evaluated by means of a four-point probe technique, spectrophotometer, X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The results show that the samples annealed with a pulse repetition rate of 150 kHz or 400 kHz have a low sheet resistivity of 21 Ω/□ and a high optical transmittance of 90%. In addition, it is shown that a higher pulse repetition rate reduces both the residual stress and the surface roughness of the patterned specimens. Therefore, the present results suggest that a pulse repetition rate of 400 kHz represents the optimal processing condition for the patterning of crack-free ITO-coated glass substrates with good electrical and optical properties.

  7. Highly selective single-use fluoride ion optical sensor based on aluminum(III)-salen complex in thin polymeric film

    International Nuclear Information System (INIS)

    Badr, Ibrahim H.A.; Meyerhoff, Mark E.

    2005-01-01

    A highly selective optical sensor for fluoride ion based on the use of an aluminum(III)-salen complex as an ionophore within a thin polymeric film is described. The sensor is prepared by embedding the aluminum(III)-salen ionophore and a suitable lipophilic pH-sensitive indicator (ETH-7075) in a plasticized poly(vinyl chloride) (PVC) film. Optical response to fluoride occurs due to fluoride extraction into the polymer via formation of a strong complex with the aluminum(III)-salen species. Co-extraction of protons occurs simultaneously, with protonation of the indicator dye yielding the optical response at 529 nm. Films prepared using dioctylsebacate (DOS) are shown to exhibit better response (e.g., linear range, detection limit, and optical signal stability) compared to those prepared using ortho-nitrophenyloctyl ether (o-NPOE). Films formulated with aluminum(III)-salen and ETH-7075 indicator in 2 DOS:1 PVC, exhibit a significantly enhanced selectivity for fluoride over a wide range of lipophilic anions including salicylate, perchlorate, nitrate, and thiocyanate. The optimized films exhibit a sub-micromolar detection limit, using glycine-phosphate buffer, pH 3.00, as the test sample. The response times of the fluoride optical sensing films are in the range of 1-10 min depending on the fluoride ion concentration in the sample. The sensor exhibits very poor reversibility owing to a high co-extraction constant (log K = 8.5 ± 0.4), indicating that it can best be employed as a single-use transduction device. The utility of the aluminum(III)-salen based fluoride sensitive films as single-use sensors is demonstrated by casting polymeric films on the bottom of standard polypropylene microtiter plate wells (96 wells/plate). The modified microtiter plate optode format sensors exhibit response characteristics comparable to the classical optode films cast on quartz slides. The modified microtiter is utilized for the analysis of fluoride in diluted anti-cavity fluoride rinse

  8. Optical and Electrical Properties of Copper Oxide Thin Films Synthesized by Spray Pyrolysis Technique

    Directory of Open Access Journals (Sweden)

    S. S. Roy

    2015-08-01

    Full Text Available Copper oxide (CuO thin films have been synthesized on to glass substrates at different temperatures in the range 250-450 °C by spray pyrolysis technique from aqueous solution using cupric acetate Cu(CH3COO2·H2O as a precursor. The structure of the deposited CuO thin films characterized by X-ray diffraction, the surface morphology was observed by a scanning electron microscope, the presence of elements was detected by energy dispersive X-ray analysis, the optical transmission spectra was recorded by ultraviolet-visible spectroscopy and electrical resistivity was studied by Van-der Pauw method. All the CuO thin films, irrespective of growth temperature, showed a monoclinic structure with the main CuO (111 orientation, and the crystallite size was about 8.4784 Å for the thin film synthesized at 350 °C. The optical transmission of the as-deposited film is found to decrease with the increase of substrate temperature, the optical band gap of the thin films varies from 1.90 to 1.60 eV and the room temperature electrical resistivity varies from 30 to18 Ohm·cm for the films grown at different substrate temperatures.

  9. Optical constants and structural properties of thin gold films

    DEFF Research Database (Denmark)

    Yakubovsky, Dmitry I.; Arsenin, Aleksey V.; Stebunov, Yury V.

    2017-01-01

    We report a comprehensive experimental study of optical and electrical properties of thin polycrystalline gold films in a wide range of film thicknesses (from 20 to 200 nm). Our experimental results are supported by theoretical calculations based on the measured morphology of the fabricated gold...... rules for thin-film plasmonic and nanophotonic devices....... films. We demonstrate that the dielectric function of the metal is determined by its structural morphology. Although the fabrication process can be absolutely the same for different films, the dielectric function can strongly depend on the film thickness. Our studies show that the imaginary part...

  10. Mechanical design of thin-film diamond crystal mounting apparatus for coherence preservation hard x-ray optics

    International Nuclear Information System (INIS)

    Shu, Deming; Shvyd’ko, Yuri V.; Stoupin, Stanislav; Kim, Kwang-Je

    2016-01-01

    A new thin-film diamond crystal mounting apparatus has been designed at the Advanced Photon Source (APS) for coherence preservation hard x-ray optics with optimized thermal contact and minimized crystal strain. This novel mechanical design can be applied to new development in the field of: x-ray optics cavities for hard x-ray free-electron laser oscillators (XFELOs), self-seeding monochromators for hard x-ray free-electron laser (XFEL) with high average thermal loading, high heat load diamond crystal monochromators and beam-sharing/beam-split-and-delay devices for XFEL facilities and future upgraded high-brightness coherent x-ray source in the MBA lattice configuration at the APS.

  11. Mechanical design of thin-film diamond crystal mounting apparatus for coherence preservation hard x-ray optics

    Energy Technology Data Exchange (ETDEWEB)

    Shu, Deming, E-mail: shu@aps.anl.gov; Shvyd’ko, Yuri V.; Stoupin, Stanislav; Kim, Kwang-Je [Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, U.S.A (United States)

    2016-07-27

    A new thin-film diamond crystal mounting apparatus has been designed at the Advanced Photon Source (APS) for coherence preservation hard x-ray optics with optimized thermal contact and minimized crystal strain. This novel mechanical design can be applied to new development in the field of: x-ray optics cavities for hard x-ray free-electron laser oscillators (XFELOs), self-seeding monochromators for hard x-ray free-electron laser (XFEL) with high average thermal loading, high heat load diamond crystal monochromators and beam-sharing/beam-split-and-delay devices for XFEL facilities and future upgraded high-brightness coherent x-ray source in the MBA lattice configuration at the APS.

  12. Ultra-thin silicon/electro-optic polymer hybrid waveguide modulators

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Feng; Spring, Andrew M. [Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-koen Kasuga, Fukuoka 816-8580 (Japan); Sato, Hiromu [Department of Molecular and Material Sciences, Kyushu University, 6-1 Kasuga-koen Kasuga, Fukuoka 816-8580 (Japan); Maeda, Daisuke; Ozawa, Masa-aki; Odoi, Keisuke [Nissan Chemical Industries, Ltd., 2-10-1 Tuboi Nishi, Funabashi, Chiba 274-8507 (Japan); Aoki, Isao; Otomo, Akira [National Institute of Information and Communications Technology, 588-2 Iwaoka, Nishi-ku, Kobe 651-2492 (Japan); Yokoyama, Shiyoshi, E-mail: s-yokoyama@cm.kyushu-u.ac.jp [Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-koen Kasuga, Fukuoka 816-8580 (Japan); Department of Molecular and Material Sciences, Kyushu University, 6-1 Kasuga-koen Kasuga, Fukuoka 816-8580 (Japan)

    2015-09-21

    Ultra-thin silicon and electro-optic (EO) polymer hybrid waveguide modulators have been designed and fabricated. The waveguide consists of a silicon core with a thickness of 30 nm and a width of 2 μm. The cladding is an EO polymer. Optical mode calculation reveals that 55% of the optical field around the silicon extends into the EO polymer in the TE mode. A Mach-Zehnder interferometer (MZI) modulator was prepared using common coplanar electrodes. The measured half-wave voltage of the MZI with 7 μm spacing and 1.3 cm long electrodes is 4.6 V at 1550 nm. The evaluated EO coefficient is 70 pm/V, which is comparable to that of the bulk EO polymer film. Using ultra-thin silicon is beneficial in order to reduce the side-wall scattering loss, yielding a propagation loss of 4.0 dB/cm. We also investigated a mode converter which couples light from the hybrid EO waveguide into a strip silicon waveguide. The calculation indicates that the coupling loss between these two devices is small enough to exploit the potential fusion of a hybrid EO polymer modulator together with a silicon micro-photonics device.

  13. Optical properties of WO3 thin films using surface plasmon resonance technique

    International Nuclear Information System (INIS)

    Paliwal, Ayushi; Sharma, Anjali; Gupta, Vinay; Tomar, Monika

    2014-01-01

    Indigenously assembled surface plasmon resonance (SPR) technique has been exploited to study the thickness dependent dielectric properties of WO 3 thin films. WO 3 thin films (80 nm to 200 nm) have been deposited onto gold (Au) coated glass prism by sputtering technique. The structural, optical properties and surface morphology of the deposited WO 3 thin films were studied using X-ray diffraction, UV-visible spectrophotometer, Raman spectroscopy, and Scanning electron microscopy (SEM). XRD analysis shows that all the deposited WO 3 thin films are exhibiting preferred (020) orientation and Raman data indicates that the films possess single phase monoclinic structure. SEM images reveal the variation in grain size with increase in thickness. The SPR reflectance curves of the WO 3 /Au/prism structure were utilized to estimate the dielectric properties of WO 3 thin films at optical frequency (λ = 633 nm). As the thickness of WO 3 thin film increases from 80 nm to 200 nm, the dielectric constant is seen to be decreasing from 5.76 to 3.42, while the dielectric loss reduces from 0.098 to 0.01. The estimated value of refractive index of WO 3 film is in agreement to that obtained from UV-visible spectroscopy studies. The strong dispersion in refractive index is observed with wavelength of incident laser light

  14. Effect of thermal annealing on the structural and optical properties of Cu2FeSnS4 thin films grown by vacuum evaporation method

    Science.gov (United States)

    Oueslati, H.; Rabeh, M. Ben; Kanzari, M.

    2018-02-01

    In this work, the effect of different types of thermal annealing on the properties of Cu2FeSnS4 (CFTS) thin films deposited by thermal evaporation at room temperature on glass substrate were investigated. CFTS powder was synthesized by direct melting of the constituent elements taken in stoichiometry compositions. The X-ray diffraction experimental data indicating that the Cu2FeSnS4 powder illustrating a stannite structure in space group I\\bar {4}2m. From the XRD analysis we have found that the polycrystalline CFTS thin film was only obtained by thermal annealed in sulfur atmosphere under a high vacuum of 400 °C temperature during 2 h. Optical study reveals that the thin films have relatively high absorption coefficients (≈ 105cm-1) and the values of optical band gap energy ranged between 1.38 and 1.48 eV. Other optical parameters were evaluated according to the models of Wemple Di-Domenico and Spitzer-Fan. Finally, hot probe measurements of CFTS thin films reveal p-type conductivity.

  15. Structural and optical properties of Sb65Se35-xGex thin films

    Science.gov (United States)

    Saleh, S. A.; Al-Hajry, A.; Ali, H. M.

    2011-07-01

    Sb65Se35-xGex (x=0-20 at.%) thin films, prepared by the electron beam evaporation technique on ultrasonically cleaned glass substrates at 300 K, were investigated. The amorphous structure of the thin films was confirmed by x-ray diffraction analysis. The structure was deduced from the Raman spectra measured for all germanium contents in the Sb-Se-Ge matrix. The absorption coefficient (α) of the films was determined by optical transmission measurements. The compositional dependence of the optical band gap is discussed in light of topological and chemical ordered network models.

  16. Preparation of RF reactively sputtered indium-tin oxide thin films with optical properties suitable for heat mirrors

    International Nuclear Information System (INIS)

    Boyadzhiev, S; Dobrikov, G; Rassovska, M

    2008-01-01

    Technologies are discussed for preparing and characterizing indium-tin oxide (ITO) thin films with properties appropriate for usage as heat mirrors in solar thermal collectors. The samples were prepared by means of radio frequency (RF) reactive sputtering of indium-tin targets in oxygen. The technological parameters were optimized to obtain films with optimal properties for heat mirrors. The optical properties of the films were studied by visible and infra-red (IR) spectrophotometry and laser ellipsometry. The reflectance of the films in the thermal IR range was investigated by a Fourier transform infra-red (FTIR) spectrophotometer. Heating of the substrates during the sputtering and their post deposition annealing in different environments were also studied. The ultimate purpose of the present research being the development of a technological process leading to low-cost ITO thin films with high transparency in the visible and near IR (0.3-2.4 μm) and high reflection in the thermal IR range (2.5-25 μm), we investigated the correlation of the ITO thin films structural and optical properties with the technological process parameters - target composition and heat treatment

  17. Changes in optical properties of polystyrene thin films by proton beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Sung Hyun; Jung, Jin Mook; Choi, Jae Hak [Dept. of of Polymer Science and Engineering, Chungnam National University, Daejeon (Korea, Republic of); Jung, Chan Hee; Hwang, In Tae; Shin, Jun Hwa [Research Division for Industry and Environment, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup(Korea, Republic of)

    2017-06-15

    In this study, changes in optical properties of polystyrene (PS) thin films by proton irradiation were investigated. PS thin films were irradiated with 150 keV proton ions at fluences ranging from 1 × 10{sup 15} to 1 × 10{sup 16} ions cm{sup -2}. The chemical structures and optical properties of proton beam-irradiated PS thin films were investigated by using a FT-IR spectrometer, an UVvis spectrophotometer, a photoluminescence (PL) and a fluorescence microscope. The results of the chemical structure analysis revealed that chemical functional groups, such as OH, C=O, and C=C, were formed in the PS films due to the oxidation and formation of carbon clusters by proton beam irradiation. The PL emission was generated and gradually red-shifted with an increasing fluence due to the higher formation of sp2 carbon clusters by proton beam irradiation. The highest PL intensity was obtained at a fluence of 5×10{sup 15} ions cm{sup -2}. The optical band gap of PS calculated by using a Tauc’s plot decreased with increasing the fluence due to the formation of sp2 carbon clusters by proton beam irradiation.

  18. Structural and optical investigation of Te-based chalcogenide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Rita, E-mail: reetasharma2012@gmail.com; Sharma, Shaveta; Thangaraj, R.; Mian, M. [Semiconductors Laboratory, Department of Physics, GND University, Amritsar (India); Chander, Ravi [Applied Science Deptt. Govt. Polytechnic College Amritsar (India); Kumar, Praveen [Department of Physics, DAV University, Sarmastipur, Jalandhar-144012 (India)

    2015-05-15

    We report the structural and optical properties of thermally evaporated Bi{sub 2}Te{sub 3}, In{sub 2}Te{sub 3} and InBiTe{sub 3} films by using X-ray diffraction, optical and Raman Spectroscopy techniques. The as-prepared thin films were found to be Semi-crystalline by X-ray diffraction. Particle Size and Strain has been calculated from XRD data. The optical constants, film thickness, refractive index and optical band gap (E{sub g}) has been reported for In{sub 2}Te{sub 3}, InBiTe{sub 3} films. Raman Spectroscopy was performed to investigate the effect of Bi, In, on lattice vibration and chemical bonding in Te based chalcogenide glassy alloys.

  19. Structural, microstructural and optical properties of Cu2ZnSnS4 thin ...

    Indian Academy of Sciences (India)

    2017-08-05

    Aug 5, 2017 ... From optical absorption studies, the direct optical band gap of CZTS films is found to be ∼1.45 eV. ... CZTS thin films; thermal evaporation; annealing; Raman spectroscopy; .... determination of composition data is ±5 at%.

  20. Tailoring and optimization of optical properties of CdO thin films for gas sensing applications

    Science.gov (United States)

    Rajput, Jeevitesh K.; Pathak, Trilok K.; Kumar, V.; Swart, H. C.; Purohit, L. P.

    2018-04-01

    Cadmium oxide (CdO) thin films have been deposited onto glass substrates using different molar concentrations (0.2 M, 0.5 M and 0.8 M) of cadmium acetate precursor solutions using a sol-gel spin coating technique. The structural, morphological, optical and electrical results are presented. X-ray diffraction patterns indicated that the CdO films of different molarity have a stable cubic structure with a (111) preferred orientation at low molar concentration. Scanning electron microscopy images revealed that the films adopted a rectangular to cauliflower like morphology. The optical transmittance of the thin films was observed in the range 200-800 nm and it was found that the 0.2 M CdO thin films showed about 83% transmission in the visible region. The optical band gap energy of the thin films was found to vary from 2.10 to 3.30 eV with the increase in molar concentration of the solution. The electrical resistance of the 0.5 M thin film was found to be 1.56 kΩ. The oxygen sensing response was observed between 20-33% in the low temperature range (32-200 °C).

  1. A study on linear and non-linear optical constants of Rhodamine B thin film deposited on FTO glass

    Science.gov (United States)

    Yahia, I. S.; Jilani, Asim; Abutalib, M. M.; AlFaify, S.; Shkir, M.; Abdel-wahab, M. Sh.; Al-Ghamdi, Attieh A.; El-Naggar, A. M.

    2016-06-01

    The aim of this research was to fabricate/deposit the good quality thin film of Rhodamine B dye on fluorine doped tin oxide glass substrate by the low cost spin coating technique and study their linear and nonlinear optical parameters. The thickness of the thin film was measured about 300 nm with alpha step system. The transmittance of the fabricated thin film was found to be above 75% corresponding to the fluorine doped tin oxide layer. The structural analysis was performed with X-rays diffraction spectroscopy. Atomic force microscope showed the topographic image of deposited thin film. Linear optical constant like absorption coefficient, band gap, and extinction index was calculated. The dielectric constant was calculated to know the optical response of Rhodamine B dye over fluorine doped tin oxide substrate. The nonlinear optical constant like linear optical susceptibility χ(1), nonlinear optical susceptibility χ(3), nonlinear refractive index (n2) were calculated by spectroscopic method. This method has advantage over the experimental method like Z-Scan for organic dye base semiconductors for future advance optoelectronics applications like dye synthesis solar cell.

  2. Effects of vacuum annealing on the optical and electrical properties of p-type copper-oxide thin-film transistors

    International Nuclear Information System (INIS)

    Sohn, Joonsung; Song, Sang-Hun; Kwon, Hyuck-In; Nam, Dong-Woo; Cho, In-Tak; Lee, Jong-Ho; Cho, Eou-Sik

    2013-01-01

    We have investigated the effects of vacuum annealing on the optical and electrical properties of the p-type copper-oxide thin-film transistors (TFTs). The vacuum annealing of the copper-oxide thin-film was performed using the RF magnetron sputter at various temperatures. From the x-ray diffraction and UV-vis spectroscopy, it is demonstrated that the high-temperature vacuum annealing reduces the copper-oxide phase from CuO to Cu 2 O, and increases the optical transmittance in the visible part of the spectrum. The fabricated copper-oxide TFT does not exhibit the switching behavior under low-temperature vacuum annealing conditions. However, as the annealing temperature increases, the drain current begins to be modulated by a gate voltage, and the TFT exhibits a high current on–off ratio over 10 4 as the vacuum annealing temperature increases over 450 °C. These results show that the vacuum annealing process can be an effective method of simultaneously improving the optical and electrical performances in p-type copper-oxide TFTs. (paper)

  3. Effect of calcination environments and plasma treatment on structural, optical and electrical properties of FTO transparent thin films

    Directory of Open Access Journals (Sweden)

    Madhav Kafle

    2017-07-01

    Full Text Available The dependence of the structural, optical and electrical properties of the FTO thin films on the film thickness (276 nm - 546 nm, calcination environment, and low temperature plasma treatment were examined. The FTO thin films, prepared by spray pyrolysis, were calcinated under air followed by either further heat treatment under N2 gas or treatment in low temperature atmospheric plasma. The samples before and after calcination under N2, and plasma treatment will be represented by Sair, SN2 and SPl, respectively, hereafter. The thin films were characterized by measuring the XRD spectra, SEM images, optical transmittance and reflectance, and sheet resistance of the films before and after calcination in N2 environment or plasma treatment. The presence of sharp and narrow multiple peaks in XRD spectra hint us that the films were highly crystalline (polycrystalline. The samples Sair with the thickness of 471 nm showed as high as 92 % transmittance in the visible range. Moreover, from the tauc plot, the optical bandgap Eg values of the Sair found to be noticeably lower than that of the samples SN2. Very surprisingly, the electrical sheet resistance (Rsh found to decrease following the trend as Rshair > RshN2 > RshPl. The samples exposed to plasma found to possess the lowest RshPl (for film with thickness 546 nm, the RshPl was 17 Ω/sq..

  4. Correlation between microstructure and optical properties of nano-crystalline TiO{sub 2} thin films prepared by sol-gel dip coating

    Energy Technology Data Exchange (ETDEWEB)

    Mechiakh, R., E-mail: raouf_mechiakh@yahoo.fr [Departement de Medecine, Faculte de Medecine, Universite Hadj Lakhdar, Batna (Algeria); Laboratoire de Photovoltaique de Semi-conducteurs et de Nanostructures, Centre de Recherche des Sciences et Technologies de l' Energie, BP.95, Hammam-Lif 2050 (Tunisia); Laboratoire de Ceramiques, Universite Mentouri Constantine (Algeria); Sedrine, N. Ben; Chtourou, R. [Laboratoire de Photovoltaique de Semi-conducteurs et de Nanostructures, Centre de Recherche des Sciences et Technologies de l' Energie, BP.95, Hammam-Lif 2050 (Tunisia); Bensaha, R. [Laboratoire de Ceramiques, Universite Mentouri Constantine (Algeria)

    2010-11-15

    Titanium dioxide thin films have been prepared from tetrabutyl-orthotitanate solution and methanol as a solvent by sol-gel dip coating technique. TiO{sub 2} thin films prepared using a sol-gel process have been analyzed for different annealing temperatures. Structural properties in terms of crystal structure were investigated by Raman spectroscopy. The surface morphology and composition of the films were investigated by atomic force microscopy (AFM). The optical transmittance and reflectance spectra of TiO{sub 2} thin films deposited on silicon substrate were also determined. Spectroscopic ellipsometry study was used to determine the annealing temperature effect on the optical properties and the optical gap of the TiO{sub 2} thin films. The results show that the TiO{sub 2} thin films crystallize in anatase phase between 400 and 800 deg. C, and into the anatase-rutile phase at 1000 deg. C, and further into the rutile phase at 1200 deg. C. We have found that the films consist of titanium dioxide nano-crystals. The AFM surface morphology results indicate that the particle size increases from 5 to 41 nm by increasing the annealing temperature. The TiO{sub 2} thin films have high transparency in the visible range. For annealing temperatures between 1000 and 1400 deg. C, the transmittance of the films was reduced significantly in the wavelength range of 300-800 nm due to the change of crystallite phase and composition in the films. We have demonstrated as well the decrease of the optical band gap with the increase of the annealing temperature.

  5. Theoretical investigation of electronic, magnetic and optical properties of Fe doped GaN thin films

    International Nuclear Information System (INIS)

    Salmani, E.; Mounkachi, O.; Ez-Zahraouy, H.; Benyoussef, A.; Hamedoun, M.; Hlil, E.K.

    2013-01-01

    Highlights: •Magnetic and optical properties Fe-doped GaN thin films are studied using DFT. •The band gaps of GaN thin films are larger than the one of the bulk. •The layer thickness and acceptor defect can switch the magnetic ordering. -- Abstract: Using first principles calculations based on spin-polarized density functional theory, the magnetic and optical properties of GaN and Fe-doped GaN thin films with and without acceptor defect is studied. The band structure calculations show that the band gaps of GaN thin films with 2, 4 and 6 layers are larger than the one of the bulk with wurtzite structure and decreases with increasing the film thickness. In Fe doped GaN thin films, we show that layer of thickness and acceptor defect can switch the magnetic ordering from disorder local moment (DLM) to ferromagnetic (FM) order. Without acceptor defect Fe doped GaN exhibits spin glass phase in 4 layers form and ferromagnetic state for 2 layers form of the thin films, while it exhibits ferromagnetic phase with acceptor defect such as vacancies defect for 2 and 4 layers. In the FM ordering, the thin films is half-metallic and is therefore ideal for spin application. The different energy between ferromagnetic state and disorder local moment state was evaluated. Moreover, the optical absorption spectra obtained by ab initio calculations confirm the ferromagnetic stability based on the charge state of magnetic impurities

  6. Optical and electrical properties of transparent conductive ITO thin films under proton radiation with 100 keV

    International Nuclear Information System (INIS)

    Wei, Q.; He, S.Y.; Yang, D.Z.; Liu, J.C.

    2005-01-01

    Under the simulation environment for the vacuum and heat sink in space, the changes in optical and electrical properties of transparent conductive indium tin oxide (ITO) thin films induced by radiation of protons with 100 keV were studied. The ITO thin films were deposited on JGS1 quartz substrate by a sol-gel method. The sheet resistance and transmittance spectra of the ITO thin films were measured using the four-point probe method and a spectrophotometer, respectively. The surface morphology was analyzed by AFM. The experimental results showed that the electrical and optical performances of the ITO thin films were closely related to the irradiation fluence. When the fluence exceeded a given value 2 x 10 16 cm -2 , the sheet resistance increased obviously and the optical transmittance decreased. The AFM analysis indicated that the grain size of the ITO thin films diminished. The studies about the radiation effect on ITO thin films will help to predict performance evolution of the second surface mirrors on satellites under space radiation environment. (orig.)

  7. Structural and optical properties of zirconia thin films deposited by reactive high-power impulse magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xiaoli; Jin, Jie [Tianjin University, School of Electronic Information Engineering, Tianjin (China); Cheng, Jui-Ching, E-mail: juiching@ntut.edu.tw [Chang-Gung University, Department of Electronics, Taoyuan, Taiwan (China); Lee, Jyh-Wei [Ming Chi University of Technology, College of Materials Engineering, New Taipei City, Taiwan (China); Wu, Kuo-Hong [Chang-Gung University, Department of Electronics, Taoyuan, Taiwan (China); Lin, Kuo-Cheng; Tsai, Jung-Ruey [Asia University, Department of Photonics and Communication Engineering, Taichung, Taiwan (China); Liu, Kou-Chen, E-mail: jacobliu@mail.cgu.edu.tw [Chang-Gung University, Department of Electronics, Taoyuan, Taiwan (China)

    2014-11-03

    Zirconia films are deposited by reactive high power impulse magnetron sputtering (HiPIMS) technology on glass and indium-tin-oxide (ITO)/glass substrates. Preparation, microstructure and optical characteristics of the films have been studied. During deposition, the influence of the target power and duty cycle on the peak current–voltage and power density has been observed in oxide mode. Transparent thin films under different oxygen proportions are obtained on the two substrates. Atomic force microscopy measurements showed that the surface roughness of the films was lower by reactive HiPIMS than DC sputtering for all oxygen contents. The transmission and reflectance properties of differently grown zirconia films were also investigated using an ultraviolet–visible spectrophotometer. The optical transmittance of films grown on glass substrates by HiPIMS reached maximum values above 90%, which exceeded that by DC sputtering. The band edge near 5.86 eV shifted to a lower wavelength for zirconia films prepared with oxygen flow rates lower than 4.5 sccm. For the films prepared on ITO/glass substrates, the transmittance and the band gap of zirconia films were limited by ITO films; a maximum average transmittance of 84% was obtained at 4.5 sccm O{sub 2} and the energy band gap was in the range of 3.7–3.8 eV for oxygen flow rates ranging from 3.5 to 5.0 sccm. Finally, the electrical properties of zirconia films have also been discussed. - Highlights: • Zirconia films are deposited by reactive high power impulse magnetron sputtering. • Low roughness films are obtained. • Films show a high transmittance (> 90%). • Films prepared on glass have a band gap of 5.9 eV.

  8. Topography description of thin films by optical Fourier Transform

    International Nuclear Information System (INIS)

    Jaglarz, Janusz

    2008-01-01

    In this work, the main problems concerning the scattering of light by real surfaces and films are presented in view of results obtained with the bidirectional reflection distribution function (BRDF) method and optical profilometry (OP). The BRDF and OP studies, being complementary to the atomic force microscopy (AFM), allow one to get information about surface topography. From the optical data, the surface power spectral density (PSD) functions for absorbing and transparent rough films have been found. Both functions have been evaluated from the Fourier transform (FT) of the surface profiles. The usefulness of BRDF-and OP methods in characterization of real surfaces is demonstrated when analyzing the optical data obtained for metallic TiN-and organic PVK thin films deposited on various substrates

  9. Topography description of thin films by optical Fourier Transform

    Energy Technology Data Exchange (ETDEWEB)

    Jaglarz, Janusz [Institute of Physics, Cracow University of Technology, ul. Podchoraz.ych 1, 30-084 Krakow (Poland)], E-mail: pujaglar@cyfronet.krakow.pl

    2008-09-30

    In this work, the main problems concerning the scattering of light by real surfaces and films are presented in view of results obtained with the bidirectional reflection distribution function (BRDF) method and optical profilometry (OP). The BRDF and OP studies, being complementary to the atomic force microscopy (AFM), allow one to get information about surface topography. From the optical data, the surface power spectral density (PSD) functions for absorbing and transparent rough films have been found. Both functions have been evaluated from the Fourier transform (FT) of the surface profiles. The usefulness of BRDF-and OP methods in characterization of real surfaces is demonstrated when analyzing the optical data obtained for metallic TiN-and organic PVK thin films deposited on various substrates.

  10. Enhanced Visible Transmittance of Thermochromic VO2 Thin Films by SiO2 Passivation Layer and Their Optical Characterization

    Directory of Open Access Journals (Sweden)

    Jung-Hoon Yu

    2016-07-01

    Full Text Available This paper presents the preparation of high-quality vanadium dioxide (VO2 thermochromic thin films with enhanced visible transmittance (Tvis via radio frequency (RF sputtering and plasma enhanced chemical vapor deposition (PECVD. VO2 thin films with high Tvis and excellent optical switching efficiency (Eos were successfully prepared by employing SiO2 as a passivation layer. After SiO2 deposition, the roughness of the films was decreased 2-fold and a denser structure was formed. These morphological changes corresponded to the results of optical characterization including the haze, reflectance and absorption spectra. In spite of SiO2 coating, the phase transition temperature (Tc of the prepared films was not affected. Compared with pristine VO2, the total layer thickness after SiO2 coating was 160 nm, which is an increase of 80 nm. Despite the thickness change, the VO2 thin films showed a higher Tvis value (λ 650 nm, 58% compared with the pristine samples (λ 650 nm, 43%. This enhancement of Tvis while maintaining high Eos is meaningful for VO2-based smart window applications.

  11. Bioinspired Superhydrophobic Highly Transmissive Films for Optical Applications.

    Science.gov (United States)

    Vüllers, Felix; Gomard, Guillaume; Preinfalk, Jan B; Klampaftis, Efthymios; Worgull, Matthias; Richards, Bryce; Hölscher, Hendrik; Kavalenka, Maryna N

    2016-11-01

    Inspired by the transparent hair layer on water plants Salvinia and Pistia, superhydrophobic flexible thin films, applicable as transparent coatings for optoelectronic devices, are introduced. Thin polymeric nanofur films are fabricated using a highly scalable hot pulling technique, in which heated sandblasted steel plates are used to create a dense layer of nano- and microhairs surrounding microcavities on a polymer surface. The superhydrophobic nanofur surface exhibits water contact angles of 166 ± 6°, sliding angles below 6°, and is self-cleaning against various contaminants. Additionally, subjecting thin nanofur to argon plasma reverses its surface wettability to hydrophilic and underwater superoleophobic. Thin nanofur films are transparent and demonstrate reflection values of less than 4% for wavelengths ranging from 300 to 800 nm when attached to a polymer substrate. Moreover, used as translucent self-standing film, the nanofur exhibits transmission values above 85% and high forward scattering. The potential of thin nanofur films for extracting substrate modes from organic light emitting diodes is tested and a relative increase of the luminous efficacy of above 10% is observed. Finally, thin nanofur is optically coupled to a multicrystalline silicon solar cell, resulting in a relative gain of 5.8% in photogenerated current compared to a bare photovoltaic device. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Empirical analysis of aerosol and thin cloud optical depth effects on CO2 retrievals from GOSAT

    Science.gov (United States)

    Saha, A.; O'Neill, N. T.; Strong, K.; Nakajima, T.; Uchino, O.; Shiobara, M.

    2014-12-01

    Ground-based sunphotometer observations of aerosol and cloud optical properties at AEROCAN / AERONET sites co-located with TCCON (Total Carbon Column Observing Network) high resolution Fourier Transform Spectrometers (FTS) were used to investigate the aerosol and cloud influence on column-averaged dry-air mole fraction of carbon dioxide (XCO2) retrieved from the TANSO-FTS (Thermal And Near-infrared Sensor for carbon Observation - FTS) of GOSAT (Greenhouse gases Observing SATellite). This instrument employs high resolution spectra measured in the Short-Wavelength InfraRed (SWIR) band to retrieve XCO2estimates. GOSAT XCO2 retrievals are nominally corrected for the contaminating backscatter influence of aerosols and thin clouds. However if the satellite-retrieved aerosol and thin cloud optical depths applied to the CO2 correction is biased then the correction and the retrieved CO2 values will be biased. We employed independent ground based estimates of both cloud screened and non cloud screened AOD (aerosol optical depth) in the CO2 SWIR channel and compared this with the GOSAT SWIR-channel OD retrievals to see if that bias was related to variations in the (generally negative) CO2 bias (ΔXCO2= XCO2(GOSAT) - XCO2(TCCON)). Results are presented for a number of TCCON validation sites.

  13. Optical characterisation of thin film cadmium oxide prepared by a ...

    African Journals Online (AJOL)

    The optical transmission spectra of transparent conducting cadmium oxide (CdO) thin films deposited by a modified reactive evaporation process onto glass substrates have been measured. The interference fringes were used to calculate the refractive index, thickness variation, average thickness and absorption coefficient ...

  14. High quality ZnO layers with adjustable refractive indices for integrated optics applications

    NARCIS (Netherlands)

    Heideman, Rene; Lambeck, Paul; Gardeniers, Johannes G.E.

    1995-01-01

    Thin (approx. 1 μm) crystalline ZnO films with a good optical quality and a good (0002) texture are grown under two considerably different process parameter sets using a r.f. planar magnetron sputtering unit. The optical parameters of the two corresponding ZnO layers are distinctly different: high

  15. Linear and nonlinear optical properties of Sb-doped GeSe2 thin films

    Science.gov (United States)

    Zhang, Zhen-Ying; Chen, Fen; Lu, Shun-Bin; Wang, Yong-Hui; Shen, Xiang; Dai, Shi-Xun; Nie, Qiu-Hua

    2015-06-01

    Sb-doped GeSe2 chalcogenide thin films are prepared by the magnetron co-sputtering method. The linear optical properties of as-deposited films are derived by analyzing transmission spectra. The refractive index rises and the optical band gap decreases from 2.08 eV to 1.41 eV with increasing the Sb content. X-ray photoelectron spectra further confirm the formation of a covalent Sb-Se bond. The third-order nonlinear optical properties of thin films are investigated under femtosecond laser excitation at 800 nm. The results show that the third-order nonlinear optical properties are enhanced with increasing the concentration of Sb. The nonlinear refraction indices of these thin films are measured to be on the order of 10-18 m2/W with a positive sign and the nonlinear absorption coefficients are obtained to be on the order of 10-10 m/W. These excellent properties indicate that Sb-doped Ge-Se films have a good prospect in the applications of nonlinear optical devices. Project supported by the National Key Basic Research Program of China (Grant No. 2012CB722703), the National Natural Science Foundation of China (Grant No. 61377061), the Young Leaders of Academic Climbing Project of the Education Department of Zhejiang Province, China (Grant No. pd2013092), the Program for Innovative Research Team of Ningbo City, China (Grant No. 2009B217), and the K. C. Wong Magna Fund in Ningbo University, China.

  16. Electrical and optical properties of Cu–Cr–O thin films fabricated by chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lunca Popa, P., E-mail: petru.luncapopa@list.lu; Crêpellière, J.; Leturcq, R.; Lenoble, D.

    2016-08-01

    We present electrical and optical properties of CuCrO{sub 2} thin films deposited by chemical vapour deposition, as well as the influence of depositions' parameters on these properties. Oxygen partial pressure and precursor's concentrations have the greatest influence on optical and electrical properties of the films. Values of conductivities ranging from 10{sup −4} to 10 S/cm were obtained using different deposition conditions. The conductivity is thermally activated with an activation energy ranging from 57 to 283 meV. Thermoelectric measurements confirm the p-type conduction, and demonstrate high carrier concentration typical for a degenerate semiconductor. The as-deposited films show a medium degree of crystallinity, a maximum optical transmission up to 80% in the visible range with a corresponding band gap around 3.2 eV. - Highlights: • CuCrO{sub 2} thin films deposited via a new innovative method - DLICVD. • Band gap and electrical conductivity can be tuned by controlling deposition parameters • Key process parameter is the metallic/oxygen atomic ratio involved in the process • Electrical conductivities values spanning 5 orders of magnitudes were obtained using different deposition parameters.

  17. Optical properties of the c-axis oriented LiNbO{sub 3} thin film

    Energy Technology Data Exchange (ETDEWEB)

    Shandilya, Swati; Sharma, Anjali [Department of Physics and Astrophysics, University of Delhi, Delhi-110007 (India); Tomar, Monika [Miranda House, University of Delhi, Delhi 110007 (India); Gupta, Vinay, E-mail: drguptavinay@gmail.com [Department of Physics and Astrophysics, University of Delhi, Delhi-110007 (India)

    2012-01-01

    C-axis oriented Lithium Niobate (LiNbO{sub 3}) thin films have been deposited onto epitaxially matched (001) sapphire substrate using pulsed laser deposition technique. Structural and optical properties of the thin films have been studied using the X-ray diffraction (XRD) and UV-Visible spectroscopy respectively. Raman spectroscopy has been used to study the optical phonon modes and defects in the c-axis oriented LiNbO{sub 3} thin films. XRD analysis indicates the presence of stress in the as-grown LiNbO{sub 3} thin films and is attributed to the small lattice mismatch between LiNbO{sub 3} and sapphire. Refractive index (n = 2.13 at 640 nm) of the (006) LiNbO{sub 3} thin films was found to be slightly lower from the corresponding bulk value (n = 2.28). Various factors responsible for the deviation in the refractive index of (006) LiNbO{sub 3} thin films from the corresponding bulk value are discussed and the deviation is mainly attributed to the lattice contraction due to the presence of stress in deposited film.

  18. Cuprous oxide thin films prepared by thermal oxidation of copper layer. Morphological and optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Karapetyan, Artak, E-mail: karapetyan@cinam.univ-mrs.fr [Aix Marseille Université, CINaM, 13288, Marseille (France); Institute for Physical Research of NAS of Armenia, Ashtarak-2 0203 (Armenia); Reymers, Anna [Russian-Armenian (Slavonic) University, H.Emin st.123, Yerevan 375051 (Armenia); Giorgio, Suzanne; Fauquet, Carole [Aix Marseille Université, CINaM, 13288, Marseille (France); Sajti, Laszlo [Laser Zentrum Hannover e.V. Hollerithallee 8, 30419 Hannover (Germany); Nitsche, Serge [Aix Marseille Université, CINaM, 13288, Marseille (France); Nersesyan, Manuk; Gevorgyan, Vladimir [Russian-Armenian (Slavonic) University, H.Emin st.123, Yerevan 375051 (Armenia); Marine, Wladimir [Aix Marseille Université, CINaM, 13288, Marseille (France)

    2015-03-15

    Structural and optical characterization of crystalline Cu{sub 2}O thin films obtained by thermal oxidation of Cu films at two different temperatures 800 °C and 900 °C are investigated in this work. X-ray diffraction measurements indicate that synthesized films consist of single Cu{sub 2}O phase without any interstitial phase and show a nano-grain structure. Scanning Electron Microscopy observations indicate that the Cu{sub 2}O films have a micro-scale roughness whereas High Resolution Transmission Electron Microscopy highlights that the nanocrystalline structure is formed by superposition of nearly spherical nanocrystals smaller than 30 nm. Photoluminescence spectra of these films exhibit at room temperature two well-resolved emission peaks at 1.34 eV due to defects energy levels and at 1.97 eV due to phonon-assisted recombination of the 1s orthoexciton in both film series. Emission characteristics depending on the laser power is deeply investigated to determine the origin of recorded emissions. Time-integrated spectra of the 1s orthoexciton emission reveals the presence of oxygen defects below the conduction band edge under non-resonant two-photon excitation using a wide range of excitations wavelengths. Optical absorption coefficients at room temperature are obtained from an accurate analysis of their transmission and reflection spectra, whereas the optical band gap energy is estimated at about 2.11 eV. Results obtained are of high relevance especially for potential applications in semiconductor devices such as solar cells, optical sources and detectors. - Highlights: • Nanostructured Cu{sub 2}O thin films were synthesized by thermal oxidation of Cu films. • The PL spectra of nanostructured thin films revealed two well-resolved emission peaks. • The PL properties were investigated under a broad range of experimental conditions. • Inter-band transition in the infrared range has been associated to V{sub Cu} and V{sub O} vacancies. • Absorption

  19. Study of optically thin electron cyclotron emission from TFTR using a Michelson interferometer

    International Nuclear Information System (INIS)

    Stauffer, F.J.; Boyd, D.A.

    1986-01-01

    The TFTR Michelson interferometer, which is used as an electron temperature diagnostic, has a spectral range of 75-540 GHz. This range is adequate for measuring at least the first three cyclotron harmonics, and it spans both optically thick and thin portions of the ECE spectrum. During the most recent opening of the TFTR vacuum vessel, a concave, carbon reflector was installed on the back wall of the vessel, opposite the light collecting optic of the Michelson system. The reflector is designed to prevent the observation of optically thin ECE that originates from a location that is outside the field of view of the light collecting optic. If this is achieved, it should be possible to derive the electron density profile from measurements of either the extraordinary mode third harmonic or the ordinary mode second harmonic. An analysis of ECE spectra that have been measured before and after installation of the reflector is presented

  20. Optical and structural properties of ZnO/ZnMgO composite thin films prepared by sol–gel technique

    International Nuclear Information System (INIS)

    Xu, Linhua; Su, Jing; Chen, Yulin; Zheng, Gaige; Pei, Shixin; Sun, Tingting; Wang, Junfeng; Lai, Min

    2013-01-01

    Highlights: ► ZnMgO thin film and ZnO/ZnMgO composite thin film have been prepared by sol–gel method. ► The intensity of ultraviolet emission of ZnMgO thin film is enhanced two times compared with that of pure ZnO thin film. ► Compared with ZnMgO thin film, ZnO/ZnMgO composite thin film shows better crystallization and optical properties. ► ZnO/ZnMgO composite thin films prepared by sol–gel method have potential applications in many optoelectronic devices. - Abstract: In this study, pure ZnO thin film, Mg-doped ZnO (ZnMgO) thin film, ZnO/ZnMgO and ZnMgO/ZnO composite thin films were prepared by sol–gel technique. The structural and optical properties of the samples were analyzed by X-ray diffraction, scanning electron microscopy, UV–visible spectrophotometer, ellipsometer and photoluminescence spectra, respectively. The results showed that the incorporation of Mg increased the strain, broadened the optical bandgap, and improved the intensity of ultraviolet emission of ZnO thin film. The full width at half maximum (FWHM) of the ultraviolet emission peak was also increased due to Mg-doping at the same time. Compared with pure ZnO and ZnMgO thin films, the ZnO/ZnMgO thin film showed better crystalline quality and ultraviolet emission performance, smaller strains and higher transmittance in the visible range.

  1. A study on linear and non-linear optical constants of Rhodamine B thin film deposited on FTO glass

    Energy Technology Data Exchange (ETDEWEB)

    Yahia, I.S. [Nano-Science & Semiconductor Labs, Physics Department, Faculty of Education, Ain Shams University, Roxy, Cairo (Egypt); Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha (Saudi Arabia); Jilani, Asim, E-mail: asim.jilane@gmail.com [Centre of Nanotechnology, Physics Department-Faculty of Science-AL Faisaliah Campus, King Abdulaziz University, P.O. Box 80200, Jeddah 21589 (Saudi Arabia); Abutalib, M.M. [Centre of Nanotechnology, Physics Department-Faculty of Science-AL Faisaliah Campus, King Abdulaziz University, P.O. Box 80200, Jeddah 21589 (Saudi Arabia); AlFaify, S. [Nano-Science & Semiconductor Labs, Physics Department, Faculty of Education, Ain Shams University, Roxy, Cairo (Egypt); Shkir, M. [Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha (Saudi Arabia); Abdel-wahab, M.Sh.; Al-Ghamdi, Attieh A. [Centre of Nanotechnology, Physics Department-Faculty of Science-AL Faisaliah Campus, King Abdulaziz University, P.O. Box 80200, Jeddah 21589 (Saudi Arabia); El-Naggar, A.M. [Exploitation of Renewable Energy Applications in Saudi Arabia, Physics & Astronomy Department, College of Science, King Saud University, P.O.Box 2455, Riyadh 11451 (Saudi Arabia)

    2016-06-01

    The aim of this research was to fabricate/deposit the good quality thin film of Rhodamine B dye on fluorine doped tin oxide glass substrate by the low cost spin coating technique and study their linear and nonlinear optical parameters. The thickness of the thin film was measured about 300 nm with alpha step system. The transmittance of the fabricated thin film was found to be above 75% corresponding to the fluorine doped tin oxide layer. The structural analysis was performed with X-rays diffraction spectroscopy. Atomic force microscope showed the topographic image of deposited thin film. Linear optical constant like absorption coefficient, band gap, and extinction index was calculated. The dielectric constant was calculated to know the optical response of Rhodamine B dye over fluorine doped tin oxide substrate. The nonlinear optical constant like linear optical susceptibility χ{sup (1)}, nonlinear optical susceptibility χ{sup (3)}, nonlinear refractive index (n{sub 2}) were calculated by spectroscopic method. This method has advantage over the experimental method like Z-Scan for organic dye base semiconductors for future advance optoelectronics applications like dye synthesis solar cell.

  2. Estimation of optical constants of a bio-thin layer (onion epidermis), using SPR spectroscopy

    International Nuclear Information System (INIS)

    Rehman, Saif-ur-; Hayashi, Shinji; Sekkat, Zouheir; Mumtaz, Huma; Shaukat, S F

    2014-01-01

    We estimate the optical constants of a biological thin layer (Allium cepa) by surface plasmon resonance (SPR) spectroscopy. For this study, the fresh inner thin epidermis of an onion bulb was used and stacked directly on gold (Au) and silver (Ag) film surfaces in order to identify the shift in SPR mode of each metal film at an operating wavelength of 632.8 nm. The thickness and dielectric constants of the biological thin layer were determined by matching the experimental SPR curves to theoretical ones. The thickness and roughness of bare Au and Ag thin films were also measured by atomic force microscopy (AFM); the results of which are in good agreement with those obtained through experiment. Due to the high surface roughness of the natural onion epidermis layer, AFM could not measure the exact thickness of an onion epidermis. It is estimated that the value of the real part of the dielectric constant of an onion epidermis is between the dielectric constants of water and air. (paper)

  3. Enhancement of optical transmittance and electrical resistivity of post-annealed ITO thin films RF sputtered on Si

    Science.gov (United States)

    Ali, Ahmad Hadi; Hassan, Zainuriah; Shuhaimi, Ahmad

    2018-06-01

    This paper reports on the enhancement of optical transmittance and electrical resistivity of indium tin oxide (ITO) transparent conductive oxides (TCO) deposited by radio frequency (RF) sputtering on Si substrate. Post-annealing was conducted on the samples at temperature ranges of 500-700 °C. From X-ray diffraction analysis (XRD), ITO (2 2 2) peak was observed after post-annealing indicating crystallization phase of the films. From UV-vis measurements, the ITO thin film shows highest transmittance of more than 90% at post-annealing temperature of 700 °C as compared to the as-deposited thin films. From atomic force microscope (AFM), the surface roughness becomes smoother after post-annealing as compared to the as-deposited. The lowest electrical resistivity for ITO sample is 6.68 × 10-4 Ω cm after post-annealed at 700 °C that are contributed by high carrier concentration and mobility. The improved structural and surface morphological characteristics helps in increasing the optical transmittance and reducing the electrical resistivity of the ITO thin films.

  4. Optical properties of WO{sub 3} thin films using surface plasmon resonance technique

    Energy Technology Data Exchange (ETDEWEB)

    Paliwal, Ayushi; Sharma, Anjali; Gupta, Vinay, E-mail: drguptavinay@gmail.com, E-mail: vgupta@physics.du.ac.in [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Tomar, Monika [Department of Physics, Miranda House, University of Delhi, Delhi 110007 (India)

    2014-01-28

    Indigenously assembled surface plasmon resonance (SPR) technique has been exploited to study the thickness dependent dielectric properties of WO{sub 3} thin films. WO{sub 3} thin films (80 nm to 200 nm) have been deposited onto gold (Au) coated glass prism by sputtering technique. The structural, optical properties and surface morphology of the deposited WO{sub 3} thin films were studied using X-ray diffraction, UV-visible spectrophotometer, Raman spectroscopy, and Scanning electron microscopy (SEM). XRD analysis shows that all the deposited WO{sub 3} thin films are exhibiting preferred (020) orientation and Raman data indicates that the films possess single phase monoclinic structure. SEM images reveal the variation in grain size with increase in thickness. The SPR reflectance curves of the WO{sub 3}/Au/prism structure were utilized to estimate the dielectric properties of WO{sub 3} thin films at optical frequency (λ = 633 nm). As the thickness of WO{sub 3} thin film increases from 80 nm to 200 nm, the dielectric constant is seen to be decreasing from 5.76 to 3.42, while the dielectric loss reduces from 0.098 to 0.01. The estimated value of refractive index of WO{sub 3} film is in agreement to that obtained from UV-visible spectroscopy studies. The strong dispersion in refractive index is observed with wavelength of incident laser light.

  5. Thermal conductivities of thin, sputtered optical films

    International Nuclear Information System (INIS)

    Henager, C.H. Jr.; Pawlewicz, W.T.

    1991-05-01

    The normal component of the thin film thermal conductivity has been measured for the first time for several advanced sputtered optical materials. Included are data for single layers of boron nitride (BN), aluminum nitride (AIN), silicon aluminum nitride (Si-Al-N), silicon aluminum oxynitride (Si-Al-O-N), silicon carbide (SiC), and for dielectric-enhanced metal reflectors of the form Al(SiO 2 /Si 3 N 4 ) n and Al(Al 2 O 3 /AIN) n . Sputtered films of more conventional materials like SiO 2 , Al 2 O 3 , Ta 2 O 5 , Ti, and Si have also been measured. The data show that thin film thermal conductivities are typically 10 to 100 times lower than conductivities for the same materials in bulk form. Structural disorder in the amorphous or very fine-grained films appears to account for most of the conductivity difference. Conclusive evidence for a film/substrate interface contribution is presented

  6. Practice-oriented optical thin film growth simulation via multiple scale approach

    Energy Technology Data Exchange (ETDEWEB)

    Turowski, Marcus, E-mail: m.turowski@lzh.de [Laser Zentrum Hannover e.V., Hollerithallee 8, Hannover 30419 (Germany); Jupé, Marco [Laser Zentrum Hannover e.V., Hollerithallee 8, Hannover 30419 (Germany); QUEST: Centre of Quantum Engineering and Space-Time Research, Leibniz Universität Hannover (Germany); Melzig, Thomas [Fraunhofer Institute for Surface Engineering and Thin Films IST, Bienroder Weg 54e, Braunschweig 30108 (Germany); Moskovkin, Pavel [Research Centre for Physics of Matter and Radiation (PMR-LARN), University of Namur (FUNDP), 61 rue de Bruxelles, Namur 5000 (Belgium); Daniel, Alain [Centre for Research in Metallurgy, CRM, 21 Avenue du bois Saint Jean, Liège 4000 (Belgium); Pflug, Andreas [Fraunhofer Institute for Surface Engineering and Thin Films IST, Bienroder Weg 54e, Braunschweig 30108 (Germany); Lucas, Stéphane [Research Centre for Physics of Matter and Radiation (PMR-LARN), University of Namur (FUNDP), 61 rue de Bruxelles, Namur 5000 (Belgium); Ristau, Detlev [Laser Zentrum Hannover e.V., Hollerithallee 8, Hannover 30419 (Germany); QUEST: Centre of Quantum Engineering and Space-Time Research, Leibniz Universität Hannover (Germany)

    2015-10-01

    Simulation of the coating process is a very promising approach for the understanding of thin film formation. Nevertheless, this complex matter cannot be covered by a single simulation technique. To consider all mechanisms and processes influencing the optical properties of the growing thin films, various common theoretical methods have been combined to a multi-scale model approach. The simulation techniques have been selected in order to describe all processes in the coating chamber, especially the various mechanisms of thin film growth, and to enable the analysis of the resulting structural as well as optical and electronic layer properties. All methods are merged with adapted communication interfaces to achieve optimum compatibility of the different approaches and to generate physically meaningful results. The present contribution offers an approach for the full simulation of an Ion Beam Sputtering (IBS) coating process combining direct simulation Monte Carlo, classical molecular dynamics, kinetic Monte Carlo, and density functional theory. The simulation is performed exemplary for an existing IBS-coating plant to achieve a validation of the developed multi-scale approach. Finally, the modeled results are compared to experimental data. - Highlights: • A model approach for simulating an Ion Beam Sputtering (IBS) process is presented. • In order to combine the different techniques, optimized interfaces are developed. • The transport of atomic species in the coating chamber is calculated. • We modeled structural and optical film properties based on simulated IBS parameter. • The modeled and the experimental refractive index data fit very well.

  7. Effect of aluminum addition on the optical, morphology and electrical behavior of spin coated zinc oxide thin films

    Directory of Open Access Journals (Sweden)

    Amit Kumar Srivastava

    2011-09-01

    Full Text Available Aluminum-doped ZnO thin films of high optical transmittance (∼ 84-100% and low resistivity (∼ 2.3x10-2 Ωcm have been prepared on glass substrate by the spin coating and subsequent annealing at 500°C for 1h in air or vacuum. Effect of aluminum doping and annealing environment on morphology, optical transmittance and electrical resistivity of ZnO thin films has been studied with possible application as a transparent electrode in photovoltaic. The changes occurring due to aluminum addition include reduction in grain size, root mean square roughness, peak-valley separation, and sheet resistance with improvement in the optical transmittance to 84-100% in the visible range. The origin of low electrical resistivity lies in increase in i electron concentration following aluminum doping (being trivalent, formation of oxygen vacancies due to vacuum annealing, filling of cation site with additional zinc at solution stage itself and ii carrier mobility.

  8. Effect of substrate baking temperature on zinc sulfide and germanium thin films optical parameters

    Science.gov (United States)

    Liu, Fang; Gao, Jiaobo; Yang, Chongmin; Zhang, Jianfu; Liu, Yongqiang; Liu, Qinglong; Wang, Songlin; Mi, Gaoyuan; Wang, Huina

    2016-10-01

    ZnS and Ge are very normal optical thin film materials in Infrared wave. Studying the influence of different substrate baking temperature to refractive index and actual deposition rates is very important to promote optical thin film quality. In the same vacuum level, monitoring thickness and evaporation rate, we use hot evaporation to deposit ZnS thin film materials and use ion-assisted electron beam to deposit Ge thin film materials with different baking temperature. We measure the spectral transmittance with the spectrophotometer and calculate the actual deposition rates and the refractive index in different temperature. With the higher and higher temperature in a particular range, ZnS and Ge refractive index become higher and actual deposition rates become smaller. The refractive index of Ge film material change with baking temperature is more sensitive than ZnS. However, ZnS film actual deposition rates change with baking temperature is more sensitive than Ge.

  9. Study of structural and optical properties of Cd{sub 1-x}Zn{sub x}Se thin films

    Energy Technology Data Exchange (ETDEWEB)

    Wahab, L.A., E-mail: aly_lo2003@yahoo.com [National Center for Radiation Research and Technology, Nasr City, Cairo (Egypt); Zayed, H.A. [University Collage of Women for Art, Science and Education, Ain Shams University, Cairo (Egypt); El-Galil, A.A. Abd [National Center for Radiation Research and Technology, Nasr City, Cairo (Egypt)

    2012-06-01

    Cd{sub 1-x}Zn{sub x}Se (x = 0, 0.5 and 1) thin films have been deposited onto glass substrates using thermal evaporation technique. The lattice constants, grain size, microstrain and dislocation density were studied by using X-ray diffraction. In addition the optical constants were calculated in the wavelength range 400-2500 nm. Transmittance and reflectance were used to calculate the absorption coefficient {alpha} and the optical band gap E{sub g}. The linear relation of ({alpha}h{upsilon}){sup 2} as a function of photon energy h{upsilon} for the thin films illustrated that the films exhibit a direct band gap, which increases with increasing Zn content. This increasing of optical band gap was interpreted in accordance to the increasing in the cohesive energy. Optical constants, such as refractive index n, optical conductivity {sigma}{sub opt}, complex dielectric constant, relaxation time {tau} and dissipation factor tan{delta} were determined. The optical dispersion parameters E{sub 0}, E{sub d} were determined according to Wemple and Di Domenico method. - Highlights: Black-Right-Pointing-Pointer ZnSe thin film has cubic zinc blende structure while CdSe and Cd{sub 0.5}Zn{sub 0.5}Se thin films have hexagonal structure. Black-Right-Pointing-Pointer Grain size of Cd{sub 1-x}Zn{sub x}Se decreases with increasing x (x = 0, 0.5 and 1). Black-Right-Pointing-Pointer Optical band gap increases with increasing x.

  10. Structural, optical and electrical properties of ZnO thin films prepared ...

    Indian Academy of Sciences (India)

    Administrator

    of zinc acetate on glass substrates at 450 °C. Effect of precursor concentration on structural and optical pro- perties has ... dependence of photoresponse properties of sprayed ZnO thin films on ... randomly oriented flake-like grains. The grains ...

  11. Semiconductor thin films directly from minerals—study of structural, optical, and transport characteristics of Cu2O thin films from malachite mineral and synthetic CuO

    International Nuclear Information System (INIS)

    Balasubramaniam, K.R.; Kao, V.M.; Ravichandran, J.; Rossen, P.B.; Siemons, W.; Ager, J.W.

    2012-01-01

    We demonstrate the proof-of-concept of using an abundantly occurring natural ore, malachite (Cu 2 CO 3 (OH) 2 ) to directly yield the semiconductor Cu 2 O to be used as an active component of a functional thin film based device. Cu 2 O is an archetype hole-conducting semiconductor that possesses several interesting characteristics particularly useful for solar cell applications, including low cost, non-toxicity, good hole mobility, large minority carrier diffusion length, and a direct energy gap ideal for efficient absorption. In this article, we compare the structural, optical, and electrical transport characteristics of Cu 2 O thin films grown from the natural mineral malachite and synthetic CuO targets. Growth from either source material results in single-phase, fully epitaxial cuprous oxide thin films as determined by x-ray diffraction. The films grown from malachite have strong absorption coefficients ( 10 4 cm −1 ), a direct allowed optical bandgap ( 2.4 eV), and majority carrier hole mobilities ( 35 cm 2 V −1 s −1 at room temperature) that compare well with films grown from the synthetic target as well as with previously reported values. Our work demonstrates that minerals could be useful to directly yield the active components in functional devices and suggests a route for the exploration of low cost energy conversion and storage technologies. - Highlights: ► Semiconductor thin films directly from minerals ► Chemistry and structure evolution of the films obtained from mineral target is very similar to that films obtained from high-purity synthetic targets. ► Quite interestingly, transport and optical characteristics are also found to be similar.

  12. Highly spectrum-selective ultraviolet photodetector based on p-NiO/n-IGZO thin film heterojunction structure.

    Science.gov (United States)

    Li, H K; Chen, T P; Hu, S G; Li, X D; Liu, Y; Lee, P S; Wang, X P; Li, H Y; Lo, G Q

    2015-10-19

    Ultraviolet photodetector with p-n heterojunction is fabricated by magnetron sputtering deposition of n-type indium gallium zinc oxide (n-IGZO) and p-type nickel oxide (p-NiO) thin films on ITO glass. The performance of the photodetector is largely affected by the conductivity of the p-NiO thin film, which can be controlled by varying the oxygen partial pressure during the deposition of the p-NiO thin film. A highly spectrum-selective ultraviolet photodetector has been achieved with the p-NiO layer with a high conductivity. The results can be explained in terms of the "optically-filtering" function of the NiO layer.

  13. Fabrication of Au/graphene oxide/Ag sandwich structure thin film and its tunable energetics and tailorable optical properties

    Directory of Open Access Journals (Sweden)

    Ruijin Hong

    2017-01-01

    Full Text Available Au/graphene oxide/Ag sandwich structure thin film was fabricated. The effects of graphene oxide (GO and bimetal on the structure and optical properties of metal silver films were investigated by X-ray diffraction (XRD, optical absorption, and Raman intensity measurements, respectively. Compared to silver thin film, Au/graphene oxide/Ag sandwich structure composite thin films were observed with wider optical absorption peak and enhanced absorption intensity. The Raman signal for Rhodamine B molecules based on the Au/graphene oxide/Ag sandwich nanostructure substrate were obviously enhanced due to the bimetal layer and GO layer with tunable absorption intensity and fluorescence quenching effects.

  14. Optically Transparent Thin-Film Electrode Chip for Spectroelectrochemical Sensing

    Energy Technology Data Exchange (ETDEWEB)

    Branch, Shirmir D.; Lines, Amanda M.; Lynch, John A.; Bello, Job M.; Heineman, William R.; Bryan, Samuel A.

    2017-07-03

    The electrochemical and spectroelectrochemical applications of an optically transparent thin film electrode chip are investigated. The working electrode is composed of indium tin oxide (ITO); the counter and quasi-reference electrodes are composed of platinum. The stability of the platinum quasi-reference electrode is modified by coating it with a planar, solid state Ag/AgCl layer. The Ag/AgCl reference is characterized with scanning electron microscopy and energy-dispersive X-ray spectroscopy. Open circuit potential measurements indicate that the potential of the planar Ag/AgCl electrode varies a maximum of 20 mV over four days. Cyclic voltammetry measurements show that the electrode chip is comparable to a standard electrochemical cell. Randles-Sevcik analysis of 10 mM K3[Fe(CN)6] in 0.1 M KCl using the electrode chip shows a diffusion coefficient of 1.59 × 10-6 cm2/s, in comparison to the standard electrochemical cell value of 2.38 × 10-6 cm2/s. By using the electrode chip in an optically transparent thin layer electrode (OTTLE), the spectroelectrochemical modulation of [Ru(bpy)3]2+ florescence was demonstrated, achieving a detection limit of 36 nM.

  15. Electrical and Optical Properties of GeSi−:H Thin Films Prepared by Thermal Evaporation Method

    Directory of Open Access Journals (Sweden)

    A. A. J. Al-Douri

    2010-01-01

    Full Text Available Thin a-GeSi1−:H films were grown successfully by fabrication of designated ingot followed by evaporation onto glass slides. A range of growth conditions, Ge contents, dopant concentration (Al and As, and substrate temperature, were employed. Stoichiometry of the thin films composition was confirmed using standard surface techniques. The structure of all films was amorphous. Film composition and deposition parameters were investigated for their bearing on film electrical and optical properties. More than one transport mechanism is indicated. It was observed that increasing substrate temperature, Ge contents, and dopant concentration lead to a decrease in the optical energy gap of those films. The role of the deposition conditions on values of the optical constants was determined. Accordingly, models of the density of states for the Ge0.5Si0.5:H thin films as pure, doped with 3.5% of Al (p-type and that doped with 3.5% As (n-type, were proposed.

  16. Structural and Optical Properties of Nanocrystalline 3,4,9,10-Perylene-Tetracarboxylic-Diimide Thin Film

    Directory of Open Access Journals (Sweden)

    M. M. El-Nahhas

    2012-01-01

    Full Text Available Thin films of nanocrystalline 3,4,9,10-perylene-tetracarboxylic-diimide (PTCDI were prepared on quartz substrates by thermal evaporation technique. The structural properties were identified by transmission electron microscopy (TEM and the X-ray diffraction (XRD. The optical properties for the films were investigated using spectrophotometric measurements of the transmittance and reflectance at normal incidence of light in the wavelength range from 200 to 2500 nm. The optical constants (refractive index n and absorption index k were calculated and found to be independent on the film thickness in the measured film thickness range 117–163 nm. The dispersion energy (Ed, the oscillator energy (Eo, and the high-frequency dielectric constant ε∞ were obtained. The energy band model was applied, and the types of the optical transitions responsible for optical absorption were found to be indirect allowed transition. The onset and optical energy gaps were calculated, and the obtained results were also discussed.

  17. Preparation of InSe Thin Films by Thermal Evaporation Method and Their Characterization: Structural, Optical, and Thermoelectrical Properties

    Directory of Open Access Journals (Sweden)

    Sarita Boolchandani

    2018-01-01

    Full Text Available The indium selenium (InSe bilayer thin films of various thickness ratios, InxSe(1-x (x = 0.25, 0.50, 0.75, were deposited on a glass substrate keeping overall the same thickness of 2500 Ǻ using thermal evaporation method under high vacuum atmosphere. Electrical, optical, and structural properties of these bilayer thin films have been compared before and after thermal annealing at different temperatures. The structural and morphological characterization was done using XRD and SEM, respectively. The optical bandgap of these thin films has been calculated by Tauc’s relation that varies within the range of 1.99 to 2.05 eV. A simple low-cost thermoelectrical power measurement setup is designed which can measure the Seebeck coefficient “S” in the vacuum with temperature variation. The setup temperature variation is up to 70°C. This setup contains a Peltier device TEC1-12715 which is kept between two copper plates that act as a reference metal. Also, in the present work, the thermoelectric power of indium selenide (InSe and aluminum selenide (AlSe bilayer thin films prepared and annealed in the same way is calculated. The thermoelectric power has been measured by estimating the Seebeck coefficient for InSe and AlSe bilayer thin films. It was observed that the Seebeck coefficient is negative for InSe and AlSe thin films.

  18. Optical and Magneto-Optical Properties of Gd22Fe78 Thin Films in the Photon Energy Range From 1.5 to 5.5 eV

    Directory of Open Access Journals (Sweden)

    Eva Jesenská

    2016-01-01

    Full Text Available Optical and magneto-optical properties of amorphous Gd22Fe78 (GdFe thin films prepared by direct current (DC sputtering on thermally oxidized substrates were characterized by the combination of spectroscopic ellipsometry and magneto-optical spectroscopy in the photon energy range from 1.5 to 5.5 eV. Thin SiNx and Ru coatings were used to prevent the GdFe surface oxidation and contamination. Using advanced theoretical models spectral dependence of the complete permittivity tensor and spectral dependence of the absorption coefficient were deduced from experimental data. No significant changes in the optical properties upon different coatings were observed, indicating reliability of used analysis.

  19. Ferrofluid thin films as optical gaussmeters proposed for field and ...

    Indian Academy of Sciences (India)

    Department of Physics, Cochin University of Science and Technology, Cochin 682 022, India ... Magnetic field induced laser transmission through these ... An optical gaussmeter can be formulated with these ferrofluid thin films with the help of an LDR, and a laser (a diode laser or a cheaper torch laser which gives a stream ...

  20. Optical properties of amorphous Ba0.7Sr0.3TiO3 thin films obtained by metal organic decomposition technique

    Science.gov (United States)

    Qiu, Fei; Xu, Zhimou

    2009-08-01

    In this study, the amorphous Ba0.7Sr0.3TiO3 (BST0.7) thin films were grown onto fused quartz and silicon substrates at low temperature by using a metal organic decomposition (MOD)-spin-coating procedure. The optical transmittance spectrum of amorphous BST0.7 thin films on fused quartz substrates has been recorded in the wavelength range 190~900 nm. The films were highly transparent for wavelengths longer than 330 nm; the transmission drops rapidly at 330 nm, and the cutoff wavelength occurs at about 260 nm. In addition, we also report the amorphous BST0.7 thin film groove-buried type waveguides with 90° bent structure fabricated on Si substrates with 1.65 μm thick SiO2 thermal oxide layer. The design, fabrication and optical losses of amorphous BST0.7 optical waveguides were presented. The amorphous BST0.7 thin films were grown onto the SiO2/Si substrates by using a metal organic decomposition (MOD)-spin-coating procedure. The optical propagation losses were about 12.8 and 9.4 dB/cm respectively for the 5 and 10 μm wide waveguides at the wavelength of 632.8 nm. The 90° bent structures with a small curvature of micrometers were designed on the basis of a double corner mirror structure. The bend losses were about 1.2 and 0.9 dB respectively for 5 and 10 μm wide waveguides at the wavelength of 632.8 nm. It is expected for amorphous BST0.7 thin films to be used not only in the passive optical interconnection in monolithic OEICs but also in active waveguide devices on the Si chip.

  1. Structural, morphological and optical properties of spray deposited Mn-doped CeO2 thin films

    International Nuclear Information System (INIS)

    Pavan Kumar, CH.S.S.; Pandeeswari, R.; Jeyaprakash, B.G.

    2014-01-01

    Highlights: • Spray deposited undoped and Mn-doped CeO 2 thin films were polycrystalline. • Complete changeover of surface morphology upon 4 wt% Mn doping. • 4 wt% Mn-doped CeO 2 thin film exhibited a hydrophobic nature. • Optical band-gap decreases beyond 2 wt% Mn doping. - Abstract: Cerium oxide and manganese (Mn) doped cerium oxide thin films on glass substrates were prepared by home built spray pyrolysis system. The effect of Mn doping on the structural, morphological and optical properties of CeO 2 films were studied. It was found that both the undoped and doped CeO 2 films were polycrystalline in nature but the preferential orientation and grain size changed upon doping. Atomic force micrograph showed a complete changeover of surface morphology from spherical to flake upon doping. A water contact angle result displayed the hydrophobic nature of the doped CeO 2 film. Optical properties indicated an increase in band-gap and a decrease in transmittance upon doping owing to Moss–Burstein effect and inverse Moss–Burstein effects. Other optical properties such as refractive index, extinction coefficient and dielectric constant as a function of doping were analysed and reported

  2. Planar ultra thin glass seals with optical fiber interface for monitoring tamper attacks on security eminent components

    Science.gov (United States)

    Thiel, M.; Flachenecker, G.; Schade, W.; Gorecki, C.; Thoma, A.; Rathje, R.

    2017-11-01

    Optical seals consisting of waveguide Bragg grating sensor structures in ultra thin glass transparencies have been developed to cover security relevant objects for detection of unauthorized access. For generation of optical signature in the seals, femtosecond laser pulses were used. The optical seals were connected with an optical fiber to enable external read out of the seal. Different attack scenarios for getting undetected access to the object, covered by the seal, were proven and evaluated. The results presented here, verify a very high level of security. An unauthorized detaching and subsequent replacement by original or copy of the seals for tampering would be accompanied with a very high technological effort, posing a substantial barrier towards an attacker. Additionally, environmental influences like temperature effects have a strong but reproducible influence on signature, which in context of a temperature reference database increases the level of security significantly.

  3. Structural and optical properties of cobalt doped multiferroics BiFeO3 nanostructure thin films

    Science.gov (United States)

    Prasannakumara, R.; Naik, K. Gopalakrishna

    2018-05-01

    Bismuth ferrite (BiFeO3) and Cobalt doped BiFeO3 (BiFe1-XCoXO3) nanostructure thin films were deposited on glass substrates by the sol-gel spin coating method. The X-ray diffraction patterns (XRD) of the grown BiFeO3 and BiFe1-XCoXO3 nanostructure thin films showed distorted rhombohedral structure. The shifting of peaks to higher angles was observed in cobalt doped BiFeO3. The surface morphology of the BiFeO3 and BiFe1-XCoXO3 nanostructure thin films were studied using FESEM, an increase in grain size was observed as Co concentration increases. The thickness of the nanostructure thin films was examined using FESEM cross-section. The EDX studies confirmed the elemental composition of the grown BiFeO3 and BiFe1-XCoXO3 nanostructure thin films. The optical characterizations of the grown nanostructure thin films were carried out using FTIR, it confirms the existence of Fe-O and Bi-O bands and UV-Visible spectroscopy shows the increase in optical band gap of the BiFeO3 nanostructure thin films with Co doping by ploting Tauc plot.

  4. High energy electron irradiation effects on Ga-doped ZnO thin films for optoelectronic space applications

    Science.gov (United States)

    Serrao, Felcy Jyothi; Sandeep, K. M.; Bhat, Shreesha; Dharmaprakash, S. M.

    2018-03-01

    Gallium-doped ZnO (GZO) thin films of thickness 394 nm were prepared by a simple, cost-effective sol-gel spin coating method. The effect of 8 MeV electron beam irradiation with different irradiation doses ranging from 0 to 10 kGy on the structural, optical and electrical properties was investigated. Electron irradiation influences the changes in the structural properties and surface morphology of GZO thin films. X-ray diffraction analysis showed that the polycrystalline nature of the GZO films is unaffected by the high energy electron irradiation. The grain size and the surface roughness were found maximum for the GZO film irradiated with 10 kGy electron dosage. The average transmittance of GZO thin films decreased after electron irradiation. The optical band gap of Ga-doped ZnO films was decreased with the increase in the electron dosage. The electrical resistivity of GZO films decreased from 4.83 × 10-3 to 8.725 × 10-4 Ω cm, when the electron dosage was increased from 0 to 10 kGy. The variation in the optical and electrical properties in the Ga-doped ZnO thin films due to electron beam irradiation in the present study is useful in deciding their compatibility in optoelectronic device applications in electron radiation environment.

  5. Temperature dependent optical properties of (002) oriented ZnO thin film using surface plasmon resonance

    Science.gov (United States)

    Saha, Shibu; Mehan, Navina; Sreenivas, K.; Gupta, Vinay

    2009-08-01

    Temperature dependent optical properties of c-axis oriented ZnO thin film were investigated using surface plasmon resonance (SPR) technique. SPR data for double layer (prism-Au-ZnO-air) and single layer (prism-Au-air) systems were taken over a temperature range (300-525 K). Dielectric constant at optical frequency and real part of refractive index of the ZnO film shows an increase with temperature. The bandgap of the oriented ZnO film was found to decrease with rise in temperature. The work indicates a promising application of the system as a temperature sensor and highlights an efficient scientific tool to study optical properties of thin film under varying ambient conditions.

  6. Optical properties of tungsten oxide thin films by non-reactive sputtering

    International Nuclear Information System (INIS)

    Acosta, M.; Gonzalez, D.; Riech, I.

    2008-01-01

    Tungsten oxide thin films were grown on glass substrates by RF sputtering at room temperature using a tungsten trioxide target for several values of the Argon pressure (PAr). The structural and morphological properties of these films were studied using X-ray diffraction and Atomic Force Microscopy. The as-deposited films were amorphous irrespective of the Argon pressure, and crystallized in a mixture of hexagonal and monoclinic phases after annealing at a temperature of 3500 C in air. Surface-Roughness increased by an order of magnitude (from 1 nm to 20 nm) after thermal treatment. The Argon pressure, however, had a strong influence on the optical properties of the films. Three different regions are clearly identified: deep blue films for PAr 40 mTorr with high transmittance values. We suggest that the observed changes in optical properties are due to an increasing number of Oxygen vacancies as the growth Argon pressure decreases. (Full text)

  7. Progress towards a small-scale, automated optical thin-film production capability

    International Nuclear Information System (INIS)

    Drage, D.J.; Netterfield, R.P.; Dligatch, S.; Blenman, N.; Fairman, P.S.; Katsaros, A.; Preston, E.W.

    2000-01-01

    Full text: The Optical Thin-film group at CSIRO Telecommunications and Industrial Physics (CTIP) has, working over a number of years, built up considerable expertise in producing complex dielectric, multilayer thin-film designs to meet unusual and demanding optical performance specifications. At the same time the process of vacuum deposition of dielectric materials has been advanced, particularly by the development and use of ion-assisted deposition (IAD). Proposed modifications to our existing chamber (DB600) and the addition of a new, larger diameter chamber (DD750), presently under construction, will increase output and reliability while improving quality. We will describe the changes already made to the DB600 such as: the gridless ion source, in-situ ellipsometric monitoring along with spectrophotometric monitoring, full e-beam scan on the material source, complete source shuttering and reactive deposition of SiO 2 from thermally evaporated SiO. The effects of making these beneficial changes will be described. Further changes to be made to the DB600 include, replacing its diffusion pump with a cryo-pump and automatic control of the deposition process. All the changes described for the DB600 along with a positive drive system for rotation of the substrate holder, rod feed e-gun hearths, and multiple crystal monitor heads, will be included in the DD750 design which will also be described. We believe that these improvements will give us the capability of small-scale production of reproducible, high quality filters

  8. Annealing Temperature Dependent Structural and Optical Properties of RF Sputtered ZnO Thin Films.

    Science.gov (United States)

    Sharma, Shashikant; Varma, Tarun; Asokan, K; Periasamy, C; Boolchandani, Dharmendar

    2017-01-01

    This work investigates the effect of annealing temperature on structural and optical properties of ZnO thin films grown over Si 100 and glass substrates using RF sputtering technique. Annealing temperature has been varied from 300 °C to 600 °C in steps of 100, and different microstructural parameters such as grain size, dislocation density, lattice constant, stress and strain have been evaluated. The structural and surface morphological characterization has been done using X-ray Diffraction (XRD) and Scanning Electron Microscope (SEM). XRD analysis reveals that the peak intensity of 002 crystallographic orientation increases with increased annealing temperature. Optical characterization of deposited films have been done using UV-Vis-NIR spectroscopy and photoluminescence spectrometer. An increase in optical bandgap of deposited ZnO thin films with increasing annealing temperature has been observed. The average optical transmittance was found to be more than 85% for all deposited films. Photoluminiscense spectra (PL) suggest that the crystalline quality of deposited film has increased at higher annealing temperature.

  9. Determination of the optical parameters of a-Si:H thin films ...

    Indian Academy of Sciences (India)

    single-effective oscillator model to the a-Si:H samples to calculate the optical ..... et al [23] and have similar trend as those shown by El-Sayed and Amin [24]. .... [3] K L Chopra, Thin film phenomena (McGraw-Hill Book Company, USA, 1969).

  10. On the approximation of the optically thin layer in plasma spectroscopy

    International Nuclear Information System (INIS)

    Preobrazhensky, N.G.

    1975-01-01

    Recent studies are described of criteria for the optically thin approximation relevant to more reliable interpretation of various plasma spectroscopic measurements. Non-equilibrium situations are in the focus of attention. Applicability of well-known criteria suggested by McWhirter and Hearn is outlined. (Auth.)

  11. Optical characterization of niobium pentoxide thin films

    International Nuclear Information System (INIS)

    Pawlicka, A.

    1996-01-01

    Thin films of Nb 2 O 5 were obtained by sol-gel method using ultrasonic irradiation and deposited by dip-coating technique. After calcination at temperatures superior than 500 deg C these films (300 nm thick) were characterized by cyclic voltametry and cronoamperometry. The memory measurements, color efficiency, optical density as a function of wave number and applied potential were effectuated to determine their electrochromic properties. The study of electrochromic properties of these films shows that the insertion process of lithium is reversible and changes their coloration from transparent (T=80%) to dark blue (T=20%). (author)

  12. Thickness dependent structural, optical and electrical properties of Se85In12Bi3 nanochalcogenide thin films

    Science.gov (United States)

    Tripathi, Ravi P.; Zulfequar, M.; Khan, Shamshad A.

    2018-04-01

    Our aim is to study the thickness dependent effects on structure, electrical and optical properties of Se85In12Bi3 nanochalcogenide thin films. Bulk alloy of Se85In12Bi3 was synthesized by melt-quenching technique. The amorphous as well as glassy nature of Se85In12Bi3 chalcogenide was confirmed by non-isothermal Differential Scanning Calorimetry (DSC) measurements. The nanochalcogenide thin films of thickness 30, 60 and 90 nm were prepared on glass/Si wafer substrate using Physical Vapour Condensation Technique (PVCT). From XRD studies it was found that thin films have amorphous texture. The surface morphology and particle size of films were studied by Field Emission Scanning Electron Microscope (FESEM). From optical studies, different optical parameters were estimated for Se85In12Bi3 thin films at different thickness. It was found that the absorption coefficient (α) and extinction coefficient (k) increases with photon energy and decreases with film thickness. The optical absorption process followed the rule of indirect transitions and optical band gap were found to be increase with film thickness. The value of Urbach energy (Et) and steepness parameter (σ) were also calculated for different film thickness. For electrical studies, dc-conductivity measurement was done at different temperature and activation energy (ΔEc) were determined and found to be increase with film thickness.

  13. Optical pump-and-probe test system for thermal characterization of thin metal and phase-change films

    International Nuclear Information System (INIS)

    Watabe, Kazuo; Polynkin, Pavel; Mansuripur, Masud

    2005-01-01

    A single-shot optical pump-and-probe test system is reported. The system is designed for thermal characterization of thin-film samples that can change their phase state under the influence of a short and intense laser pulse on a subnanosecond time scale. In combination with numerical analysis, the system can be used to estimate thermal constants of thin films, such as specific heat and thermal conductivity. In-plane and out-of plane thermal conductivity can be estimated independently. The system is intended for use in research on optical data storage and material processing with pulsed laser light. The system design issues are discussed. As application examples, we report on using the system to study thermal dynamics in two different thin-film samples: a gold film on a glass substrate (a single-phase system) and the quadrilayer phase-change stack typical in optical data-storage applications

  14. Influence of Doping Concentration on Dielectric, Optical, and Morphological Properties of PMMA Thin Films

    Directory of Open Access Journals (Sweden)

    Lyly Nyl Ismail

    2012-01-01

    Full Text Available PMMA thin films were deposited by sol gel spin coating method on ITO substrates. Toluene was used as the solvent to dissolve the PMMA powder. The PMMA concentration was varied from 30 ~ 120 mg. The dielectric properties were measured at frequency of 0 ~ 100 kHz. The dielectric permittivity was in the range of 7.3 to 7.5 which decreased as the PMMA concentration increased. The dielectric loss is in the range of 0.01 ~ –0.01. All samples show dielectric characteristics which have dielectric loss is less than 0.05. The optical properties for thin films were measured at room temperature across 200 ~ 1000 nm wavelength region. All samples are highly transparent. The energy band gaps are in the range of 3.6 eV to 3.9 eV when the PMMA concentration increased. The morphologies of the samples show that all samples are uniform and the surface roughness increased as the concentration increased. From this study, it is known that, the dielectric, optical, and morphology properties were influenced by the amount of PMMA concentration in the solution.

  15. Structural, morphological and optical properties of Na and K dual doped CdS thin film

    International Nuclear Information System (INIS)

    Mageswari, S.; Dhivya, L.; Palanivel, Balan; Murugan, Ramaswamy

    2012-01-01

    Highlights: ► Effect of incorporation of Na, K and Na,K dual dopants into CdS thin film was investigated. ► Thin films were prepared by simple chemical bath deposition technique. ► The XRD analysis revealed cubic phase for all the investigated films. ► AFM analysis revealed uniform surface with crack free and densely packed morphology for CdS:Na,K film. ► The band gap value increases for CdS:Na, CdS:K and CdS:Na,K thin films compared to CdS film. - Abstract: CdS, sodium doped CdS (CdS:Na), potassium doped CdS (CdS:K) and sodium and potassium dual doped CdS (CdS:Na,K) thin films were deposited on glass substrate by chemical bath deposition (CBD) technique. Structural, morphological and optical properties of the as-grown films were characterised using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX), atomic force microscopy (AFM) and ultraviolet visible (UV–VIS) spectroscopy. The XRD analysis revealed cubic phase for ‘as-deposited’ CdS, CdS:Na, CdS:K and CdS:Na,K dual doped thin films. AFM analysis revealed uniform film surface with crack free and densely packed morphology for CdS:Na,K film. The absorption edge in the optical absorption spectra shifts towards the shorter wavelength for CdS:Na, CdS:K and CdS:Na,K thin films compared to CdS film. The optical band gap of CdS, CdS:Na, CdS:K and CdS:Na,K thin films was found to be 2.31, 2.35, 2.38 and 2.34 eV, respectively.

  16. Optical and electrical characterization of AgInS2 thin films deposited by spray pyrolysis

    International Nuclear Information System (INIS)

    Calixto-Rodriguez, M.; Martinez, H.; Calixto, M.E.; Pena, Y.; Martinez-Escobar, Dalia; Tiburcio-Silver, A.; Sanchez-Juarez, A.

    2010-01-01

    Silver indium sulfide (AgInS 2 ) thin films have been prepared by spray pyrolysis (SP) technique using silver acetate, indium acetate, and N, N-dimethylthiourea as precursor compounds. Films were deposited onto glass substrates at different substrate temperatures (T s ) and Ag:In:S ratios in the starting solutions. Optical transmission and reflection as well as electrical measurements were performed in order to study the effect of deposition parameters on the optical and electrical properties of AgInS 2 thin films. X-ray diffraction measurements were used to identify the deposited compounds. It was found that different compounds such as AgInS 2 , Ag 2 S, In 2 O 3 , and In 2 S 3 can be grown only by changing the Ag:In:S ratio in the starting solution and T s . So that, by carefully selecting the deposition parameters, single phase AgInS 2 thin films can be easily grown. Thin films obtained using a molar ratio of Ag:In:S = 1:1:2 and T s = 400 o C, have an optical band gap of 1.9 eV and n-type electrical conductivity with a value of 0.3 Ω -1 cm -1 in the dark.

  17. Magneto-optical properties of BiFeO3 thin films using surface plasmon resonance technique

    International Nuclear Information System (INIS)

    Paliwal, Ayushi; Sharma, Anjali; Tomar, Monika; Gupta, Vinay

    2014-01-01

    Indigeneously assembled surface plasmon resonance (SPR) set up has been exploited to study the magnetic field dependent optical properties of BiFeO 3 thin films. BiFeO 3 thin films have been deposited onto gold (Au) coated glass prism by using pulsed laser deposition technique. The surface plasmon modes in prism/Au/BiFeO 3 /air structure have been excited in Kretschmann configuration at the interface of Au/BiFeO 3 thin films. The SPR reflectance curves obtained for prism/Au/BiFeO 3 /air structure were utilized to investigate the optical properties of BiFeO 3 thin films at optical frequency (λ=633 nm) as a function of applied magnetic field. SPR curves shows a continuous shift towards lower angles with increasing applied magnetic field, which indicate the promising application of ferromagnetic BiFeO 3 film as a magnetic field sensor. Complex dielectric constant of deposited BiFeO 3 film was determined by fitting the experimental SPR data with Fresnel's equations. The variation of complex dielectric constant and refractive index of BiFeO 3 film was studied with increase in magnetic field, and the sensitivity of magnetic field sensor was found to be about 0.52 RIU/T

  18. Optical approach to thermopower and conductivity measurements in thin-film semiconductors

    International Nuclear Information System (INIS)

    Dersch, H.; Amer, N.M.

    1984-01-01

    An optical beam deflection technique is applied to measure the Joule and Peltier heat generated by electric currents through thin-film semiconductors. The method yields a spatially resolved conductivity profile and allows the determination of Peltier coefficients. Results obtained on doped hydrogenated amorphous silicon films are presented

  19. Ultra-high resolution optical coherence tomography for encapsulation quality inspection

    KAUST Repository

    Czajkowski, Jakub

    2011-08-28

    We present the application of ultra-high resolution optical coherence tomography (UHR-OCT) in evaluation of thin, protective films used in printed electronics. Two types of sample were investigated: microscopy glass and organic field effect transistor (OFET) structure. Samples were coated with thin (1-3 μm) layer of parylene C polymer. Measurements were done using experimental UHR-OCT device based on a Kerr-lens mode locked Ti: sapphire femtosecond laser, photonic crystal fibre and modified, free-space Michelson interferometer. Submicron resolution offered by the UHR-OCT system applied in the study enables registration of both interfaces of the thin encapsulation layer. Complete, volumetric characterisation of protective layers is presented, demonstrating possibility to use OCT for encapsulation quality inspection. © Springer-Verlag 2011.

  20. Structure and optical properties of thin As{sub 2}S{sub 3}-In{sub 2}S{sub 3} films

    Energy Technology Data Exchange (ETDEWEB)

    Todorov, R; Pirov, J; Petkov, K [Institute of Optical Materials and Technologies ' Acad. J. Malinowski' , Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl.109, 1113 Sofia (Bulgaria); Tsankov, D, E-mail: rossen@clf.bas.bg [Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev St. bl.9, 1113 Sofia (Bulgaria)

    2011-08-03

    This paper deals with the optical properties of thin As{sub 2}S{sub 3}-In{sub 2}S{sub 3} films. The thin layers were deposited by thermal co-evaporation of As{sub 2}S{sub 3} and In{sub 2}S{sub 3}. The composition of the coatings was controlled by x-ray microanalysis; it was found to be close to the expected one. The refractive index n and optical band gap E{sub g}{sup opt} were calculated from the transmittance and reflectance spectra. The results showed that the refractive index of thin As-S films is not affected by the addition of 1 at% indium and it increases from 2.46 to 2.58 for thin film with 13 at% In. A decrease in the changes in the refractive index, {Delta}n, after exposure to light or annealing with addition of indium in arsenic sulfide is observed. To explain the influence of the indium on the photoinduced changes in the optical properties of thin As-S-In films, the glass structure was investigated by infrared spectroscopy. The calculated values of the optical constants were compared with those obtained from ellipsometric measurements.

  1. Co+ -ion implantation induced doping of nanocrystalline CdS thin films: structural, optical, and vibrational properties

    International Nuclear Information System (INIS)

    Chandramohan, S.; Sarangi, S.N.; Majumder, S.; Som, T.; Kanjilal, A.; Sathyamoorthy, R.

    2009-01-01

    Full text: Transition metal (Mn, Fe, Co and Ni) doped CdS nanostructures and nanocrystalline thin films have attracted much attention due to their anticipated applications in magneto-optical, non-volatile memory and future spintronics devices. Introduction of impurities in substitutional positions is highly desirable for such applications. Ion implantation is known to provide many advantages over conventional methods for efficient doping and possibility of its seamless integration with device processing steps. It is not governed by equilibrium thermodynamics and offers the advantages of high spatial selectivity and to overcome the solubility limits. In this communication, we report on modifications of structural morphological, optical, and vibrational properties of 90 keV Co + -ion implanted CdS thin films grown by thermal evaporation. Co + -ion implantation was performed in the fluence range of 0.1-3.6x10 16 ions cm -2 These fluences correspond to Co concentration in the range of 0.34-10.8 at % at the peak position of profile. Implantation was done at an elevated temperature of 573 K in order to avoid amorphization and to enhance the solubility of Co ions in the CdS lattice. Films were characterized by glancing angle X-ray diffraction (GAXRD), atomic force microscopy (AFM), optical absorption, and micro-Raman spectroscopy. Implantation does not lead to any secondary phase formation either in the form of impurity or the metallic clusters. However, implantation improves the crystalline quality of the samples and leads to supersaturation of Co ions in the CdS lattice. Thus, nanocrystalline CdS thin films can be considered as a good radiation- resistant material, which can be employed for prolonged use in solar cells for space applications. The optical band gap is found to decrease systematically with increasing ion fluence from 2.39 to 2.28 eV. Implantation leads to agglomeration of grains and a systematic increase in the surface roughness. Both GAXRD and micro

  2. Thermodynamic phase profiles of optically thin midlatitude cloud and their relation to temperature

    Energy Technology Data Exchange (ETDEWEB)

    Naud, C. M.; Del Genio, Anthony D.; Haeffelin, M.; Morille, Y.; Noel, V.; Dupont, Jean-Charles; Turner, David D.; Lo, Chaomei; Comstock, Jennifer M.

    2010-06-03

    Winter cloud phase and temperature profiles derived from ground-based lidar depolarization and radiosonde measurements are analyzed for two midlatitude locations: the United States Atmospheric Radiation Measurement Program Southern Great Plains (SGP) site and the Site Instrumental de Recherche par Télédétection Atmosphérique (SIRTA) in France. Because lidars are attenuated in optically thick clouds, the dataset only includes optically thin clouds (optical thickness < 3). At SGP, 57% of the clouds observed with the lidar in the temperature range 233-273 K are either completely liquid or completely glaciated, while at SIRTA only 42% of the observed clouds are single phase, based on a depolarization ratio threshold of 11% for differentiating liquid from ice. Most optically thin mixed phase clouds show an ice layer at cloud top, and clouds with liquid at cloud top are less frequent. The relationship between ice phase occurrence and temperature only slightly changes between cloud base and top. At both sites liquid is more prevalent at colder temperatures than has been found previously in aircraft flights through frontal clouds of greater optical thicknesses. Liquid in clouds persists to colder temperatures at SGP than SIRTA. This information on the average temperatures of mixed phase clouds at both locations complements earlier passive satellite remote sensing measurements that sample cloud phase near cloud top and for a wider range of cloud optical thicknesses.

  3. Effect of cell thickness on the electrical and optical properties of thin film silicon solar cell

    Science.gov (United States)

    Zaki, A. A.; El-Amin, A. A.

    2017-12-01

    In this work Electrical and optical properties of silicon thin films with different thickness were measured. The thickness of the Si films varied from 100 to 800 μm. The optical properties of the cell were studied at different thickness. A maximum achievable current density (MACD) generated by a planar solar cell, was measured for different values of the cell thickness which was performed by using photovoltaic (PV) optics method. It was found that reducing the values of the cell thickness improves the open-circuit voltage (VOC) and the fill factor (FF) of the solar cell. The optical properties were measured for thin film Si (TF-Si) at different thickness by using the double beam UV-vis-NIR spectrophotometer in the wavelength range of 300-2000 nm. Some of optical parameters such as refractive index with dispersion relation, the dispersion energy, the oscillator energy, optical band gap energy were calculated by using the spectra for the TF-Si with different thickness.

  4. Optical properties of organic semiconductor thin films. Static spectra and real-time growth studies

    Energy Technology Data Exchange (ETDEWEB)

    Heinemeyer, Ute

    2009-07-20

    The aim of this work was to establish the anisotropic dielectric function of organic thin films on silicon covered with native oxide and to study their optical properties during film growth. While the work focuses mainly on the optical properties of Diindenoperylene (DIP) films, also the optical response of Pentacene (PEN) films during growth is studied for comparison. Spectroscopic ellipsometry and differential reflectance spectroscopy are used to determine the dielectric function of the films ex-situ and in-situ, i.e. in air and in ultrahigh vacuum. Additionally, Raman- and fluorescence spectroscopy is utilized to characterize the DIP films serving also as a basis for spatially resolved optical measurements beyond the diffraction limit. Furthermore, X-ray reflectometry and atomic force microscopy are used to determine important structural and morphological film properties. The absorption spectrum of DIP in solution serves as a monomer reference. The observed vibronic progression of the HOMO-LUMO transition allows the determination of the Huang-Rhys parameter experimentally, which is a measure of the electronic vibrational coupling. The corresponding breathing modes are measured by Raman spectroscopy. The optical properties of DIP films on native oxide show significant differences compared to the monomer spectrum due to intermolecular interactions. First of all, the thin film spectra are highly anisotropic due to the structural order of the films. Furthermore the Frenkel exciton transfer is studied and the energy difference between Frenkel and charge transfer excitons is determined. Real-time measurements reveal optical differences between interfacial or surface molecules and bulk molecules that play an important role for device applications. They are not only performed for DIP films but also for PEN films. While for DIP films on glass the appearance of a new mode is visible, the spectra of PEN show a pronounced energy red-shift during growth. It is shown how the

  5. Structural and optical analysis of 60Co gamma-irradiated thin films of polycrystalline Ga10Se85Sn5

    Science.gov (United States)

    Ahmad, Shabir; Asokan, K.; Shahid Khan, Mohd.; Zulfequar, M.

    2015-12-01

    The present study focuses on the effects of gamma irradiation on structural and optical properties of polycrystalline Ga10Se85Sn5 thin films with a thickness of ∼300 nm deposited by the thermal evaporation technique on cleaned glass substrates. X-ray diffraction patterns of the investigated thin films show that crystallite growth occurs in the orthorhombic phase structure. The surface study carried out by using the scanning electron microscope (SEM) confirms that the grain size increases with gamma irradiation. The optical parameters were estimated from optical transmission spectra data measured from a UV-vis-spectrophotometer in the wavelength range of 200-1100 nm. The refractive index dispersion data of the investigated thin films follow the single oscillator model. The estimated values of static refractive index n0, oscillator strength Ed, zero frequency dielectric constant ε0, optical conductivity σoptical and the dissipation factor increases after irradiation, while the single oscillator energy Eo decreases after irradiation. It was found that the value of the optical band gap of the investigated thin films decreases and the corresponding absorption coefficient increases continuously with an increase in the dose of gamma irradiation. This post irradiation changes in the values of optical band gap and absorption coefficient were interpreted in terms of the bond distribution model.

  6. Optical and structural properties of natural MnSeO{sub 4} mineral thin film

    Energy Technology Data Exchange (ETDEWEB)

    Kariper, Ishak Afsin, E-mail: akariper@gmail.com [Erciyes University, Education Faculty, Kayseri (Turkey)

    2017-05-15

    Manganese selenite (MnSeO{sub 4}) crystalline thin film has been produced with chemical bath deposition on substrates (commercial glass). Properties of the thin film, such as transmittance, absorption, and optical band gap and refraction index have been investigated via UV/VIS Spectrum. The structural properties of orthorhombic form have been observed in XRD. The structural and optical properties of MnSeO{sub 4} thin films, deposited at different pH levels were analyzed. Some properties of the films have been changed with the change of pH level, which has been deeply investigated. The grain size of MnSeO{sub 4} thin film has reached its highest value at pH 9. The refraction index and extinction coefficient of MnSeO{sub 4} thin films were measured to be 1.53, 2.86, 2.07, 1.53 (refraction index) and 0.005, 0.029, 0.014, 0.005 (extinction coefficient) for grain sizes 21, 13, 26, and 5 nm respectively. The band gaps (Eg) of the films were measured to be 2.06, 2.57, 2.04, and 2.76 eV for the grain sizes mentioned above. The value of dielectric constant at pH 10 was calculated as 1.575. (author)

  7. Structural, optical and electrical properties of CuIn{sub 5}S{sub 8} thin films grown by thermal evaporation method

    Energy Technology Data Exchange (ETDEWEB)

    Gannouni, M., E-mail: gm_mounir@yahoo.fr [Laboratoire de Photovoltaique et Materiaux Semi-conducteurs -ENIT BP 37, Le belvedere 1002-Tunis (Tunisia); Kanzari, M. [Laboratoire de Photovoltaique et Materiaux Semi-conducteurs -ENIT BP 37, Le belvedere 1002-Tunis (Tunisia)

    2011-05-19

    Highlights: > In this work, thin films of CuIn{sub 5}S{sub 8} were successfully deposited onto glass substrates by thermal evaporation and annealed in air. > Post-depositional annealing effects on structural, optical and electrical properties of thermal evaporated CuIn{sub 5}S{sub 8} thin films were studied. > The results reported in this work make this material attractive as an absorber material in solar cells applications. - Abstract: Stoichiometric compound of copper indium sulfur (CuIn{sub 5}S{sub 8}) was synthesized by direct reaction of high purity elemental copper, indium and sulfur in an evacuated quartz tube. The phase structure of the synthesized material revealed the cubic spinel structure. The lattice parameter (a) of single crystals was calculated to be 10.667 A. Thin films of CuIn{sub 5}S{sub 8} were deposited onto glass substrates under the pressure of 10{sup -6} Torr using thermal evaporation technique. CuIn{sub 5}S{sub 8} thin films were then thermally annealed in air from 100 to 300 deg. C for 2 h. The effects of thermal annealing on their physico-chemical properties were investigated using X-ray diffraction (XRD), Energy-dispersive X-ray spectroscopy (EDX), scanning electron microscope (SEM), optical transmission and hot probe method. XRD studies of CuIn{sub 5}S{sub 8} thin films showed that as-deposited films were amorphous in nature and transformed into polycrystalline spinel structure with strong preferred orientation along the (3 1 1) plane after the annealing at 200 deg. C. The composition is greatly affected by thermal treatment. From the optical transmission and reflection, an important absorption coefficient exceeds 10{sup 4} cm{sup -1} was found. As increasing the annealing temperature, the optical energy band gap decreases from 1.83 eV for the as-deposited films to 1.43 eV for the annealed films at 300 deg. C. It was found that CuIn{sub 5}S{sub 8} thin film is an n-type semiconductor at 300 deg. C.

  8. Optical properties of n-CdSe sub 1-x Te sub x polycrystalline thin films

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez, M T [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, Madrid (Spain). Inst. de Energias Renovables

    1991-01-01

    Absorption coefficient, {alpha}({lambda}), and energy gap, E{sub g}, of CdSe{sub 1-x}Te{sub x} thin films were determined from the measured transmittance and reflectance at normal incidence of light in the wavelength range 450-2500 nm. The thin film were electrochemically prepared on glass plates coated with conducting thin films of SnO{sub 2}. A combined method from Goodman and Lubberts was used to determine the absorption coefficient and its dependence on the wavelength. The evolution of the optical gap versus the composition of Te in CdSe{sub 1-x}Te{sub x} was made and a value of 1.4 eV of the optical gap was obtained for the composition of CdSe{sub 0.65}Te{sub 0.35}. (orig.).

  9. Optical response of thin amorphous films to infrared radiation

    Science.gov (United States)

    Orosco, J.; Coimbra, C. F. M.

    2018-03-01

    We briefly review the electrical-optical response of materials to radiative forcing within the formalism of the Kramers-Kronig relations. A commensurate set of criteria is described that must be met by any frequency-domain model representing the time-domain response of a real (i.e., physically possible) material. The criteria are applied to the Brendel-Bormann (BB) oscillator, a model that was originally introduced for its fidelity at reproducing the non-Lorentzian peak broadening experimentally observed in the infrared absorption by thin amorphous films but has since been used for many other common materials. We show that the BB model fails to satisfy the established physical criteria. Taking an alternative approach to the model derivation, a physically consistent model is proposed. This model provides the appropriate line-shape broadening for modeling the infrared optical response of thin amorphous films while adhering strictly to the Kramers-Kronig criteria. Experimental data for amorphous alumina (Al2O3 ) and amorphous quartz silica (SiO2) are used to obtain model parametrizations for both the noncausal BB model and the proposed causal model. The proposed model satisfies consistency criteria required by the underlying physics and reproduces the experimental data with better fidelity (and often with fewer parameters) than previously proposed permittivity models.

  10. Application of complex geometrical optics to determination of thermal, transport, and optical parameters of thin films by the photothermal beam deflection technique.

    Science.gov (United States)

    Korte, Dorota; Franko, Mladen

    2015-01-01

    In this work, complex geometrical optics is, for what we believe is the first time, applied instead of geometrical or wave optics to describe the probe beam interaction with the field of the thermal wave in photothermal beam deflection (photothermal deflection spectroscopy) experiments on thin films. On the basis of this approach the thermal (thermal diffusivity and conductivity), optical (energy band gap), and transport (carrier lifetime) parameters of the semiconductor thin films (pure TiO2, N- and C-doped TiO2, or TiO2/SiO2 composites deposited on a glass or aluminum support) were determined with better accuracy and simultaneously during one measurement. The results are in good agreement with results obtained by the use of other methods and reported in the literature.

  11. Highly-ordered mesoporous titania thin films prepared via surfactant assembly on conductive indium-tin-oxide/glass substrate and its optical properties

    International Nuclear Information System (INIS)

    Uchida, Hiroshi; Patel, Mehul N.; May, R. Alan; Gupta, Gaurav; Stevenson, Keith J.; Johnston, Keith P.

    2010-01-01

    Highly ordered mesoporous titanium dioxide (titania, TiO 2 ) thin films on indium-tin-oxide (ITO) coated glass were prepared via a Pluronic (P123) block copolymer template and a hydrophilic TiO 2 buffer layer. The contraction of the 3D hexagonal array of P123 micelles upon calcination merges the titania domains on the TiO 2 buffer layer to form mesoporous films with a mesochannel diameter of approximately 10 nm and a pore-to-pore distance of 10 nm. The mesoporous titania films on TiO 2 -buffered ITO/glass featured an inverse mesospace with a hexagonally-ordered structure, whereas the films formed without a TiO 2 buffer layer had a disordered microstructure with submicron cracks because of non-uniform water condensation on the hydrophobic ITO/glass surface. The density of the mesoporous film was 83% that of a bulk TiO 2 film. The optical band gap of the mesoporous titania thin film was approximately 3.4 eV, larger than that for nonporous anatase TiO 2 (∼ 3.2 eV), suggesting that the nanoscopic grain size leads to an increase in the band gap due to weak quantum confinement effects. The ability to form highly-ordered mesoporous titania films on electrically conductive and transparent substrates offers the potential for facile fabrication of high surface area semiconductive films with small diffusion lengths for optoelectronics applications.

  12. Aqueous contaminant detection via UiO-66 thin film optical fiber sensor platform with fast Fourier transform based spectrum analysis

    Science.gov (United States)

    Nazari, Marziyeh; Rubio-Martinez, Marta; Babarao, Ravichandar; Ayad Younis, Adel; Collins, Stephen F.; Hill, Matthew R.; Duke, Mikel C.

    2018-01-01

    Routine water quality monitoring is required in drinking and waste water management. A particular interest is to measure concentrations of a range of diverse contaminants on-site or remotely in real time. Here we present metal organic framework (MOF) integrated optical fiber sensor that allows for rapid optical measurement based on fast Fourier transform (FFT) spectrum analysis. The end-face of these glass optical fibers was modified with UiO-66(Zr) MOF thin film by in situ hydrothermal synthesis for the detection of the model contaminants, Rhodamine-B and 4-Aminopyridine, in water. The sensing mechanism is based on the change in the optical path length of the thin film induced by the adsorption of chemical molecules by UiO-66. Using FFT analysis, various modes of interaction (physical and chemical) became apparent, showing both irreversible changes upon contact with the contaminant, as well as reversible changes according to actual concentration. This was indicated by the second harmonic elevation to a certain level translating to high sensitivity detection.

  13. Quantitative analysis of reflection electron energy loss spectra to determine electronic and optical properties of Fe–Ni alloy thin films

    International Nuclear Information System (INIS)

    Tahir, Dahlang; Oh, Sukh Kun; Kang, Hee Jae; Tougaard, Sven

    2016-01-01

    Highlights: • Electronic and optical properties of Fe-Ni alloy thin films grown on Si (1 0 0) were studied via quantitative analyses of reflection electron energy loss spectra (REELS). • The energy loss functions (ELF) are dominated by a plasmon peak at 23.6 eV for Fe and moves gradually to lower energies in Fe-Ni alloys towards the bulk plasmon energy of Ni at 20.5 eV. • Fe has a strong effect on the dielectric and optical properties of Fe-Ni alloy thin films even for an alloy with 72% Ni. Electronic and optical properties of Fe-Ni alloy thin films grown on Si (1 0 0) were studied via quantitative analyses of reflection electron energy loss spectra (REELS). - Abstract: Electronic and optical properties of Fe–Ni alloy thin films grown on Si (1 0 0) by ion beam sputter deposition were studied via quantitative analyses of reflection electron energy loss spectra (REELS). The analysis was carried out by using the QUASES-XS-REELS and QUEELS-ε(k,ω)-REELS softwares to determine the energy loss function (ELF) and the dielectric functions and optical properties by analyzing the experimental spectra. For Ni, the ELF shows peaks around 3.6, 7.5, 11.7, 20.5, 27.5, 67 and 78 eV. The peak positions of the ELF for Fe_2_8Ni_7_2 are similar to those of Fe_5_1Ni_4_9, even though there is a small peak shift from 18.5 eV for Fe_5_1Ni_4_9 to 18.7 eV for Fe_2_8Ni_7_2. A plot of n, k, ε_1, and ε_2 shows that the QUEELS-ε(k,ω)-REELS software for analysis of REELS spectra is useful for the study of optical properties of transition metal alloys. For Fe–Ni alloy with high Ni concentration (Fe_2_8Ni_7_2), ε_1, and ε_2 have strong similarities with those of Fe. This indicates that the presence of Fe in the Fe–Ni alloy thin films has a strong effect.

  14. Participation of the Third Order Optical Nonlinearities in Nanostructured Silver Doped Zinc Oxide Thin Solid Films

    Directory of Open Access Journals (Sweden)

    C. Torres-Torres

    2012-01-01

    Full Text Available We report the transmittance modulation of optical signals in a nanocomposite integrated by two different silver doped zinc oxide thin solid films. An ultrasonic spray pyrolysis approach was employed for the preparation of the samples. Measurements of the third-order nonlinear optical response at a nonresonant 532 nm wavelength of excitation were performed using a vectorial two-wave mixing. It seems that the separated contribution of the optical nonlinearity associated with each film noticeable differs in the resulting nonlinear effects with respect to the additive response exhibited by the bilayer system. An enhancement of the optical Kerr nonlinearity is predicted for prime number arrays of the studied nanoclusters in a two-wave interaction. We consider that the nanostructured morphology of the thin solid films originates a strong modification of the third-order optical phenomena exhibited by multilayer films based on zinc oxide.

  15. Preparation, characterization and optical properties of Gadolinium doped ceria thin films by pulsed laser deposition technique

    International Nuclear Information System (INIS)

    Nagaraju, P.; Vijaya Kumar, Y.; Vishnuvardhan Reddy, C.; Ramana Reddy, M.V.; Phase, D.M; Raghavendra Reddy, V.

    2013-01-01

    The growth of Gadolinium doped ceria thin films with controlled surface structure for device quality applications presents a significant problem for experimental investigation. In the present study gadolinium doped cerium oxide thin films were prepared by pulsed laser deposition (PLD) and were studied for their surface structure evaluation in relation to the optimized operating conditions during the stage of film preparation. The deposition was made with gadolinium concentration of 10 mole% to ceria pellets. The films were deposited on quartz substrate in the presence of oxygen partial pressure of 1.5 x 10 -3 torr using KrF Excimer laser with laser energy 220 mJ at a substrate temperature 700℃. The effect of annealing temperature on 10 mole% GDC thin film was investigated. The film thickness was measured by using AMBIOS make XP-l stylus profiler. As prepared and annealed thin films were characterized for crystallinity, particle size and orientation by using G.I.XRD. The films were characterized using atomic force microscopy (AFM). The AFM results gave a consistent picture of the evolution of GDC film surface morphologies and microstructures in terms of surface roughness, grain distribution and mean grain size. The optical transmittance spectra was used to determine the optical constants such as optical band gap, refractive index, extinction coefficient of as prepared and annealed thin films. (author)

  16. Structural and optical properties of tin (II) sulfide thin films deposited using organophosphorus precursor (Ph3PS)

    Science.gov (United States)

    Assili, Kawther; Alouani, Khaled; Vilanova, Xavier

    2017-02-01

    Tin sulfide (SnS) thin films have been deposited onto glass substrates using triphenylphosphine sulfide (Ph3PS) as a sulfur precursor in a chemical vapor deposition reactor in a temperature range of 250 °C-400 °C. The influence of the sulphidisation temperature in the crystal structure, surface morphology, chemical composition and optical properties has been investigated. X-ray diffraction, energy dispersive analysis of x-rays, and Raman spectroscopy showed that pure SnS thin films have been successfully obtained at 250 °C. All the deposited films were polycrystalline and showed orthorhombic structure, with a preferential orientation according to the direction . The optical measurements showed that the films deposited exhibited a direct allowed transition and have a relatively high absorption coefficient. The presence of mixed tin sulfide phases granted by the variation of the sulphidisation temperature has affected the optical properties of the deposited films. The refractive index (n) and extinction coefficient (k), has low values compared to conventional semiconductor materials. The grown films can be considered as a good light absorbing material and a promising candidate for application in optoelectronic devices.

  17. Excimer Laser Deposition of PLZT Thin Films

    National Research Council Canada - National Science Library

    Petersen, GAry

    1991-01-01

    .... In order to integrate these devices into optical systems, the production of high quality thin films with high transparency and perovskite crystal structure is desired. This requires development of deposition technologies to overcome the challenges of depositing and processing PLZT thin films.

  18. Optical and electrical properties of TiOPc doped Alq{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Ramar, M.; Suman, C. K., E-mail: sumanck@nplindia.org; Tyagi, Priyanka; Srivastava, R. [CSIR-Network of Institutes for Solar Energy CSIR - National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi -110012 (India)

    2015-06-24

    The Titanyl phthalocyanine (TiOPc) was doped in Tris (8-hydroxyquinolinato) aluminum (Alq3) with different concentration. The thin film of optimized doping concentration was studied extensively for optical and electrical properties. The optical properties, studied using ellipsometry, absorption and photoluminescence. The absorption peak of Alq{sub 3} and TiOPc was observed at 387 nm and 707 nm and the photo-luminescence intensity (PL) peak of doped thin film was observed at 517 nm. The DC and AC electrical properties of the thin film were studied by current density-voltage (J-V) characteristics and impedance over a frequency range of 100 Hz - 1 MHz. The electron mobility calculated from trap-free space-charge limited region (SCLC) is 0.17×10{sup −5} cm{sup 2}/Vs. The Cole-Cole plots shows that the TiOPc doped Alq{sub 3} thin film can be represented by a single parallel resistance R{sub P} and capacitance C{sub P} network with a series resistance R{sub S} (10 Ω). The value of R{sub P} and C{sub P} at zero bias was 1587 Ω and 2.568 nF respectively. The resistance R{sub P} decreases with applied bias whereas the capacitance C{sub P} remains almost constant.

  19. Thin film shape memory alloys for optical sensing applications

    International Nuclear Information System (INIS)

    Fu, Y Q; Luo, J K; Huang, W M; Flewitt, A J; Milne, W I

    2007-01-01

    Based on shape memory effect of the sputtered thin film shape memory alloys, different types of micromirror structures were designed and fabricated for optical sensing application. Using surface micromachining, TiNi membrane mirror structure has been fabricated, which can be actuated based on intrinsic two-way shape memory effect of the free-standing TiNi film. Using bulk micromachining, TiNi/Si and TiNi/Si 3 N 4 microcantilever mirror structures were fabricated

  20. The optical properties of plasma polymerized polyaniline thin films

    Energy Technology Data Exchange (ETDEWEB)

    Goktas, Hilal, E-mail: hilal_goktas@yahoo.com [Canakkale Onsekiz Mart University, Physics Department, 17020 Canakkale (Turkey); Demircioglu, Zahide; Sel, Kivanc [Canakkale Onsekiz Mart University, Physics Department, 17020 Canakkale (Turkey); Gunes, Taylan [Yalova University, Energy Systems Engineering Department, 77100 Yalova (Turkey); Kaya, Ismet [Canakkale Onsekiz Mart University, Chemistry Department, 17020 Canakkale (Turkey)

    2013-12-02

    We report herein the characterizations of polyaniline thin films synthesized using double discharge plasma system. Quartz glass substrates were coated at a pressure of 80 Pa, 19.0 kV pulsed and 1.5 kV dc potential. The substrates were located at different regions in the reactor to evaluate the influence of the position on the morphological and molecular structure of the obtained thin films. The molecular structure of the thin films was investigated by Fourier transform infrared (FTIR) and UV–visible photospectrometers (UV–vis), and the morphological studies were carried out by scanning electron microscope. The FTIR and UV–vis data revealed that the molecular structures of the synthesized thin films were in the form of leuocoemeraldine and exhibited similar structures with the films produced via chemical or electrochemical methods. The optical energy band gap values of the as-grown samples ranged from 2.5 to 3.1 eV, which indicated that these materials have potential applications in semiconductor devices. The refractive index in the transparent region (from 650 to 1000 nm) steadily decreased from 1.9 to 1.4 and the extinction coefficient was found to be on order of 10{sup −4}. The synthesized thin films showed various degrees of granular morphologies depending on the location of the substrate in the reactor. - Highlights: • Polyaniline thin films were synthesized for the first time via double discharge plasma system. • The films have similar structure to that of the chemically synthesized films. • The morphology of the films could be tuned by this technique. • These materials would have potential applications at semiconductor devices.

  1. Vapor-transport growth of high optical quality WSe2 monolayers

    Directory of Open Access Journals (Sweden)

    Genevieve Clark

    2014-10-01

    Full Text Available Monolayer transition metal dichalcogenides are atomically thin direct-gap semiconductors that show a variety of novel electronic and optical properties with an optically accessible valley degree of freedom. While they are ideal materials for developing optical-driven valleytronics, the restrictions of exfoliated samples have limited exploration of their potential. Here, we present a physical vapor transport growth method for triangular WSe2 sheets of up to 30 μm in edge length on insulating SiO2 substrates. Characterization using atomic force microscopy and optical microscopy reveals that they are uniform, monolayer crystals. Low temperature photoluminescence shows well resolved and electrically tunable excitonic features similar to those in exfoliated samples, with substantial valley polarization and valley coherence. The monolayers grown using this method are therefore of high enough optical quality for routine use in the investigation of optoelectronics and valleytronics.

  2. Optical Properties of Al- and Sb-Doped CdTe Thin Films

    Directory of Open Access Journals (Sweden)

    A. A. J. Al-Douri

    2010-01-01

    Full Text Available Nondoped and (Al, Sb-doped CdTe thin films with 0.5, 1.5, and 2.5  wt.%, respectively, were deposited by thermal evaporation technique under vacuum onto Corning 7059 glass at substrate temperatures ( of room temperature (RT and 423 K. The optical properties of deposited CdTe films such as band gap, refractive index (n, extinction coefficient (, and dielectric coefficients were investigated as function of Al and Sb wt.% doping, respectively. The results showed that films have direct optical transition. Increasing and the wt.% of both types of dopant, the band gap decrease but the optical is constant as n, and real and imaginary parts of the dielectric coefficient increase.

  3. Coupled Optical Tamm States in a Planar Dielectric Mirror Structure Containing a Thin Metal Film

    International Nuclear Information System (INIS)

    Zhou Hai-Chun; Yang Guang; Lu Pei-Xiang; Wang Kai; Long Hua

    2012-01-01

    The coupling between two optical Tamm states (OTSs) with the same eigenenergy is numerically investigated in a planar dielectric mirror structure containing a thin metal film. The reflectivity map in this structure at normal incidence is obtained by applying the transfer matrix method. Two splitting branches appear in the photonic bandgap region when both adjacent dielectric layers of metal film are properly set. The splitting energy of two branches strongly depends on the thickness of the metal film. According to the electric field distribution in this structure, it is found that the high-energy branch corresponds to the antisymmetric coupling between two OTSs, while the low-energy branch is associated with the symmetric coupling between two OTSs. Moreover, the optical difference frequency of two branches is located in a broad terahertz region. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  4. Effect of high-energy electron beam irradiation on the transmittance of ZnO thin films on transparent substrates

    International Nuclear Information System (INIS)

    Yun, Eui-Jung; Jung, Jin-Woo; Han, Young-Hwan; Kim, Min-Wan; Lee, Byung Cheol

    2010-01-01

    We investigated in this study the effects of high-energy electron beam irradiation (HEEBI) on the optical transmittance of undoped ZnO films grown on transparent substrates, such as corning glass and polyethersulfone (PES) plastic substrates, with a radio frequency (rf) magnetron sputtering technique. The ZnO thin films were treated with HEEBI in air at RT with an electron beam energy of 1 MeV and doses of 4.7 x 10 14 - 4.7 x 10 16 electrons/cm 2 . The optical transmittance of the ZnO films was measured using an ultraviolet visible near-infrared spectrophotometer. The detailed estimation process for separating the transmittance of HEEBI-treated ZnO films from the total transmittance of ZnO films on transparent substrates treated with HEEBI is given in this paper. We concluded that HEEBI causes a slight suppression in the optical transmittance of ZnO thin films. We also concluded that HEEBI treatment with a high dose shifted the optical band gap (E g ) toward the lower energy region from 3.29 to 3.28 eV whereas that with a low dose unchanged E g at 3.25 eV. This shift suggested that HEEBI at RT at a high dose acts like an annealing treatment at high temperature.

  5. Optical coherence tomography detection of characteristic retinal nerve fiber layer thinning in nasal hypoplasia of the optic disc.

    Science.gov (United States)

    Haruta, M; Kodama, R; Yamakawa, R

    2017-12-01

    PurposeTo determine the clinical usefulness of optical coherence tomography (OCT) for detecting thinning of the retinal nerve fiber layer (RNFL) in eyes with nasal hypoplasia of the optic discs (NHOD).Patients and methodsThe medical records of five patients (eight eyes) with NHOD were reviewed. The ratio of the disc-macula distance to the disc diameter (DM/DD) and the disc ovality ratio of the minimal to maximal DD were assessed using fundus photographs. The RNFL thicknesses of the temporal, superior, nasal, and inferior quadrants were evaluated using OCT quadrant maps.ResultsAll eight eyes had temporal visual field defects that respected the vertical meridians that needed to be differentiated from those related to chiasmal compression. The mean DM/DD ratio was 3.1 and the mean disc ovality ratio was 0.81. The mean RNFL thicknesses of the temporal, superior, nasal, and inferior quadrants were 90.3, 103.1, 34.8, and 112.8 microns, respectively.ConclusionSmall optic discs and tilted discs might be associated with NHOD. Measurement of the RNFL thickness around the optic disc using OCT scans clearly visualized the characteristic RNFL thinning of the nasal quadrants corresponding to the temporal sector visual field defects in eyes with NHOD. OCT confirmed the presence of NHOD and might differentiate eyes with NHOD from those with chiasmal compression.

  6. Raman scattering, electrical and optical properties of fluorine-doped tin oxide thin films with (200) and (301) preferred orientation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang-Yeoul, E-mail: cykim15@kicet.re.kr [Nano-Convergence Intelligence Material Team, Korea Institute of Ceramic Eng. and Tech., Gasan-digtial-ro 10 Gil 77 Geumcheon-gu, 153-801 Seoul (Korea, Republic of); Riu, Doh-Hyung [Dept. of New Material Sci. and Eng., Seoul National University of Technology, Seoul (Korea, Republic of)

    2014-12-15

    (200) and (301) preferred oriented fluorine-doped tin oxide (FTO) thin films were fabricated by spray pyrolysis of ethanol-added and water-based FTO precursor solutions, respectively. (200) oriented FTO thin film from ethanol-added solution shows the lower electrical resistivity and visible light transmission than (301) preferred thin film from water-based solution. It is due to the higher carrier concentration and electron mobility in (200) oriented crystals, that is, the lower ionized impurity scattering. The higher electron concentration is related to the higher optical band gap energy, the lower visible light transmission, and the higher IR reflection. For (301) preferred FTO thin films from water-based solution, the lower carrier concentration and electron mobility make the higher electrical resistivity and visible light transmission. Raman scattering analysis shows that IR active modes prominent in (200) oriented FTO thin film are related with the lower electrical resistivity. - Highlights: • We coated fluorine-doped tin oxide thin films with preferred orientation of (200) and (301). • We examine changes in the level of electrical and optical properties with the orientation. • (200) preferred orientation showed lower electrical resistivity and optical transmittance. • (200) oriented thin films have higher electron concentrations that are related with IR active modes.

  7. Study of optical properties of vacuum evaporated carbon nanotube containing Se80Te16Cu4 thin films

    Science.gov (United States)

    Upadhyay, A. N.; Tiwari, R. S.; Singh, Kedar

    2016-08-01

    Thin films of Se80Te16Cu4 glassy alloy and 3 wt.% of carbon nanotubes (CNTs) containing Se80Te16Cu4 glassy composite were deposited on clean glass substrate by thermal evaporation technique. The scanning electron microscope and energy dispersive x-ray analysis were performed to investigate the surface morphology and elemental composition of as synthesised samples. The reflectance and transmittance spectra of as-deposited thin films were recorded (200-1100 nm) by using UV/VIS/NIR spectrophotometer. The optical band gap and optical constants such as absorption coefficient (α), refractive index (n) and extinction coefficient (k) of Se80Te16Cu4 and 3 wt.% CNTs-Se80Te16Cu4 glassy composite thin films were calculated. It is observed that optical properties alter due to CNTs incorporation in Se80Te16Cu4 glassy alloy. Effect on optical properties due to CNTs incorporation can be explained in terms of concentration of unsaturated bonds/defects in the localised states.

  8. Effects of high dose gamma irradiation on ITO thin film properties

    Energy Technology Data Exchange (ETDEWEB)

    Alyamani, A. [National Nanotechnology Center, King Abdul-Aziz City for Science and Technology (KACST), Riyadh (Saudi Arabia); Mustapha, N., E-mail: nazirmustapha@hotmail.com [Dept. of Physics, College of Sciences, Al Imam Mohammad Ibn Saud Islamic University, P.O. Box 90950, Riyadh 11623 (Saudi Arabia)

    2016-07-29

    Transparent thin-film Indium Tin Oxides (ITO) were prepared on 0.7 mm thick glass substrates using a pulsed laser deposition (PLD) process with average thickness of 150 nm. The samples were then exposed to high gamma γ radiation doses by {sup 60}Co radioisotope. The films have been irradiated by performing exposure cycles up to 250 kGy total doses at room temperature. The surface structures before and after irradiation were analysed by x-ray diffraction. Atomic Force Microscopy (AFM) was performed on all samples before and after irradiation to investigate any change in the grain sizes, and also in the roughness of the ITO surface. We investigated the influence of γ irradiation on the spectra of transmittance T, in the ultraviolet-visible-near infrared spectrum using spectrophotometer measurements. Energy band gap E{sub g} was then calculated from the optical spectra for all ITO films. It was found that the optical band gap values decreased as the radiation dose was increased. To compare the effect of the irradiation on refractive index n and extinction coefficient k properties, additional measurements were done on the ITO samples before and after gamma irradiation using an ellipsometer. The optical constants n and k increased by increasing the irradiation doses. Electrical properties such as resistivity and sheet resistance were measured using the four-point probe method. The good optical, electrical and morphological properties maintained by the ITO films even after being exposed to high gamma irradiation doses, made them very favourable to be used as anodes for solar cells and as protective coatings in space windows. - Highlights: • Indium Tin Oxide (ITO) thin films were deposited by pulsed laser deposition. • Effects of Gamma irradiation were investigated. • Changes of optical transmission and electrical properties of ITO films were studied. • Intensity of the diffraction peaks and the film's structure changed with increasing irradiation doses.

  9. The effects of heat treatment on optical, structural, electrochromic and bonding properties of Nb{sub 2}O{sub 5} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Coşkun, Özlem Duyar, E-mail: duyar@hacettepe.edu.tr [Hacettepe University, Department of Physics Engineering, Thin Film Preparation and Characterization Laboratory, Ankara (Turkey); Demirel, Selen, E-mail: nymph24@gmail.com [Hacettepe University, Department of Physics Engineering, Thin Film Preparation and Characterization Laboratory, Ankara (Turkey); Hacettepe University, Nanotechnology and Nanomedicine Department, Ankara (Turkey); Atak, Gamze, E-mail: gbaser@hacettepe.edu.tr [Hacettepe University, Department of Physics Engineering, Thin Film Preparation and Characterization Laboratory, Ankara (Turkey)

    2015-11-05

    Nb{sub 2}O{sub 5} thin films were deposited onto heated glass substrates by RF magnetron sputtering using a Nb{sub 2}O{sub 5} target. The films were annealed in air at temperatures between 400 and 700 °C for 6 h. Effects of the crystalline structure on optical, structural, electrochromic and bonding properties of the Nb{sub 2}O{sub 5} thin films were investigated by X-ray diffraction, atomic force microscopy, X-ray photoelectron spectroscopy, optical spectrophotometry and electrochemical measurements. The film refractive index varied between 2.09 and 2.22 at the wavelength of 550 nm depending on the annealing temperature. The decrease of the optical band gap revealed for the films with increasing annealing temperature is attributed to oxygen-ion vacancies in the film structure. The orthorhombic structure of Nb{sub 2}O{sub 5} films resulted in good electrochromic properties with high colouration efficiencies of 19.56 cm{sup 2}/C and 53.24 cm{sup 2}/C at 550 nm and 1000 nm, respectively. The optical, structural and electrochromic properties of the different crystalline polymorphic forms of the Nb{sub 2}O{sub 5} films make them attractive for optical applications. - Highlights: • Stoichiometric Nb{sub 2}O{sub 5} films prepared using RF magnetron sputtering technique. • The different crystalline forms of Nb{sub 2}O{sub 5} thin films obtained by annealing. • The optical, structural and electrochromic properties of the films were investigated. • The optical band gap decreased with increasing annealing temperature. • The orthorhombic T-Nb{sub 2}O{sub 5} films exhibited a higher colouration efficiency.

  10. Application of Thin ZnO ALD Layers in Fiber-Optic Fabry-Pérot Sensing Interferometers

    Directory of Open Access Journals (Sweden)

    Daria Majchrowicz

    2016-03-01

    Full Text Available In this paper we investigated the response of a fiber-optic Fabry-Pérot sensing interferometer with thin ZnO layers deposited on the end faces of the optical fibers forming the cavity. Standard telecommunication single-mode optical fiber (SMF-28 segments were used with the thin ZnO layers deposited by Atomic Layer Deposition (ALD. Measurements were performed with the interferometer illuminated by two broadband sources operating at 1300 nm and 1550 nm. Reflected interference signal was acquired by an optical spectrum analyzer while the length of the air cavity was varied. Thickness of the ZnO layers used in the experiments was 50 nm, 100 nm, and 200 nm. Uncoated SMF-28 fiber was also used as a reference. Based on the results of measurements, the thickness of the ZnO layers and the length of the cavity were selected in order to achieve good visibility. Following, the interferometer was used to determine the refractive index of selected liquids.

  11. Optical characterization of epitaxial single crystal CdTe thin films on Al{sub 2}O{sub 3} (0001) substrates

    Energy Technology Data Exchange (ETDEWEB)

    Jovanovic, S.M.; Devenyi, G.A., E-mail: devenyga@mcmaster.ca; Jarvis, V.M.; Meinander, K.; Haapamaki, C.M.; Kuyanov, P.; Gerber, M.; LaPierre, R.R.; Preston, J.S.

    2014-11-03

    The optoelectronic properties of single crystal CdTe thin films were investigated by photoluminescence spectroscopy, photoreflectance spectroscopy and variable angle spectroscopic ellipsometry. The room temperature bandgap was measured to be 1.51 eV and was consistent between spectroscopic measurements and previously reported values. Breadth of bandgap emission was consistent with high quality material. Low temperature photoluminescence spectra indicated a dominant emission consistent with bound excitons. Emissions corresponding to self-compensation defects, doping and contaminants were not found. Variable angle spectroscopic ellipsometry measurements over the near-UV to infrared range demonstrated sharp resonance peaks. All spectroscopic measurements indicate high quality thin film material of comparable or better quality than bulk CdTe. - Highlights: • High quality epitaxial CdTe thin films were grown. • Two dimensional X-ray diffraction characterization confirmed single crystal material. • Photoluminescence indicated low defect density when compared to bulk single crystals. • Optical characterization indicated the presence of room temperature excitons.

  12. Optical properties of tungsten oxide thin films by non-reactive sputtering

    International Nuclear Information System (INIS)

    Acosta, M.; Gonzalez, D.; Riech, I.

    2009-01-01

    Tungsten oxide thin films were grown on glass substrates by RF sputtering at room temperature using a tungsten trioxide target for several values of the argon pressure (P Ar ). The structural and morphological properties of these films were studied using X-ray diffraction and atomic force microscopy. The as-deposited films were amorphous irrespective of the argon pressure, and crystallized in a mixture of hexagonal and monoclinic phases after annealing at a temperature of 350 o C in air. Surface-roughness increased by an order of magnitude (from 1 nm to 20 nm) after thermal treatment. The argon pressure, however, had a strong influence on the optical properties of the films. Three different regions are clearly identified: deep blue films for P Ar ≤ 2.67 Pa with low transmittance values, light blue films for 2.67 Pa Ar Ar ≥ 6 Pa with high transmittance values. We suggest that the observed changes in optical properties are due to an increasing number of oxygen vacancies as the growth argon pressure decreases.

  13. Colored ultra-thin hybrid photovoltaics with high quantum efficiency for decorative PV applications (Presentation Recording)

    Science.gov (United States)

    Guo, L. Jay

    2015-10-01

    This talk will describe an approach to create architecturally compatible and decorative thin-film-based hybrid photovoltaics [1]. Most current solar panels are fabricated via complex processes using expensive semiconductor materials, and they are rigid and heavy with a dull, black appearance. As a result of their non-aesthetic appearance and weight, they are primarily installed on rooftops to minimize their negative impact on building appearance. Recently we introduced dual-function solar cells based on ultra-thin dopant-free amorphous silicon embedded in an optical cavity that not only efficiently extract the photogenerated carriers but also display distinctive colors with the desired angle-insensitive appearances [1,2]. The angle-insensitive behavior is the result of an interesting phase cancellation effect in the optical cavity with respect to angle of light propagation [3]. In order to produce the desired optical effect, the semiconductor layer should be ultra-thin and the traditional doped layers need to be eliminated. We adopted the approach of employing charge transport/blocking layers used in organic solar cells to meet this demand. We showed that the ultra-thin (6 to 31 nm) undoped amorphous silicon/organic hybrid solar cell can transmit desired wavelength of light and that most of the absorbed photons in the undoped a-Si layer contributed to the extracted electric charges. This is because the a-Si layer thickness is smaller than the charge diffusion length, therefore the electron-hole recombination is strongly suppressed in such ultra-thin layer. Reflective colored PVs can be made in a similar fashion. Light-energy-harvesting colored signage was demonstrated. Furthermore, a cascaded photovoltaics scheme based on tunable spectrum splitting can be employed to increase power efficiency by absorbing a broader band of light energy. Our work provides a guideline for optimizing a photoactive layer thickness in high efficiency hybrid PV design, which can be

  14. Light field intensification induced by nanoinclusions in optical thin-films

    International Nuclear Information System (INIS)

    Zhu Zhiwu; Cheng Xiangai; Huang Liangjin; Liu Zejin

    2012-01-01

    Inclusions even in tens of nanometers scale (nanoinclusion) can cause electric field intensifications locally in an optical thin-film when irradiated by laser. It was modeled by using finite element analysis, and the dependences of local light field on complex refractive index, diameter and embedded depth of the nanoinclusion were simulated. In addition, the average light intensity inside the nanodefect was calculated as well as the energy deposition rate. The modeling results show that extinction coefficient of a nanoinclusion has more significant effects on local light field than real part of the refractive index. A light intensification as large as 4× can occur owing to a metallic nanoinclusion and the peaks of electric field distribution locating on the boundary of the particulate. Energy deposition rate, reflecting the behavior of laser induced damage to the thin-film, is found to have the highest value at a certain extinction coefficient, instead of the state that, for a defect, a higher extinction coefficient causes a higher speed of laser absorption. And when this coefficient is relatively small, the energy deposition rate grows linearly with it. Finally, regarding high absorptive nanoinclusions, the larger can induce stronger laser intensification and higher average of energy deposition rate, whereas no significant difference is made by low absorptive nanoinclusions of different sizes.

  15. Structural, linear and nonlinear optical properties of co-doped ZnO thin films

    Science.gov (United States)

    Shaaban, E. R.; El-Hagary, M.; Moustafa, El Sayed; Hassan, H. Shokry; Ismail, Yasser A. M.; Emam-Ismail, M.; Ali, A. S.

    2016-01-01

    Different compositions of Co-doped zinc oxide [(Zn(1- x)Co x O) ( x = 0, 0.02, 0.04, 0.06, 0.08 and 0.10)] thin films were evaporated onto highly clean glass substrates by thermal evaporation technique using a modified source. The structural properties investigated by X-ray diffraction revealed hexagonal wurtzite ZnO-type structure. The crystallite size of the films was found to decrease with increasing Co content. The optical characterization of the films has been carried out using spectral transmittance and reflectance obtained in the wavelength range from 300 to 2500 nm. The refractive index has been found to increase with increasing Co content. It was further found that optical energy gap decreases from 3.28 to 3.03 eV with increasing Co content from x = 0 to x = 0.10, respectively. The dispersion of refractive index has been analyzed in terms of Wemple-DiDomenico (WDD) single-oscillator model. The oscillator parameters, the single-oscillator energy ( E o), the dispersion energy ( E d), and the static refractive index ( n 0), were determined. The nonlinear refractive index of the Zn(1- x)Co x O thin films was calculated and revealed well correlation with the linear refractive index and WDD parameters which in turn depend on the density and molar volume of the system.

  16. Optical properties of ultraviolet-light soaked states in polyfluorene thin films

    Energy Technology Data Exchange (ETDEWEB)

    Asada, Kohei [Department of Physics and Electronics, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan); Takahashi, Hideaki [Department of Physics and Electronics, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan); Naito, Hiroyoshi [Department of Physics and Electronics, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan)]. E-mail: naito@pe.osakafu-u.ac.jp

    2006-06-19

    Optical properties of ultraviolet (UV)-light soaked states in poly(9,9-dioctylfluorene) (F8) have been studied. F8 thin films, synthesized by Suzuki and Yamamoto coupling reactions, were irradiated by a He-Cd laser ({lambda} = 325 nm) and the UV-light-soaked states were characterized by photoluminescence (PL), optical absorption, Fourier transform infrared absorption and electron spectroscopy for chemical analysis measurements. A photo-induced decrease in PL intensity and PL color change were found in UV-light-soaked F8 thin films. It is shown that the decrease in PL intensity is due to the increase in oxygen-related PL quenching centers and that the PL color change is due to the appearance of 2.2-eV emission bands whose origin is identified to be an exciplex formed between an oxygen-related defect and its nearest F8 polymer chain. The oxygen-related defect, which forms the exciplex, can result from a keto defect (fluorenone) because of the similarity in PL spectra between UV-light-soaked F8 and fluorene-fluorenone copolymers.

  17. Optical properties of ultraviolet-light soaked states in polyfluorene thin films

    International Nuclear Information System (INIS)

    Asada, Kohei; Takahashi, Hideaki; Naito, Hiroyoshi

    2006-01-01

    Optical properties of ultraviolet (UV)-light soaked states in poly(9,9-dioctylfluorene) (F8) have been studied. F8 thin films, synthesized by Suzuki and Yamamoto coupling reactions, were irradiated by a He-Cd laser (λ = 325 nm) and the UV-light-soaked states were characterized by photoluminescence (PL), optical absorption, Fourier transform infrared absorption and electron spectroscopy for chemical analysis measurements. A photo-induced decrease in PL intensity and PL color change were found in UV-light-soaked F8 thin films. It is shown that the decrease in PL intensity is due to the increase in oxygen-related PL quenching centers and that the PL color change is due to the appearance of 2.2-eV emission bands whose origin is identified to be an exciplex formed between an oxygen-related defect and its nearest F8 polymer chain. The oxygen-related defect, which forms the exciplex, can result from a keto defect (fluorenone) because of the similarity in PL spectra between UV-light-soaked F8 and fluorene-fluorenone copolymers

  18. Effect of 60Co γ-irradiation on structural and optical properties of thin films of Ga10Se80Hg10

    Science.gov (United States)

    Ahmad, Shabir; Asokan, K.; Shahid Khan, Mohd.; Zulfequar, M.

    2015-08-01

    Thin films of Ga10Se80Hg10 have been deposited onto a chemically cleaned Al2O3 substrates by thermal evaporation technique under vacuum. The investigated thin films are irradiated by 60Co γ-rays in the dose range of 50-150 kGy. X-ray diffraction patterns of the investigated thin films confirm the preferred crystallite growth occurs in the tetragonal phase structure. It also shows, the average crystallite size increases after γ-exposure, which indicates the crystallinity of the material increases after γ-irradiation. These results were further supported by surface morphological analysis carried out by scanning electron microscope and atomic force microscope which also shows the crystallinity of the material increases with increasing the γ-irradiation dose. The optical transmission spectra of the thin films at normal incidence were investigated in the spectral range from 190 to 1100 nm. Using the transmission spectra, the optical constants like refractive index (n) and extinction coefficient (k) were calculated based on Swanepoel's method. The optical band gap (Eg) was also estimated using Tauc's extrapolation procedure. The optical analysis shows: the value of optical band gap of investigated thin films decreases and the corresponding absorption coefficient increases continuously with increasing dose of γ-irradiation.

  19. The Effect of Deposition Rate on Electrical, Optical and Structural Properties of ITO Thin Films

    Directory of Open Access Journals (Sweden)

    P. S. Raghupathi

    2005-01-01

    Full Text Available Indium tin oxide (ITO thin films have been prepared using the reactive evaporation technique on glass substrates in an oxygen atmosphere. It is found that the deposition rate plays prominent role in controlling the electrical and optical properties of the ITO thin films. Resistivity, electrical conductivity, activation energy, optical transmission and band gap energy were investigated. A transmittance value of more than 90% in the visible region of the spectrum and an electrical conductivity of 3x10–6 Ωm has been obtained with a deposition rate of 2 nm/min. XRD studies showed that the films are polycrystalline.

  20. Investigation of optical pump on dielectric tunability in PZT/PT thin film by THz spectroscopy.

    Science.gov (United States)

    Ji, Jie; Luo, Chunya; Rao, Yunkun; Ling, Furi; Yao, Jianquan

    2016-07-11

    The dielectric spectra of single-layer PbTiO3 (PT), single-layer PbZrxTi1-xO3 (PZT) and multilayer PZT/PT thin films under an external optical field were investigated at room temperature by time-domain terahertz (THz) spectroscopy. Results showed that the real part of permittivity increased upon application of an external optical field, which could be interpreted as hardening of the soft mode and increasing of the damping coefficient and oscillator strength. Furthermore, the central mode was observed in the three films. Among the dielectric property of the three thin films studied, the tunability of the PZT/PT superlattice was the largest.

  1. Design of Rose Bengal/FTO optical thin film system as a novel nonlinear media for infrared blocking windows

    Directory of Open Access Journals (Sweden)

    S.M. El-Bashir

    Full Text Available Rose Bengal (RB is a new organic semiconductor with the highly stable layer, was deposited on highly cleaned conductive glass substrate known as (FTO glass with different thickness in the range from 80 to 292 nm. XRD showed an entirely amorphous structure of the studied film thicknesses. The observed peaks are the indexed peaks for FTO layer. Spectrophotometric data as transmittance, reflectance, and absorbance were used for the analysis the optical constant of RB/FTO optical thin film system. Refractive index was calculated using Fresnel’s equation with the aid of reflectance and absorption index. The dielectric constant, dielectric loss and dissipation factor were discussed and analyzed according to the applied optical theories. Nonlinear parameters such as third order nonlinear optical susceptibility and the nonlinear refractive index were calculated based on the linear refractive index of the applications of this material in nonlinear media. The results showed that Rose Bengal is a proving material for wide scale optoelectronic applications such as infrared blocking windows. Keywords: Rose Bengal, Dielectric parameters, Linear/nonlinear optics, Dye/FTO, IR blocking windows

  2. Influence of sputtering conditions on the optical and electrical properties of laser-annealed and wet-etched room temperature sputtered ZnO:Al thin films

    Energy Technology Data Exchange (ETDEWEB)

    Boukhicha, Rym, E-mail: rym.boukhicha@polytechnique.edu [CNRS, LPICM, Ecole Polytechnique, 91128 Palaiseau (France); Charpentier, Coralie [CNRS, LPICM, Ecole Polytechnique, 91128 Palaiseau (France); Total S and M — New Energies Division, R and D Division, Department of Solar Energies EN/BO/RD/SOL, Tour Michelet, 24 cours Michelet, La Défense 10, 92069 Paris La Défense Cedex (France); Prod' Homme, Patricia [Total S and M — New Energies Division, R and D Division, Department of Solar Energies EN/BO/RD/SOL, Tour Michelet, 24 cours Michelet, La Défense 10, 92069 Paris La Défense Cedex (France); Roca i Cabarrocas, Pere [CNRS, LPICM, Ecole Polytechnique, 91128 Palaiseau (France); Lerat, Jean-François; Emeraud, Thierry [Photovoltaic Business Unit, Excico Group NV, Kempische Steenweg 305/2, B-3500 Hasselt (Belgium); Johnson, Erik [CNRS, LPICM, Ecole Polytechnique, 91128 Palaiseau (France)

    2014-03-31

    We explore the influence of the sputtering deposition conditions on the outcome of an excimer laser anneal and chemical etching process with the goal of producing highly textured substrates for thin film silicon solar cells. Aluminum-doped zinc oxide (ZnO:Al) thin films were prepared on glass substrates by radio frequency magnetron sputtering from a ceramic target at room temperature. The effects of the process pressure (0.11–1.2 Pa) and oxygen flow (0–2 sccm) on the optical and electrical properties of ZnO:Al thin films have been studied both before and after an excimer laser annealing treatment followed by a dilute HCl chemical etch. The as-deposited films varied from completely opaque to yellowish. Thin film laser annealing dramatically improves the optical properties of the most opaque thin films. After laser annealing at the optimum fluence, the average transmittance in the visible wavelength range was around 80% for most films, and reasonable electrical performance was obtained for the films deposited at lower pressures and without oxygen flux (7 Ω/□ for films of 1 μm). After etching, all films displayed a dramatic improvement in haze, but only the low pressure, low oxygen films retained acceptable electrical properties (< 11 Ω/□). - Highlights: • Al:ZnO thin films were deposited at room temperature. • The ZnO:Al films were excimer laser annealed and then wet-etched. • The optical and electrical properties were studied in details.

  3. Characterization of thin TiO2 films prepared by plasma enhanced chemical vapour deposition for optical and photocatalytic applications

    International Nuclear Information System (INIS)

    Sobczyk-Guzenda, A.; Gazicki-Lipman, M.; Szymanowski, H.; Kowalski, J.; Wojciechowski, P.; Halamus, T.; Tracz, A.

    2009-01-01

    Thin titanium oxide films were deposited using a radio frequency (RF) plasma enhanced chemical vapour deposition method. Their optical properties and thickness were determined by means of ultraviolet-visible absorption spectrophotometry. Films of the optical parameters very close to those of titanium dioxide have been obtained at the high RF power input. Their optical quality is high enough to allow for their use in a construction of stack interference optical filters. At the same time, these materials exhibit strong photocatalytic effects. The results of structural analysis, carried out by Raman Shift Spectroscopy, show that the coatings posses amorphous structure. However, Raman spectra of the same films subjected to thermal annealing at 450 o C disclose an appearance of a crystalline form, namely that of anatase. Surface morphology of the films has also been characterized by Atomic Force Microscopy revealing granular, broccoli-like topography of the films.

  4. Variation of the optical energy gap with {gamma}-radiation and thickness in Bi-thin films

    Energy Technology Data Exchange (ETDEWEB)

    Al-Houty, L.; Kassem, M.E.; Abdel Kader, H.I. [Qatar Univ., Doha (Qatar). Dept. of Physics

    1995-02-01

    The effect of {gamma}-radiation and thickness on the optical energy gap of Bi-thin films has been investigated by measuring their optical absorbance. The measurements were carried out on thermally evaporated films having thicknesses in the range 5-20 nm. Different {gamma}-radiation doses were used ranging from 0-300 Mrad. The optical energy gap as well as the absorption coefficient were found to be {gamma}-dose dependent. (author).

  5. Variation of the optical energy gap with γ-radiation and thickness in Bi-thin films

    International Nuclear Information System (INIS)

    Al-Houty, L.; Kassem, M.E.; Abdel Kader, H.I.

    1995-01-01

    The effect of γ-radiation and thickness on the optical energy gap of Bi-thin films has been investigated by measuring their optical absorbance. The measurements were carried out on thermally evaporated films having thicknesses in the range 5-20 nm. Different γ-radiation doses were used ranging from 0-300 Mrad. The optical energy gap as well as the absorption coefficient were found to be γ-dose dependent. (author)

  6. Structural, morphological and optical properties of spray deposited Mn-doped CeO{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Pavan Kumar, CH.S.S.; Pandeeswari, R.; Jeyaprakash, B.G., E-mail: jp@ece.sastra.edu

    2014-07-25

    Highlights: • Spray deposited undoped and Mn-doped CeO{sub 2} thin films were polycrystalline. • Complete changeover of surface morphology upon 4 wt% Mn doping. • 4 wt% Mn-doped CeO{sub 2} thin film exhibited a hydrophobic nature. • Optical band-gap decreases beyond 2 wt% Mn doping. - Abstract: Cerium oxide and manganese (Mn) doped cerium oxide thin films on glass substrates were prepared by home built spray pyrolysis system. The effect of Mn doping on the structural, morphological and optical properties of CeO{sub 2} films were studied. It was found that both the undoped and doped CeO{sub 2} films were polycrystalline in nature but the preferential orientation and grain size changed upon doping. Atomic force micrograph showed a complete changeover of surface morphology from spherical to flake upon doping. A water contact angle result displayed the hydrophobic nature of the doped CeO{sub 2} film. Optical properties indicated an increase in band-gap and a decrease in transmittance upon doping owing to Moss–Burstein effect and inverse Moss–Burstein effects. Other optical properties such as refractive index, extinction coefficient and dielectric constant as a function of doping were analysed and reported.

  7. Flat or curved thin optical display panel

    Science.gov (United States)

    Veligdan, J.T.

    1995-01-10

    An optical panel includes a plurality of waveguides stacked together, with each waveguide having a first end and an opposite second end. The first ends collectively define a first face, and the second ends collectively define a second face of the panel. The second face is disposed at an acute face angle relative to the waveguides to provide a panel which is relatively thin compared to the height of the second face. In an exemplary embodiment for use in a projection TV, the first face is substantially smaller in height than the second face and receives a TV image, with the second face defining a screen for viewing the image enlarged. 7 figures.

  8. Heat treatment and aging effect on the structural and optical properties of plasma polymerized 2,6-diethylaniline thin films

    International Nuclear Information System (INIS)

    Matin, Rummana; Bhuiyan, A.H.

    2012-01-01

    The monomer, 2,6-diethylaniline has been used to deposit plasma polymerized 2,6-diethylaniline (PPDEA) thin films at room temperature on to glass substrates by a capacitively coupled parallel plate glow discharge reactor. A comparative analysis on the changes of morphological, structural and optical properties of as-deposited, heat treated and aged PPDEA thin films is ascertained. Scanning electron microscopy shows uniform and pinhole free surface of PPDEA thin films and no significant difference in the surface morphology is observed due to heat treatment. Electron dispersive X-ray and Fourier transform infrared spectroscopic investigations indicate some structural rearrangement in PPDEA thin films due to heat treatment. Differential thermal analysis, thermogravimetric analysis and differential thermogravimetric analysis suggest that the PPDEA is thermally stable up to about 580 K. The study on the optical absorption spectra of as-deposited, heat treated and aged PPDEA thin films of different thicknesses lead to the determination of the allowed direct and indirect transition energies ranging from 3.63 to 2.73 and 2.38 to 1.26 eV respectively. Urbach energy, steepness parameter and extinction coefficient are also assessed. It is observed that the optical parameters of as-deposited PPDEA thin films change due to heat treatment and do not change appreciably due to aging. - Highlights: ► Heat treatment and aging effect of plasma polymerized 2,6-diethylaniline thin films. ► The surface morphology of PPDEA is found uniform for all types of sample. ► Heat treatment introduces some elemental and structural rearrangement. ► The thermal stability is found up to about 580 K. ► Optical parameters were changed for heat treatment but not markedly for aging.

  9. Microstructure and optical properties of Ba0.65Sr0.35TiO3 thin films prepared by RF magnetron sputtering

    International Nuclear Information System (INIS)

    Zhang Tianjin; Li Songzhan; Zhang Baishun; Pan Ruikun; Jiang Juan; Huang Weihua

    2005-01-01

    Ba 0.65 Sr 0.35 TiO 3 thin films have been prepared by RF magnetron sputtering. The crystallization and microstructure of the films were characterized by X-ray diffraction (XRD), scan electronic microstructure (SEM) and atom force microstructure (AFM). As-deposited thin films were found to be amorphous. The more intense characteristic diffraction peaks and improved crystallization can be observed in (Ba,Sr)TiO 3 (BST) thin films deposited at high temperatures and annealed at higher than 650degC. Optical constants were determined from transmittance spectra by using the envelope method. The refractive index increased from 1.778 to 1.961 as the substrate temperature increased from 560 to 650degC. Both the refractive index and extinction coefficient increased with annealing temperature. The refractive index and extinction coefficient increased when the oxygen-to-argon ratio increased from 1:4 to 1:1. The dispersion of relation of the extinction coefficient vs wavelength was also investigated. The optical band gap of BST thin films was found to be about 3.56 eV, which decreased apparently with increasing annealing temperature. (author)

  10. Highly efficient 400  W near-fundamental-mode green thin-disk laser.

    Science.gov (United States)

    Piehler, Stefan; Dietrich, Tom; Rumpel, Martin; Graf, Thomas; Ahmed, Marwan Abdou

    2016-01-01

    We report on the efficient generation of continuous-wave, high-brightness green laser radiation. Green lasers are particularly interesting for reliable and reproducible deep-penetration welding of copper or for pumping Ti:Sa oscillators. By intracavity second-harmonic generation in a thin-disk laser resonator designed for fundamental-mode operation, an output power of up to 403 W is demonstrated at a wavelength of 515 nm with almost diffraction-limited beam quality. The unprecedented optical efficiency of 40.7% of green output power with respect to the pump power of the thin-disk laser is enabled by the intracavity use of a highly efficient grating waveguide mirror, which combines the functions of wavelength stabilization and spectral narrowing, as well as polarization selection in a single element.

  11. Synthesis, structure and optical properties of thin films from GeS{sub 2}–In{sub 2}S{sub 3} system deposited by thermal co-evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Todorov, R., E-mail: rossen@iomt.bas.bg [Institute of Optical Materials and Technologies “Acad. J. Malinowski”, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 109, 1113 Sofia (Bulgaria); Petkov, K. [Institute of Optical Materials and Technologies “Acad. J. Malinowski”, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 109, 1113 Sofia (Bulgaria); Kincl, M. [Institute of Macromolecular Chemistry of Czech Academy of Science, Heyrovsky sq. 2, 162 06 Prague 6 (Czech Republic); Černošková, E. [Faculty of Chemical Technology, University of Pardubice, Studentská 84, 532 10 Pardubice (Czech Republic); Vlček, Mil.; Tichý, L. [Institute of Macromolecular Chemistry of Czech Academy of Science, Heyrovsky sq. 2, 162 06 Prague 6 (Czech Republic)

    2014-05-02

    This paper deals with the properties of the glasses and thin films from multi-component chalcogenide prepared by co-evaporation technique. The thin chalcogenide layers from GeS{sub 2}–In{sub 2}S{sub 3} system were deposited by thermal co-evaporation of GeS{sub 2} and In{sub 2}S{sub 3}. Using X-ray microanalysis it was found that the film compositions are closed to the expected ones. X-ray diffraction analysis shows that the thin films deposited by co-evaporation are amorphous. The refractive index, n and the optical band gap, E{sub g}{sup opt} were calculated from the transmittance and reflectance spectra. The thin film's structure was investigated by infrared spectroscopy. It was found that the photo-induced optical changes decrease with increase of indium content while significant thermo-induced changes in the optical properties and structure were observed at 14 at.% indium. The infrared spectra demonstrated high transmittance of the thin films in the range 4000–500 cm{sup −1}. The far-infrared spectra indicated that the indium participates in the glass network of the layers from Ge–S–In system in four coordinated InS{sub 4/2}{sup −} tetrahedral and six-coordinated InS{sub 6/2}{sup 3−} octahedral units. The changes in infrared spectra after annealing of the thin films evidence an increase of population of ethane-like S{sub 3}Ge–GeS{sub 3} units and/or structural or phase change of indium contain units. - Highlights: • The thin layers from GeS{sub 2}–In{sub 2}S{sub 3} system were deposited by thermal co-evaporation. • The photo-induced optical changes decrease with increase of indium content. • The thermo-induced changes in the optical properties and structure were investigated. • The structure of the thin films was investigated by infrared spectroscopy.

  12. Enhanced magneto-optical Kerr effect in rare earth substituted nanostructured cobalt ferrite thin film prepared by sol–gel method

    Energy Technology Data Exchange (ETDEWEB)

    Avazpour, L.; Toroghinejad, M.R. [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Shokrollahi, H., E-mail: Shokrollahi@sutech.ac.ir [Electroceramics Group, Department of Materials Science and Engineering, Shiraz University of Technology, Shiraz 13876-71557 (Iran, Islamic Republic of)

    2016-11-30

    Highlights: • The nanostructured rare earth doped Co-ferrite thin film was synthesized by the sol–gel method. • The coercivity of as high as 1.8 kOe is achieved for 20% substituted cobalt ferrite. • The average particle diameter of particulate film is decreasing by increasing substitute content. • Kerr spectra of films shifted to higher energies. • Kerr rotation angle increased to 1.65° for 0.1 Eu doped thin film. - Abstract: A series of rare-earth (RE)-doped nanocrystalline Co{sub x} RE{sub (1−x)} Fe{sub 2}O{sub 4} (x = 0, 0.1, 0.2 and RE: Nd, Eu) thin films were prepared on silicon substrates by a sol–gel process, and the influences of different RE{sup 3+} ions on the microstructure, magnetism and polar magneto-optical Kerr effect of the deposited films were investigated. Also this research presents the optimization process of cobalt ferrite thin films deposited via spin coating, by studying their structural and morphological properties at different thicknesses (200, 350 nm) and various heat treatment temperatures 300–850 °C. Nanoparticulate polycrystalline thin film were formed with heat treatment above 400 °C but proper magnetic properties due to well crystallization of the film were achieved at about 650 °C. AFM results indicated that the deposited thin films were crack-free exhibiting a dense nanogranular structure. The root-mean square (RMS) roughness of the thin films was in the range of 0.2–3.2 nm. The results revealed that both of the magnetism and magneto optical Kerr (MOKE) spectra of Co{sub x} RE{sub (1−x)} Fe{sub 2}O{sub 4} films could be mediated by doping with various RE ions. The Curie temperature of substituted samples was lower than pristine cobalt ferrite thin films. In MOKE spectra both dominant peaks were blue shifted with addition of RE ions. For low concentration dopant the inter-valence charge transfer related rotation was enhanced and for higher concentration dopant the crystal field rotation peak was enhanced

  13. Optical and electrical characteristics of plasma enhanced chemical vapor deposition boron carbonitride thin films derived from N-trimethylborazine precursor

    International Nuclear Information System (INIS)

    Sulyaeva, Veronica S.; Kosinova, Marina L.; Rumyantsev, Yurii M.; Kuznetsov, Fedor A.; Kesler, Valerii G.; Kirienko, Viktor V.

    2014-01-01

    Thin BC x N y films have been obtained by plasma enhanced chemical vapor deposition using N-trimethylborazine as a precursor. The films were deposited on Si(100) and fused silica substrates. The grown films were characterized by ellipsometry, Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray energy dispersive spectroscopy, X-ray photoelectron spectroscopy, spectrophotometry, capacitance–voltage and current–voltage measurements. The deposition parameters, such as substrate temperature (373–973 K) and gas phase composition were varied. Low temperature BC x N y films were found to be high optical transparent layers in the range of 300–2000 nm, the transmittance as high as 93% has been achieved. BC x N y layers are dielectrics with dielectric constant k = 2.2–8.9 depending on the synthesis conditions. - Highlights: • Thin BC x N y films have been obtained by plasma enhanced chemical vapor deposition. • N-trimethylborazine was used as a precursor. • Low temperature BC x N y films were found to be high optical transparent layers (93%). • BC x N y layers are dielectrics with dielectric constant k = 2.2–8.9

  14. Morphological, elemental, and optical characterization of plasma polymerized n-butyl methacrylate thin films

    Science.gov (United States)

    Nasrin, Rahima; Hossain, Khandker S.; Bhuiyan, A. H.

    2018-05-01

    Plasma polymerized n-butyl methacrylate (PPnBMA) thin films of varying thicknesses were prepared at room temperature by AC plasma polymerization system using a capacitively coupled parallel plate reactor. Field-emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), energy-dispersive X-ray (EDX) analysis, and ultraviolet-visible (UV-Vis) spectroscopic investigation have been performed to study the morphological, elemental, and optical properties of the PPnBMA thin films, respectively. The flat and defect-free nature of thin films were confirmed by FESEM and AFM images. With declining plasma power, average roughness and root mean square roughness increase. Allowed direct transition ( E gd) and indirect transition ( E gi) energy gaps were found to be 3.64-3.80 and 3.38-3.45 eV, respectively, for PPnBMA thin films of different thicknesses. Values of E gd as well as E gi increase with the increase of thickness. The extinction coefficient, Urbach energy, and steepness parameter were also determined for these thin films.

  15. Influence of addition of indium and of post-annealing on structural, electrical and optical properties of gallium-doped zinc oxide thin films deposited by direct-current magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Pham, Duy Phong [Laboratory of Advanced Materials, University of Science, Vietnam National University, HoChiMinh (Viet Nam); College of Information and Communication Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Nguyen, Huu Truong [Laboratory of Advanced Materials, University of Science, Vietnam National University, HoChiMinh (Viet Nam); Phan, Bach Thang [Laboratory of Advanced Materials, University of Science, Vietnam National University, HoChiMinh (Viet Nam); Faculty of Materials Science, University of Science, Vietnam National University, HoChiMinh (Viet Nam); Hoang, Van Dung [Laboratory of Advanced Materials, University of Science, Vietnam National University, HoChiMinh (Viet Nam); Maenosono, Shinya [School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan); Tran, Cao Vinh, E-mail: tcvinh@hcmus.edu.vn [Laboratory of Advanced Materials, University of Science, Vietnam National University, HoChiMinh (Viet Nam)

    2015-05-29

    In this study, both gallium-doped zinc oxide (GZO) and indium-added gallium-doped zinc oxide (IGZO) thin films were deposited on commercial glasses by magnetron dc-sputtering in argon atmosphere. The crystal structure, electrical conductivity and optical transmission of as-deposited as well as post-annealed thin films of both GZO and IGZO were investigated for comparison. A small amount of indium introduced into GZO thin films had improved their polycrystalline structure and increased their electrical conductivity by over 29%. All obtained GZO and IGZO thin films have strong [002] crystalline direction, a characteristic orientation of ZnO thin films. Although post-annealed in air at high temperatures up to 500 °C, IGZO thin films still had very low sheet resistance of 6.6 Ω/□. Furthermore, they had very high optical transmission of over 80% in both visible and near-infrared regions. - Highlights: • Doping 0.1 at.% indium enhanced crystalline, electrical properties of GZO films. • The mobility of IGZO films was 25% higher than that of GZO films. • The IGZO films will be potential materials for transparent conducting electrodes.

  16. Influence of addition of indium and of post-annealing on structural, electrical and optical properties of gallium-doped zinc oxide thin films deposited by direct-current magnetron sputtering

    International Nuclear Information System (INIS)

    Pham, Duy Phong; Nguyen, Huu Truong; Phan, Bach Thang; Hoang, Van Dung; Maenosono, Shinya; Tran, Cao Vinh

    2015-01-01

    In this study, both gallium-doped zinc oxide (GZO) and indium-added gallium-doped zinc oxide (IGZO) thin films were deposited on commercial glasses by magnetron dc-sputtering in argon atmosphere. The crystal structure, electrical conductivity and optical transmission of as-deposited as well as post-annealed thin films of both GZO and IGZO were investigated for comparison. A small amount of indium introduced into GZO thin films had improved their polycrystalline structure and increased their electrical conductivity by over 29%. All obtained GZO and IGZO thin films have strong [002] crystalline direction, a characteristic orientation of ZnO thin films. Although post-annealed in air at high temperatures up to 500 °C, IGZO thin films still had very low sheet resistance of 6.6 Ω/□. Furthermore, they had very high optical transmission of over 80% in both visible and near-infrared regions. - Highlights: • Doping 0.1 at.% indium enhanced crystalline, electrical properties of GZO films. • The mobility of IGZO films was 25% higher than that of GZO films. • The IGZO films will be potential materials for transparent conducting electrodes

  17. Influence of post-deposition annealing on structural, morphological and optical properties of copper (II) acetylacetonate thin films.

    Science.gov (United States)

    Abdel-Khalek, H; El-Samahi, M I; El-Mahalawy, Ahmed M

    2018-05-21

    In this study, the effect of thermal annealing under vacuum conditions on structural, morphological and optical properties of thermally evaporated copper (II) acetylacetonate, cu(acac) 2 , thin films were investigated. The copper (II) acetylacetonate thin films were deposited using thermal evaporation technique at vacuum pressure ~1 × 10 -5  mbar. The deposited films were thermally annealed at 323, 373, 423, and 473 K for 2 h in vacuum. The thermogravimetric analysis of cu(acac) 2 powder indicated a thermal stability of cu(acac) 2 up to 423 K. The effects of thermal annealing on the structural properties of cu(acac) 2 were evaluated employing X-ray diffraction method and the analysis showed a polycrystalline nature of the as-deposited and annealed films with a preferred orientation in [1¯01] direction. Fourier transformation infrared (FTIR) technique was used to negate the decomposition of copper (II) acetylacetonate during preparation or/and annealing up to 423 K. The surface morphology of the prepared films was characterized by means of field emission scanning electron microscopy (FESEM). A significant enhancement of the morphological properties of cu(acac) 2 thin films was obtained till the annealing temperature reaches 423 K. The variation of optical constants that estimated from spectrophotometric measurements of the prepared thin films was investigated as a function of annealing temperature. The annealing process presented significantly impacted the nonlinear optical properties such as third-order optical susceptibility χ (3) and nonlinear refractive index n 2 of cu(acac) 2 thin films. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Remarkable optical red shift and extremely high optical absorption coefficient of V-Ga co-doped TiO2

    Science.gov (United States)

    Deng, Quanrong; Han, Xiaoping; Gao, Yun; Shao, Guosheng

    2012-07-01

    A first attempt has been made to study the effect of codoping of transition metal and sp metal on the electronic structure and associated optical properties of TiO2, through V-Ga codoped thin films. V-Ga codoped rutile TiO2 films were fabricated on fused quartz substrates using pulsed laser ablation, followed by heat treatment at high temperatures. Gigantic redshift in the optical absorption edge was observed in V-Ga co-doped TiO2 materials, from UV to infrared region with high absorption coefficient. Through combined structural characterization and theoretical modeling, this is attributed to the p-d hybridization between the two metals. This leads to additional energy bands to overlap with the minimum of the conduction band, leading to remarkably narrowed band gap free of mid-gap states. The direct-gap of the co-doped phase is key to the remarkably high optical absorption coefficient of the coped titania.

  19. A new automatic design method to develop multilayer thin film devices for high power laser applications

    International Nuclear Information System (INIS)

    Sahoo, N.K.; Apparao, K.V.S.R.

    1992-01-01

    Optical thin film devices play a major role in many areas of frontier technology like development of various laser systems to the designing of complex and precision optical systems. Design and development of these devices are really challenging when they are meant for high power laser applications. In these cases besides desired optical characteristics, the devices are expected to satisfy a whole range of different needs like high damage threshold, durability etc. In the present work a novel completely automatic design method based on Modified Complex Method has been developed for designing of high power thin film devices. Unlike most of the other methods it does not need any suitable starting design. A quarterwave design is sufficient to start with. If required, it is capable of generating its own starting design. The computer code of the method is very simple to implement. This report discusses this novel automatic design method and presents various practicable output designs generated by it. The relative efficiency of the method along with other powerful methods has been presented while designing a broadband IR antireflection coating. The method is also incorporated with 2D and 3D electric field analysis programmes to produce high damage threshold designs. Some experimental devices developed using such designs are also presented in the report. (author). 36 refs., 41 figs

  20. Synthesis, microstructural characterization and optical properties of undoped, V and Sc doped ZnO thin films

    International Nuclear Information System (INIS)

    Amezaga-Madrid, P.; Antunez-Flores, W.; Ledezma-Sillas, J.E.; Murillo-Ramirez, J.G.; Solis-Canto, O.; Vega-Becerra, O.E.; Martinez-Sanchez, R.; Miki-Yoshida, M.

    2011-01-01

    Research highlights: → Undoped, V and Sc doped ZnO thin films by Aerosol Assisted Chemical Vapour Deposition. → Optimum substrate temperatures of 673 K and 623 K for Sc and V doped films. → Around one third of the dopants in solution were deposited into the films. → Crystallite and grain size decreased with the increase of dopant concentration. → Optical band gap increased from 3.29 to 3.32 eV for undoped to 7 Sc/Zn at. %. - Abstract: Many semiconductor oxides (ZnO, TiO 2 , SnO 2 ) when doped with a low percentage of non-magnetic (V, Sc) or magnetic 3d (Co, Mn, Ni, Fe) cation behave ferromagnetically. They have attracted a great deal of interest due to the integration of semiconducting and magnetic properties in a material. ZnO is one of the most promising materials to carry out these tasks in view of the fact that it is optically transparent and has n or p type conductivity. Here, we report the synthesis, microstructural characterization and optical properties of undoped, V and Sc doped zinc oxide thin films. ZnO based thin films with additions of V and Sc were deposited by the Aerosol Assisted Chemical Vapour Deposition method. V and Sc were incorporated separately in the precursor solution. The films were uniform, transparent and non-light scattering. The microstructure of the films was characterized by Grazing Incidence X-ray Diffraction, Scanning Electron Microscopy, and Scanning Probe Microscopy. Average grain size and surface rms roughness were estimated by the measurement of Atomic Force Microscopy. The microstructure of doped ZnO thin films depended on the type and amount of dopant material incorporated. The optical properties were determined from specular reflectance and transmittance spectra. Results were analyzed to determine the optical constant and band gap of the films. An increase in the optical band gap with the content of Sc dopant was obtained.

  1. Fabrication of Ultra-thin Color Films with Highly Absorbing Media Using Oblique Angle Deposition.

    Science.gov (United States)

    Yoo, Young Jin; Lee, Gil Ju; Jang, Kyung-In; Song, Young Min

    2017-08-29

    Ultra-thin film structures have been studied extensively for use as optical coatings, but performance and fabrication challenges remain.  We present an advanced method for fabricating ultra-thin color films with improved characteristics. The proposed process addresses several fabrication issues, including large area processing. Specifically, the protocol describes a process for fabricating ultra-thin color films using an electron beam evaporator for oblique angle deposition of germanium (Ge) and gold (Au) on silicon (Si) substrates.  Film porosity produced by the oblique angle deposition induces color changes in the ultra-thin film. The degree of color change depends on factors such as deposition angle and film thickness. Fabricated samples of the ultra-thin color films showed improved color tunability and color purity. In addition, the measured reflectance of the fabricated samples was converted into chromatic values and analyzed in terms of color. Our ultra-thin film fabricating method is expected to be used for various ultra-thin film applications such as flexible color electrodes, thin film solar cells, and optical filters. Also, the process developed here for analyzing the color of the fabricated samples is broadly useful for studying various color structures.

  2. Structural and optical properties of electrodeposited molybdenum oxide thin films

    International Nuclear Information System (INIS)

    Patil, R.S.; Uplane, M.D.; Patil, P.S.

    2006-01-01

    Electrosynthesis of Mo(IV) oxide thin films on F-doped SnO 2 conducting glass (10-20/Ω/□) substrates were carried from aqueous alkaline solution of ammonium molybdate at room temperature. The physical characterization of as-deposited films carried by thermogravimetric/differential thermogravimetric analysis (TGA/DTA), infrared spectroscopy and X-ray diffraction (XRD) showed the formation of hydrous and amorphous MoO 2 . Scanning electron microscopy (SEM) revealed a smooth but cracked surface with multi-layered growth. Annealing of these films in dry argon at 450 deg. C for 1 h resulted into polycrystalline MoO 2 with crystallites aligned perpendicular to the substrate. Optical absorption study indicated a direct band gap of 2.83 eV. The band gap variation consistent with Moss rule and band gap narrowing upon crystallization was observed. Structure tailoring of as-deposited thin films by thermal oxidation in ambient air to obtain electrochromic Mo(VI) oxide thin films was exploited for the first time by this novel route. The results of this study will be reported elsewhere

  3. Optical band gap study of a-Se and Se-Sb thin films

    International Nuclear Information System (INIS)

    Kaur, Ramandeep; Singh, Palwinder; Thakur, Anup

    2016-01-01

    Amorphous selenium (a-Se) and a-Se_9_5Sb_5 alloy were prepared using melt quenching technique. X-ray diffraction (XRD) pattern confirmed the amorphous nature of the prepared samples. Composition of the prepared samples has been determined using Energy dispersive X-ray fluorescence (EDXRF) technique. Differential thermal analysis (DTA) confirmed the glassy nature of the prepared samples. Thin films of the prepared samples were deposited on glass substrate using thermal evaporation method. Amorphous nature of the deposited films was confirmed using XRD. Optical properties of these films were obtained from the UV-VIS transmission spectra, at normal incidence, over 200-1100 nm spectral range. The optical absorption edge was described by using the model given by the Tauc. Optical band gap of the deposited films was calculated using Tauc plot. Optical characterization showed that average transmission and optical band gap decreased with the addition of antinomy.

  4. Effect of substrate temperature on the optical parameters of thermally evaporated Ge-Se-Te thin films

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Pankaj, E-mail: pks_phy@yahoo.co.i [Department of Physics, Jaypee University of Information Technology, Waknaghat, Solan, H.P. 173215 India (India); Katyal, S.C. [Department of Physics, Jaypee University of Information Technology, Waknaghat, Solan, H.P. 173215 India (India)

    2009-05-01

    Thin films of Ge{sub 10}Se{sub 90-x}Te{sub x} (x = 0, 10, 20, 30, 40, 50) glassy alloys were deposited at three substrate temperatures (303 K, 363 K and 423 K) using conventional thermal evaporation technique at base pressure of {approx} 10{sup -4} Pa. X-ray diffraction results show that films deposited at 303 K are of amorphous nature while films deposited at 363 K and 423 K are of polycrystalline nature. The optical parameters, refractive index and optical gap have been derived from the transmission spectra (using UV-Vis-NIR spectrophotometer) of the thin films in the spectral region 400-1500 nm. This has been observed that refractive index values remain almost constant while the optical gap is found to decrease considerably with the increase of substrate temperature. The decrease in optical gap is explained on the basis of change in nature of films, from amorphous to polycrystalline state, with the increase of substrate temperature. The optical gap has also been observed to decrease with the increase of Te content.

  5. Are galaxy discs optically thick?

    International Nuclear Information System (INIS)

    Disney, Michael; Davies, Jonathan; Phillipps, Steven

    1989-01-01

    We re-examine the classical optical evidence for the low optical depths traditionally assigned to spiral discs and argue that it is highly model-dependent and unconvincing. In particular, layered models with a physically thin but optically thick dust layer behave like optically thin discs. The opposite hypotheses, that such discs are optically thick is then examined in the light of modern evidence. We find it to be consistent with the near-infrared and IRAS observations, with the surface brightnesses, with the HI and CO column densities and with the Hα measurements. (author)

  6. Morphological and optical properties of silicon thin films by PLD

    International Nuclear Information System (INIS)

    Ayouchi, R.; Schwarz, R.; Melo, L.V.; Ramalho, R.; Alves, E.; Marques, C.P.; Santos, L.; Almeida, R.; Conde, O.

    2009-01-01

    Silicon thin films have been prepared on sapphire substrates by pulsed laser deposition (PLD) technique. The films were deposited in vacuum from a silicon target at a base pressure of 10 -6 mbar in the temperature range from 400 to 800 deg. C. A Q-switched Nd:YAG laser (1064 nm, 5 ns duration, 10 Hz) at a constant energy density of 2 J x cm -2 has been used. The influence of the substrate temperature on the structural, morphological and optical properties of the Si thin films was investigated. Spectral ellipsometry and atomic force microscopy (AFM) were used to study the thickness and the surface roughness of the deposited films. Surface roughness values measured by AFM and ellipsometry show the same tendency of increasing roughness with increased deposition temperature

  7. Optical properties of CuSe thin films - band gap determination

    Directory of Open Access Journals (Sweden)

    Petrović Milica

    2017-01-01

    Full Text Available Copper selenide thin films of three different thicknesses have been prepared by vacuum evaporation method on a glass substrate at room temperature. The optical properties of the films were investigated by UV-VIS-NIR spectroscopy and photoluminescence spectroscopy. Surface morphology was investigated by field-emission scanning electron microscopy. Copper selenide exhibits both direct and indirect transitions. The band gap for direct transition is found to be ~2.7 eV and that for indirect transition it is ~1.70 eV. Photoluminescence spectra of copper selenide thin films have also been analyzed, which show emission peaks at 530, 550, and 760 nm. The latter corresponds to indirect transition in investigated material. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. III45003

  8. A method for the detection of alcohol vapours based on optical sensing of magnesium 5,10,15,20-tetraphenyl porphyrin thin film by an optical spectrometer and principal component analysis

    International Nuclear Information System (INIS)

    Kladsomboon, Sumana; Kerdcharoen, Teerakiat

    2012-01-01

    Highlights: ► We prepared magnesium porphyrin thin film as optical sensing materials. ► UV–vis spectrometer was modified to perform as optical artificial nose. ► Change in optical absorption at various spectral regions is used as a sensor array. ► Principal component analysis was employed to discriminate alcohol vapours. - Abstract: In this work we have proposed a method for the detection of alcohol vapours, i.e. methanol, ethanol and isopropanol, based on the optical sensing response of magnesium 5,10,15,20-tetraphenyl porphyrin (MgTPP) thin films, as measured by optical spectrometry with the assistance of chemometric analysis. We have implemented a scheme which allows a laboratory UV–vis spectrometer to act as a so-called “electronic nose” with very little modification. MgTPP thin films were prepared by a spin coating technique, using chloroform as the solvent, and then subjected to thermal annealing at 280 °C in an argon atmosphere. These MgTPP optical gas sensors presented significant responses with methanol compared to ethanol and isopropanol, based on the dynamic flow of alcohol vapours at the same mol% of alcohol concentration. Density functional theory (DFT) calculations were performed to model the underlying mechanism of this selectivity. The performance of the optical gas sensors was optimised by varying the fabrication parameters. It is hoped that the MgTPP thin film together with an off-the-shelf optical spectrometer and a simple chemometrics algorithm can be a valuable tool for the analysis of alcoholic content in the beverage industry.

  9. Optical and electrical characterization of AgInS{sub 2} thin films deposited by spray pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Calixto-Rodriguez, M., E-mail: manuela@fis.unam.mx [Instituto de Ciencias Fisicas-Universidad Nacional Autonoma de Mexico, Apartado Postal 48-3, 62210, Cuernavaca, Morelos (Mexico); Martinez, H. [Instituto de Ciencias Fisicas-Universidad Nacional Autonoma de Mexico, Apartado Postal 48-3, 62210, Cuernavaca, Morelos (Mexico); Calixto, M.E. [Instituto de Fisica, Benemerita Universidad Autonoma de Puebla, Apartado Postal J-48, 72570, Puebla, Puebla (Mexico); Pena, Y. [Facultad de Ciencias Quimicas, Universidad Autonoma de Nuevo Leon, Pedro de Alba s/n, Ciudad Universitaria, 66451, San Nicolas de los Garza, Nuevo Leon (Mexico); Martinez-Escobar, Dalia [Centro de Investigacion en Energia-Universidad Nacional Autonoma de Mexico, 62580, Temixco, Morelos (Mexico); Tiburcio-Silver, A. [Instituto Tecnologico de Toluca-SEP, Apartado Postal 20, 52176, Metepec 3, Estado de Mexico (Mexico); Sanchez-Juarez, A. [Centro de Investigacion en Energia-Universidad Nacional Autonoma de Mexico, 62580, Temixco, Morelos (Mexico)

    2010-10-25

    Silver indium sulfide (AgInS{sub 2}) thin films have been prepared by spray pyrolysis (SP) technique using silver acetate, indium acetate, and N, N-dimethylthiourea as precursor compounds. Films were deposited onto glass substrates at different substrate temperatures (T{sub s}) and Ag:In:S ratios in the starting solutions. Optical transmission and reflection as well as electrical measurements were performed in order to study the effect of deposition parameters on the optical and electrical properties of AgInS{sub 2} thin films. X-ray diffraction measurements were used to identify the deposited compounds. It was found that different compounds such as AgInS{sub 2}, Ag{sub 2}S, In{sub 2}O{sub 3}, and In{sub 2}S{sub 3} can be grown only by changing the Ag:In:S ratio in the starting solution and T{sub s}. So that, by carefully selecting the deposition parameters, single phase AgInS{sub 2} thin films can be easily grown. Thin films obtained using a molar ratio of Ag:In:S = 1:1:2 and T{sub s} = 400 {sup o}C, have an optical band gap of 1.9 eV and n-type electrical conductivity with a value of 0.3 {Omega}{sup -1} cm{sup -1} in the dark.

  10. Magneto-optical properties of BiFeO{sub 3} thin films using surface plasmon resonance technique

    Energy Technology Data Exchange (ETDEWEB)

    Paliwal, Ayushi; Sharma, Anjali [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Tomar, Monika [Physics Department, Miranda House, University of Delhi, Delhi 110007 (India); Gupta, Vinay, E-mail: drguptavinay@gmail.com [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India)

    2014-09-01

    Indigeneously assembled surface plasmon resonance (SPR) set up has been exploited to study the magnetic field dependent optical properties of BiFeO{sub 3} thin films. BiFeO{sub 3} thin films have been deposited onto gold (Au) coated glass prism by using pulsed laser deposition technique. The surface plasmon modes in prism/Au/BiFeO{sub 3}/air structure have been excited in Kretschmann configuration at the interface of Au/BiFeO{sub 3} thin films. The SPR reflectance curves obtained for prism/Au/BiFeO{sub 3}/air structure were utilized to investigate the optical properties of BiFeO{sub 3} thin films at optical frequency (λ=633 nm) as a function of applied magnetic field. SPR curves shows a continuous shift towards lower angles with increasing applied magnetic field, which indicate the promising application of ferromagnetic BiFeO{sub 3} film as a magnetic field sensor. Complex dielectric constant of deposited BiFeO{sub 3} film was determined by fitting the experimental SPR data with Fresnel's equations. The variation of complex dielectric constant and refractive index of BiFeO{sub 3} film was studied with increase in magnetic field, and the sensitivity of magnetic field sensor was found to be about 0.52 RIU/T.

  11. Preparation and characterization of RF magnetron sputtered CuO/CaTi{sub 4}O{sub 9} thin films with enhanced third-order nonlinear optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Congfei; Liang, Xiaojuan, E-mail: lxj6126@126.com; Hu, Guangcai; Hu, Xie; Chen, Xipeng; Li, Pengzhi; Xiang, Weidong, E-mail: xiangweidong001@126.com

    2017-04-15

    The titanate, is a material of interest for various energy applications, including photovoltaics, catalysts, and high-rate energy storage devices. Herein, its related materials, CuO/CaTi{sub 4}O{sub 9} [CCTO] thin films, were successfully fabricated on SrTiO{sub 3} (100) substrates by RF magnetron sputtering assisted with subsequent oxygen annealing. This obtained CCTO thin films were then systemically studied by X-ray powder diffraction (XRD), atomic force microscopy (AFM), scan electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and high-resolution transmission electron microscopy (HRTEM). It was found that CuO and CaTi{sub 4}O{sub 9} (001) particles were closely accumulated together on the surface of the substrate in the annealing process after comparing with that of the as-prepared thin film, which was verified by SEM and AFM results. Furthermore, we investigated the third-order nonlinear optical (NLO) properties of the as-prepared and annealed CCTO thin film by means of the Z-scan technique using 650 nm femtosecond laser pulse. Post-deposition oxygen annealing was found to modify the morphological characteristics of the films, resulting in enhancing their NLO properties. The observation of NLO performance of annealed CCTO thin film indicates that RF magnetron sputtering is a feasible method for the fabrication of optical thin films, which can be expanded to fabricate other NLO materials from the corresponding dispersions. Naturally, we concluded that the CCTO thin film occupy a better NLO property, and thus enlarge its application in nonlinear optics. - Highlights: • The CCTO thin film was prepared using the RF magnetron sputtering and oxygen annealing. • The film was prepared on the SrTiO{sub 3}(100) substrates with a Ca{sub 2}CuO{sub 3} target. • The oxygen annealing was found can effectively enhance the film quality and NLO property. • The film was characterized using XPS, SEM, AFM, TEM, XRD and Z-scan techniques.

  12. Structural, optical and electrical characterization of Ag doped lead chalcogenide (PbSe) thin films

    Energy Technology Data Exchange (ETDEWEB)

    Al-Ghamdi, A.A., E-mail: aghamdi90@hotmail.com [Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah (Saudi Arabia); Al-Heniti, S. [Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah (Saudi Arabia); Khan, Shamshad A. [Department of Physics, St. Andrew' s College, Gorakhpur, UP (India)

    2013-03-15

    Research and development efforts are currently underway to fabricate a variety of solid state devices. A good deal of information regarding the synthesis, structural, optical and electrical properties of Ag doped lead chalcogenides have been revealed. The bulk polycrystalline (PbSe){sub 100-x}Ag{sub x} ternary chalcogenides are prepared by diffusion technique. The XRD patterns recorded for the (PbSe){sub 100-x}Ag{sub x} thin films prepared by vacuum deposition technique, show that these films are polycrystalline in nature. The optical measurements reveal that the (PbSe){sub 100-x}Ag{sub x} thin films possess direct band gap and the band gap energy decreases with an increase of Ag concentration. The extinction coefficient (k) and refractive index (n) are found to be changing by increasing Ag concentration in PbSe. These results are interpreted in terms of the change in concentration of localized states due to the shift in Fermi level. The dc conductivities of (PbSe){sub 100-x}Ag{sub x} thin films are measured in temperature range 303-403 K. It is observed that the dc conductivity increases at all the temperatures with an increase of Ag content in PbSe system. The experimental data suggests that the conduction is due to thermally assisted tunneling of the charge carriers in the localized states near the band edges. The activation energy and optical band gap are found to decrease with increasing Ag concentration in lead chalcogenide and there are good agreements between these two values. - Highlights: Black-Right-Pointing-Pointer (PbSe){sub 100-x}Ag{sub x} thin films has been investigated. Black-Right-Pointing-Pointer Polycrystalline nature has been verified by X-ray diffraction. Black-Right-Pointing-Pointer Optical absorption data showed the rules of direct transitions predominate. Black-Right-Pointing-Pointer Dc conductivity increases with an increase of Ag content in PbSe system. Black-Right-Pointing-Pointer Increase of Ag concentration causes a decrease in E{sub g

  13. Effect of the thin-film limit on the measurable optical properties of graphene

    Czech Academy of Sciences Publication Activity Database

    Holovský, Jakub; Nicolay, S.; De Wolf, S.; Ballif, C.

    2015-01-01

    Roč. 5, Oct (2015), s. 15684 ISSN 2045-2322 R&D Projects: GA ČR(CZ) GA14-05053S Institutional support: RVO:68378271 Keywords : graphene * thin-film limit Subject RIV: BH - Optics, Masers, Lasers Impact factor: 5.228, year: 2015

  14. Highly crystalline p-PbS thin films with tunable optical and hole transport parameters by chemical bath deposition

    International Nuclear Information System (INIS)

    Bai, Rekha; Kumar, Dinesh; Chaudhary, Sujeet; Pandya, Dinesh K.

    2017-01-01

    Lead sulfide (PbS) thin films, consisting of well faceted (up to 400 nm) cubic-nanocrystals and possessing significantly improved opto-electronic parameters essential for photovoltaic applications, are grown by utilizing chemical bath deposition (CBD) technique with bath concentrations of 10–200 mM. X-ray diffraction (XRD) and Raman studies confirm the highly crystalline and pure phase of PbS. FESEM and HRTEM studies show that all the films possess uniform and compact (111) oriented nanocubic morphology. Bath concentration change provides tunability of nanocube size from 100 to 400 nm and the direct optical band gap from 1.50 to 0.94 eV. The PbS films exhibit p-type semiconducting behavior with hitherto unreported concurrent highest mobility of 29.3 cm"2V"−"1s"−"1 and high carrier concentration of ∼10"1"8 cm"−"3 with the lowest room temperature resistivity of 0.26 Ω–cm. The 25 mM and 10 mM films show significant surface plasmon absorption in 1200–2400 nm range making them suitable as efficient infrared absorbers in excitonic and multi-junction solar cells.

  15. Developing high-transmittance heterojunction diodes based on NiO/TZO bilayer thin films

    Science.gov (United States)

    2013-01-01

    In this study, radio frequency magnetron sputtering was used to deposit nickel oxide thin films (NiO, deposition power of 100 W) and titanium-doped zinc oxide thin films (TZO, varying deposition powers) on glass substrates to form p(NiO)-n(TZO) heterojunction diodes with high transmittance. The structural, optical, and electrical properties of the TZO and NiO thin films and NiO/TZO heterojunction devices were investigated with scanning electron microscopy, X-ray diffraction (XRD) patterns, UV-visible spectroscopy, Hall effect analysis, and current-voltage (I-V) analysis. XRD analysis showed that only the (111) diffraction peak of NiO and the (002) and (004) diffraction peaks of TZO were observable in the NiO/TZO heterojunction devices, indicating that the TZO thin films showed a good c-axis orientation perpendicular to the glass substrates. When the sputtering deposition power for the TZO thin films was 100, 125, and 150 W, the I-V characteristics confirmed that a p-n junction characteristic was successfully formed in the NiO/TZO heterojunction devices. We show that the NiO/TZO heterojunction diode was dominated by the space-charge limited current theory. PMID:23634999

  16. Electrical and Optical Properties of Fluorine Doped Tin Oxide Thin Films Prepared by Magnetron Sputtering

    Directory of Open Access Journals (Sweden)

    Ziad Y. Banyamin

    2014-10-01

    Full Text Available Fluorine doped tin oxide (FTO coatings have been prepared using the mid-frequency pulsed DC closed field unbalanced magnetron sputtering technique in an Ar/O2 atmosphere using blends of tin oxide and tin fluoride powder formed into targets. FTO coatings were deposited with a thickness of 400 nm on glass substrates. No post-deposition annealing treatments were carried out. The effects of the chemical composition on the structural (phase, grain size, optical (transmission, optical band-gap and electrical (resistivity, charge carrier, mobility properties of the thin films were investigated. Depositing FTO by magnetron sputtering is an environmentally friendly technique and the use of loosely packed blended powder targets gives an efficient means of screening candidate compositions, which also provides a low cost operation. The best film characteristics were achieved using a mass ratio of 12% SnF2 to 88% SnO2 in the target. The thin film produced was polycrystalline with a tetragonal crystal structure. The optimized conditions resulted in a thin film with average visible transmittance of 83% and optical band-gap of 3.80 eV, resistivity of 6.71 × 10−3 Ω·cm, a carrier concentration (Nd of 1.46 × 1020 cm−3 and a mobility of 15 cm2/Vs.

  17. Fabrication of ATO/Graphene Multi-layered Transparent Conducting Thin Films

    Science.gov (United States)

    Li, Na; Chen, Fei; Shen, Qiang; Wang, Chuanbin; Zhang, Lianmeng

    2013-03-01

    A novel transparent conducting oxide based on the ATO/graphene multi-layered thin films has been developed to satisfy the application of transparent conductive electrode in solar cells. The ATO thin films are prepared by pulsed laser deposition method with high quality, namely the sheet resistance of 49.5 Ω/sq and average transmittance of 81.9 %. The prepared graphene sheet is well reduced and shows atomically thin, spotty distributed appearance on the top of the ATO thin films. The XRD and optical micrographs are used to confirm the successfully preparation of the ATO/graphene multi-layered thin films. The Hall measurements and UV-Vis spectrophotometer are conducted to evaluate the sheet resistance and optical transmittance of the innovative structure. It is found that graphene can improve the electrical properties of the ATO thin films with little influence on the optical transmittance.

  18. Fabrication of ATO/Graphene Multi-layered Transparent Conducting Thin Films

    International Nuclear Information System (INIS)

    Li Na; Chen Fei; Shen Qiang; Wang Chuanbin; Zhang Lianmeng

    2013-01-01

    A novel transparent conducting oxide based on the ATO/graphene multi-layered thin films has been developed to satisfy the application of transparent conductive electrode in solar cells. The ATO thin films are prepared by pulsed laser deposition method with high quality, namely the sheet resistance of 49.5 Ω/sq and average transmittance of 81.9 %. The prepared graphene sheet is well reduced and shows atomically thin, spotty distributed appearance on the top of the ATO thin films. The XRD and optical micrographs are used to confirm the successfully preparation of the ATO/graphene multi-layered thin films. The Hall measurements and UV-Vis spectrophotometer are conducted to evaluate the sheet resistance and optical transmittance of the innovative structure. It is found that graphene can improve the electrical properties of the ATO thin films with little influence on the optical transmittance.

  19. Ion irradiation as a tool for modifying the surface and optical properties of plasma polymerised thin films

    Energy Technology Data Exchange (ETDEWEB)

    Grant, Daniel S. [College of Science, Technology and Engineering, James Cook University, Townsville, Queensland 4811 (Australia); Bazaka, Kateryna [College of Science, Technology and Engineering, James Cook University, Townsville, Queensland 4811 (Australia); School of Chemistry, Physics, and Mechanical Engineering, Queensland University of Technology, Brisbane, Queensland 4000 (Australia); Siegele, Rainer [Institute for Environmental Research, Australian Nuclear Science and Technology Organisation, Lucas Heights, New South Wales 2234 (Australia); Holt, Stephen A. [Bragg Institute, Australian Nuclear Science and Technology Organisation, Lucas Heights, New South Wales 2234 (Australia); Jacob, Mohan V., E-mail: Mohan.Jacob@jcu.edu.au [College of Science, Technology and Engineering, James Cook University, Townsville, Queensland 4811 (Australia)

    2015-10-01

    Radio frequency (R.F.) glow discharge polyterpenol thin films were prepared on silicon wafers and irradiated with I{sup 10+} ions to fluences of 1 × 10{sup 10} and 1 × 10{sup 12} ions/cm{sup 2}. Post-irradiation characterisation of these films indicated the development of well-defined nano-scale ion entry tracks, highlighting prospective applications for ion irradiated polyterpenol thin films in a variety of membrane and nanotube-fabrication functions. Optical characterisation showed the films to be optically transparent within the visible spectrum and revealed an ability to selectively control the thin film refractive index as a function of fluence. This indicates that ion irradiation processing may be employed to produce plasma-polymer waveguides to accommodate a variety of wavelengths. XRR probing of the substrate-thin film interface revealed interfacial roughness values comparable to those obtained for the uncoated substrate’s surface (i.e., both on the order of 5 Å), indicating minimal substrate etching during the plasma deposition process.

  20. Regulating effect of SiO2 interlayer on optical properties of ZnO thin films

    International Nuclear Information System (INIS)

    Xu, Linhua; Zheng, Gaige; Miao, Juhong; Su, Jing; Zhang, Chengyi; Shen, Hua; Zhao, Lilong

    2013-01-01

    ZnO/SiO 2 nanocomposite films with periodic structure were prepared by electron beam evaporation technique. Regulating effect of SiO 2 interlayer with various thicknesses on the optical properties of ZnO/SiO 2 thin films was investigated deeply. The analyses of X-ray diffraction show that the ZnO layers in ZnO/SiO 2 nanocomposite films have a wurtzite structure and are preferentially oriented along the c-axis while the SiO 2 layers are amorphous. The scanning electron microscope images display that the ZnO layers are composed of columnar grains and the thicknesses of ZnO and SiO 2 layers are all very uniform. The SiO 2 interlayer presents a significant modulation effect on the optical properties of ZnO thin films, which is reflected in the following two aspects: (1) the transmittance of ZnO/SiO 2 nanocomposite films is increased; (2) the photoluminescence (PL) of ZnO/SiO 2 nanocomposite films is largely enhanced compared with that of pure ZnO thin films. The ZnO/SiO 2 nanocomposite films have potential applications in light-emitting devices and flat panel displays. -- Highlights: ► ZnO/SiO 2 nanocomposite films with periodic structure were prepared by electron beam evaporation technique. ► The SiO 2 interlayer presents a significant modulation effect on the optical properties of ZnO thin films. ► The photoluminescence of ZnO/SiO 2 nanocomposite films is largely enhanced compared with that of pure ZnO thin films. ► The ZnO/SiO 2 nanocomposite films have potential applications in light-emitting devices and flat panel displays

  1. Structure and optical band-gap energies of Ba0.5Sr0.5TiO3 thin films fabricated by RF magnetron plasma sputtering

    International Nuclear Information System (INIS)

    Xu, Zhimou; Suzuki, Masato; Yokoyama, Shin

    2005-01-01

    The structure and optical band-gap energies of Ba 0.5 Sr 0.5 TiO 3 (BST0.5) thin films prepared on SiO 2 /Si and fused quartz substrates by RF magnetron plasma sputtering were studied in terms of deposition temperature and film thickness. Highly (100)-oriented BST0.5 thin films were successfully sputtered on a Si substrate with an approximately 1.0-μm-thick SiO 2 layer at a deposition temperature of above 450degC. The optical transmittance of BST0.5 thin films weakly depended on the magnitude of X-ray diffraction (XRD) peak intensity. This is very helpful for monolithic integration of BST0.5 films for electrooptical functions directly onto a SiO 2 /Si substrate. The band-gap energies showed a strong dependence on the deposition temperature and film thickness. It was mainly related to the quantum size effect and the influence of the crystallinity of thin films, such as grain boundaries, grain size, oriented growth, and the existence of an amorphous phase. The band-gap energy values, which were much larger than those of single crystals, decreased with the increase in the deposition temperature and the thickness of BST0.5 thin films. The band-gap energy of 311-nm-thick amorphous BST0.5 thin film was about 4.45 eV and that of (100)-oriented BST0.5 thin film with a thickness of 447 nm was about 3.89 eV. It is believed that the dependence of the band-gap energies of the thin films on the crystallinity for various values of deposition temperature and film thickness means that there could be application in integrated optical devices. (author)

  2. New organic materials for optics: optical storage and nonlinear optics

    International Nuclear Information System (INIS)

    Gan, F.

    1996-01-01

    New organic materials have received considerable attention recently, due to their easy preparation and different variety. The most application fields in optics are optical storage and nonlinear optics. In optical storage the organic dyes have been used for example, in record able and erasable compact disks (CD-R, CD-E) nonlinear optical effects, such as nonlinear optical absorption, second and third order optical absorption, second and third order optical nonlinearities, can be applied for making optical limiters, optical modulators, as well as laser second and third harmonic generations. Due to high value of optical absorption and optical nonlinearity organic materials are always used as thin films in optical integration. In this paper the new experimental results have been presented, and future development has been also discussed. (author)

  3. Development of GUI Temperature Monitoring System based on Thin-Film Optical Filter

    Directory of Open Access Journals (Sweden)

    Hilal Adnan Fadhil

    2017-08-01

    Full Text Available Fiber optic sensors have progressed rapidly in recent year as because it has many advantages over other types of sensors in terms of freedom from electromagnetic radiation, wide bandwidth, economy, can withstand high temperature and under harsh environment. Due to those reason a thermo sensor based on fiber optic which utilizes a thin-film optical band-pass filter has been developed. However, the proposed system has advantages over the fiber Bragg grating sensor which can observe the temperature in small area and low transmission loss. The simulation software is used to design a Graphical User Interface (GUI. The GUI system allows the user to monitor the condition and the status of the current temperature. The monitoring system presented in this paper is divided into three basic sub-systems which are retrieve the real-time data system, displaying out the data system, and warning system. This GUI system used to collect the data and process the data for displaying the current data and further checking as a history data has been keep. The values obtained of thermo sensor are measured as 30°C till 330°C and the wavelength values are between 1552.93nm till 1557.25nm

  4. Optical properties of Ar ions irradiated nanocrystalline ZrC and ZrN thin films

    Energy Technology Data Exchange (ETDEWEB)

    Martin, C. [Ramapo College of New Jersey, Mahwah, NJ 07430 (United States); Miller, K.H. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Makino, H. [Research Institute, Kochi University of Technology, Kami, Kochi, 782-8502 (Japan); Craciun, D. [National Institute for Laser, Plasma, and Radiation Physics, Bucharest-Magurele (Romania); Simeone, D. [CEA/DEN/DANS/DM2S/SERMA/LEPP-LRC CARMEN CEN Saclay France & CNRS/ SPMS UMR8785 LRC CARMEN, Ecole Centrale de Paris, F92292, Chatenay Malabry (United States); Craciun, V., E-mail: valentin.craciun@inflpr.ro [National Institute for Laser, Plasma, and Radiation Physics, Bucharest-Magurele (Romania)

    2017-05-15

    Employing wide spectral range (0.06–6 eV) optical reflectance measurements and high energy X-ray photoemission spectroscopy (HE-XPS), we studied the effect of 800 keV Ar ion irradiation on optical and electronic properties of nanocrystalline ZrC and ZrN thin films, which were obtain by the pulsed laser deposition technique. Both in ZrC and ZrN, we observed that irradiation affects the optical properties of the films mostly at low frequencies, which is dominated by the free carriers response. In both materials, we found a significant reduction in the free carriers scattering rate and an increase of the zero frequency conductivity, i.e. possible increase in mobility, at higher irradiation fluence. This is consistent with our previous findings that irradiation affects the crystallite size and the micro-strain, but it does not induce major changes in the chemical bonding. HE-XPS investigations further confirms the stability of the Zr-C and Zr-N bonds, despite a small increase in the surface region of the Zr-O bonds fraction with increasing irradiation fluence.

  5. Plasmonic nanocomposite thin film enabled fiber optic sensors for simultaneous gas and temperature sensing at extreme temperatures.

    Science.gov (United States)

    Ohodnicki, Paul R; Buric, Michael P; Brown, Thomas D; Matranga, Christopher; Wang, Congjun; Baltrus, John; Andio, Mark

    2013-10-07

    Embedded sensors capable of operation in extreme environments including high temperatures, high pressures, and highly reducing, oxidizing and/or corrosive environments can make a significant impact on enhanced efficiencies and reduced greenhouse gas emissions of current and future fossil-based power generation systems. Relevant technologies can also be leveraged in a wide range of other applications with similar needs including nuclear power generation, industrial process monitoring and control, and aviation/aerospace. Here we describe a novel approach to embedded sensing under extreme temperature conditions by integration of Au-nanoparticle based plasmonic nanocomposite thin films with optical fibers in an evanescent wave absorption spectroscopy configuration. Such sensors can potentially enable simultaneous temperature and gas sensing at temperatures approaching 900-1000 °C in a manner compatible with embedded and distributed sensing approaches. The approach is demonstrated using the Au/SiO2 system deposited on silica-based optical fibers. Stability of optical fibers under relevant high temperature conditions and interactions with changing ambient gas atmospheres is an area requiring additional investigation and development but the simplicity of the sensor design makes it potentially cost-effective and may offer a potential for widespread deployment.

  6. Ellipsometric analysis and optical absorption characterization of gallium phosphide nanoparticulate thin film

    International Nuclear Information System (INIS)

    Zhang Qi-Xian; Ruan Fang-Ping; Wei Wen-Sheng

    2011-01-01

    Gallium phosphide (GaP) nanoparticulate thin films were easily fabricated by colloidal suspension deposition via GaP nanoparticles dispersed in N,N-dimethylformamide. The microstructure of the film was performed by x-ray diffraction, high resolution transmission electron microscopy and field emission scanning electron microscopy. The film was further investigated by spectroscopic ellipsometry. After the model GaP+void|SiO 2 was built and an effective medium approximation was adopted, the values of the refractive index n and the extinction coefficient k were calculated for the energy range of 0.75 eV–4.0 eV using the dispersion formula in DeltaPsi2 software. The absorption coefficient of the film was calculated from its k and its energy gaps were further estimated according to the Tauc equation, which were further verified by its fluorescence spectrum measurement. The structure and optical absorption properties of the nanoparticulate films are promising for their potential applications in hybrid solar cells. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  7. Studies on morphology, electrical and optical characteristics of Al-doped ZnO thin films grown by atomic layer deposition

    Science.gov (United States)

    Chen, Li; Chen, Xinliang; Zhou, Zhongxin; Guo, Sheng; Zhao, Ying; Zhang, Xiaodan

    2018-03-01

    Al doped ZnO (AZO) films deposited on glass substrates through the atomic layer deposition (ALD) technique are investigated with various temperatures from 100 to 250 °C and different Zn : Al cycle ratios from 20 : 0 to 20 : 3. Surface morphology, structure, optical and electrical properties of obtained AZO films are studied in detail. The Al composition of the AZO films is varied by controlling the ratio of Zn : Al. We achieve an excellent AZO thin film with a resistivity of 2.14 × 10‑3 Ω·cm and high optical transmittance deposited at 150 °C with 20 : 2 Zn : Al cycle ratio. This kind of AZO thin films exhibit great potential for optoelectronics device application. Project supported by the State Key Development Program for Basic Research of China (Nos. 2011CBA00706, 2011CBA00707) and the Tianjin Applied Basic Research Project and Cutting-Edge Technology Research Plan (No. 13JCZDJC26900).

  8. SHI induced effects on the electrical and optical properties of HfO_2 thin films deposited by RF sputtering

    International Nuclear Information System (INIS)

    Manikanthababu, N.; Dhanunjaya, M.; Nageswara Rao, S.V.S.; Pathak, A.P.

    2016-01-01

    The continuous downscaling of Metal Oxide Semiconductor (MOS) devices has reached a limit with SiO_2 as a gate dielectric material. Introducing high-k dielectric materials as a replacement for the conservative SiO_2 is the only alternative to reduce the leakage current. HfO_2 is a reliable and an impending material for the wide usage as a gate dielectric in semiconductor industry. HfO_2 thin films were synthesized by RF sputtering technique. Here, we present a study of Swift Heavy Ion (SHI) irradiation with100 MeV Ag ions for studying the optical properties as well as 80 MeV Ni ions for studying the electrical properties of HfO_2/Si thin films. Rutherford Backscattering Spectrometry (RBS), Field Emission Scanning Electron Microscope (FESEM), energy-dispersive X-ray spectroscopy (EDS), profilometer and I–V (leakage current) measurements have been employed to study the SHI induced effects on both the structural, electrical and optical properties.

  9. A method for the detection of alcohol vapours based on optical sensing of magnesium 5,10,15,20-tetraphenyl porphyrin thin film by an optical spectrometer and principal component analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kladsomboon, Sumana [Department of Physics and Center of Nanoscience and Nanotechnology, Faculty of Science, Mahidol University, Bangkok 10400 (Thailand); Kerdcharoen, Teerakiat, E-mail: teerakiat.ker@mahidol.ac.th [Department of Physics and Center of Nanoscience and Nanotechnology, Faculty of Science, Mahidol University, Bangkok 10400 (Thailand); NANOTEC Center of Excellence at Mahidol University, National Nanotechnology Center (Thailand)

    2012-12-13

    Highlights: Black-Right-Pointing-Pointer We prepared magnesium porphyrin thin film as optical sensing materials. Black-Right-Pointing-Pointer UV-vis spectrometer was modified to perform as optical artificial nose. Black-Right-Pointing-Pointer Change in optical absorption at various spectral regions is used as a sensor array. Black-Right-Pointing-Pointer Principal component analysis was employed to discriminate alcohol vapours. - Abstract: In this work we have proposed a method for the detection of alcohol vapours, i.e. methanol, ethanol and isopropanol, based on the optical sensing response of magnesium 5,10,15,20-tetraphenyl porphyrin (MgTPP) thin films, as measured by optical spectrometry with the assistance of chemometric analysis. We have implemented a scheme which allows a laboratory UV-vis spectrometer to act as a so-called 'electronic nose' with very little modification. MgTPP thin films were prepared by a spin coating technique, using chloroform as the solvent, and then subjected to thermal annealing at 280 Degree-Sign C in an argon atmosphere. These MgTPP optical gas sensors presented significant responses with methanol compared to ethanol and isopropanol, based on the dynamic flow of alcohol vapours at the same mol% of alcohol concentration. Density functional theory (DFT) calculations were performed to model the underlying mechanism of this selectivity. The performance of the optical gas sensors was optimised by varying the fabrication parameters. It is hoped that the MgTPP thin film together with an off-the-shelf optical spectrometer and a simple chemometrics algorithm can be a valuable tool for the analysis of alcoholic content in the beverage industry.

  10. Changes of optical, dielectric, and structural properties of Si15Sb85 phase change memory thin films under different initializing laser power

    International Nuclear Information System (INIS)

    Huang Huan; Zhang Lei; Wang Yang; Han Xiaodong; Wu Yiqun; Zhang Ze; Gan Fuxi

    2011-01-01

    Research highlights: → We study the optical, dielectric, and structural characteristics of Si 15 Sb 85 phase change memory thin films under a moving continuous-wave laser initialization. → The optical and dielectric constants, absorption coefficient of Si 15 Sb 85 change regularly with the increasing laser power. → The optical band gaps of Si 15 Sb 85 irradiated upon different power lasers were calculated. → HRTEM images of the samples were observed and the changes of optical and dielectric constants are determined by crystalline structures changes of the films. - Abstract: The optical, dielectric, and structural characteristics of Si 15 Sb 85 phase change memory thin films under a moving continuous-wave laser initialization are studied by using spectroscopic ellipsometry and high-resolution transmission electron microscopy. The dependence of complex refractive index, dielectric functions, absorption coefficient, and optical band gap of the films on its crystallization extents formed by the different initialization laser power are analyzed in detail. The structural change from as-deposited amorphous phase to distorted rhombohedra-Sb-like crystalline structure with the increase of initialization laser power is clearly observed with sub-nanometer resolution. The optical and dielectric constants, the relationship between them, and the local atomic arrangements of this new phase change material can help explain the phase change mechanism and design the practical phase change memory devices.

  11. Modeling, fabrication and high power optical characterization of plasmonic waveguides

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei; Lysenko, Oleg

    2015-01-01

    This paper describes modeling, fabrication and high power optical characterization of thin gold films embedded in silicon dioxide. The propagation vector of surface plasmon polaritons has been calculated by the effective index method for the wavelength range of 750-1700 nm and film thickness of 15......, 30 and 45 nm. The fabrication process of such plasmonic waveguides with width in the range of 1-100 μm and their quality inspection are described. The results of optical characterization of plasmonic waveguides using a high power laser with the peak power wavelength 1064 nm show significant deviation...... from the linear propagation regime of surface plasmon polaritons at the average input power of 100 mW and above. Possible reasons for this deviation are heating of the waveguides and subsequent changes in the coupling and propagation losses....

  12. Extraction of optical parameters of thin films from spectral measurements for design and optical performance of multilayer structures

    International Nuclear Information System (INIS)

    Muellerova, J.; Jurecka, S.; Kucerova, A.

    2003-01-01

    Optical parameters of a-Si:H and indium tin oxide (ITO) thin films deposited on glass substrates are determined from spectral measurements of reflectance and/or transmittance. It is shown how important the exact knowledge of optical parameters as well as thicknesses of the layers for the design and the optical performance of multilayer structures is. The model of the p-i-n based a:Si-H solar cell with ITO as transparent conductive oxide layer is used for illustrating. The modeling of the solar cell integral reflectance in the spectral region of (650-830) nm is used as a criterion to reverse engineering of a multilayer structure with suppressed reflectance losses. The reflectance of a solar cell is modelled and the simulation of the varying optical parameters of individual layers including their thicknesses is discussed. Besides this,the advantage of using an antireflective layer under ITO is discussed (Authors)

  13. Passive optical limiting studies of nanostructured Cu doped ZnO-PVA composite thin films

    Science.gov (United States)

    Tamgadge, Y. S.; Sunatkari, A. L.; Talwatkar, S. S.; Pahurkar, V. G.; Muley, G. G.

    2016-01-01

    We prepared undoped and Cu doped ZnO semiconducting nanoparticles (NPs) by chemical co-precipitation method and obtained Cu doped ZnO-polyvinyl alcohol (PVA) nanocomposite thin films by spin coating to investigate third order nonlinear optical and optical limiting properties under cw laser excitation. Powder samples of NPs were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive spectroscopy, transmission electron microscopy, ultraviolet-visible (UV-vis) and Fourier transform infrared spectroscopy. XRD pattern and FE-SEM micrograph revealed the presence of hexagonal wurtzite phase ZnO NPs having uniform morphology with average particle size of 20 nm. The presence of excitons and absorption peaks in the range 343-360 nm, revealed by UV-vis study, were attributed to excitons in n = 1 quantum state. Third order NLO properties of all composite thin films were investigated by He-Ne continuous wave (cw) laser of wavelength 632.8 nm using Z-scan technique. Thermally stimulated enhanced values of nonlinear refraction and absorption coefficients were obtained which may be attributed to self-defocusing effect, reverse saturable absorption, weak free carrier absorption and surface states properties originated from thermo optic effect. Optical limiting properties have been studied using cw diode laser of wavelength 808 nm and results are presented.

  14. Thin films for the manipulation of light

    International Nuclear Information System (INIS)

    Piegari, Angela; Sytchkova, Anna

    2015-01-01

    The manipulation of light is typically accomplished by a series of optical surfaces on which the incident beam is reflected, or through which the beam is transmitted. Thin film coatings help to modify the behavior of such surfaces for obtaining the desired result: antireflection coatings to reduce reflection losses, high-reflectance mirrors, filters to divide or combine beams of different wavelengths, and many other types. The amount of light that is transmitted or reflected depends on the optical parameters of the materials and on interference phenomena in thin-film structures. Dedicated software is available to design the proper coating for each requirement. There are several applications of optical thin films, many of them are useful in the everyday life, many others are dedicated to scientific purposes, as will be described in this paper [it

  15. Optically thin core accretion: how planets get their gas in nearly gas-free discs

    Science.gov (United States)

    Lee, Eve J.; Chiang, Eugene; Ferguson, Jason W.

    2018-05-01

    Models of core accretion assume that in the radiative zones of accreting gas envelopes, radiation diffuses. But super-Earths/sub-Neptunes (1-4 R⊕, 2-20 M⊕) point to formation conditions that are optically thin: their modest gas masses are accreted from short-lived and gas-poor nebulae reminiscent of the transparent cavities of transitional discs. Planetary atmospheres born in such environments can be optically thin to both incident starlight and internally generated thermal radiation. We construct time-dependent models of such atmospheres, showing that super-Earths/sub-Neptunes can accrete their ˜1 per cent-by-mass gas envelopes, and super-puffs/sub-Saturns their ˜20 per cent-by-mass envelopes, over a wide range of nebular depletion histories requiring no fine tuning. Although nascent atmospheres can exhibit stratospheric temperature inversions affected by atomic Fe and various oxides that absorb strongly at visible wavelengths, the rate of gas accretion remains controlled by the radiative-convective boundary (rcb) at much greater pressures. For dusty envelopes, the temperature at the rcb Trcb ≃ 2500 K is still set by H2 dissociation; for dust-depleted envelopes, Trcb tracks the temperature of the visible or thermal photosphere, whichever is deeper, out to at least ˜5 au. The rate of envelope growth remains largely unchanged between the old radiative diffusion models and the new optically thin models, reinforcing how robustly super-Earths form as part of the endgame chapter in disc evolution.

  16. Optical and electrical characteristics of plasma enhanced chemical vapor deposition boron carbonitride thin films derived from N-trimethylborazine precursor

    Energy Technology Data Exchange (ETDEWEB)

    Sulyaeva, Veronica S., E-mail: veronica@niic.nsc.ru [Department of Functional Materials Chemistry, Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090 (Russian Federation); Kosinova, Marina L.; Rumyantsev, Yurii M.; Kuznetsov, Fedor A. [Department of Functional Materials Chemistry, Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090 (Russian Federation); Kesler, Valerii G. [Laboratory of Physical Principles for Integrated Microelectronics, Rzhanov Institute of Semiconductor Physics SB RAS, Novosibirsk 630090 (Russian Federation); Kirienko, Viktor V. [Laboratory of Nonequilibrium Semiconductors Systems, Rzhanov Institute of Semiconductor Physics SB RAS, Novosibirsk 630090 (Russian Federation)

    2014-05-02

    Thin BC{sub x}N{sub y} films have been obtained by plasma enhanced chemical vapor deposition using N-trimethylborazine as a precursor. The films were deposited on Si(100) and fused silica substrates. The grown films were characterized by ellipsometry, Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray energy dispersive spectroscopy, X-ray photoelectron spectroscopy, spectrophotometry, capacitance–voltage and current–voltage measurements. The deposition parameters, such as substrate temperature (373–973 K) and gas phase composition were varied. Low temperature BC{sub x}N{sub y} films were found to be high optical transparent layers in the range of 300–2000 nm, the transmittance as high as 93% has been achieved. BC{sub x}N{sub y} layers are dielectrics with dielectric constant k = 2.2–8.9 depending on the synthesis conditions. - Highlights: • Thin BC{sub x}N{sub y} films have been obtained by plasma enhanced chemical vapor deposition. • N-trimethylborazine was used as a precursor. • Low temperature BC{sub x}N{sub y} films were found to be high optical transparent layers (93%). • BC{sub x}N{sub y} layers are dielectrics with dielectric constant k = 2.2–8.9.

  17. Optical excitations in small particles and thin films

    International Nuclear Information System (INIS)

    Fuchs, R.

    1980-01-01

    The method of local optics can be used for calculating absorption and scattering of light by a small particle or a thin film. One writes D(r,ω) = epsilon (ω)E(r,ω), and solves Maxwell's equations using standard boundary conditions. A more exact approach is to use a nonlocal dielectric constant epsilon (r-r',ω), which is the same as that of the bulk material, in the expression: D(r,ω) = ∫ epsilon (r-r',ω)E(r',ω)d 3 r'. In such a theory one disregards the modification of the dielectric constant near the surface, and the surface is taken into account approximately by introducing appropriate additional boundary conditions. A still more microscopic or exact method, applicable to a metal, is to write the equation using a dielectric constant epsilon (r,r',ω) which depends on r and r' separately. This dielectric tensor contains information about the modified response near the surface, and includes effects of surface states. Another method, applicable to infrared properties on ionic crystals, relates the optical properties to the normal mode eigenvectors and eigenvalues

  18. RESEARCH ON THE ELECTRONIC AND OPTICAL PROPERTIES OF POLYMER AND OTHER ORGANIC MOLECULAR THIN FILMS

    Energy Technology Data Exchange (ETDEWEB)

    ALEXEI G. VITUKHNOVSKY; IGOR I. SOBELMAN - RUSSIAN ACADEMY OF SCIENCES

    1995-09-06

    Optical properties of highly ordered films of poly(p-phenylene) (PPP) on different substrates, thin films of mixtures of conjugated polymers, of fullerene and its composition with polymers, molecular J-aggregates of cyanine dyes in frozen matrices have been studied within the framework of the Agreement. Procedures of preparation of high-quality vacuum deposited PPP films on different substrates (ITO, Si, GaAs and etc.) were developed. Using time-correlated single photon counting technique and fluorescence spectroscopy the high quality of PPP films has been confirmed. Dependence of structure and optical properties on the conditions of preparation were investigated. The fluorescence lifetime and spectra of highly oriented vacuum deposited PPP films were studied as a function of the degree of polymerization. It was shown for the first time that the maximum fluorescence quantum yield is achieved for the chain length approximately equal to 35 monomer units. The selective excitation of luminescence of thin films of PPP was performed in the temperature range from 5 to 300 K. The total intensity of luminescence monotonically decreases with decreasing temperature. Conditions of preparation of highly cristallyne fullerene C{sub 60} films by the method of vacuum deposition were found. Composites of C{sub 60} with conjugated polymers PPV and polyacetylene (PA) were prepared. The results on fluorescence quenching, IR and resonant Raman spectroscopy are consistent with earlier reported ultrafast photoinduced electron transfer from PPV to C{sub 60} and show that the electron transfer is absent in the case of the PA-C{sub 60} composition. Strong quenching of PPV fluorescence was observed in the PPV-PA blends. The electron transfer from PPV to PA can be considered as one of the possible mechanisms of this quenching. The dynamics of photoexcitations in different types of J-aggregates of the carbocyanine dye was studied at different temperatures in frozen matrices. The optical

  19. Highly transparent and conductive Al-doped ZnO nanoparticulate thin films using direct write processing

    International Nuclear Information System (INIS)

    Vunnam, S; Ankireddy, K; Kellar, J; Cross, W

    2014-01-01

    Solution processable Al-doped ZnO (AZO) thin films are attractive candidates for low cost transparent electrodes. We demonstrate here an optimized nanoparticulate ink for the fabrication of AZO thin films using scalable, low-cost direct write processing (ultrasonic spray deposition) in air at atmospheric pressure. The thin films were made via thermal processing of as-deposited films. AZO films deposited using the proposed nanoparticulate ink with further reducing in vacuum and rf plasma of forming gas exhibited optical transparency greater than 95% across the visible spectrum, and electrical resistivity of 0.5 Ω cm and it drops down to 7.0 × 10 −2 Ω cm after illuminating with UV light, which is comparable to commercially available tin doped indium oxide colloidal coatings. Various structural analyses were performed to investigate the influence of ink chemistry, deposition parameters, and annealing temperatures on the structural, optical, and electrical characteristics of the spray deposited AZO thin films. Optical micrographs confirmed the presence of surface defects and cracks using the AZO NPs ink without any additives. After adding N-(2-Aminoethyl)-3-aminopropylmethyldimethoxy silane to the ink, AZO films exhibited an optical transparency which was virtually identical to that of the plain glass substrate. (papers)

  20. Quenching of surface traps in Mn doped ZnO thin films for enhanced optical transparency

    International Nuclear Information System (INIS)

    Ilyas, Usman; Rawat, R.S.; Roshan, G.; Tan, T.L.; Lee, P.; Springham, S.V.; Zhang, Sam; Fengji Li; Chen, R.; Sun, H.D.

    2011-01-01

    The structural and photoluminescence analyses were performed on un-doped and Mn doped ZnO thin films grown on Si (1 0 0) substrate by pulsed laser deposition (PLD) and annealed at different post-deposition temperatures (500-800 deg. C). X-ray diffraction (XRD), employed to study the structural properties, showed an improved crystallinity at elevated temperatures with a consistent decrease in the lattice parameter 'c'. The peak broadening in XRD spectra and the presence of Mn 2p3/2 peak at ∼640 eV in X-ray Photoelectron Spectroscopic (XPS) spectra of the doped thin films confirmed the successful incorporation of Mn in ZnO host matrix. Extended near band edge emission (NBE) spectra indicated the reduction in the concentration of the intrinsic surface traps in comparison to the doped ones resulting in improved optical transparency. Reduced deep level emission (DLE) spectra in doped thin films with declined PL ratio validated the quenching of the intrinsic surface traps thereby improving the optical transparency and the band gap, essential for optoelectronic and spintronic applications. Furthermore, the formation and uniform distribution of nano-sized grains with improved surface features of Mn-doped ZnO thin films were observed in Field Emission Scanning Electron Microscopy (FESEM) images.

  1. Thin Film Packaging Solutions for High Efficiency OLED Lighting Products

    Energy Technology Data Exchange (ETDEWEB)

    None

    2008-06-30

    The objective of the 'Thin Film Packaging Solutions for High Efficiency OLED Lighting Products' project is to demonstrate thin film packaging solutions based on SiC hermetic coatings that, when applied to glass and plastic substrates, support OLED lighting devices by providing longer life with greater efficiency at lower cost than is currently available. Phase I Objective: Demonstrate thin film encapsulated working phosphorescent OLED devices on optical glass with lifetime of 1,000 hour life, CRI greater than 75, and 15 lm/W. Phase II Objective: Demonstrate thin film encapsulated working phosphorescent OLED devices on plastic or glass composite with 25 lm/W, 5,000 hours life, and CRI greater than 80. Phase III Objective: Demonstrate 2 x 2 ft{sup 2} thin film encapsulated working phosphorescent OLED with 40 lm/W, 10,000 hour life, and CRI greater than 85. This report details the efforts of Phase III (Budget Period Three), a fourteen month collaborative effort that focused on optimization of high-efficiency phosphorescent OLED devices and thin-film encapsulation of said devices. The report further details the conclusions and recommendations of the project team that have foundation in all three budget periods for the program. During the conduct of the Thin Film Packaging Solutions for High Efficiency OLED Lighting Products program, including budget period three, the project team completed and delivered the following achievements: (1) a three-year marketing effort that characterized the near-term and longer-term OLED market, identified customer and consumer lighting needs, and suggested prototype product concepts and niche OLED applications lighting that will give rise to broader market acceptance as a source for wide area illumination and energy conservation; (2) a thin film encapsulation technology with a lifetime of nearly 15,000 hours, tested by calcium coupons, while stored at 16 C and 40% relative humidity ('RH'). This encapsulation technology

  2. Study of copper doping effects on structural, optical and electrical properties of sprayed ZnO thin films

    International Nuclear Information System (INIS)

    Mhamdi, A.; Mimouni, R.; Amlouk, A.; Amlouk, M.; Belgacem, S.

    2014-01-01

    Highlights: • The sprayed Cu-doped ZnO thin layers films were well crystallised in hexagonal wurtzite phase. • Nanoncrystallites on clusters were observed whose density decreases especially at 2% Cu content. • This parallel circuit R–C represents the contribution of the grain boundaries delineating the oriented columnar microcrystallites along c-axis. - Abstract: Copper-doped zinc oxide thin films (ZnO:Cu) at different percentages (1–3%) were deposited on glass substrates using a chemical spray technique. The effect of Cu concentration on the structural, morphology and optical properties of the ZnO:Cu thin films were investigated. XRD analysis revealed that all films consist of single phase ZnO and were well crystallised in würtzite phase with the crystallites preferentially oriented towards (0 0 2) direction parallel to c-axis. The Film surface was analyzed by contact atomic force microscopy (AFM) in order to understand the effect of the doping on the surface structure. Doping by copper resulted in a slight decrease in the optical band gap energy of the films and a noticeably change in optical constants. From the spectroscopy impedance analysis we investigated the frequency relaxation phenomenon and the circuit equivalent circuit of such thin layers. Finally, all results have been discussed in terms of the copper doping concentration

  3. Morphological, structural and optical properties of ZnO thin films deposited by dip coating method

    Energy Technology Data Exchange (ETDEWEB)

    Marouf, Sara; Beniaiche, Abdelkrim; Guessas, Hocine, E-mail: aziziamor@yahoo.fr [Laboratoire des Systemes Photoniques et Optiques Non Lineaires, Institut d' Optique et Mecanique de Precision, Universite Ferhat Abbas-Setif 1, Setif (Algeria); Azizi, Amor [Laboratoire de Chimie, Ingenierie Moleculaire et Nanostructures, Universite Ferhat Abbas-Setif 1, Setif (Algeria)

    2017-01-15

    Zinc oxide (ZnO) thin films were deposited on glass substrate by dip coating technique. The effects of sol aging time on the deposition of ZnO films was studied by using the field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), and optical transmission techniques. The morphology of the films strongly depends on preparation route and deposition technique. It is noteworthy that films deposited from the freshly prepared solution feature indistinct characteristics; had relatively poor crystalline quality and low optical transmittance in the visible region. The increase in sol aging time resulted in a gradual improvement in crystallinity (in terms of peak sharpness and peak intensity) of the hexagonal phase for all diffraction peaks. Effect of sol aging on optical transparency is quite obvious through increased transmission with prolonged sol aging time. Interestingly, 72-168 h sol aging time was found to be optimal to achieve smooth surface morphology, good crystallinity and high optical transmittance which were attributed to an ideal stability of solution. These findings present a better-defined and more versatile procedure for production of clean ZnO sols of readily adjustable nanocrystalline size. (author)

  4. Enhanced optical band-gap of ZnO thin films by sol-gel technique

    Energy Technology Data Exchange (ETDEWEB)

    Raghu, P., E-mail: dpr3270@gmail.com; Naveen, C. S.; Shailaja, J.; Mahesh, H. M., E-mail: hm-mahesh@rediffmail.com [Thin Film and Solar Cell Laboratory, Department of Electronic Science, Bangalore University, Jnanabharathi, Bangalore -560056 (India)

    2016-05-06

    Transparent ZnO thin films were prepared using different molar concentration (0.1 M, 0.2 M & 0.8 M) of zinc acetate on soda lime glass substrates by the sol-gel spin coating technique. The optical properties revealed that the transmittance found to decrease with increase in molar concentration. Absorption edge showed that the higher concentration film has increasingly red shifted. An increased band gap energy of the thin films was found to be direct allowed transition of ∼3.9 eV exhibiting their relevance for photovoltaic applications. The extinction coefficient analysis revealed maximum transmittance with negligible absorption coefficient in the respective wavelengths. The results of ZnO thin film prepared by sol-gel technique reveal its suitability for optoelectronics and as a window layer in solar cell applications.

  5. Influence of Al doping on structural and optical properties of Mg–Al co-doped ZnO thin films prepared by sol–gel method

    International Nuclear Information System (INIS)

    Fang, Dongyu; Lin, Kui; Xue, Tao; Cui, Can; Chen, Xiaoping; Yao, Pei; Li, Huijun

    2014-01-01

    Highlights: • Mg–Al co-doped ZnO thin films were prepared by sol–gel spin coating method. • The effects of Al doping on structural and optical properties of AMZO thin films were investigated. • The EDS spectra confirmed presence of Mg and Al elements in AMZO thin films. • The optical band gap of AMZO thin films increased with Al doping concentration increased. • The origin of the photoluminescence emissions was discussed. -- Abstract: Mg–Al co-doped ZnO (AMZO) thin films were successfully deposited onto quartz glass substrates by sol–gel spin coating method. The structure, surface morphology, composition, optical transmittance, and photoluminescence properties of AMZO thin films were characterized through X-ray diffraction, scanning electron microscopy with energy dispersive X-ray spectroscopy (EDS), transmission electron microscopy, UV–VIS–NIR spectrophotometry, and fluorescence spectrophotometry. The results indicated that AMZO thin films exhibited preferred orientation growth along the c-axis, and the full width at half maximum of the (0 0 2) diffraction peak decreased first and subsequently increased, reaching a minimum of approximately 0.275° at 3% Al content. The calculated crystallite size increased from 30.21 nm to 40.73 nm. Al doping content increased from 1% to 3% and subsequently reached 19.33 nm for Al doping content at 5%. The change in lattice parameters was demonstrated by the c/a ratio, residual stress, bond length, and volume per unit cell. EDS analysis confirmed the presence of Mg and Al elements in ZnO thin films. The atomic percentage of Mg and Al elements was nearly equal to their nominal stoichiometry within the experimental error. In addition, the optical transmittance of AMZO thin films was over 85% in the visible region, and the optical band gap increased with increasing Al doping concentration. Room temperature photoluminescence showed ultraviolet emission peak and defect emission peak. The defect emission peak of

  6. Evaluation of Retinal Nerve Fiber Layer Thinning in Myopic Glaucoma: Impact of Optic Disc Morphology.

    Science.gov (United States)

    Na, Kyeong Ik; Lee, Won June; Kim, Young Kook; Park, Ki Ho; Jeoung, Jin Wook

    2017-12-01

    The purpose of this study was to investigate the role of optic disc torsion on the rate of progressive retinal nerve fiber layer (RNFL) thinning in patients with myopic open-angle glaucoma. We included 102 patients with myopic open-angle glaucoma accompanied by glaucomatous damage confined to a single hemiretina who were followed up over a 5-year period. We divided the subjects into three groups according to the presence or absence of optic disc torsion and the correspondence between the direction of optic disc torsion and the location of glaucomatous damage: torsion with reverse correspondence group (eyes showing inferior optic disc torsion with glaucomatous damage in the superior quadrant or eyes showing superior torsion with damage in the inferior quadrant), no torsion group, and torsion with correspondence group (eyes showing inferior optic disc torsion with glaucomatous damage in the inferior quadrant or eyes showing superior torsion with damage in the superior quadrant). Changes in the peripapillary RNFL thickness (pRNFLT), evaluated using linear mixed model analysis, were compared among the three groups to determine the relationship between optic disc torsion and pRNFLT changes. Among the total of 102 subjects, 13 eyes (12.7%) exhibited optic disc torsion with reverse correspondence, 59 (57.8%) did not exhibit optic disc torsion, and 30 (29.4%) exhibited optic disc torsion with correspondence. pRNFL thinning in the quadrant with glaucomatous damage was significantly faster in the torsion with correspondence group (-1.66 μm/y) than those in the no torsion (-1.14 μm/y; P = 0.032) and torsion with reverse correspondence (-0.50 μm/y; P optic disc torsion-glaucomatous damage correspondence is an important prognostic factor for patients with myopic open-angle glaucoma.

  7. Effect of temperature on optical and structural properties of indium selenide thin films

    International Nuclear Information System (INIS)

    Asabe, M.R.; Manikshete, A.H.; Hankare, P.P.

    2013-01-01

    In 2 Se 3 thin film have been prepared for the first time by using a relatively simple chemical bath deposition technique at room temperature using indium chloride, tartaric acid, hydrazine hydrate and sodium selenosulphate in an aqueous alkaline medium. Various preparative conditions of thin film deposition are outlined. The films deposited at optimum preparative parameters are annealed at different temperatures. The as-deposited films those annealed at 100℃ and have been characterized by X-ray diffraction (XRD), Energy Dispersive Analysis by X-ray (EDAX), Optical absorption and scanning electron microscopy (SEM). The as grown films were found to be transparent, uniform, well adherent and brown in color. The XRD analysis of the as-deposited and annealed films shows the presence of polycrystalline nature in tetragonal crystal structure. EDAX study reveals that as-deposited films are almost stoichiometric while optical absorption study shows the presence of band gap for direct while optical absorption study shows the presence of band gap for direct transition at 2.35 and 2.10 eV respectively, for the as-deposited and annealed films. SEM study indicated the presence of uniformly distributed grains over the surface of substrate for the as-deposited as well as annealed film. (author)

  8. SHI induced effects on the electrical and optical properties of HfO{sub 2} thin films deposited by RF sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Manikanthababu, N.; Dhanunjaya, M.; Nageswara Rao, S.V.S.; Pathak, A.P., E-mail: appsp@uohyd.ernet.in

    2016-07-15

    The continuous downscaling of Metal Oxide Semiconductor (MOS) devices has reached a limit with SiO{sub 2} as a gate dielectric material. Introducing high-k dielectric materials as a replacement for the conservative SiO{sub 2} is the only alternative to reduce the leakage current. HfO{sub 2} is a reliable and an impending material for the wide usage as a gate dielectric in semiconductor industry. HfO{sub 2} thin films were synthesized by RF sputtering technique. Here, we present a study of Swift Heavy Ion (SHI) irradiation with100 MeV Ag ions for studying the optical properties as well as 80 MeV Ni ions for studying the electrical properties of HfO{sub 2}/Si thin films. Rutherford Backscattering Spectrometry (RBS), Field Emission Scanning Electron Microscope (FESEM), energy-dispersive X-ray spectroscopy (EDS), profilometer and I–V (leakage current) measurements have been employed to study the SHI induced effects on both the structural, electrical and optical properties.

  9. Compositional dependence of optical and electrical properties of indium doped zinc oxide (IZO) thin films deposited by chemical spray pyrolysis

    Science.gov (United States)

    Dintle, Lawrence K.; Luhanga, Pearson V. C.; Moditswe, Charles; Muiva, Cosmas M.

    2018-05-01

    The structural and optoelectronic properties of undoped and indium doped zinc oxide (IZO) thin films grown on glass substrates through a simple reproducible custom-made pneumatic chemical spray pyrolysis technique are presented. X-ray diffraction (XRD) results showed a polycrystalline structure of hexagonal wurtzite phase growing preferentially along the (002) plane for the undoped sample. Increase in dopant content modified the orientation leading to more pronounced (100) and (101) reflections. Optical transmission spectra showed high transmittance of 80-90% in the visible range for all thin films. The optical band gap energy (Eg) was evaluated on the basis of the derivative of transmittance (dT/dλ) versus wavelength (λ) model and Tauc's extrapolation method in the region where the absorption coefficient, α ≥ 104 cm-1. The observed values of Eg were found to decrease generally with increasing In dopant concentration. From the figure of merit calculations a sample with 4 at.% In dopant concentration showed better optoelectronic properties.

  10. Study of structural and optical properties of PbS thin films

    Science.gov (United States)

    Homraruen, T.; Sudswasd, Y.; Sorod, R.; Kayunkid, N.; Yindeesuk, W.

    2018-03-01

    This research aimed to synthesize lead sulfide (PbS) thin films on glass slides using the successive ion layer absorption and reaction (SILAR) method. We studied the optical properties and structure of PbS thin films by changing the number of dipping cycles and the concentration of precursor solution. The results of this experiment show that different conditions have a considerable influence on the thickness and absorbance of the films. When the number of dipping cycles and the concentration of the solution are increased, film thickness and absorbance tend to become higher. The xrays diffraction pattern showed all the diffraction peaks which confirmed the face center cubic and the structure of PbS had identified. Grain size computation was used to confirm how much these conditions could be affected.

  11. Optical characteristics of the thin-film scintillator detector

    International Nuclear Information System (INIS)

    Muga, L.; Burnsed, D.

    1976-01-01

    A study of the thin-film detector (TFD) was made in which various light guide and scintillator film support configurations were tested for efficiency of light coupling. Masking of selected portions of the photomultiplier (PM) tube face revealed the extent to which emitted light was received at the exposed PM surfaces. By blocking off selected areas of the scintillator film surface from direct view of the PM tube faces, a measure of the light-guiding efficiency of the film and its support could be estimated. The picture that emerges is that, as the light which is initially trapped in the thin film spreads radially outward from the ion entrance/exit point, it is scattered out of the film by minute imperfections. Optimum signals were obtained by a configuration in which the thin scintillator film was supported on a thin rectangular Celluloid frame inserted within a highly polished metal cylindrical sleeve

  12. Optical and electrical properties of In-doped CdO thin films fabricated by pulse laser deposition

    International Nuclear Information System (INIS)

    Zheng, B.J.; Lian, J.S.; Zhao, L.; Jiang, Q.

    2010-01-01

    Transparent indium-doped cadmium oxide (In-CdO) thin films were deposited on quartz glass substrates by pulse laser deposition (PLD) from ablating Cd-In metallic target at a fixed pressure 10 Pa and a fixed substrate temperature 300 deg. C. The influences of indium concentrations in target on the microstructure, optical and electrical performances were studied. When the indium concentration reaches to 3.9 wt%, the as-deposited In-CdO film shows high optical transmission in visible light region, obviously enhanced direct band gap energy (2.97 eV), higher carrier concentration and lower electric resistivity compared with the undoped CdO film, while a further increase of indium concentration to 5.6 wt% induces the formation of In 2 O 3 , which reverse the variation of these parameters and performance.

  13. Glow discharge optical emission spectroscopy for accurate and well resolved analysis of coatings and thin films

    KAUST Repository

    Wilke, Marcus

    2011-12-01

    In the last years, glow discharge optical emission spectrometry (GDOES) gained more and more acceptance in the analysis of functional coatings. GDOES thereby represents an interesting alternative to common depth profiling techniques like AES and SIMS, based on its unique combination of high erosion rates and erosion depths, sensitivity, analysis of nonconductive layers and easy quantification even for light elements such as C, N, O and H. Starting with the fundamentals of GDOES, a short overview on new developments in instrument design for accurate and well resolved thin film analyses is presented. The article focuses on the analytical capabilities of glow discharge optical emission spectrometry in the analysis of metallic coatings and thin films. Results illustrating the high depth resolution, confirmation of stoichiometry, the detection of light elements in coatings as well as contamination on the surface or interfaces will be demonstrated by measurements of: a multilayer system Cr/Ti on silicon, interface contamination on silicon during deposition of aluminum, Al2O3-nanoparticle containing conversion coatings on zinc for corrosion resistance, Ti3SiC2 MAX-phase coatings by pulsed laser deposition and hydrogen detection in a V/Fe multilayer system. The selected examples illustrate that GDOES can be successfully adopted as an analytical tool in the development of new materials and coatings. A discussion of the results as well as of the limitations of GDOES is presented. © 2011 Elsevier B.V.

  14. Fabrication of high crystalline SnS and SnS2 thin films, and their switching device characteristics

    Science.gov (United States)

    Choi, Hyeongsu; Lee, Jeongsu; Shin, Seokyoon; Lee, Juhyun; Lee, Seungjin; Park, Hyunwoo; Kwon, Sejin; Lee, Namgue; Bang, Minwook; Lee, Seung-Beck; Jeon, Hyeongtag

    2018-05-01

    Representative tin sulfide compounds, tin monosulfide (SnS) and tin disulfide (SnS2) are strong candidates for future nanoelectronic devices, based on non-toxicity, low cost, unique structures and optoelectronic properties. However, it is insufficient for synthesizing of tin sulfide thin films using vapor phase deposition method which is capable of fabricating reproducible device and securing high quality films, and their device characteristics. In this study, we obtained highly crystalline SnS thin films by atomic layer deposition and obtained highly crystalline SnS2 thin films by phase transition of the SnS thin films. The SnS thin film was transformed into SnS2 thin film by annealing at 450 °C for 1 h in H2S atmosphere. This phase transition was confirmed by x-ray diffractometer and x-ray photoelectron spectroscopy, and we studied the cause of the phase transition. We then compared the film characteristics of these two tin sulfide thin films and their switching device characteristics. SnS and SnS2 thin films had optical bandgaps of 1.35 and 2.70 eV, and absorption coefficients of about 105 and 104 cm‑1 in the visible region, respectively. In addition, SnS and SnS2 thin films exhibited p-type and n-type semiconductor characteristics. In the images of high resolution-transmission electron microscopy, SnS and SnS2 directly showed a highly crystalline orthorhombic and hexagonal layered structure. The field effect transistors of SnS and SnS2 thin films exhibited on–off drain current ratios of 8.8 and 2.1 × 103 and mobilities of 0.21 and 0.014 cm2 V‑1 s‑1, respectively. This difference in switching device characteristics mainly depends on the carrier concentration because it contributes to off-state conductance and mobility. The major carrier concentrations of the SnS and SnS2 thin films were 6.0 × 1016 and 8.7 × 1013 cm‑3, respectively, in this experiment.

  15. Determination of the Optical GAP in Thin Films of Amorphous Dilithium Phthalocyanine Using the Tauc and Cody Models

    Directory of Open Access Journals (Sweden)

    Jerry N. Reider-Burstin

    2012-08-01

    Full Text Available Semiconducting thin films were grown on quartz substrates and crystalline silicon wafers, using dilithium phthalocyanine and the organic ligands 2,6-dihydroxyanthraquinone and 2,6-diaminoanthraquinone as the starting compounds. The films, thus obtained, were characterized by Fourier Transform infrared (FTIR, fast atomic bombardment (FAB+ mass and ultraviolet-visible (UV-Vis spectroscopies. The surface morphology of these films was analyzed by means of atomic force microscopy (AFM and scanning electron microscopy (SEM. It was found that the temperature-dependent electric current in all cases showed a semiconductor behavior with conductivities on the order of 10−6·S cm−1, whereas the highest value corresponded to the thin film based upon the bidentate amine. The Tauc and Cody optical band gap values of thin films were calculated from the absorption coefficients and were found to be around 1.5 eV, with another strong band between 2.3 and 2.43 eV, arising from non-direct transitions. The curvature in the Tauc plot influencing the determination of the optical gap, the Tauc optical gap corresponding to the thicker film is smaller. The dependence of the Cody optical gap on the film thickness was negligible.

  16. Metamorphosis of strain/stress on optical band gap energy of ZAO thin films via manipulation of thermal annealing process

    International Nuclear Information System (INIS)

    Malek, M.F.; Mamat, M.H.; Musa, M.Z.; Soga, T.; Rahman, S.A.; Alrokayan, Salman A.H.; Khan, Haseeb A.; Rusop, M.

    2015-01-01

    We report on the growth of Al-doped ZnO (ZAO) thin films prepared by the sol–gel technique associated with dip-coating onto Corning 7740 glass substrates. The influence of varying thermal annealing (T a ) temperature on crystallisation behaviour, optical and electrical properties of ZAO films has been systematically investigated. All films are polycrystalline with a hexagonal wurtzite structure with a preferential orientation according to the direction 〈0 0 2〉. The metamorphosis of strain/stress effects in ZAO thin films has been investigated using X-ray diffraction. The as growth films have a large compressive stress of 0.55 GPa, which relaxed to 0.25 GPa as the T a was increased to 500 °C. Optical parameters such as optical transmittance, absorption coefficient, refractive index and optical band gap energy have been studied and discussed with respect to T a . All films exhibit a transmittance above 80–90% along the visible–NIR range up to 1500 nm and a sharp absorption onset below 400 nm corresponding to the fundamental absorption edge of ZnO. Experimental results show that the tensile stress in the films reveals an incline pattern with the optical band gap energy, while the compressive stress shows opposite relation. - Highlights: • Minimum stress of highly c-axis oriented ZAO was grown at suitable T a temperature. • The ZAO crystal orientation was influenced by strain/stress of the film. • Minimum stress/strain of ZAO film leads to lower defects. • Bandgap and defects were closely intertwined with strain/stress. • We report additional optical and electrical properties based on T a temperature

  17. Metamorphosis of strain/stress on optical band gap energy of ZAO thin films via manipulation of thermal annealing process

    Energy Technology Data Exchange (ETDEWEB)

    Malek, M.F., E-mail: firz_solarzelle@yahoo.com [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); NANO-SciTech Centre (NST), Institute of Science (IOS), Universiti Teknologi MARA UiTM, 40450 Shah Alam, Selangor (Malaysia); Mamat, M.H. [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); Musa, M.Z. [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM) Pulau Pinang, Jalan Permatang Pauh, 13500 Permatang Pauh, Pulau Pinang (Malaysia); Soga, T. [Department of Frontier Materials, Nagoya Institute of Technology (NITech), Nagoya 466-8555 (Japan); Rahman, S.A. [Low Dimensional Materials Research Centre (LDMRC), Department of Physics, Faculty of Science, Universiti Malaya (UM), 50603 Kuala Lumpur (Malaysia); Alrokayan, Salman A.H.; Khan, Haseeb A. [Department of Biochemistry, College of Science, King Saud University (KSU), Riyadh 11451 (Saudi Arabia); Rusop, M. [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); NANO-SciTech Centre (NST), Institute of Science (IOS), Universiti Teknologi MARA UiTM, 40450 Shah Alam, Selangor (Malaysia)

    2015-04-15

    We report on the growth of Al-doped ZnO (ZAO) thin films prepared by the sol–gel technique associated with dip-coating onto Corning 7740 glass substrates. The influence of varying thermal annealing (T{sub a}) temperature on crystallisation behaviour, optical and electrical properties of ZAO films has been systematically investigated. All films are polycrystalline with a hexagonal wurtzite structure with a preferential orientation according to the direction 〈0 0 2〉. The metamorphosis of strain/stress effects in ZAO thin films has been investigated using X-ray diffraction. The as growth films have a large compressive stress of 0.55 GPa, which relaxed to 0.25 GPa as the T{sub a} was increased to 500 °C. Optical parameters such as optical transmittance, absorption coefficient, refractive index and optical band gap energy have been studied and discussed with respect to T{sub a}. All films exhibit a transmittance above 80–90% along the visible–NIR range up to 1500 nm and a sharp absorption onset below 400 nm corresponding to the fundamental absorption edge of ZnO. Experimental results show that the tensile stress in the films reveals an incline pattern with the optical band gap energy, while the compressive stress shows opposite relation. - Highlights: • Minimum stress of highly c-axis oriented ZAO was grown at suitable T{sub a} temperature. • The ZAO crystal orientation was influenced by strain/stress of the film. • Minimum stress/strain of ZAO film leads to lower defects. • Bandgap and defects were closely intertwined with strain/stress. • We report additional optical and electrical properties based on T{sub a} temperature.

  18. Electrical transport and optical band gap of NiFe2Ox thin films

    Science.gov (United States)

    Bougiatioti, Panagiota; Manos, Orestis; Klewe, Christoph; Meier, Daniel; Teichert, Niclas; Schmalhorst, Jan-Michael; Kuschel, Timo; Reiss, Günter

    2017-12-01

    We fabricated NiFe2Ox thin films on MgAl2O4(001) by reactive dc magnetron co-sputtering varying the oxygen partial pressure. The fabrication of a material with a variable oxygen deficiency leads to controllable electrical and optical properties which are beneficial for the investigations of the transport phenomena and could, therefore, promote the use of such materials in spintronic and spin caloritronic applications. We used several characterization techniques to investigate the film properties, focusing on their structural, magnetic, electrical, and optical properties. From the electrical resistivity, we obtained the conduction mechanisms that govern the systems in the high and low temperature regimes. We further extracted low thermal activation energies which unveil extrinsic transport mechanisms. The thermal activation energy decreases in the less oxidized samples revealing the pronounced contribution of a large amount of electronic states localized in the band gap to the electrical conductivity. The Hall coefficient is negative and decreases with increasing conductivity as expected for n-type conduction, while the Hall- and the drift mobilities show a large difference. The optical band gaps were determined via ultraviolet-visible spectroscopy. They follow a similar trend as the thermal activation energies, with lower band gap values in the less oxidized samples.

  19. Effect of Composition on Electrical and Optical Properties of Thin Films of Amorphous GaxSe100−x Nanorods

    Directory of Open Access Journals (Sweden)

    Abdallah El-Hamidy SM

    2010-01-01

    Full Text Available Abstract We report the electrical and optical studies of thin films of a-GaxSe100−x nanorods (x = 3, 6, 9 and 12. Thin films of a-GaxSe100−x nanorods have been synthesized thermal evaporation technique. DC electrical conductivity of deposited thin films of a-GaxSe100−x nanorods is measured as a function of temperature range from 298 to 383 K. An exponential increase in the dc conductivity is observed with the increase in temperature, suggesting thereby a semiconducting behavior. The estimated value of activation energy decreases on incorporation of dopant (Ga content in the Se system. The calculated value of pre-exponential factor (σ0 is of the order of 101 Ω−1 cm−1, which suggests that the conduction takes place in the band tails of localized states. It is suggested that the conduction is due to thermally assisted tunneling of the carriers in the localized states near the band edges. On the basis of the optical absorption measurements, an indirect optical band gap is observed in this system, and the value of optical band gap decreases on increasing Ga concentration.

  20. Cycloaddition in peptides for high-capacity optical storage

    DEFF Research Database (Denmark)

    Lohse, Brian; Berg, Rolf Henrik; Hvilsted, Søren

    2006-01-01

    Photodimerization of chromophores attached to a short peptide chain is investigated for high-capacity optical digital storage with UV lasers. The length and rigidity of the peptide chain assure an optimal distance and orientation of the chromophores for effective photodimerization. Using a theory...... developed by Tomlinson, the absorption cross section for the dimerization process in a uracil-ornithine-based hexamer is determined to be 9 x 10(-20) cm(2). A large change in the transmission due to irradiation in the UV area may make it possible to realize multilevel storage in a thin film of the peptides....

  1. Adaptive Optics System with Deformable Composite Mirror and High Speed, Ultra-Compact Electronics

    Science.gov (United States)

    Chen, Peter C.; Knowles, G. J.; Shea, B. G.

    2006-06-01

    We report development of a novel adaptive optics system for optical astronomy. Key components are very thin Deformable Mirrors (DM) made of fiber reinforced polymer resins, subminiature PMN-PT actuators, and low power, high bandwidth electronics drive system with compact packaging and minimal wiring. By using specific formulations of fibers, resins, and laminate construction, we are able to fabricate mirror face sheets that are thin (2 KHz. By utilizing QorTek’s proprietary synthetic impendence power supply technology, all the power, control, and signal extraction for many hundreds to 1000s of actuators and sensors can be implemented on a single matrix controller printed circuit board co-mounted with the DM. The matrix controller, in turn requires only a single serial bus interface, thereby obviating the need for massive wiring harnesses. The technology can be scaled up to multi-meter aperture DMs with >100K actuators.

  2. Magneto-optical and magnetic properties in a Co/Pd multilayered thin film

    Energy Technology Data Exchange (ETDEWEB)

    Nwokoye, Chidubem A. [Institute for Magnetics Research, Department of Electrical and Computer Engineering, The George Washington University, DC 20052 (United States); Naval Air Systems Command, Avionics, Sensors and E*Warfare Department, Patuxent River, MD 20670 (United States); Bennett, Lawrence H., E-mail: lbennett@gwu.edu [Institute for Magnetics Research, Department of Electrical and Computer Engineering, The George Washington University, DC 20052 (United States); Della Torre, Edward, E-mail: edt@gwu.edu [Institute for Magnetics Research, Department of Electrical and Computer Engineering, The George Washington University, DC 20052 (United States); Ghahremani, Mohammadreza [Institute for Magnetics Research, Department of Electrical and Computer Engineering, The George Washington University, DC 20052 (United States); Narducci, Frank A. [Naval Air Systems Command, Avionics, Sensors and E*Warfare Department, Patuxent River, MD 20670 (United States)

    2017-01-01

    The paper describes investigation of ferromagnetism at low temperatures. We explored the magneto-optical properties, influenced by photon–magnon interactions, of a ferromagnetic Co/Pd multilayered thin film below and above the magnon Bose–Einstein Condensation (BEC) temperature. Analyses of SQUID and MOKE low temperature experimental results reveal a noticeable phase transition in both magnetic and magneto-optical properties of the material at the BEC temperature. - Highlights: • The results show the effect of a non-zero chemical potential on the magnetization. • The MOKE and SQUID results show a phase transition point at the same temperature. • Magnon BEC is a major influence of the observed phase transition temperature.

  3. Highly transparent ITO thin films on photosensitive glass: sol-gel synthesis, structure, morphology and optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Koroesi, Laszlo; Papp, Szilvia; Dekany, Imre [University of Szeged, Supramolecular and Nanostructured Materials Research Group of the Hungarian Academy of Sciences, Szeged (Hungary); Beke, Szabolcs [Italian Institute of Technology, Department of Nanophysics, Genova (Italy); Pecz, Bela; Horvath, Robert; Petrik, Peter; Agocs, Emil [Research Institute for Technical Physics and Materials Science, Budapest (Hungary)

    2012-05-15

    Conductive and highly transparent indium tin oxide (ITO) thin films were prepared on photosensitive glass substrates by the combination of sol-gel and spin-coating techniques. First, the substrates were coated with amorphous Sn-doped indium hydroxide, and these amorphous films were then calcined at 550 {sup circle} C to produce crystalline and electrically conductive ITO layers. The resulting thin films were characterized by means of scanning electron microscopy, UV-Vis spectroscopy, X-ray photoelectron spectroscopy and spectroscopic ellipsometry. The measurements revealed that the ITO films were composed of spherical crystallites around 20 nm in size with mainly cubic crystal structure. The ITO films acted as antireflection coatings increasing the transparency of the coated substrates compared to that of the bare supports. The developed ITO films with a thickness of {proportional_to}170-330 nm were highly transparent in the visible spectrum with sheet resistances of 4.0-13.7 k{omega}/sq. By coating photosensitive glass with ITO films, our results open up new perspectives in micro- and nano-technology, for example in fabricating conductive and highly transparent 3D microreactors. (orig.)

  4. Sol-gel synthesis and optical properties of titanium dioxide thin film

    Science.gov (United States)

    Ullah, Irfan; Khattak, Shaukat Ali; Ahmad, Tanveer; Saman; Ludhi, Nayab Ali

    2018-03-01

    The titanium dioxide (TiO2) is synthesized by sol-gel method using titanium-tetra-iso-propoxide (TTIP) as a starting material, and deposited on the pre-cleaned glass substrate using spin coating technique at optimized parameters. Energy dispersive X-ray (EDX) spectroscopy confirms successful TiO2 growth. The optical properties concerning the transmission and absorption spectra show 85% transparency and 3.28 eV wide optical band gap for indirect transition, calculated from absorbance. The exponential behavior of absorption edge is observed and attributed to the localized states electronic transitions, curtailed in the indirect band gap of the thin film. The film reveals decreasing refractive index with increasing wavelength. The photoluminescence (PL) study ascertains that luminescent properties are due to the surface defects.

  5. High mobility transparent conducting oxides for thin film solar cells

    International Nuclear Information System (INIS)

    Calnan, S.; Tiwari, A.N.

    2010-01-01

    A special class of transparent conducting oxides (TCO) with high mobility of > 65 cm 2 V -1 s -1 allows film resistivity in the low 10 -4 Ω cm range and a high transparency of > 80% over a wide spectrum, from 300 nm to beyond 1500 nm. This exceptional coincidence of desirable optical and electrical properties provides opportunities to improve the performance of opto-electronic devices and opens possibilities for new applications. Strategies to attain high mobility (HM) TCO materials as well as the current status of such materials based on indium and cadmium containing oxides are presented. Various concepts used to understand the underlying mechanisms for high mobility in HMTCO films are discussed. Examples of HMTCO layers used as transparent electrodes in thin film solar cells are used to illustrate possible improvements in solar cell performance. Finally, challenges and prospects for further development of HMTCO materials are discussed.

  6. Investigation of the optical properties of MoS2 thin films using spectroscopic ellipsometry

    International Nuclear Information System (INIS)

    Yim, Chanyoung; O'Brien, Maria; Winters, Sinéad; McEvoy, Niall; Mirza, Inam; Lunney, James G.; Duesberg, Georg S.

    2014-01-01

    Spectroscopic ellipsometry (SE) characterization of layered transition metal dichalcogenide (TMD) thin films grown by vapor phase sulfurization is reported. By developing an optical dispersion model, the extinction coefficient and refractive index, as well as the thickness of molybdenum disulfide (MoS 2 ) films, were extracted. In addition, the optical band gap was obtained from SE and showed a clear dependence on the MoS 2 film thickness, with thinner films having a larger band gap energy. These results are consistent with theory and observations made on MoS 2 flakes prepared by exfoliation, showing the viability of vapor phase derived TMDs for optical applications

  7. Growth-temperature-dependent optical and acetone detection properties of ZnO thin films

    International Nuclear Information System (INIS)

    Shewale, P. S.; Yu, Y. S.

    2015-01-01

    Zinc oxide (ZnO) thin films were prepared onto glass substrates at moderately low growth temperature by two-stage spray pyrolysis technique. The effects of growth temperature on structural, optical and acetone detection properties were investigated with X-ray diffractometry, a UV–visible spectrophotometer, photoluminescence (PL) spectroscopy and a homemade gas sensor testing unit, respectively. All the films are polycrystalline with a hexagonal wurtzite phase and exhibit a preferential orientation along [002] direction. The film crystallinity is gradually enhanced with an increase in growth temperature. The optical measurements show that all the films are physically highly transparent with a transmittance greater than 82% in the visible range. The band gap of the film is observed to exhibit a slight red shift with an increasing growth temperature. The PL studies on the films show UV/violet PL band at ∼ 395 nm. Among all the films investigated, the film deposited at 250 °C demonstrates a maximum sensitivity of 13% towards 20 ppm of acetone vapors at 300 °C operating temperature. (paper)

  8. Controllable growth and characterization of highly aligned ZnO nanocolumnar thin films

    Energy Technology Data Exchange (ETDEWEB)

    Onuk, Zuhal [Department of Physics, Recep Tayyip Erdogan University, Rize, 53100 (Turkey); Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716 (United States); Rujisamphan, Nopporn [Nanoscience and Nanotechnology Graduate Program, Faculty of Science, King Mongkut’s University of Technology Thonburi, 10140, Bangkok (Thailand); Theoretical and Computational Science Center (TaCS), Faculty of Science, King Mongkut’s University of Technology Thonburi, Bangkok 10140 (Thailand); Murray, Roy [Department of Physics and Astronomy, University of Delaware, Newark, DE, 19716 (United States); Bah, Mohamed [Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716 (United States); Tomakin, Murat [Department of Physics, Recep Tayyip Erdogan University, Rize, 53100 (Turkey); Shah, S.Ismat, E-mail: ismat@udel.edu [Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716 (United States); Department of Physics and Astronomy, University of Delaware, Newark, DE, 19716 (United States)

    2017-02-28

    Graphical abstract: Scanning electron micrographs of the top view surfaces (left column) and cross sections of sputtered ZnO thin films prepared at various Ar:O{sub 2} ratios: (a) and (b) 10:0, (c) and (d) 7.5:2.5, (e) and (f) 5:5, (g) and (h) 2.5:7.5. - Highlights: • Nanocolumnar ZnO films were prepared by controlling the argon-oxygen sputtering gas ratio. • Oxygen partial pressure affects the band gap alignment of the ZnO films. • Optical transmission spectroscopy and XPS were used to study band gap shifts. - Abstract: We investigated the effects of growth conditions during magnetron sputtering on the structural, morphological, and optical properties of nanostructured ZnO thin films. Undoped ZnO thin films are deposited onto p-type Si (100) and corning 7059 glass substrates by RF magnetron sputtering using a ZnO target in combination with various Ar-O{sub 2} sputtering gas mixtures at room temperature. The effect of the partial pressure of oxygen on the morphology of ZnO thin film structure and band alignment were investigated. Thickness, and therefore the growth rate of the samples measured from the cross-sectional SEM micrographs, is found to be strongly correlated with the oxygen partial pressure in the sputtering chamber. The optical transmittance spectrometry results show that the absorption edge shifts towards the longer wavelength at higher oxygen partial pressure. X-ray photoelectron spectroscopy (XPS) used for determining the surface chemical structure and valence band offsets show that conduction band can be controlled by changing the sputtering atmosphere.

  9. The optical properties and applications of AlN thin films prepared by a helicon sputtering system

    CERN Document Server

    Chiu, W Y; Kao, H L; Jeng, E S; Chen, J S; Jaing, C C

    2002-01-01

    AlN thin films were grown on SiO sub 2 /Si and quartz substrates using a helicon sputtering system. The dependence of film quality on growth parameters, such as total sputtering pressure, substrate temperature, and nitrogen concentration has been studied. There is a good correlation of thin film crystallinity addressed by x-ray diffraction (XRD) and spectroscopic ellipsometer. The optimized films exhibit highly oriented, with only (002) peak shown in a theta-2 theta scan XRD pattern, and extremely smooth surface with rms roughness of 2 Aa. The extinction coefficient of the film was 4x10 sup - sup 4 , which is lower than that of AlN films grown by conventional sputtering. Double-layer antireflection (DLAR) coating using AlN and Al sub 3 O sub 3 grown on quartz has been demonstrated. The transmittance of DLAR was high as 96% compared to 93% of bare substrates with the measurement error less than 0.2%. AlN films prepared by Helicon sputtering thus are potential for optical application.

  10. About the use of photoacoustic spectroscopy for the optical characterization of semiconductor thin films: CdTe

    International Nuclear Information System (INIS)

    Marin, E.; Calderon, A.; Vigil G, O.; Sastre, J.; Contreras P, G.; Aguilar H, J.; Saucedo, E.; Ruiz, C.M.

    2006-01-01

    CdTe has been used satisfactorily in multiple and diverse technological applications such as detectors of X and gamma rays that operate at room temperature, for digital imagenology of X rays with medical and industrial applications and as active part in CdTe/CdS solar cells. In form of films, CdTe is generally grown with thicknesses ranging between 3 and 15 μm, for which it is difficult to measure, by means of optical techniques, absorption coefficients greater than 10 3 cm -1 because nearly full absorption of light should occur below 800 nm. The exact determination of the optical absorption coefficient in detectors on the basis of CdTe is very important since this parameter determines the absorption length at which 90% of the photons with energies over the forbidden zone of the CdTe will be absorbed by this. In CdS/CdTe polycrystalline solar cells the greater efficiency of conversion have been reported for film thicknesses of 10 mm, however, the optimal value of this parameter depends strongly on the method and the variables of growth. The optical absorption coefficient spectrum can be determined by several methods, often involving several approximations and the knowledge of some minority carrier related electronic parameters that reduce their application in general way. In this work we propose to determine the absorption coefficient in CdTe thin films by photoacoustic spectroscopy (PAS), because this technique allow us to obtain the optical absorption spectra in thicker layers and therefore the study of the influence of the several growth and post-growth processes in the optical properties of this thin films. We measure by PAS the optical-absorption coefficients of CdTe thin films in the spectral region near the fundamental absorption edge ranging from 1.0 to 2.4 eV using an open cell in the transmission configuration. The films were deposited on different substrates by the CSVT-HW (hot wall) technique. In order to study the influence of several growth

  11. High-frequency applications of high-temperature superconductor thin films

    Science.gov (United States)

    Klein, N.

    2002-10-01

    High-temperature superconducting thin films offer unique properties which can be utilized for a variety of high-frequency device applications in many areas related to the strongly progressing market of information technology. One important property is an exceptionally low level of microwave absorption at temperatures attainable with low power cryocoolers. This unique property has initiated the development of various novel type of microwave devices and commercialized subsystems with special emphasis on application in advanced microwave communication systems. The second important achievement related to efforts in oxide thin and multilayer technology was the reproducible fabrication of low-noise Josephson junctions in high-temperature superconducting thin films. As a consequence of this achievement, several novel nonlinear high-frequency devices, most of them exploiting the unique features of the ac Josephson effect, have been developed and found to exhibit challenging properties to be utilized in basic metrology and Terahertz technology. On the longer timescale, the achievements in integrated high-temperature superconductor circuit technology may offer a strong potential for the development of digital devices with possible clock frequencies in the range of 100 GHz.

  12. High-frequency applications of high-temperature superconductor thin films

    International Nuclear Information System (INIS)

    Klein, N.

    2002-01-01

    High-temperature superconducting thin films offer unique properties which can be utilized for a variety of high-frequency device applications in many areas related to the strongly progressing market of information technology. One important property is an exceptionally low level of microwave absorption at temperatures attainable with low power cryocoolers. This unique property has initiated the development of various novel type of microwave devices and commercialized subsystems with special emphasis on application in advanced microwave communication systems. The second important achievement related to efforts in oxide thin and multilayer technology was the reproducible fabrication of low-noise Josephson junctions in high-temperature superconducting thin films. As a consequence of this achievement, several novel nonlinear high-frequency devices, most of them exploiting the unique features of the ac Josephson effect, have been developed and found to exhibit challenging properties to be utilized in basic metrology and Terahertz technology. On the longer timescale, the achievements in integrated high-temperature superconductor circuit technology may offer a strong potential for the development of digital devices with possible clock frequencies in the range of 100 GHz. (author)

  13. Structural, electrical and optical properties of nanostructured ZrO2 thin film deposited by SILAR method

    Science.gov (United States)

    Salodkar, R. V.; Belkhedkar, M. R.; Nemade, S. D.

    2018-05-01

    Successive Ionic Layer Adsorption and Reaction (SILAR) method has been employed to deposit nanocrystalline ZrO2 thin film of thickness 91 nm onto glass substrates using ZrOCl2.8H2O and NaOH as cationic and anionic precursors respectively. The structural and surface morphological characterizations have been carried out by means of X-ray diffraction and field emission scanning electron microscopy confirms the nanocrystalline nature of ZrO2 thin film. The direct optical band gap and activation energy of the ZrO2 thin film are found to be 4.74 and 0.80eV respectively.

  14. Ultra-Thin Optically Transparent Carbon Electrodes Produced from Layers of Adsorbed Proteins

    Science.gov (United States)

    Alharthi, Sarah A.; Benavidez, Tomas E.; Garcia, Carlos D.

    2013-01-01

    This work describes a simple, versatile, and inexpensive procedure to prepare optically transparent carbon electrodes, using proteins as precursors. Upon adsorption, the protein-coated substrates were pyrolyzed under reductive conditions (5% H2) to form ultra-thin, conductive electrodes. Because proteins spontaneously adsorb to interfaces forming uniform layers, the proposed method does not require a precise control of the preparation conditions, specialized instrumentation, or expensive precursors. The resulting electrodes were characterized by a combination of electrochemical, optical, and spectroscopic means. As a proof-of-concept, the optically-transparent electrodes were also used as substrate for the development of an electrochemical glucose biosensor. The proposed films represent a convenient alternative to more sophisticated, and less available, carbon-based nanomaterials. Furthermore, these films could be formed on a variety of substrates, without classical limitations of size or shape. PMID:23421732

  15. Structural, optical and electrical properties of quasi-monocrystalline silicon thin films obtained by rapid thermal annealing of porous silicon layers

    International Nuclear Information System (INIS)

    Hajji, M.; Khardani, M.; Khedher, N.; Rahmouni, H.; Bessais, B.; Ezzaouia, H.; Bouchriha, H.

    2006-01-01

    Quasi-mono-crystalline silicon (QMS) layers have a top surface like crystalline silicon with small voids in the body. Such layers are reported to have a higher absorption coefficient than crystalline silicon at the interesting range of the solar spectrum for photovoltaic application. In this work we present a study of the structural, optical and electrical properties of quasimonocrystalline silicon thin films. Quasimonocrystalline silicon thin films were obtained from porous silicon, which has been annealed at a temperature ranging from 950 to 1050 deg. C under H 2 atmosphere for different annealing durations. The porous layers were prepared by conventional electrochemical anodization using a double tank cell and a HF / Ethanol electrolyte. Porous silicon is formed on highly doped p + -type silicon substrates that enable us to prevent back contacts for the anodization. Atomic Force Microscope (AFM) was used to study the morphological quality of the prepared layers. Optical properties were extracted from transmission and reflectivity spectra. Dark I-V characteristics were used to determine the electrical conductivity of quasimonocrystalline silicon thin films. Results show an important improvement of the absorption coefficient of the material and electrical conductivity reaches a value of twenty orders higher than that of starting mesoporous silicon

  16. Highly spatially resolved structural and optical investigation of Bi nanoparticles in Y-Er disilicate thin films

    Energy Technology Data Exchange (ETDEWEB)

    Scarangella, A. [CNR IMM-MATIS, Via S. Sofia 64, 95123 Catania (Italy); Dipartimento di Fisica e Astronomia, Università di Catania, Via S. Sofia 64, 95123 Catania (Italy); Amiard, G.; Boninelli, S., E-mail: simona.boninelli@ct.infn.it; Miritello, M. [CNR IMM-MATIS, Via S. Sofia 64, 95123 Catania (Italy); Reitano, R. [Dipartimento di Fisica e Astronomia, Università di Catania, Via S. Sofia 64, 95123 Catania (Italy); Priolo, F. [CNR IMM-MATIS, Via S. Sofia 64, 95123 Catania (Italy); Dipartimento di Fisica e Astronomia, Università di Catania, Via S. Sofia 64, 95123 Catania (Italy); Scuola Superiore di Catania, Università di Catania, Via Valdisavoia 9, 95123 Catania (Italy)

    2016-08-08

    Er-containing silicon compatible materials have been widely used as infrared emitters for microphotonics application. In this field, the additional introduction of a proper sensitizer permits to increase the Er excitation cross sections, thus increasing its optical efficiency. This work aims to investigate the influence of a post-transition metal, bismuth, on the optical properties of erbium-yttrium disilicate thin films synthesized by magnetron co-sputtering. After thermal treatments at 1000 °C in O{sub 2} or N{sub 2} environment, the presence of small precipitates, about 6 nm in diameter, was evidenced by transmission electron microscopy analyses. The spatially resolved chemical nature of the nanoparticles was discerned in the Si and O rich environments by means of scanning transmission electron microscopy–energy dispersive X-ray and scanning transmission electron microscopy–electron energy loss spectroscopy analyses performed with nanometric resolution. In particular, metallic Bi nanoparticles were stabilized in the N{sub 2} environment, being strongly detrimental for the Er emission. A different scenario was instead observed in O{sub 2}, where the formation of Bi silicate nanoparticles was demonstrated with the support of photoluminescence excitation spectroscopy. In particular, a broad band peaked at 255 nm, correlated to the excitation band of Bi silicate nanoparticles, was identified in Er excitation spectrum. Thus Bi silicate clusters act as sensitizer for Er ions, permitting to improve Er emission up to 250 times with respect to the resonant condition. Moreover, the Er decay time increases in the presence of the Bi silicate nanoparticles that act as cages for Er ions. These last results permit to further increase Er optical efficiency in the infrared range, suggesting (Bi + Er)-Y disilicate as a good candidate for applications in microphotonics.

  17. Optical and infrared spectroscopic studies of chemical sensing by copper phthalocyanine thin films

    International Nuclear Information System (INIS)

    Singh, Sukhwinder; Tripathi, S.K.; Saini, G.S.S.

    2008-01-01

    Thin films of copper phthalocyanine have been deposited on KBr and glass substrates by thermal evaporation method and characterized by the X-ray diffraction and optical absorption techniques. The observed X-ray pattern suggests the presence of α crystalline phase of copper phthalocyanine in the as-deposited thin films. Infrared spectra of thin films on the KBr pallet before and after exposure to the vapours of ammonia and methanol have been recorded in the wavenumber region of 400-1650 cm -1 . The observed infrared bands also confirm the α crystalline phase. On exposure, change in the intensity of some bands is observed. A new band at 1385 cm -1 , forbidden under ideal D 4h point group symmetry, is also observed in the spectra of exposed thin films. These changes in the spectra are interpreted in terms of the lowering of molecular symmetry from D 4h to C 4v . Axial ligation of the vapour molecules on fifth coordination site of the metal ion is responsible for lowering of the molecular symmetry

  18. Effect of deposition temperature on the structural and optical properties of CdSe QDs thin films deposited by CBD method

    International Nuclear Information System (INIS)

    Laatar, F.; Harizi, A.; Smida, A.; Hassen, M.; Ezzaouia, H.

    2016-01-01

    Highlights: • Synthesis of CdSe QDs with L-Cysteine capping agent for applications in nanodevices. • The films of CdSe QDs present uniform and good dispersive particles at the surface. • Effect of bath temperature on the structural and optical properties of CdSe QDs thin films. • Investigation of the optical constants and dispersion parameters of CdSe QDs thin films. - Abstract: Cadmium selenide quantum dots (CdSe QDs) thin films were deposited onto glass substrates by a chemical bath deposition (CBD) method at different temperatures from an aqueous solution containing L-Cysteine (L-Cys) as capping agent. The evolution of the surface morphology and elemental composition of the CdSe films were studied by AFM, SEM, and EDX analyses. Structural and optical properties of CdSe thin films were investigated by XRD, UV–vis and PL spectroscopy. The dispersion behavior of the refractive index is described using the single oscillator Wemple-DiDomenico (W-D) model, and the physical dispersion parameters are calculated as a function of deposition temperature. The dispersive optical parameters such as average oscillator energy (E_o), dispersion energy (E_d), and static refractive index (n_o) were found to vary with the deposition temperature. Besides, the electrical free carrier susceptibility (χ_e) and the carrier concentration of the effective mass ratio (N/m*) were evaluated according to the Spitzer-Fan model.

  19. Structural, Optical Constants and Photoluminescence of ZnO Thin Films Grown by Sol-Gel Spin Coating

    Directory of Open Access Journals (Sweden)

    Abdel-Sattar Gadallah

    2013-01-01

    Full Text Available We report manufacturing and characterization of low cost ZnO thin films grown on glass substrates by sol-gel spin coating method. For structural properties, X-ray diffraction measurements have been utilized for evaluating the dominant orientation of the thin films. For optical properties, reflectance and transmittance spectrophotometric measurements have been done in the spectral range from 350 nm to 2000 nm. The transmittance of the prepared thin films is 92.4% and 88.4%. Determination of the optical constants such as refractive index, absorption coefficient, and dielectric constant in this wavelength range has been evaluated. Further, normal dispersion of the refractive index has been analyzed in terms of single oscillator model of free carrier absorption to estimate the dispersion and oscillation energy. The lattice dielectric constant and the ratio of free carrier concentration to free carrier effective mass have been determined. Moreover, photoluminescence measurements of the thin films in the spectral range from 350 nm to 900 nm have been presented. Electrical measurements for resistivity evaluation of the films have been done. An analysis in terms of order-disorder of the material has been presented to provide more consistency in the results.

  20. Growth of highly transparent Cd{sub x}Zn{sub 1−x}O (CZO) thin films: Structural and optical studies

    Energy Technology Data Exchange (ETDEWEB)

    Gautam, Naina, E-mail: nainagtm@gmail.com [Department of Electronic Science, University of Delhi South Campus, New Delhi 110023 (India); Singh, Fouran, E-mail: fouran@gmail.com [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Gautam, Subodh K. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Singh, R.G. [Department of Physics, Bhagini Nivedita College, Delhi University, Delhi 110043 (India); Ojha, S. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Kapoor, A. [Department of Electronic Science, University of Delhi South Campus, New Delhi 110023 (India)

    2015-11-25

    The deposition of Cd{sub x}Zn{sub 1−x}O thin films with different cadmium concentrations i.e., x = 0.0, 0.05, 0.20 by sol–gel spin coating is reported. The doping fraction of Cd in ZnO films was measured by Rutherford backscattering spectrometry (RBS), while the surface morphology was studied by scanning electron microscopy (SEM). Grazing incidence X-ray diffraction (GIXRD) study was carried out for the structural investigations and reveals hexagonal wurtzite structure with polycrystalline nature. The various structural parameters are calculated including the lattice constants ‘a’ and ‘c’, stress (σ), strain (ε) and internal parameter (u). For x = 0.20 Cd content, the formation of secondary phase of the cubic CdO at 33.12° (111) and 38.41° (200) is observed and this is further confirmed by micro-Raman studies, where the TO mode emerges at ∼261.5 cm{sup −1}. The basic wurtzite structure is maintained as ‘c/a’ ratio and internal parameter ‘u’ found to be closer to the ideal values. All the films are found to be highly transparent in the visible region and a bending of the near band edge (NBE) absorption is observed with Cd doping. It is further confirmed by calculating the Urbach energy (E{sub u}), which is found to be increased from 0.14 eV (for x = 0.0) to 0.26 eV (for x = 0.20) with maximum value for the lightly doped films i.e. x = 0.05. However, the optical band gap is found to decrease from 3.26 eV (for x = 0.0) to 3.08 eV (for x = 0.20). - Highlights: • High transparent Cd{sub x}Zn{sub 1−x}O (CZO) thin films with an average transparency of ∼85% in the visible region. • Band-gap tuning is achieved by Cd doping in ZnO. • Segregation of cubic rock-salt CdO phase upon high doping as confirmed by Micro-Raman and SEM investigations.

  1. Optical properties and surface topography of CdCl2 activated CdTe thin films

    Science.gov (United States)

    Patel, S. L.; Purohit, A.; Chander, S.; Dhaka, M. S.

    2018-05-01

    The effect of post-CdCl2 heat treatment on optical properties and surface topography of evaporated CdTe thin films is investigated. The pristine and thermally annealed films were subjected to UV-Vis spectrophotometer and atomic force microscopy (AFM) to investigate the optical properties and surface topography, respectively. The absorbance is found to be maximum (˜90%) at 320°C temperature and transmittance found to be minimum and almost constant in ultraviolet and visible regions. The direct band gap is increased from 1.42 eV to 2.12 eV with post-CdCl2 annealing temperature. The surface topography revealed that the uniformity is improved with annealing temperature and average surface roughness is found in the range of 83.3-144.3 nm as well as grains have cylindrical hill-like shapes. The investigated results indicate that the post-CdCl2 treated films annealed at 320°C may be well-suitable for thin film solar cells as an absorber layer.

  2. Effect of strain on the structural and optical properties of Cu-N co-doped ZnO thin films

    International Nuclear Information System (INIS)

    Zhao Yue; Zhou Mintao; Li Zhao; Lv Zhiyong; Liang Xiaoyan; Min Jiahua; Wang Linjun; Shi Weimin

    2011-01-01

    Polycrystalline ZnO thin films co-doped with Cu and N have been obtained by chemical bath deposition. Introduction of Cu and N causes the change of strained stress in ZnO films, which subsequently affects the structural and optical properties. The dependence of structural and optical properties of the ZnO films on lattice strained stress is investigated by XRD measurement, SEM, PL spectrum, optical reflection and Raman spectrum. The result of photoluminescence of Cu-N co-doped ZnO films indicates that the UV emission peaks shift slightly towards higher energy side with decrease in tensile strain and vise versa. The blue-shift of the absorption edge and up-shift of E2 (high) mode of the films can be observed in the optical reflection and Raman spectra. - Highlights: →Cu-N co-doped ZnO is first prepared by the wet chemical method. → Stress is produced by the introduction of Cu and N atoms. → Effect of stress on the structural and optical properties of ZnO film is investigated. → Cu concentration will be used to control the structural and optical properties.

  3. Structural and Optical Studies of Magnesium Doped Zinc Oxide Thin Films

    OpenAIRE

    Arpana Agrawal; Tanveer Ahmad Dar; Pratima Sen

    2013-01-01

    The paper describes the structural and optical properties of Magnesium doped Zinc Oxide (Mg  3.5 %, 6 %, 9 %, 12 % by weight) thin films prepared by pulsed laser deposition technique. The samples are characterized by X-ray diffraction technique, Ultra-violet visible absorption spectroscopy, X-ray photoelectron spectroscopy. X-ray diffraction results reveal the polycrystalline nature of samples with no impurity or secondary phase formation. Ultra-violet visible absorption spectroscopy studies...

  4. Optical and mechanical properties of nanocrystalline ZrC thin films grown by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Craciun, D., E-mail: doina.craciun@inflpr.ro [Laser Department, National Institute for Laser, Plasma, and Radiation Physics, Magurele (Romania); Socol, G. [Laser Department, National Institute for Laser, Plasma, and Radiation Physics, Magurele (Romania); Lambers, E. [Major Analytical Instrumentation Center, College of Engineering, University of Florida, Gainesville, FL 32611 (United States); McCumiskey, E.J.; Taylor, C.R. [Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611 (United States); Martin, C. [Ramapo College of New Jersey (United States); Argibay, N. [Materials Science and Engineering Center, Sandia National Laboratories, Albuquerque, NM 87123 (United States); Tanner, D.B. [Physics Department, University of Florida, Gainesville, FL 32611 (United States); Craciun, V. [Laser Department, National Institute for Laser, Plasma, and Radiation Physics, Magurele (Romania)

    2015-10-15

    Highlights: • Nanocrystalline ZrC thin film were grown on Si by pulsed laser deposition technique. • Structural properties weakly depend on the CH{sub 4} pressure used during deposition. • The optimum deposition pressure for low resistivity is around 2 × 10{sup −5} mbar CH{sub 4}. • ZrC films exhibited friction coefficients around 0.4 and low wear rates. - Abstract: Thin ZrC films (<500 nm) were grown on (100) Si substrates at a substrate temperature of 500 °C by the pulsed laser deposition (PLD) technique using a KrF excimer laser under different CH{sub 4} pressures. Glancing incidence X-ray diffraction showed that films were nanocrystalline, while X-ray reflectivity studies found out films were very dense and exhibited a smooth surface morphology. Optical spectroscopy data shows that the films have high reflectivity (>90%) in the infrared region, characteristic of metallic behavior. Nanoindentation results indicated that films deposited under lower CH{sub 4} pressures exhibited slightly higher nanohardness and Young modulus values than films deposited under higher pressures. Tribological characterization revealed that these films exhibited relatively high wear resistance and steady-state friction coefficients on the order of μ = 0.4.

  5. Slow light propagation in a thin optical fiber via electromagnetically induced transparency

    International Nuclear Information System (INIS)

    Patnaik, Anil K.; Liang, J.Q.; Hakuta, K.

    2002-01-01

    We propose a configuration that utilizes electromagnetically induced transparency (EIT) to tailor a fiber mode propagating inside a thin optical fiber and coherently control its dispersion properties to drastically reduce the group velocity of the fiber mode. The key to this proposal is that the evanescent field of the thin fiber strongly couples with the surrounding active medium, so that the EIT condition is met by the medium. We show how the properties of the fiber mode are modified due to the EIT medium, both numerically and analytically. We demonstrate that the group velocity of the modified fiber mode can be drastically reduced (≅44 m/sec) using the coherently prepared orthohydrogen doped in a matrix of parahydrogen crystal as the EIT medium

  6. Structural, optical and magnetic properties of nanocrystalline Co-doped ZnO thin films grown by sol-gel

    Energy Technology Data Exchange (ETDEWEB)

    Kayani, Zohra Nazir; Shah, Iqra; Zulfiqar, Bareera; Sabah, Aneeqa [Lahore College for Women Univ., Lahore (Pakistan); Riaz, Saira; Naseem, Shahzad [Univ. of the Punjab, Lahore (Pakistan). Centre of Excellence in Solid State Physics

    2018-04-01

    Cobalt-doped ZnO thin films have been deposited using a sol-gel route by changing the number of coats on the substrate from 6 to 18. This project deals with various film thicknesses by increasing the number of deposited coats. The effect of thickness on structural, magnetic, surface morphology and optical properties of Co-doped ZnO thin film was studied. The crystal structure of the Co-doped ZnO films was investigated by X-ray diffraction. The films have polycrystalline wurtzite hexagonal structures. A Co{sup 2+} ion takes the place of a Zn{sup 2+} ion in the lattice without creating any distortion in its hexagonal wurtzite structure. An examination of the optical transmission spectra showed that the energy band gap of the Co-doped ZnO films increased from 3.87 to 3.97 eV with an increase in the number of coatings on the substrate. Ferromagnetic behaviour was confirmed by measurements using a vibrating sample magnetometer. The surface morphology of thin films was assessed by scanning electron microscope. The grain size on the surface of thin films increased with an increase in the number of coats.

  7. Uniformly thinned optical fibers produced via HF etching with spectral and microscopic verification.

    Science.gov (United States)

    Bal, Harpreet K; Brodzeli, Zourab; Dragomir, Nicoleta M; Collins, Stephen F; Sidiroglou, Fotios

    2012-05-01

    A method for producing uniformly thinned (etched) optical fibers is described, which can also be employed to etch optical fibers containing a Bragg grating (FBG) uniformly for evanescent-field-based sensing and other applications. Through a simple modification of this method, the fabrication of phase-shifted FBGs based on uneven etching is also shown. The critical role of how a fiber is secured is shown, and the success of the method is illustrated, by differential interference contrast microscopy images of uniformly etched FBGs. An etched FBG sensor for the monitoring of the refractive index of different glycerin solutions is demonstrated.

  8. Sol-gel optical thin films for an advanced megajoule-class Nd:glass laser ICF-driver

    International Nuclear Information System (INIS)

    Floch, H.G.; Belleville, P.F.; Pegon, P.M.; Dijonneau, C.S.; Guerain, J.

    1995-01-01

    It is well established by manufacturers and users that optical coatings are generally prepared by the well known Physical Vapor Deposition (PVD) technology. In the authors' opinion sol-gel technology is an effective and competitive alternative. The aim of this paper is to emphasize on the sol-gel thin film work carried out at Centre d'Etudes de Limeil-Valenton (CEL-V) and concerning the technology for high power lasers. The authors will briefly discuss the chemistry of the sol-gel process, the production of optical coatings and the related deposition techniques. Finally, the paper describes the preparation and performance of sol-gel optical coatings they have developed to fulfill the requirements of a future 2 MJ/500 TW (351 nm) pulsed Nd:glass laser so-called LMJ (Laser MegaJoules). This powerful laser is to be used for their national Inertial Confinement Fusion (ICF) program, to demonstrate at the laboratory scale, ignition of deuterium-tritium fusion fuel. Moreover, the aim of this article is, hopefully, to provide a convincing argument that coatings and particularly optical coatings, are some of the useful products available from sol-gel technology, and that exciting developments in other areas are almost certain to emerge within the coming decade

  9. Development of natively textured surface hydrogenated Ga-doped ZnO-TCO thin films for solar cells via magnetron sputtering

    International Nuclear Information System (INIS)

    Wang, Fei; Chen, Xin-liang; Geng, Xin-hua; Zhang, De-kun; Wei, Chang-chun; Huang, Qian; Zhang, Xiao-dan; Zhao, Ying

    2012-01-01

    Highlights: ► Natively textured surface hydrogenated gallium-doped zinc oxide (HGZO) thin films have been deposited via magnetron sputtering on glass substrates. ► The directly deposited HGZO thin films present rough crater-type surface morphology. ► Typical HGZO thin film exhibits a high electron mobility of 41.3 cm 2 /V s and a relative low sheet resistance of ∼7.0 Ω. ► These HGZO thin films have high optical transmittances in the visible and near infrared region (∼380–1100 nm). ► A gradient H 2 growth method for fabricating HGZO thin films has been proposed in magnetron sputtering process. - Abstract: The main purposes are to obtain high quality transparent conductive oxide (TCO) based on zinc oxide (ZnO) thin films with high optical transparency in the visible and near infrared spectral range, high electrical conductivity and good light-scattering capability to enhance the path of the light inside the Si-based thin film solar cells. Natively textured surface hydrogenated gallium-doped ZnO (HGZO) thin films have been deposited via pulsed direct current (DC) magnetron sputtering on glass substrates at a substrate temperature of 553 K. These natively textured HGZO thin films exhibit high optical transmittance (over 80%) in the visible and near infrared region (λ = 380–1100 nm) and excellent electrical properties. The optimized HGZO thin film with crater-type textured surface obtained at the hydrogen flow rate of ∼2.0 sccm exhibits a high electron mobility of 41.3 cm 2 /V s and a relatively low sheet resistance of ∼7.0 Ω. The influences of hydrogen flow rates on the surface morphology, electrical and optical properties of HGZO thin films were investigated in detail. In addition, we put forward a method of gradient H 2 growth technique for fabricating HGZO thin films so as to obtain rough surface structure with good light-scattering capability and high electrical conductivity. “Crater-like” surface feature size and optical transmittance

  10. Separating Bulk and Surface Contributions to Electronic Excited-State Processes in Hybrid Mixed Perovskite Thin Films via Multimodal All-Optical Imaging.

    Science.gov (United States)

    Simpson, Mary Jane; Doughty, Benjamin; Das, Sanjib; Xiao, Kai; Ma, Ying-Zhong

    2017-07-20

    A comprehensive understanding of electronic excited-state phenomena underlying the impressive performance of solution-processed hybrid halide perovskite solar cells requires access to both spatially resolved electronic processes and corresponding sample morphological characteristics. Here, we demonstrate an all-optical multimodal imaging approach that enables us to obtain both electronic excited-state and morphological information on a single optical microscope platform with simultaneous high temporal and spatial resolution. Specifically, images were acquired for the same region of interest in thin films of chloride containing mixed lead halide perovskites (CH 3 NH 3 PbI 3-x Cl x ) using femtosecond transient absorption, time-integrated photoluminescence, confocal reflectance, and transmission microscopies. Comprehensive image analysis revealed the presence of surface- and bulk-dominated contributions to the various images, which describe either spatially dependent electronic excited-state properties or morphological variations across the probed region of the thin films. These results show that PL probes effectively the species near or at the film surface.

  11. Characterization of high quality Cu(In,Ga)Se{sub 2} thin films prepared by rf-magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Bouchama, Idris [Departement d' Electronique, Faculte de Technologie, Universite de Msila (Algeria); Djessas, Kamal [Laboratoire Procedes Materiaux et Energie Solaire, PROMES-CNRS, Rambla de la Thermodynamique, Technosud, 66100 Perpignan (France); Bouloufa, Abdeslam [Laboratoire d' Electrochimie et Materiaux, Universite Ferhat Abbas de Setif (Algeria); Gauffier, Jean-Luc [Departement de Physique, INSA de Toulouse, 135, Avenue de Rangueil, 31077 Toulouse Cedex 4 (France)

    2013-01-15

    This paper reports the production of high quality polycrystalline thin layers of CuIn{sub 0.7}Ga{sub 0.3}Se{sub 2} (CIGS), using rf-magnetron sputtering, from a powder target. These films are designed to be used as absorbers in solar cells. The depositions were carried out at substrate temperatures below 250 C and glass substrates was used. The influence of the substrate temperatures on the crystalline quality as well as structural, optical and electrical properties of thin layers obtained has been studied. X-ray diffraction showed that the films were highly orientated in the (112) and/or (204)/(220) direction. In{sub 2}Se{sub 3} secondary phase was observed on the samples grown at lower substrate temperatures. The surface morphology of CIGS layers studied by Atomic Force Microscopy (AFM) and Scanning Electronic Microscopy (SEM) has been also discussed. The most surprising and exciting outcome of this study was that the as grown films were of near stoichiometric composition. Resistivity measurements were carried out using the four point probe method. The optical absorption showed that energy gap values are between 1.13 and 1.18 eV and rather sharp absorption fronts. Thin film resistivities are between 10.7 and 60.9 {Omega}.cm depending on the experimental growth conditions (copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. High rate deposition of thin film cadmium sulphide by pulsed direct current magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Lisco, F., E-mail: F.Lisco@lboro.ac.uk [Centre for Renewable Energy Systems Technology (CREST), School of Electronic, Electrical and Systems Engineering, Loughborough University, Leicestershire LE11 3TU (United Kingdom); Kaminski, P.M.; Abbas, A.; Bowers, J.W.; Claudio, G. [Centre for Renewable Energy Systems Technology (CREST), School of Electronic, Electrical and Systems Engineering, Loughborough University, Leicestershire LE11 3TU (United Kingdom); Losurdo, M. [Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR, via Orabona 4, 70126 Bari (Italy); Walls, J.M. [Centre for Renewable Energy Systems Technology (CREST), School of Electronic, Electrical and Systems Engineering, Loughborough University, Leicestershire LE11 3TU (United Kingdom)

    2015-01-01

    Cadmium Sulphide (CdS) is an important n-type semiconductor widely used as a window layer in thin film photovoltaics Copper Indium Selenide, Copper Indium Gallium (di)Selenide, Copper Zinc Tin Sulphide and Cadmium Telluride (CdTe). Cadmium Sulphide has been deposited using a number of techniques but these techniques can be slow (chemical bath deposition and Radio Frequency sputtering) or the uniformity and the control of thickness can be relatively difficult (close space sublimation). In this paper we report on the development of a process using pulsed Direct Current magnetron sputtering which allows nanometre control of thin film thickness using time only. The CdS thin films deposited in this process are highly uniform and smooth. They exhibit the preferred hexagonal structure at room temperature deposition and they have excellent optical properties. Importantly, the process is highly stable despite the use of a semi-insulating magnetron target. Moreover, the process is very fast. The deposition rate using 1.5 kW of power to a 6-inch circular magnetron was measured to be greater than 8 nm/s. This makes the process suitable for industrial deployment. - Highlights: • Pulsed DC magnetron sputtering of CdS • High deposition rate deposition • Uniform, pinhole free films.

  13. High rate deposition of thin film cadmium sulphide by pulsed direct current magnetron sputtering

    International Nuclear Information System (INIS)

    Lisco, F.; Kaminski, P.M.; Abbas, A.; Bowers, J.W.; Claudio, G.; Losurdo, M.; Walls, J.M.

    2015-01-01

    Cadmium Sulphide (CdS) is an important n-type semiconductor widely used as a window layer in thin film photovoltaics Copper Indium Selenide, Copper Indium Gallium (di)Selenide, Copper Zinc Tin Sulphide and Cadmium Telluride (CdTe). Cadmium Sulphide has been deposited using a number of techniques but these techniques can be slow (chemical bath deposition and Radio Frequency sputtering) or the uniformity and the control of thickness can be relatively difficult (close space sublimation). In this paper we report on the development of a process using pulsed Direct Current magnetron sputtering which allows nanometre control of thin film thickness using time only. The CdS thin films deposited in this process are highly uniform and smooth. They exhibit the preferred hexagonal structure at room temperature deposition and they have excellent optical properties. Importantly, the process is highly stable despite the use of a semi-insulating magnetron target. Moreover, the process is very fast. The deposition rate using 1.5 kW of power to a 6-inch circular magnetron was measured to be greater than 8 nm/s. This makes the process suitable for industrial deployment. - Highlights: • Pulsed DC magnetron sputtering of CdS • High deposition rate deposition • Uniform, pinhole free films

  14. Effect of Se addition on optical and electrical properties of chalcogenide CdSSe thin films

    Science.gov (United States)

    Hassanien, A. S.; Akl, Alaa A.

    2016-01-01

    Compositional dependence of optical and electrical properties of chalcogenide CdSxSe1-x (0.4 ≥ x ≥ 0.0 at. %) thin films was studied. Cadmium sulphoselenide films were deposited by thermal evaporation technique at vacuum (8.2 × 10-4 Pa) onto preheated glass substrates (523 K). The evaporation rate and film thickness were kept constant at 2.50 nm/s and 375 ± 5 nm, respectively. X-ray diffractograms showed that, the deposited films have the low crystalline nature. Energy dispersive analysis by X-ray (EDAX) was used to check the compositional elements of deposited films. The absorption coefficient was determined from transmission and reflection measurements at room temperature in the wavelength range 300-2500 nm. Optical density, skin depth, optical energy gap and Urbach's parameters of CdSSe thin films have also been estimated. The direct optical energy gap decreased from 2.248 eV to 1.749 eV when the ratio of Se-content was increased from 0.60 to 1.00 . Conduction band and valance band positions were evaluated. The temperature dependence of dc-electrical resistivity in the temperature range (293-450 K) has been reported. Three conduction regions due to different conduction mechanisms were detected. Electrical sheet resistance, activation energy and pre-exponential parameters were discussed. The estimated values of optical and electrical parameters were strongly dependent upon the Se-content in CdSSe matrix.

  15. Effect of visible light on the optical properties of a-(Ge2Sb2Te5)90Ag10 thin film

    Science.gov (United States)

    Singh, Palwinder; Thakur, Anup

    2018-05-01

    (Ge2Sb2Te5)90Ag10 (GST-Ag) bulk alloy was prepared using melt quenching technique. GST-Ag thin film was deposited on glass substrate using thermal evaporation method. The prepared thin films were exposed to visible light (intensity of 105 Lux for 2, 8, 20 and 30 hours) using 25W LED lamp. Transmission spectra were taken using UV-vis-NIR spectrophotometer in the wavelength range 800-3200 nm. Optical band gap of as-deposited and light exposed thin films was determined using Tauc's plot. Optical band gap was found to be decreasing on light exposure upto 8 hours and after that no significant change was observed.

  16. Optical and Electrical Properties of the Different Magnetron Sputter Power 300°C Deposited -ZnO Thin Films and Applications in p-i-n -Si:H Thin-Film Solar Cells

    Directory of Open Access Journals (Sweden)

    Fang-Hsing Wang

    2013-01-01

    Full Text Available A compound of ZnO with 3 wt% Ga2O3 (ZnO : Ga2O3 = 97 : 3 in wt%, GZO was sintered at C as a target. The GZO thin films were deposited on glass using a radio frequency magnetron sputtering system at C by changing the deposition power from 50 W to 150 W. The effects of deposition power on the crystallization size, lattice constant (c, resistivity, carrier concentration, carrier mobility, and optical transmission rate of the GZO thin films were studied. The blue shift in the transmission spectrum of the GZO thin films was found to change with the variations of the carrier concentration because of the Burstein-Moss shifting effect. The variations in the optical band gap ( value of the GZO thin films were evaluated from the plots of , revealing that the measured value decreased with increasing deposition power. As compared with the results deposited at room temperature by Gong et al., (2010 the C deposited GZO thin films had apparent blue shift in the transmission spectrum and larger value. For the deposited GZO thin films, both the carrier concentration and mobility linearly decreased and the resistivity linearly increased with increasing deposition power. The prepared GZO thin films were also used as transparent electrodes to fabricate the amorphous silicon thin-film solar cells, and their properties were also measured.

  17. Effects of gamma-ray irradiation on the optical properties of amorphous Se100-xHgx thin films

    Science.gov (United States)

    Ahmad, Shabir; Islam, Shama; Nasir, Mohd.; Asokan, K.; Zulfequar, M.

    2018-06-01

    In this study, the thermal quenching technique was employed to prepare bulk samples of Se100-xHgx (x = 0, 5, 10, 15). Thin films with a thickness of ∼250 nm were deposited on glass substrates using the thermal evaporation technique. These films were irradiated with gamma rays at doses of 25-100 kGy. The elemental compositions of the as-deposited thin films were confirmed by energy dispersive X-ray analysis and Rutherford backscattering spectrometry. X-ray diffraction analysis confirmed the crystalline nature of these thin films upto the dose of 75 kGy. Fourier transform-infrared spectroscopy showed that the concentration of defects decreased after gamma irradiation. Microstructural analysis by field emission scanning electron microscopy indicated that the grain size increases after irradiation. Optical study based on spectrophotometry showed that the optical band gap values of these films increase after the addition of Hg whereas they decrease after gamma irradiation. We found that the absorption coefficient increases with doses up to 75 kGy but decreases at higher doses. These remarkable shifts in the optical band gap and absorption coefficient values are interpreted in terms of the creation and annihilation of defects, which are the main effects produced by gamma irradiation.

  18. Thin layer alanine dosimeter with optical spectrophotometric evaluation

    International Nuclear Information System (INIS)

    Zagorski, Z.P.

    2000-01-01

    Experience in the high dose dosimetry of gamma radiation, gathered in our group from the sixties till now, allows to express the opinion, that techniques applied are adequate to solve problems. It can be confirmed by the fact that 60% of laboratories participating in the international comparison during the duration of the contract obtained satisfactory results. Adaptation of these methods, in particular of the alanine-ESR dosimetry to highly inhomogeneous fields of EB gives poor results, as it has been shown on thin films of the alanine/polymer composite. However, the applications of these films give excellent results if the concentration of the radical CH 3 C·H CO 2 - is measured by diffuse reflection spectrophotometry, which tolerates poor transparency of the composite and is insensitive to the orientation of crystals of alanine in thin films, what is disqualifying the ESR measurements. The development of thin-film dosimeters for EB processing was possible due to new developments in solid state radiation chemistry. The research has revealed some unsolved questions, e.g. of the high temperature coefficient of alanine based dosimeters, of the role of the size of spurs and the necessity to adapt dosimetry to the energy spectrum of electrons, because every type of accelerators differs in that respect. (author)

  19. Optical fiber magnetic field sensors with TbDyFe magnetostrictive thin films as sensing materials.

    Science.gov (United States)

    Yang, Minghong; Dai, Jixiang; Zhou, Ciming; Jiang, Desheng

    2009-11-09

    Different from usually-used bulk magnetostrictive materials, magnetostrictive TbDyFe thin films were firstly proposed as sensing materials for fiber-optic magnetic field sensing characterization. By magnetron sputtering process, TbDyFe thin films were deposited on etched side circle of a fiber Bragg Grating (FBG) as sensing element. There exists more than 45pm change of FBG wavelength when magnet field increase up to 50 mT. The response to magnetic field is reversible, and could be applicable for magnetic and current sensing.

  20. Photo- and Thermo-Induced Changes in Optical Constants and Structure of Thin Films from GeSe2-GeTe-ZnTe System

    Science.gov (United States)

    Petkov, Kiril; Todorov, Rossen; Vassilev, Venceslav; Aljihmani, Lilia

    We examined the condition of preparation of thin films from GeSe2-GeTe-ZnTe system by thermal evaporation and changes in their optical properties after exposure to light and thermal annealing. The results for composition analysis of thin films showed absence of Zn independently of the composition of the bulk glass. By X-ray diffraction (XRD) analysis it was found that a reduction of ZnTe in ZnSe in bulk materials takes of place during the film deposition. A residual from ZnSe was observed in the boat after thin film deposition. Optical constants (refractive index, n and absorption coefficient, α) and thickness, d as well as the optical band gap, Eg, depending of the content of Te in ternary Ge-Se-Te system are determined from specrophotometric measurements in the spectral range 400-2500 nm applying the Swanepoel's envelope method and Tauc's procedure. With the increase of Te content in the layers the absorption edge is shifted to the longer wavelengths, refractive index increases while the optical band gap decreases from 2.02 eV for GeSe2 to 1.26 eV for Ge34Se42Te24. The values of the refractive index decrease after annealing of all composition and Eg increase, respectively. Thin films with composition of Ge27Se47Te9Zn17 and Ge28Se49Te10Zn13 were prepared by co-evaporation of (GeSe2)78(GeTe)22 and Zn from a boat and a crucible and their optical properties, surface morphology and structure were investigated. The existence of a correlation between the optical band gap and the copostion of thin films from the system studied was demonstrated.

  1. Giant magneto-optical Kerr effect and universal Faraday effect in thin-film topological insulators.

    Science.gov (United States)

    Tse, Wang-Kong; MacDonald, A H

    2010-07-30

    Topological insulators can exhibit strong magneto-electric effects when their time-reversal symmetry is broken. In this Letter we consider the magneto-optical Kerr and Faraday effects of a topological insulator thin film weakly exchange coupled to a ferromagnet. We find that its Faraday rotation has a universal value at low frequencies θF=tan(-1)α, where α is the vacuum fine structure constant, and that it has a giant Kerr rotation θK=π/2. These properties follow from a delicate interplay between thin-film cavity confinement and the surface Hall conductivity of a topological insulator's helical quasiparticles.

  2. Synthesis of Ag-Cu-Pd alloy thin films by DC-magnetron sputtering: Case study on microstructures and optical properties

    Science.gov (United States)

    Rezaee, Sahar; Ghobadi, Nader

    2018-06-01

    The present study aims to investigate optical properties of Ag-Cu-Pd alloy thin films synthesized by DC-magnetron sputtering method. The thin films are deposited on the glass and silicon substrates using Argon gas and Ag-Cu-Pd target. XRD analysis confirms the successful growth of Ag, Cu, and Pd NPs with FCC crystalline structure. Moreover, UV-visible absorption spectroscopy is applied to determine optical properties of the prepared samples which are affected by changes in surface morphology. The existence of single surface plasmon resonance (SPR) peak near 350 nm proves the formation of silver nanoparticles with a slight red shift through increasing deposition time. Ineffective thickness method (ITM) and Derivation of ineffective thickness method (DITM) are applied to extract optical band gap and transition type via absorption spectrum. SEM and AFM analyses show the distribution of near-spherical nanoparticles covering the surface of thin films. Furthermore, thickness variation affects the grain size. In addition, TEM image reveals the uniform size distribution of nanoparticles with an average particle size of about 15 nm. The findings show that increasing grain size and crystallite order along with the decrease of structural defect and disorders decrease optical band gap from 3.86 eV to 2.58 eV.

  3. Microcrystalline silicon carbide alloys prepared with HWCVD as highly transparent and conductive window layers for thin film solar cells

    International Nuclear Information System (INIS)

    Finger, F.; Astakhov, O.; Bronger, T.; Carius, R.; Chen, T.; Dasgupta, A.; Gordijn, A.; Houben, L.; Huang, Y.; Klein, S.; Luysberg, M.; Wang, H.; Xiao, L.

    2009-01-01

    Crystalline silicon carbide alloys have a very high potential as transparent conductive window layers in thin-film solar cells provided they can be prepared in thin-film form and at compatible deposition temperatures. The low-temperature deposition of such material in microcrystalline form (μc-Si:C:H) was realized by use of monomethylsilane precursor gas diluted in hydrogen with the Hot-Wire Chemical Vapor Deposition process. A wide range of deposition parameters has been investigated and the structural, electronic and optical properties of the μc-SiC:H thin films have been studied. The material, which is strongly n-type from unintentional doping, has been used as window layer in n-side illuminated microcrystalline silicon solar cells. High short-circuit current densities are obtained due to the high transparency of the material resulting in a maximum solar cell conversion efficiency of 9.2%.

  4. Magnetic properties changes of MnAs thin films irradiated with highly charged ions

    OpenAIRE

    Trassinelli , Martino; Gafton , V.; Eddrief , Mahmoud; Etgens , Victor H.; Hidki , S.; Lacaze , Emmanuelle; Lamour , Emily; Luo , X.; Marangolo , Massimiliano; Merot , Jacques; Prigent , Christophe; Reuschl , Regina; Rozet , Jean-Pierre; Steydli , S.; Vernhet , Dominique

    2013-01-01

    International audience; We present the first investigation on the effect of highly charged ion bombardment on a manganese arsenide thin film. The MnAs films, 150~nm thick, are irradiated with 90 keV Ne$^{9+}$ ions with a dose varying from $1.6\\times10^{12}$ to $1.6\\times10^{15}$~ions/cm$^2$. The structural and magnetic properties of the film after irradiation are investigated using different techniques, namely, X-ray diffraction, magneto-optic Kerr effect and magnetic force microscope. Prelim...

  5. An Uneven Illumination Correction Algorithm for Optical Remote Sensing Images Covered with Thin Clouds

    Directory of Open Access Journals (Sweden)

    Xiaole Shen

    2015-09-01

    Full Text Available The uneven illumination phenomenon caused by thin clouds will reduce the quality of remote sensing images, and bring adverse effects to the image interpretation. To remove the effect of thin clouds on images, an uneven illumination correction can be applied. In this paper, an effective uneven illumination correction algorithm is proposed to remove the effect of thin clouds and to restore the ground information of the optical remote sensing image. The imaging model of remote sensing images covered by thin clouds is analyzed. Due to the transmission attenuation, reflection, and scattering, the thin cloud cover usually increases region brightness and reduces saturation and contrast of the image. As a result, a wavelet domain enhancement is performed for the image in Hue-Saturation-Value (HSV color space. We use images with thin clouds in Wuhan area captured by QuickBird and ZiYuan-3 (ZY-3 satellites for experiments. Three traditional uneven illumination correction algorithms, i.e., multi-scale Retinex (MSR algorithm, homomorphic filtering (HF-based algorithm, and wavelet transform-based MASK (WT-MASK algorithm are performed for comparison. Five indicators, i.e., mean value, standard deviation, information entropy, average gradient, and hue deviation index (HDI are used to analyze the effect of the algorithms. The experimental results show that the proposed algorithm can effectively eliminate the influences of thin clouds and restore the real color of ground objects under thin clouds.

  6. Band gap tuning in As40Se53Sb07 thin films by 532 nm laser irradiation: An optical investigation by spectroscopic techniques

    Science.gov (United States)

    Pradhan, Prabhudutta; Naik, R.; Das, N.; Panda, A. K.

    2018-01-01

    The chalcogenide thin films belongs to a special category of important materials due to the unique IR transparency and light induced linear and non linear optical properties change. The optical band gap tuning in thermally evaporated As40Se53Sb07 chalcogenide thin film is being probed under the influence of 532 nm laser illumination. The gradual decrease in transmission and red shift of optical absorption edge with illumination at different time scale is recorded by Fourier transmission infrared spectroscopy. The simultaneous increase in refractive index and absorption coefficient of the illuminated film makes the material as useful candidate for optical switching. The dispersion of refractive index is being analyzed by using Wemple-DiDomenico (WDD) single oscillator model and static refractive index (n0) has also been reported. The exponential decrease of optical band gap with time is attributed to the increase in density of localized states and vacancies. The entire mechanism is explained by the microscopic model in which heteropolar bonds are converted to homopolar ones by the absorption of high energy photons investigated by X-ray photoelectron spectra. The amorphous nature of the studied films was revealed from X-ray diffraction and composition of the film was determined from energy dispersive X-ray analysis. The surface morphology was determined from the scanning electron microscopy. The optical change in absorption coefficient, refractive index, band gap by influence in laser irradiation in such materials may be suitable for optical disc(memory) application for optical time division switch.

  7. Solid thin film materials for use in thin film charge-coupled devices

    International Nuclear Information System (INIS)

    Lynch, S.J.

    1983-01-01

    Solid thin films deposited by vacuum deposition were evaluated to ascertain their effectiveness for use in the manufacturing of charge-coupled devices (CCDs). Optical and electrical characteristics of tellurium and Bi 2 Te 3 solid thin films were obtained in order to design and to simulate successfully the operation of thin film (TF) CCDs. In this article some of the material differences between single-crystal material and the island-structured thin film used in TFCCDs are discussed. The electrical parameters were obtained and tabulated, e.g. the mobility, conductivity, dielectric constants, permittivity, lifetime of holes and electrons in the thin films and drift diffusion constants. The optical parameters were also measured and analyzed. After the design was complete, experimental TFCCDs were manufactured and were successfully operated utilizing the aforementioned solid thin films. (Auth.)

  8. Glow discharge optical emission spectroscopy for accurate and well resolved analysis of coatings and thin films

    KAUST Repository

    Wilke, Marcus; Teichert, Gerd; Gemma, Ryota; Pundt, Astrid; Kirchheim, Reiner; Romanus, Henry; Schaaf, Peter

    2011-01-01

    overview on new developments in instrument design for accurate and well resolved thin film analyses is presented. The article focuses on the analytical capabilities of glow discharge optical emission spectrometry in the analysis of metallic coatings

  9. Effect of deposition temperature on the structural and optical properties of CdSe QDs thin films deposited by CBD method

    Energy Technology Data Exchange (ETDEWEB)

    Laatar, F., E-mail: fakher8laatar@gmail.com [Photovoltaic Laboratory, Centre for Research and Technology Energy, Tourist Route Soliman, BP 95, 2050 Hammam-Lif (Tunisia); Harizi, A. [Photovoltaic and Semiconductor Materials Laboratory, Engineering Industrial Department, ENIT, Tunis El Manar University, BP 37, Le Belvédère, 1002 Tunis (Tunisia); Smida, A. [Photovoltaic Laboratory, Centre for Research and Technology Energy, Tourist Route Soliman, BP 95, 2050 Hammam-Lif (Tunisia); Hassen, M. [Photovoltaic Laboratory, Centre for Research and Technology Energy, Tourist Route Soliman, BP 95, 2050 Hammam-Lif (Tunisia); Higher Institute of Applied Science and Technology of Sousse, City Taffala (Ibn Khaldun), 4003 Sousse (Tunisia); Ezzaouia, H. [Photovoltaic Laboratory, Centre for Research and Technology Energy, Tourist Route Soliman, BP 95, 2050 Hammam-Lif (Tunisia)

    2016-06-15

    Highlights: • Synthesis of CdSe QDs with L-Cysteine capping agent for applications in nanodevices. • The films of CdSe QDs present uniform and good dispersive particles at the surface. • Effect of bath temperature on the structural and optical properties of CdSe QDs thin films. • Investigation of the optical constants and dispersion parameters of CdSe QDs thin films. - Abstract: Cadmium selenide quantum dots (CdSe QDs) thin films were deposited onto glass substrates by a chemical bath deposition (CBD) method at different temperatures from an aqueous solution containing L-Cysteine (L-Cys) as capping agent. The evolution of the surface morphology and elemental composition of the CdSe films were studied by AFM, SEM, and EDX analyses. Structural and optical properties of CdSe thin films were investigated by XRD, UV–vis and PL spectroscopy. The dispersion behavior of the refractive index is described using the single oscillator Wemple-DiDomenico (W-D) model, and the physical dispersion parameters are calculated as a function of deposition temperature. The dispersive optical parameters such as average oscillator energy (E{sub o}), dispersion energy (E{sub d}), and static refractive index (n{sub o}) were found to vary with the deposition temperature. Besides, the electrical free carrier susceptibility (χ{sub e}) and the carrier concentration of the effective mass ratio (N/m*) were evaluated according to the Spitzer-Fan model.

  10. Correlation between the structural and optical properties of ion-assisted hafnia thin films

    Science.gov (United States)

    Scaglione, Salvatore; Sarto, Francesca; Alvisi, Marco; Rizzo, Antonella; Perrone, Maria R.; Protopapa, Maria L.

    2000-03-01

    The ion beam assistance during the film growth is one of the most useful method to obtain dense film along with improved optical and structural properties. Afnia material is widely used in optical coating operating in the UV region of the spectrum and its optical properties depend on the production method and the physical parameters of the species involved in the deposition process. In this work afnia thin films were evaporated by an e-gun and assisted during the growth process. The deposition parameters, ion beam energy, density of ions impinging on the growing film and the number of arrival atoms from the crucible, have been related to the optical and structural properties of the film itself. The absorption coefficient and the refractive index were measured by spectrophotometric technique while the microstructure has been studied by means of x-ray diffraction. A strictly correlation between the grain size, the optical properties and the laser damage threshold measurements at 248 nm was found for the samples deposited at different deposition parameters.

  11. Electrical, optical and etching properties of Zn-Sn-O thin films deposited by combinatorial sputtering

    International Nuclear Information System (INIS)

    Kim, J. S.; Park, J. K.; Baik, Y. J.; Kim, W. M.; Jeong, J.; Seong, T. Y.

    2012-01-01

    Zn-Sn-O (ZTO) films are known to be able to form an amorphous phase, which provides a smooth surface morphology as well as etched side wall, when deposited by using the conventional sputtering technique and, therefore, to have a potential to be applied as transparent thin film transistors. In this study, ZTO thin films were prepared by using combined sputtering of ZnO and SnO 2 targets, and the dependences of their electrical and optical properties on the composition and the deposition parameters were examined. The Sn content in the films was varied in the range of 35 ∼ 85 at .%. The deposition was carried out at room temperature, 150 and 300 .deg. C, and the oxygen content in sputtering gas was varied from 0 to 1 vol.%. Sn-rich films had better electrical properties, but showed large oxygen deficiency when deposited at low oxygen partial pressures. ZTO films with Sn contents lower than 55 at.% had good optical transmission, but the electrical properties were poor due to very low carrier concentrations. A high Hall mobility of larger than 10 cm 2 /Vs could be obtained in the carrier density range 10 17 ∼ 10 20 cm -3 , and the etching rate was measurable for films with Sn content up to 70 at.% when using a dilute HCl solution, indicating a good possibility of utilizing ZTO films for device applications.

  12. Thin combiner optics utilizing volume holographic optical elements (vHOEs) using Bayfol HX photopolymer film

    Science.gov (United States)

    Bruder, Friedrich-Karl; Fäcke, Thomas; Hagen, Rainer; Hansen, Sven; Manecke, Christel; Orselli, Enrico; Rewitz, Christian; Rölle, Thomas; Walze, Günther

    2017-06-01

    The main function of any augmented reality system is to seamlessly merge the real world perception of a viewer with computer generated images and information. Besides real-time head-tracking and room-scanning capabilities the combiner optics, which optically merge the natural with the artificial visual information, represent a key component for those systems. Various types of combiner optics are known to the industry, all with their specific advantages and disadvantages. Beside the well-established solutions based on refractive optics or surface gratings, volume Holographic Optical Elements (vHOEs) are a very attractive alternative in this field. The unique characteristics of these diffractive grating structures - being lightweight, thin, flat and invisible in Off Bragg conditions - make them perfectly suitable for their use in integrated and compact combiners. For any consumer application it is paramount to build unobtrusive and lightweight augmented reality displays, for which those volume holographic combiners are ideally suited. Due to processing challenges of (historic) holographic recording materials mass production of vHOE holographic combiners was not possible. Therefore vHOE based combiners found use in military applications only by now. The new Bayfol® HX instant developing holographic photopolymer film provides an ideal technology platform to optimize the performance of vHOEs in a wide range of applications. Bayfol® HX provides full color capability and adjustable diffraction efficiency as well as an unprecedented optical clarity when compared to classical holographic recording materials like silver halide emulsions (AgHX) or dichromated gelatin (DCG). Bayfol® HX film is available in industrial scale and quality. Its properties can be tailored for various diffractive performances and integration methods. Bayfol® HX film is easy to process without any need for chemical or thermal development steps, offering simplified contact-copy mass production

  13. Influence of Nb dopant on the structural and optical properties of nanocrystalline TiO{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kaleji, Behzad Koozegar, E-mail: bkaleji@yahoo.com [Department of Materials Engineering, Faculty of Engineering, Tarbiat Modares University, P.O. Box:14115-143, Tehran (Iran, Islamic Republic of); Sarraf-Mamoory, Rasoul, E-mail: rsarrafm@modares.ac.ir [Department of Materials Engineering, Faculty of Engineering, Tarbiat Modares University, P.O. Box:14115-143, Tehran (Iran, Islamic Republic of); Fujishima, Akira [Photo-catalyst Group, Kanagawa Academy of Science and Technology, KSP East 412, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa 213-0012 (Japan)

    2012-01-16

    Highlights: Black-Right-Pointing-Pointer We coated Nb-doped TiO{sub 2} films on glazed porcelain via sol-gel dip coating method. Black-Right-Pointing-Pointer We examined coatings by degradation of MB solution and optical light transmittance. Black-Right-Pointing-Pointer Coatings show enhanced photo-catalytic activity in 1 mol% Nb. Black-Right-Pointing-Pointer Nb doping inhibited the grain growth, and which are found to inhibit the anatase to rutile phase transformation. - Abstract: In this study, preparation of Nb-doped (0-20 mol% Nb) TiO{sub 2} dip-coated thin films on glazed porcelain substrates via sol-gel process has been investigated. The effects of Nb on the structural, optical, and photo-catalytic properties of applied thin films have been studied by X-ray diffraction, Raman spectroscopy, and scanning electron microscopy. Surface topography and surface chemical state of thin films was examined by atomic force microscope and X-ray photoelectron spectroscopy. XRD and Raman study showed that the Nb doping inhibited the grain growth. The photo-catalytic activity of the film was tested on degradation of methylene blue. Best photo-catalytic activity of Nb-doped TiO{sub 2} thin films were measured in the TiO{sub 2}-1 mol% Nb sample. The average optical transmittance of about 47% in the visible range and the band gap of films became wider with increasing Nb doping concentration. The Nb{sup 5+} dopant presented substitutional Ti{sup 4+} into TiO{sub 2} lattice.

  14. Structural and optical characterization of p-type highly Fe-doped SnO2 thin films and tunneling transport on SnO2:Fe/p-Si heterojunction

    Science.gov (United States)

    Ben Haj Othmen, Walid; Ben Hamed, Zied; Sieber, Brigitte; Addad, Ahmed; Elhouichet, Habib; Boukherroub, Rabah

    2018-03-01

    Nanocrystalline highly Fe-doped SnO2 thin films were prepared using a new simple sol-gel method with iron amounts of 5, 10, 15 and 20%. The obtained gel offers a long durability and high quality allowing to reach a sub-5 nm nanocrystalline size with a good crystallinity. The films were structurally characterized through X-ray diffraction (XRD) that confirms the formation of rutile SnO2. High Resolution Transmission Electron Microscopy (HRTEM) images reveals the good crystallinity of the nanoparticles. Raman spectroscopy shows that the SnO2 rutile structure is maintained even for high iron concentration. The variation of the PL intensity with Fe concentration reveals that iron influences the distribution of oxygen vacancies in tin oxide. The optical transmittance results indicate a redshift of the SnO2 band gap when iron concentration increases. The above optical results lead us to assume the presence of a compensation phenomenon between oxygen vacancies and introduced holes following Fe doping. From current-voltage measurements, an inversion of the conduction type from n to p is strongly predicted to follow the iron addition. Electrical characterizations of SnO2:Fe/p-Si and SnO2:Fe/n-Si heterojunctions seem to be in accordance with this deduction. The quantum tunneling mechanism is expected to be important at high Fe doping level, which was confirmed by current-voltage measurements at different temperatures. Both optical and electrical properties of the elaborated films present a particularity for the same iron concentration and adopt similar tendencies with Fe amount, which strongly correlate the experimental observations. In order to evaluate the applicability of the elaborated films, we proceed to the fabrication of the SnO2:Fe/SnO2 homojunction for which we note a good rectifying behavior.

  15. Larger red-shift in optical emissions obtained from the thin films of globular proteins (BSA, lysozyme) – polyelectrolyte (PAA) complexes

    Energy Technology Data Exchange (ETDEWEB)

    Talukdar, Hrishikesh [Physical Sciences Division, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati 781035, Assam (India); Kundu, Sarathi, E-mail: sarathi.kundu@gmail.com [Physical Sciences Division, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati 781035, Assam (India); Basu, Saibal [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)

    2016-09-30

    Graphical abstract: Thin films of protein-polyelectrolyte complexes show larger red-shift in optical emission. - Highlights: • Globular proteins (lysozyme and BSA) and polyelectrolyte (sodium polyacrylic acid) are used to form protein-polyelectrolyte complexes (PPC). • Larger red-shift in optical emission is obtained from the thin films of PPC. • Red-shift is not obtained from the solution of PPC and pure protein thin films. • Larger red-shift from PPC films is due to the energy dissipation as non-radiative form through interactions with nearby atoms. • Red-shift in optical emission is independent on the thickness of the PPC film. - Abstract: Globular proteins (lysozyme and BSA) and polyelectrolyte (sodium polyacrylic acid) are used to form protein-polyelectrolyte complexes (PPC). Out-of-plane structures of ≈30–60 nm thick PPC films and their surface morphologies have been studied by using X-ray reflectivity and atomic force microscopy, whereas optical behaviors of PPC and protein conformations have been studied by using UV–vis, photoluminescence and FTIR spectroscopy respectively. Our study reveals that thin films of PPC show a larger red-shift of 23 and 16 nm in the optical emissions in comparison to that of pure protein whereas bulk PPC show a small blue-shift of ≈3 nm. A small amount of peak-shift is found to occur due to the heat treatment or concentration variation of the polyelectrolyte/protein in bulk solution but cannot produce such film thickness independent larger red-shift. Position of the emission peak remains nearly unchanged with the film thickness. Mechanism for such larger red-shift has been proposed.

  16. Propagation of complex shaped ultrafast pulses in highly optically dense samples

    International Nuclear Information System (INIS)

    Davis, J. C.; Fetterman, M. R.; Warren, W. S.; Goswami, D.

    2008-01-01

    We examine the propagation of shaped (amplitude- and frequency-modulated) ultrafast laser pulses through optically dense rubidium vapor. Pulse reshaping, stimulated emission dynamics, and residual electronic excitation all strongly depend on the laser pulse shape. For example, frequency swept pulses, which produce adiabatic passage in the optically thin limit (independent of the sign of the frequency sweep), behave unexpectedly in optically dense samples. Paraxial Maxwell optical Bloch equations can model our ultrafast pulse propagation results well and provide insight

  17. Effect of thickness on surface morphology, optical and humidity sensing properties of RF magnetron sputtered CCTO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Ahmadipour, Mohsen [Structural Materials Niche Area, School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang (Malaysia); Ain, Mohd Fadzil [School of Electrical and Electronic Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang (Malaysia); Ahmad, Zainal Arifin, E-mail: srzainal@usm.my [Structural Materials Niche Area, School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang (Malaysia)

    2016-11-01

    Highlights: • CCTO thin film was synthesized by RF magnetron sputtering successfully. • Increase in thickness lead to increase in grain size and decrease in band gap. • Short response times and recovery times of lead CCTO humidity sensor. • Sensor could detect humidity range (30–90%). - Abstract: In this study, calcium copper titanate (CCTO) thin films were deposited on ITO substrates successfully by radio frequency (RF) magnetron sputtering method in argon atmosphere. The CCTO thin films present a polycrystalline, uniform and porous structure. The surface morphology, optical and humidity sensing properties of the synthesized CCTO thin films have been studied by X-ray diffraction (XRD), atomic force microscopy (AFM), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), UV–vis spectrophotometer and current-voltage (I–V) analysis. XRD and AFM confirmed that the intensity of peaks and pore size of CCTO thin films were enhanced by increasing the thin films. Tauc plot method was adopted to estimate the optical band gaps. The surface structure and energy band gaps of the deposited films were affected by film thickness. Energy band gap of the layers were 3.76 eV, 3.68 eV and 3.5 eV for 200 nm, 400 nm, and 600 nm CCTO thin films layer, respectively. The humidity sensing properties were measured by using direct current (DC) analysis method. The response times were 12 s, 22 s, and 35 s while the recovery times were 500 s, 600 s, and 650 s for 200 nm, 400 nm, and 600 nm CCTO thin films, respectively at humidity range of 30–90% relative humidity (RH).

  18. Optical and structural properties of CuSbS2 thin films grown by thermal evaporation method

    International Nuclear Information System (INIS)

    Rabhi, A.; Kanzari, M.; Rezig, B.

    2009-01-01

    Structural, optical and electrical properties of CuSbS 2 thin films grown by thermal evaporation have been studied relating the effects of substrate heating conditions of these properties. The CuSbS 2 thin films were carried out at substrate temperatures in the temperature range 100-200 deg. C . The structure and composition were characterized by XRD, SEM and EDX. X-ray diffraction revealed that the films are (111) oriented upon substrate temperature 170 deg. C and amorphous for the substrate temperatures below 170 deg. C . No secondary phases are observed for all the films. The optical absorption coefficients and band gaps of the films were estimated by optical transmission and reflection measurements at room temperature. Strong absorption coefficients in the range 10 5 -10 6 cm -1 at 500 nm were found. The direct gaps Eg lie between 0.91-1.89 eV range. It is observed that there is a decrease in optical band gap Eg with increasing the substrate temperature. Resistivity of 0.03-0.96 Ω cm, in dependence on substrate temperature was characterized. The all unheated films exhibit p-type conductivity. The characteristics reported here also offer perspective for CuSbS 2 as an absorber material in solar cells applications

  19. Low-Cost, Fiber-Optic Hydrogen Gas Detector Using Guided-Wave, Surface-Plasmon Resonance in Chemochromic Thin Films

    International Nuclear Information System (INIS)

    Tracy, C.E.; Benson, D.K.; Haberman, D.P.; Hishmeh, G.A.; Ciszek, P.A.

    1998-01-01

    Low-cost, hydrogen-gas-leak detectors are needed for many hydrogen applications, such as hydrogen-fueled vehicles where several detectors may be required in different locations on each vehicle. A fiber-optic leak detector could be inherently safer than conventional detectors, because it would remove all detector electronics from the vicinity of potential leaks. It would also provide freedom from electromagnetic interference, a serious problem in fuel-cell-powered electric vehicles. This paper describes the design of a fiber-optic, surface-plasmon-resonance hydrogen detector, and efforts to make it more sensitive, selective, and durable. Chemochromic materials, such as tungsten oxide and certain Lanthanide hydrides, can reversibly react with hydrogen in air while exhibiting significant changes in their optical properties. Thin films of these materials applied to a sensor at the end of an optical fiber have been used to detect low concentrations of hydrogen gas in air. The coatings include a thin silver layer in which the surface plasmon is generated, a thin film of the chemochromic material, and a catalytic layer of palladium that facilitates the reaction with hydrogen. The film thickness is chosen to produce a guided-surface plasmon wave along the interface between the silver and the chemochromic material. A dichroic beam-splitter separates the reflected spectrum into a portion near the resonance and a portion away from the resonance, and directs these two portions to two separate photodiodes. The electronic ratio of these two signals cancels most of the fiber transmission noise and provides a stable hydrogen signal

  20. X-ray quantum optics with Moessbauer nuclei in thin-film cavities

    Energy Technology Data Exchange (ETDEWEB)

    Heeg, Kilian Peter

    2014-12-09

    In this thesis thin-film cavities with embedded Moessbauer nuclei probed by near-resonant X-ray light are studied from a quantum optical perspective. A theoretical framework is developed and compact expressions for the observables are derived for the linear excitation regime, which is encountered in current experiments. Even advanced cavity layouts can be modeled in excellent agreement with the results of previous experiments and semi-classical approaches. In the absence of magnetic hyperfine splitting, the spectral response of the system is found to be formed by tunable Fano profiles. An experimental implementation of this line shape control allows to extract spectroscopic signatures with high precision and to reconstruct the phase of the nuclear transition in good agreement with the theoretical predictions. The alignment of medium magnetization and polarization control of the X-rays enable to engineer advanced quantum optical level schemes, in which vacuum induced coherence effects are predicted and successfully demonstrated in an experiment. Furthermore, it is shown that group velocity control for x-ray pulses can be achieved in the cavity. A scheme for its observation is proposed and then employed to experimentally confirm sub-luminal X-ray propagation. Finally, non-linear effects, which could become accessible with future light sources, are explored and a non-linear line shape control mechanism is discussed.

  1. Investigation of the optical properties of MoS{sub 2} thin films using spectroscopic ellipsometry

    Energy Technology Data Exchange (ETDEWEB)

    Yim, Chanyoung; O' Brien, Maria; Winters, Sinéad [School of Chemistry, Trinity College Dublin, Dublin 2 (Ireland); Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2 (Ireland); McEvoy, Niall [Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2 (Ireland); Mirza, Inam; Lunney, James G. [Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2 (Ireland); School of Physics, Trinity College Dublin, Dublin 2 (Ireland); Duesberg, Georg S., E-mail: duesberg@tcd.ie [School of Chemistry, Trinity College Dublin, Dublin 2 (Ireland); Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2 (Ireland); Advanced Materials and BioEngineering Research (AMBER) Centre, Trinity College Dublin, Dublin 2 (Ireland)

    2014-03-10

    Spectroscopic ellipsometry (SE) characterization of layered transition metal dichalcogenide (TMD) thin films grown by vapor phase sulfurization is reported. By developing an optical dispersion model, the extinction coefficient and refractive index, as well as the thickness of molybdenum disulfide (MoS{sub 2}) films, were extracted. In addition, the optical band gap was obtained from SE and showed a clear dependence on the MoS{sub 2} film thickness, with thinner films having a larger band gap energy. These results are consistent with theory and observations made on MoS{sub 2} flakes prepared by exfoliation, showing the viability of vapor phase derived TMDs for optical applications.

  2. About the use of photoacoustic spectroscopy for the optical characterization of semiconductor thin films: CdTe

    Energy Technology Data Exchange (ETDEWEB)

    Marin, E.; Calderon, A. [CICATA-IPN, Av. Legaria 694, 11500 Mexico D.F. (Mexico); Vigil G, O.; Sastre, J.; Contreras P, G.; Aguilar H, J. [ESFM-IPN, 07738 Mexico D.F. (Mexico); Saucedo, E.; Ruiz, C.M. [Departamento de Fisica de Materiales, Facultad de Ciencias, Universidad Autonoma de Madrid, 28049 Madrid (Spain)

    2006-07-01

    CdTe has been used satisfactorily in multiple and diverse technological applications such as detectors of X and gamma rays that operate at room temperature, for digital imagenology of X rays with medical and industrial applications and as active part in CdTe/CdS solar cells. In form of films, CdTe is generally grown with thicknesses ranging between 3 and 15 {mu}m, for which it is difficult to measure, by means of optical techniques, absorption coefficients greater than 10{sup 3} cm{sup -1} because nearly full absorption of light should occur below 800 nm. The exact determination of the optical absorption coefficient in detectors on the basis of CdTe is very important since this parameter determines the absorption length at which 90% of the photons with energies over the forbidden zone of the CdTe will be absorbed by this. In CdS/CdTe polycrystalline solar cells the greater efficiency of conversion have been reported for film thicknesses of 10 mm, however, the optimal value of this parameter depends strongly on the method and the variables of growth. The optical absorption coefficient spectrum can be determined by several methods, often involving several approximations and the knowledge of some minority carrier related electronic parameters that reduce their application in general way. In this work we propose to determine the absorption coefficient in CdTe thin films by photoacoustic spectroscopy (PAS), because this technique allow us to obtain the optical absorption spectra in thicker layers and therefore the study of the influence of the several growth and post-growth processes in the optical properties of this thin films. We measure by PAS the optical-absorption coefficients of CdTe thin films in the spectral region near the fundamental absorption edge ranging from 1.0 to 2.4 eV using an open cell in the transmission configuration. The films were deposited on different substrates by the CSVT-HW (hot wall) technique. In order to study the influence of several

  3. Structural and optical studied of nano structured lead sulfide thin films prepared by the chemical bath deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Al Din, Nasser Saad, E-mail: nsaadaldin@yahoo.com; Hussain, Nabiha, E-mail: nabihahssin@yahoo.com [Damascus University Faculty of Science, Department of physics, Homs (Syrian Arab Republic); Jandow, Nidhal, E-mail: nidhaljandow@yahoo.com [Al –Mustansiriyah University, College of Education, Department of physics, Baghdad (Iraq)

    2016-07-25

    Lead (II) Sulfide PbS thin films were deposited on glass substrates at 25°C by chemical bath deposition (CBD) method. The structural properties of the films were studied as a function of the concentration of Thiourea (CS (NH{sub 2}){sub 2}) as Source of Sulfide and deposition time. The surface morphology of the films was characterized by X-ray diffraction and SEM. The obtained results showed that the as-deposited films Polycrystalline had cubic crystalline phase that belong to S.G: Fm3m. We found that they have preferred orientation [200]. Also the thickness of thin films decrease with deposition time after certain value and, it observed free sulfide had orthorhombic phase. Optical properties showed that the thin films have high transmission at visible range and low transmission at UV, IR range. The films of PbS have direct band gap (I.68 - 2.32 ev) at 300 K the values of band energy decreases with increases thickness of the Lead (II) Sulfide films.

  4. An IRIS Optically Thin View of the Dynamics of the Solar Chromosphere

    Science.gov (United States)

    Carlsson, M.

    2017-12-01

    We analyze the formation of the O I 1356 and Cl I 1351 lines and show that they are formed in the mid-chromosphere and are optically thin. Their non-thermal line-widths are thus a direct measure of the velocity field along the line of sight. We use this insight to analyze a large set of observations from the Interface Region Imaging Spectrograph (IRIS) to study the dynamics of the Solar Chromosphere.

  5. Accretion disc boundary layers - geometrically and optically thin case

    International Nuclear Information System (INIS)

    Regev, Oded; Hougerat, A.A.

    1988-01-01

    The method of matched asymptotic expansions is applied to an optically and geometrically thin boundary layer between an accretion disc and the accreting star. Analytical solutions are presented for a particular viscosity prescription in the boundary layer. For a typical example we find that the disc closely resembles standard steady-disc theory. It is identical to it everywhere save a narrow boundary layer, where the temperature increases rapidly inward (by an order of magnitude), the angular velocity achieves maximum and decreases to its surface value and other variables also undergo rapid changes. This and previous work can now be used to calculate the emission from accretion discs including the boundary layers for a wide range of parameters. (author)

  6. Temperature dependent optical properties of ZnO thin film using ellipsometry and photoluminescence

    Science.gov (United States)

    Bouzourâa, M.-B.; Battie, Y.; Dalmasso, S.; Zaïbi, M.-A.; Oueslati, M.; En Naciri, A.

    2018-05-01

    We report the temperature dependence of the dielectric function, the exciton binding energy and the electronic transitions of crystallized ZnO thin film using spectroscopic ellipsometry (SE) and photoluminescence (PL). ZnO layers were prepared by sol-gel method and deposited on crystalline silicon (Si) by spin coating technique. The ZnO optical properties were determined between 300 K and 620 K. Rigorous study of optical responses was achieved in order to demonstrate the quenching exciton of ZnO as a function of temperature. Numerical technique named constrained cubic splines approximation (CCS), Tauc-Lorentz (TL) and Tanguy dispersion models were selected for the ellipsometry data modeling in order to obtain the dielectric function of ZnO. The results reveals that the exciton bound becomes widely flattening at 470 K on the one hand, and on the other that the Tanguy dispersion law is more appropriate for determining the optical responses of ZnO thin film in the temperature range of 300 K-420 K. The Tauc-Lorentz, for its part, reproduces correctly the ZnO dielectric function in 470 K-620 K temperature range. The temperature dependence of the electronic transition given by SE and PL shows that the exciton quenching was observed in 420 K-∼520 K temperature range. This quenching effect can be explained by the equilibrium between the Coulomb force of exciton and its kinetic energy in the film. The kinetic energy was found to induce three degrees of freedom of the exciton.

  7. Encoded diffractive optics for full-spectrum computational imaging

    KAUST Repository

    Heide, Felix; Fu, Qiang; Peng, Yifan; Heidrich, Wolfgang

    2016-01-01

    Diffractive optical elements can be realized as ultra-thin plates that offer significantly reduced footprint and weight compared to refractive elements. However, such elements introduce severe chromatic aberrations and are not variable, unless used in combination with other elements in a larger, reconfigurable optical system. We introduce numerically optimized encoded phase masks in which different optical parameters such as focus or zoom can be accessed through changes in the mechanical alignment of a ultra-thin stack of two or more masks. Our encoded diffractive designs are combined with a new computational approach for self-calibrating imaging (blind deconvolution) that can restore high-quality images several orders of magnitude faster than the state of the art without pre-calibration of the optical system. This co-design of optics and computation enables tunable, full-spectrum imaging using thin diffractive optics.

  8. Encoded diffractive optics for full-spectrum computational imaging

    KAUST Repository

    Heide, Felix

    2016-09-16

    Diffractive optical elements can be realized as ultra-thin plates that offer significantly reduced footprint and weight compared to refractive elements. However, such elements introduce severe chromatic aberrations and are not variable, unless used in combination with other elements in a larger, reconfigurable optical system. We introduce numerically optimized encoded phase masks in which different optical parameters such as focus or zoom can be accessed through changes in the mechanical alignment of a ultra-thin stack of two or more masks. Our encoded diffractive designs are combined with a new computational approach for self-calibrating imaging (blind deconvolution) that can restore high-quality images several orders of magnitude faster than the state of the art without pre-calibration of the optical system. This co-design of optics and computation enables tunable, full-spectrum imaging using thin diffractive optics.

  9. Effect of Ge Addition on the Optical Band Gap and Refractive Index of Thermally Evaporated As2Se3 Thin Films

    Directory of Open Access Journals (Sweden)

    Pankaj Sharma

    2008-01-01

    Full Text Available The present paper reports the effect of Ge addition on the optical band gap and refractive index of As2Se3 thin films. Thin films of As2Se3 and (As2Se390Ge10 were prepared by thermal evaporation technique at base pressure 10−4 Pa. Optical band gap and refractive index were calculated by analyzing the transmission spectrum in the spectral range 400–1500 nm. The optical band gap decreases while the refractive index increases with the addition of Ge to As2Se3. The decrease of optical band gap has been explained on the basis of density of states; and the increase in refractive index has been explained on the basis increase in disorder in the system.

  10. Viscoelastic optical nonlocality of doped cadmium oxide epsilon-near-zero thin films

    Energy Technology Data Exchange (ETDEWEB)

    Luk, Ting S.; De Ceglia, Domenico; Scalora, Michael; Vincenti, Maria A.; Campione, Salvatore; Kelley, Kyle; Maria, Jon-Paul; Keeler, Gordon A.

    2017-08-01

    Optical nonlocalities are elusive and hardly observable in traditional plasmonic materials like noble and alkali metals. Here we experimentally observe and theoretically model viscoelastic nonlocalities in the infrared optical response of a doped, cadmium oxide epsilon-near-zero thin film. The nonlocality is clearly detectable thanks to the low damping rate of conduction electrons and the virtual absence of interband transitions at infrared wavelengths. We describe the motion of conduction electrons using a hydrodynamic model for a viscoelastic fluid, and find excellent agreement with experimental results. The electrons’ elasticity blue-shifts the infrared plasmonic resonance associated with the main epsilon-near-zero mode, and triggers the onset of higher-order resonances due to the excitation of electron-pressure modes above the bulk plasma frequency. We also provide evidence of the existence of nonlocal damping, i.e., viscosity, in the motion of optically-excited conduction electrons using a combination of spectroscopic ellipsometry data and predictions based on the viscoelastic hydrodynamic model.

  11. Electrical and optical properties of CZTS thin films prepared by SILAR method

    Directory of Open Access Journals (Sweden)

    J. Henry

    2016-03-01

    Full Text Available In the present work, Cu2ZnSnS4 (CZTS thin film was deposited onto the glass substrate by simple and economic SILAR method and its structural, morphological, optical and electrical properties were analyzed. X-ray diffraction (XRD analysis confirms the formation of CZTS with kesterite structure and the average crystallite size is found to be 142 nm. Scanning electron microscope (SEM image shows that the film has homogeneous, agglomerated surface without any cracks. The prepared CZTS film shows good optical absorption (104 cm−1 in the visible region and the optical band gap energy is found to be quite close to the optimum value of about 1.54 eV for solar cell application. The refractive index of the prepared film is found to be 2.85. The electrical resistivity of the film is found to be ∼10−2 Ω cm at room temperature.

  12. Multichannel all–optical switch based on a thin slab of resonant two–level emitters

    Directory of Open Access Journals (Sweden)

    Malikov Ramil

    2017-01-01

    Full Text Available We discuss the possibility of using a thin layer of inhomogeneously broadened resonant emitters as a multichannel all–optical switch. Switching time from the lower stable branch of the system's bistable characteristics to the upper one and vice versa, which determines the speed of operation of a bistable device, is studied.

  13. Ultra Uniform Pb0.865La0.09(Zr0.65Ti0.35O3 Thin Films with Tunable Optical Properties Fabricated via Pulsed Laser Deposition

    Directory of Open Access Journals (Sweden)

    Shenglin Jiang

    2018-03-01

    Full Text Available Ferroelectric thin films have been utilized in a wide range of electronic and optical applications, in which their morphologies and properties can be inherently tuned by a qualitative control during growth. In this work, we demonstrate the evolution of the Pb0.865La0.09(Zr0.65Ti0.35O3 (PLZT thin films on MgO (200 with high uniformity and optimized optical property via the controls of the deposition temperatures and oxygen pressures. The perovskite phase can only be obtained at the deposition temperature above 700 °C and oxygen pressure over 50 Pa due to the improved crystallinity. Meanwhile, the surface morphologies gradually become smooth and compact owing to spontaneously increased nucleation sites with the elevated temperatures, and the crystallization of PLZT thin films also sensitively respond to the oxygen vacancies with the variation of oxygen pressures. Correspondingly, the refractive indices gradually develop with variations of the deposition temperatures and oxygen pressures resulted from the various slight loss, and the extinction coefficient for each sample is similarly near to zero due to the relatively smooth morphology. The resulting PLZT thin films exhibit the ferroelectricity, and the dielectric constant sensitively varies as a function of electric filed, which can be potentially applied in the electronic and optical applications.

  14. Tailoring the optical properties of amorphous heavily Er3+-doped Ge-Ga-S thin films

    Czech Academy of Sciences Publication Activity Database

    Reddy, N.K.; Devika, M.; Prashantha, M.; Rames, K.; Ivanova, Z.G.; Zavadil, Jiří

    2013-01-01

    Roč. 15, 3-4 (2013), s. 182-186 ISSN 1454-4164 R&D Projects: GA ČR GAP106/12/2384 Institutional support: RVO:67985882 Keywords : Chalcogenide thin films * Optical properties * Photoinduced changes Subject RIV: JA - Electronics ; Optoelectronics , Electrical Engineering Impact factor: 0.563, year: 2013

  15. Enhanced electrical and optical properties of CdS:Na thin films by photochemical deposition

    Science.gov (United States)

    Kumar, V. Nirmal; Suriakarthick, R.; Gopalakrishnan, R.; Hayakawa, Y.

    2017-06-01

    CdS:Na thin film was deposited on a glass substrate by photochemical deposition from aqueous solution contained CdSO4.5H2O and Na2S2O3 as cation and anion sources, respectively. The anion source Na2S2O3 served as Na dopant source. The deposited film exhibited cubic phase of CdS and incorporation of Na was revealed from X-ray diffraction study. The incorporation of Na in CdS changed the surface morphology from spherical to nano rods. CdS:Na thin film showed blue shift in its absorption spectrum which was more desirable for transmitting higher energy photons (visible region) in thin film solar cells. The Raman analysis confirmed 1 LO and 2 LO process at 297 and 593 cm-1, respectively. The carrier concentration of CdS increased with the inclusion of Na and its resistivity value decreased. Both the electrical and optical properties of CdS were enhanced in CdS:Na thin films which was desirable as a window layer material for photovoltaic application.

  16. Investigation on the Optical and Surface Morphology of Conjugated Polymer MEH-PPV:ZnO Nanocomposite Thin Films

    Directory of Open Access Journals (Sweden)

    Nurul Zayana Yahya

    2012-01-01

    Full Text Available Thin films of red color poly(2-methoxy-5(2′-ethylhexyloxy-phenylene vinylene (MEH-PPV containing different weight percent of ZnO nanoparticles were obtained by spin-coating techniques. The MEH-PPV:ZnO solutions were spin coated onto silicon and glass substrates. The spun MEH-PPV:ZnO thin films were then used to investigate optical properties by using ultraviolet-visible spectrometer (UV-Vis and photoluminescence spectrophotometer (PL. The morphologies were investigated by using field emission scanning electron microscopy (FESEM, while the identification of ZnO in the final product was determined by using energy-dispersive X-ray spectroscopy (EDS. The UV-Vis absorption band increases, while the optical bandgap decreases when the amount of ZnO nanoparticles increases. ZnO nanoparticles apparently have no effect on the conjugation segments of MEH-PPV. PL spectra show that the emission peak increases and slightly red shift as ZnO concentration increases. Based on SEM images of MEH-PPV:ZnO nanocomposite thin films, ZnO nanoparticles form agglomerated regions.

  17. Annealing effect on structural and optical properties of chemical bath deposited MnS thin film

    Energy Technology Data Exchange (ETDEWEB)

    Ulutas, Cemal, E-mail: cemalulutas@hakkari.edu.tr [Faculty of Education, Hakkari Universty, 30000, Hakkari (Turkey); Gumus, Cebrail [Faculty of Science and Letters, Cukurova University, 01330, Adana (Turkey)

    2016-03-25

    MnS thin film was prepared by the chemical bath deposition (CBD) method on commercial microscope glass substrate deposited at 30 °C. The as-deposited film was given thermal annealing treatment in air atmosphere at various temperatures (150, 300 and 450 °C) for 1 h. The MnS thin film was characterized by using X-ray diffraction (XRD), UV-vis spectrophotometer and Hall effect measurement system. The effect of annealing temperature on the structural, electrical and optical properties such as optical constants of refractive index (n) and energy band gap (E{sub g}) of the film was determined. XRD measurements reveal that the film is crystallized in the wurtzite phase and changed to tetragonal Mn{sub 3}O{sub 4} phase after being annealed at 300 °C. The energy band gap of film decreased from 3.69 eV to 3.21 eV based on the annealing temperature.

  18. Synthesis and characterization of DC magnetron sputtered ZnO thin films under high working pressures

    International Nuclear Information System (INIS)

    Hezam, M.; Tabet, N.; Mekki, A.

    2010-01-01

    ZnO thin films were deposited on glass substrates using direct current (dc) magnetron sputtering under high working pressures. A pure zinc target was used, and sputtering was carried out in an oxygen atmosphere. The working pressure was varied between 50 and 800 mTorr. XRD characterization showed that for a window of working pressures between 300 and 500 mTorr, the deposited films were polycrystalline, with strong preferential orientation of grains along the c-axis. The film deposited at 400 mTorr had the highest (002) peak with the largest estimated grain size. Outside this window, the crystallinity and c-orientation of grains are lost. The microstructure of the films was investigated by Atomic Force microscopy (AFM). Optical transparency of the films was about 85%. The films produced were highly resistive, which might provide new alternatives for the synthesis of ZnO thin films aimed for SAW devices.

  19. Structure, optical and electrical properties of indium tin oxide ultra thin films prepared by jet nebulizer spray pyrolysis technique

    Directory of Open Access Journals (Sweden)

    M. Thirumoorthi

    2016-03-01

    Full Text Available Indium tin oxide (ITO thin films have been prepared by jet nebulizer spray pyrolysis technique for different Sn concentrations on glass substrates. X-ray diffraction patterns reveal that all the films are polycrystalline of cubic structure with preferentially oriented along (222 plane. SEM images show that films exhibit uniform surface morphology with well-defined spherical particles. The EDX spectrum confirms the presence of In, Sn and O elements in prepared films. AFM result indicates that the surface roughness of the films is reduced as Sn doping. The optical transmittance of ITO thin films is improved from 77% to 87% in visible region and optical band gap is increased from 3.59 to 4.07 eV. Photoluminescence spectra show mainly three emissions peaks (UV, blue and green and a shift observed in UV emission peak. The presence of functional groups and chemical bonding was analyzed by FTIR. Hall effect measurements show prepared films having n-type conductivity with low resistivity (3.9 × 10−4 Ω-cm and high carrier concentrations (6.1 × 1020 cm−3.

  20. Effect of Etching on the Optical, Morphological Properties of Ag Thin Films for SERS Active Substrates

    Directory of Open Access Journals (Sweden)

    Desapogu Rajesh

    2013-01-01

    Full Text Available Structural, optical, and morphological properties of Ag thin films before and after etching were investigated by using X-ray diffraction, UV-Vis spectrophotometer, and field emission scanning electron microscopy (FESEM. The HNO3 roughened Ag thin films exhibit excellent enhancement features and better stability than pure Ag thin films. Further, the Ag nanostructures are covered with Rhodamine 6G (Rh6G and then tested with surface enhanced raman spectroscopy (SERS for active substrates. Etched Ag films were found to exhibit a strong SERS effect and excellent thermal stability. Hence, the present method is found to be useful in the development of plasmon-based analytical devices, especially SERS-based biosensors.

  1. Structural and optical studies of 100 MeV Au irradiated thin films of tin oxide

    Science.gov (United States)

    Jaiswal, Manoj Kumar; Kanjilal, D.; Kumar, Rajesh

    2013-11-01

    Thin films of tin(IV) oxide (SnO2) of 100 nm thickness were grown on silicon (1 0 0) matrices by electron beam evaporation deposition technique under high vacuum. The thicknesses of these films were monitored by piezo-sensor attached to the deposition chamber. Nanocrystallinity is achieved in these thin films by 100 MeV Au8+ using 1 pnA current at normal incidence with ion fluences varying from 1 × 1011 ions/cm2 to 5 × 1013 ions/cm2. Swift Heavy Ion beam irradiation was carried out by using 15 UD Pelletron Accelerator at IUAC, New Delhi, India. Optical studies of pristine and ion irradiated thin films were characterized by UV-Visible spectroscopy and Fourier Transform Infrared (FTIR) spectroscopy. Prominent peak at 610 cm-1 in FTIR spectrum confirmed the O-Sn-O bonding of tin(IV) oxide. For Surface topographical studies and grain size calculations, these films were characterized by Atomic Force Microscope (AFM) using Nanoscope III-A. Crystallinity and phase transformation due to irradiation of pristine and irradiated films were characterized by Glancing Angle X-ray Diffraction (GAXRD) using Brucker-D8 advance model. GAXRD results show improvement in crystallinity and phase transformation due to swift heavy ion irradiation. Grain size distribution was verified by AFM and GAXRD results. Swift heavy ion induced modifications in thin films of SnO2 were confirmed by the presence of prominent peaks at 2θ values of 30.65°, 32.045°, 43.94°, 44.96° and 52.36° in GAXRD spectrum.

  2. Tuning electro-optic susceptibity via strain engineering in artificial PZT multilayer films for high-performance broadband modulator

    Science.gov (United States)

    Zhu, Minmin; Du, Zehui; Li, Hongling; Chen, Bensong; Jing, Lin; Tay, Roland Ying Jie; Lin, Jinjun; Tsang, Siu Hon; Teo, Edwin Hang Tong

    2017-12-01

    A series of Pb(Zr1-xTix)O3 multilayer films alternatively stacked by Pb(Zr0.52Ti0.48)O3 and Pb(Zr0.35Ti0.65)O3 layers have been deposited on corning glass by magnetron sputtering. The films demonstrate pure perovskite structure and good crystallinity. A large tetragonality (c/a) of ∼1.061 and a shift of ∼0.08 eV for optical bandgap were investigated at layer engineered films. In addition, these samples exhibited a wild tunable electro-optic behavior from tens to ∼250.2 pm/V, as well as fast switching time of down to a few microseconds. The giant EO coefficient was attribute the strain-polarization coupling effect and also comparable to that of epitaxial (001) single crystal PZT thin films. The combination of high transparency, large EO effect, fast switching time, and huge phase transition temperature in PZT-based thin films show the potential on electro-optics from laser to information telecommunication.

  3. Investigations on the synthesis, optical and electrical properties of TiO{sub 2} thin films by Chemical Bath Deposition (CBD) method

    Energy Technology Data Exchange (ETDEWEB)

    Govindasamy, Geetha [Bharathiar University, Coimbatore (India); Murugasen, Priya [Department of Physics, Saveetha Engineering College (India); Sagadevan, Suresh [Department of Physics, AMET University, Chennai (India)

    2016-03-15

    Titanium dioxide (TiO{sub 2} ) thin films were prepared by Chemical Bath Deposition (CBD) method. The X-ray diffraction (XRD) analysis was used to examine the structure and to determine the crystallite size of TiO{sub 2} thin film. The surface morphology of the film was studied using Scanning Electron Microscopy (SEM).The optical properties were studied using the UV-Visible and photoluminescence (PL) spectrum. Optical constants such as band gap, refractive index, extinction coefficient and electric susceptibility were determined. The FTIR spectrum revealed the strong presence of TiO{sub 2} . The dielectric properties of TiO{sub 2} thin films were studied for different frequencies and different temperatures. The AC electrical conductivity test revealed that the conduction depended both on the frequency and the temperature. Photoconductivity study was carried out in order to ascertain the positive photoconductivity of the TiO{sub 2} thin films. (author)

  4. A short review on the pulsed laser deposition of Er3+ ion doped oxide glass thin films for integrated optics

    International Nuclear Information System (INIS)

    Irannejad, M.; Zhao, Z.; Jose, G.; Steenson, D.P.; Jha, A.

    2010-01-01

    Short pulsed (ns) excimer laser was employed as a technique for the deposition of more than 2 μm thick glassy films from phosphorous pentoxide and tungsten lanthanum modified tellurite bulk glasses. High quality glass thin films with measured propagation loss less than 0.15, 0.71 and 2.3 dB.cm -1 were obtained after optimization of deposition parameters for silica, siloxane and semiconductor substrates. The optical, spectroscopic and microstructural properties of deposited thin films were compared with bulk glass materials for demonstrating the differences in the properties, which must be optimized for device engineering. Channel waveguides were fabricated after using reactive ion etching technique, up to 2 μm thickness by using CHF 3 and Ar gas mixture

  5. Investigation of SiO2 thin films dielectric constant using ellipsometry technique

    Directory of Open Access Journals (Sweden)

    P Sangpour

    2014-11-01

    Full Text Available In this paper, we studied the optical behavior of SiO2 thin films prepared via sol-gel route using spin coating deposition from tetraethylorthosilicate (TEOS as precursor. Thin films were annealed at different temperatures (400-600oC. Absorption edge and band gap of thin layers were measured using UV-Vis spectrophotometery. Optical refractive index and dielectric constant were measured by ellipsometry technique. Based on our atomic force microscopic (AFM and ellipsometry results, thin layers prepared through this method showed high surface area, and high porosity ranging between 4.9 and 16.9, low density 2 g/cm, and low dielectric constant. The dielectric constant and porosity of layers increased by increasing the temperature due to the changes in surface roughness and particle size.

  6. Magneto-optical measurements on high-temperature superconductors influenced by AC-fields

    International Nuclear Information System (INIS)

    Che'Rose, Simon

    2007-01-01

    In this work magneto-optical measurements on YBa 2 Cu 3 O 7-x and MgB 2 thin films were done. For YBCO the influence of AC-pulses on the flux and current density of a thin film with transport current was investigated. For MgB 2 the influence of AC-fields on the homogenous and dendritic flux penetration was researched. (orig.)

  7. Optical trigger: a Cherenkov effect discriminator for high energy physics. Realisation and characterisation of thin films whose refractive index allow discrimination over a wide spectral range

    International Nuclear Information System (INIS)

    Delbart, A.

    1996-01-01

    The first part of this thesis sets the physical principles, and properties of actual Optical Triggers. For each of them, the cupel is sapphire made, and the external medium is liquid because of refractive index. The theory of Cherenkov emitted light cone explain how sapphire birefringence affects discrimination conditions.The second parts of the thesis (the main one) is focussed on study and realization of thin films for Optical Trigger. A layer characterization method has been developed by spectrophotometry, based on Perkin-Elmer laboratory device. Computerized simulation helped us to determine characteristics and limits of the studied device. (D.L.)

  8. Thin-film photovoltaic technology

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, R.N. [National Renewable Energy Laboratory, Golden, CO (United States)

    2010-07-01

    The high material and processing costs associated with single-crystal and polycrystalline silicon wafers that are commonly used in photovoltaic cells render these modules expensive. This presentation described thin-film solar cell technology as a promising alternative to silicon solar cell technology. Cadmium telluride (CdTe) thin films along with copper, indium, gallium, and selenium (CIGS) thin films have become the leaders in this field. Their large optical absorption coefficient can be attributed to a direct energy gap that allows the use of thin layers (1-2 {mu}m) of active material. The efficiency of thin-film solar cell devices based on CIGS is 20 per cent, compared to 16.7 per cent for thin-film solar cell devices based on CdTe. IBM recently reported an efficiency of 9.7 per cent for a new type of inorganic thin-film solar cell based on a Cu{sub 2}ZnSn(S, Se){sub 4} compound. The efficiency of an organic thin-film solar cell is 7.9 per cent. This presentation included a graph of PV device efficiencies and discussed technological advances in non-vacuum deposited, CIGS-based thin-film solar cells. 1 fig.

  9. Role of heat treatment on structural and optical properties of thermally evaporated Ga{sub 10}Se{sub 81}Pb{sub 9} chalcogenide thin films

    Energy Technology Data Exchange (ETDEWEB)

    El-Sebaii, A.A., E-mail: ahmedelsebaii@yahoo.com [Department of Physics, Faculty of Science, King Abdulaziz University, 80203 Jeddah 21589 (Saudi Arabia); Khan, Shamshad A. [Department of Physics, St. Andrews College, Gorakhpur 273001 (India); Al-Marzouki, F.M.; Faidah, A.S.; Al-Ghamdi, A.A. [Department of Physics, Faculty of Science, King Abdulaziz University, 80203 Jeddah 21589 (Saudi Arabia)

    2012-08-15

    Amorphous chalcogenides, based on Se, have become materials of commercial importance and were widely used for optical storage media. The present work deals with the structural and optical properties of Ga{sub 10}Se{sub 81}Pb{sub 9} ternary chalcogenide glass prepared by melt quenching technique. The glass transition, crystallization and melting temperatures of the synthesized glass were measured by non-isothermal DSC measurements at a constant heating rate of 30 K/min. Thin films of thickness 4000 A were prepared by thermal evaporation techniques on glass/Si (1 0 0) wafer substrate. These thin films were thermally annealed for two hours at three different annealing temperatures of 345, 360 and 375 K, which were in between the glass transition and crystallization temperatures of the Ga{sub 10}Se{sub 81}Pb{sub 9} glass. The structural, morphological and optical properties of as-prepared and annealed thin films were studied. Analysis of the optical absorption data showed that the rules of the non-direct transitions predominate. It was also found that the optical band gap decreases while the absorption coefficient, refractive index and extinction coefficient increase with increasing the annealing temperature. Due to the higher values of absorption coefficient and annealing dependence of the optical band gap and optical constants, the investigated material could be used for optical storage. - Highlights: Black-Right-Pointing-Pointer Annealing effect on structure and optical band gap has been investigated. Black-Right-Pointing-Pointer The amorphous nature has been verified by x-ray diffraction and DSC measurements. Black-Right-Pointing-Pointer Thermal annealing causes a decrease in optical band gap in Ga{sub 10}Se{sub 81}Pb{sub 9} thin films. Black-Right-Pointing-Pointer The decrease in optical band gap can be interpreted on the basis of amorphous-crystalline phase transformation. Black-Right-Pointing-Pointer Optical absorption data showed that the rules of the non

  10. Novel photon management for thin-film photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Menon, Rajesh [Univ. of Utah, Salt Lake City, UT (United States)

    2016-11-11

    The objective of this project is to enable commercially viable thin-film photovoltaics whose efficiencies are increased by over 10% using a novel optical spectral-separation technique. A thin planar diffractive optic is proposed that efficiently separates the solar spectrum and assigns these bands to optimal thin-film sub-cells. An integrated device that is comprised of the optical element, an array of sub-cells and associated packaging is proposed.

  11. Production of optically thin free-standing oil films from the edge of a rotating disc

    International Nuclear Information System (INIS)

    Cramer, J.G.; Burch, D.F.; Rodenberg, R.; Cramer, P.B.

    1980-01-01

    A method is described for forming thin free-standing oil films which are spun from the edge of a sharp-edged rotating disc. The films can be made thin enough to show strong optical interference colors when viewed in white light. The thinnest films have areal densities down to about 10 to 20 μgm/cm 2 . A stable roughly triangular film with an area of about 10 cm 2 and fairly uniform thickness can be readily produced. Much larger films having either greater thickness or less stability are also possible. Films have been produced both in air and in vacuum

  12. Ion beam-based characterization of multicomponent oxide thin films and thin film layered structures

    International Nuclear Information System (INIS)

    Krauss, A.R.; Rangaswamy, M.; Lin, Yuping; Gruen, D.M.; Schultz, J.A.; Schmidt, H.K.; Chang, R.P.H.

    1992-01-01

    Fabrication of thin film layered structures of multi-component materials such as high temperature superconductors, ferroelectric and electro-optic materials, and alloy semiconductors, and the development of hybrid materials requires understanding of film growth and interface properties. For High Temperature Superconductors, the superconducting coherence length is extremely short (5--15 Angstrom), and fabrication of reliable devices will require control of film properties at extremely sharp interfaces; it will be necessary to verify the integrity of thin layers and layered structure devices over thicknesses comparable to the atomic layer spacing. Analytical techniques which probe the first 1--2 atomic layers are therefore necessary for in-situ characterization of relevant thin film growth processes. However, most surface-analytical techniques are sensitive to a region within 10--40 Angstrom of the surface and are physically incompatible with thin film deposition and are typically restricted to ultra high vacuum conditions. A review of ion beam-based analytical methods for the characterization of thin film and multi-layered thin film structures incorporating layers of multicomponent oxides is presented. Particular attention will be paid to the use of time-of-flight techniques based on the use of 1- 15 key ion beams which show potential for use as nondestructive, real-time, in-situ surface diagnostics for the growth of multicomponent metal and metal oxide thin films

  13. Optical, electrical and the related parameters of amorphous Ge-Bi-Se thin films

    International Nuclear Information System (INIS)

    El-Korashy, A.; El-Kabany, N.; El-Zahed, H.

    2005-01-01

    The related optical and electrical parameters of amorphous Ge-Bi-Se thin films were studied. The dependence of optical and electrical properties on the Bi content was observed in most compositions. At Bi >10at% the behavior show a switch from p to n type conduction mechanism. The correlation between the optical band gap E g and the average heats of atomization H s were observed. The results indicated that both the number of topological constant N con and the radial and angular N α , N β valence force constants exhibit the same trend with increasing Bi content. On the other hand, the mean bond energy increases with increasing Bi content to x=15at%. It may be concluded that is a function of the mean coordination number N co , the type of bonds, the degree of cross-linking and the band energy forming the network

  14. Optical properties of aluminum nitride thin films grown by direct-current magnetron sputtering close to epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Stolz, A. [Institut d' Electronique de Microélectronique et de Nanotechnologie (IEMN), UMR CNRS 8520, PRES Lille, Université Nord de France, Avenue Poincaré, 59652 Villeneuve d' Ascq Cedex (France); Soltani, A., E-mail: ali.soltani@iemn.univ-lille1.fr [Institut d' Electronique de Microélectronique et de Nanotechnologie (IEMN), UMR CNRS 8520, PRES Lille, Université Nord de France, Avenue Poincaré, 59652 Villeneuve d' Ascq Cedex (France); Abdallah, B. [Department of Materials Physics, Atomic Energy Commission of Syria, Damascus, P.O. Box 6091 (Syrian Arab Republic); Charrier, J. [Fonctions Optiques pour les Technologies de l' informatiON (FOTON), UMR CNRS 6082, 6, rue de Kerampont CS 80518, 22305 Lannion Cedex (France); Deresmes, D. [Institut d' Electronique de Microélectronique et de Nanotechnologie (IEMN), UMR CNRS 8520, PRES Lille, Université Nord de France, Avenue Poincaré, 59652 Villeneuve d' Ascq Cedex (France); Jouan, P.-Y.; Djouadi, M.A. [Institut des Matériaux Jean Rouxel – IMN, UMR CNRS 6502, 2, rue de la Houssinère BP 32229, 44322 Nantes (France); Dogheche, E.; De Jaeger, J.-C. [Institut d' Electronique de Microélectronique et de Nanotechnologie (IEMN), UMR CNRS 8520, PRES Lille, Université Nord de France, Avenue Poincaré, 59652 Villeneuve d' Ascq Cedex (France)

    2013-05-01

    Low-temperature Aluminum Nitride (AlN) thin films with a thickness of 3 μm were deposited by Direct-Current magnetron sputtering on sapphire substrate. They present optical properties similar to those of epitaxially grown films. Different characterization methods such as X-Ray Diffraction, Transmission Electron Microscopy and Atomic Force Microscopy were used to determine the structural properties of the films such as its roughness and crystallinity. Newton interferometer was used for stress measurement of the films. Non-destructive prism-coupling technique was used to determine refractive index and thickness homogeneity by a mapping on the whole sample area. Results show that AlN films grown on AlGaN layer have a high crystallinity close to epitaxial films, associated to a low intrinsic stress for low thickness. These results highlight that it is possible to grow thick sample with microstructure and optical properties close to epitaxy, even on a large surface. - Highlights: ► Aluminum Nitride sputtering technique with a low temperature growth process ► Epitaxial quality of two microns sputtered Aluminum Nitride film ► Optics as a non-destructive accurate tool for acoustic wave investigation.

  15. An in-situ real-time optical fiber sensor based on surface plasmon resonance for monitoring the growth of TiO2 thin films.

    Science.gov (United States)

    Tsao, Yu-Chia; Tsai, Woo-Hu; Shih, Wen-Ching; Wu, Mu-Shiang

    2013-07-23

    An optical fiber sensor based on surface plasmon resonance (SPR) is proposed for monitoring the thickness of deposited nano-thin films. A side-polished multimode SPR optical fiber sensor with an 850 nm-LD is used as the transducing element for real-time monitoring of the deposited TiO2 thin films. The SPR optical fiber sensor was installed in the TiO2 sputtering system in order to measure the thickness of the deposited sample during TiO2 deposition. The SPR response declined in real-time in relation to the growth of the thickness of the TiO2 thin film. Our results show the same trend of the SPR response in real-time and in spectra taken before and after deposition. The SPR transmitted intensity changes by approximately 18.76% corresponding to 50 nm of deposited TiO2 thin film. We have shown that optical fiber sensors utilizing SPR have the potential for real-time monitoring of the SPR technology of nanometer film thickness. The compact size of the SPR fiber sensor enables it to be positioned inside the deposition chamber, and it could thus measure the film thickness directly in real-time. This technology also has potential application for monitoring the deposition of other materials. Moreover, in-situ real-time SPR optical fiber sensor technology is in inexpensive, disposable technique that has anti-interference properties, and the potential to enable on-line monitoring and monitoring of organic coatings.

  16. Rutile TiO2 thin films grown by reactive high power impulse magnetron sputtering

    International Nuclear Information System (INIS)

    Agnarsson, B.; Magnus, F.; Tryggvason, T.K.; Ingason, A.S.; Leosson, K.; Olafsson, S.; Gudmundsson, J.T.

    2013-01-01

    Thin TiO 2 films were grown on Si(001) substrates by reactive dc magnetron sputtering (dcMS) and high power impulse magnetron sputtering (HiPIMS) at temperatures ranging from 300 to 700 °C. Optical and structural properties of films were compared both before and after post-annealing using scanning electron microscopy, low angle X-ray reflection (XRR), grazing incidence X-ray diffractometry and spectroscopic ellipsometry. Both dcMS- and HiPIMS-grown films reveal polycrystalline rutile TiO 2 , even prior to post-annealing. The HiPIMS-grown films exhibit significantly larger grains compared to that of dcMC-grown films, approaching 100% of the film thickness for films grown at 700 °C. In addition, the XRR surface roughness of HiPIMS-grown films was significantly lower than that of dcMS-grown films over the whole temperature range 300–700 °C. Dispersion curves could only be obtained for the HiPIMS-grown films, which were shown to have a refractive index in the range of 2.7–2.85 at 500 nm. The results show that thin, rutile TiO 2 films, with high refractive index, can be obtained by HiPIMS at relatively low growth temperatures, without post-annealing. Furthermore, these films are smoother and show better optical characteristics than their dcMS-grown counterparts. - Highlights: • We demonstrate growth of rutile TiO 2 on Si (111) by high power impulse magnetron sputtering. • The films exhibit significantly larger grains than dc magnetron sputtered films • TiO 2 films with high refractive index are obtained without post-growth annealing

  17. Temperature behaviour of optical parameters in (Ag3AsS3)0.3(As2S3)0.7 thin films

    Science.gov (United States)

    Kutsyk, Mykhailo M.; Ráti, Yosyp Y.; Izai, Vitalii Y.; Makauz, Ivan I.; Studenyak, Ihor P.; Kökényesi, Sandor; Komada, Paweł; Zhailaubayev, Yerkin; Smailov, Nurzhigit

    2015-12-01

    (Ag3AsS3)0.3(As2S3)0.7 thin films were deposited onto a quartz substrate by rapid thermal evaporation. The optical transmission spectra of thin films were measured in the temperature range 77-300 K. It is shown that the absorption edge spectra are described by the Urbach rule. The temperature behaviour of absorption spectra was studied, the temperature dependences of energy position of absorption edge and Urbach energy were investigated. The influence of transition from three-dimensional glass to the two-dimensional thin film as well as influence of Ag3AsS3 introduction into As2S3 on the optical parameters of (Ag3AsS3)0.3(As2S3)0.7 were analysed. The spectral and temperature behaviour or refractive index for (Ag3AsS3)0.3(As2S3)0.7 thin film were studied.

  18. Electronic and optical properties of nanocrystalline WO3 thin films studied by optical spectroscopy and density functional calculations

    International Nuclear Information System (INIS)

    Johansson, Malin B; Niklasson, Gunnar A; Österlund, Lars; Baldissera, Gustavo; Persson, Clas; Valyukh, Iryna; Arwin, Hans

    2013-01-01

    The optical and electronic properties of nanocrystalline WO 3 thin films prepared by reactive dc magnetron sputtering at different total pressures (P tot ) were studied by optical spectroscopy and density functional theory (DFT) calculations. Monoclinic films prepared at low P tot show absorption in the near infrared due to polarons, which is attributed to a strained film structure. Analysis of the optical data yields band-gap energies E g ≈ 3.1 eV, which increase with increasing P tot by 0.1 eV, and correlate with the structural modifications of the films. The electronic structures of triclinic δ-WO 3 , and monoclinic γ- and ε-WO 3 were calculated using the Green function with screened Coulomb interaction (GW approach), and the local density approximation. The δ-WO 3 and γ-WO 3 phases are found to have very similar electronic properties, with weak dispersion of the valence and conduction bands, consistent with a direct band-gap. Analysis of the joint density of states shows that the optical absorption around the band edge is composed of contributions from forbidden transitions (>3 eV) and allowed transitions (>3.8 eV). The calculations show that E g in ε-WO 3 is higher than in the δ-WO 3 and γ-WO 3 phases, which provides an explanation for the P tot dependence of the optical data. (paper)

  19. Electronic and optical properties of nanocrystalline WO3 thin films studied by optical spectroscopy and density functional calculations

    Science.gov (United States)

    Johansson, Malin B.; Baldissera, Gustavo; Valyukh, Iryna; Persson, Clas; Arwin, Hans; Niklasson, Gunnar A.; Österlund, Lars

    2013-05-01

    The optical and electronic properties of nanocrystalline WO3 thin films prepared by reactive dc magnetron sputtering at different total pressures (Ptot) were studied by optical spectroscopy and density functional theory (DFT) calculations. Monoclinic films prepared at low Ptot show absorption in the near infrared due to polarons, which is attributed to a strained film structure. Analysis of the optical data yields band-gap energies Eg ≈ 3.1 eV, which increase with increasing Ptot by 0.1 eV, and correlate with the structural modifications of the films. The electronic structures of triclinic δ-WO3, and monoclinic γ- and ε-WO3 were calculated using the Green function with screened Coulomb interaction (GW approach), and the local density approximation. The δ-WO3 and γ-WO3 phases are found to have very similar electronic properties, with weak dispersion of the valence and conduction bands, consistent with a direct band-gap. Analysis of the joint density of states shows that the optical absorption around the band edge is composed of contributions from forbidden transitions (>3 eV) and allowed transitions (>3.8 eV). The calculations show that Eg in ε-WO3 is higher than in the δ-WO3 and γ-WO3 phases, which provides an explanation for the Ptot dependence of the optical data.

  20. Mechano-optic logic gate controlled by third-order nonlinear optical properties in a rotating ZnO:Au thin film

    International Nuclear Information System (INIS)

    Carrillo-Delgado, C; Torres-Torres, C; García-Merino, J A; García-Gil, C I; Khomenko, A V; Trejo-Valdez, M; Martínez-Gutiérrez, H; Torres-Martínez, R

    2016-01-01

    Measurements of the third-order nonlinear optical properties exhibited by a ZnO thin solid film deposited on a SnO 2 substrate are presented. The samples were prepared by a spray pyrolysis processing route. Scanning electron microscopy analysis and UV–Vis spectroscopy studies were carried out. The picosecond response at 1064 nm was explored by the z-scan technique. A large optical Kerr effect with two-photon absorption was obtained. The inhibition of the nonlinear optical absorption together with a noticeable enhancement in the optical Kerr effect in the sample was achieved by the incorporation of Au nanoparticles into the ZnO film. Additionally, a two-wave mixing configuration at 532 nm was performed and an optical Kerr effect was identified as the main cause of the nanosecond third-order optical nonlinearity. The relaxation time of the photothermal response of the sample was estimated to be about 1 s when the sample was excited by nanosecond single-shots. The rotation of the sample during the nanosecond two-wave mixing experiments was analyzed. It was stated that a non-monotonic relation between rotating frequency and pulse repetition rate governs the thermal contribution to the nonlinear refractive index exhibited by a rotating film. Potential applications for switching photothermal interactions in rotating samples can be contemplated. A rotary logic system dependent on Kerr transmittance in a two-wave mixing experiment was proposed. (paper)

  1. Highly transparent and conductive thin films fabricated with nano-silver/double-walled carbon nanotube composites.

    Science.gov (United States)

    Lee, Shie-Heng; Teng, Chih-Chun; Ma, Chen-Chi M; Wang, Ikai

    2011-12-01

    This study develops a technique for enhancing the electrical conductivity and optical transmittance of transparent double-walled carbon nanotube (DWNT) film. Silver nanoparticles were modified with a NH(2)(CH(2))(2)SH self-assembled monolayer terminated by amino groups and subsequent surface condensation that reacted with functionalized DWNTs. Ag nanoparticles were grafted on the surface of the DWNTs. The low sheet resistance of the resulting thin conductive film on a polyethylene terephthalate (PET) substrate was due to the increased contact areas between DWNTs and work function by grafting Ag nanoparticles on the DWNT surfaces. Increasing the contact area between DWNTs and work function improved the conductivity of the DWNT-Ag thin films. The prepared DWNT-Ag thin films had a sheet resistance of 53.4 Ω/sq with 90.5% optical transmittance at a 550 nm wavelength. After treatment with HNO(3) and annealing at 150 °C for 30 min, a lower sheet resistance of 45.8 Ω/sq and a higher transmittance of 90.4% could be attained. The value of the DC conductivity to optical conductivity (σ(DC)/σ(OP)) ratio is 121.3. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Ground-state magneto-optical resonances in cesium vapor confined in an extremely thin cell

    International Nuclear Information System (INIS)

    Andreeva, C.; Cartaleva, S.; Petrov, L.; Slavov, D.; Atvars, A.; Auzinsh, M.; Blush, K.

    2007-01-01

    Experimental and theoretical studies are presented related to the ground-state magneto-optical resonance observed in cesium vapor confined in an extremely thin cell (ETC), with thickness equal to the wavelength of the irradiating light. It is shown that utilization of the ETC allows one to examine the formation of a magneto-optical resonance on the individual hyperfine transitions, thus distinguishing processes resulting in dark (reduced absorption) or bright (enhanced absorption) resonance formation. We report experimental evidence of bright magneto-optical resonance sign reversal in Cs atoms confined in an ETC. A theoretical model is proposed based on the optical Bloch equations that involves the elastic interaction processes of atoms in the ETC with its walls, resulting in depolarization of the Cs excited state, which is polarized by the exciting radiation. This depolarization leads to the sign reversal of the bright resonance. Using the proposed model, the magneto-optical resonance amplitude and width as a function of laser power are calculated and compared with the experimental ones. The numerical results are in good agreement with those of experiment

  3. Optical and Electrical Properties of Thin Films of CuS Nanodisks Ensembles Annealed in a Vacuum and Their Photocatalytic Activity

    Directory of Open Access Journals (Sweden)

    J. Santos Cruz

    2013-01-01

    Full Text Available Effects on the optical, electrical, and photocatalytic properties of undoped CuS thin films nanodisks vacuum annealed at different temperatures were investigated. The chemical bath prepared CuS thin films were obtained at 40°C on glass substrates. The grain size of 13.5±3.5 nm was computed directly from high-resolution transmission electron microscopy (HRTEM images. The electrical properties were measured by means of both Hall effect at room temperature and dark resistivity as a function of the absolute temperature 100–330 K. The activation energy values were calculated as 0.007, 0.013, and 0.013 eV for 100, 150, and 200°C, respectively. The energy band gap of the films varied in the range of 1.98 up to 2.34 eV. The photocatalytic activity of the CuS thin film was evaluated by employing the degradation of aqueous methylene blue solution in the presence of hydrogen peroxide. The CuS sample thin film annealed in vacuum at 150°C exhibited the highest photocatalytic activity in presence of hydrogen peroxide.

  4. Influence of substrate material on the microstructure and optical properties of hot wall deposited SnS thin films

    International Nuclear Information System (INIS)

    Bashkirov, S.A.; Gremenok, V.F.; Ivanov, V.A.; Shevtsova, V.V.; Gladyshev, P.P.

    2015-01-01

    Tin monosulfide SnS raises an interest as a promising material for photovoltaics. The influence of the substrate material on the microstructure and optical properties of SnS thin films with [111] texture obtained by hot wall vacuum deposition on glass, molybdenum and indium tin oxide substrates is reported. The lattice parameters for layers grown on different substrates were determined by X-ray diffraction and their deviations from the data reported in the literature for single α-SnS crystals were discussed. The change in the degree of preferred orientation of the films depending on the substrate material is observed. The direct nature of the optical transitions with the optical band gap of 1.15 ± 0.01 eV is reported. - Highlights: • SnS thin films were hot wall deposited on glass, molybdenum and indium tin oxide. • Physical properties of the films were studied with respect to the substrate type. • The SnS lattice parameter deviations were observed and the explanation was given. • The direct optical transitions with the band gap of 1.15 ± 0.01 eV were observed

  5. Determination and analysis of optical constants for Ge{sub 15}Se{sub 60}Bi{sub 25} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Atyia, H.E., E-mail: hebaelghrip@hotmail.com [Physics Department, Faculty of Education, Ain Shams University, Roxy, Cairo (Egypt); Physics Department, Faculty of Applied Medical Science at Turabah, Taif University, Turabah (Saudi Arabia); Hegab, N.A. [Physics Department, Faculty of Education, Ain Shams University, Roxy, Cairo (Egypt)

    2014-12-01

    Thin films of Ge{sub 15}Se{sub 60}Bi{sub 25} were deposited, at room temperature, on glass substrates by thermal evaporation technique. The optical reflectance and transmittance of amorphous Ge{sub 15}Se{sub 60}Bi{sub 25} films were measured at normal incident in the wavelength range (500–2500 nm). The optical constants, the refractive index n and the absorption index k, were determined and analyzed according to different approximate methods using the transmittance measurements only and accurate method using the transmittance and reflectance measurements. Analysis of the absorption index k data reveal the values of the optical band gap E{sub g}{sup opt}, the width of tails E{sub e} and the type of transitions. Some optical parameters such as, high frequency dielectric constant ε{sub ∞}, dispersion parameters (oscillation energy E{sub s} and the dispersion energy E{sub d}), real and imaginary parts of complex dielectric constant (ε{sub 1} and ε{sub 2}) and dielectric parameters (dissipation factor tan δ, dielectric relaxation time τ, the volume and surface energy loss functions) were estimated by analyzing the refractive index n data.The relative errors for all optical parameters depending on different approximate methods were identified and discussed.

  6. Optical and electrical properties of boron doped diamond thin conductive films deposited on fused silica glass substrates

    Energy Technology Data Exchange (ETDEWEB)

    Ficek, M.; Sobaszek, M.; Gnyba, M. [Department of Metrology and Optoelectronics, Gdansk University of Technology, 11/12G. Narutowicza St., 80-233 Gdansk (Poland); Ryl, J. [Department of Electrochemistry, Corrosion and Material Engineering, Gdansk University of Technology, 11/12 Narutowicza St., 80-233 Gdansk (Poland); Gołuński, Ł. [Department of Metrology and Optoelectronics, Gdansk University of Technology, 11/12G. Narutowicza St., 80-233 Gdansk (Poland); Smietana, M.; Jasiński, J. [Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, 75 Koszykowa St., 00-662 Warsaw (Poland); Caban, P. [Institute of Electronic Materials Technology, 133 Wolczynska St., 01-919 Warsaw (Poland); Bogdanowicz, R., E-mail: rbogdan@eti.pg.gda.pl [Department of Metrology and Optoelectronics, Gdansk University of Technology, 11/12G. Narutowicza St., 80-233 Gdansk (Poland); Materials and Process Simulation Center, California Institute of Technology, Pasadena, CA 91125 (United States)

    2016-11-30

    Highlights: • Growth of 60% of transmittance diamond films with resistivity as low as 48 Ω cm. • Two step seeding process of fused silica: plasma hydrogenation and wet seeding. • Nanodiamond seeding density of 2 × 10{sup 10} cm{sup −2} at fused silica substrates. • High refractive index (2.4 @550 nm) was achieved for BDD films deposited at 500 °C. - Abstract: This paper presents boron-doped diamond (BDD) film as a conductive coating for optical and electronic purposes. Seeding and growth processes of thin diamond films on fused silica have been investigated. Growth processes of thin diamond films on fused silica were investigated at various boron doping level and methane admixture. Two step pre-treatment procedure of fused silica substrate was applied to achieve high seeding density. First, the substrates undergo the hydrogen plasma treatment then spin-coating seeding using a dispersion consisting of detonation nanodiamond in dimethyl sulfoxide with polyvinyl alcohol was applied. Such an approach results in seeding density of 2 × 10{sup 10} cm{sup −2}. The scanning electron microscopy images showed homogenous, continuous and polycrystalline surface morphology with minimal grain size of 200 nm for highly boron doped films. The sp{sup 3}/sp{sup 2} ratio was calculated using Raman spectra deconvolution method. A high refractive index (range of 2.0–2.4 @550 nm) was achieved for BDD films deposited at 500 °C. The values of extinction coefficient were below 0.1 at λ = 550 nm, indicating low absorption of the film. The fabricated BDD thin films displayed resistivity below 48 Ohm cm and transmittance over 60% in the visible wavelength range.

  7. Determination and analysis of dispersive optical constants of CuIn3S5 thin films

    International Nuclear Information System (INIS)

    Khemiri, N.; Sinaoui, A.; Kanzari, M.

    2011-01-01

    CuIn 3 S 5 thin films were prepared from powder by thermal evaporation under vacuum (10 -6 mbar) onto glass substrates. The glass substrates were heated from 30 to 200 o C. The films were characterized for their optical properties using optical measurement techniques (transmittance and reflectance). We have determined the energy and nature of the optical transitions of films. The optical constants of the deposited films were determined in the spectral range 300-1800 nm from the analysis of transmission and reflection data. The Swanepoel envelope method was employed on the interference fringes of transmittance patterns for the determination of variation of refractive index with wavelength. Wemple-Di Domenico single oscillator model was applied to determine the optical constants such as oscillator energy E 0 and dispersion energy E d of the films deposited at different substrate temperatures. The electric free carrier susceptibility and the ratio of the carrier concentration to the effective mass were estimated according to the model of Spitzer and Fan.

  8. High spatial resolution grain orientation and strain mapping in thin films using polychromatic submicron x-ray diffraction

    Science.gov (United States)

    Tamura, N.; MacDowell, A. A.; Celestre, R. S.; Padmore, H. A.; Valek, B.; Bravman, J. C.; Spolenak, R.; Brown, W. L.; Marieb, T.; Fujimoto, H.; Batterman, B. W.; Patel, J. R.

    2002-05-01

    The availability of high brilliance synchrotron sources, coupled with recent progress in achromatic focusing optics and large area two-dimensional detector technology, has allowed us to develop an x-ray synchrotron technique that is capable of mapping orientation and strain/stress in polycrystalline thin films with submicron spatial resolution. To demonstrate the capabilities of this instrument, we have employed it to study the microstructure of aluminum thin film structures at the granular and subgranular levels. Due to the relatively low absorption of x-rays in materials, this technique can be used to study passivated samples, an important advantage over most electron probes given the very different mechanical behavior of buried and unpassivated materials.

  9. Properties of Exchange Coupled All-garnet Magneto-Optic Thin Film Multilayer Structures

    Science.gov (United States)

    Nur-E-Alam, Mohammad; Vasiliev, Mikhail; Kotov, Viacheslav A.; Balabanov, Dmitry; Akimov, Ilya; Alameh, Kamal

    2015-01-01

    The effects of exchange coupling on magnetic switching properties of all-garnet multilayer thin film structures are investigated. All-garnet structures are fabricated by sandwiching a magneto-soft material of composition type Bi1.8Lu1.2Fe3.6Al1.4O12 or Bi3Fe5O12:Dy2O3 in between two magneto-hard garnet material layers of composition type Bi2Dy1Fe4Ga1O12 or Bi2Dy1Fe4Ga1O12:Bi2O3. The fabricated RF magnetron sputtered exchange-coupled all-garnet multilayers demonstrate a very attractive combination of magnetic properties, and are of interest for emerging applications in optical sensors and isolators, ultrafast nanophotonics and magneto-plasmonics. An unconventional type of magnetic hysteresis behavior not observed previously in magnetic garnet thin films is reported and discussed. PMID:28788043

  10. Properties of Exchange Coupled All-garnet Magneto-Optic Thin Film Multilayer Structures

    Directory of Open Access Journals (Sweden)

    Mohammad Nur-E-Alam

    2015-04-01

    Full Text Available The effects of exchange coupling on magnetic switching properties of all-garnet multilayer thin film structures are investigated. All-garnet structures are fabricated by sandwiching a magneto-soft material of composition type Bi1.8Lu1.2Fe3.6Al1.4O12 or Bi3Fe5O12:Dy2O3 in between two magneto-hard garnet material layers of composition type Bi2Dy1Fe4Ga1O12 or Bi2Dy1Fe4Ga1O12:Bi2O3. The fabricated RF magnetron sputtered exchange-coupled all-garnet multilayers demonstrate a very attractive combination of magnetic properties, and are of interest for emerging applications in optical sensors and isolators, ultrafast nanophotonics and magneto-plasmonics. An unconventional type of magnetic hysteresis behavior not observed previously in magnetic garnet thin films is reported and discussed.

  11. Structural and optical characteristics of SnS thin film prepared by SILAR

    Directory of Open Access Journals (Sweden)

    Mukherjee A.

    2015-12-01

    Full Text Available SnS thin films were grown on glass substrates by a simple route named successive ion layer adsorption and reaction (SILAR method. The films were prepared using tin chloride as tin (Sn source and ammonium sulfide as sulphur (S source. The structural, optical and morphological study was done using XRD, FESEM, FT-IR and UV-Vis spectrophotometer. XRD measurement confirmed the presence of orthorhombic phase. Particle size estimated from XRD was about 45 nm which fitted well with the FESEM measurement. The value of band gap was about 1.63 eV indicating that SnS can be used as an important material for thin film solar cells. The surface morphology showed a smooth, homogenous film over the substrate. Characteristic stretching vibration mode of SnS was observed in the absorption band of FT-IR spectrum. The electrical activation energy was about 0.306 eV.

  12. Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation.

    Science.gov (United States)

    Chin, Jessie Yao; Steinle, Tobias; Wehlus, Thomas; Dregely, Daniel; Weiss, Thomas; Belotelov, Vladimir I; Stritzker, Bernd; Giessen, Harald

    2013-01-01

    Light propagation is usually reciprocal. However, a static magnetic field along the propagation direction can break the time-reversal symmetry in the presence of magneto-optical materials. The Faraday effect in magneto-optical materials rotates the polarization plane of light, and when light travels backward the polarization is further rotated. This is applied in optical isolators, which are of crucial importance in optical systems. Faraday isolators are typically bulky due to the weak Faraday effect of available magneto-optical materials. The growing research endeavour in integrated optics demands thin-film Faraday rotators and enhancement of the Faraday effect. Here, we report significant enhancement of Faraday rotation by hybridizing plasmonics with magneto-optics. By fabricating plasmonic nanostructures on laser-deposited magneto-optical thin films, Faraday rotation is enhanced by one order of magnitude in our experiment, while high transparency is maintained. We elucidate the enhanced Faraday effect by the interplay between plasmons and different photonic waveguide modes in our system.

  13. Characterization of optical and microstructure properties of ultraviolet Sc2O3 thin films and their damage mechanism at high laser power

    International Nuclear Information System (INIS)

    Liu Guanghui; Xue Chunrong; Jin Yunxia; Zhang Weili; Fang Ming; He Hongbo; Fan Zhengxiu

    2010-01-01

    The electron beam evaporation deposition method was employed to prepare scandium oxide (Sc 2 O 3 ) films with substrate temperatures varying from 50 to 350 degree C. A spectrophotometer, a glancing incidence X-ray diffraction spectrometer and a WYKO optical profilograph were employed to investigate the optical, microstructure properties and surface roughness of the Sc 2 O 3 films. The refractive index and the extinction coefficient were calculated from the transmittance and reflectance spectra with the help of the Essential Macleod. The laser induced damage threshold (LIDT) of the Sc 2 O 3 films was characterized by a pulsed Nd: YAG laser system at 355 nm with a pulse duration of 8 ns. A maximum value of 2.6 J/cm 2 was derived, and the LIDT results were found to vary in the opposite direction to the extinction coefficient, surface root mean square roughness and optical loss of the Sc 2 O 3 films. An optical microscope and a scanning electron microscope were used to characterize the damage morphology of the samples, and the development of damage with increasing laser energy density was recorded and discussed. The relationship between the LIDT and the deposition parameters of the Sc 2 O 3 thin films was analyzed, and the damage mechanism of the films under 355 nm laser irradiation was discussed. (authors)

  14. Influence of the radio-frequency power on the physical and optical properties of plasma polymerized cyclohexane thin films

    Energy Technology Data Exchange (ETDEWEB)

    Manaa, C., E-mail: chadlia.el.manaa@gmail.com [Laboratoire de Physique de la Matière Condensée, Université de Picardie Jules Verne, UFR des Sciences d' Amiens, 33 rue Saint Leu, 80039 Amiens CEDEX 2 (France); Laboratoire des Matériaux Avancés et Phénomènes Quantiques, Université de Tunis El-Manar, Faculté des Sciences de Tunis, Campus universitaire El-Manar, 1068 Tunis (Tunisia); Lejeune, M. [Laboratoire de Physique de la Matière Condensée, Université de Picardie Jules Verne, UFR des Sciences d' Amiens, 33 rue Saint Leu, 80039 Amiens CEDEX 2 (France); Kouki, F. [Laboratoire des Matériaux Avancés et Phénomènes Quantiques, Université de Tunis El-Manar, Faculté des Sciences de Tunis, Campus universitaire El-Manar, 1068 Tunis (Tunisia); Durand-Drouhin, O. [Laboratoire de Physique de la Matière Condensée, Université de Picardie Jules Verne, UFR des Sciences d' Amiens, 33 rue Saint Leu, 80039 Amiens CEDEX 2 (France); Bouchriha, H. [Laboratoire des Matériaux Avancés et Phénomènes Quantiques, Université de Tunis El-Manar, Faculté des Sciences de Tunis, Campus universitaire El-Manar, 1068 Tunis (Tunisia); and others

    2014-06-02

    We investigate in the present study the effects of the radio-frequency plasma power on the opto-electronical properties of the polymeric amorphous hydrogenated carbon thin films deposited at room temperature and different radio-frequency powers by plasma-enhanced chemical vapor deposition method using cyclohexane as precursor. A combination of U.V.–Visible and infrared transmission measurements is applied to characterize the bonding and electronic properties of these films. Some film properties namely surface roughness, contact angle, surface energy, and optical properties are found to be significantly influenced by the radio-frequency power. The changes in these properties are analyzed within the microstructural modifications occurring during growth. - Highlights: • Effects of the radio-frequency power on the optoelectronic properties of thin films • Elaboration of plasma polymerized thin films using cyclohexane as precursor gas • The use of U.V.–Visible-infrared transmission, and optical gap • Study of the surface topography of the films by using Atomic Force microscopy • The use of a capacitively coupled plasma enhanced chemical vapor deposition method.

  15. Influence of the radio-frequency power on the physical and optical properties of plasma polymerized cyclohexane thin films

    International Nuclear Information System (INIS)

    Manaa, C.; Lejeune, M.; Kouki, F.; Durand-Drouhin, O.; Bouchriha, H.

    2014-01-01

    We investigate in the present study the effects of the radio-frequency plasma power on the opto-electronical properties of the polymeric amorphous hydrogenated carbon thin films deposited at room temperature and different radio-frequency powers by plasma-enhanced chemical vapor deposition method using cyclohexane as precursor. A combination of U.V.–Visible and infrared transmission measurements is applied to characterize the bonding and electronic properties of these films. Some film properties namely surface roughness, contact angle, surface energy, and optical properties are found to be significantly influenced by the radio-frequency power. The changes in these properties are analyzed within the microstructural modifications occurring during growth. - Highlights: • Effects of the radio-frequency power on the optoelectronic properties of thin films • Elaboration of plasma polymerized thin films using cyclohexane as precursor gas • The use of U.V.–Visible-infrared transmission, and optical gap • Study of the surface topography of the films by using Atomic Force microscopy • The use of a capacitively coupled plasma enhanced chemical vapor deposition method

  16. Effect of oxygen partial pressure on the microstructural, optical and gas sensing characterization of nanostructured Gd doped ceria thin films deposited by pulsed laser deposition

    Directory of Open Access Journals (Sweden)

    Nagaraju P.

    2017-12-01

    Full Text Available Microstructural properties of 10 mol% gadolinium doped ceria (CeO2 thin films that were deposited on quartz substrate at substrate temperature of 1023 K by using pulsed laser deposition with different oxygen partial pressures in the range of 50–200 mTorr. The influence of oxygen partial pressure on microstructural, morphological, optical and gas sensing characterization of the thin films was systematically studied. The microstructure of the thin films was investigated using X-ray diffraction, atomic force microscopy and Raman spectroscopy. Morphological studies have been carried out using scanning electron microscope. The experimental results confirmed that the films were polycrystalline in nature with cubic fluorite structure. Optical properties of the thin films were examined using UV–vis spectrophotometer. The optical band gap calculated from Tauc’s relation. Gas sensing characterization has been carried at different operating temperatures (room temperature to 523 K for acetone gas. Response and recovery times of the sensor were calculated using transient response plot.

  17. Solid phase epitaxial growth of high mobility La:BaSnO_3 thin films co-doped with interstitial hydrogen

    International Nuclear Information System (INIS)

    Niedermeier, Christian A.; Rhode, Sneha; Fearn, Sarah; Moram, Michelle A.; Ide, Keisuke; Hiramatsu, Hidenori; Hosono, Hideo; Kamiya, Toshio

    2016-01-01

    This work presents the solid phase epitaxial growth of high mobility La:BaSnO_3 thin films on SrTiO_3 single crystal substrates by crystallization through thermal annealing of nanocrystalline thin films prepared by pulsed laser deposition at room temperature. The La:BaSnO_3 thin films show high epitaxial quality and Hall mobilities up to 26 ± 1 cm"2/Vs. Secondary ion mass spectroscopy is used to determine the La concentration profile in the La:BaSnO_3 thin films, and a 9%–16% La doping activation efficiency is obtained. An investigation of H doping to BaSnO_3 thin films is presented employing H plasma treatment at room temperature. Carrier concentrations in previously insulating BaSnO_3 thin films were increased to 3 × 10"1"9" cm"−"3 and in La:BaSnO_3 thin films from 6 × 10"1"9" cm"−"3 to 1.5 × 10"2"0" cm"−"3, supporting a theoretical prediction that interstitial H serves as an excellent n-type dopant. An analysis of the free electron absorption by infrared spectroscopy yields a small (H,La):BaSnO_3 electron effective mass of 0.27 ± 0.05 m_0 and an optical mobility of 26 ± 7 cm"2/Vs. As compared to La:BaSnO_3 single crystals, the smaller electron mobility in epitaxial thin films grown on SrTiO_3 substrates is ascribed to threading dislocations as observed in high resolution transmission electron micrographs.

  18. Influence of grain size on structural and optic properties of PbS thin films produced by SILAR method

    International Nuclear Information System (INIS)

    Güneri, E.; Göde, F.; Çevik, S.

    2015-01-01

    In this the paper, we use the successive ion layer adsorption and reaction technique (SILAR) chemical deposition method to fabricate good quality PbS thin films and the effects of grain size on the structural and optical properties of the thin films were determined by varying deposition cases. All of the films obtained in different dipping cycles show cubic rock-salt (NaCl) structure. The preferred orientation changed from the (111) direction to the (200) direction with increasing dipping cycles. Grain size determined from scanning electron microscopy (SEM) increased from 32 nm to 104 nm. Moreover, changing of atomic ratio of the thin films is determined according to the results of energy dispersive X-ray (EDX). The transmission of the thin films was characterized by UV–Vis measurements from 400 nm to 1100 nm. It was determined from the allowed direct graphics that the energy band gaps of the thin films shift from 1.33 eV to 1.92 eV in connection with deposition conditions. The variation in band gap may be attributed to the variation of grain size. Additionally, the refractive index (n), extinction coefficient (k), real (ε 1 ) and imaginary (ε 2 ) dielectric constants varied with increasing immersion cycles. - Highlights: • The effects of grain size on the structural, optical properties of PbS thin films deposited by SILAR were investigated. • The preferred orientation varied from the (111) direction to the (200) direction with changing grain size. • The energy band gaps of the thin films shift from 1.33 eV to 1.92 eV in connection with deposition conditions. • The refractive index, extinction coefficient, real and imaginary dielectric constants varied with increasing dipping cycles

  19. Influence of grain size on structural and optic properties of PbS thin films produced by SILAR method

    Energy Technology Data Exchange (ETDEWEB)

    Güneri, E., E-mail: emineg7@gmail.com [Department of Primary Education, Erciyes University, Kayseri 38039, Turkey. (Turkey); Göde, F.; Çevik, S. [Department of Physics, Mehmet Akif Ersoy University, Burdur 15030, Turkey. (Turkey)

    2015-08-31

    In this the paper, we use the successive ion layer adsorption and reaction technique (SILAR) chemical deposition method to fabricate good quality PbS thin films and the effects of grain size on the structural and optical properties of the thin films were determined by varying deposition cases. All of the films obtained in different dipping cycles show cubic rock-salt (NaCl) structure. The preferred orientation changed from the (111) direction to the (200) direction with increasing dipping cycles. Grain size determined from scanning electron microscopy (SEM) increased from 32 nm to 104 nm. Moreover, changing of atomic ratio of the thin films is determined according to the results of energy dispersive X-ray (EDX). The transmission of the thin films was characterized by UV–Vis measurements from 400 nm to 1100 nm. It was determined from the allowed direct graphics that the energy band gaps of the thin films shift from 1.33 eV to 1.92 eV in connection with deposition conditions. The variation in band gap may be attributed to the variation of grain size. Additionally, the refractive index (n), extinction coefficient (k), real (ε{sub 1}) and imaginary (ε{sub 2}) dielectric constants varied with increasing immersion cycles. - Highlights: • The effects of grain size on the structural, optical properties of PbS thin films deposited by SILAR were investigated. • The preferred orientation varied from the (111) direction to the (200) direction with changing grain size. • The energy band gaps of the thin films shift from 1.33 eV to 1.92 eV in connection with deposition conditions. • The refractive index, extinction coefficient, real and imaginary dielectric constants varied with increasing dipping cycles.

  20. Highly absorbing Cu-In-O thin films for photovoltaic applications

    International Nuclear Information System (INIS)

    Khemiri, N.; Chaffar Akkari, F.; Kanzari, M.; Rezig, B.

    2008-01-01

    We report in this paper on the preparation and characterization of improved quality Cu-In-O films for use as a high-efficiency solar cell absorber. Samples were prepared via sequential thermal vacuum deposition of Cu and In or In and Cu (at 10 -5 mbar) on glass substrates heated at 150 deg. C. After what, the obtained binary systems (Cu/In or In/Cu) were annealed in air at 400 deg. C for 3h. These films were characterized for their structural, electrical and optical properties by using X-ray diffraction (XRD), electrical resistivity and optical (transmittance and reflectance) measurement techniques. The X-ray diffraction (XRD) patterns revealed the presence of CuO and In 2 O 3 phases. The absorption coefficient of Cu-In-O thin films (4.10 5 cm -1 ) is larger than 10 5 cm -1 for the In/Cu case and in the range of 10 4 -10 5 cm -1 for the Cu/In case in the visible spectral range. Direct optical band gaps of 1.40 and 1.52eV were found for the In/Cu and Cu/In cases, respectively. The complex dielectric constants of the Cu-In-O films have been calculated. It was found that the refractive index dispersion data obeyed the Wemple-Di Domenico single oscillator model, from which the dispersion parameters and the high-frequency dielectric constant were determined. The electric free carrier susceptibility and the ratio of the carrier concentration to the effective mass were estimated according to the model of Spitzer and Fan. The electrical measurements show a conversion from a metallic phase to the semiconductor phase by a switching in the electrical resistivity values at an annealing temperature of 275 deg. C. In both cases the samples were highly compensated

  1. Structural and optical studies of 100 MeV Au irradiated thin films of tin oxide

    Energy Technology Data Exchange (ETDEWEB)

    Jaiswal, Manoj Kumar [University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, New Delhi 110 078 (India); Kanjilal, D. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110 067 (India); Kumar, Rajesh, E-mail: rajeshkumaripu@gmail.com [University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, New Delhi 110 078 (India)

    2013-11-01

    Thin films of tin(IV) oxide (SnO{sub 2}) of 100 nm thickness were grown on silicon (1 0 0) matrices by electron beam evaporation deposition technique under high vacuum. The thicknesses of these films were monitored by piezo-sensor attached to the deposition chamber. Nanocrystallinity is achieved in these thin films by 100 MeV Au{sup 8+} using 1 pnA current at normal incidence with ion fluences varying from 1 × 10{sup 11} ions/cm{sup 2} to 5 × 10{sup 13} ions/cm{sup 2}. Swift Heavy Ion beam irradiation was carried out by using 15 UD Pelletron Accelerator at IUAC, New Delhi, India. Optical studies of pristine and ion irradiated thin films were characterized by UV–Visible spectroscopy and Fourier Transform Infrared (FTIR) spectroscopy. Prominent peak at 610 cm{sup −1} in FTIR spectrum confirmed the O–Sn–O bonding of tin(IV) oxide. For Surface topographical studies and grain size calculations, these films were characterized by Atomic Force Microscope (AFM) using Nanoscope III-A. Crystallinity and phase transformation due to irradiation of pristine and irradiated films were characterized by Glancing Angle X-ray Diffraction (GAXRD) using Brucker-D8 advance model. GAXRD results show improvement in crystallinity and phase transformation due to swift heavy ion irradiation. Grain size distribution was verified by AFM and GAXRD results. Swift heavy ion induced modifications in thin films of SnO{sub 2} were confirmed by the presence of prominent peaks at 2θ values of 30.65°, 32.045°, 43.94°, 44.96° and 52.36° in GAXRD spectrum.

  2. Effect of sol-age on the surface and optical properties of sol-gel derived mesoporous zirconia thin films

    Directory of Open Access Journals (Sweden)

    Manish Kumar

    2011-06-01

    Full Text Available Mesoporous ZrO2 thin films have been deposited by a modified sol-gel dip coating technique using HCl as catalyst. Effects of sol-age on the surface and on the optical properties are studied. Transmission electron micrographs of the films reveal the pore dimensions in mesoporous regime. A strong correlation in surface topography with sol-age has been observed where increase in sol-age induces a systematic enhancement in the value of root mean square roughness of the films. Optical study shows that deposited films have high transmittance and an enhancement of 5.6 times in porosity in films prepared with sol-age of 10 days with respect to that of 1 day. Band gap estimation by Tauc's plots of films is observed to 5.74 eV, which shows invariance with the sol-age.

  3. Dependence of electrical and optical properties of sol-gel prepared undoped cadmium oxide thin films on annealing temperature

    International Nuclear Information System (INIS)

    Santos-Cruz, J.; Torres-Delgado, G.; Castanedo-Perez, R.; Jimenez-Sandoval, S.; Jimenez-Sandoval, O.; Zuniga-Romero, C.I.; Marquez Marin, J.; Zelaya-Angel, O.

    2005-01-01

    The effect of the annealing temperature (T a ) on the optical, electrical and structural properties of the undoped cadmium oxide (CdO) thin films obtained by the sol-gel method, using a simple precursor solution, was studied. All the CdO films annealed in the range from 200 to 450 deg. C are polycrystalline with (111) preferential orientation and present high optical transmission > 85% for wavelengths above 500 nm. The resistivity decreases as T a increases until it reaches a value of 6 x 10 -4 Ω cm for T a 350 deg. C. For higher temperatures the resistivity experiences a slight increase. Images obtained by atomic force microscopy show an evident incremental change of the aggregate size (clusters of grains) as T a increases. The grain size also increases when T a increases as observed in data calculated from X-ray measurements

  4. Ellipsometric analysis and optical absorption characterization of gallium phosphide nanoparticulate thin film

    Science.gov (United States)

    Zhang, Qi-Xian; Wei, Wen-Sheng; Ruan, Fang-Ping

    2011-04-01

    Gallium phosphide (GaP) nanoparticulate thin films were easily fabricated by colloidal suspension deposition via GaP nanoparticles dispersed in N,N-dimethylformamide. The microstructure of the film was performed by x-ray diffraction, high resolution transmission electron microscopy and field emission scanning electron microscopy. The film was further investigated by spectroscopic ellipsometry. After the model GaP+void|SiO2 was built and an effective medium approximation was adopted, the values of the refractive index n and the extinction coefficient k were calculated for the energy range of 0.75 eV-4.0 eV using the dispersion formula in DeltaPsi2 software. The absorption coefficient of the film was calculated from its k and its energy gaps were further estimated according to the Tauc equation, which were further verified by its fluorescence spectrum measurement. The structure and optical absorption properties of the nanoparticulate films are promising for their potential applications in hybrid solar cells.

  5. 3D characterization of thin glass x-ray mirrors via optical profilometry

    Science.gov (United States)

    Civitani, M.; Ghigo, M.; Citterio, O.; Conconi, P.; Spiga, D.; Pareschi, G.; Proserpio, L.

    2010-09-01

    In this paper we present the "Characterization Universal Profilometer" (CUP), a new metrological instrument developed at the Brera Observatory for the 3D surface figure mapping of X-ray segmented mirrors. The CUP working principle is based on the measure of the the distance between the surface under test from a rigid reference dish. This approach is made possible by the coupled use of two sensors, the CHRocodile® optical device and the SIOS triple beam interferometer, mounted onto a proper system of x-y-z stage of translators. In this paper we describe the working principle of the new instrument. We will also present the results of the commissioning performed for a CUP breadboard developed at the Brera Observatory. The CUP offers the possibility to perform an high accuracy metrology of thin glass segments produced via hot slumping, to be used in future segmented X-ray mirrors like those foreseen aboard IXO or other projects that will make use of active X-ray mirrors.

  6. Investigation of the structural, optical and electrical transport properties of n-doped CdSe thin films

    Science.gov (United States)

    Ali, H. M.; Abd El-Ghanny, H. A.

    2008-04-01

    Thin films of (CdSe)90(In2O3)10, (CdSe)90(SnO2)10 and (CdSe)90(ZnO)10 have been grown on glass substrates by the electron beam evaporation technique. It has been found that undoped and Sn or In doped CdSe films have two direct transitions corresponding to the energy gaps Eg and Eg+Δ due to spin-orbit splitting of the valence band. The electrical resistivity for n-doped CdSe thin films as a function of light exposure time has been studied. The influence of doping on the structural, optical and electrical characteristics of In doped CdSe films has been investigated in detail. The lattice parameters, grain size and dislocation were determined from x-ray diffraction patterns. The optical transmittance and band gap of these films were determined using a double beam spectrophotometer. The DC conductivity of the films was measured in vacuum using a two-probe technique.

  7. The role of cationic precursors in structural, morphological and optical properties of PbS thin films

    International Nuclear Information System (INIS)

    Preetha, K C; Murali, K V; Ragina, A J; Deepa, K; Dhanya, A C; Remadevi, T L

    2013-01-01

    Thin films of Lead sulphide (PbS) were grown on soda lime glass substrate by Successive Ionic Layer Adsorption and Reaction (SILAR) method using lead acetate, lead chloride, lead nitrate, and lead sulphate as cationic precursors and thioacetamide as sulphur source. The experiments were carried out at room temperature under normal pressure utilizing aqueous conditions. The structural and morphological aspects of the as prepared samples were investigated by means of XRD and SEM results. The prepared samples were polycrystalline with nanometer-sized grains and identified as galena type cubic structure (FCC). The values of average crystallite size were found to be in the range 22 to 30 nm. The SEM micrographs show variations in morphology. Optical studies revealed that the absorption edges of the films indicated strong blue shifts with respect to bulk sample. In this work, we establish that the cationic precursor sources and in turn the size of the crystallites affects the structural, morphological and optical properties of PbS thin films.

  8. Preparation, electrical and optical properties of evaporated thin films of CuPbI3

    International Nuclear Information System (INIS)

    Kuku, T.A.; Azi, S.O.

    1995-10-01

    Thin films of CuPbl 3 have been prepared by a vacuum evaporation process. X-ray analysis gives structural parameters in consonance with the bulk powder form of the material. The film however preferring a growth in the [002] direction. Electrical conductivity indicates an activated process with two activation energies being 0.45 eV for T ≤ 373 K, and 0.6 eV for T ≥ 373 K. Both are interpreted to be due to the transport of anionic carriers in the phases existing below and beyond 373 K respectively. Optical characterization reveals a material with high absorption coefficient, with α ≥ 10 4 cm -1 . The material is characterized by a direct absorption with the direct edge at 1.64 eV. (author). 13 refs, 5 figs

  9. Optical and microwave dielectric properties of pulsed laser deposited Na{sub 0.5}Bi{sub 0.5}TiO{sub 3} thin film

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, Andrews; Goud, J. Pundareekam; Raju, K. C. James [School of Physics, University of Hyderabad, Hyderabad, Telangana 500046 (India); Emani, Sivanagi Reddy [Advanced Center of Research in High Energy Materials (ACRHEM), School of Physics, University of Hyderabad, Telangana 500046 (India)

    2016-05-23

    Optical properties of pulsed laser deposited (PLD) sodium bismuth titanate thin films (NBT), are investigated at wavelengths of 190-2500 nm. Microwave dielectric properties were investigated using the Split Post Dielectric Resonator (SPDR) technique. At 10 GHz, the NBT films have a dielectric constant of 205 and loss tangent of 0.0373 at room temperature. The optical spectra analysis reveals that NBT thin films have an optical band gap E{sub g}=3.55 eV and it has a dielectric constant of 3.37 at 1000 nm with dielectric loss of 0.299. Hence, NBT is a promising candidate for photonic device applications.

  10. Effect of Annealing Temperature on Structural, Optical, and Electrical Properties of Sol-Gel Spin-Coating-Derived Cu2ZnSnS4 Thin Films

    Science.gov (United States)

    Hosseinpour, Rabie; Izadifard, Morteza; Ghazi, Mohammad Ebrahim; Bahramian, Bahram

    2018-02-01

    The effect of annealing temperature on structural, optical, and electrical properties of Cu2ZnSnS4 (CZTS) thin films grown on a glass substrate by spin coating sol-gel technique has been studied. Structural study showed that all samples had kesterite crystalline structure. Scanning electron microscopy images showed that the crystalline quality of the samples was improved by heat treatment. Optical study showed that the energy gap values for the samples ranged from 1.55 eV to 1.78 eV. Moreover, good optical conductivity values (1012 S-1 to 1014 S-1) were obtained for the samples. Investigation of the electrical properties of the CZTS thin films showed that the carrier concentration increased significantly with the annealing temperature. The photoelectrical behavior of the samples revealed that the photocurrent under light illumination increased significantly. Overall, the results show that the CZTS thin films annealed at 500°C had better structural, optical, and electrical properties and that such CZTS thin films are desirable for use as absorber layers in solar cells. The photovoltaic properties of the CZTS layer annealed at 500°C were also investigated and the associated figure of merit calculated. The results showed that the fabricated ZnS-CZTS heterojunction exhibited good rectifying behavior but rather low fill factor.

  11. Optical fiber pH sensors for high temperature water. Final report

    International Nuclear Information System (INIS)

    McCrae, D.; Saaski, E.

    1994-11-01

    The goal of this program was the development of an optical pH measurement system capable of operating in a high-temperature aqueous environment. This project built upon a dual-wavelength fiber optic sensing system previously developed by Research International which utilizes light-emitting diodes as light sources and provides remote absorption spectroscopy via a single bidirectional optical fiber. Suitable materials for constructing an optical pH sensing element were identified during the program. These included a sapphire/Ti/Pt/Au thin-film reflector, quartz and sapphire waveguides, a poly(benzimidazole) matrix, and an azo chromophore indicator. By a suitable combination of these design elements, it appears possible to optically measure pH in aqueous systems up to a temperature of about 150 degrees C. A pH sensing system capable of operating in high-purity, low-conductivity water was built using quasi-evanescent wave sensing techniques. The sensing element incorporated a novel, mixed cellulose/cellulose acetate waveguide to which an azo indicator was bound. Testing revealed that the system could reproducibly respond to pH changes arising from 1 ppm differences in the morpholine content of low-conductivity water without influencing the measurement. The sensing system was stable for 150 hrs at room temperature, and no loss or degradation of the pH-responsive optical indicator was seen in 160 hrs at 50 degrees C. However, the prototype polymer waveguide lost transparency at 1.7% per day during this same 50 degrees C test. Additional effort is warranted in the areas of water-compatible waveguides and evanescent-wave detection methods

  12. The design of an ultra-thin and multiple channels optical receiving antenna system with freeform lenses

    Science.gov (United States)

    Zhang, Lingyun; Cheng, Dewen; Hu, Yuan; Song, Weitao; Wang, Yongtian

    2014-11-01

    Visible Light Communications (VLC) has become an emerging area of research since it can provide higher data transmission speed and wider bandwidth. The white LEDs are very important components of the VLC system, because it has the advantages of higher brightness, lower power consumption, and a longer lifetime. More importantly, their intensity and color are modulatable. Besides the light source, the optical antenna system also plays a very important role in the VLC system since it determines the optical gain, effective working area and transmission rate of the VLC system. In this paper, we propose to design an ultra-thin and multiple channels optical antenna system by tiling multiple off-axis lenses, each of which consists of two reflective and two refractive freeform surfaces. The tiling of multiple systems and detectors but with different band filters makes it possible to design a wavelength division multiplexing VLC system to highly improve the system capacity. The field of view of the designed antenna system is 30°, the entrance pupil diameter is 1.5mm, and the thickness of the system is under 4mm. The design methods are presented and the results are discussed in the last section of this paper. Besides the optical gain is analyzed and calculated. The antenna system can be tiled up to four channels but without the increase of thickness.

  13. Influence of annealing conditions on the optical and structural properties of spin-coated As(2)S(3) chalcogenide glass thin films.

    Science.gov (United States)

    Song, Shanshan; Dua, Janesha; Arnold, Craig B

    2010-03-15

    Spin-coating of chalcogenide glass is a low-cost, scalable method to create optical grade thin films, which are ideal for visible and infrared applications. In this paper, we study the influence of annealing on optical parameters of As(2)S(3) films by examining UV-visible and infrared spectroscopy and correlating the results to changes in the physical properties associated with solvent removal. Evaporation of excess solvent results in a more highly coordinated, denser glass network with higher index and lower absorption. Depending on the annealing temperature and time, index values ranging from n = 2.1 to the bulk value (n = 2.4) can be obtained, enabling a pathway to materials optimization.

  14. Effect of Co doping concentration on structural properties and optical parameters of Co-doped ZnO thin films by sol-gel dip-coating method.

    Science.gov (United States)

    Nam, Giwoong; Yoon, Hyunsik; Kim, Byunggu; Lee, Dong-Yul; Kim, Jong Su; Leem, Jae-Young

    2014-11-01

    The structural and optical properties of Co-doped ZnO thin films prepared by a sol-gel dip-coating method were investigated. X-ray diffraction analysis showed that the thin films were grown with a c-axis preferred orientation. The position of the (002) peak was almost the same in all samples, irrespective of the Co concentration. It is thus clear that Co doping had little effect on the position of the (002) peak. To confirm that Co2+ was substituted for Zn2+ in the wurtzite structure, optical measurements were conducted at room temperature by a UV-visible spectrometer. Three absorption peaks are apparent in the Co-doped ZnO thin films that do not appear for the undoped ZnO thin film. As the Co concentration was increased, absorption related to characteristic Co2+ transitions increased because three absorption band intensities and the area underneath the absorption wells between 500 and 700 nm increased with increasing Co concentration. The optical band gap and static dielectric constant decreased and the Urbach energy and extinction coefficient increased with increasing Co concentration.

  15. Ultraviolet optical properties of aluminum fluoride thin films deposited by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Hennessy, John, E-mail: john.j.hennessy@jpl.nasa.gov; Jewell, April D.; Balasubramanian, Kunjithapatham; Nikzad, Shouleh [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109 (United States)

    2016-01-15

    Aluminum fluoride (AlF{sub 3}) is a low refractive index material with promising optical applications for ultraviolet (UV) wavelengths. An atomic layer deposition process using trimethylaluminum and anhydrous hydrogen fluoride has been developed for the deposition of AlF{sub 3} at substrate temperatures between 100 and 200 °C. This low temperature process has resulted in thin films with UV-optical properties that have been characterized by ellipsometric and reflection/transmission measurements at wavelengths down to 200 nm. The optical loss for 93 nm thick films deposited at 100 °C was measured to be less than 0.2% from visible wavelengths down to 200 nm, and additional microstructural characterization demonstrates that the films are amorphous with moderate tensile stress of 42–105 MPa as deposited on silicon substrates. X-ray photoelectron spectroscopy analysis shows no signature of residual aluminum oxide components making these films good candidates for a variety of applications at even shorter UV wavelengths.

  16. Optical band gap of ZnO thin films deposited by electron beam evaporation

    International Nuclear Information System (INIS)

    Nadeem, M. Y.; Ali, S. L.; Wasiq, M. F.; Rana, A. M.

    2006-01-01

    Optical band gap of ZnO thin films deposited by electron beam evaporation at evaporation rates ranging 5 As/sup -1/ to 15 As /sup -1/ and thickness ranging 1000A to 3000A is presented. Deposited films were annealed at 573K for one and half hour. The variations in the optical band gap were observed and showed decreasing behavior from 3.15 eV, 3.05 eV, from 3.18 eV to 3.10 eV and from 3.19 eV to 3.18 eV for films with respective thickness 1000A, 2000 A, 3000 A on increasing the evaporation rate from 5 As/sup-1/ to As/sup -1/ by keeping thickness constant. (author)

  17. High power beam profile monitor with optical transition radiation

    International Nuclear Information System (INIS)

    Denard, J.C.; Piot, P.; Capek, K.; Feldl, E.

    1997-01-01

    A simple monitor has been built to measure the profile of the high power beam (800 kW) delivered by the CEBAF accelerator at Jefferson Lab. The monitor uses the optical part of the forward transition radiation emitted from a thin carbon foil. The small beam size to be measured, about 100 μm, is challenging not only for the power density involved but also for the resolution the instrument must achieve. An important part of the beam instrumentation community believes the radiation being emitted into a cone of characteristic angle 1/γ is originated from a region of transverse dimension roughly λγ; thus the apparent size of the source of transition radiation would become very large for highly relativistic particles. This monitor measures 100 μm beam sizes that are much smaller than the 3.2 mm λγ limit; it confirms the statement of Rule and Fiorito that optical transition radiation can be used to image small beams at high energy. The present paper describes the instrument and its performance. The authors tested the foil in, up to 180 μA of CW beam without causing noticeable beam loss, even at 800 MeV, the lowest CEBAF energy

  18. Optical materials

    International Nuclear Information System (INIS)

    Poker, D.B.; Ortiz, C.

    1989-01-01

    This book reports on: Diamond films, Synthesis of optical materials, Structure related optical properties, Radiation effects in optical materials, Characterization of optical materials, Deposition of optical thin films, and Optical fibers and waveguides

  19. Optimized pre-thinning procedures of ion-beam thinning for TEM sample preparation by magnetorheological polishing.

    Science.gov (United States)

    Luo, Hu; Yin, Shaohui; Zhang, Guanhua; Liu, Chunhui; Tang, Qingchun; Guo, Meijian

    2017-10-01

    Ion-beam-thinning is a well-established sample preparation technique for transmission electron microscopy (TEM), but tedious procedures and labor consuming pre-thinning could seriously reduce its efficiency. In this work, we present a simple pre-thinning technique by using magnetorheological (MR) polishing to replace manual lapping and dimpling, and demonstrate the successful preparation of electron-transparent single crystal silicon samples after MR polishing and single-sided ion milling. Dimples pre-thinned to less than 30 microns and with little mechanical surface damage were repeatedly produced under optimized MR polishing conditions. Samples pre-thinned by both MR polishing and traditional technique were ion-beam thinned from the rear side until perforation, and then observed by optical microscopy and TEM. The results show that the specimen pre-thinned by MR technique was free from dimpling related defects, which were still residual in sample pre-thinned by conventional technique. Nice high-resolution TEM images could be acquired after MR polishing and one side ion-thinning. MR polishing promises to be an adaptable and efficient method for pre-thinning in preparation of TEM specimens, especially for brittle ceramics. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Evaluation of the structural, optical and electrical properties of AZO thin films prepared by chemical bath deposition for optoelectronics

    Science.gov (United States)

    Kumar, K. Deva Arun; Valanarasu, S.; Rosario, S. Rex; Ganesh, V.; Shkir, Mohd.; Sreelatha, C. J.; AlFaify, S.

    2018-04-01

    Aluminum doped zinc oxide (AZO) thin films for electrode applications were deposited on glass substrates using chemical bath deposition (CBD) method. The influence of deposition time on the structural, morphological, and opto-electrical properties of AZO films were investigated. Structural studies confirmed that all the deposited films were hexagonal wurtzite structure with polycrystalline nature and exhibited (002) preferential orientation. There is no other impurity phases were detected for different deposition time. Surface morphological images shows the spherically shaped grains are uniformly arranged on to the entire film surface. The EDS spectrum confirms the presence of Zn, O and Al elements in deposited AZO film. The observed optical transmittance is high (87%) in the visible region, and the calculated band gap value is 3.27 eV. In this study, the transmittance value is decreased with increasing deposition time. The room temperature PL spectrum exposed that AZO thin film deposited at (60 min) has good optical quality with less defect density. The minimum electrical resistivity and maximum carrier concentration values were observed as 8.53 × 10-3(Ω cm) and 3.53 × 1018 cm-3 for 60 min deposited film, respectively. The obtained figure of merit (ϕ) value 3.05 × 10-3(Ω/sq)- 1 is suggested for an optoelectronic device.