Sample records for high oil viscosity

  1. Enhancement of Hydrodynamic Processes in Oil Pipelines Considering Rheologically Complex High-Viscosity Oils

    Konakhina, I. A.; Khusnutdinova, E. M.; Khamidullina, G. R.; Khamidullina, A. F.


    This paper describes a mathematical model of flow-related hydrodynamic processes for rheologically complex high-viscosity bitumen oil and oil-water suspensions and presents methods to improve the design and performance of oil pipelines.

  2. High-Viscosity Oil Filtration in the Pool Under Thermal Action

    Shagapov, V. Sh.; Yumagulova, Yu. A.; Gizzatullina, A. A.


    We have developed a mathematical model and constructed numerical solutions of the problem of heating a high-viscosity oil pool through one horizontal well or a system of wells and have shown the possibility of their further operation until the limiting profitable discharge of oil is attained. The expenditure of heat in heating the oil pool, the evolution of discharge of oil, and the mass of extracted oil over the considered period have been considered.

  3. Neste Oy starts the production of extra high viscosity index lubricating oil in Porvoo

    Kilander, H.


    Neste Oy is starting the manufacture of basic oil, used in advanced motor lubricants, in Finland. The plant will start the manufacture of the EHVI (Extra High Viscosity) by the end of 1997. The EHVI basic oil is a synthetic-like oil product, suitable for manufacture of high-quality lubricants. In the beginning the production of the basic oil will be about 50 000 tons/a. The investment costs of the plants are 180 million FIM

  4. High pressure changes of the castor oil viscosity by ultrasonic method

    Rostocki, A J; Siegoczynski, R M; Kielczynski, P; Szalewski, M


    The pressure change of viscosity of castor oil have been measured by ultrasonic method within the range of pressure up to 0.9 GPa. For the measurement, the authors have applied a new ultrasonic method based on Bleustein-Gulyaev (B-G) waves. For the lower pressures (up to 0.3 GPa) the results have been compared with earlier results obtained by falling body method, whereas for the higher pressure range results were compared with those obtained by the flow type viscometer. The measurements have shown: 1. Exponential rise of viscosity with pressure up to 0.4 GPa according to the Barus formula. 2. Extraordinary increment of viscosity at constant pressure during phase transition. 3. The decomposition of the high pressure phase during the decompression process have shown very large hysteresis of viscosity on pressure. 4. After the decompression process the viscosity lasts higher then a initial value for several hours

  5. Viscosity modification of high-oleic sunflower oil with polymeric additives for the design of new biolubricant formulations.

    Quinchia, L A; Delgado, M A; Valencia, C; Franco, J M; Gallegos, C


    Although most common lubricants contain mineral or synthetic oils as basestocks, new environmental regulations are demanding environmentally friendly lubricants. In this sense, vegetable oils represent promising alternatives to mineral-based lubricants because of their high biodegradability, good lubricity, and low volatility. However, their poor thermooxidative stability and the small range of viscosity represent a clear disadvantage to be used as suitable biolubricants. The main objective of this work was to develop new environmentally friendly lubricant formulations with improved kinematic viscosity values and viscosity thermal susceptibility. With this aim, a high-oleic sunflower oil (HOSO) was blended with polymeric additives, such as ethylene vinyl acetate (EVA) and styrene-butadiene-styrene (SBS) copolymers, at different concentrations (0.5-5% w/w). Dynamic viscosity and density measurements were performed in a rotational rheometer and capillary densimeter, respectively, in a temperature range between 25 and 120 degrees C. An Arrhenius-like equation fits the evolution of viscosity with temperature fairly well. Both EVA and SBS copolymers may be satisfactorily used as additives to increase the viscosity of HOSO, thus improving the low viscosity values of this oil. HOSO viscosity increases with polymer concentration. Specifically, EVA/HOSO blends exhibit higher viscosity values, which are needed for applications such as lubrication of bearings and four-stroke engines. On the other hand, viscositythermal susceptibility of HOSO samples increases with EVA or SBS concentration.

  6. Excessive Additive Effect On Engine Oil Viscosity

    Vojtěch Kumbár


    Full Text Available The main goal of this paper is excessive additive (for oil filling effect on engine oil dynamic viscosity. Research is focused to commercially distribute automotive engine oil with viscosity class 15W–40 designed for vans. There were prepared blends of new and used engine oil without and with oil additive in specific ratio according manufacturer’s recommendations. Dynamic viscosity of blends with additive was compared with pure new and pure used engine oil. The temperature dependence dynamic viscosity of samples was evaluated by using rotary viscometer with standard spindle. Concern was that the oil additive can moves engine oil of several viscosity grades up. It is able to lead to failure in the engine. Mathematical models were used for fitting experimental values of dynamic viscosity. Exponential fit function was selected, which was very accurate because the coefficient of determination R2 achieved high values (0.98–0.99. These models are able to predict viscosity behaviour blends of engine oil and additive.

  7. Application of Technology of Hydrodynamic Cavitation Processing High-Viscosity Oils for the Purpose of Improving the Rheological Characteristics of Oils

    Zemenkov, Y. D.; Zemenkova, M. Y.; Vengerov, A. A.; Brand, A. E.


    There is investigated the technology of hydrodynamic cavitational processing viscous and high-viscosity oils and the possibility of its application in the pipeline transport system for the purpose of increasing of rheological properties of the transported oils, including dynamic viscosity shear stress in the article. It is considered the possibility of application of the combined hydrodynamic cavitational processing with addition of depressor additive for identification of effect of a synergism. It is developed the laboratory bench and they are presented results of modeling and laboratory researches. It is developed the hardware and technological scheme of application of the developed equipment at industrial objects of pipeline transport.

  8. Applying the technology of hydrodynamic cavitation treatment of high-viscosity oils to increase the efficiency of transportation

    Brand, A. E.; Vershinina, S. V.; Vengerov, A. A.; Mostovaya, N. A.


    The article investigates the possibility of applying hydrodynamic cavitation treatment to reduce oil viscosity in Russian pipeline transportation system and increase its performance. The result of laboratory tests and suggestions on technology application are given

  9. Influence of Oil Viscosity on Alkaline Flooding for Enhanced Heavy Oil Recovery

    Yong Du


    Full Text Available Oil viscosity was studied as an important factor for alkaline flooding based on the mechanism of “water drops” flow. Alkaline flooding for two oil samples with different viscosities but similar acid numbers was compared. Besides, series flooding tests for the same oil sample were conducted at different temperatures and permeabilities. The results of flooding tests indicated that a high tertiary oil recovery could be achieved only in the low-permeability (approximately 500 mD sandpacks for the low-viscosity heavy oil (Zhuangxi, 390 mPa·s; however, the high-viscosity heavy oil (Chenzhuang, 3450 mPa·s performed well in both the low- and medium-permeability (approximately 1000 mD sandpacks. In addition, the results of flooding tests for the same oil at different temperatures also indicated that the oil viscosity put a similar effect on alkaline flooding. Therefore, oil with a high-viscosity is favorable for alkaline flooding. The microscopic flooding test indicated that the water drops produced during alkaline flooding for oils with different viscosities differed significantly in their sizes, which might influence the flow behaviors and therefore the sweep efficiencies of alkaline fluids. This study provides an evidence for the feasibility of the development of high-viscosity heavy oil using alkaline flooding.

  10. Design of Oil Viscosity Sensor Based on Plastic Optical Fiber

    Yunus, Muhammad; Arifin, A.


    A research of plastic optical fiber based sensors have been studied for measurement of oil viscosity. This sensor was made with straight configuration, U configuration, and gamma configuration have two types, there are optical fiber sensor with cladding and without cladding. Viscosity sensor was made, dipped into an oil sample with a concentration of viscosity percentage about 270 mPa.s - 350 mPa.s. The light from the LED propagated into the optical fiber, then it was received by the photodetector converted to output power. When plastic optical fiber dipped into an oil sample, viscosity of oil affect increase of refractive index on optical fiber resulting in a bigger loss of power so the light intensity will be smaller, consequences the measured output power will be smaller. Sensitivity and resolution viscosity sensor without cladding peel showed the best result rather than viscosity sensor with cladding peel. The best result in the measurement showed in gamma configuration with 3 cm length of cladding peel and the diameter of bending 0,25 cm is the range 103,090 nWatt, sensitivity 1,289 nWatt/mPa.s, and resolution 0,776 mPa.s. This method is effectively and efficiently used as an oil viscosity sensor with high sensitivity and resolution.

  11. Ranking oil viscosity in heavy-oil reservoirs

    Bonnie, R.J.M. [Halliburton Energy Services, Calgary, AB (Canada); Seccombe, J. [BP Alaska, AK (United States)


    This paper discussed attempts to identify lower viscosity zones within the Ugnu formation at Milne Point field in Alaska through the use of Nuclear Magnetic Resonance (NMR) measurements. To date, only 1 well has been completed in the Ugnu, and BP Alaska is now engaged in studies to find ways to commercialize the formation. While geochemical analysis of oil samples extracted from sidewall cores has successfully identified sweet spots, the costs are prohibitive and they are too slow for real-time decision-making. NMR data acquisition offers a more economical, continuous and almost instantaneous alternative. Two wells were logged and analyzed using both logging while drilling (LWD) NMR and wire log (WL)-NMR tools. With the WL-NMR tool, data were collected in continuous passes and in a series of 45 minute stationary points, acquiring both routine T{sub 2} and diffusion editing data to predict oil viscosity. The LWD-NMR tool was set up to acquire T{sub 1} data when drilling. Forward modelling was used to generate NMR T{sub 2} spectra for reservoir parameters. The NMR logs indicate that the technology is a viable non-radioactive porosity measurement alternative. Data quality had high-vertical resolution and spectral resolution and showed good agreement with density-derived porosity. Zones with viscous oil were located and findings were validated by geochemical analyses. Bandwidth limitation was the only obstacle that prevented real time application of the NMR ranking process. 6 refs., 11 figs.

  12. In situ viscosity of oil sands using low field NMR

    Bryan, J.; Moon, D.; Kantzas, A.


    In heavy oil and bitumen reservoirs, oil viscosity is a vital piece of information that will have great bearing on the chosen EOR scheme and the recovery expected. Prediction of in situ viscosity with a logging tool would he very beneficial in reservoir characterization and exploitation design. Low field NMR is a technology that has shown great potential as a tool for characterizing hydrocarbon properties in heavy oil and bitumen reservoirs. An oil viscosity correlation has previously been developed that is capable of providing order of magnitude viscosity estimates for a wide range of oils taken from various fields in Alberta. This paper presents tuning procedures to improve the NMR predictions for different viscosity ranges, and extends the NMR viscosity model to in situ heavy oil in unconsolidated sands. The results of this work show that the NMR oil peak can be de-convoluted from the in situ signals of the oil and water, and the bulk viscosity correlation that was developed for bulk oils can he applied to predict the in situ oil viscosity. These results can be translated to an NMR logging tool algorithm, allowing for in situ measurements of oil viscosity at the proper reservoir conditions. (author)

  13. Use of Kinematic Viscosity Data for the Evaluation of the Molecular Weight of Petroleum Oils

    Maroto, J. A.; Quesada-Perez, M.; Ortiz-Hernandez, A. J.


    A new laboratory procedure for the evaluation of the mean molecular weight (mean relative molecular mass) of petroleum oils with high accuracy is described. The density and dynamic viscosity of three commercial petroleum oils are measured at different temperatures. These experimental data are used to calculate the kinematic viscosity as a function…

  14. Should you trust your heavy oil viscosity measurement?

    Nelson, L.; Miller, K.; Almond, R. [Petrovera Resources Ltd., Edmonton, AB (Canada)


    For the last 60 years, the heavy oil and bitumen reservoirs from western Canada have been exploited with varying degrees of success. There are many factors that may effect heavy oil and bitumen production rates. Primary production rates, which vary greatly from field to field, were found to improve with the addition of steam. Viscosity is the single most valued criteria in predicting cold production response from a new field. It is also the criteria used to determine whether thermal process are needed to reduce oil viscosity, or whether horizontal or vertical wells should be used. This study examined why production forecasts based on oil viscosity alone have been poor. It is based on an extensive data collection project in the Elk Point area reservoir which has lower than expected and erratic cold production rates. Viscosity values from the same wells were found to vary by a factor of four or more. One of the objectives of this study was to encourage commercial labs to develop an industry-wide standard method of heavy oil sample cleaning and viscosity measurement. It is generally understood that viscosity increases with an increase in the concentration of asphaltenes, but there is little information to quantify the relationship. Some studies suggest that viscosity increases logarithmically with increasing asphaltenes. It was concluded that the prediction of the viscosity of heavy oils and bitumens is very empirical, but there are ways to improve data comparisons and evaluation by applying available information from other scientific fields. 23 refs., 5 tabs., 6 figs.

  15. Theoretical study of the flow in a fluid damper containing high viscosity silicone oil: Effects of shear-thinning and viscoelasticity

    Syrakos, Alexandros; Dimakopoulos, Yannis; Tsamopoulos, John


    The flow inside a fluid damper where a piston reciprocates sinusoidally inside an outer casing containing high-viscosity silicone oil is simulated using a finite volume method, at various excitation frequencies. The oil is modeled by the Carreau-Yasuda (CY) and Phan-Thien and Tanner (PTT) constitutive equations. Both models account for shear-thinning, but only the PTT model accounts for elasticity. The CY and other generalised Newtonian models have been previously used in theoretical studies of fluid dampers, but the present study is the first to perform full two-dimensional (axisymmetric) simulations employing a viscoelastic constitutive equation. It is found that the CY and PTT predictions are similar when the excitation frequency is low, but at medium and higher frequencies, the CY model fails to describe important phenomena that are predicted by the PTT model and observed in experimental studies found in the literature, such as the hysteresis of the force-displacement and force-velocity loops. Elastic effects are quantified by applying a decomposition of the damper force into elastic and viscous components, inspired from large amplitude oscillatory shear theory. The CY model also overestimates the damper force relative to the PTT model because it underpredicts the flow development length inside the piston-cylinder gap. It is thus concluded that (a) fluid elasticity must be accounted for and (b) theoretical approaches that rely on the assumption of one-dimensional flow in the piston-cylinder gap are of limited accuracy, even if they account for fluid viscoelasticity. The consequences of using lower-viscosity silicone oil are also briefly examined.

  16. Temperature dependent kinematic viscosity of different types of engine oils

    Libor Severa


    Full Text Available The objective of this study is to measure how the viscosity of engine oil changes with temperature. Six different commercially distributed engine oils (primarily intended for motorcycle engines of 10W–40 viscosity grade have been evaluated. Four of the oils were of synthetic type, two of semi–synthetic type. All oils have been assumed to be Newtonian fluids, thus flow curves have not been determined. Oils have been cooled to below zero temperatures and under controlled temperature regulation, kinematic viscosity (mm2 / s have been measured in the range of −5 °C and +115 °C. Anton Paar digital viscometer with concentric cylinders geometry has been used. In accordance with expected behavior, kinematic viscosity of all oils was decreasing with increasing temperature. Viscosity was found to be independent on oil’s density. Temperature dependence has been modeled using se­ve­ral mathematical models – Vogel equation, Arrhenius equation, polynomial, and Gaussian equation. The best match between experimental and computed data has been achieved for Gaussian equation (R2 = 0.9993. Knowledge of viscosity behavior of an engine oil as a function of its temperature is of great importance, especially when considering running efficiency and performance of combustion engines. Proposed models can be used for description and prediction of rheological behavior of engine oils.


    Rita Prasetyowati


    This study aims to determine the value of the kinematic viscosity lubricants motorcycle that has been used at various temperatures and the use of distance. This study also aims to remedy mengtahui how the value of the kinematic viscosity of the lubricant car that has been used in a wide range of temperature variation and distance usage. Viscosity liquid, in this case is the lubricants, can be determined using the Redwood viscometer By using Redwood viscometer, can be measured flow time requir...

  18. Density and viscosity modeling and characterization of heavy oils

    Cisneros, Sergio; Andersen, Simon Ivar; Creek, J


    to thousands of mPa center dot s. Essential to the presented extended approach for heavy oils is, first, achievement of accurate P nu T results for the EOS-characterized fluid. In particular, it has been determined that, for accurate viscosity modeling of heavy oils, a compressibility correction in the way...... are widely used within the oil industry. Further work also established the basis for extending the approach to heavy oils. Thus, in this work, the extended f-theory approach is further discussed with the study and modeling of a wider set of representative heavy reservoir fluids with viscosities up...


    Z.S. Nazirah


    Full Text Available Empty fruit bunches (EFB are one of the solid wastes produced by the palm oil industry, which is increasing rapidly. The aim of this paper is to analyse the viscosity of empty fruit bunch (EFB bio-oil that can be extracted from all solid waste EFB as a sample, and a few processes were executed. The samples underwent two processes, which were pre-treatment and pyrolysis. The pre-treatment involved three processes, namely, cutting, shredding and sieving, which were necessary in order to prepare EFB into a particle size suitable for the reactor. After that, the samples were fed into the feedback reactor as feedstock for the pyrolysis process to produce bio-oil. Once the bio-oil was produced, its viscosity was tested using the Brookfield Viscometer in two conditions: before and after the chemical reaction. The bio-oil was treated by adding 10 ml and 20 ml of acetone respectively through the chemical reaction. The viscosity test was carried out at different temperatures, which were 25°C, 30°C, 35°C, 40°C, 45°C and 50°C respectively. The observed viscosity of the EFB bio-oil varied and was higher as the temperature decreased. In addition, the viscosity of the EFB bio-oil was higher when it reacted chemically with the acetone added. Therefore, the results showed that the chemical reaction with acetone has the potential to increase the viscosity of EFB bio-oil.

  20. The influence of magnetic fields on crude oils viscosity

    Goncalves, Jose L.; Bombard, Antonio J. F. [Universidade Federal de Itajuba (UNIFEI), Itajuba, MG (Brazil). Instituto de Ciencias Exatas. Lab. de Reologia


    The crystallization of paraffin causes serious problems in the process of transportation of petroleum. This phenomenon increases the crude oil viscosity and implies an organic resin accumulation on pipeline wall, resulting in a reduced flux area or totally blocked pipes. One of the most challenging tasks for pipeline maintenance is solving this problem at low cost. Therefore, a method that inhibits the crystallization of paraffin and reduces the viscosity of crude oil could have many useful applications within the petroleum industry. Recent studies showed that magnetic fields reduce the Wax Appearance Temperature (WAT) and the viscosity of paraffin-based crude oil. For better understanding of this discovery, a series of tests was performed. This paper will show the influence of a DC magnetic field on rheological proprieties of three crude oils with different paraffin concentrations: a crude oil sample with 11 % p/p of paraffin concentration (sample 1); a crude oil sample with 6 % p/p of paraffin concentration (sample 2); a mixture of paraffin plus light crude oil with a total of 11 % p/p of paraffin concentration. These samples were placed in an electromagnet that generates a magnetic field of 1.3 Tesla. The samples' temperatures were conditioned around their Wax Appearance Temperature (WAT), and they were exposed to the field. As the viscosity of crude oil is very sensitive to the changes in temperature, it was ensured that the temperature has remained constant throughout the process. The sample 1 revealed a considerable reduction of viscosity: its original viscosity was 66 cP before magnetic field exposure, after that its viscosity was reduced to 39 cP. The other samples showed the same viscosity, before and after the magnetic field exposure. Since the samples 1 and 3 have the same paraffin concentrations, the viscosity reduction is not due only to the presence of paraffin; there must be other factors responsible for the interaction of sample 1 with the

  1. Pipeline flow of heavy oil with temperature-dependent viscosity

    Maza Quinones, Danmer; Carvalho, Marcio da Silveira [Pontifical Catholic University of Rio de Janeiro (PUC-Rio), RJ (Brazil). Dept. of Mechanical Engineering], E-mail:


    The heavy oil produced offshore needs to be transported through pipelines between different facilities. The pipelines are usually laid down on the seabed and are submitted to low temperatures. Although heavy oils usually present Newtonian behavior, its viscosity is a strong function of temperature. Therefore, the prediction of pressure drops along the pipelines should include the solution of the energy equation and the dependence of viscosity to temperature. In this work, an asymptotic model is developed to study this problem. The flow is considered laminar and the viscosity varies exponentially with temperature. The model includes one-dimensional equations for the temperature and pressure distribution along the pipeline at a prescribed flow rate. The solution of the coupled differential equation is obtained by second-order finite difference. Results show a nonlinear behavior as a result of coupled interaction between the velocity, temperature, and temperature dependent material properties. (author)

  2. The Effect of the Operating Conditions on the Apparent Viscosity of Crude Palm Oil During Oil Clarification

    Sulaiman Al-Zuhair, Mirghani I. Ahmed and Yousif A. Abakr


    This paper discusses the apparent viscosity of crude palm oil, using rotary viscometer, under different boundary conditions. It was experimentally shown that the apparent viscosity of palm oil drops with increasing of the shear rate and the temperature.  However, the effect of temperature on the viscosity tends to fade at temperatures beyond 80 oC.  A correlation between the apparent viscosity of crude palm oil and the operating conditions was developed. This correlation can be used...

  3. Evaluation of stability and viscosity measurement of emulsion from oil from production in northern oilfield in Thailand

    Juntarasakul, O.; Maneeintr, K.


    Emulsion is normally present in oil due to the mixing occurring during oil recovery. The formation of emulsion can cause some problems in production and transportation. Viscosity and stability of emulsion play a key roles in oil transportation and separation to meet sales specification. Therefore, the aims of this research are to measure the viscosity of oil an emulsion and to evaluate the stability of emulsion of light oil from Fang oilfield in Thailand. The parameters of this study are temperature, shear rate and water cut ranging from 50 to 80 °C, 3.75 to 70 s-1 and 0 to 60%, respectively. These effects of parameters on viscosity and stability of emulsion are required for the design of the process and to increase oil production with various conditions. The results shows that viscosity decreases as temperature and shear rate increase. In contrast, viscosity becomes higher when water cut is lower. Furthermore, droplet sizes of water-in-oil emulsion at different conditions are investigated the stability of emulsion. The droplet sizes become smaller when high shear rate is applied and emulsion becomes more stable. Furthermore, correlations are developed to predict the viscosity and stability of the oil and emulsion from Thailand.

  4. The effect of low molecular weight multifunctional additives on heavy oil viscosity

    Oldenburg, T.B.P.; Yarranton, H.W.; Larter, S.R. [Calgary Univ., AB (Canada)


    Crude oils contain many small multifunctional low molecular weight components that act as linking molecules between larger functionalized species. The linkage molecules have a significant impact on the flow properties of hydrocarbon systems. This study investigated the use of a low molecular weight multiheteroatom species (LMWMH) as a molecular Velcro linking high molecular weight components together. LMWMH species were added to Albertan bitumens and heavy oil, and their impact on viscosity was investigated. Results of the experimental studies were then compared with the effects of hydrocarbon solvents on similar samples. The LMWMH species included bifunctional species and analogous alkyl and aryl monoamines that acted as blocking molecules to hinder the association of larger petroleum species. Density and viscosity measurements were conducted. A correlation method was used to predict the viscosity of the solvent-diluted heavy oil and bitumen samples. The study showed that of the tested additives, only aniline demonstrated an additional viscosity-reducing effect. The aniline inhibited asphaltene association and is a promising candidate for enhanced in-situ bitumen viscosity reduction. 23 refs., 4 tabs.

  5. Friction Theory Prediction of Crude Oil Viscosity at Reservoir Conditions Based on Dead Oil Properties

    Cisneros, Sergio; Zeberg-Mikkelsen, Claus Kjær; Stenby, Erling Halfdan


    The general one-parameter friction theory (f-theory) models have been further extended to the prediction of the viscosity of real "live" reservoir fluids based on viscosity measurements of the "dead" oil and the compositional information of the live fluid. This work representation of the viscosity...... of real fluids is obtained by a simple one-parameter tuning of a linear equation derived from a general one-parameter f-theory model. Further, this is achieved using simple cubic equations of state (EOS), such as the Peng-Robinson (PR) EOS or the Soave-Redlich-Kwong (SRK) EOS, which are commonly used...... within the oil industry. In sake of completeness, this work also presents a simple characterization procedure which is based on compositional information of an oil sample. This procedure provides a method for characterizing an oil into a number of compound groups along with the critical constants...

  6. Influence of dispersing additives and blend composition on stability of marine high-viscosity fuels

    Т. Н. Митусова


    Full Text Available The article offers a definition of the stability of marine high-viscosity fuel from the point of view of the colloid-chemical concept of oil dispersed systems. The necessity and importance of the inclusion in the current regulatory requirements of this quality parameter of high-viscosity marine fuel is indicated. The objects of the research are high-viscosity marine fuels, the basic components of which are heavy oil residues: fuel oil that is the atmospheric residue of oil refining and viscosity breaking residue that is the product of light thermal cracking of fuel oil. As a thinning agent or distillate component, a light gas oil was taken from the catalytic cracking unit. The stability of the obtained samples was determined through the xylene equivalent index, which characterizes the stability of marine high-viscosity fuel to lamination during storage, transportation and operation processes. To improve performance, the resulting base compositions of high-viscosity marine fuels were modified by introducing small concentrations (0.05 % by weight of stabilizing additives based on oxyethylated amines of domestic origin and alkyl naphthalenes of foreign origin.

  7. Neutron scattering studies of crude oil viscosity reduction with electric field

    Du, Enpeng

    data that contains information on the properties of a sample. We can analyze the data acquisition from the detectors and get the information on size, shape, etc. This is why we choose SANS as our research tool. The world's top energy problems are security concerns, climate concerns and environmental concerns. So far, oil (37%) is still the No.1 fuel in world energy consumption (Oil 37%, Coal 25%, Bio-fuels 0.2%, Gas 23%, Nuclear 6%, Biomass 4%, Hydro 3%, Solar heat 0.5%, Wind 0.3%, Geothermal 0.2% and Solar photovoltaic 0.04%). Even more and more alternative energy: bio-fuels, nuclear and solar energy will be used in the future, but nuclear energy has a major safety issue after the Japanese Fukushima I nuclear accidents, and other energies contribute only a small percent. Thus, it is very important to improve the efficiency and reduce the population of petroleum products. There is probably one thing that we can all agree on: the world's energy reserves are not unlimited. Even though it is limited, only 30% of the oil reserves is conventional oil, so in order to produce, transport, and refine of heavy crude oil without wasting huge amounts of energy, we need to reduce the viscosity without using high temperature stream heating or diluent; As more and more off-shore oil is exploited at that we need reduce the viscosity without increasing temperature. The whole petroleum consumed in U.S. in 2009 was 18.7 million barrels per day and 35% of all the energy we consumed. Diesel is one of the very important fossil fuel which is about 20% of petroleum consumed. Most of the world's oils are non-conventional, 15 % of heavy oil, 25 % of extra heavy oil, 30 % of the oil sands and bitumen, and the conventional oil reserves is only 30%. The oil sand is closely related to the heavy crude oil, the main difference being that oil sands generally do not flow at all. For efficient energy production and conservation, how to lower the liquated fuel and crude oil viscosity is a very important

  8. High Ra, high Pr convection with viscosity gradients

    First page Back Continue Last page Overview Graphics. High Ra, high Pr convection with viscosity gradients. Weak upward flow through mesh. Top fluid more viscous. Unstable layer Instability Convection.

  9. Density and viscosity behavior of a North Sea crude oil, natural gas liquid, and their mixtures

    Schmidt, KAG; Cisneros, Sergio; Kvamme, B


    to accurately model the saturation pressures, densities, and viscosities of petroleum systems ranging from natural gases to heavy crude oils. The applicability of this overall modeling technique to reproduce measured bubble points, densities, and viscosities of a North Sea crude oil, a natural gas liquid...

  10. The Effect of the Operating Conditions on the Apparent Viscosity of Crude Palm Oil During Oil Clarification

    Sulaiman Al-Zuhair, Mirghani I. Ahmed and Yousif A. Abakr


    Full Text Available This paper discusses the apparent viscosity of crude palm oil, using rotary viscometer, under different boundary conditions. It was experimentally shown that the apparent viscosity of palm oil drops with increasing of the shear rate and the temperature.  However, the effect of temperature on the viscosity tends to fade at temperatures beyond 80 oC.  A correlation between the apparent viscosity of crude palm oil and the operating conditions was developed. This correlation can be used in design of crude palm oil settlers and in determining the optimum operating conditions.Key Words:  Crude palm oil, apparent viscosity, shear rate, modelling, separation 

  11. Measurement of viscosity of slush at high shear rates

    小林, 俊一; 川村, 公之; 津川, 圭一; 和泉, 薫; Kobayashi, Shun'ichi; Kawamura, Kimiyuki; Tugawa, Keiichi; Izumi, Kaoru


    Measurements of viscosity of slush were carried out using a method of flow along an inclined smooth surface in a 0℃cold room. The method was used to get the values of viscosity under high shear rates (25 and 75s^). From our experiments two important results were obtained: 1) the viscosity of slush decreases with increasing shear rates; 2) The fluid behavior is pseudoplastic that the values of non-Newtonian index of viscosity were less than unity.

  12. Viscosity measurements on metal melts at high pressure and viscosity calculations for the earth's core

    Mineev, Vladimir N; Funtikov, Aleksandr I


    A review is given of experimental and calculated data on the viscosity of iron-based melts on the melting curve. The interest in these data originates in the division of opinion on whether viscosity increases rather moderately or considerably in the high-pressure range. This disagreement is especially pronounced in the interpretation of the values of molten iron and its compounds in the environment of the earth's outer core. The conclusion on a substantial rise in viscosity mostly follows from the universal law, proposed by Brazhkin and Lyapin [1], of viscosity changing along the metal melting curve in the high-pressure range. The review analyzes available experimental and computational data, including the most recent ones. Data on viscosity of metals under shock wave compression in the megabar pressure range are also discussed. It is shown that data on viscosity of metal melts point to a small increase of viscosity on the melting curve. Specifics are discussed of the phase diagram of iron made more complex by the presence of several phase transitions and by the uncertainty in the position of the melting curve in the high-pressure range. Inaccuracies that arise in extrapolating the results of viscosity measurements to the pressure range corresponding to the earth's core environment are pointed out. (reviews of topical problems)

  13. Fiscal 2000 project of inviting proposals for international joint research - invitation for international proposal (Power generation No.14). Achievement report on joint research for utilizing Russia's now-unused high-viscosity crude oil as fuel for power generation; 2000 nendo kokusai kyodo kenkyu teian kobo jigyo - kokusai teian kobo (hatsuden No.14). Russia miriyo konensei gen'yu no denryoku nenryo riyo kyodo kenkyu chosa seika hokokusho



    The Russkoye high-viscosity oil field is located in the western part of Siberia, Russia. Joint research is under way to develop a technology for reducing the viscosity for the collection of crude oil through the utilization of a gas condensate discharged by a neighboring gas field. This report comprises eight chapters, namely, (1) the background, purpose, and contents of the research, (2) Russia's oil resources and oil industry, (3) high-viscosity oil fields in Russia, (4) analysis of Russkoye crude oil and gas condensates yielded in Russia, (5) methods for viscosity reduction, (6) evaluation of combustibility, (7) scenario for developing the Russkoye oil field, and (8) research results as summarized and future tasks. Studied in chapter (5) are approaches to viscosity reduction, methods for emulsification, and a method for viscosity reduction by use of a gas condensate. These are tested and the results after analysis clearly show that the Russkoye crude oil, when blended with a gas condensate, will turn transportable and will provide a fuel equivalent to fuel oil C. (NEDO)

  14. Prediction of the viscosity of lubricating oil blends at any temperature

    Diaz, R.M.; Bernardo, M.I.; Fernandez, A.M.; Folgueras, M.B. [University of Oviedo, Oveido (Spain). Dept. of Energy


    This paper discusses a method of predicting the viscosity of multicomponent base lubricating oil mixtures based on Andrade`s equation. The kinematic viscosity of three types of base lubricating oils and their binary and ternary mixtures were measured at different temperatures and the parameters of Andrade`s equation were calculated. The results obtained indicate that the Andrade parameters vary linearly with the mixture composition. From these linear equations, generalized mixing equations are derived which confirm the experimental results. By application of the mixing equations, a simple method is obtained for prediction of the viscosity of oil blends at any temperature from viscosity-temperature data of the oil components. The calculated viscosities gave an average absolute deviation of 10% over the temperature range 20-100{degree}C. 8 refs., 3 figs., 4 tabs.

  15. The effect of refining step on the changes in viscosity values of vegetable oils

    Ergonul, P.G.


    In this work, the viscosity values of chemically refined vegetable oils (sunflower, corn, soybean and rapeseed) and physically refined vegetable oils (olive and palm) were determined during refining processes. At this point of view, fatty acid compositions and viscosity values of oil samples were determined. The edible vegetable oils presented Newtonian behavior in shear rates at ranges 6.28-20.93 s/sup -1/. It was observed that palm oil is more viscous than the others. During physical refining, the effect of both oil type and refining steps were significantly important, whereas in chemical refining only the effect of oil type was found statistically important (p<0.01). It was observed that correlation among fatty acid compositions and viscosity values of the samples showed differences according to oil type. (author)

  16. A technique for evaluating the oil/heavy-oil viscosity changes under ultrasound in a simulated porous medium.

    Hamidi, Hossein; Mohammadian, Erfan; Junin, Radzuan; Rafati, Roozbeh; Manan, Mohammad; Azdarpour, Amin; Junid, Mundzir


    Theoretically, Ultrasound method is an economical and environmentally friendly or "green" technology, which has been of interest for more than six decades for the purpose of enhancement of oil/heavy-oil production. However, in spite of many studies, questions about the effective mechanisms causing increase in oil recovery still existed. In addition, the majority of the mechanisms mentioned in the previous studies are theoretical or speculative. One of the changes that could be recognized in the fluid properties is viscosity reduction due to radiation of ultrasound waves. In this study, a technique was developed to investigate directly the effect of ultrasonic waves (different frequencies of 25, 40, 68 kHz and powers of 100, 250, 500 W) on viscosity changes of three types of oil (Paraffin oil, Synthetic oil, and Kerosene) and a Brine sample. The viscosity calculations in the smooth capillary tube were based on the mathematical models developed from the Poiseuille's equation. The experiments were carried out for uncontrolled and controlled temperature conditions. It was observed that the viscosity of all the liquids was decreased under ultrasound in all the experiments. This reduction was more significant for uncontrolled temperature condition cases. However, the reduction in viscosity under ultrasound was higher for lighter liquids compare to heavier ones. Pressure difference was diminished by decreasing in the fluid viscosity in all the cases which increases fluid flow ability, which in turn aids to higher oil recovery in enhanced oil recovery (EOR) operations. Higher ultrasound power showed higher liquid viscosity reduction in all the cases. Higher ultrasound frequency revealed higher and lower viscosity reduction for uncontrolled and controlled temperature condition experiments, respectively. In other words, the reduction in viscosity was inversely proportional to increasing the frequency in temperature controlled experiments. It was concluded that cavitation

  17. Viscosity of liquid sulfur under high pressure

    Terasaki, Hidenori; Kato, T; Funakoshi, K; Suzuki, A; Urakawa, S


    The viscosity of liquid sulfur up to 9.7 GPa and 1067 K was measured using the in situ x-ray radiography falling sphere method. The viscosity coefficients were found to range from 0.11 to 0.69 Pa s, and decreased continuously with increasing pressure under approximately constant homologous temperature conditions. The observed viscosity variation suggests that a gradual structural change occurs in liquid sulfur with pressure up to 10 GPa. The L-L' transition in liquid sulfur proposed by Brazhkin et al (1991 Phys. Lett. A 154 413) from thermobaric measurements has not been confirmed by the present viscometry

  18. The influence of grinding oil viscosity on grinding heat and burn damage in creep-feed grinding{copyright}

    Zhen-Change Liu [Shandong Univ. of Technology, Jinan (China); Abe, Satoshi; Noda, Masahiro [Yushiro Chemical Industry Co. Ltd., Kanagawa (Japan)


    Grinding oils are widely used in precision grinding, such as tool grinding, thread grinding and gear grinding, during which processes grinding burn is the most prevalent damage affecting the integrity of ground surface. This paper discusses the influence of oil viscosity on grinding heat and burn damage in creep-feed-grinding. Experimental results indicated that, under lighter grinding conditions, the effects of oil viscosity was not observed, but under heavy grinding conditions grinding burn occurred when using low viscosity oil. When the viscosity of the oil was increased, grinding heat and burn damage tended to be reduced. As the viscosity was increased to a certain level, grinding burn reduction, by further increasing the viscosity, became less while other problems such as much higher oil pump noise and reduced oil flow occurred. It is clear that a viscosity limit exists for given grinding conditions. 5 refs., 4 figs., 3 tabs.

  19. Preconditioning methods to improve SAGD performance in heavy oil and bitumen reservoirs with variable oil phase viscosity

    Gates, I.D. [Gushor Inc., Calgary, AB (Canada)]|[Calgary Univ., AB (Canada). Dept. of Chemical and Petroleum Engineering; Larter, S.R.; Adams, J.J.; Snowdon, L.; Jiang, C. [Gushor Inc., Calgary, AB (Canada)]|[Calgary Univ., Calgary, AB (Canada). Dept. of Geoscience


    This study investigated preconditioning techniques for altering reservoir fluid properties prior to steam assisted gravity drainage (SAGD) recovery processes. Viscosity-reducing agents were distributed in mobile reservoir water. Simulations were conducted to demonstrate the method's ability to modify oil viscosity prior to steam injection. The study simulated the action of water soluble organic solvents that preferentially partitioned in the oil phase. The solvent was injected with water into the reservoir in a slow waterflood that did not displace oil from the near wellbore region. A reservoir simulation model was used to investigate the technique. Shu's correlation was used to establish a viscosity correlation for the bitumen and solvent mixtures. Solvent injection was modelled by converting the oil phase viscosity through time. Over the first 2 years, oil rates of the preconditioned case were double that of the non-preconditioned case study. However, after 11 years, the preconditioned case's rates declined below rates observed in the non-preconditioned case. The model demonstrated that oil viscosity distributions were significantly altered using the preconditioners. The majority of the most viscous oil surrounding the production well was significantly reduced. It was concluded that accelerated steam chamber growth provided faster access to lower viscosity materials at the top of the reservoir. 12 refs., 9 figs.

  20. A neural network model and an update correlation for estimation of dead crude oil viscosity

    Naseri, A.; Gharesheikhlou, A.A. [Research Institute of Petroleum Industry (RIPI), Tehran (Iran, Islamic Republic of). PVT Dept.; Yousefi, S.H.; Sanaei, A. [Amirkabir University of Technology, Tehran (Iran, Islamic Republic of). Faculty of Petroleum Engineering], E-mail:


    Viscosity is one of the most important physical properties in reservoir simulation, formation evaluation, in designing surface facilities and in the calculation of original hydrocarbon in-place. Mostly, oil viscosity is measured in PVT laboratories only at reservoir temperature. Hence, it is of great importance to use an accurate correlation for prediction of oil viscosity at different operating conditions and various temperatures. Although, different correlations have been proposed for various regions, the applicability of the existing correlations for Iranian oil reservoirs is limited due to the nature of the Iranian crude oil. In this study, based on Iranian oil reservoir data, a new correlation for the estimation of dead oil viscosity was provided using non-linear multivariable regression and non-linear optimization methods simultaneously with the optimization of the other existing correlations. This new correlation uses API Gravity and temperature as an input parameter. In addition, a neural-network-based model for prediction of dead oil viscosity is presented. Detailed comparisons show that validity and accuracy of the new correlation and the neural-network model are in good agreement with large data set of Iranian oil reservoir when compared with other correlations. (author)

  1. Communication: Simple liquids' high-density viscosity

    Costigliola, Lorenzo; Pedersen, Ulf R.; Heyes, David M.; Schrøder, Thomas B.; Dyre, Jeppe C.


    This paper argues that the viscosity of simple fluids at densities above that of the triple point is a specific function of temperature relative to the freezing temperature at the density in question. The proposed viscosity expression, which is arrived at in part by reference to the isomorph theory of systems with hidden scale invariance, describes computer simulations of the Lennard-Jones system as well as argon and methane experimental data and simulation results for an effective-pair-potential model of liquid sodium.

  2. Communication: Simple liquids' high-density viscosity.

    Costigliola, Lorenzo; Pedersen, Ulf R; Heyes, David M; Schrøder, Thomas B; Dyre, Jeppe C


    This paper argues that the viscosity of simple fluids at densities above that of the triple point is a specific function of temperature relative to the freezing temperature at the density in question. The proposed viscosity expression, which is arrived at in part by reference to the isomorph theory of systems with hidden scale invariance, describes computer simulations of the Lennard-Jones system as well as argon and methane experimental data and simulation results for an effective-pair-potential model of liquid sodium.

  3. Structure and viscosity of a transformer oil-based ferrofluid under an external electric field

    Rajnak, M., E-mail: [Institute of Experimental Physics SAS, Watsonova 47, 04001 Košice (Slovakia); Faculty of Electrical Engineering and Informatics, Technical University of Košice, Letná 9, 04200 Košice (Slovakia); Timko, M.; Kopcansky, P.; Paulovicova, K. [Institute of Experimental Physics SAS, Watsonova 47, 04001 Košice (Slovakia); Tothova, J.; Kurimsky, J.; Dolnik, B.; Cimbala, R. [Faculty of Electrical Engineering and Informatics, Technical University of Košice, Letná 9, 04200 Košice (Slovakia); Avdeev, M.V. [Joint Institute for Nuclear Research, Joliot-Curie 6, Moscow region, 141980 Dubna (Russian Federation); Petrenko, V.I. [Joint Institute for Nuclear Research, Joliot-Curie 6, Moscow region, 141980 Dubna (Russian Federation); Taras Shevchenko Kyiv National University, Volodymyrska Street 64, 01601 Kyiv (Ukraine); Feoktystov, A. [Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstr. 1, 85748 Garching (Germany)


    Various structural changes of ferrofluids have been intensively studied under external magnetic fields. In this work we present an experimental evidence of similar changes induced by an electric field. In the context of the electric field effect on ferrofluids structure, we studied a simple ferrofluid consisting of iron oxide nanoparticles coated with oleic acid and dispersed in transformer oil. The structural changes have been observed both on macroscopic and microscopic scale. We also demonstrate a remarkable impact of the electric field on the ferrofluid viscosity in relation to the reported structural changes. It was found that the electric field induced viscosity changes are analogous to the magnetoviscous effect. These changes and the electroviscous effect are believed to stem from the dielectric permittivity contrast between the iron oxide nanoparticles and transformer oil, giving rise to the effective electric polarization of the nanoparticles. It is highlighted that this electrorheological effect should be considered in studies of ferrofluids for high voltage engineering applications, as it can have impact on the thermomagnetic convection or the dielectric breakdown performance. - Highlights: • An experimental evidence of the electric field induced structural changes in a ferrofluid is presented. • An electroviscous effect in the transformer oil-based ferrofluid is shown. • The dielectric contrast between the particles and the carrier fluid is the key factor. • The potential impact on the thermomagnetic convection of ferrofluids in power transformers is highlighted.

  4. Dynamic Viscosity and Compensation Effect in Hydrocarbon Media with a High Content of Resins and Paraffins

    Boitsova, A. A.; Kondrasheva, N. K.; Dolomatov, M. Yu.


    Linear dependences have been obtained for multicomponent hydrocarbon media (oils and high-boiling fractions), which relate the preexponent and the activation energy of viscous flow in the Arrhenius equation. A distinctive feature of the established kinetic compensation effect is it existing before and after the phase-transition temperature. The obtained results have been confirmed by statistical data and make it possible to predict the dynamic viscosity of multicomponent hydrocarbon systems, such as oil and high-boiling fractions.

  5. Vegetable oil and fat viscosity forecast models based on iodine number and saponification number

    Toscano, G.; Riva, G.; Foppa Pedretti, E.; Duca, D.


    Vegetable oil and fats can be considered as an important renewable source for the energy production. There are many applications where these biofuels are used directly in engines. However, the use of pure vegetable oils causes some problems as consequence of its chemical and physical characteristic. Viscosity is one of the most important parameters affecting several physical and mechanical processes of the operation of the engine. The determination of this parameter at different tis important to determine the behavior of the vegetable oil and fats. In this work we investigated the effects of two analytical chemical parameters (iodine number and saponification number) and forecasting models have been proposed. -- Highlights: ► Vegetable oil and fat viscosity is predicted by mathematical model based on saponification number and iodine number. ► Unsaturated vegetable oils with small size molecules of fatty acids have a lower viscosity values. ► The models proposed show an average error lower than 12%

  6. PVT characterization and viscosity modeling and prediction of crude oils

    Cisneros, Eduardo Salvador P.; Dalberg, Anders; Stenby, Erling Halfdan


    In previous works, the general, one-parameter friction theory (f-theory), models have been applied to the accurate viscosity modeling of reservoir fluids. As a base, the f-theory approach requires a compositional characterization procedure for the application of an equation of state (EOS), in most...... pressure, is also presented. The combination of the mass characterization scheme presented in this work and the f-theory, can also deliver accurate viscosity modeling results. Additionally, depending on how extensive the compositional characterization is, the approach,presented in this work may also...... deliver accurate viscosity predictions. The modeling approach presented in this work can deliver accurate viscosity and density modeling and prediction results over wide ranges of reservoir conditions, including the compositional changes induced by recovery processes such as gas injection....

  7. Viscosity of 'live' water-in-crude-oil emulsions. Experimental work and validation of correlations

    Johnsen, Einar Eng [Statoil Research and Technology, R and D Center, Production Systems, Arkitekt Ebbellsvei 10, Rotvoll, N-7005 Trondheim (Norway); Roenningsen, Hans Petter [Statoil, Multiphase and Flow Assurance Department, N-4035 Stavanger (Norway)


    A method for measuring emulsion viscosity under pressurized (1-100 bar) and temperature-controlled flow conditions is described. It makes use of a flow simulator shaped as a hollow wheel. As the wheel is rotating, the liquid inside will have a relative motion in the opposite direction of the rotation. The torque acting on the wheel shaft is measured and transformed, via a calibration model, into the viscosity of the fluid. The method has been applied to water-in-oil emulsions with several live North Sea crude oils with saturation pressures up to 100 bar and water cuts in the range 0-90%. The method is shown to be a useful way of obtaining estimates of emulsion viscosity for live oil systems in a relatively small scale apparatus. Even though the crude oils studied were rather different and had very different viscosities, the relative viscosities as a function of water cut up to at least 60% showed small variation and might be represented by a general 'master curve'. The relative viscosities obtained experimentally have been compared to a temperature-dependent Richardson-type correlation [Roenningsen, H.P., 1995. Correlations for predicting viscosity of W/O-emulsions based on North Sea crude oils. Proc. SPE Int. Symp. Oil Field Chem., Houston, TX, USA, SPE 28968], and three other correlations proposed by Mooney [J. Colloid Sci. 6 (1951) 162], Pal and Rhodes [J. Rheol. 337 (1989) 1021] (P and R) and Pal [J. Colloid Interface Sci. 231 (2000) 168], respectively. Overall, when being tuned to measured data, the P and R correlation gives the best match, closely followed by the Mooney correlation, but for low and medium water cuts, the Roenningsen correlation is comparable. This correlation does not require any measurements for tuning. Although it may be slightly conservative at low to medium water cuts, and somewhat optimistic at very high water cuts, for practical purposes in design of flow lines, it provides a reasonably accurate first estimate of the effective

  8. Technological alternatives for the handling of high viscosity heavy crude oil and of petroleum residuals; Alternativas tecnologicas para el manejo de crudos pesados de alta viscosidad y residuales de petroleo

    Sanchez S, Ramon; Peralta M, Maria Vita; Gonzalez Santalo, Jose M; Herrera V, J Ramon; Arriola M, Alejandro M; Manzanares P, Emilio; Romo M, Cesar A; Palacios L, Elvia M [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)


    This work presents the technological capacity that, through the years, has been developed in emulsions of heavy oil in water preparations, as well as the potential application that this technology has in the electrical sector and the problem reduction during the extraction and handling of high viscosity heavy oils. Within this technological development it first appears the process for the formation of emulsions of residual petroleum within lots, followed by the preparation of emulsions in a continuous way within a laboratory model, and finally the production in greater scale in a pilot plant, including more and more adequate tense-actives for the formation of emulsions. Also experimental systems are presented to execute static stability and dynamic tests in different conditions, pumping tests for the handling of these emulsions and burning tests for their combustion. All of this with the purpose of consolidating the technology of residual petroleum emulsions as a profitable alternative that replaces the heavy fuel oil and to solve specific problems of the oil industry, among other benefits. [Spanish] Este trabajo exhibe la capacidad tecnologica que, a traves de los anos, se ha desarrollado en la preparacion de emulsiones de aceites pesados en agua; asi como el potencial de aplicacion que tiene dicha tecnologia en el sector electrico y la reduccion de problemas durante la extraccion y manejo de aceites pesados de alta viscosidad. Dentro de este desarrollo tecnologico figura primero el proceso para la formacion de emulsiones de residuales de petroleo dentro de lotes, seguido por la preparacion de emulsiones en continuo dentro de un laboratorio modelo, y finalmente la produccion a mayor escala en una planta piloto, incluyendo cada vez mas adecuados tenso-activos para la formacion de las emulsiones. Tambien se presentan sistemas experimentales para ejecutar pruebas de estabilidad estatica y dinamica en diferentes condiciones, pruebas de bombeo para el manejo de estas

  9. Viscosity and attenuation of sound wave in high density deuterium

    Inoue, Kazuko; Ariyasu, Tomio


    The penetration of low frequency sound wave into the fuel deuterium is discussed as for laser fusion. The sound velocity and the attenuation constant due to viscosity are calculated for high density (n = 10 24 -- 10 27 cm -3 , T = 10 -1 -- 10 4 eV) deuterium. The shear viscosity of free electron gas and the bulk viscosity due to ion-ion interaction mainly contribute to the attenuation of sound wave. The sound wave of the frequency below 10 10 Hz can easily penetrate through the compressed fuel deuterium of diameter 1 -- 10 3 μm. (author)

  10. Artificial Neural Network Model to Estimate the Viscosity of Polymer Solutions for Enhanced Oil Recovery

    Pan-Sang Kang


    Full Text Available Polymer flooding is now considered a technically- and commercially-proven method for enhanced oil recovery (EOR. The viscosity of the injected polymer solution is the key property for successful polymer flooding. Given that the viscosity of a polymer solution has a non-linear relationship with various influential parameters (molecular weight, degree of hydrolysis, polymer concentration, cation concentration of polymer solution, shear rate, temperature and that measurement of viscosity based on these parameters is a time-consuming process, the range of solution samples and the measurement conditions need to be limited and precise. Viscosity estimation of the polymer solution is effective for these purposes. An artificial neural network (ANN was applied to the viscosity estimation of FlopaamTM 3330S, FlopaamTM 3630S and AN-125 solutions, three commonly-used EOR polymers. The viscosities measured and estimated by ANN and the Carreau model using Lee’s correlation, the only method for estimating the viscosity of an EOR polymer solution in unmeasured conditions, were compared. Estimation accuracy was evaluated by the average absolute relative deviation, which has been widely used for accuracy evaluation of the results of ANN models. In all conditions, the accuracy of the ANN model is higher than that of the Carreau model using Lee’s correlation.

  11. Experimental and Theoretical Determination of Heavy Oil Viscosity Under Reservoir Conditions; ANNUAL

    Gabitto, Jorge; Barrufet, Maria


    The main objective of this research was to propose a simple procedure to predict heavy oil viscosity at reservoir conditions as a function of easily determined physical properties. This procedure will avoid costly experimental testing and reduce uncertainty in designing thermal recovery processes

  12. Viscosity and density study for characterization of oil mixtures; Estudo da viscosidade e densidade para caracterizacao das misturas de petroleo

    Santos, Michelle I.; Azevedo, Vildomar S.; Jacinto, Tulio Wagner B. [Aurizonia Petroleo S.A, Natal, RN (Brazil); Vieira, Mariane; Vidal, Rosangela Regia Lima; Garcia, Rosangela Balaban [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)


    The oil can be defined as a mixture of hydrocarbons and sulphur, nitrogen and oxygenated organic derivatives at lower amount. There is a practical difficulty of analytical determination of the oil composition, mainly due to the large quantity of medium and heavy oil fractions. For heavier fractions, it is necessary to infer the composition of the cut from properties that can be readily obtained in the laboratory, such as refraction index, density and viscosity. The analysis of oil composition and its fractions is important information on various aspects (IOB et al., 1996): determining the operating conditions of refining, selection of suitable catalysts and mixing operations ('blending'), the economic evaluation of mixtures and analysis of environmental impact due to emissions. The first study on characterization of fractions of the oil was reported by Hill and Coats (1928), who set an empirical relationship between the density and Saybolt viscosity named viscosity-density constant (VGC). The statement was obtained from the analysis of the density with the oil viscosity changes. Physical properties such as density, boiling point and viscosity can be used to classify the oil. The aim of this work was to classify oil fractions based on viscosity-density constant, using mixtures of oils with different APIs. The results showed that there is an optimum composition for each mixture, and the addition of more oil of medium classification does not lead to potential commercial oil. (author)

  13. Comparing Two Methods of Neural Networks to Evaluate Dead Oil Viscosity

    Meysam Dabiri-Atashbeyk


    Full Text Available Reservoir characterization and asset management require comprehensive information about formation fluids. In fact, it is not possible to find accurate solutions to many petroleum engineering problems without having accurate pressure-volume-temperature (PVT data. Traditionally, fluid information has been obtained by capturing samples and then by measuring the PVT properties in a laboratory. In recent years, neural network has been applied to a large number of petroleum engineering problems. In this paper, a multi-layer perception neural network and radial basis function network (both optimized by a genetic algorithm were used to evaluate the dead oil viscosity of crude oil, and it was found out that the estimated dead oil viscosity by the multi-layer perception neural network was more accurate than the one obtained by radial basis function network.

  14. Viscosity of the oil-in-water Pickering emulsion stabilized by surfactant-polymer and nanoparticle-surfactant-polymer system

    Sharma, Tushar; Kumar, G. Suresh; Chon, Bo Hyun; Sangwai, Jitendra S.


    Information on the viscosity of Pickering emulsion is required for their successful application in upstream oil and gas industry to understand their stability at extreme environment. In this work, a novel formulation of oil-in-water (o/w) Pickering emulsion stabilized using nanoparticle-surfactant-polymer (polyacrylamide) system as formulated in our earlier work (Sharma et al., Journal of Industrial and Engineering Chemistry, 2014) is investigated for rheological stability at high pressure and high temperature (HPHT) conditions using a controlled-strain rheometer. The nanoparticle (SiO2 and clay) concentration is varied from 1.0 to 5.0 wt%. The results are compared with the rheological behavior of simple o/w emulsion stabilized by surfactant-polymer system. Both the emulsions exhibit non-Newtonian shear thinning behavior. A positive shift in this behavior is observed for surfactant-polymer stabilized emulsion at high pressure conditions. Yield stress is observed to increase with pressure for surfactant-polymer emulsion. In addition, increase in temperature has an adverse effect on the viscosity of emulsion stabilized by surfactant-polymer system. In case of nanoparticle-surfactant-polymer stabilized o/w emulsion system, the viscosity and yield stress are predominantly constant for varying pressure and temperature conditions. The viscosity data for both o/w emulsion systems are fitted by the Herschel-Bulkley model and found to be satisfactory. In general, the study indicates that the Pickering emulsion stabilized by nanoparticle-surfactant-polymer system shows improved and stable rheological properties as compared to conventional emulsion stabilized by surfactant-polymer system indicating their successful application for HPHT environment in upstream oil and gas industry.

  15. Determination of liquid viscosity at high pressure by DLS

    Fukui, K; Asakuma, Y; Maeda, K


    The movement of particles with a size smaller than few microns is governed by random Brownian motion. This motion causes the fluid to flow around the particles. The force acting upon Brownian particles as well as their velocities are measured by using the dynamic light scattering (DLS) technique. It provides the relationship between fluid shear stress and shear rate over the Brownian particle and determines the viscosity properties of the fluid. In this study, we propose a new rheometer which is widely applicable to fluid viscosity measurements at both normal and high pressure levels for Newtonian and non- Newtonian fluids.

  16. Shear and bulk viscosity of high-temperature gluon plasma

    Zhang, Le; Hou, De-Fu


    We calculate the shear viscosity (η) and bulk viscosity (ζ) to entropy density (s) ratios η/s and ζ/s of a gluon plasma system in kinetic theory, including both the elastic {gg}≤ftrightarrow {gg} forward scattering and the inelastic soft gluon bremsstrahlung {gg}≤ftrightarrow {ggg} processes. Due to the suppressed contribution to η and ζ in the {gg}≤ftrightarrow {gg} forward scattering and the effective g≤ftrightarrow {gg} gluon splitting, Arnold, Moore and Yaffe (AMY) and Arnold, Dogan and Moore (ADM) have got the leading order computations for η and ζ in high-temperature QCD matter. In this paper, we calculate the correction to η and ζ in the soft gluon bremsstrahlung {gg}≤ftrightarrow {ggg} process with an analytic method. We find that the contribution of the collision term from the {gg}≤ftrightarrow {ggg} soft gluon bremsstrahlung process is just a small perturbation to the {gg}≤ftrightarrow {gg} scattering process and that the correction is at ∼5% level. Then, we obtain the bulk viscosity of the gluon plasma for the number-changing process. Furthermore, our leading-order result for bulk viscosity is the formula \\zeta \\propto \\tfrac{{α }s2{T}3}{ln}{α }s-1} in high-temperature gluon plasma. Supported by Ministry of Science and Technology of China (MSTC) under the “973” Project (2015CB856904(4)) and National Natural Science Foundation of China (11735007, 11521064)

  17. Viscosity of komatiite liquid at high pressure and temperature

    O Dwyer, L.; Lesher, C. E.; Wang, Y.


    The viscosities of komatiite liquids at high pressures and temperatures are being investigated by the in-situ falling sphere technique, using the T-25 multianvil apparatus at the GSECARS 13 ID-D beamline at the Advanced Photon Source, ANL. The refractory and fluid nature of komatiite and other ultramafic liquids relevant to the Earth's deep interior, presents unique challenges for this approach. To reach superliquidus temperatures we use a double reservoir configuration, where marker spheres are placed at the top of both a main melt reservoir and an overlying reservoir containing a more refractory composition. Using this approach, we have successfully measured the viscosity of a komatiite from Gorgona Island (GOR-94-29; MgO - 17.8 wt.%; NBO/T = 1.6) up to 6 GPa and 1900 K. Under isothermal conditions, viscosity increases with pressure, consistent with the depolymerized nature of the komatiite. At 1900 K, viscosity increases from 1.5 (+- 0.3) Pa s at 3.5 GPa to 3.4 (+- 0.3) Pa s at 6 GPa, corresponding to an activation volume of 2.2 cm3/mol. At high pressures, the viscosities of Gorgona Island komatiite melt are an order of magnitude higher than those measured by Liebske et al. (2005, EPSL, v. 240) for peridotite melt (MgO 37.1 wt.%; NBO/T = 2.5), and similar in magnitude to molten diopside (NBO/T = 2) (Reid et al. 2003, PEPI, v. 139). The positive pressure dependence is consistent with the reduction in interatomic space diminishing the free volume of the liquid as it is compressed. Above 6 GPa the free volume reduction may become less important with the production of high-coordinated network formers, as attributed to the reversal of the pressure dependence of viscosity for peridotite melt at ~8.5 GPa and diopside melt at ~10 GPa. Experiments at higher pressures are underway to determine if a similar viscosity maximum occurs for komatiite melt and whether its pressure is greater than 10 GPa, as suggested by the data for peridotite and diopside melts.

  18. Investigating the influence of pressure and temperature on malaysian crude oil density and viscosity for improved recovery

    Zahoor, M.K.; Derahman, M.N.


    Malaysia has great potential as a crude oil or fossil fuel producing country. To increase oil production, behavior of Malaysian Crude Oil has been analyzed with reference to temperature and pressure variations. The effect of these parameters on crude oil density and viscosity has been observed, to select the methodology to be adopted for increases recovery by implementing enhanced oil recovery (EOR) project. Based on this study it has been decided to further explore the feasibility of increasing reservoir pressure. (author)

  19. Density and Viscosity Measurement of Diesel Fuels at Combined High Pressure and Elevated Temperature

    Carl Schaschke


    Full Text Available We report the measurement of the viscosity and density of various diesel fuels, obtained from British refineries, at elevated pressures up to 500 MPa and temperatures in the range 298 K to 373 K. The measurement and prediction procedures of fluid properties under high pressure conditions is of increasing interest in many processes and systems including enhanced oil recovery, automotive engine fuel injection, braking, and hydraulic systems. Accurate data and understanding of the fluid characteristic in terms of pressure, volume and temperature is required particularly where the fluid is composed of a complex mixture or blend of aliphatic or aromatic hydrocarbons. In this study, high pressure viscosity data was obtained using a thermostatically-controlled falling sinker-type high pressure viscometer to provide reproducible and reliable viscosity data based on terminal velocity sinker fall times. This was supported with density measurements using a micro-pVT device. Both high-pressure devices were additionally capable of illustrating the freezing points of the hydrocarbon mixtures. This work has, thus, provided data that can extend the application of mixtures of commercially available fuels and to test the validity of available predictive density and viscosity models. This included a Tait-style equation for fluid compressibility prediction. For complex diesel fuel compositions, which have many unidentified components, the approach illustrates the need to apply appropriate correlations, which require accurate knowledge or prediction of thermodynamic properties.

  20. Introduction of a theoretical splashing degree to assess the performance of low-viscosity oils in filling of capsules.

    Niederquell, Andreas; Kuentz, Martin


    These days an alternative to soft capsules is liquid-filled hard capsules. Their filling technology was investigated earlier with highly viscous formulations, while hardly any academic research focused on low-viscosity systems. Accordingly, this work addressed the filling of such oils that are splashing during the dosing process. It was aimed to first study capsule filling, using middle-chain triglycerides as reference oil, in order to then evaluate the concept of a new theoretical splashing degree for different oils. A laboratory-scale filling machine was used that included capsule sealing. Thus, the liquid encapsulation by microspray technology was employed to seal the dosage form. As a result of the study with reference oil, the filling volume and the temperature were found to be significant for the rate of leaking capsules. The filling volume was also important for weight variability of the capsules. However, most critical for this variability was the diameter of the filling nozzle. We proposed a power law for the coefficient of weight variability as a function of the nozzle diameter and the obtained exponent agreed with the proposed theory. Subsequently, a comparison of different oils revealed that the relative splashing degree shared a correlation with the coefficient of the capsule weight variability (Pearson product moment correlation of r=0.990). The novel theoretical concept was therefore found to be predictive for weight variability of the filled capsules. Finally, guidance was provided for the process development of liquid-filled capsules using low-viscosity oils. © 2011 American Association of Pharmaceutical Scientists

  1. Experiment in foam-drive process for exploiting high-viscosity crude in conglomeratic reservoirs

    Jinkui, L.; Shiyuan, Y.; Wukui, H.


    Due to high heterogeneity of pay zones and high viscosity of oil in place in the conglomeratic reservoirs of the Karamayi oil field, water fingering is serious and waterflooding inefficient. To remedy the situation, a foam-drive process was proposed to enhance oil recovery during period of medium water cut. Foaming agents have been selected, optimized and tested, and analog studies on tube/plane models and in the fields have been conducted for the last 16 years until finally a better agent Alkyl Benzene Sodium Sulfonate is tried out which proves to be efficient in reducing the water cut and raising the ultimate rate of recovery by 7-8% (from 26-28%). 10 figures, 7 tables.

  2. Chemical and Microbial Characterization of North Slope Viscous Oils to Assess Viscosity Reduction and Enhanced Recovery

    Shirish Patil; Abhijit Dandekar; Mary Beth Leigh


    A large proportion of Alaska North Slope (ANS) oil exists in the form of viscous deposits, which cannot be produced entirely using conventional methods. Microbially enhanced oil recovery (MEOR) is a promising approach for improving oil recovery for viscous deposits. MEOR can be achieved using either ex situ approaches such as flooding with microbial biosurfactants or injection of exogenous surfactant-producing microbes into the reservoir, or by in situ approaches such as biostimulation of indigenous surfactant-producing microbes in the oil. Experimental work was performed to analyze the potential application of MEOR to the ANS oil fields through both ex situ and in situ approaches. A microbial formulation containing a known biosurfactant-producing strain of Bacillus licheniformis was developed in order to simulate MEOR. Coreflooding experiments were performed to simulate MEOR and quantify the incremental oil recovery. Properties like viscosity, density, and chemical composition of oil were monitored to propose a mechanism for oil recovery. The microbial formulation significantly increased incremental oil recovery, and molecular biological analyses indicated that the strain survived during the shut-in period. The indigenous microflora of ANS heavy oils was investigated to characterize the microbial communities and test for surfactant producers that are potentially useful for biostimulation. Bacteria that reduce the surface tension of aqueous media were isolated from one of the five ANS oils (Milne Point) and from rock oiled by the Exxon Valdez oil spill (EVOS), and may prove valuable for ex situ MEOR strategies. The total bacterial community composition of the six different oils was evaluated using molecular genetic tools, which revealed that each oil tested possessed a unique fingerprint indicating a diverse bacterial community and varied assemblages. Collectively we have demonstrated that there is potential for in situ and ex situ MEOR of ANS oils. Future work

  3. Universality of the high-temperature viscosity limit of silicate liquids

    Zheng, Qiuju; Mauro, John C.; Ellison, Adam J.


    We investigate the high-temperature limit of liquid viscosity by analyzing measured viscosity curves for 946 silicate liquids and 31 other liquids including metallic, molecular, and ionic systems. Our results show no systematic dependence of the high-temperature viscosity limit on chemical...... composition for the studied liquids. Based on theMauro-Yue-Ellison-Gupta-Allan (MYEGA) model of liquid viscosity, the high-temperature viscosity limit of silicate liquids is 10−2.93 Pa·s. Having established this value, there are only two independent parameters governing the viscosity-temperature relation...

  4. Pegasus project. DLC coating and low viscosity oil reduce energy losses significantly

    Doerwald, Dave; Jacobs, Ruud [Hauzer Techno Coating (Netherlands). Tribological Coatings


    Pegasus, the flying horse from Greek mythology, is a suitable name for the research project initiated by a German automotive OEM with participation of Hauzer Techno Coating and several automotive suppliers. It will enable future automotive vehicles to reduce fuel consumption without losing power. The project described in this article focuses on the rear differential, because reducing friction here can contribute considerably to efficiency improvement of the whole vehicle. Surfaces, coating and oil viscosity have been investigated and interesting conclusions have been reached. (orig.)

  5. Monitoring the viscosity of diesel engine lubricating oil by using acoustic emission technique, the selection of measurement parameters

    Othman Inayatullah; Nordin Jamaludin; Fauziah Mat


    Acoustic emission technique has been developed through years of monitoring and diagnosis of bearing, but it is still new in the diagnosis and monitoring of lubrication oil to bearings drive. The propagation of acoustic emission signal is generated when the signal piston on the cylinder liner lubricating oil which is a par. The signal is analyzed in time domain to obtain the parameters of root mean squared, amplitude, energy and courtesy. Lubricant viscosity will undergo changes due to temperature, pressure and useful. This study focuses on the appropriate parameters for the diagnosis and monitoring of lubricating oil viscosity. Studies were conducted at a constant rotational speed and temperature, but use a different age. The results showed that the energy parameter is the best parameter used in this monitoring. However, this parameter cannot be used directly and it should be analyzed using mathematical formulas. This mathematical formula is a relationship between acoustic emission energy with the viscosity of lubricating oil. (author)

  6. High viscosity fluid simulation using particle-based method

    Chang, Yuanzhang


    We present a new particle-based method for high viscosity fluid simulation. In the method, a new elastic stress term, which is derived from a modified form of the Hooke\\'s law, is included in the traditional Navier-Stokes equation to simulate the movements of the high viscosity fluids. Benefiting from the Lagrangian nature of Smoothed Particle Hydrodynamics method, large flow deformation can be well handled easily and naturally. In addition, in order to eliminate the particle deficiency problem near the boundary, ghost particles are employed to enforce the solid boundary condition. Compared with Finite Element Methods with complicated and time-consuming remeshing operations, our method is much more straightforward to implement. Moreover, our method doesn\\'t need to store and compare to an initial rest state. The experimental results show that the proposed method is effective and efficient to handle the movements of highly viscous flows, and a large variety of different kinds of fluid behaviors can be well simulated by adjusting just one parameter. © 2011 IEEE.

  7. The micromechanics model analysis of the viscosity regulation of ultra-high strength concrete with low viscosity

    Zhu, M.; Wang, F. G.; Wang, F. Z.; Liu, Y. P.


    The plastic viscosity of mortar and concrete with different binder content, sand ratio, water-binder ratio, microbead dosage and different class and dosage of fly ash were tested and calculated according tomicromechanics model proposed by A. Ghanbari and B.L. Karihaloo, The correlations between these parameters and fresh concrete workability were also investigated, which showed i. high consistence with the objective reality. When binder content, microbead dosage, fly ash dosage or the water-binder ratio was increased or sand ratio was reduced, the fresh concrete viscosity would decrease correspondingly. However their effects were not that same. The relationships between T50 a, V-funnel and inverted slump time with fresh concrete viscosity were established, respectively.

  8. Effect of lipid viscosity and high-pressure homogenization on the physical stability of "Vitamin E" enriched emulsion.

    Alayoubi, Alaadin; Abu-Fayyad, Ahmed; Rawas-Qalaji, Mutasem M; Sylvester, Paul W; Nazzal, Sami


    Recently there has been a growing interest in vitamin E for its potential use in cancer therapy. The objective of this work was therefore to formulate a physically stable parenteral lipid emulsion to deliver higher doses of vitamin E than commonly used in commercial products. Specifically, the objectives were to study the effects of homogenization pressure, number of homogenizing cycles, viscosity of the oil phase, and oil content on the physical stability of emulsions fortified with high doses of vitamin E (up to 20% by weight). This was done by the use of a 27-run, 4-factor, 3-level Box-Behnken statistical design. Viscosity, homogenization pressure, and number of cycles were found to have a significant effect on particle size, which ranged from 213 to 633 nm, and on the percentage of vitamin E remaining emulsified after storage, which ranged from 17 to 100%. Increasing oil content from 10 to 20% had insignificant effect on the responses. Based on the results it was concluded that stable vitamin E rich emulsions could be prepared by repeated homogenization at higher pressures and by lowering the viscosity of the oil phase, which could be adjusted by blending the viscous vitamin E with medium-chain triglycerides (MCT).

  9. High Temperature, high pressure equation of state density correlations and viscosity correlations

    Tapriyal, D.; Enick, R.; McHugh, M.; Gamwo, I.; Morreale, B.


    Global increase in oil demand and depleting reserves has derived a need to find new oil resources. To find these untapped reservoirs, oil companies are exploring various remote and harsh locations such as deep waters in Gulf of Mexico, remote arctic regions, unexplored deep deserts, etc. Further, the depth of new oil/gas wells being drilled has increased considerably to tap these new resources. With the increase in the well depth, the bottomhole temperature and pressure are also increasing to extreme values (i.e. up to 500 F and 35,000 psi). The density and viscosity of natural gas and crude oil at reservoir conditions are critical fundamental properties required for accurate assessment of the amount of recoverable petroleum within a reservoir and the modeling of the flow of these fluids within the porous media. These properties are also used to design appropriate drilling and production equipment such as blow out preventers, risers, etc. With the present state of art, there is no accurate database for these fluid properties at extreme conditions. As we have begun to expand this experimental database it has become apparent that there are neither equations of state for density or transport models for viscosity that can be used to predict these fundamental properties of multi-component hydrocarbon mixtures over a wide range of temperature and pressure. Presently, oil companies are using correlations based on lower temperature and pressure databases that exhibit an unsatisfactory predictive capability at extreme conditions (e.g. as great as {+-} 50%). From the perspective of these oil companies that are committed to safely producing these resources, accurately predicting flow rates, and assuring the integrity of the flow, the absence of an extensive experimental database at extreme conditions and models capable of predicting these properties over an extremely wide range of temperature and pressure (including extreme conditions) makes their task even more daunting.

  10. Experimental viscosity measurements of biodiesels at high pressure

    Schaschke C.J.


    Full Text Available The viscosity of biodiesels of soybean and rapeseed biodiesels blended with mineral diesel fuel were measured at pressures of up to 200 MPa. Using a falling sinker-type viscometer reproducible viscosity data were obtained based on the time taken for a sinker to descend a fixed distance down an enclosed tube under the influence of gravity. Measurements were taken using pressures which correspond to those of interest in automotive common rail diesel engines, and at temperatures of between 25ºC and 80ºC. In all cases, the viscosity of the biodiesel blends were found to increase exponentially for which the blends were noted as being more viscous than pure mineral fuels. A pressure-freezing effect was not observed for the blends.

  11. Production of synthetic hydrocarbon lube oil from highly waxy feedstocks

    Xue, Q; Ding, Z; Zheng, Sh; Wu, W


    A feasible way to utilize the low value soft wax is to convert it into synthetic hydrocarbon lube oil by thermal cracking/polymerization route. The first commercial plant for this purpose has been in normal operation since 1970. It has been proved to be economically sound. The antioxidant response of the product polymer oil can be distinctly improved by hydro-refining. It has been found that the vacuum gas oil from highly waxy crude with or without furfural refining can be used as cracking stock. If high viscosity index polymer oil is desired, it is better to use slack wax as the cracking stock.

  12. Taylor bubbles at high viscosity ratios: experiments and numerical simulations

    Hewakandamby, Buddhika; Hasan, Abbas; Azzopardi, Barry; Xie, Zhihua; Pain, Chris; Matar, Omar


    The Taylor bubble is a single long bubble which nearly fills the entire cross section of a liquid-filled circular tube, often occurring in gas-liquid slug flows in many industrial applications, particularly oil and gas production. The objective of this study is to investigate the fluid dynamics of three-dimensional Taylor bubble rising in highly viscous silicone oil in a vertical pipe. An adaptive unstructured mesh modelling framework is adopted here which can modify and adapt anisotropic unstructured meshes to better represent the underlying physics of bubble rising and reduce computational effort without sacrificing accuracy. The numerical framework consists of a mixed control volume and finite element formulation, a `volume of fluid'-type method for the interface-capturing based on a compressive control volume advection method, and a force-balanced algorithm for the surface tension implementation. Experimental results for the Taylor bubble shape and rise velocity are presented, together with numerical results for the dynamics of the bubbles. A comparison of the simulation predictions with experimental data available in the literature is also presented to demonstrate the capabilities of our numerical method. EPSRC Programme Grant, MEMPHIS, EP/K0039761/1.

  13. glutamic acid from high-viscosity fermentation broth

    Measurement of IR spectrum was performed using an IR spectrophotometer with ... Results: The results showed that the γ-PGA yield was 35 g/L. The viscosity of ... of Pharmaceutical Research is indexed by Science Citation Index (SciSearch), ...

  14. Application of alkaline waterflooding to a high acidity crude oil

    Sayyouh, M.H. (King Sand Univ., Riyadh (SA). Petroleum Engineering Dept.); Abdel-Waly, A.; Osman, A. (Cairo Univ. (EG). Petroleum Engineering Dept.); Awara, A.Z. (Geisum Oil Company, Cairo (EG))

    The enhanced recovery of a high acidity crude oil (South Geisum crude) by alkaline solutions is studied. Acidity, interfacial tension, and contact angle, were investigated. Displacement tests were carried out to study the effect of alkaline slug concentration, slug size, oil alkali type, temperature and viscosity on recovery. The interfacial tension between crude oil and formation water decreases with increasing alkaline concentration until a minimum, after which it increases again. Contact angle measurements indicated oil-wetting conditions that increase by the addition of alkaline solutions. At the early stages of displacement, oil recovery increases with increasing alkaline concentration until a maximum at 4% by weight NaOH concentration. Also, at such early stages, an excessive increase in alkaline concentration results in lower oil recovery. On the other hand, after the injection of many pore volumes of water, oil recovery is almost the same regardless of the alkaline concentration. Oil recovery increases with increasing alkaline slug size until a maximum at 15% PV. Sodium hydroxide slugs produce more oil recovery than sodium carbonate slugs. Oil recovery increases with increasing temperature (from 25 to 55{sup 0}C) and decreasing oil viscosity.

  15. A comparative study of high-viscosity cement percutaneous vertebroplasty vs. low-viscosity cement percutaneous kyphoplasty for treatment of osteoporotic vertebral compression fractures.

    Sun, Kai; Liu, Yang; Peng, Hao; Tan, Jun-Feng; Zhang, Mi; Zheng, Xian-Nian; Chen, Fang-Zhou; Li, Ming-Hui


    The clinical effects of two different methods-high-viscosity cement percutaneous vertebroplasty (PVP) and low-viscosity cement percutaneous kyphoplasty (PKP) in the treatment of osteoporotic vertebral compression fractures (OVCFs) were investigated. From June 2010 to August 2013, 98 cases of OVCFs were included in our study. Forty-six patients underwent high-viscosity PVP and 52 patients underwent low-viscosity PKP. The occurrence of cement leakage was observed. Pain relief and functional activity were evaluated using the Visual Analog Scale (VAS) and Oswestry Disability Index (ODI), respectively. Restoration of the vertebral body height and angle of kyphosis were assessed by comparing preoperative and postoperative measurements of the anterior heights, middle heights and the kyphotic angle of the fractured vertebra. Nine out of the 54 vertebra bodies and 11 out of the 60 vertebra bodies were observed to have cement leakage in the high-viscosity PVP and low-viscosity PKP groups, respectively. The rate of cement leakage, correction of anterior vertebral height and kyphotic angles showed no significant differences between the two groups (P>0.05). Low-viscosity PKP had significant advantage in terms of the restoration of middle vertebral height as compared with the high-viscosity PVP (Pviscosity PVP and low-viscosity PKP have similar clinical effects in terms of the rate of cement leakage, restoration of the anterior vertebral body height, changes of kyphotic angles, functional activity, and pain relief. Low-viscosity PKP is better than high-viscosity PVP in restoring the height of the middle vertebra.

  16. Laser Velocimeter Measurements in the Pump of an Automotive Torque Converter Part II – Effect of Pump Speed and Oil Viscosity

    Ronald D. Flack


    Full Text Available The velocity field inside a torque converter pump was studied for two separate effects: variable pump rotational speed and variable oil viscosity. Three-dimensional velocity measurements were taken using a laser velocimeter for both the pump mid- and exit planes. The effect ofvariable pump rotational speed was studied by running the pump at two different speeds and holding speed ratio (pump rotational speed]turbine rotational speed constant. Similarly, the effect of viscosity on the pump flow field was studied by varying the temperature and]or using two different viscosity oils as the working fluid in the pump. Threedimensional velocity vector plots, through-flow contour plots, and secondary flow profiles were obtained for both pump planes and all test conditions. Results showed that torque converter mass flows increased approximately linearly with increasing pump rotational speed (and fixed speed ratio but that the flow was not directly proportional to pump rotational speed. However, mass flows were seen to decrease as the oil viscosity was decreased with a resulting increased Reynolds number; for these conditions the high velocity regions were seen to decrease in size and low velocity regions were seen to increase in size. In the pump mid-plane strong counter-clockwise secondary flows and in the exit plane strong clockwise secondary flows were observed. The vorticities and slip factors were calculated from the experimental results and are presented. The torque core-to-shell and blade-to-blade torque distributions were calculated for both planes. Finally, the flow fields were seen to demonstrate similitude when Reynolds numbers were matched.

  17. High Resolution Viscosity Measurement by Thermal Noise Detection

    Felipe Aguilar Sandoval


    Full Text Available An interferometric method is implemented in order to accurately assess the thermal fluctuations of a micro-cantilever sensor in liquid environments. The power spectrum density (PSD of thermal fluctuations together with Sader’s model of the cantilever allow for the indirect measurement of the liquid viscosity with good accuracy. The good quality of the deflection signal and the characteristic low noise of the instrument allow for the detection and corrections of drawbacks due to both the cantilever shape irregularities and the uncertainties on the position of the laser spot at the fluctuating end of the cantilever. Variation of viscosity below 0.03 mPa·s was detected with the alternative to achieve measurements with a volume as low as 50 µL.

  18. Estimated Viscosities and Thermal Conductivities of Gases at High Temperatures

    Svehla, Roger A.


    Viscosities and thermal conductivities, suitable for heat-transfer calculations, were estimated for about 200 gases in the ground state from 100 to 5000 K and 1-atmosphere pressure. Free radicals were included, but excited states and ions were not. Calculations for the transport coefficients were based upon the Lennard-Jones (12-6) potential for all gases. This potential was selected because: (1) It is one of the most realistic models available and (2) intermolecular force constants can be estimated from physical properties or by other techniques when experimental data are not available; such methods for estimating force constants are not as readily available for other potentials. When experimental viscosity data were available, they were used to obtain the force constants; otherwise the constants were estimated. These constants were then used to calculate both the viscosities and thermal conductivities tabulated in this report. For thermal conductivities of polyatomic gases an Eucken-type correction was made to correct for exchange between internal and translational energies. Though this correction may be rather poor at low temperatures, it becomes more satisfactory with increasing temperature. It was not possible to obtain force constants from experimental thermal conductivity data except for the inert atoms, because most conductivity data are available at low temperatures only (200 to 400 K), the temperature range where the Eucken correction is probably most in error. However, if the same set of force constants is used for both viscosity and thermal conductivity, there is a large degree of cancellation of error when these properties are used in heat-transfer equations such as the Dittus-Boelter equation. It is therefore concluded that the properties tabulated in this report are suitable for heat-transfer calculations of gaseous systems.

  19. Evaluation of the crude oil viscosity variation in function of the demulsifiers addition; Avaliacao da variacao da viscosidade de oleo cru em funcao da adicao de desemulsificante

    Lopes, Jansen M.; Lucas, Elisabete F. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Macromoleculas]. E-mail:; Neves, Guilherme B.M. [COMAB Especialidades Quimicas Ltda., Rio de Janeiro, RJ (Brazil)]. E-mail:


    One way of improving well production is the addition of demulsifier already in the gas lift. This is due to the apparent viscosity of water-in-oil emulsions being higher than apparent viscosity of crude oil, which in turn is higher than the apparent viscosity of an water-in-oil dual phase admixture and is also higher than the apparent viscosity of an oil-in-water emulsion. However, there are some situations where, in order to obtain separate flows of oil and water phases, demulsifier should be added in specific amounts in order to promote the desired phase separation. In heavy oils water and oil phase separation may be hard to obtain, however, the right demulsifier amount may imply in a considerable decrease in petroleum viscosity even without the appearance of two phases, making the flow easier. This work has evaluated the viscosity of a heavy crude having API degree 14 and BSW 52%, as a function of the addition of different amounts of DEMTROL BR 67, manufactured by Dow Quimica/Comab, Brazil, as demulsifier. (author)

  20. Experimental density and viscosity measurements of di(2ethylhexyl)sebacate at high pressure

    Paredes, Xavier; Fandino, Olivia; Pensado, Alfonso S.; Comunas, Maria J.P.; Fernandez, Josefa


    Highlights: → We measure viscosities for di(2-ethylhexyl)sebacate from (298.15 to 398.15) K and up to 60 MPa. → We measure densities for DEHS from (298.15 to 373.15) K and from (0.1 to 60) MPa. → The reported and lit. data were used in a viscosity correlation from (273 to 491) K and up to 1.1 GPa. → This correlation could be used in industrial equipment that operate at high pressures. - Abstract: Experimental densities and dynamic viscosities of di(2-ethylhexyl)sebacate (DEHS) are the object of study in this work. DEHS could be a useful industrial reference fluid for moderately high viscosity at high pressures as it is often used as a pressure transmitting fluid. At atmospheric pressure the density and viscosity measurements have been performed in a rotational SVM 3000 Stabinger viscometer from (273.15 to 373.15) K, whereas from (0.1 to 60) MPa and from (298.15 to 398.15) K an automated Anton Paar DMA HPM vibrating-tube densimeter, and a high-pressure rolling-ball viscometer were used. Several Vogel-Fulcher-Tammann type equations were used to fit the experimental values of viscosity to the pressure and temperature. The measured viscosity data have been used together with previous data found in the literature to establish a correlation of the viscosity surface η(T, p) of DEHS, covering a temperature range from (273 to 491) K and pressure up to 1.1 GPa. This correlation could be used in industrial equipment like viscometers and other devices that operate at high pressures. Our viscosity data have also been fitted as a function of temperature and volume to the thermodynamic scaling model of Roland et al. [C.M. Roland, S. Bair, R. Casalini, J. Chem. Phys. 125 (2006) 124508].

  1. Determination of Viscosity Versus Pressure by Means of a Clearance Seal

    Christiansen, Peter; Schmidt Hansen, Niels; Lund, Martin Thomas Overdahl


    This paper describes the construction and testing of a simple, experimental tool setup that enables determination of the pressure–viscosity relationship for high viscosity oils. Comparing the determined pressure–viscosity relationship with a reference rheometer measuring the viscosity at ambient ...

  2. The Friction Theory for Viscosity Modeling

    Cisneros, Sergio; Zeberg-Mikkelsen, Claus Kjær; Stenby, Erling Halfdan


    , in the case when experimental information is available a more accurate modeling can be obtained by means of a simple tuning procedure. A tuned f-theory general model can deliver highly accurate viscosity modeling above the saturation pressure and good prediction of the liquid-phase viscosity at pressures......In this work the one-parameter friction theory (f-theory) general models have been extended to the viscosity prediction and modeling of characterized oils. It is demonstrated that these simple models, which take advantage of the repulsive and attractive pressure terms of cubic equations of state...... such as the SRK, PR and PRSV, can provide accurate viscosity prediction and modeling of characterized oils. In the case of light reservoir oils, whose properties are close to those of normal alkanes, the one-parameter f-theory general models can predict the viscosity of these fluids with good accuracy. Yet...

  3. A facile way to prepare CuS-oil nanofluids with enhanced thermal conductivity and appropriate viscosity

    Qin, Ji-Hua; Liu, Zhao-Qing; Li, Nan, E-mail:; Chen, Yi-Bo; Wang, Dong-Yao [Guangzhou University, School of Chemistry and Chemical Engineering/Guangzhou Key Laboratory for Environmentally Functional Materials and Technology (China)


    The nanofluid as a pivotal role in heat transfer system has attracted more and more attention. Herein, the stearic acid-modified CuS (SA-CuS) nanoparticles with a uniform diameter of 60 nm were synthesized successfully by a facile two-phase approach. Accordingly, the CuS-oil nanofluids, with SA-CuS concentrations ranging from 0.01 to 0.04 vol%, were prepared by a one-step method in the heat transfer oil. These CuS-oil nanofluids exhibit good stability and considerable enhanced thermal conductivity. The improvement is even up to 20.5% with a volume fraction of 0.04 vol% at 30 °C. Furthermore, the effect of volume fraction and temperature on the viscosity of the nanofluids was also systematically investigated.

  4. Polyalhpaolefins and VHVI base oils - base oils for high performance lubricants; Polyalfaolefine und VHVI-Grundoele - Grundoele fuer hochwertige Schmierstoffe

    Lehmus, M.; Nissfolk, F.; Kulmala, K. [Fortum Oil and Gas Oyj / Base Oils, Fortum (Finland)


    Next to polyalphaolefines (PAOs base oils of the API/ATIEL Group IV), VHVI base oils (belonging to API/ATIEL Group III) are being increasingly used in high-performance automotive and industrial lubricants. A comparative study of the properties of VHVI base oils and polyalphaolefins shows that high-quality VHVI base oils have comparable volatility, oxidation stability and viscosity indices to polyalphaolefins, whereas the most pronounced differences are viscometric properties in the low-temperature range. However, there are noticeable differences between different market-typical VHVI base oils, depending primarily on the manufacturing process. The differences in the physicochemical properties of PAOs and various VHVI base oils are attributable to differences in the typical molecular composition. This is illustrated by a compositional analysis of several VHVI base oils, in which the (iso)paraffin content and the content of different naphthenic and aromatic compounds is analyzed. The base oil influence on specific properties of formulated lubricants is discussed on the basis of several examples, and studies conducted with passenger car engine oils (PCMOs), heavy-duty engine oils (HDEOs) and gear oils are described in detail. As a result of extremely low CCS viscosities, PAOs are optimally suited for use in 0W-X PCMOs whereas 5W-X PCMOs meeting highest performance requirements can also be formulated with high-quality VHVI base oils. Emission measurements with HDEOs formulated with either SN mineral base oil or VHVI base oil demonstrated that the base oil type affects tailpipe particle emissions in the particle size range <5 {mu}m as replacement of SN mineral base oil with VHVI base oil resulted in lower particle emissions. Test stand measurements with gear oils formulated with either VHVI base oils or PAOs yielded comparable results in terms of power transfer ratio and oil temperature increase. (orig.)

  5. Modified Thermoresponsive Hyperbranched Polymers for Improved Viscosity and Enhanced Lubricity of Engine Oils

    Cosimbescu, Lelia [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Robinson, Joshua W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bays, John Timothy [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Qu, Jun [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); West, Brian [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)


    The manuscript captures the chronological succession of the molecular design progression through multiple architectures and topologies of the polymeric viscosity index improvers and their rheology bench test performance. Tribology testing was also performed on selected analogs and their friction and wear was evaluated. Finally, a top performing polymer was selected for engine testing, scaled-up, and its rheological performance in a complete formulation was assessed. The engine performance of the viscosity index improver was examined against an industry-established baseline.

  6. A viscosity measurement during the high pressure phase transition in triolein

    Siegoczynski, R M; Rostocki, A J; Kielczynski, P; Szalewski, M


    The high-pressure properties of triolein, a subject of extensive research at the Faculty of Physics of Warsaw University of Technology (WUT) have been enhanced by the results of viscosity measurement within the pressure range up to 0.8 GPa. For the measurement the authors have adopted a new ultrasonic method based on Bleustein-Gulyaev waves, successfully developed earlier for the low pressures in the Section of Acoustoelectronics of the Institute of Fundamental Technological Research. The measurements have shown: 1. Exponential rise of viscosity with pressure up to 0.5 GPa. 2. Extraordinary increment of viscosity at constant pressure during phase transition. 3. Further exponential rise of viscosity with pressure of the high-pressure phase of triolein. 4. The pressure exponents of the viscosity of both phases were different (the high-pressure phase had much smaller exponent). 5. The decomposition of the high pressure phase due to the slow decompression have shown very large hysteresis of viscosity on pressure dependence

  7. Effect of asphaltene and resin oils on the viscosity of bituminous petroleum materials to be used as asphalt primers

    Bencomo, M. R.


    Full Text Available The bituminous crude from the Machete, Venezuela, area, which has such a fluid consistency that it falls outside the normal scope of the A5TM D-5 (1 penetration test exceeding the 3D-mm ceiling specified in that standard and can be used as an asphalt primer: Like other asphalt products, these materials are -chemically speaking- a mix of numerous naphthenic, paraffinic and aromatic hydrocarbons and heterocyclic compounds containing sulphur, nitrogen, oxygen and so on. They have a dense and a malthene oil phase which, along with the natural hydrocarbons additives used in these products acts as a volatile fluidizer. The former is described as a mix of asphaltenes: complex high molecular weight substances that are insoluble in paraffinic hydrocarbons and soluble in aromatic compounds such as benzene. The malthene oil phase, in turn, consists in a mix of resins and hydrocarbons and together the two constitute a colloidal system. The experiments discussed in the present paper were conducted to determine the effect of the proportion of asphaltenes and resin oils on the viscosity of such bituminous crude emulsions/ with a view to their use as primers. These experiments were run in a Parr batch reactor in a nitrogen atmosphere using n-heptane as a solvent. The resins were separated after the asphaltenes precipitated from the samples and subsequently from the malthene fraction obtained. The results showed that the asphaltenes account for the structural characteristics and consistency of the medium and the resin oils for its cohesive properties/,the malthene oils act as solvents.Los crudos extrapesados procedentes del área Machete (Venezuela son materiales de consistencia blanda o fluida, por lo que se salen del campo en el que normalmente se aplica el ensayo de penetración a productos asfálticos según el método ASTM D-5 (1, cuyo límite máximo es 30 mm, y pueden ser utilizados como pinturas asfálticas de imprimación. Al igual que otros productos

  8. Achievement report for fiscal 1999. Joint verification research on use for power generation of Omani superhigh-viscosity crude oil remaining unexploited; 1999 nendo Oman koku ni okeru miriyo chokonensei gen'yu no denryoku riyo ni kansuru kyodo jissho kenkyu seika hokokusho



    A Mukhaizna oil field remains to be exploited in Oman, with an estimated reserve of 2.4-billion barrels of very heavy oil with an API (American Petroleum Institute) specific gravity of 15.3. The viscosity of the oil is so high as to be over 100-thousand cP (at 15 degrees C). The extremely high viscosity causes its exploitable rate to be so low as 3%, and makes shipment by pipeline quite difficult. In this survey, a method using water emulsion is proposed for viscosity reduction, which aims to reduce the Mukhaizna crude oil viscosity to 200mm2/s or less. In an experiment using the water emulsion method, oil is mixed with water at a rate of 72 to 28 in a shearing mixer for the production of a water emulsion of crude oil. It is found that a certain degree of stability is acquired using a surface active agent available on the market. Using this emulsion method, the crude oil is converted into a power generator fuel with a heating value of 6,775kcal/kg. The crude oil-turned product is a fine fuel superior to Orimulsion which is a fuel of the same type in terms of viscosity, amount of ash, and vanadium concentration. (NEDO)

  9. Achievement report for fiscal 1999. Joint verification research on use for power generation of Omani superhigh-viscosity crude oil remaining unexploited; 1999 nendo Oman koku ni okeru miriyo chokonensei gen'yu no denryoku riyo ni kansuru kyodo jissho kenkyu seika hokokusho



    A Mukhaizna oil field remains to be exploited in Oman, with an estimated reserve of 2.4-billion barrels of very heavy oil with an API (American Petroleum Institute) specific gravity of 15.3. The viscosity of the oil is so high as to be over 100-thousand cP (at 15 degrees C). The extremely high viscosity causes its exploitable rate to be so low as 3%, and makes shipment by pipeline quite difficult. In this survey, a method using water emulsion is proposed for viscosity reduction, which aims to reduce the Mukhaizna crude oil viscosity to 200mm2/s or less. In an experiment using the water emulsion method, oil is mixed with water at a rate of 72 to 28 in a shearing mixer for the production of a water emulsion of crude oil. It is found that a certain degree of stability is acquired using a surface active agent available on the market. Using this emulsion method, the crude oil is converted into a power generator fuel with a heating value of 6,775kcal/kg. The crude oil-turned product is a fine fuel superior to Orimulsion which is a fuel of the same type in terms of viscosity, amount of ash, and vanadium concentration. (NEDO)

  10. Comparison of quartz tuning forks and AlN-based extensional microresonators for viscosity measurements in oil/fuel mixtures

    Toledo, J.; Manzaneque, T.; Hernando-García, J.; Vazquez, J.; Ababneh, A.; Seidel, H.; Lapuerta, M.; Sánchez-Rojas, J. L.


    In-situ monitoring of the physical properties of liquids is of great interest in the automotive industry. For example, lubricants are subject to dilution with diesel fuel as a consequence of late-injection processes, which are necessary for regenerating diesel particulate filters. This dilution can be determined by tracking the viscosity and the density of the lubricant. Here we report the test of two in-plane movement based resonators to explore their capability to monitor oil dilution with diesel and biodiesel. One of the resonators is the commercially available millimeter-sized quartz tuning fork, working at 32.7 kHz. The second resonator is a state-of-the-art micron-sized AlN-based rectangular plate, actuated in the first extensional mode in the MHz range. Electrical impedance measurements were carried out to characterize the performance of the structures in various liquid media in a wide range of viscosities. These measurements were completed with the development of low-cost electronic circuits to track the resonance frequency and the quality factor automatically, these two parameters allow to obtain the viscosity of various fluids under investigation, as in the case of dilution of lubricant SAE 15W40 and biodiesel.

  11. A distinct DGAT with sn-3 acetyltransferase activity that synthesizes unusual, reduced-viscosity oils in Euonymus and transgenic seeds.

    Durrett, Timothy P; McClosky, Daniel D; Tumaney, Ajay W; Elzinga, Dezi A; Ohlrogge, John; Pollard, Mike


    Endosperm and embryo tissues from the seeds of Euonymus alatus (Burning Bush) accumulate high levels of 3-acetyl-1,2-diacyl-sn-glycerols (acTAGs) as their major storage lipids. In contrast, the aril tissue surrounding the seed produces long-chain triacylglycerols (lcTAGs) typical of most other organisms. The presence of the sn-3 acetyl group imparts acTAGs with different physical and chemical properties, such as a 30% reduction in viscosity, compared to lcTAGs. Comparative transcriptome analysis of developing endosperm and aril tissues using pyrosequencing technology was performed to isolate the enzyme necessary for the synthesis of acTAGs. An uncharacterized membrane-bound O-acyltransferase (MBOAT) family member was the most abundant acyltransferase in the endosperm but was absent from the aril. Expression of this MBOAT in yeast resulted in the accumulation of acTAGs but not lcTAG; hence, the enzyme was named EaDAcT (Euonymus alatus diacylglycerol acetyltransferase). Yeast microsomes expressing EaDAcT possessed acetyl-CoA diacylglycerol acetyltransferase activity but lacked long-chain acyl-CoA diacylglycerol acyltransferase activity. Expression of EaDAcT under the control of a strong, seed-specific promoter in Arabidopsis resulted in the accumulation of acTAGs, up to 40 mol % of total TAG in the seed oil. These results demonstrate the utility of deep transcriptional profiling with multiple tissues as a gene discovery strategy for low-abundance proteins. They also show that EaDAcT is the acetyltransferase necessary and sufficient for the production of acTAGs in Euonymus seeds, and that this activity can be introduced into the seeds of other plants, allowing the evaluation of these unusual TAGs for biofuel and other applications.

  12. The determination of the pressure-viscosity coefficient of two traction oils using film thickness measurements

    Leeuwen, van H.J.


    The pressure-viscosity coefficients of two commercial traction fluids are determined by fitting calculation results on accurate film thickness measurements, obtained at a wide range of speeds, and different temperatures. Film thickness values are calculated using a numerical method and approximation

  13. Continuous mixer, process and use in a pumping plant for a high viscosity fluid

    Cholet, H.


    The invention concerns a novel continuous mixer comprising a rotary shaft carrying two or more vanes for mixing two or more fluids of different viscosities supplied at the inlet of the mixer body and for providing, at the mixer body outlet, a mixture of viscosity lower than that of the more or most viscous fluid. Preferentially, the vane profile is such that, without fluid circulation, rotation of the vanes produces a reaction force parallel to the rotational axis and in the same direction as the resulting flow or does not produce a reaction force of significant magnitude parallel to the rotational axis. The mixer shaft is connected to a pump shaft which is rotated by hydraulic motor driven by pressurized fluid injection. The mixer is used especially for facilitating viscous crude oil pumping from directional wells including horizontal or inclined portions.

  14. High Viscosity Liquid Flow through the Round Orifices at Small Reynold’s Numbe rs

    V. N. Pil'gunov


    Full Text Available The paper presents research results of the mineral oil flow process with viscosity of 30 cSt through a round orifice with the sharp inlet edge of 0.9 mm in diameter. Pilot studies were conducted using a module from the transparent plexiglas that allowed to visualize hydrodynamic processes. The intake and off-take channels of the module with their sufficient extension had diameter of 20 mm (24 diameters of an orifice that allows us to consider compression of a stream as perfect. Drawing the enameled nichrome wire with a mark as a stripping isolation of 0.1 mm width enabled sounding of electric processes in the stream sections. Intensive high- frequency electric processes were revealed in cavitation stream. The paper gives experimental values of coefficientsof volumetric and mass flow at low (150 oil into the two-phase mixture "fluid- combined air." We investigate the "life cycle" of a two-phase mixture: flotation bubbles in a viscous medium, and there was no air passes completely evolved in the dissolved state in a time not exceeding 30 minutes. Volumetric analysis of the foam allowed us to estimate the percentage of volumetric gas content of oil, which was 9% at 240С and atmospheric pressure of 97.5 kPa. An explanation of the possible cause cavitation edge at the end of a viscous fluid through an orifice with a sharp edge - appearance in fluid large tensile forces due to the centrifugal force on the particles of the fluid streams in passing peripheral sharp edge. Experimental research data flow of a viscous fluid in the annular orifice formed sharp edge and the surface of the string. Detected failure mode expiration free jet and conversion shareware transparent

  15. Impact of residual glycerides on viscosity of biodiesel (waste and rapeseed oil blends)

    Z. Jurac; L. Pomenić


    Purpose: Biodiesel, mixture of fatty acid methyl esters is a biodegradable alternative fuel that is obtained from renewable sources as a vegetable oils or animal fats. Use of waste cooking oils reduce the cost of raw materials for biodiesel production and also reduces the environment pollution. Moreover, pure edible vegetable oils for biodiesel production have an ethical significance because food is used to produce fuel. The aim of this work is a presentation of effects that r...

  16. Acoustic characteristics of bubble bursting at the surface of a high-viscosity liquid

    Liu Xiao-Bo; Zhang Jian-Run; Li Pu


    An acoustic pressure model of bubble bursting is proposed. An experiment studying the acoustic characteristics of the bursting bubble at the surface of a high-viscosity liquid is reported. It is found that the sudden bursting of a bubble at the high-viscosity liquid surface generates N-shape wave at first, then it transforms into a jet wave. The fundamental frequency of the acoustic signal caused by the bursting bubble decreases linearly as the bubble size increases. The results of the investigation can be used to understand the acoustic characteristics of bubble bursting. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  17. Effect of strong electrolytes on edible oils part III: viscosity of canola ...

    ... in the positive values of B-coefficient. Fluidity parameters were also evaluated and the change in these values with temperature and concentration of oil shows that the electrolytes behave as structure breaker. The energy of activation, latent heat of vaporization and molar volume of oil were also evaluated and discussed.

  18. Effect of temperature and composition on density, viscosity and thermal conductivity of fatty acid methyl esters from soybean, castor and Jatropha curcas oils

    Ustra, Mara K.; Silva, Juliana R.F.; Ansolin, Marina; Balen, Manuela; Cantelli, Keli; Alkimim, Isabella P.; Mazutti, Marcio A.; Voll, Fernando A.P.; Cabral, Vladimir F.; Cardozo-Filho, Lúcio; Corazza, Marcos L.; Vladimir Oliveira, J.


    Highlights: ► Thermophysical properties of soybean, castor and Jatropha curcas oils and related systems. ► Effect of temperature and composition on density, viscosity and thermal conductivity of the systems studied. ► Density, dynamic viscosity and thermal conductivity data were correlated using empirical equations. -- Abstract: This work is focused on experimental determination of density, viscosity and thermal conductivity as a function of temperature and composition for fatty acid methyl esters (FAME) from soybean, castor and Jatropha curcas oils. Results show that an increase in temperature, over the range of (273 to 363) K, resulted in a decrease of all properties studied. FAME from soybean and J. curcas oils presented similar rheological behaviour, while FAME from castor oil presented higher values for density and viscosity. Density, dynamic viscosity and thermal conductivity data for all systems obtained here were correlated using empirical equations with good agreement between experimental and calculated values. Experimental data presented here may be useful as a database for specification purposes and equipment design and plant operation in the biodiesel industry

  19. Automation of a high-speed imaging setup for differential viscosity measurements

    Hurth, C.; Duane, B.; Whitfield, D.; Smith, S.; Nordquist, A.; Zenhausern, F.


    We present the automation of a setup previously used to assess the viscosity of pleural effusion samples and discriminate between transudates and exudates, an important first step in clinical diagnostics. The presented automation includes the design, testing, and characterization of a vacuum-actuated loading station that handles the 2 mm glass spheres used as sensors, as well as the engineering of electronic Printed Circuit Board (PCB) incorporating a microcontroller and their synchronization with a commercial high-speed camera operating at 10 000 fps. The hereby work therefore focuses on the instrumentation-related automation efforts as the general method and clinical application have been reported earlier [Hurth et al., J. Appl. Phys. 110, 034701 (2011)]. In addition, we validate the performance of the automated setup with the calibration for viscosity measurements using water/glycerol standard solutions and the determination of the viscosity of an "unknown" solution of hydroxyethyl cellulose.

  20. Automation of a high-speed imaging setup for differential viscosity measurements

    Hurth, C.; Duane, B.; Whitfield, D.; Smith, S.; Nordquist, A.; Zenhausern, F. [Center for Applied Nanobioscience and Medicine, The University of Arizona College of Medicine, 425 N 5th Street, Phoenix, Arizona 85004 (United States)


    We present the automation of a setup previously used to assess the viscosity of pleural effusion samples and discriminate between transudates and exudates, an important first step in clinical diagnostics. The presented automation includes the design, testing, and characterization of a vacuum-actuated loading station that handles the 2 mm glass spheres used as sensors, as well as the engineering of electronic Printed Circuit Board (PCB) incorporating a microcontroller and their synchronization with a commercial high-speed camera operating at 10 000 fps. The hereby work therefore focuses on the instrumentation-related automation efforts as the general method and clinical application have been reported earlier [Hurth et al., J. Appl. Phys. 110, 034701 (2011)]. In addition, we validate the performance of the automated setup with the calibration for viscosity measurements using water/glycerol standard solutions and the determination of the viscosity of an “unknown” solution of hydroxyethyl cellulose.

  1. Viscosity-based high temperature waste form compositions

    Reimann, G.A.


    High-temperature waste forms such as iron-enriched basalt are proposed to immobilize and stabilize a variety of low-level wastes stored at the Idaho National Engineering Laboratory. The combination of waste and soil anticipated for the waste form results in high SiO 2 + Al 2 O 3 producing a viscous melt in an arc furnace. Adding a flux such as CaO to adjust the basicity ratio (the molar ratio of basic to acid oxides) enables tapping the furnace without resorting to extreme temperatures, but adds to the waste volume. Improved characterization of wastes will permit adjusting the basicity ratio to between 0.7 and 1.0 by blending of wastes and/or changing the waste-soil ratio. This minimizes waste form volume. Also, lower pouring temperatures will decrease electrode and refractory attrition, reduce vaporization from the melt, and, with suitable flux, facilitate crystallization. Results of laboratory tests were favorable and pilot-scale melts are planned; however, samples have not yet been subjected to leach testing

  2. Optimization of high solids fed-batch saccharification of sugarcane bagasse based on system viscosity changes.

    Liu, Yunyun; Xu, Jingliang; Zhang, Yu; Yuan, Zhenhong; Xie, Jun


    Viscosity trends in alkali-pretreated sugarcane bagasse (SCB) slurries undergoing high solids fed-batch enzymatic hydrolysis were measured for a range of solids loading from 15% to 36%. Solids liquefaction times were related to system viscosity changes. The viscosity decreased quickly for low solids loading, and increased with increasing solids content. Fed-batch hydrolysis was initiated with 15% solids loading, and an additional 8%, 7% and 6% were successively added after the system viscosity decreased to stable values to achieve a final solids content of 36%. Two enzyme-adding modes with 8.5FPU/g solid were investigated. The batch mode with all enzyme being added at the beginning of the reaction produced the highest yields, with approximately 231.7g/L total sugars and 134.9g/L glucose being obtained after 96h with nearly 60% of the final glucan conversion rate. This finding indicates that under the right conditions, the fed-batch strategy might be a plausible way to produce high sugars under high solids. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. High-throughput microarray mapping of cell wall polymers in roots and tubers during the viscosity-reducing process

    Huang, Yuhong; Willats, William George Tycho; Lange, Lene


    the viscosity-reducing process are poorly characterized. Comprehensive microarray polymer profiling, which is a high-throughput microarray, was used for the first time to map changes in the cell wall polymers of sweet potato (Ipomoea batatas), cassava (Manihot esculenta), and Canna edulis Ker. over the entire...... viscosity-reducing process. The results indicated that the composition of cell wall polymers among these three roots and tubers was markedly different. The gel-like matrix and glycoprotein network in the C. edulis Ker. cell wall caused difficulty in viscosity reduction. The obvious viscosity reduction......Viscosity reduction has a great impact on the efficiency of ethanol production when using roots and tubers as feedstock. Plant cell wall-degrading enzymes have been successfully applied to overcome the challenges posed by high viscosity. However, the changes in cell wall polymers during...

  4. Densities, viscosities, and isobaric heat capacities of the system (1-butanol + cyclohexane) at high pressures

    Torín-Ollarves, Geraldine A.; Martín, M. Carmen; Chamorro, César R.; Segovia, José J.


    Highlights: • The densities of cyclohexane and its mixtures with 1-butanol were measured. • The excess molar volumes were calculated and correlated. • The viscosities were measured at atmospheric pressure. • The isobaric heat capacities were measured at p = (0.1 to 25) MPa at T = (293.15 and 313.15) K. • A positive deviation from the ideal behavior is observed. - Abstract: The cyclohexane and the system of 1-butanol + cyclohexane have been characterized using densities, viscosities and isobaric heat capacities measurements. For that, the densities were measured in a high-pressure vibrating tube densimeter at five temperatures from (293.15 to 333.15) K and pressures up to 100 MPa. The measurements were correlated with the empirical Tamman–Tait equation. Moreover, the isobaric heat capacities of the binary system were measured in a high-pressure automated flow calorimeter at T = (293.15 and 313.15) K and pressures up to 25 MPa for pure cyclohexane and in admixture with 1-butanol. The excess molar heat capacities were assessed for the mixture and a positive deviation from the ideality was obtained, except for a small part in the region rich in alkanol. The viscosity measurements were carried out, at the calorimeter conditions, for correcting the experimental values of isobaric heat capacities due to friction along the tube. The viscosity was measured at atmospheric pressure in a Stabinger Anton Paar SVM 3000 viscometer in the temperature range of (293.15 to 333.15) K for cyclohexane and the mixtures. At high pressure, the viscosities were estimated using Lucas method

  5. High pressure study of viscosity and temperature effects on tetracyanobenzene EDA complexes

    Thomas, Michele Moisio; Drickamer, H. G.


    High pressure fluorescence studies from 0-10 kbar have been performed on electron donor-acceptor (EDA) complexes of s-tetracyanobenzene (TCNB) with a series of aromatic hydrocarbons. Four solvents were used: 2,2,4,4,6,8,8-heptamethylnonane (HMN), methylcyclohexane (MCH), 2,6,10,14-tetramethylpentadecane (TMPD), and a mixture of MCH and HMN. A viscosity range from 0.006 to 10 000 P was covered at two temperatures: 0 and 25 °C. As pressure (viscosity) increased the fluorescence spectrum shifted from one dominated by emission from the equilibrium (EQ) excited singlet state to one dominated by Franck-Condon (FC) singlet emission. Lifetime measurements for the complexes of o-xylene and p-xylene with TCNB yielded the two radiative rates (kEQ and kFC) as well as the rate of relaxation from FC to the EQ excited state (kRE). kRE was found to correlate well with viscosity and to be independent of temperature at constant viscosity, indicating that the relaxation process is diffusion controlled.

  6. Effect of strong electrolytes on edible oils part II: vViscosity of maize ...

    The electrolytes behave as structure breaker. The effect of temperature was also determined in terms of fluidity parameters, energy of activation, latent heat of vaporization, molar volume of oil and free energy change of activation for viscous flow. Journal of Applied Sciences and Environmental Management Vol. 10 (3) 2006: ...

  7. Temperature-dependent viscosity analysis of SAE 10W-60 engine oil with RheolabQC rotational rheometer

    Zahariea Dănuț


    Full Text Available The purpose of this work was to determine a viscositytemperature relationship for SAE 10W-60 engine oil. The rheological properties of this engine oil, for a temperature range of 20÷60 °C, were obtained with RheolabQC rotational rheometer. For the first reference temperature of 40 °C, the experimental result was obtained with a relative error of 1.29%. The temperature-dependent viscosity was modelled, comparatively, with the Arrhenius and the 3rd degree polynomial models. Comparing the graphs of the fits with prediction bounds for 95% confidence level, as well as the goodness-of-fit statistics, the preliminary conclusion was that the 3rd degree polynomial could be the best fit model. However, the fit model should be used also for extrapolation, for the second reference temperature of 100 °C. This new approach changes the fit models order, the Arrhenius equation becoming the best fit model, because of the completely failed to predict the extrapolated value with the polynomial model.

  8. On the mesoscopic origins of high viscosities in some polyelectrolyte-surfactant mixtures

    Hoffmann, Ingo, E-mail: [Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 124, Sekr. TC 7, D-10623 Berlin (Germany); Institut Max von Laue-Paul Langevin (ILL), F-38042 Grenoble Cedex 9 (France); Farago, Bela; Schweins, Ralf; Falus, Peter; Sharp, Melissa [Institut Max von Laue-Paul Langevin (ILL), F-38042 Grenoble Cedex 9 (France); Prévost, Sylvain [Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 124, Sekr. TC 7, D-10623 Berlin (Germany); Helmholtz-Zentrum Berlin, D-14109 Berlin (Germany); Gradzielski, Michael, E-mail: [Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 124, Sekr. TC 7, D-10623 Berlin (Germany)


    Oppositely charged polyelectrolyte (PE) surfactant mixtures allow the control of rheological parameters of a solution even at fairly low concentrations. For example, addition of 0.3 wt. % of anionic surfactant to a 1 wt. % solution of the polycation JR 400 increases the viscosity by 4 orders of magnitude. Recently, we could show that this increase is related to the formation of mixed, rod-like PE/surfactant aggregates which interconnect several polyelectrolyte chains [Hoffmann et al., Europhys. Lett. 104, 28001 (2013)]. In this paper, we refine our structural model of the aggregates to obtain a more consistent picture of their internal structure for different anionic surfactants. Combining small angle neutron scattering (SANS) and neutron spin-echo (NSE) allows us to determine the size of the aggregates. By comparing different contrasts, the internal structure of the aggregates can be elucidated and it is seen that the PE in the aggregates retains a relatively high freedom of movement. We proceeded to investigate the influence of the surfactant concentration and the surfactant type on structure and dynamics of the mixed aggregates. It is seen that the structural parameters of the aggregates depend very little on the surfactant concentration and headgroup. However, it is crucial to incorporate a sufficient amount of PE in the aggregates to increase the viscosity of the aggregates. By comparing viscous samples at 1 wt. % PE concentration with samples at a PE concentration of 0.3 wt. %, where no significant increase in viscosity is observed, we find that similar aggregates are formed already at this lower PE concentrations. However, the amount of PE incorporated in them is insufficient to interconnect several PE chains and therefore, they do not increase viscosity. So, our detailed investigation combining contrast variation SANS and NSE does not only allow to explain the viscosity behavior but also to deduced detailed information regarding the structures and

  9. Entropy Viscosity Method for High-Order Approximations of Conservation Laws

    Guermond, J. L.


    A stabilization technique for conservation laws is presented. It introduces in the governing equations a nonlinear dissipation function of the residual of the associated entropy equation and bounded from above by a first order viscous term. Different two-dimensional test cases are simulated - a 2D Burgers problem, the "KPP rotating wave" and the Euler system - using high order methods: spectral elements or Fourier expansions. Details on the tuning of the parameters controlling the entropy viscosity are given. © 2011 Springer.

  10. Theory of the high-frequency limiting viscosity of a dilute polymer solution. Pt. 2

    Doi, M; Nakajima, H; Wada, Y


    High-frequency limiting viscosities of dilute polymer solutions are calculated on the basis of the author's previous theory for (1) necklace model of a chain with constant bond length and bond angle under a hindering rotational potential, and (2) broken rod model consisting of N rods with equal length connected by universal joints. Exact treatment is possible for a once-broken rod model, but the Monte Carlo method is used in the other calculations.

  11. Entropy Viscosity Method for High-Order Approximations of Conservation Laws

    Guermond, J. L.; Pasquetti, R.


    A stabilization technique for conservation laws is presented. It introduces in the governing equations a nonlinear dissipation function of the residual of the associated entropy equation and bounded from above by a first order viscous term. Different two-dimensional test cases are simulated - a 2D Burgers problem, the "KPP rotating wave" and the Euler system - using high order methods: spectral elements or Fourier expansions. Details on the tuning of the parameters controlling the entropy viscosity are given. © 2011 Springer.

  12. Viscosity of high-pressure ice VI and evolution and dynamics of Ganymede

    Poirier, J.P.; Sotin, C.; Peyronneau, J.


    The viscosity of high pressure ice VI has been measured at room temperature and pressures of 1.1 to 1.2 GPa giving a value of approximately equal to 10 14 P which suggests that solid state convection might have taken place during the early evolution of Ganymede, thus preventing melting and differentiation. Measurements were carried out in a sapphire anvil cell using fine particles to visualize the flow of ice down the radial pressure gradient. (U.K.)

  13. Synthesis of high-temperature viscosity stabilizer used in drilling fluid

    Zhang, Yanna; Luo, Huaidong; Shi, Libao; Huang, Hongjun


    Abstract For a well performance drilling fluid, when it operates in deep wells under high temperature, the most important property required is the thermal stability. The drilling fluid properties under high temperature can be controlled by proper selection of viscosity stabilizer, which can capture oxygen to protect polymer agent in the drilling fluid. In this paper a viscosity stabilizer PB-854 is described, which was synthesized by 4-phenoxybutyl bromide, paraformaldehyde, and phloroglucinol using etherification method and condensation reaction. We studied the effect of catalyst dosage, temperature, time, and stirring rate on the synthetic yield. Under this condition: molar ratio of 2-tert-Butylphenol, paraformaldehyde and phloroglucinol of 2:1:2.5, reacting temperature of 100 °C, stirring rate of 100 r min-1, and mass content of catalyst of 15 %, char yield of 5-bromine-3-tert-butyl salicylaldehyde reached 86 %. Under this condition: molar ratio of 5-bromine-3-tert-butyl salicylaldehyde and phloroglucinol of 4, reacting temperature of 60 °C, reacting time of 30 min, volume content of sulphuric acid of 80 %, char yield of the target product viscosity stabilizer PB-854 is 86%. Finally, in this paper, infrared spectroscopy is adopted to analyse the structure of the synthetic product PB-854.The improvement in the stability of drilling fluid was further shown after adding the viscosity stabilizer in the common polymer drilling fluid under high temperature conditions of 120 °C ˜ 180 °C. The results show significant change in terms of fluid stability in the presence of this new stabilizer as it provides better stability.

  14. Screening for High Conductivity/Low Viscosity Ionic Liquids Using Product Descriptors.

    Martin, Shawn; Pratt, Harry D; Anderson, Travis M


    We seek to optimize Ionic liquids (ILs) for application to redox flow batteries. As part of this effort, we have developed a computational method for suggesting ILs with high conductivity and low viscosity. Since ILs consist of cation-anion pairs, we consider a method for treating ILs as pairs using product descriptors for QSPRs, a concept borrowed from the prediction of protein-protein interactions in bioinformatics. We demonstrate the method by predicting electrical conductivity, viscosity, and melting point on a dataset taken from the ILThermo database on June 18 th , 2014. The dataset consists of 4,329 measurements taken from 165 ILs made up of 72 cations and 34 anions. We benchmark our QSPRs on the known values in the dataset then extend our predictions to screen all 2,448 possible cation-anion pairs in the dataset. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Leidenfrost Vapor Layers Reduce Drag without the Crisis in High Viscosity Liquids

    Vakarelski, Ivan Uriev


    The drag coefficient CD of a solid smooth sphere moving in a fluid is known to be only a function of the Reynolds number Re and diminishes rapidly at the drag crisis around Re∼3×105. A Leidenfrost vapor layer on a hot sphere surface can trigger the onset of the drag crisis at a lower Re. By using a range of high viscosity perfluorocarbon liquids, we show that the drag reduction effect can occur over a wide range of Re, from as low as ∼600 to 105. The Navier slip model with a viscosity dependent slip length can fit the observed drag reduction and wake shape. © 2016 American Physical Society.

  16. Leidenfrost Vapor Layers Reduce Drag without the Crisis in High Viscosity Liquids

    Vakarelski, Ivan Uriev; Berry, Joseph D.; Chan, Derek Y C; Thoroddsen, Sigurdur T


    The drag coefficient CD of a solid smooth sphere moving in a fluid is known to be only a function of the Reynolds number Re and diminishes rapidly at the drag crisis around Re∼3×105. A Leidenfrost vapor layer on a hot sphere surface can trigger the onset of the drag crisis at a lower Re. By using a range of high viscosity perfluorocarbon liquids, we show that the drag reduction effect can occur over a wide range of Re, from as low as ∼600 to 105. The Navier slip model with a viscosity dependent slip length can fit the observed drag reduction and wake shape. © 2016 American Physical Society.

  17. Production of High Viscosity Chitosan from Biologically Purified Chitin Isolated by Microbial Fermentation and Deproteinization

    Ekkalak Ploydee


    Full Text Available The objective of this study was to produce high viscosity chitosan from shrimp chitin prepared by using a two-step biological treatment process: decalcification and deproteinization. Glucose was fermented with Lactobacillus pentosus L7 to lactic acid. At a pH of 3.9±0.1, the calcium carbonate of the shells was solubilized in 48 hours. The amounts of residual calcium in the form of ash (1.4±0.5% and crude protein (23.2±2.5% were further eliminated by the activity of proteolytic Bacillus thuringiensis SA. After decalcification and deproteinization of the shrimp shells, residual calcium and crude protein of shrimp chitin flakes were 1.7±0.4% and 3.8±1.3%, respectively. Chitin was deacetylated with 50% NaOH at 121°C for 5 hours. After deacetylation, the chitosan had residual calcium, crude protein content, and degree of acetylation of 1.6±0.6%, 0.4±0.3%, and 83.2±1.5%, respectively. The viscosity of chitosan prepared from chitin extracted by this two-step biological process was 1,007±14.7 mPa·s, whereas chitosan prepared from chemically processed chitin had a viscosity of 323±15.6   mPa·s, indicating that biologically purified chitin gave chitosan with a high quality.

  18. Investigation of the Capture of Magnetic Particles From High-Viscosity Fluids Using Permanent Magnets.

    Garraud, Alexandra; Velez, Camilo; Shah, Yash; Garraud, Nicolas; Kozissnik, Bettina; Yarmola, Elena G; Allen, Kyle D; Dobson, Jon; Arnold, David P


    This paper investigates the practicality of using a small, permanent magnet to capture magnetic particles out of high-viscosity biological fluids, such as synovial fluid. Numerical simulations are used to predict the trajectory of magnetic particles toward the permanent magnet. The simulations are used to determine a "collection volume" with a time-dependent size and shape, which determines the number of particles that can be captured from the fluid in a given amount of time. The viscosity of the fluid strongly influences the velocity of the magnetic particles toward the magnet, hence, the collection volume after a given time. In regards to the design of the magnet, the overall size is shown to most strongly influence the collection volume in comparison to the magnet shape or aspect ratio. Numerical results showed good agreement with in vitro experimental magnetic collection results. In the long term, this paper aims to facilitate optimization of the collection of magnetic particle-biomarker conjugates from high-viscosity biological fluids without the need to remove the fluid from a patient.

  19. Design of instantaneous liquid film thickness measurement system for conductive or non-conductive fluid with high viscosity

    Yongxin Yu


    Full Text Available In the paper, a new capacitive sensor with a dielectric film coating was designed to measure the thickness of the liquid film on a flat surface. The measured medium can be conductive or non-conductive fluid with high viscosity such as silicone oil, syrup, CMC solution and melt. With the dielectric film coating, the defects caused by the humidity in a capacitor can be avoided completely. With a excitation frequency 0-20kHz, the static permittivity of capacitive sensor is obtained and stable when small thicknesses are monitored within the frequency of 0-3kHz. Based on the measurement principle, an experimental system was designed and verified including calibration and actual measurement for different liquid film thickness. Experimental results showed that the sensitivity, the resolution, repeatability and linear range of the capacitive sensor are satisfied to the liquid film thickness measurement. Finally, the capacitive measuring system was successfully applied to the water, silicone oil and syrup film thickness measurement.

  20. Improvements in gastric diagnosis by using high density contrast media with low viscosity

    Toischer, H.P.


    In a retrospective clinical study, 150 unselected double contrast examinations of the stomach using conventional contrast media (100 g/100 ml barium sulphate) were compared with a similar number of examinations using a high density contrast medium of flow viscosity (250 g/100 ml barium sulphate). The high density contrast medium was distinctly better for demonstrating detail of the gastric mucosa. The uneveness of coating and instability of the older high density contrast media was observed in 15.5% of cases and, in no instance, did this make it impossible to reach a diagnosis. (orig.) [de

  1. High pressure study of viscosity effects on the luminescence of tetracyanobenzene EDA complexes

    Thomas, Michele Moisio; Drickamer, H. G.


    High pressure fluorescence studies fron 0-10 kbar have been performed on electron donor-acceptor (EDA) complexes of s-tetracyanobenzene (TCNB) with a series of aromatic hydrocarbons. Four solvents were used, 2,2,4,4,6,8,8 heptamethylnonane (HMN), methylcyclohexane (MCH), 2,6,10,14 tetramethylpentadecane (TMPD), and a mixture of MCH and HMN. A viscosity range from 0.006 to 10 000 poise was covered at constant temperature. As pressure (viscosity) increased the fluorescence spectrum shifted from one dominated by emission from the equilibrium (EQ) excited singlet state to one dominated by Franck-Condon (FC) singlet emission. Lifetime measurements for the complexes of o-xylene and p-xylene with TCNB as well as one mesitylene complex yielded the two radiative rates (kEQ and kFC) as well as the rate of internal conversion from FC to the EQ excited state to (kIC). The results are discussed in terms of the rate of relaxation of the solvent compared with the rate kFC. It was found that kIC correlated very well with the solvent viscosity.

  2. Fuel oil heating process and viscosity control system based on PI controllers; Proceso de calentamiento de combustoleo y sistema de control de viscosidad en base a controladores PI

    Delgadillo Valencia, Miguel Angel; Dominguez Molina, Beatriz Adriana [Gerencia de Control e Instrumentacionn Instituto de Investigaciones Eletricas, Cuernavaca, Morelos (Mexico)]. E-mail:;


    This job presents a mathematical development for evaluating the fuel oil viscosity from direct pressure drop measurement data in a piece of tube, the density of the oil and the oil flow at the main heater input of a conventional power plant. A group of curves obtained from different type of oils are presented in equation form which are used to interpolate the actual oil and to extend it to evaluate the corresponding temperature for the goal viscosity. This temperature is used as temperature setpoint for the proposed viscosity control system. A conventional plant main heater model is developed in order to carry out simulation tests for the viscosity control. Simulation tests are done in the Simulink of Matlab platform and graphs of runs are presented. [Spanish] Este trabajo presenta un desarrollo matematico para la evaluacion de la viscosidad del combustoleo a partir de datos de medicion directa de caida de presion en un tramo de tuberia, de la densidad y del flujo de combustible a la entrada del calentador principal de una central termoelectrica convencional. A traves de datos de diferentes tipos de combustible se presentaron un conjunto de curvas, representadas por ecuaciones, mediante las cuales se interpola la curva correspondiente al combustible actual y se proyecta para evaluar la temperatura correspondiente a la viscosidad objetivo; esta temperatura objetivo se utiliza despues como senal de punto de ajuste para el control de la viscosidad del combustible en un sistema de control propuesto. Para la realizacion de pruebas del control de viscosidad, se plantea el desarrollo del modelo del calentador principal de la central termoelectrica. Las corridas de simulacion se realizan en la plataforma de Simulink de Matlab y se presentan las graficas de dichas corridas.

  3. Absorption capacity and viscosity for CO_2 capture process using high concentrated PZ-DEAE aqueous solution

    Fu, Dong; Wang, LeMeng; Mi, ChenLu; Zhang, Pan


    Highlights: • Absorption of CO_2 in high concentrated DEAE-PZ aqueous solutions were measured. • Viscosities of CO_2-unloaded and CO_2-loaded DEAE-PZ aqueous solutions were measured. • Weiland equation was used to calculate the viscosities. • Effects of temperature, concentration and CO_2 loading on viscosity were demonstrated. - Abstract: The absorption capacity of CO_2 in piperazine (PZ) promoted 2-diethylaminoethanol (DEAE) aqueous solution was measured. The viscosities of both CO_2-unloaded and CO_2-loaded PZ-DEAE aqueous solutions were measured and then modelled. The temperatures ranged from 303.2 K to 323.2 K. The mass fraction of PZ and DEAE respectively ranged from 0 to 0.075 and 0.3 to 0.5. The temperature and concentration dependences of absorption capacity were determined. The effects of temperature, mass fraction and CO_2 loading on viscosities are demonstrated.

  4. Analysis of Anti-Wear Properties of CuO Nanoparticles as Friction Modifiers in Mineral Oil (460cSt Viscosity Using Pin-On-Disk Tribometer

    S. Bhaumik


    Full Text Available The present work investigated the anti-wear properties of CuO nanoparticles based mineral oil using pin-on-disk apparatus. The pin material selected was EN 24(untreated as it is used in gear manufacturing. Commonly used graphite macro particles (wt.% and CuO nanoparticles(wt.% were used as additives. It had been observed that the additives based mineral oil samples exhibited superior antiwear properties than pure mineral oil. Both CuO nanoparticles (0.2 wt.% and graphite (0.2 wt.% based lubricant showed significant decrease in coefficient of friction and specific wear rate. There was a reduction in both coefficient of friction (28.5 % approx. and specific wear rate (70 % approx. in case of CuO nanolubricants and graphite based mineral oil as compared with the pure mineral oil.Flash-fire point, viscosity and viscosity index also increased with the increase in additive concentration. The surface characteristics of the pin were studied using Scanning Electron Microscope (SEM and surface roughness tester. The SEM images showed more rough surfaces in case of pure mineral oil samples as compared with graphite and CuO nanoparticles based samples. The surface roughness values of the pins in case of graphite (0.2 wt.% and CuO nano particles (0.2 wt.% based lubricant were much lesser than pure mineral oil. From the results predicted minimum 0.2 wt.% CuO nanoparticles were required to enhance the antiwear property of the lubricant. This work aimed in bringing a comparative experimental analysis using CuO nanoparticles and commonly used graphite macro particles as lubricant additives on various properties such as viscosity, flash point, fire point, surface roughness and anti-wear properties. Thus, the work would be useful in developing new nano lubricants with minimum additive concentration.

  5. High-Pressure-High-Temperature Processing Reduces Maillard Reaction and Viscosity in Whey Protein-Sugar Solutions.

    Avila Ruiz, Geraldine; Xi, Bingyan; Minor, Marcel; Sala, Guido; van Boekel, Martinus; Fogliano, Vincenzo; Stieger, Markus


    The aim of the study was to determine the influence of pressure in high-pressure-high-temperature (HPHT) processing on Maillard reactions and protein aggregation of whey protein-sugar solutions. Solutions of whey protein isolate containing either glucose or trehalose at pH 6, 7, and 9 were treated by HPHT processing or conventional high-temperature (HT) treatments. Browning was reduced, and early and advanced Maillard reactions were retarded under HPHT processing at all pH values compared to HT treatment. HPHT induced a larger pH drop than HT treatments, especially at pH 9, which was not associated with Maillard reactions. After HPHT processing at pH 7, protein aggregation and viscosity of whey protein isolate-glucose/trehalose solutions remained unchanged. It was concluded that HPHT processing can potentially improve the quality of protein-sugar-containing foods, for which browning and high viscosities are undesired, such as high-protein beverages.

  6. Viscosities and densities of systems involved in the deterpenation of essential oils by liquid-liquid extraction: New UNIFAC-VISCO parameters

    Florido, Priscila M.; Andrade, Ivana M.G.; Capellini, Maria C.; Carvalho, Fernanda H.; Aracava, Keila K.; Koshima, Cristina C.; Rodrigues, Christianne E.C.; Gonçalves, Cintia B.


    Graphical abstract: - Highlights: • Physical properties of systems from deterpenation of essential oils were measured. • Viscosities were used to get new interaction parameters for the UNIFAC-VISCO model. • Parameters were optimized using a genetic algorithm. • A global average relative deviation of 0.68% was obtained considering all systems. • New parameters also presented a good predictive capability, with a ARD of 1.83%. - Abstract: This work reports viscosities and densities, at T = 298.15 K, of the phases formed after deterpenation of bergamot, lemon and mint essential oils, by (liquid + liquid) extraction (LLE). Samples of mixtures containing the main components of each essential oil (terpenes and oxygenated compounds), plus ethanol and water, were obtained from studies of phase equilibrium performed previously by our research group. Experimental viscosities were also correlated to the UNIFAC VISCO model, based on the group contribution method. Correlations were accomplished using two approaches: in the first one, functional groups already described by previous studies in the literature and new ones obtained in this work were considered, providing a global average relative deviation (ARD) equal to 1.70%; in a second approach, all functional groups were fitted to our experimental data, which provided a global average relative deviation equal to 0.68%. The predictive capability of the UNIFAC-VISCO were tested for systems involved in the deterpenation of eucalyptus essential oil, giving ARD values of (3.56 and 1.83)%, for parameters from first and second approach, respectively. These results indicate that, for more accurate calculation of viscosities, it is important to consider the particularities and the complexity of each system

  7. Effects of interactions between powder particle size and binder viscosity on agglomerate growth mechanisms in a high shear mixer.

    Johansen, A; Schaefer, T


    A study was performed in order to elucidate the effects of the interactions between powder particle size and binder viscosity on the mechanisms involved in agglomerate formation and growth. Calcium carbonates having mean particle sizes in the range of 5-214 microm and polyethylene glycols having viscosities in the range of approximately 50-100000 mPas were melt agglomerated in a high shear mixer. Agglomerate growth by nucleation and coalescence was found to dominate when agglomerating small powder particles and binders with a low viscosity. Increasing the binder viscosity increased the formation of agglomerates by immersion of powder particles in the surface of the binder droplets. With a larger powder particle size, an increasing binder viscosity was necessary in order to obtain an agglomerate strength being sufficient to avoid breakage. Due to a low agglomerate strength, a satisfying agglomeration of very large particles (214 microm) could not be obtained, even with very viscous binders. The study demonstrated that the optimum agglomerate growth occurred when the agglomerates were of an intermediate strength causing an intermediate deformability of the agglomerates. In order to produce spherical agglomerates (pellets), a low viscosity binder has to be chosen when agglomerating a powder with a small particle size, and a high viscosity binder must be applied in agglomeration of powders with large particles.

  8. Analysis of oil lubricated, fluid film, thrust bearings with allowance for temperature dependent viscosity

    Pan, C. H. T.; Malanoski, S. B.


    A preliminary design study was performed to seek a fluid-film thrust bearing design intended to be part of a high-speed, hybrid (rolling element/fluid film) bearing configuration. The base line used is a design previously tested. To improve the accuracy of theoretical predictions of load capacity, flow rate, and friction power loss, an analytical procedure was developed to include curvature effects inherent in thrust bearings and to allow for the temperature rise in the fluid due to viscous heating. Also, a narrow-groove approximation in the treatment of the temperature field was formulated to apply the procedure to the Whipple thrust bearing. A comparative trade-off study was carried out assuming isothermal films; its results showed the shrouded-step design to be superior to the Whipple design for the intended application. An extensive parametric study was performed, employing isoviscous calculations, to determine the optimized design, which was subsequently recalculated allowing for temperature effects.

  9. [Computational fluid dynamics simulation of different impeller combinations in high viscosity fermentation and its application].

    Dong, Shuhao; Zhu, Ping; Xu, Xiaoying; Li, Sha; Jiang, Yongxiang; Xu, Hong


    Agitator is one of the essential factors to realize high efficient fermentation for high aerobic and viscous microorganisms, and the influence of different impeller combination on the fermentation process is very important. Welan gum is a microbial exopolysaccharide produced by Alcaligenes sp. under high aerobic and high viscos conditions. Computational fluid dynamics (CFD) numerical simulation was used for analyzing the distribution of velocity, shear rate and gas holdup in the welan fermentation reactor under six different impeller combinations. The best three combinations of impellers were applied to the fermentation of welan. By analyzing the fermentation performance, the MB-4-6 combination had better effect on dissolved oxygen and velocity. The content of welan was increased by 13%. Furthermore, the viscosity of production were also increased.

  10. Clinical diagnostic of pleural effusions using a high-speed viscosity measurement method

    Hurth, Cedric; Klein, Katherine; van Nimwegen, Lena; Korn, Ronald; Vijayaraghavan, Krishnaswami; Zenhausern, Frederic


    We present a novel bio-analytical method to discriminate between transudative and exudative pleural effusions based on a high-speed video analysis of a solid glass sphere impacting a liquid. Since the result depends on the solution viscosity, it can ultimately replace the battery of biochemical assays currently used. We present results obtained on a series of 7 pleural effusions obtained from consenting patients by analyzing both the splash observed after the glass impactor hits the liquid surface, and in a configuration reminiscent of the drop ball viscometer with added sensitivity and throughput provided by the high-speed camera. The results demonstrate distinction between the pleural effusions and good correlation with the fluid chemistry analysis to accurately differentiate exudates and transudates for clinical purpose. The exudative effusions display a viscosity around 1.39 ± 0.08 cP whereas the transudative effusion was measured at 0.89 ± 0.09 cP, in good agreement with previous reports.

  11. Design of a High Viscosity Couette Flow Facility for Patterned Surface Drag Measurements

    Johnson, Tyler; Lang, Amy


    Direct drag measurements can be difficult to obtain with low viscosity fluids such as air or water. In this facility, mineral oil is used as the working fluid to increase the shear stress across the surface of experimental models. A mounted conveyor creates a flow within a plexiglass tank. The experimental model of a flat or patterned surface is suspended above a moving belt. Within the gap between the model and moving belt a Couette flow with a linear velocity profile is created. PIV measurements are used to determine the exact velocities and the Reynolds numbers for each experiment. The model is suspended by bars that connect to the pillow block housing of each bearing. Drag is measured by a force gauge connected to linear roller bearings that slide along steel rods. The patterned surfaces, initially consisting of 2-D cavities, are embedded in a plexiglass plate so as to keep the total surface area constant for each experiment. First, the drag across a flat plate is measured and compared to theoretical values for laminar Couette flow. The drag for patterned surfaces is then measured and compared to a flat plate.

  12. Atomization of High-Viscosity Fluids for Aromatherapy Using Micro-heaters for Heterogeneous Bubble Nucleation

    Law, Junhui; Kong, Ka Wai; Chan, Ho-Yin; Sun, Winston; Li, Wen Jung; Chau, Eric Boa Fung; Chan, George Kak Man


    The development of a novel lead-free microelectromechanical-system (MEMS)-based atomizer using the principle of thermal bubble actuation is presented. It is a low-cost, lead-free design that is environmentally friendly and harmless to humans. It has been tested to be applicable over a wide range of fluid viscosities, ranging from 1 cP (e.g., water) to 200 cP (e.g., oil-like fluid) at room temperature, a range that is difficult to achieve using ordinary atomizers. The results demonstrate that the average power consumption of the atomizer is approximately 1 W with an atomization rate of 0.1 to 0.3 mg of deionized (DI) water per cycle. The relationships between the micro-heater track width and the track gap, the size of the micro-cavities and the nucleation energy were studied to obtain an optimal atomizer design. The particle image velocimetry (PIV) results indicate that the diameter of the ejected droplets ranges from 30 to 90 μm with a speed of 20 to 340 mm/s. In addition, different modes of spraying are reported for the first time. It is envisioned that the successful development of this MEMS-based atomizing technology will revolutionize the existing market for atomizers and could also benefit different industries, particularly in applications involving viscous fluids.

  13. Detection of irradiated peppers by viscosity measurement at extremely high pH

    Hayashi, Toru; Todoriki, Setsuko


    The viscosities of aqueous suspensions of irradiated peppers determined after heat gelatinization were influenced by the pH of the suspension to a greater degree than those of unirradiated ones. Viscosity measurement under an extremely alkaline condition (pH 13.8) resulted in a significant different between irradiated peppers and unirradiated ones, irrespective of the planting locality and storage period. All of the pepper samples irradiated at 5 kGy showed viscosity values significantly lower than unirradiated ones. (Author)

  14. High-pressure viscosity measurements for the ethanol plus toluene binary system

    Zeberg-Mikkelsen, Claus Kjær; Baylaucq, A.; Watson, G.


    measured with a classical capillary viscometer (Ubbelohde) with an uncertainty of 1%. A total of 209 experimental measurements have been obtained for this binary system, which reveals a non-monotonic behavior of the viscosity as a function of the composition, with a minimum. The viscosity behavior...... interacting system showing a negative deviation from ideality. The viscosity of this binary system is represented by the Grunberg-Nissan and the Katti-Chaudhri mixing laws with an overall uncertainty of 12% and 8%, respectively. The viscosity of methanol (23 point) has also been measured in order to verify...

  15. A different interpretation of Einstein's viscosity equation provides accurate representations of the behavior of hydrophilic solutes to high concentrations.

    Zavitsas, Andreas A


    Viscosities of aqueous solutions of many highly soluble hydrophilic solutes with hydroxyl and amino groups are examined with a focus on improving the concentration range over which Einstein's relationship between solution viscosity and solute volume, V, is applicable accurately. V is the hydrodynamic effective volume of the solute, including any water strongly bound to it and acting as a single entity with it. The widespread practice is to relate the relative viscosity of solute to solvent, η/η(0), to V/V(tot), where V(tot) is the total volume of the solution. For solutions that are not infinitely dilute, it is shown that the volume ratio must be expressed as V/V(0), where V(0) = V(tot) - V. V(0) is the volume of water not bound to the solute, the "free" water solvent. At infinite dilution, V/V(0) = V/V(tot). For the solutions examined, the proportionality constant between the relative viscosity and volume ratio is shown to be 2.9, rather than the 2.5 commonly used. To understand the phenomena relating to viscosity, the hydrodynamic effective volume of water is important. It is estimated to be between 54 and 85 cm(3). With the above interpretations of Einstein's equation, which are consistent with his stated reasoning, the relation between the viscosity and volume ratio remains accurate to much higher concentrations than those attainable with any of the other relations examined that express the volume ratio as V/V(tot).

  16. Research of operational properties of compound based on high viscosity styrene-butadiene rubber SSBR-2560 TDAE HV

    M. I. Falyakhov


    Full Text Available The article consider the influence of replacement of SSBR-2560 TDAE batch production on high viscosity SSBR-2560-TDAE HV in the tread recipe on the tire performance properties. Obtained samples were highly viscosity styrene butadiene rubber did not differ in the microstructure of the SSBR-2560 TDAE batch production. Increasing the molecular weight possible to increase the Mooney viscosity of the rubber, however, is known to one of adverse factors is the deterioration of processability of rubber compounds based on polymers. In this connection, investigated the behavior in the step mixing compound based on high viscosity SSBR rubber. We chose recipes tread of the tire with a high content of organic silicon filler. It is established that the equivalent replacement of the polymer in the tread recipe does not lead to significant changes in the basic parameters of rubber mixing. We observed a slight increase in the energy consumption for the preparation of the rubber compounds, as well as the discharge temperature at each stage. It was shown to improve the distribution of the filler in the polymer matrix for the compound based on SSBR-2560 TDAE HV. The results showed that compound based on high viscosity SSBR improves rolling resistance and traction characteristics, while maintaining abrasion in comparison with the SSBR-2560-M27 batch production. Recommended use this brand in the production of rubber car tires.

  17. Evaluation of polymers of different degrees viscosities as additives for drilling fluids for oil well; Avaliacao de polimeros de diferentes graus de viscosidades como aditivos para fluidos de perfuracao de pocos de petroleo

    Farias, K.V.; Amorim, L.V.; Silva, A.V. [Universidade Federal de Campina Grande (DEMa/UFCG), PB (Brazil); Lira, H.L. [Universidade Federal de Campina Grande (CCT/UFCG), PB (Brazil). Centro de Ciencias e Tecnologia. Unidade Academica de Engenharia de Materiais], e-mail:


    The objective of this work is to study the polymers influence of different degrees of viscosity, used as viscositying and filtered reducer additives, in the rheological, filtration and lubricity properties of drilling fluids for oil wells. Were determined the rheological behavior, the apparent and plastic viscosities, the yield limit and gel force, the filtered volume and the lubricity coefficient in accordance with API standard. The fluids showed pseudoplastic behavior with properties close to the standard fluid; the increase of viscositying and filtered reducer concentrations lead to the increase of rheological properties and the filtered reducer values, from the concentration of 3,5g/350mL of water it acted as viscositying, increasing the values of apparent and plastic viscosities, yield limit and gel force, being 3,0g/350mL of water the adequate concentration of this additive, promoting better results of rheological and filtration properties. (author)

  18. Characterization of high viscosity materials by total reflection x-ray fluorescence

    Custo, G.; Boeykens, S.; Vazquez, C.


    Gel are soft, solid or solid-like materials of two or more components, one of which is a liquid present in substantial amount. It consists of three-dimensional polymer network and solvent and is an important state of matter. Polymer is a long-chain molecule that is composed of a large number of repeating units of identical structure. These macromolecules assemblies recently developed have interesting properties, which depends of their structure. Their impurities change these physical properties. The great inconvenient of these systems is their high viscosity that difficult sample preparation and analysis by most common chemical techniques. The purpose of this work is to explore the applicability of the TRXRF for the multi-elemental and structural analysis of synthetic and natural aqueous gels (mean polymer molecular weight greater than 10 3 ). The polymers investigated are scleroglucan, polyacrilamide, polyoxyethylene and xhantan. (author)


    Hrma, Pavel R.


    A simplified form of the Arrhenius equation, ln η = A + B(x)/T, where η is the viscosity, T the temperature, x the composition vector, and A and B the Arrhenius coefficients, was fitted to glass-viscosity data for the processing temperature range (the range at which the viscosity is within 1 to 103 Pa.s) while setting A = constant and treating B(x) as a linear function of mass fractions of major components. Fitting the Arrhenius equation to over 550 viscosity data of commercial glasses and approximately 1000 viscosity data of glasses for nuclear-waste glasses resulted in the A values of -11.35 and -11.48, respectively. The R2 value ranged from 0.92 to 0.99 for commercial glasses and was 0.98 for waste glasses. The Arrhenius models estimate viscosities for melts of commercial glasses containing 42 to 84 mass% SiO2 within the temperature range of 1100 to 1550 C and viscosity range of 5 to 400 Pa.s and for waste glasses containing 32 to 60 mass% SiO2 within the temperature range of 850 to 1450 C and viscosity range of 0.4 to 250 Pa.s

  20. Grinding temperature and energy ratio coe cient in MQL grinding of high-temperature nickel-base alloy by using di erent vegetable oils as base oil

    Li Benkai; Li Changhe; Zhang Yanbin; Wang Yaogang; Jia Dongzhou; Yang Min


    Vegetable oil can be used as a base oil in minimal quantity of lubrication (MQL). This study compared the performances of MQL grinding by using castor oil, soybean oil, rapeseed oil, corn oil, sunflower oil, peanut oil, and palm oil as base oils. A K-P36 numerical-control precision surface grinder was used to perform plain grinding on a workpiece material with a high-temperature nickel base alloy. A YDM–III 99 three-dimensional dynamometer was used to measure grinding force, and a clip-type thermocouple was used to determine grinding temperature. The grinding force, grind-ing temperature, and energy ratio coefficient of MQL grinding were compared among the seven veg-etable oil types. Results revealed that (1) castor oil-based MQL grinding yields the lowest grinding force but exhibits the highest grinding temperature and energy ratio coefficient;(2) palm oil-based MQL grinding generates the second lowest grinding force but shows the lowest grinding temperature and energy ratio coefficient;(3) MQL grinding based on the five other vegetable oils produces similar grinding forces, grinding temperatures, and energy ratio coefficients, with values ranging between those of castor oil and palm oil;(4) viscosity significantly influences grinding force and grinding tem-perature to a greater extent than fatty acid varieties and contents in vegetable oils;(5) although more viscous vegetable oil exhibits greater lubrication and significantly lower grinding force than less vis-cous vegetable oil, high viscosity reduces the heat exchange capability of vegetable oil and thus yields a high grinding temperature;(6) saturated fatty acid is a more efficient lubricant than unsaturated fatty acid;and (7) a short carbon chain transfers heat more effectively than a long carbon chain. Palm oil is the optimum base oil of MQL grinding, and this base oil yields 26.98 N tangential grinding force, 87.10 N normal grinding force, 119.6 °C grinding temperature, and 42.7%energy ratio coefficient

  1. Grinding temperature and energy ratio coefficient in MQL grinding of high-temperature nickel-base alloy by using different vegetable oils as base oil

    Li Benkai


    Full Text Available Vegetable oil can be used as a base oil in minimal quantity of lubrication (MQL. This study compared the performances of MQL grinding by using castor oil, soybean oil, rapeseed oil, corn oil, sunflower oil, peanut oil, and palm oil as base oils. A K-P36 numerical-control precision surface grinder was used to perform plain grinding on a workpiece material with a high-temperature nickel base alloy. A YDM–III 99 three-dimensional dynamometer was used to measure grinding force, and a clip-type thermocouple was used to determine grinding temperature. The grinding force, grinding temperature, and energy ratio coefficient of MQL grinding were compared among the seven vegetable oil types. Results revealed that (1 castor oil-based MQL grinding yields the lowest grinding force but exhibits the highest grinding temperature and energy ratio coefficient; (2 palm oil-based MQL grinding generates the second lowest grinding force but shows the lowest grinding temperature and energy ratio coefficient; (3 MQL grinding based on the five other vegetable oils produces similar grinding forces, grinding temperatures, and energy ratio coefficients, with values ranging between those of castor oil and palm oil; (4 viscosity significantly influences grinding force and grinding temperature to a greater extent than fatty acid varieties and contents in vegetable oils; (5 although more viscous vegetable oil exhibits greater lubrication and significantly lower grinding force than less viscous vegetable oil, high viscosity reduces the heat exchange capability of vegetable oil and thus yields a high grinding temperature; (6 saturated fatty acid is a more efficient lubricant than unsaturated fatty acid; and (7 a short carbon chain transfers heat more effectively than a long carbon chain. Palm oil is the optimum base oil of MQL grinding, and this base oil yields 26.98 N tangential grinding force, 87.10 N normal grinding force, 119.6 °C grinding temperature, and 42.7% energy

  2. Investigation of the impact of high liquid viscosity on jet atomization in crossflow via high-fidelity simulations

    Li, Xiaoyi; Gao, Hui; Soteriou, Marios C.


    Atomization of extremely high viscosity liquid can be of interest for many applications in aerospace, automotive, pharmaceutical, and food industries. While detailed atomization measurements usually face grand challenges, high-fidelity numerical simulations offer the advantage to comprehensively explore the atomization details. In this work, a previously validated high-fidelity first-principle simulation code HiMIST is utilized to simulate high-viscosity liquid jet atomization in crossflow. The code is used to perform a parametric study of the atomization process in a wide range of Ohnesorge numbers (Oh = 0.004-2) and Weber numbers (We = 10-160). Direct comparisons between the present study and previously published low-viscosity jet in crossflow results are performed. The effects of viscous damping and slowing on jet penetration, liquid surface instabilities, ligament formation/breakup, and subsequent droplet formation are investigated. Complex variations in near-field and far-field jet penetrations with increasing Oh at different We are observed and linked with the underlying jet deformation and breakup physics. Transition in breakup regimes and increase in droplet size with increasing Oh are observed, mostly consistent with the literature reports. The detailed simulations elucidate a distinctive edge-ligament-breakup dominated process with long surviving ligaments for the higher Oh cases, as opposed to a two-stage edge-stripping/column-fracture process for the lower Oh counterparts. The trend of decreasing column deflection with increasing We is reversed as Oh increases. A predominantly unimodal droplet size distribution is predicted at higher Oh, in contrast to the bimodal distribution at lower Oh. It has been found that both Rayleigh-Taylor and Kelvin-Helmholtz linear stability theories cannot be easily applied to interpret the distinct edge breakup process and further study of the underlying physics is needed.

  3. Viscosity-dependent drain current noise of AlGaN/GaN high electron mobility transistor in polar liquids

    Fang, J. Y.; Hsu, C. P.; Kang, Y. W.; Fang, K. C.; Kao, W. L.; Yao, D. J.; Chen, C. C.; Li, S. S.; Yeh, J. A.; Wang, Y. L.; Lee, G. Y.; Chyi, J. I.; Hsu, C. H.; Huang, Y. F.; Ren, F.


    The drain current fluctuation of ungated AlGaN/GaN high electron mobility transistors (HEMTs) measured in different fluids at a drain-source voltage of 0.5 V was investigated. The HEMTs with metal on the gate region showed good current stability in deionized water, while a large fluctuation in drain current was observed for HEMTs without gate metal. The fluctuation in drain current for the HEMTs without gate metal was observed and calculated as standard deviation from a real-time measurement in air, deionized water, ethanol, dimethyl sulfoxide, ethylene glycol, 1,2-butanediol, and glycerol. At room temperature, the fluctuation in drain current for the HEMTs without gate metal was found to be relevant to the dipole moment and the viscosity of the liquids. A liquid with a larger viscosity showed a smaller fluctuation in drain current. The viscosity-dependent fluctuation of the drain current was ascribed to the Brownian motions of the liquid molecules, which induced a variation in the surface dipole of the gate region. This study uncovers the causes of the fluctuation in drain current of HEMTs in fluids. The results show that the AlGaN/GaN HEMTs may be used as sensors to measure the viscosity of liquids within a certain range of viscosity

  4. Resistor capacitor, primitive variable solution of buoyant fluid flow within an enclosure with highly temperature dependent viscosity

    Burns, S.P. [Texas Univ., Austin, TX (United States); Gianoulakis, S.E. [Sandia National Labs., Albuquerque, NM (United States)


    A numerical solution for buoyant natural convection within a square enclosure containing a fluid with highly temperature dependent viscosity is presented. Although the fluid properties employed do not represent any real fluid, the large variation in the fluid viscosity with temperature is characteristic of turbulent flow modeling with eddy-viscosity concepts. Results are obtained using a primitive variable formulation and the resistor method. The results presented include velocity, temperature and pressure distributions within the enclosure as well as shear stress and heat flux distributions along the enclosure walls. Three mesh refinements were employed and uncertainty values are suggested for the final mesh refinement. These solutions are part of a contributed benchmark solution set for the subject problem.

  5. Melter feed viscosity during conversion to glass: Comparison between low-activity waste and high-level waste feeds

    Jin, Tongan [Pacific Northwest National Laboratory, Richland Washington; Chun, Jaehun [Pacific Northwest National Laboratory, Richland Washington; Dixon, Derek R. [Pacific Northwest National Laboratory, Richland Washington; Kim, Dongsang [Pacific Northwest National Laboratory, Richland Washington; Crum, Jarrod V. [Pacific Northwest National Laboratory, Richland Washington; Bonham, Charles C. [Pacific Northwest National Laboratory, Richland Washington; VanderVeer, Bradley J. [Pacific Northwest National Laboratory, Richland Washington; Rodriguez, Carmen P. [Pacific Northwest National Laboratory, Richland Washington; Weese, Brigitte L. [Pacific Northwest National Laboratory, Richland Washington; Schweiger, Michael J. [Pacific Northwest National Laboratory, Richland Washington; Kruger, Albert A. [U.S. Department of Energy, Office of River Protection, Richland Washington; Hrma, Pavel [Pacific Northwest National Laboratory, Richland Washington


    During nuclear waste vitrification, a melter feed (generally a slurry-like mixture of a nuclear waste and various glass forming and modifying additives) is charged into the melter where undissolved refractory constituents are suspended together with evolved gas bubbles from complex reactions. Knowledge of flow properties of various reacting melter feeds is necessary to understand their unique feed-to-glass conversion processes occurring within a floating layer of melter feed called a cold cap. The viscosity of two low-activity waste (LAW) melter feeds were studied during heating and correlated with volume fractions of undissolved solid phase and gas phase. In contrast to the high-level waste (HLW) melter feed, the effects of undissolved solid and gas phases play comparable roles and are required to represent the viscosity of LAW melter feeds. This study can help bring physical insights to feed viscosity of reacting melter feeds with different compositions and foaming behavior in nuclear waste vitrification.

  6. Compressibilities and viscosities of reference, vegetable, and synthetic gear lubricants

    Regueira Muñiz, Teresa; Lugo, Luis; Fernández, Josefa


    Nowadays, one of the primary choices of base oils for environmentally aware lubricants is vegetable oils. This is due to their good natural biodegradability and very low toxicity in combination with very good lubricity characteristics. The development of new vegetable-based lubricants requires...... values of six gear lubricants, two of them reference mineral oils and the other four developed biodegradable oils based in high oleic sunflower oil or in synthetic esters. It was found that all of the lubricants have both similar compressibilities and similar expansivities. Dowson and Higginson, Zhu.......06%. Dowson and Higginson and Zhu and Wen equations of state do not predict well the isothermal compressibilities, with AAD % being around 45% for both equations. Moreover, the viscosities were measured in the temperature range from 278.15 to 373.15 K at atmospheric pressure for these oils, and the viscosity...

  7. Study on Relaxation Damage Properties of High Viscosity Asphalt Sand under Uniaxial Compression

    Yazhen Sun


    Full Text Available Laboratory investigations of relaxation damage properties of high viscosity asphalt sand (HVAS by uniaxial compression tests and modified generalized Maxwell model (GMM to simulate viscoelastic characteristics coupling damage were carried out. A series of uniaxial compression relaxation tests were performed on HVAS specimens at different temperatures, loading rates, and constant levels of input strain. The results of the tests show that the peak point of relaxation modulus is highly influenced by the loading rate in the first half of an L-shaped curve, while the relaxation modulus is almost constant in the second half of the curve. It is suggested that for the HVAS relaxation tests, the temperature should be no less than −15°C. The GMM is used to determine the viscoelastic responses, the Weibull distribution function is used to characterize the damage of the HVAS and its evolution, and the modified GMM is a coupling of the two models. In this paper, the modified GMM is implemented through a secondary development with the USDFLD subroutine to analyze the relaxation damage process and improve the linear viscoelastic model in ABAQUS. Results show that the numerical method of coupling damage provides a better approximation of the test curve over almost the whole range. The results also show that the USDFLD subroutine can effectively predict the relaxation damage process of HVAS and can provide a theoretical support for crack control of asphalt pavements.

  8. Real-time monitoring of viscosity changes triggered by chemical reactions using a high-speed imaging method

    Wooseok Jung


    Full Text Available We present a method to monitor in real time peptide self-assembly or polymerization events. The temperature controlled modification of a previously reported splash test setup using high speed imaging enables to observe and measure rheological changes in liquid samples and can, in turn, monitor a peptide self-assembly or polymerization reaction accompanied with specific changes in solution viscosity. A series of 2 mm glass beads were dropped into an Fmoc-L3-OMe (methylated Fluorenylmethyloxycarbonyl-trileucine solution mixed with Alcalase 2.4 L (EC or first dipped in Tetramethylethylenediamine (TEMED, a catalyst for acrylamide polymerization, then dropped into acrylamide. The resulting splashes were observed using a high speed camera. The results demonstrate that the viscosity changes of the peptide sample during the peptide self-assembly or acrylamide polymerization affect the specific shape and evolution of the splashing event. Typically, the increase in viscosity while the reaction occurs decreased the size of the splash and the amount of time for the splash to reach maximum extension from the moment for the beads to impact the sample. The ability to observe rheological changes of sample state presents the opportunity to monitor the real time dynamics of peptide self-assembly or cross-polymerization. Keywords: High-speed imaging, Self-assembly, Viscosity sensor

  9. The Role of Viscosity Contrast on the Plume Structure and Dynamics in High Rayleigh Number Convection

    Kr, Sreenivas; Prakash, Vivek N.; Arakeri, Jaywant H.


    We study the plume structure in high Rayleigh number convection in the limit of large Prandtl numbers. This regime is relevant in Mantle convection, where the plume dynamics is not well understood due to complex rheology and chemical composition. We use analogue laboratory experiments to mimic mantle convection. Our focus in this paper is to understand the role of viscosity ratio, U, between the plume fluid and the ambient fluid on the structure and dynamics of the plumes. The PLIF technique has been used to visualize the structures of plumes rising from a planar source of compositional buoyancy at different regimes of U (1/300 to 2500). In the near-wall planform when U is one, a well-known dendritic line plume structure is observed. As U increases (U > 1; mantle hot spots), there is a morphological transition from line plumes to discrete spherical blobs, accompanied by an increase in the plume spacing and thickness. In vertical sections, as U increases (U > 1), the plume head shape changes from a mushroom-like structure to a "spherical-blob." When the U is decreased below one, (U<1; subduction regime), the formation of cellular patterns is favoured with sheet plumes. Both velocity and mixing efficiency are maximum when U is one, and decreases for extreme values of U. We quantify the morphological changes, dynamics and mixing variations of the plumes from experiments at different regimes.

  10. Inorganic/organic nanocomposites: Reaching a high filler content without increasing viscosity using core-shell structured nanoparticles

    Benhadjala, W., E-mail: [IMS Laboratory - UMR CNRS 5218, University of Bordeaux, 351 Cours de la Libération, 33405 Talence (France); CEA, LETI, Minatec Campus, 38000 Grenoble (France); Gravoueille, M.; Weiss, M. [EDF, Centre d' Expertise et d' Inspection dans les Domaines de la Réalisation et de l' Exploitation (CEIDRE), Chinon, BP 80, 37420 Avoine (France); Bord-Majek, I.; Béchou, L.; Ousten, Y. [IMS Laboratory - UMR CNRS 5218, University of Bordeaux, 351 Cours de la Libération, 33405 Talence (France); Suhir, E. [Maseeh College of Engineering and Computer Science, Portland State University, Oregon 97201 (United States); Buet, M.; Louarn, M.; Rougé, F.; Gaud, V. [Polyrise SAS, 16 Avenue Pey Berland, 33607 Pessac (France)


    Extensive research is being conducted on the development of inorganic/organic nanocomposites for a wide variety of applications in microelectronics, biotechnologies, photonics, adhesives, or optical coatings. High filler contents are usually required to fully optimize the nanocomposites properties. However, numerous studies demonstrated that traditional composite viscosity increases with increasing the filler concentration reducing therefore significantly the material processability. In this work, we synthesized inorganic/organic core-shell nanocomposites with different shell thicknesses. By reducing the shell thickness while maintaining a constant core size, the nanoparticle molecular mass decreases but the nanocomposite filler fraction is correlatively increased. We performed viscosity measurements, which clearly highlighted that intrinsic viscosity of hybrid nanoparticles decreases as the molecular mass decreases, and thus, as the filler fraction increases, as opposed to Einstein predictions about the viscosity of traditional inorganic/polymer two-phase mixtures. This exceptional behavior, modeled by Mark-Houwink-Sakurada equation, proves to be a significant breakthrough for the development of industrializable nanocomposites with high filler contents.

  11. Combination of sodium caseinate and succinylated alginate improved stability of high fat fish oil-in-water emulsions

    Yesiltas, Betül; Sørensen, Ann-Dorit Moltke; García Moreno, Pedro Jesús


    Sodium caseinate (CAS) and commercial sodium alginate (CA), long chain modified alginate (LCMA) or short chain modified alginate (SCMA) were used in combination for emulsifying and stabilizing high fat (50–70%) fish oil-in-water emulsions. Physical (creaming, droplet size, viscosity and protein...


    K. V.


    Full Text Available Aim of the work was to determine the efficiency of combined application of lime and high-viscous suspensions, containing the aluminium nanoparticles as a precursor in treatment of sugar-containing solutions. At the first stage the aluminium nanopowder, encapsulated into a salt matrix, was produced by the combined precipitation from a gas phase of metal and halogenide of alkali metal (NaCl. For the long-term stabilization of aluminum nanoparticles the method, developed by the authors, for dispersing these powders in the composition of polyethylene glycols was used, providing the colloidal solution of high viscosity (gel. At the second stage, as an object of investigation a juice of sugar beet, produced in the laboratory conditions by water extracting from the beet chips, was applied. In the produced juice the main characteristics of its quality were determined: the content of solids, sucrose, its purity was calculated (ratio of sucrose to solids content, in%. The content of protein and pectin components was also determined (as the main components of the colloidal fraction of the diffusion juice. Conventionally, as a basic reagent for the process of a lime pretreatment a lime milk of 1.18 g/cm3 density, prepared by liming the burned lime using hot water, was used. During the experiments the effectiveness of reagents, containing aluminum in nanoform, on the degree of removal of the colloidal dispersion substances in the process of juice purification in sugar beet production and improvement of its quality, is shown. However, the obtained results show that, depending on the method of producing, the additional reagents with aluminium nanoparticles have different effect on change of diffusion juice purity in the process of its treatment by the lime milk.

  13. Improved High Resolution Models of Subduction Dynamics: Use of transversely isotropic viscosity with a free-surface

    Liu, X.; Gurnis, M.; Stadler, G.; Rudi, J.; Ratnaswamy, V.; Ghattas, O.


    Dynamic topography, or uncompensated topography, is controlled by internal dynamics, and provide constraints on the buoyancy structure and rheological parameters in the mantle. Compared with other surface manifestations such as the geoid, dynamic topography is very sensitive to shallower and more regional mantle structure. For example, the significant dynamic topography above the subduction zone potentially provides a rich mine for inferring the rheological and mechanical properties such as plate coupling, flow, and lateral viscosity variations, all critical in plate tectonics. However, employing subduction zone topography in the inversion study requires that we have a better understanding of the topography from forward models, especially the influence of the viscosity formulation, numerical resolution, and other factors. One common approach to formulating a fault between the subducted slab and the overriding plates in viscous flow models assumes a thin weak zone. However, due to the large lateral variation in viscosity, topography from free-slip numerical models typically has artificially large magnitude as well as high-frequency undulations over subduction zone, which adds to the difficulty in making comparisons between model results and observations. In this study, we formulate a weak zone with the transversely isotropic viscosity (TI) where the tangential viscosity is much smaller than the viscosity in the normal direction. Similar with isotropic weak zone models, TI models effectively decouple subducted slabs from the overriding plates. However, we find that the topography in TI models is largely reduced compared with that in weak zone models assuming an isotropic viscosity. Moreover, the artificial `tooth paste' squeezing effect observed in isotropic weak zone models vanishes in TI models, although the difference becomes less significant when the dip angle is small. We also implement a free-surface condition in our numerical models, which has a smoothing

  14. Polymerization Behavior and Mechanical Properties of High-Viscosity Bulk Fill and Low Shrinkage Resin Composites.

    Shibasaki, S; Takamizawa, T; Nojiri, K; Imai, A; Tsujimoto, A; Endo, H; Suzuki, S; Suda, S; Barkmeier, W W; Latta, M A; Miyazaki, M

    The present study determined the mechanical properties and volumetric polymerization shrinkage of different categories of resin composite. Three high viscosity bulk fill resin composites were tested: Tetric EvoCeram Bulk Fill (TB, Ivoclar Vivadent), Filtek Bulk Fill posterior restorative (FB, 3M ESPE), and Sonic Fill (SF, Kerr Corp). Two low-shrinkage resin composites, Kalore (KL, GC Corp) and Filtek LS Posterior (LS, 3M ESPE), were used. Three conventional resin composites, Herculite Ultra (HU, Kerr Corp), Estelite ∑ Quick (EQ, Tokuyama Dental), and Filtek Supreme Ultra (SU, 3M ESPE), were used as comparison materials. Following ISO Specification 4049, six specimens for each resin composite were used to determine flexural strength, elastic modulus, and resilience. Volumetric polymerization shrinkage was determined using a water-filled dilatometer. Data were evaluated using analysis of variance followed by Tukey's honestly significant difference test (α=0.05). The flexural strength of the resin composites ranged from 115.4 to 148.1 MPa, the elastic modulus ranged from 5.6 to 13.4 GPa, and the resilience ranged from 0.70 to 1.0 MJ/m 3 . There were significant differences in flexural properties between the materials but no clear outliers. Volumetric changes as a function of time over a duration of 180 seconds depended on the type of resin composite. However, for all the resin composites, apart from LS, volumetric shrinkage began soon after the start of light irradiation, and a rapid decrease in volume during light irradiation followed by a slower decrease was observed. The low shrinkage resin composites KL and LS showed significantly lower volumetric shrinkage than the other tested materials at the measuring point of 180 seconds. In contrast, the three bulk fill resin composites showed higher volumetric change than the other resin composites. The findings from this study provide clinicians with valuable information regarding the mechanical properties and

  15. High viscosity and anisotropy characterize the cytoplasm of fungal dormant stress resistant spores

    Dijksterhuis, J.; Nijsse, J.; Hoekstra, F.A.; Golovina, E.A.


    Ascospores of the fungus Talaromyces macrosporus are dormant and extremely stress resistant, whereas fungal conidia¿the main airborne vehicles of distribution¿are not. Here, physical parameters of the cytoplasm of these types of spores were compared. Cytoplasmic viscosity and level of anisotropy as

  16. Environmentally friendly synthesis of reducing super-heavy oil viscosity; Sintesis amigable con el ambiente de reductores de viscosidad para petroleos Super-pesados

    Castro Sotelo, Laura Veronica [Instituto Politecnico Nacional, ESIQIE, Mexico, D.F. (Mexico)]. E-mail:; Flores Oropeza, Eugenio Alejandro [Instituto Mexicano del Petroleo, Mexico, D.F. (Mexico)]. E-mail:; Hernandez Garcia, Arnulfo [Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico)]. E-mail:; Vazquez Moreno, Flavio Salvador [Instituto Mexicano del Petroleo, Mexico, D.F. (Mexico)]. E-mail:


    There are certain polymers that have the character to be flow modifiers, and this emerges of the chemical structure and molecular interaction that the polymers have with the crude oil. Three polymers were prepared by emulsion polymerization were characterized, they were characterized by Fourier transform infrared (FTIR) spectroscopy and Size exclusion Size exclusion chromatography (SEC). To assess its implementation, the polymers were evaluated in heavy crude oils with rotational tests. The polymer concentration was evaluated at 1000 ppm, and it presented an appreciable reduction of viscosity in heavy crude oil. [Spanish] Existen ciertos polimeros que tienen el caracter de ser modificadores de flujo, y esto surge de la estructura quimica y las interacciones moleculares que presentan estos al contacto con el aceite crudo. Se sintetizaron tres polimeros a traves de la tecnica de polimerizacion en emulsion, los polimeros fueron caracterizados por Espectroscopia Infrarroja con transformada de Fourier (FTIR), tambien se utilizo la tecnica de Cromatografia por Exclusion de Tamanos (SEC). Para valorar su aplicacion, se evaluaron en aceites crudos pesados con pruebas rotacionales. La concentracion de los polimeros se valuo en 1000 ppm, y se aprecio un notable abatimiento de la viscosidad del aceite crudo pesado.

  17. The oil market towards 2030 - can OPEC combine high oil price with high market share

    Aune, Finn Roar; Glomsroed, Solveig; Lindholt, Lars; Rosendahl, Knut Einar


    In this paper we examine within a partial equilibrium model for the oil market whether OPEC can combine high oil prices with a high market share. The oil market model explicitly accounts for reserves, development and production in 4 field categories across 13 regions. Oil companies may invest in new field development or alternatively on improved oil recovery in the decline phase of fields in production. Non-OPEC production is profit-driven, whereas OPEC meets the residual call for OPEC oil at a pre-specified oil price, while maintaining a surplus capacity. The model is run over a range of exogenous oil prices from 15 to 60 $ per barrel. Sustained high oil prices stimulate Non-OPEC production, but its remaining reserves gradually diminish despite new discoveries. Oil demand is only slightly affected by higher prices. Thus, OPEC is able to keep and eventually increase its current market share beyond 2010 even with oil prices around $30 per barrel. In fact, the model simulations indicate that an oil price around $40 is profitable for OPEC, even in the long term. Sensitivity analyses show that the most profitable price level for OPEC is generally above $35 per barrel. Even with several factors working jointly in OPEC's disfavour, the oil price seems to stick to the 30 $ level. Thus, for OPEC there is a trade-off between high prices and high market share in the short to medium term, but not in the long term. For OECD countries, on the other hand, there is a clear trade-off between low oil prices and low import dependence. (Author)

  18. In vitro marginal adaptation of high-viscosity resin composite restorations bonded to dentin cavities.

    Rahiotis, Christos; Tzoutzas, John; Kakaboura, Afrodite


    The aim of this study was to evaluate the marginal adaptation of high-viscosity resin composite restoratives bonded to dentin in a cylindrical cavity model. The buccal enamel of 64 human premolars was removed and cylindrical cavities 3 mm in diameter and 1.3 mm in depth were prepared on each dentin surface. The cavities were divided into 8 groups of 8 cavities each and restored according to the manufacturers' instructions with the following adhesive/composite systems: Bond 1/Alert, Stae/Glacier, OptiBond Solo/Prodigy Condensable, One-Step/Pyramid, Solidbond/Solitaire, Prime&Bond NT/Surefil, One Coat Bond/Synergy, and Scotchbond 1/Z250. The composite surfaces were pressed against mylar strips, covered with cover slips, and photopolymerized in a single increment for 40 s. The restorations were polished with wet SiC papers of 320 to 1000 grit size to expose dentin margins. The marginal adaptation was evaluated immediately after photopolymerization and again after 1 week of storage in water at 37 +/- 1 degrees C. Evaluation was performed under a metallographic microscope at 200X magnification by recording the frequency of gap-free restorations (GF), the percentage length of the debonded margins relative to the cavity periphery (DM), the width of the maximum marginal gap (MG), and the marginal index (MI = MG x DM / 100). The results were statistically analyzed with one-way ANOVA and the Mann-Whitney U-test at alpha = 0.05. No incidence of gaps was found in 62.5% of One Coat Bond/Synergy and 37.5% of OptiBond Solo/Prodigy Condensable restorations. All the other restorative systems exhibited restorations with gaps. One Coat Bond/Synergy, Scotchbond 1/Z250, and OptiBond Solo/Prodigy Condensable were the groups with the lowest DM values, while Stae/Glacier showed the highest DM values. One Coat Bond/Synergy and OptiBond Solo/Prodigy Condensable revealed the lowest MI values and Stae/Glacier the highest. No statistically significant differences were recorded between

  19. A nontoxic, photostable and high signal-to-noise ratio mitochondrial probe with mitochondrial membrane potential and viscosity detectivity

    Chen, Yanan; Qi, Jianguo; Huang, Jing; Zhou, Xiaomin; Niu, Linqiang; Yan, Zhijie; Wang, Jianhong


    Herein, we reported a yellow emission probe 1-methyl-4-(6-morpholino-1, 3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl) pyridin-1-ium iodide which could specifically stain mitochondria in living immortalized and normal cells. In comparison to the common mitochondria tracker (Mitotracker Deep Red, MTDR), this probe was nontoxic, photostable and ultrahigh signal-to-noise ratio, which could real-time monitor mitochondria for a long time. Moreover, this probe also showed high sensitivity towards mitochondrial membrane potential and intramitochondrial viscosity change. Consequently, this probe was used for imaging mitochondria, detecting changes in mitochondrial membrane potential and intramitochondrial viscosity in physiological and pathological processes.

  20. Dynamic viscosity of polymer solutions

    Peterlin, A


    The dynamic viscosity investigation of solutions of long chain polymers in very viscous solvents has definitely shown the existence of the low and high frequency plateau with the gradual transition between them. In both extreme cases the extrapolation of the measured Newtonian viscosities of the plateaus to the infinite dilution yields the limiting intrinsic viscosities. Such a behavior is expected from the dynamic intrinsic viscosity of the necklace model of the linear polymer with finite internal viscosity. The plateau at low frequency shows up in any model of polymer solution. This work shows the constant dynamic intrinsic viscosity in both extreme cases is well reproducible by the necklace model with the internal viscosity acting only between the beads on the same link. 20 references.

  1. Altruism Can Proliferate through Population Viscosity despite High Random Gene Flow

    Schonmann, Roberto H.; Vicente, Renato; Caticha, Nestor


    The ways in which natural selection can allow the proliferation of cooperative behavior have long been seen as a central problem in evolutionary biology. Most of the literature has focused on interactions between pairs of individuals and on linear public goods games. This emphasis has led to the conclusion that even modest levels of migration would pose a serious problem to the spread of altruism through population viscosity in group structured populations. Here we challenge this conclusion, by analyzing evolution in a framework which allows for complex group interactions and random migration among groups. We conclude that contingent forms of strong altruism that benefits equally all group members, regardless of kinship and without greenbeard effects, can spread when rare under realistic group sizes and levels of migration, due to the assortment of genes resulting only from population viscosity. Our analysis combines group-centric and gene-centric perspectives, allows for arbitrary strength of selection, and leads to extensions of Hamilton’s rule for the spread of altruistic alleles, applicable under broad conditions. PMID:23991035

  2. Altruism can proliferate through population viscosity despite high random gene flow.

    Roberto H Schonmann

    Full Text Available The ways in which natural selection can allow the proliferation of cooperative behavior have long been seen as a central problem in evolutionary biology. Most of the literature has focused on interactions between pairs of individuals and on linear public goods games. This emphasis has led to the conclusion that even modest levels of migration would pose a serious problem to the spread of altruism through population viscosity in group structured populations. Here we challenge this conclusion, by analyzing evolution in a framework which allows for complex group interactions and random migration among groups. We conclude that contingent forms of strong altruism that benefits equally all group members, regardless of kinship and without greenbeard effects, can spread when rare under realistic group sizes and levels of migration, due to the assortment of genes resulting only from population viscosity. Our analysis combines group-centric and gene-centric perspectives, allows for arbitrary strength of selection, and leads to extensions of Hamilton's rule for the spread of altruistic alleles, applicable under broad conditions.

  3. Modeling of heat and high viscous fluid distributions with variable viscosity in a permeable channel

    J Hona


    Full Text Available The flow field under study is characterized by velocity components, temperature and pressure in non-dimensional formulation. The flow is driven by suction through the horizontal channel with permeable walls fixed at different temperatures. In order to ascertain a better understanding of the dynamic behavior of the flow, the Navier-Stokes equations and the energy equation are solved concurrently applying a similarity transformation technique. The hydrodynamic structures obtained from the numerical integration include flow reversal or backward flow, collision zones due to the coexistence of wall suction and flow reversal inside the channel, the inflection through temperature distribution, the growth of thermal gradients near the walls, and the sensitivity of normal pressure gradients to the difference of temperatures at boundaries. These hydrodynamic structures are investigated considering the influences of the Péclet number P and the sensitivity of viscosity to thermal variations α which are the main control parameters of the problem.

  4. Numerical modeling of frozen wave instability in fluids with high viscosity contrast

    Lyubimov, D V; Ivantsov, A O; Lyubimova, T P [Theoretical Physics Department, Perm State University, Perm (Russian Federation); Khilko, G L, E-mail: [Institute of Continuous Media Mechanics UB RAS, Perm (Russian Federation)


    This paper deals with the direct numerical simulation of quasi-stationary (frozen) wave formation at the interface of two immiscible fluids with large viscosity contrast, in a rectangular container subjected to the horizontal vibrations of finite frequency and amplitude. The critical conditions for the origination of a frozen wave as well as the dependences of the frozen wave height and wavelength on the vibration intensity are obtained. The time-evolution of the interface shape during the vibration period is analyzed. Numerical results are found to be in a good agreement with known experimental and linear stability results. The average deformation of the interface and the structure of average flows are calculated for different vibration intensities. It is shown that a change in the dependencies of the frozen wave characteristics on the vibration intensity follows a change in average flow structure. (paper)

  5. Comparative study between the radiopacity levels of high viscosity and of flowable composite resins, using digital imaging.

    Arita, Emiko S; Silveira, Gilson P; Cortes, Arthur R; Brucoli, Henrique C


    The development of countless types and trends of high viscosite and flowable composite resins, with different physical and chemical properties applicable to their broad use in dental clinics calls for further studies regarding their radiopacity level. The aim of this study was to evaluate the radiopacity levels of high viscosity and the flowable composite resins, using digital imaging. 96 composite resin discs 5 mm in diameter and 3 mm thick were radiographed and analyzed. The image acquisition system used was the Digora® Phosphor Storage System and the images were analyzed with the Digora software for Windows. The exposure conditions were: 70 kVp, 8 mA, and 0.2 s. The focal distance was 40 cm. The image densities were obtained with the pixel values of the materials in the digital image. Most of the high viscosity composite resins presented higher radiopacity levels than the flowable composite resins, with statistically significant differences between the trends and groups analyzed (P composite resins, Tetric®Ceram presented the highest radiopacity levels and Glacier® presented the lowest. Among the flowable composite resins, Tetric®Flow presented the highest radiopacity levels and Wave® presented the lowest.

  6. Characteristics and Composition of a High Oil Yielding Castor Variety from Pakistan.

    Panhwar, Tarique; Mahesar, Sarfaraz Ahmed; Mahesar, Abdul Waheed; Kandhro, Aftab Ahmed; Talpur, Farah Naz; Laghari, Zahid Hussain; Chang, Abdul Sattar; Hussain Sherazi, Syed Tufail


    Keeping in view the versatile applications of castor oil in cosmetic, pharmaceutical and recently as renewable source, the present work is a step towards the commercialization of castor on large scale in Pakistan. The current study introduces a castor variety with high oil content. Initially seeds were physically examined for some physical parameters. Seed moisture, ash content and linear dimensions such as length, width and thickness were found to be 4.53%, 6.44%, 12.24 mm, 8.31 mm and 5.67 mm, respectively. For oil extraction, Soxhlet method was used which resulted in the high oil content 54.0%. For quality assessment of oil, physicochemical parameters were checked according to official standard AOCS methods and compared with ASTM specifications. The determined parameters were as follows; specific gravity 0.953 g/cm(-3), refractive index 1.431, viscosity 672.0 mPas.s, moisture content 0.32%, FFA 0.14%, IV 83.61 gI2/100 g, PV 2.25 meq/Kg and SV 186.0 mgKOH/g. Furthermore, fatty acid analysis of oil showed that, most abundant fatty acid was ricinoleic acid 94.59%, followed by palmitic 0.31%, linoleic 1.84%, oleic (n-9) 2.05%, oleic (n-10) 0.22%, stearic 0.45% and eicosenoic acid 0.53%. The detected fatty acids were compared with registered variety and varieties of other regions.

  7. Density, thermal expansion coefficient and viscosity of sodium tetraborate (borax)-UO2 and of sodium metaborate-UO2 solutions at high temperatures

    Dalle Donne, M.; Dorner, S.; Roth, A.


    Measurements have been performed of the density, of the volumetric thermal expansion coefficient and of the viscosity of liquid sodium tetraborate (borax) and of sodium metaborate both pure and with two different amounts of UO 2 dissolved in each. The viscosity measurements have been performed for the solution of sodium tetraborate with UO 2 and CeO 2 , and with CeO 2 only as well. These data are required for the design of core-catchers based on sodium borates. The density measurements have been performed with the buoyancy method in the temperature range from 825 0 C to 1300 0 C, the viscosity measurements in the temperature range 700-1250 0 C with a modified Haake viscosity balance. The balance was previously calibrated at ambient temperature with a standard calibration liquid and at high temperatures, with data for pure borax available from the literature. (orig.)

  8. [Sputum viscosity and pulmonary function measurements during a one-week parenteral treatment with a standardized oxidation product of oil of turpentine and terpin hydrate].

    Löllgen-Horres, I; Löllgen, H


    In 23 patients with chronic obstructive lung diseases, viscosity, airway resistance, arterial blood gases and acid-base balance, and sputum aspect were measured before and after one-week treatment with Ozothin, a substance from oxidation products of ol. terebinth. and terpinum hydratum. Within this time, viscosity of the sputum was reduced, airway resistance decreased, and arterial oxygen pressure slightly increased, whereas arterial carbon dioxide tension obvious change of sputum aspect could be observed. Correlation calculations revealed no significant relations between viscosity and the above cited lung function values. The results indicate that administration of Ozothin may liquefy viscous secretion and reduce sputum viscosity.

  9. High resolution geodynamo simulations with strongly-driven convection and low viscosity

    Schaeffer, Nathanael; Fournier, Alexandre; Jault, Dominique; Aubert, Julien


    Numerical simulations have been successful at explaining the magnetic field of the Earth for 20 years. However, the regime in which these simulations operate is in many respect very far from what is expected in the Earth's core. By reviewing previous work, we find that it appears difficult to have both low viscosity (low magnetic Prandtl number) and strong magnetic fields in numerical models (large ratio of magnetic over kinetic energy, a.k.a inverse squared Alfvén number). In order to understand better the dynamics and turbulence of the core, we have run a series of 3 simulations, with increasingly demanding parameters. The last simulation is at the limit of what nowadays codes can do on current super computers, with a resolution of 2688 grid points in longitude, 1344 in latitude, and 1024 radial levels. We will show various features of these numerical simulations, including what appears as trends when pushing the parameters toward the one of the Earth. The dynamics is very rich. From short time scales to large time scales, we observe at large scales: Inertial Waves, Torsional Alfvén Waves, columnar convective overturn dynamics and long-term thermal winds. In addition, the dynamics inside and outside the tangent cylinder seem to follow different routes. We find that the ohmic dissipation largely dominates the viscous one and that the magnetic energy dominates the kinetic energy. The magnetic field seems to play an ambiguous role. Despite the large magnetic field, which has an important impact on the flow, we find that the force balance for the mean flow is a thermal wind balance, and that the scale of convective cells is still dominated by viscous effects.

  10. Viscosity of high concentration protein formulations of monoclonal antibodies of the IgG1 and IgG4 subclass - Prediction of viscosity through protein-protein interaction measurements

    Neergaard, Martin S; Kalonia, Devendra S; Parshad, Henrik


    The purpose of this work was to explore the relation between protein-protein interactions (PPIs) and solution viscosity at high protein concentration using three monoclonal antibodies (mAbs), two of the IgG4 subclass and one of the IgG1 subclass. A range of methods was used to quantify the PPI...... low or high protein concentration determined using DLS. The PPI measurements were correlated with solution viscosity (measured by DLS using polystyrene nanospheres and ultrasonic shear rheology) as a function of pH (4-9) and ionic strength (10, 50 and 150mM). Our measurements showed that the highest...... solution viscosity was observed under conditions with the most negative kD, the highest apparent radius and the lowest net charge. An increase in ionic strength resulted in a change in the nature of the PPI at low pH from repulsive to attractive. In the neutral to alkaline pH region the mAbs behaved...

  11. Fatty acid composition of maize germ oil from high-oil hybrids wet-milling processing

    Jovanović Petar Lj.


    Full Text Available Maize germ was obtained by wet-milling laboratory processing of domestic high-oil maize hybrids. After separation, the germ was subjected to extraction of maize oil. Fatty acid composition of maize germ oil was determined by gas chromatography. The results showed very high levels of unsaturated fatty acids and a constant sum of oleic and linoleic acids in oils of different maize hybrids.

  12. Defense Waste Processing Facility (DWPF) Viscosity Model: Revisions for Processing High TiO2 Containing Glasses

    Jantzen, C. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)


    Radioactive high-level waste (HLW) at the Savannah River Site (SRS) has successfully been vitrified into borosilicate glass in the Defense Waste Processing Facility (DWPF) since 1996. Vitrification requires stringent product/process (P/P) constraints since the glass cannot be reworked once it is poured into ten foot tall by two foot diameter canisters. A unique “feed forward” statistical process control (SPC) was developed for this control rather than statistical quality control (SQC). In SPC, the feed composition to the DWPF melter is controlled prior to vitrification. In SQC, the glass product would be sampled after it is vitrified. Individual glass property-composition models form the basis for the “feed forward” SPC. The models transform constraints on the melt and glass properties into constraints on the feed composition going to the melter in order to guarantee, at the 95% confidence level, that the feed will be processable and that the durability of the resulting waste form will be acceptable to a geologic repository. The DWPF SPC system is known as the Product Composition Control System (PCCS). The DWPF will soon be receiving wastes from the Salt Waste Processing Facility (SWPF) containing increased concentrations of TiO2, Na2O, and Cs2O . The SWPF is being built to pretreat the high-curie fraction of the salt waste to be removed from the HLW tanks in the F- and H-Area Tank Farms at the SRS. In order to process TiO2 concentrations >2.0 wt% in the DWPF, new viscosity data were developed over the range of 1.90 to 6.09 wt% TiO2 and evaluated against the 2005 viscosity model. An alternate viscosity model is also derived for potential future use, should the DWPF ever need to process other titanate-containing ion exchange materials. The ultimate limit on the amount of TiO2 that can be accommodated from SWPF will be determined by the three PCCS models, the waste composition of a given sludge

  13. Fortum Oil and Gas 2000: Exceptionally high price of crude oil and strong refining margins

    Ropponen, V.-M.


    Fortum intends to be an active player in the structural reorganization of the oil business by utilizing its niche position in oil refining. Fortum produces sophisticated motor fuel components, which it uses in its reformulated gasolines and sells and exports to other oil companies, even to highly demanding markets in California. The increase in the price of crude oil considerably improved the results of Oil and Gas Upstream. Similarly, an improvement in the refining margin, as well as profitable shipping operations and a strong demand for gasoline components, boosted the results of Oil Refining and Marketing. (orig.)

  14. Intensification of transferring the Kazakhstan high-congealed oil: challenges and advances

    Maimakov, Tayhan P.; Boiko, Galinal; Lyubchenko, Nina P. [High education institute «UNAT», Almaty (Kazakhstan); Shaihutdinov, Yerengaip M. [Kazakh national technical university, Almaty (Kazakhstan)


    It were investigated the rheohgica! parameters of South-Turgay region crude oils at presence of novel pour point depressant additive DP-43/2005. It has shown that additive improves pour point and rheohgica; properties of crude oil mixture Kumkol-Akshabidak, inhibits wax deposition and can provide safe conditions of crude oil mixture transportation through pipeline at the cold season of year. Keywords: oil, temperature of fluidity loss, rheology, viscosity, oligomer depressor dopants.

  15. Laser Induced Forward Transfer of High Viscosity Silver Paste for New Metallization Methods in Photovoltaic and Flexible Electronics Industry

    Chen, Y.; Munoz-Martin, D.; Morales, M.; Molpeceres, C.; Sánchez-Cortezon, E.; Murillo-Gutierrez, J.

    Laser Induced Forward Transfer (LIFT) has been studied in the past as a promising approach for precise metallization in electronics using metallic inks and pastes. In this work we present large area metallization using LIFT of fully commercial silver-based pastes initially designed for solar cell screen-printing. We discuss the mechanisms for the material transfer both in ns and ps regimes of irradiation of these high viscosity materials, and the potential use of this technique in the photovoltaic industry (both in standard c-Si solar cells and thin film technologies) and flexible electronics devices. In particular we summarize the results of our group in this field, demonstrating that our approach is capable of improving the aspect ratio of the standard metallization patterns achieved with screen-printing technologies in those technological fields and, in addition, of fulfilling the requirements imposed by the mechanical properties of the substrates in flexible electronic applications.

  16. Behavior of pressure and viscosity at high densities for two-dimensional hard and soft granular materials

    Otsuki, Michio; Hayakawa, Hisao; Luding, Stefan


    The pressure and the viscosity in two-dimensional sheared granular assemblies are investigated numerically. The behavior of both pressure and viscosity is smoothly changing qualitatively when starting from a mono-disperse hard-disk system without dissipation and moving towards a system of (i)

  17. Multiple-relaxation-time lattice Boltzmann model for incompressible miscible flow with large viscosity ratio and high Péclet number

    Meng, Xuhui; Guo, Zhaoli


    A lattice Boltzmann model with a multiple-relaxation-time (MRT) collision operator is proposed for incompressible miscible flow with a large viscosity ratio as well as a high Péclet number in this paper. The equilibria in the present model are motivated by the lattice kinetic scheme previously developed by Inamuro et al. [Philos. Trans. R. Soc. London, Ser. A 360, 477 (2002), 10.1098/rsta.2001.0942]. The fluid viscosity and diffusion coefficient depend on both the corresponding relaxation times and additional adjustable parameters in this model. As a result, the corresponding relaxation times can be adjusted in proper ranges to enhance the performance of the model. Numerical validations of the Poiseuille flow and a diffusion-reaction problem demonstrate that the proposed model has second-order accuracy in space. Thereafter, the model is used to simulate flow through a porous medium, and the results show that the proposed model has the advantage to obtain a viscosity-independent permeability, which makes it a robust method for simulating flow in porous media. Finally, a set of simulations are conducted on the viscous miscible displacement between two parallel plates. The results reveal that the present model can be used to simulate, to a high level of accuracy, flows with large viscosity ratios and/or high Péclet numbers. Moreover, the present model is shown to provide superior stability in the limit of high kinematic viscosity. In summary, the numerical results indicate that the present lattice Boltzmann model is an ideal numerical tool for simulating flow with a large viscosity ratio and/or a high Péclet number.

  18. The viscosity of dimethyl ether

    Sivebæk, Ion Marius; Jakobsen, Jørgen


    and NOx traps are installed. The most significant problem encountered when engines are fuelled with DME is that the injection equipment breaks down prematurely due to extensive wear. This tribology issue can be explained by the very low lubricity and viscosity of DME. Recently, laboratory methods have...... appeared capable of measuring these properties of DME. The development of this is rendered difficult because DME has to be pressurised to remain in the liquid state and it dissolves most of the commercially available elastomers. This paper deals fundamentally with the measurement of the viscosity of DME...... and extends the discussion to the difficulty of viscosity establishing of very thin fluids. The main issue here is that it is not easy to calibrate the viscometers in the very low viscosity range corresponding to about one-fifth of that of water. The result is that the low viscosity is measured at high...

  19. Do light cured ART conventional high-viscosity glass-ionomer sealants perform better than resin-composite sealants: a 4-year randomized clinical trial

    Zhang, W.; Chen, X.; Fan, M.W.; Mulder, J.; Huysmans, M.C.D.N.J.M.; Frencken, J.E.F.M.


    OBJECTIVE: The hypotheses tested were: the cumulative survival rates of dentin caries lesion-free pits and fissures of ART conventional high-viscosity glass-ionomer sealants with light-curing (high-intensity LED) and glass-carbomer sealants are higher than those of conventional ART sealants and

  20. Viewpoint On the Climate Change Effects of High Oil Prices

    Vielle, M.; Viguier, L.


    Some commentators claim that the oil market has achieved within a few months what international bureaucrats have struggled to obtain in a decade of international climate negotiations. The fallacy of the oil price argument is that substitutions and income effects that would result from higher oil prices are not considered. Using a computable general equilibrium model, we show that high oil prices cannot serve as substitutes for effective climate policies.

  1. Kolkhoung (Pistacia khinjuk Hull Oil and Kernel Oil as Antioxidative Vegetable Oils with High Oxidative Stability and Nutritional Value

    Maryam Asnaashari


    Full Text Available In this study, in order to introduce natural antioxidative vegetable oil in food industry, the kolkhoung hull oil and kernel oil were extracted. To evaluate their antioxidant efficiency, gas chromatography analysis of the composition of kolkhoung hull and kernel oil fatty acids and high–performance liquid chromatography analysis of tocopherols were done. Also, the oxidative stability of the oil was considered based on the peroxide value and anisidine value during heating at 100, 110 and 120 °C. Gas chromatography analysis showed that oleic acid was the major fatty acid of both types of oil (hull and kernel and based on a low content of saturated fatty acids, high content of monounsaturated fatty acids, and the ratio of ω-6 and ω-3 polyunsaturated fatty acids, they were nutritionally well-balanced. Moreover, both hull and kernel oil showed high oxidative stability during heating, which can be attributed to high content of tocotrienols. Based on the results, kolkhoung hull oil acted slightly better than its kernel oil. However, both of them can be added to oxidation–sensitive oils to improve their shelf life.

  2. The kinematic viscosity influence on energetic cost of oil pipeline flow; Influencia da viscosidade cinematica sobre o custo energetico no escoamento de petroleo

    Lucena, Kennedy F.M. [Centro Federal de Educacao Tecnologica da Paraiba (CEFET-PB), Joao Pessoa, PB (Brazil); Torres, Euriclides G.; Lacerda, Ivonaldo de S.; Machado, Erica C.M.N. [Universidade Federal de Campina Grande, PB (Brazil)


    In the petroleum pipelines flow the objective of the maximum production with the minor cost is desired, considering the techniques, operational and administrative restrictions. One of the biggest difficulties in the pipelines flow is related to increase of viscosity that the fluids produced can present and to the variations during the transport. In this study had been analyzed through computational simulations, using Smart Pumping software, the hydraulic behavior of the network and the operational cost with energy consumption, in function of the variation of the viscosity. Two scenes had been simulated, using a initial kinematic viscosity of 3,029x10{sup -5} m{sup 2}/s, that it was reduced gradually until the minimum limit of 10% of initial viscosity, remaining the too much constant the fluid properties. In scene 1 it was verified that the reduction of viscosity implied in the reduction of the energy cost in up to 14,53%, increase of the daily production in up to 3,88% and the reduction in the cost for m3 flowed off in up to 17,73%, without alterations in the operations. Scene 2 presented similar behavior to scene 1, however, had been necessary interventions to get operations that did not violate the restrictions. The results had ratified the interference of viscosity in the operations and the system petroleum flow costs. (author)

  3. Influence of oil and mineral characteristics on oil-mineral interaction

    Wood, P.A.; Lunel, T.; Daniel, F.; Swannell, R.; Lee, K.; Stoffyn-Egli, P.


    A laboratory study was conducted to simulate the process of oil-mineral interaction in seawater. Thirteen different crudes, emulsions and oil products were used in the study. The objective was to improve the fundamental understanding of the characteristics of oils and minerals that influence the process. The findings of an initial phase of studies based on the swirling flask and marine simulation procedures were also described. Oil content associated with flocs to oil and mineral characteristics were discussed. Emulsions were prepared at 10 degrees C by vigorously mixing the oil with excess artificial seawater in a Kilner jar using a high shear homogenizer. Topped oils were prepared by distillation to 250 degrees C. The biodegraded oil was prepared from the topped crude oil. Biodegradation was achieved over a 28 day period using natural seawater and naturally occurring hydrocarbon degraders. The relationships between oil concentration, oil density and mineral exchange capacity were determined. The study showed that greater oil concentrations in the water column could be expected with (1) the presence of mineral fines, (2) minerals with greater cation exchange rates, (3) minerals with finer sizes, and (4) oils of lower viscosity and density. It was determined that in coastal waters the viscosity of the oil/emulsion will likely be the main factor affecting oil-mineral interactions. The viscosity limit for allowing oil fines interaction is likely to be dependent on the energy in the coastal zone affected by the oil pollution. 18 refs., 5 tabs., 13 figs

  4. Certain laws governing the influence of high molecular polymer additives on specific electrical conductivity and viscosity of zincate alkaline solution

    Dmitrenko, V.Ye.; Toropetsera, T.N.; Zubov, M.S.


    A study was made of the influence of polymer additives of different nature: polyelectrolyte, copolymer of ethylene with maleic anhydride, polymethacrylic acid and nonpolyectrolyte copolymer of vinyl alcohol with vinyleneglycol and polyvinyleneglycol on specific electrical conductance and viscosity of the zincate alkaline solution. It is indicated that with an increase in the content of additives, the specific conductance of the solution diminishes according to a linear law, while the viscosity rises. The additives of polyelectrolyte nature reduce more strongly the specific conductance and increase the viscosity than the nonpolyelectrolyte additives. From a comparison of the data on specific conductance and viscosity the following conclusion is drawn: the more the polymer ''structures'' the zincate alkaline solution, the more strongly it reduces its specific electrical conductance.

  5. Influence of CO{sup 2} on PVT properties of an oil crude at high pressure

    Kim, Nilo Ricardo; Bonet, Euclides Jose [Centro de Estudos de Petroleo (CEPETRO/UNICAMP), SP (Brazil); Elias Junior, Antonio; Trevisan, Osvair Vidal [Universidade Estadual de Campinas (DEP/FEM/UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica. Dept. de Engenharia de Petroleo


    The current oil frontier in Brazil is in Santos and Campos Basins, where huge oil accumulations were identified recently. Well tests have shown high values of pressure and concentration of carbon dioxide in these reservoirs. The characterization of the fluids existing in the pores of the reservoir rocks is a task for the exploitation of the hydrocarbons. The objective of this work is to present the experimental set up that was assembled to perform PVT analysis for oils at high pressure, moderate temperature and high CO{sub 2} content, oils analogous to that found in the new Brazilian pre-salt discoveries. Samples of dead oil and synthetic gas were received at the laboratory, where the recombination was carried out to obtain live oil, with twelve mole percent CO{sub 2}. The fluids were maintained inside special cylinders, with a floating piston, separating two compartments, one with the test fluid and the other with hydraulic fluid. Pressure was provided by a positive displacement pump connected to the bottles. The experiments achieved pressures up to 70 MPa at constant temperature, conditions expected for the reservoir. Starting at the high pressure, the fluid volume was increased by withdrawing the hydraulic fluid from the cylinder. Pressure and volume were recorded to determine the bubble point and compressibility of the system. The pressure drop continued until the mixture was in the two phase region, finishing the constant composition expansion process. After that, the sample was re-pressurized and the PVT bottle was agitated to reach the thermodynamic equilibrium, when the live oil was at single phase again. An aliquot of this mixture was transferred, keeping their pressure and temperature conditions, to a high pressure viscometer and to a densimeter. Another portion of live oil was flashed to a test tube and to a gasometer, to render the gas oil ratio. Afterwards, successive additions of carbon dioxide increased its concentration in live oil to 15, 20 and 35

  6. Equations of viscous flow of silicate liquids with different approaches for universality of high temperature viscosity limit

    Ana F. Kozmidis-Petrović


    Full Text Available The Vogel-Fulcher-Tammann (VFT, Avramov and Milchev (AM as well as Mauro, Yue, Ellison, Gupta and Allan (MYEGA functions of viscous flow are analysed when the compositionally independent high temperature viscosity limit is introduced instead of the compositionally dependent parameter η∞ . Two different approaches are adopted. In the first approach, it is assumed that each model should have its own (average high-temperature viscosity parameter η∞ . In that case, η∞ is different for each of these three models. In the second approach, it is assumed that the high-temperature viscosity is a truly universal value, independent of the model. In this case, the parameter η∞ would be the same and would have the same value: log η∞ = −1.93 dPa·s for all three models. 3D diagrams can successfully predict the difference in behaviour of viscous functions when average or universal high temperature limit is applied in calculations. The values of the AM functions depend, to a greater extent, on whether the average or the universal value for η∞ is used which is not the case with the VFT model. Our tests and values of standard error of estimate (SEE show that there are no general rules whether the average or universal high temperature viscosity limit should be applied to get the best agreement with the experimental functions.

  7. A low viscosity, low boiling point, clean solvent system for the rapid crystallisation of highly specular perovskite films

    Noel, Nakita K.; Habisreutinger, Severin N.; Wenger, Bernard; Klug, Matthew T.; Hörantner, Maximilian T.; Johnston, Michael B.; Nicholas, Robin J.; Moore, David T.; Snaith, Henry J.


    Perovskite-based photovoltaics have, in recent years, become poised to revolutionise the solar industry. While there have been many approaches taken to the deposition of this material, one-step spin-coating remains the simplest and most widely used method in research laboratories. Although spin-coating is not recognised as the ideal manufacturing methodology, it represents a starting point from which more scalable deposition methods, such as slot-dye coating or ink-jet printing can be developed. Here, we introduce a new, low-boiling point, low viscosity solvent system that enables rapid, room temperature crystallisation of methylammonium lead triiodide perovskite films, without the use of strongly coordinating aprotic solvents. Through the use of this solvent, we produce dense, pinhole free films with uniform coverage, high specularity, and enhanced optoelectronic properties. We fabricate devices and achieve stabilised power conversion efficiencies of over 18% for films which have been annealed at 100 degrees C, and over 17% for films which have been dried under vacuum and have undergone no thermal processing. This deposition technique allows uniform coating on substrate areas of up to 125 cm2, showing tremendous promise for the fabrication of large area, high efficiency, solution processed devices, and represents a critical step towards industrial upscaling and large area printing of perovskite solar cells.

  8. Drop splashing: the role of surface wettability and liquid viscosity

    Almohammadi, Hamed; Amirfazli, Alidad; -Team


    There are seemingly contradictory results in the literature about the role of surface wettability and drop viscosity for the splashing behavior of a drop impacting onto a surface. Motivated by such issues, we conducted a systematic experimental study where splashing behavior for a wide range of the liquid viscosity (1-100 cSt) and surface wettability (hydrophilic to hydrophobic) are examined. The experiments were performed for the liquids with both low and high surface tensions ( 20 and 72 mN/m). We found that the wettability affects the splashing threshold at high or low contact angle values. At the same drop velocity, an increase of the viscosity (up to 4 cSt) promotes the splashing; while, beyond such value, any increase in viscosity shows the opposite effect. It is also found that at a particular combination of liquid surface tension and viscosity (e.g. silicone oil, 10 cSt), an increase in the drop velocity changes the splashing to spreading. We relate such behaviors to the thickness, shape, and the velocity of the drop's lamella. Finally, to predict the splashing, we developed an empirical correlation which covers all of the previous reported data, hence clarifying the ostensible existing contradictions.

  9. Characteristic of natural rubber latex-methyl metha-crylate copolymer in mineral lubricant base oil

    Meri Suhartini; Rahmawati


    Natural rubber latex-methyl methacrylate copolymer was diluted in xylene, then diluted in four types of lubricant base oil with concentrations of 0.25%, 1%, 5%, and 10%. The mixed solutions were analyzed to obtain kinematics viscosity, viscosity index, density, ash content, metal content, flash point, shear stability and total alkali number. The viscosity index of sample, increased by adding the copolymer solution. The results showed that lubricant base oil of High Viscosity index (HVI) 60 and mixed HVI 60: HVI 650 gave optimum viscosity index. The higher concentration of polymer added into base lubricant oil, the higher viscosity index obtained. The shear stability test showed that the kinematics viscosity of sample decreased 6.5% after 60 minutes of treatment test. (author)

  10. Role of alkyl alcohol on viscosity of silica-based chemical gels for decontamination of highly radioactive nuclear facilities

    Choi, B. S.; Yoon, S. B.; Jung, C. H.; Lee, K. W.; Moon, J. K.


    Silica-based chemical gel for the decontamination of nuclear facilities was prepared by using fumed silica as a viscosifier, a 0.5 M Ce (IV) solution dissolved in concentrated nitric acid as a chemical decontamination agent, and tripropylene glycol butyl ether (TPGBE) as a co-viscosifier. A new effective strategy for the preparation of the chemical gel was investigated by introducing the alkyl alcohols as organic solvents to effectively dissolve the co-viscosifier. The mixture solution of the co-viscosifier and alkyl alcohols was more effective in the control of viscosity than that of the co-viscosifier only in gel. Here, the alkyl alcohols played a key role as an effective dissolution solvent for the co-viscosifier in the preparation of the chemical gel, resulting in a reducing of the amount of the co-viscosifier and gel time compared with that of the chemical gel prepared without the alkyl alcohols. It was considered that the alkyl alcohols contributed to the effective dissolution of the co-viscosifier as well as the homogeneous mixing in the formation of the gel, while the co-viscosifier in an aqueous media of the chemical decontamination agent solution showed a lower solubility. The decontamination efficiency of the chemical gels prepared in this work using a multi-channel analyzer (MCA) showed a high decontamination efficiency of over ca. 94% and ca. 92% for Co-60 and Cs-137 contaminated on surface of the stainless steel 304, respectively. (authors)

  11. Effect of high-pressure-jet processing on the viscosity and foaming properties of pasteurized whole milk.

    Tran, M; Roberts, R; Felix, T L; Harte, F M


    The processing of milk using high-pressure technologies has been shown to dissociate casein micelles, denature whey proteins, and change the appearance and rheological properties of milk. A novel high-pressure processing technology called high-pressure-jet (HPJ) processing is currently being investigated for use in the food industry. Few studies have evaluated the effects of HPJ technology on dairy foods. The present study investigated the physicochemical and foaming properties of homogenized pasteurized whole milk processed at pressures from 0 to 500 MPa using HPJ processing. The apparent particle size exhibited a monomodal distribution in whole milk samples processed up to 125 MPa and a bimodal distribution for samples processed at 250, 375, and 500 MPa. The viscosity increased from approximately 2 to 5 mPa·s when whole milk was processed using HPJ at 375 MPa, and foam expansion increased from approximately 80 to 140% after processing at >125 MPa. Foam stability was limited to pressures in the 375 to 500 MPa range. We hypothesized that the increase in apparent particle size was due to the dissociation of casein micelles into surface-active casein protein monomers, and the formation of casein-casein and casein-fat particles. Ultracentrifugation of samples into 3 milk fractions (supernatant, serum, and precipitate), and subsequent fat and protein analysis on the 3 fractions, showed that a strong interaction between casein proteins and fat triglycerides occurred, evidenced by the increase in fat content associated with the precipitate fraction with increasing pressure. This suggests that stable casein-fat aggregates are formed when whole milk is processed using HPJ at pressure >125 MPa. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. High oil prices: A non-OPEC capacity game

    Osmundsen, Petter; Asche, Frank; Misund, Baard; Mohn, Klaus


    The current high oil price is partly due to low investments in the oil industry the last decade. According to economic theory, exploration and development of new oil and gas fields should respond positively to increasing petroleum prices. But since the late 1990s, financial analysts have focused strongly on short-term accounting return measures, like RoACE, for benchmarking and valuation of international oil and gas companies. Consequently, the demand for strict capital discipline among oil and gas companies may have reduced their willingness to invest for future reserves and production growth. Thus, we have experienced an unusual combination of high oil prices and low investment levels in exploration and development. In many ways, the oil companies' focus on RoACE, at the expense of reserve replacement, resembles an implicit co-ordination on low capacity among non-OPEC petroleum producers. This is a partial explanation of the current high oil prices. By examining actual parameters used by the financial markets in pricing of oil companies, we address the issue of whether the low investment outcome could represent a long-term equilibrium. This is hardly likely, as oil companies are made aware that stronger emphasis is put on reserve replacement. (Author)

  13. Analysis of physical characteristics of vegetable oils

    Piamba Tulcan, Oscar Edwin [Universidade Nacional da Colombia (UNAL), Bogota (Colombia). Fac. de Ingenieria; Universidade Federal Fluminense (PGMEC/UFF), Niteroi, RJ (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica], E-mail:; Andrade, Danielle Oliveira de; Andrade, Ednilton Tavares de [Universidade Federal Fluminense (TER/UFF), Niteroi, RJ (Brazil). Dept. de Engenharia Agricola e do Meio Ambiente; Pereira, Roberto Guimaraes [Universidade Federal Fluminense (TER/UFF), Niteroi, RJ (Brazil). Dept. de Engenharia Mecanica


    Different vegetable oils were characterized using standardized methods. The evaluated characteristics were density, viscosity, flow point, cloud point and corrosion. The obtained data was tabulated and compared with average composition values of oils in percentage of fatty acids and iodine number for each oil. In this analysis it is shown that viscosity decreases with the increase of the iodine number, and density decrease. The cloud and flow point have greater relation with the presence of saturated or highly unsaturated fatty acids, respectively. The index of corrosion is greater when oil saturation or its iodine number are increased. (author)

  14. Numerical experiments on thermal convection of highly compressible fluids with variable viscosity and thermal conductivity: Implications for mantle convection of super-Earths

    Kameyama, Masanori; Yamamoto, Mayumi


    We conduct a series of numerical experiments of thermal convection of highly compressible fluids in a two-dimensional rectangular box, in order to study the mantle convection on super-Earths. The thermal conductivity and viscosity are assumed to exponentially depend on depth and temperature, respectively, while the variations in thermodynamic properties (thermal expansivity and reference density) with depth are taken to be relevant for the super-Earths with 10 times the Earth's. From our experiments we identified a distinct regime of convecting flow patterns induced by the interplay between the adiabatic temperature change and the spatial variations in viscosity and thermal conductivity. That is, for the cases with strong temperature-dependent viscosity and depth-dependent thermal conductivity, a "deep stratosphere" of stable thermal stratification is formed at the base of the mantle, in addition to thick stagnant lids at their top surfaces. In the "deep stratosphere", the fluid motion is insignificant particularly in the vertical direction in spite of smallest viscosity owing to its strong dependence on temperature. Our finding may further imply that some of super-Earths which are lacking in mobile tectonic plates on their top surfaces may have "deep stratospheres" at the base of their mantles.

  15. Biodegradation studies of oil sludge containing high hydrocarbons concentration

    Olguin-Lora, P.; Munoz-Colunga, A.; Castorena-Cortes, G.; Roldan-Carrillo, T.; Quej Ake, L.; Reyes-Avila, J.; Zapata-Penasco, I.; Marin-Cruz, J.


    Oil industry has a significant impact on environment due to the emission of, dust, gases, waste water and solids generated during oil production all the way to basic petrochemical product manufacturing stages. the aim of this work was to evaluate the biodegradation of sludge containing high hydrocarbon concentration originated by a petroleum facility. A sludge sampling was done at the oil residuals pool (ORP) on a gas processing center. (Author)

  16. Simultaneous free-volume modeling of the self-diffusion coefficient and dynamic viscosity at high pressure

    Boned, C.; Allal, A.; Baylaucq, A.


    applied to dynamic viscosity, has been considered and generalized. In this generalized model the compound is characterized by only four parameters. But if the quadratic length is known, the number of adjustable parameters is three. The compounds considered in this work are benzene, carbon tetrachloride...

  17. High oil prices are here to stay

    Toennesen, Bjoern Inge


    The presentation discusses the development in the OPEC countries with emphasis on oil price fluctuation, spare production capacity and OPEC control. The capacity expansion in non-OPEC countries and the global demand development are also surveyed. (tk)

  18. Effect of high hydrostatic pressure and high dynamic pressure on stability and rheological properties of model oil-in-water emulsions

    Bigikocin, Erman; Mert, Behic; Alpas, Hami


    Both static and dynamic high pressure applications provide interesting modifications in food structures which lead to new product formulations. In this study, the effects of two different treatments, high hydrostatic pressure (HHP) and high dynamic pressure (HDP), on oil-in-water emulsions were identified and compared. Microfluidization was selected from among the HDP homogenization techniques. The performance of each process was analyzed in terms of rheological modifications and emulsion stability improvements compared with the coarse emulsions. The stability of the emulsions was determined comparatively by using an analytical photo-centrifuge device employing novel analysis technology. Whey protein isolate (WPI) in combination with a food polysaccharide (xanthan gum, guar gum or locust bean gum) were used as emulsifying and stabilizing ingredients. The effective disruption of oil droplets and the degradation of polysaccharides by the shear forces under high pressure in HDP microfluidization yielded finer emulsions with lower viscosities, leading to distinctive improvements in emulsion stability. On the other hand, improvements in stability obtained with HHP treatment were due to the thickening of the emulsions mainly induced by protein unfolding. The corresponding increases in viscosity were intensified in emulsion formulations containing higher oil content. Apart from these, HHP treatment was found to be relatively more contributive to the enhancements in viscoelastic properties.

  19. Oil spill in Bombay high marine impacts

    pollutant contamination requires reliable baseline against which the measured environmental quality can be compared. Fortunately, the coastal waters of Murud are being periodically monitored under the Coastal Ocean Monitoring and Prediction System (COMAPS... avoidance reaction even at low concentration of oil in water. Moreover, the fish possesses an enzyme system which can deal with petroleum hydrocarbons in its tissues. Hence, fish kills due to oil pollution are rare and when occur, the numbers involved...

  20. Potential of Cogon Grass as an Oil Sorbent

    Wiloso, Edi Iswanto; Barlianti, Vera; Anggraini, Irni Fitria; Hendarsyah, Hendris


    Experiments on the potential of Cogon grass (lmperata cylindrica), a weed harmful to other plants, for use as a low-cost and biodegradable oil sorbent were carried out under various spill conditions. Flowers of Cogon grass adsorbed much larger amount of high-viscosity lubricating oil (57.9 g-oil/g-sorbent) than that adsorbed by Peat Sorb (7.7 g-oil/g-sorbent), a commercial oilsorbent based on peat. However, the flowers adsorbed only 27.9 g of low-viscosity crude oillgsorbent. In an oil-water ...

  1. The impact of high oil prices on natural gas

    Koevoet, H.


    The principle of gas-to-oil (oil prices determine the price of natural gas) in the Netherlands and several other developments elsewhere (war in Iraq and a cold winter in the USA) has caused high natural gas prices. The question is whether the liberalization of the energy market can change this principle [nl

  2. Properties of organogels of high stearic soybean oil

    Recently, the U.S. Food and Drug Administration (FDA) announced that food companies have to phase out the use of partially hydrogenated oils containing trans-fats by 2018. The use of high-stearic oils has been recognized as one of the ways to replace trans fats in food. Organogels also have drawn a ...

  3. Getting the oil to the shore

    Menin, J.A.; Meuter, P.


    Conveying highly corrosive fluids - hot water dissolved in salt and sulfide - is just one aspect of getting oil from the field to the shore. Brazilian oil company Petrobras had a requirement for high pressure pumps that could handle high viscosity fluids at its Campos off-shore oil field and be easily maintained. Joao Alberto Menin, Paul Meuter explains how Sulzer Pumps rose to the challenge. (author)

  4. High-Pressure-High-Temperature Processing Reduces Maillard Reaction and Viscosity in Whey Protein-Sugar Solutions

    Avila Ruiz, Geraldine; Xi, Bingyan; Minor, Marcel; Sala, Guido; Boekel, van Tiny; Fogliano, Vincenzo; Stieger, Markus


    The aim of the study was to determine the influence of pressure in high-pressure-high-temperature (HPHT) processing on Maillard reactions and protein aggregation of whey protein-sugar solutions. Solutions of whey protein isolate containing either glucose or trehalose at pH 6, 7, and 9 were


    Yan Changshuo; Wang Jianmin


    High spatial resolution observations show that high-redshift galaxies are undergoing intensive evolution of dynamical structure and morphologies displayed by the Hα, Hβ, [O III], and [N II] images. It has been shown that supernova explosion (SNexp) of young massive stars during the star formation epoch, as kinetic feedback to host galaxies, can efficiently excite the turbulent viscosity. We incorporate the feedback into the dynamical equations through mass dropout and angular momentum transportation driven by the SNexp-excited turbulent viscosity. The empirical Kennicutt-Schmidt law is used for star formation rates (SFRs). We numerically solve the equations and show that there can be intensive evolution of structure of the gaseous disk. Secular evolution of the disk shows interesting characteristics: (1) high viscosity excited by SNexp can efficiently transport the gas from 10 kpc to ∼1 kpc forming a stellar disk whereas a stellar ring forms for the case with low viscosity; (2) starbursts trigger SMBH activity with a lag of ∼10 8 yr depending on SFRs, prompting the joint evolution of SMBHs and bulges; and (3) the velocity dispersion is as high as ∼100 km s -1 in the gaseous disk. These results are likely to vary with the initial mass function (IMF) that the SNexp rates rely on. Given the IMF, we use the GALAXEV code to compute the spectral evolution of stellar populations based on the dynamical structure. In order to compare the present models with the observed dynamical structure and images, we use the incident continuum from the simple stellar synthesis and CLOUDY to calculate emission line ratios of Hα, Hβ, [O III], and [N II], and Hα brightness of gas photoionized by young massive stars formed on the disks. The models can produce the main features of emission from star-forming galaxies. We apply the present model to two galaxies, BX 389 and BX 482 observed in the SINS high-z sample, which are bulge and disk-dominated, respectively. Two successive

  6. Outcome of long-axis percutaneous sacroplasty for the treatment of sacral insufficiency fractures with a radiofrequency-induced, high-viscosity bone cement

    Eichler, Katrin [University of Frankfurt, Department of Diagnostic and Interventional Radiology, Frankfurt (Germany); J. W. Goethe University of Frankfurt, Institute for Diagnostic and Interventional Radiology, Frankfurt (Germany); Zangos, Stephan; Vogl, Thomas J. [University of Frankfurt, Department of Diagnostic and Interventional Radiology, Frankfurt (Germany); Mack, Martin G. [Radiology Munich, Munich (Germany); Marzi, Ingo [University of Frankfurt, Department of Trauma, Hand and Reconstructive Surgery, Frankfurt (Germany)


    Our goal was to assess the technical results in patients who underwent long-axis sacroplasty for the treatment of sacral insufficiency fractures (SIF) by radiofrequency-induced high-viscosity bone cement augmentation. Twelve patients with bilateral sacral fractures were treated by augmentation with radiofrequency-activated, high-viscosity polymethylmethacrylate (PMMA) bone cement under local anesthesia. CT-guided sacroplasty was performed by using a long-axis approach through a single entry point. Thirty-six vertebrae were treated in 12 sessions under a combination of CT and fluoroscopic guidance using a bilateral access and a cavity-creating osteotome prior to remote-controlled, hydraulically driven cement injection. The visual analogue scale (VAS) score before sacroplasty and at 1 and 3 months after the treatment was obtained. PMMA leaks were evaluated retrospectively using the post-interventional CT. The mean amount of high-viscosity PMMA injected per patient was 7.8 ml. No major adverse events were observed. In the first 4 days after the procedure, the mean VAS score decreased from 8.1 ± 1.9 to mean 3.1 ± 1.2 and was followed by a gradual but continuous decrease throughout the rest of the follow-up period at 24 weeks (mean 2.2 ± 1.1) and 48 weeks (mean 2.1 ± 1.4). CT fluoroscopy-guided sacral augmentation was safe and effective in all 12 patients with osteoporotic SIF. (orig.)

  7. Study on high power ultraviolet laser oil detection system

    Jin, Qi; Cui, Zihao; Bi, Zongjie; Zhang, Yanchao; Tian, Zhaoshuo; Fu, Shiyou


    Laser Induce Fluorescence (LIF) is a widely used new telemetry technology. It obtains information about oil spill and oil film thickness by analyzing the characteristics of stimulated fluorescence and has an important application in the field of rapid analysis of water composition. A set of LIF detection system for marine oil pollution is designed in this paper, which uses 355nm high-energy pulsed laser as the excitation light source. A high-sensitivity image intensifier is used in the detector. The upper machine sends a digital signal through a serial port to achieve nanoseconds range-gated width control for image intensifier. The target fluorescence spectrum image is displayed on the image intensifier by adjusting the delay time and the width of the pulse signal. The spectral image is coupled to CCD by lens imaging to achieve spectral display and data analysis function by computer. The system is used to detect the surface of the floating oil film in the distance of 25m to obtain the fluorescence spectra of different oil products respectively. The fluorescence spectra of oil products are obvious. The experimental results show that the system can realize high-precision long-range fluorescence detection and reflect the fluorescence characteristics of the target accurately, with broad application prospects in marine oil pollution identification and oil film thickness detection.

  8. Highly effective ionic liquids for biodiesel production from waste vegetable oils

    Fathy A. Yassin


    Full Text Available As conventional energy sources deplete, the need for developing alternative energy resources which are environment friendly becomes more imperative. Vegetable oils are attracting increased interest in this purpose. The methanolysis of vegetable oil to produce a fatty acid methyl ester (FAME, i.e., biodiesel fuel was catalyzed by commercial ionic liquid and its chloride modification. The imidazolium chloride ionic liquid was frequently chosen for the synthesis of biodiesel. The dual-functionalized’ ionic liquid is prepared by a direct combination reaction between imidazolium cation and various metal chlorides such as CoCl2, CuCl2, NiCl2, FeCl3 and AlCl3. Imidazolium tetrachloroferrate was proved to be a selective catalyst for the methanolysis reaction at a yield of 97% when used at 1:10, catalyst: oil ratio for 8 h at 55 °C. Operational simplicity, reusability of the used catalyst for 8 times at least, high yields and no saponification are the key features of this methodology. The dynamic viscosity and density of the upgraded vegetable oil decreased from 32.1 cP and 0.9227 g/cm3 to 10.2 cP and 0.9044 g/cm3 respectively, compared to those of the base vegetable oil. The objective of this study was the synthesis and characterization of biodiesel using commercial ionic liquid and its chloride modification. The ionic liquid catalysts were characterized using FTIR, Raman spectroscopy, DSC, TG and UV.

  9. Principles of heavy oil recovery

    Szasz, S.E.; Thomas, G.W.


    Rising exploration costs have prompted greater interest in the large known deposits of heavy oil in North America. Because of high oil viscosities in such reservoirs, recoveries are poor, fluid drives are inefficient and production rates are uneconomical. Viscosity reduction can best be accomplished by heating the reservoir. The basic aspects of reservoir heating are reviewed and those processes which are of practical importance in heavy oil reservoirs are discussed. Wellbore heating frequently can be applied to heavy oil reservoirs to increase production rates. In hot waterflooding, the water requirements are much higher than an ordinary waterflood. Steam floods are more attractive, but operating costs are generally high. Conduction heating processes appear most promising. Among these is included the cyclic steam-soak process. A simple method is presented for estimating the performance from the first cycle of steam injection into the formation, assuming gravity as the only driving energy. An example calculation for a typical heavy oil reservoir is given. (26 refs.)

  10. Towards sustained high oil prices and increasingly volatile

    Auverlot, Dominique; Teillant, Aude; Rech, Olivier


    It is particularly difficult to predict the evolution of global oil production and its ability to meet the demand: the main uncertainties are related to the magnitude of the growth of emerging countries, more or less rapid decline in the production of major oil fields current events as well as natural or accidental, but especially geopolitics, which may affect, at any time, production. In a tight market today, the rapid growth of emerging economies, disruption of the oil supply chain world, even its mere mention, could cause short-term loss of excess production capacity - largely concentrated in Saudi Arabia - an increase substantial progress and, as contemplated by the International Atomic Energy imbalances between global oil supply and demand. If, after 2020, production of conventional oil begins to decline and the demand from emerging markets continues to grow, more massive imbalances may arise, leading to potential geopolitical tensions. Control would then demand the best answer. Otherwise, the resources of unconventional hydrocarbons, considerable expected to meet the demand, provided that their development is fast enough and their operating conditions are environmentally friendly. A consensus is emerging today on keeping oil prices high (above $ 100 / barrel) and volatile in the coming years, allowing some producing countries to pursue their development, but for France amplifying the negative effects on the economic growth oil bill (more than 49 billion euros in 2011) weighs more heavily in our trade deficit. In all cases, climate issues, the weight of the oil bill on our economy, securing our energy supply and technical uncertainties or geopolitical oil production call for reducing our oil consumption, accelerated motion the transition to a low carbon economy and development of our own energy resources. Contents: - Current analysis of oil reserves; - Uncertainties about the evolution of world oil production; - What is the potential long-term oil production

  11. Human telomere sequence DNA in water-free and high-viscosity solvents: G-quadruplex folding governed by Kramers rate theory.

    Lannan, Ford M; Mamajanov, Irena; Hud, Nicholas V


    Structures formed by human telomere sequence (HTS) DNA are of interest due to the implication of telomeres in the aging process and cancer. We present studies of HTS DNA folding in an anhydrous, high viscosity deep eutectic solvent (DES) comprised of choline choride and urea. In this solvent, the HTS DNA forms a G-quadruplex with the parallel-stranded ("propeller") fold, consistent with observations that reduced water activity favors the parallel fold, whereas alternative folds are favored at high water activity. Surprisingly, adoption of the parallel structure by HTS DNA in the DES, after thermal denaturation and quick cooling to room temperature, requires several months, as opposed to less than 2 min in an aqueous solution. This extended folding time in the DES is, in part, due to HTS DNA becoming kinetically trapped in a folded state that is apparently not accessed in lower viscosity solvents. A comparison of times required for the G-quadruplex to convert from its aqueous-preferred folded state to its parallel fold also reveals a dependence on solvent viscosity that is consistent with Kramers rate theory, which predicts that diffusion-controlled transitions will slow proportionally with solvent friction. These results provide an enhanced view of a G-quadruplex folding funnel and highlight the necessity to consider solvent viscosity in studies of G-quadruplex formation in vitro and in vivo. Additionally, the solvents and analyses presented here should prove valuable for understanding the folding of many other nucleic acids and potentially have applications in DNA-based nanotechnology where time-dependent structures are desired.

  12. Mechanical lifter for recovering highly viscous oil and bitumens

    Rakhmanov, R N; Akhunov, A M; Asfandiyarov, Kh A; Maksutov, R A


    A mechanical lifter is described for recovering highly viscous oil and bitumens. The lifter differs from the known and has significant advantages over them. The lifter was made and tested on a stand well.

  13. Highly efficient procedure for the transesterification of vegetable oil

    Liang, Xuezheng; Gao, Shan; He, Mingyuan [Shanghai Key Laboratory of Green Chemistry and Chemical Process, Department of Chemistry, East China Normal University, Shanghai 200062 (China); Yang, Jianguo [Shanghai Key Laboratory of Green Chemistry and Chemical Process, Department of Chemistry, East China Normal University, Shanghai 200062 (China); Energy Institute, Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802 (United States)


    The highly efficient procedure has been developed for the synthesis of biodiesel from vegetable oil and methanol. The KF/MgO has been selected as the most efficient catalyst for the reactions with the yield of 99.3%. Operational simplicity, without need of the purification of raw vegetable oil, low cost of the catalyst used, high activities, no saponification and reusability are the key features of this methodology. (author)

  14. Compliance of the Stokes-Einstein model and breakdown of the Stokes-Einstein-Debye model for a urea-based supramolecular polymer of high viscosity.

    Świergiel, Jolanta; Bouteiller, Laurent; Jadżyn, Jan


    Impedance spectroscopy was used for the study of the static and dynamic behavior of the electrical conductivity of a hydrogen-bonded supramolecular polymer of high viscosity. The experimental data are discussed in the frame of the Stokes-Einstein and Stokes-Einstein-Debye models. It was found that the translational movement of the ions is due to normal Brownian diffusion, which was revealed by a fulfillment of Ohm's law by the electric current and a strictly exponential decay of the current after removing the electric stimulus. The dependence of the dc conductivity on the viscosity of the medium fulfills the Stokes-Einstein model quite well. An extension of the model, by including in it the conductivity relaxation time, is proposed in this paper. A breakdown of the Stokes-Einstein-Debye model is revealed by the relations of the dipolar relaxation time to the viscosity and to the dc ionic conductivity. The importance of the C=O···H-N hydrogen bonds in that breakdown is discussed.

  15. Study of crude and plasma-treated heavy oil by low- and high-field 1H NMR

    Honorato, Hercilio D. A.; Silva, Renzo C.; Junior, Valdemar Lacerda; Castro, Eustaquio V. R. de; Freitas, Jair C. C. [Research and Methodology Development Laboratory for Crude Oil Analysis - LabPetro, Department of Chemistry, Federal University of Espirito Santo (Brazil)], email:; Piumbini, Cleiton K.; Cunha, Alfredo G.; Emmerich, Francisco G. [Department of Physics, Federal University of Espirito Santo (Brazil); Souza, Andre A. de; Bonagamba, Tito J. [Institute of Physics of Sao Carlos, University of Sao Paulo (Brazil)


    This document is intended to describe the combination of H low-field NMR and thermogravimetry (TG), rheological measurement and H high-field NMR to assess the physical and chemical changes that can occur in a heavy crude oil from treatment in a plasma reactor. This research was done using a heavy crude oil, API gravity of 10.1, which was treated in a double dielectric barrier (DDB) plasma reactor using different plasma gases: natural gas (NG), C02 or H2. The low-field HNMR experiments were conducted in a Maran Ultra spectrometer, from Oxford Instruments, at 27.5? C. After rheological analysis, a reduction in the viscosity of the plasma-treated oils in comparison to that of the crude oil was observed. Finally, it was confirmed that the use of H low-field NMR relaxometry and H high-field NMR spectroscopy allowed a separate analysis of the effects of the plasma treatment on the water and oil fractions to be made.

  16. Viscosity Control Experiment Feasibility Study

    Morris, Heidi E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bradley, Paul Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    Turbulent mix has been invoked to explain many results in Inertial Confinement Fusion (ICF) and High Energy Density (HED) physics, such as reduced yield in capsule implosions. Many ICF capsule implosions exhibit interfacial instabilities seeded by the drive shock, but it is not clear that fully developed turbulence results from this. Many simulations use turbulent mix models to help match simulation results to data, but this is not appropriate if turbulence is not present. It would be useful to have an experiment where turbulent mixing could be turned on or off by design. The use of high-Z dopants to modify viscosity and the resulting influence on turbulence is considered here. A complicating factor is that the plasma in some implosions can become strongly coupled, which makes the Spitzer expression for viscosity invalid. We first consider equations that cover a broad parameter space in temperature and density to address regimes for various experimental applications. Next, a previous shock-tube and other ICF experiments that investigate viscosity or use doping to examine the effects on yield are reviewed. How viscosity and dopants play a role in capsule yield depends on the region and process under consideration. Experiments and simulations have been performed to study the effects of viscosity on both the hot spot and the fuel/ablator mix. Increases in yield have been seen for some designs, but not all. We then discuss the effect of adding krypton dopant to the gas region of a typical OMEGA and a 2-shock NIF implosion to determine approximately the effect of adding dopant on the computed Reynolds number. Recommendations for a path forward for possible experiments using high-Z dopants to affect viscosity and turbulence are made.

  17. Method for creating high carbon content products from biomass oil

    Parker, Reginald; Seames, Wayne


    In a method for producing high carbon content products from biomass, a biomass oil is added to a cracking reactor vessel. The biomass oil is heated to a temperature ranging from about C. to about C. at a pressure ranging from about vacuum conditions to about 20,700 kPa for a time sufficient to crack the biomass oil. Tar is separated from the cracked biomass oil. The tar is heated to a temperature ranging from about C. to about C. at a pressure ranging from about vacuum conditions to about 20,700 kPa for a time sufficient to reduce the tar to a high carbon content product containing at least about 50% carbon by weight.

  18. Water pollution potential of mineral oils with high content of polycyclic aromatic hydrocarbons (heavy fuel oil and neutral oil extracts); Untersuchungen zur Wassergefaehrdung durch Mineraloele mit hohen Gehalten an polycyclischen aromatischen Kohlenwasserstoffen (Heizoel Schwer und Extrakte)

    Albers, G. [Mobil Schmierstoff GmbH, Hamburg (Germany)


    A data base on highly aromatic mineral oils has been compiled to classify mineral oil products according to their water-pollution potential (water hazard class or Wassergefaehrdungsklasse, WGK). This activity has been undertaken through the Commission for Water Hazardous Materials (Kommission Bewertung Wassergefaehrdender Stoffe, KBwS). In this special case, highly aromatic mineral oils containing a high concentration of polycyclic aromatic hydrocarbons (Polyaromatische Kohlenwasserstoffe, PAK) were evaluated. A test method for measuring the elution potential of PAK into water was developed on petroleum products with high viscosity and high freeze point. This method was applied to determine the solubility of 23 PAK (including 16 PAK according to EPA 610 and 6 PAK according to the German drinking water regulation (Trinkwasserverordnung, TVO)) from heavy fuel oil and neutral oil extract in the aqueous phase. For the 6 PAK, according to TVO, a sum limit of 0,2 {mu}g/l in drinking water is permitted by German legislation. This limit was not exceeded in any of the water phases examined. (orig.) [Deutsch] Fuer die Einstufung von Mineraloelprodukten in die Wassergefaehrdungsklassen (WGK) durch die Kommission Bewertung Wassergefaehrdender Stoffe ist es notwendig, Basisdaten zur Verfuegung zu stellen. Im speziellen Fall handelt es sich um die Bewertung von Mineraloelen, die sich durch einen hohen Gehalt an polycyclischen aromatischen Kohlenwasserstoffen (PAK) auszeichnen. Zur Eluierbarkeit von PAK`s aus Produkten mit hoher Viskosiaet bzw. mit hohem Stockpunkt wurde eine Pruefmethode entwickelt. Diese Methode wurde zur Bestimmung der Loeslichkeit von 23 PAK`s (16 PAK`s nach EPA-Liste incl. 6 PAK`s der TVO) aus den Mineraloelen Heizoel Schwer und Neutralextrakt in der Wasserphase eingesetzt. Fuer die PAK der TVO ist in der TVO ein Summengrenzwert von 0,2 {mu}g/l Trinkwasser angegeben. Dieser Grenzwert wurde in keiner der untersuchten Wasserphasen ueberschritten. (orig.)

  19. Production of improved infant porridges from pearl millet using a lactic acid fermentation step and addition of sorghum malt to reduce viscosity of porridge with high protein, energy and solids (30%) content

    Thaoge, ML


    Full Text Available With the aim of improving the safety and nutritional quality of traditional African weaning porridge, the reduction of the viscosity of high solids fermented pearl millet porridge by addition of sorghum malt (amylase rich flour, ARF...

  20. Crude oil prices : how high, how much harm?

    Levesque, M.; Alexander, C.


    This paper discussed the issue of crude oil prices and the economy. Crude oil prices are on the rise due to the recent events in the Middle East. In early April, West Texas Intermediate crude oil climbed to nearly US$28 a barrel. Most of the increase reflects the expectation of stronger world oil demand combined with supply constraints on the part of OPEC. Although there has been some concern expressed that rising oil prices may hinder economic recovery, the authors of this report do not see evidence that rising oil prices would throw economic recovery off course, arguing that the current spike will be short-lived. They stated that even under a worse-case scenario where prices remain inflated, there is little reason to fear for the health of the Canadian economy. OPEC is expected to increase its low production quotas in June. In addition, non-OPEC nations (Russia in particular) are expected to increase oil production in the coming months. The authors also indicated that it is unlikely that conflict in the West Bank will disrupt oil supply because Israel is not an oil-exporting nation. However, oil supply could be affected if other Arab nations were drawn into the issue. It was also noted that military action against Iraq would increase oil prices, possibly as high as US$40 a barrel, but the full extent of this hike in price will probably be unsustainable. In addition, the authors emphasized that the increase in energy costs would not be enough to seriously jeopardize the economic recovery in the United States. As for Canada, it is estimated that a US$10 per barrel increase in crude oil prices would have a small, but positive impact on Canadian GDP because in contrast to the United States, Canada produces much more energy than it consumers. In 2001, Canada ran a trade surplus of $2.8 billion. The report ended by stating that although higher oil prices could add a full percentage point to headline inflation by the end of the year, core inflation is likely to remain

  1. Analytical filtration model for nonlinear viscoplastic oil in the theory of oil production stimulation and heating of oil reservoir in a dual-well system

    Ivanovich Astafev, Vladimir; Igorevich Gubanov, Sergey; Alexandrovna Olkhovskaya, Valeria; Mikhailovna Sylantyeva, Anastasia; Mikhailovich Zinovyev, Alexey


    Production of high-viscosity oil and design of field development systems for such oil is one of the most promising directions in the development of world oil industry. The ability of high-viscosity oil to show in filtration process properties typical for non-Newtonian systems is proven by experimental studies. Nonlinear relationship between the pressure gradient and the rate of oil flow is due to interaction of high-molecular substances, in particular, asphaltenes and tars that form a plastic structure in it. The authors of this article have used the analytical model of stationary influx of nonlinear viscoplastic oil to the well bottom in order to provide rationale for the intensifying impact on a reservoir. They also have analyzed the method of periodic heating of productive reservoir by means of dual-wells. The high-temperature source is placed at the bottom of the vertical well, very close to the reservoir; at the same time the side well, located outside the zone of expected rock damage, is used for production. Suggested method of systemic treatment of reservoirs with dual wells can be useful for small fields of high-viscosity oil. The effect is based on the opportunity to control the structural and mechanical properties of high-viscosity oil and to increase depletion of reserves.

  2. News/High speed oil defense boat


    An oil defense boat that can travel at 30 knots to the scene of a spill and surround the polluted area or protect a nearby beach or harbor, with a 200 m floating plastic barrier within 20 minutes, has been developed by Vator Oy of Helsinki in association with the Finnish Board of Navigation. The Vator 18T boat, which can carry a crew of three or four, has a trimaran glass reinforced plastic hull. The floating plastic barrier (Nokia SUP Spillbooms) is produced by the Oy Nokia A.B., Cable Works Division of Helsinki and is made of a PVC-coated fabric enclosing floats of polyethylene foam and either chain ballast or iron sinkers.

  3. On the bulk viscosity of relativistic matter

    Canuto, V.; Hsieh, S.-H.


    An expression for the bulk viscosity coefficient in terms of the trace of the hydrodynamic energy-stress tensor is derived from the Kubo formula. This, along with a field-theoretic model of an interacting system of scalar particles, suggests that at high temperatures the bulk viscosity tends to zero, contrary to the often quoted resuls of Iso, Mori and Namiki. (author)

  4. Determinação experimental da viscosidade e condutividade térmica de óleos vegetais Experimental measurements of viscosity and thermal conductivity of vegetable oils

    Josiane Brock


    Full Text Available O presente trabalho tem por objetivo reportar valores experimentais de condutividade térmica e viscosidade dinâmica dos óleos vegetais refinados de soja, milho, girassol, algodão, canola, oliva e de farelo de arroz. As medidas de condutividade térmica foram realizadas em célula acoplada a um banho termostático no intervalo de temperatura de 20 a 70 °C, utilizando uma sonda de fio quente. Os resultados obtidos demonstram que para todos os óleos vegetais investigados a condutividade térmica possui fraca dependência com a temperatura, apresentando ligeiro decréscimo com o aumento desta variável. O método gravimétrico foi empregado para a medida da densidade dos óleos vegetais estudados à temperatura ambiente, não tendo sido verificada diferença significativa entre os valores encontrados. Para as medidas de viscosidade dos óleos vegetais foi utilizado um viscosímetro do tipo Brookfield, acoplado a um banho termostatizado com controle de temperatura. A partir dos resultados obtidos verificou-se que a viscosidade decresce acentuadamente com o aumento da temperatura para todos os óleos vegetais.This work reports experimental data of thermal conductivity and dynamic viscosity of the following refined vegetable oils: rice, soybean, corn oil, sunflower, cottonseed, and olive oil. Measurements of thermal properties were carried out in a cell coupled to a thermostatic bath in the temperature range of 20-70 °C, using a single-needle stainless steel sensor. It was experimentally observed that the thermal conductivity decreased slightly with increasing temperature for all samples investigated. The gravimetric method was employed for density data acquisition, and revealed no significant difference among the values obtained. The Brookfield apparatus was employed in measuring the dynamic viscosity and it was verified that a raise in temperature led to a sharp decrease for this property for all samples investigated.

  5. Use of high-boiling point organic solvents for pulping oil palm empty fruit bunches.

    Rodríguez, Alejandro; Serrano, Luis; Moral, Ana; Pérez, Antonio; Jiménez, Luis


    Oil palm empty fruit bunches were used as an alternative raw material to obtain cellulosic pulp. Pulping was done by using high-boiling point organic solvents of decreased polluting power relative to classical (Kraft, sulphite) solvents but affording operation at similar pressure levels. The holocellulose, alpha-cellulose and lignin contents of oil palm empty fruit bunches (viz. 66.97%, 47.91% and 24.45%, respectively) are similar to those of some woody raw materials such as pine and eucalyptus, and various non-wood materials including olive tree prunings, wheat straw and sunflower stalks. Pulping tests were conducted by using ethyleneglycol, diethyleneglycol, ethanolamine and diethanolamine under two different sets of operating conditions, namely: (a) a 70% solvent concentration, 170 degrees C and 90 min; and (b) 80% solvent, 180 degrees C and 150 min. The solid/liquid ratio was six in both cases. The amine solvents were found to provide pulp with better properties than did the glycol solvents. Ethanolamine pulp exhibited the best viscosity and drainage index (viz. 636 mL/g and 17 degrees SR, respectively), and paper made from it the best breaking length (1709 m), stretch (1.95%), burst index (0.98 kN/g) and tear index (0.33 mNm(2)/g). Operating costs can be reduced by using milder conditions, which provide similar results. In any case, the amines are to be preferred to the glycols as solvents for this purpose.

  6. Investigation of the mixture flow rates of oil-water two-phase flow using the turbine flow meter

    Li Donghui; Feng Feifei; Wu Yingxiang; Xu Jingyu


    In this work, the mixture flow rate of oil-water flows was studied using the turbine flow-meter. The research emphasis focuses on the effect of oil viscosity and input fluids flow rates on the precision of the meter. Experiments were conducted to measure the in-situ mixture flow rate in a horizontal pipe with 0.05m diameter using seven different viscosities of white oil and tap water as liquid phases. Results showed that both oil viscosity and input oil fraction exert a remarkable effect on measured results, especially when the viscosity of oil phase remained in the area of high value. In addition, for metering mixture flow rate using turbine flow-meter, the results are not sensitive to two-phase flow pattern according to the experimental data.

  7. Highly porous oil sorbent based on hollow fibers as the interceptor for oil on static and running water

    Dong, Ting [College of Textiles, Donghua University, Shanghai 201620 (China); Cao, Shengbin [College of Textiles, Donghua University, Shanghai 201620 (China); School of Mechanical Engineering, Shanghai Dianji University, Shanghai 201306 (China); Xu, Guangbiao, E-mail: [College of Textiles, Donghua University, Shanghai 201620 (China); Key Laboratory of Textile Science and Technology Ministry of Education, Donghua University, Shanghai 201620 (China)


    Highlights: • Highly porous sorbent was made up of kapok and PET fibers. • The sorbent was prepared by air-laying-bonding method. • The sorbent showed much higher oil sorption capacity than 100% loose kapok fibers. • The sorbent showed high intercepting efficiency to oils on water. • The runing of water significantly accelerated the oil leakage. - Abstract: Highly porous fibrous assembly made by kapok and hollow PET fibers was prepared by the air-laying-bonding method, and used as the interceptor for oils on static and running water. SEM showed that the vast majority of kapok and PET fibers in the assembly was intact and retained their hollow lumens, with the assembly's porosity high to 98.03%. Oil sorption tests exhibited that kapok/PET assembly could absorb 63.00 g/g of vegetable oil and 58.50 g/g of used motor oil, with high oil retention after 24 h dripping. In static condition of oil interception, the two oils started to leak at around 20 min for 10-mm thick kapok/PET wall. The time for that was prolonged with increasing the thickness of kapok/PET wall. After oil breakthrough, continuous oil leaking took place. The typical leakage was divided into three stages in which oils leaked separately in sharply increased rate, reduced rate and finally gently. In running condition, oils leaked in markedly quicker way than that in static condition, with initial leakage of oils shortened to less 6 min when the water ran at 60.35 ml/s. The leakage of oils was considerably accelerated with increasing running rates.

  8. Highly porous oil sorbent based on hollow fibers as the interceptor for oil on static and running water

    Dong, Ting; Cao, Shengbin; Xu, Guangbiao


    Highlights: • Highly porous sorbent was made up of kapok and PET fibers. • The sorbent was prepared by air-laying-bonding method. • The sorbent showed much higher oil sorption capacity than 100% loose kapok fibers. • The sorbent showed high intercepting efficiency to oils on water. • The runing of water significantly accelerated the oil leakage. - Abstract: Highly porous fibrous assembly made by kapok and hollow PET fibers was prepared by the air-laying-bonding method, and used as the interceptor for oils on static and running water. SEM showed that the vast majority of kapok and PET fibers in the assembly was intact and retained their hollow lumens, with the assembly's porosity high to 98.03%. Oil sorption tests exhibited that kapok/PET assembly could absorb 63.00 g/g of vegetable oil and 58.50 g/g of used motor oil, with high oil retention after 24 h dripping. In static condition of oil interception, the two oils started to leak at around 20 min for 10-mm thick kapok/PET wall. The time for that was prolonged with increasing the thickness of kapok/PET wall. After oil breakthrough, continuous oil leaking took place. The typical leakage was divided into three stages in which oils leaked separately in sharply increased rate, reduced rate and finally gently. In running condition, oils leaked in markedly quicker way than that in static condition, with initial leakage of oils shortened to less 6 min when the water ran at 60.35 ml/s. The leakage of oils was considerably accelerated with increasing running rates.

  9. Sensory properties during storage of crisps and French fries prepared with sunflower oil and high oleic sunflower oil

    Gemert, L.J. van


    A selected and trained descriptive sensory panel has assessed samples of crisps and French fries prepared on an industrial scale with either sunflower oil (SO) or high oleic sunflower oil (HOSO). Furthermore, crisps have been fried in these oils with or without dimethyl polysiloxane (DMPS).

  10. Formulation of a poorly water-soluble drug in sustained-release hollow granules with a high viscosity water-soluble polymer using a fluidized bed rotor granulator.

    Asada, Takumi; Yoshihara, Naoki; Ochiai, Yasushi; Kimura, Shin-Ichiro; Iwao, Yasunori; Itai, Shigeru


    Water-soluble polymers with high viscosity are frequently used in the design of sustained-release formulations of poorly water-soluble drugs to enable complete release of the drug in the gastrointestinal tract. Tablets containing matrix granules with a water-soluble polymer are preferred because tablets are easier to handle and the multiple drug-release units of the matrix granules decreases the influences of the physiological environment on the drug. However, matrix granules with a particle size of over 800 μm sometimes cause a content uniformity problem in the tableting process because of the large particle size. An effective method of manufacturing controlled-release matrix granules with a smaller particle size is desired. The aim of this study was to develop tablets containing matrix granules with a smaller size and good controlled-release properties, using phenytoin as a model poorly water-soluble drug. We adapted the recently developed hollow spherical granule granulation technology, using water-soluble polymers with different viscosities. The prepared granules had an average particle size of 300 μm and sharp particle size distribution (relative width: 0.52-0.64). The values for the particle strength of the granules were 1.86-1.97 N/mm 2 , and the dissolution profiles of the granules were not affected by the tableting process. The dissolution profiles and the blood concentration levels of drug released from the granules depended on the viscosity of the polymer contained in the granules. We succeeded in developing the desired controlled-release granules, and this study should be valuable in the development of sustained-release formulations of poorly water-soluble drugs. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Effect of biodiesel production parameters on viscosity and yield of methyl esters: Jatropha curcas, Elaeis guineensis and Cocos nucifera

    Godwin Kafui Ayetor


    Full Text Available In this study, the effect of H2SO4 on viscosity of methyl esters from Jatropha oil (JCME, palm kernel oil (PKOME from Elaeis guineensis species, and coconut oil (COME has been studied. Effect of methanol to oil molar mass ratio on yield of the three feedstocks has also been studied. Methyl ester yield was decreased by esterification process using sulphuric acid anhydrous (H2SO4. Jatropha methyl ester experienced a viscosity reduction of 24% (4.1–3.1 mm2/s with the addition of 1% sulphuric acid. In this work palm kernel oil (PKOME, coconut oil (COME and Jatropha oil (JCME were used as feedstocks for the production of biodiesel to investigate optimum parameters to obtain high yield. For each of the feedstock, the biodiesel yield increased with increase in NaOH concentration. The highest yield was obtained with 1% NaOH concentration for all. The effect of methanol in the range of 4:1–8:1 (molar ratio was investigated, keeping other process parameters fixed. Optimum ratios of palm kernel oil and coconut oil biodiesels yielded 98% each at methanol:oil molar ratio of 8:1. The physiochemical properties obtained for each methyl showed superior properties compared with those reported in published data.

  12. Sunlight Induced Rapid Oil Absorption and Passive Room-Temperature Release: An Effective Solution toward Heavy Oil Spill Cleanup

    Wu, Mengchun


    Rapid cleanup and easy recovery of spilled heavy oils is always a great challenge due to their high viscosity (>103 mPa s). One of the efficient methods to absorb highly viscous oils is to reduce their viscosity by increasing their temperature. In this work, the authors integrate the sunlight‐induced light‐to‐heat conversion effect of polypyrrole (PPy) and thermoresponsive property of poly(N‐isopropylacrylamide) (PNIPAm) into the melamine sponge, which successfully delivers a fast heavy oil absorption under sunlight and passive oil release underwater at room temperature. Thanks to the rationally designed functionalities, the PNIPAm/PPy functionalized sponges possess oleophilicity and hydrophobicity under sunlight. Due to the photothermal effect of PPy, the sponges locally heat up contacting heavy oil under sunlight and reduce its viscosity to a point where the oil voluntarily flow into the pores of the sponge. The material in this work is able to rapidly absorb the heavy oil with room temperature viscosity as high as ≈1.60 × 105 mPa s. The absorbed oil can be passively forced out the sponge underwater at room temperature due to the hydrophilicity of PNIPAm. The sunlight responsive and multifunctional sponge represents a meaningful attempt in coming up with a sustainable solution toward heavy oil spill.

  13. Sunlight Induced Rapid Oil Absorption and Passive Room-Temperature Release: An Effective Solution toward Heavy Oil Spill Cleanup

    Wu, Mengchun; Shi, Yusuf; Chang, Jian; Li, Renyuan; Ong, Chi Siang; Wang, Peng


    Rapid cleanup and easy recovery of spilled heavy oils is always a great challenge due to their high viscosity (>103 mPa s). One of the efficient methods to absorb highly viscous oils is to reduce their viscosity by increasing their temperature. In this work, the authors integrate the sunlight‐induced light‐to‐heat conversion effect of polypyrrole (PPy) and thermoresponsive property of poly(N‐isopropylacrylamide) (PNIPAm) into the melamine sponge, which successfully delivers a fast heavy oil absorption under sunlight and passive oil release underwater at room temperature. Thanks to the rationally designed functionalities, the PNIPAm/PPy functionalized sponges possess oleophilicity and hydrophobicity under sunlight. Due to the photothermal effect of PPy, the sponges locally heat up contacting heavy oil under sunlight and reduce its viscosity to a point where the oil voluntarily flow into the pores of the sponge. The material in this work is able to rapidly absorb the heavy oil with room temperature viscosity as high as ≈1.60 × 105 mPa s. The absorbed oil can be passively forced out the sponge underwater at room temperature due to the hydrophilicity of PNIPAm. The sunlight responsive and multifunctional sponge represents a meaningful attempt in coming up with a sustainable solution toward heavy oil spill.

  14. Bulk viscosity of molecular fluids

    Jaeger, Frederike; Matar, Omar K.; Müller, Erich A.


    The bulk viscosity of molecular models of gases and liquids is determined by molecular simulations as a combination of a dilute gas contribution, arising due to the relaxation of internal degrees of freedom, and a configurational contribution, due to the presence of intermolecular interactions. The dilute gas contribution is evaluated using experimental data for the relaxation times of vibrational and rotational degrees of freedom. The configurational part is calculated using Green-Kubo relations for the fluctuations of the pressure tensor obtained from equilibrium microcanonical molecular dynamics simulations. As a benchmark, the Lennard-Jones fluid is studied. Both atomistic and coarse-grained force fields for water, CO2, and n-decane are considered and tested for their accuracy, and where possible, compared to experimental data. The dilute gas contribution to the bulk viscosity is seen to be significant only in the cases when intramolecular relaxation times are in the μs range, and for low vibrational wave numbers (<1000 cm-1); This explains the abnormally high values of bulk viscosity reported for CO2. In all other cases studied, the dilute gas contribution is negligible and the configurational contribution dominates the overall behavior. In particular, the configurational term is responsible for the enhancement of the bulk viscosity near the critical point.

  15. Auto Detection For High Level Water Content For Oil Well

    Janier, Josefina Barnachea; Jumaludin, Zainul Arifin B.


    Auto detection of high level water content for oil well is a system that measures the percentage of water in crude oil. This paper aims to discuss an auto detection system for measuring the content of water level in crude oil which is applicable for offshore and onshore oil operations. Data regarding water level content from wells can be determined by using automation thus, well with high water level can be determined immediately whether to be closed or not from operations. Theoretically the system measures the percentage of two- fluid mixture where the fluids have different electrical conductivities which are water and crude oil. The system made use of grid sensor which is a grid pattern like of horizontal and vertical wires. When water occupies the space at the intersection of vertical and horizontal wires, an electrical signal is detected which proved that water completed the circuit path in the system. The electrical signals are counted whereas the percentage of water is determined from the total electrical signals detected over electrical signals provided. Simulation of the system using the MultiSIM showed that the system provided the desired result.

  16. Warming of olive oil processed by high hydrostatic pressure

    Houška, M.; Kubásek, M.; Strohalm, J.; Landfeld, A.; Kamarád, Jiří


    Roč. 24, č. 2 (2004), s. 303-308 ISSN 0895-7959 R&D Projects: GA MZe EP9026 Keywords : olive oil * food processing * high pressure * warming Subject RIV: GM - Food Processing Impact factor: 0.504, year: 2004

  17. Are high oil prices a threat for the price stability?

    Mollerus, A.


    The high price for oil and the decreased value of the Euro increase the risks for the stability of prices. Still, the prospects for inflation are favorable for the Euro zone. Less favorable are the consequences for the Netherlands, while the inflation difference with the Euro zone appears to become bigger, in particular as a result of the new Tax regulations in the Netherlands

  18. Grinding temperature and energy ratio coefficient in MQL grinding of high-temperature nickel-base alloy by using different vegetable oils as base oil

    Li Benkai; Li Changhe; Zhang Yanbin; Wang Yaogang; Jia Dongzhou; Yang Min


    Vegetable oil can be used as a base oil in minimal quantity of lubrication (MQL). This study compared the performances of MQL grinding by using castor oil, soybean oil, rapeseed oil, corn oil, sunflower oil, peanut oil, and palm oil as base oils. A K-P36 numerical-control precision surface grinder was used to perform plain grinding on a workpiece material with a high-temperature nickel base alloy. A YDM–III 99 three-dimensional dynamometer was used to measure grinding force, and a clip-type t...

  19. High Temperature, High Pressure Equation of State: Solidification of Hydrocarbons and Measurement of Krytox Oil Using Rolling-Ball Viscometer Validation

    Gamwo, Isaac K. [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Burgess, Ward [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Tapriyal, Deepak [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States)


    The global consumption of oil and gas continues to rise and has led to the search and recovery of petroleum sources from reservoirs exhibiting increasingly high-temperature, high-pressure conditions. For example, ultra-deep petroleum formations found at depths of approximately 5 km or more, can exhibit pressure and temperature values as high as 240 MPa (35,000 psi) and 533 K (260°C). The hydrocarbons produced from these ultra-deep formations experience significant decreases in temperature and pressure from reservoir to platform conditions. Hence, it is highly desirable to develop accurate equation of state models (EOS) and fluid properties databases that covers the entire temperature and pressure ranges associated with this process to promote the efficient, safe, and environmentally responsible production from these reservoirs at extreme conditions. Currently available databases and EOS models are generally limited to approximately 69 MPa and do not correlate accurately when extrapolated to the extreme environments associated with ultra-deep reservoirs where temperatures can reach as high as 533 K and pressures up to 240 MPa. Despite recent exploration and production of petroleum from ultra-deep formations, there are major gaps in the databases for pure and mixture density and viscosity of hydrocarbons. These are the most important fluid properties that enable accurate booking of reserves as well as the design of size and equipment to safely bring these fluids to the platform. The overall objective of this project is to develop methodologies to provide crude oil thermodynamic and transport properties—including density, viscosity, and phase composition— at extreme temperature and pressure conditions. The knowledge of these crude oil properties reduces uncertainties associated with deep drilling and promotes safer and reliable access to domestic energy resources. This report is an extension of work reported in our first Technical Report Series (TRS) released

  20. Outlook for Saskatchewan heavy oil

    Youzwa, P.


    Some of the opportunities and challenges currently facing the heavy oil industry in Saskatchewan are discussed from a government perspective. By the end of September 1993, 220 heavy oil wells were drilled in the province, and 26% of the land sales in 1993 were in heavy oil areas. About 41% of the wells drilled in heavy oil areas were horizontal oil wells. Of the total horizontal wells drilled in Saskatchewan, 48% are for heavy oil, and horizontal well production averages 85 bbl/d. Initial trends suggest that horizontal wells both accelerate production and contribute to ultimate recovery. Total heavy oil production in 1992 reached 28.9 million bbl and recoverable reserves in 1991 were 262.3 million bbl, or 1.5% of total oil in place. The low recovery is not only due to technical factors such as high viscosity but also to low investment in the heavy oil sector due to poor economics. It is hoped that lower interest and exchange rates, the success of horizontal wells and the provincial royalty structure will maintain the recent increase in heavy oil activity. The provincial government recently launched a comprehensive energy strategy in which development of a heavy oil strategy is an important component. Total heavy oil reserves exceed those of light and medium oil and have significant development potential. The Saskatchewan government wishes to adopt a cooperative and partnership approach in its dealings with the heavy oil industry to help realize this potential. 9 figs

  1. Detection of argan oil adulteration with vegetable oils by high-performance liquid chromatography-evaporative light scattering detection.

    Salghi, Rachid; Armbruster, Wolfgang; Schwack, Wolfgang


    Triacylglycerol profiles were selected as indicator of adulteration of argan oils to carry out a rapid screening of samples for the evaluation of authenticity. Triacylglycerols were separated by high-performance liquid chromatography-evaporative light scattering detection. Different peak area ratios were defined to sensitively detect adulteration of argan oil with vegetable oils such as sunflower, soy bean, and olive oil up to the level of 5%. Based on four reference argan oils, mean limits of detection and quantitation were calculated to approximately 0.4% and 1.3%, respectively. Additionally, 19 more argan oil reference samples were analysed by high-performance liquid chromatography-refractive index detection, resulting in highly comparative results. The overall strategy demonstrated a good applicability in practise, and hence a high potential to be transferred to routine laboratories. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. The Effects of High and Volatile Oil Prices

    Artus, Patrick; Autume, Antoine d'; Chalmin, Philippe; Chevalier, Jean-Marie; Coeure, Benoit; Kalantizs, Yannick; Klein, Caroline; Guesnerie, Roger; Callonnec, Gael; Gaudin, Thomas; Moisan, Francois; Lescaroux, Francois; Clerc, Marie; Marcus, Vincent; Lalanne, Guy; Pouliquen, Erwan; Simon, Olivier; Mignon, Valerie


    demand into play (this is estimated at around 0.2 in the short term and around 0.4 over the longer term for fuel demand) and possibly caused behavioural changes such as those seen in France and described in the report. The other explanation is related to energy and environmental policies, which have helped reduce oil demand. However, the strong growth expected in emerging markets is likely to increase global demand for oil by several million barrels per day by 2014. This reflects the expectation that the number of cars on the road worldwide will double by 2030, and it seems unlikely that tougher environmental constraints will contain these trends. Half of this growth will come from Asia. Such an increase in global oil demand will only be sustainable if it is accompanied by higher prices that will enable the exploitation of new unconventional oil fields or fields with high production costs. As regards volatility, the authors first repeat that there are real determinants at play: the level of oil prices encourages or discourages investment in production capacity. Low oil prices slow capacity investments and therefore limit future supply, which then causes prices to rise, thereby providing an incentive to invest and develop supply. However, neither these (endogenous) irregularities in the investment programs of oil companies and exporting countries nor changing demand trends alone can account for the sharp rise in prices between 2002 and 2008 and the very sudden drop that followed in July-August 2008. A number of observers believe that the explanation lies in speculation on the oil market. The report's authors sift through all the arguments for and against this theory. While it is undeniable that speculation has developed on the oil futures market, the authors question two key points: was this speculation really focused on an oil price rally, and could it have such a significant retroactive effect on spot prices? Their conclusions recognise that speculation was indeed

  3. Novel High-Viscosity Polyacrylamidated Chitosan for Neural Tissue Engineering: Fabrication of Anisotropic Neurodurable Scaffold via Molecular Disposition of Persulfate-Mediated Polymer Slicing and Complexation

    Viness Pillay


    Full Text Available Macroporous polyacrylamide-grafted-chitosan scaffolds for neural tissue engineering were fabricated with varied synthetic and viscosity profiles. A novel approach and mechanism was utilized for polyacrylamide grafting onto chitosan using potassium persulfate (KPS mediated degradation of both polymers under a thermally controlled environment. Commercially available high molecular mass polyacrylamide was used instead of the acrylamide monomer for graft copolymerization. This grafting strategy yielded an enhanced grafting efficiency (GE = 92%, grafting ratio (GR = 263%, intrinsic viscosity (IV = 5.231 dL/g and viscometric average molecular mass (MW = 1.63 × 106 Da compared with known acrylamide that has a GE = 83%, GR = 178%, IV = 3.901 dL/g and MW = 1.22 × 106 Da. Image processing analysis of SEM images of the newly grafted neurodurable scaffold was undertaken based on the polymer-pore threshold. Attenuated Total Reflectance-FTIR spectral analyses in conjugation with DSC were used for the characterization and comparison of the newly grafted copolymers. Static Lattice Atomistic Simulations were employed to investigate and elucidate the copolymeric assembly and reaction mechanism by exploring the spatial disposition of chitosan and polyacrylamide with respect to the reactional profile of potassium persulfate. Interestingly, potassium persulfate, a peroxide, was found to play a dual role initially degrading the polymers—“polymer slicing”—thereby initiating the formation of free radicals and subsequently leading to synthesis of the high molecular mass polyacrylamide-grafted-chitosan (PAAm-g-CHT—“polymer complexation”. Furthermore, the applicability of the uniquely grafted scaffold for neural tissue engineering was evaluated via PC12 neuronal cell seeding. The novel PAAm-g-CHT exhibited superior neurocompatibility in terms of cell infiltration owing to the anisotropic porous architecture, high molecular mass mediated robustness

  4. Enhancement of oleic acid in butter oil by high oleic fraction of moringa oleifera oil

    Nadeem, M.; Ullah, R.


    Oleic acid in butter oil (BO) was enhanced by a high oleic acid fraction (HOF) of Moringa oleifera oil (MOO). HOF was blended with BO at four different concentrations i.e. 5%, 10 percent, 15% and 20% (HOF-5, HOF-10, HOF-15 and HOF-20, respectively), compared with a control (BO). The oleic acid in HOF increased from 71.55 percent to 80.25%. DPPH free radical scavenging activity and total flavonoid content of HOF was 76.88% and 34.52 mg/100 g. Supplementation of butter oil with 20% HOF, decreased the cholesterol from 224 to 177 mg/100 g. Peroxide value of three months stored HOF-20 was 1.18 (meqO/sub 2/ kg) as compared to control, 3.15 (meqO/sub 2/kg). Induction period of HOF-20 was 4.07 h greater than control. These results evidenced that oleic acid in butter oil can be substantially increased by HOF of MOO. (author)

  5. Enhancement of the spectral selectivity of complex samples by measuring them in a frozen state at low temperatures in order to improve accuracy for quantitative analysis. Part II. Determination of viscosity for lube base oils using Raman spectroscopy.

    Kim, Mooeung; Chung, Hoeil


    The use of selectivity-enhanced Raman spectra of lube base oil (LBO) samples achieved by the spectral collection under frozen conditions at low temperatures was effective for improving accuracy for the determination of the kinematic viscosity at 40 °C (KV@40). A collection of Raman spectra from samples cooled around -160 °C provided the most accurate measurement of KV@40. Components of the LBO samples were mainly long-chain hydrocarbons with molecular structures that were deformable when these were frozen, and the different structural deformabilities of the components enhanced spectral selectivity among the samples. To study the structural variation of components according to the change of sample temperature from cryogenic to ambient condition, n-heptadecane and pristane (2,6,10,14-tetramethylpentadecane) were selected as representative components of LBO samples, and their temperature-induced spectral features as well as the corresponding spectral loadings were investigated. A two-dimensional (2D) correlation analysis was also employed to explain the origin for the improved accuracy. The asynchronous 2D correlation pattern was simplest at the optimal temperature, indicating the occurrence of distinct and selective spectral variations, which enabled the variation of KV@40 of LBO samples to be more accurately assessed.

  6. Kolkhoung (Pistacia khinjuk) Hull Oil and Kernel Oil as Antioxidative Vegetable Oils with High Oxidative Stability 
and Nutritional Value.

    Asnaashari, Maryam; Hashemi, Seyed Mohammad Bagher; Mehr, Hamed Mahdavian; Yousefabad, Seyed Hossein Asadi


    In this study, in order to introduce natural antioxidative vegetable oil in food industry, the kolkhoung hull oil and kernel oil were extracted. To evaluate their antioxidant efficiency, gas chromatography analysis of the composition of kolkhoung hull and kernel oil fatty acids and high-performance liquid chromatography analysis of tocopherols were done. Also, the oxidative stability of the oil was considered based on the peroxide value and anisidine value during heating at 100, 110 and 120 °C. Gas chromatography analysis showed that oleic acid was the major fatty acid of both types of oil (hull and kernel) and based on a low content of saturated fatty acids, high content of monounsaturated fatty acids, and the ratio of ω-6 and ω-3 polyunsaturated fatty acids, they were nutritionally well--balanced. Moreover, both hull and kernel oil showed high oxidative stability during heating, which can be attributed to high content of tocotrienols. Based on the results, kolkhoung hull oil acted slightly better than its kernel oil. However, both of them can be added to oxidation-sensitive oils to improve their shelf life.

  7. The potential of using vegetable oil fuels as fuel for diesel engines

    Altin, Recep; Cetinkaya, Selim; Yucesu, Huseyin Serdar


    Vegetable oils are produced from numerous oil seed crops. While all vegetable oils have high energy content, most require some processing to assure safe use in internal combustion engines. Some of these oils already have been evaluated as substitutes for diesel fuels. The effects of vegetable oil fuels and their methyl esters (raw sunflower oil, raw cottonseed oil, raw soybean oil and their methyl esters, refined corn oil, distilled opium poppy oil and refined rapeseed oil) on a direct injected, four stroke, single cylinder diesel engine performance and exhaust emissions was investigated in this paper. The results show that from the performance viewpoint, both vegetable oils and their esters are promising alternatives as fuel for diesel engines. Because of their high viscosity, drying with time and thickening in cold conditions, vegetable oil fuels still have problems, such as flow, atomisation and heavy particulate emissions. (Author)

  8. The potential of using vegetable oil fuels as fuel for diesel engines

    Altin, Recep [Ministry of Education, Projects Coordination Unit, Ankara (Turkey); Cetinkaya, Selim [Gazi Univ., Technical Education Faculty, Ankara (Turkey); Yucesu, Huseyin Serdar [Karaelmas Univ., Technical Education Faculty, Karabuk (Turkey)


    Vegetable oils are produced from numerous oil seed crops. While all vegetable oils have high energy content, most require some processing to assure safe use in internal combustion engines. Some of these oils already have been evaluated as substitutes for diesel fuels. The effects of vegetable oil fuels and their methyl esters (raw sunflower oil, raw cottonseed oil, raw soybean oil and their methyl esters, refined corn oil, distilled opium poppy oil and refined rapeseed oil) on a direct injected, four stroke, single cylinder diesel engine performance and exhaust emissions was investigated in this paper. The results show that from the performance viewpoint, both vegetable oils and their esters are promising alternatives as fuel for diesel engines. Because of their high viscosity, drying with time and thickening in cold conditions, vegetable oil fuels still have problems, such as flow, atomisation and heavy particulate emissions. (Author)

  9. Viscosity measurement techniques in Dissipative Particle Dynamics

    Boromand, Arman; Jamali, Safa; Maia, Joao M.


    In this study two main groups of viscosity measurement techniques are used to measure the viscosity of a simple fluid using Dissipative Particle Dynamics, DPD. In the first method, a microscopic definition of the pressure tensor is used in equilibrium and out of equilibrium to measure the zero-shear viscosity and shear viscosity, respectively. In the second method, a periodic Poiseuille flow and start-up transient shear flow is used and the shear viscosity is obtained from the velocity profiles by a numerical fitting procedure. Using the standard Lees-Edward boundary condition for DPD will result in incorrect velocity profiles at high values of the dissipative parameter. Although this issue was partially addressed in Chatterjee (2007), in this work we present further modifications (Lagrangian approach) to the original LE boundary condition (Eulerian approach) that will fix the deviation from the desired shear rate at high values of the dissipative parameter and decrease the noise to signal ratios in stress measurement while increases the accessible low shear rate window. Also, the thermostat effect of the dissipative and random forces is coupled to the dynamic response of the system and affects the transport properties like the viscosity and diffusion coefficient. We investigated thoroughly the dependency of viscosity measured by both Eulerian and Lagrangian methodologies, as well as numerical fitting procedures and found that all the methods are in quantitative agreement.

  10. Performance of high-rate gravel-packed oil wells

    Unneland, Trond


    Improved methods for the prediction, evaluation, and monitoring of performance in high-rate cased-hole gravel-packed oil wells are presented in this thesis. The ability to predict well performance prior to the gravel-pack operations, evaluate the results after the operation, and monitor well performance over time has been improved. This lifetime approach to performance analysis of gravel-packed oil wells contributes to increase oil production and field profitability. First, analytical models available for prediction of performance in gravel-packed oil wells are reviewed, with particular emphasis on high-velocity flow effects. From the analysis of field data from three North Sea oil fields, improved and calibrated cased-hole gravel-pack performance prediction models are presented. The recommended model is based on serial flow through formation sand and gravel in the perforation tunnels. In addition, new correlations for high-velocity flow in high-rate gravel-packed oil wells are introduced. Combined, this improves the performance prediction for gravel-packed oil wells, and specific areas can be targeted for optimized well design. Next, limitations in the current methods and alternative methods for evaluation and comparison of well performance are presented. The most widely used parameter, the skin factor, remains a convenient and important parameter. However, using the skin concept in direct comparisons between wells with different reservoir properties may result in misleading or even invalid conclusions. A discussion of the parameters affecting the skin value, with a clarification of limitations, is included. A methodology for evaluation and comparison of gravel-packed well performance is presented, and this includes the use of results from production logs and the use of effective perforation tunnel permeability as a parameter. This contributes to optimized operational procedures from well to well and from field to field. Finally, the data sources available for

  11. Effect of ultrasonic intensity and frequency on oil/heavy-oil recovery from different wettability rocks

    Naderi, K.; Babadagli, T. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[Alberta Univ., Edmonton, AB (Canada)


    This study identified the mechanisms that are responsible for additional oil recovery that is often observed following an earthquake. It focused on the theory that harmonics of low frequency waves create high frequency waves as they penetrate into rock formations. A series of experiments were conducted on oil-wet rocks with high oil viscosities. The objective was to better understand how ultrasonic energy affects oil recovery at core and pore scale. Cylindrical sandstone cores were placed in imbibition cells to examine how the presence of initial water saturation can affect recovery, and how the recovery changes for different oil viscosities. An increase in oil recovery was observed with ultrasonic energy in all cases. The additional recovery with ultrasonic energy lessened as the oil viscosity increased. Ultrasonic intensity and frequency were shown to be critical to the performance, which is important since ultrasonic waves have limited penetration into porous medium. This is a key disadvantage for commercializing this promising process for well stimulation. Therefore, the authors designed a set-up to measure the ultrasonic energy penetration capacity in different media, notably air, water and slurry. The set-up could identify which types of reservoirs are most suitable for ultrasonic application. Imbibition experiments revealed that ultrasonic radiation increases recovery, and is much more significant in oil wet cases, where initial water saturation facilitate oil recovery. Higher frequency showed a higher rate of recovery compared to lower frequency, but the ultimate recovery was not changed substantially. 46 refs., 1 tab., 16 figs.

  12. Ifp's New Flexible Hydrocracking Process Combines Maximum Conversion with Production of High Viscosity, High Vi Lube Stocks Le nouveau procédé IFP d'hydrocraquage à haute flexibilité combine conversion maximum et production de bases, huile à haute viscosité et à indice de viscosité élevé

    Hennico A.


    Full Text Available Institut Français du Pétrole (IFP has developed a new dual catalytic system for its hydrocracking process that enables high conversion to middle distillates and production of high viscosity, high VI lube stocks. Although the hydrocracking process is mainly devoted to the conversion of vacuum distillates, deasphalted oil or mixture of both into high quality middle distillates, it can also produce a residue, that after dewaxing will be a very high VI lube base oil. In this presentation major emphasis is put on the possibility to produce very high VI lubes with high viscosity thanks to the development of the new catalytic system. Large flexibility in feedstock selection and easy control of operating variables allow the production of all grades of lube oils associated with high quality middle distillates for a large range of conversion levels. L'Institut Français du Pétrole (IFP a mis au point, pour son procédé d'hydrocraquage, un nouveau système catalytique à 2 catalyseurs qui permet une forte conversion en distillats moyens et la production de fractions lubrifiantes à haute viscosité et indice de viscosité élevé. Si le procédé d'hydrocraquage est essentiellement utilisé pour la conversion de distillats sous vide, d'huile désasphaltée ou d'un mélange des deux en distillats moyens de haute qualité, il peut aussi produire un résidu qui, après déparaffinage, fournira une base pour lubrifiant à indice de viscosité très élevé. Cet article souligne particulièrement la possibilité de produire des lubrifiants à indice de viscosité très élevé et haute viscosité, grâce à ce nouveau système catalytique. Une grande flexibilité dans le choix des produits à traiter et la facilité de contrôle des paramètres opératoires permet la production de toutes les qualités d'huiles lubrifiantes associées à des distillats moyens de haute qualité, pour une large gamme de niveaux de conversion.

  13. High internal phase emulsion (HIPE)-templated biopolymeric oleofilms containing an ultra-high concentration of edible liquid oil.

    Wijaya, Wahyu; Van der Meeren, Paul; Dewettinck, Koen; Patel, Ashok R


    We report, for the first time, the fabrication of oleofilms (containing more than 97 wt% edible liquid oil) using high internal phase emulsions (with oil volume fraction φoil = 0.82) as templates. Advanced microscopy studies revealed an interesting microstructure of these films where jammed oil droplets were embedded in a dried matrix of biopolymeric complexes.

  14. Clinical and SEM assessment of ART high-viscosity glass-ionomer sealants after 8-13 years in 4 teeth.

    Frencken, J.E.F.M.; Wolke, J.G.C.


    OBJECTIVES: Resin composite sealants are retained longer than low-viscosity glass-ionomer sealants. Nevertheless, a systematic review showed that there is no evidence that resin composite sealants are superior to low-viscosity glass-ionomers in preventing dentine carious lesion development. This

  15. Simultaneous measurement of surface tension and viscosity using freely decaying oscillations of acoustically levitated droplets

    Kremer, J.; Kilzer, A.; Petermann, M.


    Oscillations of small liquid drops around a spherical shape have been of great interest to scientists measuring physical properties such as interfacial tension and viscosity, over the last few decades. A powerful tool for contactless positioning is acoustic levitation, which has been used to simultaneously determine the surface tension and viscosity of liquids at ambient pressure. In order to extend this acoustic levitation measurement method to high pressure systems, the method is first evaluated under ambient pressure. To measure surface tension and viscosity using acoustically levitated oscillating drops, an image analysis method has to be developed and factors which may affect measurement, such as sound field or oscillation amplitude, have to be analyzed. In this paper, we describe the simultaneous measurement of surface tension and viscosity using freely decaying shape oscillations of acoustically levitated droplets of different liquids (silicone oils AK 5 and AK 10, squalane, 1-propanol, 1-butanol, 1-pentanol, 1-hexanol, 1-heptanol, and 1-octanol) in air. These liquids vary in viscosity from 2 to about 30 mPa s. An acoustic levitation system, including an optimized standing wave acoustic levitator and a high-speed camera, was used for this study. An image analysis was performed with a self-written Matlab® code. The frequency of oscillation and the damping constant, required for the determination of surface tension and viscosity, respectively, were calculated from the evolution of the equatorial and polar radii. The results and observations are compared to data from the literature in order to analyze the accuracy of surface tension and viscosity determination, as well as the effect of non-spherical drop shape or amplitude of oscillation on measurement.

  16. Serum lipids, apoproteins and nutrient intake in rural Cretan boys consuming high-olive-oil diets.

    Aravanis, C.; Mensink, R.P.; Karalias, N.; Christodoulou, B.; Kafatos, A.; Katan, M.B.


    A high intake of olive oil has produced high levels of high-density and low levels of low-density lipoprotein cholesterol in short-term dietary trials. To investigate long-term effects of olive oil we have studied the diet and serum lipids of boys in Crete, where a high olive oil consumption is the


    Munroe, Norman


    With the depletion of conventional crude oil reserves in the world, heavy oil and bitumen resources have great potential to meet the future demand for petroleum products. However, oil recovery from heavy oil and bitumen reservoirs is much more difficult than that from conventional oil reservoirs. This is mainly because heavy oil or bitumen is partially or completely immobile under reservoir conditions due to its extremely high viscosity, which creates special production challenges. In order to overcome these challenges significant efforts were devoted by Applied Research Center (ARC) at Florida International University and The Center for Energy Economics (CEE) at the University of Texas. A simplified model was developed to assess the density of the upgraded crude depending on the ratio of solvent mass to crude oil mass, temperature, pressure and the properties of the crude oil. The simplified model incorporated the interaction dynamics into a homogeneous, porous heavy oil reservoir to simulate the dispersion and concentration of injected CO2. The model also incorporated the characteristic of a highly varying CO2 density near the critical point. Since the major challenge in heavy oil recovery is its high viscosity, most researchers have focused their investigations on this parameter in the laboratory as well as in the field resulting in disparaging results. This was attributed to oil being a complex poly-disperse blend of light and heavy paraffins, aromatics, resins and asphaltenes, which have diverse behaviors at reservoir temperature and pressures. The situation is exacerbated by a dearth of experimental data on gas diffusion coefficients in heavy oils due to the tedious nature of diffusivity measurements. Ultimately, the viscosity and thus oil recovery is regulated by pressure and its effect on the diffusion coefficient and oil swelling factors. The generation of a new phase within the crude and the differences in mobility between the new crude matrix and the

  18. Studies of water-in-oil emulsions : energy and work threshold as a function of temperature

    Fingas, M.; Fieldhouse, B.; Lerouge, L.


    A study was conducted in which the effect of temperature on the kinetics and stability of water-in-oil formation was examined. Previous studies have shown that viscosity influences the formation and stability of water in oil emulsions, therefore a viscosity window has been postulated as necessary for the formation of stable emulsions. The temperature dependence of this physical property is examined through a study of 3 oils, Green Canyon, Arabian Light and Point Arguello. The oils were subjected to mixing at 5, 15 and 25 degrees C. Both Arabian Light and Point Arguello formed meso-stable emulsions at 15 degrees C and were examined further. Arabian Light had a relatively high viscosity, while Point Arguello had a low viscosity. The objective was to examine the effects of changing viscosity resulting from changes in temperature on oil at either end of the observed viscosity window. The total energy applied to the oil/water in the emulsion formation apparatus was varied from about 50 to 600,000 ergs. Work was varied from 1 to 5123 Joules per second. It was determined that a minimum energy threshold is needed for most emulsion formation, but only work correlates with the stability value. The emulsions formed at lower temperatures exhibited higher stability than would be expected from the increase in viscosity. This is most likely because the increase was insufficient, in the case of Green Canyon oil, to result in the formation of emulsions. It was concluded that the stability of an emulsion formed from a given oil increases with decreasing formation temperature. The apparent viscosity is higher at the lower temperature. The work was found to correlate most closely with the stability of the emulsion or water-in-oil state. 7 refs., 4 tabs., 6 figs

  19. Numerical Simulation of Oil Jet Lubrication for High Speed Gears

    Tommaso Fondelli


    Full Text Available The Geared Turbofan technology is one of the most promising engine configurations to significantly reduce the specific fuel consumption. In this architecture, a power epicyclical gearbox is interposed between the fan and the low pressure spool. Thanks to the gearbox, fan and low pressure spool can turn at different speed, leading to higher engine bypass ratio. Therefore the gearbox efficiency becomes a key parameter for such technology. Further improvement of efficiency can be achieved developing a physical understanding of fluid dynamic losses within the transmission system. These losses are mainly related to viscous effects and they are directly connected to the lubrication method. In this work, the oil injection losses have been studied by means of CFD simulations. A numerical study of a single oil jet impinging on a single high speed gear has been carried out using the VOF method. The aim of this analysis is to evaluate the resistant torque due to the oil jet lubrication, correlating the torque data with the oil-gear interaction phases. URANS calculations have been performed using an adaptive meshing approach, as a way of significantly reducing the simulation costs. A global sensitivity analysis of adopted models has been carried out and a numerical setup has been defined.

  20. Environmental considerations in a high desert, crude oil pipeline spill

    Lowe, M.A.; Mancini, E.R.; Chamberlain, D.W.; Albright, G.R.


    A road grader punctured a high-pressure crude oil pipeline in the California high desert resulting in the release of approximately 4,200 barrels of Alaska North Slope crude oil. Oil sprayed over a steeply sloped hillside and flowed into an adjacent, densely vegetated ephemeral stream channel which carried secondary treatment sewage discharge. Three underflow dams were constructed in the channel within 2.8 km of the site. To ensure containment at the first dam, the sewage discharge was diverted from the channel, eventually to an upland impulse sprinkler irrigation system. Channel water and phase-separated ANS crude oil, impounded behind the first dam, percolated through alluvial sands/gravels to a depth of about five meters. The oil percolated through the soils on the receding surface of the water, affecting soils to an equivalent depth and saturating a horizontally narrow band of stream-bank soils as much as two to four meters into the bank. Stream channel undergrowth and a small number of mature trees were cleared to provide access for cleanup and/or to remove oiled plants. A large number of trees experienced partial leaf-drop within 25 days of the spill while two heavily oiled trees died. New vegetative growth was evident within five weeks of the spill. Site restoration included planting cuttings of five riparian tree species and hydroseeding exposed banks. Total petroleum hydrocarbon concentrations ranged from not detectable to 203,000 parts per million and averaged approximately 25,000 ppm in affected soils as sampled in place and in stockpiles. Approximately 30,000 tons of hydrocarbon-contaminated soil was excavated from the length of the stream channel (3,600 tons) as well as the area behind the first dam and spill site (26,400 tons). All soils were staged on site for waste profiling and final disposition. After treatment, the contaminated soil was beneficially reused as daily cover at a southern California landfill at a turnkey cost of approximately $57/ton

  1. Dual Superlyophobic Copper Foam with Good Durability and Recyclability for High Flux, High Efficiency, and Continuous Oil-Water Separation.

    Zhou, Wenting; Li, Song; Liu, Yan; Xu, Zhengzheng; Wei, Sufeng; Wang, Guoyong; Lian, Jianshe; Jiang, Qing


    Traditional oil-water separation materials have to own ultrahigh or ultralow surface energy. Thus, they can only be wetted by one of the two, oil or water. Our experiment here demonstrates that the wettability in oil-water mixtures can be tuned by oil and water initially. Hierarchical voids are built on commercial copper foams with the help of hydrothermally synthesized titanium dioxide nanorods. The foams can be easily wetted by both oil and water. The water prewetted foams are superhydrophilic and superoleophobic under oil-water mixtures, meanwhile the oil prewetted foams are superoleophilic and superhydrophobic. In this paper, many kinds of water-oil mixtures were separated by two foams, prewetted by corresponding oil or water, respectively, combining a straight tee in a high flux, high efficiency, and continuous mode. This research indicates that oil-water mixtures can be separated more eco-friendly and at lower cost.

  2. Construction of a high-temperature viscosimeter and measurement of the viscosity of melts of the system aluminium-nickel; Aufbau eines Hochtemperaturviskosimeters und Messung der Viskositaet von Schmelzen des Systems Aluminium-Nickel

    Kehr, Mirko


    The system aluminium-nickel is of importance as a model-system in materials science as well as a basic system for superalloys in technical applications. The knowledge of the thermophysical properties of the system aluminium-nickel has been limited to the areas close to the pure elements mainly related to the high melting temperatures of up to 1638 C. The viscosity, which is one of these thermophysical properties, depends on alloy composition as well as on temperature. The viscosity is of importance as an input parameter in computer simulations and for improving casting processes of metallic alloys. The viscosity of aluminium-nickel melts has been measured only once so far. However, not the whole concentration range of the aluminium-nickel system was covered by these data. In particular the viscosity values of the high melting alloys, which are of technological interest, were unknown. The measurement of the missing values was not possible due to the high melting temperatures using existing viscometers. A new oscillating cup viscometer has been constructed within this work. The viscometer has been tested measuring the viscosity values of pure metals, which are well known in literature. The test measurements have been done at temperatures up to 1800 C. A temperature of 2300 C is achievable with slight modifications. A new software for controlling the device and evaluation of the measured data has been developed. Several working equations for calculating the viscosity have been implemented. Furthermore a new approach has been used for detecting the damping of the oscillation of the pendulum containing the liquid sample. The viscosity of aluminium-nickel melts have been measured successfully. The measured values are in good agreement with the little number of known values. A good agreement with values calculated from diffusion experiments and computer simulations was observed as well. Several models for calculating the viscosity of liquid alloys have been tested and

  3. The role of viscosity in TATB hot spot ignition

    Fried, Laurence E.; Zepeda-Ruis, Luis; Howard, W. Michael; Najjar, Fady; Reaugh, John E.


    The role of dissipative effects, such as viscosity, in the ignition of high explosive pores is investigated using a coupled chemical, thermal, and hydrodynamic model. Chemical reactions are tracked with the Cheetah thermochemical code coupled to the ALE3D hydrodynamic code. We perform molecular dynamics simulations to determine the viscosity of liquid TATB. We also analyze shock wave experiments to obtain an estimate for the shock viscosity of TATB. Using the lower bound liquid-like viscosities, we find that the pore collapse is hydrodynamic in nature. Using the upper bound viscosity from shock wave experiments, we find that the pore collapse is closest to the viscous limit.

  4. High freight rates hinder oil markets' return to equilibrium



    Hurricane damage to refineries in the US has created shortages of refined products there, boosting imports and sending freight rates across the Atlantic to record levels. The situation was made worse for a time by a strike at France's main oil terminals in the Mediterranean, which prevented some oil tankers from being rapidly redeployed to routes across the Atlantic. Worldscale (WS) rates for routes from the UK and Europe to the US Atlantic and Gulf Coasts rose well above WS500 for clean tonnage during October. High rates were nevertheless not simply confined to product tankers crossing the Atlantic. Rates for crude tankers to the US have also risen, and tightness has begun to appear in some other markets as well. The net result has been to slow down the movement of oil from regions of surplus to those of scarcity, depressing prices in the former and keeping them at high levels in the latter. Atlantic tanker markets look like remaining tight for the rest of the year and perhaps beyond. (author)

  5. Combination of sodium caseinate and succinylated alginate improved stability of high fat fish oil-in-water emulsions.

    Yesiltas, Betül; Sørensen, Ann-Dorit Moltke; García-Moreno, Pedro J; Anankanbil, Sampson; Guo, Zheng; Jacobsen, Charlotte


    Sodium caseinate (CAS) and commercial sodium alginate (CA), long chain modified alginate (LCMA) or short chain modified alginate (SCMA) were used in combination for emulsifying and stabilizing high fat (50-70%) fish oil-in-water emulsions. Physical (creaming, droplet size, viscosity and protein determination) and oxidative (primary and secondary oxidation products) stabilities of the emulsions were studied during 12 days of storage. Creaming stability was higher for emulsions produced with alginates and CAS compared to emulsions prepared with only CAS. Combined use of CAS + LCMA performed better in terms of physical stability compared to emulsions produced with only CAS. However, the oxidative stability of this emulsion was inferior probably due to the presence of an unsaturated carbon chain in LCMA structure. CAS + SCMA emulsions not only showed better physical stability such as smaller droplet size, lower creaming and higher viscosity, but also had an improved oxidative stability than emulsions produced with only CAS. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. In situ synthesis of molecularly imprinted nanoparticles in porous support membranes using high-viscosity polymerization solvents.

    Renkecz, Tibor; László, Krisztina; Horváth, Viola


    There is a growing need in membrane separations for novel membrane materials providing selective retention. Molecularly imprinted polymers (MIPs) are promising candidates for membrane functionalization. In this work, a novel approach is described to prepare composite membrane adsorbers incorporating molecularly imprinted microparticles or nanoparticles into commercially available macroporous filtration membranes. The polymerization is carried out in highly viscous polymerization solvents, and the particles are formed in situ in the pores of the support membrane. MIP particle composite membranes selective for terbutylazine were prepared and characterized by scanning electron microscopy and N₂ porosimetry. By varying the polymerization solvent microparticles or nanoparticles with diameters ranging from several hundred nanometers to 1 µm could be embedded into the support. The permeability of the membranes was in the range of 1000 to 20,000 Lm⁻²  hr⁻¹  bar⁻¹. The imprinted composite membranes showed high MIP/NIP (nonimprinted polymer) selectivity for the template in organic media both in equilibrium-rebinding measurements and in filtration experiments. The solid phase extraction of a mixture of the template, its analogs, and a nonrelated compound demonstrated MIP/NIP selectivity and substance selectivity of the new molecularly imprinted membrane. The synthesis technique offers a potential for the cost-effective production of selective membrane adsorbers with high capacity and high throughput. Copyright © 2012 John Wiley & Sons, Ltd.

  7. An Experimental Study on the Diesel Engine Performance with Rape Seed Oil

    Oh, Yeong Og


    A four cycle diesel engine performance test was performed with four kinds of oils such as rape seed oil, effective micro-organism rape seed oil, activated clay rape seed oil and light oil. The experiment was conducted at full load condition with constant injection time of the engine and the test oil temperature was maintained at 70±2 .deg. C. 1. The torque and the horsepower with rape seed fuel is increased about 10% compare with light seed oil at full load condition of the engine. High viscosity of the rape makes oil films in the combustor which leads to higher compression ratio and explosion. The results of the high viscosity make higher torque of the engine. The brake specific fuel consumption of the rape seed fuel increased 8%∼10% than that of the light oil. This effect could be the difference of heating value between the two kinds of oil. 2. The emission of the smoke gas was decreased 29%, 38% and 52% compare with light oil in rape seed oil, effective micro-organism rape seed oil and activated clay rape respectively due to the low volatility and high viscosity of the soot. The NOx emission with rape seed oil is twice larger than that of the light oil at full load condition. The reason is that the fuel temperature increment effects on the combustor temperature and it makes thermal NOx of the engine. 3. The test engine could be started over 40 .deg. C of the rape seed oil. Engine inspection results shows that the soot adherence amount of the cylinder head piston head is higher in following order; activated clay rape seed oil > effective micro-organism rape seed oil > rape seed oil > light oil

  8. High free fatty acid coconut oil as a potential feedstock for biodiesel production in Thailand

    Nakpong, Piyanuch; Wootthikanokkhan, Sasiwimol [Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology Krungthep, 2 Nanglinchee Road, Sathorn, Bangkok 10120 (Thailand)


    Coconut oil having 12.8% free fatty acid (FFA) was used as a feedstock to produce biodiesel by a two-step process. In the first step, FFA level of the coconut oil was reduced to 0.6% by acid-catalyzed esterification. In the second step, triglycerides in product from the first step were transesterified with methanol by using an alkaline catalyst to produce methyl esters and glycerol. Effect of parameters related to these processes was studied and optimized, including methanol-to-oil ratio, catalyst concentration, reaction temperature, and reaction time. Methyl ester content of the coconut biodiesel was determined by GC to be 98.4% under the optimum condition. The viscosity of coconut biodiesel product was very close to that of Thai petroleum diesel and other measured properties met the Thai biodiesel (B100) specification. (author)

  9. Molecular design of high performance zwitterionic liquids for enhanced heavy-oil recovery processes.

    Martínez-Magadán, J M; Cartas-Rosado, A R; Oviedo-Roa, R; Cisneros-Dévora, R; Pons-Jiménez, M; Hernández-Altamirano, R; Zamudio-Rivera, L S


    Branched gemini zwitterionic liquids, which contain two zwitterionic moieties of linked quaternary-ammonium and carboxylate groups, are proposed as chemicals to be applied in the Enhanced Oil Recovery (EOR) from fractured carbonate reservoirs. The zwitterionic moieties are bridged between them through an alkyl chain containing 12 ether groups, and each zwitterionic moiety has attached a long alkyl tail including a CC double bond. A theoretical molecular mechanism over which EOR could rest, consisting on both the disaggregation of heavy oil and the reservoir-rock wettability alteration, was suggested. Results show that chemicals can both reduce the viscosity and remove heavy-oil molecules from the rock surface. Copyright © 2018. Published by Elsevier Inc.

  10. Detection of plant oil DNA using high resolution melting (HRM) post PCR analysis: a tool for disclosure of olive oil adulteration.

    Vietina, Michelangelo; Agrimonti, Caterina; Marmiroli, Nelson


    Extra virgin olive oil is frequently subjected to adulterations with addition of oils obtained from plants other than olive. DNA analysis is a fast and economic tool to identify plant components in oils. Extraction and amplification of DNA by PCR was tested in olives, in milled seeds and in oils, to investigate its use in olive oil traceability. DNA was extracted from different oils made of hazelnut, maize, sunflower, peanut, sesame, soybean, rice and pumpkin. Comparing the DNA melting profiles in reference plant materials and in the oils, it was possible to identify any plant components in oils and mixtures of oils. Real-Time PCR (RT-PCR) platform has been added of the new methodology of high resolution melting (HRM), both were used to analyse olive oils mixed with different percentage of other oils. Results showed HRM a cost effective method for efficient detection of adulterations in olive oils. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Electron treatment of wood pulp for the viscose process

    Stepanik, T. M.; Ewing, D. E.; Whitehouse, R.


    Electron processing is currently being evaluated by several viscose producers for integration into their process. The viscose industry converts dissolving wood pulp into products such as staple fibre, filament, cord, film, packaging, and non-edible sausage casings. These materials are used in the clothing, drapery, hygiene, automobile, food, and packaging industries. Viscose producers are facing increasingly high production costs and stringent environmental regulations that have forced some plants to close. Electron treatment of wood pulp can significantly reduce the amounts of chemicals used for producing viscose and the production of hazardous pollutants. Acsion Industries has worked with companies worldwide to demonstrate the benefits of using electron treated pulp for producing viscose (rayon). This paper describes the viscose process, the benefits of using electron treatment in the viscose process, and Acsion's efforts in developing this technology.

  12. Technological characteristics of meat - viscosity

    DIBĎÁK, Tomáš


    This bachelor thesis is focused on the technological characteristics of meat, mainly viscosity of meat. At the beginning I dealt with construction of meat and various types of meat: beef, veal, pork, mutton, rabbit, poultry and venison. Then I described basic chemical composition of meat and it?s characteristic. In detail I dealt with viscosity of meat. Viscosity is the ability of meat to bind water both own and added. I mentioned influences, which effects viscosity and I presented the possib...

  13. Highly Viscoelastic Reverse Wormlike Micellar Systems from a Mixture of Lecithin, Polyglycerol Fatty Acid Monoesters, and an Oil.

    Hashizaki, Kaname; Imai, Miko; Yako, Shuhei; Tsusaka, Hitomi; Sakanishi, Yuichi; Saito, Yoshihiro; Fujii, Makiko


    We report new lecithin reverse wormlike micelles with high viscoelasticity formed using lecithin/polyglycerol fatty acid monoester (PGLFA)/oil systems. In this study, the influence of the amphiphilicity (i.e., hydrophile-lipophile balance, HLB) of PGLFA on the phase behavior and rheological properties of reverse wormlike micelles was investigated in detail. PGLFAs with degrees of polymerization of polyglycerol varying between 6-40 and constituent fatty acids with chains between 6-18 carbon atoms long were used. Partial phase diagrams of the lecithin/PGLFA/n-decane systems indicated that the appropriate PGLFA could change the lecithin/oil solution into a highly viscoelastic solution comprising reverse wormlike micelles. Rheological measurements showed that all systems that formed reverse wormlike micelles exhibited an unusual phenomenon called "shear-thickening". Furthermore, reverse wormlike micelles grew as the PGLFA concentration increased and the zero-shear viscosity (η 0 ) of the solution rapidly increased. Our results indicate that the magnitude of the maximum η 0 depends on the degree of polymerization of the constituent polyglycerol in the PGLFA, while the size of the reverse micellar region and the highly viscous region in the phase diagram depends on the HLB value of the PGLFA.

  14. Viscosity properties of sodium borophosphate glasses

    Gaylord, S.; Tincher, B.; Petit, L.; Richardson, K.


    The viscosity behavior of (1 - x)NaPO 3 -xNa 2 B 4 O 7 glasses (x = 0.05-0.20) have been measured as a function of temperature using beam-bending and parallel-plate viscometry. The viscosity was found to shift to higher temperatures with increasing sodium borate content. The kinetic fragility parameter, m, estimated from the viscosity curve, decreases from 52 to 33 when x increases from 0.05 to 0.20 indicating that the glass network transforms from fragile to strong with the addition of Na 2 B 4 O 7 . The decrease in fragility with increasing x is due to the progressive depolymerization of the phosphate network by the preferred four-coordinated boron atoms present in the low alkali borate glasses. As confirmed by Raman spectroscopy increasing alkali borate leads to enhanced B-O-P linkages realized with the accompanying transition from solely four-coordinated boron (in BO 4 units) to mixed BO 4 /BO 3 structures. The glass viscosity characteristics of the investigated glasses were compared to those of P-SF67 and N-FK5 commercial glasses from SCHOTT. We showed that the dependence of the viscosity of P-SF67 was similar to the investigated glasses due to similar phosphate network organization confirmed by Raman spectroscopy, whereas N-FK5 exhibited a very different viscosity curve and fragility parameter due to its highly coordinated silicate network

  15. Internal deformation in layered Zechstein-III K-Mg salts. Structures formed by complex deformation and high contrasts in viscosity observed in drill cores.

    Raith, Alexander; Urai, Janos L.


    During the evaporation of a massive salt body, alternations of interrupted and full evaporation sequences can form a complex layering of different lithologies. Viscosity contrasts of up to five orders of magnitude between these different lithologies are possible in this environment. During the late stage of an evaporation cycle potassium and magnesium (K-Mg) salts are precipitated. These K-Mg salts are of economic interest but also a known drilling hazard due to their very low viscosity. How up to 200m thick layers of these evaporites affect salt deformation at different scales is not well known. A better understanding of salt tectonics with extreme mechanical stratification is needed for better exploration and production of potassium-magnesium salts and to predict the internal structure of potential nuclear waste repositories in salt. To gain a better understanding of the internal deformation of these layers we analyzed K-Mg salt rich drill cores out of the Zechstein III-1b subunit from the Veendam Pillow 10 km southeast of Groningen, near the city Veendam in the NE Netherlands. The study area has a complex geological history with multiple tectonic phases of extension and compression forming internal deformation in the pillow but also conserving most of the original layering. Beside halite the most common minerals in the ZIII-1b are carnallite, kieserite, anhydrite and bischofite alternating in thin layers of simple composition. Seismic interpretation revealed that the internal structure of the Veendam Pillow shows areas, in which the K-Mg salt rich ZIII 1b layer is much thicker than elsewhere, as a result of salt deformation. The internal structure of the ZIII-1b on the other hand, remains unknown. The core analysis shows a strong strain concentration in the weaker Bischofite (MgCl2*6H20) and Carnallite (KMgCl3*6H20) rich layers producing tectonic breccias and highly strained layers completely overprinting the original layering. Layers formed by alternating beds

  16. Biaxial Flexural Strength of High-Viscosity Glass-Ionomer Cements Heat-Cured with an LED Lamp during Setting

    Gustavo Fabián Molina


    Full Text Available Adding heat to glass ionomers during setting might improve mechanical properties. The aim was to compare the biaxial flexural strength (BFS between and within four glass ionomers, by time of exposure to a high-intensity LED light-curing unit. Materials and methods. Samples of Fuji 9 Gold Label, Ketac Molar Easymix, ChemFil Rock, and the EQUIA system were divided into three treatment groups (n=30: without heating (Group 1, heated with LED lamp of 1400 mW/cm2 for 30 s while setting (Group 2, and heated with LED lamp of 1400 mW/cm2 for 60 s while setting (Group 3. Samples were stored for 48 hours in distilled water at 37°C until tested. BFS was tested, using a universal testing machine at a crosshead speed of 1 mm/min. Data were analyzed, using ANOVA test with the Bonferroni correction (α=0.05. Heating the glass-ionomer cements with an LED curing light of 1400 mW/cm2 during setting for 30 s increased the BFS value of all GICs. No statistically significant difference in mean BFS scores was found between the EQUIA system and ChemFil Rock at 30 s and 60 s. The mean BFS value was statistically significantly higher for the EQUIA system and ChemFil Rock than for Fuji 9 Gold Label and Ketac Molar Easymix at all exposure times.

  17. The research of full automatic oil filtering control technology of high voltage insulating oil

    Gong, Gangjun; Zhang, Tong; Yan, Guozeng; Zhang, Han; Chen, Zhimin; Su, Chang


    In this paper, the design scheme of automatic oil filter control system for transformer oil in UHV substation is summarized. The scheme specifically includes the typical double tank filter connection control method of the transformer oil of the UHV substation, which distinguishes the single port and the double port connection structure of the oil tank. Finally, the design scheme of the temperature sensor and respirator is given in detail, and the detailed evaluation and application scenarios are given for reference.

  18. Manufacturing of environment friendly biolubricants from vegetable oils

    Ebtisam K. Heikal


    Full Text Available Environment friendly products such as fuels and lubricants are among the candidates which are studied in several countries including Egypt. The purpose of this work was to utilize commercially available palm oil and Jatropha oil for the production of biolubricants, through two stages of Transesterification. The first stage is the process of using methanol in the presence of potassium hydroxide to produce biodiesel. The second stage is the reaction of biodiesel with trimethylolpropane using sodium methoxide as catalyst to yield palm or Jatropha oil base trimethylolpropane esters (biolubricants. Palm oil based trimethylolpropane esters with yield of 97.8% was obtained after 4 h of reaction at 130 °C. Under similar reaction conditions, Jatropha oil based trimethylolpropane esters with a yield of 98.2% was obtained. The resulting products were confirmed by FTIR and evaluated by ASTM analyses. The obtained Jatropha oil based trimethylolpropane esters exhibited high viscosity indices (140, low pour point temperature (−3 °C, and moderate thermal stabilities and met the requirement of commercial industrial oil ISO VG46 grade. In spite of the high pour point of Palm oil based trimethylolpropane esters (5 °C, which needs pour point depressant to reduce the pour point, other lubrication properties such as viscosity, viscosity indices and flash point are comparable to commercial industrial oil ISO VG32 and VG46.

  19. Viscosity of glasses containing simulated Savannah River Plant waste

    Plodinec, M.J.


    The viscosity of glass melts containing four simulated sludge types and two frit candidates (Frits 18 and 21) was measured over the temperature range 750 to 1200 0 C. The viscosity of melts made with either frit was reduced by the addition of high iron sludge, unchanged by average sludge, and increased by composite and high aluminum sludge. High aluminium sludge greatly increased the viscosity. Frit 21 (containing 4 wt % Li 2 O substituted for 4 wt % Na 2 O in Frit 18) was clearly better than Frit 18 in terms of its low viscosity. However, further reductions in viscosity are desirable, especially for glasses containing high aluminum sludge. Changing any frit component by 1 wt % did not significantly affect the viscosity of the glasses. Therefore, variability of 1 wt % in any frit component can be tolerated

  20. The effect of a nano-filled resin coating on the 3-year clinical performance of a conventional high-viscosity glass-ionomer cement.

    Diem, Vu Thi Kieu; Tyas, Martin J; Ngo, Hien C; Phuong, Lam Hoai; Khanh, Ngo Dong


    The main aim of the study was to compare the clinical performance of the conventional high-powder/liquid ratio glass-ionomer cement (GIC) Fuji IX GP Extra (F IX), Fuji IX GP Extra with a low-viscosity nano-filled resin coating, G-Coat Plus (F IX+GCP), and a resin composite, Solare (S), as a comparison material. Moderate-depth occlusal cavities in the first permanent molars of 91 11-12-year-old children (1-4 restorations per child) were restored with either F IX (87 restorations), F IX+GCP (84 restorations) or S (83 restorations). Direct clinical assessment, photographic assessment and assessment of stone casts of the restorations were carried out at 6 months, 1 year, 2 years and 3 years. The colour match with the tooth of the GIC restorations improved over the 3 years of the study. Marginal staining and marginal adaptation were minimal for all restorations; three restorations exhibited secondary caries at 3 years. From the assessment of the casts, at 2 years, there was significantly less wear of the F IX GP Extra+GCP restorations than the F IX GP Extra restorations (P G-Coat Plus showed acceptable clinical performance in occlusal cavities in children, the application of G-Coat Plus gave some protection against wear. The application of G-Coat Plus to Fuji IX GP Extra glass-ionomer cement may be beneficial in reducing wear in occlusal cavities.

  1. Dispensing of very low volumes of ultra high viscosity alginate gels: a new tool for encapsulation of adherent cells and rapid prototyping of scaffolds and implants.

    Gepp, Michael M; Ehrhart, Friederike; Shirley, Stephen G; Howitz, Steffen; Zimmermann, Heiko


    We present a tool for dispensing very low volumes (20 nL or more) of ultra high viscosity (UHV) medical-grade alginate hydrogels. It uses a modified piezo-driven micrometering valve, integrated into a versatile system that allows fast prototyping of encapsulation procedures and scaffold production. Valves show excellent dispensing properties for UHV alginate in concentrations of 0.4% and 0.7% and also for aqueous liquids. An optimized process flow provides excellent handling of biological samples under sterile conditions. This technique allows the encapsulation of adherent cells and structuring of substrates for biotechnology and regenerative medicine. A variety of cell lines showed at least 70% viability after encapsulation (including cell lines that are relevant in regenerative medicine like Hep G2), and time-lapse analysis revealed cells proliferating and showing limited motility under alginate spots. Cells show metabolic activity, gene product expression, and physiological function. Encapsulated cells have contact with the substrate and can exchange metabolites while being isolated from macromolecules in the environment. Contactless dispensing allows structuring of substrates with alginate, isolation and transfer of cell-alginate complexes, and the dispensing of biological active hydrogels like extracellular matrix-derived gels.

  2. Effects of high fat fish oil and high fat corn oil diets on initiation of AOM-induced colonic aberrant crypt foci in male F344 rats

    Dommels, Y.E.M.; Heemskerk, S.; Berg, H. van den; Alink, G.M.; Bladeren, P.J. van; Ommen, B. van


    Modulating effects of high fat fish oil (HFFO) and high fat corn oil (HFCO) diets on azoxymethane (AOM)-induced colonic aberrant crypt foci (ACF) were studied in male F344 rats following 8 weeks of dietary treatment. The incidence of AOM-induced ACF was significantly lower in the proximal colon of

  3. Orange oil/water nanoemulsions prepared by high pressure homogenizer

    Kourniatis, Loretta R.; Spinelli, Luciana S.; Mansur, Claudia R.E.


    The objective of this work was to use the high-pressure homogenizer (HPH) to prepare stable oil/water nanoemulsions presenting narrow particle size distribution. The dispersions were prepared using nonionic surfactants based on ethoxylated ether. The size and distribution of the droplets formed, along with their stability, were determined in a Zetasizer Nano ZS particle size analyzer. The stability and the droplet size distribution in these systems do not present the significant differences with the increase of the processing pressure in the HPH). The processing time can promote the biggest dispersion in the size of particles, thus reducing its stability. (author)

  4. Avocado oil extraction processes: method for cold-pressed high-quality edible oil production versus traditional production

    Giacomo Costagli


    Full Text Available Nowadays the avocado fruit (Persea americana Mill. is widely regarded as an important fruit for its nutritional values, as it is rich in vital human nutrients. The avocado fruit is mainly sold fresh on the market, which however trades also a relevant quantity of second-grade fruits with a relatively high oil content. Traditionally, this oil is extracted from dried fruits by means of organic solvents, but a mechanical method is also used in general in locations where drying systems and/or solvent extraction units cannot be installed. These traditional processes yield a grade of oil that needs subsequent refining and is mainly used in the cosmetic industry. In the late 1990s, in New Zeland, a processing company with the collaboration of Alfa Laval began producing cold-pressed avocado oil (CPAO to be sold as edible oil for salads and cooking. Over the last fifteen years, CPAO production has increased in many other countries and has led to an expansion of the market which is set to continue, given the growing interest in highquality and healthy food. Avocado oil like olive oil is extracted from the fruit pulp and in particular shares many principles of the extraction process with extra-vergin olive oil. We conducted a review of traditional and modern extraction methods with particular focus on extraction processes and technology for CPAO production.

  5. Physical and oxidative stability of high fat fish oil-in-water emulsions stabilized with combinations of sodium caseinate and sodium alginate

    Yesiltas, Betül; García Moreno, Pedro Jesús; Sørensen, Ann-Dorit Moltke


    .2 ratio NaCas:NaAlg by Box-Behnken's design, the formulae 70%-1.4%-1.2 was decided due to high fish oil content's decreasing effect on droplet size and peroxide value. Practical applications: Physically and oxidatively stable high fat (50-70%) omega-3 delivery fish oil-in-water emulsions are of high......A systematic study was carried out in order to evaluate the physical and oxidative stability of high fat omega-3 delivery fish oil-in-water emulsions stabilized with combinations of sodium caseinate (NaCas) and sodium alginate (NaAlg). The influence of 3 factors related to emulsion composition...... (fish oil content: 50, 60 and 70%; total amount of NaCas and NaAlg: 1.4, 2.1 and 2.8 %; and ratio NaCas:NaAlg: 0.4, 1.2 and 2) on physical (droplet size, viscosity and zeta potential) and oxidative (primary and secondary oxidation products) parameters was evaluated. It was possible to produce emulsions...

  6. Development of solvent-free offset ink using vegetable oil esters and high molecular-weight resin.

    Park, Jung Min; Kim, Young Han; Kim, Sung Bin


    In the development of solvent-free offset ink, the roles of resin molecular weight and used solvent on the ink performance were evaluated by examining the relationship between the various properties of resin and solvent and print quality. To find the best performing resin, the soy-oil fatty acid methyl ester (FAME) was applied to the five modified-phenolic resins having different molecular weights. It is found from the experimental results that the ink made of higher molecular weight and better solubility resin gives better printability and print quality. It is because larger molecular weight resin with better solubility gives higher rate of ink transfer. From the ink application of different esters to high molecular weight resin, the best printing performance was yielded from the soy-oil fatty acid butyl ester (FABE). It is due to its high kinematic viscosity resulting in the smallest change of ink transfer weight upon multiple number of printing, which improves the stability of ink quality.

  7. The influence of asphaltenes of the petroleum on the rheology of O/W (Oil/Water) emulsions; Influencia de asfaltenos do petroleo sobre a reologia de emulsoes O/A (Oleo/Agua)

    Santos, Ronaldo Goncalves dos; Mohamed, Rahoma Sadeg; Loh, Watson; Bannwart, Antonio Carlos [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil)


    Heavy oils represent a large fraction of the Brazilian petroleum reserves and display a great potential for application as substitute to the conventional oils, provided a suitable technology for their transportation is available. The high viscosity of these heavy oils leads to high flow resistance and increase in the recovery and transportation costs. Methodologies employed to reduce these problems involve application of heat of addition of diluents or lighter oils, but are associated with high costs. Formation of low viscosity oil-in-water emulsions has been proposed as an alternative for the transportation of heavy oils, as investigated in this work. Preliminary results indicate significant viscosity decreases upon emulsification of heavy oils (viscosities greater than 1,000 cP) forming o/w emulsions with high oil content (between 50-65 vol. %), which display viscosities within 4-25 cP. Additionally, the effect of different surfactants, methodology of preparation and oil asphaltene content on the emulsion stability was also evaluated. These results confirm the potential of emulsification as a viable methodology for heavy oil transportation. (author)

  8. Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: a review.

    Lam, Man Kee; Lee, Keat Teong; Mohamed, Abdul Rahman


    In the last few years, biodiesel has emerged as one of the most potential renewable energy to replace current petrol-derived diesel. It is a renewable, biodegradable and non-toxic fuel which can be easily produced through transesterification reaction. However, current commercial usage of refined vegetable oils for biodiesel production is impractical and uneconomical due to high feedstock cost and priority as food resources. Low-grade oil, typically waste cooking oil can be a better alternative; however, the high free fatty acids (FFA) content in waste cooking oil has become the main drawback for this potential feedstock. Therefore, this review paper is aimed to give an overview on the current status of biodiesel production and the potential of waste cooking oil as an alternative feedstock. Advantages and limitations of using homogeneous, heterogeneous and enzymatic transesterification on oil with high FFA (mostly waste cooking oil) are discussed in detail. It was found that using heterogeneous acid catalyst and enzyme are the best option to produce biodiesel from oil with high FFA as compared to the current commercial homogeneous base-catalyzed process. However, these heterogeneous acid and enzyme catalyze system still suffers from serious mass transfer limitation problems and therefore are not favorable for industrial application. Nevertheless, towards the end of this review paper, a few latest technological developments that have the potential to overcome the mass transfer limitation problem such as oscillatory flow reactor (OFR), ultrasonication, microwave reactor and co-solvent are reviewed. With proper research focus and development, waste cooking oil can indeed become the next ideal feedstock for biodiesel.

  9. Chemically evolving systems for oil recovery enhancement in heavy oil deposits

    Altunina, L. K.; Kuvshinov, I. V.; Kuvshinov, V. A.; Stasyeva, L. A.


    This work presents the results of laboratory studies and field tests of new physicochemical technologies for enhanced oil recovery of heavy oil fields under natural development conditions and with thermal-steam stimulation using oil-displacing "smart" systems. The systems are based on surfactants and buffer systems. Their rheological and acid-base properties can be regulated by their chemical evolution directly in the formation. Field tests of the technologies carried out on high-viscosity oil deposit in the Usinskoye oilfield have shown that the EOR technologies are environmentally friendly and technologically effective.

  10. Enhanced Oil Recovery with Application of Enzymes

    Khusainova, Alsu

    Enzymes have recently been reported as effective enhanced oil recovery (EOR) agents. Both laboratory and field tests demonstrated significant increase in the ultimate oil production. Up to16% of additional oil was produced in the laboratory conditions and up to 269 barrels of additional oil per day...... were recovered in the field applications. The following mechanisms were claimed to be responsible for the enhancement of the oil production due to enzymes: wettability improvement of the rock surface; formation of the emulsions; reduction of oil viscosity; and removal of high molecular weight paraffins....... However, the positive effect of enzymes on oil recovery is not that obvious. In most of the studies commercial enzyme products composed of enzymes, surfactants and stabilisers were used. Application of such samples makes it difficult to assign a positive EOR effect to a certain compound, as several...

  11. Genetic control of soybean seed oil: I. QTL and genes associated with seed oil concentration in RIL populations derived from crossing moderately high-oil parents.

    Eskandari, Mehrzad; Cober, Elroy R; Rajcan, Istvan


    Soybean seed is a major source of oil for human consumption worldwide and the main renewable feedstock for biodiesel production in North America. Increasing seed oil concentration in soybean [Glycine max (L.) Merrill] with no or minimal impact on protein concentration could be accelerated by exploiting quantitative trait loci (QTL) or gene-specific markers. Oil concentration in soybean is a polygenic trait regulated by many genes with mostly small effects and which is negatively associated with protein concentration. The objectives of this study were to discover and validate oil QTL in two recombinant inbred line (RIL) populations derived from crosses between three moderately high-oil soybean cultivars, OAC Wallace, OAC Glencoe, and RCAT Angora. The RIL populations were grown across several environments over 2 years in Ontario, Canada. In a population of 203 F(3:6) RILs from a cross of OAC Wallace and OAC Glencoe, a total of 11 genomic regions on nine different chromosomes were identified as associated with oil concentration using multiple QTL mapping and single-factor ANOVA. The percentage of the phenotypic variation accounted for by each QTL ranged from 4 to 11 %. Of the five QTL that were tested in a population of 211 F(3:5) RILs from the cross RCAT Angora × OAC Wallace, a "trait-based" bidirectional selective genotyping analysis validated four QTL (80 %). In addition, a total of seven two-way epistatic interactions were identified for oil concentration in this study. The QTL and epistatic interactions identified in this study could be used in marker-assisted introgression aimed at pyramiding high-oil alleles in soybean cultivars to increase oil concentration for biodiesel as well as edible oil applications.

  12. Oil flow in deep waters: comparative study between light oils and heavy oils

    Andreolli, Ivanilto [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)


    Ultra deeper waters fields are being exploited due to technological development. Under this scenario, the flow design is accomplished through pipelines subjected to low temperature and high pressure. Moreover, these flow lines are usually long causing a fast fluid cooling, which may affect flow assurance in some cases. Problems during topsides production plant's restart might occur if the oil is viscous and even in steady state a significant different behavior can be noticed, if compared to a less viscous oil. A comparison between light and heavy oil through a case study with the objective to show some heavy oil flow particularities is the purpose of this paper. Permanent and transient analyses for a specific geometry are presented. The results showed that thermal and proper viscosity modeling are required for heavy oil flow, differently from that of light oil flow, due to the exponential viscosity dependence to temperature and because the predominant laminar regime. In addition, on heavier and heavier oil flow systems, it is essential to consider exportation system's restart. (author)

  13. Oxidative processes in power plant oils

    Forlerer, Elena; Zambrano, Debora N.


    This paper analyzes the chemical properties differences between thermal-oxidation and radioactive-oxidation in turbine oils in order to estimate the oils' Service Life. The oils were Turbine R type, provided by Repsol-YPF with only few additives such as: anti rust, antioxidant, anticorrosion and without viscosity index improvers. The oils were ISO 32 and ISO 68 grade -with viscosity index 95- and API (American Petroleum Institute) group I, due to its viscosity index (95), the percent of paraffinic component ( 0.03%). Different samples from the heavy water main pumps were collected with different service times and radiation fields during an Embalse NPP's outage. For comparison purposes oils from feedwater pumps systems that convey light water to the steam generators in the Turbine building -without radiation- were obtained. The properties studied by ASTM standards were: colour (visual inspection), Viscosity Index VI (ASTM D227/93), viscosity at 40 C degrees (ASTM D445/96) and Total Acid Number, TAN (ASTM D974-97). Oxidative degradation of base oils could be described by two successive mechanisms that allow the definition of two stages: Primary and Secondary Oxidation. Primary oxidation begins with the thermal generation of alkylation's reactions and acid products formation. Radiation damage operates by two mechanisms: scission and cross-linking. The first one generates free radicals of low molecular weight while the other one can build-up complex molecular networks with high or low solubility in the base oil. Moreover, radiation damage destroys additives molecules and generates colour centres different from oxidative colour modification. Due to scission and cross-linking alkyl group substitution in the aromatic rings are formed. Then, radiation acts as a precursor of Primary Oxidation. Both, thermal and radioactive, damage mechanisms can act simultaneously making the isolated analysis for each one very difficult. To manage it, a Relative Damage Index (RDI) has been

  14. Skyrmions and Hall viscosity

    Kim, Bom Soo


    We discuss the contribution of magnetic Skyrmions to the Hall viscosity and propose a simple way to identify it in experiments. The topological Skyrmion charge density has a distinct signature in the electric Hall conductivity that is identified in existing experimental data. In an electrically neutral system, the Skyrmion charge density is directly related to the thermal Hall conductivity. These results are direct consequences of the field theory Ward identities, which relate various physical quantities based on symmetries and have been previously applied to quantum Hall systems.

  15. Determination of vegetable oils and fats adulterants in diesel oil by high performance liquid chromatography and multivariate methods.

    Brandão, Luiz Filipe Paiva; Braga, Jez Willian Batista; Suarez, Paulo Anselmo Ziani


    The current legislation requires the mandatory addition of biodiesel to all Brazilian road diesel oil A (pure diesel) marketed in the country and bans the addition of vegetable oils for this type of diesel. However, cases of irregular addition of vegetable oils directly to the diesel oil may occur, mainly due to the lower cost of these raw materials compared to the final product, biodiesel. In Brazil, the situation is even more critical once the country is one of the largest producers of oleaginous products in the world, especially soybean, and also it has an extensive road network dependent on diesel. Therefore, alternatives to control the quality of diesel have become increasingly necessary. This study proposes an analytical methodology for quality control of diesel with intention to identify and determine adulterations of oils and even fats of vegetable origin. This methodology is based on detection, identification and quantification of triacylglycerols on diesel (main constituents of vegetable oils and fats) by high performance liquid chromatography in reversed phase with UV detection at 205nm associated with multivariate methods. Six different types of oils and fats were studied (soybean, frying oil, corn, cotton, palm oil and babassu) and two methods were developed for data analysis. The first one, based on principal component analysis (PCA), nearest neighbor classification (KNN) and univariate regression, was used for samples adulterated with a single type of oil or fat. In the second method, partial least square regression (PLS) was used for the cases where the adulterants were mixtures of up to three types of oils or fats. In the first method, the techniques of PCA and KNN were correctly classified as 17 out of 18 validation samples on the type of oil or fat present. The concentrations estimated for adulterants showed good agreement with the reference values, with mean errors of prediction (RMSEP) ranging between 0.10 and 0.22% (v/v). The PLS method was

  16. Palm Oil

    Palm oil is obtained from the fruit of the oil palm tree. Palm oil is used for preventing vitamin A deficiency, cancer, ... blood pressure, high cholesterol, and cyanide poisoning. Palm oil is used for weight loss and increasing the ...

  17. on the oxidation stability of lubricating oil


    I. P. Okoye, Dpartment of Pure and Industrial Chemistry,University of Port Harcourt, Nigeria ... of the kinematic viscosity for the formulated oil were much higher than the base oil, while ... including sulphurized oil – soluble organic compounds,.

  18. Incorporating different vegetable oils into an aqueous dispersion of hybrid organic nanoparticles

    Samyn, Pieter, E-mail: [Albert-Luedwigs-University Freiburg, Institute for Forest Utilization (Germany); Schoukens, Gustaaf [Ghent University, Department of Textiles (Belgium); Stanssens, Dirk; Vonck, Leo; Van den Abbeele, Henk [Topchim N.V. (Belgium)


    Different vegetable oils including soy oil, high-oleic sunflower oil, corn oil, castor oil (CO), rapeseed oil, and hydrogenated CO were added to the imidization reaction of poly(styrene-maleic anhydride) or SMA, with ammonium hydroxide in aqueous medium. The oils favorably reduce viscosity during ammonolysis of the anhydride moieties and increase the maximum solid content of the dispersed imidized SMA to at least 50 wt%, compared to a maximum of 35 wt% for pure imidized SMA. The viscosity of imidized SMA with polyunsaturated oils was generally larger than for monosaturated oils, but it was highest for COs due to high contents of hydroxyl groups. Depending on the oil reactivity, homogeneous or core-shell nanoparticles with 20-60 nm diameters formed. The interactions of oil and organic phase were studied by Fourier-transform infrared spectroscopy, indicating qualitative variances between different oils, the fraction imidized SMA and remaining fraction of ammonolyzed SMA without leakage of oil upon diluting the dispersion and precipitation at low pH. A quantitative analysis with calculation of imide contents, amounts of reacted oil and chemical interactions was made by Fourier-transform-Raman spectroscopy suggesting that most interactions take place around the unsaturated oil moieties and ammonolyzed anhydride.

  19. Risk Associated With The Decompression Of High Pressure High Temperature Fluids - Study On Black Oil

    Figueroa, D. C.; Fosbøl, P. L.; Thomsen, K.


    Fluids produced from deep underground reservoirs may result in exponential increase in temperature. It is a consequence of adiabatic fluid decompression from the inverse Joule Thomson Effect (JTE). The phenomenon requires analysis in order to avoid any operational risks. This study evaluates...... the JTE upon decompression of black oil in high pressure-high temperature reservoirs. Also the effect caused by the presence of water and brine on the black oil is studied. The final temperature is calculated from the corresponding energy balance at isenthalpic and non-isenthalpic conditions. It is found...... that the final temperature of black oil increases upon adiabatic decompression. In the case of the isenthalpic process at initial conditions of the reservoir, e.g. 150°C and 1000 bars, it is found that the final temperature can increase to 173.7°C. At non-isenthalpic conditions the final temperature increases...

  20. High speed analysis of used hydrocarbons, particularly waste oils; Schnellanalyse von gebrauchten Kohlenwasserstoffen, insbesondere Altoelen

    Yacoub-George, E.; Endres, H.E. [Fraunhofer Institut fuer Zuverlaessigkeit und Mikrointegration (IZM), Muenchen (Germany)


    According to a decision of the European Court of Justice material recycling of waste oil must take priority over thermal recycling. The present study investigates the possibilities to classify waste oil samples according to their potential for material recycling on-site at the waste oil producer. The first part of the study surveys the state of the art in chemical analysis of waste oil and in oil quality monitoring with sensing elements in vehicles. It was shown, that the chemical analysis of waste oil is dominated by methods for monitoring the oil quality and by methods for the determination of harmful substances. For sensor-based oil condition monitoring in vehicles different approaches were discussed in literature. Most sensor systems work in a capacitive mode and use the change of the electrical properties of the oil for analysing oil quality. The second part of the study investigates, whether waste oil can be classified according to its potential for material recycling by the following physical parameters: viscosity, density, viscoelastic properties, conductivity and relative permittivity. This was done by performing and evaluating measurements at 26 different waste oil samples with a combi-SAW-/IDK-dipstick sensor. The results showed, that the SAW- und IDK-signals contain only little information permitting to classify waste oil samples according to their potential for material recycling. A classification of waste oil samples with the combi-SAW-/IDK-dipstick sensor was impossible, even when the signal evaluation was done by using modern methods of chemometrics, as e. g. the multivariate statistics. A further series of measurements showed, that since the conductivity of the waste oil samples is too low, cyclovoltammetry is also an unsuitable method to classify waste oil samples on-site. On the other hand, the study showed that the investigated waste oil samples can be classified by IR-spectroscopy in combination with multivariate statistics. By evaluating the

  1. Co-processing of standard gas oil and biocrude oil to hydrocarbon fuels

    Agblevor, Foster A.; Mante, O.; McClung, R.; Oyama, S.T.


    The major obstacle in thermochemical biomass conversion to hydrocarbon fuels using pyrolysis has been the high oxygen content and the poor stability of the product oils, which cause them to solidify during secondary processing. We have developed a fractional catalytic pyrolysis process to convert biomass feedstocks into a product termed “biocrude oils” (stable biomass pyrolysis oils) which are distinct from unstable conventional pyrolysis oils. The biocrude oils are stable, low viscosity liquids that are storable at ambient conditions without any significant increases in viscosity; distillable at both atmospheric pressure and under vacuum without char or solid formation. About 15 wt% biocrude oils containing 20–25% oxygen were blended with 85 wt% standard gas oil and co-cracked in an Advanced Catalyst Evaluation (ACE™) unit using fluid catalytic cracking (FCC) catalysts to produce hydrocarbon fuels that contain negligible amount of oxygen. For the same conversion of 70% for both the standard gas oil and the biocrude oil/gas oil blends, the product gasoline yield was 44 wt%, light cycle oil (LCO) 17 wt%, heavy cycle oil (HCO) 13 wt%, and liquefied petroleum gas (LPG) 16 wt%. However, the coke yield for the standard gas oil was 7.06 wt% compared to 6.64–6.81 wt% for the blends. There appeared to be hydrogen transfer from the cracking of the standard gas oil to the biocrude oil which subsequently eliminated the oxygen in the fuel without external hydrogen addition. We have demonstrated for the first time that biomass pyrolysis oils can be successfully converted into hydrocarbons without hydrogenation pretreatment. -- Highlights: ► The co-processed product had less than 1% oxygen content and contained biocarbons determined by 14 C analysis. ► The co-processing did not affect the yields of gasoline, LCO, and HCO. ► First demonstration of direct conversion of pyrolysis oils into drop-in hydrocarbon fuels.

  2. Comparative analysis of fiscal terms for Alberta oil sands and international heavy and conventional oils

    Van Meurs, P.


    There are considerable differences between international heavy oil and Alberta oil sands projects, notably the high viscosity of the bitumen in the oil sands reservoirs. The oil sands bitumen do not flow to wells without heating the bitumen, thereby adding to the already high cost of Alberta oil sand operations. This report provided an economic comparison of Alberta oil sands and international heavy oil projects. It also included a brief scoping review to compare with conventional oil regimes. Full exploration costs including the costs of dry holes were allocated to conventional oil operations in order to obtain a proper comparison. This investigation included the costs of dry holes. The report was a follow up to an earlier study released on April 12, 2007 on the preliminary fiscal evaluation of Alberta oil sand terms. The report provided an economic framework and described project selection. It then provided a discussion of production, costs and price data. Four adjusted projects were presented and compared with Alberta. The Venezuelan royalty formula was also discussed. Last, the report provided a detailed fiscal analysis. Comparisons were offered with Cold Lake and Athabasca Mine. A review of some other fiscal systems applicable to conventional oil were also outlined. It was concluded that Alberta oil sands developments are very competitive. It would be possible to modestly increase government revenues, without affecting the international competitive position of Alberta with respect to conventional oil. There is also some possibility to increase the base royalty on the Alberta oil sands without losing competitiveness. tabs., figs

  3. A high performance liquid chromatography method for determination of furfural in crude palm oil.

    Loi, Chia Chun; Boo, Huey Chern; Mohammed, Abdulkarim Sabo; Ariffin, Abdul Azis


    A modified steam distillation method was developed to extract furfural from crude palm oil (CPO). The collected distillates were analysed using high performance liquid chromatography (HPLC) coupled with an ultraviolet diode detector at 284nm. The HPLC method allowed identification and quantification of furfural in CPO. The unique thermal extraction of CPO whereby the fresh fruit bunches (FFB) are first subjected to steam treatment, distinguishes itself from other solvent-extracted or cold-pressed vegetable oils. The presence of furfural was also determined in the fresh palm oil from FFB (without undergoing the normal extraction process), palm olein, palm stearin, olive oil, coconut oil, sunflower oil, soya oil and corn oil. The chromatograms of the extracts were compared to that of standard furfural. Furfural was only detected in CPO. The CPO consignments obtained from four mills were shown to contain 7.54 to 20.60mg/kg furfural. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Preparation and Characterization of Epoxy Resin Cross-Linked with High Wood Pyrolysis Bio-Oil Substitution by Acetone Pretreatment

    Yi Liu


    Full Text Available The use of cost effective solvents may be necessary to store wood pyrolysis bio-oil in order to stabilize and control its viscosity, but this part of the production system has not been explored. Conversely, any rise in viscosity during storage, that would occur without a solvent, will add variance to the production system and render it cost ineffective. The purpose of this study was to modify bio-oil with a common solvent and then react the bio-oil with an epoxy for bonding of wood without any loss in properties. The acetone pretreatment of the bio-oil/epoxy mixture was found to improve the cross-linking potential and substitution rate based on its mechanical, chemical, and thermal properties. Specifically, the bio-oil was blended with epoxy resin at weight ratios ranging from 2:1 to 1:5 and were then cured. A higher bio-oil substitution rate was found to lower the shear bond strength of the bio-oil/epoxy resins. However, when an acetone pretreatment was used, it was possible to replace the bio-oil by as much as 50% while satisfying usage requirements. Extraction of the bio-oil/epoxy mixture with four different solvents demonstrated an improvement in cross-linking after acetone pretreatment. ATR-FTIR analysis confirmed that the polymer achieved a higher cross-linked structure. DSC and TGA curves showed improved thermal stability with the addition of the acetone pretreatment. UV-Vis characterization showed that some functional groups of the bio-oil to epoxy system were unreacted. Finally, when the resin mixture was utilized to bond wood, the acetone pretreatment coupled with precise tuning of the bio-oil:epoxy ratio was an effective method to control cross-linking while ensuring acceptable bond strength.

  5. RAFT Aqueous Dispersion Polymerization of N-(2-(Methacryloyloxy)ethyl)pyrrolidone: A Convenient Low Viscosity Route to High Molecular Weight Water-Soluble Copolymers.

    Cunningham, Victoria J; Derry, Matthew J; Fielding, Lee A; Musa, Osama M; Armes, Steven P


    RAFT solution polymerization of N -(2-(methacryoyloxy)ethyl)pyrrolidone (NMEP) in ethanol at 70 °C was conducted to produce a series of PNMEP homopolymers with mean degrees of polymerization (DP) varying from 31 to 467. Turbidimetry was used to assess their inverse temperature solubility behavior in dilute aqueous solution, with an LCST of approximately 55 °C being observed in the high molecular weight limit. Then a poly(glycerol monomethacylate) (PGMA) macro-CTA with a mean DP of 63 was chain-extended with NMEP using a RAFT aqueous dispersion polymerization formulation at 70 °C. The target PNMEP DP was systematically varied from 100 up to 6000 to generate a series of PGMA 63 -PNMEP x diblock copolymers. High conversions (≥92%) could be achieved when targeting up to x = 5000. GPC analysis confirmed high blocking efficiencies and a linear evolution in M n with increasing PNMEP DP. A gradual increase in M w / M n was also observed when targeting higher DPs. However, this problem could be minimized ( M w / M n RAFT aqueous dispersion polymerization of NMEP was approximately four times faster than the RAFT solution polymerization of NMEP in ethanol when targeting the same DP in each case. This is perhaps surprising because both 1 H NMR and SAXS studies indicate that the core-forming PNMEP chains remain relatively solvated at 70 °C in the latter formulation. Moreover, dissolution of the initial PGMA 63 -PNMEP x particles occurs on cooling from 70 to 20 °C as the PNMEP block passes through its LCST. Hence this RAFT aqueous dispersion polymerization formulation offers an efficient route to a high molecular weight water-soluble polymer in a rather convenient low-viscosity form. Finally, the relatively expensive PGMA macro-CTA was replaced with a poly(methacrylic acid) (PMAA) macro-CTA. High conversions were also achieved for PMAA 85 -PNMEP x diblock copolymers prepared via RAFT aqueous dispersion polymerization for x ≤ 4000. Again, better control was achieved when

  6. The determination of the pressure-viscosity coefficient of a lubricant through an accurate film thickness formula and accurate film thickness measurements : part 2 : high L values

    Leeuwen, van H.J.


    The pressure-viscosity coefficient of a traction fluid is determined by fitting calculation results on accurate film thickness measurements, obtained at different speeds, loads, and temperatures. Through experiments, covering a range of 5.6

  7. Effective Viscosity in Porous Media and Applicable Limitations for Polymer Flooding of an Associative Polymer

    Zhang Peng


    Full Text Available Hydrophobically associating polyacrylamide (HAPAM is considered to be a promising candidate for polymer flooding because of its excellent apparent viscosifying capability. Compared with partially hydrolyzed polyacrylamide (HPAM, the resistance factor and residual resistance factor caused by HAPAM tend to be higher. However, the effective viscosity of HAPAM is lower than that of conventional polymer at a concentration of 2 000 mg/L. The dynamic retention capacity of HAPAM is about 2.3 times that of HPAM. The oil displacement efficiency of HAPAM is lower than that of conventional polymer at a concentration of 2 000 mg/L in the homogeneous sandpack model. The oil displacement efficiency of HAPAM is higher than that of HPAM only in the heterogeneous model (permeability ratio 2.8. Neither high nor low permeability ratios are good for the oil displacement efficiency of HAPAM.

  8. Viscosity calculations of simulated ion-exchange resin waste glasses

    Kim, Cheon Woo; Park, Jong Kil; Lee, Kyung Ho; Lee, Myung Chan; Song, Myung Jae; BRUNELOT, Pierre


    An induction cold crucible melter (CCM) located in the NETEC-KEPCO has been used to vitrify simulated ion-exchange resin. During vitrification, the CCM operations were tightly constrained by glass viscosity as an important process parameter. Understanding the role of viscosity and quantifying viscosity is highly required in the determination of optimized feed formulations and in the selection of the processing temperature. Therefore, existing process models of glass viscosity based on a relationship between the glass composition, its structure polymerization, and the temperature were searched and adapted to our borosilicate glass systems. Calculated data using a viscosity model based on calculation of non-bridging oxygen (NBO) were in good agreement with the measured viscosity data of benchmark glasses

  9. Comparison of chemical characteristics of high oleic acid fraction of moringa oleifera oil with some vegetable oils

    Rahman, F.; Nadeem, M.; Zahoor, Y.


    Chemical characteristics of High oleic acid fraction (HOF) of Moringa oleifera oil (MOO) was compared with sunflower, soybean and canola oils. HOF of MOO was obtained by dry fractionation at 0 degree C. Iodine value and C18:1 in HOF increased from 61.55 to 82.47 points and 70.29% to 81.15%, respectively. Cloud point of HOF was 1.1 degree C as compared to 10.2 degree C in MOO. The induction period of HOF was greater than all the vegetable oils tested in this investigation. HOF can be used as a source of edible oil with better health attributes and superior storage stability. (author)

  10. Catalytic cracking of the top phase fraction of bio-oil into upgraded liquid oil

    Sunarno; Rochmadi,; Mulyono, Panut; Budiman, Arief


    The energy consumption is increasing, while oil reserves as a primary energy resource are decreasing, so that is the reason seeking alternative energy source is inevitable. Biomass especially oil palm empty fruit bunches (EFB) which is abundant in Indonesia can be processed into bio-oil by pyrolysis process. The potential for direct substitution of bio-oil for petroleum may be limited due to the high viscosity, high oxygen content, low heating value, and corrosiveness. Consequently, upgrading of the bio-oil before use is inevitable to give a wider variety of applications of its liquid product. Furthermore, upgrading process to improve the quality of bio-oil by reduction of oxygenates involves process such as catalytic cracking. The objective of this research is to study the effect of operation temperature on yield and composition of upgraded liquid oil and to determine physical properties. Bio-oil derived from EFB was upgraded through catalytic cracking using series tubular reactor under atmospheric pressure on a silica-alumina catalyst. Results show that increasing temperature from 450 to 600 °C, resulting in decreasing of upgraded liquid oil (ULO) yield, decreasing viscosity and density of ULO, but increasing in calorimetric value of ULO. The increasing temperature of cracking also will increase the concentration of gasoline and kerosene in ULO.

  11. Catalytic cracking of the top phase fraction of bio-oil into upgraded liquid oil

    Sunarno [Chemical Engineering Department, Riau University, Kampus Binawidya KM 12,5 Pekanbaru 28293 (Indonesia); Chemical Engineering Department, Gadjah Mada University, Jalan Grafika No. 2 Bulaksumur,Yogyakarta 55281 (Indonesia); Rochmadi,; Mulyono, Panut [Chemical Engineering Department, Gadjah Mada University, Jalan Grafika No. 2 Bulaksumur,Yogyakarta 55281 (Indonesia); Budiman, Arief, E-mail: [Chemical Engineering Department, Gadjah Mada University, Jalan Grafika No. 2 Bulaksumur,Yogyakarta 55281(Indonesia); Center for Energy Studies, Gadjah Mada University, Sekip K1A, Yogyakarta 55281 (Indonesia)


    The energy consumption is increasing, while oil reserves as a primary energy resource are decreasing, so that is the reason seeking alternative energy source is inevitable. Biomass especially oil palm empty fruit bunches (EFB) which is abundant in Indonesia can be processed into bio-oil by pyrolysis process. The potential for direct substitution of bio-oil for petroleum may be limited due to the high viscosity, high oxygen content, low heating value, and corrosiveness. Consequently, upgrading of the bio-oil before use is inevitable to give a wider variety of applications of its liquid product. Furthermore, upgrading process to improve the quality of bio-oil by reduction of oxygenates involves process such as catalytic cracking. The objective of this research is to study the effect of operation temperature on yield and composition of upgraded liquid oil and to determine physical properties. Bio-oil derived from EFB was upgraded through catalytic cracking using series tubular reactor under atmospheric pressure on a silica-alumina catalyst. Results show that increasing temperature from 450 to 600 °C, resulting in decreasing of upgraded liquid oil (ULO) yield, decreasing viscosity and density of ULO, but increasing in calorimetric value of ULO. The increasing temperature of cracking also will increase the concentration of gasoline and kerosene in ULO.

  12. Determination of the density and the viscosities of biodiesel-diesel fuel blends

    Alptekin, Ertan; Canakci, Mustafa [Department of Mechanical Education, Kocaeli University, 41380 Kocaeli (Turkey); Alternative Fuels R and D Center, Kocaeli University, 41040 Kocaeli (Turkey)


    In this study, commercially available two different diesel fuels were blended with the biodiesels produced from six different vegetable oils (sunflower, canola, soybean, cottonseed, corn oils and waste palm oil). The blends (B2, B5, B10, B20, B50 and B75) were prepared on a volume basis. The key fuel properties such as density and viscosities of the blends were measured by following ASTM test methods. Generalized equations for predicting the density and viscosities for the blends were given and a mixing equation, originally proposed by Arrhenius and described by Grunberg and Nissan, was used to predict the viscosities of the blends. For all blends, it was found that there is an excellent agreement between the measured and estimated values of the density and viscosities. According to the results, the density and viscosities of the blends increased with the increase of biodiesel concentration in the fuel blend. (author)

  13. Entropy viscosity method for nonlinear conservation laws

    Guermond, Jean-Luc


    A new class of high-order numerical methods for approximating nonlinear conservation laws is described (entropy viscosity method). The novelty is that a nonlinear viscosity based on the local size of an entropy production is added to the numerical discretization at hand. This new approach does not use any flux or slope limiters, applies to equations or systems supplemented with one or more entropy inequalities and does not depend on the mesh type and polynomial approximation. Various benchmark problems are solved with finite elements, spectral elements and Fourier series to illustrate the capability of the proposed method. © 2010 Elsevier Inc.

  14. Gravimetric capillary method for kinematic viscosity measurements

    Rosenberger, Franz; Iwan, J.; Alexander, D.; Jin, Wei-Qing


    A novel version of the capillary method for viscosity measurements of liquids is presented. Viscosity data can be deduced in a straightforward way from mass transfer data obtained by differential weighing during the gravity-induced flow of the liquid between two cylindrical chambers. Tests of this technique with water, carbon tetrachloride, and ethanol suggest that this arrangement provides an accuracy of about +/- 1 percent. The technique facilitates operation under sealed, isothermal conditions and, thus can readily be applied to reactive and/or high vapor pressure liquids.

  15. Entropy viscosity method for nonlinear conservation laws

    Guermond, Jean-Luc; Pasquetti, Richard; Popov, Bojan


    A new class of high-order numerical methods for approximating nonlinear conservation laws is described (entropy viscosity method). The novelty is that a nonlinear viscosity based on the local size of an entropy production is added to the numerical discretization at hand. This new approach does not use any flux or slope limiters, applies to equations or systems supplemented with one or more entropy inequalities and does not depend on the mesh type and polynomial approximation. Various benchmark problems are solved with finite elements, spectral elements and Fourier series to illustrate the capability of the proposed method. © 2010 Elsevier Inc.

  16. Fish oil prevents sucrose-induced fatty liver but exacerbates high-safflower oil-induced fatty liver in ddy mice.

    Yamazaki, Tomomi; Nakamori, Akiko; Sasaki, Eriko; Wada, Satoshi; Ezaki, Osamu


    Diets high in sucrose/fructose or fat can result in hepatic steatosis (fatty liver). We analyzed the effects of dietary fish oil on fatty liver induced by sucrose, safflower oil, and butter in ddY mice. In experiment I, mice were fed a high-starch diet [70 energy% (en%) starch] plus 20% (wt/wt) sucrose in the drinking water or fed a high-safflower oil diet (60 en%) for 11 weeks. As a control, mice were fed a high-starch diet with drinking water. Fish oil (10 en%) was either supplemented or not. Mice supplemented with sucrose or fed safflower oil showed a 1.7-fold or 2.2-fold increased liver triglyceride content, respectively, compared with that of control mice. Fish oil completely prevented sucrose-induced fatty liver, whereas it exacerbated safflower oil-induced fatty liver. Sucrose increased SREBP-1c and target gene messenger RNAs (mRNAs), and fish oil completely inhibited these increases. In experiment II, mice were fed a high-safflower oil or a high-butter diet, with or without fish oil supplementation. Fish oil exacerbated safflower oil-induced fatty liver but did not affect butter-induced fatty liver. Fish oil increased expression of peroxisome proliferator-activated receptor gamma (PPARgamma) and target CD36 mRNA in safflower oil-fed mice. These increases were not observed in sucrose-supplemented or butter-fed mice. The effects of dietary fish oil on fatty liver differ according to the cause of fatty liver; fish oil prevents sucrose-induced fatty liver but exacerbates safflower oil-induced fatty liver. The exacerbation of fatty liver may be due, at least in part, to increased expression of liver PPARgamma.

  17. Solar-Assisted Fast Cleanup of Heavy Oil Spill by a Photothermal Sponge

    Chang, Jian


    Rapid cleanup of heavy oil spill is always considered as a great challenge because the conventional porous oil sorbents cannot efficiently remove them due to the high viscosity of the oil (>1000 mPa·s). In this work, we take advantage of the photothermal effect to heating the heavy oil by using sunlight as energy source to significantly reduce the viscosity of the heavy oil and thus to achieve a fast heavy oil cleanup. A carbon nanotube (CNT) modified polyurethane sponge was fabricated as photothermal sorbent that exhibited superhydrophobicity, superoleophilicity, as well as outstanding absorption capacity of heavy oil. Thanks to the excellent photothermal effect of CNTs, the modified sponge achieved nearly full sunlight absorption (99%). The resulting solar heating effectively reduced the viscosity of the heavy oil, which enabled the modified sponge to quickly absorb heavy oil of 20 times its own weight under sun illumination. This solar-assisted heavy oil sorbent design is promising for future remediation of viscous oil-spills.

  18. An overview of empty fruit bunch from oil palm as feedstock for bio-oil production

    Chang, Siu Hua


    Empty fruit bunch (EFB) from oil palm is one of the potential biomass to produce biofuels like bio-oil due to its abundant supply and favorable physicochemical characteristics. Confirming the assertion, this paper presents an overview of EFB as a feedstock for bio-oil production. The fundamental characteristics of EFB in terms of proximate analysis, ultimate analysis and chemical composition, as well as the recent advances in EFB conversion processes for bio-oil production like pyrolysis and solvolysis are outlined and discussed. A comparison of properties in terms of proximate analysis, ultimate analysis and fuel properties between the bio-oil from EFB and petroleum fuel oil is included. The major challenges and future prospects towards the utilization of EFB as a useful resource for bio-oil production are also addressed. - Highlights: • Palm EFB has high heating value and low greenhouse gas emissions during combustion. • Conversion of EFB to bio-oil is mainly by fast pyrolysis without and with catalyst. • Bio-oil from EFB is lower in heating value, heavier and more acidic than fuel oil. • The viscosity of bio-oil from EFB is between those of light and heavy fuel oils. • The flash and pour points of bio-oil from EFB are close to those of light fuel oil

  19. Oil spills

    Katsouros, M.H.


    The world annually transports 1.7 billion tons of oil by sea, and oil spills, often highly concentrated discharges, are increasing from a variety of sources. The author discusses sources of oils spills: natural; marine transportation; offshore oil production; atmospheric sources; municipal industrial wastes and runoff. Other topics include: the fate of the spilled oil; the effects of the oil; the response to oil spills; and prevention of oil spills. 30 refs., 1 fig., 4 tabs

  20. US oil companies ready to take the high ground again

    Odell, P.


    In the 1930s, the petroleum industry, which essentially started in the United States of America (USA), was prevented from expanding its influence to Middle East petroleum producing countries because of the colonial control exercised by Britain, France and the Netherlands. However, with the Second World War, these relationships changed, and gradually the oil traded internationally became the principle source of energy on the world market. A well-known oil industry commentator and critic describes these developments and notes that since the Gulf War, the USA has drawn closer to Saudi Arabia, a major oil producer, and hence permitted U S. oil companies to dominate the world scene. (UK)

  1. Physical and Chemical Properties of Bio-Oils From Microwave Pyrolysis of Corn Stover

    Yu, Fei; Deng, Shaobo; Chen, Paul; Liu, Yuhuan; Wan, Yiqin; Olson, Andrew; Kittelson, David; Ruan, Roger

    This study was aimed to understand the physical and chemical properties of pyrolytic bio-oils produced from microwave pyrolysis of corn stover regarding their potential use as gas turbine and home heating fuels. The ash content, solids content, pH, heating value, minerals, elemental ratio, moisture content, and viscosity of the bio-oils were determined. The water content was approx 15.2 wt%, solids content 0.22 wt%, alkali metal content 12 parts per million, dynamic viscosity 185 mPa·s at 40°C, and gross high heating value 17.5 MJ/kg for a typical bio-oil produced. Our aging tests showed that the viscosity and water content increased and phase separation occurred during the storage at different temperatures. Adding methanol and/or ethanol to the bio-oils reduced the viscosity and slowed down the increase in viscosity and water content during the storage. Blending of methanol or ethanol with the bio-oils may be a simple and cost-effective approach to making the pyrolytic bio-oils into a stable gas turbine or home heating fuels.

  2. Whole-blood viscosity and the insulin-resistance syndrome.

    Høieggen, A; Fossum, E; Moan, A; Enger, E; Kjeldsen, S E


    In a previous study we found that elevated blood viscosity was linked to the insulin resistance syndrome, and we proposed that high blood viscosity may increase insulin resistance. That study was based on calculated viscosity. To determine whether directly measured whole-blood viscosity was related to the insulin-resistance syndrome in the same way as calculated viscosity had been found to be. Healthy young men were examined with the hyperinsulinemic isoglycemic glucose clamp technique, and we related insulin sensitivity (glucose disposal rate) to other metabolic parameters and to blood viscosity. We established a technique for direct measurement of whole-blood viscosity. There were statistically significant negative correlations between glucose disposal rate and whole-blood viscosity at low and high shear rates (r = -0.41, P = 0.007 for both, n = 42). Whole-blood viscosity was correlated positively (n = 15) to serum triglyceride (r = 0.54, P = 0.04) and total cholesterol (r = 0.52, P = 0.05), and negatively with high-density lipoprotein cholesterol (r = -0.53, P = 0.04) concentrations. Insulin sensitivity index was correlated positively to high-density lipoprotein cholesterol (r = 0.54, P = 0.04) and negatively to serum triglyceride (r = -0.69, P = 0.005) and to total cholesterol (r = -0.81, P = 0.0003) concentrations. The present results demonstrate for the first time that there is a negative relationship between directly measured whole-blood viscosity and insulin sensitivity as a part of the insulin-resistance syndrome. Whole-blood viscosity contributes to the total peripheral resistance, and these results support the hypothesis that insulin resistance has a hemodynamic basis.

  3. Study on the spray characteristics of methyl esters from waste cooking oil at elevated temperature

    Lin, Yung-Sung [Department of Mechanical and Automation Engineering, Da-Yeh University, 168 University Road, Dacun, Changhua 51591 (China); Department of Mechanical Engineering, Hsiuping Institute of Technology, No.11, Gongye Rd., Dali City, Taichung County 412-80 (China); Lin, Hai-Ping [Department of Mechanical and Automation Engineering, Da-Yeh University, 168 University Road, Dacun, Changhua 51591 (China)


    In Taiwan, millions of tons of waste cooking oil are produced each year, and less than 20% of it, about 150,000 ton/a, is reclaimed and reused. Most waste oil is flushed down the drain. Utilizing waste cooking oil to make biodiesel not only reduces engine exhaust gas pollution, but also replaces food-derived fuels, and reduces ecologic river pollution. This study employed two-stage transesterification to lower the high viscosity of waste oil, utilized emulsion to reduce the methyl ester NOx pollution, and used methanol to enhance the stability and viscosity of emulsified fuel. To further analyze spray characteristics of fuels, this experiment built a constant volume bomb under high temperature, used high speed photography to analyze spray tip penetration, spray angle, and the Sauter mean diameter (SMD) of fuel droplets, and compared the results with fossil diesel. The experimental results suggested that, two-stage transesterification can significantly lower waste oil viscosity to that which is close to fossil diesel viscosity. At a temperature above 300 C, waste cooking oil methyl esters had a water content of 20%, spray droplet characteristics were significantly improved, and NOx emission dropped significantly. The optimal fuel ratio suggested in this experiment was waste cooking oil methyl ester 74.5%, methanol 5%, water 20%, and composite surfactant Span-Tween 0.5%. (author)

  4. Purification of radioactive waste oil by a supercritical fluid

    Yoo, Jaeryong; Sung, Jinhyun; Park, Kwangheon; Kim, Hongdoo; Kim, Hakwon; Lim, Taeyoon; Yim, Sanghak; Yoon, Weonseob


    The radioactive waste oil from the nuclear industry is potentially hazardous due to its possibility to contaminate soil and underwater. Pollutants in waste oil are generally radioactive heavy metals or organo-metals. Radioactive waste oils are highly viscous fluids that are similar to used-motor oils. Several processes have been developed to regenerated used motor oil, such as acid clay treatment, chemical addition, vacuum distillation, thermal cracking and hydrofinishing. However, these technologies are difficult to apply to separating radioactive nuclides from radioactive waste oils. In recent years, our laboratory developed a membrane method for the regeneration of used motor oils. We applied supercritical Co2 (scCO2) as a viscosity reducing additive to waste oils at a lower process temperature in order to improve membrane permeability and thus the energy saving. However, the membrane cannot filter the contaminants in radioactive waste oil that are not particles, such as radioactive ions in impurity water in the oil. In this paper, we suggest a method extracting clean oil from the radioactive waste oil rather than filtering by a supercritical fluid. We selected R22, a refrigerant, as a solvent for extraction. R22 has a mild critical point - 96.1 .deg. and 49.9bar. Regeneration of waste oils by extracting clean oil using a supercritical fluid such as R22 is easy to handle and reduce secondary wastes. In this paper, we examine the feasibility of R22 in extracting clean oil from radioactive waste oils

  5. Production and Characterization of Biodiesel from Tung Oil

    Park, Ji-Yeon; Kim, Deog-Keun; Wang, Zhong-Ming; Lu, Pengmei; Park, Soon-Chul; Lee, Jin-Suk

    The feasibility of biodiesel production from tung oil was investigated. The esterification reaction of the free fatty acids of rung oil was performed using Amberlyst-15. Optimal molar ratio of methanol to oil was determined to be 7.5:1, and Amberlyst-15 was 20.8wt% of oil by response surface methodology. Under these reaction conditions, the acid value of rung oil was reduced to 0.72mg KOH/g. In the range of the molar equivalents of methanol to oil under 5, the esterification was strongly affected by the amount of methanol but not the catalyst. When the molar ratio of methanol to oil was 4.1:1 and Amberlyst-15 was 29.8wt% of the oil, the acid value decreased to 0.85mg KOH/g. After the transesterification reaction of pretreated rung oil, the purity of rung biodiesel was 90.2wt%. The high viscosity of crude rung oil decreased to 9.8mm2/s at 40 °C. Because of the presence of eleostearic acid, which is a main component of tung oil, the oxidation stability as determined by the Rancimat method was very low, 0.5h, but the cold filter plugging point, -11 °C, was good. The distillation process did not improve the fatty acid methyl ester content and the viscosity.

  6. Pressure Effect on Extensional Viscosity

    Christensen, Jens Horslund; Kjær, Erik Michael


    The primary object of these experiments was to investigate the influence of hydrostatic pressure on entrance flow. The effect of pressure on shear and extensional viscosity was evaluated using an axis symmetric capillary and a slit die where the hydrostatic pressure was raised with valves....... The experiments show a significant increase in extensional viscosity with increasing pressure....

  7. High-glycemic index carbohydrates abrogate the antiobesity effect of fish oil in mice

    Hao, Qin; Lillefosse, Haldis Haukås; Fjære, Even


    Fish oil rich in n-3 polyunsaturated fatty acids is known to attenuate diet-induced obesity and adipose tissue inflammation in rodents. Here we aimed to investigate whether different carbohydrate sources modulated the antiobesity effects of fish oil. By feeding C57BL/6J mice isocaloric high-fat d...... metabolic effects of fish oil by demonstrating that high-GI carbohydrates attenuate the antiobesity effects of fish oil.......Fish oil rich in n-3 polyunsaturated fatty acids is known to attenuate diet-induced obesity and adipose tissue inflammation in rodents. Here we aimed to investigate whether different carbohydrate sources modulated the antiobesity effects of fish oil. By feeding C57BL/6J mice isocaloric high...

  8. Reduction of light oil usage as power fluid for jet pumping in deep heavy oil reservoirs

    Chen, S.; Li, H.; Yang, D. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[Regina Univ., SK (Canada); Zhang, Q. [China Univ. of Petroleum, Dongying, Shandong (China); He, J. [China National Petroleum Corp., Haidan District, Beijing (China). PetroChina Tarim Oilfield Co.


    In deep heavy oil reservoirs, reservoir fluid can flow more easily in the formation as well as around the bottomhole. However, during its path along the production string, viscosity of the reservoir fluid increases dramatically due to heat loss and release of the dissolved gas, resulting in significant pressure drop along the wellbore. Artificial lifting methods need to be adopted to pump the reservoir fluids to the surface. This paper discussed the development of a new technique for reducing the amount of light oil used for jet pumping in deep heavy oil wells. Two approaches were discussed. Approach A uses the light oil as a power fluid first to obtain produced fluid with lower viscosity, and then the produced fluid is reinjected into the well as a power fluid. The process continues until the viscosity of the produced fluid is too high to be utilized. Approach B combines a portion of the produced fluid with the light oil at a reasonable ratio and then the produced fluid-light oil mixture is used as the power fluid for deep heavy oil well production. The viscosity of the blended power fluid continue to increase and eventually reach equilibrium. The paper presented the detailed processes of both approaches in order to indicate how to apply them in field applications. Theoretic models were also developed and presented to determine the key parameters in the field operations. A field case was also presented and a comparison and analysis between the two approaches were discussed. It was concluded from the field applications that, with a certain amount of light oil, the amount of reservoir fluid produced by using the new technique could be 3 times higher than that of the conventional jet pumping method. 17 refs., 3 tabs., 6 figs.

  9. Direct contra naïve-indirect comparison of clinical failure rates between high-viscosity GIC and conventional amalgam restorations: an empirical study.

    Mickenautsch, Steffen; Yengopal, Veerasamy


    Naïve-indirect comparisons are comparisons between competing clinical interventions' evidence from separate (uncontrolled) trials. Direct comparisons are comparisons within randomised control trials (RCTs). The objective of this empirical study is to test the null-hypothesis that trends and performance differences inferred from naïve-indirect comparisons and from direct comparisons/RCTs regarding the failure rates of amalgam and direct high-viscosity glass-ionomer cement (HVGIC) restorations in permanent posterior teeth have similar direction and magnitude. A total of 896 citations were identified through systematic literature search. From these, ten and two uncontrolled clinical longitudinal studies for HVGIC and amalgam, respectively, were included for naïve-indirect comparison and could be matched with three out twenty RCTs. Summary effects sizes were computed as Odds ratios (OR; 95% Confidence intervals) and compared with those from RCTs. Trend directions were inferred from 95% Confidence interval overlaps and direction of point estimates; magnitudes of performance differences were inferred from the median point estimates (OR) with 25% and 75% percentile range, for both types of comparison. Mann-Whitney U test was applied to test for statistically significant differences between point estimates of both comparison types. Trends and performance differences inferred from naïve-indirect comparison based on evidence from uncontrolled clinical longitudinal studies and from direct comparisons based on RCT evidence are not the same. The distributions of the point estimates differed significantly for both comparison types (Mann-Whitney U  =  25, n(indirect)  =  26; n(direct)  =  8; p  =  0.0013, two-tailed). The null-hypothesis was rejected. Trends and performance differences inferred from either comparison between HVGIC and amalgam restorations failure rates in permanent posterior teeth are not the same. It is recommended that clinical practice

  10. Biodiesel's Characteristics Preparation from Palm Oil

    Tilani Hamid


    Full Text Available Using vegetable oils directly as an alternative diesel fuel has presented engine problems. The problems have been attributed to high viscosity of vegetable oil that causes the poor atomization of fuel in the injector system and pruduces uncomplete combustion. Therefore, it is necessary to convert the vegetable oil into ester (metil ester by tranesterification process to decrease its viscosity. In this research has made biodiesel by reaction of palm oil and methanol using lye (NaOH as catalyst with operation conditions: constant temperature at 60 oC in atmosferic pressure, palm oil : methanol volume ratio = 5 : 1, amount of NaOH used as catalyst = 3.5 gr, 4.5 gr, 5 gr and 5.5 gr and it takes about one hour time reaction. The ester (metil ester produced are separated from glycerin and washed until it takes normal pH (6-7 where more amount of catalyst used will decrease the ester (biodiesel produced. The results show that biodiesels' properties made by using 3.5 (M3.5 gr, 4.5 gr (M4.5 and 5 (M5.0 gr catalyst close to industrial diesel oil and the other (M5.5 closes to automotive diesel oil, while blending diesel oil with 20 % biodiesel (B20 is able to improve the diesel engine performances.

  11. Capillary waves with surface viscosity

    Shen, Li; Denner, Fabian; Morgan, Neal; van Wachem, Berend; Dini, Daniele


    Experiments over the last 50 years have suggested a correlation between the surface (shear) viscosity and the stability of a foam or emulsion. With recent techniques allowing more accurate measurements of the elusive surface viscosity, we examine this link theoretically using small-amplitude capillary waves in the presence of the Marangoni effect and surface viscosity modelled via the Boussinesq-Scriven model. The surface viscosity effect is found to contribute a damping effect on the amplitude of the capillary wave with subtle differences to the effect of the convective-diffusive Marangoni transport. The general wave dispersion is augmented to take into account the Marangoni and surface viscosity effects, and a first-order correction to the critical damping wavelength is derived. The authors acknowledge the financial support of the Shell University Technology Centre for fuels and lubricants.

  12. Integrated and comparative proteomics of high-oil and high-protein soybean seeds.

    Xu, Xiu Ping; Liu, Hui; Tian, Lihong; Dong, Xiang Bai; Shen, Shi Hua; Qu, Le Qing


    We analysed the global protein expression in seeds of a high-oil soybean cultivar (Jiyu 73, JY73) by proteomics. More than 700 protein spots were detected and 363 protein spots were successfully identified. Comparison of the protein profile of JY73 with that of a high-protein cultivar (Zhonghuang 13, ZH13) revealed 40 differentially expressed proteins, including oil synthesis, redox/stress, hydrolysis and storage-related proteins. All redox/stress proteins were less or not expressed in JY73, whereas the expression of the major storage proteins, nitrogen and carbon metabolism-related proteins was higher in ZH13. Biochemical analysis of JY73 revealed that it was in a low oxidation state, with a high content of polyunsaturated fatty acids and vitamin E. Vitamin E was more active than antioxidant enzymes and protected the soybean seed in a lower oxidation state. The characteristics of high oil and high protein in soybean, we revealed, might provide a reference for soybean nutrition and soybean breeding. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Effect of non-aqueous phase liquid on biodegradation of PAHs in spilled oil on tidal flat

    Kose, T.; Miyagishi, A.; Mukai, T.; Takimoto, K.; Okada, M.


    Biodegradation rates of polycyclic aromatic hydrocarbons (PAHs) in spilled oil stranded on tidal flats were studied using model reactors to clarify the effects of NAPL on the biodegradation of PAHs in stranded oil on tidal flat with special emphasis on the relationship between dissolution rates of PAHs into water and viscosity of NAPL. Biodegradation of PAHs in NAPL was limited by the dissolution rates of PAHs into water. Biodegradation rate of chrysene was smaller than that for acenaphthene and phenanthrene due to the smaller dissolution rates. Dissolution rates of PAHs in fuel oil C were smaller than those in crude oil due to high viscosity of fuel oil C. Therefore, biodegradation rates of PAHs in fuel oil C were smaller than those in crude oil. Biodegradation rates of PAHs in NAPL with slow decrease rate like fuel oil C were slower than those in NAPL with rapid decrease like crude oil. The smaller decrease rate of fuel oil C than crude oil was due to higher viscosity of fuel oil C. Therefore, not only the dissolution rate of PAHs but also the decrease rates of NAPL were important factors for the biodegradation of PAHs. (author)

  14. Use of adsorption and gas chromatographic techniques in estimating biodegradation of indigenous crude oils

    Kokub, D.; Allahi, A.; Shafeeq, M.; Khalid, Z.M.; Malik, K.A.; Hussain, A.


    Indigenous crude oils could be degraded and emulsified upto varying degree by locally isolated bacteria. Degradation and emulsification was found to be dependent upon the chemical composition of the crude oils. Tando Alum and Khashkheli crude oils were emulsified in 27 and 33 days of incubation respectively. While Joyamair crude oil and not emulsify even mainly due to high viscosity of this oil. Using adsorption chromatographic technique, oil from control (uninoculated) and bio degraded flasks was fractioned into the deasphaltened oil containing saturate, aromatic, NSO (nitrogen, sulphur, oxygen) containing hydrocarbons) and soluble asphaltenes. Saturate fractions from control and degraded oil were further analysed by gas liquid chromatography. From these analyses, it was observed that saturate fraction was preferentially utilized and the crude oils having greater contents of saturate fraction were better emulsified than those low in this fraction. Utilization of various fractions of crude oils was in the order saturate> aromatic> NSO. (author)

  15. Oils

    Fabbri, S


    Mineral, shale, and like oils are treated successively with sulfuric acid, milk of lime, and a mixture of calcium oxide, sodium chloride, and water, and finally a solution of naphthalene in toluene is added. The product is suitable for lighting, and for use as a motor fuel; for the latter purpose, it is mixed with a light spirit.

  16. Production of high quality water for oil sands application

    Beaudette-Hodsman, C.; Macleod, B. [Pall Corp., Mississauga, ON (Canada); Venkatadri, R. [Pall Corp., East Hills, NY (United States)


    This paper described a pressurized microfiltration membrane system installed at an oil sands extraction site in Alberta. The system was designed to complement a reverse osmosis (RO) system installed at the site to produce the high quality feed water required by the system's boilers. Groundwater in the region exhibited moderate total suspended solids and high alkalinity and hardness levels, and the RO system required feed water with a silt density index of 3 or less. The conventional pretreatment system used at the site was slowing down production due to the severe fouling of the RO membranes. The new microfiltration system contained an automated PVDF hollow fiber microfiltration membrane system contained in a trailer. Suspended particles and bacteria were captured within the filter, and permeate was sent to the RO unit. Within 6 hours of being installed, the unit was producing water with SDI values in the range of 1.0 to 2.5. It was concluded that the microfiltration system performed reliably regardless of wide variations in feed water quality and flow rates. 3 refs., 1 tab., 8 figs.

  17. Adsorption of SOX and NOX in activated viscose fibers

    Ana Carolina O. Plens


    Full Text Available SOx and NOx are emissions resulting from combustion processes and are the main agents that contribute to the formation of acid rain, which causes harm to humans and the environment. Several techniques for removing these pollutants are applied in i.e. oil refineries, thermoelectric that use petroleum oils and vehicular pollution. Among these, highlight the adsorption of contaminants by the usage of activated carbon fibers and activated carbon, which are characterized by high surface area and uniform distribution of pores, providing appropriate conditions for application in processes of removing environmental contaminants. In the present work, activated viscose fibers (AVF were prepared and applied in adsorption experiments of NO and SO2. The materials produced showed high values of surface area, with a predominance of micro pores with diameters in the range of 1.0 nm. The AVF had satisfactory performance in the removal of contaminants and are compatible with other synthetic fibers. Thus, the formation of active sites of carbon provides contaminants adsorption, demonstrating that carbon fibers cloth can be applied for the removal of pollutants.

  18. Computer modeling of oil spill trajectories with a high accuracy method

    Garcia-Martinez, Reinaldo; Flores-Tovar, Henry


    This paper proposes a high accuracy numerical method to model oil spill trajectories using a particle-tracking algorithm. The Euler method, used to calculate oil trajectories, can give adequate solutions in most open ocean applications. However, this method may not predict accurate particle trajectories in certain highly non-uniform velocity fields near coastal zones or in river problems. Simple numerical experiments show that the Euler method may also introduce artificial numerical dispersion that could lead to overestimation of spill areas. This article proposes a fourth-order Runge-Kutta method with fourth-order velocity interpolation to calculate oil trajectories that minimise these problems. The algorithm is implemented in the OilTrack model to predict oil trajectories following the 'Nissos Amorgos' oil spill accident that occurred in the Gulf of Venezuela in 1997. Despite lack of adequate field information, model results compare well with observations in the impacted area. (Author)

  19. How bioavailable is highly weathered Deepwater Horizon oil?

    Bostic, J.; Ziolkowski, L. A.; Reddy, C. M.; Aeppli, C.; Swarthout, B.


    Oiled sand patties continue to be deposited on northern Gulf of Mexico beaches five years after the Deepwater Horizon (DwH) oil spill. It is known that during the first 18 months post-spill, sand patties from DwH were chemically transformed, both biotically and abiotically, from wellhead release to beach deposition. However, the chemically transformed oil, which appears to become more polar over time, is not well understood in regards to its biodegradation potential. Biodegradation exerts a large control on the fate of spilled oil, representing a major conduit for its removal from the environment. To assess the bioavailability of this weathered oil, sand patties were collected from intertidal and supratidal zones of beaches in Florida, Alabama, and Mississippi in July 2015. Microbial biomarkers of the viable community, phospholipid fatty acids (PLFA), were detected on all samples collected. The PLFA distributions (mostly saturated and branched structures) and abundances (2 - 9 x 1013 cells/g sand patty) were similar across sampling locations. The positive correlation between PLFA abundance and surface area to volume ratios of sand patties indicates that microbes are preferentially inhabiting outside surfaces of the patties. We will present data on the radiocarbon (14C) content of PLFA to assess carbon (C) sources assimilated by microbes. 14C of PLFA is a powerful tool for assessing C sources assimilated in this setting. Oil has no 14C (Δ14C= -1000‰) while modern organic matter has relatively abundant 14C (Δ14C= 0‰). Fingerprinting analysis of biomarker ratios using comprehensive two-dimensional gas chromatography will be presented to ascertain if oil originated from DwH. The extent of the chemical transformation of the oil into more polar compounds will also be measured using thin layer chromatography. Results of this investigation aim to determine the bioavailability and ultimate fate of oiled sand patties that continue to wash ashore on Gulf of Mexico

  20. Logistics: Price Rises Incurred by High Oil Price

    Lai Zhihui


    @@ "When the oil price grows by 100%, the logistic indus-try will see a price growth of 40%, while the logistics in-dustry a price rise of 35%, which means every price increase of 5% in the oil price will bring along that of 2% in this industry." said Liu Zongsheng, General Manager of Itochu Logistics Co., Ltd., on the seminar "Focusing on the eco-nomic consequences of raising oil price, interest rate and deposit reserve ratio", which was held recently.

  1. The Dutch disease effect in a high versus low oil dependent countries

    Allegret , Jean-Pierre; Benkhodja , Mohamed Tahar


    To investigate the main impacts of the recent increase of oil price on oil exporting economies, we estimate a DSGE model for a sample of 16 oil exporting countries (Algeria, Argentina, Ecuador, Gabon, Indonesia, Kuwait, Libya, Malaysia, Mexico, Nigeria, Oman, Russia, Saudi Arabia, United Arab Emirates, and Venezuela) over the period from 1980 to 2010, except for Russia where our sample begins in 1992. In order to distinguish between high-dependent and low-dependent countries, we use two indic...

  2. Jussara berry (Euterpe edulis M.) oil-in-water emulsions are highly stable: the role of natural antioxidants in the fruit oil.

    Carvalho, Aline G A; Silva, Kelly A; Silva, Laís O; Costa, André M M; Akil, Emília; Coelho, Maria A Z; Torres, Alexandre G


    Antioxidants help prevent lipid oxidation, and therefore are critical to maintain sensory quality and chemical characteristics of edible oils. Jussara berry (Euterpe edulis M.) oil is a source of minor compounds with potential antioxidant activity. The aim of this work was to investigate the role of such compounds on the effectiveness to prevent or delay oxidation of oil present in oil-in-water emulsions, and how the emulsions physical stability would be affected. Jussara berry oil extracted by ethanol extraction, its stripped variations (partially stripped, highly stripped and highly stripped with added BHT), and expeller pressed oil were used to prepare oil-in-water emulsions. Jussara berry oils were analyzed before emulsions preparation to ensure its initial quality and composition, and oil-in-water emulsions were analyzed regarding their oxidative and physical stability. Ethanol extracted oil emulsion presented higher oxidative stability when compared to highly stripped oil emulsion with added synthetic antioxidant BHT (oxidative stability index 45% lower, after 60 days, and reached undetectable levels after 90 days). All emulsions maintained physically stable for up to 120 days of storage. Our results indicate that natural antioxidants in jussara berry oil protect emulsions from oxidation while keeping physical stability unchanged. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  3. Experimental Study of Enhancing Oil Recovery with Weak Base Alkaline/Surfactant/Polymer

    Dandan Yin


    Full Text Available Na2CO3 was used together with surfactant and polymer to form the Alkaline/Surfactant/Polymer (ASP flooding system. Interfacial tension (IFT and emulsification of Dagang oil and chemical solutions were studied in the paper. The experiment results show that the ASP system can form super-low interfacial tension with crude oil and emulsified phase. The stability of the emulsion is enhanced by the Na2CO3, surfactant, and the soap generated at oil/water contact. Six core flooding experiments are conducted in order to investigate the influence of Na2CO3 concentration on oil recovery. The results show the maximum oil recovery can be obtained with 0.3 wt% surfactant, 0.6 wt% Na2CO3, and 2000 mg/L polymer. In a heterogeneous reservoir, the ASP flooding could not enhance the oil recovery by reducing IFT until it reaches the critical viscosity, which indicates expanding the sweep volume is the premise for reducing IFT to enhance oil recovery. Reducing or removing the alkali from ASP system to achieve high viscosity will reduce oil recovery because of the declination of oil displacement efficiency. Weak base ASP alkali can ensure that the whole system with sufficient viscosity can start the medium and low permeability layers and enhance oil recovery even if the IFT only reaches 10−2 mN/m.

  4. Avocado oil extraction processes: method for cold-pressed high-quality edible oil production versus traditional production

    Giacomo Costagli; Matteo Betti


    Nowadays the avocado fruit (Persea americana Mill.) is widely regarded as an important fruit for its nutritional values, as it is rich in vital human nutrients. The avocado fruit is mainly sold fresh on the market, which however trades also a relevant quantity of second-grade fruits with a relatively high oil content. Traditionally, this oil is extracted from dried fruits by means of organic solvents, but a mechanical method is also used in general in locations where drying systems and/or sol...

  5. Oil turbulence in the next decade. An essay on high oil prices in a supply-constrained world

    Jesse, J.H.; Van der Linde, C.


    A CIEP analysis of the recent development of demand and supply for crude oil indicates that the mismatch in supply and demand growth could cause tighter oil markets than we already experience today. In the World Energy Outlook 2007, the International Energy Agency (IEA) warned of a possible 'energy crunch'. But what was anticipated to happen in the first part of the next decade has been fast-forwarded to today, more than 5 years earlier, and could shake the very foundation of our energy systems if no action is undertaken. Without exaggeration, the recent developments in the international oil market are ground-breaking: a little over a year ago, in January 2007, the West Texas Intermediate crude oil price (WTI) traded for USD50 dollar a barrel. Within a year, the price doubled to USD100 per barrel in January 2008 and pushed through to over USD135 in June 2008, against the backdrop of the fresh market supposition about reaching a whopping USD200 per barrel in 2009. If this proves to be true, the world will not only have moved from an 'Oil Demand-led World' to an 'Oil Supply-constrained World' (since 2004) but, more importantly, will then also experience a radical change in the oil price formation. Until recently, the oil price was largely underpinned by the marginal cost of the last barrel needed to match demand, with some political and economic conjuncture mark-ups or -downs. As will be presented in this paper, the current high oil prices are still primarily driven by structural factors that can be well explained without resorting to blaming speculative investors playing the futures market or the low dollar. But if prices are heading towards USD200 a barrel in 12 months' time, or for that matter even to USD150 a barrel, other drivers will gain prominence over marginal costs as the main driver. In that case, OPEC will have accomplished a long-held wish: oil will then be priced at its real value in the Western world (for instance the economic value of mobility for

  6. Temperature Dependence Viscosity and Density of Different Biodiesel Blends

    Vojtěch Kumbár


    Full Text Available The main goal of this paper is to assess the effect of rapeseed oil methyl ester (RME concentration in diesel fuel on its viscosity and density behaviour. The density and dynamic viscosity were observed at various mixing ratios of RME and diesel fuel. All measurements were performed at constant temperature of 40 °C. Increasing ratio of RME in diesel fuel was reflected in increased density value and dynamic viscosity of the blend. In case of pure RME, pure diesel fuel, and a blend of both (B30, temperature dependence of dynamic viscosity and density was examined. Temperature range in the experiment was −10 °C to 80 °C. Considerable temperature dependence of dynamic viscosity and density was found and demonstrated for all three samples. This finding is in accordance with theoretical assumptions and reference data. Mathematical models were developed and tested. Temperature dependence of dynamic viscosity was modeled using a polynomial 3rd polynomial degree. Correlation coefficients R −0.796, −0.948, and −0.974 between measured and calculated values were found. Temperature dependence of density was modeled using a 2nd polynomial degree. Correlation coefficients R −0.994, −0.979, and −0.976 between measured and calculated values were acquired. The proposed models can be used for flow behaviour prediction of RME, diesel fuel, and their blends.

  7. East Africa, an oil geopolitics at high risk

    Auge, Benjamin


    As the Sub-Saharan African oil production has been concentrated in the Guinea Gulf countries since the 1950's, as this region remains the main African oil producer (Maghreb excluded), and as new discoveries has been made in Uganda in 2006 and exploration has been extended to neighbouring countries (Ethiopia, Kenya, Tanzania, Mozambique), this report first questions the situation of the exploration of the Albert Lake by proposing an overview of intervening actors, by commenting the political use of the debate about oil, by commenting the situation on the Congolese side of the lake, and by commenting how the lake is shared between Uganda and the Republic of Congo. In the next part, the author discusses the use and future of the Ugandan oil by outlining the role of the Essar company in the regional refining, and by evoking projects of regional pipelines. The last part addresses the status of exploration in other East African countries (Kenya, Ethiopia, South Sudan, Tanzania, Mozambique)

  8. Eco-Friendly Superwetting Material for Highly Effective Separations of Oil/Water Mixtures and Oil-in-Water Emulsions.

    Wang, Chih-Feng; Yang, Sheng-Yi; Kuo, Shiao-Wei


    Because the treatment of oily wastewater, generated from many industrial processes, has become an increasing environmental concern, the search continues for simple, inexpensive, eco-friendly, and readily scalable processes for fabricating novel materials capable of effective oil/water separation. In this study we prepared an eco-friendly superhydrophilic and underwater superoleophobic polyvinylpyrrolidone (PVP)-modified cotton that mediated extremely efficient separations of mixtures of oil/water and oil/corrosive solutions. This PVP-modified cotton exhibited excellent antifouling properties and could be used to separate oil/water mixtures continuously for up to 20 h. Moreover, the compressed PVP-modified cotton could separate both surfactant-free and -stabilized oil-in-water emulsions with fluxes of up to 23,500 L m -2 h -1 bar -1 -a level one to two orders of magnitude higher than that possible when using traditional ultrafiltration membranes having similar rejection properties. The high performance of our PVP-modified cotton and its green, low-energy, cost-effective preparation suggest its great potential for practical applications.

  9. Effect of Qingnao tablet on blood viscosity of rat model of blood stasis induced by epinephrine

    Xie, Guoqi; Hao, Shaojun; Ma, Zhenzhen; Liu, Xiaobin; Li, Jun; Li, Wenjun; Zhang, Zhengchen


    To establish a rat model of blood stasis with adrenaline (Adr) subcutaneous injection and ice bath stimulation. The effects of different doses on the blood viscosity of blood stasis model rats were observed. The rats were randomly divided into 6 groups: blank control group (no model), model group, positive control group, high, middle and low dose group. The whole blood viscosity and plasma viscosity were detected by blood viscosity instrument. Compared with the blank group, model group, high shear, low shear whole blood viscosity and plasma viscosity were significantly increased, TT PT significantly shortened, APTT was significantly prolonged, FIB increased significantly, indicating that the model was successful. Compared with the model group, can significantly reduce the Naoluotong group (cut, low cut). Qingnaopian high dose group (low cut), middle dose group (cut, low shear blood viscosity) (Pgroup, high dose group (Pgroup (Pblood rheology of blood stasis mice abnormal index, decrease the blood viscosity, blood stasis has certain hemostatic effect.

  10. Effect of Viscosity on Liquid Curtain Stability

    Mohammad Karim, Alireza; Suszynski, Wieslaw; Francis, Lorraine; Carvalho, Marcio; Dow Chemical Company Collaboration; PUC Rio Collaboration; University of Minnesota, Twin Cities Collaboration


    The effect of viscosity on the stability of Newtonian liquid curtains was explored by high-speed visualization. Glycerol/water solutions with viscosity ranging from 19.1 to 210 mPa.s were used as coating liquids. The experimental set-up used a slide die delivery and steel tube edge guides. The velocity along curtain at different positions was measured by tracking small particles at different flow conditions. The measurements revealed that away from edge guides, velocity is well described by free fall effect. However, close to edge guides, liquid moves slower, revealing formation of a viscous boundary layer. The size of boundary layer and velocity near edge guides are strong function of viscosity. The critical condition was determined by examining flow rate below which curtain broke. Curtain failure was initiated by growth of a hole within liquid curtain, close to edge guides. Visualization results showed that the hole forms in a circular shape then becomes elliptical as it grows faster in vertical direction compared to horizontal direction. As viscosity rises, minimum flow rate for destabilization of curtain increased, indicating connection between interaction with edge guides and curtain stability. We would like to acknowledge the financial support from the Dow Chemical Company.

  11. Sensor for Viscosity and Shear Strength Measurement

    Dillon, J.; Moore, J.E. Jr.; Ebadian, M.A.; Jones, W.K.


    Measurement of the physical properties (viscosity and density) of waste slurries is critical in evaluating transport parameters to ensure turbulent flow through transport pipes. The environment for measurement and sensor exposure is extremely harsh; therefore, reliability and ruggedness are critical in the sensor design. The work for this project will be performed in three phases. The first phase, carried out in FY96, involved (1) an evaluation of acoustic and other methods for viscosity measurement; (2) measurement of the parameters of slurries over the range of percent solids found in tanks and transport systems; (3) a comparison of physical properties (e.g., viscosity and density) to percent solids found composition; and (4) the design of a prototype sensor. The second phase (FY97) will involve the fabrication of a prototype hybrid sensor to measure the viscosity and mechanical properties of slurries in remote, high-radiation environments. Two different viscometer designs are being investigated in this study: a magnetostrictive pulse wave guide viscometer; an oscillating cylinder viscometer. In FY97, the Hemispheric Center for Environmental Technology (HCET) at Florida International University (FIU), which has printed circuit, thick film, thin film, and co-fired ceramic fabrication capability, will fabricate five probes for demonstration after technology selection and evaluation

  12. Effects of Shiitake Intake on Serum Lipids in Rats Fed Different High-Oil or High-Fat Diets.

    Asada, Norihiko; Kairiku, Rumi; Tobo, Mika; Ono, Akifumi


    Shiitake (Lentinula edodes) extract, eritadenine, has been shown to reduce cholesterol levels, and its hypocholesterolemic actions are involved in the metabolism of methionine. However, the mechanisms by which eritadenine affects cholesterol metabolism in animals fed a high-fat diet containing different sources of lipids have not yet been elucidated in detail. This study was conducted to investigate the effects of shiitake supplementation on serum lipid concentrations in rats fed a diet including a high amount of a plant oil (HO [high oil] and HOS [high oil with shiitake] groups), animal fat (HF [high fat] and HFS [high fat with shiitake] groups), or MCT- (medium-chain triglyceride-) rich plant oil (HM [high MCT] and HMS [high MCT with shiitake] groups). Rats in the HOS, HFS, and HMS groups were fed shiitake. When rats were fed a diet containing shiitake, serum triglyceride, cholesterol levels, and LCAT (lecithin-cholesterol acyltransferase) activities were lower in rats given MCT-rich plant oil than in those that consumed lard. The lipid type in the diet with shiitake also affected serum cholesterol levels and LCAT activities. The diet containing MCT-rich plant oil showed the greatest rates of decrease in all serum lipid profiles and LCAT activities. These results suggest that shiitake and MCT-rich plant oil work together to reduce lipid profiles and LCAT activity in serum.

  13. Mining and oil. Oil shale's contribution to future oil supply; Bergbau und Oel. Der Beitrag des Oelschiefers zur Oelversorgung

    Linden, Eike von der [Linden Advisory, Dreieich (Germany)


    Crude oil contributes in Germany and globally approximately one third to the consumption of primary energies and actually is and in the foreseeable future will be the most important energy source. Recently shale oil as an unconventional oil has gained attention in public discussions. Depending on temperatures oil shale contains either already matured fluid shale oil or immature waxy kerogen. For determination of kerogen containing oil shale and shale oil common definitions for fluid hydrocarbons will be presented. Fluid hydrocarbons (molecular chains > C{sub 5}H{sub 12}) originate from animal substance which had been settled millions of years in sediments on sea- or lakebeds under anaerobic conditions. High pressure and high temperatures effect conversion to hydrocarbons. With sufficient permeability the liquid hydrocarbons migrate from the sediment as the source rock and get assembled in porous rocks under the cover of an impermeable rock strata, in so called entrapment structures. In case there is no impermeable rock strate the hydrocarbons will diffuse into the atmosphere. The hydrocarbons in entrapment structures are called conventional oil and are extracted by drilling wells. The extractable oil as part of the oil in place depends on the viscosity of the oil, the permeability of the host rock and applied exploitation methods which can affect pressure, viscosity and permeability. The exploitation achieves 30 to 50% of the oil in place. When the source rock consisting of strata hundreds of meters thick is not sufficiently permeable the matured hydrocarbons remain at its place of origination. These hydrocarbons are called shale oil and belong to the unconventional oil resources. For exploitation of shale oil by wells the source rock must be treated by intensive energy input, amongst others, by fracking which creates artificial permeability and by pressure which affects migration of the hydrocarbons to the well. The exploitation methods for shale oil do not

  14. Upgrading of heavy crude oil with supported and unsupported transition metals

    Nares, H.R.; Schacht-Hernandez, P.; Cabrera-Reyes, M.C.; Ramirez-Garnica, M.; Cazarez-Candia, O. [Instituto Mexicano del Petroleo, Atepehuacan (Mexico)


    Heavy crude oil presents many problems such as difficulty in transportation, low processing capacity in refineries, and low mobility through the reservoir due to high viscosity which affects the index of productivity of the wells. Because of these challenges, it is necessary to enhance heavy crude oil, both aboveground and underground. The effects of several metallic oxides used to upgrade heavy crude oil properties were examined in order to increase the mobility of reservoir oil by reducing viscosity and improving the quality of the oil. This can be accomplished by reducing the asphaltene and sulfur contents and increasing the American Petroleum Institute (API) gravity using transition metal supported in alumina and unsupported from transition metals derived from either acetylacetonate or alkylhexanoate in liquid phase homogeneously mixed with heavy crude oil as well as metal transition supported in alumina. KU-H heavy crude oil from the Golf of Mexico was studied. The results were obtained by Simulated Distillation and True Boiling Point (TBP). It was concluded that the use of crude oil thermal hydrocracking allowed the API gravity to increase and considerably reduce the viscosity. As a result, the productivity index in wells was increased. However there is a high formation of coke that could damage the conductivity of the rock and then reduce the potential of oil recovery. 27 refs., 3 tabs., 5 figs.

  15. Effects of blending composition of tung oil and ultrasonic irradiation intensity on the biodiesel production

    Manh, Do-Van; Chen, Yi-Hung; Chang, Chia-Chi; Chang, Ching-Yuan; Hanh, Hoang-Duc; Chau, Nguyen-Hoai; Tuyen, Trinh-Van; Long, Pham-Quoc; Minh, Chau-Van


    The beneficial use of tung oil in pre-blended oil for the production of biodiesel was studied at various blending compositions of tung, canola and palm oils (C BT , C BC and C BP ). The effects of C BT , ultrasonic power (P WUS ) and sample loading (V L ) on the yield (Y F ) and the properties of acid value, iodine values (IV), kinematic viscosity (KV), density and cold filter plugging point (CFPP) were investigated. The pre-blending of tung oil with palm oil greatly decreases the CFPP of palm oil biodiesel, whereas the presence of canola and palm oils with tung oil reduces the IV and KV of tung oil biodiesel. For P WUS /V L = 0.92–2.08 W/mL, C BT can be as high as 60 wt.% with 30 wt.% C BC and 10 wt.% C BP to produce biodiesel with high Y F and satisfactory qualities of the said properties. -- Highlights: ► Yield and properties of tung oil biodiesel are improved as tung oil is pre-blended with canola and palm oils. ► Pre-blending of palm oil with tung and canola oils reduces the CFPP of palm oil biodiesel from 13 to −5 °C. ► A beneficial use of tung oil as high as 60 wt.% blended with canola and palm oils is achievable. ► A sufficient P WUS per sample volume is required to ensure satisfactory properties.

  16. Viscosity of particle laden films

    Timounay, Yousra; Rouyer, Florence


    We perform retraction experiments on soap films where large particles bridge the two interfaces. Local velocities are measured by PIV during the unstationnary regime. The velocity variation in time and space can be described by a continuous fluid model from which effective viscosity (shear and dilatational) of particulate films is measured. The 2D effective viscosity of particulate films η2D increases with particle surface fraction ϕ: at low ϕ, it tends to the interfacial dilatational viscosity of the liquid/air interfaces and it diverges at the critical particle surface fraction ϕc ≃ 0.84. Experimental data agree with classical viscosity laws of hard spheres suspensions adapted to the 2D geometry, assuming viscous dissipation resulting from the squeeze of the liquid/air interfaces between the particles. Finally, we show that the observed viscous dissipation in particulate films has to be considered to describe the edge velocity during a retraction experiment at large particle coverage.

  17. Comparison between jojoba oil and other vegetable oils as a substitute to petroleum

    El Kinawy, O. [National Research centre, Dokki, Cairo (Egypt)


    Jojoba oil and other vegetable oils, such as soybean, sunflower and castor oils, were evaluated to be used as lubricants. Three standard mineral lubricating oils were considered in this study as reference. The essential parameters tested for comparison were the oil viscosity, viscosity index, and viscosity--temperature and shear rate--shear stress relationships. The effect of excessive heating on the vegetable oils' stability was studied and the corresponding parameters were also measured. Jojoba oil was found to be the best among all tested oils, whereas it gave the minimum change in viscosity gradient and hence the highest viscosity index. There was a linear relation between shear rate and shear stress of all oils before and after heat deterioration. Therefore, these oils were considered as Newtonion liquids. However, the oil viscosity, as well as the rate of viscosity variation with temperature, ({delta}{sup '}{eta}/{delta}{tau}) were affected by heat deterioration being lowered in value, in case of jojoba oil, and higher value, in case of castor oil. Jojoba oil was examined for other important properties for its use as a lubricant, such as refractive index, acid value, peroxide value, saponification value, iodine value, flash, fire and pour points. (author)

  18. Analysis of quality of the biogasoils of palm oil and castor oil

    Benjumea, Pedro Nel; Agudelo, Jhon Ramiro; Benavides, Alirio Yovany


    Biodiesel is a fuel made from raw materials of renewable origin such as vegetable oils. The objective of this work is to make a quality analysis of two types of biodiesel made from raw materials available in Colombia such as palm oil and castor oil. Biodiesel from palm oil complies with the majority of technical requirements specified by ASTM standards D-975 y D-6751. A high cloud point is the main drawback of this kind of biodiesel. This is a consequence of its highly saturated chemical nature. On the other hand, biodiesel from castor oil presents more difficulties in order to be used in diesel engines because of having a low cetane index and a high viscosity

  19. Combined fish oil and high oleic sunflower oil supplements neutralize their individual effects on the lipid profile of healthy men.

    Hlais, Sani; El-Bistami, Dunia; El Rahi, Berna; Mattar, Mélanie A; Obeid, Omar A


    Both n-3 and n-9 fatty acids share a common metabolic pathway and can potentially and individually improve cardiovascular disease risk factors. Dietary n-6 is known to weaken the efficacy of n-3 fatty acids due to competition for the same enzymes. Still unclear is whether a similar competition exists between n-3 and n-9 fatty acids. Thus, a 12-week intervention study was conducted to investigate the effect of different combinations of fish oil and high-oleic sunflower oil (OSO) on healthy subjects. Included were five groups (98 subjects): three groups received a fixed amount of n-9 (8 g/day) with varying amounts of n-3 (1, 2 or 4 g/day), one group was given n-3 fatty acids only (2 g/day) and another was given n-9 only (8 g/day). We found that fish oil supplement (2 g/day) was able to decrease TAG by about 13 %, this effect was diminished with the co-ingestion of n-9 (OSO). Intake of OSO (8 g/day) reduced both total and LDL cholesterol by about 10 %, this effect was reduced by the addition of fish oil. Both fish oil and OSO failed to have any significant effect on both glycemic and blood pressure parameters. In conclusion; the impact of oleic acid (n-9) on total and LDL cholesterol was altered by the addition fish oil (n-3). These effects may have been the result of enzymatic competition between the two types of fatty acids.

  20. Comparison Between Oil-mist and Oil-jet Lubrication of High-speed, Small-bore, Angular-contact Ball Bearings

    Pinel, Stanley I.; Signer, Hans R.; Zaretsky, Erwin V.


    Parametric tests were conducted with an optimized 35-mm-bore-angular-contact ball bearing on a high-speed, high-temperature bearing tester. Results from both air-oil mist lubrication and oil-jet lubrication systems used to lubricate the bearing were compared to speeds of 2.5 x 10(exp 6) DN. The maximum obtainable speed with air-oil mist lubrication is 2.5 x 10(exp 6) DN. Lower bearing temperatures and higher power losses are obtained with oil-jet lubrication than with air-oil mist lubrication. Bearing power loss is a direct function of oil flow to the bearing and independent of oil delivery system. For a given oil-flow rate, bearing temperature and power loss increase with increases in speed. Bearing life is an inverse function of temperature, the difference in temperature between the individual bearing ring components, and the resultant elastohydrodynamic (EHD) film thicknesses. Bearing life is independent of the oil delivery system except as it affects temperature. Cage slip increased with increases in speed. Cage slip as high as 7 percent was measured and was generally higher with air-oil mist lubrication than with oil-jet lubrication.

  1. Oils

    Cobbett, G T.B.


    Crude petroleum having a density of 850 to 900 is purified with sulfuric acid, decanted, mixed with benzine or petrol, and again treated with sulfuric acid and decanted. The remaining acid and coloring-matter are removed by washing with water, or treating with oxalic acid, zinc carbonate, lead carbonate, calcium carbonate, or oxide of zinc. The product is used as a fuel for internal-combustion engines. Specifications No. 28,104, A.D. 1906, and No. 12,606, A.D. 1907, are referred to. According to the Provisional Specification, the process is applicable to shale or schist oil.

  2. Performance evaluation of NEEM oil and HONGE Oil as cutting fluid in drilling operation of mild steel

    Jyothi, P. N.; Susmitha, M.; Sharan, P.


    Cutting fluids are used in machining industries for improving tool life, reducing work piece and thermal deformation, improving surface finish and flushing away chips from the cutting zone. Although the application of cutting fluids increases the tool life and Machining efficiency, but it has many major problems related to environmental impacts and health hazards along with recycling & disposal. These problems gave provision for the introduction of mineral, vegetable and animal oils. These oils play an important role in improving various machining properties, including corrosion protection, lubricity, antibacterial protection, even emulsibility and chemical stability. Compared to mineral oils, vegetable oils in general possess high viscosity index, high flash point, high lubricity and low evaporative losses. Vegetable oils can be edible or non-edible oils and Various researchers have proved that edible vegetable oils viz., palm oil, coconut oil, canola oil, soya bean oil can be effectively used as eco-friendly cutting fluid in machining operations. But in present situations harnessing edible oils for lubricants formation restricts the use due to increased demands of growing population worldwide and availability. In the present work, Non-edible vegetable oil like Neem and Honge are been used as cutting fluid for drilling of Mild steel and its effect on cutting temperature, hardness and surface roughness are been investigated. Results obtained are compared with SAE 20W40 (petroleum based cutting fluid)and dry cutting condition.

  3. Investigation of chemical modifiers for the direct determination of arsenic in fish oil using high-resolution continuum source graphite furnace atomic absorption spectrometry.

    Pereira, Éderson R; de Almeida, Tarcísio S; Borges, Daniel L G; Carasek, Eduardo; Welz, Bernhard; Feldmann, Jörg; Campo Menoyo, Javier Del


    High-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GF AAS) has been applied for the development of a method for the determination of total As in fish oil samples using direct analysis. The method does not use any sample pretreatment, besides dilution with 1-propanole, in order to decrease the oil viscosity. The stability and sensitivity of As were evaluated using ruthenium and iridium as permanent chemical modifiers and palladium added in solution over the sample. The best results were obtained with ruthenium as the permanent modifier and palladium in solution added to samples and standard solutions. Under these conditions, aqueous standard solutions could be used for calibration for the fish oil samples diluted with 1-propanole. The pyrolysis and atomization temperatures were 1400 °C and 2300 °C, respectively, and the limit of detection and characteristic mass were 30 pg and 43 pg, respectively. Accuracy and precision of the method have been evaluated using microwave-assisted acid digestion of the samples with subsequent determination by HR-CS GF AAS and ICP-MS; the results were in agreement (95% confidence level) with those of the proposed method. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Experimental study of viscosity properties of emulsion system with SiO2 nanoparticles.

    ZEIGMAN Yury Veniaminovich,


    Full Text Available When oil production is increasing due to intensive oilfield development methods supporting seam pressure by water injection oil producers face the problem of displacement agent break in more permeable intervals of petroleum reservoir. That leads to dramatic increase of product inundation for well stock and decrease of economic efficiency for well performance. Nowadays the petroleum engineers have proposed more than 100 technologies designed to restrict water inflows and flooding agent to bottom-hole zone of the production wells. The water inflows restriction technologies are distinguished by the type of applied chemical compositions and the way how the chemical compositions are delivered to bottom-hole zone. The analysis of the currently applied chemical compositions has allowed authors to reveal the common feature. The common feature is that the currently applied chemical compositions are non-selective and they produce isolating or blocking effect onto water-saturated and oil-saturated zones of the petroleum reservoir. The application of the nonselective high-stability chemical compositions leads to uncontrolled colmatation of all treated intervals and makes it difficult to involve them into filtration process in future. This work presents the technology for the selective reservoir stimulation based on emulsion systems with SiO2 nanoparticles content and gelling acid composition. The technology was developed for complex impact on formation system, that achieved by blocking water-saturated intervals of reservoir and stimulation of less permeable oil-saturated intervals of reservoir. The paper shows the results of complex laboratory experiments to study viscosity parameters of emulsion systems with SiO2 nanoparticles content. The results of the experiments revealed the ability of the SiO2 nanoparticles to rise dynamic viscosity of the different type of emulsion systems: oil in water and water in oil. Test for thermostability of the modified

  5. Oil-bearing plants of Zaire. III. Botanical families providing oils of relatively high unsaturation

    Ngiefu, C.K.; Paquot, C.; Vieux, A.


    Data are tabulated on the seed oil composition of 16 species of Leguminosae (including Albizia lebbeck, Caesalpinia pulcherrima, and Delonix regia), 6 species of Euphorbiaceae (including Aleurites moluccana, Hevea brasiliensis and Jatropha curcas) and 1 species (Kigelia africana) of Bignoniaceae. The most interesting for food and industrial purposes appear to be Afzelia bella, Adenanthera pavonina and Pentaclethra macrophylla, in addition to A. moluccana and H. brasiliensis.

  6. High-order simulation of foam enhanced oil recovery

    Van der Meer, J.M.; Van Odyck, D.E.A.; Wirnsberger, P.; Jansen, J.D.


    If secondary hydrocarbon recovery methods fail because of the occurrence of gravity override or viscous fingering one can turn to an enhanced oil recovery method like the injection of foam. The generation of foam can be described by a set of partial differential equations with strongly nonlinear

  7. Microbial diversity of a high salinity oil field

    Neria, I.; Gales, G.; Alazard, D.; Ollivier, B.; Borgomano, J.; Joulian, C.


    This work is a preliminary study to investigate the microbial diversity of an onshore oil field. It aim to compare results obtained from molecular methods, physicochemical analyses and cultivation. A core of 1150 m depth sediments ( in situ T=45 degree centigrade) was collected and immediately frozen with liquid nitrogen prior to further investigation. Macroscopic and Scanning Electron Microscopy analyses were performed. (Author)

  8. Soybean Oil: Powering a High School Investigation of Biodiesel

    De La Rosa, Paul; Azurin, Katherine A.; Page, Michael F. Z.


    This laboratory investigation challenges students to synthesize, analyze, and compare viable alternative fuels to Diesel No. 2 using a renewable resource, as well as readily available reagents and supplies. During the experiment, students synthesized biodiesel from soybean oil in an average percent yield of 83.8 ± 6.3%. They then prepared fuel…

  9. Oxidized fish oil in rat pregnancy causes high newborn mortality and increases maternal insulin resistance.

    Albert, Benjamin B; Vickers, Mark H; Gray, Clint; Reynolds, Clare M; Segovia, Stephanie A; Derraik, José G B; Lewandowski, Paul A; Garg, Manohar L; Cameron-Smith, David; Hofman, Paul L; Cutfield, Wayne S


    Fish oil is commonly taken by pregnant women, and supplements sold at retail are often oxidized. Using a rat model, we aimed to assess the effects of supplementation with oxidized fish oil during pregnancy in mothers and offspring, focusing on newborn viability and maternal insulin sensitivity. Female rats were allocated to a control or high-fat diet and then mated. These rats were subsequently randomized to receive a daily gavage treatment of 1 ml of unoxidized fish oil, a highly oxidized fish oil, or control (water) throughout pregnancy. At birth, the gavage treatment was stopped, but the same maternal diets were fed ad libitum throughout lactation. Supplementation with oxidized fish oil during pregnancy had a marked adverse effect on newborn survival at day 2, leading to much greater odds of mortality than in the control (odds ratio 8.26) and unoxidized fish oil (odds ratio 13.70) groups. In addition, maternal intake of oxidized fish oil during pregnancy led to increased insulin resistance at the time of weaning (3 wks after exposure) compared with control dams (HOMA-IR 2.64 vs. 1.42; P = 0.044). These data show that the consumption of oxidized fish oil is harmful in rat pregnancy, with deleterious effects in both mothers and offspring. Copyright © 2016 the American Physiological Society.

  10. Temperature-dependent viscosities of eutectic Al-Si alloys modified with Sr and P

    Song Xigui [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan, 250061 (China)], E-mail:; Bian Xiufang; Zhang Jingxiang; Zhang Jie [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan, 250061 (China)


    The viscosities of eutectic Al-12 wt.%Si alloy and those modified with Sr and P were investigated using high-temperature torsional oscillation viscometer. Strontium decreased melt's viscosity, while phosphorus increased viscosity. Both additional level and means of addition affected the variation of viscosity. The activation energy of viscous flow was strengthened after modification, but the influence of modification on the molar volume was perplexing.

  11. Poverty and growth impacts of high oil prices: Evidence from Sri Lanka

    Naranpanawa, Athula; Bandara, Jayatilleke S.


    The sharp rise in oil and food prices in 2007 and 2008 caused negative impacts on poverty and economic growth in many oil and food importing developing countries. Some analysts believe that these countries are under stress again due to a rise in crude oil prices, to a two-and-a-half year high in March 2011, which has also been partly responsible for higher food prices in recent months. However, there is a limited body of empirical evidence available from developing countries on the impact of high oil prices on growth in general and household poverty in particular. In this study, Sri Lanka is used as a case study and a computable general equilibrium (CGE) approach is adopted as an analytical framework to explore the growth and poverty impacts of high oil prices. The results suggest that urban low income households are the group most adversely affected by high global oil prices, followed by low income rural households. In contrast, estate low income households are the least affected out of all low income households. The energy intensive manufacturing sector and services sector are affected most compared to the agricultural sector. - Highlights: ► Using a general equilibrium model we find poverty and oil price link for Sri Lanka. ► Urban low income households are the group most adversely affected. ► Energy intensive manufacturing and services sectors are affected most.

  12. Comparison of parallel viscosity with neoclassical theory

    Ida, K.; Nakajima, N.


    Toroidal rotation profiles are measured with charge exchange spectroscopy for the plasma heated with tangential NBI in CHS heliotron/torsatron device to estimate parallel viscosity. The parallel viscosity derived from the toroidal rotation velocity shows good agreement with the neoclassical parallel viscosity plus the perpendicular viscosity. (μ perpendicular = 2 m 2 /s). (author)

  13. Characterization of Whey Protein Oil-In-Water Emulsions with Different Oil Concentrations Stabilized by Ultra-High Pressure Homogenization

    Essam Hebishy


    Full Text Available In this study, the effect of ultra-high-pressure homogenization (UHPH: 100 or 200 MPa at 25 °C, in comparison to colloid mill (CM: 5000 rpm at 20 °C and conventional homogenization (CH: 15 MPa at 60 °C, on the stability of oil-in-water emulsions with different oil concentrations (10, 30 or 50 g/100 g emulsified by whey protein isolate (4 g/100 g was investigated. Emulsions were characterized for their microstructure, rheological properties, surface protein concentration (SPC, stability to creaming and oxidative stability under light (2000 lux/m2. UHPH produced emulsions containing lipid droplets in the sub-micron range (100–200 nm and with low protein concentrations on droplet surfaces. Droplet size (d3.2, µm was increased in CH and UHPH emulsions by increasing the oil concentration. CM emulsions exhibited Newtonian flow behaviour at all oil concentrations studied; however, the rheological behaviour of CH and UHPH emulsions varied from Newtonian flow (n ≈ 1 to shear-thinning (n ˂ 1 and thixotropic behaviour in emulsions containing 50% oil. This was confirmed by the non-significant differences in the d4.3 (µm value between the top and bottom of emulsions in tubes left at room temperature for nine days and also by a low migration velocity measured with a Turbiscan LAB instrument. UHPH emulsions showed significantly lower oxidation rates during 10 days storage in comparison to CM and CH emulsions as confirmed by hydroperoxides and thiobarbituric acid-reactive substances (TBARS. UHPH emulsions treated at 100 MPa were less oxidized than those treated at 200 MPa. The results from this study suggest that UHPH treatment generates emulsions that have a higher stability to creaming and lipid oxidation compared to colloid mill and conventional treatments.

  14. Utilizing the non-bridge oxygen model to predict the glass viscosity

    Choi, Kwansik; Sheng, Jiawei; Maeng, Sung Jun; Song, Myung Jae


    Viscosity is the most important process property of waste glass. Viscosity measurement is difficult and costs much. Non-bridging Oxygen (NBO) model which relates glass composition to viscosity had been developed for high level waste at the Savannah River Site (SRS). This research utilized this NBO model to predict the viscosity of KEPRI's 55 glasses. It was found that there was a linear relationship between the measured viscosity and the predicted viscosity. The NBO model could be used to predict glass viscosity in glass formulation development. However the precision of predicted viscosity is out of satisfaction because the composition ranges are very different between the SRS and KEPRI glasses. The modification of NBO calculation, which included modification of alkaline earth elements and TiO 2 , could not strikingly improve the precision of predicted values

  15. Note: A high-energy-density Tesla-type pulse generator with novel insulating oil

    Liu, Sheng; Su, Jiancang; Fan, Xuliang


    A 10-GW high-energy-density Tesla-type pulse generator is developed with an improved insulating liquid based on a modified Tesla pulser—TPG700, of which the pulse forming line (PFL) is filled with novel insulating oil instead of transformer oil. Properties of insulating oil determining the stored energy density of the PFL are analyzed, and a criterion for appropriate oil is proposed. Midel 7131 is chosen as an application example. The results of insulating property experiment under tens-of-microsecond pulse charging demonstrate that the insulation capability of Midel 7131 is better than that of KI45X transformer oil. The application test in Tesla pulser TPG700 shows that the output power is increased to 10.5 GW with Midel 7131. The output energy density of TPG700 increases for about 60% with Midel 7131.

  16. Microfluidic method for measuring viscosity using images from smartphone

    Kim, Sooyeong; Kim, Kyung Chun; Yeom, Eunseop


    The viscosity of a fluid is the most important characteristic in fluid rheology. Many microfluidic devices have been proposed for easily measuring the fluid viscosity of small samples. A hybrid system consisting of a smartphone and microfluidic device can offer a mobile laboratory for performing a wide range of detection and analysis functions related to healthcare. In this study, a new mobile sensing method based on a microfluidic device was proposed for fluid viscosity measurements. By separately delivering sample and reference fluids into the two inlets of a Y-shaped microfluidic device, an interfacial line is induced at downstream of the device. Because the interfacial width (W) between the sample and reference fluid flows was determined by their pressure ratio, the viscosity (μ) of the sample could be estimated by measuring the interfacial width. To distinguish the interfacial width of a sample, optical images of the flows at downstream of the Y-shaped microfluidic device were acquired using a smartphone. To check the measurement accuracy of the proposed method, the viscosities of glycerol mixtures were compared with those measured by a conventional viscometer. The proposed technique was applied to monitor the variations in blood and oil samples depending on storage or rancidity. We expect that this mobile sensing method based on a microfluidic device could be utilized as a viscometer with significant advantages in terms of mobility, ease-of-operation, and data management.

  17. Super-Hydrophobic High Throughput Electrospun Cellulose Acetate (CA) Nanofibrous Mats as Oil Selective Sorbents

    Han, Chao

    The threat of oil pollution increases with the expansion of oil exploration and production activities, as well as the industrial growth around the world. Use of sorbents is a common method to deal with the oil spills. In this work, an advanced sorbent technology is described. A series of non-woven Cellulose Acetate (CA) nanofibrous mats with a 3D fibrous structure were synthesized by a novel high-throughput electrospinning technique. The precursor was solutions of CA/ acetic acid-acetone in various concentrations. Among them, 15.0% CA exhibits a superhydrophobic surface property, with a water contact angle of 128.95°. Its oil sorption capacity is many times higher the oil sorption capacity of the best commercial sorbent available in the market. Also, it showed good buoyancy properties on the water both as dry-mat and oil-saturated mat. In addition, it is biodegradable, easily available, easily manufactured, so the CA nanofibrous mat is an excellent candidate as oil sorbent for oil spill in water treatment.

  18. Experimental unit to study motion of gas-liquid mixtures in vertical pipes for lifting highly viscous oils

    Abishev, S K; Bulgakov, R R; Sakharov, V A


    Basic features are presented of a new experimental-research unit of gas-lift recovery of oil UGDN-2 for conditions of lifting the highly viscous oil. It is proposed that this unit be used to conduct experiments and to determine the calculated relationships of a gas-liquid lifter on fluids simulating highly viscous oil.

  19. Effect of fast pyrolysis bio-oil from palm oil empty fruit bunch on bitumen properties

    Poh, Chia Chin; Hassan, Norhidayah Abdul; Raman, Noor Azah Abdul; Shukry, Nurul Athma Mohd; Warid, Muhammad Naqiuddin Mohd; Satar, Mohd Khairul Idham Mohd; Ros Ismail, Che; Asmah Hassan, Sitti; Mashros, Nordiana


    Bitumen shortage has triggered the exploration of another alternative waste material that can be blended with conventional bitumen. This study presents the performance of pyrolysis bio-oil from palm oil empty fruit bunch (EFB) as an alternative binder in modified bitumen mixtures. The palm oil EFB was first pyrolyzed using auger pyrolyzer to extract the bio-oil. Conventional bitumen 80/100 penetration grade was used as a control sample and compared with samples that were modified with different percentages, i.e., 5% and 10%, of pyrolysis EFB bio-oil. The physical and rheological properties of the control and modified bitumen samples were investigated using penetration, softening point, viscosity and dynamic shear rheometer (DSR) tests. Results showed that the addition of EFB bio-oil softened the bitumen with high penetration and a reduction in softening point, penetration index, and viscosity. However, the DSR results showed a comparable rutting resistance between the bitumen samples containing EFB bio-oil and virgin bitumen with a failure temperature achieved greater than 64°C.

  20. Delay oil oxidation during frying process

    Atta, N.M.M.; Shams Eldin, N.M.M.


    Blend oil (mixed of refined sunflower and soy beans oils 1:1 w/w) containing add 200 ppm of rosemary leaves methanolic extract (rosemary extract) (RE) and 3% refined rice bran oil (RRBO), were used in frying process at 1800 degree c for 5 hrs/ day, four consecutive days to delay oil oxidation during frying. Therefore, rosemary extract (methanolic extract) was analyzed by HPLC technique for identification of flavonoids compounds (as a specific active compounds; gives high protection to frying oil). Physical and chemical properties, including refractive index(RI). Red color unit (R), viscosity, acidity (FFA), peroxide value (PV), iodine value (IV) oxidized fatty acid (OFA), polymer content (PC), total polar components (TPC) and trans fatty acid (TFA) as eliadic acid were determined. The results indicated that; rosemary extract contained about eight flavonoids compounds (hypersoid, rutin, 3-OH flavon, luleotin, kempferol, sakarutin, querectrin and apeginin). Addition of RE or RRBO to frying oil caused delay oil oxidation during frying process compared with frying oil without any addition. Also, the results indicated that rosemary extract was more effective in reducing formation of PV, FFA, OFA, PC, TPC and TFA in frying oil than refined rice bran oil

  1. Effect of Bombay high crude oil and its water-soluble fraction on growth and metabolism of diatom Thalassiosira sp.

    Parab, S.R.; Pandit, R.A.; Kadam, A.N.; Indap, M.M.

    Effect of Bombay high crude oil (BHC) and its water-soluble fraction (WSF) on growth and metabolism of the phytoplankton, Thalassiosira sp. was assessed. The study revealed the signs of acute toxicity at higher concentrations of crude oil (0...

  2. Chebyshev super spectral viscosity method for water hammer analysis

    Hongyu Chen


    Full Text Available In this paper, a new fast and efficient algorithm, Chebyshev super spectral viscosity (SSV method, is introduced to solve the water hammer equations. Compared with standard spectral method, the method's advantage essentially consists in adding a super spectral viscosity to the equations for the high wave numbers of the numerical solution. It can stabilize the numerical oscillation (Gibbs phenomenon and improve the computational efficiency while discontinuities appear in the solution. Results obtained from the Chebyshev super spectral viscosity method exhibit greater consistency with conventional water hammer calculations. It shows that this new numerical method offers an alternative way to investigate the behavior of the water hammer in propellant pipelines.

  3. Suprathermal viscosity of dense matter

    Alford, Mark; Mahmoodifar, Simin; Schwenzer, Kai


    Motivated by the existence of unstable modes of compact stars that eventually grow large, we study the bulk viscosity of dense matter, taking into account non-linear effects arising in the large amplitude regime, where the deviation μ Δ of the chemical potentials from chemical equilibrium fulfills μ Δ > or approx. T. We find that this supra-thermal bulk viscosity can provide a potential mechanism for saturating unstable modes in compact stars since the viscosity is strongly enhanced. Our study confirms previous results on strange quark matter and shows that the suprathermal enhancement is even stronger in the case of hadronic matter. We also comment on the competition of different weak channels and the presence of suprathermal effects in various color superconducting phases of dense quark matter.

  4. Viscosity characteristics of selected volcanic rock melts

    Hobiger, Manuel; Sonder, Ingo; Büttner, Ralf; Zimanowski, Bernd


    A basic experimental study of the behavior of magma rheology was carried out on remelted volcanic rocks using wide gap viscometry. The complex composition of magmatic melts leads to complicated rheologic behavior which cannot be described with one simple model. Therefore, measurement procedures which are able to quantify non-Newtonian behavior have to be employed. Furthermore, the experimental apparatus must be able to deal with inhomogeneities of magmatic melts. We measured the viscosity of a set of materials representing a broad range of volcanic processes. For the lower viscous melts (low-silica compositions), non-Newtonian behavior is observed, whereas the high-silica melts show Newtonian behavior in the measured temperature and shear rate range (T = 1423 K - 1623 K, γ˙ = 10 - 2 s - 1 - 20 s - 1 ). The non-Newtonian materials show power-law behavior. The measured viscosities η and power-law indexes m lie in the intervals 8 Pa s ≤ η ≤ 210 3 Pa s, 0.71 ≤ m ≤ 1.0 (Grímsvötn basalt), 0.9 Pa s ≤ η ≤ 350 Pa s, 0.61 ≤ m ≤ 0.93 (Hohenstoffeln olivine-melilitite), and 8 Pa s ≤ η ≤ 1.510 4 Pa s, 0.55 ≤ m ≤ 1.0 (Sommata basalt). Measured viscosities of the Newtonian high-silica melts lie in the range 10 4 Pa s ≤ η ≤ 310 5 Pa s.

  5. Breeding and application of high-oil soybean varieties through radiation

    Guo Tai; Liu Zhongtang; Hu Xiping; Wang Zhixin; Wu Xiuhong; Zheng Wei; Chen Dexiang


    This paper reported the results of breeding and utilizing of high-oil soybean varieties, and at the same time, discussed the key technique of selecting high-oil soybean variety. This research based on crossbreeding, through genetic improvement and radiation treatment, continuous directive selection, combined with quality analysis and disease-resistant identification, and we had created four high-oil soybean varieties (lines), they were Hefeng46 (Hefu93154-4), Hefeng47(Hefu 93154-2), Hefeng48 (Hefu 93155-6), Hefu 93148-4. Their oil content ranges from 21.28% to 23.18%, and the yield is 2208-2578.5 kg/hm 2 , compared with the check, the yield is 10.1%-13.1% higher. All those varieties resisted one or two main soybean diseases. (authors)

  6. Efficacy of phytosterols and fish-oil supplemented high-oleic-sunflower oil rich diets in hypercholesterolemic growing rats.

    Alsina, Estefania; Macri, Elisa V; Lifshitz, Fima; Bozzini, Clarisa; Rodriguez, Patricia N; Boyer, Patricia M; Friedman, Silvia M


    Phytosterols (P) and fish-oil (F) efficacy on high-oleic-sunflower oil (HOSO) diets were assessed in hypercholesterolemic growing rats. Controls (C) received a standard diet for 8 weeks; experimental rats were fed an atherogenic diet (AT) for 3 weeks, thereafter were divided into four groups fed for 5 weeks a monounsaturated fatty acid diet (MUFA) containing either: extra virgin olive oil (OO), HOSO or HOSO supplemented with P or F. The diets did not alter body weight or growth. HOSO-P and HOSO-F rats showed reduced total cholesterol (T-chol), non-high-density lipoprotein-cholesterol (non-HDL-chol) and triglycerides and increased HDL-chol levels, comparably to the OO rats. Total body fat (%) was similar among all rats; but HOSO-F showed the lowest intestinal, epididymal and perirenal fat. However, bone mineral content and density, and bone yield stress and modulus of elasticity were unchanged. Growing hypercholesterolemic rats fed HOSO with P or F improved serum lipids and fat distribution, but did not influence material bone quality.

  7. Bulk viscosity and cosmological evolution

    Beesham, A.


    In a recent interesting paper, Pimentel and Diaz-Rivera (Nuovo Cimento B, 109(1994) 1317) have derived several solutions with bulk viscosity in homogeneous and isotropic cosmological models. They also discussed the properties of these solutions. In this paper the authors relate the solutions of Pimentel and Diaz-Rivera by simple transformations to previous solutions published in the literature, showing that all the solutions can be derived from the known existing ones. Drawbacks to these approaches of studying bulk viscosity are pointed out, and better approaches indicated

  8. Viscosity kernel of molecular fluids

    Puscasu, Ruslan; Todd, Billy; Daivis, Peter


    , temperature, and chain length dependencies of the reciprocal and real-space viscosity kernels are presented. We find that the density has a major effect on the shape of the kernel. The temperature range and chain lengths considered here have by contrast less impact on the overall normalized shape. Functional...... forms that fit the wave-vector-dependent kernel data over a large density and wave-vector range have also been tested. Finally, a structural normalization of the kernels in physical space is considered. Overall, the real-space viscosity kernel has a width of roughly 3–6 atomic diameters, which means...

  9. Study on Spray Characteristics and Spray Droplets Dynamic Behavior of Diesel Engine Fueled by Rapeseed Oil

    Sapit Azwan


    Full Text Available Fuel-air mixing is important process in diesel combustion. It directly affects the combustion and emission of diesel engine. Biomass fuel needs great help to atomize because the fuel has high viscosity and high distillation temperature. This study investigates the atomization characteristics and droplet dynamic behaviors of diesel engine spray fueled by rapeseed oil (RO. Optical observation of RO spray was carried out using shadowgraph photography technique. Single nano-spark photography technique was used to study the characteristics of the rapeseed oil spray while dual nano-spark shadowgraph technique was used to study the spray droplet behavior. The results show that RO has very poor atomization due to the high viscosity nature of the fuel. This is in agreement with the results from spray droplet dynamic behavior studies that shows due to the high viscosity, the droplets are large in size and travel downward, with very little influence of entrainment effect due to its large kinematic energy.

  10. Monitoring of high refractive index edible oils using coated long period fiber grating sensors

    Coelho, Luís.; Viegas, Diana; Santos, José Luís.; de Almeida, Jose Manuel M. M.


    Monitoring the quality of high refractive index edible oils is of great importance for the human health. Uncooked edible oils in general are healthy foodstuff, olive oil in particular, however, they are frequently used for baking and cooking. High quality edible oils are made from seeds, nuts or fruits by mechanical processes. Nevertheless, once the mechanical extraction is complete, up to 15% of the oil remains in oil pomace and in the mill wastewater, which can be extracted using organic solvents, often hexane. Optical fiber sensors based on long period fiber gratings (LPFG) have very low wavelength sensitivity when the surround refractive index is higher than the refractive index of the cladding. Titanium dioxide (TiO2) coated LPFG could lead to the realization of high sensitivity chemical sensor for the food industry. In this work LPFG coated with a TiO2 thin film were successfully used for to detect small levels of hexane diluted in edible oils and for real time monitoring the thermal deterioration of edible oils. For a TiO2 coating of 30 nm a wavelength sensitivity of 1361.7 nm/RIU (or 0.97 nm / % V/V) in the 1.4610-1.4670 refractive index range was achieved, corresponding to 0 to 12 % V/V of hexane in olive oil. A sensitivity higher than 638 nm/RIU at 225 ºC was calculated, in the 1.4670-1.4735 refractive index range with a detection limit of thermal deterioration of about 1 minute.

  11. A first approaching to work with viscosity in college level

    Carmona, Karla; Flores, Sergio; Alfaro, Luis L.; Gonzalez, Maria D.


    Working with the concepts of flow, velocity and emptying time, in containers with different area, the research group named Physics and Mathematics in Context from the University of Juarez in Mexico is attempting to experiment with the relationship between the geometry of the containers and their discharge time with different kind of liquids. Thus, we have built two different sets of containers, and use kitchen oil, maple syrup, and car oil. Where the cross area is constant: prisms with bases of different geometries. Thus, in order to achieve a better understanding related to differential equations situations and introduce viscosity.

  12. Combination of Sardine and Shark Oil High Content of Omega-3 and Squalene

    Muhamad Musbah


    Full Text Available Sardine oil contain high concentration of  EPA but low of  DHA while shark is reverse. Shark oil  high contain of DHA and squalene but low EPA. This research aim to fortify the quality of  fish oil withomega-3 and squalen and improve the quality of fish oil. The combination of fish oil (sardine:shark 1: 1, 1: 2, 1: 3, 1: 4, 2: 1, 3: 1 and 4:1 showed significant results on peroxide, anisidine, and total oxidation value, however free fatty acids analysis did not show the influence to the content value.  The best oxidation parameters value werefound (sardine: shark (1:4 with peroxide was 5.44±0.06 mEq/kg, anisidine was 8.3±0.72 mEq/kg and total oxidation was 19.27±0.7mEq/kg. Fatty acids profile between  sardines and shark oil containedvarious SFA, MUFA and PUFA. Sardine oil which was added more to combination ratio will increase omega-3. Sample 1:4 had 43.16% squalene.

  13. Lack of promotion of colon carcinogenesis by high-oleic safflower oil.

    Takeshita, M; Ueda, H; Shirabe, K; Higuchi, Y; Yoshida, S


    The nonpromoting effect of olive oil on colon carcinogenesis has been attributed to its high oleic acid content, whereas a positive association of monounsaturated fat in beef tallow with colon tumors has been reported. The effect of constituents other than fatty acids could not be neglected in these experiments. In order to minimize the effects of minor constituents in the oils, the authors compared conventional safflower oil with oil from a mutant strain of safflower that is rich in oleic acid. ICR mice were treated with 1,2-dimethylhydrazine (DMH, 20 mg/kg body weight every week for 12 weeks) and then were fed either a high-fat diet (23.5% by weight), containing safflower oil (HF-LA) or high-oleic safflower oil (HF-OA), or a low-fat diet (5% by weight), containing safflower oil (LF-LA) or high-oleic safflower oil (LF-OA). The test diets were continued until termination of the experiment at 30 weeks after the first administration of DMH. Fatty acid composition of colon phospholipids was determined by gas-liquid chromatography-mass spectrometry. Tumor multiplicity in animals fed the HF-OA diet was indistinguishable from that in animals fed LF-LA or LF-OA. In contrast, animals fed the HF-LA diet had a significantly higher incidence of colon tumors (mostly adenocarcinomas) than the other groups. Fatty acid profiles of colon phospholipids reflected those of the diet. Animals fed a HF-LA diet showed a marked decrease of nervonic acid (C24:1, n-9) in the colon sphingomyelin. These data indicate that oleic acid does not enhance DMH-induced colon carcinogenesis in mice, even when they are fed a high-fat diet.

  14. Business trends report 2006. High oil prices ensure high activity level; What are the challenges?


    The first in a series of annual business trends reports which The Norwegian Oil Industry Association (OLF) has decided to publish. The report highlights features in the development of the global economy and the energy markets, and presents an analysis of the level of activity on the Norwegian Shelf through to 2010. It also gives a status report and outlines the challenges that lie within three important areas for the oil industry: the relationship with the external environment, health, safety and working environment, and personnel and competence requirements within the industry. The main message contained in the report is summarised as follows: 'While prospects for the immediate future look good, we foresee a lack of new, important and technically challenging projects in the longer term. Discoveries made on the Norwegian Shelf during recent years have been small. Exploration activity must be intensified and its results must be improved. The most important and effective stimulus in this connection is new prospective exploration acreage. The Comprehensive Management Plan for Lofoten and the Barents Sea will be revised in 2010. By that time the knowledge gaps in the plan have to be filled so that the decision-making basis is as good as possible. Even though the level of activity looks as if it will continue to be high in the medium term, we have no time to lose.' Environmental status and challenges are briefly reviewed, as well as the industry's future recruitment challenges (author) (ml)

  15. ORNL-GM: Development of Ionic Liquid-Additized, GF-5/6 Compatible Low-Viscosity Oils for Automotive Engine and Rear Axle Lubrication for 4% Improved Fuel Economy

    Qu, Jun [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Zhou, Yan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Luo, Huimin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Toops, Todd J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Brookshear, Daniel W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Stump, Benjamin C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Viola, Michael B. [General Motors (GM) Technical Center, Pontiac, MI (United States); Zreik, Khaled [General Motors (GM) Technical Center, Pontiac, MI (United States); Ahmed, Tasfia [General Motors (GM) Technical Center, Pontiac, MI (United States)


    The overall objective of this project are as follows: Further develop ionic liquid (IL)-additized lowviscosity engine oils meeting the GF-5/6 specifications and possessing superior lubricating characteristics; Expand the IL additive technology to rear axle lubricants; and Seek a combined improvement in the vehicle fuel economy

  16. Forecasting short-run crude oil price using high- and low-inventory variables

    Ye, Michael; Zyren, John; Shore, Joanne


    Since inventories have a lower bound or a minimum operating level, economic literature suggests a nonlinear relationship between inventory level and commodity prices. This was found to be the case in the short-run crude oil market. In order to explore this inventory-price relationship, two nonlinear inventory variables are defined and derived from the monthly normal level and relative level of OECD crude oil inventories from post 1991 Gulf War to October 2003: one for the low inventory state and another for the high inventory state of the crude oil market. Incorporation of low- and high-inventory variables in a single equation model to forecast short-run WTI crude oil prices enhances the model fit and forecast ability




    Full Text Available This work describes a method to predict the solubility of essential oils in supercritical carbon dioxide. The method is based on the formulation proposed in 1979 by Asselineau, Bogdanic and Vidal. The Peng-Robinson and Soave-Redlich-Kwong cubic equations of state were used with the van der Waals mixing rules with two interaction parameters. Method validation was accomplished calculating orange essential oil solubility in pressurized carbon dioxide. The solubility of orange essential oil in carbon dioxide calculated at 308.15 K for pressures of 50 to 70 bar varied from 1.7± 0.1 to 3.6± 0.1 mg/g. For same the range of conditions, experimental solubility varied from 1.7± 0.1 to 3.6± 0.1 mg/g. Predicted values were not very sensitive to initial oil composition.Este trabalho descreve uma metodologia para o cálculo da solubilidade de óleos essenciais em dióxido de carbono a altas pressões baseada na formulação proposta em 1979 por Asselineau, Bogdanic e Vidal. Foram utilizadas as equações cúbicas de estado de Peng-Robinson e Soave-Redlich-Kwong com regras de mistura de van der Waals com dois parâmetros de interação. O cálculo da solubilidade do óleo essencial de laranja em dióxido de carbono pressurizado foi usado para validação do método. A solubilidade calculada a 308,15 K para pressões entre 50 e 70 bar variou entre 1,5 e 4,1 mg/g. Valores experimentais para as mesmas condições variam entre 1,7± 0.1 a 3,6± 0.1 mg/g. Os valores preditos não são muito sensíveis à composição inicial do óleo essencial.

  18. Viscosity of particle laden films

    Timounay Yousra


    Full Text Available We perform retraction experiments on soap films where large particles bridge the two interfaces. Local velocities are measured by PIV during the unstationnary regime. The velocity variation in time and space can be described by a continuous fluid model from which effective viscosity (shear and dilatational of particulate films is measured. The 2D effective viscosity of particulate films η2D increases with particle surface fraction ϕ: at low ϕ, it tends to the interfacial dilatational viscosity of the liquid/air interfaces and it diverges at the critical particle surface fraction ϕc ≃ 0.84. Experimental data agree with classical viscosity laws of hard spheres suspensions adapted to the 2D geometry, assuming viscous dissipation resulting from the squeeze of the liquid/air interfaces between the particles. Finally, we show that the observed viscous dissipation in particulate films has to be considered to describe the edge velocity during a retraction experiment at large particle coverage.

  19. Effective viscosity of confined hydrocarbons

    Sivebæk, Ion Marius; Samoilov, V.N.; Persson, B.N.J.


    We present molecular dynamics friction calculations for confined hydrocarbon films with molecular lengths from 20 to 1400 carbon atoms. We find that the logarithm of the effective viscosity ηeff for nanometer-thin films depends linearly on the logarithm of the shear rate: log ηeff=C-nlog γ̇, where...

  20. Fission hindrance and nuclear viscosity

    is in exact conformity with all the previous measurements [7,10–13]. The CASCADE calculations (solid lines in figure 1) used in this first level of analysis do not include any viscosity or temperature-dependent nuclear level density parameter a. The γ and particle decay are calculated using the standard prescriptions as ...

  1. Effect of Fluid Dynamic Viscosity on the Strength of Chalk

    Hedegaard, K.; Fabricius, Ida Lykke

    The mechanical strength of high porosity and weakly cemented chalk is affected by the fluid in the pores. In this study, the effect of the dynamic viscosity of non-polar fluids has been measured on outcrop chalk from Sigerslev Quarry, Stevns, Denmark. The outcome is that the measured strength...... of the chalk decreases with increasing dynamic viscosity. The proposed qualitative explanation is that pressure difference supports and enhances the generation of microscopic shear and tensile failures....

  2. Viscosity and density models for copper electrorefining electrolytes

    Kalliomäki Taina; Aji Arif T.; Aromaa Jari; Lundström Mari


    Viscosity and density are highly important physicochemical properties of copper electrolyte since they affect the purity of cathode copper and energy consumption [1, 2] affecting the mass and heat transfer conditions in the cell [3]. Increasing viscosity and density decreases the rate in which the anode slime falls to the bottom of the cell [4, 5] and lowers the diffusion coefficient of cupric ion (DCu2+) [6]. Decreasing the falling rate of anode slime increases movement of the slime to other...

  3. Intensification of biodiesel production from soybean oil and waste cooking oil in the presence of heterogeneous catalyst using high speed homogenizer.

    Joshi, Saurabh; Gogate, Parag R; Moreira, Paulo F; Giudici, Reinaldo


    In the present work, high speed homogenizer has been used for the intensification of biodiesel synthesis from soybean oil and waste cooking oil (WCO) used as a sustainable feedstock. High acid value waste cooking oil (27mg of KOH/g of oil) was first esterified with methanol using sulphuric acid as catalyst in two stages to bring the acid value to desired value of 1.5mg of KOH/g of oil. Transesterification of soybean oil (directly due to lower acid value) and esterified waste cooking oil was performed in the presence of heterogeneous catalyst (CaO) for the production of biodiesel. Various experiments were performed for understanding the effect of operating parameters viz. molar ratio, catalyst loading, reaction temperature and speed of rotation of the homogenizer. For soybean oil, the maximum biodiesel yield as 84% was obtained with catalyst loading of 3wt% and molar ratio of oil to methanol of 1:10 at 50°C with 12,000rpm as the speed of rotation in 30min. Similarly biodiesel yield of 88% was obtained from waste cooking oil under identical operating conditions except for the catalyst loading which was 1wt%. Significant increase in the rate of biodiesel production with yields from soybean oil as 84% (in 30min) and from WCO as 88% (30min) was established due to the use of high speed homogenizer as compared to the conventional stirring method (requiring 2-3h for obtaining similar biodiesel yield). The observed intensification was attributed to the turbulence caused at microscale and generation of fine emulsions due to the cavitational effects. Overall it can be concluded from this study that high speed homogenizer can be used as an alternate cavitating device to efficiently produce biodiesel in the presence of heterogeneous catalysts. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Tin (II Chloride Catalyzed Esterification of High FFA Jatropha Oil: Experimental and Kinetics Study

    Ratna Dewi Kusumaningtyas


    Full Text Available Biodiesel is one of the promising energy source alternatives to fossil fuel. To produce biodiesel in a more economical way, the employment of the low-cost feed stocks, such as non-edible oils with high free fatty acid (FFA, is necessary. Accordingly, the esterification reaction of FFA in vegetable oils plays an important role in the biodiesel production. In this work, esterification of FFA contained in Crude Jatropha Oil (CJO in the presence of tin (II chloride catalyst in a batch reactor has been carried out. The esterification reaction was conducted using methanol at the temperature of 40-60 °C for 4 hours. The effect of molar ratio of methanol to oil was studied in the range 15:1 to 120:1. The influence of catalyst loading was investigated in the range of 2.5 to 15% w/w oil. The optimum reaction conversion was obtained at 60 °C with the catalyst loading of 10% w/w oil and molar ratio of methanol to oil of 120:1. A pseudo-homogeneous reversible second order kinetic model for describing the esterification of FFA contained in CJO with methanol over tin (II chloride catalyst was developed based on the experimental data. The kinetic model can fit the data very well.

  5. An overview of the impact of electrotechnologies for the recovery of oil and high-value compounds from vegetable oil industry

    Puértolas, Eduardo; Koubaa, Mohamed; Barba Orellana, Francisco Jose


    Oil recovery from oilseeds and fruits is one of the food processes where efficiency is the key to ensure profitability. Wastes and by-products generated during oil production process are, on the other hand, a great source of high-added value compounds that could be recovered in turn at a later...

  6. Visualization of viscous coupling effects in heavy oil reservoirs

    Ortiz-Arango, J.D. [Calgary Univ., AB (Canada). Tomographic Imaging and Porous Media Laboratory; Kantzas, A. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[Calgary Univ., AB (Canada). Tomographic Imaging and Porous Media Laboratory


    Some heavy oil reservoirs in Venezuela and Canada have shown higher than expected production rates attributed to the effects of foamy oil or enhanced solution gas drive. However, foamy oil 2-phase flow does not fully explain oil rate enhancement in heavy oil reservoirs. In this study, flow visualization experiments were conducted in a 2-D etched network micromodel in order to determine the effect of the viscosity ratio on oil mobility at the pore scale. The micromodel's pattern was characterized by macroscopic heterogeneities with a random network of larger pore bodies interconnected with a random network of smaller pore throats. Displacement tests were conducted with green-dyed distilled water as a wetting phase. N-octane, bromododecane and mineral oil were used as non-wetting phases. An unsteady-state method was used to obtain displacement data, and the Alternate method was used to calculate relative permeabilities. Results of the study showed that relative permeabilities depended on the viscosity ratio of the fluids flowing through the porous medium. Channel and annular flows co-existed, and water lubrication was stronger at higher water saturations. The results of the study explained the abnormally high production rates in heavier oil fields. 19 refs., 3 tabs., 14 figs.

  7. Effect of high oleic acid soybean on seed oil, protein concentration, and yield

    Soybeans with high oleic acid content are desired by oil processors because of their improved oxidative stability for broader use in food, fuel and other products. However, non-GMO high-oleic soybeans have tended to have low seed yield. The objective of this study was to test non-GMO, high-oleic s...

  8. Formation et stabilisation des émulsions inverses eau de mer-pétrole. Rôle de la tension et de la viscosité d'interface Formation and Stabilization of Reverse Seawater-Oil Emulsions. Role of Tension and Interfacial Viscosity

    Desmaison M.


    Full Text Available On a étudié l'évolution au cours du temps de la tension et de la viscosité à l'interface d'un pétrole brut arabe léger et d'eau de mer reconstituée. D'une valeur initiale moyenne de 18 mNm-1, la tension interfaciale s'abaisse au niveau de 1 mNm-1 après 40 jours de contact. L'influence de l'oxygène et de la lumière, l'action des antioxydants et le rôle des constituants isolés du pétrole montrent que cette évolution est due à une oxydation photochimique de composés de la fraction aromatique. Inversement, la viscosité interfaciale augmente avec le temps selon une allure exponentielle. Cette évolution est liée à la présence d'asphaltènes dont les structures s'organisent au cours du temps. La superposition de ces deux phénomènes entraîne la formation et la stabilisation des émulsions inverses, dites mousses au chocolat que l'on observe lors des déversements accidentels de pétrole en mer. This article examines the evolution in time of the tension and interfacial viscosity of the Arabian Light crude oil reconstituted seawater interface. From an initial level of 18 mNm-1, the interfacial tension decreases to 1 mNm-1 after 40 days of contact. The influence of oxygen and light, the effect of antioxidants and the rote of constituents isolated from the oil show that this evolution is due to photochemical oxidation of compounds in the aromatic fraction. On the contrary, interfacial viscosity increases at an exponential rate with time. This evolution is linked to the presence of asphaltenes having structures which become organized with time. The combined effect of these two phenomena causes the formation and stabilization of reverse emulsions, called chocolate mousse, which are seen during accidental offshore oil spills.

  9. An assessment of high carbon stock and high conservation value approaches to sustainable oil palm cultivation in Gabon

    Austin, Kemen G.; Lee, Michelle E.; Clark, Connie; Forester, Brenna R.; Urban, Dean L.; White, Lee; Kasibhatla, Prasad S.; Poulsen, John R.


    Industrial-scale oil palm cultivation is rapidly expanding in Gabon, where it has the potential to drive economic growth, but also threatens forest, biodiversity and carbon resources. The Gabonese government is promoting an ambitious agricultural expansion strategy, while simultaneously committing to minimize negative environmental impacts of oil palm agriculture. This study estimates the extent and location of suitable land for oil palm cultivation in Gabon, based on an analysis of recent trends in plantation permitting. We use the resulting suitability map to evaluate two proposed approaches to minimizing negative environmental impacts: a High Carbon Stock (HCS) approach, which emphasizes forest protection and climate change mitigation, and a High Conservation Value (HCV) approach, which focuses on safeguarding biodiversity and ecosystems. We quantify the forest area, carbon stock, and biodiversity resources protected under each approach, using newly developed maps of priority species distributions and forest biomass for Gabon. We find 2.7-3.9 Mha of suitable or moderately suitable land that avoid HCS areas, 4.4 million hectares (Mha) that avoid HCV areas, and 1.2-1.7 Mha that avoid both. This suggests that Gabon’s oil palm production target could likely be met without compromising important ecosystem services, if appropriate safeguards are put in place. Our analysis improves understanding of suitability for oil palm in Gabon, determines how conservation strategies align with national targets for oil palm production, and informs national land use planning.

  10. Flash pyrolysis fuel oil: BIO-POK

    Gust, S [Neste Oy, Porvoo (Finland)


    Flash pyrolysis oil from Ensyn Tech., Canada and Union Fenosa, Spain was combusted with simple pressure atomisation equipment commonly used with light fuel oils in intermediate size (0.1-1 MW) boilers. With a number of modifications to the combustion system, carbon monoxide (CO) and nitrous oxide (NO{sub x}) could be reduced to acceptable levels: CO < 30 ppm and NO{sub x} < 140 ppm. Particulate emissions which were initially very high (Bacharach 4-5) were reduced (Bach. 2-3) by system changes but are still higher than from light fuel oil (Bach. <1). The modifications to the combustion system were: acid resistant progressive cavity pump, higher oil preheat temperature and higher oil pressure than for light fuel oils, refractory section between burner and boiler warmed up to at least 800 deg C. In addition, it was necessary to store pyrolysis oil samples under inert conditions to prevent oxidation and to rinse nozzles with alcohol after shutdown to prevent coking. The complexity and cost of these system modifications are considered to be too great for current grades of flash pyrolysis oil to be sold as a light fuel oil replacement. Improvements to fuel quality will be necessary. The main improvements are lowering of viscosity and improving of stability

  11. Flash pyrolysis fuel oil: BIO-POK

    Gust, S. [Neste Oy, Porvoo (Finland)


    Flash pyrolysis oil from Ensyn Tech., Canada and Union Fenosa, Spain was combusted with simple pressure atomisation equipment commonly used with light fuel oils in intermediate size (0.1-1 MW) boilers. With a number of modifications to the combustion system, carbon monoxide (CO) and nitrous oxide (NO{sub x}) could be reduced to acceptable levels: CO < 30 ppm and NO{sub x} < 140 ppm. Particulate emissions which were initially very high (Bacharach 4-5) were reduced (Bach. 2-3) by system changes but are still higher than from light fuel oil (Bach. <1). The modifications to the combustion system were: acid resistant progressive cavity pump, higher oil preheat temperature and higher oil pressure than for light fuel oils, refractory section between burner and boiler warmed up to at least 800 deg C. In addition, it was necessary to store pyrolysis oil samples under inert conditions to prevent oxidation and to rinse nozzles with alcohol after shutdown to prevent coking. The complexity and cost of these system modifications are considered to be too great for current grades of flash pyrolysis oil to be sold as a light fuel oil replacement. Improvements to fuel quality will be necessary. The main improvements are lowering of viscosity and improving of stability

  12. Economic study of NHR application on high pour point oil field

    Zhao Gang; Zhang Zuoyi; Ma Yuanle


    In order to extent the application of NHR (nuclear heating reactor) and cut down the oil production costs, the authors designed different heating disposition by NHR and boiler heating stations in high pour point oil reservoir, total 16.9 km 2 , in Daqing oil field. This work was based on the study of history matching, water flood planning and hot water circulation for the reservoir. The analyzing results show that, the convert heating cost of NHR is a third of boiler's and the net oil production of NHR is 4 times more than the latter. Considering economization and reliability, authors suggest to adopt the scheme of two NHR with one boiler heating station

  13. Microbiological method for exploitation of oil deposits with a high mineralization of interstitial waters

    Senyukov, V M; Yulbarisov, E M; Taldykina, N N; Shishenina, E P


    A literature review is made of microbiological processes suitable for secondary oil recovery. On the basis of literature data, basic experiments were conducted in the Arlansk field. This field has viscous oil, highly mineralized connate water (rho = 1.18) and permeability above 1,000 md. A mixture of aerobic and anaerobic bacteria with nutrient was injected through one well, then 650 cu m of fresh water was injected. Mineralogical and bacteriological analyses were made of produced fluids in nearby wells. Both aerobic and anaerobic bacteria were found in produced fluids, 600 m from the injection wells. On the basis of this result, it was concluded that microbiological processes can be used to increase secondary recovery of oil. However, no oil recovery data are presented. (10 refs.)

  14. New options for conversion of vegetable oils to alternative fuels

    Demirbas, A.; Kara, H. [Selcuk University, Konya (Turkey). Department of Chemical Engineering


    Biodiesel from transesterification of vegetable oils is an excellent alternative fuel. There is, however, a need to develop a direct process for conversion of vegetable oils into gasoline-competitive biodiesel and other petroleum products. Methyl esters of vegetable oils have several outstanding advantages among other new-renewable and clean engine fuel alternatives. The purpose of the transesterification process is to lower the viscosity of vegetable oil. Compared to No. 2 diesel fuel, all of the vegetable oils are much more viscous, whereas methyl esters of vegetable oils are slightly more viscous. The methyl esters are more volatile than those of the vegetable oils. Conversion of vegetable oils to useful fuels involves the pyrolysis and catalytic cracking of the oils into lower molecular products. Pyrolysis produces more biogasoline than biodiesel fuel. Soap pyrolysis products of vegetable oils can be used as alternative diesel engine fuel. The soaps obtained from the vegetable oils can be pyrolyzed into hydrocarbon-rich products. Zinc chloride catalyst contributed greatly to high amounts of hydrocarbons in the liquid product. The yield of ZnCl2 catalytic conversion of the soybean oil reached the maximum 79.9% at 660 K. (author)

  15. High-rate oil removing scouring agent. Koyubun jokyoyo seirenzai ni tsuite

    Ishihara, K.; Sato, Y. (Dai-Ichi Kogyo Seiyaku Co. Ltd., Kyoto (Japan))


    Fiber forming, scutching and knitting processes in recent years are performed three to five times faster than in the conventional processes. Associated therewith, oil solutions are taken importantly for their stability and workability, such as smoothing properties, heat resistance and abrasion resistance. On the other hand, difficulty is increasing in removing the oils after scutching and knitting. This paper explains basic rinsing activities required in oil removal, and describes various test characteristics and compatibility of various high-rate oil removing scouring agents. An oil-in-water rinsing mechanism relies upon comprehensive actions of a surfactant in wetting, permeation, emulsified dispersion and solubilization. The most importantly taken among them is the emulsifying action, which largely depends upon its chemical structure. Therefore, for a high-rate oil removing scouring agent, creation of activators is required that make the above basic characteristics and activities compatible for various applications. For example, the above product covers a great variety of kinds for diverse applications, based on non-ionic and anion-based activators. 6 figs., 20 tabs.

  16. Bulk and shear viscosities of hot and dense hadron gas

    Kadam, Guru Prakash; Mishra, Hiranmaya


    We estimate the bulk and the shear viscosity at finite temperature and baryon densities of hadronic matter within a hadron resonance gas model which includes a Hagedorn spectrum. The parameters of the Hagedorn spectrum are adjusted to fit recent lattice QCD simulations at finite chemical potential. For the estimation of the bulk viscosity we use low energy theorems of QCD for the energy momentum tensor correlators. For the shear viscosity coefficient, we estimate the same using molecular kinetic theory to relate the shear viscosity coefficient to average momentum of the hadrons in the hot and dense hadron gas. The bulk viscosity to entropy ratio increases with chemical potential and is related to the reduction of velocity of sound at nonzero chemical potential. The shear viscosity to entropy ratio on the other hand, shows a nontrivial behavior with the ratio decreasing with chemical potential for small temperatures but increasing with chemical potential at high temperatures and is related to decrease of entropy density with chemical potential at high temperature due to finite volume of the hadrons

  17. Krill Oil Ameliorates Mitochondrial Dysfunctions in Rats Treated with High-Fat Diet

    Alessandra Ferramosca


    Full Text Available In recent years, several studies focused their attention on the role of dietary fats in the pathogenesis of hepatic steatosis. It has been demonstrated that a high-fat diet is able to induce hyperglycemia, hyperinsulinemia, obesity, and nonalcoholic fatty liver disease. On the other hand, krill oil, a novel dietary supplement of n-3 PUFAs, has the ability to improve lipid and glucose metabolism, exerting possible protective effects against hepatic steatosis. In this study we have investigated the effects of krill oil on mitochondrial energetic metabolism in animals fed a high-fat diet. To this end, male Sprague-Dawley rats were divided into three groups and fed for 4 weeks with a standard diet (control group, a diet with 35% fat (HF group, or a high-fat diet supplemented with 2.5% krill oil (HF+KO group. The obtained results suggest that krill oil promotes the burning of fat excess introduced by the high-fat diet. This effect is obtained by stimulating mitochondrial metabolic pathways such as fatty acid oxidation, Krebs cycle, and respiratory chain complexes activity. Modulation of the expression of carrier proteins involved in mitochondrial uncoupling was also observed. Overall, krill oil counteracts the negative effects of a high-fat diet on mitochondrial energetic metabolism.

  18. Krill Oil Ameliorates Mitochondrial Dysfunctions in Rats Treated with High-Fat Diet.

    Ferramosca, Alessandra; Conte, Annalea; Zara, Vincenzo


    In recent years, several studies focused their attention on the role of dietary fats in the pathogenesis of hepatic steatosis. It has been demonstrated that a high-fat diet is able to induce hyperglycemia, hyperinsulinemia, obesity, and nonalcoholic fatty liver disease. On the other hand, krill oil, a novel dietary supplement of n-3 PUFAs, has the ability to improve lipid and glucose metabolism, exerting possible protective effects against hepatic steatosis. In this study we have investigated the effects of krill oil on mitochondrial energetic metabolism in animals fed a high-fat diet. To this end, male Sprague-Dawley rats were divided into three groups and fed for 4 weeks with a standard diet (control group), a diet with 35% fat (HF group), or a high-fat diet supplemented with 2.5% krill oil (HF+KO group). The obtained results suggest that krill oil promotes the burning of fat excess introduced by the high-fat diet. This effect is obtained by stimulating mitochondrial metabolic pathways such as fatty acid oxidation, Krebs cycle, and respiratory chain complexes activity. Modulation of the expression of carrier proteins involved in mitochondrial uncoupling was also observed. Overall, krill oil counteracts the negative effects of a high-fat diet on mitochondrial energetic metabolism.

  19. The investigation for attaining the optimal yield of oil shale by integrating high temperature reactors

    Bhattacharyya, A.T.


    This work presents a systemanalytical investigation and shows how far a high temperature reactor can be integrated for achieving the optimal yield of kerogen from oil shale. About 1/3 of the produced components must be burnt out in order to have the required high temperature process heat. The works of IGT show that the hydrogen gasification of oil shale enables not only to reach oil shale of higher quality but also allows to achieve a higher extraction quantity. For this reason a hydro-gasification process has been calculated in this work in which not only hydrogen is used as the gasification medium but also two high temperature reactors are integrated as the source of high temperature heat. (orig.) [de

  20. Lithium niobate ultrasonic transducer design for Enhanced Oil Recovery.

    Wang, Zhenjun; Xu, Yuanming; Gu, Yuting


    Due to the strong piezoelectric effect possessed by lithium niobate, a new idea that uses lithium niobate to design high-power ultrasonic transducer for Enhanced Oil Recovery technology is proposed. The purpose of this paper is to lay the foundation for the further research and development of high-power ultrasonic oil production technique. The main contents of this paper are as follows: firstly, structure design technique and application of a new high-power ultrasonic transducer are introduced; secondly, the experiment for reducing the viscosity of super heavy oil by this transducer is done, the optimum ultrasonic parameters for reducing the viscosity of super heavy oil are given. Experimental results show that heavy large molecules in super heavy oil can be cracked into light hydrocarbon substances under strong cavitation effect caused by high-intensity ultrasonic wave. Experiment proves that it is indeed feasible to design high-power ultrasonic transducer for ultrasonic oil production technology using lithium niobate. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Oils


    The abstract describes a process for obtaining liquids from solid carbonaceous materials. The treatment, which involves heating them under pressures of 10 to 1000 atm with high-boiling hydrocarbons or their derivatives containing no constituent which boils below 300/sup 0/C, can be performed in the presence of gases containing nitrogen, carbon dioxide, or carbon monoxide, and excluding hydrogen. Catalytic substances used are sulfides of alkali or alkaline earth metals or other substances which have an alkaline reaction.

  2. Fuel properties of biodiesel from vegetable oils and oil mixtures. Influence of methyl esters distribution

    Martínez, G.; Sánchez, N.; Encinar, J.M.; González, J.F.


    In this work, the quality of biodiesel produced by basic transesterification from several vegetable oils (soybean, rapeseed, sunflower, high oleic sunflower, Cynara Cardunculus L., Brassica Carinata and Jatropha Curca) cultivated in Extremadura has been studied in detail. The influence of raw material composition on properties such as density, viscosity, cetane number, higher heating value, iodine and saponification values and cold filter plugging point has been verified. Other biodiesel properties such as acid value, water content and flash and combustion points were more dependent on characteristics of production process. Biodiesel produced by rapeseed, sunflower and high oleic sunflower oils transesterification have been biofuels with better properties according to Norm EN 14214. Finally, it has been tested that it is possible to use oils mixtures in biodiesel production in order to improve the biodiesel quality. In addition, with the same process conditions and knowing properties of biodiesel from pure oils; for biodiesel from oils mixtures, its methyl esters content, and therefore properties dependent this content can be predicted from a simple mathematical equation proposed in this work. - Highlights: • Biodiesel quality produced by basic transesterification from vegetable oils. • We examine influences of methyl esters distribution on biodiesel properties. • Biofuels from soybean, sunflower and rapeseed oils were with better properties. • Oils mixtures improve biodiesel quality to fulfill Norm EN 14214. • An equation to predict properties of biodiesel from oil mixtures is proposed

  3. Second viscosity effects in cosmology

    Potupa, A.S.


    The object of the investigation is to draw attention to two important aspects in the choice of a substance model, namely an allowance for the viscosity and behaviour of the metrics at the later stages of cosmological evolution. It is shown that in homogeneous cosmological models taking into account the viscosity there are solutions which realize interpolation between the Fridman and steady-state regimes. In a closed model a solution is obtained which corresponds to the ''curvature compensation'' regime with an unboundedly increasing radius. The problem of compensation of singularity at t → o is discussed as well as the choice of the equations of state for the early (hadron) stages of cosmological evolution in connection with the hydrodynamic theory of multiple hadron production

  4. Effects of Nattokinase on Whole Blood Viscosity and Mortality

    Melike Cengiz


    Full Text Available Objective: Nattokinase is a serin protease having potent fibrinolytic effect derived from fermentation of boiled soy bean by the use of Basillus Subtilis Natto. The aim of this experimental study is to investigate the effects of intragastric Nattokinase (6 mg/day administration for 7 days prior to formation of sepsis on plasma fibrinogen levels, whole blood viscosity and mortality in rats. Materials and Methods: Intraabdominal sepsis were performed by cecal ligation and puncture in rats supplemented with nattokinase or olive oil for 7 days prior to sepsis formation. Plasma fibrinogen, whole blood viscosity analysis and survival analysis was performed after intraabdominal sepsis formation. Results: Mean blood viscosity of rats was lower in Nattokinase and cecal ligation group at lowest shear rate (p<0.05. However, the differences between groups were not significant at higher shear rates. No difference was found in survival rates and survival times of Nattokinase and cecal ligation and cecal ligation and puncture groups. Conclusion: Our results were unable to show the effects of intragastric nattokinase supplementation prior to sepsis on plasma fibrinogen levels or whole blood viscosity, except low shear rate. Nattokinase did not altered survival in septic rats. (Journal of the Turkish Society Intensive Care 2011; 9: 85-9

  5. Effect of viscosity on learned satiation

    Mars, M.; Hogenkamp, P.S.; Gosses, A.M.; Stafleu, A.; Graaf,


    A higher viscosity of a food leads to a longer orosensory stimulation. This may facilitate the learned association between sensory signals and metabolic consequences. In the current study we investigated the effect of viscosity on learned satiation. In two intervention groups a low viscosity (LV)

  6. Nuclear energy consumption, oil prices, and economic growth: Evidence from highly industrialized countries

    Lee, Chien-Chiang; Chiu, Yi-Bin


    This study utilizes the Johansen cointegration technique, the Granger non-causality test of Toda and Yamamoto (1995), the generalized impulse response function, and the generalized forecast error variance decomposition to examine the dynamic interrelationship among nuclear energy consumption, real oil price, oil consumption, and real income in six highly industrialized countries for the period 1965-2008. Our empirical results indicate that the relationships between nuclear energy consumption and oil are as substitutes in the U.S. and Canada, while they are complementary in France, Japan, and the U.K. Second, the long-run income elasticity of nuclear energy is larger than one, indicating that nuclear energy is a luxury good. Third, the results of the Granger causality test find evidence of unidirectional causality running from real income to nuclear energy consumption in Japan. A bidirectional relationship appears in Canada, Germany and the U.K., while no causality exists in France and the U.S. We also find evidence of causality running from real oil price to nuclear energy consumption, except for the U.S., and causality running from oil consumption to nuclear energy consumption in Canada, Japan, and the U.K., suggesting that changes in price and consumption of oil influence nuclear energy consumption. Finally, the results observe transitory initial impacts of innovations in real income and oil consumption on nuclear energy consumption. In the long run the impact of real oil price is relatively larger compared with that of real income on nuclear energy consumption in Canada, Germany, Japan, and the U.S.

  7. Nuclear energy consumption, oil prices, and economic growth: Evidence from highly industrialized countries

    Lee, Chien-Chiang, E-mail:; Chiu, Yi-Bin


    This study utilizes the Johansen cointegration technique, the Granger non-causality test of Toda and Yamamoto (1995), the generalized impulse response function, and the generalized forecast error variance decomposition to examine the dynamic interrelationship among nuclear energy consumption, real oil price, oil consumption, and real income in six highly industrialized countries for the period 1965-2008. Our empirical results indicate that the relationships between nuclear energy consumption and oil are as substitutes in the U.S. and Canada, while they are complementary in France, Japan, and the U.K. Second, the long-run income elasticity of nuclear energy is larger than one, indicating that nuclear energy is a luxury good. Third, the results of the Granger causality test find evidence of unidirectional causality running from real income to nuclear energy consumption in Japan. A bidirectional relationship appears in Canada, Germany and the U.K., while no causality exists in France and the U.S. We also find evidence of causality running from real oil price to nuclear energy consumption, except for the U.S., and causality running from oil consumption to nuclear energy consumption in Canada, Japan, and the U.K., suggesting that changes in price and consumption of oil influence nuclear energy consumption. Finally, the results observe transitory initial impacts of innovations in real income and oil consumption on nuclear energy consumption. In the long run the impact of real oil price is relatively larger compared with that of real income on nuclear energy consumption in Canada, Germany, Japan, and the U.S.

  8. Production of high quality castile soap from high rancid olive oil

    Girgis, Adel Y.


    Full Text Available Non-edible olive oil, characterized by high acid and peroxide values as well as deep in color and unpleasant odor, was used to produce a fine castile soap (soap sample nº. 1. Semi-fine virgin olive oil was also used to produce the standard castile soap (soap sample nº. 2. The obtained results illustrated that the unpleasant odor was disappeared in soap nº. 1 compared to the standard soap (weakly like oil. Also, there were remarkable that no high differences were observed in all physical and chemical properties (appearance, smooth surface, erosion from hand-washing, consistency, moisture content, total fatty acids, free alkali and salt content in the two fresh soap samples. Whilst, the color in soap sample nº. 1 was fuscous green color compared to the standard soap (which was white to pale yellow. Soap samples were stored on a shelf at room temperature for 6 months showed some changes in their chemical properties. On the other hand, physical properties of the above two samples were improved after the storage period (6 months where their structures became very firm with high lather volume and rates of their erosions from hand-washing were retrenched except, the color in soap sample nº. 1 was not improved which was dark green color. Therefore, the present study recommend to use non-edible olive oil as unusually fatty material to produce a fine castile soap (high smooth surface, fairly lather and high glossy appearance as an alternative to edible olive oil (which is very expensive and also to reduce the cost of castile soap manufacturing.Aceite de oliva no comestible, caracterizado por su alta acidez e índice de peróxido así como de su elevada coloración y sabor desagradable se utilizó para la producción de jabón fino tipo ‘‘Castilla’’ (muestra de jabón nº 1. Otro aceite de oliva semifino se empleo para la fabricación de jabón estándar tipo ‘‘Castilla’’. Los resultados mostraron

  9. Fatty acid composition of commercial vegetable oils from the French market analysed using a long highly polar column

    Vingering Nathalie


    Full Text Available The increasing concern for consumed fat by western populations has raised the question of the level and the quality of fat intake, especially the composition of fatty acids (FA and their impact on human health. As a consequence, consumers and nutritionists have requested updated publications on FA composition of food containing fat. In the present study, fourteen different kinds of edible oils (rapeseed, olive, hazelnut, argan, groundnut, grape seed, sesame, sunflower, walnut and organic walnut, avocado, wheat germ, and two combined oils were analysed for FA determination using a BPX-70 60 m highly polar GC column. Oils were classified according to the classification of Dubois et al. (2007, 2008. Monounsaturated FA (MUFA group oils, including rapeseed, olive, hazelnut, and avocado oils, contained mainly oleic acid (OA. Groundnut and argan oils, also rich in MUFA, showed in addition high linoleic acid (LA contents. In the polyunsaturated (PUFA group, grape seed oil presented the highest LA content while sunflower, sesame, and wheat germ oils showed noticeable MUFA amounts in addition to high PUFA contents. Walnut oils, also rich in LA, showed the highest linolenic acid (ALA content. The n-6/n-3 ratio of each oil was calculated. Trans-FA (TFA was also detected and quantified. Results were compared with the data published during the past decade, and the slight discrepancies were attributed to differences in origin and variety of seed-cultivars, and in seed and oil processes.

  10. Film-forming properties of castor oil polyol ester blends in elastohydrodynamic conditions

    The viscosities and elastohydrodynamic (EHD) film thickness properties of binary blends of castor oil with polyol esters were determined experimentally. Predicted blend viscosity was calculated from the viscosity of the pure blend components. Measured viscosity values were closer to the values pre...

  11. Hydration of vegetable oils for high-grade Diesel fuel components; Hydrierung von Pflanzenoelen zu hochwertigen Dieselkraftstoffkomponenten

    Endisch, M.; Olschar, M.; Kuchling, T. [TU Bergakademie Freiberg (Germany); Balfanz, U. [BP AG, Global Fuels Technology, Bochum (Germany)


    The legally regulated admixture of biogenic fuel components for diesel fuels are actually realized in Germany by an admixture of vegetable oil methylester (e.g. from rapeseed oil). The paper describes the hydration of vegetable oils as alternative to this procedure. Infrared and {sup 13}NMR spectroscopy were used to analyse the reaction kinetics for rapeseed, soy been and palm oil hydration. Experimental results of investigations under operational conditions using a continuous test facility and different vegetable oils identified the possibilities of this technology. The technology allows the high-yield production of diesel fuel components with certain numbers higher than average.

  12. Mechanisms of radiation - chemical conversion of high-paraffinic crude oil

    Zaikin, Yu.A.; Zaikina, R.F.; Silverman, J.


    Complete text of publication follows. Regularities of radiation-thermal cracking (RTC) are studied in high-paraffinic oil. Irradiation of oil samples by 2 MeV electrons was performed using a special facility assembled at the electron accelerator ELU-4. The following characteristic RTC features were observed in oil with high contents of heavy paraffins: low level of isomerization in light RTC fractions; very high polymerization rate and low olefin contents in RTC products; relatively low yields of light fractions at low irradiation dose rates; increase in the molecular weight of the gasoline fraction as the irradiation dose rate grows. Similar intense polymerization of RTC products was observed in our experiments with such wastes of oil extraction as asphalt-pitch-paraffin sediments (APPS). Theoretically this feedstock contains great reserves of hydrogen, and, therefore, has high potential yields of light fractions. However, in this case RTC was accompanied by intense reactions of polymerization and chemical adsorption that limited the maximum yields of light RTC products to 40% in our experiments. A specific feature of APPS radiation-induced destruction is formation of the big amount of a reactive paraffinic residue. As a result of interaction with the polymerizing residue the light liquid fractions were completely absorbed and the heavy residue got denser and solidified after several days of exposure at room temperature. RTC regularities in heavy paraffinic oil differ from those observed both in highly viscous petroleum feedstock and light paraffin oils. We attribute these observations to the behavior of heavy alkyl radicals that initiate polymerization and isomerization in heavy paraffin fractions

  13. Flexible Superhydrophobic and Superoleophilic MoS2 Sponge for Highly Efficient Oil-Water Separation

    Gao, Xiaojia; Wang, Xiufeng; Ouyang, Xiaoping; Wen, Cuie


    Removal of oils and organic solvents from water is an important global challenge for energy conservation and environmental protection. Advanced sorbent materials with excellent sorption capacity need to be developed. Here we report on a superhydrophobic and superoleophilic MoS2 nanosheet sponge (SMS) for highly efficient separation and absorption of oils or organic solvents from water. This novel sponge exhibits excellent absorption performance through a combination of superhydrophobicity, high porosity, robust stability in harsh conditions (including flame retardance and inertness to corrosive and different temperature environments) and excellent mechanical properties. The dip-coating strategy proposed for the fabrication of the SMS, which does not require a complicated process or sophisticated equipment, is very straightforward and easy to scale up. This finding shows promise for water remediation and oil recovery. PMID:27272562

  14. Longitudinal and bulk viscosities of expanded rubidium

    Zaheri, Ali Hossein Mohammad; Srivastava, Sunita; Tankeshwar, K


    First three non-vanishing sum rules for the bulk and longitudinal stress auto-correlation functions have been evaluated for liquid Rb at six thermodynamic states along the liquid-vapour coexistence curve. The Mori memory function formalism and the frequency sum rules have been used to calculate bulk and longitudinal viscosities. The results thus obtained for the ratio of bulk viscosity to shear viscosity have been compared with experimental and other theoretical predictions wherever available. The values of the bulk viscosity have been found to be more than the corresponding values of the shear viscosity for all six thermodynamic states investigated here

  15. Effects of High Carbon Dioxide Level on the Emergence of Oil Palm Pollinating Weevil, Elaeidobius Kamerunicus

    Amanina, N.S.; Hasnudin, M.Y.; Haniff, M.H.; Roslan, M.N.; A'fifah, A.R.; Ramle, M.


    Elaeidobius kamerunicus is the main pollinating insect of oil palm in Malaysia. The increase of ambient carbon dioxide (CO 2 ) may promote greater crop growth and yield of oil palm. However, E. kamerunicus' adaptability and survival under high CO 2 level are still unknown. An oil palm weevil emergence study was conducted in plant growth chambers with two CO 2 levels, 400 Parts Per Million and 800 Parts Per Million. The plant growth chambers were set at 27 degree celcius and 70% relative humidity for the entire study period. Spikelets were taken from apical, middle and basal regions of anthesising male inflorescences from 6-year old DxP palms under normal field conditions. The sampled spikelets were placed in clear plastic tubes with both open ends covered with muslin cloth. The emergence of adults was observed at two-day interval until 10 days after incubation. The total number of weevils which emerged from the spikelets at 400 Parts Per Million and 800 Parts Per Million CO 2 levels were 240 and 233 individuals, respectively. Doubling the ambient CO 2 level to 800 Parts Per Million had no effect on E. kamerunicus emergence in controlled condition. Further study on oil palm weevil adaptability and survival under high CO 2 level is needed to provide information on the effects of future climate change scenario and oil palm yield. (author)

  16. Modulation of the Gut Microbiota by Krill Oil in Mice Fed a High-Sugar High-Fat Diet

    Chenyang Lu


    Full Text Available Multiple lines of evidence suggest that the gut microbiota plays vital roles in metabolic diseases such as hyperlipidemia. Previous studies have confirmed that krill oil can alleviate hyperlipidemia, but the underlying mechanism remains unclear. To discern whether krill oil changes the structure of the gut microbiota during the hyperlipidemia treatment, 72 mice were acclimatized with a standard chow diet for 2 weeks and then randomly allocated to receive a standard chow diet (control group, n = 12 or a high-sugar-high-fat (HSHF diet supplemented with a low (100 μg/g·d, HSHF+LD group, n = 12, moderate (200 μg/g·d, HSHF+MD group, n = 12 or high dosage of krill oil (600 μg/g·d, HSHF+HD group, n = 12, simvastatin (HSHF+S group, n = 12 or saline (HSHF group, n = 12 continuously for 12 weeks. The resulting weight gains were attenuated, the liver index and the low-density lipoprotein, total cholesterol and triglyceride concentrations showed a stepwise reduction in the treated groups compared with those of the control group. A dose-dependent modulation of the gut microbiota was observed after treatment with krill oil. Low- and moderate- doses of krill oil increased the similarity between the composition of the HSHF diet-induced gut microbiota and that of the control, whereas the mice fed the high-dose exhibited a unique gut microbiota structure that was different from that of the control and HSHF groups. Sixty-five key operational taxonomic units (OTUs that responded to the krill oil treatment were identified using redundancy analysis, of which 26 OTUs were increased and 39 OTUs were decreased compared with those of the HSHF group. In conclusion, the results obtained in this study suggest that the structural alterations in the gut microbiota induced by krill oil treatment were dose-dependent and associated with the alleviation of hyperlipidemia. Additionally, the high-dose krill oil treatment showed combined effects on the alleviation of

  17. Replacement of soybean oil by fish oil increases cytosolic lipases activities in liver and adipose tissue from rats fed a high-carbohydrate diets.

    Rodrigues, Angélica Heringer; Moreira, Carolina Campos Lima; Neves, Maria José; Botion, Leida Maria; Chaves, Valéria Ernestânia


    Several studies have demonstrated that fish oil consumption improves metabolic syndrome and comorbidities, as insulin resistance, nonalcoholic fatty liver disease, dyslipidaemia and hypertension induced by high-fat diet ingestion. Previously, we demonstrated that administration of a fructose-rich diet to rats induces liver lipid accumulation, accompanied by a decrease in liver cytosolic lipases activities. In this study, the effect of replacement of soybean oil by fish oil in a high-fructose diet (FRUC, 60% fructose) for 8 weeks on lipid metabolism in liver and epididymal adipose tissue from rats was investigated. The interaction between fish oil and FRUC diet increased glucose tolerance and decreased serum levels of triacylglycerol (TAG), VLDL-TAG secretion and lipid droplet volume of hepatocytes. In addition, the fish oil supplementation increased the liver cytosolic lipases activities, independently of the type of carbohydrate ingested. Our results firmly establish the physiological regulation of liver cytosolic lipases to maintain lipid homeostasis in hepatocytes. In epididymal adipose tissue, the replacement of soybean oil by fish oil in FRUC diet did not change the tissue weight and lipoprotein lipase activity; however, there was increased basal and insulin-stimulated de novo lipogenesis and glucose uptake. Increased cytosolic lipases activities were observed, despite the decreased basal and isoproterenol-stimulated glycerol release to the incubation medium. These findings suggest that fish oil increases the glycerokinase activity and glycerol phosphorylation from endogenous TAG hydrolysis. Our findings are the first to show that the fish oil ingestion increases cytosolic lipases activities in liver and adipose tissue from rats treated with high-carbohydrate diets. Copyright © 2018. Published by Elsevier Inc.

  18. Encapsulation of Polymethoxyflavones in Citrus Oil Emulsion-Based Delivery Systems.

    Yang, Ying; Zhao, Chengying; Chen, Jingjing; Tian, Guifang; McClements, David Julian; Xiao, Hang; Zheng, Jinkai


    The purpose of this work was to elucidate the effects of citrus oil type on polymethoxyflavone (PMF) solubility and on the physicochemical properties of PMF-loaded emulsion-based delivery systems. Citrus oils were extracted from mandarin, orange, sweet orange, and bergamot. The major constituents were determined by GC/MS: sweet orange oil (97.4% d-limonene); mandarin oil (72.4% d-limonene); orange oil (67.2% d-limonene); and bergamot oil (34.6% linalyl acetate and 25.3% d-limonene). PMF-loaded emulsions were fabricated using 10% oil phase (containing 0.1% w/v nobiletin or tangeretin) and 90% aqueous phase (containing 1% w/v Tween 80) using high-pressure homogenization. Delivery systems prepared using mandarin oil had the largest mean droplet diameters (386 or 400 nm), followed by orange oil (338 or 390 nm), bergamot oil (129 or 133 nm), and sweet orange oil (122 or 126 nm) for nobiletin- or tangeretin-loaded emulsions, respectively. The optical clarity of the emulsions increased with decreasing droplet size due to reduced light scattering. The viscosities of the emulsions (with or without PMFs) were similar (1.3 to 1.4 mPa·s), despite appreciable differences in oil phase viscosity. The loading capacity and encapsulation efficiency of the emulsions depended on carrier oil type, with bergamot oil giving the highest loading capacity. In summary, differences in the composition and physical characteristics of citrus oils led to PMF-loaded emulsions with different encapsulation and physicochemical characteristics. These results will facilitate the rational design of emulsion-based delivery systems for encapsulation of PMFs and other nutraceuticals in functional foods and beverages.

  19. Changes in the Characteristics of Water-in-Oil-based High Internal ...

    Changes in the Characteristics of Water-in-Oil-based High Internal Phase Emulsion Containing Moringa Leaves Extract at Various Storage Conditions. ... Conclusion: Moringa HIPE showed stability and can be guided exclusively to protect skin against ultraviolet radiation-mediated oxidative damage. Keywords: Moringa ...

  20. Free and sulphurized hopanoids and highly branched isoprenoids in immature lacustrine oil shales

    Sinninghe Damsté, J.S.; Las Heras, F.X.C. de; Grimalt, J.O.; Lopez, J.F.; Albaiges, J.; Leeuw, J.W. de


    A study of the solvent extracts of four samples from two immature oil shales from Tertiary lacustrine basins, Ribesalbes and Campins (southern European rift system), deposited under reducing conditions, has allowed the identification of S-containing hopanoids and novel highly branched isoprenoids

  1. Thermal diffusivity estimation of the olive oil during its high-pressure treatment

    Kubásek, M.; Houška, M.; Landfeld, A.; Strohalm, J.; Kamarád, Jiří; Žitný, R.


    Roč. 74, - (2006), s. 286-291 ISSN 0260-8774 R&D Projects: GA MZe QF3287 Institutional research plan: CEZ:AV0Z10100521 Keywords : olive oil * food processing * high pressure * thermal diffusivity Subject RIV: GM - Food Processing Impact factor: 1.696, year: 2006

  2. Technical and Economic Analysis of Injecting Enhancers into High-Paraffin Oil Heaters

    Konakhina, I. A.; Khamidullina, G. R.; Khusnutdinova, E. M.


    This paper covers an algorithm of how to optimize the selection of preferred solutions to upgrade heat-exchange equipment. The algorithm is discussed in terms of high-paraffin oil heaters as compared with other heat-exchange surface features.

  3. High-pressure cloud point data for the system glycerol + olive oil + n-butane + AOT

    Bender,J. P.; Junges,A.; Franceschi,E.; Corazza,F. C.; Dariva,C.; Oliveira,J. Vladimir; Corazza,M. L.


    This work reports high-pressure cloud point data for the quaternary system glycerol + olive oil + n-butane + AOT surfactant. The static synthetic method, using a variable-volume view cell, was employed for obtaining the experimental data at pressures up to 27 MPa. The effects of glycerol/olive oil concentration and surfactant addition on the pressure transition values were evaluated in the temperature range from 303 K to 343 K. For the system investigated, vapor-liquid (VLE), liquid-liquid (L...


    Sri Hartanti Yuliani


    Full Text Available Pomegranate seed oil has antioxidant, anti-inflammatory, and chemo preventive activities. Pomegranate seed oil is lipophilic substance suitable to be prepared in emulsion dosage forms. Long-chain triglyceride (LCT and medium-chain triglyceride (MCT are commonly used as oil phase in emulsion dosage forms. This research aimed to compare the use of LCT and MCT in the Nano emulsion formula of pomegranate seed oil dosage forms. Formulation of pomegranate seed oil Nano emulsion was conducted using high energy emulsification. Parameters observed were pH, Nano emulsion type, percent transmittance, viscosity, turbidity, and droplet size before and after 3 cycles of freeze-thaw. The result showed that there was no significant difference between physical properties of pomegranate oil Nano emulsion with LCT as oil phase and pomegranate oil Nano emulsion with MCT as oil phase. Moreover, physical stability of pomegranate oil Nano emulsion with LCT as oil phase was better than pomegranate oil Nano emulsion with MCT as oil phase.

  5. Biodiesel from the seed oil of Treculia africana with high free fatty acid content

    Adewuyi, Adewale [Redeemer' s University, Department of Chemical Sciences, Faculty of Natural Sciences, Redemption City, Ogun State (Nigeria); Oderinde, Rotimi A.; Ojo, David F.K. [University of Ibadan, Industrial Unit, Department of Chemistry, Ibadan, Oyo State (Nigeria)


    Oil was extracted from the seed of Treculia africana using hexane. The oil was characterized and used in the production of biodiesel. Biodiesel was produced from the seed oil of T. africana using a two-step reaction system. The first step was a pretreatment which involved the use of 2 % sulfuric acid in methanol, and secondly, transesterification reaction using KOH as catalyst. Saponification value of the oil was 201.70 {+-} 0.20 mg KOH/g, free fatty acid was 8.20 {+-} 0.50 %, while iodine value was 118.20 {+-} 0.50 g iodine/100 g. The most dominant fatty acid was C18:2 (44 %). The result of the method applied showed a conversion which has ester content above 98 %, flash point of 131 {+-} 1.30 C, and phosphorus content below 1 ppm in the biodiesel. The biodiesel produced exhibited properties that were in agreement with the European standard (EN 14214). This study showed that the high free fatty acid content of T. africana seed oil can be reduced in a one-step pretreatment of esterification reaction using H{sub 2}SO{sub 4} as catalyst. (orig.)

  6. Traceability of PDO Olive Oil “Terra di Bari” Using High Resolution Melting

    Cinzia Montemurro


    Full Text Available The aim of the research was to verify the applicability of microsatellite (SSR markers in High Resolution Melting (HRM analysis for the identification of the olive cultivars used in the “Terra di Bari” PDO extra virgin olive oil. A panel of nine cultivars, widespread in Apulia region, was tested with seventeen SSR primer pairs and the PCR products were at first analysed with a Genetic Analyzer automatic sequencer. An identification key was obtained for the nine cultivars, which showed an unambiguous discrimination among the varieties constituting the “Terra di Bari” PDO extra virgin olive oil: Cima di Bitonto, Coratina, and Ogliarola. Subsequently, an SSR based method was set up with the DCA18 marker, coupled with HRM analysis for the distinction of the Terra di Bari olive oil from non-Terra di Bari olive oil using different mixtures. Thus, this analysis enabled the distinction and identification of the PDO mixtures. Hence, this assay provided a flexible, cost-effective, and closed-tube microsatellite genotyping method, well suited to varietal identification and authentication analysis in olive oil.

  7. A High Resolution Capacitive Sensing System for the Measurement of Water Content in Crude Oil

    Aslam, Muhammad Zubair; Tang, Tong Boon


    This paper presents the design of a non-intrusive system to measure ultra-low water content in crude oil. The system is based on a capacitance to phase angle conversion method. Water content is measured with a capacitance sensor comprising two semi-cylindrical electrodes mounted on the outer side of a glass tube. The presence of water induces a capacitance change that in turn converts into a phase angle, with respect to a main oscillator. A differential sensing technique is adopted not only to ensure high immunity against temperature variation and background noise, but also to eliminate phase jitter and amplitude variation of the main oscillator that could destabilize the output. The complete capacitive sensing system was implemented in hardware and experiment results using crude oil samples demonstrated that a resolution of ±50 ppm of water content in crude oil was achieved by the proposed design. PMID:24967606

  8. A High Resolution Capacitive Sensing System for the Measurement of Water Content in Crude Oil

    Muhammad Zubair Aslam


    Full Text Available This paper presents the design of a non-intrusive system to measure ultra-low water content in crude oil. The system is based on a capacitance to phase angle conversion method. Water content is measured with a capacitance sensor comprising two semi-cylindrical electrodes mounted on the outer side of a glass tube. The presence of water induces a capacitance change that in turn converts into a phase angle, with respect to a main oscillator. A differential sensing technique is adopted not only to ensure high immunity against temperature variation and background noise, but also to eliminate phase jitter and amplitude variation of the main oscillator that could destabilize the output. The complete capacitive sensing system was implemented in hardware and experiment results using crude oil samples demonstrated that a resolution of ±50 ppm of water content in crude oil was achieved by the proposed design.

  9. Differential metabolite profiles during fruit development in high-yielding oil palm mesocarp.

    Huey Fang Teh

    Full Text Available To better understand lipid biosynthesis in oil palm mesocarp, in particular the differences in gene regulation leading to and including de novo fatty acid biosynthesis, a multi-platform metabolomics technology was used to profile mesocarp metabolites during six critical stages of fruit development in comparatively high- and low-yielding oil palm populations. Significantly higher amino acid levels preceding lipid biosynthesis and nucleosides during lipid biosynthesis were observed in a higher yielding commercial palm population. Levels of metabolites involved in glycolysis revealed interesting divergence of flux towards glycerol-3-phosphate, while carbon utilization differences in the TCA cycle were proven by an increase in malic acid/citric acid ratio. Apart from insights into the regulation of enhanced lipid production in oil palm, these results provide potentially useful metabolite yield markers and genes of interest for use in breeding programmes.


    Ignacio Moya-Ramírez


    Full Text Available The remediation of a sandy soil contaminated with motor oil was studied by applying two different washing procedures: one discontinuous and the other continuous. In addition the capacity of three highly biodegradable surfactants, two synthetic (Glucopon 600 and Findet 1214N/23 and a biosurfactant from Bacillus subtilis, to enhance oil removal was tested. The results obtained with the continuous procedure were much better than those achieved with the discontinuous one, even in experiments conducted with distilled water. Both the addition of surfactants and the rise in temperature significantly increased the removal of the pollutant in experiments conducted with the discontinuous procedure, but the biosurfactant showed a higher capacity for soil remediation than the synthetic surfactants at concentrations close to its CMC. Conversely, when the continuous method was used, surfactant concentration seems to have a lower effect on motor oil removal, at least below the CMC.

  11. High-pressure cloud point data for the system glycerol + olive oil + n-butane + AOT

    J. P. Bender


    Full Text Available This work reports high-pressure cloud point data for the quaternary system glycerol + olive oil + n-butane + AOT surfactant. The static synthetic method, using a variable-volume view cell, was employed for obtaining the experimental data at pressures up to 27 MPa. The effects of glycerol/olive oil concentration and surfactant addition on the pressure transition values were evaluated in the temperature range from 303 K to 343 K. For the system investigated, vapor-liquid (VLE, liquid-liquid (LLE and vapor-liquid-liquid (VLLE equilibrium were recorded. It was experimentally observed that, at a given temperature and surfactant content, an increase in the concentration of glycerol/oil ratio led to a pronounced increase in the slope of the liquid-liquid coexistence curve. A comparison with results reported for the same system but using propane as solvent showed that much lower pressure transition values are obtained when using n-butane.

  12. Differential gene expression at different stages of mesocarp development in high- and low-yielding oil palm.

    Wong, Yick Ching; Teh, Huey Fang; Mebus, Katharina; Ooi, Tony Eng Keong; Kwong, Qi Bin; Koo, Ka Loo; Ong, Chuang Kee; Mayes, Sean; Chew, Fook Tim; Appleton, David R; Kulaveerasingam, Harikrishna


    The oil yield trait of oil palm is expected to involve multiple genes, environmental influences and interactions. Many of the underlying mechanisms that contribute to oil yield are still poorly understood. In this study, we used a microarray approach to study the gene expression profiles of mesocarp tissue at different developmental stages, comparing genetically related high- and low- oil yielding palms to identify genes that contributed to the higher oil-yielding palm and might contribute to the wider genetic improvement of oil palm breeding populations. A total of 3412 (2001 annotated) gene candidates were found to be significantly differentially expressed between high- and low-yielding palms at at least one of the different stages of mesocarp development evaluated. Gene Ontologies (GO) enrichment analysis identified 28 significantly enriched GO terms, including regulation of transcription, fatty acid biosynthesis and metabolic processes. These differentially expressed genes comprise several transcription factors, such as, bHLH, Dof zinc finger proteins and MADS box proteins. Several genes involved in glycolysis, TCA, and fatty acid biosynthesis pathways were also found up-regulated in high-yielding oil palm, among them; pyruvate dehydrogenase E1 component Subunit Beta (PDH), ATP-citrate lyase, β- ketoacyl-ACP synthases I (KAS I), β- ketoacyl-ACP synthases III (KAS III) and ketoacyl-ACP reductase (KAR). Sucrose metabolism-related genes such as Invertase, Sucrose Synthase 2 and Sucrose Phosphatase 2 were found to be down-regulated in high-yielding oil palms, compared to the lower yield palms. Our findings indicate that a higher carbon flux (channeled through down-regulation of the Sucrose Synthase 2 pathway) was being utilized by up-regulated genes involved in glycolysis, TCA and fatty acid biosynthesis leading to enhanced oil production in the high-yielding oil palm. These findings are an important stepping stone to understand the processes that lead to

  13. Using Polymer Alternating Gas to Enhance Oil Recovery in Heavy Oil

    Yang, Yongzhi; Li, Weirong; Zhou, Tiyao; Dong, Zhenzhen


    CO2 has been used to recover oil for more than 40 years. Currently, about 43% of EOR production in U.S. is from CO2 flooding. CO2 flooding is a well-established EOR technique, but its density and viscosity nature are challenges for CO2 projects. Low density (0.5 to 0.8 g/cm3) causes gas to rise upward in reservoirs and bypass many lower portions of the reservoir. Low viscosity (0.02 to 0.08 cp) leads to poor volumetric sweep efficiency. So water-alternating-gas (WAG) method was used to control the mobility of CO2 and improve sweep efficiency. However, WAG process has some other problems in heavy oil reservoir, such as poor mobility ratio and gravity overriding. To examine the applicability of carbon dioxide to recover viscous oil from highly heterogeneous reservoirs, this study suggests a new EOR method--polymer-alternating gas (PAG) process. The process involves a combination of polymer flooding and CO2 injection. To confirm the effectiveness of PAG process in heavy oils, a reservoir model from Liaohe Oilfield is used to compare the technical and economic performance among PAG, WAG and polymer flooding. Simulation results show that PAG method would increase oil recovery over 10% compared with other EOR methods and PAG would be economically success based on assumption in this study. This study is the first to apply PAG to enhance oil recovery in heavy oil reservoir with highly heterogeneous. Besides, this paper provides detailed discussions and comparison about PAG with other EOR methods in this heavy oil reservoir.

  14. Topical viscosity control for light hydrocarbon displacing fluids in petroleum recovery and in fracturing fluids for well stimulation

    Heller, John P.; Dandge, Dileep K.


    Solvent-type flooding fluids comprising light hydrocarbons in the range of ethane to hexane (and mixtures thereof) are used to displace crude oil in formations having temperatures of about 20 degrees to about 150 degrees Centigrade and pressures above about 650 psi, the light hydrocarbons having dissolved therein from about 0.05% to about 3% of an organotin compound of the formula R.sub.3 SnF where each R is independently an alkyl, aryl or alkyaryl group from 3 to 12 carbon atoms. Under the pressures and temperatures described, the organotin compounds become pentacoordinated and linked through the electronegative bridges, forming polymers within the light hydrocarbon flooding media to render them highly viscous. Under ambient conditions, the viscosity control agents will not readily be produced from the formation with either crude oil or water, since they are insoluble in the former and only sparingly soluble in the latter.

  15. Research of qualitative indicators of safflower oil

    Ye. Z. Mateyev


    Full Text Available Fatty acid composition of vegetable oils is the fundamental quality characteristics. To determine the fatty acid composition, the SP-2560 column and Chromotec 5000.1 gas chromatograph were used. As a result of the studies it was established that fatty acids of 18 and 16 groups prevail in safflower oil, the content of the remaining fatty acids in the total is 1.2%. In the test sample, the prevalence of omega-6 fatty acids (concentration of 80% of linoleic and ?-linolenic fatty acids is observed. Omega-6 fatty acids help the body burn excess fat, instead of postponing it for future use. Natural fatty acids are the bricks of human prostaglandins, mountain-monopodic substances that help normalize blood pressure, control muscle contractions and participate in the immune response of the body. The qualitative characteristics of vegetable oil are also physicochemical indicators. The acid number of safflower oil was 1.07 mgKOH/g, the peroxide number was 8.09 mmol/kgO2, the anisidine number of safflower oil was 3.25. Moisture of rapeseed oil is 0.03%. Safflower oil can be used as a biofuel, the lowest heat of its combustion is 36.978 MJ/kg; density – 913 kg/m3; kinematic viscosity 85.6 mm2/s. In comparison with rapeseed oil, the specific effective fuel consumption is reduced by 2.08%. The obtained fatty acid content of the analyzed sample of safflower oil is well correlated with the literature data, which indicates the high accuracy of the studies, the sample does not belong to the high oleic vegetable oils. The obtained values for qualitative characteristics indicate the prospects of using this type of oil directly in food, as well as for the production of oilseeds, such as mayonnaise, sauces, spreads.

  16. Dynamic impacts of high oil prices on the bioethanol and feedstock markets

    Cha, Kyung Soo; Bae, Jeong Hwan


    This study investigates the impacts of high international oil prices on the bioethanol and corn markets in the US. Between 2007 and 2008, the prices of major grain crops had increased sharply, reflecting the rise in international oil prices. These dual price shocks had caused substantial harm to the global economy. Employing a structural vector auto-regression model (SVAR), we analyze how increases in international oil prices could impact the prices of and demand for corn, which is used as a major bioethanol feedstock in the US. The results indicate that an increase in the oil price would increase bioethanol demand for corn and corn prices in the short run and that corn prices would stabilize in the long run as corn exports and feedstock demand for corn decline. Consequently, policies supporting biofuels should encourage the use of bioethanol co-products for feed and the development of marginal land to mitigate increases in the feedstock price. - Research highlights: → World economy experienced 'dual shocks', which were caused by skyrocketed oil prices and grain prices between 2007 and 2008. → Sharp increases in ethanol production in response to high oil prices were considered as a major driving force to 'ag-flation' in the United States. → Applying a time series econometric tool, called the 'structural vector auto-regression model', we evaluated relationship between ethanol production and corn prices. → The result shows that ethanol production affects corn prices in the short run, while corn prices are lowered as other corn demands (feed for livestock or export demand) decline in the long run.

  17. Drop Spreading with Random Viscosity

    Xu, Feng; Jensen, Oliver


    Airway mucus acts as a barrier to protect the lung. However as a biological material, its physical properties are known imperfectly and can be spatially heterogeneous. In this study we assess the impact of these uncertainties on the rate of spreading of a drop (representing an inhaled aerosol) over a mucus film. We model the film as Newtonian, having a viscosity that depends linearly on the concentration of a passive solute (a crude proxy for mucin proteins). Given an initial random solute (and hence viscosity) distribution, described as a Gaussian random field with a given correlation structure, we seek to quantify the uncertainties in outcomes as the drop spreads. Using lubrication theory, we describe the spreading of the drop in terms of a system of coupled nonlinear PDEs governing the evolution of film height and the vertically-averaged solute concentration. We perform Monte Carlo simulations to predict the variability in the drop centre location and width (1D) or area (2D). We show how simulation results are well described (at much lower computational cost) by a low-order model using a weak disorder expansion. Our results show for example how variability in the drop location is a non-monotonic function of the solute correlation length increases. Engineering and Physical Sciences Research Council.

  18. Viscosity of ring polymer melts

    Pasquino, Rossana


    We have measured the linear rheology of critically purified ring polyisoprenes, polystyrenes, and polyethyleneoxides of different molar masses. The ratio of the zero-shear viscosities of linear polymer melts η0,linear to their ring counterparts η0,ring at isofrictional conditions is discussed as a function of the number of entanglements Z. In the unentangled regime η0,linear/η 0,ring is virtually constant, consistent with the earlier data, atomistic simulations, and the theoretical expectation η0,linear/ η0,ring = 2. In the entanglement regime, the Z-dependence of ring viscosity is much weaker than that of linear polymers, in qualitative agreement with predictions from scaling theory and simulations. The power-law extracted from the available experimental data in the rather limited range 1 < Z < 20, η0,linear/η0,ring ∼ Z 1.2±0.3, is weaker than the scaling prediction (η0,linear/η0,ring ∼ Z 1.6±0.3) and the simulations (η0,linear/ η0,ring ∼ Z2.0±0.3). Nevertheless, the present collection of state-of-the-art experimental data unambiguously demonstrates that rings exhibit a universal trend clearly departing from that of their linear counterparts, and hence it represents a major step toward resolving a 30-year-old problem. © 2013 American Chemical Society.

  19. Viscosity of ring polymer melts

    Pasquino, Rossana; Vasilakopoulos, Thodoris C.; Jeong, Youncheol; Lee, Hyojoon; Rogers, Simon A.; Sakellariou, Georgios; Allgaier, Jü rgen B.; Takano, Atsushi; Brá s, Ana Rita E; Chang, Taihyun; Gooß en, Sebastian; Pyckhout-Hintzen, Wim; Wischnewski, Andreas; Hadjichristidis, Nikolaos; Richter, Dieter R.; Rubinstein, Michael H.; Vlassopoulos, Dimitris


    We have measured the linear rheology of critically purified ring polyisoprenes, polystyrenes, and polyethyleneoxides of different molar masses. The ratio of the zero-shear viscosities of linear polymer melts η0,linear to their ring counterparts η0,ring at isofrictional conditions is discussed as a function of the number of entanglements Z. In the unentangled regime η0,linear/η 0,ring is virtually constant, consistent with the earlier data, atomistic simulations, and the theoretical expectation η0,linear/ η0,ring = 2. In the entanglement regime, the Z-dependence of ring viscosity is much weaker than that of linear polymers, in qualitative agreement with predictions from scaling theory and simulations. The power-law extracted from the available experimental data in the rather limited range 1 < Z < 20, η0,linear/η0,ring ∼ Z 1.2±0.3, is weaker than the scaling prediction (η0,linear/η0,ring ∼ Z 1.6±0.3) and the simulations (η0,linear/ η0,ring ∼ Z2.0±0.3). Nevertheless, the present collection of state-of-the-art experimental data unambiguously demonstrates that rings exhibit a universal trend clearly departing from that of their linear counterparts, and hence it represents a major step toward resolving a 30-year-old problem. © 2013 American Chemical Society.

  20. Identification of highly effective antitrypanosomal compounds in essential oils from the Apiaceae family.

    Ngahang Kamte, Stephane L; Ranjbarian, Farahnaz; Cianfaglione, Kevin; Sut, Stefania; Dall'Acqua, Stefano; Bruno, Maurizio; Afshar, Fariba Heshmati; Iannarelli, Romilde; Benelli, Giovanni; Cappellacci, Loredana; Hofer, Anders; Maggi, Filippo; Petrelli, Riccardo


    The Apiaceae family encompasses aromatic plants of economic importance employed in foodstuffs, beverages, perfumery, pharmaceuticals and cosmetics. Apiaceae are rich sources of essential oils because of the wealth of secretory structures (ducts and vittae) they are endowed with. The Apiaceae essential oils are available on an industrial level because of the wide cultivation and disposability of the bulky material from which they are extracted as well as their relatively cheap price. In the fight against protozoal infections, essential oils may represent new therapeutic options. In the present work, we focused on a panel of nine Apiaceae species (Siler montanum, Sison amomum, Echinophora spinosa, Kundmannia sicula, Crithmum maritimum, Helosciadium nodiflorum, Pimpinella anisum, Heracleum sphondylium and Trachyspermum ammi) and their essential oils as a model for the identification of trypanocidal compounds to be used as alternative/integrative therapies in the treatment of Human African trypanosomiasis (HAT) and as starting material for drug design. The evaluation of inhibitory effects of the Apiaceae essential oils against Trypanosoma brucei showed that some of them (E. spinosa, S. amomum, C. maritimum and H. nodiflorum) were active, with EC 50 in the range 2.7-10.7 μg/mL. Most of these oils were selective against T. brucei, except the one from C. maritimum that was highly selective against the BALB/3T3 mammalian cells. Testing nine characteristic individual components (α-pinene, sabinene, α-phellandrene, p-cymene, limonene, β-ocimene, γ-terpinene, terpinolene, and myristicin) of these oils, we showed that some of them had much higher selectivity than the oils themselves. Terpinolene was particularly active with an EC 50 value of 0.035 μg/mL (0.26 µM) and a selectivity index (SI) of 180. Four other compounds with EC 50 in the range 1.0-6.0 μg/mL (7.4-44 µM) had also good SI: α-pinene (>100), β-ocimene (>91), limonene (>18) and sabinene (>17

  1. The Auto control System Based on InTouch Configuration software for High-gravity Oil Railway Tank Feeding

    Xu De-Kai


    Full Text Available This paper provides automatic design for high-gravity oil railway tank feeding system of some refinery uses distributive control system. The system adopts the automatic system of Modicon TSX Quantum or PLC as monitor and control level and uses a PC-based plat form as principal computer running on the Microsoft Windows2000. An automatic control system is developed in the environment of InTouch configuration software. This system implements automatic high-gravity oil tank feeding with pump controlling function. And it combines automatic oil feeding controlling, pump controlling and tank monitoring function to implement the automation of oil feeding with rations and automatic control.

  2. The effect of ZnO nanoparticles on improved oil recovery in spontaneous imbibition mechanism of heavy oil production

    Tajmiri, M.; Ehsani, M. R.; Mousavi, S. M.; Roayaei, E.; Emadi, A.


    Spontaneous imbibition (SI) gets a controversial subject in oil- wet carbonate reservoirs. The new concept of nanoparticles applications in an EOR area have been recently raised by researches about oil viscosity reduction and generate emulsion without surfactant. But a lot of questions have been remained about which nanoparticles can alter wettability from oil- wet to water- wet to improve oil recovery. This study introduces the new idea of adding ZnO nanoparticles (0.2%wt concentration) by experimental work on oil recovery. The main goals of this research were to prove that ZnO nanoparticles have the ability to reduce viscosity and also alter wettability. The ultimate objective was to determine the potential of these nanoparticles to imbibe into and displace oil. Through the use of Amott- cell, laboratory tests were conducted in two experiments on four cylindrical core samples (three sandstones and one carbonate) were taken from real Iranian heavy oil reservoir. In the first experiment, core samples were saturated by crude oil and in the second experiment, nanoparticles were flooding into core samples and then saturated by crude oil for about two weeks and after that they were immersed in distilled water and the amount of recovery was monitored during 30 days for both tests. We expected that ZnO nanoparticles decreased the surface tension which reduced the capillary forces through SI and wettability alteration took place towards a more water-wet system and caused the oil relative permeability to increase which dominated the gravitational forces to pull out the oil. Our results proved this expectation from ZnO nanoparticles clearly because carbonate core was oil- wet and the capillary pressure was high and negative to push water into the core so the original oil in place (OOIP) was zero whereas by adding ZnO nanoparticles OOIP was increased to 8.89%. SI yielded recovery values from 17.3, 2 and 15 without nanoparticles to 20.68, 17.57 and 36.2 % OOIP with

  3. Application specific integrated circuit for high temperature oil well applications

    Fallet, T.; Gakkestad, J.; Forre, G.


    This paper describes the design of an integrated BiCMOS circuit for high temperature applications. The circuit contains Pierce oscillators with automatic gain control, and measurements show that it is operating up to 266{sup o}C. The relative frequency variation up to 200 {sup o}C is less than 60 ppm caused mainly by the crystal element itself. 4 refs., 7 figs.

  4. Sleeving-back of horizontal wells to control downstream oil saturation and improve oil recovery

    Greaves, M.; Saghr, A. M. [Bath Univ (United Kingdom)


    Air injection has become popular as an enhanced recovery technology, applicable over a wide variety of reservoir conditions including heavy, medium and light oils. One problem observed in light oil reservoirs is the tendency to desaturate the oil layer downstream of the moving front. This is particularly common in the case of thermal recovery processes. In this experiment designed to study ways to restrict the de-saturation of the oil layer, a modified horizontal producer well, incorporating a `sleeve-back` principal was used. The objective was to replicate the `toe-to-heel` displacement process occurring during heavy oil recovery, wherein downstream oil is essentially immobile due to its high viscosity. The `sleeve-back` of the well was achieved using a co-aligned, two-well assembly, so that the upstream section of the horizontal producer well was active, and continuously adjusted during propagation of the combustion front. The use of this continuous `sleeve-back` operation to control the level of de-saturation in the downstream section of a sand pack was successful as confirmed by the very high oil recovery achieved, equivalent to 93.5 per cent of oil in place. The level of CO{sub 2} production was also very high. The `sleeve-back` of the horizontal producer well made the light oil in-situ combustion more efficient compared to what would be expected in a fully-open well. The `sleeve-back` of the well also produced thermal contours in the sand pack that closely resembled those observed with heavy, highly viscous oil. By sealing-off the otherwise open well in the downstream part of the reservoir, the de-saturation of the oil layer was prevented. 9 refs., 4 tabs., 9 figs.

  5. Development of fuel economy 5W-20 gasoline engine oil; Teinenpi 5W-20 gasoline engine yu no kaihatsu

    Akiyama, K; Ueda, F; Kurono, K; Kawai, H; Sugiyama, S [Toyota Motor Corp., Aichi (Japan)


    A 5W-20 gasoline engine oil which improves vehicle fuel efficiency by more than 1.5% relative to a conventional 5W-30 gasoline engine oil was newly developed. Its high fuel economy performance lasts 10,000 km. The viscosity was optimized to satisfy both fuel economy and antiwear performances. Thiadiazole was used to retain the initial fuel economy performance provided by MoDTC. 5 refs., 7 figs., 2 tabs.

  6. Comparison of electrical capacitance tomography and gamma densitometer measurement in viscous oil-gas flows

    Archibong Eso, A.; Zhao, Yabin; Yeung, Hoi [Department of Offshore Process and Energy Systems Engineering, Cranfield University, Cranfield (United Kingdom)


    Multiphase flow is a common occurrence in industries such as nuclear, process, oil and gas, food and chemical. A prior knowledge of its features and characteristics is essential in the design, control and management of such processes due to its complex nature. Electrical Capacitance Tomography (ECT) and Gamma Densitometer (Gamma) are two promising approaches for multiphase visualization and characterization in process industries. In two phase oil and gas flow, ECT and Gamma are used in multiphase flow monitoring techniques due to their inherent simplicity, robustness, and an ability to withstand wide range of operational temperatures and pressures. High viscous oil (viscosity > 100 cP) is of interest because of its huge reserves, technological advances in its production and unlike conventional oil (oil viscosity < 100 cP) and gas flows where ECT and Gamma have been previously used, high viscous oil and gas flows comes with certain associated concerns which include; increased entrainment of gas bubbles dispersed in oil, shorter and more frequent slugs as well as oil film coatings on the walls of flowing conduits. This study aims to determine the suitability of both devices in the visualization and characterization of high-viscous oil and gas flow. Static tests are performed with both devices and liquid holdup measurements are obtained. Dynamic experiments were also conducted in a 1 and 3 inch facility at Cranfield University with a range of nominal viscosities (1000, 3000 and 7500 cP). Plug, slug and wavy annular flow patterns were identified by means of Probability Mass Function and time series analysis of the data acquired from Gamma and ECT devices with high speed camera used to validate the results. Measured Liquid holdups for both devices were also compared.

  7. Stabilization of heavy oil-water emulsions using a bio/chemical emulsifier mixture

    Farahbakhsh, A.; Taghizadeh, M.; Movagharnejad, K. [Chemical Engineering Department, Babol University of Technology, Babol (Iran, Islamic Republic of); Yakhchali, B. [National Institute of Genetic Engineering and Biotechnology, Tehran (Iran, Islamic Republic of)


    In this study, the viscosity reduction of heavy oil has been investigated through the formation of oil-water emulsion using a bio/chemical emulsifier mixture. Four bioemulsifiers from indigenous Rhodococcus ergthropolis and Bacillus licheniformis strains were used to stabilize a highly-viscous oil-in-water emulsion. The Taguchi method with an L{sub 9} orthogonal array design was used to investigate the effect of various control factors on the formation of the oil/water emulsions. An emulsion with lowest viscosity was formed using ACO4 strain. The substantial stability of the oil-in-water emulsion allows the heavy oil to be transported practically over long distances or remain stationary for a considerable period of time prior to utilization. As the result of Taguchi analysis, the temperature and concentration of the emulsifier had a significant influence on viscosity reduction of the emulsion. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Field development planning for an offshore extra heavy oil in the Gulf of Mexico

    Hernandez-Garcia, G.; Anguiano-Rojas, J. [PEMEX Exploration and Production, Mexico City (Mexico)


    This paper presented a phased development strategy for an offshore extra-heavy oil development located in the Gulf of Mexico. The Ayatsil-1 oil field is located in an upper Cretaceous brecciated formation. One of the primary concerns of the project is the infrastructure that is needed to handle low reservoir temperatures and high viscosity, low gravity API oil. A delineation well was drilled in order to confirm the areal extension of the reservoir. The field contains an estimated 3.1 billion barrels of oil-in-place. The project will involve the installation of fixed platforms and production platforms. Electric submersible pumps (ESPs) and multiphase pumps will be used to transport the oil from between 17 to 25 wells. Analyses were conducted to determine transport mechanisms as well as gathering networks in both stationary and transitory regimes. The viscosity of live and dead oil in the reservoirs must be accurately measured in relation to temperature in order to define the artificial systems that will be used to reduce viscosity. Results from several studies will be used to determine the feasibility of various chemical, thermal, and diluent applications. 6 refs., 3 figs.

  9. First crude oil from Chukotka

    Arenbrister, L.P.; Demidenko, K.A.; Zhmykhova, N.M.


    The physicochemical properties of the crude taken from Neogene deposits at a depth of 1486-1443 m are analyzed. The oil is distinguished by low contents of sulfur and resinous-asphaltenic substances, a high content of wax, and a high yield of light cuts distilling below 350 degrees C. The naptha cuts have high contents of naphthenes, and the diesel fuel cuts have high cetane numbers, low sulfur contents, and high contents of straight chain paraffins. The vacuum gasoil has a low density, a low viscosity, a low carbon residue and low contents of sulfur and nitrogen. This gasoil is a good feedstock for catalytic cracking and hydrocracking. The Verkhne-Echin crude is classified as light, low-sulfur, lowresin and high-wax. It can be used to produce jet fuels and summer-grade diesel fuels with low sulfur contents, as well as high-V.I. lube base stocks and liquid and solid paraffins.

  10. An Investigation of Viscosities, Calorific Values and Densities of Binary Biofuel Blends

    Che Mat Sharzali


    Full Text Available Straight vegetable oil (SVO biofuel is a promising alternative to petroleum diesel fuel primarily due to its comparable physical properties to that of petroleum diesel fuel. However, the relatively higher viscosity of SVO limits its direct application in diesel engine. To resolve this issue, binary biofuel blends was introduced in this study to reduce the viscosity of SVO. In this work, a novel biofuel namely Melaleuca Cajuputi oil (MCO was used and blended with refined palm oil (RPO. A total of four blends with the mixing ratios of 20%, 40%, 50% and 60% of MCO were prepared. Various key properties of dynamic viscosity, calorific value and density of the blends were measured and benchmarked against the biodiesel standards based on ASTM D6751. It was found that viscosity and density of the blends decreased with the increase of MCO fraction. Meanwhile, the calorific value of the blends increased linearly as the MCO fraction increased. The blend of 40RPO60MCO was found to have comparable key properties of viscosity, calorific value and density to those of petroleum diesel fuel and ASTM D6751 standard.

  11. Determination of Viscosity-Average Molecular Weight of Chitosan using Intrinsic Viscosity Measurement

    Norzita Yacob; Norhashidah Talip; Maznah Mahmud


    Molecular weight of chitosan can be determined by different techniques such as Gel Permeation Chromatography (GPC), Static Light Scattering (SLS) and intrinsic viscosity measurement. Determination of molecular weight by intrinsic viscosity measurement is a simple method for characterization of chitosan. Different concentrations of chitosan were prepared and measurement was done at room temperature. The flow time data was used to calculate the intrinsic viscosity by extrapolating the reduced viscosity to zero concentration. The value of intrinsic viscosity was then recalculated into the viscosity-average molecular weight using Mark-Houwink equation. (author)


    Maja eBoric


    Full Text Available Little is known about metabolic activity of bacteria, when viscosity of their environment changes. In this work, bacterial metabolic activity in media with viscosity ranging from 0.8 to 29.4 mPas was studied. Viscosities up to 2.4 mPas did not affect metabolic activity of Vibrio ruber. On the other hand, at 29.4 mPas respiration rate and total dehydrogenase activity increased 8 and 4-fold, respectively. The activity of glucose-6-phosphate dehydrogenase increased up to 13-fold at higher viscosities. However, intensified metabolic activity did not result in faster growth rate. Increased viscosity delayed the onset as well as the duration of biosynthesis of prodigiosin. As an adaptation to viscous environment V. ruber increased metabolic flux through the pentose phosphate pathway and reduced synthesis of a secondary metabolite. In addition, V. ruber was able to modify the viscosity of its environment.

  13. Postnatal fish oil supplementation in high-risk infants to prevent allergy: randomized controlled trial.

    D'Vaz, N; Meldrum, S J; Dunstan, J A; Martino, D; McCarthy, S; Metcalfe, J; Tulic, M K; Mori, T A; Prescott, S L


    Relative deficiency of dietary omega 3 polyunsaturated fatty acids (n-3 PUFA) has been implicated in the rising allergy prevalence in Westernized countries. Fish oil supplementation may provide an intervention strategy for primary allergy prevention. The objective of this study was to assess the effect of fish oil n-3 PUFA supplementation from birth to 6 months of age on infant allergic disease. In a double-blind randomized controlled trial, 420 infants at high atopic risk received a daily supplement of fish oil containing 280 mg docosahexaenoic acid and 110 mg eicosapentaenoic acid or a control (olive oil), from birth to age 6 months. PUFA levels were measured in 6-month-old infants' erythrocytes and plasma and their mothers' breast milk. Eczema, food allergy, asthma and sensitization were assessed in 323 infants for whom clinical follow-up was completed at 12 months of age. At 6 months of age, infant docosahexaenoic acid and eicosapentaenoic acid levels were significantly higher (both P acid levels were lower (P = .003) in the fish oil group. Although n-3 PUFA levels at 6 months were associated with lower risk of eczema (P = .033) and recurrent wheeze (P = .027), the association with eczema was not significant after multiple comparisons and there was no effect of the intervention per se on the primary study outcomes. Specifically, between-group comparisons revealed no differences in the occurrence of allergic outcomes including sensitization, eczema, asthma, or food allergy. Postnatal fish oil supplementation improved infant n-3 status but did not prevent childhood allergic disease.

  14. Development of high temperature resistant geomembranes for oil sands secondary containments

    Mills, A. [Layfield Environmental Systems Ltd., Edmonton, AB (Canada); Martin, D. [Layfield Geosynthetics and Industrial Fabrics Ltd., Edmonton, AB (Canada)


    Plastic liner materials are often adversely impacted by chemicals at elevated temperatures. Heat accelerates the oxidation of the polymeric chains, which in turn accelerates the degradation of the plastic. This paper discussed geomembrane containment systems placed under heated petroleum storage tanks at an oil sands processing plant. Various high temperature-resistant geomembrane materials were tested. Compatibility testing procedures for the various fluids contained by the systems were outlined. Installation procedures for the membranes were also discussed. The membrane systems were designed for use with heavy gas oil; light gas oil; and naphtha. Temperatures in the ground below the tanks were approximately 79 degrees C. Testing was done using sealed containers held in an oil bath at temperatures of 105 degrees C. Heat applied to the chemicals during the tests pressurized the test vessels. Liner materials used in the initial tests included an ester-based thermoplastic polyurethane liner; high density polyethylene (HDPE); linear low-density polyethylene (LLDPE), polypropylene (PP) olefins; polyvinyl chloride (PVC); and polyvinylidene (PVDF) materials. A second set of tests was then conducted using alloy materials and PVC. Heat stability tests demonstrated that the blue 0.75 mm alloy showed a tensile strength ratio within the industry's 15 per cent pass criteria. The samples were then tested with diluted bitumen and diluents at 65, 85 and 100 degrees C. The developed liners were installed underneath petroleum tanks with leak detection chambers. It was concluded that the geomembrane liners prevented the hot liquids from leaking. 4 refs., 8 tabs.

  15. Design and development of a high efficiency tank for crude oil dehydration (i)

    Forero, Jorge Enrique; Ortiz Olga Patricia; Narino, Fredy Abelardo


    This paper introduces a new tank design for dehydrating and desalting large volumes of crude oils previously degasified, crude oil dehydration efficiency is reduced by gas presence in the emulsion interphase. The design presented in this paper is versatile (it is adaptable to any classical dehydration process), highly efficient in terms of separation (values usually greater than 90% and/or treated crude oil BSW less than 0,5% are ensured), low installation and operation costs, less consumption of additives. These are some of the advantages found in pilot tests plants and proven in industrial systems at the ECOPETROL S.A. production fields with treatment capacities from 14 to 50 KBD. Although this process also can be applied to other ranks of flow, maintaining the design critical conditions of each case in particular. This system does not exhibit the typical limitations shown by treatment traditional systems (FWKO, Gun Barrel, thermal and electrostatic separators, etc.) (Al-Ghamdi, 2007) since it can be easily adapted to system treatments for light, intermediate, and heavy crude oils and to treatments with BSW content ranging from a very low levels of ≤ 1% to very high levels ≥ 95%, values that are not unusual in production fields nowadays, especially where accelerated production methods are used

  16. [Determination of gossypol in edible vegetable oil with high performance liquid chromatography-tandem mass spectrometry].

    Zhang, Wenhua; Huang, Chaoqun; Xie, Wen; Shen, Li


    A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed for the determination of gossypol in edible vegetable oil. The sample was extracted with ethyl alcohol by vortex-excited oscillation. The extract was cleaned up by 0.22 microm filter membrane and centrifuged for 5 min at 4 000 r/min after standing in a fridge at 4 degrees C for 30 min. The compound was separated on a C18 column (100 mm x 2.1 mm, 3.5 microm) with acetonitrile and 1% (v/v) formic acid aqueous solution as mobile phase. The detection of gossypol was carried out by LC-MS/MS with positive electrospray ionization under multiple reaction monitoring (MRM) mode using external standard method. The limits of quantification (S/N > 10) of gossypol in edible vegetable oil was 1 mg/kg. The recoveries were from 87.4% to 100% at the spiked levels of 1, 2, 200 mg/kg of gossypol in edible vegetable oil with the relative standard deviations (RSDs) between 3.9% and 12.2%. The method, with high sensitivity, good precision and high recovery, was suitable for the confirmation and quantification of gossypol residue in edible vegetable oil.

  17. Destabilization of Oil-in-Water Emulsions Formed Using Highly Hydrolyzed Whey Proteins.

    Agboola; Singh; Munro; Dalgleish; Singh


    Oil-in-water emulsions (4 wt % soy oil) were prepared with 0.5-5 wt % whey protein hydrolysate (WPH) (27% degree of hydrolysis), in a two-stage homogenizer using various first-stage pressures of 10.3, 20.6, and 34.3 MPa and a constant second-stage pressure of 3.4 MPa. Destabilization studies on the emulsions were carried out for up to 24 h, using both laser light scattering and confocal laser microscopy. It was found that emulsions formed with oiling off and coalescence at all homogenization pressures. Emulsions formed with 2, 3, and 4% WPH showed coalescence and creaming only, while slight flocculation but no creaming occurred in emulsions formed with 5% WPH. Furthermore, the apparent rate of coalescence increased with homogenization pressure but decreased with WPH concentration. In contrast, the surface concentration of WPH increased with the WPH concentration in the emulsions but decreased with homogenization pressure. Analysis of WPH by high-performance liquid chromatography showed an increase in the concentration of high molecular weight peptides at the droplet surface compared to the WPH solution. This was considered very important for the stability of these oil-in-water emulsions.

  18. Structural and molecular basis of starch viscosity in hexaploid wheat.

    Ral, J-P; Cavanagh, C R; Larroque, O; Regina, A; Morell, M K


    Wheat starch is considered to have a low paste viscosity relative to other starches. Consequently, wheat starch is not preferred for many applications as compared to other high paste viscosity starches. Increasing the viscosity of wheat starch is expected to increase the functionality of a range of wheat flour-based products in which the texture is an important aspect of consumer acceptance (e.g., pasta, and instant and yellow alkaline noodles). To understand the molecular basis of starch viscosity, we have undertaken a comprehensive structural and rheological analysis of starches from a genetically diverse set of wheat genotypes, which revealed significant variation in starch traits including starch granule protein content, starch-associated lipid content and composition, phosphate content, and the structures of the amylose and amylopectin fractions. Statistical analysis highlighted the association between amylopectin chains of 18-25 glucose residues and starch pasting properties. Principal component analysis also identified an association between monoesterified phosphate and starch pasting properties in wheat despite the low starch-phosphate level in wheat as compared to tuber starches. We also found a strong negative correlation between the phosphate ester content and the starch content in flour. Previously observed associations between internal starch granule fatty acids and the swelling peak time and pasting temperature have been confirmed. This study has highlighted a range of parameters associated with increased starch viscosity that could be used in prebreeding/breeding programs to modify wheat starch pasting properties.

  19. Transient extensional viscosity of polymer melts in the filament stretching rheometer

    Rasmussen, Henrik Koblitz; Bach, Anders; Bastian, Heike


    In many polymer processing operations, the polymer molecules becomes highly elongated and the extensional viscosity becomes an inportant parameter in estimating properties during and after the process.......In many polymer processing operations, the polymer molecules becomes highly elongated and the extensional viscosity becomes an inportant parameter in estimating properties during and after the process....

  20. Viscosity and Liquid Density of Asymmetric n-Alkane Mixtures: Measurement and Modelling

    Queimada, António J.; Marrucho, Isabel M.; Coutinho, João A.P.


    Viscosity and liquid density Measurements were performed, at atmospheric pressure. in pure and mixed n-decane. n-eicosane, n-docosane, and n-tetracosane from 293.15 K (or above the melting point) up to 343.15 K. The viscosity was determined with a rolling ball viscometer and liquid densities...... with a vibrating U-tube densimeter. Pure component results agreed, oil average, with literature values within 0.2% for liquid density and 3% for viscosity. The measured data were used to evaluate the performance of two models for their predictions: the friction theory coupled with the Peng-Robinson equation...... of state and a corresponding states model recently proposed for surface tension, viscosity, vapor pressure, and liquid densities of the series of n-alkanes. Advantages and shortcoming of these models are discussed....

  1. Viscosity in Modified Gravity 

    Iver Brevik


    Full Text Available A bulk viscosity is introduced in the formalism of modified gravity. It is shownthat, based on a natural scaling law for the viscosity, a simple solution can be found forquantities such as the Hubble parameter and the energy density. These solutions mayincorporate a viscosity-induced Big Rip singularity. By introducing a phase transition inthe cosmic fluid, the future singularity can nevertheless in principle be avoided. 

  2. Uniaxial Elongational viscosity of bidisperse polystyrene melts

    Nielsen, Jens Kromann; Rasmussen, Henrik K.; Hassager, Ole


    The startup and steady uniaxial elongational viscosity have been measured for three bidisperse polystyrene (PS) melts, consisting of blends of monodisperse PS with molecular weights of 52 kg/mole or 103 kg/mole and 390 kg/mole. The bidisperse melts have a maximum in the steady elongational...... viscosity, of up to a factor of 7 times the Trouton limit of 3 times the zero-shear viscosity....

  3. Experimental evaluation of Diesel engine performance and emission using blends of jojoba oil and Diesel fuel

    Huzayyin, A.S.; Bawady, A.H.; Rady, M.A.; Dawood, A.


    An experimental evaluation of using jojoba oil as an alternate Diesel engine fuel has been conducted in the present work. Measurements of jojoba oil chemical and physical properties have indicated a good potential of using jojoba oil as an alternative Diesel engine fuel. Blending of jojoba oil with gas oil has been shown to be an effective method to reduce engine problems associated with the high viscosity of jojoba oil. Experimental measurements of different performance parameters of a single cylinder, naturally aspirated, direct injection, Diesel engine have been performed using gas oil and blends of gas oil with jojoba oil. Measurements of engine performance parameters at different load conditions over the engine speed range have generally indicated a negligible loss of engine power, a slight increase in brake specific fuel consumption and a reduction in engine NO x and soot emission using blends of jojoba oil with gas oil as compared to gas oil. The reduction in engine soot emission has been observed to increase with the increase of jojoba oil percentage in the fuel blend

  4. Experimental evaluation of diesel engine performance and emission using blends of jojoba oil and diesel fuel

    Huzayyin, A.S.; Rady, M.A.; Dawood, A. [Benha High Inst. of Technology (Egypt). Dept. of Mechanical Engineering Technology; Bawady, A.H. [University of Ain Shams, Cairo (Egypt). Faculty of Engineering


    An experimental evaluation of using jojoba oil as an alternate diesel engine fuel has been conducted in the present work. Measurements of jojoba oil chemical and physical properties have indicated a good potential of using jojoba oil as an alternative diesel engine fuel. Blending of jojoba oil with gas oil has been shown to be an effective method to reduce engine problems associated with the high viscosity of jojoba oil. Experimental measurements of different performance parameters of a single cylinder, naturally aspirated, direct injection, diesel engine have been performed using gas oil and blends of gas oil with jojoba oil. Measurements of engine performance parameters at different load conditions over the engine speed range have generally indicated a negligible loss of engine power, a slight increase in brake specific fuel consumption and a reduction in engine NO{sub x} and soot emission using blends of jojoba oil with gas oil as compared to gas oil. The reduction in engine soot emission has been observed to increase with the increase of jojoba oil percentage in the fuel blend. (Author)

  5. High dose flaxseed oil supplementation may affect fasting blood serum glucose management in human type 2 diabetics.

    Barre, Douglas E; Mizier-Barre, Kazimiera A; Griscti, Odette; Hafez, Kevin


    Type 2 diabetes is characterized partially by elevated fasting blood serum glucose and insulin concentrations and the percentage of hemoglobin as HbA1c. It was hypothesized that each of blood glucose and its co-factors insulin and HbA1c and would show a more favorable profile as the result of flaxseed oil supplementation. Patients were recruited at random from a population pool responding to a recruitment advertisement in the local newspaper and 2 area physicians. Completing the trial were 10 flaxseed oil males, 8 flaxseed oil females, 8 safflower (placebo) oil males and 6 safflower oil females. Patients visited on two pre-treatment occasions each three months apart (visits 1 and 2). At visit 2 subjects were randomly assigned in double blind fashion and in equal gender numbers to take flaxseed oil or safflower oil for three further months until visit 3. Oil consumption in both groups was approximately 10 g/d. ALA intake in the intervention group was approximately 5.5 g/d. Power was 0.80 to see a difference of 1 mmol of glucose /L using 12 subjects per group with a p < 0.05. Flaxseed oil had no impact on fasting blood serum glucose, insulin or HbA1c levels. It is concluded that high doses of flaxseed oil have no effect on glycemic control in type 2 diabetics.

  6. Direct numerical simulation of water droplet coalescence in the oil

    Mohammadi, Mehdi; Shahhosseini, Shahrokh; Bayat, Mahmoud


    Highlights: ► VOF computational technique has been used to simulate coalescence of two water droplets in oil. ► The model was validated with the experimental data for binary droplet coalescence. ► Based on the CFD simulation results a correlation has been proposed to predict the coalescence time. - Abstract: Coalescence of two water droplets in the oil was simulated using Computational Fluid Dynamics (CFD) techniques. The finite volume numerical method was applied to solve the Navier–Stokes equations in conjunction with the Volume of Fluid (VOF) approach for interface tracking. The effects of some parameters consisting of the collision velocity, off-center collision parameter, oil viscosity and water–oil interfacial tension on the coalescence time were investigated. The simulation results were validated against the experimental data available in the literature. The results revealed that quicker coalescence could be achieved if the head-on collisions occur or the droplets approach each other with a high velocity. In addition, low oil viscosities or large water–oil interfacial tensions cause less coalescence time. Moreover, a correlation was developed to predict coalescence efficiency as a function of the mentioned parameters.

  7. Production of microbial oil with high oleic acid content by Trichosporon capitatum

    Wu, Hong; Zong, Minhua [State Key Laboratory of Pulp and Paper Engineering, College of Light Industry and Food Sciences, South China University of Technology, Guangzhou 510640 (China); Li, Yuanyuan; Chen, Lei [School of Biosciences and Bioengineering, South China University of Technology, Guangzhou 510640 (China)


    Microbial oils with high unsaturated fatty acids content, especially oleic acid content, are good feedstock for high quality biodiesel production. Trichosporon capitatum was found to accumulate lipid with around 80% oleic acid and 89% total unsaturated fatty acids content on nitrogen-limited medium. In order to improve its lipid yield, effects of medium components and culture conditions on cell growth and lipid accumulation were investigated. Optimization of media resulted in a 61% increase in the lipid yield of T. capitatum after cultivation at 28 C and 160 rpm for 6 days. In addition, T. capitatum could grow well on cane molasses and afford a lipid yield comparable to that on synthetic nitrogen-limited medium. The biodiesel from the microbial oil produced by T. capitatum on cane molasses displayed a low cold filter plugging point (-15 C), and so T. capitatum might be a promising strain to provide lipid suitable for high quality biodiesel production. (author)

  8. Magnetisation processes and magnetic viscosity of mechanically alloyed SmCo5

    Ding, J.; Smith, P.A.I.; McCormick, P.G.; Street, R.


    Mechanically alloyed SmCo 5 materials with coercivities in the range of 50-75 kOe were studied in this work. Irreversible magnetisation processes were investigated by measuring remanences after initial magnetisation and after demagnetisation. A large deviation of the demagnetisation remanence from the Wohlfarth relationship indicated that interactions between grains play an important role in the irreversible magnetisation process. Viscosity tests showed nearly linear relationship between the magnetic field and the viscosity parameter for the initial magnetisation, while the viscosity was not strongly dependent on the field for the demagnetisation. High values of the viscosity parameter, Λ, between 120 to 220 Oe were measured at fields near coercivity. (orig.)

  9. Separation of gold nanorods by viscosity gradient centrifugation

    Dong, Suli; Wang, Yawei; Li, Xiaogang; Zhang, Qingquan; Liu, Xiaojun; Tu, Yang; Liang, Aiye


    Size-uniform gold nanorods (Au-NRs) are used in biosensing, bioimaging, photothermal therapy, drug and gene delivery, and controlled release. Monodisperse Au-NRs are usually obtained by separation steps following their synthesis, and centrifugation is widely used because of the ease of operation, high recovery, and the good availability of equipment. So far, the effect of viscosity on the separation of Au-NRs has not been investigated. We have developed a method for separation of monodisperse Au-NRs that is based on centrifugation in a viscosity gradient. Monodisperse Au-NRs obtained from gold nanoparticles were obtained by centrifugation in viscosity gradient adjusted with poly(2-ethyl-2-oxazoline). Au-NRs in sizes ranging from 25.6 to 26.1 nm in effective radius can be separated 5500 g within 5 min, which appears to be the fastest method for separation of Au-NRs. (author)

  10. Using Quartz Crystal Microbalance for Field Measurement of Liquid Viscosities

    Qingsong Bai


    Full Text Available The field measurement of liquid viscosities, especially the high viscous liquids, is challenging and often requires expensive equipment, long processing time, and lots of reagent. We use quartz crystal microbalances (QCMs operating in solution which are also sensitive to the viscosity and density of the contacting solution. QCMs are typically investigated for sensor applications in which one surface of QCM completely immersed in Newtonian liquid, but the viscous damping in liquids would cause not only large frequency shifts but also large losses in the quality factor Q leading to instability and even cessation of oscillation. A novel mass-sensitivity-based method for field measurement of liquid viscosities using a QCM is demonstrated in this paper and a model describing the influence of the liquid properties on the oscillation frequency is established as well. Two groups of verified experiments were performed and the experimental results show that the presented method is effective and possesses potential applications.

  11. Giant Viscosity Enhancement in a Spin-Polarized Fermi Liquid

    Akimoto, H.; Xia, J. S.; Adams, E. D.; Sullivan, N. S.; Candela, D.; Mullin, W. J.


    The viscosity is measured for a Fermi liquid, a dilute 3 He- 4 He mixture, under extremely high magnetic field/temperature conditions (B≤14.8 T, T≥1.5 mK). The spin-splitting energy μB is substantially greater than the Fermi energy k B T F ; as a consequence the polarization tends to unity and s-wave quasiparticle scattering is suppressed for T F . Using a novel composite vibrating-wire viscometer an enhancement of the viscosity is observed by a factor of more than 500 over its low-field value. Good agreement is found between the measured viscosity and theoretical predictions based upon a t-matrix formalism

  12. Diffusivities and Viscosities of Poly(ethylene oxide) Oligomers †

    Hong, Bingbing


    Diffusivities and viscosities of poly(ethylene oxide) (PEO) oligomer melts with 1 to 12 repeat units have been obtained from equilibrium molecular dynamics simulations using the TraPPE-UA force field. The simulations generated diffusion coefficients with high accuracy for all of the molar masses studied, but the statistical uncertainties in the viscosity calculations were significantly larger for longer chains. There is good agreement of the calculated viscosities and densities with available experimental data, and thus, the simulations can be used to bridge gaps in the data and for extrapolations with respect to chain length, temperature, and pressure. We explored the convergence characteristics of the Green-Kubo formulas for different chain lengths and propose minimal production times required for convergence of the transport properties. The chain-length dependence of the transport properties suggests that neither Rouse nor reptation models are applicable in the short-chain regime investigated. © 2010 American Chemical Society.

  13. Viscosity-Induced Crossing of the Phantom Barrier

    Iver Brevik


    Full Text Available We show explicitly, by using astrophysical data plus reasonable assumptions for the bulk viscosity in the cosmic fluid, how the magnitude of this viscosity may be high enough to drive the fluid from its position in the quintessence region at present time t = 0 across the barrier w = −1 into the phantom region in the late universe. The phantom barrier is accordingly not a sharp mathematical divide, but rather a fuzzy concept. We also calculate the limiting forms of various thermodynamical quantities, including the rate of entropy production, for a dark energy fluid near the future Big Rip singularity.

  14. Essential oil composition, phytotoxic and antifungal activities of Ruta chalepensis L. leaves from High Atlas Mountains (Morocco).

    Bouajaj, Sana; Romane, Abderrahmane; Benyamna, Abdennaji; Amri, Ismail; Hanana, Mohsen; Hamrouni, Lamia; Romdhane, Mehrez


    This study aimed at the determination of chemical composition of essential oil obtained by hydrodistillation, and to evaluate their phytotoxic and antifungal activities. Leaves of Ruta chalepensis L. were collected from the region of Tensift Al Haouz (High Atlas Mountains) Marrakech, Morocco. The essential oil (oil yield is 0.56%) was analysed by GC-FID and GC/MS. Twenty-two compounds were identified and accounted for 92.4% of the total oil composition. The major components were undecan-2-one (49.08%), nonan-2-one (33.15%), limonene (4.19%) and decanone (2.71%). Antifungal ability of essential oils was tested by disc agar diffusion against five plant pathogenic fungi: Fusarium proliferatum, Fusarium pseudograminearum, Fusarium culmorum, Fusarium graminearum and Fusarium polyphialidicum. The oils were also tested in vitro for herbicidal activity by determining their influence on the germination and the shoot and root growth of two weed species, Triticum durum and Phalaris canariensis L.

  15. Determination of temperature dependant viscosity values of lubricants via simultaneous measurements of refractive index

    Yaltkaya, S.


    Viscosity is one of the most important parameter in rheological and tribological properties of fluids. The objective of this study is to obtain the viscosity values from the simultaneous refractive-index measurements of lubricants, simply by dipping the fiber-optic probe into the oil to be measured. Due to the fact that these parameters are temperature dependent, within the interval under consideration, oil heated up steadily while measuring the viscosity and refractive index at the same time. The refractive index sensor, the digital viscometer and the thermometer were connected to a PC via an analog to digital converter and the values were acquired at the same time. The fiber optic refractive index sensor has been designed in our laboratory. By utilising Fresnel's fundamental reflection law, the intensity of reflected light from boundary surface (optic fiber core-motor oil) was measured at 660 nm wavelength and then refractive index of the oil was calculated. The derived refractive index values were converted viscosity values that acquired by using the calibration equation. The viscometer, used during the study, was the rotational Brookfield type

  16. Acid esterification of a high free fatty acid crude palm oil and crude rubber seed oil blend: Optimization and parametric analysis

    Khan, Modhar A.; Yusup, Suzana; Ahmad, Murni M. [Universiti Teknologi PETRONAS, Chemical Engineering, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia)


    Free fatty acids content plays an important role in selecting the appropriate route for biodiesel production. Oils with high content of free fatty acids can be treated by acid esterification where an alcohol reacts with the given oil in the presence of acid catalyst. In the current study, an equivolume blend of crude rubber seed oil and crude palm oil is fed to the reaction with methanol as the alcohol of choice and sulfuric acid. Selected reaction parameters were optimized, using Taguchi method for design of experiments, to yield the lowest free fatty acid content in the final product. The investigated parameters include alcohol to oil ratio, temperature and amount of catalyst. The effect and significance of each parameter were then studied based on the fractional factorial design and verified by additional experiments. The optimum conditions for acid esterification which could reduce the free fatty acid content in the feedstock to lower than 0.6% (95% reduction) were 65 C, 15:1 methanol to oil ratio (by mole) and 0.5 wt% H{sub 2}SO{sub 4} after 3 h of reaction time. Temperature had been found to have the most effect on the reduction of free fatty acids followed by reactants ratio while increasing catalyst amount had nominal effect. (author)

  17. Characterising Dynamic Instability in High Water-Cut Oil-Water Flows Using High-Resolution Microwave Sensor Signals

    Liu, Weixin; Jin, Ningde; Han, Yunfeng; Ma, Jing


    In the present study, multi-scale entropy algorithm was used to characterise the complex flow phenomena of turbulent droplets in high water-cut oil-water two-phase flow. First, we compared multi-scale weighted permutation entropy (MWPE), multi-scale approximate entropy (MAE), multi-scale sample entropy (MSE) and multi-scale complexity measure (MCM) for typical nonlinear systems. The results show that MWPE presents satisfied variability with scale and anti-noise ability. Accordingly, we conducted an experiment of vertical upward oil-water two-phase flow with high water-cut and collected the signals of a high-resolution microwave resonant sensor, based on which two indexes, the entropy rate and mean value of MWPE, were extracted. Besides, the effects of total flow rate and water-cut on these two indexes were analysed. Our researches show that MWPE is an effective method to uncover the dynamic instability of oil-water two-phase flow with high water-cut.

  18. The experimental viscosity and calculated relative viscosity of liquid In-Sn allcoys

    Wu, A.Q.; Guo, L.J.; Liu, C.S.; Jia, E.G.; Zhu, Z.G.


    The experimental measured viscosity of liquid pure Sn, In 20 Sn 80 and In 80 Sn 20 alloys was studied, and to make a comparison, the calculated relative viscosity based on the pair distribution functions, g(r), has also been studied. There is one peak in each experimental viscosity and calculated relative-viscosity curve of liquid pure Sn about 1000 deg. C. One valley appears in each experimental viscosity and calculated viscosity curve of liquid In 20 Sn 80 alloy about 700 deg. C. There is no abnormal behavior on In 80 Sn 20 alloy. The behavior of experimental viscosity and calculated relative viscosity is coincident with each other. Those results conformed that the temperature-induced structure anomalies reported before did take place

  19. Application of the High Temperature Gas Cooled Reactor to oil shale recovery

    Wadekamper, D.C.; Arcilla, N.T.; Impellezzeri, J.R.; Taylor, I.N.


    Current oil shale recovery processes combust some portion of the products to provide energy for the recovery process. In an attempt to maximize the petroleum products produced during recovery, the potentials for substituting nuclear process heat for energy generated by combustion of petroleum were evaluated. Twelve oil shale recovery processes were reviewed and their potentials for application of nuclear process heat assessed. The High Temperature Gas Cooled Reactor-Reformer/Thermochemical Pipeline (HTGR-R/TCP) was selected for interfacing process heat technology with selected oil shale recovery processes. Utilization of these coupling concepts increases the shale oil product output of a conventional recovery facility from 6 to 30 percent with the same raw shale feed rate. An additional benefit of the HTGR-R/TCP system was up to an 80 percent decrease in emission levels. A detailed coupling design for a typical counter gravity feed indirect heated retorting and upgrading process were described. Economic comparisons prepared by Bechtel Group Incorporated for both the conventional and HTGR-R/TCP recovery facility were summarized

  20. America's gas tank : the high cost of Canada's oil and gas export strategy

    Price, M.; Bennett, J.


    The high environmental cost of exporting oil and gas from Canada to the United States is discussed. The increased demand for fossil fuels by the United States has coincided with Canada's deregulation of the energy industry and a greater control of Canadian energy companies by American interests. The authors note that most of the oil and gas produced in Canada is exported to the United States, where many of the extraction and production decisions affecting Canadians and the Canadian environment are made. It was cautioned that if the current trend continues, oil and gas development will degrade habitat for endangered species and greenhouse gases will escalate. This is because the fossil fuel industry, particularly the development of Alberta's tar sands, is helping to increase greenhouse gas emissions outside of Canada by selling fossil fuels that are burned outside of Canada. It is recommended that federal and provincial governments in Canada should shift their policies away from fossil fuel production and promote renewable energy production. The United States plans to increase Canadian oil and gas imports in the coming decade, requiring more wells to be drilled and pipelines to carry it. If the fossil fuel industry proceeds with the current plans, greenhouse gas emissions in Canada will grow to 827 million tonnes by 2010, 44 per cent beyond the Kyoto target, having an overall negative impact on public health, wildlife and fresh water supplies. refs., tabs., figs