WorldWideScience

Sample records for high northern latitudes

  1. Titan's Stratospheric Condensibles at High Northern Latitudes During Northern Winter

    Science.gov (United States)

    Anderson, Carrie; Samuelson, R.; Achterberg, R.

    2012-01-01

    The Infrared Interferometer Spectrometer (IRIS) instrument on board Voyager 1 caught the first glimpse of an unidentified particulate feature in Titan's stratosphere that spectrally peaks at 221 per centimeter. Until recently, this feature that we have termed 'the haystack,' has been seen persistently at high northern latitudes with the Composite Infrared Spectrometer (CIRS) instrument onboard Cassini, The strength of the haystack emission feature diminishes rapidly with season, becoming drastically reduced at high northern latitudes, as Titan transitions from northern winter into spring, In contrast to IRIS whose shortest wavenumber was 200 per centimeter, CIRS extends down to 10 per centimeter, thus revealing an entirely unexplored spectral region in which nitrile ices have numerous broad lattice vibration features, Unlike the haystack, which is only found at high northern latitudes during northern winter/early northern spring, this geometrically thin nitrile cloud pervades Titan's lower stratosphere, spectrally peaking at 160 per centimeter, and is almost global in extent spanning latitudes 85 N to 600 S, The inference of nitrile ices are consistent with the highly restricted altitude ranges over which these features are observed, and appear to be dominated by a mixture of HCN and HC3N, The narrow range in altitude over which the nitrile ices extend is unlike the haystack, whose vertical distribution is significantly broader, spanning roughly 70 kilometers in altitude in Titan's lower stratosphere, The nitrile clouds that CIRS observes are located in a dynamically stable region of Titan's atmosphere, whereas CH4 clouds, which ordinarily form in the troposphere, form in a more dynamically unstable region, where convective cloud systems tend to occur. In the unusual situation where Titan's tropopause cools significantly from the HASI 70.5K temperature minimum, CH4 should condense in Titan's lower stratosphere, just like the aforementioned nitrile clouds, although

  2. Beryllium-10 concentrations in water samples of high northern latitudes

    Energy Technology Data Exchange (ETDEWEB)

    Strobl, C.; Eisenhauer, A.; Schulz, V.; Baumann, S.; Mangini, A. [Heidelberger Akademie der Wissenschaften, Heildelberg (Germany); Kubik, P.W. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    {sup 10}Be concentrations in the water column of high northern latitudes were not available so far. We present different {sup 10}Be profiles from the Norwegian-Greenland Sea, the Arctic Ocean, and the Laptev Sea. (author) 3 fig., 3 refs.

  3. Relationships between vegetation dynamics and hydroclimatic drivers in the northern high-latitude uplands

    Science.gov (United States)

    Wang, H.; Tetzlaff, D.; Buttle, J. M.; Carey, S. K.; Laudon, H.; McNamara, J. P.; Soulsby, C.; Spence, C.

    2015-12-01

    IPCC projections show that climate warming will be particularly high in northern high-latitude regions, which has profound ecohydrological implications: a small rise of temperature may result in lower water availability in summer due to less rainfall and more evapotranspiration, increase flooding risks by accelerating melting rates in spring, and more rain rather than snow in winter, etc. These impacts will affect vegetation communities by altering timing of the spring "green-up" and fall "senescence". Change in vegetation water use will feedback to atmospheric and hydrological cycles. Here, we report results from the PLATO "Plant-water interlinkages in northern uplands - mediation of climate change?" project where we investigate water uptake by plants and consequent water availability in northern regions along a cross-regional climate gradient to understand future responses to change in high-latitude uplands. Six sites in Sweden (Krycklan), Canada (Wolf Creek; Baker Creek; Dorset), Scotland (Girnock) and the USA (Dry Creek) span moisture and energy gradients found at high-latitudes. We are presenting preliminary results of vegetation phenology changes from 2000 to 2014 by analysing remote sensing vegetation indices. The relationship between vegetation phenology and climatic drivers (temperature and precipitation) is also investigated.

  4. Multi-Year Lags between Forest Browning and Soil Respiration at High Northern Latitudes

    Energy Technology Data Exchange (ETDEWEB)

    Bond-Lamberty, Benjamin; Bunn, Andrew G.; Thomson, Allison M.

    2012-11-26

    High-latitude northern ecosystems are experiencing rapid climate changes, and represent a large potential climate feedback because of their high soil carbon densities and shifting disturbance regimes. A significant carbon flow from these ecosystems is soil respiration (RS, the flow of carbon dioxide, generated by plant roots and soil fauna, from the soil surface to atmosphere), and any change in the high-latitude carbon cycle might thus be reflected in RS observed in the field. This study used two variants of a machine-learning algorithm and least squares regression to examine how remotely-sensed canopy greenness (NDVI), climate, and other variables are coupled to annual RS based on 105 observations from 64 circumpolar sites in a global database. The addition of NDVI roughly doubled model performance, with the best-performing models explaining ~62% of observed RS variability

  5. EDITORIAL: Northern Hemisphere high latitude climate and environmental change

    Science.gov (United States)

    Groisman, Pavel; Soja, Amber

    2007-10-01

    High Northern Hemisphere latitudes are undergoing rapid and significant change associated with climate warming. Climatic change in this region interacts with and affects the rate of the global change through atmospheric circulation, biogeophysical, and biogeochemical feedbacks. Changes in the surface energy balance, hydrologic cycle, and carbon budget feedback to regional and global weather and climate systems. Two-thirds of the Northern Hemisphere high latitude land mass resides in Northern Eurasia (~20% of the global land mass), and this region has undergone sweeping socio-economic change throughout the 20th century. How this carbon-rich, cold region component of the Earth system functions as a regional entity and interacts with and feeds back to the greater global system is to a large extent unknown. To mitigate the deficiencies in understanding these feedbacks, which may in turn hamper our understanding of the global change rates and patterns, an initiative was formed. Three years ago the Northern Eurasia Earth Science Partnership Initiative (NEESPI) was established to address large-scale and long-term manifestations of climate and environmental change in this region. The NEESPI Science Plan and its Executive Summary have been published at the NEESPI web site (neespi.org). Since 2004, NEESPI participants have been able to seed several waves of research proposals to international and national funding agencies and institutions and also contribute to the International Polar Year. Currently, NEESPI is widely recognized and endorsed by several Earth System Science Partnership (ESSP) programmes and projects: the International Geosphere and Biosphere Programme, the World Climate Research Programme through the Global Energy and Water Cycle Experiment and Climate and Cryosphere Projects, the Global Water System Project, Global Carbon Project, Global Land Project, and the Integrated Land Ecosystem—Atmosphere Processes Study. Through NEESPI, more than 100 individually

  6. Recent changes in phenology over the northern high latitudes detected from multi-satellite data

    International Nuclear Information System (INIS)

    Zeng Heqing; Jia Gensuo; Epstein, Howard

    2011-01-01

    Phenology of vegetation is a sensitive and valuable indicator of the dynamic responses of terrestrial ecosystems to climate change. Therefore, to better understand and predict ecosystems dynamics, it is important to reduce uncertainties in detecting phenological changes. Here, changes in phenology over the past several decades across the northern high-latitude region (≥60°N) were examined by calibrating and analyzing time series of the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Advanced Very High Resolution Radiometer (AVHRR). Over the past decade (2000–10), an expanded length of the growing season (LOS) was detected by MODIS, largely due to an earlier start of the growing season (SOS) by 4.7 days per decade and a delayed end of the growing season (EOS) by 1.6 days per decade over the northern high latitudes. There were significant differences between North America and Eurasia in phenology from 2000 to 2010 based on MODIS data (SOS: df = 21, F = 49.02, p < 0.0001; EOS: df = 21, F = 49.25, p < 0.0001; LOS: df = 21, F = 79.40, p < 0.0001). In northern America, SOS advanced by 11.5 days per decade, and EOS was delayed by 2.2 days per decade. In Eurasia, SOS advanced by 2.7 days per decade, and EOS was delayed by 3.5 days per decade. SOS has likely advanced due to the warming Arctic during April and May. Our results suggest that in recent decades the longer vegetation growing seasons can be attributed to more advanced SOS rather than delayed EOS. AVHRR detected longer LOS over the past three decades, largely related to delayed EOS rather than advanced SOS. These two datasets are significantly different in key phenological parameters (SOS: df = 17, F = 14.63, p = 0.0015; EOS: df = 17, F = 38.69, p < 0.0001; LOS: df = 17, F = 16.47, p = 0.0009) from 2000 to 2008 over the northern high latitudes. Thus, further inter-calibration between the sensors is needed to resolve the inconsistency and to better understand long-term trends of vegetation growth

  7. Seasonal Dependence of Geomagnetic Active-Time Northern High-Latitude Upper Thermospheric Winds

    Science.gov (United States)

    Dhadly, Manbharat S.; Emmert, John T.; Drob, Douglas P.; Conde, Mark G.; Doornbos, Eelco; Shepherd, Gordon G.; Makela, Jonathan J.; Wu, Qian; Nieciejewski, Richard J.; Ridley, Aaron J.

    2018-01-01

    This study is focused on improving the poorly understood seasonal dependence of northern high-latitude F region thermospheric winds under active geomagnetic conditions. The gaps in our understanding of the dynamic high-latitude thermosphere are largely due to the sparseness of thermospheric wind measurements. With current observational facilities, it is infeasible to construct a synoptic picture of thermospheric winds, but enough data with wide spatial and temporal coverage have accumulated to construct a meaningful statistical analysis. We use long-term data from eight ground-based and two space-based instruments to derive climatological wind patterns as a function of magnetic local time, magnetic latitude, and season. These diverse data sets possess different geometries and different spatial and solar activity coverage. The major challenge is to combine these disparate data sets into a coherent picture while overcoming the sampling limitations and biases among them. In our previous study (focused on quiet time winds), we found bias in the Gravity Field and Steady State Ocean Circulation Explorer (GOCE) cross-track winds. Here we empirically quantify the GOCE bias and use it as a correction profile for removing apparent bias before empirical wind formulation. The assimilated wind patterns exhibit all major characteristics of high-latitude neutral circulation. The latitudinal extent of duskside circulation expands almost 10∘ from winter to summer. The dawnside circulation subsides from winter to summer. Disturbance winds derived from geomagnetic active and quiet winds show strong seasonal and latitudinal variability. Comparisons between wind patterns derived here and Disturbance Wind Model (DWM07) (which have no seasonal dependence) suggest that DWM07 is skewed toward summertime conditions.

  8. Simulating the Holocene climate evolution at northern high latitudes using a coupled atmosphere-sea ice-ocean-vegetation model

    NARCIS (Netherlands)

    Renssen, H.; Goosse, H.; Fichefet, T.; Brovkin, V.; Driesschaert, E.; Wolk, F.

    2005-01-01

    The response of the climate at high northern latitudes to slowly changing external forcings was studied in a 9,000-year long simulation with the coupled atmosphere-sea ice-ocean-vegetation model ECBilt-CLIO-VECODE. Only long-term changes in insolation and atmospheric CO

  9. Multi-year lags between forest browning and soil respiration at high northern latitudes.

    Directory of Open Access Journals (Sweden)

    Ben Bond-Lamberty

    Full Text Available High-latitude northern ecosystems are experiencing rapid climate changes, and represent a large potential climate feedback because of their high soil carbon densities and shifting disturbance regimes. A significant carbon flow from these ecosystems is soil respiration (R(S, the flow of carbon dioxide, generated by plant roots and soil fauna, from the soil surface to atmosphere, and any change in the high-latitude carbon cycle might thus be reflected in R(S observed in the field. This study used two variants of a machine-learning algorithm and least squares regression to examine how remotely-sensed canopy greenness (NDVI, climate, and other variables are coupled to annual R(S based on 105 observations from 64 circumpolar sites in a global database. The addition of NDVI roughly doubled model performance, with the best-performing models explaining ∼62% of observed R(S variability. We show that early-summer NDVI from previous years is generally the best single predictor of R(S, and is better than current-year temperature or moisture. This implies significant temporal lags between these variables, with multi-year carbon pools exerting large-scale effects. Areas of decreasing R(S are spatially correlated with browning boreal forests and warmer temperatures, particularly in western North America. We suggest that total circumpolar R(S may have slowed by ∼5% over the last decade, depressed by forest stress and mortality, which in turn decrease R(S. Arctic tundra may exhibit a significantly different response, but few data are available with which to test this. Combining large-scale remote observations and small-scale field measurements, as done here, has the potential to allow inferences about the temporal and spatial complexity of the large-scale response of northern ecosystems to changing climate.

  10. Range of monthly mean hourly land surface air temperature diurnal cycle over high northern latitudes

    Science.gov (United States)

    Wang, Aihui; Zeng, Xubin

    2014-05-01

    Daily maximum and minimum temperatures over global land are fundamental climate variables, and their difference represents the diurnal temperature range (DTR). While the differences between the monthly averaged DTR (MDTR) and the range of monthly averaged hourly temperature diurnal cycle (RMDT) are easy to understand qualitatively, their differences have not been quantified over global land areas. Based on our newly developed in situ data (Climatic Research Unit) reanalysis (Modern-Era Retrospective analysis for Research and Applications) merged hourly temperature data from 1979 to 2009, RMDT in January is found to be much smaller than that in July over high northern latitudes, as it is much more affected by the diurnal radiative forcing than by the horizontal advection of temperature. In contrast, MDTR in January is comparable to that in July over high northern latitudes, but it is much larger than January RMDT, as it primarily reflects the movement of lower frequency synoptic weather systems. The area-averaged RMDT trends north of 40°N are near zero in November, December, and January, while the trends of MDTR are negative. These results suggest the need to use both the traditional MDTR and RMDT suggested here in future observational and modeling studies. Furthermore, MDTR and its trend are more sensitive to the starting hour of a 24 h day used in the calculations than those for RMDT, and this factor also needs to be considered in model evaluations using observational data.

  11. High-latitude dust in the Earth system

    Science.gov (United States)

    Bullard, Joanna E; Baddock, Matthew; Bradwell, Tom; Crusius, John; Darlington, Eleanor; Gaiero, Diego; Gasso, Santiago; Gisladottir, Gudrun; Hodgkins, Richard; McCulloch, Robert; NcKenna Neuman, Cheryl; Mockford, Tom; Stewart, Helena; Thorsteinsson, Throstur

    2016-01-01

    Natural dust is often associated with hot, subtropical deserts, but significant dust events have been reported from cold, high latitudes. This review synthesizes current understanding of high-latitude (≥50°N and ≥40°S) dust source geography and dynamics and provides a prospectus for future research on the topic. Although the fundamental processes controlling aeolian dust emissions in high latitudes are essentially the same as in temperate regions, there are additional processes specific to or enhanced in cold regions. These include low temperatures, humidity, strong winds, permafrost and niveo-aeolian processes all of which can affect the efficiency of dust emission and distribution of sediments. Dust deposition at high latitudes can provide nutrients to the marine system, specifically by contributing iron to high-nutrient, low-chlorophyll oceans; it also affects ice albedo and melt rates. There have been no attempts to quantify systematically the expanse, characteristics, or dynamics of high-latitude dust sources. To address this, we identify and compare the main sources and drivers of dust emissions in the Northern (Alaska, Canada, Greenland, and Iceland) and Southern (Antarctica, New Zealand, and Patagonia) Hemispheres. The scarcity of year-round observations and limitations of satellite remote sensing data at high latitudes are discussed. It is estimated that under contemporary conditions high-latitude sources cover >500,000 km2 and contribute at least 80–100 Tg yr−1 of dust to the Earth system (~5% of the global dust budget); both are projected to increase under future climate change scenarios.

  12. High Latitude Dust in the Earth System

    Science.gov (United States)

    Bullard, Joanna E.; Baddock, Matthew; Bradwell, Tom; Crusius, John; Darlington, Eleanor; Gaiero, Diego; Gasso, Santiago; Gisladottir, Gudrun; Hodgkins, Richard; McCulloch, Robert; hide

    2016-01-01

    Natural dust is often associated with hot, subtropical deserts, but significant dust events have been reported from cold, high latitudes. This review synthesizes current understanding of high-latitude (> or = 50degN and > or = 40degS) dust source geography and dynamics and provides a prospectus for future research on the topic. Although the fundamental processes controlling aeolian dust emissions in high latitudes are essentially the same as in temperate regions, there are additional processes specific to or enhanced in cold regions. These include low temperatures, humidity, strong winds, permafrost and niveo-aeolian processes all of which can affect the efficiency of dust emission and distribution of sediments. Dust deposition at high latitudes can provide nutrients to the marine system, specifically by contributing iron to high-nutrient, low-chlorophyll oceans; it also affects ice albedo and melt rates. There have been no attempts to quantify systematically the expanse, characteristics, or dynamics of high-latitude dust sources. To address this, we identify and compare the main sources and drivers of dust emissions in the Northern (Alaska, Canada, Greenland, and Iceland) and Southern (Antarctica, New Zealand, and Patagonia) Hemispheres. The scarcity of year-round observations and limitations of satellite remote sensing data at high latitudes are discussed. It is estimated that under contemporary conditions high-latitude sources cover >500,000 sq km and contribute at least 80-100 Tg/yr1 of dust to the Earth system (approx. 5% of the global dust budget); both are projected to increase under future climate change scenarios.

  13. Vulnerability of high-latitude soil organic carbon in North America to disturbance

    Science.gov (United States)

    Grosse, Guido; Harden, Jennifer W.; Turetsky, Merritt; McGuire, A. David; Camill, Philip; Tarnocai, Charles; Frolking, Steve; Schuur, Edward A.G.; Jorgenson, Torre; Marchenko, Sergei; Romanovsky, Vladimir; Wickland, Kimberly P.; French, Nancy; Waldrop, Mark P.; Bourgeau-Chavez, Laura L.; Striegl, Robert G.

    2011-01-01

    This synthesis addresses the vulnerability of the North American high-latitude soil organic carbon (SOC) pool to climate change. Disturbances caused by climate warming in arctic, subarctic, and boreal environments can result in significant redistribution of C among major reservoirs with potential global impacts. We divide the current northern high-latitude SOC pools into (1) near-surface soils where SOC is affected by seasonal freeze-thaw processes and changes in moisture status, and (2) deeper permafrost and peatland strata down to several tens of meters depth where SOC is usually not affected by short-term changes. We address key factors (permafrost, vegetation, hydrology, paleoenvironmental history) and processes (C input, storage, decomposition, and output) responsible for the formation of the large high-latitude SOC pool in North America and highlight how climate-related disturbances could alter this pool's character and size. Press disturbances of relatively slow but persistent nature such as top-down thawing of permafrost, and changes in hydrology, microbiological communities, pedological processes, and vegetation types, as well as pulse disturbances of relatively rapid and local nature such as wildfires and thermokarst, could substantially impact SOC stocks. Ongoing climate warming in the North American high-latitude region could result in crossing environmental thresholds, thereby accelerating press disturbances and increasingly triggering pulse disturbances and eventually affecting the C source/sink net character of northern high-latitude soils. Finally, we assess postdisturbance feedbacks, models, and predictions for the northern high-latitude SOC pool, and discuss data and research gaps to be addressed by future research.

  14. Ozone trends at northern mid- and high latitudes – a European perspective

    Directory of Open Access Journals (Sweden)

    N. R. P. Harris

    2008-05-01

    Full Text Available The EU CANDIDOZ project investigated the chemical and dynamical influences on decadal ozone trends focusing on the Northern Hemisphere. High quality long-term ozone data sets, satellite-based as well as ground-based, and the long-term meteorological reanalyses from ECMWF and NCEP are used together with advanced multiple regression models and atmospheric models to assess the relative roles of chemistry and transport in stratospheric ozone changes. This overall synthesis of the individual analyses in CANDIDOZ shows clearly one common feature in the NH mid latitudes and in the Arctic: an almost monotonic negative trend from the late 1970s to the mid 1990s followed by an increase. In most trend studies, the Equivalent Effective Stratospheric Chlorine (EESC which peaked in 1997 as a consequence of the Montreal Protocol was observed to describe ozone loss better than a simple linear trend. Furthermore, all individual analyses point to changes in dynamical drivers, such as the residual circulation (responsible for the meridional transport of ozone into middle and high latitudes playing a key role in the observed turnaround. The changes in ozone transport are associated with variations in polar chemical ozone loss via heterogeneous ozone chemistry on PSCs (polar stratospheric clouds. Synoptic scale processes as represented by the new equivalent latitude proxy, by conventional tropopause altitude or by 250 hPa geopotential height have also been successfully linked to the recent ozone increases in the lowermost stratosphere. These show significant regional variation with a large impact over Europe and seem to be linked to changes in tropospheric climate patterns such as the North Atlantic Oscillation. Some influence in recent ozone increases was also attributed to the rise in solar cycle number 23. Changes from the late 1970s to the mid 1990s were found in a number of characteristics of the Arctic vortex. However, only one trend was found when more recent

  15. Heating and dehumidification in production greenhouses at northern latitudes

    NARCIS (Netherlands)

    Kempkes, F.; Zwart, De H.F.; Munoz, P.; Montero, J.I.; Baptista, F.J.; Giuffrida, F.; Gilli, Celine; Stepowska, Agnieszka; Stanghellini, C.

    2017-01-01

    The majority of greenhouses in northern latitudes are heated, in the winter mainly for temperature control and year round to control humidity. Heating is accepted by most organic regulations in different countries; if heating efficiently and the energy source is predominantly renewable energy,

  16. Climate change between the mid and late Holocene in northern high latitudes – Part 2: Model-data comparisons

    Directory of Open Access Journals (Sweden)

    K. Holmgren

    2010-09-01

    Full Text Available The climate response over northern high latitudes to the mid-Holocene orbital forcing has been investigated in three types of PMIP (Paleoclimate Modelling Intercomparison Project simulations with different complexity of the modelled climate system. By first undertaking model-data comparison, an objective selection method has been applied to evaluate the capability of the climate models to reproduce the spatial response pattern seen in proxy data. The possible feedback mechanisms behind the climate response have been explored based on the selected model simulations. Subsequent model-model comparisons indicate the importance of including the different physical feedbacks in the climate models. The comparisons between the proxy-based reconstructions and the best fit selected simulations show that over the northern high latitudes, summer temperature change follows closely the insolation change and shows a common feature with strong warming over land and relatively weak warming over ocean at 6 ka compared to 0 ka. Furthermore, the sea-ice-albedo positive feedback enhances this response. The reconstructions of temperature show a stronger response to enhanced insolation in the annual mean temperature than winter and summer temperature. This is verified in the model simulations and the behaviour is attributed to the larger contribution from the large response in autumn. Despite a smaller insolation during winter at 6 ka, a pronounced warming centre is found over Barents Sea in winter in the simulations, which is also supported by the nearby northern Eurasian continental and Fennoscandian reconstructions. This indicates that in the Arctic region, the response of the ocean and the sea ice to the enhanced summer insolation is more important for the winter temperature than the synchronous decrease of the insolation.

  17. Transport of Mars atmospheric water into high northern latitudes during a polar warming

    Science.gov (United States)

    Barnes, J. R.; Hollingsworth, J. L.

    1988-01-01

    Several numerical experiments were conducted with a simplified tracer transport model in order to attempt to examine the poleward transport of Mars atmospheric water during a polar warming like that which occurred during the winter solstice dust storm of 1977. The flow for the transport experiments was taken from numerical simulations with a nonlinear beta-plane dynamical model. Previous studies with this model have demonstrated that a polar warming having essential characteristics like those observed during the 1977 dust storm can be produced by a planetary wave mechanism analogous to that responsible for terrestrial sudden stratospheric warmings. Several numerical experiments intended to simulate water transport in the absence of any condensation were carried out. These experiments indicate that the flow during a polar warming can transport very substantial amounts of water to high northern latitudes, given that the water does not condense and fall out before reaching the polar region.

  18. Macrobioerosion in Porites corals in subtropical northern South China Sea: a limiting factor for high-latitude reef framework development

    Science.gov (United States)

    Chen, Tianran; Li, Shu; Yu, Kefu

    2013-03-01

    Bioerosion is an important limiting factor in carbonate accretion and reef framework development; however, few studies have quantified the direct impact of macroborers on high-latitude coral communities, which are viewed as potential refuge during a period of global warming. In this study, internal macrobioerosion of Porites corals was examined at Daya Bay, subtropical northern South China Sea. The principal borers were the bivalve Lithophaga spp. and the sponges Cliona spp. and Cliothosa spp. (≥80 %), while sipunculid and polychaete worms and barnacles accounted for small amounts of bioerosion (≤20 %). Porites corals were heavily bioeroded in areas impacted by aquacultural and urban activities (10.34-27.55 %) compared with corals in relatively unpolluted areas (2.18-6.76 %). High levels of bioerosion, especially boring bivalve infestation, significantly weaken the corals and increase their susceptibility to dislodgement and fragmentation in typhoons, limiting accumulation of limestone framework. This study implies that carbonate accretion and reef development for high-latitude coral communities may be limited in future high-CO2 and eutrophication-stressed environments.

  19. Investigating the Role of Biogeochemical Processes in the Northern High Latitudes on Global Climate Feedbacks Using an Efficient Scalable Earth System Model

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Atul K. [Univ. of Illinois, Urbana-Champaign, IL (United States)

    2016-09-14

    The overall objectives of this DOE funded project is to combine scientific and computational challenges in climate modeling by expanding our understanding of the biogeophysical-biogeochemical processes and their interactions in the northern high latitudes (NHLs) using an earth system modeling (ESM) approach, and by adopting an adaptive parallel runtime system in an ESM to achieve efficient and scalable climate simulations through improved load balancing algorithms.

  20. Simultaneous measurement of aurora-related, irregular magnetic pulsations at northern and southern high latitudes

    International Nuclear Information System (INIS)

    Arnoldy, R.L.; Rajashekar, R.; Cahill, L.J. Jr.; Engebretson, M.J.; Rosenberg, T.J.; Mende, S.B.

    1987-01-01

    A dominant feature of high-latitude magnetic pulsations is large-amplitude irregular pulsations (Pi) which are closely correlated with the movement of the observing station under particle precipitation, producing the dayside auroral and the high-latitude expansion of nightside aurora. The dayside Pi-1 pulsation maximum centered about local magnetic noon has no strong seasonal dependence, indicating that the dayside aurora illuminates both hemispheres independent of the latitude of the subsolar point. The summer noon pulsation maximum has, however, a greater longitudinal extent than the winter noon maximum, as measured at 74 degree-75 degree invariant latitude. The nightside magnetic pulsations are bursts of Pi (PiB) having an average duration of 15 min. From Defense Meteorological Satellite Program photos the auroral forms related to the high-latitude PiB can be identified as the poleward discrete arc generally having a large longitudinal extent. If the auroral forms are very similar in both hemispheres, then the large longitudinal extent coupled with movement of the auroral could explain why 85% of the PiB events have onsets within 10 min at opposite hemisphere sites (South Pole, Antarctica, and Sondre Stromfjord, Greenland) separated in local magnetic time by about 1.5 hours. There is no seasonal dependence in the statistical occurrence of PiB, nor in its simultaneity in opposite hemispheres. Apparently, the seasonal distortion of the tail plasma sheet has little effect on the acceleration of high-latitude auroral beams. The actual several minute time difference in opposite hemisphere onsets of PiB is probably due to the westward/poleward motion of the longitudinally extended aurora

  1. Correlation of wind and solar power in high-latitude arctic areas in Northern Norway and Svalbard

    Directory of Open Access Journals (Sweden)

    Solbakken Kine

    2016-01-01

    Full Text Available This paper assesses the possibilities for combining wind and solar power in a household-scale hybrid renewable energy system in arctic high-latitude areas in the North of Norway. By combining two complementary renewable energy sources, the efficiency and reliability of the power output can be improved compared to a system utilizing wind or solar power independently. This paper assesses the correlation between wind and solar power on different timescales in four different locations in Northern Norway and Svalbard. For all locations complementary characteristics of wind and solar power are found, however, the strength of the correlation is highly variable for each location and for the different timescales. The best correlation for all places is found on a monthly timescale. HOMER is used to run simulations on hybrid renewable energy systems (HRES for each location. For three of the four locations the HRES produces more power than what is consumed in the household.

  2. Energy-Efficient Office Buildings at High Latitudes

    Energy Technology Data Exchange (ETDEWEB)

    Lerum, V.

    1996-12-31

    This doctoral thesis describes a method for energy efficient office building design at high latitudes and cold climates. The method combines daylighting, passive solar heating, solar protection, and ventilative cooling. The thesis focuses on optimal design of an equatorial-facing fenestration system. A spreadsheet framework linking existing simplified methods is used. The daylight analysis uses location specific data on frequency distribution of diffuse daylight on vertical surfaces to estimate energy savings from optimal window and room configurations in combination with a daylight-responsive electric lighting system. The passive solar heating analysis is a generalization of a solar load ratio method adapted to cold climates by combining it with the Norwegian standard NS3031 for winter months when the solar savings fraction is negative. The emphasis is on very high computational efficiency to permit rapid and comprehensive examination of a large number of options early in design. The procedure is illustrated for a location in Trondheim, Norway, testing the relative significance of various design improvement options relative to a base case. The method is also tested for two other locations in Norway, at latitudes 58 and 70 degrees North. The band of latitudes between these limits covers cities in Alaska, Canada, Greenland, Iceland, Scandinavia, Finland, Russia, and Northern Japan. A comprehensive study of the ``whole building approach`` shows the impact of integrated daylighting and low-energy design strategies. In general, consumption of lighting electricity may be reduced by 50-80%, even at extremely high latitudes. The reduced internal heat from electric lights is replaced by passive solar heating. 113 refs., 85 figs., 25 tabs.

  3. Environmental variation, vegetation distribution, carbon dynamics and water/energy exchange at high latitudes

    Science.gov (United States)

    McGuire, A.D.; Wirth, C.; Apps, M.; Beringer, J.; Clein, J.; Epstein, H.; Kicklighter, D.W.; Bhatti, J.; Chapin, F. S.; De Groot, B.; Efremov, D.; Eugster, W.; Fukuda, M.; Gower, T.; Hinzman, L.; Huntley, B.; Jia, G.J.; Kasischke, E.; Melillo, J.; Romanovsky, V.; Shvidenko, A.; Vaganov, E.; Walker, D.

    2002-01-01

    The responses of high latitude ecosystems to global change involve complex interactions among environmental variables, vegetation distribution, carbon dynamics, and water and energy exchange. These responses may have important consequences for the earth system. In this study, we evaluated how vegetation distribution, carbon stocks and turnover, and water and energy exchange are related to environmental variation spanned by the network of the IGBP high latitude transects. While the most notable feature of the high latitude transects is that they generally span temperature gradients from southern to northern latitudes, there are substantial differences in temperature among the transects. Also, along each transect temperature co-varies with precipitation and photosynthetically active radiation, which are also variable among the transects. Both climate and disturbance interact to influence latitudinal patterns of vegetation and soil carbon storage among the transects, and vegetation distribution appears to interact with climate to determine exchanges of heat and moisture in high latitudes. Despite limitations imposed by the data we assembled, the analyses in this study have taken an important step toward clarifying the complexity of interactions among environmental variables, vegetation distribution, carbon stocks and turnover, and water and energy exchange in high latitude regions. This study reveals the need to conduct coordinated global change studies in high latitudes to further elucidate how interactions among climate, disturbance, and vegetation distribution influence carbon dynamics and water and energy exchange in high latitudes.

  4. The north-south asymmetry of solar filaments separately at low and high latitudes in solar cycle 23

    International Nuclear Information System (INIS)

    Kong De-Fang; Qu Zhi-Ning; Guo Qiao-Ling

    2015-01-01

    We present the results of a study on the north-south asymmetry of solar filaments at low (<50°) and high (>60°) latitudes using daily filament numbers from January 1998 to November 2008 (solar cycle 23). It is found that the northern hemisphere is dominant at low latitudes for cycle 23. However, a similar asymmetry does not occur for solar filaments at high latitudes. The present study indicates that the hemispheric asymmetry of solar filaments at high latitudes in a cycle appears to have little connection with that at low latitudes. Our results support that the observed magnetic fields at high latitudes include two components: one comes from the emergence of the magnetic fields from the solar interior and the other comes from the drift of the magnetic activity at low latitudes. (research papers)

  5. Modeling interactions of soil hydrological dynamics and soil thermal and permafrost dynamics and their effects on carbon cycling in northern high latitudes

    Science.gov (United States)

    Zhuang, Q.; Tang, J.

    2008-12-01

    Large areas of northern high latitude ecosystems are underlain with permafrost. The warming temperature and fires deteriorate the stability of those permafrost, altering hydrological cycle, and consequently soil temperature and active layer depth. These changes will determine the fate of large carbon pools in soils and permafrost over the region. We developed a modeling framework of hydrology, permafrost, and biogeochemical dynamics based on our existing modules of these components. The framework was incorporated with a new snow dynamics module and the effects of soil moisture on soil thermal properties. The framework was tested for tundra and boreal forest ecosystems at field sites with respect to soil thermal and hydrological regimes in Alaska and was then applied to the whole Alaskan ecosystems for the period of 1923-2000 at a daily time step. Our two sets of simulations with and without considering soil moisture effects indicated that the soil temperature profile and active layer depth between two simulations are significant different. The differences of soil thermal regime would expect to result in different carbon dynamics. Next, we will verify the framework with the observed data of soil moisture and soil temperature at poor-drain, moderate-drain, and well-drain boreal forest sites in Alaska. With the verified framework, we will evaluate the effects of interactions of soil thermal and hydrological dynamics on carbon dynamics for the whole northern high latitudes.

  6. Empirical high-latitude electric field models

    International Nuclear Information System (INIS)

    Heppner, J.P.; Maynard, N.C.

    1987-01-01

    Electric field measurements from the Dynamics Explorer 2 satellite have been analyzed to extend the empirical models previously developed from dawn-dusk OGO 6 measurements (J.P. Heppner, 1977). The analysis embraces large quantities of data from polar crossings entering and exiting the high latitudes in all magnetic local time zones. Paralleling the previous analysis, the modeling is based on the distinctly different polar cap and dayside convective patterns that occur as a function of the sign of the Y component of the interplanetary magnetic field. The objective, which is to represent the typical distributions of convective electric fields with a minimum number of characteristic patterns, is met by deriving one pattern (model BC) for the northern hemisphere with a +Y interplanetary magnetic field (IMF) and southern hemisphere with a -Y IMF and two patterns (models A and DE) for the northern hemisphere with a -Y IMF and southern hemisphere with a +Y IMF. The most significant large-scale revisions of the OGO 6 models are (1) on the dayside where the latitudinal overlap of morning and evening convection cells reverses with the sign of the IMF Y component, (2) on the nightside where a westward flow region poleward from the Harang discontinuity appears under model BC conditions, and (3) magnetic local time shifts in the positions of the convection cell foci. The modeling above was followed by a detailed examination of cases where the IMF Z component was clearly positive (northward). Neglecting the seasonally dependent cases where irregularities obscure pattern recognition, the observations range from reasonable agreement with the new BC and DE models, to cases where different characteristics appeared primarily at dayside high latitudes

  7. New High Proper Motion Stars from the Digitized Sky Survey. II. Northern Stars with 0.5" yr-1 < μ < 2.0" yr-1 at High Galactic Latitudes

    Science.gov (United States)

    Lépine, Sébastien; Shara, Michael M.; Rich, R. Michael

    2003-08-01

    In a continuation of our systematic search for high proper motion stars in the Digitized Sky Survey, we have completed the analysis of northern sky fields at Galactic latitudes above 25°. With the help of our SUPERBLINK software, a powerful automated blink comparator developed by us, we have identified 1146 stars in the magnitude range 8data mining of the Digitized Sky Survey, developed and operated by the Catalogs and Surveys Branch of the Space Telescope Science Institute, Baltimore.

  8. Current state and prospects of carbon management in high latitudes of Northern Eurasia

    Science.gov (United States)

    Schepaschenko, Dmitry; Shvidenko, Anatoly

    2010-05-01

    The current state and trajectories of future development of natural landscapes in high latitudes of Northern Eurasia are defined inter alia by (1) current unsatisfactory social and economic situation in boreal Northern Eurasia; (2) the dramatic magnitude of on-going and expected climatic change (warming up to 10-12oC under global warming at 4oC); (3) increasing anthropogenic pressure, particularly in regions of intensive oil and gas exploration and extraction; (4) large areas of sparsely populated and practically unmanaged land; (5) vulnerability of northern ecosystems which historically developed under cold climates and buffering capacity of which is not well known; (6) risk of catastrophic natural disturbances (fire, insect outbreaks) whose frequency and severity have accelerated during recent decades; and (7) high probability of irreversible changes of vegetation cover. These specifics are overlapped with insufficient governance of natural renewable resources (e.g., forests) and destructed practice of industrial development of new territories (oil and gas extraction and exploration, metallurgy etc.). Based on a full carbon account for terrestrial vegetation ecosystems of Northern Eurasia, we analyze the relative impacts of major drivers on magnitude and uncertainty of the Net Ecosystem Carbon Balance (NECB) under current and expected climate and environment. Dynamic trends and interannual variability of NECB are mostly dependent on weather conditions during growth seasons of individual years, regimes of natural disturbances, and anthropogenic impacts on ecosystems. In a short term, disturbances and human impacts cause a theoretically 'manageable' part of the full carbon account, which on average is estimated to be of about 20% of annual net primary production. In a long term, thawing of permafrost and change of hydrological regimes of vast territories may result in a catastrophic decline of the forested area and wide distribution of 'green desertification'. The

  9. Modeling of atmospheric circulation at mid- and high latitudes of the northern hemisphere - evaluation studies using ARPEGE

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yongjia

    2007-03-15

    In the present thesis the author evaluate experiments with the atmospheric part of BCM (Bergen climate model), named ARPEGE, performed for present day climate during the last 50 years. The objectives have been to evaluate the ability of ARPEGE to simulate the general circulation at mid- and high northern latitudes in winter. Particular emphasis is put on the dependence of systematic errors on the horizontal resolution in the model, the climatology and variability of storm tracks, the poleward energy transport and the North Atlantic winter circulation expressed by the North Atlantic Oscillation (NAO; e.g. Hurrell 1995). In addition, use of ARPEGE for downscaling purposes has been evaluated. The work on storm tracks, poleward energy transport and the variability of the NAO include pure observational studies, mainly based on reanalyses, bringing forward new knowledge on extratropical storm tracks, heat transport variations and links between Eurasian snow cover and wintertime NAO

  10. Impacts of high-latitude volcanic eruptions on ENSO and AMOC.

    Science.gov (United States)

    Pausata, Francesco S R; Chafik, Leon; Caballero, Rodrigo; Battisti, David S

    2015-11-10

    Large volcanic eruptions can have major impacts on global climate, affecting both atmospheric and ocean circulation through changes in atmospheric chemical composition and optical properties. The residence time of volcanic aerosol from strong eruptions is roughly 2-3 y. Attention has consequently focused on their short-term impacts, whereas the long-term, ocean-mediated response has not been well studied. Most studies have focused on tropical eruptions; high-latitude eruptions have drawn less attention because their impacts are thought to be merely hemispheric rather than global. No study to date has investigated the long-term effects of high-latitude eruptions. Here, we use a climate model to show that large summer high-latitude eruptions in the Northern Hemisphere cause strong hemispheric cooling, which could induce an El Niño-like anomaly, in the equatorial Pacific during the first 8-9 mo after the start of the eruption. The hemispherically asymmetric cooling shifts the Intertropical Convergence Zone southward, triggering a weakening of the trade winds over the western and central equatorial Pacific that favors the development of an El Niño-like anomaly. In the model used here, the specified high-latitude eruption also leads to a strengthening of the Atlantic Meridional Overturning Circulation (AMOC) in the first 25 y after the eruption, followed by a weakening lasting at least 35 y. The long-lived changes in the AMOC strength also alter the variability of the El Niño-Southern Oscillation (ENSO).

  11. Temperature-induced water stress in high-latitude forests in response to natural and anthropogenic warming.

    Science.gov (United States)

    Trahan, Matthew W; Schubert, Brian A

    2016-02-01

    The Arctic is particularly sensitive to climate change, but the independent effects of increasing atmospheric CO2 concentration (pCO2 ) and temperature on high-latitude forests are poorly understood. Here, we present a new, annually resolved record of stable carbon isotope (δ(13) C) data determined from Larix cajanderi tree cores collected from far northeastern Siberia in order to investigate the physiological response of these trees to regional warming. The tree-ring record, which extends from 1912 through 1961 (50 years), targets early twentieth-century warming (ETCW), a natural warming event in the 1920s to 1940s that was limited to Northern hemisphere high latitudes. Our data show that net carbon isotope fractionation (Δ(13) C), decreased by 1.7‰ across the ETCW, which is consistent with increased water stress in response to climate warming and dryer soils. To investigate whether this signal is present across the northern boreal forest, we compiled published carbon isotope data from 14 high-latitude sites within Europe, Asia, and North America. The resulting dataset covered the entire twentieth century and spanned both natural ETCW and anthropogenic Late Twentieth-Century Warming (~0.7 °C per decade). After correcting for a ~1‰ increase in Δ(13) C in response to twentieth century pCO2 rise, a significant negative relationship (r = -0.53, P forests across the twentieth century, of which approximately half is attributed to a decrease in stomatal conductance in order to conserve water in response to drying conditions, with the other half being attributed to increasing pCO2 . We conclude that annual tree-ring records from northern high-latitude forests record the effects of climate warming and pCO2 rise across the twentieth century. © 2015 John Wiley & Sons Ltd.

  12. Vitamin D status and its determinants during autumn in children at northern latitudes

    DEFF Research Database (Denmark)

    Petersen, Rikke Agnete; Damsgaard, Camilla T.; Dalskov, Stine-Mathilde

    2015-01-01

    Sufficient summer/autumn vitamin D status appears important to mitigate winter nadirs at northern latitudes. We conducted a cross-sectional study to evaluate autumn vitamin D status and its determinants in 782 Danish 8-11-year-old children (55°N) using baseline data from the Optimal well-being...

  13. Northern Latitude Afforestation: Quantifying Trade Offs Between Carbon Sequestration and Solar Forcing

    Science.gov (United States)

    Mykleby, P.; Snyder, P. K.; Twine, T. E.

    2012-12-01

    The planting of trees and forests has long been accepted as a practical and efficient method to sequester carbon dioxide from the atmosphere. Drastic measures are now needed to ensure that atmospheric levels of carbon dioxide (CO2) do not continue to rise and cause further planetary warming. However, recent studies have identified unintended biophysical feedbacks associated with land cover changes, especially in higher northern latitudes. The changes in surface reflectivity that occur when converting a lighter, more reflective surface, such as a grassland or bare soil, into a darker conifer forest, can result in surface warming due to the forest absorbing more shortwave radiation. This warming counteracts the cooling effect resulting from a reduction in atmospheric CO2 with increased vegetation productivity. This effect is further exacerbated in the higher northern latitudes where snow cover is prevalent during the long winter; the planting of trees can significantly decrease the reflectivity compared with white snow. The goal of this study is to determine whether the amount of carbon sequestered exceeds the carbon equivalent of the radiative forcing due to the change in surface reflectivity. Factors determining the net effect of these two competing forces are the local climate, the age of the forest, the amount of fractional cover and tree spacing within the forest, and the species of the forest. Previous modeling studies have attempted to determine the magnitude of these effects, but these studies have used coarse resolution climate models and unrealistic forest structure and dynamics. This study attempts to resolve these previous inaccuracies by incorporating a higher resolution model and more accurate representation of carbon dynamics in northern latitude forests. Here we present simulation results from the IBIS model, a dynamic global vegetation model, used to simulate the potential planting of large-area tree plantations in the northern United States and

  14. High-Latitude Topside Ionospheric Vertical Electron Density Profile Changes in Response to Large Magnetic Storms

    Science.gov (United States)

    Benson, Robert F.; Fainberg, Joseph; Osherovich, Vladimir A.; Truhlik, Vladimir; Wang, Yongli; Bilitza, Dieter; Fung, Shing F.

    2016-01-01

    Large magnetic-storm-induced changes were detected in high-latitude topside vertical electron density profiles Ne(h) in a database of profiles and digital topside ionograms, from the International Satellites for Ionospheric Studies (ISIS) program, that enabled Ne(h) profiles to be obtained in nearly the same region of space before, during, and after a major magnetic storm (Dst -100nT). Storms where Ne(h) profiles were available in the high-latitude Northern Hemisphere had better coverage of solar wind parameters than storms with available Ne(h) profiles in the high-latitude Southern Hemisphere. Large Ne(h) changes were observed during all storms, with enhancements and depletions sometimes near a factor of 10 and 0.1, respectively, but with substantial differences in the responses in the two hemispheres. Large spatial andor temporal Ne(h) changes were often observed during Dst minimum and during the storm recovery phase. The storm-induced Ne(h) changes were the most pronounced and consistent in the Northern Hemisphere in that large enhancements were observed during winter nighttime and large depletions during winter and spring daytime. The limited available cases suggested that these Northern Hemisphere enhancements increased with increases of the time-shifted solar wind velocity v, magnetic field B, and with more negative values of the B components except for the highest common altitude (1100km) of the profiles. There was also some evidence suggesting that the Northern Hemisphere depletions were related to changes in the solar wind parameters. Southern Hemisphere storm-induced enhancements and depletions were typically considerably less with depletions observed during summer nighttime conditions and enhancements during summer daytime and fall nighttime conditions.

  15. Metal stress consequences on frost hardiness of plants at northern high latitudes: a review and hypothesis.

    Science.gov (United States)

    Taulavuori, Kari; Prasad, M N V; Taulavuori, Erja; Laine, Kari

    2005-05-01

    This paper reviews the potential of trace/heavy metal-induced stress to reduce plant frost hardiness at northern high latitudes. The scientific questions are first outlined prior to a brief summary of heavy metal tolerance. The concepts of plant capacity and survival adaptation were used to formulate a hypothesis, according to which heavy metal stress may reduce plant frost hardiness for the following reasons: (1) Heavy metals change membrane properties through impaired resource acquisition and subsequent diminution of the cryoprotectant pool. (2) Heavy metals change membrane properties directly through oxidative stress, i.e. an increase of active oxygen species. (3) The involved co-stress may further increase oxidative stress. (4) The risk of frost injury increases due to membrane alterations. An opposite perspective was also discussed: could metal stress result in enhanced plant frost hardiness? This phenomenon could be based on the metabolism (i.e. glutathione, polyamines, proline, heat shock proteins) underlying a possible general adaptation syndrome of stress (GAS). As a result of the review it was suggested that metal-induced stress seems to reduce rather than increase plant frost hardiness.

  16. Effects of High-Latitude Forcing Uncertainty on the Low-Latitude and Midlatitude Ionosphere

    Science.gov (United States)

    Pedatella, N. M.; Lu, G.; Richmond, A. D.

    2018-01-01

    Ensemble simulations are performed using the Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIE-GCM) in order to understand the role of high-latitude forcing uncertainty on the low-latitude and midlatitude ionosphere response to the April 2010 geomagnetic storm. The ensemble is generated by perturbing either the high-latitude electric potential or auroral energy flux in the assimilative mapping for ionosphere electrodynamics (AMIE). Simulations with perturbed high-latitude electric potential result in substantial intraensemble variability in the low-latitude and midlatitude ionosphere response to the geomagnetic storm, and the ensemble standard deviation for the change in NmF2 reaches 50-100% of the mean change. Such large intraensemble variability is not seen when perturbing the auroral energy flux. In this case, the effects of the forcing uncertainty are primarily confined to high latitudes. We therefore conclude that the specification of high-latitude electric fields is an important source of uncertainty when modeling the low-latitude and midlatitude ionosphere response to a geomagnetic storm. A multiple linear regression analysis of the results indicates that uncertainty in the storm time changes in the equatorial electric fields, neutral winds, and neutral composition can all contribute to the uncertainty in the ionosphere electron density. The results of the present study provide insight into the possible uncertainty in simulations of the low-latitude and midlatitude ionosphere response to geomagnetic storms due to imperfect knowledge of the high-latitude forcing.

  17. Dependence of Arctic climate on the latitudinal position of stationary waves and to high-latitudes surface warming

    Science.gov (United States)

    Shin, Yechul; Kang, Sarah M.; Watanabe, Masahiro

    2017-12-01

    Previous studies suggest large uncertainties in the stationary wave response under global warming. Here, we investigate how the Arctic climate responds to changes in the latitudinal position of stationary waves, and to high-latitudes surface warming that mimics the effect of Arctic sea ice loss under global warming. To generate stationary waves in an atmospheric model coupled to slab ocean, a series of experiments is performed where the thermal forcing with a zonal wavenumber-2 (with zero zonal-mean) is prescribed at the surface at different latitude bands in the Northern Hemisphere. When the stationary waves are generated in the subtropics, the cooling response dominates over the warming response in the lower troposphere due to cloud radiative effects. Then, the low-level baroclinicity is reduced in the subtropics, which gives rise to a poleward shift of the eddy driven jet, thereby inducing substantial cooling in the northern high latitudes. As the stationary waves are progressively generated at higher latitudes, the zonal-mean climate state gradually becomes more similar to the integration with no stationary waves. These differences in the mean climate affect the Arctic climate response to high-latitudes surface warming. Additional surface heating over the Arctic is imposed to the reference climates in which the stationary waves are located at different latitude bands. When the stationary waves are positioned at lower latitudes, the eddy driven jet is located at higher latitude, closer to the prescribed Arctic heating. As baroclinicity is more effectively perturbed, the jet shifts more equatorward that accompanies a larger reduction in the poleward eddy transport of heat and momentum. A stronger eddy-induced descending motion creates greater warming over the Arctic. Our study calls for a more accurate simulation of the present-day stationary wave pattern to enhance the predictability of the Arctic warming response in a changing climate.

  18. Metal stress consequences on frost hardiness of plants at northern high latitudes: a review and hypothesis

    International Nuclear Information System (INIS)

    Taulavuori, Kari; Prasad, M.N.V.; Taulavuori, Erja; Laine, Kari

    2005-01-01

    This paper reviews the potential of trace/heavy metal-induced stress to reduce plant frost hardiness at northern high latitudes. The scientific questions are first outlined prior to a brief summary of heavy metal tolerance. The concepts of plant capacity and survival adaptation were used to formulate a hypothesis, according to which heavy metal stress may reduce plant frost hardiness for the following reasons: (1) Heavy metals change membrane properties through impaired resource acquisition and subsequent diminution of the cryoprotectant pool. (2) Heavy metals change membrane properties directly through oxidative stress, i.e. an increase of active oxygen species. (3) The involved co-stress may further increase oxidative stress. (4) The risk of frost injury increases due to membrane alterations. An opposite perspective was also discussed: could metal stress result in enhanced plant frost hardiness? This phenomenon could be based on the metabolism (i.e. glutathione, polyamines, proline, heat shock proteins) underlying a possible general adaptation syndrome of stress (GAS). As a result of the review it was suggested that metal-induced stress seems to reduce rather than increase plant frost hardiness. - Metal stress may reduce plant frost hardiness

  19. Metal stress consequences on frost hardiness of plants at northern high latitudes: a review and hypothesis

    Energy Technology Data Exchange (ETDEWEB)

    Taulavuori, Kari [Department of Biology, University of Oulu, PO Box 3000, FIN-90014, Oulu (Finland)]. E-mail: kari.taulavuori@oulu.fi; Prasad, M.N.V. [Department of Plant Sciences, University of Hyderabad, Hyderabad 500 046, Andhra Pradesh (India); Taulavuori, Erja [Department of Biology, University of Oulu, PO Box 3000, FIN-90014, Oulu (Finland); Laine, Kari [Department of Biology, University of Oulu, PO Box 3000, FIN-90014, Oulu (Finland)

    2005-05-01

    This paper reviews the potential of trace/heavy metal-induced stress to reduce plant frost hardiness at northern high latitudes. The scientific questions are first outlined prior to a brief summary of heavy metal tolerance. The concepts of plant capacity and survival adaptation were used to formulate a hypothesis, according to which heavy metal stress may reduce plant frost hardiness for the following reasons: (1) Heavy metals change membrane properties through impaired resource acquisition and subsequent diminution of the cryoprotectant pool. (2) Heavy metals change membrane properties directly through oxidative stress, i.e. an increase of active oxygen species. (3) The involved co-stress may further increase oxidative stress. (4) The risk of frost injury increases due to membrane alterations. An opposite perspective was also discussed: could metal stress result in enhanced plant frost hardiness? This phenomenon could be based on the metabolism (i.e. glutathione, polyamines, proline, heat shock proteins) underlying a possible general adaptation syndrome of stress (GAS). As a result of the review it was suggested that metal-induced stress seems to reduce rather than increase plant frost hardiness. - Metal stress may reduce plant frost hardiness.

  20. High Latitude Polygons

    Science.gov (United States)

    2005-01-01

    26 September 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows polygonal patterned ground on a south high-latitude plain. The outlines of the polygons, like the craters and hills in this region, are somewhat enhanced by the presence of bright frost left over from the previous winter. On Earth, polygons at high latitudes would usually be attributed to the seasonal freezing and thawing cycles of ground ice. The origin of similar polygons on Mars is less certain, but might also be an indicator of ground ice. Location near: 75.3oS, 113.2oW Image width: width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Spring

  1. High-Latitude Topside Ionospheric Vertical Electron-Density-Profile Changes in Response to Large Magnetic Storms

    Science.gov (United States)

    Benson, Robert F.; Fainberg, Joseph; Osherovich, Vladimir A.; Truhlik, Vladimir; Wang, Yongli; Bilitza, Dieter; Fung, Shing F.

    2015-01-01

    Large magnetic-storm induced changes have been detected in high-latitude topside vertical electron-density profiles Ne(h). The investigation was based on the large database of topside Ne(h) profiles and digital topside ionograms from the International Satellites for Ionospheric Studies (ISIS) program available from the NASA Space Physics Data Facility (SPDF) at http://spdf.gsfc.nasa.gov/isis/isis-status.html. This large database enabled Ne(h) profiles to be obtained when an ISIS satellite passed through nearly the same region of space before, during, and after a major magnetic storm. A major goal was to relate the magnetic-storm induced high-latitude Ne(h) profile changes to solar-wind parameters. Thus an additional data constraint was to consider only storms where solar-wind data were available from the NASA/SPDF OMNIWeb database. Ten large magnetic storms (with Dst less than -100 nT) were identified that satisfied both the Ne(h) profile and the solar-wind data constraints. During five of these storms topside ionospheric Ne(h) profiles were available in the high-latitude northern hemisphere and during the other five storms similar ionospheric data were available in the southern hemisphere. Large Ne(h) changes were observed during each one of these storms. Our concentration in this paper is on the northern hemisphere. The data coverage was best for the northern-hemisphere winter. Here Ne(h) profile enhancements were always observed when the magnetic local time (MLT) was between 00 and 03 and Ne(h) profile depletions were always observed between 08 and 10 MLT. The observed Ne(h) deviations were compared with solar-wind parameters, with appropriate time shifts, for four storms.

  2. Statistical study of high-latitude plasma flow during magnetospheric substorms

    Directory of Open Access Journals (Sweden)

    G. Provan

    2004-11-01

    Full Text Available We have utilised the near-global imaging capabilities of the Northern Hemisphere SuperDARN radars, to perform a statistical superposed epoch analysis of high-latitude plasma flows during magnetospheric substorms. The study involved 67 substorms, identified using the IMAGE FUV space-borne auroral imager. A substorm co-ordinate system was developed, centred on the magnetic local time and magnetic latitude of substorm onset determined from the auroral images. The plasma flow vectors from all 67 intervals were combined, creating global statistical plasma flow patterns and backscatter occurrence statistics during the substorm growth and expansion phases. The commencement of the substorm growth phase was clearly observed in the radar data 18-20min before substorm onset, with an increase in the anti-sunward component of the plasma velocity flowing across dawn sector of the polar cap and a peak in the dawn-to-dusk transpolar voltage. Nightside backscatter moved to lower latitudes as the growth phase progressed. At substorm onset a flow suppression region was observed on the nightside, with fast flows surrounding the suppressed flow region. The dawn-to-dusk transpolar voltage increased from ~40kV just before substorm onset to ~75kV 12min after onset. The low-latitude return flow started to increase at substorm onset and continued to increase until 8min after onset. The velocity flowing across the polar-cap peaked 12-14min after onset. This increase in the flux of the polar cap and the excitation of large-scale plasma flow occurred even though the IMF Bz component was increasing (becoming less negative during most of this time. This study is the first to statistically prove that nightside reconnection creates magnetic flux and excites high-latitude plasma flow in a similar way to dayside reconnection and that dayside and nightside reconnection, are two separate time-dependent processes.

  3. High-Latitude Space Plasma Physics

    International Nuclear Information System (INIS)

    Hultqvist, B.; Hagfors, T.

    1983-01-01

    This book constitutes the proceedings of the Nobel Symposium No. 54 on High Latitude Magnetospheric/Ionospheric Plasma Physics. The main purpose of the symposium was to prepare for the European research effort in space plasma physics in the mid-1980's, in which two major constituents are the European Incoherent Scatter Association (EISCAT) facilities and the Swedish satellite Viking. The physics of the high-latitude ionosphere and how this part of near space is affected by the properties of the solar wind and the interplanetary magnetic field are explored. A detailed discussion is provided on high-latitude magnetospheric physics at altitudes of 1-2 earth radii, the main focus of the Viking project. Specific topics considered include the role of the auroral ionosphere in magnetospheric substorms, the low altitude cleft, ionospheric modification and stimulated emissions, plasma physics on auroral field lines, solar wind-magnetosphere energy coupling, cold plasma distribution above a few thousand kilometers at high latitudes, hot electrons in and above the auroral ionosphere, the correlation of auroral kilometric radiation with visual auroras and with Birkeland currents, electrostatic waves in the topside ionosphere, solitary waves and double layers, and an Alfven wave model of auroral arcs

  4. Shallow food for deep divers: Dynamic foraging behavior of male sperm whales in a high latitude habitat

    DEFF Research Database (Denmark)

    Teloni, Valeria; Johnson, M.P.; Miller, P.J.O.

    2008-01-01

    Groups of female and immature sperm whales live at low latitudes and show a stereotypical diving and foraging behavior with dives lasting about 45 min to depths of between 400 and 1200 m. In comparison, physically mature male sperm whales migrate to high latitudes where little is known about...... their foraging behavior and ecology. Here we use acoustic recording tags to study the diving and acoustic behavior of male sperm whales foraging off northern Norway. Sixty-five hours of tag data provide detailed information about the movements and sound repertoire of four male sperm whales performing 83 dives...... epipelagic prey, is consistent with the hypothesis that male sperm whales may migrate to high latitudes to access a productive, multi-layered foraging habitat....

  5. Thermal mapping of the northern equatorial and temperate latitudes of Mars

    International Nuclear Information System (INIS)

    Zimbelman, J.R.; Kieffer, H.H.

    1979-01-01

    Using Viking infrared thermal mapping observations, nightime temperatures have been mapped over the northern hemisphere of Mars. The latitude range from 10 0 S to 50 0 N was mapped near midnight local time in the northern spring and temperatures compared to those predicted by a uniform thermal model. As in earlier Viking thermal mapping, three large well-defined regions are significantly cooler than expected. Four less well defined warm areas occur; two extend north beyond this coverage. Large variations of the temperature residual, -45 to +19 K, are related primarily to the thermal inertia of the surface. Although stron glocal correlations exist in some areas, there is no consistent regional-scale correlation with elevation, albedo, geology, or geomorphology. Where studied in detail, the boundaries of the cool regions and some local thermal structures are found to be related to the occurrence of patches of dark material and streaks downwind of craters. High-resolution imaging indicates that a mantling layer exists over at least one of the cool regions. A general hypothesis for the transport of loose material on the Martian surface invokes the stability of the smooth, fine grained surfaces to account for the bimodal thermal behavior observed. This hypothesis and thermal mapping suggest that large areas of the Martian surface are very different from those observed by the Viking landers

  6. Impact of high-latitude energy input on the mid- and low-latitude ionosphere and thermosphere

    Science.gov (United States)

    Lu, G.; Sheng, C.

    2017-12-01

    High-latitude energy input has a profound impact on the ionosphere and thermosphere especially during geomagnetic storms. Intense auroral particle precipitation ionizes neutral gases and modifies ionospheric conductivity; collisions between neutrals and fast-moving ions accelerate the neutral winds and produce Joule frictional heating; and the excess Joule and particle heating causes atmospheric upwelling and changes neutral composition due to the rising of the heavier, molecular-rich air. In addition, impulsive Joule heating launches large-scale gravity waves that propagate equatorward toward middle and low latitudes and even into the opposite hemisphere, altering the mean global circulation of the thermosphere. Furthermore, high-latitude electric field can also directly penetrate to lower latitudes under rapidly changing external conditions, causing prompt ionospheric variations in the mid- and low-latitude regions. To study the effects of high-latitude energy input, we apply the different convection and auroral precipitation patterns based on both empirical models and the AMIE outputs. We investigate how the mid- and low-latitude regions respond to the different specifications of high-latitude energy input. The main purpose of the study is to delineate the various dynamical, electrodynamical, and chemical processes and to determine their relative importance in the resulting ionospheric and thermospheric properties at mid and low latitudes.

  7. ULTRAVIOLET EXTINCTION AT HIGH GALACTIC LATITUDES

    Energy Technology Data Exchange (ETDEWEB)

    Peek, J. E. G.; Schiminovich, David, E-mail: jegpeek@gmail.com [Department of Astronomy, Columbia University, New York, NY (United States)

    2013-07-01

    In order to study the properties and effects of high Galactic latitude dust, we present an analysis of 373,303 galaxies selected from the Galaxy Evolution Explorer All-Sky Survey and Wide-field Infrared Explorer All-Sky Data Release. By examining the variation in aggregate ultraviolet colors and number density of these galaxies, we measure the extinction curve at high latitude. We additionally consider a population of spectroscopically selected galaxies from the Sloan Digital Sky Survey to measure extinction in the optical. We find that dust at high latitude is neither quantitatively nor qualitatively consistent with standard reddening laws. Extinction in the FUV and NUV is {approx}10% and {approx}35% higher than expected, with significant variation across the sky. We find that no single R{sub V} parameter fits both the optical and ultraviolet extinction at high latitude, and that while both show detectable variation across the sky, these variations are not related. We propose that the overall trends we detect likely stem from an increase in very small silicate grains in the interstellar medium.

  8. ULTRAVIOLET EXTINCTION AT HIGH GALACTIC LATITUDES

    International Nuclear Information System (INIS)

    Peek, J. E. G.; Schiminovich, David

    2013-01-01

    In order to study the properties and effects of high Galactic latitude dust, we present an analysis of 373,303 galaxies selected from the Galaxy Evolution Explorer All-Sky Survey and Wide-field Infrared Explorer All-Sky Data Release. By examining the variation in aggregate ultraviolet colors and number density of these galaxies, we measure the extinction curve at high latitude. We additionally consider a population of spectroscopically selected galaxies from the Sloan Digital Sky Survey to measure extinction in the optical. We find that dust at high latitude is neither quantitatively nor qualitatively consistent with standard reddening laws. Extinction in the FUV and NUV is ∼10% and ∼35% higher than expected, with significant variation across the sky. We find that no single R V parameter fits both the optical and ultraviolet extinction at high latitude, and that while both show detectable variation across the sky, these variations are not related. We propose that the overall trends we detect likely stem from an increase in very small silicate grains in the interstellar medium.

  9. Causes of spring vegetation growth trends in the northern mid–high latitudes from 1982 to 2004

    International Nuclear Information System (INIS)

    Mao Jiafu; Shi Xiaoying; Thornton, Peter E; Piao Shilong; Wang Xuhui

    2012-01-01

    The Community Land Model version 4 (CLM4) is applied to explore the spatial–temporal patterns of spring (April–May) vegetation growth trends over the northern mid–high latitudes (NMH) (>25°N) between 1982 and 2004. During the spring season through the 23 yr period, both the satellite-derived and simulated normalized difference vegetation index (NDVI) anomalies show a statistically significant correlation and an overall greening trend within the study area. Consistently with the observed NDVI–temperature relation, the CLM4 NDVI shows a significant positive association with the spring temperature anomaly for the NMH, North America and Eurasia. Large study areas experience temperature discontinuity associated with contrasting NDVI trends. Before and after the turning point (TP) of the temperature trends, climatic variability plays a dominant role, while the other environmental factors exert minor effects on the NDVI tendencies. Simulated vegetation growth is broadly stimulated by the increasing atmospheric CO 2 . Trends show that nitrogen deposition increases NDVI mostly in southeastern China, and decreases NDVI mainly in western Russia after the temperature TP. Furthermore, land use-induced NDVI trends vary roughly with the respective changes in land management practices (crop areas and forest coverage). Our results highlight how non-climatic factors mitigate or exacerbate the impact of temperature on spring vegetation growth, particularly across regions with intensive human activity. (letter)

  10. Causes of spring vegetation greenness trends in the northern mid-high latitudes from 1982 to 2004

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Jiafu [ORNL; Shi, Xiaoying [ORNL; Thornton, Peter E [ORNL; Shilong, Dr. Piao [Peking University; Xuhui, Dr. Wang [Peking University

    2012-01-01

    The Community Land Model version 4 (CLM4) is applied to explore the spatial temporal patterns of spring (April May) vegetation growth trends over the northern mid high latitudes (NMH) (>25 N) between 1982 and 2004. During the spring season through the 23 yr period, both the satellite-derived and simulated normalized difference vegetation index (NDVI) anomalies show a statistically significant correlation and an overall greening trend within the study area. Consistently with the observed NDVI temperature relation, the CLM4 NDVI shows a significant positive association with the spring temperature anomaly for the NMH, North America and Eurasia. Large study areas experience temperature discontinuity associated with contrasting NDVI trends. Before and after the turning point (TP) of the temperature trends, climatic variability plays a dominant role, while the other environmental factors exert minor effects on the NDVI tendencies. Simulated vegetation growth is broadly stimulated by the increasing atmospheric CO2. Trends show that nitrogen deposition increases NDVI mostly in southeastern China, and decreases NDVI mainly in western Russia after the temperature TP. Furthermore, land use-induced NDVI trends vary roughly with the respective changes in land management practices (crop areas and forest coverage). Our results highlight how non-climatic factors mitigate or exacerbate the impact of temperature on spring vegetation growth, particularly across regions with intensive human activity.

  11. Amplified warming projections for high altitude regions of the northern hemisphere mid-latitudes from CMIP5 models

    International Nuclear Information System (INIS)

    Rangwala, Imtiaz; Sinsky, Eric; Miller, James R

    2013-01-01

    We use output from global climate models available from the Coupled Model Intercomparison Project Phase 5 (CMIP5) for three different greenhouse gas emission scenarios to investigate whether the projected warming in mountains by the end of the 21st century is significantly different from that in low elevation regions. To remove the effects of latitudinal variation in warming rates, we focus on seasonal changes in the mid-latitude band of the northern hemisphere between 27.5° N and 40° N, where the two major mountain systems are the Tibetan Plateau/Himalayas in Asia and the Rocky Mountains in the United States. Results from the multi-model ensemble indicate that warming rates in mountains will be enhanced relative to non-mountain regions at the same latitude, particularly during the cold season. The strongest correlations of enhanced warming with elevation are obtained for the daily minimum temperature during winter, with the largest increases found for the Tibetan Plateau/Himalayas. The model projections indicate that this occurs, in part, because of proportionally greater increases in downward longwave radiation at higher elevations in response to increases in water vapor. The mechanisms for enhanced increases in winter and spring maximum temperatures in the Rockies appear to be influenced more by increases in surface absorption of solar radiation owing to a reduced snow cover. Furthermore, the amplification of warming with elevation is greater for a higher greenhouse gas emission scenario. (letter)

  12. Climatology of GNPs ionospheric scintillation at high and mid latitudes under different solar activity conditions

    International Nuclear Information System (INIS)

    Spogli, L.; Alfonsi, L.; De Franceschi, G.; Romano, V.; Aquino, M.H.O.; Dodson, A.

    2010-01-01

    We analyze data of ionospheric scintillation over North European regions for the same period (October to November) of two different years (2003 and 2008), characterized by different geomagnetic conditions. The work aims to develop a scintillation climatology of the high- and mid-latitude ionosphere, analyzing the behaviour of the scintillation occurrence as a function of the magnetic local time (MLT) and of the altitude adjusted corrected magnetic latitude (M lat), to characterize scintillation scenarios under different solar activity conditions. The results shown herein are obtained merging observations from a network of GISTMs (GPS Ionospheric Scintillation and TEC Monitor) located over a wide range of latitudes in the northern hemisphere. Our findings confirm the associations of the occurrence of the ionospheric irregularities with the expected position of the auroral oval and of the ionospheric trough walls and show the contribution of the polar cap patches even under solar minimum conditions.

  13. The influence of the observatory latitude on the study of ultra high energy cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Anjos, Rita C. dos [Departamento de Engenharias e Exatas, Universidade Federal do Paraná (UFPR), Pioneiro, 2153, Palotina, PR, 85950-000 Brazil (Brazil); De Souza, Vitor [Instituto de Física de São Carlos, Universidade de São Paulo, CP 369, São Carlos, SP, 13560-970 Brazil (Brazil); De Almeida, Rogerio M. [EEIMVR, Universidade Federal Fluminense, Volta Redonda, RJ (Brazil); Santos, Edivaldo M., E-mail: ritacassia@ufpr.br, E-mail: vitor@ifsc.usp.br, E-mail: rmenezes@id.uff.br, E-mail: emoura@if.usp.br [Instituto de Física, Universidade de São Paulo, Rua do Matão trav. R 187, São Paulo, 05508-090 Brazil (Brazil)

    2017-07-01

    Recent precision measurements of the Ultra High Energy Cosmic Rays (UHECR) arrival directions, spectrum and parameters related to the mass of the primary particle have been done by the HiRes, Pierre Auger and Telescope Array (TA) Observatories. In this paper, distributions of arrival directions of events in the nearby Universe are assumed to correlate with sources in the 2MASS Redshift Survey (2MRS), IRAS 1.2 Jy Survey, Palermo Swift-BAT and Swift-BAT catalogs, and the effect of the latitude of the observatory on the measurement of the energy spectrum and on the capability of measuring anisotropy is studied. The differences between given latitudes on the northern and southern hemispheres are quantified. It is shown that the latitude of the observatory: a) has an influence on the total flux measured and b) imposes an important limitation on the capability of measuring an anisotropic sky.

  14. Changes in Arctic vegetation amplify high-latitude warming through the greenhouse effect.

    Science.gov (United States)

    Swann, Abigail L; Fung, Inez Y; Levis, Samuel; Bonan, Gordon B; Doney, Scott C

    2010-01-26

    Arctic climate is projected to change dramatically in the next 100 years and increases in temperature will likely lead to changes in the distribution and makeup of the Arctic biosphere. A largely deciduous ecosystem has been suggested as a possible landscape for future Arctic vegetation and is seen in paleo-records of warm times in the past. Here we use a global climate model with an interactive terrestrial biosphere to investigate the effects of adding deciduous trees on bare ground at high northern latitudes. We find that the top-of-atmosphere radiative imbalance from enhanced transpiration (associated with the expanded forest cover) is up to 1.5 times larger than the forcing due to albedo change from the forest. Furthermore, the greenhouse warming by additional water vapor melts sea-ice and triggers a positive feedback through changes in ocean albedo and evaporation. Land surface albedo change is considered to be the dominant mechanism by which trees directly modify climate at high-latitudes, but our findings suggest an additional mechanism through transpiration of water vapor and feedbacks from the ocean and sea-ice.

  15. Re-assessing the nitrogen signal in continental margin sediments: New insights from the high northern latitudes

    Science.gov (United States)

    Knies, Jochen; Brookes, Steven; Schubert, Carsten J.

    2007-01-01

    Organic and inorganic nitrogen and their isotopic signatures were studied in continental margin sediments off Spitsbergen. We present evidence that land-derived inorganic nitrogen strongly dilutes the particulate organic signal in coastal and fjord settings and accounts for up to 70% of the total nitrogen content. Spatial heterogeneity in inorganic nitrogen along the coast is less likely to be influenced by clay mineral assemblages or various substrates than by the supply of terrestrial organic matter (TOM) within eroded soil material into selected fjords and onto the shelf. The δ15N signal of the inorganic nitrogen ( δ15N inorg) in sediments off Spitsbergen seems to be appropriate to trace TOM supply from various climate- and ecosystem zones and elucidates the dominant transport media of terrigenous sediments to the marine realm. Moreover, we postulate that with the study of sedimentary δ15N inorg in the Atlantic-Arctic gateway, climatically induced changes in catchment's vegetations in high northern latitudes may be reconstructed. The δ15N org signal is primarily controlled by the availability of nitrate in the dominating ocean current systems and the corresponding degree of utilization of the nitrate pool in the euphotic zone. Not only does this new approach allow for a detailed view into the nitrogen cycle for settings with purely primary-produced organic matter supply, it also provides new insights into both the deposition of marine and terrestrial nitrogen and its ecosystem response to (paleo-) climate changes.

  16. Quantifying Surface Water Dynamics at 30 Meter Spatial Resolution in the North American High Northern Latitudes 1991-2011

    Science.gov (United States)

    Carroll, Mark; Wooten, Margaret; DiMiceli, Charlene; Sohlberg, Robert; Kelly, Maureen

    2016-01-01

    The availability of a dense time series of satellite observations at moderate (30 m) spatial resolution is enabling unprecedented opportunities for understanding ecosystems around the world. A time series of data from Landsat was used to generate a series of three maps at decadal time step to show how surface water has changed from 1991 to 2011 in the high northern latitudes of North America. Previous attempts to characterize the change in surface water in this region have been limited in either spatial or temporal resolution, or both. This series of maps was generated for the NASA Arctic and Boreal Vulnerability Experiment (ABoVE), which began in fall 2015. These maps show a nominal extent of surface water by using multiple observations to make a single map for each time step. This increases the confidence that any detected changes are related to climate or ecosystem changes not simply caused by short duration weather events such as flood or drought. The methods and comparison to other contemporary maps of the region are presented here. Initial verification results indicate 96% producer accuracy and 54% user accuracy when compared to 2-m resolution World View-2 data. All water bodies that were omitted were one Landsat pixel or smaller, hence below detection limits of the instrument.

  17. Satellite observations of high northern latitude vegetation productivity changes between 1982 and 2008: ecological variability and regional differences

    Energy Technology Data Exchange (ETDEWEB)

    Beck, Pieter S A; Goetz, Scott J, E-mail: pbeck@whrc.org [Woods Hole Research Center, 149 Woods Hole Road, Falmouth, MA 02540 (United States)

    2011-10-15

    To assess ongoing changes in high latitude vegetation productivity we compared spatiotemporal patterns in remotely sensed vegetation productivity in the tundra and boreal zones of North America and Eurasia. We compared the long-term GIMMS (Global Inventory Modeling and Mapping Studies) NDVI (Normalized Difference Vegetation Index) to the more recent and advanced MODIS (Moderate Resolution Imaging Spectroradiometer) NDVI data set, and mapped circumpolar trends in a gross productivity metric derived from the former. We then analyzed how temporal changes in productivity differed along an evergreen-deciduous gradient in boreal Alaska, along a shrub cover gradient in Arctic Alaska, and during succession after fire in boreal North America and northern Eurasia. We find that the earlier reported contrast between trends of increasing tundra and decreasing boreal forest productivity has amplified in recent years, particularly in North America. Decreases in boreal forest productivity are most prominent in areas of denser tree cover and, particularly in Alaska, evergreen forest stands. On the North Slope of Alaska, however, increases in tundra productivity do not appear restricted to areas of higher shrub cover, which suggests enhanced productivity across functional vegetation types. Differences in the recovery of post-disturbance vegetation productivity between North America and Eurasia are described using burn chronosequences, and the potential factors driving regional differences are discussed.

  18. Satellite observations of high northern latitude vegetation productivity changes between 1982 and 2008: ecological variability and regional differences

    International Nuclear Information System (INIS)

    Beck, Pieter S A; Goetz, Scott J

    2011-01-01

    To assess ongoing changes in high latitude vegetation productivity we compared spatiotemporal patterns in remotely sensed vegetation productivity in the tundra and boreal zones of North America and Eurasia. We compared the long-term GIMMS (Global Inventory Modeling and Mapping Studies) NDVI (Normalized Difference Vegetation Index) to the more recent and advanced MODIS (Moderate Resolution Imaging Spectroradiometer) NDVI data set, and mapped circumpolar trends in a gross productivity metric derived from the former. We then analyzed how temporal changes in productivity differed along an evergreen-deciduous gradient in boreal Alaska, along a shrub cover gradient in Arctic Alaska, and during succession after fire in boreal North America and northern Eurasia. We find that the earlier reported contrast between trends of increasing tundra and decreasing boreal forest productivity has amplified in recent years, particularly in North America. Decreases in boreal forest productivity are most prominent in areas of denser tree cover and, particularly in Alaska, evergreen forest stands. On the North Slope of Alaska, however, increases in tundra productivity do not appear restricted to areas of higher shrub cover, which suggests enhanced productivity across functional vegetation types. Differences in the recovery of post-disturbance vegetation productivity between North America and Eurasia are described using burn chronosequences, and the potential factors driving regional differences are discussed.

  19. Latitude, temperature, and habitat complexity predict predation pressure in eelgrass beds across the Northern Hemisphere.

    Science.gov (United States)

    Reynolds, Pamela L; Stachowicz, John J; Hovel, Kevin; Boström, Christoffer; Boyer, Katharyn; Cusson, Mathieu; Eklöf, Johan S; Engel, Friederike G; Engelen, Aschwin H; Eriksson, Britas Klemens; Fodrie, F Joel; Griffin, John N; Hereu, Clara M; Hori, Masakazu; Hanley, Torrance C; Ivanov, Mikhail; Jorgensen, Pablo; Kruschel, Claudia; Lee, Kun-Seop; McGlathery, Karen; Moksnes, Per-Olav; Nakaoka, Masahiro; O'Connor, Mary I; O'Connor, Nessa E; Orth, Robert J; Rossi, Francesca; Ruesink, Jennifer; Sotka, Erik E; Thormar, Jonas; Tomas, Fiona; Unsworth, Richard K F; Whalen, Matthew A; Duffy, J Emmett

    2018-01-01

    Latitudinal gradients in species interactions are widely cited as potential causes or consequences of global patterns of biodiversity. However, mechanistic studies documenting changes in interactions across broad geographic ranges are limited. We surveyed predation intensity on common prey (live amphipods and gastropods) in communities of eelgrass (Zostera marina) at 48 sites across its Northern Hemisphere range, encompassing over 37° of latitude and four continental coastlines. Predation on amphipods declined with latitude on all coasts but declined more strongly along western ocean margins where temperature gradients are steeper. Whereas in situ water temperature at the time of the experiments was uncorrelated with predation, mean annual temperature strongly positively predicted predation, suggesting a more complex mechanism than simply increased metabolic activity at the time of predation. This large-scale biogeographic pattern was modified by local habitat characteristics; predation declined with higher shoot density both among and within sites. Predation rates on gastropods, by contrast, were uniformly low and varied little among sites. The high replication and geographic extent of our study not only provides additional evidence to support biogeographic variation in predation intensity, but also insight into the mechanisms that relate temperature and biogeographic gradients in species interactions. © 2017 by the Ecological Society of America.

  20. High-latitude tree-ring data: Records of climatic change and ecological response

    International Nuclear Information System (INIS)

    Graumlich, L.J.

    1991-01-01

    Tree-ring data provide critical information regarding two fundamental questions as to the role of the polar regions in global change: (1) what is the nature of climatic variability? and (2) what is the response of vegetation to climatic variability? Tree-ring-based climatic reconstructions document the variability of the climate system on time scales of years to centuries. Dendroclimatic reconstructions indicate that the climatic episodes defined on the basis of documentary evidence in western Europe (i.e., Medieval Warm Episode, ca. A.D. 1000-1300; Little Ice Age, ca. A.D. 1550-1850) can be observed at some high-latitude sites (ex., Polar Urals). Spatial variation in long-term temperature trends (ex., northern Fennoscandia vs. Polar Urals) demonstrates the importance of regional-scale climatic controls. When collated into global networks, proxy-based climatic reconstructions can be used to test hypotheses as to the relative importance of external forcing vs. internal variation in governing climatic variation. Specifically, such a global network would allow the quantification of the climatic response to various permutations of factors thought to be important in governing decadal- to centennial-scale climatic variation. Tree populations respond to annual- to centennial-scale climatic variation through changes in rates of growth, establishment, and mortality. Tree-ring studies that document multiple aspects of high-latitude treeline dynamics (i.e., the timing of tree establishment, mortality, and changes from krummholz to upright growth) indicate a complex interaction between growth form, population processes, and environmental variability. Such interactions result in varying sensitivities of high-latitude trees to climatic change

  1. Local endemicity and high diversity characterise high-latitude coral- Symbiodinium partnerships

    Science.gov (United States)

    Wicks, L. C.; Sampayo, E.; Gardner, J. P. A.; Davy, S. K.

    2010-12-01

    Obligate symbiotic dinoflagellates ( Symbiodinium) residing within the tissues of most reef invertebrates are important in determining the tolerance range of their host. Coral communities living at high latitudes experience wide fluctuations in environmental conditions and thus provide an ideal system to gain insights into the range within which the symbiotic relationship can be sustained. Further, understanding whether and how symbiont communities associated with high-latitude coral reefs are different from their tropical counterparts will provide clues to the potential of corals to cope with marginal or changing conditions. However, little is known of the host and symbiont partnerships at high latitudes. Symbiodinium diversity and specificity of high-latitude coral communities were explored using denaturing gradient gel electrophoresis (PCR-DGGE) analysis of the internal transcribed spacer regions (ITS1 and ITS2) of the ribosomal DNA at Lord Howe Island (31°S; Australia), and the Kermadec Islands (29°S; New Zealand). All but one host associated with clade C Symbiodinium, the exception being a soft coral ( Capnella sp.) that contained Symbiodinium B1. Besides ‘host-generalist’ Symbiodinium types C1 and C3, approximately 72% of the Symbiodinium identified were novel C types, and zonation of symbionts in relation to environmental parameters such as depth and turbidity was evident in certain host species. The high-latitude Symbiodinium communities showed little overlap and relatively high diversity compared with communities sampled on the tropical Great Barrier Reef. Although host specificity was maintained in certain species, others shared symbionts and this potential reduction of fidelity at high-latitude locations may be the result of locally challenging and highly variable environmental conditions.

  2. High-latitude plasma convection during Northward IMF as derived from in-situ magnetospheric Cluster EDI measurements

    Directory of Open Access Journals (Sweden)

    M. Förster

    2008-09-01

    Full Text Available In this study, we investigate statistical, systematic variations of the high-latitude convection cell structure during northward IMF. Using 1-min-averages of Cluster/EDI electron drift observations above the Northern and Southern polar cap areas for six and a half years (February 2001 till July 2007, and mapping the spatially distributed measurements to a common reference plane at ionospheric level in a magnetic latitude/MLT grid, we obtained regular drift patterns according to the various IMF conditions. We focus on the particular conditions during northward IMF, where lobe cells at magnetic latitudes >80° with opposite (sunward convection over the central polar cap are a permanent feature in addition to the main convection cells at lower latitudes. They are due to reconnection processes at the magnetopause boundary poleward of the cusp regions. Mapped EDI data have a particular good coverage within the central part of the polar cap, so that these patterns and their dependence on various solar wind conditions are well verified in a statistical sense. On average, 4-cell convection pattern are shown as regular structures during periods of nearly northward IMF with the tendency of a small shift toward negative clock angles. The positions of these high-latitude convection foci are within 79° to 85° magnetic latitude and 09:00–15:00 MLT. The MLT positions are approximately symmetric ±2 h about 11:30 MLT, i.e. slightly offset from midday toward prenoon hours, while the maximum (minimum potential of the high-latitude cells is at higher magnetic latitudes near their maximum potential difference at ≈−10° to −15° clock angle for the North (South Hemisphere. With increasing clock angle distances from ≈IMFBz+, a gradual transition occurs from the 4-cell pattern via a 3-cell to the common 2-cell convection pattern, in the course of which one of the medium-scale high-latitude dayside cells diminishes and disappears while the

  3. Climatically induced floristic changes across the Eocene-Oligocene transition in the northern high latitudes, Yukon Territory, Canada

    Energy Technology Data Exchange (ETDEWEB)

    Ridgway, K.D.; Sweet, A.R.; Cameron, A.R. [Purdue University, West Lafayette, IN (United States). Dept. of Earth and Atmospheric Sciences

    1995-06-01

    Global temperature decline associated with the Eocene-Oligocene transition resulted in extinctions of plants and animals in both marine and nonmarine environments. The extensive stratigraphic exposures, well-preserved palynological assemblages, and interbedded coal seams of the nonmarine Amphitheatre Formation, Burwash Basin, Yukon Territory, provide a comprehensive record of this transition. The formation spans a paleoclimatically significant interval otherwise poorly represented in high-latitude deposits of the northwestern Cordiller. Palynological data constrained by the chronologic and stratigraphic framework established for the Amphitheatre Formation indicate that the global temperature decline resulted in a shift from warm temperate, angiosperm-dominated to cooler temperate, gymnosperm-dominated (mainly coniferous) forest types. Petrographic compositional changes in the coals document the same plant community changes. The floristic data also indicate that, at high latitudes, there may have been a change to a wetter and less seasonal climate during the overall global cooling trend.

  4. Ecosystem responses to recent oceanographic variability in high-latitude Northern Hemisphere ecosystems

    Science.gov (United States)

    Mueter, Franz J.; Broms, Cecilie; Drinkwater, Kenneth F.; Friedland, Kevin D.; Hare, Jonathan A.; Hunt, George L., Jr.; Melle, Webjørn; Taylor, Maureen

    2009-04-01

    As part of the international MENU collaboration, we compared and contrasted ecosystem responses to climate-forced oceanographic variability across several high latitude regions of the North Pacific (Eastern Bering Sea (EBS) and Gulf of Alaska (GOA)) and North Atlantic Oceans (Gulf of Maine/Georges Bank (GOM/GB) and the Norwegian/Barents Seas (NOR/BAR)). Differences in the nitrate content of deep source waters and incoming solar radiation largely explain differences in average primary productivity among these ecosystems. We compared trends in productivity and abundance at various trophic levels and their relationships with sea-surface temperature. Annual net primary production generally increases with annual mean sea-surface temperature between systems and within the EBS, BAR, and GOM/GB. Zooplankton biomass appears to be controlled by both top-down (predation by fish) and bottom-up forcing (advection, SST) in the BAR and NOR regions. In contrast, zooplankton in the GOM/GB region showed no evidence of top-down forcing but appeared to control production of major fish populations through bottom-up processes that are independent of temperature variability. Recruitment of several fish stocks is significantly and positively correlated with temperature in the EBS and BAR, but cod and pollock recruitment in the EBS has been negatively correlated with temperature since the 1977 shift to generally warmer conditions. In each of the ecosystems, fish species showed a general poleward movement in response to warming. In addition, the distribution of groundfish in the EBS has shown a more complex, non-linear response to warming resulting from internal community dynamics. Responses to recent warming differ across systems and appear to be more direct and more pronounced in the higher latitude systems where food webs and trophic interactions are simpler and where both zooplankton and fish species are often limited by cold temperatures.

  5. A high-latitude, low-latitude boundary layer model of the convection current system

    International Nuclear Information System (INIS)

    Siscoe, G.L.; Lotko, W.; Sonnerup, B.U.O.

    1991-01-01

    Observations suggest that both the high- and low-latitude boundary layers contribute to magnetospheric convection, and that their contributions are linked. In the interpretation pursued here, the high-latitude boundary layer (HBL) generates the voltage while the low-latitude boundary layer (LBL) generates the current for the part of the convection electric circuit that closes through the ionosphere. This paper gives a model that joins the high- and low-latitude boundary layers consistently with the ionospheric Ohm's law. It describes an electric circuit linking both boundary layers, the region 1 Birkeland currents, and the ionospheric Pedersen closure currents. The model works by using the convection electric field that the ionosphere receives from the HBL to determine two boundary conditions to the equations that govern viscous LBL-ionosphere coupling. The result provides the needed self-consistent coupling between the two boundary layers and fully specifies the solution for the viscous LBL-ionosphere coupling equations. The solution shows that in providing the current required by the ionospheric Ohm's law, the LBL needs only a tenth of the voltage that spans the HBL. The solution also gives the latitude profiles of the ionospheric electric field, parallel currents, and parallel potential. It predicts that the plasma in the inner part of the LBL moves sunward instead of antisunward and that, as the transpolar potential decreases below about 40 kV, reverse polarity (region 0) currents appear at the poleward border of the region 1 currents. A possible problem with the model is its prediction of a thin boundary layer (∼1000 km), whereas thicknesses inferred from satellite data tend to be greater

  6. Warm mid-Cretaceous high-latitude sea-surface temperatures from the southern Tethys Ocean and cool high-latitude sea-surface temperatures from the Arctic Ocean: asymmetric worldwide distribution of dinoflagellates

    Science.gov (United States)

    Masure, Edwige; Desmares, Delphine; Vrielynck, Bruno

    2014-05-01

    Dealing with 87 articles and using a Geographical Information System, Masure and Vrielynck (2009) have mapped worldwide biogeography of 38 Late Albian dinoflagellate cysts and have demonstrated Cretaceous oceanic bioclimatic belts. For comparison 30 Aptian species derived from 49 studies (Masure et al., 2013) and 49 Cenomanian species recorded from 33 articles have been encountered. Tropical, Subtropical, Boreal, Austral, bipolar and cosmopolitan species have been identified and Cretaceous dinoflagellate biomes are introduced. Asymmetric distribution of Aptian and Late Albian/Cenomanian subtropical Tethyan species, from 40°N to 70°S, demonstrates asymmetric Aptian and Late Albian/Cenomanian Sea Surface Temperature (SST) gradients with warm water masses in high latitudes of Southern Ocean. The SST gradients were stronger in the Northern Hemisphere than in the Southern Hemisphere. We note that Aptian and Late Albian/Cenomanian dinoflagellates restricted to subtropical and subpolar latitudes met and mixed at 35-40°N, while they mixed from 30°S to 70°S and from 50°S to 70°S respectively in the Southern Hemisphere. Mixing belts extend on 5° in the Northern Hemisphere and along 40° (Aptian) and 20° (Late Albian/Cenomanian) in the Southern one. The board southern mixing belt of Tethyan and Austral dinoflagellates suggest co-occurrence of warm and cold currents. We record climatic changes such as the Early Aptian cooler period and Late Aptian and Albian warming through the poleward migration of species constrained to cool water masses. These species sensitive to temperature migrated from 35°N to 55°N through the shallow Greenland-Norwergian Seaway connecting the Central Atlantic and the Arctic Ocean. While Tethyan species did not migrate staying at 40°N. We suggest that the Greenland-Norwergian Seaway might has been a barrier until Late Albian/Cenomanian for oceanic Tethyan dinoflagellates stopped either by the shallow water column or temperature and salinity

  7. Restless legs syndrome: relationship between prevalence and latitude.

    Science.gov (United States)

    Koo, Brian B

    2012-12-01

    Restless legs syndrome (RLS) has a broad worldwide prevalence between 0.01% and 18.3%. While differences in RLS definitions and data ascertainment methods account for some variability, other factors likely contribute. The circadian nature of RLS and the fact that RLS symptoms track with endogenous melatonin levels suggest that light or ultraviolet radiation (UVR) may be related to RLS expression. As the amount of UVR decreases with latitude, we considered the potential effect of geography on RLS prevalence with the thought being that RLS prevalence rises with increasing latitude. RLS epidemiologic studies were sought via Pubmed search in the period between January 1, 1992 and November 15, 2010. Prevalence was mapped for each country or specific region studied and examined by continent. Pearson's correlational testing was carried out for RLS prevalence and latitude of the region studied. Global RLS prevalence ranges from 0.01% in Africa, 0.7% to 12.5% in Asia, 2.0% to 18.9% in the Americas, and 3.2% to 18.3% in Europe. Mapping RLS prevalence by country or region in both the Americas and in Europe suggests increasing RLS frequency with greater northern latitude. RLS prevalence is positively correlated with northern latitude in both North America and Europe with correlation coefficients of r = 0.77 (0.15, 0.96; p = 0.02) and r = 0.74 (0.44, 0.89; p = 0.0002), respectively. In Europe, lower latitudinal countries like Greece and Turkey had RLS prevalence (per 1,000 persons) of 38 and 34, respectively, middle latitudinal countries like France and England of 108 and 86, respectively, and high latitudinal countries like Norway and Iceland of 143 and 183, respectively. RLS epidemiology indicates an increase in RLS frequency in northern latitudinal countries as a function of distance from the equator, an effect most evident in Europe. This suggests that factors that track with latitude like UVR may be involved in the expression of RLS.

  8. The behaviour of stratospheric and upper tropospheric ozone in high and mid latitudes; the role of ozone as a climate gas

    Energy Technology Data Exchange (ETDEWEB)

    Kyroe, M; Rummukainen, M; Kivi, R; Turunen, T; Karhu, J [Finnish Meteorological Inst., Sodankylae (Finland); Taalas, P [Finnish Meteorological Inst., Helsinki (Finland)

    1997-12-31

    During the past few years, the dual role that ozone plays in climate change has been becoming increasingly obvious. First, continuous thinning of the ozone layer has been evident, even in the high and middle latitudes in the northern hemisphere. Secondly, ozone is also a greenhouse gas, affecting radiative transfer. Increases in tropospheric ozone have a positive forcing, whereas decreases in stratospheric ozone cause a negative forcing. During the last six years, measurements on total ozone and the vertical distribution of ozone have been performed at the Sodankylae Observatory. At Jokioinen Observatory, measurements on total ozone have been performed since 1990 and measurements on the vertical distribution of ozone since 1993. The overall project has focused on extending the national data series on total ozone and the vertical distribution of ozone. At the same time, the study has contributed to the study of interannual variability of the ozone layer. This SILMU project took part in the large-scale research activities, in addition to performing national studies. The results confirm that there has been fast chemical ozone destruction in the high latitudes in the northern hemisphere. This was particularly evident in the last two winters, 1994/95 and 1995/96. The new data also allows better trend analyses to be made on ozone in high and mid latitudes

  9. The behaviour of stratospheric and upper tropospheric ozone in high and mid latitudes; the role of ozone as a climate gas

    Energy Technology Data Exchange (ETDEWEB)

    Kyroe, M.; Rummukainen, M.; Kivi, R.; Turunen, T.; Karhu, J. [Finnish Meteorological Inst., Sodankylae (Finland); Taalas, P. [Finnish Meteorological Inst., Helsinki (Finland)

    1996-12-31

    During the past few years, the dual role that ozone plays in climate change has been becoming increasingly obvious. First, continuous thinning of the ozone layer has been evident, even in the high and middle latitudes in the northern hemisphere. Secondly, ozone is also a greenhouse gas, affecting radiative transfer. Increases in tropospheric ozone have a positive forcing, whereas decreases in stratospheric ozone cause a negative forcing. During the last six years, measurements on total ozone and the vertical distribution of ozone have been performed at the Sodankylae Observatory. At Jokioinen Observatory, measurements on total ozone have been performed since 1990 and measurements on the vertical distribution of ozone since 1993. The overall project has focused on extending the national data series on total ozone and the vertical distribution of ozone. At the same time, the study has contributed to the study of interannual variability of the ozone layer. This SILMU project took part in the large-scale research activities, in addition to performing national studies. The results confirm that there has been fast chemical ozone destruction in the high latitudes in the northern hemisphere. This was particularly evident in the last two winters, 1994/95 and 1995/96. The new data also allows better trend analyses to be made on ozone in high and mid latitudes

  10. THEORY OF SOLAR MERIDIONAL CIRCULATION AT HIGH LATITUDES

    International Nuclear Information System (INIS)

    Dikpati, Mausumi; Gilman, Peter A.

    2012-01-01

    We build a hydrodynamic model for computing and understanding the Sun's large-scale high-latitude flows, including Coriolis forces, turbulent diffusion of momentum, and gyroscopic pumping. Side boundaries of the spherical 'polar cap', our computational domain, are located at latitudes ≥ 60°. Implementing observed low-latitude flows as side boundary conditions, we solve the flow equations for a Cartesian analog of the polar cap. The key parameter that determines whether there are nodes in the high-latitude meridional flow is ε = 2ΩnπH 2 /ν, where Ω is the interior rotation rate, n is the radial wavenumber of the meridional flow, H is the depth of the convection zone, and ν is the turbulent viscosity. The smaller the ε (larger turbulent viscosity), the fewer the number of nodes in high latitudes. For all latitudes within the polar cap, we find three nodes for ν = 10 12 cm 2 s –1 , two for 10 13 , and one or none for 10 15 or higher. For ν near 10 14 our model exhibits 'node merging': as the meridional flow speed is increased, two nodes cancel each other, leaving no nodes. On the other hand, for fixed flow speed at the boundary, as ν is increased the poleward-most node migrates to the pole and disappears, ultimately for high enough ν leaving no nodes. These results suggest that primary poleward surface meridional flow can extend from 60° to the pole either by node merging or by node migration and disappearance.

  11. Ulysses solar wind plasma observations at high southerly latitudes.

    Science.gov (United States)

    Phillips, J L; Bame, S J; Feldman, W C; Gosling, J T; Hammond, C M; McComas, D J; Goldstein, B E; Neugebauer, M; Scime, E E; Suess, S T

    1995-05-19

    Solar wind plasma observations made by the Ulysses spacecraft through -80.2 degrees solar latitude and continuing equatorward to -40.1 degrees are summarized. Recurrent high-speed streams and corotating interaction regions dominated at middle latitudes. The speed of the solar wind was typically 700 to 800 kilometers per second poleward of -35 degrees . Corotating reverse shocks persisted farther south than did forward shocks because of the tilt of the heliomagnetic streamer belt. Sporadic coronal mass ejections were seen as far south as -60.5 degrees . Proton temperature was higher and the electron strahl was broader at higher latitudes. The high-latitude wind contained compressional, pressure-balanced, and Alfvénic structures.

  12. The sponge genus Ephydatia from the high-latitude middle Eocene: environmental and evolutionary significance.

    Science.gov (United States)

    Pisera, Andrzej; Manconi, Renata; Siver, Peter A; Wolfe, Alexander P

    2016-01-01

    The freshwater sponge species Ephydatia cf. facunda Weltner, 1895 (Spongillida, Spongillidae) is reported for the first time as a fossil from middle Eocene lake sediments of the Giraffe kimberlite maar in northern Canada. The sponge is represented by birotule gemmuloscleres as well as oxea megascleres. Today, E. facunda inhabits warm-water bodies, so its presence in the Giraffe locality provides evidence of a warm climate at high latitudes during the middle Eocene. The morphological similarity of the birotules to modern conspecific forms suggests protracted morphological stasis, comparable to that reported for other siliceous microfossils from the same locality.

  13. Vorticity and divergence in the high-latitude upper thermosphere

    International Nuclear Information System (INIS)

    Thayer, J.P.; Killeen, T.L.

    1991-01-01

    Measurements made from the Dynamics Explorer-2 satellite in November 1981 through January 1982 and November 1982 through January 1983 have been analyzed to determine the divergence and vertical component of vorticity of the high-latitude neutral wind field in the upper thermosphere for quiet (kp≤6) geomagnetic conditions and for both northern (winter) and southern (summer) hemispheres in the polar thermosphere and provides insight into the relative strengths of the different sources of momentum and energy responsible for driving the winds. The principal findings from this work include the following: The mean neutral wind pattern is dominated by rotational flow rather than by divergent flow, with a typical vorticity: divergence ratio of ∼ 2:1 for active conditions and ∼ 4:1 for quiet conditions. Comparison of the divergence and vorticity patterns for quiet and active conditions indicates that the divergent component of the neutral flow intensifies more significantly with increasing geomagnetic activity than does the rotational component

  14. Sporadic-E and spread-F in high latitude region

    International Nuclear Information System (INIS)

    Tao, Kazuhiko

    1974-01-01

    The heretofore made morphological studies of sporadic-E and spread-F as the typical irregularities of electron density are reviewed. These phenomena have close correlation with other geophysical phenomena which occur in the atmosphere of superhigh altitude in high latitude region. Many of these phenomena occur from same causes. Although the quantitative data are insufficient, the sporadic-E and spread-F in high latitude region are supposed to be caused by the precipitating charged particles falling from magnetosphere. A system, which can observe such phenomena simultaneously using the measuring instruments carried by satellites in the atmosphere of high altitude over high latitude region, is desirable to solve such problems. In detail, the morphological study on sporadic-E obtained from the observation of vertically projected ionosphere and the morphological study on sporadic-E from the observation of forward scattering and slanting entrance are reviewed. The correlation of the occurrence frequency of sporadic-E with solar activity, geomagnetic activity and other phenomena was studied. The morphological study on spread-F occurrence is reviewed. The observation of the spread-F in high latitude region by the application of top side sounding is reviewed. The correlation of the sporadic-E and spread-F in high latitude region with other geophysical phenomena is discussed. Finally, the discrete phenomenon and the diffuse phenomenon are discussed too. (Iwakiri, K.)

  15. Paleoclimate records at high latitude in Arctic during the Paleogene

    Science.gov (United States)

    Salpin, Marie; Schnyder, Johann; Baudin, François; Suan, Guillaume; Labrousse, Loïc; Popescu, Speranta; Suc, Jean-Pierre

    2015-04-01

    Paleoclimate records at high latitude in Arctic during the Paleogene SALPIN Marie1,2, SCHNYDER Johann1,2, BAUDIN François1,2, SUAN Guillaume3, LABROUSSE Loïc1,2, POPESCU Speranta4, SUC Jean-Pierre1,4 1: Sorbonne Universités, UPMC Univ Paris 06, UMR 7193, Institut des Sciences de la Terre Paris (iSTeP), F 75005, Paris, France 2: CNRS, UMR 7193, Institut des Sciences de la Terre Paris (iSTeP), F 75005 Paris, France 3: UCB Lyon 1, UMR 5276, LGLTPE, 69622 Villeurbanne Cedex, France 4: GEOBIOSTRATDATA.CONSULTING, 385 Route du Mas Rillier 69140 Rillieux la Pape, France The Paleogene is a period of important variations of the Earth climate system either in warming or cooling. The climatic optima of the Paleogene have been recognized both in continental and marine environment. This study focus on high latitudes of the northern hemisphere, in the Arctic Basin. The basin has had an influence on the Cenozoic global climate change according to its polar position. Is there a specific behaviour of the Arctic Basin with respect to global climatic stimuli? Are there possible mechanisms of coupling/decoupling of its dynamics with respect to the global ocean? To answer these questions a unique collection of sedimentary series of Paleogene age interval has been assembled from the Laurentian margin in Northern Yukon (Canada) and from the Siberian margin (New Siberian Islands). Selected continental successions of Paleocene-Eocene age were used to study the response of the Arctic system to known global events, e.g. the climatic optima of the Paleogene (the so-called PETM, ETM2 or the Azolla events). Two sections of Paleocene-Eocene age were sampled near the Mackenzie delta, the so-called Coal Mine (CoMi) and Caribou Hills (CaH) sections. The aim of the study is to precise the climatic fluctuations and to characterise the source rock potential of the basin, eventually linked to the warming events. This study is based on data of multi-proxy analyses: mineralogy on bulk and clay

  16. Impacts of Early Summer Eurasian Snow Cover Change on Atmospheric Circulation in Northern Mid-Latitudes

    Science.gov (United States)

    Nozawa, T.

    2016-12-01

    Recently, Japan Aerospace Exploration Agency (JAXA) has developed a new long-term snow cover extent (SCE) product using Advanced Very High Resolution Radiometer (AVHRR) and Moderate Resolution Imaging Spectroradiometer (MODIS) data spanning from 1980's to date. This new product (JAXA/SCE) has higher spatial resolution and smaller commission error compared with traditional SCE dataset of National Oceanic and Atmospheric Administration (NOAA/SCE). Continuity of the algorithm is another strong point in JAXA/SCE. According to the new JAXA/SCE dataset, the Eurasian SCE has been significantly retreating since 1980's, especially in late spring and early summer. Here, we investigate impacts of early summer Eurasian snow cover change on atmospheric circulation in Northern mid-latitudes, especially over the East Asia, using the new JAXA/SCE dataset and a few reanalysis data. We will present analyzed results on relationships between early summer SCE anomaly over the Eurasia and changes in atmospheric circulations such as upper level zonal jets (changes in strength, positions, etc.) over the East Asia.

  17. The northern edge of the band of solar wind variability: Ulysses at ∼4.5AU

    International Nuclear Information System (INIS)

    Gosling, J.T.; Bame, S.J.; Feldman, W.C.; McComas, D.J.; Riley, P.; Goldstein, B.E.; Neugebauer, M.

    1997-01-01

    Ulysses observations reveal that the northern edge of the low-latitude band of solar wind variability at ∼4.5AU was located at N30 degree in the latter part of 1996 when solar activity was at a minimum. This edge latitude is intermediate between edge latitudes found during previous encounters with the band edge along different portions of Ulysses close-quote polar orbit about the Sun. Corotating interaction regions, CIRs, near the northern edge of the band were tilted in such a manner that the forward and reverse shocks bounding the CIRs were propagating equatorward and poleward, respectively, providing definite confirmation that CIRs have opposed tilts in the opposite solar hemispheres. No shocks or coronal mass ejections, CMEs, were detected during the ∼1.5y traverse of the northern, high-latitude northern hemisphere; however, at the northern edge of the band of variability an expanding CME was observed that was driving a shock into the high-speed wind.copyright 1997 American Geophysical Union

  18. Biomass burning in eastern Europe during spring 2006 caused high deposition of ammonium in northern Fennoscandia

    DEFF Research Database (Denmark)

    Karlsson, Per Erik; Ferm, Martin; Pihl Karlsson, Gunilla

    2013-01-01

    High air concentrations of ammonium were detected at low and high altitude sites in Sweden, Finland and Norway during the spring 2006, coinciding with polluted air from biomass burning in eastern Europe passing over central and northern Fennoscandia. Unusually high values for throughfall deposition...... of ammonium were detected at one low altitude site and several high altitude sites in north Sweden. The occurrence of the high ammonium in throughfall differed between the summer months 2006, most likely related to the timing of precipitation events. The ammonia dry deposition may have contributed to unusual...... visible injuries on the tree vegetation in northern Fennoscandia that occurred during 2006, in combination with high ozone concentrations. It is concluded that long-range transport of ammonium from large-scale biomass burning may contribute substantially to the nitrogen load at northern latitudes. © 2013...

  19. Carbon dioxide in northern high latitude oceans: Anthropogenic increase and air-sea flux variability

    Energy Technology Data Exchange (ETDEWEB)

    Omar, Abdirahman M.

    2003-07-01

    The aim of this thesis is to further our knowledge of carbon dioxide in the northern high latitude oceans (northern North Atlantic, Barents Sea, and Arctic Ocean) by studying the anthropogenic change in the oceanic CO2, the inter-annual variability of the air-sea CO2 flux, and the relationship between this variability and changes in other oceanic processes. An introductory chapter and four papers are presented. Descriptions of the seawater carbonate system parameters, air-sea exchange of CO2, and related processes are given in the introduction chapter. The anthropogenic increase in partial pressure of CO2 (pCO2) in the surface water of the Barents Sea is evaluated in paper I. The effect of alternations of the Barents Sea climate between cold and warm modes on the annual cycles of seawater fugacity and air-sea flux of CO2 is investigated in paper II. Oceanic uptake of atmospheric CO2 associated with the seasonal formation of sea ice in Storfjorden and the implication for the entire Arctic Ocean is studied in paper III. An assessment of the variations of the air-sea flux of CO2 in the northern North Atlantic for 20 winters (1981-2001) is carried out in paper IV. PCO2 in the surface water of the Barents Sea is shown to have increased parallel with the atmospheric pCO2 between 1967 and 2000-2001 (paper I). This was determined by comparing seawater pCO2 from 1967 with that from 2000-2001. The former was estimated from surface seawater temperature (SST) while the latter was computed from data of total dissolved inorganic carbon and alkalinity. A procedure which accounts for the natural variability was applied and the difference between seawater pC02 of 1967 and that of 2000-2001 is attributed to the uptake of excess CO2. In the Atlantic sector of the Barents Sea, the surface seawater fugacity of CO2 (fCO s''w) is shown to be lower than the atmospheric fCO2 throughout the year, implying that the area is an annual sink of atmospheric CO2 (paper II). Additionally

  20. Carbon dioxide in northern high latitude oceans: Anthropogenic increase and air-sea flux variability

    International Nuclear Information System (INIS)

    Omar, Abdirahman M.

    2003-01-01

    The aim of this thesis is to further our knowledge of carbon dioxide in the northern high latitude oceans (northern North Atlantic, Barents Sea, and Arctic Ocean) by studying the anthropogenic change in the oceanic CO2, the inter-annual variability of the air-sea CO2 flux, and the relationship between this variability and changes in other oceanic processes. An introductory chapter and four papers are presented. Descriptions of the seawater carbonate system parameters, air-sea exchange of CO2, and related processes are given in the introduction chapter. The anthropogenic increase in partial pressure of CO2 (pCO2) in the surface water of the Barents Sea is evaluated in paper I. The effect of alternations of the Barents Sea climate between cold and warm modes on the annual cycles of seawater fugacity and air-sea flux of CO2 is investigated in paper II. Oceanic uptake of atmospheric CO2 associated with the seasonal formation of sea ice in Storfjorden and the implication for the entire Arctic Ocean is studied in paper III. An assessment of the variations of the air-sea flux of CO2 in the northern North Atlantic for 20 winters (1981-2001) is carried out in paper IV. PCO2 in the surface water of the Barents Sea is shown to have increased parallel with the atmospheric pCO2 between 1967 and 2000-2001 (paper I). This was determined by comparing seawater pCO2 from 1967 with that from 2000-2001. The former was estimated from surface seawater temperature (SST) while the latter was computed from data of total dissolved inorganic carbon and alkalinity. A procedure which accounts for the natural variability was applied and the difference between seawater pC02 of 1967 and that of 2000-2001 is attributed to the uptake of excess CO2. In the Atlantic sector of the Barents Sea, the surface seawater fugacity of CO2 (fCO s''w) is shown to be lower than the atmospheric fCO2 throughout the year, implying that the area is an annual sink of atmospheric CO2 (paper II). Additionally, changes

  1. Determinants of vitamin D status in fair-skinned women of childbearing age at northern latitudes.

    Directory of Open Access Journals (Sweden)

    Linnea Hedlund

    Full Text Available BACKGROUND AND OBJECTIVE: Poor vitamin D status during pregnancy has been associated with unfavorable outcomes for mother and child. Thus, adequate vitamin D status in women of childbearing age may be important. The aim of this study is to investigate the determinants of 25-hydroxyvitamin D (25(OHD serum concentrations in women of childbearing age living in Sweden, at latitude 57-58° north. METHOD: Eighty four non-pregnant, non-lactating, healthy, fair-skinned women aged between 25-40 years were included. All subjects provided blood samples, four day food records and answered questionnaires about sun exposure and lifestyle. Total serum 25(OHD was analyzed using Roche Cobas® electrochemoluminiescent immunoassay. RESULTS: Mean 25(OHD was 65.8±19.9 nmol/l and 23% of the subjects had concentrations <50 nmol/l. Only 1% had concentrations <25 nmol/l. Determinants of 25(OHD concentrations were recent sunbed use, recent travel to southern latitude, season, estrogen contraceptive use and use of supplementary vitamin D (R(2 = 0.27. CONCLUSION: Every fifth woman had 25(OHD concentrations <50 nmol/l. About 30% of the variation in vitamin D status was explained by sun exposure, use of vitamin D supplements and use of estrogen contraceptives. Cutaneous vitamin D synthesis seems to be a major contributor to vitamin D status, even at northern latitudes. Thus, recommendations on safe UV-B exposure could be beneficial for vitamin D status.

  2. Historical deforestation locally increased the intensity of hot days in northern mid-latitudes

    Science.gov (United States)

    Lejeune, Quentin; Davin, Edouard L.; Gudmundsson, Lukas; Winckler, Johannes; Seneviratne, Sonia I.

    2018-05-01

    The effects of past land-cover changes on climate are disputed1-3. Previous modelling studies have generally concluded that the biogeophysical effects of historical deforestation led to an annual mean cooling in the northern mid-latitudes3,4, in line with the albedo-induced negative radiative forcing from land-cover changes since pre-industrial time reported in the most recent Intergovernmental Panel on Climate Change report5. However, further observational and modelling studies have highlighted strong seasonal and diurnal contrasts in the temperature response to deforestation6-10. Here, we show that historical deforestation has led to a substantial local warming of hot days over the northern mid-latitudes—a finding that contrasts with most previous model results11,12. Based on observation-constrained state-of-the-art climate-model experiments, we estimate that moderate reductions in tree cover in these regions have contributed at least one-third of the local present-day warming of the hottest day of the year since pre-industrial time, and were responsible for most of this warming before 1980. These results emphasize that land-cover changes need to be considered when studying past and future changes in heat extremes, and highlight a potentially overlooked co-benefit of forest-based carbon mitigation through local biogeophysical mechanisms.

  3. OSO-7 observations of high galactic latitude x-ray sources

    International Nuclear Information System (INIS)

    Markert, T.H.; Canizares, C.R.; Clark, G.W.; Li, F.K.; Northridge, P.L.; Sprott, G.F.; Wargo, G.F.

    1976-01-01

    Six hundred days of observations by the MIT X-ray detectors aboard OSO-7 have been analyzed. All-sky maps of X-ray intensity have been constructed from these data. A sample map is displayed. Seven sources with galactic latitude vertical-barb/subi//subi/vertical-bar>10degree, discovered during the mapping process, are reported, and upper limits are set on other high-latitude sources. The OSO-7 results are compared with those of Uhuru and an implication of this comparison, that many of the high-latitude sources may be variable, is discussed

  4. Seasonal variations of the high-latitude geomagnetic field intensity in the northern hemisphere

    International Nuclear Information System (INIS)

    Rivin, Yu.R.; Chkhaidze, Z.Sh.

    1994-01-01

    Seasonal variation of the geomagnetic field three components is investigated using the data of the USA observatories chain separately for polar region, auroral zone and middle latitudes beginning from 1950. The variation consists of an annual and half-yearly waves. main attention is paid to time variability of the annual wave phase in the auroral zone, that is connected with superposition of waves of western and eastern jets

  5. Determining the extent and characterizing coral reef habitats of the northern latitudes of the Florida Reef Tract (Martin County).

    Science.gov (United States)

    Walker, Brian K; Gilliam, David S

    2013-01-01

    Climate change has recently been implicated in poleward shifts of many tropical species including corals; thus attention focused on higher-latitude coral communities is warranted to investigate possible range expansions and ecosystem shifts due to global warming. As the northern extension of the Florida Reef Tract (FRT), the third-largest barrier reef ecosystem in the world, southeast Florida (25-27° N latitude) is a prime region to study such effects. Most of the shallow-water FRT benthic habitats have been mapped, however minimal data and limited knowledge exist about the coral reef communities of its northernmost reaches off Martin County. First benthic habitat mapping was conducted using newly acquired high resolution LIDAR bathymetry and aerial photography where possible to map the spatial extent of coral reef habitats. Quantitative data were collected to characterize benthic cover and stony coral demographics and a comprehensive accuracy assessment was performed. The data were then analyzed in a habitat biogeography context to determine if a new coral reef ecosystem region designation was warranted. Of the 374 km(2) seafloor mapped, 95.2% was Sand, 4.1% was Coral Reef and Colonized Pavement, and 0.7% was Other Delineations. Map accuracy assessment yielded an overall accuracy of 94.9% once adjusted for known map marginal proportions. Cluster analysis of cross-shelf habitat type and widths indicated that the benthic habitats were different than those further south and warranted designation of a new coral reef ecosystem region. Unlike the FRT further south, coral communities were dominated by cold-water tolerant species and LIDAR morphology indicated no evidence of historic reef growth during warmer climates. Present-day hydrographic conditions may be inhibiting poleward expansion of coral communities along Florida. This study provides new information on the benthic community composition of the northern FRT, serving as a baseline for future community shift and

  6. Ulysses radio and plasma wave observations at high southern heliographic latitudes.

    Science.gov (United States)

    Stone, R G; Macdowall, R J; Fainberg, J; Kaiser, M L; Desch, M D; Goldstein, M L; Hoang, S; Bougeret, J L; Harvey, C C; Manning, R; Steinberg, J L; Kellogg, P J; Lin, N; Goetz, K; Osherovich, V A; Reiner, M J; Canu, P; Cornilleau-Wehrlin, N; Lengyel-Frey, D; Thejappa, G

    1995-05-19

    Ulysses spacecraft radio and plasma wave observations indicate that some variations in the intensity and occurrence rate of electric and magnetic wave events are functions of heliographic latitude, distance from the sun, and phase of the solar cycle. At high heliographic latitudes, solartype Ill radio emissions did not descend to the local plasma frequency, in contrast to the emission frequencies of some bursts observed in the ecliptic. Short-duration bursts of electrostatic and electromagnetic waves were often found in association with depressions in magnetic field amplitude, known as magnetic holes. Extensive wave activity observed in magnetic clouds may exist because of unusually large electron-ion temperature ratios. The lower number of intense in situ wave events at high latitudes was likely due to the decreased variability of the high- latitude solar wind.

  7. Simultaneous high- and low-latitude reconnection: ESR and DMSP observations

    Directory of Open Access Journals (Sweden)

    F. Pitout

    2002-09-01

    Full Text Available We present EISCAT Svalbard Radar and DMSP observations of a double cusp during an interval of predominantly northward IMF on 26 November 2000. In the cusp region, the ESR dish, pointing northward, recorded sun-ward ionospheric flow at high latitudes (above 82° GL, indicating reconnection occuring in the magnetospheric lobe. Meanwhile, the same dish also recorded bursts of poleward flow, indicative of bursty reconnection at the subsolar magnetopause. Within this time interval, the DMSP F13 satellite passed in the close vicinity of the Svalbard archipelago. The particle measurement on board exhibited a double cusp structure in which two oppositely oriented ion dispersions are recorded. We interpret this set of data in terms of simultaneous merging at low- and high-latitude magnetopause. We discuss the conditions for which such simultaneous high-latitude and low-latitude reconnection can be anticipated. We also discuss the consequences of the presence of two X-lines in the dayside polar ionosphere.Key words. Magnetospheric physics (solar wind-magnetosphere interactions – Ionosphere (polar ionosphere; plasma convection

  8. ORCHIDEE-MICT (v8.4.1), a land surface model for the high latitudes: model description and validation

    Science.gov (United States)

    Guimberteau, Matthieu; Zhu, Dan; Maignan, Fabienne; Huang, Ye; Yue, Chao; Dantec-Nédélec, Sarah; Ottlé, Catherine; Jornet-Puig, Albert; Bastos, Ana; Laurent, Pierre; Goll, Daniel; Bowring, Simon; Chang, Jinfeng; Guenet, Bertrand; Tifafi, Marwa; Peng, Shushi; Krinner, Gerhard; Ducharne, Agnès; Wang, Fuxing; Wang, Tao; Wang, Xuhui; Wang, Yilong; Yin, Zun; Lauerwald, Ronny; Joetzjer, Emilie; Qiu, Chunjing; Kim, Hyungjun; Ciais, Philippe

    2018-01-01

    The high-latitude regions of the Northern Hemisphere are a nexus for the interaction between land surface physical properties and their exchange of carbon and energy with the atmosphere. At these latitudes, two carbon pools of planetary significance - those of the permanently frozen soils (permafrost), and of the great expanse of boreal forest - are vulnerable to destabilization in the face of currently observed climatic warming, the speed and intensity of which are expected to increase with time. Improved projections of future Arctic and boreal ecosystem transformation require improved land surface models that integrate processes specific to these cold biomes. To this end, this study lays out relevant new parameterizations in the ORCHIDEE-MICT land surface model. These describe the interactions between soil carbon, soil temperature and hydrology, and their resulting feedbacks on water and CO2 fluxes, in addition to a recently developed fire module. Outputs from ORCHIDEE-MICT, when forced by two climate input datasets, are extensively evaluated against (i) temperature gradients between the atmosphere and deep soils, (ii) the hydrological components comprising the water balance of the largest high-latitude basins, and (iii) CO2 flux and carbon stock observations. The model performance is good with respect to empirical data, despite a simulated excessive plant water stress and a positive land surface temperature bias. In addition, acute model sensitivity to the choice of input forcing data suggests that the calibration of model parameters is strongly forcing-dependent. Overall, we suggest that this new model design is at the forefront of current efforts to reliably estimate future perturbations to the high-latitude terrestrial environment.

  9. Oman's low latitude "Snowball Earth" pole revisited: Late Cretaceous remagnetisation of Late Neoproterozoic carbonates in Northern Oman

    Science.gov (United States)

    Rowan, C. J.; Tait, J.

    2010-12-01

    Glaciogenic diamictites and associated ‘cap’ carbonates within the Neoproterozoic Huqf Supergroup of Oman record a period of extreme, possibly global, glaciations between 750-635 Ma (the "Snowball Earth"). We have performed high-resolution paleomagnetic sampling of two sections through ~635 Ma cap carbonates in the Jebel Akhdar region of northern Oman. Stepwise thermal demagnetisation reveals a low temperature component carried by goethite, and a high temperature component carried by haematite, that are both aligned with the modern dipole field direction. Occasional reversed polarity directions antipodal to the present day field indicate pervasive weathering of these outcrops over timescales of at least 1 Ma. Between these two overprints an intermediate component with typical unblocking temperatures of 300-550 C, probably carried by magnetite, can also be isolated in most samples. A robust fold test clearly demonstrates that this component was acquired after Paleozoic folding of the carbonates, and was most likely acquired during exhumation associated with emplacement of the Semail ophiolite during the Late Cretaceous (95-68 Ma). In geographic co-ordinates, the intermediate component has an almost horizontal NNW or SSE direction, similar to directions previously reported from outcrops of the ophiolite close to the Jebel Akhdar region, and from thermally altered basement rocks in the the Saih Hatat window further to the east [Feinberg et al. 1999]. Hints of an older, Permian, remagnetisation of the carbonates, which is also observed in the Saih Hatat basement rocks, have also produced a false polarity stratigraphy in one of the sampled sections. Our results contrast with the previously reported low latitude pole from the Huqf Supergroup [Kilner et al., 2005], which was considered to be amongst the more reliable paleomagnetic data supporting glaciations extending to low latitudes during the late Neoproterozoic. However, this interpretation was made on the basis

  10. Mid-latitude afforestation shifts general circulation and tropical precipitation.

    Science.gov (United States)

    Swann, Abigail L S; Fung, Inez Y; Chiang, John C H

    2012-01-17

    We show in climate model experiments that large-scale afforestation in northern mid-latitudes warms the Northern Hemisphere and alters global circulation patterns. An expansion of dark forests increases the absorption of solar energy and increases surface temperature, particularly in regions where the land surface is unable to compensate with latent heat flux due to water limitation. Atmospheric circulation redistributes the anomalous energy absorbed in the northern hemisphere, in particular toward the south, through altering the Hadley circulation, resulting in the northward displacement of the tropical rain bands. Precipitation decreases over parts of the Amazon basin affecting productivity and increases over the Sahel and Sahara regions in Africa. We find that the response of climate to afforestation in mid-latitudes is determined by the amount of soil moisture available to plants with the greatest warming found in water-limited regions. Mid-latitude afforestation is found to have a small impact on modeled global temperatures and on global CO(2), but regional heating from the increase in forest cover is capable of driving unintended changes in circulation and precipitation. The ability of vegetation to affect remote circulation has implications for strategies for climate mitigation.

  11. High latitude ionospheric structure

    International Nuclear Information System (INIS)

    1984-06-01

    The Earth's ionosphere is an important element in solar-terrestrial energy transfer processes. As a major terrestrial sink for many solar and magnetospheric events, the ionosphere has characteristic features that are traced to such seemingly remote phenomena as solar flares, radiation belt wave-particle interactions and magnetospheric substorms. In considering the multiple of solar-terrestrial plasma interactions, it is important to recognize that the high-latitude ionosphere is not altogether a simple receptor of various energy deposition processes. The high-altitude ionosphere plays an active feedback role by controlling the conductivity at the base of far-reaching magnetic field lines and by providing a plasma source for the magnetosphere. Indeed, the role of the ionosphere during magnetospheric substorms is emerging as a topic for meaningful study in the overall picture of magnetospheric-ionospheric coupling

  12. Characterization of SEP events at high heliographic latitudes

    International Nuclear Information System (INIS)

    Dalla, S.; Balogh, A.; Krucker, S.; Posner, A.; Mueller-Mellin, R.; Anglin, J.D.; Hofer, M.Y.; Marsden, R.G.; Sanderson, T.R.; Heber, B.; Zhang, M.; McKibben, R.B.

    2003-01-01

    Between February 2000 and May 2002, the Ulysses spacecraft made the first ever measurements of solar energetic particles (SEPs) at high heliographic latitudes. Nine large gradual SEP events were detected at latitudes greater than 45 deg., their signatures being clearest at high particle energies, i.e. protons >30 MeV and electrons >0.1 MeV. In this paper we measure the onset times of Ulysses high latitude events in several energy channels, and plot them versus inverse particle speed. We repeat the procedure for near Earth observations by Wind and SOHO. Velocity dispersion is observed in all the events near Earth and in most of them at Ulysses. The plots of onset times versus inverse speed allow to derive an experimental path length and time of release from the solar atmosphere. We find that the derived path lengths at Ulysses are longer than the length of a Parker spiral magnetic field line connecting it to the Sun, by a factor between 1.2-2.7. The time of particle release from the Sun is typically between 100 and 200 mins later than the release time derived from in-ecliptic measurements. Unlike near Earth observations, Ulysses measurements are therefore not compatible with scatter-free propagation from the Sun to the spacecraft

  13. Glacier-influenced sedimentation on high-latitude continental margins

    National Research Council Canada - National Science Library

    Dowdeswell, J. A; Cofaigh, C. Ó

    2002-01-01

    This book examines the process and patterns of glacier-influenced sedimentation on high-latitude continental margins and the geophysical and geological signatures of the resulting sediments and landform...

  14. Arctic-Mid-Latitude Linkages in a Nonlinear Quasi-Geostrophic Atmospheric Model

    Directory of Open Access Journals (Sweden)

    Dörthe Handorf

    2017-01-01

    Full Text Available A quasi-geostrophic three-level T63 model of the wintertime atmospheric circulation of the Northern Hemisphere has been applied to investigate the impact of Arctic amplification (increase in surface air temperatures and loss of Arctic sea ice during the last 15 years on the mid-latitude large-scale atmospheric circulation. The model demonstrates a mid-latitude response to an Arctic diabatic heating anomaly. A clear shift towards a negative phase of the Arctic Oscillation (AO− during low sea-ice-cover conditions occurs, connected with weakening of mid-latitude westerlies over the Atlantic and colder winters over Northern Eurasia. Compared to reanalysis data, there is no clear model response with respect to the Pacific Ocean and North America.

  15. CO observations of southern high-latitude clouds

    International Nuclear Information System (INIS)

    Keto, E.R.; Myers, P.C.

    1986-01-01

    Results from a survey of 2.6 mm emission in the J = 1 to 0 transition of CO of clouds are reported for 15 high Galactic latitude clouds and three clouds located on the fringe of a large molecular cloud in the Chameleon dark cloud complex. The line widths, excitation temperatures, sizes, and n(CO)/N(H2) ratio of these clouds are similar to those seen in dark clouds. The densities, extinctions, and masses of the high-latitude clouds are one order of magnitude less than those found in dark clouds. For its size and velocity dispersion, the typical cloud has a mass of at least 10 times less than that needed to bind the cloud by self-gravity alone. External pressures are needed to maintain the typical cloud in equilibrium, and these values are consistent with several estimates of the intercloud pressure. 32 references

  16. Electrodynamic coupling of high and low latitudes: Observations on May 27, 1993

    DEFF Research Database (Denmark)

    Kobea, A.T.; Richmond, A.D.; Emery, B.A.

    2000-01-01

    The penetration of disturbance electric fields from the polar region to the magnetic equator on the dayside of the Earth is examined with geomagnetic data on May 27, 1993. First, we examine a dayside equatorial disturbance that followed the rapid recovery of magnetic activity from a storm...... than 1 min for fluctuations having periods like those examined here. A synoptic inversion analysis of the high-latitude magnetic data to estimate the time-varying high-latitude electric potential patterns shows that fluctuations of the high-latitude east-west potential gradient tended...

  17. Application of Satellite Solar-Induced Chlorophyll Fluorescence to Understanding Large-Scale Variations in Vegetation Phenology and Function Over Northern High Latitude Forests

    Science.gov (United States)

    Jeong, Su-Jong; Schimel, David; Frankenberg, Christian; Drewry, Darren T.; Fisher, Joshua B.; Verma, Manish; Berry, Joseph A.; Lee, Jung-Eun; Joiner, Joanna

    2016-01-01

    This study evaluates the large-scale seasonal phenology and physiology of vegetation over northern high latitude forests (40 deg - 55 deg N) during spring and fall by using remote sensing of solar-induced chlorophyll fluorescence (SIF), normalized difference vegetation index (NDVI) and observation-based estimate of gross primary productivity (GPP) from 2009 to 2011. Based on GPP phenology estimation in GPP, the growing season determined by SIF time-series is shorter in length than the growing season length determined solely using NDVI. This is mainly due to the extended period of high NDVI values, as compared to SIF, by about 46 days (+/-11 days), indicating a large-scale seasonal decoupling of physiological activity and changes in greenness in the fall. In addition to phenological timing, mean seasonal NDVI and SIF have different responses to temperature changes throughout the growing season. We observed that both NDVI and SIF linearly increased with temperature increases throughout the spring. However, in the fall, although NDVI linearly responded to temperature increases, SIF and GPP did not linearly increase with temperature increases, implying a seasonal hysteresis of SIF and GPP in response to temperature changes across boreal ecosystems throughout their growing season. Seasonal hysteresis of vegetation at large-scales is consistent with the known phenomena that light limits boreal forest ecosystem productivity in the fall. Our results suggest that continuing measurements from satellite remote sensing of both SIF and NDVI can help to understand the differences between, and information carried by, seasonal variations vegetation structure and greenness and physiology at large-scales across the critical boreal regions.

  18. ORCHIDEE-MICT (v8.4.1, a land surface model for the high latitudes: model description and validation

    Directory of Open Access Journals (Sweden)

    M. Guimberteau

    2018-01-01

    Full Text Available The high-latitude regions of the Northern Hemisphere are a nexus for the interaction between land surface physical properties and their exchange of carbon and energy with the atmosphere. At these latitudes, two carbon pools of planetary significance – those of the permanently frozen soils (permafrost, and of the great expanse of boreal forest – are vulnerable to destabilization in the face of currently observed climatic warming, the speed and intensity of which are expected to increase with time. Improved projections of future Arctic and boreal ecosystem transformation require improved land surface models that integrate processes specific to these cold biomes. To this end, this study lays out relevant new parameterizations in the ORCHIDEE-MICT land surface model. These describe the interactions between soil carbon, soil temperature and hydrology, and their resulting feedbacks on water and CO2 fluxes, in addition to a recently developed fire module. Outputs from ORCHIDEE-MICT, when forced by two climate input datasets, are extensively evaluated against (i temperature gradients between the atmosphere and deep soils, (ii the hydrological components comprising the water balance of the largest high-latitude basins, and (iii CO2 flux and carbon stock observations. The model performance is good with respect to empirical data, despite a simulated excessive plant water stress and a positive land surface temperature bias. In addition, acute model sensitivity to the choice of input forcing data suggests that the calibration of model parameters is strongly forcing-dependent. Overall, we suggest that this new model design is at the forefront of current efforts to reliably estimate future perturbations to the high-latitude terrestrial environment.

  19. Abrupt climate change and high to low latitude teleconnections as simulated in climate models

    DEFF Research Database (Denmark)

    Cvijanovic, Ivana

    of the present day atmospheric mid-latitude energy transport compared to that of the Last Glacial Maximum, suggesting its ability to reorganize more easily and thereby dampen high latitude temperature anomalies that could arise from changes in the oceanic transport. The role of tropical SSTs in the tropical......High to low latitude atmospheric teleconnections have been a topic of increasing scientific interest since it was shown that high latitude extratropical forcing can induce tropical precipitation shifts through atmosphere-surface ocean interactions. In this thesis, several aspects of high to low...... precipitation shifts was further re-examined in idealized simulations with the fixed tropical sea surface temperatures, showing that the SST changes are fundamental to the tropical precipitation shifts. Regarding the high latitude energy loss, it was shown that the main energy compensation comes from...

  20. Statistics of high-altitude and high-latitude O+ ion outflows observed by Cluster/CIS

    Directory of Open Access Journals (Sweden)

    A. Korth

    2005-07-01

    Full Text Available The persistent outflows of O+ ions observed by the Cluster CIS/CODIF instrument were studied statistically in the high-altitude (from 3 up to 11 RE and high-latitude (from 70 to ~90 deg invariant latitude, ILAT polar region. The principal results are: (1 Outflowing O+ ions with more than 1keV are observed above 10 RE geocentric distance and above 85deg ILAT location; (2 at 6-8 RE geocentric distance, the latitudinal distribution of O+ ion outflow is consistent with velocity filter dispersion from a source equatorward and below the spacecraft (e.g. the cusp/cleft; (3 however, at 8-12 RE geocentric distance the distribution of O+ outflows cannot be explained by velocity filter only. The results suggest that additional energization or acceleration processes for outflowing O+ ions occur at high altitudes and high latitudes in the dayside polar region. Keywords. Magnetospheric physics (Magnetospheric configuration and dynamics, Solar wind-magnetosphere interactions

  1. Seasonal variations of the high-latitude F region for

    International Nuclear Information System (INIS)

    Sojka, J.J.; Schunk, R.W.; Raitt, W.J.

    1982-01-01

    We combined a plasma convection model with an inosphere-atmospheric composition model in order to study the seasonal variations of the high-latitude F region for strong convection. Our numerical study produced time-dependent, three-dimensional, ion density distributions for the ions NO + , O 2 + , N 2 + , O + , N + , and He + . We covered the high-latitude ionosphere above 42 0 N magnetic latitude and at altitudes between 160 and 800 km for a time period of one complete day. From our study we found the following: (1) For strong convection, the high-altitude ionosphere exhibits a significant UT variation both during winter and summer. (2) In general, the electron density is lower in winter than in summer. However, at certain universal times the electron density in the dayside polar cap is larger in winter than in summer owing to the effect of the mid-latitude 'winter anomaly' in combination with strong antisunward convection. (3) In both summer and winter, the major region of low electron density is associated with the main or mid-latitudde trough. The trough is deeper and its local time extend is much greater in winter than in summer. (4) Typically, the electron density exhibits a much larger variation with altitude in winter than in summer. (5) The ion composition and molecular/atomic ion transition altitude are highly UT dependent in both summer and winter. (6) The ion composition also displays a significant seasonal variation. However, at a given location the seasonal variation can be opposite at different universal times. (7) High-speed convection cells should display a marked seasonal variation, with a much larger concentration of molecular ions near the F region peak in summer than in winter

  2. Energetic Particles at High Latitudes of the Heliosphere

    International Nuclear Information System (INIS)

    Zhang Ming

    2004-01-01

    Ulysses has by now made two complete out-of-ecliptic orbits around the sun. The first encounter of the solar poles occurred in 1994-1995, when the sun was near the minimum of its activity cycle, while the second one was in 2000-2001, when the sun was at solar maximum. To our surprise, energetic particles of all origins at high latitude are not much different from those we observe near the ecliptic for at least these two phases of solar cycle. The latitude gradients of galactic and anomalous cosmic rays are positive but small at the 1994-1995 solar minimum and almost zero at the 2000-2001 solar maximum, while temporal solar cycle variation dominates their flux variation at all latitudes. Solar energetic particles from all large gradual events can be seen at both Ulysses and Earth no matter how large their spatial separations from the solar event are, and the particle flux often reaches a uniform level in the entire inner heliosphere within a few days after event onset and remains so throughout the decay phase that can sometimes last over a month. Energetic particles accelerated by low-latitude CIRs can appear at high latitudes, far beyond the latitudinal range of CIRs. All these observations suggest that latitudinal transport of energetic particles is quite easy. In addition, because the average magnetic field is radial at the pole, The Ulysses observations indicate that parallel diffusion and drift in the radial direction need to be reduced at the poles relative to their equatorial values. To achieve such behaviors of particle transport, the heliospheric magnetic field needs a significant latitudinal component at the poles. A non-zero latitudinal magnetic field component can be produced by latitudinal motion of the magnetic field line in solar corona, which can be in form of either random walk suggested by Jokipii or large scale systematic motion suggested by Fisk

  3. Novel Solar Sail Mission Concepts for High-Latitude Earth and Lunar Observation

    NARCIS (Netherlands)

    Heiligers, M.J.; Parker, Jeffrey S.; Macdonald, Malcolm

    2016-01-01

    This paper proposes the use of solar sail periodic orbits in the Earth-Moon system for ob-servation of the high-latitudes of the Earth and Moon. At the Earth, the high-latitudes will be crucial in answering questions concerning global climate change, monitoring space weather events and ensuring

  4. High-latitude ocean ventilation and its role in Earth's climate transitions.

    Science.gov (United States)

    Naveira Garabato, Alberto C; MacGilchrist, Graeme A; Brown, Peter J; Evans, D Gwyn; Meijers, Andrew J S; Zika, Jan D

    2017-09-13

    The processes regulating ocean ventilation at high latitudes are re-examined based on a range of observations spanning all scales of ocean circulation, from the centimetre scales of turbulence to the basin scales of gyres. It is argued that high-latitude ocean ventilation is controlled by mechanisms that differ in fundamental ways from those that set the overturning circulation. This is contrary to the assumption of broad equivalence between the two that is commonly adopted in interpreting the role of the high-latitude oceans in Earth's climate transitions. Illustrations of how recognizing this distinction may change our view of the ocean's role in the climate system are offered.This article is part of the themed issue 'Ocean ventilation and deoxygenation in a warming world'. © 2017 The Authors.

  5. High latitude plasma convection: Predictions for EISCAT and Sondre Stromfjord

    International Nuclear Information System (INIS)

    Sojka, J.J.; Raitt, W.J.; Schunk, R.W.

    1979-01-01

    We have used a plasma convection model to predict diurnal patterns of horizontal drift velocities in the vicinity of the EISCAT incoherent scatter facility at Tromso, Norway and for Sondre Stromfjord, Greenland, a proposed new incoherent scatter facility site. The convection model includes the offset of 11.4 0 between the geographic and geomagnetic poles (northern hemisphere), the tendency of plasma to corotate about the geographic pole, and a magnetospheric electric field mapped to a circle about a center offset by 5 0 in the antisunward direction from the magnetic pole. Four different magnetospheric electric field configurations were considered, including a constant cross-tail electric field, asymmetric electric fields with enhancements on the dawn and dusk sides of the polar cap, and an electric field pattern that is not aligned parallel to the noon-midnight magnetic meridian. The different electric field configurations produce different signatures in the plasma convection pattern which are clearly identified. Both of the high-latitude sites are better suited to study magnetospheric convection effects than either Chatanika, Alaska or Millstone Hill, Massachusetts. Also, each site appears to have unique capabilities with regard to studying certain aspects of the magnetospheric electric field

  6. Influence of high-latitude warming and land-use changes in the early 20th century northern Eurasian CO2 sink

    Science.gov (United States)

    Bastos, Ana; Peregon, Anna; Gani, Érico A.; Khudyaev, Sergey; Yue, Chao; Li, Wei; Gouveia, Célia M.; Ciais, Philippe

    2018-06-01

    While the global carbon budget (GCB) is relatively well constrained over the last decades of the 20th century [1], observations and reconstructions of atmospheric CO2 growth rate present large discrepancies during the earlier periods [2]. The large uncertainty in GCB has been attributed to the land biosphere, although it is not clear whether the gaps between observations and reconstructions are mainly because land-surface models (LSMs) underestimate inter-annual to decadal variability in natural ecosystems, or due to inaccuracies in land-use change reconstructions. As Eurasia encompasses about 15% of the terrestrial surface, 20% of the global soil organic carbon pool and constitutes a large CO2 sink, we evaluate the potential contribution of natural and human-driven processes to induce large anomalies in the biospheric CO2 fluxes in the early 20th century. We use an LSM specifically developed for high-latitudes, that correctly simulates Eurasian C-stocks and fluxes from observational records [3], in order to evaluate the sensitivity of the Eurasian sink to the strong high-latitude warming occurring between 1930 and 1950. We show that the LSM with improved high-latitude phenology, hydrology and soil processes, contrary to the group of LSMs in [2], is able to represent enhanced vegetation growth linked to boreal spring warming, consistent with tree-ring time-series [4]. By compiling a dataset of annual agricultural area in the Former Soviet Union that better reflects changes in cropland area linked with socio-economic fluctuations during the early 20th century, we show that land-abadonment during periods of crisis and war may result in reduced CO2 emissions from land-use change (44%–78% lower) detectable at decadal time-scales. Our study points to key processes that may need to be improved in LSMs and LUC datasets in order to better represent decadal variability in the land CO2 sink, and to better constrain the GCB during the pre-observational record.

  7. Dawn-dusk asymmetries and sub-Alfvénic flow in the high and low latitude magnetosheath

    Directory of Open Access Journals (Sweden)

    M. Longmore

    2005-11-01

    Full Text Available We present the results of a statistical survey of the magnetosheath using four years of Cluster orbital coverage. Moments of the plasma distribution obtained from the electron and ion instruments together with magnetic field data are used to characterise the flow and density in the magnetosheath. We note two important differences between our survey and the gasdynamic model predictions: a deceleration of the flow at higher latitudes close to the magnetopause, resulting in sub-Alfvénic flow near the cusp, and a dawn-dusk asymmetry with higher velocity magnitudes and lower densities measured on the dusk side of the magnetosheath in the Northern Hemisphere. The latter observation is in agreement with studies carried out by Paularena et al. (2001, Němeček et al. (2000, and Šafránková et al. (2004. In equations of hydrodynamics for a single-component additon to this we observe a reverse of this asymmetry for the Southern Hemisphere. High-latitude sub-Alfvénic flow is thought to be a necessary condition for steady state reconnection pole-ward of the cusp.

  8. Proposed UK high-latitude rocket campaign in late 1976/early 1977

    International Nuclear Information System (INIS)

    Thomas, G.R.; Bryant, D.A.

    1975-01-01

    The second major UK high-latitude rocket campaign is scheduled for late 1976/early 19777 at Andoya. The proposed experiments provide a comprehensive set of measurements of high-latitude phenomena and include studies of the sources and acceleration of auroral particles, the stability of plasma flow, wave-particle interactions, and the response of the atmosphere and ionosphere to enhanced geomagnetic activity. These experiments require co-ordinated launching of high-latitude (740-950 km) and small, medium-altitude (320-370km) rockets. The provisional campaign plan includes four Skylark 12's (with Skylark 11 as a possible substitute), one Skylark 7 (with Skylark 6 as a possible substitute), and five Fulmars (with Skylark 10A as a possible substitute). Some of the experiments require simultaneous measurements by GEOS in the European sector (early 1977), but the remainder could be carried out in late 1976

  9. Association between adolescent idiopathic scoliosis prevalence and age at menarche in different geographic latitudes

    Directory of Open Access Journals (Sweden)

    Mihas Constantinos

    2006-05-01

    Full Text Available Abstract Background Age at menarche is considered a reliable prognostic factor for idiopathic scoliosis and varies in different geographic latitudes. Adolescent idiopathic scoliosis prevalence has also been reported to be different in various latitudes and demonstrates higher values in northern countries. A study on epidemiological reports from the literature was conducted to investigate a possible association between prevalence of adolescent idiopathic scoliosis and age at menarche among normal girls in various geographic latitudes. An attempt is also made to implicate a possible role of melatonin in the above association. Material-methods 20 peer-reviewed published papers reporting adolescent idiopathic scoliosis prevalence and 33 peer-reviewed papers reporting age at menarche in normal girls from most geographic areas of the northern hemisphere were retrieved from the literature. The geographic latitude of each centre where a particular study was originated was documented. The statistical analysis included regression of the adolescent idiopathic scoliosis prevalence and age at menarche by latitude. Results The regression of prevalence of adolescent idiopathic scoliosis and age at menarche by latitude is statistically significant (p Conclusion Late age at menarche is parallel with higher prevalence of adolescent idiopathic scoliosis. Pubarche appears later in girls that live in northern latitudes and thus prolongs the period of spine vulnerability while other pre-existing or aetiological factors are contributing to the development of adolescent idiopathic scoliosis. A possible role of geography in the pathogenesis of idiopathic scoliosis is discussed, as it appears that latitude which differentiates the sunlight influences melatonin secretion and modifies age at menarche, which is associated to the prevalence of idiopathic scoliosis.

  10. Ionospheric hot spot at high latitudes

    International Nuclear Information System (INIS)

    Schunk, R.W.; Sojka, J.J.

    1982-01-01

    A hot spot (or spots) can occur in the high-latitude ionosphere depending on the plasma convection pattern. The hot spot corresponds to a small magnetic local time-magnetic latitude region of elevated ion temperatures located near the dusk and/or dawn meridians. For asymmetric convection electric field patterns, with enhanced flow in either the dusk or dawn sector of the polar cap, a single hot spot should occur in association with the strong convection cell. However, on geomagnetically disturbed days, two strong convection cells can occur, and hence, two hot spots should exist. The hot spot should be detectable when the electric field in the strong convection cell exceeds about 40 mV m -1 . For electric fields of the order of 100 mV m -1 in the convection cell, the ion temperature in the hot spot is greatest at low altitudes, reaching 4000 0 K at 160 km, and decreases with altitude in the F-region. An ionospheric hot spot (or spots) can be expected at all seasons and for a wide range of solar cycle conditions

  11. Theoretical study of the high-latitude ionosphere's response to multicell convection patterns

    International Nuclear Information System (INIS)

    Sojka, J.J.; Schunk, R.W.

    1987-01-01

    It is well known that the convection electric fields have an important effect on the ionosphere at high latitudes and that a quantitative understanding of their effect requires a knowledge of the plasma convection pattern. When the interplanetary magnetic field (IMF) is southward, plasma convection at F region altitudes displays a two-cell pattern with antisunward flow over the polar cap and return flow at lower latitudes. However, when the IMF is northward, multiple convection cells can exist, with both sunward flow and auroral precipitation (theta aurora) in the polar cap. The characteristic ionospheric signatures associated with multicell convection patterns were studied with the aid of a three-dimensional time-dependent ionospheric model. Two-, three-, and four-cell patterns were considered and the ionosphere's response was calculated for the same cross-tail potential and for solar maximum and winter conditions in the northern hemisphere. As expected, there are major distinguishing ionospheric features associated with the different convection patterns, particularly in the polar cap. For two-cell convection the antisunward flow the plasma from the dayside into the polar cap. For two-cell convection the antisunward flow of plasma from the dayside into the polar cap acts to maintain the densities in this region in winter. For four-cell convection, on the other hand, the two aditional convection cells in the polar cap are in darkness most of the time, and the resulting O + decay acts to produce twin polar holes that are separated by a sun-aligned ridge of enhanced ionization due to theta aurora precipitation

  12. Simultaneous in-situ observations of the signatures of dayside reconnection at the high- and low-latitude magnetopause

    Directory of Open Access Journals (Sweden)

    J. A. Wild

    2005-02-01

    Full Text Available We present magnetic field and particle data recorded by the Cluster and Geotail satellites in the vicinity of the high- and low-latitude dayside magnetopause, respectively, on 17 February 2003. A favourable conjunction of these spacecraft culminated in the observation of a series of flux transfer events (FTEs, characterised by bipolar perturbations in the component of the magnetic field normal to the magnetopause, an enhancement in the overall magnetic field strength, and field tilting effects in the plane of the magnetopause whilst the satellites were located on the magnetosheath side of the boundary. Whilst a subset of the FTE signatures observed could be identified as being either normal or reverse polarity, the rapid succession of events observed made it difficult to classify some of the signatures unambiguously. Nevertheless, by considering the source region and motion of flux tubes opened by magnetic reconnection at low latitudes (i.e. between Cluster and Geotail, we demonstrate that the observations are consistent with the motion of northward (southward and tailward moving flux tubes anchored in the Northern (Southern Hemisphere passing in close proximity to the Cluster (Geotail satellites. We are able to demonstrate that a multi-spacecraft approach, coupled with a realistic model of flux tube motion in the magnetosheath, enables us to infer the approximate position of the reconnection site, which in this case was located at near-equatorial latitudes.

  13. Long-term variability in Northern Hemisphere snow cover and associations with warmer winters

    Science.gov (United States)

    McCabe, Gregory J.; Wolock, David M.

    2010-01-01

    A monthly snow accumulation and melt model is used with gridded monthly temperature and precipitation data for the Northern Hemisphere to generate time series of March snow-covered area (SCA) for the period 1905 through 2002. The time series of estimated SCA for March is verified by comparison with previously published time series of SCA for the Northern Hemisphere. The time series of estimated Northern Hemisphere March SCA shows a substantial decrease since about 1970, and this decrease corresponds to an increase in mean winter Northern Hemisphere temperature. The increase in winter temperature has caused a decrease in the fraction of precipitation that occurs as snow and an increase in snowmelt for some parts of the Northern Hemisphere, particularly the mid-latitudes, thus reducing snow packs and March SCA. In addition, the increase in winter temperature and the decreases in SCA appear to be associated with a contraction of the circumpolar vortex and a poleward movement of storm tracks, resulting in decreased precipitation (and snow) in the low- to mid-latitudes and an increase in precipitation (and snow) in high latitudes. If Northern Hemisphere winter temperatures continue to warm as they have since the 1970s, then March SCA will likely continue to decrease.

  14. Spectral classification of medium-scale high-latitude F region plasma density irregularities

    International Nuclear Information System (INIS)

    Singh, M.; Rodriguez, P.; Szuszczewicz, E.P.; Sachs Freeman Associates, Bowie, MD)

    1985-01-01

    The high-latitude ionosphere represents a highly structured plasma. Rodriguez and Szuszczewicz (1984) reported a wide range of plasma density irregularities (150 km to 75 m) at high latitudes near 200 km. They have shown that the small-scale irregularities (7.5 km to 75 m) populated the dayside oval more often than the other phenomenological regions. It was suggested that in the lower F region the chemical recombination is fast enough to remove small-scale irregularities before convection can transport them large distances, leaving structured particle precipitation as the dominant source term for irregularities. The present paper provides the results of spectral analyses of pulsed plasma probe data collected in situ aboard the STP/S3-4 satellite during the period March-September 1978. A quantitative description of irregularity spectra in the high-latitude lower F region plasma density is given. 22 references

  15. Space weather effects on airline communications in the high latitude regions

    Science.gov (United States)

    Stocker, Alan; Siddle, Dave; Warrington, Mike; Honary, Farideh; Zaalov, Nikolay; Homam, Mariyam; Boteler, David; Danskin, Donald; de Franceschi, Georgiana; Ascaneus, Svend

    2013-04-01

    In the polar regions, ground-based VHF facilities for air-traffic control are lacking (and non-existent on the Russian side of the pole) and satellite communication systems either not available or expensive to retrofit to current aircraft and hence there remains a need for HF communication systems. Unfortunately, at these latitudes space weather can significantly affect the propagation of HF radio signals and the forecasting techniques currently employed by the airline industry are somewhat crude. In this paper, a new project that aims to provide forecasting of HF propagation characteristics for use by civilian airlines operating over polar routes will be described and preliminary results presented. Previous work in this area [e.g. Stocker et al., 2007] has focussed on taking HF signal measurements (e.g. SNR, delay and Doppler spread, and direction of arrival) on a limited number of propagation paths and developing an ionospheric model that incorporates high latitude features (e.g. polar patches and arcs) which, when combined with raytracing, allows the broad characteristics of the observations to be reproduced [Warrington et al., 2012]. The new project will greatly extend this work and consists of a number of stages. Firstly, HF measurements from an extensive network of purpose built transmitters and receivers spanning the Arctic regions will be collected and analysed. In order to test a wide variety of scenarios, the propagation paths will have different characteristics, e.g. different lengths and covering different parts of the northern ionosphere (i.e. polar cap paths where both terminals are in the polar cap, trans-auroral paths, and sub-auroral paths) and observations will be taken at a range of HF frequencies for a period covering the current (so far weak) solar maximum and part of the declining phase. Simultaneously, high latitude absorption measurements utilising the Global Riometer Array (GLORIA) will be collected and analysed. Next, the observations of

  16. Low latitude aurorae on October 21, 1989, 2

    International Nuclear Information System (INIS)

    Kuwashima, Masayuki; Tsunomura, Satoru; Uwai, Tetsuya; Saito, Buniti; Takahasi, Tosiyasu; Kiyama, Yositaka.

    1990-01-01

    Appearance of low-latitude aurorae was seen in Hokkaido, a northern district in Japan, on October 21 and November 17, 1989, during severe magnetic storms. Some characteristics of the associated magnetic variations are shown and discussed in the present short report. The appearance of low-latitude aurora events was found during a time interval of a sharp H-component increase succeeding to the maximum development of the storm time ring current. The cause of the increase in the H-component seems to be associated with the bay disturbance because Pi2 magnetic pulsations were always associated with the low-latitude aurora event. The period of an aurora associated Pi2 event is shorter (40-60 seconds) than that of a usual Pi2 event (100 seconds). During the main phase of geomagnetic storm on October 21, optical and spectroscopic observations of low latitude aurora were made with an airglow-photometer, spectrograph and an all sky camera at Niigata (latitude 37.7degN, longitude 138.8degE and geomagnetic latitude 27.7degN). Spectra of low latitude aurorae observed in Niigata are given and discussed. A model for the main part of the auroral emission is also presented. (N.K.)

  17. The palaeobiology of high latitude birds from the early Eocene greenhouse of Ellesmere Island, Arctic Canada.

    Science.gov (United States)

    Stidham, Thomas A; Eberle, Jaelyn J

    2016-02-12

    Fossils attributable to the extinct waterfowl clade Presbyornithidae and the large flightless Gastornithidae from the early Eocene (~52-53 Ma) of Ellesmere Island, in northernmost Canada are the oldest Cenozoic avian fossils from the Arctic. Except for its slightly larger size, the Arctic presbyornithid humerus is not distinguishable from fossils of Presbyornis pervetus from the western United States, and the Gastornis phalanx is within the known size range of mid-latitude individuals. The occurrence of Presbyornis above the Arctic Circle in the Eocene could be the result of annual migration like that of its living duck and geese relatives, or it may have been a year-round resident similar to some Eocene mammals on Ellesmere and some extant species of sea ducks. Gastornis, along with some of the mammalian and reptilian members of the Eocene Arctic fauna, likely over-wintered in the Arctic. Despite the milder (above freezing) Eocene climate on Ellesmere Island, prolonged periods of darkness occurred during the winter. Presence of these extinct birds at both mid and high latitudes on the northern continents provides evidence that future increases in climatic warming (closer to Eocene levels) could lead to the establishment of new migratory or resident populations within the Arctic Circle.

  18. ROTATION RATE DIFFERENCES OF POSITIVE AND NEGATIVE SOLAR MAGNETIC FIELDS BETWEEN ±60° LATITUDES

    Energy Technology Data Exchange (ETDEWEB)

    Shi, X. J.; Xie, J. L., E-mail: shixiangjun@ynao.ac.cn [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China)

    2015-04-15

    Based on a cross-correlation analysis of the Carrington synoptic maps of solar photospheric magnetic fields from Carrington Rotations Nos. 1625 to 2135 (from 1975 February to 2013 March), the sidereal rotation rates of the positive and negative magnetic fields in the latitude range of ±60° are obtained, and the rotation rate differences between them are investigated. The time–latitude distribution of the rate differences is shown, which looks like a butterfly diagram at the low and middle latitudes. For comparison, the time–latitude distribution of the longitudinally averaged photospheric magnetic fields is shown. We conclude that the magnetic fields having the same polarity as the leading sunspots at a given hemisphere rotate faster than those exhibiting the opposite polarity at low and middle latitudes. However, at higher latitudes, the magnetic fields having the same polarity as the leading sunspots at a given hemisphere do not always rotate faster than those with the opposite polarity. Furthermore, the relationship between the rotation rate differences and solar magnetic fields is studied through a correlation analysis. Our result shows that the correlation coefficients between them reach maximum values at 13° (14°) latitude in the northern (southern) hemisphere, and change sign at 28° latitude in both hemispheres, then reach their minimum values at 58° (53°) latitude in the northern (southern) hemisphere.

  19. Non-native and native organisms moving into high elevation and high latitude ecosystems in an era of climate change: new challenges for ecology and conservation

    Science.gov (United States)

    Pauchard, Aníbal; Albihn, Ann; Alexander, Jake; Burgess, Treena; Daehler, Curt; Essl, Franz; Evengard, Birgitta; Greenwood, Greg; Haider, Sylvia; Lenoir, Jonathan; McDougall, K.; Milbau, Ann; Muths, Erin L.; Nunez, Martin; Pellissier, Lois; Rabitsch, Wolfgang; Rew, Lisa; Robertson, Mark; Sanders, Nathan; Kueffer, Christoph

    2016-01-01

    Cold environments at high elevation and high latitude are often viewed as resistant to biological invasions. However, climate warming, land use change and associated increased connectivity all increase the risk of biological invasions in these environments. Here we present a summary of the key discussions of the workshop ‘Biosecurity in Mountains and Northern Ecosystems: Current Status and Future Challenges’ (Flen, Sweden, 1–3 June 2015). The aims of the workshop were to (1) increase awareness about the growing importance of species expansion—both non-native and native—at high elevation and high latitude with climate change, (2) review existing knowledge about invasion risks in these areas, and (3) encourage more research on how species will move and interact in cold environments, the consequences for biodiversity, and animal and human health and wellbeing. The diversity of potential and actual invaders reported at the workshop and the likely interactions between them create major challenges for managers of cold environments. However, since these cold environments have experienced fewer invasions when compared with many warmer, more populated environments, prevention has a real chance of success, especially if it is coupled with prioritisation schemes for targeting invaders likely to have greatest impact. Communication and co-operation between cold environment regions will facilitate rapid response, and maximise the use of limited research and management resources.

  20. High-Latitude Ionospheric Dynamics During Conditions of Northward IMF

    Science.gov (United States)

    Sharber, J. R.

    1996-01-01

    In order to better understand the physical processes operating during conditions of northward interplanetary magnetic field (IMF), in situ measurements from the Dynamics Explorer-2 (low altitude) polar satellite and simultaneous observations from the auroral imager on the Dynamics Explorer-1 (high altitude) satellite were used to investigate the relationships between optical emissions, particle precipitation, and convective flows in the high-latitude ionosphere. Field aligned current and convective flow patterns during IMF north include polar cap arcs, the theta aurora or transpolar arc, and the 'horse-collar' aurora. The initial part of the study concentrated on the electrodynamics of auroral features in the horse-collar aurora, a contracted but thickened emission region in which the dawn and dusk portions can spread to very high latitudes, while the latter part focused on the evolution of one type of IMF north auroral pattern to another, specifically the quiet-time horse-collar pattern to a theta aurora.

  1. Present and Future Carbon Balance of Russia's Northern Ecosystems. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Chapin, F. Stuart III; Zimov, Sergei A.

    2000-08-28

    Recent increases in the seasonal amplitude of atmospheric CO{sub 2} at high latitudes suggest a widespread biospheric response to high-latitude warming. We have shown that the seasonal amplitude of net ecosystem carbon exchange by northern Siberian ecosystems is greater in disturbed than undisturbed sites, due to increased summer influx and increased winter efflux. Net carbon gain in summer and respiration in winter were greater in a cool than in a warm year, especially in disturbed sites and did not differ between high-arctic and treeline sites, suggesting that high-latitude warming, if it occurred, would have little effect or would reduce seasonal amplitude of carbon exchange. We suggest that increased disturbance contributes significantly to the amplified seasonal cycle of atmospheric CO{sub 2} at high latitudes.

  2. High Latitude Corals Tolerate Severe Cold Spell

    Directory of Open Access Journals (Sweden)

    Chenae A. Tuckett

    2018-01-01

    Full Text Available Climatically extreme weather events often drive long-term ecological responses of ecosystems. By disrupting the important symbiosis with zooxanthellae, Marine Cold Spells (MCS can cause bleaching and mortality in tropical and subtropical scleractinian corals. Here we report on the effects of a severe MCS on high latitude corals, where we expected to find bleaching and mortality. The MCS took place off the coast of Perth (32°S, Western Australia in 2016. Bleaching was assessed before (2014 and after (2017 the MCS from surveys of permanent plots, and with timed bleaching searches. Temperature data was recorded with in situ loggers. During the MCS temperatures dipped to the coldest recorded in ten years (15.3°C and periods of <17°C lasted for up to 19 days. Only 4.3% of the surveyed coral colonies showed signs of bleaching. Bleaching was observed in 8 species where those most affected were Plesiastrea versipora and Montipora mollis. These findings suggest that high latitude corals in this area are tolerant of cold stress and are not persisting near a lethal temperature minimum. It has not been established whether other environmental conditions are limiting these species, and if so, what the implications are for coral performance on these reefs in a warmer future.

  3. What caused the cool summer over northern Central Asia, East Asia and central North America during 2009?

    International Nuclear Information System (INIS)

    Ha, Kyung-Ja; Chu, Jung-Eun; Lee, June-Yi; Wang, Bin; Hameed, Saji N; Watanabe, Masahiro

    2012-01-01

    Cool and wet weather conditions hit northern Central Asia, East Asia and central North America during the 2009 summer in concert with a strong jet stream and a prominent meandering upper-level circulation in the Northern Hemisphere mid-latitudes despite the fact that the year 2009 is the fifth warmest year globally in the modern record. It is found that the conspicuous atmospheric variability in the entire Northern Hemisphere mid-latitudes during the summer of 2009 was caused by a combination of teleconnections associated with significant tropical thermal forcings, strong polar forcing, and interaction between high-frequency weather events and climate anomalies. The strong negative circumglobal teleconnection pattern associated with the deficient Indian summer monsoon rainfall and developing El Niño condition was the major contributor to the cool and wet summer in June. On the other hand, the July weather conditions were attributable to the high-latitude impact of the unprecedented negative Arctic Oscillation, together with the Rossby wave response to the subtropical heating generated by convective activities over the Western North Pacific summer monsoon region. It is also noted that enhanced storm track activity and frequent cold surges from high-latitudes may have played a role in the cool and wet summer over the regions of interest. (letter)

  4. An accelerating high-latitude jet in Earth's core

    OpenAIRE

    Livermore, PW; Hollerbach, R; Finlay, CC

    2017-01-01

    Observations of the change in Earth's magnetic field—the secular variation—provide information about the motion of liquid metal within the core that is responsible for the magnetic field's generation. High-resolution observations from the European Space Agency's Swarm satellite mission show intense field change at high latitude, localized in a distinctive circular daisy-chain configuration centred on the north geographic pole. Here we show that this feature can be explained by a localized, no...

  5. Characteristics of high-latitude precursor flows ahead of dipolarization fronts

    Science.gov (United States)

    Li, Jia-Zheng; Zhou, Xu-Zhi; Runov, Andrei; Angelopoulos, Vassilis; Liu, Jiang; Pan, Dong-Xiao; Zong, Qiu-Gang

    2017-05-01

    Dipolarization fronts (DFs), earthward propagating structures in the magnetotail current sheet characterized by sharp enhancements of northward magnetic field, are capable of converting electromagnetic energy into particle kinetic energy. The ions previously accelerated and reflected at the DFs can contribute to plasma flows ahead of the fronts, which have been identified as DF precursor flows in both the near-equatorial plasma sheet and far from it, near the plasma sheet boundary. Using observations from the THEMIS (Time History of Events and Macroscale Interactions during Substorms) spacecraft, we show that the earthward particle and energy flux enhancements ahead of DFs are statistically larger farther away from the neutral sheet (at high latitudes) than in the near-equatorial region. High-latitude particle and energy fluxes on the DF dawnside are found to be significantly greater than those on the duskside, which is opposite to the dawn-dusk asymmetries previously found near the equatorial region. Using forward and backward tracing test-particle simulations, we then explain and reproduce the observed latitude-dependent characteristics of DF precursor flows, providing a better understanding of ion dynamics associated with dipolarization fronts.

  6. Strong signatures of high-latitude blocks and subtropical ridges in winter PM10 over Europe

    Science.gov (United States)

    Ordonez, C.; Garrido-Perez, J. M.; Garcia-Herrera, R.

    2017-12-01

    Atmospheric blocking is associated with persistent, slow-moving high pressure systems that interrupt the eastward progress of extratropical storm systems at middle and high latitudes. Subtropical ridges are low latitude structures manifested as bands of positive geopotential height anomalies extending from sub-tropical latitudes towards extra-tropical regions. We have quantified the impact of blocks and ridges on daily PM10 (particulate matter ≤ 10 µm) observations obtained from the European Environment Agency's air quality database (AirBase) for the winter period of 2000-2010. For this purpose, the response of the PM10 concentrations to the location of blocks and ridges with centres in two main longitudinal sectors (Atlantic, ATL, 30˚-0˚ W; European, EUR, 0˚-30˚ E) is examined. EUR blocking is associated with a collapse of the boundary layer as well as reduced wind speeds and precipitation occurrence, yielding large positive anomalies which average 12 µg m-3 over the whole continent. Conversely, the enhanced zonal flow around 50˚-60˚ N and the increased occurrence of precipitation over northern-central Europe on days with ATL ridges favour the ventilation of the boundary layer and the impact of washout processes, reducing PM10 concentrations on average by around 8 µg m-3. The presence of EUR blocks is also concurrent with an increased probability of exceeding the European air quality target (50 µg m-3 for 24-h averaged PM10) and the local 90th percentiles for this pollutant at many sites, while the opposite effect is found for ridges. In addition, the effect of synoptic persistence on the PM10 concentrations is particularly strong for EUR blocks. Finally, we have found that the effect of both synoptic patterns can partly control the interannual variability of winter mean PM10 at many sites of north-western and central Europe, with coefficients of determination (R2) exceeding 0.80 for southern Germany. These results indicate that the response of the

  7. Topography of the Northern Hemisphere of Mercury from MESSENGER Laser Altimetry

    Science.gov (United States)

    Zuber,Maria T.; Smith, David E.; Phillips, Roger J.; Solomon, Sean C.; Neumann, Gregory A.; Hauck, Steven A., Jr.; Peale, Stanton J.; Barnouin, Oliver S.; Head, James W.; Johnson, Catherine L.; hide

    2012-01-01

    Laser altimetry by the MESSENGER spacecraft has yielded a topographic model of the northern hemisphere of Mercury. The dynamic range of elevations is considerably smaller than those of Mars or the Moon. The most prominent feature is an extensive lowland at high northern latitudes that hosts the volcanic northern plains. Within this lowland is a broad topographic rise that experienced uplift after plains emplacement. The interior of the 1500-km-diameter Caloris impact basin has been modified so that part of the basin floor now stands higher than the rim. The elevated portion of the floor of Caloris appears to be part of a quasi-linear rise that extends for approximately half the planetary circumference at mid-latitudes. Collectively, these features imply that long-wavelength changes to Mercury s topography occurred after the earliest phases of the planet s geological history.

  8. Aspects on interactions between mid- to high latitude atmospheric circulation and some surface processes

    International Nuclear Information System (INIS)

    Byrkjedal, Oeyvind

    2006-01-01

    The Arctic is a hot topic in Climate Research. A large number of signs of a warming Arctic Climate have been identified the latest years. This is of major concern in light of the increasing atmospheric content of greenhouse gases. The climate research community projects future warming of the climate in the high latitudes as a response to increased amounts of anthropogenic release of greenhouse gases since the pre-industrial era. The overall objectives of this work has been to study the mid- and high latitude climate and climate variability, and to evaluate how well some climate processes that contribute to determine the Arctic climate and variability are represented and simulated in climate models. A new data set of storm tracks trajectories and statistics over the Northern Hemisphere for the period 1948-2002 has been developed. The variability of the cyclones extending to the Nordic Seas is studied in particular, and it is found that both the number of storms and their intensity exhibits a strong decadal and interannual variability. The ocean volume transports into and out of the Nordic Seas shows a relatively close relation to the wintertime cyclone intensity and cyclone count. To have confidence in future projections of climate, it is necessary to evaluate how the model behaves in a climate regime different from modern day. To do this two model simulations of the last glacial maximum (LGM) was performed. The reconstructions of sea surface temperatures in the Nordic Seas in LGM differ from perennial sea ice cover to having open ocean during the summer. The large scale atmospheric circulation patterns of the two different climate reconstructions are studied. It is found that the perennial sea ice cover produces a circulation pattern which may be too zonal to support the existence of the large north Eurasian ice sheets. In the case with seasonally open ocean the air masses carries larger amounts of heat and moisture towards the ice sheets and represents a larger

  9. Response of the convecting high-latitude F layer to a powerful HF wave

    Directory of Open Access Journals (Sweden)

    G. I. Mingaleva

    1997-10-01

    Full Text Available A numerical model of the high-latitude ionosphere, which takes into account the convection of the ionospheric plasma, has been developed and utilized to simulate the F-layer response at auroral latitudes to high-power radio waves. The model produces the time variations of the electron density, positive ion velocity, and ion and electron temperature profiles within a magnetic field tube carried over an ionospheric heater by the convection electric field. The simulations have been performed for the point with the geographic coordinates of the ionospheric HF heating facility near Tromso, Norway, when it is located near the midnight magnetic meridian. The calculations have been made for equinox, at high-solar-activity, and low-geomagnetic-activity conditions. The results indicate that significant variations of the electron temperature, positive ion velocity, and electron density profiles can be produced by HF heating in the convecting high-latitude F layer.

  10. Response of the convecting high-latitude F layer to a powerful HF wave

    Directory of Open Access Journals (Sweden)

    G. I. Mingaleva

    Full Text Available A numerical model of the high-latitude ionosphere, which takes into account the convection of the ionospheric plasma, has been developed and utilized to simulate the F-layer response at auroral latitudes to high-power radio waves. The model produces the time variations of the electron density, positive ion velocity, and ion and electron temperature profiles within a magnetic field tube carried over an ionospheric heater by the convection electric field. The simulations have been performed for the point with the geographic coordinates of the ionospheric HF heating facility near Tromso, Norway, when it is located near the midnight magnetic meridian. The calculations have been made for equinox, at high-solar-activity, and low-geomagnetic-activity conditions. The results indicate that significant variations of the electron temperature, positive ion velocity, and electron density profiles can be produced by HF heating in the convecting high-latitude F layer.

  11. Characteristics and sources of the electron density irregularities in the mid latitude E and Fregions

    Science.gov (United States)

    2017-05-10

    and has since been monitoring the occurrence of field-aligned irregularities ( FAIs ) in the northern middle latitudes. We investigated the...characteristics and occurrence climatology of the FAIs in the middle latitude E- and F-region ionosphere using the Daejeon VHF radar data. Depending on the...sunset and post-sunrise periods. The F-region FAIs in the mid-latitude are bounded to occur during the nighttime between local sunset and sunrise [J

  12. High-latitude molecular clouds and infrared cirrus

    International Nuclear Information System (INIS)

    Vries, H.W. de.

    1988-01-01

    The high-latitude infrared cirrus detected by IRAS is identified with atomic and molecular clouds. These clouds are small (usually less than 1 sq. deg.) and show weak CO emission. On the basis of a distance of 100 pc they are characterized by a mass of a few solar masses and a radius of about 1 pc. Thermal radiation by dust as a results of heating by the diffuse interstellar radiation field is the most-plausible origin of the cirrus emission at far-infrared wavelengths. On the basis of plausible assumptions regarding the uniformity of both the gas-to-dust ratio and the heating and cooling of the dust, the flux density at 100 μm from regions with low visual extinction should be a good tracer of the gas column density. Indeed, the data show an approximately linear proportionality between N(HI), obtained from 21-cm observations, and I 100 (HI), the flux density from dust associated with HI. If the ratio of column density to flux density in high-latitude molecular clouds is equal to the corresponding relation in atomic ones, a value for the ratio of H 2 column density to CO velocity-integrated radiation temperature may be obtained. Although low-mass clouds may be large in number, the fraction of the Galactic molecular mass in the form of these clouds is probably no more than 1%

  13. Pronounced zonal heterogeneity in Eocene southern high-latitude sea surface temperatures.

    Science.gov (United States)

    Douglas, Peter M J; Affek, Hagit P; Ivany, Linda C; Houben, Alexander J P; Sijp, Willem P; Sluijs, Appy; Schouten, Stefan; Pagani, Mark

    2014-05-06

    Paleoclimate studies suggest that increased global warmth during the Eocene epoch was greatly amplified at high latitudes, a state that climate models cannot fully reproduce. However, proxy estimates of Eocene near-Antarctic sea surface temperatures (SSTs) have produced widely divergent results at similar latitudes, with SSTs above 20 °C in the southwest Pacific contrasting with SSTs between 5 and 15 °C in the South Atlantic. Validation of this zonal temperature difference has been impeded by uncertainties inherent to the individual paleotemperature proxies applied at these sites. Here, we present multiproxy data from Seymour Island, near the Antarctic Peninsula, that provides well-constrained evidence for annual SSTs of 10-17 °C (1σ SD) during the middle and late Eocene. Comparison of the same paleotemperature proxy at Seymour Island and at the East Tasman Plateau indicate the presence of a large and consistent middle-to-late Eocene SST gradient of ∼7 °C between these two sites located at similar paleolatitudes. Intermediate-complexity climate model simulations suggest that enhanced oceanic heat transport in the South Pacific, driven by deep-water formation in the Ross Sea, was largely responsible for the observed SST gradient. These results indicate that very warm SSTs, in excess of 18 °C, did not extend uniformly across the Eocene southern high latitudes, and suggest that thermohaline circulation may partially control the distribution of high-latitude ocean temperatures in greenhouse climates. The pronounced zonal SST heterogeneity evident in the Eocene cautions against inferring past meridional temperature gradients using spatially limited data within given latitudinal bands.

  14. Boundary layer plasmas as a source for high-latitude, early afternoon, auroral arcs

    International Nuclear Information System (INIS)

    Lundin, R.; Evans, D.S.

    1985-02-01

    Simultaneous measurements of hot boundary layer plasma from PROGNOZ-7 and particle precipitation from the TIROS/NOAA satellite in nearly magnetically conjugate regions have been used to study the dynamo process responsible for the formation of high latitude, early afternoon, auroral arcs. Characteristic for the PROGNOZ-7 observations in the dayside boundary layer at high latitudes is the frequent occurrence of regions with injected magnetosheath plasma embedded in a 'halo' of antisunward flowing magnetosphere plasma. The injected magnetosheath plasma have several features which indicate that it also acts as a local source of EMF in the boundary layer. The process resembles that of a local MHD dynamo driven by the excess drift velocity of the injected magnetosheath plasma relative to the background magnetospheric plasma. The dynamo region is capable of driving fielc-aligned currents that couple to the ionosphere, where the upward current is associated with the high latitude auroral arcs. We demonstrate that the large-scale morphology as well as the detailed data intercomparison between PROGNOZ-7 and TIROS-N both agree well with a local injection of magnetosheath plasma into the dayside boundary layer as the main dynamo process powering the high-latitude, early afternoon auroral arcs. (Author)

  15. Space Weather effects on airline communications in the high latitude regions

    Science.gov (United States)

    Honary, Farideh

    2014-05-01

    Efficient air traffic management depends on reliable communications between aircraft and the air traffic control centres at all times. At high latitudes, and especially on polar routing, VHF ground infrastructure does not exist and the aircraft have to rely on HF radio for communications. HF relies on reflections from the ionosphere to achieve long distance communications. Unfortunately the high latitude ionosphere is affected by space weather events. During such events HF radio communication can be severely disrupted and aircraft are forced to use longer low latitude routes with consequent increased flight time, fuel consumption and cost. This presentation describes a new research programme at the University of Lancaster in collaboration with the University of Leicester, Solar Metrics Ltd and Natural Resources Canada for the development of a nowcasting and forecasting HF communications tool designed for the particular needs of civilian airlines. This project funded by EPSRC will access a wide variety of solar and interplanetary measurements to derive a complete picture of space weather disturbances affecting radio absorption and reflection

  16. Nightside High Latitude Magnetic Impulse Events

    Science.gov (United States)

    Engebretson, M. J.; Connors, M. G.; Braun, D.; Posch, J. L.; Kaur, M.; Guillon, S.; Hartinger, M.; Kim, H.; Behlke, R.; Reiter, K.; Jackel, B. J.; Russell, C. T.

    2017-12-01

    High latitude Magnetic Impulse Events (MIEs), isolated pulses with periods 5-10 min, were first noted in ground-based magnetometer data near local noon, and are now understood to be signatures of transient pressure increases in the solar wind (sudden impulses - SIs) and/or in the ion foreshock (traveling convection vortex events - TCVs). However, solitary pulses with considerably larger amplitude (ΔB up to 1500 nT) have often been observed in the night sector at these same latitudes. These events are not directly associated with transient external pressure increases, and are often large enough to produce significant ground induced currents. Although many night sector MIEs occur in association with substorm signatures, others appear to be very isolated. We present here a survey of intense MIE events identified in magnetometer data from the AUTUMNX and MACCS arrays in eastern Arctic Canada at all local times between July 1, 2014 and June 30, 2017. We also show maps of horizontal and vertical perturbations and maximum dB/dt values, as well as sample magnetograms, for several example events using data from these and other arrays in Arctic Canada, as well as in West Greenland and Antarctica, the latter to show the conjugate nature of these events. A basic relation to GIC data in the Hydro-Québec electrical transmission network in eastern Canada has been determined and will be discussed.

  17. A theoretical and empirical study of the response of the high latitude thermosphere to the sense of the 'Y' component of the interplanetary magnetic field

    International Nuclear Information System (INIS)

    Rees, D.; Fuller-Rowell, T.J.; Gordon, R.

    1986-01-01

    The strength and direction of the Interplanetary Magnetic Field (IMF) controls the transfer of solar wind momentum and energy to the high latitude thermosphere in a direct fashion. The sense of ''Y'' component of the IMF (BY) creates a significant asymmetry of the magnetospheric convection pattern as mapped onto the high latitude thermosphere and ionosphere. The resulting response of the polar thermospheric winds during periods when BY is either positive or negative is quite distinct, with pronounced changes in the relative strength of thermospheric winds in the dusk-dawn parts of the polar cap and in the dawn part of the auroral oval. In a study of four periods when there was a clear signature of BY, observed by the ISEE-3 satellite, with observations of polar winds and electric fields from the Dynamics Explorer-2 satellite and with wind observations by a ground-based Fabry-Perot interferometer located in Kiruna, Northern Sweden, it is possible to explain features of the high latitude thermospheric circulation using three dimensional global models including BY dependent, asymmetric, polar convection fields. Anomalously zonal wind velocities are often observed, for BY positive and when BY is negative. These are matched by the observation of strong anti-sunward polar-cap wind jets from the DE-2 satellite, on the dusk side with BY negative, and on the dawn side with BY positive. (author)

  18. Unveiling climate and ice-sheet history from drilling in high-latitude margins and future perspectives

    Science.gov (United States)

    Escutia Dotti, Carlota

    2010-05-01

    Polar ice is an important component of the climate system, affecting global sea level, ocean circulation and heat transport, marine productivity, and albedo. During the last decades drilling in the Arctic (IODP ACEX and Bering Expeditions) and in Antarctica (ODP Legs 178, 188, IODP Expedition 318 and ANDRILL) has revealed regional information about sea ice and ice sheets development and evolution. Integration of this data with numerical modeling provide an understanding of the early development of the ice sheets and their variability through the Cenozoic. Much of this work points to atmospheric CO2 and other greenhouse gases concentrations as important triggering mechanism driving the onset of glaciation and subsequent ice volume variability. With current increasing atmospheric greenhouse gases concentrations resulting in rapidly rising global temperatures, studies of polar climates become increasingly prominent on the research agenda. Despite of the relevance of the high-latitudes in the global climate systems, the short- and long-term history of the ice sheets and sea-ice and its relationships with paleoclimatic, paleoceanographic, and sea level changes is still poorly understood. A multinational, multiplatform scientific drilling strategy is being developed to recover key physical evidence from selected high-latitude areas. This strategy is aimed at addressing key knowledge gaps about the role of polar ice in climate change, targeting questions such as timing of events, rates of change, tipping points, regional variations, and northern vs. southern hemispheres (in phase or out-of-phase) variability. This data is critical to provide constrains to sea-ice and ice sheet models, which are the basis for forecasting the future of the cryosphere in a warming world.

  19. Reproduction of the shorthorn sculpin Myoxocephalus scorpius in northern Norway

    NARCIS (Netherlands)

    Luksenburg, JA; Pedersen, T; Falk-Petersen, IB

    The reproduction and life history events of the shorthorn sculpin Myoxocephalus scorpius were studied in an unexploited high latitude population in Tromso, northern Norway. Shorthorn sculpins were sampled from November 1998 to March 1999 to determine sex ratio, spawning period, oogenesis, fecundity,

  20. Temporal variation in population size of European bird species: effects of latitude and marginality of distribution.

    Directory of Open Access Journals (Sweden)

    José J Cuervo

    Full Text Available In the Northern Hemisphere, global warming has been shown to affect animal populations in different ways, with southern populations in general suffering more from increased temperatures than northern populations of the same species. However, southern populations are also often marginal populations relative to the entire breeding range, and marginality may also have negative effects on populations. To disentangle the effects of latitude (possibly due to global warming and marginality on temporal variation in population size, we investigated European breeding bird species across a latitudinal gradient. Population size estimates were regressed on years, and from these regressions we obtained the slope (a proxy for population trend and the standard error of the estimate (SEE (a proxy for population fluctuations. The possible relationships between marginality or latitude on one hand and slopes or SEE on the other were tested among populations within species. Potentially confounding factors such as census method, sampling effort, density-dependence, habitat fragmentation and number of sampling years were controlled statistically. Population latitude was positively related to regression slopes independent of marginality, with more positive slopes (i.e., trends in northern than in southern populations. The degree of marginality was positively related to SEE independent of latitude, with marginal populations showing larger SEE (i.e., fluctuations than central ones. Regression slopes were also significantly related to our estimate of density-dependence and SEE was significantly affected by the census method. These results are consistent with a scenario in which southern and northern populations of European bird species are negatively affected by marginality, with southern populations benefitting less from global warming than northern populations, thus potentially making southern populations more vulnerable to extinction.

  1. Trends in Northern Hemisphere surface cyclone frequency and intensity

    Science.gov (United States)

    McCabe, G.J.; Clark, M.P.; Serreze, Mark C.

    2001-01-01

    One of the hypothesized effects of global warming from increasing concentrations of greenhouse gases is a change in the frequency and/or intensity of extratropical cyclones. In this study, winter frequencies and intensities of extratropical cyclones in the Northern Hemisphere for the period 1959-97 are examined to determine if identifiable trends are occurring. Results indicate a statistically significant decrease in midlatitude cyclone frequency and a significant increase in high-latitude cyclone frequency. In addition, storm intensity has increased in both the high and midlatitudes. The changes in storm frequency correlate with changes in winter Northern Hemisphere temperature and support hypotheses that global warming may result in a northward shift of storm tracks in the Northern Hemisphere.

  2. Statistical evidences of absorption at high latitudes

    International Nuclear Information System (INIS)

    Fesenko, B.I.

    1980-01-01

    Evidences are considered which indicate to the significant effect of the irregular interstellar absorption at high latitudes b. The number density of faint galaxies grows with the increasing |b| even at the values of |b| exceeding 50 deg. The effects of interstellar medium are traced even in the directions of the stars and globular clusters with very low values of the colour excess. The coefficient of absorption, Asub(B)=0.29+-0.05, was estimated from the colours of the bright E-galaxies [ru

  3. Revisiting factors controlling methane emissions from high-Arctic tundra

    DEFF Research Database (Denmark)

    Mastepanov, M.; Sigsgaard, Charlotte; Tagesson, Håkan Torbern

    2013-01-01

    The northern latitudes are experiencing disproportionate warming relative to the mid-latitudes, and there is growing concern about feedbacks between this warming and methane production and release from high-latitude soils. Studies of methane emissions carried out in the Arctic, particularly those...

  4. Northern Hemisphere forcing of Southern Hemisphere climate during the last deglaciation.

    Science.gov (United States)

    He, Feng; Shakun, Jeremy D; Clark, Peter U; Carlson, Anders E; Liu, Zhengyu; Otto-Bliesner, Bette L; Kutzbach, John E

    2013-02-07

    According to the Milankovitch theory, changes in summer insolation in the high-latitude Northern Hemisphere caused glacial cycles through their impact on ice-sheet mass balance. Statistical analyses of long climate records supported this theory, but they also posed a substantial challenge by showing that changes in Southern Hemisphere climate were in phase with or led those in the north. Although an orbitally forced Northern Hemisphere signal may have been transmitted to the Southern Hemisphere, insolation forcing can also directly influence local Southern Hemisphere climate, potentially intensified by sea-ice feedback, suggesting that the hemispheres may have responded independently to different aspects of orbital forcing. Signal processing of climate records cannot distinguish between these conditions, however, because the proposed insolation forcings share essentially identical variability. Here we use transient simulations with a coupled atmosphere-ocean general circulation model to identify the impacts of forcing from changes in orbits, atmospheric CO(2) concentration, ice sheets and the Atlantic meridional overturning circulation (AMOC) on hemispheric temperatures during the first half of the last deglaciation (22-14.3 kyr BP). Although based on a single model, our transient simulation with only orbital changes supports the Milankovitch theory in showing that the last deglaciation was initiated by rising insolation during spring and summer in the mid-latitude to high-latitude Northern Hemisphere and by terrestrial snow-albedo feedback. The simulation with all forcings best reproduces the timing and magnitude of surface temperature evolution in the Southern Hemisphere in deglacial proxy records. AMOC changes associated with an orbitally induced retreat of Northern Hemisphere ice sheets is the most plausible explanation for the early Southern Hemisphere deglacial warming and its lead over Northern Hemisphere temperature; the ensuing rise in atmospheric CO(2

  5. High-latitude electromagnetic and particle energy flux during an event with sustained strongly northward IMF

    Directory of Open Access Journals (Sweden)

    H. Korth

    2005-06-01

    Full Text Available We present a case study of a prolonged interval of strongly northward orientation of the interplanetary magnetic field on 16 July 2000, 16:00-19:00 UT to characterize the energy exchange between the magnetosphere and ionosphere for conditions associated with minimum solar wind-magnetosphere coupling. With reconnection occurring tailward of the cusp under northward IMF conditions, the reconnection dynamo should be separated from the viscous dynamo, presumably driven by the Kelvin-Helmholtz (KH instability. Thus, these conditions are also ideal for evaluating the contribution of a viscous interaction to the coupling process. We derive the two-dimensional distribution of the Poynting vector radial component in the northern sunlit polar ionosphere from magnetic field observations by the constellation of Iridium satellites together with drift meter and magnetometer observations from the Defense Meteorological Satellite Program (DMSP F13 and F15 satellites. The electromagnetic energy flux is then compared with the particle energy flux obtained from auroral images taken by the far-ultraviolet (FUV instrument on the Imager for Magnetopause to Aurora Global Exploration (IMAGE spacecraft. The electromagnetic energy input to the ionosphere of 51 GW calculated from the Iridium/DMSP observations is eight times larger than the 6 GW due to particle precipitation all poleward of 78° MLAT. This result indicates that the energy transport is significant, particularly as it is concentrated in a small region near the magnetic pole, even under conditions traditionally considered to be quiet and is dominated by the electromagnetic flux. We estimate the contributions of the high and mid-latitude dynamos to both the Birkeland currents and electric potentials finding that high-latitude reconnection accounts for 0.8 MA and 45kV while we attribute <0.2MA and ~5kV to an interaction at lower latitudes having the sense of a viscous interaction. Given that these

  6. Common origin of positive ionospheric storms at middle latitudes and the geomagnetic activity effect at low latitudes

    International Nuclear Information System (INIS)

    Proelss, G.W.

    1993-01-01

    The author looks for a correlation between two different atmospheric effects. They are a positive atmospheric storm (an anomalous increase in the F2 region ionization density), observed at middle latitudes, and the geomagnetic activity effect (the anomalous changes of temperature and gas density seen in the thermosphere), observed at low latitudes. A temporal correlation is sought to test the argument that both of these effects are the result of travelling atmospheric disturbances (TAD). A TAD is a pulselike atmospheric wave thought to be generated by substorm activity, and to propagate with high velocity (600 m/s) from polar latitudes toward equatorial latitudes. The author looks at data from five separate events correlating magnetic, ionospheric, and neutral atmospheric measurements. The conclusion is that there is a positive correlation between magnetic substorm activity at high latitudes, and positive ionospheric storms at middle latitudes and geomagnetic activity at low latitudes. The time correlations are consistent with high propagation speeds between these events. The author also presents arguments which indicate that the middle latitude positive ionospheric storms are not the result of electric field effects

  7. Ionosphere Scintillation at Low and High Latitudes (Modelling vs Measurement)

    Science.gov (United States)

    Béniguel, Yannick

    2016-04-01

    This paper will address the problem of scintillations characteristics, focusing on the parameters of interest for a navigation system. Those parameters are the probabilities of occurrence of simultaneous fading, the bubbles surface at IPP level, the cycle slips and the fades duration statistics. The scintillation characteristics obtained at low and high latitudes will be compared. These results correspond to the data analysis performed after the ESA Monitor ionosphere measurement campaign [1], [2]. A second aspect of the presentation will be the modelling aspect. It has been observed that the phase scintillation dominates at high latitudes while the intensity scintillation dominates at low latitudes. The way it can be reproduced and implemented in a propagation model (e.g. GISM model [3]) will be presented. Comparisons of measurements with results obtained by modelling will be presented on some typical scenarios. References [1] R. Prieto Cerdeira, Y. Beniguel, "The MONITOR project: architecture, data and products", Ionospheric Effects Symposium, Alexandria (Va), May 2011 [2] Y. Béniguel, R Orus-Perez , R. Prieto-Cerdeira , S. Schlueter , S. Scortan, A. Grosu "MONITOR 2: ionospheric monitoring network in support to SBAS and other GNSS and scientific purposes", IES Conference, Alexandria (Va), May 2015-05-22 [3] Y. Béniguel, P. Hamel, "A Global Ionosphere Scintillation Propagation Model for Equatorial Regions", Journal of Space Weather Space Climate, 1, (2011), doi: 10.1051/swsc/2011004

  8. Delay in solar energetic particle onsets at high heliographic latitudes

    Directory of Open Access Journals (Sweden)

    S. Dalla

    2003-06-01

    Full Text Available Ulysses observations have shown that solar energetic particles (SEPs can easily reach high heliographic latitudes. To obtain information on the release and propagation of SEPs prior to their arrival at Ulysses, we analyse the onsets of nine large high-latitude particle events. We measure the onset times in several energy channels, and plot them versus inverse particle speed. This allows us to derive an experimental path length and time of release from the solar atmosphere. We repeat the procedure for near-Earth observations by Wind and SOHO. We find that the derived path lengths at Ulysses are 1.06 to 2.45 times the length of a Parker spiral magnetic field line connecting the spacecraft to the Sun. The time of particle release from the Sun is between 100 and 350 min later than the release time derived from in-ecliptic measurements. We find no evidence of correlation between the delay in release and the inverse of the speed of the CME associated with the event, or the inverse of the speed of the corresponding interplanetary shock. The main parameter determining the magnitude of the delay appears to be the difference in latitude between the flare and the footpoint of the spacecraft.Key words. Interplanetary physics (energetic particles – Solar physics, astrophysics and astronomy (energetic particles, flares and mass ejections

  9. Northern agriculture: constraints and responses to global climate change

    Directory of Open Access Journals (Sweden)

    Timo J. N. Mela

    1996-05-01

    Full Text Available In the northern circumpolar zone, the area between the 600°Cd and 1200°Cd isopleths of effective temperature sum above 5°C, the annual receipt of solar energy is limited by the low angle of radiation arriving at the earth’s surface. This is the primary cause of the climatic constraints observed in the zone, such as low temperatures, a short growing season, frosts during the growing season, long and cold winters and thick snow cover. In Finland, the length of the growing season varies from 180 days in the south (60°N to 120 days in the north (70°N. Consequently, the growing time for crops from sowing to ripening is also short, which limits their ability to produce high yields. The most advanced forms of farming in the high-latitude zone are encountered towards the south in Northern Europe, central Siberia and the prairies of Canada, i.e. mainly in the phytogeographical hemiboreal zone where the effective temperature sum is higher than 1200°Cd. Conditions for agriculture then deteriorate gradually further north with the cooling of the climate, and this is reflected as an increase in cattle rearing at the expense of grain cultivation. In northern Europe farming is practised as far north as to the Arctic Circle, at about 66°N latitude. In North America, fields extend to about 55°N, In Asia, there are few fields north of 60°N. Finland is the most northern agricultural country in the world, with all its field area, about 2.5 million hectares, located north of latitude 60°N. Changes in the climate and atmospheric CO2 predicted for the future are likely to have a strong influence, either beneficial or disadvantageous, on the conditions for growth in northern areas where the annual mean temperature is 5°C or less.

  10. Synoptic-scale circulation patterns during summer derived from tree rings in mid-latitude Asia

    Science.gov (United States)

    Seim, Andrea; Schultz, Johannes A.; Leland, Caroline; Davi, Nicole; Byambasuren, Oyunsanaa; Liang, Eryuan; Wang, Xiaochun; Beck, Christoph; Linderholm, Hans W.; Pederson, Neil

    2017-09-01

    Understanding past and recent climate and atmospheric circulation variability is vital for regions that are affected by climate extremes. In mid-latitude Asia, however, the synoptic climatology is complex and not yet fully understood. The aim of this study was to investigate dominant synoptic-scale circulation patterns during the summer season using a multi-species tree-ring width (TRW) network comprising 78 sites from mid-latitude Asia. For each TRW chronology, we calculated an atmospheric circulation tree-ring index (ACTI), based on 1000 hPa geopotential height data, to directly link tree growth to 13 summertime weather types and their associated local climate conditions for the period 1871-1993. Using the ACTI, three groups of similarly responding tree-ring sites can be associated with distinct large-scale atmospheric circulation patterns: 1. growth of drought sensitive trees is positively affected by a cyclone over northern Russia; 2. temperature sensitive trees show positive associations to a cyclone over northwestern Russia and an anticyclone over Mongolia; 3. trees at two high elevation sites show positive relations to a zonal cyclone extending from mid-latitude Eurasia to the West Pacific. The identified synoptic-scale circulation patterns showed spatiotemporal variability in their intensity and position, causing temporally varying climate conditions in mid-latitude Asia. Our results highlight that for regions with less pronounced atmospheric action centers during summer such as the occurrence of large-scale cyclones and anticyclones, synoptic-scale circulation patterns can be extracted and linked to the Northern Hemisphere circulation system. Thus, we provide a new and solid envelope for climate studies covering the past to the future.

  11. Increasing summer net CO2 uptake in high northern ecosystems inferred from atmospheric inversions and comparisons to remote-sensing NDVI

    Directory of Open Access Journals (Sweden)

    L. R. Welp

    2016-07-01

    Full Text Available Warmer temperatures and elevated atmospheric CO2 concentrations over the last several decades have been credited with increasing vegetation activity and photosynthetic uptake of CO2 from the atmosphere in the high northern latitude ecosystems: the boreal forest and arctic tundra. At the same time, soils in the region have been warming, permafrost is melting, fire frequency and severity are increasing, and some regions of the boreal forest are showing signs of stress due to drought or insect disturbance. The recent trends in net carbon balance of these ecosystems, across heterogeneous disturbance patterns, and the future implications of these changes are unclear. Here, we examine CO2 fluxes from northern boreal and tundra regions from 1985 to 2012, estimated from two atmospheric inversions (RIGC and Jena. Both used measured atmospheric CO2 concentrations and wind fields from interannually variable climate reanalysis. In the arctic zone, the latitude region above 60° N excluding Europe (10° W–63° E, neither inversion finds a significant long-term trend in annual CO2 balance. The boreal zone, the latitude region from approximately 50–60° N, again excluding Europe, showed a trend of 8–11 Tg C yr−2 over the common period of validity from 1986 to 2006, resulting in an annual CO2 sink in 2006 that was 170–230 Tg C yr−1 larger than in 1986. This trend appears to continue through 2012 in the Jena inversion as well. In both latitudinal zones, the seasonal amplitude of monthly CO2 fluxes increased due to increased uptake in summer, and in the arctic zone also due to increased fall CO2 release. These findings suggest that the boreal zone has been maintaining and likely increasing CO2 sink strength over this period, despite browning trends in some regions and changes in fire frequency and land use. Meanwhile, the arctic zone shows that increased summer CO2 uptake, consistent with strong greening trends, is offset by

  12. Evidence That Loss-of-Function Filaggrin Gene Mutations Evolved in Northern Europeans to Favor Intracutaneous Vitamin D3 Production

    DEFF Research Database (Denmark)

    Thyssen, Jacob P; Bikle, Daniel D; Elias, Peter M

    2014-01-01

    Skin pigmentation lightened progressively to a variable extent, as modern humans emigrated out of Africa, but extreme lightening occurred only in northern Europeans. Yet, loss of pigmentation alone cannot suffice to sustain cutaneous vitamin D3 (VD3) formation at the high latitudes of northern...

  13. Variable responses of benthic communities to anomalously warm sea temperatures on a high-latitude coral reef.

    Directory of Open Access Journals (Sweden)

    Tom C L Bridge

    Full Text Available High-latitude reefs support unique ecological communities occurring at the biogeographic boundaries between tropical and temperate marine ecosystems. Due to their lower ambient temperatures, they are regarded as potential refugia for tropical species shifting poleward due to rising sea temperatures. However, acute warming events can cause rapid shifts in the composition of high-latitude reef communities, including range contractions of temperate macroalgae and bleaching-induced mortality in corals. While bleaching has been reported on numerous high-latitude reefs, post-bleaching trajectories of benthic communities are poorly described. Consequently, the longer-term effects of thermal anomalies on high-latitude reefs are difficult to predict. Here, we use an autonomous underwater vehicle to conduct repeated surveys of three 625 m(2 plots on a coral-dominated high-latitude reef in the Houtman Abrolhos Islands, Western Australia, over a four-year period spanning a large-magnitude thermal anomaly. Quantification of benthic communities revealed high coral cover (>70%, comprising three main morphospecies prior to the bleaching event. Plating Montipora was most susceptible to bleaching, but in the plot where it was most abundant, coral cover did not change significantly because of post-bleaching increases in branching Acropora. In the other two plots, coral cover decreased while macroalgal cover increased markedly. Overall, coral cover declined from 73% to 59% over the course of the study, while macroalgal cover increased from 11% to 24%. The significant differences in impacts and post-bleaching trajectories among plots underline the importance of understanding the underlying causes of such variation to improve predictions of how climate change will affect reefs, especially at high-latitudes.

  14. Variable responses of benthic communities to anomalously warm sea temperatures on a high-latitude coral reef.

    Science.gov (United States)

    Bridge, Tom C L; Ferrari, Renata; Bryson, Mitch; Hovey, Renae; Figueira, Will F; Williams, Stefan B; Pizarro, Oscar; Harborne, Alastair R; Byrne, Maria

    2014-01-01

    High-latitude reefs support unique ecological communities occurring at the biogeographic boundaries between tropical and temperate marine ecosystems. Due to their lower ambient temperatures, they are regarded as potential refugia for tropical species shifting poleward due to rising sea temperatures. However, acute warming events can cause rapid shifts in the composition of high-latitude reef communities, including range contractions of temperate macroalgae and bleaching-induced mortality in corals. While bleaching has been reported on numerous high-latitude reefs, post-bleaching trajectories of benthic communities are poorly described. Consequently, the longer-term effects of thermal anomalies on high-latitude reefs are difficult to predict. Here, we use an autonomous underwater vehicle to conduct repeated surveys of three 625 m(2) plots on a coral-dominated high-latitude reef in the Houtman Abrolhos Islands, Western Australia, over a four-year period spanning a large-magnitude thermal anomaly. Quantification of benthic communities revealed high coral cover (>70%, comprising three main morphospecies) prior to the bleaching event. Plating Montipora was most susceptible to bleaching, but in the plot where it was most abundant, coral cover did not change significantly because of post-bleaching increases in branching Acropora. In the other two plots, coral cover decreased while macroalgal cover increased markedly. Overall, coral cover declined from 73% to 59% over the course of the study, while macroalgal cover increased from 11% to 24%. The significant differences in impacts and post-bleaching trajectories among plots underline the importance of understanding the underlying causes of such variation to improve predictions of how climate change will affect reefs, especially at high-latitudes.

  15. Transition region of TEC enhancement phenomena during geomagnetically disturbed periods at mid-latitudes

    Directory of Open Access Journals (Sweden)

    K. Unnikrishnan

    2005-12-01

    Full Text Available Large-scale TEC perturbations/enhancements observed during the day sectors of major storm periods, 12-13 February 2000, 23 September 1999, 29 October 2003, and 21 November 2003, were studied using a high resolution GPS network over Japan. TEC enhancements described in the present study have large magnitudes (≥25×1016 electrons/m2 compared to the quiet-time values and long periods (≥120 min. The sequential manner of development and the propagation of these perturbations show that they are initiated at the northern region and propagate towards the southern region of Japan, with velocities >350 m/s. On 12 February 2000, remarkably high values of TEC and background content are observed at the southern region, compared to the north, because of the poleward expansion of the equatorial anomaly crest, which is characterized by strong latitudinal gradients near 35° N (26° N geomagnetically. When the TEC enhancements, initiating at the north, propagate through the region 39-34° N (30-25° N geomagnetically, they undergo transitions characterized by a severe decrease in amplitude of TEC enhancements. This may be due to their interaction with the higher background content of the expanded anomaly crest. However, at the low-latitude region, below 34° N, an increase in TEC is manifested as an enhanced ionization pattern (EIP. This could be due to the prompt penetration of the eastward electric field, which is evident from high values of the southward Interplanetary Magnetic Field component (IMF Bz and AE index. The TEC perturbations observed on the other storm days also exhibit similar transitions, characterized by a decreasing magnitude of the perturbation component, at the region around 39-34° N. In addition to this, on the other storm days, at the low-latitude region, below 34° N, an increase in TEC (EIP feature also indicates the repeatability of the above scenario. It is found that, the latitude and

  16. Transition region of TEC enhancement phenomena during geomagnetically disturbed periods at mid-latitudes

    Directory of Open Access Journals (Sweden)

    K. Unnikrishnan

    2005-12-01

    Full Text Available Large-scale TEC perturbations/enhancements observed during the day sectors of major storm periods, 12-13 February 2000, 23 September 1999, 29 October 2003, and 21 November 2003, were studied using a high resolution GPS network over Japan. TEC enhancements described in the present study have large magnitudes (≥25×1016 electrons/m2 compared to the quiet-time values and long periods (≥120 min. The sequential manner of development and the propagation of these perturbations show that they are initiated at the northern region and propagate towards the southern region of Japan, with velocities >350 m/s. On 12 February 2000, remarkably high values of TEC and background content are observed at the southern region, compared to the north, because of the poleward expansion of the equatorial anomaly crest, which is characterized by strong latitudinal gradients near 35° N (26° N geomagnetically. When the TEC enhancements, initiating at the north, propagate through the region 39-34° N (30-25° N geomagnetically, they undergo transitions characterized by a severe decrease in amplitude of TEC enhancements. This may be due to their interaction with the higher background content of the expanded anomaly crest. However, at the low-latitude region, below 34° N, an increase in TEC is manifested as an enhanced ionization pattern (EIP. This could be due to the prompt penetration of the eastward electric field, which is evident from high values of the southward Interplanetary Magnetic Field component (IMF Bz and AE index. The TEC perturbations observed on the other storm days also exhibit similar transitions, characterized by a decreasing magnitude of the perturbation component, at the region around 39-34° N. In addition to this, on the other storm days, at the low-latitude region, below 34° N, an increase in TEC (EIP feature also indicates the repeatability of the above scenario. It is found that, the latitude and time at which the decrease in magnitude

  17. Heliographic latitude dependence of the IMF dominant polarity in 1972--1973 using Pioneer 10 data

    International Nuclear Information System (INIS)

    Rosenberg, R.L.

    1975-01-01

    The heliographic latitude dependence of the interplanetary magnetic field (IMF) was studied by using Pioneer 10 data taken from March 1972 through June 1973 over Bartels solar rotation (SR) periods 1896--1913. The daily IMF sector polarities were plotted for each of these SR periods. Then the number of days of positive polarity (''away'' directed fields) per SR was plotted versus the average heliographic latitude. The dominant polarity behaved in accordance with the latitude effects found by Rosenberg and Coleman in 1969. The phase of the cycle has reversed from what it was prior to the sunspot maximum in 1968. The polarity is now predominantly positive at northern heliographic latitudes. (auth)

  18. Seasonal dependence of high-latitude electric fields

    International Nuclear Information System (INIS)

    de la Beaujardiere, O.; Leger, C.; Alcayde, D.; Fontanari, J.

    1991-01-01

    The seasonal dependence of the high-latitude electric field was investigated using Sondrestrom incoherent scatter radar data. Average ExB drifts were derived from 5 years of measurements centered around solar minimum. The electrostatic potentials that best fit the observed average electric field were calculated. It was found that the large-scale convection pattern significantly changes with season. This change involves the overall shape of the convection pattern, as well as the electric field intensity, and thus the total dawn-dusk potential across the polar cap. The cross polar cap potential drop is largest in fall, followed by winter, spring and summer. The small difference found between the summer and winter cross polar cap potential can be attributed to differing field-aligned potential drops. In view of the well-known relationship between field-aligned currents and parallel potential drop, this is consistent with the observations that Birkeland currents are larger in the summer than in winter. Changes in the overall shape of the convection pattern are consistent with the simple notion that the whole pattern is shifted toward the nightside as well as, to a lesser extent, toward the dawnside in summer as compared to winter. This assumption is based on the following observed effects: (1) The rotation of the overall convection pattern toward earlier local times with respect to the noon-midnight direction is maximum for summer on the dayside. (2) On the nightside, the Harang discontinuity is typically located within the radar field of view (Λ=67 to 82) in the winter averaged patterns, but it is equatorward of the field of view in summer. (3) The line that joins the dawn and dusk potential maxima is shifted toward the midnight sector in summer as compared to winter by about 5 degree. (4) In the dawn cell, the latitude of the convection reversal is the lowest during summer; in the dusk cell the latitude of the reversal is the lowest during winter

  19. Savanna ant species richness is maintained along a bioclimatic gradient of increasing latitude and decreasing rainfall in northern Australia

    DEFF Research Database (Denmark)

    Andersen, Alan N.; Del Toro, Israel; Parr, Catherine L.

    2015-01-01

    of 246 species from 37 genera. Mean observed species richness pooled across sampling periods was similar at sand (85.4) and loam (82.2) sites, but was less than half this at clay sites (40.0). Ant communities were also compositionally distinct on clay soils compared with sands and loams. Individual...... genera showed variable diversity patterns, ranging from a linear increase to a linear decrease in species richness along the NATT. However, total species richness was relatively uniform along the gradient. Patterns of ant species turnover were consistent with previously recognized biogeographical......Aim: Using a standardized sampling protocol along a 600-km transect in northern Australia, we tested whether ant diversity within a single biome, tropical savanna, decreases with increasing latitude (as a surrogate of temperature) and decreasing rainfall, as is expected for biodiversity in general...

  20. Measurements of the movement of the jet streams at mid-latitudes, in the Northern and Southern Hemispheres, 1979 to 2010

    Directory of Open Access Journals (Sweden)

    R. D. Hudson

    2012-08-01

    Full Text Available Previous studies have shown that the mean latitude of the sub-tropical jet streams in both hemispheres have shifted toward the poles over the last few decades. This paper presents a study of the movement of both the subtropical and Polar fronts, the location of the respective jet streams, between 1979 and 2010 at mid-latitudes, using total ozone measurements to identify the sharp horizontal boundary that occurs at the position of the fronts. Previous studies have shown that the two fronts are the boundaries of three distinct regimes in the stratosphere, corresponding to the Hadley, Ferrel, and polar meridionally overturning circulation cells in the troposphere. Over the period of study the horizontal area of the Hadley cell has increased at latitudes between 20 and 60 degrees while the area of the Polar cell has decreased. A linear regression analysis was performed to identify the major factors associated with the movement of the subtropical jet streams. These were: (1 changes in the Tropical land plus ocean temperature, (2 direct radiative forcing from greenhouse gases in the troposphere, (3 changes in the temperature of the lower tropical stratosphere, (4 the Quasi-Biennial Oscillation, and (5 volcanic eruptions. The dominant mechanism was the direct radiative forcing from greenhouse gases. Between 1979 and 2010 the poleward movement of the subtropical jet streams was 3.7 ± 0.3 degrees in the Northern Hemisphere and 6.5 ± 0.2 degrees in the Southern Hemisphere. Previous studies have shown that weather systems tend to follow the jet streams. The observed poleward movement in both hemispheres over the past thirty years represents a significant change in the position of the sub-tropical jet streams, which should lead to significant latitudinal shifts in the global weather patterns and the hydrologic cycle.

  1. A Statistical study of the Doppler spectral width of high-latitude ionospheric F-region echoes recorded with SuperDARN coherent HF radars

    Directory of Open Access Journals (Sweden)

    J.-P. Villain

    2002-11-01

    Full Text Available The HF radars of the Super Dual Auroral Radar Network (SuperDARN provide measurements of the E × B drift of ionospheric plasma over extended regions of the high-latitude ionosphere. We have conducted a statistical study of the associated Doppler spectral width of ionospheric F-region echoes. The study has been conducted with all available radars from the Northern Hemisphere for 2 specific periods of time. Period 1 corresponds to the winter months of 1994, while period 2 covers October 1996 to March 1997. The distributions of data points and average spectral width are presented as a function of Magnetic Latitude and Magnetic Local Time. The databases are very consistent and exhibit the same features. The most stringent features are: a region of very high spectral width, collocated with the ionospheric LLBL/cusp/mantle region; an oval shaped region of high spectral width, whose equator-ward boundary matches the poleward limit of the Holzworth and Meng auroral oval. A simulation has been conducted to evaluate the geometrical and instrumental effects on the spectral width. It shows that these effects cannot account for the observed spectral features. It is then concluded that these specific spectral width characteristics are the signature of ionospheric/magnetospheric coupling phenomena.Key words. Ionosphere (auroral ionosphere; ionosphere-magnetosphere interactions; ionospheric irregularities

  2. A Statistical study of the Doppler spectral width of high-latitude ionospheric F-region echoes recorded with SuperDARN coherent HF radars

    Directory of Open Access Journals (Sweden)

    J.-P. Villain

    Full Text Available The HF radars of the Super Dual Auroral Radar Network (SuperDARN provide measurements of the E × B drift of ionospheric plasma over extended regions of the high-latitude ionosphere. We have conducted a statistical study of the associated Doppler spectral width of ionospheric F-region echoes. The study has been conducted with all available radars from the Northern Hemisphere for 2 specific periods of time. Period 1 corresponds to the winter months of 1994, while period 2 covers October 1996 to March 1997. The distributions of data points and average spectral width are presented as a function of Magnetic Latitude and Magnetic Local Time. The databases are very consistent and exhibit the same features. The most stringent features are: a region of very high spectral width, collocated with the ionospheric LLBL/cusp/mantle region; an oval shaped region of high spectral width, whose equator-ward boundary matches the poleward limit of the Holzworth and Meng auroral oval. A simulation has been conducted to evaluate the geometrical and instrumental effects on the spectral width. It shows that these effects cannot account for the observed spectral features. It is then concluded that these specific spectral width characteristics are the signature of ionospheric/magnetospheric coupling phenomena.

    Key words. Ionosphere (auroral ionosphere; ionosphere-magnetosphere interactions; ionospheric irregularities

  3. An integrated approach for estimation of methane emissions from wetlands and lakes in high latitude regions

    Science.gov (United States)

    Chiu, C.; Bowling, L. C.; Podest, E.; Bohn, T. J.; Lettenmaier, D. P.; Schroeder, R.; McDonald, K. C.

    2009-04-01

    In recent years, there has been increasing evidence of significant alteration in the extent of lakes and wetlands in high latitude regions due in part to thawing permafrost, as well as other changes governing surface and subsurface hydrology. Methane is a 23 times more efficient greenhouse gas than carbon dioxide; changes in surface water extent, and the associated subsurface anaerobic conditions, are important controls on methane emissions in high latitude regions. Methane emissions from wetlands vary substantially in both time and space, and are influenced by plant growth, soil organic matter decomposition, methanogenesis, and methane oxidation controlled by soil temperature, water table level and net primary productivity (NPP). The understanding of spatial and temporal heterogeneity of surface saturation, thermal regime and carbon substrate in northern Eurasian wetlands from point measurements are limited. In order to better estimate the magnitude and variability of methane emissions from northern lakes and wetlands, we present an integrated assessment approach based on remote sensing image classification, land surface modeling and process-based ecosystem modeling. Wetlands classifications based on L-band JERS-1 SAR (100m) and ALOS PALSAR (~30m) are used together with topographic information to parameterize a lake and wetland algorithm in the Variable Infiltration Capacity (VIC) land surface model at 25 km resolution. The enhanced VIC algorithm allows subsurface moisture exchange between surface water and wetlands and includes a sub-grid parameterization of water table position within the wetland area using a generalized topographic index. Average methane emissions are simulated by using the Walter and Heimann methane emission model based on temporally and spatially varying soil temperature, net primary productivity and water table generated from the modified VIC model. Our five preliminary study areas include the Z. Dvina, Upper Volga, Yeloguy, Syum, and Chaya

  4. Pronounced zonal heterogeneity in Eocene southern high-latitude sea surface temperatures

    NARCIS (Netherlands)

    Douglas, P.M.J.; Affek, H.P.; Ivany, L.C.; Houben, A.J.P.; Sijp, W.P.; Sluijs, A.; Schouten, S.; Pagani, M.

    2014-01-01

    Paleoclimate studies suggest that increased global warmth during the Eocene epoch was greatly amplified at high latitudes, a state that climate models cannot fully reproduce. However, proxy estimates of Eocene near-Antarctic sea surface temperatures (SSTs) have produced widely divergent results at

  5. A prediction and damage assessment model for snowmelt flood events in middle and high latitudes Region

    Science.gov (United States)

    Qiao, C.; Huang, Q.; Chen, T.; Zhang, X.

    2017-12-01

    In the context of global warming, the snowmelt flood events in the mountainous area of the middle and high latitudes are increasingly frequent and create severe casualties and property damages. Carrying out the prediction and risk assessment of the snowmelt flood is of great importance in the water resources management, the flood warning and prevention. Based on the remote sensing and GIS techniques, the relationships of the variables influencing the snowmelt flood such as the snow area, the snow depth, the air temperature, the precipitation, the land topography and land covers are analyzed and a prediction and damage assessment model for snowmelt floods is developed. This model analyzes and predicts the flood submerging area, flood depth, flood grade, and the damages of different underlying surfaces in the study area in a given time period based on the estimation of snowmelt amount, the snowmelt runoff, the direction and velocity of the flood. Then it was used to predict a snowmelt flood event in the Ertis River Basin in northern Xinjiang, China, during March and June, 2005 and to assess its damages including the damages of roads, transmission lines, settlements caused by the floods and the possible landslides using the hydrological and meteorological data, snow parameter data, DEM data and land use data. A comparison was made between the prediction results from this model and observation data including the flood measurement and its disaster loss data, which suggests that this model performs well in predicting the strength and impact area of snowmelt flood and its damage assessment. This model will be helpful for the prediction and damage assessment of snowmelt flood events in the mountainous area in the middle and high latitudes in spring, which has great social and economic significance because it provides a relatively reliable method for snowmelt flood prediction and reduces the possible damages caused by snowmelt floods.

  6. Remote sensing of high-latitude ionization profiles by ground-based and spaceborne instrumentation

    International Nuclear Information System (INIS)

    Vondrak, R.R.

    1981-01-01

    Ionospheric specification and modeling are now largely based on data provided by active remote sensing with radiowave techniques (ionosondes, incoherent-scatter radars, and satellite beacons). More recently, passive remote sensing techniques have been developed that can be used to monitor quantitatively the spatial distribution of high-latitude E-region ionization. These passive methods depend on the measurement, or inference, of the energy distribution of precipitating kilovolt electrons, the principal source of the nighttime E-region at high latitudes. To validate these techniques, coordinated measurements of the auroral ionosphere have been made with the Chatanika incoherent-scatter radar and a variety of ground-based and spaceborne sensors

  7. Splash albedo protons between 4 and 315 MeV at high and low geomagnetic latitudes

    International Nuclear Information System (INIS)

    Wenzel, K.; Stone, E.C.; Vogt, R.E.

    1975-01-01

    The differential energy spectrum of splash albedo protons has been measured at high geomagnetic latitude near Fort Churchill, Manitoba, at three periods of the solar cycle in 1966, and 1969 and at low latitude near Palestine, Texas, in 1967 by using a balloon-borne solid state detector telescope. We observed splash albedo proton fluxes between 4 and 315 MeV of 81plus-or-minus11, 70plus-or-minus11, and 48plus-or-minus8 protons/(m 2 s sr) at high latitude in 1966, 1967, and 1969 and of 37plus-or-minus9 protons/(m 2 s sr) at low latitude in 1967. The decreases from 1966 to 1969 are due to solar modulation of the cosmic ray parent nuclei. The albedo spectrum shows a similar shape for both latitudes. The difference in intensity can be explained by different local geomagnetic cutoffs; i.e., a significant contribution to the splash albedo flux arises from primary particles with rigidity below 4.5 GV. The splash albedo flux near Fort Churchill is consistent with corresponding fluxes previously reported near 53degree--55degreeN. The flux below 100 MeV near Palestine is significantly lower than that reported by Verma (1967)

  8. An introduction to mid-latitude ecotone: sustainability and environmental challenges

    Directory of Open Access Journals (Sweden)

    J. Moon

    2017-12-01

    Full Text Available The mid-latitude zone can be broadly defined as part of the hemisphere between 30°–60° latitude. This zone is home to over 50 % of the world population and encompasses about 36 countries throughout the principal region, which host most of the world’s development and poverty related problems. In reviewing some of the past and current major environmental challenges that parts of mid-latitudes are facing, this study sets the context by limiting the scope of mid-latitude region to that of Northern hemisphere, specifically between 30°–45° latitudes which is related to the warm temperate zone comprising the Mid-Latitude ecotone – a transition belt between the forest zone and southern dry land territories. The ongoing climate change reveals a substantial increase of temperature and simultaneous decrease in the amount of precipitation across vast continental regions in the mid-latitudes. According to climatic predictions, these tendencies will continue during the 21st century, which will likely increase the frequency and severity of droughts and water stress of vegetation. Along with climate change, ongoing land degradation and deforestation are observed in many regions of the mid-latitude region. For example, the Korean peninsula, which is divided into South and North Korea, is characterized by drastically different forest conditions. Deforestation in North Korea has been exacerbating at a noticeable pace due to excessive logging and human intervention. Such problems are not confined to Korean peninsula but are witnessed across vast regions of the mid-latitude region. Within this context – acquiring better understanding in the role of terrestrial ecosystems located at different latitudes is critical – for building resilience against the negative impact of climate change and for maintaining the stability of the environment and landscapes.

  9. Flux and Seasonality of Dissolved Organic Matter From the Northern Dvina (Severnaya Dvina) River, Russia

    Science.gov (United States)

    Johnston, Sarah Ellen; Shorina, Natalia; Bulygina, Ekaterina; Vorobjeva, Taisya; Chupakova, Anna; Klimov, Sergey I.; Kellerman, Anne M.; Guillemette, Francois; Shiklomanov, Alexander; Podgorski, David C.; Spencer, Robert G. M.

    2018-03-01

    Pan-Arctic riverine dissolved organic carbon (DOC) fluxes represent a major transfer of carbon from land-to-ocean, and past scaling estimates have been predominantly derived from the six major Arctic rivers. However, smaller watersheds are constrained to northern high-latitude regions and, particularly with respect to the Eurasian Arctic, have received little attention. In this study, we evaluated the concentration of DOC and composition of dissolved organic matter (DOM) via optical parameters, biomarkers (lignin phenols), and ultrahigh resolution mass spectrometry in the Northern Dvina River (a midsized high-latitude constrained river). Elevated DOC, lignin concentrations, and aromatic DOM indicators were observed throughout the year in comparison to the major Arctic rivers with seasonality exhibiting a clear spring freshet and also some years a secondary pulse in the autumn concurrent with the onset of freezing. Chromophoric DOM absorbance at a350 was strongly correlated to DOC and lignin across the hydrograph; however, the relationships did not fit previous models derived from the six major Arctic rivers. Updated DOC and lignin fluxes were derived for the pan-Arctic watershed by scaling from the Northern Dvina resulting in increased DOC and lignin fluxes (50 Tg yr-1 and 216 Gg yr-1, respectively) compared to past estimates. This leads to a reduction in the residence time for terrestrial carbon in the Arctic Ocean (0.5 to 1.8 years). These findings suggest that constrained northern high-latitude rivers are underrepresented in models of fluxes based from the six largest Arctic rivers with important ramifications for the export and fate of terrestrial carbon in the Arctic Ocean.

  10. THE FORTUITOUS LATITUDE OF THE PIERRE AUGER OBSERVATORY AND TELESCOPE ARRAY FOR RECONSTRUCTING THE QUADRUPOLE MOMENT

    International Nuclear Information System (INIS)

    Denton, Peter B.; Weiler, Thomas J.

    2015-01-01

    Determining anisotropies in the arrival directions of cosmic rays at the highest energy is an important task in astrophysics. It is common and useful to partition the sky into spherical harmonics as a measure of anisotropy. The two lowest nontrivial spherical harmonics, the dipole and the quadrupole, are of particular interest, since these distributions encapsulate a dominant single source and a plane of sources, as well as offering relatively high statistics. The best experiments for the detection of ultra high energy cosmic rays currently are all ground-based, with highly nonuniform exposures on the sky resulting from the fixed experimental locations on the Earth. This nonuniform exposure increases the complexity and error in inferring anisotropies. It turns out that there is an optimal latitude for an experiment at which nonuniform exposure does not diminish the inference of the quadrupole moment. We derive the optimal latitude and find that (presumably by a fortuitous coincidence) this optimal latitude runs through the largest cosmic ray experiment, the Pierre Auger Observatory (PAO) in the Southern Hemisphere, and close to the largest cosmic ray experiment in the Northern Hemisphere, the Telescope Array (TA). Consequently, assuming a quadrupole distribution, PAO and TA can reconstruct the cosmic ray quadrupole distribution to a high precision without concern for their partial sky exposure

  11. Differences in Influenza Seasonality by Latitude, Northern India

    Science.gov (United States)

    Broor, Shobha; Saha, Siddhartha; Barnes, John; Smith, Catherine; Shaw, Michael; Chadha, Mandeep; Lal, Renu B.

    2014-01-01

    The seasonality of influenza in the tropics complicates vaccination timing. We investigated influenza seasonality in northern India and found influenza positivity peaked in Srinagar (34.09°N) in January–March but peaked in New Delhi (28.66°N) in July–September. Srinagar should consider influenza vaccination in October–November, but New Delhi should vaccinate in May–June. PMID:25279651

  12. Anthropogenic Changes in Mid-latitude Storm and Blocking Activities from Observations and Climate Models

    Science.gov (United States)

    Li, D.

    2017-12-01

    Fingerprints of anthropogenic climate change can be most readily detected in the high latitudes of Northern Hemisphere, where temperature has been rising faster than the rest of the globe and sea ice cover has shrunk dramatically over recent decades. Reducing the meridional temperature gradient, this amplified warming over the high latitudes influences weather in the middle latitudes by modulating the jet stream, storms, and atmospheric blocking activities. Whether observational records have revealed significant changes in mid-latitude storms and blocking activities, however, has remained a subject of much debate. Buried deep in strong year-to-year variations, the long-term dynamic responses of the atmosphere are more difficult to identify, compared with its thermodynamic responses. Variabilities of decadal and longer timescales further obscure any trends diagnosed from satellite observations, which are often shorter than 40 years. Here, new metrics reflecting storm and blocking activities are developed using surface air temperature and pressure records, and their variations and long-term trends are examined. This approach gives an inkling of the changes in storm and blocking activities since the Industrial Revolution in regions with abundant long-term observational records, e.g. Europe and North America. The relationship between Atlantic Multi-decadal Oscillation and variations in storm and blocking activities across the Atlantic is also scrutinized. The connection between observed centennial trends and anthropogenic forcings is investigated using a hierarchy of numerical tools, from highly idealized to fully coupled atmosphere-ocean models. Pre-industrial control simulations and a set of large ensemble simulations forced by increased CO2 are analyzed to evaluate the range of natural variabilities, which paves the way to singling out significant anthropogenic changes from observational records, as well as predicting future changes in mid-latitude storm and

  13. Multiple sclerosis in South America: month of birth in different latitudes does not seem to interfere with the prevalence or progression of the disease

    Directory of Open Access Journals (Sweden)

    Yara Dadalti Fragoso

    2013-09-01

    Full Text Available Objective To assess whether the month of birth in different latitudes of South America might influence the presence or severity of multiple sclerosis (MS later in life. Methods Neurologists in four South American countries working at MS units collected data on their patients' month of birth, gender, age, and disease progression. Results Analysis of data from 1207 MS patients and 1207 control subjects did not show any significant variation in the month of birth regarding the prevalence of MS in four latitude bands (0–10; 11–20; 21–30; and 31–40 degrees. There was no relationship between the month of birth and the severity of disease in each latitude band. Conclusion The results from this study show that MS patients born to mothers who were pregnant at different Southern latitudes do not follow the seasonal pattern observed at high Northern latitudes.

  14. Geologic isolation of nuclear waste at high latitudes: the role of ice sheets

    Science.gov (United States)

    Person, M.; McIntosh, J.; Iverson, N.; Neuzil, C.E.; Bense, V.

    2012-01-01

    Geologic isolation of high-level nuclear waste from the biosphere requires special consideration in countries at high latitudes (>40°N) owing to the possibility of future episodes of continental glaciation (Talbot 1999). It is now widely recognized that Pleistocene continental glaciations have had a profound effect on rates of sediment erosion (Cuffey & Paterson 2010) and deformation including tectonic thrusting (Pedersen 2005) as well as groundwater flow (Person et al. 2007; Lemieux et al. 2008a,b,c). In addition, glacial mechanical loads may have generated anomalous, or fossil, pore pressures within certain clay-rich confining units (e.g. Vinard et al. 2001). Because high-level nuclear wastes must be isolated from the biosphere as long as 1 million years (McMurry et al. 2003), the likelihood of one or more continental ice sheets overrunning high-latitude sites must be considered.

  15. Tracking Snow Variations in the Northern Hemisphere Using Multi-Source Remote Sensing Data (2000–2015

    Directory of Open Access Journals (Sweden)

    Yunlong Wang

    2018-01-01

    Full Text Available Multi-source remote sensing data were used to generate 500-m resolution cloud-free daily snow cover images for the Northern Hemisphere. Simultaneously, the spatial and temporal dynamic variations of snow in the Northern Hemisphere were evaluated from 2000 to 2015. The results indicated that (1 the maximum, minimum, and annual average snow-covered area (SCA in the Northern Hemisphere exhibited a fluctuating downward trend; the variation of snow cover in the Northern Hemisphere had well-defined inter-annual and regional differences; (2 the average SCA in the Northern Hemisphere was the largest in January and the smallest in August; the SCA exhibited a downward trend for the monthly variations from February to April; and the seasonal variation in the SCA exhibited a downward trend in the spring, summer, and fall in the Northern Hemisphere (no pronounced variation trend in the winter was observed during the 2000–2015 period; (3 the spatial distribution of the annual average snow-covered day (SCD was related to the latitudinal zonality, and the areas exhibiting an upward trend were mainly at the mid to low latitudes with unstable SCA variations; and (4 the snow reduction was significant in the perennial SCA in the Northern Hemisphere, including high-latitude and high-elevation mountainous regions (between 35° and 50°N, such as the Tibetan Plateau, the Tianshan Mountains, the Pamir Plateau in Asia, the Alps in Europe, the Caucasus Mountains, and the Cordillera Mountains in North America.

  16. Using n-alkane records to constrain carbon cycle - hydrological cycle coupling: Case study from the Northern Hemisphere mid-latitudes during the PETM

    Science.gov (United States)

    Krishnan, S.; Pagani, M.; Tipple, B. J.

    2010-12-01

    The early Eocene was a warmer world compared to the present and is characterized by rising temperatures interspersed with rapid hyperthermal events. During the largest of these rapid warming events; the Paleocene-Eocene Thermal Maximum (PETM), proxy records suggest that sea surface temperatures (SST) rose by 3-5 deg. C in the tropics (Zachos et al., 2003, Tripati and Elderfield, 2004), >5 deg. C in the Arctic (Sluijs et al., 2006) and perhaps has high as 9 deg. C in some sub-Antarctic regions (Kennett and Stott, 1991; Thomas et al., 1999). This warming is believed to be the result of massive input of 13C-depleted carbon into the ocean-atmosphere system, evidenced by the large negative carbon isotope excursion (CIE) and carbonate dissolution associated with the event. However, there are several questions regarding the exact mechanism of warming and feedbacks between the carbon cycle and climate. Did climate shift prior to the main event that led to the release of isotopically light carbon? Do we observe consistent leads or lags between changes in carbon isotopes and hydrological conditions during warm intervals? This study aims to reconstruct hydrological changes in the in the Northern Hemisphere mid-latitudes during the PETM using terrestrial biomarkers. Terrestrial biomarkers, such leaf-wax lipids stored in sediments, have the unique advantage of recording carbon and hydrogen isotopic compositions of atmospheric CO2 (modified by plant fractionation) and precipitation (modified by plant fractionation and evapotranspiration), allowing evaluation of the relative timing of carbon and hydrogen isotopic (i.e., climate) shifts. In this study, we compile and present three mid-latitude PETM records from the Northern Hemisphere, i.e. Alamedilla (Spain), Cicogna and Forada (Italy). The Cicogna and Forada sections are located in the Belluno basin (~12 km apart). Preliminary results do not indicate any significant pre-excursion hydrogen isotope changes at Cicogna, while at

  17. Paleosecular variation analysis of high-latitude paleomagnetic data from the volcanic island of Jan Mayen

    Science.gov (United States)

    Cromwell, G.; Tauxe, L.; Staudigel, H.; Pedersen, L. R.; Constable, C.; Pedersen, R.; Duncan, R. A.; Staudigel, P.

    2009-12-01

    Recent investigation of high-latitude paleomagnetic data from the Erebus Volcanic Province (EVP), Antarctica shows a departure from magnetic dipole predictions for paleointensity data for the period 0-5 Ma. The average EVP paleointensity (31.5 +/- 2.4 μT) is equivalent to low-latitude measurements (1) or approximately half the strength predicted for a dipole at high-latitude. Also, paleosecular variation models (e.g., 2,3) predict dispersions of directions that are much lower than the high latitude observations. Observed low intensity values may be the result of reduced convective flow inside the tangent cylinder of the Earth’s core or insufficient temporal sampling (1). More high-latitude paleomagnetic data are necessary in order to investigate the cause of the depressed intensity values and to provide better geographic and temporal resolution for future statistical paleosecular variation models. To address this, we carried out two field seasons, one in Spitzbergen (79°N, 14°E) and one on the young volcanic island of Jan Mayen (71°N, 8°W). The latter sampling effort was guided by age analyses of samples obtained by P. Imsland (unpublished and 4). We will present new paleodirectional and paleointensity data from a total of 25 paleomagnetic sites. These data enhance the temporal resolution of global paleomagnetic data and allow for a more complete evaluation of the time-averaged magnetic field from 0-5 Ma. We will present a new analysis of paleosecular variation based on our new data, in combination with other recently published data sets. (1) Lawrence, K.P., L.Tauxe, H. Staudigel, C.G. Constable, A. Koppers, W. MacIntosh, C.L. Johnson, Paleomagnetic field properties at high southern latitude. Geochemistry Geophysics Geosystems 10 (2009). (2) McElhinny, M.W., P.L. McFadden, Paleosecular variation over the past 5 Myr based on a new generalized database. Geophysics Journal International 131 (1997), 240-252. (3) Tauxe, L., Kent, D.V., A simplified statistical

  18. Vitamin D deficiency among northern Native Peoples: a real or apparent problem?

    Directory of Open Access Journals (Sweden)

    Peter Frost

    2012-03-01

    Full Text Available Vitamin D deficiency seems to be common among northern Native peoples, notably Inuit and Amerindians. It has usually been attributed to: (1 higher latitudes that prevent vitamin D synthesis most of the year; (2 darker skin that blocks solar UVB; and (3 fewer dietary sources of vitamin D. Although vitamin D levels are clearly lower among northern Natives, it is less clear that these lower levels indicate a deficiency. The above factors predate European contact, yet pre-Columbian skeletons show few signs of rickets—the most visible sign of vitamin D deficiency. Furthermore, because northern Natives have long inhabited high latitudes, natural selection should have progressively reduced their vitamin D requirements. There is in fact evidence that the Inuit have compensated for decreased production of vitamin D through increased conversion to its most active form and through receptors that bind more effectively. Thus, when diagnosing vitamin D deficiency in these populations, we should not use norms that were originally developed for European-descended populations who produce this vitamin more easily and have adapted accordingly.

  19. High-latitude poynting flux from combined Iridium and SuperDARN data

    Directory of Open Access Journals (Sweden)

    C. L. Waters

    2004-09-01

    Full Text Available Field-aligned currents convey stress between the magnetosphere and ionosphere, and the associated low altitude magnetic and electric fields reflect the flow of electromagnetic energy to the polar ionosphere. We introduce a new technique to measure the global distribution of high latitude Poynting flux, S||, by combining electric field estimates from the Super Dual Auroral Radar Network (SuperDARN with magnetic perturbations derived using magnetometer data from the Iridium satellite constellation. Spherical harmonic methods are used to merge the data sets and calculate S|| for any magnetic local time (MLT from the pole to 60° magnetic latitude (MLAT. The effective spatial resolutions are 2° MLAT, 2h MLT, and the time resolution is about one hour due to the telemetry rate of the Iridium magnetometer data. The technique allows for the assessment of high-latitude net S|| and its spatial distribution on one hour time scales with two key advantages: (1 it yields the net S|| including the contribution of neutral winds; and (2 the results are obtained without recourse to estimates of ionosphere conductivity. We present two examples, 23 November 1999, 14:00-15:00 UT, and 11 March 2000, 16:00-17:00 UT, to test the accuracy of the technique and to illustrate the distributions of S|| that it gives. Comparisons with in-situ S|| estimates from DMSP satellites show agreement to a few mW/m2 and in the locations of S|| enhancements to within the technique's resolution. The total electromagnetic energy flux was 50GW for these events. At auroral latitudes, S|| tends to maximize in the morning and afternoon in regions less than 5° in MLAT by two hours in MLT having S||=10 to 20mW/m2 and total power up to 10GW. The power poleward of the Region 1 currents is about one-third of the total power, indicating significant energy flux over the polar cap.

  20. Observations of the interplanetary sector structure up to heliographic latitudes of 160: Pioneer 11

    International Nuclear Information System (INIS)

    Smith, E.J.; Tsurutani, B.T.; Rosenberg, R.L.

    1978-01-01

    A study of the interplanetary sector structure at heliographic latitudes up to 16 0 N is reported. The study is based on magnetic field measurements made on board Pioneer 11 as the spacecraft traveled along the post-Jupiter-encounter trajectory. Preliminary measurements are used to determine the dominant polarity of the interplanetary magnetic field during 43 successive solar rotations including Pioneer's ascent to its maximum latitude and motion inward from 5 to 3.7 AU. As the latitude of Pioneer increased, the dominant polarity became continually more positive, corresponding to an outward-directed solar interplanetary field. When the spacecraft reached the highest latitude, the usual sector structure had essentially disappeared. A histogram of the field longitude angle, based on data acquired during 1 month at 16 0 latitude, shows an almost total absence of inward-directed fields. A comparison with interplanetary field polarities in the ecliptic, as inferred from geomagnetic field variations, rules out the possibility that a time variation rather than a latitude dependence is responsible. The Pioneer 11 observations imply that the boundary between adjacent sectors corresponds physically to a current sheet surrounding the sun and lying near parallel to the solar equatorial plane. Above this current sheet, in the northern hemisphere, the field polarity at this phase of the solar cycle is outward, and below the current sheet, in the southern hemisphere, it is inward. The Pioneer observations confirm earlier theoretical suggestions regarding the existence and equatorial orientation of this current sheet. The properties of the current sheet and some major implications and questions associated with it are discussed. It is shown that the radial component of the sheet current is compensated by the distributed currents in the northern and southern hemispheres associated with the spiraled interplanetary field

  1. Electron Pitch Angle Variations Recorded at the High Magnetic Latitude Boundary Layer by the NUADU Instrument on the TC-2 Spacecraft

    Science.gov (United States)

    Lu, L.; McKenna-Lawlor, S.; Barabash, S.; Liu, Z.; Balaz, J.; Brinkfeldt, K.; Strhansky, I.; Shen, C.; Shi, J.; Cao, J.; Pu, Z.; Fu, S.; Gunell, H.; Kudela, K.; Roelof, E. C.; Brandt, P. C.; Dandouras, I.; Zhang, T.; Carr, C.; Fazakerley, A.

    2005-12-01

    During the first on orbit commission, with the deflection high voltage zero, the NUADU (NeUtral Atom Detector Unit) instrument aboard TC-2, with its high temporal-spatial resolution recorded 4d solid angle images of energetic particles spiraling around the geomagnetic field lines with different configuration at high northern magnetic latitude L>10. The ambient magnetic field and particles in different energy spectrum were simultaneously measured by the magnetometer experiment (FGM), the plasma electron and current experiment (PEACE), the low energy ion detector (LEID), and the high energy electron detector (HEED). The up-flowing electron beams made the pitch angle distribution (PAD) ring like configuration, and even concentrated toward the field lines to form a dumbbell-type PAD. In integration of the variations of ambient magnetic field and particles in different energy spectrums, a temporal string magnetic bottle model was proposed which might be formed by the disturbance of the magnetic pulse. Changes in the particle pitch angle diffusion may be associated with electron acceleration along the geomagnetic field lines.

  2. Sickness presence, sick leave and adjustment latitude

    Directory of Open Access Journals (Sweden)

    Joachim Gerich

    2014-10-01

    Full Text Available Objectives: Previous research on the association between adjustment latitude (defined as the opportunity to adjust work efforts in case of illness and sickness absence and sickness presence has produced inconsistent results. In particular, low adjustment latitude has been identified as both a risk factor and a deterrent of sick leave. The present study uses an alternative analytical strategy with the aim of joining these results together. Material and Methods: Using a cross-sectional design, a random sample of employees covered by the Upper Austrian Sickness Fund (N = 930 was analyzed. Logistic and ordinary least square (OLS regression models were used to examine the association between adjustment latitude and days of sickness absence, sickness presence, and an estimator for the individual sickness absence and sickness presence propensity. Results: A high level of adjustment latitude was found to be associated with a reduced number of days of sickness absence and sickness presence, but an elevated propensity for sickness absence. Conclusions: Employees with high adjustment latitude experience fewer days of health complaints associated with lower rates of sick leave and sickness presence compared to those with low adjustment latitude. In case of illness, however, high adjustment latitude is associated with a higher pro­bability of taking sick leave rather than sickness presence.

  3. Mountain birch – potentially large source of sesquiterpenes into high latitude atmosphere

    Directory of Open Access Journals (Sweden)

    A. Arneth

    2009-11-01

    Full Text Available Emissions of volatile organic compounds (VOCs from mountain birches were measured in Abisko, northern Sweden. Mountain birches make up the majority of the tree biomass in Scandinavian high latitudes, a region subject to significant climate warming. The measurements were carried out in two growing seasons. The emissions of four branches, each from a different individual tree, were measured in June–August 2006 and one of them again in July 2007. The measurements were conducted using a dynamic flow through chamber covered with Teflon film. The studied mountain birches were found to emit substantial amounts of linalool, monoterpenes and sesquiterpenes. The monoterpene emission was dominated by sabinene. The magnitude and composition of the sesquiterpene emission changed dramatically between the years. For example, the average α-farnesene emission potential in 2006 was almost 2600 ng gdw−1 h−1 (3.5 pmol gdw−1 s−1 while in 2007 α-farnesene was not detected at all. Also the emissions of other sesquiterpenes decreased in 2007 to a fraction of that in 2006. One possible explanation for the change in emissions is the herbivory damage that occurred in the area in 2004. Herbivory is known to enhance the emissions of sesquiterpenes, especially those of α-farnesene, and the effect may last for several years.

  4. Latitude gradient influences the age of onset of rheumatoid arthritis: a worldwide survey.

    Science.gov (United States)

    2017-03-01

    The age of onset of rheumatoid arthritis (RA) is an important outcome predictor. Northern countries report an age of RA onset of around 50 years, but apparently, variability exists across different geographical regions. The objective of the present study is to assess whether the age of onset of RA varies across latitudes worldwide. In a proof-of-concept cross-sectional worldwide survey, rheumatologists from preselected cities interviewed 20 consecutive RA patients regarding the date of RA onset (RAO, when the patient first noted a swollen joint). Other studied variables included location of each city, rheumatologist settings, latitudes (10° increments, south to north), longitudes (three regions), intracountry consistency, and countries' Inequality-adjusted Human Development Index (IHDI). Data from 2481 patients (82% females) were obtained from 126 rheumatologists in 77 cities of 41 countries. Worldwide mean age of RAO was 44 ± 14 years (95% CI 44-45). In 28% of patients, RA began before age 36 years and before age 46 years in 50% of patients. RAO was 8 years earlier around the Tropic of Cancer when compared with northern latitudes (p worldwide. We postulate that countries' developmental status and their geographical and geomagnetic location influence the age of RAO.

  5. Impact of future Arctic shipping on high-latitude black carbon deposition (Invited)

    Science.gov (United States)

    Corbett, J. J.; Browse, J.; Carslaw, K. S.; Schmidt, A.

    2013-12-01

    The retreat of Arctic sea-ice has led to renewed calls to exploit Arctic shipping routes. The diversion of ship traffic through the Arctic will shorten shipping routes and possibly reduce global shipping emissions. However, deposition of black carbon (BC) aerosol emitted by additional Arctic ships could cause a reduction in the albedo of snow and ice, accelerating snow-melt and sea-ice loss. We use recently compiled Arctic shipping emission inventories for 2004 and 2050 together with a global aerosol microphysics model GLOMAP coupled to the chemical transport model TOMCAT to quantify the contribution of future Arctic shipping to high-latitude BC deposition. Emission rates of SOx (SO2 and SO4) and particulate matter (PM) were estimated for 2050 under both business-as-usual and high-growth scenarios. BC particles are assumed to be water-insoluble at emission but can become active in cloud drop formation through soluble material accumulation. After BC particles become cloud-active they are more efficiently wet scavenged, which accounts for 80% of modeled BC deposition. Current-day Arctic shipping contributes 0.3% to the BC mass deposited north of 60N (250 Gg). About 50% of modelled BC deposition is on open ocean, suggesting that current Arctic ship traffic may not significantly contribute to BC deposition on central Arctic sea ice. However, 6 - 8% of deposited BC on the west coast of Greenland originates from local ship traffic. Moreover, in-Arctic shipping contributes some 32% to high-latitude ship-sourced deposition despite accounting for less than 1.0% of global shipping emissions. This suggests that control of in-Arctic shipping BC emissions could yield greater decrease in high-latitude BC deposition than a similar control strategy applied only to the extra-Arctic shipping industry. Arctic shipping in 2050 will contribute less than 1% to the total BC deposition north of 60N due to the much greater relative contribution of BC transported from non-shipping sources

  6. The Heppner-Maynard Boundary measured by SuperDARN as a proxy for the latitude of the auroral oval

    Science.gov (United States)

    Imber, S. M.; Milan, S. E.; Lester, M.

    2013-02-01

    We present a statistical study relating the latitude of the auroral oval measured by the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) SI-12 proton auroral camera to that of the Heppner-Maynard Boundary (HMB) determined from Super Dual Auroral Radar Network (SuperDARN) data during the period 2000-2002. The HMB represents the latitudinal extent of the ionospheric convection pattern. The oval latitude from the proton auroral images is determined using the method of Milan et al. (2009a), which fits a circle centered on a point 2° duskward and 5° antisunward of the magnetic pole. The auroral latitude at midnight is determined for those images where the concurrent SuperDARN northern hemisphere maps contain more than 200 data points such that the HMB is well-defined. The statistical study comprises over 198,000 two-minute intervals, and we find that the HMB is located on average 2.2° equatorward of the proton auroral latitude. A superposed epoch analysis of over 2500 substorms suggests that the separation between the HMB and the oval latitude increases slightly during periods of high geomagnetic activity. We suggest that during intervals where there are no auroral images available, the HMB latitude and motion could be used as a proxy for that of the aurora, and therefore provide information about motions of the open/closed field line boundary.

  7. Recession of the Northern polar cap from the PFS Mars Express observations

    Science.gov (United States)

    Zasova, L. V.; Formisano, V.; Moroz, V. I.; Giuranna, M.; Grassi, D.; Hansen, G.; Ignatiev, N. I.; Maturilli, A.; Pfs Team

    Planetary Fourier Spectrometer (PFS) has two spectral channels, devoted to the thermal and solar reflected spectral range investigations. The first observations by PFS of the Northern hemisphere ,which includes the North pole, occurred at Ls= 342 (northern winter). Surface temperature alone the orbit shows that the CO2 ice polar cap, where the surface temperature is found around 150K and below, is extended down to about 62 N. The spectra at latitudes above 80 N are obtained at polar darkness and at latitudes below 80 at illumination by the low Sun. Retrieved temperature profiles of the atmosphere at darkness show that temperature of the atmosphere is low enough to allow the CO2 condensation up to about 25 km. Between 70 and 80 latitude the upper levels of the atmosphere are heated by the Sun, but condensation of the CO2 may occur in the near surface layer below 5 km. The water ice clouds exist at lower latitudes with maximum opacity at the edge of the polar cap. More detailed investigation of the data obtained in winter as well as of the measurements in the northern spring will be presented.

  8. Topside Electron Density Representations for Middle and High Latitudes: A Topside Parameterization for E-CHAIM Based On the NeQuick

    Science.gov (United States)

    Themens, David R.; Jayachandran, P. T.; Bilitza, Dieter; Erickson, Philip J.; Häggström, Ingemar; Lyashenko, Mykhaylo V.; Reid, Benjamin; Varney, Roger H.; Pustovalova, Ljubov

    2018-02-01

    In this study, we present a topside model representation to be used by the Empirical Canadian High Arctic Ionospheric Model (E-CHAIM). In the process of this, we also present a comprehensive evaluation of the NeQuick's, and by extension the International Reference Ionosphere's, topside electron density model for middle and high latitudes in the Northern Hemisphere. Using data gathered from all available incoherent scatter radars, topside sounders, and Global Navigation Satellite System Radio Occultation satellites, we show that the current NeQuick parameterization suboptimally represents the shape of the topside electron density profile at these latitudes and performs poorly in the representation of seasonal and solar cycle variations of the topside scale thickness. Despite this, the simple, one variable, NeQuick model is a powerful tool for modeling the topside ionosphere. By refitting the parameters that define the maximum topside scale thickness and the rate of increase of the scale height within the NeQuick topside model function, r and g, respectively, and refitting the model's parameterization of the scale height at the F region peak, H0, we find considerable improvement in the NeQuick's ability to represent the topside shape and behavior. Building on these results, we present a new topside model extension of the E-CHAIM based on the revised NeQuick function. Overall, root-mean-square errors in topside electron density are improved over the traditional International Reference Ionosphere/NeQuick topside by 31% for a new NeQuick parameterization and by 36% for a newly proposed topside for E-CHAIM.

  9. Elusive Ethylene Detected in Saturns Northern Storm Region

    Science.gov (United States)

    Hesman, B. E.; Bjoraker, G. L.; Sada, P. V.; Achterberg, R. K.; Jennings, D. E.; Romani, P. N.; Lunsford, A. W.; Fletcher, L. N.; Boyle, R. J.; Simon-Miller, A. A.; hide

    2013-01-01

    The massive eruption at 40 deg. N (planetographic latitude) on Saturn in 2010 December has produced significant and lasting effects in the northern hemisphere on temperature and species abundances. The northern storm region was observed on many occasions in 2011 by Cassini's Composite Infrared Spectrometer (CIRS). In 2011 May, temperatures in the stratosphere greater than 200 K were derived from CIRS spectra in the regions referred to as "beacons" (warm regions in the stratosphere). Ethylene has been detected in the beacon region in Saturn's northern storm region using CIRS. Ground-based observations using the high-resolution spectrometer Celeste on the McMath-Pierce Telescope on 2011 May 15 were used to confirm the detection and improve the altitude resolution in the retrieved profile. The derived ethylene profile from the CIRS data gives a C2H4 mole fraction of 5.9 +/- 4.5 x 10(exp -7) at 0.5 mbar, and from Celeste data it gives 2.7 +/- 0.45 x 10(exp -6) at 0.1 mbar. This is two orders of magnitude higher than the amount measured in the ultraviolet at other latitudes prior to the storm. It is also much higher than predicted by photochemical models, indicating that perhaps another production mechanism is required or a loss mechanism is being inhibited.

  10. Distribution and Characteristics of Boulder Halos at High Latitudes on Mars: Ground Ice and Surface Processes Drive Surface Reworking

    Science.gov (United States)

    Levy, J. S.; Fassett, C. I.; Rader, L. X.; King, I. R.; Chaffey, P. M.; Wagoner, C. M.; Hanlon, A. E.; Watters, J. L.; Kreslavsky, M. A.; Holt, J. W.; Russell, A. T.; Dyar, M. D.

    2018-02-01

    Boulder halos are circular arrangements of clasts present at Martian middle to high latitudes. Boulder halos are thought to result from impacts into a boulder-poor surficial unit that is rich in ground ice and/or sediments and that is underlain by a competent substrate. In this model, boulders are excavated by impacts and remain at the surface as the crater degrades. To determine the distribution of boulder halos and to evaluate mechanisms for their formation, we searched for boulder halos over 4,188 High Resolution Imaging Science Experiment images located between 50-80° north and 50-80° south latitude. We evaluate geological and climatological parameters at halo sites. Boulder halos are about three times more common in the northern hemisphere than in the southern hemisphere (19% versus 6% of images) and have size-frequency distributions suggesting recent Amazonian formation (tens to hundreds of millions of years). In the north, boulder halo sites are characterized by abundant shallow subsurface ice and high thermal inertia. Spatial patterns of halo distribution indicate that excavation of boulders from beneath nonboulder-bearing substrates is necessary for the formation of boulder halos, but that alone is not sufficient. Rather, surface processes either promote boulder halo preservation in the north or destroy boulder halos in the south. Notably, boulder halos predate the most recent period of near-surface ice emplacement on Mars and persist at the surface atop mobile regolith. The lifetime of observed boulders at the Martian surface is greater than the lifetime of the craters that excavated them. Finally, larger minimum boulder halo sizes in the north indicate thicker icy soil layers on average throughout climate variations driven by spin/orbit changes during the last tens to hundreds of millions of years.

  11. Using thermal limits to assess establishment of fish dispersing to high-latitude and high-elevation watersheds

    Science.gov (United States)

    Dunmall, Karen M.; Mochnacz, Neil J.; Zimmerman, Christian E.; Lean, Charles; Reist, James D.

    2016-01-01

    Distributional shifts of biota to higher latitudes and elevations are presumably influenced by species-specific physiological tolerances related to warming temperatures. However, it is establishment rather than dispersal that may be limiting colonizations in these cold frontier areas. In freshwater ecosystems, perennial groundwater springs provide critical winter thermal refugia in these extreme environments. By reconciling the thermal characteristics of these refugia with the minimum thermal tolerances of life stages critical for establishment, we develop a strategy to focus broad projections of northward and upward range shifts to the specific habitats that are likely for establishments. We evaluate this strategy using chum salmon (Oncorhynchus keta) and pink salmon (Oncorhynchus gorbuscha) that seem poised to colonize Arctic watersheds. Stream habitats with a minimum temperature of 4 °C during spawning and temperatures above 2 °C during egg incubation were most vulnerable to establishments by chum and pink salmon. This strategy will improve modelling forecasts of range shifts for cold freshwater habitats and focus proactive efforts to conserve both newly emerging fisheries and native species at northern and upper distributional extremes.

  12. Plastic ingestion by the northern fulmar (Fulmarus glacialis) in Iceland

    NARCIS (Netherlands)

    Kuehn, S.; Franeker, van J.A.

    2012-01-01

    In 2011, northern fulmars (Fulmarus glacialis) from Iceland were used to test the hypothesis that plastic debris decreases at northern latitudes in the Atlantic when moving away from major human centres of coastal and marine activities. Stomach analyses of Icelandic fulmars confirm that plastic

  13. PCA and vTEC climatology at midnight over mid-latitude regions

    Science.gov (United States)

    Natali, M. P.; Meza, A.

    2017-12-01

    The effect of the thermospheric vertical neutral wind on vertical total electron content (vTEC) variations including longitudinal anomaly, remaining winter anomaly, mid-latitude summer night anomaly, and semiannual anomaly is studied at mid-latitude regions around zero magnetic declination at midnight during high solar activity. By using the principal component analysis (PCA) numerical technique, this work studies the spatial and temporal variations of the ionosphere at midnight over mid-latitude regions during 2000-2002. PCA is applied to a time series of global vTEC maps produced by the International Global Navigation Satellite System (GNSS) Service. Four regions were studied in particular, each located at mid-latitude and approximately centered at zero magnetic declination, with two in the northern hemisphere and two in southern hemisphere, and all are located near and far from geomagnetic poles in each case. This technique provides an effective method to analyze the main ionospheric variabilities at mid-latitudes. PCA is also applied to the vTEC computed using the International Reference Ionosphere (IRI) 2012 model, to analyze the capability of this model to represent ionospheric variabilities at mid-latitude. Also, the Horizontal Wind Model 2007 (HWM07) is used to improve our climatology interpretation, by analyzing the relationship between vTEC and thermospheric wind, both quantitatively and qualitatively. At midnight, the behavior of mean vTEC values strongly responds to vertical wind variation, experiencing a decrease of about 10-15% with the action of the positive vertical component of the field-aligned neutral wind lasting for 2 h in all regions except for Oceania. Notable results include: a significant increase toward higher latitudes during summer in the South America and Asia regions, associated with the mid-latitude summer night anomaly, and an increase toward higher latitudes in winter in the North America and Oceania regions, highlighting the

  14. High accurate time system of the Low Latitude Meridian Circle.

    Science.gov (United States)

    Yang, Jing; Wang, Feng; Li, Zhiming

    In order to obtain the high accurate time signal for the Low Latitude Meridian Circle (LLMC), a new GPS accurate time system is developed which include GPS, 1 MC frequency source and self-made clock system. The second signal of GPS is synchronously used in the clock system and information can be collected by a computer automatically. The difficulty of the cancellation of the time keeper can be overcomed by using this system.

  15. Electron pitch angle variations recorded at the high magnetic latitude boundary layer by the NUADU instrument on the TC-2 spacecraft

    Directory of Open Access Journals (Sweden)

    L. Lu

    2005-11-01

    Full Text Available The NUADU (NeUtral Atom Detector Unit experiment aboard TC-2 recorded, with high temporal and spatial resolution, 4π solid angle images of electrons (~50-125 keV spiraling around geomagnetic field lines at high northern magnetic latitudes (L>10, during its in-orbit commissioning phase (September 2004. The ambient magnetic field, as well as electrons in other energy ranges, were simultaneously measured by the TC-2 magnetometer (FGM, the plasma electron and current experiment (PEACE, the low energy ion detector (LEID and the high energy electron detector (HEED. The NUADU data showed that up-flowing electron beams could form "ring-like" and "dumbbell-type" pitch angle distributions (PADs in the region sampled. Changes in these pitch angle distributions due to transient magnetic variations are suggested to have been associated with electron acceleration along the geomagnetic field lines. A nested magnetic bottle configuration that formed due to the propagation towards the Earth of a magnetic pulse, is proposed to have been associated with this process.

  16. The Canada–France Ecliptic Plane Survey (CFEPS)—High-latitude Component

    Energy Technology Data Exchange (ETDEWEB)

    Petit, J-M. [Institut UTINAM, CNRS-UMR 6213, Observatoire de Besançon, BP 1615, F-25010 Besançon Cedex (France); Kavelaars, J. J. [Herzberg Institute of Astrophysics, National Research Council of Canada, Victoria, BC V9E 2E7 (Canada); Gladman, B. J.; Van Laerhoven, C.; Lawler, S. M. [Department of Physics and Astronomy, 6224 Agricultural Road, University of British Columbia, Vancouver, BC (Canada); Jones, R. L. [Department of Astronomy, University of Washington, Seattle, WA (United States); Parker, J. Wm.; Bieryla, A. [Planetary Science Directorate, Southwest Research Institute, 1050 Walnut Street, Suite 300, Boulder, CO 80302 (United States); Pike, R. E. [Department of Physics and Astronomy, University of Victoria, Victoria, BC (Canada); Nicholson, P. [Cornell University, Space Sciences Building, Ithaca, NY 14853 (United States); Ashby, M. L. N. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2017-05-01

    The High Ecliptic Latitude (HiLat) extension of the Canada–France Ecliptic Plane Survey (CFEPS), conducted from 2006 June to 2009 July, discovered a set of Trans-Neptunian objects (TNOs) that we report here. The HiLat component was designed to address one of the shortcomings of ecliptic surveys (like CFEPS), their low sensitivity to high-inclination objects. We searched 701 deg{sup 2} of sky ranging from 12° to 85° ecliptic latitude and discovered 24 TNOs, with inclinations between 15° and 104°. This survey places a very strong constraint on the inclination distribution of the hot component of the classical Kuiper Belt, ruling out any possibility of a large intrinsic fraction of highly inclined orbits. Using the parameterization of Brown, the HiLat sample combined with CFEPS imposes a width 14° ≤  σ  ≤ 15.°5, with a best match for σ  = 14.°5. HiLat discovered the first retrograde TNO, 2008 KV{sub 42}, with an almost polar orbit with inclination 104°, and (418993) = 2009 MS{sub 9}, a scattering object with perihelion in the region of Saturn’s influence, with a  ∼ 400 au and i  = 68°.

  17. High-latitude poynting flux from combined Iridium and SuperDARN data

    Directory of Open Access Journals (Sweden)

    C. L. Waters

    2004-09-01

    Full Text Available Field-aligned currents convey stress between the magnetosphere and ionosphere, and the associated low altitude magnetic and electric fields reflect the flow of electromagnetic energy to the polar ionosphere. We introduce a new technique to measure the global distribution of high latitude Poynting flux, S||, by combining electric field estimates from the Super Dual Auroral Radar Network (SuperDARN with magnetic perturbations derived using magnetometer data from the Iridium satellite constellation. Spherical harmonic methods are used to merge the data sets and calculate S|| for any magnetic local time (MLT from the pole to 60° magnetic latitude (MLAT. The effective spatial resolutions are 2° MLAT, 2h MLT, and the time resolution is about one hour due to the telemetry rate of the Iridium magnetometer data. The technique allows for the assessment of high-latitude net S|| and its spatial distribution on one hour time scales with two key advantages: (1 it yields the net S|| including the contribution of neutral winds; and (2 the results are obtained without recourse to estimates of ionosphere conductivity. We present two examples, 23 November 1999, 14:00-15:00 UT, and 11 March 2000, 16:00-17:00 UT, to test the accuracy of the technique and to illustrate the distributions of S|| that it gives. Comparisons with in-situ S|| estimates from DMSP satellites show agreement to a few mW/m2 and in the locations of S|| enhancements to within the technique's resolution. The total electromagnetic energy flux was 50GW for these events. At auroral latitudes, S|| tends to maximize in the morning and afternoon in regions less than 5° in MLAT by two hours in MLT having S||=10 to 20mW/m2 and total power up to 10GW. The power poleward of the Region 1 currents is about one

  18. The Largs high-latitude oxygen isotope anomaly (New Zealand) and climatic controls of oxygen isotopes in magma

    International Nuclear Information System (INIS)

    Blattner, P.; Williams, J.G.

    1991-01-01

    In northern Fiordland the Brook Street terrane of New Zealand consists of two units - the predominantly basaltic Plato and the predominantly andesitic Largs terrane. The Permian Plato terrane has normal to slightly enriched δ 18 O values, whereas the Largs terrane, which is of similar pre-early Triassic age, has not yielded a single normal δ 18 O SMOW result, with all of 17 total rocks showing less than 3.2per mille, seven less than -4per mille, and two less than -9per mille. These strongly anomalous data confirm an earlier suggested terrestrial character of Largs deposition, and demand the presence of Permo-Triassic geothermal systems running on subAntarctic to Antarctic meteoric water. The skewed data spectrum suggests a relatively immature flow system and likely values for the recharge water are -20per mille δ 18 O or less. For a climate distribution similar to the present one, inlcuding polar ice caps, this would indicate over 70deg of southern latitude. Rafts and xenoliths of Largs rocks have been entrained within Mackay Intrusives in the early Triassic. On field evidence the Mackay magmas have also intruded an early Darran Complex, but this complex has been substantially reactivated in the Cretaceous. It has δ 18 O values near 5.0per mille, which is distinctly low for island arc magmas. Since the complex is isotopically homogenous, its δ 18 O is unlikely to be a direct effect of the relatively shallow Largs terrane. More probable is a climate related slight depression of the δ 18 O of magma sources, in which other high-latitude, low-δ 18 O sediments and geothermal systems have been involved. (orig.)

  19. Climate fluctuations during the Holocene in NW Iberia: High and low latitude linkages

    Science.gov (United States)

    Pena, L. D.; Francés, G.; Diz, P.; Esparza, M.; Grimalt, J. O.; Nombela, M. A.; Alejo, I.

    2010-07-01

    High resolution benthic foraminiferal stable isotopes (δ 18O, δ 13C) and molecular biomarkers in the sediments are used here to infer rapid climatic changes for the last 8200 years in the Ría de Muros (NW Iberian Margin). Benthic foraminiferal δ 18O and δ 13C potentially register migrations in the position of the hydrographic front formed between two different intermediate water masses: Eastern North Atlantic Central Water of subpolar origin (ENACW sp) and subtropical origin (ENACW st). The molecular biomarkers in the sediment show a strong coupling between continental organic matter inputs and negative δ 13C values in benthic foraminifera. The rapid centennial and millennial events registered in these records have been compared with two well known North Atlantic Holocene records from the subtropical Atlantic sea surface temperatures (SST) anomalies off Cape Blanc, NW Africa and the subpolar Atlantic (Hematite Stained Grains percentage, subpolar North Atlantic). Comparison supports a strong link between high- and low-latitude climatic perturbations at centennial-millennial time scales during the Holocene. Spectral analyses also points to a pole-to-equator propagation of the so-called 1500 yr cycles. Our results demonstrate that during the Holocene, the NW Iberian Margin has undergone a series of rapid events which are likely triggered at high latitudes in the North Atlantic and are rapidly propagated towards lower latitudes. Conceivably, the propagation of these rapid climatic changes involves a shift in atmospheric and oceanic circulatory systems.

  20. Ground thermal and geomechanical conditions in a permafrost-affected high-latitude rock avalanche site (Polvartinden, northern Norway)

    Science.gov (United States)

    Frauenfelder, Regula; Isaksen, Ketil; Lato, Matthew J.; Noetzli, Jeannette

    2018-04-01

    On 26 June 2008, a rock avalanche detached in the northeast facing slope of Polvartinden, a high-alpine mountain in Signaldalen, northern Norway. Here, we report on the observed and modelled past and present near-surface temperature regime close to the failure zone, as well as on a subsequent simulation of the subsurface temperature regime, and on initial geomechanical mapping based on laser scanning. The volume of the rock avalanche was estimated to be approximately 500 000 m3. The depth to the actual failure surface was found to range from 40 m at the back of the failure zone to 0 m at its toe. Visible in situ ice was observed in the failure zone just after the rock avalanche. Between September 2009 and August 2013, ground surface temperatures were measured with miniature temperature data loggers at 14 different localities, close to the original failure zone along the northern ridge of Polvartinden and on the valley floor. The results from these measurements and from a basic three-dimensional heat conduction model suggest that the lower altitudinal limit of permafrost at present is at 600-650 m a.s.l., which corresponds to the upper limit of the failure zone. A coupling of our in situ data with regional climate data since 1958 suggests a general gradual warming and that the period with highest mean near surface temperatures on record ended four months before the Signaldalen rock avalanche detached. A comparison with a transient permafrost model run at 10 m depth, representative for areas where snow accumulates, strengthen these findings, which are also in congruence with measurements in nearby permafrost boreholes. It is likely that permafrost in and near the failure zone is presently subject to degradation. This degradation, in combination with the extreme warm year antecedent to the rock failure, is seen to have played an important role in the detaching of the Signaldalen rock avalanche.

  1. Ground thermal and geomechanical conditions in a permafrost-affected high-latitude rock avalanche site (Polvartinden, northern Norway

    Directory of Open Access Journals (Sweden)

    R. Frauenfelder

    2018-04-01

    Full Text Available On 26 June 2008, a rock avalanche detached in the northeast facing slope of Polvartinden, a high-alpine mountain in Signaldalen, northern Norway. Here, we report on the observed and modelled past and present near-surface temperature regime close to the failure zone, as well as on a subsequent simulation of the subsurface temperature regime, and on initial geomechanical mapping based on laser scanning. The volume of the rock avalanche was estimated to be approximately 500 000 m3. The depth to the actual failure surface was found to range from 40 m at the back of the failure zone to 0 m at its toe. Visible in situ ice was observed in the failure zone just after the rock avalanche. Between September 2009 and August 2013, ground surface temperatures were measured with miniature temperature data loggers at 14 different localities, close to the original failure zone along the northern ridge of Polvartinden and on the valley floor. The results from these measurements and from a basic three-dimensional heat conduction model suggest that the lower altitudinal limit of permafrost at present is at 600–650 m a.s.l., which corresponds to the upper limit of the failure zone. A coupling of our in situ data with regional climate data since 1958 suggests a general gradual warming and that the period with highest mean near surface temperatures on record ended four months before the Signaldalen rock avalanche detached. A comparison with a transient permafrost model run at 10 m depth, representative for areas where snow accumulates, strengthen these findings, which are also in congruence with measurements in nearby permafrost boreholes. It is likely that permafrost in and near the failure zone is presently subject to degradation. This degradation, in combination with the extreme warm year antecedent to the rock failure, is seen to have played an important role in the detaching of the Signaldalen rock avalanche.

  2. The Deep Space Gateway Lightning Mapper (DLM) - Monitoring Global Change and Thunderstorm Processes Through Observations of Earth's High-Latitude Lightning from Cis-Lunar Orbit

    Science.gov (United States)

    Lang, Timothy; Blakeslee, R. J.; Cecil, D. J.; Christian, H. J.; Gatlin, P. N.; Goodman, S. J.; Koshak, W. J.; Petersen, W. A.; Quick, M.; Schultz, C. J.; hide

    2018-01-01

    Function: Monitor global change and thunderstorm processes through observations of Earth's high-latitude lightning. This instrument will combine long-lived sampling of individual thunderstorms with long-term observations of lightning at high latitudes: How is global change affecting thunderstorm patterns; How do high-latitude thunderstorms differ from low-latitude? Why is the Gateway the optimal facility for this instrument / research: Expected DSG (Deep Space Gateway) orbits will provide nearly continuous viewing of the Earth's high latitudes (50 degrees latitude and poleward); These regions are not well covered by existing lightning mappers (e.g., Lightning Imaging Sensor / LIS, or Geostationary Lightning Mapper / GLM); Polar, Molniya, Tundra, etc. Earth orbits have significant drawbacks related to continuous coverage and/or stable FOVs (Fields of View).

  3. Propagation of short-period gravity waves at high-latitudes during the MaCWAVE winter campaign

    Directory of Open Access Journals (Sweden)

    K. Nielsen

    2006-07-01

    Full Text Available As part of the MaCWAVE (Mountain and Convective Waves Ascending Vertically winter campaign an all-sky monochromatic CCD imager has been used to investigate the properties of short-period mesospheric gravity waves at high northern latitudes. Sequential measurements of several nightglow emissions were made from Esrange, Sweden, during a limited period from 27–31 January 2003. Coincident wind measurements over the altitude range (~80–100 km using two meteor radar systems located at Esrange and Andenes have been used to perform a novel investigation of the intrinsic properties of five distinct wave events observed during this period. Additional lidar and MSIS model temperature data have been used to investigate their nature (i.e. freely propagating or ducted. Four of these extensive wave events were found to be freely propagating with potential source regions to the north of Scandinavia. No evidence was found for strong orographic forcing by short-period waves in the airglow emission layers. The fifth event was most unusual exhibiting an extensive, but much smaller and variable wavelength pattern that appeared to be embedded in the background wind field. Coincident wind measurements indicated the presence of a strong shear suggesting this event was probably due to a large-scale Kelvin-Helmholtz instability.

  4. Developments in Acoustic Navigation and Communication for High-Latitude Ocean Research

    Science.gov (United States)

    Gobat, J.; Lee, C.

    2006-12-01

    Developments in autonomous platforms (profiling floats, drifters, long-range gliders and propeller-driven vehicles) offer the possibility of unprecedented access to logistically difficult polar regions that challenge conventional techniques. Currently, however, navigation and telemetry for these platforms rely on satellite positioning and communications poorly suited for high-latitude applications where ice cover restricts access to the sea surface. A similar infrastructure offering basin-wide acoustic geolocation and telemetry would allow the community to employ autonomous platforms to address previously intractable problems in Arctic oceanography. Two recent efforts toward the development of such an infrastructure are reported here. As part of an observational array monitoring fluxes through Davis Strait, development of real-time RAFOS acoustic navigation for gliders has been ongoing since autumn 2004. To date, test deployments have been conducted in a 260 Hz field in the Pacific and 780 Hz fields off Norway and in Davis Strait. Real-time navigation accuracy of ~1~km is achievable. Autonomously navigating gliders will operate under ice cover beginning in autumn 2006. In addition to glider navigation development, the Davis Strait array moorings carry fixed RAFOS recorders to study propagation over a range of distances under seasonally varying ice cover. Results from the under-ice propagation and glider navigation experiments are presented. Motivated by the need to coordinate these types of development efforts, an international group of acousticians, autonomous platform developers, high-latitude oceanographers and marine mammal researchers gathered in Seattle, U.S.A. from 27 February -- 1 March 2006 for an NSF Office of Polar Programs sponsored Acoustic Navigation and Communication for High-latitude Ocean Research (ANCHOR) workshop. Workshop participants focused on summarizing the current state of knowledge concerning Arctic acoustics, navigation and communications

  5. Multiple cold resistance loci confer the high cold tolerance adaptation of Dongxiang wild rice (Oryza rufipogon) to its high-latitude habitat.

    Science.gov (United States)

    Mao, Donghai; Yu, Li; Chen, Dazhou; Li, Lanying; Zhu, Yuxing; Xiao, Yeqing; Zhang, Dechun; Chen, Caiyan

    2015-07-01

    Dongxiang wild rice is phylogenetically close to temperate japonica and contains multiple cold resistance loci conferring its adaptation to high-latitude habitat. Understanding the nature of adaptation in wild populations will benefit crop breeding in the development of climate-resilient crop varieties. Dongxiang wild rice (DXWR), the northernmost common wild rice known, possesses a high degree of cold tolerance and can survive overwintering in its native habitat. However, to date, it is still unclear how DXWR evolved to cope with low-temperature environment, resulting in limited application of DXWR in rice breeding programs. In this study, we carried out both QTL mapping and phylogenetic analysis to discern the genetic mechanism underlying the strong cold resistance. Through a combination of interval mapping and single locus analysis in two genetic populations, at least 13 QTLs for seedling cold tolerance were identified in DXWR. A phylogenetic study using both genome-wide InDel markers and markers associated with cold tolerance loci reveals that DXWR belongs to the Or-III group, which is most closely related to cold-tolerant Japonica rice rather than to the Indica cultivars that are predominant in the habitat where DXWR grows. Our study paves the way toward an understanding of the nature of adaptation to a northern habitat in O. rufipogon. The QTLs identified in DXWR in this study will be useful for molecular breeding of cold-tolerant rice.

  6. Mechanism for the formation of sporadic-E layers in the high-latitude ionosphere

    Energy Technology Data Exchange (ETDEWEB)

    Vlasov, M.N.; Mishin, E.V.; Telegin, V.A.

    1980-09-01

    A model of the collective interaction of precipitating electrons and the ionospheric plasma is used to explain the formation of short-duration sporadic-E layers in the high-latitude ionosphere. The changes produced in electron density by this collective interaction mechanism are considered.

  7. Non-native and native organisms moving into high elevation and high latitude ecosystems in an era of climate change

    DEFF Research Database (Denmark)

    Pauchard, Aníbal; Milbau, Ann; Albihn, Ann

    2016-01-01

    Cold environments at high elevation and high latitude are often viewed as resistant to biological invasions. However, climate warming, land use change and associated increased connectivity all increase the risk of biological invasions in these environments. Here we present a summary of the key di...

  8. Low clouds suppress Arctic air formation and amplify high-latitude continental winter warming.

    Science.gov (United States)

    Cronin, Timothy W; Tziperman, Eli

    2015-09-15

    High-latitude continents have warmed much more rapidly in recent decades than the rest of the globe, especially in winter, and the maintenance of warm, frost-free conditions in continental interiors in winter has been a long-standing problem of past equable climates. We use an idealized single-column atmospheric model across a range of conditions to study the polar night process of air mass transformation from high-latitude maritime air, with a prescribed initial temperature profile, to much colder high-latitude continental air. We find that a low-cloud feedback--consisting of a robust increase in the duration of optically thick liquid clouds with warming of the initial state--slows radiative cooling of the surface and amplifies continental warming. This low-cloud feedback increases the continental surface air temperature by roughly two degrees for each degree increase of the initial maritime surface air temperature, effectively suppressing Arctic air formation. The time it takes for the surface air temperature to drop below freezing increases nonlinearly to ∼ 10 d for initial maritime surface air temperatures of 20 °C. These results, supplemented by an analysis of Coupled Model Intercomparison Project phase 5 climate model runs that shows large increases in cloud water path and surface cloud longwave forcing in warmer climates, suggest that the "lapse rate feedback" in simulations of anthropogenic climate change may be related to the influence of low clouds on the stratification of the lower troposphere. The results also indicate that optically thick stratus cloud decks could help to maintain frost-free winter continental interiors in equable climates.

  9. Magnetic Field Fluctuations in the High Ionosphere at Polar Latitudes: Impact of the IMF Conditions

    Science.gov (United States)

    De Michelis, P.; Consolini, G.; Tozzi, R.

    2016-12-01

    The characterization of ionospheric turbulence plays an important role for all those communication systems affected by the ionospheric medium. For instance, independently of geomagnetic latitude, ionospheric turbulence represents a considerable issue for all Global Navigation Satellite Systems (GNSS). Swarm constellation measurements of the Earth's magnetic field allow a precise characterization of ionospheric turbulence. This is possible using a range of indices derived from the analysis of the scaling properties of the geomagnetic field. In particular, by the scaling properties of the 1st order structure function, a scale index can be obtained, with a consequent characterization of the degree of persistence of the fluctuations and of their spectral properties. The knowledge of this index provides a global characterization of the nature and level of ionospheric turbulence on a local scale, which can be displayed along a single satellite orbit or through maps over the region of interest. The present work focuses on the analysis of the scaling properties of the 1st order structure function of magnetic field fluctuations measured by Swarm constellation at polar latitudes in the Northern Hemisphere. They are studied according to different interplanetary magnetic field conditions and Earth's seasons to characterize the possible drivers of magnetic field variability. The obtained results are discussed in the framework of Sun-Earth relationship and ionospheric polar convection. This work is supported by the Italian National Program for Antarctic Research (PNRA) Research Project 2013/AC3.08

  10. Containment test in area of high latitude and low temperature

    International Nuclear Information System (INIS)

    Cai Jiantao; Ni Yongsheng; Jia Wutong

    2014-01-01

    The effects of high latitude and low temperature on containment test are detailed analyzed from the view of design, equipment, construct and start-up, and the solution is put forward. The major problems resolved is as below: the effects of low temperature and high wind on defect inspection of the containment surface, the effects of test load on the affiliated equipment of containment in the condition of low temperature, and the effects of low temperature on the containment leak rate measurement. Application in Hongyanhe Unit 1 showed that the proposed scheme can effectively overcome the influence of adverse weather on the containment test. (authors)

  11. Storm time electric field penetration observed at mid-latitude

    International Nuclear Information System (INIS)

    Yeh, H.C.; Foster, J.C.; Rich, F.J.; Swider, W.

    1991-01-01

    During the height of the February 8-9, 1986, magnetic storm the Millstone Hill radar was in the evening local time sector (1600-2200 MLT). Radar observations indicate that high speed (>1,000 m s -1 ) westward ion flow penetrated deeply below 50 degree invariant latitude (Λ) and persisted for 6 hours between 2100 UT on February 8 and 0300 UT on February 9. The double-peaked ion convection feature was pronounced throughout the period, and the separation in the dual maxima ranged from 4 degree to 10 degree. The latitude positions of the high-latitude ion drift peak and the convection reversal varied in unison. The low-latitude ion drift peak (∼49 degree Λ or L =2.3) did not show significant universal time/magnetic local time (UT/MLT) variation in its latitude location but showed a decrease in magnitude during the initial recovery phase of the storm. Using simultaneous particle (30 eV-30 keV) precipitation data from the DMSP F6 and F7 satellites, the authors find the high-latitude ion drift peak to coincide with the boundary plasma sheet/central plasma sheet transition in the high ionospheric conductivity (>15 mho) region. The low-latitude ion drift peak lay between the equatorward edges of the electron and soft ( + dominated ring current energy density in magnetic latitude. The low-latitude ion drift peak is the low-altitude signature of the electric field shielding effect associated with ring current penetration into the outer layer of the storm time plasmasphere

  12. The high latitude heliosphere. Proceedings. 28. ESLAB Symposium, Friedrichshafen (Germany), 19 - 21 Apr 1994.

    Science.gov (United States)

    Marsden, R. G.

    1995-04-01

    The following topics were dealt with: high latitude heliosphere, Ulysses mission, corona, spectra, coronal holes, composition, solar wind, He, plasma, streams, interplanetary magnetic field, plasma waves, radio bursts, energetic particles, cosmic rays, and interstellar gas.

  13. Analysis of Wind Vorticity and Divergence in the High-latitude Lower Thermosphere: Dependence on the Interplanetary Magnetic Field (IMF

    Directory of Open Access Journals (Sweden)

    Young-Sil Kwak

    2008-12-01

    Full Text Available To better understand the physical processes that control the high-latitude lower thermospheric dynamics, we analyze the divergence and vorticity of the high-latitude neutral wind field in the lower thermosphere during the southern summertime for different IMF conditions. For this study the National Center for Atmospheric Research Thermosphere-Ionosphere Electrodynamics General Circulation Model (NCAR-TIEG CM is used. The analysis of the large-scale vorticity and divergence provides basic understanding flow configurations to help elucidate the momentum sources that ultimately determine the total wind field in the lower polar thermosphere and provides insight into the relative strengths of the different sources of momentum responsible for driving winds. The mean neutral wind pattern in the high-latitude lower thermosphere is dominated by rotational flow, imparted primarily through the ion drag force, rather than by divergent flow, imparted primarily through Joule and solar heating. The difference vorticity, obtained by subtracting values with zero IMF from those with non-zero IMF, in the high-latitude lower thermosphere is much larger than the difference divergence for all IMF conditions, indicating that a larger response of the thermospheric wind system to enhancement in the momentum input generating the rotational motion with elevated IMF than the corresponding energy input generating the divergent motion. the difference vorticity in the high-latitude lower thermosphere depends on the direction of the IMF. The difference vorticity for negative and positive B_y shows positive and negative, respectively, at higher magnetic latitudes than -70°. For negative B_z, the difference vorticities have positive in the dusk sector and negative in the dawn sector. The difference vorticities for positive B_z have opposite sign. Negative IMF B_z has a stronger effect on the vorticity than does positive B_z.

  14. Imaging of structures in the high-latitude ionosphere: model comparisons

    Directory of Open Access Journals (Sweden)

    D. W. Idenden

    Full Text Available The tomographic reconstruction technique generates a two-dimensional latitude versus height electron density distribution from sets of slant total electron content measurements (TEC along ray paths between beacon satellites and ground-based radio receivers. In this note, the technique is applied to TEC values obtained from data simulated by the Sheffield/UCL/SEL Coupled Thermosphere/Ionosphere/Model (CTIM. A comparison of the resulting reconstructed image with the 'input' modelled data allows for verification of the reconstruction technique. All the features of the high-latitude ionosphere in the model data are reproduced well in the tomographic image. Reconstructed vertical TEC values follow closely the modelled values, with the F-layer maximum density (NmF2 agreeing generally within about 10%. The method has also been able successfully to reproduce underlying auroral-E ionisation over a restricted latitudinal range in part of the image. The height of the F2 peak is generally in agreement to within about the vertical image resolution (25 km.

    Key words. Ionosphere (modelling and forecasting; polar ionosphere · Radio Science (instruments and techniques

  15. Sub-arctic hydrology and climate change : a case study of the Tana River Basin in Northern Fennoscandia

    NARCIS (Netherlands)

    Dankers, Rutger

    2002-01-01

    The most significant changes in climate, due to the well-known enhanced greenhouse effect, are generally expected to occur at northern high latitudes. Sub-arctic environments, that are dominated by the presence of a seasonal snow cover, may therefore be particularly sensitive to global warming. The

  16. First Evaluation of the Climatological Calibration Algorithm in the Real-time TMPA Precipitation Estimates over Two Basins at High and Low Latitudes

    Science.gov (United States)

    Yong, Bin; Ren, Liliang; Hong, Yang; Gourley, Jonathan; Tian, Yudong; Huffman, George J.; Chen, Xi; Wang, Weiguang; Wen, Yixin

    2013-01-01

    The TRMM Multi-satellite Precipitation Analysis (TMPA) system underwent a crucial upgrade in early 2009 to include a climatological calibration algorithm (CCA) to its realtime product 3B42RT, and this algorithm will continue to be applied in the future Global Precipitation Measurement era constellation precipitation products. In this study, efforts are focused on the comparison and validation of the Version 6 3B42RT estimates before and after the climatological calibration is applied. The evaluation is accomplished using independent rain gauge networks located within the high-latitude Laohahe basin and the low-latitude Mishui basin, both in China. The analyses indicate the CCA can effectively reduce the systematic errors over the low-latitude Mishui basin but misrepresent the intensity distribution pattern of medium-high rain rates. This behavior could adversely affect TMPA's hydrological applications, especially for extreme events (e.g., floods and landslides). Results also show that the CCA tends to perform slightly worse, in particular, during summer and winter, over the high-latitude Laohahe basin. This is possibly due to the simplified calibration-processing scheme in the CCA that directly applies the climatological calibrators developed within 40 degrees latitude to the latitude belts of 40 degrees N-50 degrees N. Caution should therefore be exercised when using the calibrated 3B42RT for heavy rainfall-related flood forecasting (or landslide warning) over high-latitude regions, as the employment of the smooth-fill scheme in the CCA bias correction could homogenize the varying rainstorm characteristics. Finally, this study highlights that accurate detection and estimation of snow at high latitudes is still a challenging task for the future development of satellite precipitation retrievals.

  17. Recent slowdown of atmospheric CO2 amplification due to vegetation-climate feedback over northern lands

    Science.gov (United States)

    Li, Z.; Xia, J.; Ahlström, A.; Rinke, A.; Koven, C.; Hayes, D. J.; Ji, D.; Zhang, G.; Krinner, G.; Chen, G.; Dong, J.; Liang, J.; Moore, J.; Jiang, L.; Yan, L.; Ciais, P.; Peng, S.; Wang, Y.; Xiao, X.; Shi, Z.; McGuire, A. D.; Luo, Y.

    2017-12-01

    The enhanced vegetation growth by climate warming plays a pivotal role in amplifying the seasonal cycle of atmospheric CO2 at northern high latitudes since 1960s1-3. It remains unclear that whether this mechanism is still robust since 1990s, because a paused vegetation growth increase4,5 and weakened temperature control on CO2 uptake6,7 have been detected during this period. Here, based on in-situ atmospheric CO2 concentration records above northern 50o N, we found a slowdown of the atmospheric CO2 amplification from the mid-1990s to mid-2000s. This phenomenon is associated with the pause of vegetation greening trend and slowdown of spring warming. We further showed that both the vegetation greenness and its growing season length are positively correlated to spring but not autumn temperature from 1982 to 2010 over the northern lands. However, the state-of-art terrestrial biosphere models produce positive responses of gross primary productivity to both spring and autumn warming. These findings emphasize the importance of vegetation-climate feedback in shaping the atmospheric CO2 seasonality, and call for an improved carbon-cycle response to non-uniform seasonal warming at high latitudes in current models.

  18. Climatology of ionospheric scintillation over the Vietnam low-latitude region for the period 2006-2014

    Science.gov (United States)

    Tran, Thi Lan; Le, Huy Minh; Amory-Mazaudier, C.; Fleury, R.

    2017-10-01

    This paper presents the characteristics of the occurrence of ionospheric scintillations at low-latitude, over Vietnam, by using continuous data of three GSV4004 receivers located at PHUT/Hanoï (105.9°E, 21.0°N; magnetic latitude 14.4°N), HUES/Hue (107.6°E, 16.5°N; magnetic latitude 9.5°N) and HOCM/Ho Chi Minh city (106.6°E, 10.8°N; magnetic latitude 3.3°N) for the period 2006-2014. The results show that the scintillation activity is maximum during equinox months for all the years and depends on solar activity as expected. The correlations between the monthly percentage scintillation occurrence and the F10.7 flux are of 0.40, 0.52 and 0.67 for PHUT, HUES and HOCM respectively. The distribution of scintillation occurrences is dominant in the pre-midnight sector and around the northern crest of the equatorial ionization anomaly (EIA), from the 15°N to 20°N geographic latitude with a maximum at 16°N. The results obtained from the directional analysis show higher distributions of scintillations in the southern sky of PHUT and in the northern sky of HUES and HOCM, and in the elevation angles smaller than 40°. The correlation between ROTI and S4 is low and rather good at PHUT (under EIA) than HOCM (near equator). We found better correlation in the post-midnight hours and less correlation in the pre-midnight hours for all stations. When all satellites are considered during the period of 2009-2011, the range of variation of the ration between ROTI and S4 is from 1 to 7 for PHUT, from 0.3 to 6 for HUES and from 0.7 to 6 for HOCM.

  19. ELUSIVE ETHYLENE DETECTED IN SATURN'S NORTHERN STORM REGION

    Energy Technology Data Exchange (ETDEWEB)

    Hesman, B. E.; Achterberg, R. K.; Nixon, C. A. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Bjoraker, G. L.; Romani, P. N. [NASA/GSFC Code 693, Greenbelt, MD 20771 (United States); Sada, P. V. [Departamento de Fisica y Matematicas, Universidad de Monterrey, Garza Garcia, NL 66238 (Mexico); Jennings, D. E. [NASA/GSFC Code 693 and Code 500, Greenbelt, MD 20771 (United States); Lunsford, A. W. [Department of Physics, Catholic University of America, Washington, DC 20064 (United States); Fletcher, L. N.; Irwin, P. G. J. [Atmospheric, Oceanic and Planetary Physics, Clarendon Laboratory, Parks Road, Oxford OX1 3PU (United Kingdom); Boyle, R. J. [Department of Physics and Astronomy, Dickinson College, Carlisle, PA 17013 (United States); Simon-Miller, A. A., E-mail: brigette.e.hesman@nasa.gov [NASA/GSFC Code 690, Greenbelt, MD 20771 (United States)

    2012-11-20

    The massive eruption at 40 Degree-Sign N (planetographic latitude) on Saturn in 2010 December has produced significant and lasting effects in the northern hemisphere on temperature and species abundances. The northern storm region was observed on many occasions in 2011 by Cassini's Composite Infrared Spectrometer (CIRS). In 2011 May, temperatures in the stratosphere greater than 200 K were derived from CIRS spectra in the regions referred to as 'beacons' (warm regions in the stratosphere). Ethylene has been detected in the beacon region in Saturn's northern storm region using CIRS. Ground-based observations using the high-resolution spectrometer Celeste on the McMath-Pierce Telescope on 2011 May 15 were used to confirm the detection and improve the altitude resolution in the retrieved profile. The derived ethylene profile from the CIRS data gives a C{sub 2}H{sub 4} mole fraction of 5.9 {+-} 4.5 Multiplication-Sign 10{sup -7} at 0.5 mbar, and from Celeste data it gives 2.7 {+-} 0.45 Multiplication-Sign 10{sup -6} at 0.1 mbar. This is two orders of magnitude higher than the amount measured in the ultraviolet at other latitudes prior to the storm. It is also much higher than predicted by photochemical models, indicating that perhaps another production mechanism is required or a loss mechanism is being inhibited.

  20. Daylighting in linear atrium buildings at high latitudes

    Energy Technology Data Exchange (ETDEWEB)

    Matusiak, Barbara

    1998-12-31

    This thesis proposes new criteria for visual comfort based on knowledge of visual perception and a method for estimating the modelling ability of light by using inter-reflection calculations. Simplified calculations are presented for the daylight factor in linear building structures, using the projected solid angle principle, for uniform sky and for CIE overcast sky conditions. The calculations are compared with experimental results. Simple diagrams are created based on calculations of the mean daylight factor in rooms adjacent to a narrow street. These diagrams and presented formulas and tables can be used as a simple design tool. Daylighting strategies for linear atrium buildings at high latitudes are developed and examined. These strategies are divided into three groups: (1) the atrium space and facades as light conductor/reflector, (2) the glass roof as a light conductor, and (3) light reflectors on the neighbouring roof. The atrium space and facade strategies are subdivided into passive and active. The strategies connected to the glazed roof includes different configurations of glazing: horizontal, single pitched, double pitched, and the use of laser cut panels and prismatic panels in the glazed roof. The shapes of reflectors on the neighbouring roof are a flat reflector, a parabolic reflector and a parabolic concentrator. Strategies from all three groups are examined on a physical model of scale 1:20 in the artificial sky of mirror box type. Simulations with artificial sun have also been done. The results from model studies are compared with computer simulations. All the active daylighting systems designed for use in the atrium space or on the atrium facades have a huge potential for use in atrium buildings. From the strategies connected with the glazed roof the negatively sloped glass is found to be the best alternative for glazed roofs at high latitudes. Among the roof reflectors, the flat one performs best. 82 refs., 122 figs., 27 tabs.

  1. Electric fields, Joule and particle heating in the high latitude thermosphere. [Review

    Energy Technology Data Exchange (ETDEWEB)

    Brekke, A [Auroral Observatory, Tromsoe (Norway)

    1976-08-01

    A short review of the recent high latitude measurements of ionospheric electric fields is given. The importance of investigating large-scale and slowly-varying electric fields in order to study magnetospheric convection is stressed. The motion of such high energetic phenomena as auroral forms and spread E-region echoes must be treated by extreme caution when interpreted as a manifestation of convection motion. The relationship between the ionospheric source and polarization field is still an unanswered problem. It is indicated that progress can be made in this respect when electric fields and conductivities are measured simultaneously in the ionosphere. Evidence is shown at one occasion that the meridional component during an auroral sunstorm might be mainly a polarization field. The height-integrated Joule heating rate is occasionally found to be far larger than the solar radiation input at auroral altitudes. The presence of this additional heat source at any time of day is expected to have a strong impact on the global-scale atmospheric dynamics. From comparisons made between Joule and particle heating it appears that the two components are comparable. It is expected that high latitude incoherent radars will contribute substantially to the understanding of these phenomena in the near future.

  2. Microinstabilities in the high latitude F region: a brief review

    International Nuclear Information System (INIS)

    Gary, S.P.

    1983-01-01

    This is a review of the theory of plasma microinstabilities that may arise in the high latitude F region ionosphere below 1000 km. Three free energy sources are considered: a density gradient perpendicular to the ambient magnetic field B, a current parallel to B and a steady electric field perpendicular to B. The BGK model for charged-neutral collisions is used, and the short wavelength properties of the universal density drift, current convective and E x B gradient drift instabilities are compared. At sufficiently high altitudes and sufficiently steep gradients, the universal instability is the short wavelength mode most likely to grow and, through wave-particle diffusion, to cause relatively steep wavenumber dependences in power spectra

  3. Bat and bird diversity along independent gradients of latitude and tree composition in European forests.

    Science.gov (United States)

    Charbonnier, Yohan M; Barbaro, Luc; Barnagaud, Jean-Yves; Ampoorter, Evy; Nezan, Julien; Verheyen, Kris; Jactel, Hervé

    2016-10-01

    Species assemblages are shaped by local and continental-scale processes that are seldom investigated together, due to the lack of surveys along independent gradients of latitude and habitat types. Our study investigated changes in the effects of forest composition and structure on bat and bird diversity across Europe. We compared the taxonomic and functional diversity of bat and bird assemblages in 209 mature forest plots spread along gradients of forest composition and vertical structure, replicated in 6 regions spanning from the Mediterranean to the boreal biomes. Species richness and functional evenness of both bat and bird communities were affected by the interactions between latitude and forest composition and structure. Bat and bird species richness increased with broadleaved tree cover in temperate and especially in boreal regions but not in the Mediterranean where they increased with conifer abundance. Bat species richness was lower in forests with smaller trees and denser understorey only in northern regions. Bird species richness was not affected by forest structure. Bird functional evenness increased in younger and denser forests. Bat functional evenness was also influenced by interactions between latitude and understorey structure, increasing in temperate forests but decreasing in the Mediterranean. Covariation between bat and bird abundances also shifted across Europe, from negative in southern forests to positive in northern forests. Our results suggest that community assembly processes in bats and birds of European forests are predominantly driven by abundance and accessibility of feeding resources, i.e., insect prey, and their changes across both forest types and latitudes.

  4. How Strong is the Case for Proterozoic Low-Latitude Glaciation?

    Science.gov (United States)

    Evans, D. A.

    2004-05-01

    The most recent global compilations of paleomagnetic depositional latitudes for Proterozoic glaciogenic formations indicate a dominant mode near the paleo-equator (Evans 2000 AJS; Evans 2003 Tectonophysics). This result would therefore support either the snowball Earth or the large-obliquity hypotheses for Precambrian ice ages, but would reject the uniformitarian comparison to polar-temperate-restricted Phanerozoic glaciogenic deposits. The most reliable low-latitude results come from the Australian Marinoan succession, but a recent summary of these units has suggested that a glaciogenic origin is not yet demonstrated (Eyles and Januszczak 2004 Earth-Sci Reviews). It becomes useful, then, to review the global evidence for Proterozoic low-latitude glaciation. Eyles and Januszczak (ibid.) identified 13 Neoproterozoic deposits with "demonstrated" glacial influence. Among these, poor age constraints and lack of paleomagnetic data prohibit estimation of depositional paleolatitudes for the Fiq, Sturtian, Vreeland, Taoudeni, East Greenland, Port Askaig, and Zhengmuguan units. Moderate paleolatitudes are reasonably well supported for the South China, Gaskiers, Smalfjord, and Moelv units. Among the three remaining units, the Rapitan Group can be assigned a near-equatorial paleolatitude indirectly through use of the Galeros and Franklin-Natkusiak paleomagnetic results, as long as the Rapitan age lies within 750-720 Ma as generally expected. The Moonlight Valley Formation in northern Australia may be assigned a tropical paleolatitude according to high-quality paleomagnetic results from compellingly correlated Marinoan strata in southern Australia. Those strata, including the famous Elatina Formation, have yielded a robust paleomagnetic signature that is commonly interpreted to imply frigid climate (manifest in part by frost-wedge polygons) at near-equatorial latitudes. Concerns that the Neoproterozoic geomagnetic field was either nonaxial or nondipolar are valid in principle

  5. The Evolution of Northern Hemisphere Glaciation

    Science.gov (United States)

    Wright, J. D.

    2001-05-01

    For much of the last 50 million years, high-latitude regions remained too warm to allow snow to accumulate and form ice sheets. Shackleton et al. (1984) published a landmark paper correlating the first occurrence of ice-rafted detritus (IRD) observed at Rockall Plateau with a prominent increase in benthic foraminiferal d18O values during the late Pliocene. These late Pliocene to Pleistocene ice sheets were modulated on an orbital frequency and have characterized the global climate over the past 2.6 myr (Shackleton and Opdyke, 1973; Shackleton et al., 1984; Ruddiman, et al., 1986). During the early Pliocene, northern hemisphere glaciation (NHG) variations were less significant (Jansen et al., 1993). Our understanding of the Plio-Pleistocene ice sheet cycles can be viewed from two different perspectives. When viewed from the late Pleistocene, the fundamental question is what changed near the early/late Pliocene boundary to produce the large-scale, glacial-interglacial cycles of the past 2.6 Ma. In contrast, the view from the middle to late Miocene is quite different. Since the pioneering work of Shackleton et al. (1984), the record of NHG has been extended further back in time with drilling in the Norwegian Sea (ODP Leg 104). At Sites 642 and 644, IRD was found throughout the late Miocene and back to ~12 Ma. More recent drilling in the high northern latitudes occurred on ODP Leg 151. Site 909 recovered a middle Miocene section from the Fram Straits with rounded quartz grains that were interpreted as IRD (Wolf-Welling et al., 1996). Age estimates for those sediments place the first northern hemisphere ice sheets at least as old as 14 Ma. The occurrence of sand-sized particles (>1000 μm) and coal below this level indicates the possibility of glacial activity in the Northern Hemisphere as early as 16 Ma. Thus, the late Pliocene to Pleistocene cycles appear to be the resumption of the glacial-interglacial pattern that began during the Miocene. While the Miocene ice

  6. Where do the treeless tundra areas of northern highlands fit in the global biome system: toward an ecologically natural subdivision of the tundra biome.

    Science.gov (United States)

    Virtanen, Risto; Oksanen, Lauri; Oksanen, Tarja; Cohen, Juval; Forbes, Bruce C; Johansen, Bernt; Käyhkö, Jukka; Olofsson, Johan; Pulliainen, Jouni; Tømmervik, Hans

    2016-01-01

    According to some treatises, arctic and alpine sub-biomes are ecologically similar, whereas others find them highly dissimilar. Most peculiarly, large areas of northern tundra highlands fall outside of the two recent subdivisions of the tundra biome. We seek an ecologically natural resolution to this long-standing and far-reaching problem. We studied broad-scale patterns in climate and vegetation along the gradient from Siberian tundra via northernmost Fennoscandia to the alpine habitats of European middle-latitude mountains, as well as explored those patterns within Fennoscandian tundra based on climate-vegetation patterns obtained from a fine-scale vegetation map. Our analyses reveal that ecologically meaningful January-February snow and thermal conditions differ between different types of tundra. High precipitation and mild winter temperatures prevail on middle-latitude mountains, low precipitation and usually cold winters prevail on high-latitude tundra, and Scandinavian mountains show intermediate conditions. Similarly, heath-like plant communities differ clearly between middle latitude mountains (alpine) and high-latitude tundra vegetation, including its altitudinal extension on Scandinavian mountains. Conversely, high abundance of snowbeds and large differences in the composition of dwarf shrub heaths distinguish the Scandinavian mountain tundra from its counterparts in Russia and the north Fennoscandian inland. The European tundra areas fall into three ecologically rather homogeneous categories: the arctic tundra, the oroarctic tundra of northern heights and mountains, and the genuinely alpine tundra of middle-latitude mountains. Attempts to divide the tundra into two sub-biomes have resulted in major discrepancies and confusions, as the oroarctic areas are included in the arctic tundra in some biogeographic maps and in the alpine tundra in others. Our analyses based on climate and vegetation criteria thus seem to resolve the long-standing biome

  7. Land Cover Mapping in Northern High Latitude Permafrost Regions with Satellite Data: Achievements and Remaining Challenges

    Directory of Open Access Journals (Sweden)

    Annett Bartsch

    2016-11-01

    resolution around 30 m has been shown to be suitable for a range of applications. This implies that the current Landsat-8, as well as Sentinel-2 missions would be adequate as input data. Recent studies have exemplified the value of Synthetic Aperture Radar (SAR in tundra regions. SAR missions may be therefore of added value for large-scale high latitude land cover mapping.

  8. Large-scale traveling ionospheric disturbances observed using GPS receivers over high-latitude and equatorial regions

    Science.gov (United States)

    Idrus, Intan Izafina; Abdullah, Mardina; Hasbi, Alina Marie; Husin, Asnawi; Yatim, Baharuddin

    2013-09-01

    This paper presents the first results of large-scale traveling ionospheric disturbances (LSTIDs) observation during two moderate magnetic storm events on 28 May 2011 (SYM-H∼ -94 nT and Dst∼-80 nT) and 6 August 2011 (SYM-H∼-126 nT and Dst∼-113 nT) over the high-latitude region in Russia, Sweden, Norway, Iceland and Greenland and equatorial region in the Peninsular Malaysia using vertical total electron content (VTEC) from the Global Positioning System (GPS) observations measurement. The propagation of the LSTID signatures in the GPS TEC measurements over Peninsular Malaysia was also investigated using VTEC map. The LSTIDs were found to propagate both equatorward and poleward directions during these two events. The results showed that the LSTIDs propagated faster at high-latitude region with an average phase velocity of 1074.91 m/s than Peninsular Malaysia with an average phase velocity of 604.84 m/s. The LSTIDs at the high-latitude region have average periods of 150 min whereas the ones observed over Peninsular Malaysia have average periods of 115 min. The occurrences of these LSTIDs were also found to be the subsequent effects of substorm activities in the auroral region. To our knowledge, this is the first result of observation of LSTIDs over Peninsular Malaysia during the 24th solar cycle.

  9. Large methane emission upon spring thaw from natural wetlands in the northern permafrost region

    International Nuclear Information System (INIS)

    Song Changchun; Sun Xiaoxin; Sun Li; Miao Yuqing; Wang Xianwei; Guo Yuedong; Xu Xiaofeng; Tian Hanqin

    2012-01-01

    The permafrost carbon–climate feedback is one of the major mechanisms in controlling the climate–ecosystem interactions in northern high latitudes. Of this feedback, methane (CH 4 ) emission from natural wetlands is critically important due to its high warming potential. The freeze–thaw transition has been confirmed to play an important role in annual CH 4 budget, yet the magnitude of this effect is uncertain. An intensive field campaign was carried out in the Sanjiang Plain, Northeast China to estimate the CH 4 emission in the spring freeze–thaw transition period. The observation concluded that a large CH 4 source was caused by spring thaw; the maximum hourly emission rate was 48.6 g C m −2 h −1 , more than three orders of the regularly observed CH 4 emission rate in the growing season. In some sporadically observed ‘hot spots’, the spring thawing effect contributed to a large CH 4 source of 31.3± 10.1 g C m −2 , which is approximately 80% of the previously calculated annual CH 4 emission in the same study area. If our results are typical for natural wetlands in the Northern Hemisphere permafrost region, we estimate a global CH 4 source strength of 0.5–1.0 Tg C (1 Tg =10 12 g) caused by spring thaw in the Northern Hemisphere permafrost region in the year 2011. Combining with available satellite and flask data, a regional extrapolation reaches a temporal pattern of CH 4 emission during 2003–2009 which is consistent with recently observed changes in atmospheric CH 4 concentration in the high latitudes. This suggests that the CH 4 emission upon spring thaw in the high latitudes might be enhanced by the projected climate warming. These findings indicate that the spring thawing effect is an important mechanism in the permafrost carbon–climate feedback and needs to be incorporated in Earth system models. (letter)

  10. What-ifs for a Northern ozone hole

    Energy Technology Data Exchange (ETDEWEB)

    Newman, A.

    1993-08-01

    Based on papers presented at a recent American Geophysical Union meeting in Baltimore, this article discusses various processes that could lead to further significant stratospheric ozone losses over northern latitudes. In southern high latitudes, ClO, formed when Cl atoms react with O[sub 3], persists into the spring and enters a photocatalytic cycle that regenerates ozone-destroying Cl atoms. Type II polar stratospheric clouds (PSCs) are believed to act as catalysts in this cycle. Although type II PSCs rarely form in the warmer Arctic stratosphere, it is possible that type I PSCs and sulfuric acid droplets may act as catalytic surfaces in this region. The arctic however, currently lacks a pronounced ozone hole, unlike Antartica. This is because in the Northern Hemisphere, large-scale tropospheric weather disturbances leak a portion of their energy to the less dense stratosphere. This indirectly leads to the descent of air over the Arctic region which produces compression heating of the polar cap and keeps the Arctic winter stratosphere warm enough to evade the cold temperatures that would produce widespread PSCs, and the associated significant ozone destruction. However, the greenhouse effect could lead to a cooler stratosphere containing more water and weaker tropospheric large-scale disturbances meaning colder Arctic winters. All these factors would contribute to greater PSC formation and the associated ozone destruction.

  11. What-ifs for a Northern ozone hole

    International Nuclear Information System (INIS)

    Newman, A.

    1993-01-01

    Based on papers presented at a recent American Geophysical Union meeting in Baltimore, this article discusses various processes that could lead to further significant stratospheric ozone losses over northern latitudes. In southern high latitudes, ClO, formed when Cl atoms react with O 3 , persists into the spring and enters a photocatalytic cycle that regenerates ozone-destroying Cl atoms. Type II polar stratospheric clouds (PSCs) are believed to act as catalysts in this cycle. Although type II PSCs rarely form in the warmer Arctic stratosphere, it is possible that type I PSCs and sulfuric acid droplets may act as catalytic surfaces in this region. The arctic however, currently lacks a pronounced ozone hole, unlike Antartica. This is because in the Northern Hemisphere, large-scale tropospheric weather disturbances leak a portion of their energy to the less dense stratosphere. This indirectly leads to the descent of air over the Arctic region which produces compression heating of the polar cap and keeps the Arctic winter stratosphere warm enough to evade the cold temperatures that would produce widespread PSCs, and the associated significant ozone destruction. However, the greenhouse effect could lead to a cooler stratosphere containing more water and weaker tropospheric large-scale disturbances meaning colder Arctic winters. All these factors would contribute to greater PSC formation and the associated ozone destruction

  12. CONDITIONED ANALYSIS OF HIGH-LATITUDE SOLAR WIND INTERMITTENCY

    International Nuclear Information System (INIS)

    D'Amicis, R.; Consolini, G.; Bavassano, B.; Bruno, R.

    2012-01-01

    The solar wind is a turbulent medium displaying intermittency. Its intermittent features have been widely documented and studied, showing how the intermittent character is different in fast and slow wind. In this paper, a statistical conditioned analysis of the solar wind intermittency for a period of high-latitude fast solar wind is presented. In particular, the intermittent features are investigated as a function of the Alfvénic degree of fluctuations at a given scale. The results show that the main contribution to solar wind intermittency is due to non-Alfvénic structures, while Alfvénic increments are found to be characterized by a smaller level of intermittency than the previous ones. Furthermore, the lifetime statistics of Alfvénic periods are discussed in terms of a multiscale texture of randomly oriented flux tubes.

  13. Parallel Gene Expression Differences between Low and High Latitude Populations of Drosophila melanogaster and D. simulans.

    Science.gov (United States)

    Zhao, Li; Wit, Janneke; Svetec, Nicolas; Begun, David J

    2015-05-01

    Gene expression variation within species is relatively common, however, the role of natural selection in the maintenance of this variation is poorly understood. Here we investigate low and high latitude populations of Drosophila melanogaster and its sister species, D. simulans, to determine whether the two species show similar patterns of population differentiation, consistent with a role for spatially varying selection in maintaining gene expression variation. We compared at two temperatures the whole male transcriptome of D. melanogaster and D. simulans sampled from Panama City (Panama) and Maine (USA). We observed a significant excess of genes exhibiting differential expression in both species, consistent with parallel adaptation to heterogeneous environments. Moreover, the majority of genes showing parallel expression differentiation showed the same direction of differential expression in the two species and the magnitudes of expression differences between high and low latitude populations were correlated across species, further bolstering the conclusion that parallelism for expression phenotypes results from spatially varying selection. However, the species also exhibited important differences in expression phenotypes. For example, the genomic extent of genotype × environment interaction was much more common in D. melanogaster. Highly differentiated SNPs between low and high latitudes were enriched in the 3' UTRs and CDS of the geographically differently expressed genes in both species, consistent with an important role for cis-acting variants in driving local adaptation for expression-related phenotypes.

  14. Response of northern hemisphere environmental and atmospheric conditions to climate changes using Greenland aerosol records from the Eemian to the Holocene

    Science.gov (United States)

    Fischer, H.

    2017-12-01

    The Northern Hemisphere experienced dramatic climate changes over the last glacial cycle, including vast ice sheet expansion and frequent abrupt climate events. Moreover, high northern latitudes during the last interglacial (Eemian) were warmer than today and may provide guidance for future climate change scenarios. However, little evidence exists regarding the environmental alterations connected to these climate changes. Using aerosol concentration records in decadal resolution from the North Greenland Eemian Ice Drilling (NEEM) over the last 128,000 years we extract quantitative information on environmental changes, including the first comparison of northern hemisphere environmental conditions between the warmer than present Eemian and the early Holocene. Separating source changes from transport effects, we find that changes in the ice concentration greatly overestimate the changes in atmospheric concentrations in the aerosol source region, the latter mirroring changes in aerosol emissions. Glacial times were characterized by a strong reduction in terrestrial biogenic emissions (only 10-20% of the early Holocene value) reflecting the net loss of vegetated area in mid to high latitudes, while rapid climate changes during the glacial had essentially no effect on terrestrial biogenic aerosol emissions. An increase in terrestrial dust emissions of approximately a factor of eight during peak glacial and cold stadial intervals indicates higher aridity and dust storm activity in Asian deserts. Glacial sea salt aerosol emissions increased only moderately (by approximately 50%), likely due to sea ice expansion, while marked stadial/interstadial variations in sea salt concentrations in the ice reflect mainly changes in wet deposition en route. Eemian ice contains lower aerosol concentrations than ice from the early Holocene, due to shortened atmospheric residence time during the warmer Eemian, suggesting that generally 2°C warmer climate in high northern latitudes did not

  15. Low-high latitude interaction forcing on the evolution of the 400 kyr cycle in East Asian winter monsoon records during the last 2.8 Myr

    Science.gov (United States)

    Li, Dawei; Zhao, Meixun; Tian, Jun

    2017-09-01

    Variability of the East Asian winter monsoon (EAWM), stronger during glacials and weaker during interglacials, has been tightly linked to the wax and wane of the Northern Hemisphere ice sheets (NHIS) via the Siberian High over the last 2.8 million years (Myr). However, the long eccentricity cycle (ca. 400 kyr) in the EAWM record from the late Pliocene to early-Pleistocene (2.8-1.2 Ma) could not be linked to NHIS changes, which lacked the long eccentricity cycle in the Pleistocene. Here, we present the first low latitude EAWM record of the last 2.8 Myr using surface and subsurface temperature difference from the northern South China Sea to evaluate interactions between tropical ocean and EAWM changes. The results show that the EAWM variability displayed significant 400 kyr cycle between 2.8 Ma and 1.2 Ma, with weak (strong) EAWM during high (low) earth orbital eccentricity state. A super El Niño-Southern Oscillation (ENSO) proxy record, calculated using west-east equatorial Pacific sea surface temperature differences, revealed 400 kyr cycles throughout the last 2.8 Myr with warm phase during high eccentricity state. Thus, we propose that super ENSO mean state strongly modulated the EAWM strength through remote forcing to generate the 400 kyr cycle between 2.8 Ma and 1.2 Ma, while low NHIS volume was not sufficient to dominate the EAWM variation as it did over the last 0.9 Myr with 100 kyr cycles in dominance.

  16. Significance of scatter radar studies of E and F region irregularities at high latitudes

    International Nuclear Information System (INIS)

    Greenwald, R.A.

    1983-01-01

    This chapter considers the mechanisms by which electron density irregularities may be generated in the high latitude ionosphere and the techniques through which they are observed with ground base radars. The capabilities of radars used for studying these irregularities are compared with the capabilities of radars used for incoherent scatter measurements. The use of irregularity scatter techniques for dynamic studies of larger scale structured phenomena is discussed. Topics considered include E-region irregularities, observations with auroral radars, plasma drifts associated with a westward travelling surge, and ionospheric plasma motions associated with resonant waves. It is shown why high latitude F-region irregularity studies must be made in the HF frequency band (3-30 MHz). The joint use of the European Incoherent Scatter Association (EISCAT), STARE and SAFARI facilities is examined, and it is concluded that the various techniques will enhance each other and provide a better understanding of the various processes being studied

  17. Increased Ocean Heat Convergence Into the High Latitudes With CO 2 Doubling Enhances Polar-Amplified Warming: OCEAN HEAT AND POLAR WARMING

    Energy Technology Data Exchange (ETDEWEB)

    Singh, H. A. [Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, U.S. DOE Office of Science, Richland WA USA; Rasch, P. J. [Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, U.S. DOE Office of Science, Richland WA USA; Rose, B. E. J. [Department of Atmospheric and Environmental Sciences, State University of New York at Albany, Albany NY USA

    2017-10-18

    We isolate the role of the ocean in polar climate change by directly evaluating how changes in ocean dynamics with quasi-equilibrium CO2-doubling impact high-latitude climate. With CO2-doubling, the ocean heat flux convergence (OHFC) shifts poleward in winter in both hemispheres. Imposing this pattern of perturbed OHFC in a global climate model results in a poleward shift in ocean-to-atmosphere turbulent heat fluxes (both sensible and latent) and sea ice retreat; the high-latitudes warm while the midlatitudes cool, thereby amplifying polar warming. Furthermore, midlatitude cooling is propagated to the polar mid-troposphere on isentropic surfaces, augmenting the (positive) lapse rate feedback at high latitudes. These results highlight the key role played by the partitioning of meridional energy transport changes between the atmosphere and ocean in high-latitude climate change.

  18. Dinosaurs on the North Slope, Alaska: High latitude, latest cretaceous environments

    Science.gov (United States)

    Brouwers, E.M.; Clemens, W.A.; Spicer, R.A.; Ager, T.A.; Carter, L.D.; Sliter, W.V.

    1987-01-01

    Abundant skeletal remains demonstrate that lambeosaurine hadrosaurid, tyrannosaurid, and troodontid dinosaurs lived on the Alaskan North Slope during late Campanian-early Maestrichtian time (about 66 to 76 million years ago) in a deltaic environment dominated by herbaceous vegetation. The high ground terrestrial plant community was a mild- to cold-temperate forest composed of coniferous and broad leaf trees. The high paleolatitude (about 70?? to 85?? North) implies extreme seasonal variation in solar insolation, temperature, and herbivore food supply. Great distances of migration to contemporaneous evergreen floras and the presence of both juvenile and adult hadrosaurs suggest that they remained at high latitudes year-round. This challenges the hypothesis that short-term periods of darkness and temperature decrease resulting from a bolide impact caused dinosaurian extinction.

  19. Spring hydrology determines summer net carbon uptake in northern ecosystems

    International Nuclear Information System (INIS)

    Yi, Yonghong; Kimball, John S; Reichle, Rolf H

    2014-01-01

    Increased photosynthetic activity and enhanced seasonal CO 2 exchange of northern ecosystems have been observed from a variety of sources including satellite vegetation indices (such as the normalized difference vegetation index; NDVI) and atmospheric CO 2 measurements. Most of these changes have been attributed to strong warming trends in the northern high latitudes (⩾50° N). Here we analyze the interannual variation of summer net carbon uptake derived from atmospheric CO 2 measurements and satellite NDVI in relation to surface meteorology from regional observational records. We find that increases in spring precipitation and snow pack promote summer net carbon uptake of northern ecosystems independent of air temperature effects. However, satellite NDVI measurements still show an overall benefit of summer photosynthetic activity from regional warming and limited impact of spring precipitation. This discrepancy is attributed to a similar response of photosynthesis and respiration to warming and thus reduced sensitivity of net ecosystem carbon uptake to temperature. Further analysis of boreal tower eddy covariance CO 2 flux measurements indicates that summer net carbon uptake is positively correlated with early growing-season surface soil moisture, which is also strongly affected by spring precipitation and snow pack based on analysis of satellite soil moisture retrievals. This is attributed to strong regulation of spring hydrology on soil respiration in relatively wet boreal and arctic ecosystems. These results document the important role of spring hydrology in determining summer net carbon uptake and contrast with prevailing assumptions of dominant cold temperature limitations to high-latitude ecosystems. Our results indicate potentially stronger coupling of boreal/arctic water and carbon cycles with continued regional warming trends. (letters)

  20. Spring Hydrology Determines Summer Net Carbon Uptake in Northern Ecosystems

    Science.gov (United States)

    Yi, Yonghong; Kimball, John; Reichle, Rolf H.

    2014-01-01

    Increased photosynthetic activity and enhanced seasonal CO2 exchange of northern ecosystems have been observed from a variety of sources including satellite vegetation indices (such as the Normalized Difference Vegetation Index; NDVI) and atmospheric CO2 measurements. Most of these changes have been attributed to strong warming trends in the northern high latitudes (greater than or equal to 50N). Here we analyze the interannual variation of summer net carbon uptake derived from atmospheric CO2 measurements and satellite NDVI in relation to surface meteorology from regional observational records. We find that increases in spring precipitation and snow pack promote summer net carbon uptake of northern ecosystems independent of air temperature effects. However, satellite NDVI measurements still show an overall benefit of summer photosynthetic activity from regional warming and limited impact of spring precipitation. This discrepancy is attributed to a similar response of photosynthesis and respiration to warming and thus reduced sensitivity of net ecosystem carbon uptake to temperature. Further analysis of boreal tower eddy covariance CO2 flux measurements indicates that summer net carbon uptake is positively correlated with early growing-season surface soil moisture, which is also strongly affected by spring precipitation and snow pack based on analysis of satellite soil moisture retrievals. This is attributed to strong regulation of spring hydrology on soil respiration in relatively wet boreal and arctic ecosystems. These results document the important role of spring hydrology in determining summer net carbon uptake and contrast with prevailing assumptions of dominant cold temperature limitations to high-latitude ecosystems. Our results indicate potentially stronger coupling of boreal/arctic water and carbon cycles with continued regional warming trends.

  1. Biogeography of seabirds within a high-latitude ecosystem: Use of a data-assimilative ocean model to assess impacts of mesoscale oceanography

    Science.gov (United States)

    Santora, Jarrod A.; Eisner, Lisa B.; Kuletz, Kathy J.; Ladd, Carol; Renner, Martin; Hunt, George L., Jr.

    2018-02-01

    We assessed the biogeography of seabirds within the Bering Sea Large Marine Ecosystem (LME), a highly productive and extensive continental shelf system that supports important fishing grounds. Our objective was to investigate how physical ocean conditions impact distribution of seabirds along latitudinal gradients. We tested the hypothesis that seabird biogeographic patterns reflect differences in ocean conditions relating to the boundary between northern and southern shelf ecosystems. We used a grid-based approach to develop spatial means (1975-2014) of summertime seabird species' abundance, species' richness, and a multivariate seabird assemblage index to examine species composition. Seabird indices were linked to ocean conditions derived from a data-assimilative oceanographic model to quantify relationships between physics (e.g., temperature, salinity, and current velocity), bathymetry and seabirds along latitudinal gradients. Species assemblages reflected two main sources of variation, a mode for elevated richness and abundance, and a mode related to partitioning of inner/middle shelf species from outer shelf-slope species. Overall, species richness and abundance increased markedly at higher latitudes. We found that latitudinal changes in species assemblages, richness and abundance indicates a major shift around 59-60°N within inner and middle shelf regions, but not in the outer shelf. Within the middle shelf, latitudinal shifts in seabird assemblages strongly related to hydrographic structure, as opposed to the inner and outer shelf waters. As expected, elevated species richness and abundance was associated with major breeding colonies and within important coastal foraging areas. Our study also indicates that seabird observations supported the conclusion that the oceanographic model captured mesoscale variability of ocean conditions important for understanding seabird distributions and represents an important step for evaluating modeling and empirical studies

  2. Towards a more detailed representation of high-latitude vegetation in the global land surface model ORCHIDEE (ORC-HL-VEGv1.0)

    Science.gov (United States)

    Druel, Arsène; Peylin, Philippe; Krinner, Gerhard; Ciais, Philippe; Viovy, Nicolas; Peregon, Anna; Bastrikov, Vladislav; Kosykh, Natalya; Mironycheva-Tokareva, Nina

    2017-12-01

    Simulation of vegetation-climate feedbacks in high latitudes in the ORCHIDEE land surface model was improved by the addition of three new circumpolar plant functional types (PFTs), namely non-vascular plants representing bryophytes and lichens, Arctic shrubs and Arctic C3 grasses. Non-vascular plants are assigned no stomatal conductance, very shallow roots, and can desiccate during dry episodes and become active again during wet periods, which gives them a larger phenological plasticity (i.e. adaptability and resilience to severe climatic constraints) compared to grasses and shrubs. Shrubs have a specific carbon allocation scheme, and differ from trees by their larger survival rates in winter, due to protection by snow. Arctic C3 grasses have the same equations as in the original ORCHIDEE version, but different parameter values, optimised from in situ observations of biomass and net primary productivity (NPP) in Siberia. In situ observations of living biomass and productivity from Siberia were used to calibrate the parameters of the new PFTs using a Bayesian optimisation procedure. With the new PFTs, we obtain a lower NPP by 31 % (from 55° N), as well as a lower roughness length (-41 %), transpiration (-33 %) and a higher winter albedo (by +3.6 %) due to increased snow cover. A simulation of the water balance and runoff and drainage in the high northern latitudes using the new PFTs results in an increase of fresh water discharge in the Arctic ocean by 11 % (+140 km3 yr-1), owing to less evapotranspiration. Future developments should focus on the competition between these three PFTs and boreal tree PFTs, in order to simulate their area changes in response to climate change, and the effect of carbon-nitrogen interactions.

  3. Tropospheric ozone column retrieval at northern mid-latitudes from the Ozone Monitoring Instrument by means of a neural network algorithm

    Directory of Open Access Journals (Sweden)

    P. Sellitto

    2011-11-01

    Full Text Available Monitoring tropospheric ozone from space is of critical importance in order to gain more thorough knowledge on phenomena affecting air quality and the greenhouse effect. Deriving information on tropospheric ozone from UV/VIS nadir satellite spectrometers is difficult owing to the weak sensitivity of the measured radiance spectra to variations of ozone in the troposphere. Here we propose an alternative method of analysis to retrieve tropospheric ozone columns from Ozone Monitoring Instrument radiances by means of a neural network algorithm. An extended set of ozone sonde measurements at northern mid-latitudes for the years 2004–2008 has been considered as the training and test data set. The design of the algorithm is extensively discussed. Our retrievals are compared to both tropospheric ozone residuals and optimal estimation retrievals over a similar independent test data set. Results show that our algorithm has comparable accuracy with respect to both correlative methods and its performance is slightly better over a subset containing only European ozone sonde stations. Possible sources of errors are analyzed. Finally, the capabilities of our algorithm to derive information on boundary layer ozone are studied and the results critically discussed.

  4. Interstellar extinction from photometric surveys: application to four high-latitude areas

    Science.gov (United States)

    Malkov, Oleg; Karpov, Sergey; Kilpio, Elena; Sichevsky, Sergey; Chulkov, Dmitry; Dluzhnevskaya, Olga; Kovaleva, Dana; Kniazev, Alexei; Mickaelian, Areg; Mironov, Alexey; Murthy, Jayant; Sytov, Alexey; Zhao, Gang; Zhukov, Aleksandr

    2018-04-01

    Information on interstellar extinction and dust properties may be obtained from modern large photometric surveys data. Virtual Observatory facilities allow users to make a fast and correct cross-identification of objects from various surveys. It yields a multicolor photometry data on detected objects and makes it possible to estimate stellar parameters and calculate interstellar extinction. A 3D extinction map then can be constructed. The method was applied to 2MASS, SDSS, GALEX and UKIDSS surveys. Results for several high-latitude areas are obtained, compared with independent sources and discussed here.

  5. Interstellar extinction from photometric surveys: application to four high-latitude areas

    Directory of Open Access Journals (Sweden)

    Malkov Oleg

    2018-04-01

    Full Text Available Information on interstellar extinction and dust properties may be obtained from modern large photometric surveys data. Virtual Observatory facilities allow users to make a fast and correct cross-identification of objects from various surveys. It yields a multicolor photometry data on detected objects and makes it possible to estimate stellar parameters and calculate interstellar extinction. A 3D extinction map then can be constructed. The method was applied to 2MASS, SDSS, GALEX and UKIDSS surveys. Results for several high-latitude areas are obtained, compared with independent sources and discussed here.

  6. An accelerating high-latitude jet in Earth's core

    Science.gov (United States)

    Livermore, P. W.; Finlay, C. C.; Hollerbach, R.

    2017-12-01

    Observations of the change in Earth's magnetic field, the secular variation, provide information on the motion of liquid metal within the core that is responsible for its generation. The very latest high-resolution observations from ESA's Swarm satellite mission show intense field change at high-latitude localised in a distinctive circular daisy-chain configuration centred on the north geographic pole. Here we explain this feature with a localised, nonaxisymmetric, westwards jet of 420 km width on the tangent cylinder, the cylinder of fluid within the core that is aligned with the rotation axis and tangent to the solid inner core. We find that the jet has increased in magnitude by a factor of three over the period 2000-2016 to about 40 km/yr, and is now much stronger than typical large-scale flows inferred for the core. The current accelerating phase may be a part of a longer term fluctuation of the jet causing both eastwards and westwards movement of magnetic features over historical periods, and may contribute to recent changes in torsional wave activity and the rotation direction of the inner core.

  7. High-latitude tree growth and satellite vegetation indices: Correlations and trends in Russia and Canada (1982-2008)

    Science.gov (United States)

    Berner, Logan T.; Beck, Pieter S. A.; Bunn, Andrew G.; Lloyd, Andrea H.; Goetz, Scott J.

    2011-03-01

    Vegetation in northern high latitudes affects regional and global climate through energy partitioning and carbon storage. Spaceborne observations of vegetation, largely based on the normalized difference vegetation index (NDVI), suggest decreased productivity during recent decades in many regions of the Eurasian and North American boreal forests. To improve interpretation of NDVI trends over forest regions, we examined the relationship between NDVI from the advanced very high resolution radiometers and tree ring width measurements, a proxy of tree productivity. We collected tree core samples from spruce, pine, and larch at 22 sites in northeast Russia and northwest Canada. Annual growth rings were measured and used to generate site-level ring width index (RWI) chronologies. Correlation analysis was used to assess the association between RWI and summer NDVI from 1982 to 2008, while linear regression was used to examine trends in both measurements. The correlation between NDVI and RWI was highly variable across sites, though consistently positive (r = 0.43, SD = 0.19, n = 27). We observed significant temporal autocorrelation in both NDVI and RWI measurements at sites with evergreen conifers (spruce and pine), though weak autocorrelation at sites with deciduous conifers (larch). No sites exhibited a positive trend in both NDVI and RWI, although five sites showed negative trends in both measurements. While there are technological and physiological limitations to this approach, these findings demonstrate a positive association between NDVI and tree ring measurements, as well as the importance of considering lagged effects when modeling vegetation productivity using satellite data.

  8. Cluster observations of the high-latitude magnetopause and cusp: initial results from the CIS ion instruments

    Directory of Open Access Journals (Sweden)

    J. M. Bosqued

    2001-09-01

    Full Text Available Launched on an elliptical high inclination orbit (apogee: 19.6 RE since January 2001 the Cluster satellites have been conducting the first detailed three-dimensional studies of the high-latitude dayside magnetosphere, including the exterior cusp, neighbouring boundary layers and magnetopause regions. Cluster satellites carry the CIS ion spectrometers that provide high-precision, 3D distributions of low-energy (<35 keV/e ions every 4 s. This paper presents the first two observations of the cusp and/or magnetopause behaviour made under different interplanetary magnetic field (IMF conditions. Flow directions, 3D distribution functions, density profiles and ion composition profiles are analyzed to demonstrate the high variability of high-latitude regions. In the first crossing analyzed (26 January 2001, dusk side, IMF-BZ < 0, multiple, isolated boundary layer, magnetopause and magnetosheath encounters clearly occurred on a quasi-steady basis for ~ 2 hours. CIS ion instruments show systematic accelerated flows in the current layer and adjacent boundary layers on the Earthward side of the magnetopause. Multi-point analysis of the magnetopause, combining magnetic and plasma data from the four Cluster spacecraft, demonstrates that oscillatory outward-inward motions occur with a normal speed of the order of ± 40 km/s; the thickness of the high-latitude current layer is evaluated to be of the order of 900–1000 km. Alfvénic accelerated flows and D-shaped distributions are convincing signatures of a magnetic reconnection occurring equatorward of the Cluster satellites. Moreover, the internal magnetic and plasma structure of a flux transfer event (FTE is analyzed in detail; its size along the magnetopause surface is ~ 12 000 km and it convects with a velocity of ~ 200 km/s. The second event analyzed (2 February 2001 corresponds to the first Cluster pass within the cusp when the IMF-BZ component was northward directed. The analysis of relevant CIS plasma

  9. Climate Change Impacts on Sediment Yield in Headwaters of a High-latitude Region in China

    Science.gov (United States)

    Zhou, Y.; Xu, Y. J.; Wang, J., , Dr; Weihua, X.; Huang, Y.

    2017-12-01

    Climate change is expected to have strongest effects in higher latitude regions. Despite intensive research on possible hydrological responses to global warming in these regions, our knowledge of climate change on surface erosion and sediment yield in high-latitude headwaters is limited. In this study, we used the Soil and Water Assessment Tool (SWAT) to predict future runoff and sediment yield from the headwaters of a high-latitude river basin in China's far northeast. The SWAT model was first calibrated with historical discharge records and the model parameterization achieved satisfactory validation. The calibrated model was then applied to two greenhouse gas concentration trajectories, RCP4.5 and RCP8.5, for the period from 2020 to 2050 to estimate future runoff. Sediment yields for this period were predicted using a discharge-sediment load rating curve developed from field measurements in the past nine years. Our preliminary results show an increasing trend of sediment yield under both climate change scenarios, and that the increase is more pronounced in the summer and autumn months. Changes in precipitation and temperature seem to exert variable impacts on runoff and sediment yield at interannual and seasonal scales in these headwaters. These findings imply that the current river basin management in the region needs to be reviewed and improved in order to be effective under a changing climate.

  10. Northern hemisphere mid-latitude geomagnetic anomaly revealed from Levantine Archaeomagnetic Compilation (LAC).

    Science.gov (United States)

    Shaar, R.; Tauxe, L.; Agnon, A.; Ben-Yosef, E.; Hassul, E.

    2015-12-01

    The rich archaeological heritage of Israel and nearby Levantine countries provides a unique opportunity for archaeomagnetic investigation in high resolution. Here we present a summary of our ongoing effort to reconstruct geomagnetic variations of the past several millennia in the Levant at decadal to millennial resolution. This effort at the Southern Levant, namely the "Levantine Archaeomagnetic Compilation" (LAC), presently consists of data from over 650 well-dated archaeological objects including pottery, slag, ovens, and furnaces. In this talk we review the methodological challenges in achieving a robust master secular variation curve with realistic error estimations from a large number of different datasets. We present the current status of the compilation, including the southern and western Levant LAC data (Israel, Cyprus, and Jordan) and other published north-eastern Levant data (Syria and southern Turkey), and outline the main findings emerging from these data. The main feature apparent from the new compilation is an extraordinary intensity high that developed over the Levant region during the first two millennia BCE. The climax of this event is a double peak intensity maximum starting at ca. 1000 BCE and ending at ca. 735 BCE, accompanied with at least two events of geomagnetic spikes. Paleomagnetic directions from this period demonstrate anomalies of up to 20 degrees far from the averaged GAD field. This leads us to postulate that the maximum in the intensity is a manifestation of an intense mid-latitude local positive geomagnetic anomaly that persisted for over two centuries.

  11. Geosynchronous inclined orbits for high-latitude communications

    Science.gov (United States)

    Fantino, E.; Flores, R. M.; Di Carlo, M.; Di Salvo, A.; Cabot, E.

    2017-11-01

    We present and discuss a solution to the growing demand for satellite telecommunication coverage in the high-latitude geographical regions (beyond 55°N), where the signal from geostationary satellites is limited or unavailable. We focus on the dynamical issues associated to the design, the coverage, the maintenance and the disposal of a set of orbits selected for the purpose. Specifically, we identify a group of highly inclined, moderately eccentric geosynchronous orbits derived from the Tundra orbit (geosynchronous, eccentric and critically inclined). Continuous coverage can be guaranteed by a constellation of three satellites in equally spaced planes and suitably phased. By means of a high-precision model of the terrestrial gravity field and the relevant environmental perturbations, we study the evolution of these orbits. The effects of the different perturbations on the ground track (which is more important for coverage than the orbital elements themselves) are isolated and analyzed. The physical model and the numerical setup are optimized with respect to computing time and accuracy. We show that, in order to maintain the ground track unchanged, the key parameters are the orbital period and the argument of perigee. Furthermore, corrections to the right ascension of the ascending node are needed in order to preserve the relative orientation of the orbital planes. A station-keeping strategy that minimizes propellant consumption is then devised, and comparisons are made between the cost of a solution based on impulsive maneuvers and one with continuous thrust. Finally, the issue of end-of-life disposal is discussed.

  12. Maturity group classification and maturity locus genotyping of early-maturing soybean varieties from high-latitude cold regions.

    Science.gov (United States)

    Jia, Hongchang; Jiang, Bingjun; Wu, Cunxiang; Lu, Wencheng; Hou, Wensheng; Sun, Shi; Yan, Hongrui; Han, Tianfu

    2014-01-01

    With the migration of human beings, advances of agricultural sciences, evolution of planting patterns and global warming, soybeans have expanded to both tropical and high-latitude cold regions (HCRs). Unlike other regions, HCRs have much more significant and diverse photoperiods and temperature conditions over seasons or across latitudes, and HCR soybeans released there show rich diversity in maturity traits. However, HCR soybeans have not been as well classified into maturity groups (MGs) as other places. Therefore, it is necessary to identify MGs in HCRs and to genotype the maturity loci. Local varieties were collected from the northern part of Northeast China and the far-eastern region of Russia. Maturity group reference (MGR) soybeans of MGs MG000, MG00, and MG0 were used as references during field experiments. Both local varieties and MGR soybeans were planted for two years (2010-2011) in Heihe (N 50°15', E 127°27', H 168.5 m), China. The days to VE (emergence), R1 (beginning bloom) and R7 (beginning maturity) were recorded and statistically analyzed. Furthermore, some varieties were further genotyped at four molecularly-identified maturity loci E1, E2, E3 and E4. The HCR varieties were classified into MG0 or even more early-maturing. In Heihe, some varieties matured much earlier than MG000, which is the most early-maturing known MG, and clustered into a separate group. We designated the group as MG0000, following the convention of MGs. HCR soybeans had relatively stable days to beginning bloom from emergence. The HCR varieties diversified into genotypes of E1, E2, E3 and E4. These loci had different effects on maturity. HCRs diversify early-maturing MGs of soybean. MG0000, a new MG that matures much earlier than known MGs, was developed. HCR soybean breeding should focus more on shortening post-flowering reproductive growth. E1, E2, E3, and E4 function differentially.

  13. Supersonic plasma flow between high latitude conjugate ionospheres

    International Nuclear Information System (INIS)

    Roesler, G.

    1975-01-01

    The polar wind problem has been investigated for closed field lines in situations where one of the two conjugate ionospheric regions is fully illuminated by the sun and the other darkness (solstices at high latitudes). A supersonic flow between hemispheres is possible; the magnetospheric part of this flow must be symmetric with respect to the equator. The daytime fluxes are proportional to the neutral hydrogen density. Fluxes of the order of 10 8 cm -2 sec -1 are only possible with density considerably higher than given by CIRA models. For stationary solutions higher flow speeds are needed on the dark side than provided from the illuminated side. It is concluded that shock waves with upward velocities of about 5 km/sec would form above the dark ionosphere. This implies a reduction by a factor of 3 to 5 of the plasma influx into the dark hemisphere, whereby F-layer densities of only up to 2 x 10 4 cm -3 can be maintained. (orig.) [de

  14. A climatological morphology of ionospheric disturbances at high and polar latitudes

    Directory of Open Access Journals (Sweden)

    Dimitris N. Fotiadis

    2016-01-01

    Full Text Available After a historical introduction on the first well-documented observations of ionospheric phenomena and a review of the current, state-of-the art polar ionospheric studies, a climatological morphology of the irregular F-region plasma structures at high and polar latitudes is being presented, following a feature-aided pattern recognition method. Using the available in three solar cycles hourly foF2 data from 18 ionosonde stations, an ionospheric definition of disturbed conditions, independent of any causative mechanism, is being applied and positive/negative disturbances of duration smaller than 24 hours are sorted out. No latitudinal/longitudinal bins or seasons are defined and disturbances in each month and station are handled separately while four local time intervals of storm commencement are considered, according to solar zenith angle. A median profile per disturbance is produced only when a minimum occurrence probability is satisfied. Non-systematic features are excluded from this analysis by careful selection of the time window under morphological investigation. First, the median profiles of disturbance patterns are fitted to standard distributions and then, if they fail, they are grouped according to their major characteristic features and are described by a dynamic variation envelope along with their distribution in space and time. The present model, while being a non-conditional stand-alone model of ionospheric storms at high and polar latitudes offered to radio users, may complement existing empirical models. Finally, the present model may ultimately reveal cause-effect relationships with geomagnetic field or interplanetary parameters after further correlation studies undertaken in the future.

  15. Calcium isotopic composition of high-latitude proxy carrier Neogloboquadrina pachyderma (sin.

    Directory of Open Access Journals (Sweden)

    A. Eisenhauer

    2009-01-01

    Full Text Available The accurate reconstruction of sea surface temperature (SST history in climate-sensitive regions (e.g. tropical and polar oceans became a challenging task in palaeoceanographic research. Biogenic shell carbonate SST proxies successfully developed for tropical regions often fail in cool water environments. Their major regional shortcomings and the cryptic diversity now found within the major high latitude proxy carrier Neogloboquadrina pachyderma (sin. highlight an urgent need to explore complementary SST proxies for these cool-water regions. Here we incorporate the genetic component into a calibration study of a new SST proxy for the high latitudes. We found that the calcium isotopic composition (δ44/40Ca of calcite from genotyped net catches and core-top samples of the planktonic foraminifera Neogloboquadrina pachyderma (sin. is related to temperature and unaffected by genetic variations. The temperature sensitivity has been found to be 0.17 (±0.02‰ per 1°C, highlighting its potential for downcore applications in open marine cool-water environments. Our results further indicate that in extreme polar environments, below a critical threshold temperature of 2.0 (±0.5°C associated with salinities below 33.0 (±0.5‰, a prominent shift in biomineralization affects the δ44/40Ca of genotyped and core-top N. pachyderma (sin., becoming insensitive to temperature. These findings highlight the need of more systematic calibration studies on single planktonic foraminiferal species in order to unravel species-specific factors influencing the temperature sensitivity of Ca isotope fractionation and to validate the proxies' applicability.

  16. Analysis of High-Latitude lonospheric Processes During HSS and CME-Induced Geomagnetic Storms

    DEFF Research Database (Denmark)

    Durgonics, Tibor; Komjathy, Attila; Verkhoglyadova, Olga

    processes responsible for the negative phase have less pronounced impact on the diurnal TEC variations than on patch formation. We also investigated and assessed storm influences on airborne navigation at high-latitudes in order to determine the possible cause of the radio communication disturbances....... This effort may lead us to a better understanding of the phenomenon and might help develop communication hardware that is more resistant to such effects....

  17. A theory of ionospheric dynamo for complete model of terrestrial space at high and medium latitudes

    International Nuclear Information System (INIS)

    Vardanyan, Yu.S.

    1992-01-01

    A multi-layer model of terrestrial cosmic space at high and medium latitudes is considered in the approximation of infinite conductivity of the Earth taking into account the ambipolar diffusion processes in upper layers of ionosphere. 14 refs

  18. Latitud sur y control económico del hogar por la mujer peruana

    OpenAIRE

    Federico R. León

    2011-01-01

    South latitude and household economic control by Peruvian women Southern women’s greater autonomy versus northern women’s more traditional submission to the husband were hypothesized in 1984 to explain variations in Peruvian women’s fertility desires. An analysis of data from Peru 2004-2008 Continuous Demographic and Family Health Survey supports this hypothesis by showing a significant north-to-south growth of women’s control upon husband’s income and, less consistently, household purchasing...

  19. Can high psychological job demands, low decision latitude, and high job strain predict disability pensions? A 12-year follow-up of middle-aged Swedish workers.

    Science.gov (United States)

    Canivet, Catarina; Choi, BongKyoo; Karasek, Robert; Moghaddassi, Mahnaz; Staland-Nyman, Carin; Östergren, Per-Olof

    2013-04-01

    The aim of this study was to investigate whether job strain, psychological demands, and decision latitude are independent determinants of disability pension rates over a 12-year follow-up period. We studied 3,181 men and 3,359 women, all middle-aged and working at least 30 h per week, recruited from the general population of Malmö, Sweden, in 1992. The participation rate was 41 %. Baseline data include sociodemographics, the Job Content Questionnaire, lifestyle, and health-related variables. Disability pension information was obtained through record linkage from the National Health Insurance Register. Nearly 20 % of the women and 15 % of the men were granted a disability pension during the follow-up period. The highest quartile of psychological job demands and the lowest quartile of decision latitude were associated with disability pensions when controlling for age, socioeconomic position, and health risk behaviours. In the final model, with adjustment also for health indicators and stress from outside the workplace, the hazard ratios for high strain jobs (i.e. high psychological demands in combination with low decision latitude) were 1.5 in men (95 % CI, 1.04-2.0) and 1.7 in women (95 % CI, 1.3-2.2). Stratifying for health at baseline showed that high strain tended to affect healthy but not unhealthy men, while this pattern was reversed in women. High psychological demands, low decision latitude, and job strain were all confirmed as independent risk factors for subsequent disability pensions. In order to increase chances of individuals remaining in the work force, interventions against these adverse psychosocial factors appear worthwhile.

  20. H I and dust in the high latitude dark cloud L1642

    International Nuclear Information System (INIS)

    Liljestroem, T.; Mattila, K.

    1989-01-01

    The high latitude dark cloud L1642 in the 21 cm H I region was mapped using a 100 m radio telescope. A remarkable H I line broadening from 2.5 to 2.9 km/s is observed over a small area on the bright side of L1642, i.e., the side facing the galactic plane. Results are presented concerning the effects of the asymmetrical UV radiation field of OB stars on the H I gas and the very small dust grains associated with L1642

  1. Cluster observations of the high-latitude magnetopause and cusp: initial results from the CIS ion instruments

    Directory of Open Access Journals (Sweden)

    J. M. Bosqued

    Full Text Available Launched on an elliptical high inclination orbit (apogee: 19.6 RE since January 2001 the Cluster satellites have been conducting the first detailed three-dimensional studies of the high-latitude dayside magnetosphere, including the exterior cusp, neighbouring boundary layers and magnetopause regions. Cluster satellites carry the CIS ion spectrometers that provide high-precision, 3D distributions of low-energy (<35 keV/e ions every 4 s. This paper presents the first two observations of the cusp and/or magnetopause behaviour made under different interplanetary magnetic field (IMF conditions. Flow directions, 3D distribution functions, density profiles and ion composition profiles are analyzed to demonstrate the high variability of high-latitude regions. In the first crossing analyzed (26 January 2001, dusk side, IMF-BZ < 0, multiple, isolated boundary layer, magnetopause and magnetosheath encounters clearly occurred on a quasi-steady basis for ~ 2 hours. CIS ion instruments show systematic accelerated flows in the current layer and adjacent boundary layers on the Earthward side of the magnetopause. Multi-point analysis of the magnetopause, combining magnetic and plasma data from the four Cluster spacecraft, demonstrates that oscillatory outward-inward motions occur with a normal speed of the order of ± 40 km/s; the thickness of the high-latitude current layer is evaluated to be of the order of 900–1000 km. Alfvénic accelerated flows and D-shaped distributions are convincing signatures of a magnetic reconnection occurring equatorward of the Cluster satellites. Moreover, the internal magnetic and plasma structure of a flux transfer event (FTE is analyzed in detail; its size along the magnetopause surface is ~ 12 000 km and it convects with a velocity of ~ 200 km/s. The second event analyzed (2 February 2001 corresponds to the first Cluster pass within the cusp when the IMF-BZ component was northward directed. The analysis of

  2. Behaviour and physiology shape the growth accelerations associated with predation risk, high temperatures and southern latitudes in Ischnura damselfly larvae.

    Science.gov (United States)

    Stoks, Robby; Swillen, Ine; De Block, Marjan

    2012-09-01

    1. To better predict effects of climate change and predation risk on prey animals and ecosystems, we need studies documenting not only latitudinal patterns in growth rate but also growth plasticity to temperature and predation risk and the underlying proximate mechanisms: behaviour (food intake) and digestive physiology (growth efficiency). The mechanistic underpinnings of predator-induced growth increases remain especially poorly understood. 2. We reared larvae from replicated northern and southern populations of the damselfly Ischnura elegans in a common garden experiment manipulating temperature and predation risk and quantified growth rate, food intake and growth efficiency. 3. The predator-induced and temperature-induced growth accelerations were the same at both latitudes, despite considerably faster growth rates in the southern populations. While the higher growth rates in the southern populations and the high rearing temperature were driven by both an increased food intake and a higher growth efficiency, the higher growth rates under predation risk were completely driven by a higher growth efficiency, despite a lowered food intake. 4. The emerging pattern that higher growth rates associated with latitude, temperature and predation risk were all (partly or completely) mediated by a higher growth efficiency has two major implications. First, it indicates that energy allocation trade-offs and the associated physiological costs play a major role both in shaping large-scale geographic variation in growth rates and in shaping the extent and direction of growth rate plasticity. Secondly, it suggests that the efficiency of energy transfer in aquatic food chains, where damselfly larvae are important intermediate predators, will be higher in southern populations, at higher temperatures and under predation risk. This may eventually contribute to the lengthening of food chains under these conditions and highlights that the prey identity may determine the influence of

  3. Relationships between the West Asian subtropical westerly jet and summer precipitation in northern Xinjiang

    Science.gov (United States)

    Zhao, Yong; Wang, MinZhong; Huang, AnNing; Li, HongJun; Huo, Wen; Yang, Qing

    2014-05-01

    The relation between the spatial and temporal variations of the West Asian subtropical westerly jet (WASWJ) and the summer precipitation in northern Xinjiang has been explored using the NCEP/NCAR reanalysis data and the summer precipitation data at 43 stations in northern Xinjiang during 1961 to 2007. Results show that the position of the WASWJ is more important than its strength in influencing the summer precipitation in northern Xinjiang. When the jet position is further south, the anomalous southwesterly flow crossing the Indian subcontinent along the southern foothill of the Tibetan Plateau is favorable for the southwestward warm and wet air penetrating from low latitudes into Central Asia and northern Xinjiang and more rainfall formation. Further analysis shows that the interannual variations of the jet position are well correlated with the Arctic Oscillation (AO). In the weak AO years, the middle to upper troposphere becomes colder than normal and results in an anomalous cyclonic circulation at 200 hPa over Western and Central Asia, which enhances the westerly wind over middle and low latitudes and leads to the WASWJ located further south.

  4. Progress in understanding of land surface/atmosphere exchanges at high latitudes

    DEFF Research Database (Denmark)

    Harding, R.J.; Gryning, Sven-Erik; Halldin, S.

    2001-01-01

    This paper summarises some of the key results from two European field programmes, WINTEX and LAPP, undertaken in the Boreal/Arctic regions in 1996-98. Both programmes have illustrated the very important role that snow plays within these areas, not only in the determination of energy, water...... and carbon fluxes in the winter, but also in controlling the length of the summer active season, and hence the overall carbon budget. These studies make a considerable advance in our knowledge of the fluxes from snow-covered landscape and the interactions between snow and vegetation. Also some of the first...... desert in the high arctic. The overall annual budgets are everywhere limited by the very short active season in these regions. The heat flux over a high latitude boreal forest during late winter was found to be high. At low solar angles the forest shades most of the snow surface, therefore an important...

  5. AN ABSENCE OF FAST RADIO BURSTS AT INTERMEDIATE GALACTIC LATITUDES

    Energy Technology Data Exchange (ETDEWEB)

    Petroff, E.; Van Straten, W.; Bailes, M.; Barr, E. D.; Coster, P.; Flynn, C.; Keane, E. F. [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, P.O. Box 218, Hawthorn, VIC 3122 (Australia); Johnston, S. [CSIRO Astronomy and Space Science, Australia Telescope National Facility, P.O. Box 76, Epping, NSW 1710 (Australia); Bates, S. D.; Keith, M. J.; Kramer, M.; Stappers, B. W. [Jodrell Bank Centre for Astrophysics, University of Manchester, Alan Turing Building, Oxford Road, Manchester M13 9PL (United Kingdom); Bhat, N. D. R. [ARC Centre of Excellence for All-sky Astrophysics (CAASTRO), 44 Rosehill Street, Redfern, NSW 2016 (Australia); Burgay, M.; Possenti, A.; Tiburzi, C. [INAF—Osservatorio Astronomico di Cagliari, Via della Scienza, I-09047 Selargius (Italy); Burke-Spolaor, S. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91104 (United States); Champion, D.; Ng, C. [Max Planck Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Levin, L., E-mail: epetroff@astro.swin.edu.au [Department of Physics, West Virginia University, Morgantown, WV 26506 (United States); and others

    2014-07-10

    Fast radio bursts (FRBs) are an emerging class of bright, highly dispersed radio pulses. Recent work by Thornton et al. has revealed a population of FRBs in the High Time Resolution Universe (HTRU) survey at high Galactic latitudes. A variety of progenitors have been proposed, including cataclysmic events at cosmological distances, Galactic flare stars, and terrestrial radio frequency interference. Here we report on a search for FRBs at intermediate Galactic latitudes (–15° high and low Galactic latitudes. A revised rate estimate or another strong and heretofore unknown selection effect in Galactic latitude would provide closer agreement between the surveys' detection rates. The dearth of detections at low Galactic latitude disfavors a Galactic origin for these bursts.

  6. AN ABSENCE OF FAST RADIO BURSTS AT INTERMEDIATE GALACTIC LATITUDES

    International Nuclear Information System (INIS)

    Petroff, E.; Van Straten, W.; Bailes, M.; Barr, E. D.; Coster, P.; Flynn, C.; Keane, E. F.; Johnston, S.; Bates, S. D.; Keith, M. J.; Kramer, M.; Stappers, B. W.; Bhat, N. D. R.; Burgay, M.; Possenti, A.; Tiburzi, C.; Burke-Spolaor, S.; Champion, D.; Ng, C.; Levin, L.

    2014-01-01

    Fast radio bursts (FRBs) are an emerging class of bright, highly dispersed radio pulses. Recent work by Thornton et al. has revealed a population of FRBs in the High Time Resolution Universe (HTRU) survey at high Galactic latitudes. A variety of progenitors have been proposed, including cataclysmic events at cosmological distances, Galactic flare stars, and terrestrial radio frequency interference. Here we report on a search for FRBs at intermediate Galactic latitudes (–15° high and low Galactic latitudes. A revised rate estimate or another strong and heretofore unknown selection effect in Galactic latitude would provide closer agreement between the surveys' detection rates. The dearth of detections at low Galactic latitude disfavors a Galactic origin for these bursts

  7. Chlorine activation and ozone destruction in the northern lowermost stratosphere

    NARCIS (Netherlands)

    Lelieveld, J; Bregman, A; Scheeren, HA; Strom, J; Carslaw, KS; Fischer, H; Siegmund, PC; Arnold, F

    1999-01-01

    We report aircraft measurements from the Stratosphere-Troposphere Experiments by Aircraft Measurements (STREAM) II campaign, performed during February 1995 from Kiruna, northern Sweden, near 67 degrees N latitude. We have measured trace species, e.g., O-3, nitrogen compounds, HCl, hydrocarbons, CO,

  8. Changes of benthic fauna in the Kattegat - An indication of climate change at mid-latitudes?

    Science.gov (United States)

    Göransson, Peter

    2017-07-01

    Several predictions point to changes in the marine benthic macrofauna associated with climate change, but so far only a few and minor changes have been reported. This study relates observed changes in the species composition to climate change by looking on the past decades in the Kattegat between Denmark and Sweden. A reduction of the total number species and a reduction of species with a northern range parallel to an increase of species with a southern range have been observed. The most likely explanation of the changes is the increase in temperature of the bottom water. Increased temperature could change the species distributions but also decrease primary production which impacts recruitment and growth. Hypoxia and bottom trawling could also act synergistic in this process. A sparse occurrence of previously encountered Arctic-Boreal species and critical foundation species, which gives the area its special character, suggests a change in biodiversity and might therefore be designated as early warning signals of a warmer climate. The northern fauna below the halocline with limited capacity of dispersal and low reproduction potential, can be considered as sensitive with low adaptive capacity to climate change. Therefore, not only tropical and high-latitude species, but also benthos on deep bottoms at mid-latitudes, could be vulnerable to warming. As many species live at the edge of their range in the Kattegat, and also are dependent of distant recruitment, large scale changes will probably be detected here at an early stage. It is important to protect relatively undisturbed reference areas in the Kattegat for future studies, but also for preserving a large number of ecosystem services, biotopes, habitats, and fish species.

  9. Strategies for the control of desertification in northern Nigeria ...

    African Journals Online (AJOL)

    The Northern part of Nigeria especially the frontline states comprising of Bauchi/ Gombe, Borno, Yobe, Jigawa, Kano, Katsina, Sokoto/Zamfara and Kebbi which lie roughly North of latitude 120N face serious threats of desertification occasioned by over exposure of the fragile environment mostly through improper farming ...

  10. Keeping It Local: Dispersal Limitations of Coral Larvae to the High Latitude Coral Reefs of the Houtman Abrolhos Islands.

    Science.gov (United States)

    Markey, Kathryn L; Abdo, Dave A; Evans, Scott N; Bosserelle, Cyprien

    2016-01-01

    In 2011 the first recorded bleaching event for the high latitude Houtman Abrolhos Islands (HAI) coral communities was documented. This bleaching event highlighted the question of whether a supply of 'heat tolerant' coral recruits from the tropical north would be sufficient to provide a level of resistance for these reefs to future warming events. Using Lagrangian modelling we showed that due to its regional isolation, large-scale larval input from potential tropical northern source populations to the HAI is unlikely, despite the southward flowing Leeuwin current. Successful recruitment to artificial substrates was recorded following the bleaching event. However, this was negligible (0.4 ± 0.1 recruits per tile) compared to 2013 post impact recruitment (128.8 ± 15.8 recruits per tile). Our data therefore provides preliminary evidence suggesting that the connectivity of the HAI with coral communities in the north is limited, and population maintenance and recovery is likely driven primarily by self-recruitment. Given the low thermal tolerance of the HAI coral communities, the dominance of Acropora, and the apparent reliance on self-recruitment, an increased frequency of thermally anomalous conditions at the HAI (such as experienced in 2011) has the potential to reduce the long-term stability of the HAI coral populations and species that depend upon them.

  11. Keeping It Local: Dispersal Limitations of Coral Larvae to the High Latitude Coral Reefs of the Houtman Abrolhos Islands.

    Directory of Open Access Journals (Sweden)

    Kathryn L Markey

    Full Text Available In 2011 the first recorded bleaching event for the high latitude Houtman Abrolhos Islands (HAI coral communities was documented. This bleaching event highlighted the question of whether a supply of 'heat tolerant' coral recruits from the tropical north would be sufficient to provide a level of resistance for these reefs to future warming events. Using Lagrangian modelling we showed that due to its regional isolation, large-scale larval input from potential tropical northern source populations to the HAI is unlikely, despite the southward flowing Leeuwin current. Successful recruitment to artificial substrates was recorded following the bleaching event. However, this was negligible (0.4 ± 0.1 recruits per tile compared to 2013 post impact recruitment (128.8 ± 15.8 recruits per tile. Our data therefore provides preliminary evidence suggesting that the connectivity of the HAI with coral communities in the north is limited, and population maintenance and recovery is likely driven primarily by self-recruitment. Given the low thermal tolerance of the HAI coral communities, the dominance of Acropora, and the apparent reliance on self-recruitment, an increased frequency of thermally anomalous conditions at the HAI (such as experienced in 2011 has the potential to reduce the long-term stability of the HAI coral populations and species that depend upon them.

  12. On the cause of IMF By related mid- and low latitude magnetic disturbances

    DEFF Research Database (Denmark)

    Vennerstrøm, Susanne; Christiansen, Freddy; Olsen, Nils

    2007-01-01

    An analysis of the effect of the IMF By on near-Earth low and mid-latitude magnetic disturbances is presented. In particular the contribution from field-aligned currents ( FACs) connected to the polar regions is investigated. Based on statistically determined high-latitude FAC patterns for various...... that the long-distance effect of the high-latitude FACs constitute the major source to IMF By and B-z related magnetic east-west disturbances at mid-and low latitudes....

  13. New Particle Formation in the Mid-Latitude Upper Troposphere

    Science.gov (United States)

    Axisa, Duncan

    Primary aerosol production due to new particle formation (NPF) in the upper troposphere and the impact that this might have on cloud condensation nuclei (CCN) concentration can be of sufficient magnitude to contribute to the uncertainty in radiative forcing. This uncertainty affects our ability to estimate how sensitive the climate is to greenhouse gas emissions. Therefore, new particle formation must be accurately defined, parametrized and accounted for in models. This research involved the deployment of instruments, data analysis and interpretation of particle formation events during the Mid-latitude Airborne Cirrus Properties Experiment (MACPEX) campaign. The approach combined field measurements and observations with extensive data analysis and modeling to study the process of new particle formation and growth to CCN active sizes. Simultaneous measurements of O3, CO, ultrafine aerosol particles and surface area from a high-altitude research aircraft were used to study tropospheric-stratospheric mixing as well as the frequency and location of NPF. It was found that the upper troposphere was an active region in the production of new particles by gas-to-particle conversion, that nucleation was triggered by convective clouds and mixing processes, and that NPF occurred in regions with high relative humidity and low surface area. In certain cases, mesoscale and synoptic features enhanced mixing and facilitated the formation of new particles in the northern mid-latitudes. A modeling study of particle growth and CCN formation was done based on measured aerosol size distributions and modeled growth. The results indicate that when SO2 is of sufficient concentration NPF is a significant source of potential CCN in the upper troposphere. In conditions where convective cloud outflow eject high concentrations of SO2, a large number of new particles can form especially in the instance when the preexisting surface area is low. The fast growth of nucleated clusters produces a

  14. An accelerating high-latitude jet in Earth’s core

    Science.gov (United States)

    Livermore, Philip W.; Hollerbach, Rainer; Finlay, Christopher C.

    2017-01-01

    Observations of the change in Earth’s magnetic field--the secular variation--provide information about the motion of liquid metal within the core that is responsible for the magnetic field’s generation. High-resolution observations from the European Space Agency’s Swarm satellite mission show intense field change at high latitude, localized in a distinctive circular daisy-chain configuration centred on the north geographic pole. Here we show that this feature can be explained by a localized, non-axisymmetric, westward jet of 420 km width on the tangent cylinder, the cylinder of fluid within the core that is aligned with the rotation axis and tangent to the solid inner core. We find that the jet has increased in magnitude by a factor of three over the period 2000-2016 to about 40 km yr-1, and is now much stronger than typical large-scale flows inferred for the core. We suggest that the current accelerating phase may be part of a longer-term fluctuation of the jet causing both eastward and westward movement of magnetic features over historical periods, and may contribute to recent changes in torsional-wave activity and the rotation direction of the inner core.

  15. Surface ozone seasonality under global change: Influence from dry deposition and isoprene emissions at northern mid-latitudes

    Science.gov (United States)

    Clifton, O.; Paulot, F.; Fiore, A. M.; Horowitz, L. W.; Malyshev, S.; Shevliakova, E.; Correa, G. J. P.; Lin, M.

    2017-12-01

    Identifying the contributions of nonlinear chemistry and transport to observed surface ozone seasonal cycles over land using global models relies on an accurate representation of ozone uptake by vegetation (dry deposition). It is well established that in the absence of ozone precursor emission changes, a warming climate will increase surface ozone in polluted regions, and that a rise in temperature-dependent isoprene emissions would exacerbate this "climate penalty". However, the influence of changes in ozone dry deposition, expected to evolve with climate and land use, is often overlooked in air quality projections. With a new scheme that represents dry deposition within the NOAA GFDL dynamic vegetation land model (LM3) coupled to the NOAA GFDL atmospheric chemistry-climate model (AM3), we simulate the impact of 21st century climate and land use on ozone dry deposition and isoprene emissions. This dry deposition parameterization is a version of the Wesely scheme, but uses parameters explicitly calculated by LM3 that respond to climate and land use (e.g., stomatal conductance, canopy interception of water, leaf area index). The parameterization includes a nonstomatal deposition dependence on humidity. We evaluate climatological present-day seasonal cycles of ozone deposition velocities and abundances with those observed at northern mid-latitude sites. With a set of 2010s and 2090s decadal simulations under a high climate warming scenario (RCP8.5) and a sensitivity simulation with well-mixed greenhouse gases following RCP8.5 but air pollutants held at 2010 levels (RCP8.5_WMGG), we examine changes in surface ozone seasonal cycles. We build on our previous findings, which indicate that strong reductions in anthropogenic NOx emissions under RCP8.5 cause the surface ozone seasonal cycle over the NE USA to reverse, shifting from a summer peak at present to a winter peak by 2100. Under RCP8.5_WMGG, we parse the separate effects of climate and land use on ozone dry

  16. Does the recent warming hiatus exist over northern Asia for winter wind chill temperature?

    Science.gov (United States)

    Ma, Ying

    2017-04-01

    Wind chill temperature (WCT) describes the joint effect of wind velocity and air temperature on exposed body skin and could support policy makers in designing plans to reduce the risks of notably cold and windy weather. This study examined winter WCT over northern Asia during 1973-2013 by analyzing in situ station data. The winter WCT warming rate over the Tibetan Plateau slowed during 1999-2013 (-0.04 °C/decade) compared with that during 1973-1998 (0.67 °C/decade). The winter WCT warming hiatus has also been observed in the remainder of Northern Asia with trends of 1.11 °C/decade during 1973-1998 but -1.02 °C/decade during 1999-2013, except for the Far East of Russia (FE), where the winter WCT has continued to heat up during both the earlier period of 1973-1998 (0.54 °C/decade) and the recent period of 1999-2013 (0.75 °C/decade). The results indicate that the influence of temperature on winter WCT is greater than that of wind speed over northern Asia. Atmospheric circulation changes associated with air temperature and wind speed were analyzed to identify the causes for the warming hiatus of winter WCT over northern Asia. The distributions of sea level pressure and 500 hPa height anomalies during 1999-2013 transported cold air from the high latitudes to middle latitudes, resulting in low air temperature over Northern Asia except for the Far East of Russia. Over the Tibetan Plateau, the increase in wind speed offset the increase in air temperature during 1999-2013. For the Far East, the southerly wind from the Western Pacific drove the temperature up during the 1999-2013 period via warm advection.

  17. Understanding the Relation between Attitude Involvement and Response Latitude Using Item Response Theory

    Science.gov (United States)

    Lake, Christopher J.; Withrow, Scott; Zickar, Michael J.; Wood, Nicole L.; Dalal, Dev K.; Bochinski, Joseph

    2013-01-01

    Adapting the original latitude of acceptance concept to Likert-type surveys, response latitudes are defined as the range of graded response options a person is willing to endorse. Response latitudes were expected to relate to attitude involvement such that high involvement was linked to narrow latitudes (the result of selective, careful…

  18. Investigating Changes in the High-Latitude Topside Ionosphere During Large Magnetic Storms

    Science.gov (United States)

    Fainberg, Joseph; Benson, Robert F.; Osherovich, Vladimir; Truhlik, Vladimir; Wang, Yongli; Fung, Shing; Bilitza, Dieter

    2009-01-01

    A search was conducted to locate periods of nearly simultaneous solar-wind and high latitude topside-ionospheric data during magnetic storms. The focus was on the 20-yr interval from 1965 to 1985 when both solar-wind and Alouette/ISIS topside-sounder data are potentially available. The search yielded 125 large magnetic storms (minimum Dst less than 100) and 280 moderate magnetic storms (minimum Dst between -60 and -100). Solar wind data were available for most, but not all, of these storms. A search of the available high-latitude topside electron-density Ne(h) profiles available from the National Space Science Data Center (NSSDC), both from manual inspection of 35-mm film ionograms in the 1960s and more recent auto-processing of ISIS-2 topside digital ionograms using the TOPIST software, during 9-day intervals associated with the 125 large magnetic storm minimum Dst times yielded the following results: 31 intervals had 10 or more manual-scaled profiles (21 intervals had more than 100 profiles and 5 of these had more than 1,000 profiles), and 34 intervals had 10 or more TOPIST profiles (2 intervals had more than 100 profiles). In addition, a search of the available Alouette-2, ISIS-1 and ISIS-2 digital ionograms during the above periods has yielded encouraging initial results in that many ISIS-1 ionograms were found for the early time intervals. Future work will include the search for 35-mm film ionograms during selected intervals. This presentation will illustrate the results of this investigation to date.

  19. Lightning NOx influence on large-scale NOy and O3 plumes observed over the northern mid-latitudes

    Directory of Open Access Journals (Sweden)

    Alicia Gressent

    2014-11-01

    Full Text Available This paper describes the NOy plumes originating from lightning emissions based on 4 yr (2001–2005 of MOZAIC measurements in the upper troposphere of the northern mid-latitudes, together with ground- and space-based observations of lightning flashes and clouds. This analysis is primarily for the North Atlantic region where the MOZAIC flights are the most frequent and for which the measurements are well representative in space and time. The study investigates the influence of lightning NOx (LNOx emissions on large-scale (300–2000 km plumes (LSPs of NOy. One hundred and twenty seven LSPs (6% of the total MOZAIC NOy dataset have been attributed to LNOx emissions. Most of these LSPs were recorded over North America and the Atlantic mainly in spring and summer during the maximum lightning activity occurrence. The majority of the LSPs (74% is related to warm conveyor belts and extra-tropical cyclones originating from North America and entering the intercontinental transport pathway between North America and Europe, leading to a negative (positive west to east NOy (O3 zonal gradient with −0.4 (+18 ppbv difference during spring and −0.6 (+14 ppbv difference in summer. The NOy zonal gradient can correspond to the mixing of the plume with the background air. On the other hand, the O3 gradient is associated with both mixing of background air and with photochemical production during transport. Such transatlantic LSPs may have a potential impact on the European pollution. The remaining sampled LSPs are related to mesoscale convection over Western Europe and the Mediterranean Sea (18% and to tropical convection (8%.

  20. Overexpanding coronal mass ejections at high heliographic latitudes: Observations and simulations

    International Nuclear Information System (INIS)

    Gosling, J.T.; Riley, P.; McComas, D.J.; Pizzo, V.J.

    1998-01-01

    Ulysses observations reveal that most coronal mass ejections (CMEs) observed in the solar wind far from the Sun at high heliographic latitudes have large radial widths and are still expanding as they pass the spacecraft. CME radial widths ranging between 0.5 and 2.5 AU have been observed at heliocentric distances between 1.4 and 4.6 AU and at latitudes greater than 22 degree. A CME may expand simply because it is ejected from the Sun with a leading edge speed that is greater than its trailing edge speed. Rarefaction waves produced by relative motion between a CME and the surrounding wind also can cause a CME to expand. Finally, a CME may expand because it is ejected into the wind with an internal pressure that is greater than that of the surrounding wind. In the latter case, which we have called 'overexpansion', the expansion tends to drive compressive waves into the surrounding solar wind; these waves commonly steepen into shocks at large distances from the Sun. The relative importance of these various expansion processes differs from event to event depending upon initial conditions within the CME and the surrounding wind. Using Ulysses observations and a simple one-dimensional, gasdynamic code, we have explored how initial conditions affect the radial evolution of solar wind disturbances associated with overexpanding CMEs. We find good qualitative agreement between the results of our simulations and Ulysses observations of such disturbances. copyright 1998 American Geophysical Union

  1. 26-Day Variations of 7 MeV Electrons at high Latitudes and their Implications on the Heliospheric Magnetic Field

    Science.gov (United States)

    Sternal, Oliver; Engelbrecht, Eugene; Burger, Renier; Dunzlaff, Phillip; Ferreira, Stefan; Fichtner, Horst; Heber, Bernd; Kopp, Andreas; Potgieter, Marius; Scherer, Klaus

    The transport of energetic particles in the heliosphere is usually described by the Parker trans-port equation including the physical processes of diffusion, drift, convection and adiabatic energy changes. The Ulysses spacecraft provides unique insight into the flux of MeV electrons at high latitudes. In this contribution, we compare our model results for the Parker HMF model and the Fisk-type Schwadron-Parker HMF model to Ulysses measurements. The elec-tron flux at high latitudes has been used as a remote sensing method to investigate the imprint of a Fisk-type HMF. We show here for the first time that such an imprint exists and deduce a limitation on the Fisk HMF angle β.

  2. A regression modeling approach for studying carbonate system variability in the northern Gulf of Alaska

    Science.gov (United States)

    Evans, Wiley; Mathis, Jeremy T.; Winsor, Peter; Statscewich, Hank; Whitledge, Terry E.

    2013-01-01

    northern Gulf of Alaska (GOA) shelf experiences carbonate system variability on seasonal and annual time scales, but little information exists to resolve higher frequency variability in this region. To resolve this variability using platforms-of-opportunity, we present multiple linear regression (MLR) models constructed from hydrographic data collected along the Northeast Pacific Global Ocean Ecosystems Dynamics (GLOBEC) Seward Line. The empirical algorithms predict dissolved inorganic carbon (DIC) and total alkalinity (TA) using observations of nitrate (NO3-), temperature, salinity and pressure from the surface to 500 m, with R2s > 0.97 and RMSE values of 11 µmol kg-1 for DIC and 9 µmol kg-1 for TA. We applied these relationships to high-resolution NO3- data sets collected during a novel 20 h glider flight and a GLOBEC mesoscale SeaSoar survey. Results from the glider flight demonstrated time/space along-isopycnal variability of aragonite saturations (Ωarag) associated with a dicothermal layer (a cold near-surface layer found in high latitude oceans) that rivaled changes seen vertically through the thermocline. The SeaSoar survey captured the uplift to aragonite saturation horizon (depth where Ωarag = 1) shoaled to a previously unseen depth in the northern GOA. This work is similar to recent studies aimed at predicting the carbonate system in continental margin settings, albeit demonstrates that a NO3--based approach can be applied to high-latitude data collected from platforms capable of high-frequency measurements.

  3. The structure of mid- and high-latitude ionosphere during September 1999 storm event obtained from GPS observations

    Directory of Open Access Journals (Sweden)

    I. I. Shagimuratov

    Full Text Available TEC data, obtained from over 60 GPS stations, were used to study the ionospheric effects of the 12–16 September 1999 magnetic storm over Europe. The spatial and temporal changes of the ionosphere were analysed as a time series of TEC maps, which present 15 min averages of TEC. The data set consisting of GPS observations, collected by a dense network of European stations, with sampling rate of 30 s, enable the creation of TEC maps with high spatial and temporal resolution. The storm included the positive as well as the negative phase. The positive phase took place during the first storm day of 12 September 1999. The short-lived daytime TEC enhancement was observed at all latitudes. The maximal enhancement reached a factor of 1.3–1.5. On the second and third days, the negative phase of the storm developed. The TEC decrease was registered regardless of time of the day. The TEC depression exceeded 70% relative to quiet days. On the following days (15 and 16 September, a significant daytime enhancement of TEC was observed once again. The complex occurrence of the ionospheric storm was probably related to the features of development of the magnetic storm. We found out that during the storm the large and medium-scale irregularities developed in the high-latitude ionosphere. The multi-stations technique, employed to create TEC maps, was particularly successful while studying the mid-latitude ionospheric trough. We found out that the essential changes of TEC during the storm, which were registered at the auroral and sub-auroral ionosphere, were connected with the effect of the trough and its dynamics, which depends on geomagnetic activity.

    Key words. Ionosphere (ionospheric disturbances; auroral ionosphere; mid-latitude ionosphere

  4. High-latitude observations of impulse-driven ULF pulsations in the ionosphere and on the ground

    Directory of Open Access Journals (Sweden)

    F. W. Menk

    2003-02-01

    Full Text Available We report the simultaneous observation of 1.6–1.7 mHz pulsations in the ionospheric F-region with the CUTLASS bistatic HF radar and an HF Doppler sounder, on the ground with the IMAGE and SAMNET magnetometer arrays, and in the upstream solar wind. CUTLASS was at the time being operated in a special mode optimized for high resolution studies of ULF waves. A novel use is made of the ground returns to detect the ionospheric signature of ULF waves. The pulsations were initiated by a strong, sharp decrease in solar wind dynamic pressure near 09:28 UT on 23 February 1996, and persisted for some hours. They were observed with the magnetometers over 20° in latitude, coupling to a field line resonance near 72° magnetic latitude. The magnetic pulsations had azimuthal m numbers ~ -2, consistent with propagation away from the noon sector. The radars show transient high velocity flows in the cusp and auroral zones, poleward of the field line resonance, and small amplitude 1.6–1.7 mHz F-region oscillations across widely spaced regions at lower latitudes. The latter were detected in the radar ground scatter returns and also with the vertical incidence Doppler sounder. Their amplitude is of the order of ± 10 ms-1. A similar perturbation frequency was present in the solar wind pressure recorded by the WIND spacecraft. The initial solar wind pressure decrease was also associated with a decrease in cosmic noise absorption on an imaging riometer near 66° magnetic latitude. The observations suggest that perturbations in the solar wind pressure or IMF result in fast compressional mode waves that propagate through the magnetosphere and drive forced and resonant oscillations of geomagnetic field lines. The compressional wave field may also stimulate ionospheric perturbations. The observations demonstrate that HF radar ground scatter may contain important information on small-amplitude features, extending the scope and capability of these radars to track

  5. Geomagnetic activity at Northern Hemisphere's mid-latitude ground stations: How much can be explained using TS05 model

    Science.gov (United States)

    Castillo, Yvelice; Pais, Maria Alexandra; Fernandes, João; Ribeiro, Paulo; Morozova, Anna L.; Pinheiro, Fernando J. G.

    2017-12-01

    For the 2007 to 2014 period, we use a statistical approach to evaluate the performance of Tsyganenko and Sitnov [2005] semi-empirical model (TS05) in estimating the magnetospheric transient signal observed at four Northern Hemisphere mid-latitude ground stations: Coimbra, Portugal; Panagyurishte, Bulgary; Novosibirsk, Russia and Boulder, USA. Using hourly mean data, we find that the TS05 performance is clearly better for the X (North-South) than for the Y (East-West) field components and for more geomagnetically active days as determined by local K-indices. In ∼ 50% (X) and ∼ 30% (Y) of the total number of geomagnetically active days, correlation values yield r ≥ 0.7. During more quiet conditions, only ∼ 30% (X) and ∼ 15% (Y) of the number of analyzed days yield r ≥ 0.7. We compute separate contributions from different magnetospheric currents to data time variability and to signal magnitude. During more active days, all tail, symmetric ring and partial ring currents contribute to the time variability of X while the partial ring and field aligned currents contribute most to the time variability of Y. The tail and symmetric ring currents are main contributors to the magnitude of X. In the best case estimations when r ≥ 0.7, remaining differences between observations and TS05 predictions could be explained by global induction in the Earth's upper layers and crustal magnetization. The closing of field aligned currents through the Earth's center in the TS05 model seems to be mainly affecting the Y magnetospheric field predictions.

  6. Interhemispheric differences and solar cycle effects of the high-latitude ionospheric convection patterns deduced from Cluster EDI observations

    Science.gov (United States)

    Förster, Matthias; Haaland, Stein

    2015-04-01

    Here, we present a study of ionospheric convection at high latitudes that is based on satellite measurements of the Electron Drift Instrument (EDI) on-board the Cluster satellites, which were obtained over a full solar cycle (2001-2013). The mapped drift measurements are covering both hemispheres and a variety of different solar wind and interplanetary magnetic field (IMF) conditions. The large amount of data allows us to perform more detailed statistical studies. We show that flow patterns and polar cap potentials can differ between the two hemispheres on statistical average for a given IMF orientation. In particular, during southward directed IMF conditions, and thus enhanced energy input from the solar wind, we find that the southern polar cap has a higher cross polar cap potential. We also find persistent north-south asymmetries which cannot be explained by external drivers alone. Much of these asymmetries can probably be explained by significant differences in the strength and configuration of the geomagnetic field between the Northern and Southern Hemisphere. Since the ionosphere is magnetically connected to the magnetosphere, this difference will also be reflected in the magnetosphere in the form of different feedback from the two hemispheres. Consequently, local ionospheric conditions and the geomagnetic field configuration are important for north-south asymmetries in large regions of geospace. The average convection is higher during periods with high solar activity. Although local ionospheric conditions may play a role, we mainly attribute this to higher geomagnetic activity due to enhanced solar wind - magnetosphere interactions.

  7. SAGE II observations of a previously unreported stratospheric volcanic aerosol cloud in the northern polar summer of 1990

    Science.gov (United States)

    Yue, Glenn K.; Veiga, Robert E.; Wang, Pi-Huan

    1994-01-01

    Analysis of aerosol extinction profiles obtained by the spaceborne SAGE II sensor reveals that there was an anomalous increase of aerosol extinction below 18.5 km at latitudes poleward of 50 deg N from July 28 to September 9, 1990. This widespread increase of aerosol extinction in the lower stratosphere was apparently due to a remote high-latitude volcanic eruption that has not been reported to date. The increase in stratospheric optical depth in the northern polar region was about 50% in August and had diminished by October 1990. This eruption caused an increase in stratospheric aerosol mass of about 0.33 x 10(exp 5) tons, assuming the aerosol was composed of sulfuric acid and water.

  8. Low-latitude scintillation occurrences around the equatorial anomaly crest over Indonesia

    Directory of Open Access Journals (Sweden)

    P. Abadi

    2014-01-01

    Full Text Available We investigated low-latitude ionospheric scintillation in Indonesia using two GPS receivers installed at Bandung (107.6° E, 6.9° S; magnetic latitude 17.5° S and Pontianak (109.3° E, 0.02° S; magnetic latitude 8.9° S. This study aimed to characterise climatological and directional ionospheric scintillation occurrences, which are useful not only for the physics of ionospheric irregularities but also for practical use in GNSS (global navigation satellite system-based navigation. We used the deployed instrument's amplitude scintillation (S4 index data from 2009, 2010, and 2011; the yearly SSN (sunspot-smoothed numbers were 3.1, 16.5, and 55.9, respectively. In summary, (1 scintillation occurrences in the post-sunset period (18:00–01:00 LT during equinox months (plasma bubble season at the two sites can be ascribed to the plasma bubble; (2 using directional analyses of the two sites, we found that the distribution of scintillation occurrences is generally concentrated between the two sites, indicating the average location of the EIA (equatorial ionisation anomaly crest; (3 scintillation occurrence enhancements for the two sites in field-aligned directions are herein reported for the first time by ground-based observation in a low-latitude region; (4 distribution of scintillation occurrences at Pontianak are concentrated in the southern sky, especially in the southwest direction, which is very likely associated with the plasma bubble tilted westward with increasing latitude; and (5 scintillation occurrence in the post-midnight period in the non-plasma-bubble season is the most intriguing variable occurring between the two sites (i.e. post-midnight scintillations are observed more at Bandung than Pontianak. Most of the post-midnight scintillations observed at Bandung are concentrated in the northern sky, with low elevation angles. This might be due to the amplitude of irregularities in certain directions, which may be effectively enhanced by

  9. Southern high latitude dune fields on Mars: Morphology, aeolian inactivity, and climate change

    Science.gov (United States)

    Fenton, L.K.; Hayward, R.K.

    2010-01-01

    In a study area spanning the martian surface poleward of 50?? S., 1190 dune fields have been identified, mapped, and categorized based on dune field morphology. Dune fields in the study area span ??? 116400km2, leading to a global dune field coverage estimate of ???904000km2, far less than that found on Earth. Based on distinct morphological features, the dune fields were grouped into six different classes that vary in interpreted aeolian activity level from potentially active to relatively inactive and eroding. The six dune field classes occur in specific latitude zones, with a sequence of reduced activity and degradation progressing poleward. In particular, the first signs of stabilization appear at ???60?? S., which broadly corresponds to the edge of high concentrations of water-equivalent hydrogen content (observed by the Neutron Spectrometer) that have been interpreted as ground ice. This near-surface ground ice likely acts to reduce sand availability in the present climate state on Mars, stabilizing high latitude dunes and allowing erosional processes to change their morphology. As a result, climatic changes in the content of near-surface ground ice are likely to influence the level of dune activity. Spatial variation of dune field classes with longitude is significant, suggesting that local conditions play a major role in determining dune field activity level. Dune fields on the south polar layered terrain, for example, appear either potentially active or inactive, indicating that at least two generations of dune building have occurred on this surface. Many dune fields show signs of degradation mixed with crisp-brinked dunes, also suggesting that more than one generation of dune building has occurred since they originally formed. Dune fields superposed on early and late Amazonian surfaces provide potential upper age limits of ???100My on the south polar layered deposits and ???3Ga elsewhere at high latitudes. No craters are present on any identifiable dune

  10. Recent Intensified Winter Coldness in the Mid-High Latitudes of Eurasia and Its Relationship with Daily Extreme Low Temperature Variability

    Directory of Open Access Journals (Sweden)

    Chuhan Lu

    2016-01-01

    Full Text Available Observational records in recent decades show a large-scale decrease in the cold-season temperature variance in the Northern Hemisphere midlatitudes under continuous global warming. However, severe low temperature events in winter frequently occurred in midlatitude Eurasia (MEA in the last decade. Here, we define a new coldness intensity (CI index for the near-surface based on the amplitude of daily anomalously cold temperatures in winter to demonstrate the CI of the variability of low temperature extremes. The results show that a sign-consistent mode dominates the CI variation in MEA, with a marked intensification during the last decade via empirical orthogonal function (EOF analysis. This leading mode is significantly related to the frequency of winter extreme events. The associated circulations are characterized by a remarkable anomalous anticyclone in Northwest Eurasia, which induced substantial cold advection in MEA. The widespread intensified CI in MEA is closely linked with strong surface anticyclones and synoptic blocking in the mid-high latitudes (25°E–85°E. Coincidently, positive phase shifts of the first two leading modes of the extratropical circulation, which feature similar blocking-like anomalies in the northwestern Eurasian subarctic, jointly play an important role in the recent frequency of severe winters.

  11. Tropical influence on boreal summer mid-latitude stationary waves

    Energy Technology Data Exchange (ETDEWEB)

    Douville, Herve [Meteo-France/CNRM-GAME, Toulouse (France); CNRM/GMGEC/VDR, Toulouse (France); Bielli, S.; Deque, M.; Tyteca, S.; Voldoire, A. [Meteo-France/CNRM-GAME, Toulouse (France); Cassou, C. [CNRS-Cerfacs, Toulouse (France); Hall, N.M.J. [CNES/LEGOS, Toulouse (France)

    2011-11-15

    While organized tropical convection is a well-known source of extratropical planetary waves, state-of-the-art climate models still show serious deficiencies in simulating accurately the atmospheric response to tropical sea surface temperature (SST) anomalies and the associated teleconnections. In the present study, the remote influence of the tropical atmospheric circulation is evaluated in ensembles of global boreal summer simulations in which the Arpege-Climat atmospheric General Circulation Model (GCM) is nudged towards 6-h reanalyses. The nudging is applied either in the whole tropical band or in a regional summer monsoon domain. Sensitivity tests to the experimental design are first conducted using prescribed climatological SST. They show that the tropical relaxation does not improve the zonal mean extratropical climatology but does lead to a significantly improved representation of the mid-latitude stationary waves in both hemispheres. Low-pass filtering of the relaxation fields has no major effect on the model response, suggesting that high-frequency tropical variability is not responsible for extratropical biases. Dividing the nudging strength by a factor 10 only decreases the magnitude of the response. Model errors in each monsoon domain contribute to deficiencies in the model's mid-latitude climatology, although an exaggerated large-scale subsidence in the central equatorial Pacific appears as the main source of errors for the representation of stationary waves in the Arpege-Climat model. Case studies are then conducted using either climatological or observed SST. The focus is first on summer 2003 characterized by a strong and persistent anticyclonic anomaly over western Europe. This pattern is more realistic in nudging experiments than in simulations only driven by observed SST, especially when the nudging domain is centred over Central America. Other case studies also show a significant tropical forcing of the summer mid-latitude stationary waves

  12. Comparison of high-latitude thermospheric meridionalwinds II: combined FPI, radar and model Climatologies

    Directory of Open Access Journals (Sweden)

    E. M. Griffin

    2004-03-01

    Full Text Available The climatological behaviour of the thermospheric meridional wind above Kiruna, Sweden (67.4°N, 20.4°E has been investigated for seasonal and solar cycle dependence using six different techniques, comprising both model and experimental sources. Model output from both the empirical Horizontal Wind Model (HWM (Hedin et al., 1988 and the numerical Coupled Thermosphere and Ionosphere Model (CTIM are compared to the measured behaviour at Kiruna, as a single site example. The empirical International Reference Ionosphere (IRI model is used as input to an implementation of servo theory, to provide another climatology combining empirical input with a theoretical framework. The experimental techniques have been introduced in a companion paper in this issue and provide climatologies from direct measurements, using Fabry-Perot Interferometers (FPI, together with 2 separate techniques applied to the European Incoherent Scatter radar (EISCAT database to derive neutral winds. One of these techniques uses the same implementation of servo theory as has been used with the IRI model. Detailed comparisons for each season and solar activity category allow for conclusions to be drawn as to the major influences on the climatological behaviour of the wind at this latitude. Comparison of the incoherent scatter radar (ISR derived neutral winds with FPI, empirical model and numerical model winds is important to our understanding and judgement of the validity of the techniques used to derive thermospheric wind databases. The comparisons also test model performance and indicate possible reasons for differences found between the models. In turn, the conclusions point to possible improvements in their formulation. In particular it is found that the empirical models are over-reliant on mid-latitude data in their formulation, and fail to provide accurate estimates of the winds at high-latitudes.

    Key words. Meteorology and atmospheric dynamics (thermospheric dynamics

  13. Comparison of high-latitude thermospheric meridionalwinds II: combined FPI, radar and model Climatologies

    Directory of Open Access Journals (Sweden)

    E. M. Griffin

    2004-03-01

    Full Text Available The climatological behaviour of the thermospheric meridional wind above Kiruna, Sweden (67.4°N, 20.4°E has been investigated for seasonal and solar cycle dependence using six different techniques, comprising both model and experimental sources. Model output from both the empirical Horizontal Wind Model (HWM (Hedin et al., 1988 and the numerical Coupled Thermosphere and Ionosphere Model (CTIM are compared to the measured behaviour at Kiruna, as a single site example. The empirical International Reference Ionosphere (IRI model is used as input to an implementation of servo theory, to provide another climatology combining empirical input with a theoretical framework. The experimental techniques have been introduced in a companion paper in this issue and provide climatologies from direct measurements, using Fabry-Perot Interferometers (FPI, together with 2 separate techniques applied to the European Incoherent Scatter radar (EISCAT database to derive neutral winds. One of these techniques uses the same implementation of servo theory as has been used with the IRI model. Detailed comparisons for each season and solar activity category allow for conclusions to be drawn as to the major influences on the climatological behaviour of the wind at this latitude. Comparison of the incoherent scatter radar (ISR derived neutral winds with FPI, empirical model and numerical model winds is important to our understanding and judgement of the validity of the techniques used to derive thermospheric wind databases. The comparisons also test model performance and indicate possible reasons for differences found between the models. In turn, the conclusions point to possible improvements in their formulation. In particular it is found that the empirical models are over-reliant on mid-latitude data in their formulation, and fail to provide accurate estimates of the winds at high-latitudes. Key words. Meteorology and atmospheric dynamics (thermospheric dynamics

  14. The Ulysses fast latitude scans: COSPIN/KET results

    Directory of Open Access Journals (Sweden)

    B. Heber

    2003-06-01

    Full Text Available Ulysses, launched in October 1990, began its second out-of-ecliptic orbit in December 1997, and its second fast latitude scan in September 2000. In contrast to the first fast latitude scan in 1994/1995, during the second fast latitude scan solar activity was close to maximum. The solar magnetic field reversed its polarity around July 2000. While the first latitude scan mainly gave a snapshot of the spatial distribution of galactic cosmic rays, the second one is dominated by temporal variations. Solar particle increases are observed at all heliographic latitudes, including events that produce >250 MeV protons and 50 MeV electrons. Using observations from the University of Chicago’s instrument on board IMP8 at Earth, we find that most solar particle events are observed at both high and low latitudes, indicating either acceleration of these particles over a broad latitude range or an efficient latitudinal transport. The latter is supported by "quiet time" variations in the MeV electron background, if interpreted as Jovian electrons. No latitudinal gradient was found for >106 MeV galactic cosmic ray protons, during the solar maximum fast latitude scan. The electron to proton ratio remains constant and has practically the same value as in the previous solar maximum. Both results indicate that drift is of minor importance. It was expected that, with the reversal of the solar magnetic field and in the declining phase of the solar cycle, this ratio should increase. This was, however, not observed, probably because the transition to the new magnetic cycle was not completely terminated within the heliosphere, as indicated by the Ulysses magnetic field and solar wind measurements. We argue that the new A<0-solar magnetic modulation epoch will establish itself once both polar coronal holes have developed.Key words. Interplanetary physics (cosmic rays; energetic particles; interplanetary magnetic fields

  15. The modulation of Tibetan Plateau heating on the multi-scale northernmost margin activity of East Asia summer monsoon in northern China

    Science.gov (United States)

    Zhang, Jie; Liu, Chen; Chen, Haishan

    2018-02-01

    The northernmost margin of East Asian summer monsoon (EASM) could well reflect wet/dry climate variability in the EASM marginal zone (northern China). The study shows that EASM occurs in northern China from Meiyu period to midsummer, and it is also the advancing period of the northern margin of EASM (NMEASM) before the 43rd pentad. NMEASM activity exhibits multi-scale variability, at cycles of 2-3-yr, 4-6-yr and 9-12-yr, which respond not only to EASM intensity but also to westerly circulation anomaly, exhibiting the mid-latitude Eurasian waves and the high-latitude Eurasian teleconnection (EU) patterns. The positive anomalies of Silk Road pattern and EU pattern in recent two decades contribute to the enhanced west-ridge and east-trough anomaly around 120°E over northern China, leading to divergence of moisture flux and north wind anomaly, which is helpful for southward western pacific subtropical high (WPSH) and southward NMEASM. Negative Eurasian pattern along subtropical Jet leads to anticyclone anomaly over south of the Yangtze River, deep trough and north wind anomaly along the west coast of the subtropical Pacific, contributing to southward WPSH and NMEASM at the cycle of 4-6-yr. Remote forcing sources of these anomalous Eurasian waves include North Europe, north of Caspian Sea, Central Asia, Tibetan Plateau and the west of Lake Baikal; the south of Lake Baikal is a local forcing region. The Tibetan Plateau heating and snow cover could modulate Eurasian wave pattern at multi-scale, which could be used as prediction reference of multi-scale NMEASM.

  16. A simulation study of the vortex structure in the low-latitude boundary layer

    International Nuclear Information System (INIS)

    Wei, C.Q.; Lee, L.C.; La Belle-Hamer, A.L.

    1990-01-01

    Satellite observations indicate that the plasma density and the flow velocity are highly variable in the low-latitude boundary layer. The thickness of the boundary layer is also highly variable and appears to increase with increasing longitudinal distance from the subsolar point. In this paper plasma dynamics in the low-latitude boundary layer region is studied on the basis of a two-dimensional incompressible bydrodynamic numerical model. In the simulation, plasma is driven into the boundary layer region by imposing a diffusion flux along the magnetopause. The vortex motions associated with the Kelvin-Helmholtz instability are observed in the simulation. The resulting vortex structures in the plasma density and the flow velocity may coalesce as they are convected tailward, causing them to grow in size. The boundary layer thickness increases with increasing longitudinal distance from the subsolar point in accord with satellite observations. The plasma density and the flow velocity are positively correlated. A mixing region is formed where magnetosheath plasma and magnetospheric plasma mix due to the vortex motions. In the later stage of development, a density plateau is formed in the central part of the boundary layer. Many features of the satellite observations of the boundary layer can be explained using the numerical model. The simulation results also predict that the vortices generated in the postnoon (prenoon) boundary layer lead to the presence of localized upward (downward) field-aligned currents in both the northern and the southern polar ionospheres. The upward field-aligned currents in turn may lead to the formation of dayside auroral patches observed in the postnoon region

  17. A numerical modeling study of the interaction between the tides and the circulation forced by high-latitude plasma convection

    International Nuclear Information System (INIS)

    Mikkelsen, I.S.; Larsen, M.F.

    1991-01-01

    A spectral, time-varying thermospheric general circulation model has been used to study the nonlinear interaction at high latitudes between the tides propagating into the thermosphere from below and the circulation induced by magnetospheric forcing and in situ solar heating. The model is discrete in the vertical with 27 layers spaced by half a scale height. In the horizontal, the fields are expanded in a series of spherical harmonics using a triangular truncation at wave number 31, equivalent to a homogeneous global resolution with a minimum wavelength of 1,270 km. A hypothetical uniform grid point model would require a horizontal spacing of 417 km to describe the same minimum wavelength. In the high-latitude F region the tides affect the dusk vortex of the neutral flow very little, but the dawn vortex is either suppressed or amplified dependent upon the universal time and tidal phase. In the E region neutral flow, both the dusk and dawn vortices are shifted in local time by the tides, again as a function of universal time and tidal phase. At dusk a nonlinear amplification of the sunward winds occurs for certain combination of parameters, and at dawn the winds may be completely suppressed. Below 120 km altitude the magnetospheric forcing creates a single cyclonic vortex which is also sensitive to the high-latitude tidal structure

  18. Dayside magnetic ULF power at high latitudes: A possible long-term proxy for the solar wind velocity?

    DEFF Research Database (Denmark)

    Vennerstrøm, Susanne

    1999-01-01

    We examine the occurrence of dayside high-latitude magnetic variations with periods between 2 and 10 min statistically using data from around 20 magnetic stations in Greenland, Scandinavia, and Canada, many of which have been in operation for a full solar cycle. We derive time series of the power...

  19. The role played by thermal feedback in heated Farley-Buneman waves at high latitudes

    Directory of Open Access Journals (Sweden)

    J.-P. St.-Maurice

    2000-05-01

    Full Text Available It is becoming increasingly clear that electron thermal effects have to be taken into account when dealing with the theory of ionospheric instabilities in the high-latitude ionosphere. Unfortunately, the mathematical complexity often hides the physical processes at work. We follow the limiting cases of a complex but systematic generalized fluid approach to get to the heart of the thermal processes that affect the stability of E region waves during electron heating events. We try to show as simply as possible under what conditions thermal effects contribute to the destabilization of strongly field-aligned (zero aspect angle Farley-Buneman modes. We show that destabilization can arise from a combination of (1 a reduction in pressure gradients associated with temperature fluctuations that are out of phase with density fluctuations, and (2 thermal diffusion, which takes the electrons from regions of enhanced temperatures to regions of negative temperature fluctuations, and therefore enhanced densities. However, we also show that, contrary to what has been suggested in the past, for modes excited along the E0×B direction thermal feedback decreases the growth rate and raises the threshold speed of the Farley-Buneman instability. The increase in threshold speed appears to be important enough to explain the generation of `Type IV' waves in the high-latitude ionosphere.Key words: Ionosphere (auroral ionosphere; iono- spheric irregularities; plasma waves and instabilities

  20. Monitoring Coral Health to Determine Coral Bleaching Response at High Latitude Eastern Australian Reefs: An Applied Model for A Changing Climate

    Directory of Open Access Journals (Sweden)

    Andrew G. Carroll

    2011-09-01

    Full Text Available Limited information is available on the bleaching susceptibility of coral species that dominate high latitude reefs along the eastern seaboard of Australia. The main aims of this study were to: (i monitor coral health and spatial patterns of coral bleaching response at the Solitary Islands Marine Park (SIMP and Lord Howe Island Marine Park (LHIMP, to determine variability of bleaching susceptibility among coral taxa; (ii predict coral bleaching thresholds at 30 °S and 31.5 °S, extrapolated from published bleaching threshold data; and (iii propose a subtropical northern New South Wales coral bleaching model from biological and physical data. Between 2005 and 2007 minor bleaching was observed in dominant coral families including Pocilloporidae, Poritidae and Dendrophylliidae in the SIMP and Pocilloporidae, Poritidae and Acroporidae (Isopora and Montipora spp. in the LHIMP, with a clear difference in bleaching susceptibility found between sites, both within and between locations. Bleaching susceptibility was highest in Porites spp. at the most offshore island site within the SIMP during summer 2005. Patterns of subtropical family bleaching susceptibility within the SIMP and LHIMP differed to those previously reported for the central Great Barrier Reef (GBR. These differences may be due to a number of factors, including temperature history and/or the coral hosts association with different zooxanthellae clades, which may have lower thermal tolerances. An analysis of published estimates of coral bleaching thresholds from the Caribbean, South Africa, GBR and central and northern Pacific regions suggests that the bleaching threshold at 30–31.5 °S ranges between 26.5–26.8 °C. This predicted threshold was confirmed by an extensive coral bleaching event on the world’s southernmost coral reef at Lord Howe Island, during the 2010 austral summer season. These results imply that dominant coral taxa at subtropical reefs along the eastern Australian

  1. Validation of measured poleward TEC gradient using multi-station GPS with Artificial Neural Network based TEC model in low latitude region for developing predictive capability of ionospheric scintillation

    Science.gov (United States)

    Sur, D.; Paul, A.

    2017-12-01

    The equatorial ionosphere shows sharp diurnal and latitudinal Total Electron Content (TEC) variations over a major part of the day. Equatorial ionosphere also exhibits intense post-sunset ionospheric irregularities. Accurate prediction of TEC in these low latitudes is not possible from standard ionospheric models. An Artificial Neural Network (ANN) based Vertical TEC (VTEC) model has been designed using TEC data in low latitude Indian longitude sector for accurate prediction of VTEC. GPS TEC data from the stations Calcutta (22.58°N, 88.38°E geographic, magnetic dip 32°), Baharampore (24.09°N, 88.25°E geographic, magnetic dip 35°) and Siliguri (26.72°N, 88.39°E geographic; magnetic dip 40°) are used as training dataset for the duration of January 2007-September 2011. Poleward VTEC gradients from northern EIA crest to region beyond EIA crest have been calculated from measured VTEC and compared with that obtained from ANN based VTEC model. TEC data from Calcutta and Siliguri are used to compute VTEC gradients during April 2013 and August-September 2013. It has been observed that poleward VTEC gradient computed from ANN based TEC model has shown good correlation with measured values during vernal and autumnal equinoxes of high solar activity periods of 2013. Possible correlation between measured poleward TEC gradients and post-sunset scintillations (S4 ≥ 0.4) from northern crest of EIA has been observed in this paper. From the observation, a suitable threshold poleward VTEC gradient has been proposed for possible occurrence of post-sunset scintillations at northern crest of EIA along 88°E longitude. Poleward VTEC gradients obtained from ANN based VTEC model are used to forecast possible ionospheric scintillation after post-sunset period using the threshold value. It has been observed that these predicted VTEC gradients obtained from ANN based VTEC model can forecast post-sunset L-band scintillation with an accuracy of 67% to 82% in this dynamic low latitude

  2. Genetic diversity and population structure analysis in Perilla frutescens from Northern areas of China based on simple sequence repeats.

    Science.gov (United States)

    Ma, S J; Sa, K J; Hong, T K; Lee, J K

    2017-09-21

    In this study, 21 simple sequence repeat (SSR) markers were used to evaluate the genetic diversity and population structure among 77 Perilla accessions from high-latitude and middle-latitude areas of China. Ninety-five alleles were identified with an average of 4.52 alleles per locus. The average polymorphic information content (PIC) and genetic diversity values were 0.346 and 0.372, respectively. The level of genetic diversity and PIC value for cultivated accessions of Perilla frutescens var. frutescens from middle-latitude areas were higher than accessions from high-latitude areas. Based on the dendrogram of unweighted pair group method with arithmetic mean (UPGMA), all accessions were classified into four major groups with a genetic similarity of 46%. All accessions of the cultivated var. frutescens were discriminated from the cultivated P. frutescens var. crispa. Furthermore, most accessions of the cultivated var. frutescens collected in high-latitude and middle-latitude areas were distinguished depending on their geographical location. However, the geographical locations of several accessions of the cultivated var. frutescens have no relation with their positions in the UPGMA dendrogram and population structure. This result implies that the diffusion of accessions of the cultivated Perilla crop in the northern areas of China might be through multiple routes. On the population structure analysis, 77 Perilla accessions were divided into Group I, Group II, and an admixed group based on a membership probability threshold of 0.8. Finally, the findings in this study can provide useful theoretical knowledge for further study on the population structure and genetic diversity of Perilla and benefit for Perilla crop breeding and germplasm conservation.

  3. Regional-Scale High-Latitude Extreme Geoelectric Fields Pertaining to Geomagnetically Induced Currents

    Science.gov (United States)

    Pulkkinen, Antti; Bernabeu, Emanuel; Eichner, Jan; Viljanen, Ari; Ngwira, Chigomezyo

    2015-01-01

    Motivated by the needs of the high-voltage power transmission industry, we use data from the high-latitude IMAGE magnetometer array to study characteristics of extreme geoelectric fields at regional scales. We use 10-s resolution data for years 1993-2013, and the fields are characterized using average horizontal geoelectric field amplitudes taken over station groups that span about 500-km distance. We show that geoelectric field structures associated with localized extremes at single stations can be greatly different from structures associated with regionally uniform geoelectric fields, which are well represented by spatial averages over single stations. Visual extrapolation and rigorous extreme value analysis of spatially averaged fields indicate that the expected range for 1-in-100-year extreme events are 3-8 V/km and 3.4-7.1 V/km, respectively. The Quebec reference ground model is used in the calculations.

  4. A search for pre-main-sequence stars in high-latitude molecular clouds. 3: A survey of the Einstein database

    Science.gov (United States)

    Caillault, Jean-Pierre; Magnani, Loris; Fryer, Chris

    1995-01-01

    In order to discern whether the high-latitude molecular clouds are regions of ongoing star formation, we have used X-ray emission as a tracer of youthful stars. The entire Einstein database yields 18 images which overlap 10 of the clouds mapped partially or completely in the CO (1-0) transition, providing a total of approximately 6 deg squared of overlap. Five previously unidentified X-ray sources were detected: one has an optical counterpart which is a pre-main-sequence (PMS) star, and two have normal main-sequence stellar counterparts, while the other two are probably extragalactic sources. The PMS star is located in a high Galactic latitude Lynds dark cloud, so this result is not too suprising. The translucent clouds, though, have yet to reveal any evidence of star formation.

  5. Population dynamic of high latitude copepods - with emphasis on Metridia longa

    DEFF Research Database (Denmark)

    Kjellerup, Sanne

    2014-01-01

    , sampling only the upper water column during the day-as is a usual procedure-would underestimate this potential key species. Reproduction patterns of the large calanoids suggested lifecycles adapted to the seasonal and episodic food availability, and consequently had a pulsed reproduction. In contrast...... in the fjord, was more restricted and indicated a life-history strategy that combines the advantages of eggcarrying with inter-clutch duration independent of hatching time. Our findings stress the need for sampling with small meshed nets, sampling deeper in the water column, and sampling both diurnally......High latitude ecosystems are shaped by seasonality in light, ranging from complete darkness in winter to midnight sun in summer, influencing both temperature and primary production. Copepods are important grazers on phytoplankton in marine systems and occupy a central role in the marine food...

  6. Temporal patterns of vegetation phenology and their responses to climate change in mid-latitude grasslands of the Northern Hemisphere

    Science.gov (United States)

    Ren, S.; Chen, X.; Qin, Q.; Zhang, Y.; Wu, Z.

    2017-12-01

    Grassland ecosystem is greatly sensitive to regional and global climate changes. In this study, the start (SOS) and end (EOS) date of growing season were extracted from NDVI data (1981 2014) across the mid-latitude (30°N 55°N) grasslands of Northern Hemisphere. We first validated their accuracy by ground observed phenological data and phenological metrics derived from gross primary production (GPP) data. And then, main climatic factors influencing the temporal patterns of SOS/EOS were explored by means of gridded meteorological data and partial correlation analysis. Based on the results of above statistical analysis, the similarities and differences of spring and autumn phenological responses to climate change among North American grasslands, Mid-West Asian grasslands, and Mongolian grasslands were analyzed. The main results and conclusions are as follows. First, a significant positive correlation was found between SOS/EOS and observed green-up/brown-off date (PSOS/EOS (PSOS/EOS can reflect temporal dynamics of terrestrial vegetation phenology. Second, SOS in Mid-West Asian grasslands showed a significant advancing trend (0.22 days/year, PSOS in North American grasslands and Mongolian grasslands was not significant. EOS in North American grasslands (0.31 dyas/year, PSOS/EOS inter-annual fluctuations and hydrothermal factors showed that a significant negative correlation was found between SOS and the pre-season temperature in 41.6% of pixels (PSOS and pre-season rainfall/snowfall in 14.6%/19.0% of pixels (PSOS and EOS are mainly affected by pre-season temperature and pre-season rainfall.

  7. Comparison of high-latitude thermospheric meridionalwinds I: optical and radar experimental comparisons

    Directory of Open Access Journals (Sweden)

    E. M. Griffin

    2004-03-01

    Full Text Available Thermospheric neutral winds at Kiruna, Sweden (67.4°N, 20.4°E are compared using both direct optical Fabry-Perot Interferometer (FPI measurements and those derived from European incoherent scatter radar (EISCAT measurements. This combination of experimental data sets, both covering well over a solar cycle of data, allows for a unique comparison of the thermospheric meridional component of the neutral wind as observed by different experimental techniques. Uniquely in this study the EISCAT measurements are used to provide winds for comparison using two separate techniques: the most popular method based on the work of Salah and Holt (1974 and the Meridional Wind Model (MWM (Miller et al., 1997 application of servo theory. The balance of forces at this location that produces the observed diurnal pattern are investigated using output from the Coupled Thermosphere and Ionosphere (CTIM numerical model. Along with detailed comparisons from short periods the climatological behaviour of the winds have been investigated for seasonal and solar cycle dependence using the experimental techniques. While there are features which are consistent between the 3 techniques, such as the evidence of the equinoctial asymmetry, there are also significant differences between the techniques both in terms of trends and absolute values. It is clear from this and previous studies that the high-latitude representation of the thermospheric neutral winds from the empirical Horizontal Wind Model (HWM, though improved from earlier versions, lacks accuracy in many conditions. The relative merits of each technique are discussed and while none of the techniques provides the perfect data set to address model performance at high-latitude, one or more needs to be included in future HWM reformulations.

    Key words. Meteorology and atmospheric dynamics (thermospheric dynamics, Ionosphere (ionosphere-atmosphere interactions, auroral ionosphere

  8. Comparison of high-latitude thermospheric meridionalwinds I: optical and radar experimental comparisons

    Directory of Open Access Journals (Sweden)

    E. M. Griffin

    2004-03-01

    Full Text Available Thermospheric neutral winds at Kiruna, Sweden (67.4°N, 20.4°E are compared using both direct optical Fabry-Perot Interferometer (FPI measurements and those derived from European incoherent scatter radar (EISCAT measurements. This combination of experimental data sets, both covering well over a solar cycle of data, allows for a unique comparison of the thermospheric meridional component of the neutral wind as observed by different experimental techniques. Uniquely in this study the EISCAT measurements are used to provide winds for comparison using two separate techniques: the most popular method based on the work of Salah and Holt (1974 and the Meridional Wind Model (MWM (Miller et al., 1997 application of servo theory. The balance of forces at this location that produces the observed diurnal pattern are investigated using output from the Coupled Thermosphere and Ionosphere (CTIM numerical model. Along with detailed comparisons from short periods the climatological behaviour of the winds have been investigated for seasonal and solar cycle dependence using the experimental techniques. While there are features which are consistent between the 3 techniques, such as the evidence of the equinoctial asymmetry, there are also significant differences between the techniques both in terms of trends and absolute values. It is clear from this and previous studies that the high-latitude representation of the thermospheric neutral winds from the empirical Horizontal Wind Model (HWM, though improved from earlier versions, lacks accuracy in many conditions. The relative merits of each technique are discussed and while none of the techniques provides the perfect data set to address model performance at high-latitude, one or more needs to be included in future HWM reformulations. Key words. Meteorology and atmospheric dynamics (thermospheric dynamics, Ionosphere (ionosphere-atmosphere interactions, auroral ionosphere

  9. Understanding Late Triassic low latitude terrestrial ecosystems: new insights from the Colorado Plateau Coring Project (CPCP)

    Science.gov (United States)

    Irmis, R. B.; Olsen, P. E.; Parker, W.; Rasmussen, C.; Mundil, R.; Whiteside, J. H.

    2017-12-01

    The Chinle Formation of southwestern North America is a key paleontological archive of low paleolatitude non-marine ecosystems that existed during the Late Triassic hothouse world. These strata were deposited at 5-15°N latitude, and preserve extensive plant, invertebrate, and vertebrate fossil assemblages, including early dinosaurs; these organisms lived in an unpredictably fluctuating semi-arid to arid environment with very high atmospheric pCO2. Despite this well-studied fossil record, a full understanding of these ecosystems and their integration with other fossil assemblages globally has been hindered by a poor understanding of the Chinle Formation's age, duration, and sedimentation rates. Recently, the CPCP recovered a 520m continuous core through this formation from the northern portion of Petrified Forest National Park (PEFO) in northern Arizona, USA. This core has provided a plethora of new radioisotopic and magnetostratigraphic data from fresh, unweathered samples in unambiguous stratigraphic superposition. These constraints confirm that virtually all fossil-bearing horizons in Chinle outcrops in the vicinity of PEFO are Norian in age. Furthermore, they indicate that the palynomorph zone II and Adamanian vertebrate biozone are at least six million years long, whereas the overlying palynomorph zone III and Revueltian vertebrate biozone persisted for at least five million years, with the boundary between 216-214 Ma. This confirms that the rich late Adamanian-early Revueltian vertebrate fossil assemblages, where dinosaurs are exclusively rare, small-bodied carnivorous theropods, are contemporaneous with higher latitude assemblages in Europe, South America, and Africa where large-bodied herbivorous sauropodomorph dinosaurs are common. The age constraints also confirm that several palynomorph biostratigraphic ranges in the Chinle Formation differ from those of the same taxa in eastern North American (Newark Supergroup) and Europe. These data are consistent

  10. Elevated temperatures and bleaching on a high latitude coral reef: the 1988 Bermuda event

    Science.gov (United States)

    Cook, Clayton B.; Logan, Alan; Ward, Jack; Luckhurst, Brian; Berg, Carl J.

    1990-03-01

    Sea temperatures were normal in Bermuda during 1987, when Bermuda escaped the episodes of coral bleaching which were prevalent throughout the Caribbean region. Survey transecs in 1988 on 4 6 m reefs located on the rim margin and on a lagoonal patch reef revealed bleaching only of zoanthids between May and July. Transect and tow surveys in August and September revealed bleaching of several coral species; Millepora alcicornis on rim reefs was the most extensively affected. The frequency of bleaching in this species, Montastrea annularis and perhaps Diploria labyrinthiformis was significantly higher on outer reefs than on inshore reefs. This bleaching period coincided with the longest period of elevated sea temperatures in Bermuda in 38 years (28.9 30.9°C inshore, >28° offshore). By December, when temperatures had returned to normal, bleaching of seleractinians continued, but bleaching of M. alcicornis on the outer reefs was greatly reduced. Our observations suggest that corals which normally experience wide temperature ranges are less sensitive to thermal stress, and that high-latitude reef corals are sensitive to elevated temperatures which are within the normal thermal range of corals at lower latitudes.

  11. The Caledonian mountains. Northern Europe, and their changing ecosystems

    Directory of Open Access Journals (Sweden)

    Sonesson, M.

    1998-12-01

    Full Text Available With the exception of solar conditions, the climate of the Caledonian Mountains, Northern Europe, is influenced more by the nearness to the Atlantic Ocean and the Gulf Stream than by altitude and latitude. The length of the photoperiod during the growing season increases with latitude, although the total solar influx decreases. Heaths composed of species with a boreal distribution are particularly characteristic at low altitudes and latitudes, whereas species with an arctic and arctic-alpine distribution dominate at high altitudes and latitudes. Periodic events in the population dynamics of certain plant and animal species distinguish the ecosystems at high latitudes from those at low latitude. The effects of global change are likely to become most pronounced in the north since the rate at which the ultraviolet-B (UV-B absorbing ozone layer is being reduced and the increase in concentration of «greenhouse gases» in the atmosphere are both higher in the arctic than in regions further south. Changes in the ecosystems due to increased direct human impacts are also likely to occur in some areas.

    [fr] À l'exception des conditions solaires, le climat des montagnes dites «Caledonian», au Nord de l'Europe, est beaucoup plus influencé par la proximité de l'Océan Atlantique et le Goulf Stream que par l'altitude ou la latitude. La durée de la photopériode pendant la saison de végétation augmente avec la latitude, tandis que la radiation solaire total s'abaisse. À des altitudes et latitudes basses, les landes riches en espèces à distribution boréale deviennent caractéristiques, tandis que les espèces arctiques et artico-alpines dominent dans les hautes altitudes ou latitudes. Des événements périodiques dans la dynamique de la population de certains animaux ou plantes peuvent distinguer les écosystèmes des hautes latitudes de ceux de basse latitude. Les effets du changement climatique global seraient bien sûr plus prononcés au

  12. The Relationship of High-Latitude Thermospheric Wind With Ionospheric Horizontal Current, as Observed by CHAMP Satellite

    Science.gov (United States)

    Huang, Tao; Lühr, Hermann; Wang, Hui; Xiong, Chao

    2017-12-01

    The relationship between high-latitude ionospheric currents (Hall current and field-aligned current) and thermospheric wind is investigated. The 2-D patterns of horizontal wind and equivalent current in the Northern Hemisphere derived from the CHAMP satellite are considered for the first time simultaneously. The equivalent currents show strong dependences on both interplanetary magnetic field (IMF) By and Bz components. However, IMF By orientation is more important in controlling the wind velocity patterns. The duskside wind vortex as well as the antisunward wind in the morning polar cap is more evident for positive By. To better understand their spatial relation in different sectors, a systematic superposed epoch analysis is applied. Our results show that in the dusk sector, the vectors of the zonal wind and equivalent current are anticorrelated, and both of them form a vortical flow pattern for different activity levels. The currents and zonal wind are intensified with the increase of merging electric field. However, on the dawnside, where the relation is less clear, antisunward zonal winds dominate. Plasma drift seems to play a less important role for the wind than neutral forces in this sector. In the noon sector, the best anticorrelation between equivalent current and wind is observed for a positive IMF By component and it is less obvious for negative By. A clear seasonal effect with current intensities increasing from winter to summer is observed in the noon sector. Different from the currents, the zonal wind intensity shows little dependence on seasons. Our results indicate that the plasma drift and the neutral forces are of comparable influence on the zonal wind at CHAMP altitude in the noon sector.

  13. Effects of Birkeland current limitation on high-latitude convection patterns

    International Nuclear Information System (INIS)

    Marklund, G.T.; Raadu, M.A.; Lindqvist, P.-A.

    1984-12-01

    It is shown how the high-latitude convection pattern may be mo- dified by substorm-enhanced polarization electric fields. These are generated whenever the flow of those Birkeland currents which are associated with ionospheric conductivity gradients is limited. Such Birkeland currents are fed mainly by the enhanced Pedersen current in the evening and morning sectors of the auro- ral oval and by the enhanced Hall current around local midnight. As the current limitation increases, the ionospheric potential, represented here by a symmetric two-cell pattern, will rotate clockwise and deform, just as the associated Birkeland current distribution. The resulting patterns are shown to agree well with observations. A pronounced westward intrusion of the equi- potential contours occurs in the auroral oval, and may be asso- ciated with the Westward Travelling Surge. This feature does not however require any assumed longitudinal conductivity gradi- ents. Rather it falls out naturally when the limitation of the enhanced Pedersen current is taken into account. (Author)

  14. Southward shift of the global wind energy resource under high carbon dioxide emissions

    Science.gov (United States)

    Karnauskas, Kristopher B.; Lundquist, Julie K.; Zhang, Lei

    2018-01-01

    The use of wind energy resource is an integral part of many nations' strategies towards realizing the carbon emissions reduction targets set forth in the Paris Agreement, and global installed wind power cumulative capacity has grown on average by 22% per year since 2006. However, assessments of wind energy resource are usually based on today's climate, rather than taking into account that anthropogenic greenhouse gas emissions continue to modify the global atmospheric circulation. Here, we apply an industry wind turbine power curve to simulations of high and low future emissions scenarios in an ensemble of ten fully coupled global climate models to investigate large-scale changes in wind power across the globe. Our calculations reveal decreases in wind power across the Northern Hemisphere mid-latitudes and increases across the tropics and Southern Hemisphere, with substantial regional variations. The changes across the northern mid-latitudes are robust responses over time in both emissions scenarios, whereas the Southern Hemisphere changes appear critically sensitive to each individual emissions scenario. In addition, we find that established features of climate change can explain these patterns: polar amplification is implicated in the northern mid-latitude decrease in wind power, and enhanced land-sea thermal gradients account for the tropical and southern subtropical increases.

  15. Characteristics of episodes with extremely low ozone values in the northern middle latitudes 1957−2000

    Directory of Open Access Journals (Sweden)

    D. S. Balis

    Full Text Available A number of episodes are observed when the total ozone for 2 to 3 days has fallen below 220 matm-cm in the northern mid- and polar latitudes in autumn. The occurrences of such episodes represent ozone deviations of about one-third from the pre-1976 Oct-Nov-Dec monthly mean! By using primarily quality checked Dobson data, a clear identification was made of more than three dozen short spells with extremely low ozone in the 1957–1978 period. In the following twenty-two years (1979–2000, using mainly TOMS data, one can identify ~ 46 cases with ozone values falling below 220 matm-cm for longer than 1 day, with each time over an area greater than 500,000 km2 . The Ozone Mass Deficiency (O3MD from the pre-1976 average ozone values over the affected area was ~2.8 Mt per day, i.e. four to seven times greater than it would be, assuming only a long-term trend in the Oct-Nov-Dec period. The Extremely Low Ozone (ELO3 events on the day of their appearance over the N. Atlantic/European region contribute to the O3MD by representing 16% of the deficiency due to the Oct-Nov trend in the entire 40–65° N latitudinal belt. The O3MD of the greater pool with low ozone (here taken as <260 matm-cm surrounding the area of the lowest events could contribute on the day of their appearance in Oct-Nov up to 60% and in December, ~30% to the deficiency due to the trend over the entire 40–65° N belt. Analysis of synoptic charts, supported by a backward trajectory on the isentropic surfaces 350 and 380 K, shows that in most of the events, subtropical air masses with low ozone content were transported from the Atlantic toward the UK, Scandinavia, and in many cases, further to the western sub-polar regions of Russia. This transport was sometimes combined with upward motions above a tropospheric anticyclone which lifted low ozone mixing ratios to higher altitudes. The ELO3 events cause a significant deficiency above the tropopause where, in general, the subtropical air is

  16. Mid-latitude mesospheric clouds and their environment from SOFIE observations

    Science.gov (United States)

    Hervig, Mark E.; Gerding, Michael; Stevens, Michael H.; Stockwell, Robert; Bailey, Scott M.; Russell, James M.; Stober, Gunter

    2016-11-01

    Observations from the Solar Occultation For Ice Experiment (SOFIE) on the Aeronomy of Ice in the Mesosphere (AIM) satellite are used to examine noctilucent clouds (NLC) and their environment at middle latitudes ( 56°N and 52°S). Because SOFIE is uniquely capable of measuring NLC, water vapor, and temperature simultaneously, the local cloud environment can be specified to examine what controls their formation at mid-latitudes. Compared to higher latitudes, mid-latitude NLCs are less frequent and have lower ice mass density, by roughly a factor of five. Compared to higher latitudes at NLC heights, mid-latitude water vapor is only 12% lower while temperatures are more than 10 K higher. As a result the reduced NLC mass and frequency at mid-latitudes can be attributed primarily to temperature. Middle and high latitude NLCs contain a similar amount of meteoric smoke, which was not anticipated because smoke abundance increases towards the equator in summer. SOFIE indicates that mid-latitude NLCs may or may not be associated with supersaturation with respect to ice. It is speculated that this situation is due in part to SOFIE uncertainties related to the limb measurement geometry combined with the non-uniform nature of NLCs. SOFIE is compared with concurrent NLC, temperature, and wind observations from Kühlungsborn, Germany (54°N) during the 2015 summer. The results indicate good agreement in temperature and NLC occurrence frequency, backscatter, and height. SOFIE indicates that NLCs were less frequent over Europe during 2015 compared to other longitudes, in contrast to previous years at higher latitudes that showed no clear longitude dependence. Comparisons of SOFIE and the Solar Backscatter Ultraviolet (SBUV) indicate good agreement in average ice water column (IWC), although differences in occurrence frequency were often large.

  17. Why high-latitude clouds in our galaxy and the highly redshifted clouds observed in front of QSOs do not belong to the same parent population

    International Nuclear Information System (INIS)

    Wolfe, A.M.

    1983-01-01

    International Ultraviolet Explorer observations of high-latitude gas in our Galaxy reveal the presence of both C II and C IV absorption in the spectra of stars with z>2 kpc. On the other hand, C II is generally absent from unbiased samples of QSO redshift systems with C IV absorption. Comparison between the equivalent-width distributions of the QSO sample and of the galactic sample (which is suitably corrected for contamination by disk absorption) shows that a probability that the two samples are drawn from the same parent population is less than 1% for C II and less than 10% for C IV. Thus, contrary to prevailing opinion, it is highly unlikely that gaseous halos comprised of material with properties of the high-latitude gas are responsible for the bulk of known QSO redshift systems. However, gaseous halos with bimodal states of ionization, or in which the ionization state is a unique function of redshift, are compatible with QSO absorption statistics

  18. Contrasting vulnerability of drained tropical and high-latitude peatlands to fluvial loss of stored carbon

    Science.gov (United States)

    Evans, Chris D.; Page, Susan E.; Jones, Tim; Moore, Sam; Gauci, Vincent; Laiho, Raija; Hruška, Jakub; Allott, Tim E. H.; Billett, Michael F.; Tipping, Ed; Freeman, Chris; Garnett, Mark H.

    2014-11-01

    Carbon sequestration and storage in peatlands rely on consistently high water tables. Anthropogenic pressures including drainage, burning, land conversion for agriculture, timber, and biofuel production, cause loss of pressures including drainage, burning, land conversion for agriculture, timber, and biofuel production, cause loss of peat-forming vegetation and exposure of previously anaerobic peat to aerobic decomposition. This can shift peatlands from net CO2 sinks to large CO2 sources, releasing carbon held for millennia. Peatlands also export significant quantities of carbon via fluvial pathways, mainly as dissolved organic carbon (DOC). We analyzed radiocarbon (14C) levels of DOC in drainage water from multiple peatlands in Europe and Southeast Asia, to infer differences in the age of carbon lost from intact and drained systems. In most cases, drainage led to increased release of older carbon from the peat profile but with marked differences related to peat type. Very low DOC-14C levels in runoff from drained tropical peatlands indicate loss of very old (centuries to millennia) stored peat carbon. High-latitude peatlands appear more resilient to drainage; 14C measurements from UK blanket bogs suggest that exported DOC remains young (use changes in the tropics. Data from the UK Peak District, an area where air pollution and intensive land management have triggered Sphagnum loss and peat erosion, suggest that additional anthropogenic pressures may trigger fluvial loss of much older (>500 year) carbon in high-latitude systems. Rewetting at least partially offsets drainage effects on DOC age.

  19. HIGH ECLIPTIC LATITUDE SURVEY FOR SMALL MAIN-BELT ASTEROIDS

    International Nuclear Information System (INIS)

    Terai, Tsuyoshi; Takahashi, Jun; Itoh, Yoichi

    2013-01-01

    Main-belt asteroids have been continuously colliding with one another since they were formed. Their size distribution is primarily determined by the size dependence of asteroid strength against catastrophic impacts. The strength scaling law as a function of body size could depend on collision velocity, but the relationship remains unknown, especially under hypervelocity collisions comparable to 10 km s –1 . We present a wide-field imaging survey at an ecliptic latitude of about 25° for investigating the size distribution of small main-belt asteroids that have highly inclined orbits. The analysis technique allowing for efficient asteroid detections and high-accuracy photometric measurements provides sufficient sample data to estimate the size distribution of sub-kilometer asteroids with inclinations larger than 14°. The best-fit power-law slopes of the cumulative size distribution are 1.25 ± 0.03 in the diameter range of 0.6-1.0 km and 1.84 ± 0.27 in 1.0-3.0 km. We provide a simple size distribution model that takes into consideration the oscillations of the power-law slope due to the transition from the gravity-scaled regime to the strength-scaled regime. We find that the high-inclination population has a shallow slope of the primary components of the size distribution compared to the low-inclination populations. The asteroid population exposed to hypervelocity impacts undergoes collisional processes where large bodies have a higher disruptive strength and longer lifespan relative to tiny bodies than the ecliptic asteroids

  20. High-latitude dayside electric fields and currents during strong northward interplanetary magnetic field: Observations and model simulation

    International Nuclear Information System (INIS)

    Clauer, C.R.; Friis-Christensen, E.

    1988-01-01

    On July 23, 1983, the Interplanetary Magnetic Field turned strongly northward, becoming about 22 nT for several hours. Using a combined data set of ionospheric convection measurements made by the Sondre Stromfjord incoherent scatter radar and convection inferred from Greenland magnetometer measurements, we observe the onset of the reconfiguration of the high-latitude ionospheric currents to occur about 3 min following the northward IMF encountering the magnetopause. The large-scale reconfiguration of currents, however, appears to evolve over a period of about 22 min. Using a computer model in which the distribution of field-aligned current in the polar cleft is directly determined by the strength and orientation of the interplanetary electric field, we are able to simulate the time-varying pattern of ionospheric convection, including the onset of high-latitude ''reversed convection'' cells observed to form during the interval of strong northward IMF. These observations and the simulation results indicate that the dayside polar cap electric field observed during strong northward IMF is produced by a direct electrical current coupling with the solar wind. copyright American Geophysical Union 1988

  1. Comparison of high-latitude thermospheric meridional winds II: combined FPI, radar and model climatologies

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, E.M.; Aruliah, A.; Mueller-Wodarg, I.C.F.; Aylward, A. [Atmospheric Physics Lab., Univ. Coll. London, London (United Kingdom)

    2004-07-01

    The climatological behaviour of the thermospheric meridional wind above Kiruna, Sweden (67.4 N, 20.4 E) has been investigated for seasonal and solar cycle dependence using six different techniques, comprising both model and experimental sources. Model output from both the empirical Horizontal Wind Model (HWM) (Hedin et al., 1988) and the numerical coupled thermosphere and ionosphere model (CTIM) are compared to the measured behaviour at kiruna, as a single site example. The empirical International Reference Ionosphere (IRI) model is used as input to an implementation of servo theory, to provide another climatology combining empirical input with a theoretical framework. The experimental techniques have been introduced in a companion paper in this issue and provide climatologies from direct measurements, using fabry-perot interferometers (FPI), together with 2 separate techniques applied to the European incoherent scatter radar (EISCAT) database to derive neutral winds. One of these techniques uses the same implementation of servo theory as has been used with the IRI model. Detailed comparisons for each season and solar activity category allow for conclusions to be drawn as to the major influences on the climatological behaviour of the wind at this latitude. Comparison of the incoherent scatter radar (ISR) derived neutral winds with FPI, empirical model and numerical model winds is important to our understanding and judgement of the validity of the techniques used to derive thermospheric wind databases. The comparisons also test model performance and indicate possible reasons for differences found between the models. In turn, the conclusions point to possible improvements in their formulation. In particular it is found that the empirical models are over-reliant on mid-latitude data in their formulation, and fail to provide accurate estimates of the winds at high-latitudes. (orig.)

  2. High Decision Latitude at Work Combined with Traumatic Life Events in Private Life is Associated with Reduced Sleep Quality: Results from the GAZEL Study

    Directory of Open Access Journals (Sweden)

    Nadya Dich

    2018-04-01

    Full Text Available Psychosocial stress, both at work and at home, plays a role in sleep disturbances. Theoretical models of stress underscore the cumulative effect of stress from different domains in affecting health and well-being. However, previous research has not considered how work stress and stress in private life might interact to affect sleep. The study investigated potential synergistic effects of work stress and traumatic events in private life on sleep quality. Participants ('N' = 6552, average baseline age = 52 were a subset of the French GAZEL cohort who were working in 1999. Work stress was operationalized as high job demands and low decision latitude. These working conditions were self-reported in 1999 (study baseline. Traumatic events in the past 12 months were reported in 2000. Sleep quality was assessed in 2000 as disturbed sleep in the past 12 months, and current sleep problems was indexed by the sleep subscale of the Nottingham Health Profile questionnaire. The results showed that recent events interacted with decision latitude, but not job demands, in predicting sleep quality. However, contrary to our expectations, it was 'high' and not low decision latitude at work that amplified the negative association between stressful events and sleep quality. Adjusted for baseline health, individuals with highest numbers of events and highest levels of decision latitude were at highest risk for impaired sleep. These results challenge the idea that high decision latitude always serves as a protective factor, and underscore the necessity for considering a broader life context when studying stress in a particular domain of life.

  3. Birds on the move in the face of climate change: High species turnover in northern Europe.

    Science.gov (United States)

    Virkkala, Raimo; Lehikoinen, Aleksi

    2017-10-01

    Species richness is predicted to increase in the northern latitudes in the warming climate due to ranges of many southern species expanding northwards. We studied changes in the composition of the whole avifauna and in bird species richness in a period of already warming climate in Finland (in northern Europe) covering 1,100 km in south-north gradient across the boreal zone (over 300,000 km 2 ). We compared bird species richness and species-specific changes (for all 235 bird species that occur in Finland) in range size (number of squares occupied) and range shifts (measured as median of area of occupancy) based on bird atlas studies between 1974-1989 and 2006-2010. In addition, we tested how the habitat preference and migration strategy of species explain species-specific variation in the change of the range size. The study was carried out in 10 km squares with similar research intensity in both time periods. The species richness did not change significantly between the two time periods. The composition of the bird fauna, however, changed considerably with 37.0% of species showing an increase and 34.9% a decrease in the numbers of occupied squares, that is, about equal number of species gained and lost their range. Altogether 95.7% of all species (225/235) showed changes either in the numbers of occupied squares or they experienced a range shift (or both). The range size of archipelago birds increased and long-distance migrants declined significantly. Range loss observed in long-distance migrants is in line with the observed population declines of long-distance migrants in the whole Europe. The results show that there is an ongoing considerable species turnover due to climate change and due to land use and other direct human influence. High bird species turnover observed in northern Europe may also affect the functional diversity of species communities.

  4. Nitrogen Dioxide long term trends at mid and high latitudes by means of ground based observations

    Science.gov (United States)

    Bortoli, D.; Petritoli, A.; Giovanelli, G.; Kostadinov, I.; Ravegnani, F.

    2003-04-01

    The interactions between mid- and high latitudes atmospheric changes are going to be one of the main issue for the future of stratospheric and tropospheric chemistry research. A more detailed study of the ozone trends as well as a wider comprehension of the interactions with lower and higher latitudes are maybe the main arguments to which scientist should address their works in order to build-up a more detailed picture of what scenarios we have to face in the near future. GASCODs type spectrometers (Gas Analyzer Spectrometer Correlating Optical Differences) are installed at the "Ottavio Vittori" research station (44.11N, 10.42E, 2165 m asl) since June 1993, at the Italian Antarctic Station (74.69S, 164.12E) since December 1995 and at the STIL-BAS station (42.42N, 25.63E) since 1999. The instruments measure zenith scattered solar radiation between 407 and 464 nm. Nitrogen dioxide total column is retrieved with DOAS methodology. The seasonal trend of NO2 vc values is reported and it shows the expected behaviour: maximum values during the summer period while the minimum occur in the winter season in both the hemispheres. A typical behaviour of the AMPM ratio at high latitudes is highlight. A Fourier analysis is proposed as a tool to investigate the long-term components of nitrogen dioxide stratospheric amount. Results are presented and the NO2 trend is evidenced and commented. ACKNOWLEDGMENTS: The author Daniele Bortoli was financially supported by the Subprograma Ciência e Tecnologia do 3° Quadro Comunitário de Apoio. The National Antarctic Research Program (PNRA) and the Quantification and Interpretation of Long-Term UV-Vis Observations of the Stratosphere (QUILT) project supported this research.

  5. High- and mid-latitude quasi-2-day waves observed simultaneouslyby four meteor radars during summer 2000

    Directory of Open Access Journals (Sweden)

    E. Merzlyakov

    2004-03-01

    Full Text Available Results from the analysis of MLT wind measurements at Dixon (73.5°N, 80°E, Esrange (68°N, 21°E, Castle Eaton (UK (53°N, 2°W, and Obninsk (55°N, 37°E during summer 2000 are presented in this paper. Using S-transform or wavelet analysis, quasi-two-day waves (QTDWs are shown to appear simultaneously at high- and mid-latitudes and reveal themselves as several bursts of wave activity. At first this activity is preceded by a 51–53h wave with S=3 observed mainly at mid-latitudes. After a short recess (or quiet time interval for about 10 days near day 205, we observe a regular sequence of three bursts, the strongest of them corresponding to a QTDW with a period of 47–48h and S=4 at mid-altitudes. We hypothesize that these three bursts may be the result of constructive and destructive interference between several spectral components: a 47–48h component with S=4; a 60-h component with S=3; and a 80-h component with S=2. The magnitudes of the lower (higher zonal wave-number components increase (decrease with increasing latitude. The S-transform or wavelet analysis indicates when these spectral components create the wave activity bursts and gives a range of zonal wave numbers for observed bursts from about 4 to about 2 for mid- and high-latitudes. The main spectral component at Dixon and Esrange latitudes is the 60-h oscillation with S=3. The zonal wave numbers and frequencies of the observed spectral components hint at the possible occurrence of the nonlinear interaction between the primary QTDWs and other planetary waves. Using a simple 3-D nonlinear numerical model, we attempt to simulate some of the observed features and to explain them as a consequence of the nonlinear interaction between the primary 47–48h and the 9–10day waves, and the resulting linear superposition of primary and secondary waves. In addition to the QTDW bursts, we also infer forcing of the 4-day wave with S=2 and the 6–7day wave with S=1, possibly arising from

  6. Effects of Abrupt Variations of Solar Wind Dynamic Pressure on the High-Latitude Ionosphere

    Directory of Open Access Journals (Sweden)

    Igino Coco

    2011-01-01

    Full Text Available We show the results of a statistical study on the effects in the high-latitude ionosphere of abrupt variations of solar wind dynamic pressure, using Super Dual Auroral Radar Network (SuperDARN data in both hemispheres. We find that, during periods of quiet ionospheric conditions, the amount of radar backscatter increases when a variation in the dynamic pressure occurs, both positive (increase of the pressure and negative (decrease of the pressure. We also investigate the behaviour of the Cross-Polar Cap Potential (CPCP during pressure variations and show preliminary results.

  7. Comparison of high-latitude thermospheric meridional winds I: optical and radar experimental comparisons

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, E.M.; Mueller-Wodarg, I.C.F.; Aruliah, A.; Aylward, A. [Atmospheric Physics Lab., Univ. Coll. London, London (United Kingdom)

    2004-07-01

    Thermospheric neutral winds at Kiruna, Sweden (67.4 N, 20.4 E) are compared using both direct optical fabry-perot interferometer (FPI) measurements and those derived from European incoherent scatter radar (EISCAT) measurements. This combination of experimental data sets, both covering well over a solar cycle of data, allows for a unique comparison of the thermospheric meridional component of the neutral wind as observed by different experimental techniques. Uniquely in this study the EISCAT measurements are used to provide winds for comparison using two separate techniques: the most popular method based on the work of Salah and Holt (1974) and the meridional wind model (MWM) (Miller et al., 1997) application of servo theory. The balance of forces at this location that produces the observed diurnal pattern are investigated using output from the coupled thermosphere and ionosphere (CTIM) numerical model. Along with detailed comparisons from short periods the climatological behaviour of the winds have been investigated for seasonal and solar cycle dependence using the experimental techniques. While there are features which are consistent between the 3 techniques, such as the evidence of the equinoctial asymmetry, there are also significant differences between the techniques both in terms of trends and absolute values. It is clear from this and previous studies that the high-latitude representation of the thermospheric neutral winds from the empirical horizontal wind model (HWM), though improved from earlier versions, lacks accuracy in many conditions. The relative merits of each technique are discussed and while none of the techniques provides the perfect data set to address model performance at high-latitude, one or more needs to be included in future HWM reformulations. (orig.)

  8. Climate-related changes of soil characteristics affect bacterial community composition and function of high altitude and latitude lakes.

    Science.gov (United States)

    Rofner, Carina; Peter, Hannes; Catalán, Núria; Drewes, Fabian; Sommaruga, Ruben; Pérez, María Teresa

    2017-06-01

    Lakes at high altitude and latitude are typically unproductive ecosystems where external factors outweigh the relative importance of in-lake processes, making them ideal sentinels of climate change. Climate change is inducing upward vegetation shifts at high altitude and latitude regions that translate into changes in the pools of soil organic matter. Upon mobilization, this allochthonous organic matter may rapidly alter the composition and function of lake bacterial communities. Here, we experimentally simulate this potential climate-change effect by exposing bacterioplankton of two lakes located above the treeline, one in the Alps and one in the subarctic region, to soil organic matter from below and above the treeline. Changes in bacterial community composition, diversity and function were followed for 72 h. In the subarctic lake, soil organic matter from below the treeline reduced bulk and taxon-specific phosphorus uptake, indicating that bacterial phosphorus limitation was alleviated compared to organic matter from above the treeline. These effects were less pronounced in the alpine lake, suggesting that soil properties (phosphorus and dissolved organic carbon availability) and water temperature further shaped the magnitude of response. The rapid bacterial succession observed in both lakes indicates that certain taxa directly benefited from soil sources. Accordingly, the substrate uptake profiles of initially rare bacteria (copiotrophs) indicated that they are one of the main actors cycling soil-derived carbon and phosphorus. Our work suggests that climate-induced changes in soil characteristics affect bacterioplankton community structure and function, and in turn, the cycling of carbon and phosphorus in high altitude and latitude aquatic ecosystems. © 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  9. Signature of rapid subauroral ion drifts in the high-latitude ionosphere structure

    International Nuclear Information System (INIS)

    Galperin, Y.I.; Khalipov, V.L.; Filippov, V.M.

    1986-01-01

    Characteristics of fast subauroral ion drifts were studied for several cases where synchronous satellite measurements and ground-based ionospheric data from vertical and oblique-incidence sounding were available. Also some relevant data were analyzed concerning apparent irregularities drift velocity measurements by the multipoint spaced receiver at HF range (DI method). Changes of high-latitude ionosphere structure were investigated to identify the signature on the ionograms, and to provide a semiquantitative description of this phenomenon. It is shown that, above a particular station, the time development of the rapid subauroral ion drift band, or the ''polarization jet'' according to Galperin et al., 1973, 1974 in about 5-30 minutes leads to the formation of a trough which is narrow in latitude (approximately 100-200 km) but extended in longitude (several hours of MLT) and rather deep (N sub(emin)approximately 2.10 4 cm -3 in the electron density distribution in the F-region. Such narrow troughs can be observed in the evening sector superimposed on the undisturbed ionization density level, while in the near-midnight sector they contribute to the deepening of the preexisting, and much wider, main ionospheric through A qualitative scenario for the formation of the ''trough in the trough'' on the nightside, as a result of the increase of the loss processes related to rapid drift speed, is supported by ''synthetic'' ionograms deduced from numerical ray-tracing calculations for a model electron density distribution that is in reasonable accord with the observed vertical and oblique sounding ionograms and from satellite data

  10. Comparison of a low and a middle latitude GPS-TEC in Africa during ...

    African Journals Online (AJOL)

    In this work, we compared TEC values at Libreville (a low latitude station) with Sutherland (a middle latitude station) over Africa using Global Positioning System (GPS) receivers during high solar activity (HSA), moderate solar activity (MSA) and low solar activity (LSA). Apart from our confirmation that high, moderate and low ...

  11. Multiflash whistlers in ELF-band observed at low latitude

    Directory of Open Access Journals (Sweden)

    A. K. Singh

    2011-01-01

    Full Text Available Multiflash whistler-like event in the ELF-band, observed during March 1998 at low latitude station Jammu, is reported. The most prominent feature of these events is the multiflash nature along with the decrease in frequency within a very short span of time resembling similar to terrestrial whistlers. The events have a significantly smaller time duration (0.5–3.5 s than those reported earlier from high, mid and low latitudes and also display a diurnal maximum occurring around 09:30 h (IST. There have been similar reportings from other latitudes, but whistlers in the ELF-band with a multiflash nature along with a precursor emission have never been reported. Lightning seems to be the dominant source for the ELF whistlers reported here.

  12. An empirical examination of consumer effects across twenty degrees of latitude.

    Science.gov (United States)

    Lavender, James T; Dafforn, Katherine A; Bishop, Melanie J; Johnston, Emma L

    2017-09-01

    The strength and importance of consumer effects are predicted to increase toward low latitudes, but this hypothesis has rarely been tested using a spatially consistent methodology. In a consumer-exclusion experiment spanning twenty degrees of latitude along the east Australian coast, the magnitude of consumer effects on sub-tidal sessile assemblage composition was not greater at low than high latitudes. Across caged and control assemblages, Shannon's diversity, Pielou's evenness, and richness of functional groups decreased with increasing latitude, but the magnitude of consumer effects on these metrics did not display consistent latitudinal gradients. Instead, latitudinal gradients in consumer effects were apparent for individual functional groups. Solitary ascidians displayed the pattern consistent with predictions of greater direct effects of predators at low than high latitude. As consumers reduced the biomass of this and other competitive dominants, groups less prone to predation (e.g., hydroids, various groups of bryozoans) were able to take advantage of freed space in the presence of consumers and show increased abundances there. This large-scale empirical study demonstrates the complexity of species interactions, and the failure of assemblage-level metrics to adequately capture consumer effects over large spatial gradients. © 2017 by the Ecological Society of America.

  13. Lake trout otolith chronologies as multidecadal indicators of high-latitude freshwater ecosystems

    Science.gov (United States)

    Black, B.A.; Von Biela, V.R.; Zimmerman, C.E.; Brown, Randy J.

    2013-01-01

    High-latitude ecosystems are among the most vulnerable to long-term climate change, yet continuous, multidecadal indicators by which to gauge effects on biology are scarce, especially in freshwater environments. To address this issue, dendrochronology (tree-ring analysis) techniques were applied to growth-increment widths in otoliths from lake trout (Salvelinus namaycush) from the Chandler Lake system, Alaska (68.23°N, 152.70°W). All otoliths were collected in 1987 and exhibited highly synchronous patterns in growth-increment width. Increments were dated, the widths were measured, and age-related growth declines were removed using standard dendrochronology techniques. The detrended time series were averaged to generate an annually resolved chronology, which continuously spanned 1964–1984. The chronology positively and linearly correlated with August air temperature over the 22-year interval (p otolith chronologies could be used to examine responses between freshwater ecosystems and environmental variability across a range of temporal and spatial scales.

  14. Coral bleaching on high-latitude marginal reefs at Sodwana Bay, South Africa

    International Nuclear Information System (INIS)

    Celliers, Louis; Schleyer, Michael H.

    2002-01-01

    Coral bleaching, involving the expulsion of symbiotic zooxanthellae from the host cells, poses a major threat to coral reefs throughout their distributional range. The role of temperature in coral bleaching has been extensively investigated and is widely accepted. A bleaching event was observed on the marginal high-latitude reefs of South Africa located at Sodwana Bay during the summer months of 2000. This was associated with increased sea temperatures with high seasonal peaks in summer and increased radiation in exceptionally clear water. The bleaching was limited to Two-mile Reef and Nine-mile Reef at Sodwana Bay and affected -1 from May 1994 to April 2000. High maximum temperatures were measured (>29 deg. C). The lowest mean monthly and the mean maximum monthly temperatures at which coral bleaching occurred were 27.5 and 28.8 deg. C, respectively, while the duration for which high temperatures occurred in 2000 was 67 days at ≥27.5 deg. C (4 days at ≥28.8 deg. C). Increased water clarity and radiation appeared to be a synergistic cause in the coral bleaching encountered at Sodwana Bay

  15. Combined TOPEX/Poseidon TEC and ionosonde observations of negative low-latitude ionospheric storms

    Directory of Open Access Journals (Sweden)

    K. J. W. Lynn

    2004-09-01

    Full Text Available Ionospheric storms showing a strong depression in daytime foF2 values were sought which penetrated to low-latitudes, as identified by vertical ionosondes operating at Darwin and Townsville over the period 1992-1998. The 32 storms thus identified showed a seasonal occurrence peaking near the equinoxes with a bias to the summer side. Of these storms, three (27 March 1995, 25 October 1997, 8 November 1997 combined Australian and South East Asian ionosonde observations with local afternoon TOPEX/Poseidon measurements of TEC. The equatorial anomaly is usually well developed at this time of day and consequently these storms were chosen for detailed study. The TOPEX/Poseidon satellite provided vertical profiles of the ionosphere across both hemispheres, thus allowing the totality of storm behaviour to be observed for the first time at low-latitudes and related directly to the ionosonde observations. The three storms were remarkably consistent in their behaviour, the negative ionospheric storm day followed some 24-36h after the beginning of a magnetic storm and the development of the equatorial anomaly was suppressed. However, the suppression of the equatorial anomaly was not the main cause of the strong depression in foF2 observed by the Southern Hemisphere ionosondes. The latter was associated with an additional bite-out in both TEC and foF2 that occurred on the southern side of the magnetic equator. None of the three storms produced any major negative disturbance outside the range of normal variability of TEC and foF2 at the northern latitude sites for which data was available, despite the absence of the anomaly. The satellite measurements show the strength of the anomaly to be highly variable from day-to-day and anomaly peaks are frequently not present even on magnetically quiet days. Thus, an absence of anomaly peaks is contained within the normal variability of non-storm days. The north-south asymmetry and seasonal occurrence are consistent with

  16. High-latitude steppe vegetation and the mineral nutrition of Pleistocene herbivores

    Science.gov (United States)

    Davydov, S. P.; Davydova, A.; Makarevich, R.; Loranty, M. M.; Boeskorov, G.

    2014-12-01

    High-latitude steppes were widespread and zonal in the Late Pleistocene and formed a landscape basis for the Mammoth Biome. Now the patches of these steppes survived on steep slopes under southern aspects. These steppes serve as unique information sources about the Late Pleistocene "Mammoth" steppe. Numerous data obtained by palynological, carpological, and DNA analysis of plant remains from feces and stomach contents of Pleistocene herbivore mummies, as well as from buried soils and enclosing deposits show that they are similar to modern steppe plant assemblage in taxa composition. Plant's nutrient concentrations are of fundamental importance across Pleistocene grass-rich ecosystems because of their role in the support of large herbivores. The average weight of an adult mammoth skeleton (about 0.5 tons) and of a woolly rhinoceros (about 0.2 tons) clearly suggests this. Detailed studies on fossil bone remains showed mineral deficiency in large Pleistocene herbivores. A three-year study of ash and mineral contents of two types of relict steppe vegetation at the Kolyma Lowland, Arctic Siberia has been carried out. Nowadays refugia of similar vegetation are located not far (1 - 15km) from the Yedoma permafrost outcrops were abundant fossil remains are found. Dominant species of the steppe vegetation were sampled. Preliminary studies indicate that the ash-content varied 1.5-2 times in speceies of steppe herbs. The Ca, P, Mg, K element contents was higher for most steppe species than in the local herbaceous vegetation, especially in Ca and P. One of the most important elements of the mineral nutrition, the phosphorus, was always found in higher concentrations in the steppe vegetation than in plants of recently dominant landscapes of the study area. It should be noted that the mineral nutrient content of the modern steppe vegetation of Siberian Arctic is comparable to that of the recent zonal steppe of Transbaikal Region. This study supports the hypothesis that

  17. Solar eclipses at high latitudes: ionospheric effects in the lower ionosphere

    Science.gov (United States)

    Cherniakov, S.

    2017-12-01

    The partial reflection facility of the Polar Geophysical Institute (the Tumanny observatory, 69.0N, 35.7E) has observed behavior of the high-latitude lower ionosphere during the 20 March 2015 total solar eclipse. There were several effects during the eclipse. At the heights of 60-80 km the ionosphere has shown the effect of a "short night", but at the higher altitudes local enhanced electron concentration had a wave-like form. Data received by the riometer of the Tumanny observatory have also shown wave-like behavior. The behavior can be explained by influence of acoustic-gravity waves which originated after cooling of the atmosphere during the lunar shadow supersonic movement, and transport processes during the eclipse. During the 21 August 2017 solar eclipse there was a substorm at the high latitudes. But after the end of the substorm in the region of the Tumanny observatory the observed amplitudes of the reflected waves had wave effects which could be connected with the coming waves from the region of the eclipse. The wave features were also shown in the behavior of the total electron content (TEC) of the lower ionosphere. During several solar eclipses it was implemented observations of lower ionosphere behavior by the partial reflection facility of the Tumanny observatory. The consideration of the lower ionosphere TEC had revealed common features in the TEC behavior during the eclipses. The photochemical theory of processes in the lower ionosphere is very complicated and up to now it is not completely developed. Therefore introduction of the effective coefficients determining the total speed of several important reactions has been widely adopted when modeling the D-region of the ionosphere. However, experimental opportunities for obtaining effective recombination coefficients are rather limited. One of the methods to estimate effective recombination coefficients uses the phenomenon of a solar eclipse. During solar eclipses at the partial reflection facility of

  18. Are some of the luminous high-latitude stars accretion-powered runaways?

    International Nuclear Information System (INIS)

    Leonard, P.J.T.; Hills, J.G.; Dewey, R.J.

    1992-01-01

    It is well known that (1) runaway stars can be produced via supernova explosions in close binary systems, (2) most of such runaways should possess neutron star companions, and (3) neutron stars receive randomly oriented kicks of ≅ 100 to 200 km s -1 at birth. We find that this kick sometimes has the right amplitude and direction to make the neutron star fall into the runaway. Accretion onto a neutron star is a source of energy that is roughly an order of magnitude more mass efficient than nuclear burning. Thus, runaways containing neutron stars may live much longer than would normally be expected, which would allow them to travel great distances from their birthplaces during their lifetimes. Some of the early B-type stars far from the Galactic plane and the high-latitude F and G-type supergiants may be accretion-powered runaway stars

  19. Empirical model of the high-latitude boundary of the Earth's outer radiation belt at altitudes of up to 1000 km

    Science.gov (United States)

    Kalegaev, V. V.; Barinova, W. O.; Myagkova, I. N.; Eremeev, V. E.; Parunakyan, D. A.; Nguyen, M. D.; Barinov, O. G.

    2018-01-01

    An empirical model of the high-latitude boundary of the outer Earth's radiation belt (ERB) has been presented, which is based on the measurement data of electron fluxes on the polar low-orbit CORONAS-Photon, Meteor-M1, and Meteor-M2 satellites. The boundary was determined by a sharp decrease to the background level of the flux of trapped electrons with energies of 100 or 200 keV in the polar part of the profile of the outer radiation belt. A numerical algorithm has been implemented to determine the time moment, when the fastest flux changes are recorded. The primary search was carried out, first, on 30 s averaged data, then repeated on data with a higher resolution. A functional dependence was obtained in order to approximate the obtained set of intersections of the boundary by elliptical curve. The empirical model constructed using the CORONAS-Photon measurement data in the epoch of anomalously low geomagnetic activity reflects the longitude structure of the high-latitude boundary of the outer radiation belt associated with the internal Earth's magnetic field (MF), as well as its dependence on the universal time. Based on the data of intersections of the high-latitude boundary of the outer ERB (OERB) in the epoch of 2014-2016, the latitudinal shift of the boundary to the equator dependent on geomagnetic activity has been determined, as well as the nightside shift of the boundary due to the diurnal rotation of the Earth.

  20. Winds in the high-latitude lower thermosphere: Dependence on the interplanetary magnetic field

    DEFF Research Database (Denmark)

    Richmond, A.D.; Lathuillere, C.; Vennerstrøm, Susanne

    2003-01-01

    -side cyclonic vortex that responds more strongly to B-z variations. The dependence of the wind on the IMF is nonlinear, especially with respect to IMF B-z. For positive B-z the difference winds are largely confined to the polar cap, while for negative B-z the difference winds extend to subauroral latitudes...... of similar to20 hours, a B-y-dependent magnetic-zonal-mean zonal wind generally exists, with maximum wind speeds at 80 magnetic latitude, typically 10 m/s at 105 km, increasing to about 60 m/s at 123 km and 80 m/s at 200 km. In the southern hemisphere the wind is cyclonic when the time-averaged B...

  1. Latitude dependence of long-term geomagnetic activity and its solar wind drivers

    Energy Technology Data Exchange (ETDEWEB)

    Myllys, M. [Helsinki Univ. (Finland). Dept. of Physics; Partamies, N. [Finnish Meteorological Institute, Helsinki (Finland); University Centre in Svalbard, Longyearbyen (Norway). Dept. of Arctic Geophysics; Juusola, L. [Finnish Meteorological Institute, Helsinki (Finland)

    2015-09-01

    To validate the usage of global indices in studies of geomagnetic activity, we have examined the latitude dependence of geomagnetic variations in Fennoscandia and Svalbard from 1994 to 2010. Daily standard deviation (SD) values of the horizontal magnetic field have been used as a measure of the ground magnetic disturbance level.We found that the timing of the geomagnetic minimum depends on the latitude region: corresponding to the minimum of sunspot cycle 22 (in 1996), the geomagnetic minimum occurred between the geomagnetic latitudes 57-61 in 1996 and at the latitudes 64-67 in 1997, which are the average auroral oval latitudes. During sunspot cycle 23, all latitude regions experienced the minimum in 2009, a year after the sunspot minimum. These timing differences are due to the latitude dependence of the 10 s daily SD on the different solar wind drivers. In the latitude region of 64-67 , the impact of the high-speed solar wind streams (HSSs) on the geomagnetic activity is the most pronounced compared to the other latitude groups, while in the latitude region of 57-61 , the importance of the coronal mass ejections (CMEs) dominates. The geomagnetic activity maxima during ascending solar cycle phases are typically caused by CME activity and occur especially in the oval and sub-auroral regions. The strongest geomagnetic activity occurs during the descending solar cycle phases due to a mixture of CME and HSS activity. Closer to the solar minimum, less severe geomagnetic activity is driven by HSSs and mainly visible in the poleward part of the auroral region. According to our study, however, the timing of the geomagnetic activity minima (and maxima) in different latitude bands is different, due to the relative importance of different solar wind drivers at different latitudes.

  2. Latitude dependence of long-term geomagnetic activity and its solar wind drivers

    International Nuclear Information System (INIS)

    Myllys, M.

    2015-01-01

    To validate the usage of global indices in studies of geomagnetic activity, we have examined the latitude dependence of geomagnetic variations in Fennoscandia and Svalbard from 1994 to 2010. Daily standard deviation (SD) values of the horizontal magnetic field have been used as a measure of the ground magnetic disturbance level.We found that the timing of the geomagnetic minimum depends on the latitude region: corresponding to the minimum of sunspot cycle 22 (in 1996), the geomagnetic minimum occurred between the geomagnetic latitudes 57-61 in 1996 and at the latitudes 64-67 in 1997, which are the average auroral oval latitudes. During sunspot cycle 23, all latitude regions experienced the minimum in 2009, a year after the sunspot minimum. These timing differences are due to the latitude dependence of the 10 s daily SD on the different solar wind drivers. In the latitude region of 64-67 , the impact of the high-speed solar wind streams (HSSs) on the geomagnetic activity is the most pronounced compared to the other latitude groups, while in the latitude region of 57-61 , the importance of the coronal mass ejections (CMEs) dominates. The geomagnetic activity maxima during ascending solar cycle phases are typically caused by CME activity and occur especially in the oval and sub-auroral regions. The strongest geomagnetic activity occurs during the descending solar cycle phases due to a mixture of CME and HSS activity. Closer to the solar minimum, less severe geomagnetic activity is driven by HSSs and mainly visible in the poleward part of the auroral region. According to our study, however, the timing of the geomagnetic activity minima (and maxima) in different latitude bands is different, due to the relative importance of different solar wind drivers at different latitudes.

  3. The Neoproterozoic Drift History of Laurentia: a Critical Evaluation and new Palaeomagnetic Data from Northern and Eastern Greenland

    DEFF Research Database (Denmark)

    Christiansen, Jørgen Løye

    Laurentia occupies a critical position in palaeogeographic models for the Neoproterozoic, forming the core of Rodinia Supercontinent. The breakup of Rodinia in the late Neoproterozic was marked by the dispersal of its various constituent continental fragments, concomitant with major episodes...... of the available poles. We present new palaeomagnetic data from the Neoproterozoic sucessions of northern and eastern Greenland that confirm that Laurentia drifted into high latitudes during the late Neoproterozoic. Detailed investigation of the uppermost Eleonore Bay Supergroup (Sturtian?), yields a stable...

  4. Higher latitude and lower solar radiation influence on anaphylaxis in Chilean children.

    Science.gov (United States)

    Hoyos-Bachiloglu, Rodrigo; Morales, Pamela S; Cerda, Jaime; Talesnik, Eduardo; González, Gilberto; Camargo, Carlos A; Borzutzky, Arturo

    2014-06-01

    Recent studies suggest an association between higher latitude, a proxy of vitamin D (VD) status, and allergic diseases. Chile provides an ideal setting to study this association due to its latitude span and high rates of VD deficiency in southern regions. The aim of this study is to explore the associations of latitude and solar radiation with anaphylaxis admission rates. We reviewed anaphylaxis admissions in Chile's hospital discharge database between 2001 and 2010 and investigated associations with latitude and solar radiation. 2316 anaphylaxis admissions were registered. Median age of patients was 41 yr; 53% were female. National anaphylaxis admission rate was 1.41 per 100,000 persons per year. We observed a strong north-south increasing gradient of anaphylaxis admissions (β 0.04, p = 0.01), with increasing rates south of latitude 34°S. A significant association was also observed between solar radiation and anaphylaxis admissions (β -0.11, p = 0.009). Latitude was associated with food-induced (β 0.05, p = 0.02), but not drug-induced (β -0.002, p = 0.27), anaphylaxis. The association between latitude and food-induced anaphylaxis was significant in children (β 0.01, p = 0.006), but not adults (β 0.003, p = 0.16). Anaphylaxis admissions were not associated with regional sociodemographic factors like poverty, rurality, educational level, ethnicity, or physician density. Anaphylaxis admission rates in Chile are highest at higher latitudes and lower solar radiation, used as proxies of VD status. The associations appear driven by food-induced anaphylaxis. Our data support a possible role of VD deficiency as an etiological factor in the high anaphylaxis admission rates found in southern Chile. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Evaluation of Land Surface Models in Reproducing Satellite-Derived LAI over the High-Latitude Northern Hemisphere. Part I: Uncoupled DGVMs

    Directory of Open Access Journals (Sweden)

    Ning Zeng

    2013-10-01

    Full Text Available Leaf Area Index (LAI represents the total surface area of leaves above a unit area of ground and is a key variable in any vegetation model, as well as in climate models. New high resolution LAI satellite data is now available covering a period of several decades. This provides a unique opportunity to validate LAI estimates from multiple vegetation models. The objective of this paper is to compare new, satellite-derived LAI measurements with modeled output for the Northern Hemisphere. We compare monthly LAI output from eight land surface models from the TRENDY compendium with satellite data from an Artificial Neural Network (ANN from the latest version (third generation of GIMMS AVHRR NDVI data over the period 1986–2005. Our results show that all the models overestimate the mean LAI, particularly over the boreal forest. We also find that seven out of the eight models overestimate the length of the active vegetation-growing season, mostly due to a late dormancy as a result of a late summer phenology. Finally, we find that the models report a much larger positive trend in LAI over this period than the satellite observations suggest, which translates into a higher trend in the growing season length. These results highlight the need to incorporate a larger number of more accurate plant functional types in all models and, in particular, to improve the phenology of deciduous trees.

  6. Automated Detection of Thermo-Erosion in High Latitude Ecosystems

    Science.gov (United States)

    Lara, M. J.; Chipman, M. L.; Hu, F.

    2017-12-01

    conditions or wildfire. This work demonstrates the utility of meso-scale high frequency remote sensing products for advancing high latitude permafrost research.

  7. Climate change moisture stresses on northern coniferous forests

    International Nuclear Information System (INIS)

    Wein, R.W.; Hogg, E.H.

    1990-01-01

    The predictions of general circulation models suggest major climatic changes for high latitude tundra ecosystems and lower latitude forested ecosystems. Of particular interest to Canadians is the predicted shift in the boreal forest climate northward, with a considerable northern expansion of the grasslands of western Canada. Reductions in soil moisture would have both direct and indirect effects on forest composition and productivity. The most important likely physical factors subject to alteration are permafrost, hydrological regimes and fire. Under warmer and drier conditions, potential fire burn frequency will increase, and might lead to greater proportions of jack pine than previously present. It is anticipated that permafrost will disappear from the extensive discontinuous permafrost zone where soil permafrost temperatures are presently -3 degree C or higher. In wet sites, melting of the permafrost could lead to drowning of forests as soils subside and become temporarily waterlogged. In more northerly areas, forest growth may increase in drier areas as the depth of the active layer increases. Fire may be a significant feed-back mechanism that could enhance the greenhouse effect. The estimated proportion of carbon in Canadian peatlands is in the order of 170 gigatonnes, whereas one-tenth of a gigatonne of carbon is released annually by fossil fuel combustion in Canada. 11 refs

  8. Tracking strategy for photovoltaic solar systems in high latitudes

    International Nuclear Information System (INIS)

    Quesada, Guillermo; Guillon, Laura; Rousse, Daniel R.; Mehrtash, Mostafa; Dutil, Yvan; Paradis, Pierre-Luc

    2015-01-01

    Highlights: • In cloudy conditions tracking the sun is ineffective. • A methodology to estimate a theoretical threshold for solar tracking was developed. • A tracking strategy to maximize electricity production was proposed. - Abstract: Several studies show that from about 20% to 50% more solar energy can be recovered by using photovoltaic systems that track the sun rather than systems set at a fixed angle. For overcast or cloudy days, recent studies propose the use of a set position in which each photovoltaic panel faces toward the zenith (horizontal position). Compared to a panel that follows the sun’s path, this approach claims that a horizontal panel increases the amount of solar radiation captured and subsequently the quantity of electricity produced. The present work assesses a solar tracking photovoltaic panel hourly and seasonally in high latitudes. A theoretical method based on an isotropic sky model was formulated, implemented, and used in a case study analysis of a grid-connected photovoltaic system in Montreal, Canada. The results obtained, based on the definition of a critical hourly global solar radiation, were validated numerically and experimentally. The study confirmed that a zenith-set sun tracking strategy for overcast or mostly cloudy days in summer is not advantageous

  9. Temperature and light conditions at different latitudes affect sensory quality of broccoli florets (Brassica oleracea L. var. italica).

    Science.gov (United States)

    Johansen, Tor J; Mølmann, Jørgen Ab; Bengtsson, Gunnar B; Schreiner, Monica; Velasco, Pablo; Hykkerud, Anne L; Cartea, Elena; Lea, Per; Skaret, Josefine; Seljåsen, Randi

    2017-08-01

    Broccoli (Brassica oleracea L. var. italica) is a popular vegetable grown at a wide range of latitudes. Plants were grown in 2009-2011 in pots with standardized soil, irrigation and nutrient supply under natural temperature and light conditions at four locations (42-70° N). A descriptive sensory analysis of broccoli florets was performed by a trained panel to examine any differences along the latitudinal gradient for 30 attributes within appearance, odour, taste/flavour and texture. Average results over three summer seasons in Germany, southern Norway and northern Norway showed that the northernmost location with low temperatures and long days had highest scores for bud coarseness and uniform colour, while broccoli from the German location, with high temperatures and shorter days, had highest intensity of colour hue, whiteness, bitter taste, cabbage flavour, stale flavour and watery flavour. Results from two autumn seasons at the fourth location (42° N, Spain), with low temperatures and short days, tended toward results from the two northernmost locations, with an exception for most texture attributes. Results clearly demonstrate that temperature and light conditions related to latitude and season affect the sensory quality of broccoli florets. Results may be used in marketing special quality regional or seasonal products. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  10. High-Latitude Neutral Mass Density Maxima

    Science.gov (United States)

    Huang, C. Y.; Huang, Y.; Su, Y.-J.; Huang, T.; Sutton, E. K.

    2017-10-01

    Recent studies have reported that thermospheric effects due to solar wind driving can be observed poleward of auroral latitudes. In these papers, the measured neutral mass density perturbations appear as narrow, localized maxima in the cusp and polar cap. They conclude that Joule heating below the spacecraft is the cause of the mass density increases, which are sometimes associated with local field-aligned current structures, but not always. In this paper we investigate neutral mass densities measured by accelerometers on the CHAllenging Minisatellite Payload (CHAMP) and Gravity Recovery and Climate Experiment (GRACE) spacecraft from launch until years 2010 (CHAMP) and 2012 (GRACE), approximately 10 years of observations from each satellite. We extract local maxima in neutral mass densities over the background using a smoothing window with size of one quarter of the orbit. The maxima have been analyzed for each year and also for the duration of each set of satellite observations. We show where they occur, under what solar wind conditions, and their relation to magnetic activity. The region with the highest frequency of occurrence coincides approximately with the cusp and mantle, with little direct evidence of an auroral zone source. Our conclusions agree with the "hot polar cap" observations that have been reported and studied in the past.

  11. Effect of latitude on the potential for formation of photochemical smog

    Energy Technology Data Exchange (ETDEWEB)

    Neiboer, H [Central Laboratorium TNO, Delft, Netherlands; Carter, W P.L.; Lloyd, A C; Pitts, Jr, J N

    1976-01-01

    The effect of latitude on the potential for the formation of photochemical smog has been assessed. Calculations suggest that at the summer solstice, the integrated sunlight intensity at Rotterdam or Fairbanks (Alaska) is very similar to that in Los Angeles. Computations carried out, assuming the same pollutant emission inventory for the three locations, showed that ozone and PAN dosages depend more on the integrated light intensity than on the nature of the light intensity distribution with time. Therefore, if factors such as emissions and meteorological conditions are equal, the potential for significant photochemical smog formation during the summer months is similar for Los Angeles (34/sup 0/N) and northern cities such as Rotterdam (52/sup 0/N) and Nome or Fairbanks, Alaska (65/sup 0/N).

  12. Polar conic current sheets as sources and channels of energetic particles in the high-latitude heliosphere

    Science.gov (United States)

    Khabarova, Olga; Malova, Helmi; Kislov, Roman; Zelenyi, Lev; Obridko, Vladimir; Kharshiladze, Alexander; Tokumaru, Munetoshi; Sokół, Justyna; Grzedzielski, Stan; Fujiki, Ken'ichi; Malandraki, Olga

    2017-04-01

    The existence of a large-scale magnetically separated conic region inside the polar coronal hole has been predicted by the Fisk-Parker hybrid heliospheric magnetic field model in the modification of Burger and co-workers (Burger et al., ApJ, 2008). Recently, long-lived conic (or cylindrical) current sheets (CCSs) have been found from Ulysses observations at high heliolatitudes (Khabarova et al., ApJ, 2017). The characteristic scale of these structures is several times lesser than the typical width of coronal holes, and the CCSs can be observed at 2-3 AU for several months. CCS crossings in 1994 and 2007 are characterized by sharp decreases in the solar wind speed and plasma beta typical for predicted profiles of CCSs. In 2007, a CCS was detected directly over the South Pole and strongly highlighted by the interaction with comet McNaught. The finding is confirmed by restorations of solar coronal magnetic field lines that reveal the occurrence of conic-like magnetic separators over the solar poles both in 1994 and 2007. Interplanetary scintillation data analysis also confirms the existence of long-lived low-speed regions surrounded by the typical polar high-speed solar wind in solar minima. The occurrence of long-lived CCSs in the high-latitude solar wind could shed light on how energetic particles reach high latitudes. Energetic particle enhancements up to tens MeV were observed by Ulysses at edges of CCSs both in 1994 and 2007. In 1994 this effect was clearer, probably due to technical reasons. Accelerated particles could be produced either by magnetic reconnection at the edges of a CCS in the solar corona or in the solar wind. We discuss the role of high-latitude CCSs in propagation of energetic particles in the heliosphere and revisit previous studies of energetic particle enhancements at high heliolatitudes. We also suggest that the existence of a CCS can modify the distribution of the solar wind as a function of heliolatitude and consequently impact ionization

  13. Free tropospheric measurements of CS2 over a 45 deg N to 45 deg S latitude range

    Science.gov (United States)

    Tucker, B. J.; Maroulis, P. J.; Bandy, A. R.

    1985-01-01

    The mean value obtained from 52 free tropospheric measurements of CS2 over the 45 deg N-45 deg S latitude range was 5.7 pptv, with standard deviation and standard error of 1.9 and 0.3 pptv, respectively. Large fluctuations in the CS2 concentration are observed which reflect the apparent short atmospheric residence time and inhomogeneities in the surface sources of CS2. The amounts of CS2 in the Northern and Southern Hemispheres are statistically equal.

  14. Dawn song in natural and artificial continuous day: Light pollution affects songbirds at high latitudes.

    Science.gov (United States)

    Derryberry, Elizabeth P

    2017-10-01

    In Focus: Da Silva, A., & Kempenaers, B. (2017). Singing from North to South: Latitudinal variation in timing of dawn singing under natural and artificial light conditions. Journal of Animal Ecology, 86, 1286-1297. doi: 10.1111/1365-2656.12739 Satellite images of the world at night show bright dots connected by glowing lines crisscrossing the globe. As these connect-the-dots become brighter and expand into more and more remote regions, much of the flora and fauna of the world are experiencing evolutionarily unprecedented levels of light at night. Light cues are essential to most physiological and behavioural processes, and so the need to measure the effects of light pollution on these processes is critical. In this issue, Da Silva and Kempenaers take on this task using an important reproductive behaviour in songbirds-dawn song. The geographic, temporal and taxonomic breadth of sampling in this study allows for a close examination of a potentially complex interaction between light pollution and natural variation in the behaviour of dawn singing across latitude, season and species. Their extensive dataset highlights complexity in how songbirds respond to light pollution. Although light pollution has a strong effect on the timing of dawn song, not all songbirds respond the same way to light pollution, and the effects of light pollution vary with changes in natural light levels. Early dawn singers show more flexibility in the timing of dawn song across the season and across latitudes than late dawn singers, and also appear less affected by light pollution at high latitudes than are late dawn singers. These findings suggest that not all songbirds are responding to artificial continuous daylight as they do to natural continuous daylight, highlighting the general need to measure the fitness effects of light pollution. © 2017 The Author. Journal of Animal Ecology © 2017 British Ecological Society.

  15. Multi-event study of high-latitude thermospheric wind variations at substorm onset with a Fabry-Perot interferometer at Tromsoe, Norway

    Science.gov (United States)

    Xu, H.; Shiokawa, K.; Oyama, S. I.; Otsuka, Y.

    2017-12-01

    We studied the high-latitude thermospheric wind variations near the onset time of isolated substorms. Substorm-related energy input from the magnetosphere to the polar ionosphere modifies the high-latitude ionosphere and thermosphere. For the first time, this study showed the characteristics of high-latitude thermospheric wind variations at the substorm onset. We also investigated the possibility of these wind variations as a potential trigger of substorm onset by modifying the ionospheric current system (Kan, 1993). A Fabry-Perot interferometer (FPI) at Tromsoe, Norway provided wind measurements estimated from Doppler shift of both red-line (630.0 nm for the F region) and green-line (557.7 nm for the E region) emissions of aurora and airglow. We used seven-year data sets obtained from 2009 to 2015 with a time resolution of 13 min. We first identified the onset times of local isolated substorms using ground-based magnetometer data obtained at the Tromsoe and Bear Island stations, which belongs to the IMAGE magnetometer chain. We obtained 4 red-line events and 5 green-line events taken place at different local times. For all these events, the peak locations of westward ionospheric currents identified by the ground-based magnetometer chain were located at the poleward side of Tromsoe. Then, we calculated two weighted averages of wind velocities for 30 min around the onset time and 30 min after the onset time of substorms. We evaluated differences between these two weighted averages to estimate the strength of wind changes. The observed wind changes at these substorm onsets were less than 49 m/s (26 m/s) for red-line (green-line) events, which are much smaller than the typical plasma convection speed. This indicates that the plasma motion caused by substorm-induced thermospheric winds through ion-neutral collisions is a minor effect as the driver of high-latitude plasma convection, as well as the triggering of substorm onset. We discuss possible causes of these

  16. Lake trout otolith chronologies as multidecadal indicators of high-latitude freshwater ecosystems

    Science.gov (United States)

    Black, B.A.; Von Biela, V.R.; Zimmerman, C.E.; Brown, Randy J.

    2013-01-01

    High-latitude ecosystems are among the most vulnerable to long-term climate change, yet continuous, multidecadal indicators by which to gauge effects on biology are scarce, especially in freshwater environments. To address this issue, dendrochronology (tree-ring analysis) techniques were applied to growth-increment widths in otoliths from lake trout (Salvelinus namaycush) from the Chandler Lake system, Alaska (68.23°N, 152.70°W). All otoliths were collected in 1987 and exhibited highly synchronous patterns in growth-increment width. Increments were dated, the widths were measured, and age-related growth declines were removed using standard dendrochronology techniques. The detrended time series were averaged to generate an annually resolved chronology, which continuously spanned 1964–1984. The chronology positively and linearly correlated with August air temperature over the 22-year interval (p fish metabolic rate or lake productivity. Given the broad distribution of lake trout within North America, this study suggests that otolith chronologies could be used to examine responses between freshwater ecosystems and environmental variability across a range of temporal and spatial scales.

  17. Relationship between variability of the semidiurnal tide in the Northern Hemisphere mesosphere and quasi-stationary planetary waves throughout the global middle atmosphere

    Directory of Open Access Journals (Sweden)

    X. Xu

    2009-11-01

    Full Text Available To investigate possible couplings between planetary waves and the semidiurnal tide (SDT, this work examines the statistical correlations between the SDT amplitudes observed in the Northern Hemisphere (NH mesosphere and stationary planetary wave (SPW with wavenumber S=1 (SPW1 amplitudes throughout the global stratosphere and mesosphere. The latter are derived from the Aura-MLS temperature measurements. During NH summer-fall (July–October, the mesospheric SDT amplitudes observed at Svalbard (78° N and Eureka (80° N usually do not show persistent correlations with the SPW1 amplitudes in the opposite hemisphere. Although the SDT amplitudes observed at lower latitudes (~50–70° N, especially at Saskatoon (52° N, are often shown to be highly and positively correlated with the SPW1 amplitudes in high southern latitudes, these correlations cannot be sufficiently explained as evidence for a direct physical link between the Southern Hemisphere (SH winter-early spring SPW and NH summer-early fall mesospheric SDT. This is because the migrating tide's contribution is usually dominant in the mid-high latitude (~50–70° N NH mesosphere during the local late summer-early fall (July–September. The numerical correlation is dominated by similar low-frequency variability or trends between the amplitudes of the NH SDT and SH SPW1 during the respective equinoctial transitions. In contradistinction, during NH winter (November–February, the mesospheric SDT amplitudes at northern mid-high latitudes (~50–80° N are observed to be significantly and positively correlated with the SPW1 amplitudes in the same hemisphere in most cases. Because both the SPW and migrating SDT are large in the NH during the local winter, a non-linear interaction between SPW and migrating SDT probably occurs, thus providing a global non-migrating SDT. This is consistent with observations of SDT in Antarctica that are large in summer than in winter. It is suggested that

  18. The single event upset environment for avionics at high latitude

    International Nuclear Information System (INIS)

    Sims, A.J.; Dyer, C.S.; Peerless, C.L.; Farren, J.

    1994-01-01

    Modern avionic systems for civil and military applications are becoming increasingly reliant upon embedded microprocessors and associated memory devices. The phenomenon of single event upset (SEU) is well known in space systems and designers have generally been careful to use SEU tolerant devices or to implement error detection and correction (EDAC) techniques where appropriate. In the past, avionics designers have had no reason to consider SEU effects but is clear that the more prevalent use of memory devices combined with increasing levels of IC integration will make SEU mitigation an important design consideration for future avionic systems. To this end, it is necessary to work towards producing models of the avionics SEU environment which will permit system designers to choose components and EDAC techniques which are based on predictions of SEU rates correct to much better than an order of magnitude. Measurements of the high latitude SEU environment at avionics altitude have been made on board a commercial airliner. Results are compared with models of primary and secondary cosmic rays and atmospheric neutrons. Ground based SEU tests of static RAMs are used to predict rates in flight

  19. Effects of space weather on high-latitude ground systems

    Science.gov (United States)

    Pirjola, Risto

    Geomagnetically induced currents (GIC) in technological systems, such as power grids, pipelines, cables and railways, are a ground manifestation of space weather. The first GIC observations were already made in early telegraph equipment more than 150 years ago. In power networks, GIC may saturate transformers with possible harmful consequences extending even to a collapse of the whole system or to permanent damage of transformers. In pipelines, GIC and the associated pipe-to-soil voltages may enhance corrosion or disturb surveys associated with corrosion control. GIC are driven by the geoelectric field induced by a geomagnetic variation at the Earth’s surface. The electric and magnetic fields are primarily produced by ionospheric currents and secondarily affected by the ground conductivity. Of great importance is the auroral electrojet with other rapidly varying currents indicating that GIC are a particular high-latitude problem. In this paper, we summarize the GIC research done in Finland during about 25 years, and discuss the calculation of GIC in a given network. Special attention is paid to modelling a power system. It is shown that, when considering GIC at a site, it is usually sufficient to take account for a smaller grid in the vicinity of the particular site. Modelling GIC also provides a basis for developing forecasting and warning methods of GIC.

  20. The Dependence of the Peak Velocity of High-Speed Solar Wind Streams as Measured in the Ecliptic by ACE and the STEREO satellites on the Area and Co-latitude of Their Solar Source Coronal Holes.

    Science.gov (United States)

    Hofmeister, Stefan J; Veronig, Astrid; Temmer, Manuela; Vennerstrom, Susanne; Heber, Bernd; Vršnak, Bojan

    2018-03-01

    We study the properties of 115 coronal holes in the time range from August 2010 to March 2017, the peak velocities of the corresponding high-speed streams as measured in the ecliptic at 1 AU, and the corresponding changes of the Kp index as marker of their geoeffectiveness. We find that the peak velocities of high-speed streams depend strongly on both the areas and the co-latitudes of their solar source coronal holes with regard to the heliospheric latitude of the satellites. Therefore, the co-latitude of their source coronal hole is an important parameter for the prediction of the high-speed stream properties near the Earth. We derive the largest solar wind peak velocities normalized to the coronal hole areas for coronal holes located near the solar equator and that they linearly decrease with increasing latitudes of the coronal holes. For coronal holes located at latitudes ≳ 60°, they turn statistically to zero, indicating that the associated high-speed streams have a high chance to miss the Earth. Similarly, the Kp index per coronal hole area is highest for the coronal holes located near the solar equator and strongly decreases with increasing latitudes of the coronal holes. We interpret these results as an effect of the three-dimensional propagation of high-speed streams in the heliosphere; that is, high-speed streams arising from coronal holes near the solar equator propagate in direction toward and directly hit the Earth, whereas solar wind streams arising from coronal holes at higher solar latitudes only graze or even miss the Earth.

  1. Impact of the eocene on the evolution of Pinus L.

    Science.gov (United States)

    Constance I. Millar

    1993-01-01

    Pinus evolved in middle latitudes of the Northern Hemisphere in the middle Mesozoic. By the late Cretaceous pines had spread east and west throughout Laurasia, attaining high diversity in eastern Asia, the eastern United States, and western Europe, but having little representation at high northern latitudes. Changing climates in the early Tertiary...

  2. Possible crater-based pingos, paleolakes and periglacial landscapes at the high latitudes of Utopia Planitia, Mars

    Science.gov (United States)

    Soare, R. J.; Conway, S. J.; Pearce, G. D.; Dohm, J. M.; Grindrod, P. M.

    2013-08-01

    Closed-system pingos (CSPs) are perennial ice-cored mounds that evolve in relatively deep and continuous permafrost. They occur where thermokarst lakes either have lost or are losing their water by drainage or evaporation and by means of freeze-thaw cycling, permafrost aggradation and pore-water migration. The presence of CSPs on Mars, particularly on late-Amazonian Epoch terrain at near-polar latitudes, would indicate: (1) the antecedent occurrence of ponded water at the mound-formation sites; (2) freeze-thaw cycling of this water; and (3) boundary-conditions of pressure and temperature at or above the triple point of water much more recently and further to the north than has been thought possible. In 2005 we studied two crater-floor landscapes in northern Utopia Planitia and used MOC narrow-angle images to describe mounds within these landscapes that shared a suite of geological characteristics with CSPs on Earth. Here, we show the results of a circum-global search for similar crater-floor landscapes at latitudes >˜55°N. The search incorporates all relevant MOC and HiRISE images released since 2005. In addition to the two periglacially suggestive crater-floor landscapes observed by us earlier, we have identified three other crater floors with similar landscapes. Interestingly, each of the five mound-bearing craters occur within a tight latitudinal-band (˜64-69°N); this could be a marker of periglacial landscape-modification on a regional scale. Just to the north of the crater-based pingo-like mounds Conway et al. have identified large (km-scale) crater-based perennial ice-domes. They propose that the ice domes develop when regional polar-winds transport and precipitate icy material onto the floor of their host craters. Under a slightly different obliquity-solution ice domes could have accumulated at the lower latitudes where the putative CSPs have been observed. Subsequently, were temperatures to have migrated close to or at 0 °C the ice domes could have

  3. Ground-based and satellite observations of high-latitude auroral activity in the dusk sector of the auroral oval

    Directory of Open Access Journals (Sweden)

    K. Kauristie

    Full Text Available On 7 December 2000, during 13:30–15:30 UT the MIRACLE all-sky camera at Ny Ålesund observed auroras at high-latitudes (MLAT ~ 76 simultaneously when the Cluster spacecraft were skimming the magnetopause in the same MLT sector (at ~ 16:00–18:00 MLT. The location of the auroras (near the ionospheric convection reversal boundary and the clear correlation between their dynamics and IMF variations suggests their close relationship with R1 currents. Consequently, we can assume that the Cluster spacecraft were making observations in the magnetospheric region associated with the auroras, although exact magnetic conjugacy between the ground-based and satellite observations did not exist. The solar wind variations appeared to control both the behaviour of the auroras and the magnetopause dynamics. Auroral structures were observed at Ny Ålesund especially during periods of negative IMF BZ. In addition, the Cluster spacecraft experienced periodic (T ~ 4 - 6 min encounters between magnetospheric and magnetosheath plasmas. These undulations of the boundary can be interpreted as a consequence of tailward propagating magnetopause surface waves. Simultaneous dusk sector ground-based observations show weak, but discernible magnetic pulsations (Pc 5 and occasionally periodic variations (T ~ 2 - 3 min in the high-latitude auroras. In the dusk sector, Pc 5 activity was stronger and had characteristics that were consistent with a field line resonance type of activity. When IMF BZ stayed positive for a longer period, the auroras were dimmer and the spacecraft stayed at the outer edge of the magnetopause where they observed electromagnetic pulsations with T ~ 1 min. We find these observations interesting especially from the viewpoint of previously presented studies relating poleward-moving high-latitude auroras with pulsation activity and MHD waves propagating at the magnetospheric boundary layers

  4. Atmospheric sulfur and climate changes: a modelling study at mid and high-southern latitudes

    International Nuclear Information System (INIS)

    Castebrunet, H.

    2007-09-01

    The mid and high-southern latitudes are still marginally affected by anthropogenic sulfur emissions. They are the only regions in the world where the natural cycle of the atmospheric sulfur may still be observed. Sulfur aerosols are well-known for their radiative impact, and thus interact with climate. Climate can in turn affect atmospheric sulfur sources, distribution and chemistry. Antarctic ice cores provide information on the evolution of climate and sulfur deposition at the surface of the ice sheet at glacial-interglacial time scales. The aim of this thesis is to develop and use modeling towards a better understanding of the atmospheric sulfur cycle in antarctic and sub-antarctic regions. Ice core data are used to validate model results under glacial climate conditions. An Atmospheric General Circulation Model (AGCM) coupled to a sulfur chemistry module is used: the LMD-ZTSulfur model, version 4. An update of both the physical and chemical parts of the model. The model was first performed. The impact of there changes on modelled sulfur cycle are evaluated for modern climate. Further, boundary conditions are adapted to simulate the atmospheric circulation and sulfur cycle at the Last Glacial Maximum, approximately 20,000 years ago. In the model, sulfur is found to be highly sensitive to antarctic sea-ice coverage, which is still poorly known during the ice age. An original dataset of ice-age sea-ice coverage was developed. Its impact on the oceanic emissions of dimethyl sulfide, main precursor of sulfur aerosols at high-southern latitudes, is discussed. Using the same oceanic sulfur reservoirs as for present day climate, the model broadly reproduces the glacial deposits of sulfur aerosols on the Antarctic plateau, suggesting little impact of climate on oceanic sulfur production in the Antarctic region. Sensitivity tests were carried out to draw an up-to-date status of major uncertainties and difficulties facing future progress in understanding atmospheric

  5. Seasonal and diurnal variability of the meteor flux at high latitudes observed using PFISR

    Science.gov (United States)

    Sparks, J. J.; Janches, D.; Nicolls, M. J.; Heinselman, C. J.

    2009-05-01

    We report in this and a companion paper [Fentzke, J.T., Janches, D., Sparks, J.J., 2008. Latitudinal and seasonal variability of the micrometeor input function: A study using model predictions and observations from Arecibo and PFISR. Journal of Atmospheric and Solar-Terrestrial Physics, this issue, doi:10.1016/j.jastp.2008.07.015] a complete seasonal study of the micrometeor input function (MIF) at high latitudes using meteor head-echo radar observations performed with the Poker Flat Incoherent Scatter Radar (PFISR). This flux is responsible for a number of atmospheric phenomena; for example, it could be the source of meteoric smoke that is thought to act as condensation nuclei in the formation of ice particles in the polar mesosphere. The observations presented here were performed for full 24-h periods near the summer and winter solstices and spring and autumn equinoxes, times at which the seasonal variability of the MIF is predicted to be large at high latitudes [Janches, D., Heinselman, C.J., Chau, J.L., Chandran, A., Woodman, R., 2006. Modeling of the micrometeor input function in the upper atmosphere observed by High Power and Large Aperture Radars, JGR, 11, A07317, doi:10.1029/2006JA011628]. Precise altitude and radar instantaneous line-of-sight (radial) Doppler velocity information are obtained for each of the hundreds of events detected every day. We show that meteor rates, altitude, and radial velocity distributions have a large seasonal dependence. This seasonal variability can be explained by a change in the relative location of the meteoroid sources with respect to the observer. Our results show that the meteor flux into the upper atmosphere is strongly anisotropic and its characteristics must be accounted for when including this flux into models attempting to explain related aeronomical phenomena. In addition, the measured acceleration and received signal strength distribution do not seem to depend on season; which may suggest that these observed

  6. Structure of the low-latitude boundary layer

    International Nuclear Information System (INIS)

    Sckopke, N.; Paschmann, G.; Haerendel, G.; Sonnerup, B.U.O.; Bame, S.J.; Forbes, T.G.; Hones, E.W. Jr.; Russell, C.T.

    1981-01-01

    Observations at high temporal resolution of the frontside magnetopause and plasma boundary layer, made with the Los Alamos Scientific Laboratory/Max-Planck-Institut, Institut fuer Extraterrestrische Physik, fast plasma analyzer on board the Isee 1 and 2 spacecraft, have revealed a complex quasi-periodic structure of some of the observed boundary layers: cool tailward streaming boundary layer plasma is seen intermittently, with intervening periods of hot tenuous plasma which has properties similar to the magnetospheric population. While individual encounters with the boundary layer plasma last only a few minutes, the total observation time may extend over 1 hour or more. One such crossing, at 0800 hours local time and 40 0 northern GSM latitude, is examined in detail, including a quantitative comparison of the boundary layer entry and exit times of the two spacecraft. The data are found to be compatible with a boundary layer that is always attached to the magnetopause but where the layer thickness has a large-scale spatial modulation pattern which travels tailward past the spacecraft. Included are periods when the thickness is essentially zero and others when it is of the order of 1 R/sub E/. The duration of these periods is highly variable but is typically in the range of 2--5 min, corresponding to a distance along the magnetopause of the order of 3--8 R/sub E/. The observed boundary layer features include a steep density gradient at the magnetopause, with an approximately constant boundary layer plasma density amounting to about 25% of the magnetosheath density, and a second abrupt density decrease at the inner edge of the layer. It also appears that the purely magnetospheric plasma is ocassionally separated from the boundary layer by a halo region in which the plasma density is somewhat higher, and the temperature somewhat lower, than in the magnetosphere. A tentative model is proposed

  7. NeQuick 2 and IRI Plas VTEC predictions for low latitude and South American sector

    Science.gov (United States)

    Ezquer, R. G.; Scidá, L. A.; Migoya Orué, Y.; Nava, B.; Cabrera, M. A.; Brunini, C.

    2018-04-01

    Using vertical total electron content (VTEC) measurements obtained from GPS satellite signals the capability of the NeQuick 2 and IRI Plas models to predict VTEC over the low latitude and South American sector is analyzed. In the present work both models were used to calculate VTEC up to the height of GPS satellites. Also, comparisons between the performance of IRI Plas and IRI 2007 have been done. The data correspond to June solstice and September equinox 1999 (high solar activity) and they were obtained at nine stations. The considered latitude range extends from 18.4°N to -64.7°N and the longitude ranges from 281.3°E to 295.9°E in the South American sector. The greatest discrepancies among model predictions and the measured VTEC are obtained at low latitudes stations placed in the equatorial anomaly region. Underestimations as strong as 40 TECU [1 TECU = 1016 m-2] can be observed at BOGT station for September equinox, when NeQuick2 model is used. The obtained results also show that: (a) for June solstice, in general the performance of IRI Plas for low latitude stations is better than that of NeQuick2 and, vice versa, for highest latitudes the performance of NeQuick2 is better than that of IRI Plas. For the stations TUCU and SANT both models have good performance; (b) for September equinox the performances of the models do not follow a clearly defined pattern as in the other season. However, it can be seen that for the region placed between the Northern peak and the valley of the equatorial anomaly, in general, the performance of IRI Plas is better than that of NeQuick2 for hours of maximum ionization. From TUCU to the South, the best TEC predictions are given by NeQuick2. The source of the observed deviations of the models has been explored in terms of CCIR foF2 determination in the available ionosonde stations in the region. Discrepancies can be also related to an unrealistic shape of the vertical electron density profile and or an erroneous prediction of

  8. Existence of a component corotating with the earth in high-latitude disturbance magnetic fields

    Science.gov (United States)

    Suzuki, A.; Kim, J. S.; Sugiura, M.

    1982-01-01

    A study of the data from the high-latitude North American IMS network of magnetic stations suggests that there is a component in substorm perturbations that corotates with the earth. It is as yet not certain whether the existence of this component stems from the corotation of a part of the magnetospheric plasma involved in the substorm mechanism or if it is a 'phase change' resulting from the control of the substorm manifestations by the earth's main magnetic field which is not axially symmetric. There are other geophysical phenomena showing a persistence of longitudinal variations corotating with the earth. These phenomena are of significance for a better understanding of ionosphere-magnetosphere coupling.

  9. Temporal-spatial patterns of three types of pesticide loadings in a middle-high latitude agricultural watershed.

    Science.gov (United States)

    Ouyang, Wei; Cai, Guanqing; Tysklind, Mats; Yang, Wanyin; Hao, Fanghua; Liu, Hongbin

    2017-10-01

    Pesticide loadings to watersheds increase during agricultural development and may vary in accordance with different crop types and seasons. High pesticide loadings can potentially result in polluted stream water. The objective of this study was to determine the pesticide loadings and concentrations of three typical pesticides (atrazine, oxadiazon, and isoprothiolane) in river water from a middle-high latitude agricultural watershed in northern China. During this study, we evaluated the watershed pesticide loss patterns for two crop types over three decades. For this purpose, we integrated data from field investigations, laboratory experiments, and modeling simulations involving a distributed hydrological solute transport model (Soil and Water Assessment Tool, SWAT). SWAT was employed to compare the temporal-spatial fate and behaviors of atrazine, oxadiazon, and isoprothiolane from 1990 to 2014 in a watershed area amounting to 141.5 km 2 . The results showed that the three pesticides could be detected at different locations throughout the watershed, and isoprothiolane was detected at the maximum value of 1.082 μg/L in surface runoff of paddy land. The temporal trend for the yearly loading of atrazine decreased slightly over time, but the trends for oxadiazon and isoprothiolane increased markedly over an 18-year analysis period. In regard to the pesticide concentrations in water, atrazine was associated with the largest value of nearly 1.4 μg/L. July and August were the found to be prime periods for pesticide loss from paddy land, and the biggest monthly loss of atrazine from dryland appeared in June. Under similar usage conditions, isoprothiolane loading from paddy fields ranked as the largest one among the three types of pesticides and reached up to 17 g/ha. Limited monitoring data were useful for validating the model, which yielded valuable temporal-spatial data on the fate of pesticides in this watershed. With the expansion of paddy rice cultivation, risks

  10. Using GPS TEC measurements to probe ionospheric spatial spectra at mid-latitudes

    Science.gov (United States)

    Lay, E. H.; Parker, P. A.; Light, M. E.; Carrano, C. S.; Debchoudhury, S.; Haaser, R. A.

    2017-12-01

    The physics of how random ionospheric structure causes signal degradation is well understood as weak forward scattering through an effective diffraction grating created by plasma irregularities in the ionosphere. However, the spatial scale spectrum of those irregularities required for input into scintillation models and models of traveling ionospheric disturbances is poorly characterized, particularly at the kilometer to tens of kilometer scale lengths important for very-high-frequency (VHF) scintillation prediction. Furthermore, the majority of characterization studies have been performed in low-latitude or high-latitude regions where geomagnetic activity dominates the physical processes. At mid-latitudes, tropospheric and geomagnetic phenomena compete in disturbing the ionosphere, and it is not well understood how these multiple sources affect the drivers that influence the spatial spectrum. In this study, we are interested in mid-latitude electron density irregularities on the order of 10s of kilometers that would affect VHF signals. Data from the GPS networks Japan GEONET and the Plate Boundary Observatory (PBO, UNAVCO) in the western United States were analyzed for this study. Japan GEONET is a dense network of GPS receivers (station spacing of tens of km), with fairly evenly spaced positions over all of Japan. The PBO, on the other hand, has several pockets of extremely dense coverage (station spacing within a few km), but is less dense on average. We analyze a day with a large solar storm (2015/03/17, St. Patrick's Day Storm) to allow high scintillation potential at mid-latitudes, a day with low geomagnetic activity and low thunderstorm activity (2016/01/31), and a day with low geomagnetic activity and high thunderstorm activity (2015/08/02). We then perform two-dimensional spatial analyses on the TEC data from these two networks on scale lengths of 20 to 200 km to infer the spatial scale spectra.

  11. In Situ Balloon-Borne Ice Particle Imaging in High-Latitude Cirrus

    Science.gov (United States)

    Kuhn, Thomas; Heymsfield, Andrew J.

    2016-09-01

    Cirrus clouds reflect incoming solar radiation, creating a cooling effect. At the same time, these clouds absorb the infrared radiation from the Earth, creating a greenhouse effect. The net effect, crucial for radiative transfer, depends on the cirrus microphysical properties, such as particle size distributions and particle shapes. Knowledge of these cloud properties is also needed for calibrating and validating passive and active remote sensors. Ice particles of sizes below 100 µm are inherently difficult to measure with aircraft-mounted probes due to issues with resolution, sizing, and size-dependent sampling volume. Furthermore, artefacts are produced by shattering of particles on the leading surfaces of the aircraft probes when particles several hundred microns or larger are present. Here, we report on a series of balloon-borne in situ measurements that were carried out at a high-latitude location, Kiruna in northern Sweden (68N 21E). The method used here avoids these issues experienced with the aircraft probes. Furthermore, with a balloon-borne instrument, data are collected as vertical profiles, more useful for calibrating or evaluating remote sensing measurements than data collected along horizontal traverses. Particles are collected on an oil-coated film at a sampling speed given directly by the ascending rate of the balloon, 4 m s-1. The collecting film is advanced uniformly inside the instrument so that an always unused section of the film is exposed to ice particles, which are measured by imaging shortly after sampling. The high optical resolution of about 4 µm together with a pixel resolution of 1.65 µm allows particle detection at sizes of 10 µm and larger. For particles that are 20 µm (12 pixel) in size or larger, the shape can be recognized. The sampling volume, 130 cm3 s-1, is well defined and independent of particle size. With the encountered number concentrations of between 4 and 400 L-1, this required about 90- to 4-s sampling times to

  12. High Latitude Reefs: A Potential Refuge for Reef Builders

    Science.gov (United States)

    Amat, A.; Bates, N.

    2003-04-01

    Coral reefs globally show variable signs of deterioration or community structure changes due to a host of anthropogenic and natural factors. In these global scenarios, rates of calcification by reef builders such as Scleractinian corals are predicted to significantly decline in the future due to the increase in atmospheric CO_2. When considering the response of reefs to the present climate change, temperature effects should also be taken into account. Here, we investigate the simultaneous impact of temperature and CO_2 on the high-latitude Bermuda coral reef system (32^oN, 64^oE)through a series of in vitro experiments at different CO_2 levels and seasonally different summer (27^oC) and winter (20^oC) temperature conditions. Four species of Scleractinian corals (Porites astreoides, Diploria labyrinthiformis, Madracis mirabilis and decactis) were acclimated for three months at: 20^oC and 27^oC (both with CO_2 levels at 400 ppm (control) and 700 ppm). Growth was assessed by buoyant weight techniques during the acclimation period. Photosynthesis, respiration and calcification were measured at the end of this period using respirometric chambers. A reproduction experiment was also undertaken under 27^oC. Photosynthesis mainly remains constant or increases under high CO_2 conditions. The results of the integrated calcification measurements confirm the hypothesis that an increase in CO_2 induces a decrease in calcification. However an increase in photosynthesis can be observed when CO_2 is unfavorable for calcification suggesting that a biological control of calcification through photosynthesis could prevent a drop in the calcification potential. Buoyant weight results indicate that the CO_2 impact could be less detrimental under lower temperature. This result will be compared with the instantaneous calcification measurements in the chambers and some in situ coral growth assessments in winter and summer conditions. The consequences for the response of marginal reefs

  13. Comparison of atmospheric CO2 columns at high latitudes from ground-based and satellite-based methods

    Science.gov (United States)

    Jacobs, N.; Simpson, W. R.; Parker, H. A.; Tu, Q.; Blumenstock, T.; Dubey, M. K.; Hase, F.; Osterman, G. B.

    2017-12-01

    Total column measurements of carbon-dioxide (CO2) from the Orbiting Carbon Observatory-2 (OCO-2) satellite have been validated at mid-latitudes by comparison to the Total Carbon Column Observing Network (TCCON), but there are still a limited number of sites providing high-latitude validation data for satellite observations of CO2, and no TCCON sites in Alaska. To understand the global distribution of CO2 sources and sinks, it is essential that we increase the abundance of validation sites, particularly in the climate-sensitive high-latitude Boreal forest. Therefore, we began the Arctic Mobile Infrared Greenhouse Gas Observations (AMIGGO) campaign in the Boreal Forest region around Fairbanks, Alaska with the goal of satellite validation and measurement of natural ecosystem fluxes. In this campaign, we used the EM27/SUN mobile solar-viewing Fourier-transform infrared spectrometer (EM27/SUN FTS) to retrieve the total CO2 column and column-averaged dry-air mole fraction of CO2 (XCO2) with the GGG2014 algorithm. The EM27/SUN FTS was developed by the Karlsruhe Institute of Technology (KIT) in collaboration with Bruker optics (Gisi et al., 2012, doi:10.5194/amt-5-2969-2012) and has been deployed in urban areas to measure anthropogenic fluxes of CO2 and CH4. To evaluate the EM27/SUN performance, co-located observations were made with two EM27/SUN spectrometers, and we found that XCO2 differences between spectrometers were small (0.24ppm on average) and very stable over time. In this presentation, we report on 14 OCO-2 targeted overpasses that occurred from August 2016 through July 2017, along with additional targets obtained during ongoing observations in 2017. We investigate underlying reasons for observed differences between OCO-2 and ground-based XCO2 using methods developed by Wunch et al. (2017, doi:10.5194/amt-10-2209-2017). As an additional point of comparison, coincident aircraft observations by NOAA Earth System Research Laboratory (ESRL) Global Monitoring

  14. Multiple Flux Rope Events at the High-Latitude Magnetopause: Cluster/Rapid Observation on January 26, 2001

    Science.gov (United States)

    Huang, Zong-Ying; Pu, Zu-Yin; Xiao, Chi-Jie; Xong, Qui-Gang; Fu, Sui-Yan; Xie, Lun; Shi, Quan-Qi; Cao, Jin-Bin; Liu, Zhen-Xing; Shen, Cao; Shi, Jian-Kui; Lu, Li; Wang, Nai-Quan; Chen, Tao; Fritz, T.; Glasmeier, K.-H.; Daly, P.; Reme, H.

    2004-04-01

    From 11:10 to 11:40UT on January 26, 2001 the four Cluster II spacecraft were located in the duskside high latitude regions of the magnetosheath and magnetosheath boundary layer (MSBL). During this time Interval the interplanetary magnetic field (IMF) had a negative Bz component. A detailed study on the multiple flux ropes (MFRs) observed in this period is conducted in this paper. It is found that: (1) The multiple flux ropes in the high latitude MSBL appeared quasi-periodically with a repeated time period of about 78s, which is much shorter than the averaged occurring period (about 8-11min) of the flux transfer events (FTEs) at the dayside magnetopause (MP). (2) All the flux ropes observed in this event had a strong core magnetic field. The axial orientation of the most flux ropes is found to lie in the direction of the minimum magnetic field variance; a few flux ropes had their axes lying in the direction of the middle magnetic field variance; while for the remainders their principle axes could not be determined by the method of Principal Axis Analysis (PAA). The reason that causes this complexity relys on the different trajectories of the spacecraft passing through the flux ropes. (3) Each flux rope had a good corresponding HT frame of reference in which it was in a quasi-steady state. All flux ropes moved along the surface of the MP in a similar direction indicating that these flux ropes all came from the dawnside low latitude. Their radial scale is 1-2RE, comparable to the normal diameter of FTEs observed atthe dayside MP. (4) The energetic ions originated from the magnetosphere flowed out to the magnetosheath on the whole, while the solar wind plasma flowed into the magnetosphere along the axis of the flux ropes. The flux ropes offered channels for the transport of the solar wind plasma into the magnetosphere and the escaping of the magnetospheric plasma into the interplanetary space. (5) Each event was accompanied by an enhanced reversal of the dusk

  15. Ion escape fluxes from the terrestrial high-latitude ionosphere

    International Nuclear Information System (INIS)

    Barakat, A.R.; Schunk, R.W.; Moore, T.E.; Waite, J.H. Jr.

    1987-01-01

    The coupled continuity and momentum equations for H + , O + , and electrons were solved for the terrestrial ionosphere in order to determine the limiting ion escape fluxes at high latitudes. The effects of solar cycle, season, geomagnetic activity, and the altitude of the acceleration region on the ion escape fluxes were studied for average conditions. In addition, a systematic parameter study was conducted to determine the extent to which variations in ionospheric conditions (for example, electron temperature, ion temperature, induced vertical ion drifts, etc.) can affect the results. The main conclusions of the study are as follows: (1) as solar activity increases, the general trend is for an increase in the limiting O + escape flux and a decrease in the limiting H + escape flux; (2) in winter the limiting escape fluxes of both O + and H + are larger than those in summer, particularly for low geomagnetic activity; (3) the O + content of the ion outflow increases with increasing ''demand'' imposed on the ionosphere by a high-altitude acceleration process, with increasing solar activity, with increasing geomagnetic activity, with increasing solar elevation from winter to summer, and with a lowering of the altitude of the acceleration region; (4) when H + is in a near-diffusive equilibrium state and a selective mechanism accelerates O + , the limiting O + escape flux is significantly reduced compared to that obtained when an H + outflow also occurs; and (5) at a given time or location the general trends described above can be significantly modified or even reversed owing to natural variations of the ionospheric ion and electron temperatures, induced vertical ion drifts, etc. The general trends obtained for average conditions appear to mimic the qualitative behavior determined from statistically averaged data for comparable absolute escape flux magnitudes

  16. Geomorphic features as indicators of climatic fluctuations in a periglacial environment, northern Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Nyberg, R; Lindh, L [Lund Univ. (SE). Dept. of Physical Geography

    1990-01-01

    Goemorphic responses to climatic fluctuations in the periglacial mountain environment of northern Sweden, especially the Abisko mountains, are discussed. Although the frequency and magnitude of rapid mass movements are related to climatic conditions, the depositional patterns of the processes and the variable availability of source material complicate their use as climatic indicators. Possibly, debris flows and slushflows were frequent during the Little Ice Age, according to lichenometric dating of old deposits. Field observations suggest a fairly high frequency also during the last few decades. Boulder pavements, moraine-like ridges and glacial striae in front of major snowfields indicate these were previously larger and in some cases active as small glaciers perhaps in the cold beginning of the 1900's. During the warm 1920-30's snowpatches and glaciers, as well as permafrost mounds were affected by a general degeneration. Climatic inferences made from the mentioned features are still very crude. Tentatively, it is suggested that they are presently beginning to respond to the cooling trend affecting northern Scandinavia since about 1940. The anticipated impact of a greenhouse warming of the atmosphere has thus so far not been noticeable in this high latitude area. (authors).

  17. Causes of Greenland temperature variability over the past 4000 yr: implications for northern hemispheric temperature changes

    Directory of Open Access Journals (Sweden)

    T. Kobashi

    2013-10-01

    Full Text Available Precise understanding of Greenland temperature variability is important in two ways. First, Greenland ice sheet melting associated with rising temperature is a major global sea level forcing, potentially affecting large populations in coming centuries. Second, Greenland temperatures are highly affected by North Atlantic Oscillation/Arctic Oscillation (NAO/AO and Atlantic multidecadal oscillation (AMO. In our earlier study, we found that Greenland temperature deviated negatively (positively from northern hemispheric (NH temperature trend during stronger (weaker solar activity owing to changes in atmospheric/oceanic changes (e.g. NAO/AO over the past 800 yr (Kobashi et al., 2013. Therefore, a precise Greenland temperature record can provide important constraints on the past atmospheric/oceanic circulation in the region and beyond. Here, we investigated Greenland temperature variability over the past 4000 yr reconstructed from argon and nitrogen isotopes from trapped air in a GISP2 ice core, using a one-dimensional energy balance model with orbital, solar, volcanic, greenhouse gas, and aerosol forcings. The modelled northern Northern Hemisphere (NH temperature exhibits a cooling trend over the past 4000 yr as observed for the reconstructed Greenland temperature through decreasing annual average insolation. With consideration of the negative influence of solar variability, the modelled and observed Greenland temperatures agree with correlation coefficients of r = 0.34–0.36 (p = 0.1–0.04 in 21 yr running means (RMs and r = 0.38–0.45 (p = 0.1–0.05 on a centennial timescale (101 yr RMs. Thus, the model can explain 14 to 20% of variance of the observed Greenland temperature in multidecadal to centennial timescales with a 90–96% confidence interval, suggesting that a weak but persistent negative solar influence on Greenland temperature continued over the past 4000 yr. Then, we estimated the distribution of multidecadal NH and northern high-latitude

  18. Mapping the northern plains of Mars: origins, evolution and response to climate change - a new overview of the recent ice-related landforms in Utopia Planitia

    Science.gov (United States)

    Costard, Francois; Sejourne, Antoine; Losiak, Ania; Swirad, Zusanna; Balm, Matthew; Conway, Susan; Gallagher, Colman; van-Gassel, Stephan; Hauber, Ernst; Johnsson, Andreas; Kereszturi, Akos; Platz, Thomas; Ramsdale, Jason; Reiss, Dennis; Skinner, James

    2015-04-01

    An ISSI (International Space Science Institute) international team has been convened to study the Northern Plain of Mars. The northern plains of Mars are extensive, geologically young, low-lying areas that contrast in age and relief to Mars' older, heavily cratered, southern highlands. Mars' northern plains are characterised by a wealth of landforms and landscapes that have been inferred to be related to the presence of ice or ice-rich material. Such landforms include 'scalloped' pits and depressions, polygonally-patterned grounds, and viscous flow features similar in form to terrestrial glacial or ice-sheet landforms. Furthermore, new (within the last few years) impact craters have exposed ice in the northern plains, and spectral data from orbiting instruments have revealed the presence of tens of percent by weight of water within the upper most ~50 cm of the martian surface at high latitudes. The western Utopia Planitia contains numerous relatively young ice-related landforms (Utopia Planitia along a long strip from ~30N to ~80N latitude and about 250km wide. The goals are to: (i) map the geographical distribution of the ice-related landforms; (ii) identify their association with subtly-expressed geological units and; (iii) discuss the climatic modifications of the ice-rich permafrost in UP. Our work combines a study with CTX (5-6 m/pixel) and HRSC (~12.5-50 m/pixel) images, supported by higher resolution HiRISE (25 cm/pixel) and MOC (~2 m/pixel) and a comparison with analogous landforms on Earth.

  19. High Resolution Optical Spectroscopy of an Intriguing High-Latitude B-Type Star HD119608

    Science.gov (United States)

    Şahin, T.

    2018-01-01

    We present an LTE analysis of high resolution echelle optical spectra obtained with the 3.9-m Anglo-Australian Telescope (AAT) and the UCLES spectrograph for a B1Ib high galactic latitude supergiant HD119608. A fresh determination of the atmospheric parameters using line-blanketed LTE model atmospheres and spectral synthesis provided T eff = 23 300 ± 1000 K, log g = 3.0 ± 0.3, and the microturbulent velocity ξ = 6.0 ± 1.0 kms-1 and [Fe/H] = 0.16. The rotational velocity of the star was derived fromC, O, N, Al, and Fe lines as v sin i = 55.8 ± 1.3 kms-1. Elemental abundances were obtained for 10 different species. He, Al, and P abundances of the star were determined for the first time. In the spectra, hot post-AGB status as well as the Pop I characteristics of the star were examined. The approximately solar carbon and oxygen abundances, along with mild excess in helium and nitrogen abundances do not stipulate a CNO processed surface composition, hence a hot post-AGB status. The LTE abundances analysis also indicates solar sulphur and moderately enriched magnesium abundances. The average abundances of B dwarfs of well studied OB associations and Population I stars show a striking resemblance to abundances obtained for HD119608 in this study. This may imply a runaway status for the star.

  20. Using stable isotopes to assess surface water source dynamics and hydrological connectivity in a high-latitude wetland and permafrost influenced landscape

    Science.gov (United States)

    Ala-aho, P.; Soulsby, C.; Pokrovsky, O. S.; Kirpotin, S. N.; Karlsson, J.; Serikova, S.; Vorobyev, S. N.; Manasypov, R. M.; Loiko, S.; Tetzlaff, D.

    2018-01-01

    Climate change is expected to alter hydrological and biogeochemical processes in high-latitude inland waters. A critical question for understanding contemporary and future responses to environmental change is how the spatio-temporal dynamics of runoff generation processes will be affected. We sampled stable water isotopes in soils, lakes and rivers on an unprecedented spatio-temporal scale along a 1700 km transect over three years in the Western Siberia Lowlands. Our findings suggest that snowmelt mixes with, and displaces, large volumes of water stored in the organic soils and lakes to generate runoff during the thaw season. Furthermore, we saw a persistent hydrological connection between water bodies and the landscape across permafrost regions. Our findings help to bridge the understanding between small and large scale hydrological studies in high-latitude systems. These isotope data provide a means to conceptualise hydrological connectivity in permafrost and wetland influenced regions, which is needed for an improved understanding of future biogeochemical changes.

  1. Changes to Saturn's zonal-mean tropospheric thermal structure after the 2010-2011 northern hemisphere storm

    Energy Technology Data Exchange (ETDEWEB)

    Achterberg, R. K.; Hesman, B. E. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Gierasch, P. J.; Conrath, B. J. [Department of Astronomy, Cornell University, Ithaca, NY 14853 (United States); Fletcher, L. N. [Atmospheric Oceanic and Planetary Physics, University of Oxford, Clarenden Laboratory, Parks Road, Oxford OX1 3PU (United Kingdom); Bjoraker, G. L.; Flasar, F. M., E-mail: Richard.K.Achterberg@nasa.gov [Planetary Systems Laboratory NASA/GSFC, Greenbelt, MD 20771 (United States)

    2014-05-10

    We use far-infrared (20-200 μm) data from the Composite Infrared Spectrometer on the Cassini spacecraft to determine the zonal-mean temperature and hydrogen para-fraction in Saturn's upper troposphere from observations taken before and after the large northern hemisphere storm in 2010-2011. During the storm, zonal mean temperatures in the latitude band between approximately 25°N and 45°N (planetographic latitude) increased by about 3 K, while the zonal mean hydrogen para-fraction decreased by about 0.04 over the same latitudes, at pressures greater than about 300 mbar. These changes occurred over the same latitude range as the disturbed cloud band seen in visible images. The observations are consistent with low para-fraction gas being brought up from the level of the water cloud by the strong convective plume associated with the storm, while being heated by condensation of water vapor, and then advected zonally by the winds near the plume tops in the upper troposphere.

  2. Monitoring land surface albedo and vegetation dynamics using high spatial and temporal resolution synthetic data from Landsat and MODIS BRDF/albedo product

    Science.gov (United States)

    Climate warming over the past half century has led to observable changes in vegetation phenology and growing season length; which can be measured globally using remote sensing derived vegetation indices. Previous studies in mid- and high northern latitude systems show temperature driven earlier spri...

  3. Preliminary survey of ticks (Acari : Ixodidae on cattle in northern Sudan

    Directory of Open Access Journals (Sweden)

    D.A. Salih

    2004-11-01

    Full Text Available In a cross sectional survey conducted during the period June 2001 to July 2002, the geographical distribution of ticks on cattle in the Sudan was determined. Seventeen locations were surveyed from Northern, Central, Eastern, Western, Blue Nile and White Nile Provinces. Total body collections of ticks were made from 20 cattle at each location. Four tick genera and 11 species were identified. The tick species collected included Amblyomma lepidum, Amblyomma variegatum, Boophilus decoloratus, Hyalomma anatolicum anatolicum, Hyalomma dromedarii, Hyalomma impeltatum, Hyalomma marginatum rufipes, Hyalomma truncatum, Rhipicephalus evertsi evertsi, Rhipicephalus sanguineus group and Rhipicephalus simus simus. Major ecological changes have occurred due to extensive animal movement, deforestation, desertification and establishment of large mechanized agricultural schemes. These factors have certainly affected the distribution of ticks and tick-borne diseases in the Sudan. The absence of A. variegatum and A. lepidum in northern Sudan was not surprising, since these tick species are known to survive in humid areas and not in the desert and semi-desert areas of northern Sudan. The absence of B. annulatus in northern and central Sudan is in accordance with the finding that this tick species is restricted to the southern parts of the central Sudan. The presence of H. anatolicum anatolicum in Um Benin in relatively high abundance is an interesting finding. The present finding may indicate that the southern limit of this species has changed and moved southwards to latitude 13o N. It is concluded that major changes in tick distribution have taken place in the Sudan

  4. East-west ion drifts at mid-latitudes observed by Dynamics Explorer 2

    International Nuclear Information System (INIS)

    Heelis, R.A.; Coley, W.R.

    1992-01-01

    Zonal ion drifts measured from the polar orbiting DE 2 spacecraft are examined to determine the effects of dynamo electric fields and penetration of high latitude electric fields at middle latitudes. Construction of a local time distribution from satellite data results in a mixture of local time and season as well as a range of magnetic activity encompassing Kp ≤ 2 and Kp ≥ 3. Thus some combination of magnetospheric effects, expected to dominate during disturbed times, are seen during both quiet and disturbed times and solar tidal influences are most easily observed during quiet times. During quiet times, at invariant latitudes near 25 degrees, the solar diurnal tide dominates the local time distribution of the ion drift. At latitudes above 50 degrees a diurnal component of comparable magnitude is also present, but its magnetospheric origin produces a shift in phase of almost 180 degrees from the lower latitude diurnal tide. In the intervening region, between 20 degrees and 50 degrees invariant latitude, semidurnal and terdiurnal components in the local time distribution of the drift velocity are also seen. These components are generally larger than those seen by ground based radars during quiet times and may be attributable in part to a difference in solar activity and in part to a combination of the solar tides and magnetospheric penetration fields

  5. Generation of the lower-thermospheric vertical wind estimated with the EISCAT KST radar at high latitudes during periods of moderate geomagnetic disturbance

    Directory of Open Access Journals (Sweden)

    S. Oyama

    2008-06-01

    Full Text Available Lower-thermospheric winds at high latitudes during moderately-disturbed geomagnetic conditions were studied using data obtained with the European Incoherent Scatter (EISCAT Kiruna-Sodankylä-Tromsø (KST ultrahigh frequency (UHF radar system on 9–10 September 2004. The antenna-beam configuration was newly designed to minimize the estimated measurement error of the vertical neutral-wind speed in the lower thermosphere. This method was also available to estimate the meridional and zonal components. The vertical neutral-wind speed at 109 km, 114 km, and 120 km heights showed large upward motions in excess of 30 m s−1 in association with an ionospheric heating event. Large downward speeds in excess of −30 m s−1 were also observed before and after the heating event. The meridional neutral-wind speed suddenly changed its direction from equatorward to poleward when the heating event began, and then returned equatorward coinciding with a decrease in the heating event. The magnetometer data from northern Scandinavia suggested that the center of the heated region was located about 80 km equatorward of Tromsø. The pressure gradient caused the lower-thermospheric wind to accelerate obliquely upward over Tromsø in the poleward direction. Acceleration of the neutral wind flowing on a vertically tilted isobar produced vertical wind speeds larger by more than two orders of magnitude than previously predicted, but still an order of magnitude smaller than observed speeds.

  6. Generation of the lower-thermospheric vertical wind estimated with the EISCAT KST radar at high latitudes during periods of moderate geomagnetic disturbance

    Directory of Open Access Journals (Sweden)

    S. Oyama

    2008-06-01

    Full Text Available Lower-thermospheric winds at high latitudes during moderately-disturbed geomagnetic conditions were studied using data obtained with the European Incoherent Scatter (EISCAT Kiruna-Sodankylä-Tromsø (KST ultrahigh frequency (UHF radar system on 9–10 September 2004. The antenna-beam configuration was newly designed to minimize the estimated measurement error of the vertical neutral-wind speed in the lower thermosphere. This method was also available to estimate the meridional and zonal components. The vertical neutral-wind speed at 109 km, 114 km, and 120 km heights showed large upward motions in excess of 30 m s−1 in association with an ionospheric heating event. Large downward speeds in excess of −30 m s−1 were also observed before and after the heating event. The meridional neutral-wind speed suddenly changed its direction from equatorward to poleward when the heating event began, and then returned equatorward coinciding with a decrease in the heating event. The magnetometer data from northern Scandinavia suggested that the center of the heated region was located about 80 km equatorward of Tromsø. The pressure gradient caused the lower-thermospheric wind to accelerate obliquely upward over Tromsø in the poleward direction. Acceleration of the neutral wind flowing on a vertically tilted isobar produced vertical wind speeds larger by more than two orders of magnitude than previously predicted, but still an order of magnitude smaller than observed speeds.

  7. Latitud sur y control económico del hogar por la mujer peruana

    Directory of Open Access Journals (Sweden)

    Federico R. León

    2011-12-01

    Full Text Available South latitude and household economic control by Peruvian women Southern women’s greater autonomy versus northern women’s more traditional submission to the husband were hypothesized in 1984 to explain variations in Peruvian women’s fertility desires. An analysis of data from Peru 2004-2008 Continuous Demographic and Family Health Survey supports this hypothesis by showing a significant north-to-south growth of women’s control upon husband’s income and, less consistently, household purchasing decisions. These relationships are not explained by variables also correlated with meridionality, such as aboriginal ethnicity, women’s material/informational power, age difference with the husband’s, or working for cash. Findings suggest new hypotheses, concerning the distribution of assertiveness and warmth in the Peruvian territory.

  8. Terrestrial cooling in Northern Europe during the eocene-oligocene transition.

    Science.gov (United States)

    Hren, Michael T; Sheldon, Nathan D; Grimes, Stephen T; Collinson, Margaret E; Hooker, Jerry J; Bugler, Melanie; Lohmann, Kyger C

    2013-05-07

    Geochemical and modeling studies suggest that the transition from the "greenhouse" state of the Late Eocene to the "icehouse" conditions of the Oligocene 34-33.5 Ma was triggered by a reduction of atmospheric pCO2 that enabled the rapid buildup of a permanent ice sheet on the Antarctic continent. Marine records show that the drop in pCO2 during this interval was accompanied by a significant decline in high-latitude sea surface and deep ocean temperature and enhanced seasonality in middle and high latitudes. However, terrestrial records of this climate transition show heterogeneous responses to changing pCO2 and ocean temperatures, with some records showing a significant time lag in the temperature response to declining pCO2. We measured the Δ47 of aragonite shells of the freshwater gastropod Viviparus lentus from the Solent Group, Hampshire Basin, United Kingdom, to reconstruct terrestrial temperature and hydrologic change in the North Atlantic region during the Eocene-Oligocene transition. Our data show a decrease in growing-season surface water temperatures (~10 °C) during the Eocene-Oligocene transition, corresponding to an average decrease in mean annual air temperature of ~4-6 °C from the Late Eocene to Early Oligocene. The magnitude of cooling is similar to observed decreases in North Atlantic sea surface temperature over this interval and occurs during major glacial expansion. This suggests a close linkage between atmospheric carbon dioxide concentrations, Northern Hemisphere temperature, and expansion of the Antarctic ice sheets.

  9. Equinoctial spread-F occurrence at low latitudes in different longitude sectors under moderate and high solar activity

    Science.gov (United States)

    Pietrella, M.; Pezzopane, M.; Fagundes, P. R.; de Jesus, R.; Supnithi, P.; Klinngam, S.; Ezquer, R. G.; Cabrera, M. A.

    2017-11-01

    A comparative study aimed to investigate the equatorial and low-latitude spread-F occurrences for moderate solar activity (MSA) and high solar activity (HSA), was carried out considering concurrent observations made in some ionospheric stations, which identify three separate longitudinal sectors: Chiang Mai (CGM; 18.8° N, 98.9° E, mag. Lat. 13.2° N) and Chumphon (CPN; 10.7° N, 99.4° E, mag. Lat. 3.2° N), Thailand; Palmas (PAL; 10.2° S, 311.8° E, mag. Lat. 0.9° S) and São José dos Campos (SJC; 23.2° S, 314.1° E, mag. Lat. 14.0° S), Brazil; Tucumán (TUC; 26.9° S, 294.6° E, mag. Lat. 16.8° S), Argentina. Spread-F phenomena recorded during the equinoctial months of September and October 2010, March and April 2011, for MSA, March and April 2014, September and October 2014, for HSA, were classified in two different modes: range spread-F (RSF) and frequency spread-F (FSF). The satellite trace (ST) occurrence was also investigated as possible precursor of spread-F events. When comparing the results of equatorial (CPN and PAL) and low-latitude (CGM, SJC, and TUC) stations, some common features independently of the solar activity emerge: (1) a prevalence of RSF signatures is observed in the time interval 20:00-03:00 LT, while FSF occurrences prevail in the time interval 03:00-06:00 LT; (2) STs are confirmed to be a possible precursor of RSF occurrences. For HSA, at equatorial latitudes, spread-F occurrences in the Thai sector (CPN) are higher than those observed in the Brazilian sector (PAL). When comparing the results of low-latitude stations of CGM, SJC, and TUC some unusual aspects characterizing the morphology of spread-F occurrences emerge: (1) contrary to the Thai and Argentine sectors, in the Brazilian sector (SJC), RSF and FSF appearances in September, for HSA, are observed with relatively long persistence times between about 03:00-06:00 LT and 01:00-03:00 LT respectively, while balanced RSF and FSF occurrences with short persistence times are

  10. Climatological properties of summertime extra-tropical storm tracks in the Northern Hemisphere

    OpenAIRE

    Dos Santos Mesquita, Michel; Kvamstø, Nils Gunnar; Sorteberg, Asgeir; Atkinson, David E.

    2008-01-01

    This paper presents climatological properties of Northern Hemisphere summer extratropical storm tracks using data extracted from an existing, relative-vorticity-based storm database. This database was constructed using the NCEPNCAR ‘Reanalysis I’ data set from 1948 to 2002. Results contrasting summer and winter patterns for several storm parameters indicated general similarity at the largest scales, including the prominent track corridors of the middle latitude ocean regions and the mid-conti...

  11. Global Hybrid Simulations of The Magnetopause Boundary Layers In Low- and High-latitude Magnetic Reconnections

    Science.gov (United States)

    Lin, Y.; Perez, J. D.

    A 2-D global hybrid simulation is carried out to study the structure of the dayside mag- netopause in the noon-midnight meridian plane associated with magnetic reconnec- tion. In the simulation the bow shock, magnetosheath, and magnetopause are formed self-consistently by supersonic solar wind passing the geomagnetic field. The recon- nection events at high- and low-latitudes are simulated for various IMF conditions. The following results will be presented. (1) Large-amplitude rotational discontinuities and Alfvén waves are present in the quasi-steady reconnection layer. (2) The rotational discontinuity possesses an electron sense, or right-hand polarization in the magnetic field as the discontinuity forms from the X line. Later, however, the rotational dis- continuity tends to evolve to a structure with a smallest field rotational angle and thus may reverse its sense of the field rotation. The Walén relation is tested for elec- tron and ion flows in the magnetopause rotational discontinuities with left-hand and right-hand polarizations. (3) The structure of the magnetopause discontinuities and that of the accelerated/decelerated flows are modified significantly by the presence of the local magnetosheath flow. (4) Field-aligned currents are generated in the magne- topause rotational discontinuities. Part of the magnetopause currents propagate with Alfvén waves along the field lines into the polar ionosphere, contributing to the field- aligned current system in the high latitudes. The generation of the parallel currents under northward and southward IMF conditions is investigated. (5) Finally, typical ion velocity distributions will be shown at various locations across the magnetopause northward and southward of the X lines. The ion distributions associated with single or multiple X lines will be discussed.

  12. Clinical evaluation of wide-latitude HR-C film for chest radiography

    International Nuclear Information System (INIS)

    Kim, Young Sung; Hwang, Nam Sun; Yeo, Young Bok; Lee, In Ja; Huh, Joon

    1990-01-01

    In application of wide latitude HR-C film to chest x-ray examination, former x-ray diagnosis area is larger and diagnostic information has great deal of promotion. HR-C film is compare to former x-ray film is larger latitude and density level is small, reading is very easily. Especially, high estimate that is in characteristic curve linearity of toe part is good, contrast of low density made good shape and not good describe to overlap is diagnostic information increase mediastinum portion etc

  13. Different Stratospheric Polar Vortex States linked to Cold-Spells in North America and Northern Eurasia

    Science.gov (United States)

    Kretschmer, M.; Cohen, J. L.; Runge, J.; Coumou, D.

    2017-12-01

    The stratospheric polar vortex in boreal winter can influence the tropospheric circulation and thereby surface weather in the mid-latitudes. Weak states of the vortex, e.g. associated with Sudden Stratospheric Warmings (SSWs), often precede a negative phase of the North Atlantic Oscillation (NAO), and thus increase the risk of mid-latitude cold-spells especially over Eurasia. Here we show using cluster analysis that next to the well-documented relationship between a zonally symmetric disturbed vortex and a negative NAO, there exists a zonally asymmetric pattern linked to a negative Western Pacific Oscillation (WPO) and cold-spells in the northeastern US, like for example observed in February 2014. The latter is more synoptic in time-scale but occurs more frequently than SSWs. A causal effect network (CEN) approach gives insights into the underlying physical pathways and time-lags showing that high-pressure around Greenland leads to vertical wave activity over eastern Siberia leading to downward propagating waves over Alaska and high pressure over the North Pacific. Moreover, composites propose that a rather strong mid-stratospheric vortex seems to be favorable for this zonally asymmetric and reflective mechanism. Overall, the mutual relationship between stratospheric circulation and high-latitude blocking in both the Pacific and Atlantic Oceans is complex and involves mechanisms operating at different time-scales. Our results suggest that the stratospheric influence on winter circulation should not exclusively be analyzed in terms of a downward propagating Northern Annular Mode (NAM) signal and SSWs. In particular when studying the stratospheric impacts on North American temperature it is crucial to also consider the more transient and zonally asymmetric events which might help to improve seasonal winter predictions for this region.

  14. Plant hydraulic strategies and their variability at high latitudes: insights from a southern Canadian boreal forest site

    Science.gov (United States)

    Pappas, C.; Matheny, A. M.; Maillet, J.; Baltzer, J. L.; Stephens, J.; Barr, A.; Black, T. A.; Sonnentag, O.

    2016-12-01

    Boreal forests cover about one third of the world's forested area with a large part of the boreal zone located in Canada. These high-latitude ecosystems respond rapidly to environmental changes. Plant water stress and the resulting drought-induced mortality has been recently hypothesised as a major driver of forest changes in western Canada. Although boreal forests often exhibit low floristic complexity, local scale abiotic heterogeneities may lead to highly variable plant functional traits and thus to diverging plant responses to environmental changes. However, detailed measurements of plant hydraulic strategies and their inter- and intra-specific variability are still lacking for these ecosystems. Here, we quantify plant water use and hydraulic strategies of black spruce (Picea mariana) and larch (Larix laricina), that are widespread in the boreal zone, at a long-term monitoring site located in central Saskatchewan (53.99° N, 105.12° W; elevation 628.94 m a.s.l.). The site is characterized by a mature black spruce overstorey that dominates the landscape with few larch individuals. The ground cover consists mainly of mosses with some peat moss and lichens over a rich soil organic layer. Tree-level sap flux density, measured with Granier-style thermal dissipation probes (N=39), and concurrently recorded radial stem dynamics, measured with high frequency dendrometers (N=13), are used to quantify plant hydraulic functioning during the 2016 growing season. Hydrometeorological measurements, including soil moisture and micrometeorological data, are used to describe environmental constraints in plant water use. Tree-level dynamics are then integrated to the landscape and compared with ecosystem-level evapotranspiration measurements from an adjacent eddy-covariance flux tower. This experimental design allows us to quantify the main environmental drivers that shape plant hydraulic strategies in this southern boreal zone and to provide new insights into the inter- and

  15. Isotopic and genetic insights into the persistence of the northern fur seal (Callorhinus ursinus) (Invited)

    Science.gov (United States)

    Koch, P. L.; Hadly, E. A.; Pinsky, M. L.; Newsome, S. D.

    2010-12-01

    What factors allow some species to survive in the face of climate change, disease, or anthropogenic disturbance? How do species shift their geographic distributions in the face of such challenges? These pressing questions in ecology and conservation biology are difficult to answer when looking solely at modern populations or the recent historical record. We explore these questions through analysis of DNA and the isotopic composition of modern and ancient northern fur seals (NFS, Callorhinus ursinus). The NFS is an eared seal (otariid) that ranges along the north Pacific, where it breeds on offshore islands; by far the largest modern rookeries are on the Pribilof Islands in the Bering Sea. The species shows a high degree of philopatry, and females feed while nursing, wean pups at 4 months, and spend the rest of the year foraging far offshore further south. Archaelogical study reveals that Holocene NFS had numerous breeding colonies from the Channel Islands to the Aleutians. Temperate latitude colonies collapsed in the late Holocene in response to hunting pressures and perhaps, environmental change. The species has recolonized parts of its former range since the 1960s. Despite facing similar threats, other marine mammals have failed to rebound (e.g., Guadalupe fur seals) or have exceptionally low genetic diversity indicating recent and prolonged bottlenecks (e.g., northern elephant seals). Isotopic analyses of sub-fossil growth series indicate that extirpated mid-latitude colonies weaned much later (≥12 months), like all other otariid species that breed at temperate latitudes. As a result, females were tied to rookery sites year-round and had a much-reduced migratory range relative to modern NFS females breeding in the Bering Sea, a result also supported by isotopic analyses. Serial coalescent simulations of ancient and modern DNA reveals that exceptionally high migration rates and Arctic refugia provided resilience to NFS. These traits allowed the species to

  16. Climate Change Impacts on Flow and Suspended Sediment Yield in Headwaters of High-Latitude Regions—A Case Study in China’s Far Northeast

    Directory of Open Access Journals (Sweden)

    Yuyan Zhou

    2017-12-01

    Full Text Available Climate change is expected to have stronger effects on water resources in higher latitude regions. Despite intensive research on possible hydrological responses in those regions to a warmer environment, our knowledge on erosion and sediment yield induced by the climate change in high-latitude headwaters is still limited. In this study, we estimated suspended sediment yields from 2021 to 2050 in a typical headwater area of far Northeast China to elucidate potential impacts of future climate change on surface runoff and erosion in higher latitude regions. We first parameterized the Soil and Water Assessment Tool (SWAT using historical measurements to estimate runoff from the river basin. The model performed well in both the calibration (2006–2011 and the validation (2012–2014 periods, with an R2 of 0.85 and 0.88 and a Nash-Sutcliffe Efficiency (NSE of 0.7 and 0.73, respectively. We also utilized historical measurements on sediment yields from the period 2006–2014 to develop a runoff-sediment yield rating curve, and the rating curve obtained an excellent goodness of fit (R2 = 0.91, p < 0.001. We then applied the calibrated SWAT model to two climate change projections, also known as Representative Concentration Pathways (RCP4.5 and RCP8.5, for the period from 2021 to 2050 to obtain future runoff estimates. These runoff estimates were then used to predict future sediment yield by using the developed runoff-sediment yield rating curve. Our study found a significant increase of annual sediment yield (p < 0.05 for both climate change projections (RCP4.5 = 237%; RCP8.5 = 133% in this, China’s high-latitude region. The increases of sediment yield were prevalent in summer and autumn, varying from 102–299% between the two RCPs scenarios. Precipitation was the dominated factor that determined the variation of runoff and sediment yield. A warming climate could bring more snowmelt-induced spring runoff and longer rainy days in autumn, hence leading

  17. A search for pre-main sequence stars in the high-latitude molecular clouds. II - A survey of the Einstein database

    Science.gov (United States)

    Caillault, Jean-Pierre; Magnani, Loris

    1990-01-01

    The preliminary results are reported of a survey of every EINSTEIN image which overlaps any high-latitude molecular cloud in a search for X-ray emitting pre-main sequence stars. This survey, together with complementary KPNO and IRAS data, will allow the determination of how prevalent low mass star formation is in these clouds in general and, particularly, in the translucent molecular clouds.

  18. Capability of C-Band SAR for Operational Wetland Monitoring at High Latitudes

    Directory of Open Access Journals (Sweden)

    Julia Reschke

    2012-10-01

    Full Text Available Wetlands store large amounts of carbon, and depending on their status and type, they release specific amounts of methane gas to the atmosphere. The connection between wetland type and methane emission has been investigated in various studies and utilized in climate change monitoring and modelling. For improved estimation of methane emissions, land surface models require information such as the wetland fraction and its dynamics over large areas. Existing datasets of wetland dynamics present the total amount of wetland (fraction for each model grid cell, but do not discriminate the different wetland types like permanent lakes, periodically inundated areas or peatlands. Wetland types differently influence methane fluxes and thus their contribution to the total wetland fraction should be quantified. Especially wetlands of permafrost regions are expected to have a strong impact on future climate due to soil thawing. In this study ENIVSAT ASAR Wide Swath data was tested for operational monitoring of the distribution of areas with a long-term SW near 1 (hSW in northern Russia (SW = degree of saturation with water, 1 = saturated, which is a specific characteristic of peatlands. For the whole northern Russia, areas with hSW were delineated and discriminated from dynamic and open water bodies for the years 2007 and 2008. The area identified with this method amounts to approximately 300,000 km2 in northern Siberia in 2007. It overlaps with zones of high carbon storage. Comparison with a range of related datasets (static and dynamic showed that hSW represents not only peatlands but also temporary wetlands associated with post-forest fire conditions in permafrost regions. Annual long-term monitoring of change in boreal and tundra environments is possible with the presented approach. Sentinel-1, the successor of ENVISAT ASAR, will provide data that may allow continuous monitoring of these wetland dynamics in the future complementing global observations of

  19. Newton's second law versus modified-inertia MOND: A test using the high-latitude effect

    International Nuclear Information System (INIS)

    Ignatiev, A. Yu.

    2008-01-01

    The modified-inertia MOND is an approach that proposes a change in Newton's second law at small accelerations as an alternative to dark matter. Recently it was suggested that this approach can be tested in terrestrial laboratory experiments. One way of doing the test is based on the static high-latitude equinox modified-inertia effect: around each equinox date, 2 spots emerge on the Earth where static bodies experience spontaneous displacement due to the violation of Newton's second law required by the modified-inertia MOND. Here, a detailed theory of this effect is developed and estimates of the magnitude of the signal due to the effect are obtained. The expected displacement of a mirror in a gravitational-wave interferometer is found to be about 10 -14 m. Some experimental aspects of the proposal are discussed

  20. Characterization of the Ionospheric Scintillations at High Latitude using GPS Signal

    Science.gov (United States)

    Mezaoui, H.; Hamza, A. M.; Jayachandran, P. T.

    2013-12-01

    Transionospheric radio signals experience both amplitude and phase variations as a result of propagation through a turbulent ionosphere; this phenomenon is known as ionospheric scintillations. As a result of these fluctuations, Global Positioning System (GPS) receivers lose track of signals and consequently induce position and navigational errors. Therefore, there is a need to study these scintillations and their causes in order to not only resolve the navigational problem but in addition develop analytical and numerical radio propagation models. In order to quantify and qualify these scintillations, we analyze the probability distribution functions (PDFs) of L1 GPS signals at 50 Hz sampling rate using the Canadian High arctic Ionospheric Network (CHAIN) measurements. The raw GPS signal is detrended using a wavelet-based technique and the detrended amplitude and phase of the signal are used to construct probability distribution functions (PDFs) of the scintillating signal. The resulting PDFs are non-Gaussian. From the PDF functional fits, the moments are estimated. The results reveal a general non-trivial parabolic relationship between the normalized fourth and third moments for both the phase and amplitude of the signal. The calculated higher-order moments of the amplitude and phase distribution functions will help quantify some of the scintillation characteristics and in the process provide a base for forecasting, i.e. develop a scintillation climatology model. This statistical analysis, including power spectra, along with a numerical simulation will constitute the backbone of a high latitude scintillation model.

  1. A meso-network of eddy covariance towers across the Northwest Territories to assess high-latitude carbon and water budgets under increasing pressure

    Science.gov (United States)

    Hurkuck, M.; Marsh, P.; Quinton, W. L.; Humphreys, E.; Lafleur, P.; Helbig, M.; Hould Gosselin, G.; Sonnentag, O.

    2017-12-01

    Given their large areal coverage, high carbon densities, unique land surface properties, and disturbance regimes, Canada's diverse high-latitude ecosystems across its multiple Arctic, subarctic and boreal ecozones are integral components of the global and regional climate systems. In northwestern Canada, large portions of these ecozones contain permafrost, i.e., perennially cryotic ground. Here, we describe efforts towards a meso-network of nine eddy covariance towers to measure carbon, water and energy fluxes across the Northwest Territories to shed light on high-latitude carbon and water budgets and their rapidly changing biotic and abiotic controls in response to increasing natural and anthropogenic pressures. Distributed across six research sites (Trail Valley Creek, 68.7°N, 133.3°W; Havikpak Creek, 68.3°N, 133.3°W; Daring Lake, 64.8°N, 111.5°W; Smith Creek, 63.1°N, 123.2°W; Scotty Creek, 63.1°N, 123.2°W; Yellowknife, 62.5°N, 114.4°W), the meso-network spans the central portion of the extended ABoVE Study Domain, covering two ecozones (Taiga Plains, Southern Arctic) with differing permafrost regimes (sporadic, discontinuous, continuous), climatic settings (coastal, interior), and seven high-latitude ecosystem types: forested permafrost peat plateau, permafrost-free collapse-scar bog, subarctic woodland, mixed and dwarf-shrub tundra, and sedge fen. With our contribution, we report on the current status of the meso-network development and present results from various synthesis activities examining the role of climatic setting and resulting tundra carbon and water budgets, quantifying the impact of permafrost thaw and associated wetland expansion on boreal forest carbon and water budgets, and determining the relative importance of treeline advance compared to shrub proliferation on tundra carbon and water budgets.

  2. Coral bleaching on high-latitude marginal reefs at Sodwana Bay, South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Celliers, Louis; Schleyer, Michael H

    2002-12-01

    Coral bleaching, involving the expulsion of symbiotic zooxanthellae from the host cells, poses a major threat to coral reefs throughout their distributional range. The role of temperature in coral bleaching has been extensively investigated and is widely accepted. A bleaching event was observed on the marginal high-latitude reefs of South Africa located at Sodwana Bay during the summer months of 2000. This was associated with increased sea temperatures with high seasonal peaks in summer and increased radiation in exceptionally clear water. The bleaching was limited to Two-mile Reef and Nine-mile Reef at Sodwana Bay and affected <12% of the total living cover on Two-mile Reef. Montipora spp., Alveopora spongiosa and Acropora spp. were bleached, as well as some Alcyoniidae (Sinularia dura, Lobophytum depressum, L. patulum). A cyclical increase in sea temperature (with a period of 5-6 years) was recorded during 1998-2000 in addition to the regional temperature increase caused by the El Nino Southern Oscillation phenomenon. The mean sea temperature increased at a rate of 0.27 deg. C year{sup -1} from May 1994 to April 2000. High maximum temperatures were measured (>29 deg. C). The lowest mean monthly and the mean maximum monthly temperatures at which coral bleaching occurred were 27.5 and 28.8 deg. C, respectively, while the duration for which high temperatures occurred in 2000 was 67 days at {>=}27.5 deg. C (4 days at {>=}28.8 deg. C). Increased water clarity and radiation appeared to be a synergistic cause in the coral bleaching encountered at Sodwana Bay.

  3. Integrating both interaction pathways between warming and pesticide exposure on upper thermal tolerance in high- and low-latitude populations of an aquatic insect.

    Science.gov (United States)

    Op de Beeck, Lin; Verheyen, Julie; Stoks, Robby

    2017-05-01

    Global warming and chemical pollution are key anthropogenic stressors with the potential to interact. While warming can change the impact of pollutants and pollutants can change the sensitivity to warming, both interaction pathways have never been integrated in a single experiment. Therefore, we tested the effects of warming and multiple pesticide pulses (allowing accumulation) of chlorpyrifos on upper thermal tolerance (CTmax) and associated physiological traits related to aerobic/anaerobic energy production in the damselfly Ischnura elegans. To also assess the role of latitude-specific thermal adaptation in shaping the impact of warming and pesticide exposure on thermal tolerance, we exposed larvae from replicated high- and low-latitude populations to the pesticide in a common garden rearing experiment at 20 and 24 °C, the mean summer water temperatures at high and low latitudes. As expected, exposure to chlorpyrifos resulted in a lower CTmax. Yet, this pesticide effect on CTmax was lower at 24 °C compared to 20 °C because of a lower accumulation of chlorpyrifos in the medium at 24 °C. The effects on CTmax could partly be explained by reduction of the aerobic scope. Given that these effects did not differ between latitudes, gradual thermal evolution is not expected to counteract the negative effect of the pesticide on thermal tolerance. By for the first time integrating both interaction pathways we were not only able to provide support for both of them, but more importantly demonstrate that they can directly affect each other. Indeed, the warming-induced reduction in pesticide impact generated a lower pesticide-induced climate change sensitivity (in terms of decreased upper thermal tolerance). Our results indicate that, assuming no increase in pesticide input, global warming might reduce the negative effect of multiple pulse exposures to pesticides on sensitivity to elevated temperatures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Drift motions of small-scale irregularities in the high-latitude F region: An experimental comparison with plasma drift motions

    International Nuclear Information System (INIS)

    Ruohoniemi, J.M.; Greenwald, R.A.; Baker, K.B.; Villain, J.P.; McCready, M.A.

    1987-01-01

    On the evening of January 6, 1986, coordinated observations were carried out with the Johns Hopkins University Applied Physics Laboratory HF coherent scatter radar at Goose Bay, Labrador, and the SRI International incoherent scatter radar at Sondre Stromfjord, Greenland. The common field of view comprised a section of high-latitude F region ionosphere centered on the great circle plane between the radar sites. Over a 40-min period, the HF radar observed strong backscatter from small-scale (13.9 m) field-aligned irregularities. The bulk line-of-sight drift velocity of the irregularities is deduced from the backscatter data. The returns collected simultaneously with the incoherent scatter radar are processed for estimates of the mean line-of-sight ion velocity. Approximately 100 distinct comparisons are possible between the two sets of velocity estimates. Reversals exceeding 1,000 m/s are present in both. In this paper, the authors demonstrate a correspondence between the measured irregularity and ion drifts that is consistent with the supposition that the motion of the irregularities is dominated by convective drift of the ambient plasma. This indicates that the small-scale irregularities detected by HF radars in the high-latitude F region can serve as tracers of ionospheric convective drift

  5. High relative frequency of thyroid papillary carcinoma in northern Portugal.

    Science.gov (United States)

    Sambade, M C; Gonçalves, V S; Dias, M; Sobrinho-Simões, M A

    1983-05-01

    Two hundred and twelve papillary and 40 follicular carcinomas were found in 3002 thyroid glands examined from 1931 to 1975 in four Laboratories of Pathology that fairly cover northern Portugal. There was a striking preponderance of women both in papillary (female:male = 6.9:1) and follicular carcinoma (5.7:1). Sex-specific frequency of malignancy was significantly greater in men (13.3%) than in women (8.8%). The overall papillary/follicular ratio was 5.3:1 and did not significantly change throughout the study period. Papillary/follicular ratio was not significantly greater in litoral (5.5:1) than in regions with a low iodine intake and a relatively high prevalence of goiter (3.5:1). It is advanced that this high relative frequency of papillary carcinoma in northern Portugal, even in goiter areas, may reflect the existence of a racial factor since there is not enough evidence to support the influence of dietary iodine, previous irradiation and concurrent thyroiditis.

  6. GPS phase scintillation at high latitudes during the geomagnetic storm of 17-18 March 2015

    DEFF Research Database (Denmark)

    Prikryl, P.; Ghoddousi-Fard, R.; Weygand, J. M.

    2016-01-01

    The geomagnetic storm of 17–18 March 2015 was caused by the impacts of a coronal mass ejection and a high-speed plasma stream from a coronal hole. The high-latitude ionosphere dynamics is studied using arrays of ground-based instruments including GPS receivers, HF radars, ionosondes, riometers......, and magnetometers. The phase scintillation index is computed for signals sampled at a rate of up to 100 Hz by specialized GPS scintillation receivers supplemented by the phase scintillation proxy index obtained from geodetic-quality GPS data sampled at 1 Hz. In the context of solar wind coupling...... to the magnetosphere-ionosphere system, it is shown that GPS phase scintillation is primarily enhanced in the cusp, the tongue of ionization that is broken into patches drawn into the polar cap from the dayside storm-enhanced plasma density, and in the auroral oval. In this paper we examine the relation between...

  7. Coordinated observations of postmidnight irregularities and thermospheric neutral winds and temperatures at low latitudes

    Science.gov (United States)

    Dao, Tam; Otsuka, Yuichi; Shiokawa, Kazuo; Nishioka, Michi; Yamamoto, Mamoru; Buhari, Suhaila M.; Abdullah, Mardina; Husin, Asnawi

    2017-07-01

    We investigated a postmidnight field-aligned irregularity (FAI) event observed with the Equatorial Atmosphere Radar at Kototabang (0.2°S, 100.3°E, dip latitude 10.4°S) in Indonesia on the night of 9 July 2010 using a comprehensive data set of both neutral and plasma parameters. We examined the rate of total electron content change index (ROTI) obtained from GPS receivers in Southeast Asia, airglow images detected by an all-sky imager, and thermospheric neutral winds and temperatures obtained by a Fabry-Perot interferometer at Kototabang. Altitudes of the F layer (h'F) observed by ionosondes at Kototabang, Chiang Mai, and Chumphon were also surveyed. We found that the postmidnight FAIs occurred within plasma bubbles and coincided with kilometer-scale plasma density irregularities. We also observed an enhancement of the magnetically equatorward thermospheric neutral wind at the same time as the increase of h'F at low-latitude stations, but h'F at a station near the magnetic equator remained invariant. Simultaneously, a magnetically equatorward gradient of thermospheric temperature was identified at Kototabang. The convergence of equatorward neutral winds from the Northern and Southern Hemispheres could be associated with a midnight temperature maximum occurring around the magnetic equator. Equatorward neutral winds can uplift the F layer at low latitudes and increase the growth rate of Rayleigh-Taylor instabilities, causing more rapid extension of plasma bubbles. The equatorward winds in both hemispheres also intensify the eastward Pedersen current, so a large polarization electric field generated in the plasma bubble might play an important role in the generation of postmidnight FAIs.

  8. Long range transport of caesium isotopes from temperate latitudes to the equatorial zone during the winter monsoon period

    International Nuclear Information System (INIS)

    Pham Duy Hien; Nguyen Thanh Binh; Vuong Thu Bac; Truong Y; Nguyen Trong Ngo.

    1993-01-01

    An air radioactivity monitoring study carried out in Dalat, Vietnam since 1986 has revealed distinct peaks of caesium isotope concentrations in air and fallout during December-January, when the monthly average air temperature was lowest and dry fallout dominated. These peaks provide evidence of the intrusion of more radioactive cold air masses from temperate northern latitudes during the development of large-scale anti cyclones, frequently observed in the most active winter monsoon period. High dry fallout velocity (about 10 cm/s) determined from the measured concentrations, clearly demonstrates one of the most relevant features of cold air masses: behind the cold front, vertical air motion is descending. The role of other processes, such as injection of radioactive air from stratosphere and local resuspension of soil dust, has been shown to be insignificant. The interpretation of the experimental results was based on the analysis of environmental -meteorological factors as well as the behaviour of other naturally-occurring radionuclides. (author). 7 refs, 2 figs

  9. Peatmoss (Sphagnum) diversification associated with Miocene Northern Hemisphere climatic cooling?

    Science.gov (United States)

    Shaw, A Jonathan; Devos, Nicolas; Cox, Cymon J; Boles, Sandra B; Shaw, Blanka; Buchanan, Alex M; Cave, Lynette; Seppelt, Rodney

    2010-06-01

    Global climate changes sometimes spark biological radiations that can feed back to effect significant ecological impacts. Northern Hemisphere peatlands dominated by living and dead peatmosses (Sphagnum) harbor almost 30% of the global soil carbon pool and have functioned as a net carbon sink throughout the Holocene, and probably since the late Tertiary. Before that time, northern latitudes were dominated by tropical and temperate plant groups and ecosystems. Phylogenetic analyses of mosses (phylum Bryophyta) based on nucleotide sequences from the plastid, mitochondrial, and nuclear genomes indicate that most species of Sphagnum are of recent origin (ca. Sphagnum species are not only well-adapted to boreal peatlands, they create the conditions that promote development of peatlands. The recent radiation that gave rise to extant diversity of peatmosses is temporally associated with Miocene climatic cooling in the Northern Hemisphere. The evolution of Sphagnum has had profound influences on global biogeochemistry because of the unique biochemical, physiological, and morphological features of these plants, both while alive and after death. 2010 Elsevier Inc. All rights reserved.

  10. Intensity fluctuations of mid-latitude background VLF-noises and the interplanetary magnetic field

    International Nuclear Information System (INIS)

    Gorshkov, Yu.N.; Klejmenova, N.G.

    1986-01-01

    Influence of interplanetary magnetic field (IMF) sector structure polarity and also variations of solar wind velocity and density on the intensity of mid-latitude VLF background noises are studied. For analysis continuous observations of VLF radiations in Magadan Observatory (phi=53.7 deg, L=2.7) from November, 1972 to June, 1973 were used. It is shown that IMF sector sign has no sufficient effect on the level of mid-latitude VLF background noises at the frequences f < 4-5 kHz. In magnetoperturbed periods when IMF Bsub(z)-component was directed to the South and the Earth was in the region of high-speed plasma flux, in mid-latitudes abatement of intensity of VLF background noises was seen

  11. Specialization of mutualistic interaction networks decreases toward tropical latitudes

    DEFF Research Database (Denmark)

    Schleuning, M.; Fründ, J.; Klein, A.-M.

    2012-01-01

    that current conditions have a stronger effect on biotic specialization than historical community stability. Biotic specialization decreased with increasing local and regional plant diversity. This suggests that high specialization of mutualistic interactions is a response of pollinators and seed dispersers......] or differences in plant diversity [10, 11]. Thus, the direction of the latitudinal specialization gradient remains contentious. With an unprecedented global data set, we investigated how biotic specialization between plants and animal pollinators or seed dispersers is associated with latitude, past...... and contemporary climate, and plant diversity. We show that in contrast to expectation, biotic specialization of mutualistic networks is significantly lower at tropical than at temperate latitudes. Specialization was more closely related to contemporary climate than to past climate stability, suggesting...

  12. Advantageous GOES IR results for ash mapping at high latitudes: Cleveland eruptions 2001

    Science.gov (United States)

    Gu, Yingxin; Rose, William I.; Schneider, D.J.; Bluth, G.J.S.; Watson, I.M.

    2005-01-01

    The February 2001 eruption of Cleveland Volcano, Alaska allowed for comparisons of volcanic ash detection using two-band thermal infrared (10-12 ??m) remote sensing from MODIS, AVHRR, and GOES 10. Results show that high latitude GOES volcanic cloud sensing the range of about 50 to 65??N is significantly enhanced. For the Cleveland volcanic clouds the MODIS and AVHRR data have zenith angles 6-65 degrees and the GOES has zenith angles that are around 70 degrees. The enhancements are explained by distortion in the satellite view of the cloud's lateral extent because the satellite zenith angles result in a "side-looking" aspect and longer path lengths through the volcanic cloud. The shape of the cloud with respect to the GOES look angle also influences the results. The MODIS and AVHRR data give consistent retrievals of the ash cloud evolution over time and are good corrections for the GOES data. Copyright 2005 by the American Geophysical Union.

  13. Degradation of High Mountain Ecosystems in Northern Europe

    Institute of Scientific and Technical Information of China (English)

    J(o)rg L(o)ffler

    2004-01-01

    Data material of a long-term highmountain ecosystem research project was used to interpret the grazing impact of reindeers. In central Norway investigations were conducted to both, areas where reindeer grazing is excluded, and areas where intensive pasturing is present for a long period of time.The comparative analysis of grazing impact was based on similar environmental conditions. The results were transposed to northern Norway where dramatic overgrazing had been exceeding the carrying capacity.Using landscape ecological mappings, especially of vege ation and soils, the impact of reindeer grazing in different areas became obvious. Non-grazedlichen-dominated ecosystems of the snow-free locations functioned sensitively near the limit of organism survival. These localities were most influenced by grazing as they offer the winter forage to the reindeers. So, intensive grazing in central Norway led to landscape degradation by destruction of the vegetation and superinduced by soil erosion.Those features were comparable to the situation in northern Norway, where a broad-scale destruction of the environment combined with a depression of the altitudinal belts had occurred due to overgrazing.Functioning principles of intact high mountain systems were explained and used to interpret the environmental background for the understanding of degradation phenomena. Finally, the use of a new model calculating the carrying capacity of high mountain landscape was discussed.

  14. PRRSV outbreak with high mortality in northern part of Denmark

    DEFF Research Database (Denmark)

    Kvisgaard, Lise Kirstine; Hjulsager, Charlotte Kristiane; Rathkjen, P. H.

    with high mortality rate in piglets occurred in Northern Jutland. PRRSV type 2 was detected by real-time RT-PCR in lung tissue from 10 days old piglets. The outbreak was treated by extensive vaccination with Ingelvac® PRRS MLV and strict management procedures. 6 weeks later, the mortality of liveborn...

  15. Meta-analysis of high-latitude nitrogen-addition and warming studies implies ecological mechanisms overlooked by land models

    Science.gov (United States)

    Bouskill, N. J.; Riley, W. J.; Tang, J. Y.

    2014-12-01

    Accurate representation of ecosystem processes in land models is crucial for reducing predictive uncertainty in energy and greenhouse gas feedbacks with the climate. Here we describe an observational and modeling meta-analysis approach to benchmark land models, and apply the method to the land model CLM4.5 with two versions of belowground biogeochemistry. We focused our analysis on the aboveground and belowground responses to warming and nitrogen addition in high-latitude ecosystems, and identified absent or poorly parameterized mechanisms in CLM4.5. While the two model versions predicted similar soil carbon stock trajectories following both warming and nitrogen addition, other predicted variables (e.g., belowground respiration) differed from observations in both magnitude and direction, indicating that CLM4.5 has inadequate underlying mechanisms for representing high-latitude ecosystems. On the basis of observational synthesis, we attribute the model-observation differences to missing representations of microbial dynamics, aboveground and belowground coupling, and nutrient cycling, and we use the observational meta-analysis to discuss potential approaches to improving the current models. However, we also urge caution concerning the selection of data sets and experiments for meta-analysis. For example, the concentrations of nitrogen applied in the synthesized field experiments (average = 72 kg ha-1 yr-1) are many times higher than projected soil nitrogen concentrations (from nitrogen deposition and release during mineralization), which precludes a rigorous evaluation of the model responses to likely nitrogen perturbations. Overall, we demonstrate that elucidating ecological mechanisms via meta-analysis can identify deficiencies in ecosystem models and empirical experiments.

  16. Mapping high-latitude plasma convection with coherent HF radars

    International Nuclear Information System (INIS)

    Ruohoniemi, J.M.; Greenwald, R.A.; Baker, K.B.; Villain, J.-P.; Hanuise, C.; Kelly, J.

    1989-01-01

    In this decade, a new technique for the study of ionosphere electrodynamics has been implemented in an evolving generation of high-latitude HF radars. Coherent backscatter from electron density irregularities at F region altitudes is utilized to observe convective plasma motion. The electronic beam forming and scanning capabilities of the radars afford an excellent combination of spatial (∼50 km) and temporal (∼1 min) resolution of the large-scale (∼10 6 km 2 ) convection pattern. In this paper, we outline the methods developed to synthesize the HF radar data into two-dimensional maps of convection velocity. Although any single radar can directly measure only the line-of-sight, or radial, component of the plasma motion, the convection pattern is sometimes so uniform and stable that scanning in azimuth serves to determine the transverse component as well. Under more variable conditions, data from a second radar are necessary to unambiguously resolve velocity vectors. In either case, a limited region of vector solution can be expanded into contiguous areas of single-radar radial velocity data by noting that the convection must everywhere be divergence-free, i.e., ∇·v=0. It is thus often possible to map velocity vectors without extensive second-radar coverage. We present several examples of two-dimensional velocity maps. These show instances of L shell-aligned flow in the dusk sector, the reversal of convection near magnetic midnight, and counterstreaming in the dayside cleft. We include a study of merged coherent and incoherent radar data that illustrates the applicability of these methods to other ionospheric radar systems. copyright American Geophysical Union 1989

  17. Snowmelt in a High Latitude Mountain Catchment: Effect of Vegetation Cover and Elevation

    Science.gov (United States)

    Pomeroy, J. W.; Essery, R. L.; Ellis, C. R.; Hedstrom, N. R.; Janowicz, R.; Granger, R. J.

    2004-12-01

    The energetics and mass balance of snowpacks in the premelt and melt period were compared from three elevation bands in a high latitude mountain catchment, Wolf Creek Research Basin, Yukon. Elevation is strongly correlated with vegetation cover and in this case the three elevation bands (low, middle, high) correspond to mature spruce forest, dense shrub tundra and sparse tundra (alpine). Measurements of radiation, ground heat flux, snow depth, snowfall, air temperature, wind speed were made on a half-hourly basis at the three elevations for a 10 year period. Sondes provided vertical gradients of air temperature, humidity, wind speed and air pressure. Snow depth and density surveys were conducted monthly. Comparisons of wind speed, air temperature and humidity at three elevations show that the expected elevational gradients in the free atmosphere were slightly enhanced just above the surface canopies, but that the climate at the snow surface was further influenced by complex canopy effects. Premelt snow accumulation was strongly affected by intercepted snow in the forest and blowing snow sublimation in the sparse tundra but not by the small elevational gradients in snowfall. As a result the maximum premelt SWE was found in the mid-elevation shrub tundra and was roughly double that of the sparse tundra or forest. Minimum variability of SWE was observed in the forest and shrub tundra (CV=0.25) while in the sparse tundra variability doubled (CV=0.5). Snowmelt was influenced by differences in premelt accumulation as well as differences in the net energy fluxes to snow. Elevation had a strong effect on the initiation of melt with the forest melt starting on average 16 days before the shrub tundra and 19 days before the sparse tundra. Mean melt rates showed a maximum in middle elevations and increased from 860 kJ/day in the forest to 1460 kJ/day in the sparse tundra and 2730 kJ/day in the shrub tundra. The forest canopy reduced melt while the shrub canopy enhanced it

  18. Ten-year trends of atmospheric mercury in the high Arctic compared to Canadian sub-Arctic and mid-latitude sites

    Directory of Open Access Journals (Sweden)

    A. S. Cole

    2013-02-01

    Full Text Available Global emissions of mercury continue to change at the same time as the Arctic is experiencing ongoing climatic changes. Continuous monitoring of atmospheric mercury provides important information about long-term trends in the balance between transport, chemistry, and deposition of this pollutant in the Arctic atmosphere. Ten-year records of total gaseous mercury (TGM from 2000 to 2009 were analyzed from two high Arctic sites at Alert (Nunavut, Canada and Zeppelin Station (Svalbard, Norway; one sub-Arctic site at Kuujjuarapik (Nunavik, Québec, Canada; and three temperate Canadian sites at St. Anicet (Québec, Kejimkujik (Nova Scotia and Egbert (Ontario. Five of the six sites examined showed a decreasing trend over this time period. Overall trend estimates at high latitude sites were: −0.9% yr−1 (95% confidence limits: −1.4, 0 at Alert and no trend (−0.5, +0.7 at Zeppelin Station. Faster decreases were observed at the remainder of the sites: −2.1% yr−1 (−3.1, −1.1 at Kuujjuarapik, −1.9% yr−1 (−2.1, −1.8 at St. Anicet, −1.6% yr−1 (−2.4, −1.0 at Kejimkujik and −2.2% yr−1 (−2.8, −1.7 at Egbert. Trends at the sub-Arctic and mid-latitude sites agree with reported decreases in background TGM concentration since 1996 at Mace Head, Ireland, and Cape Point, South Africa, but conflict with estimates showing an increase in global anthropogenic emissions over a similar period. Trends in TGM at the two high Arctic sites were not only less negative (or neutral overall but much more variable by season. Possible reasons for differences in seasonal and overall trends at the Arctic sites compared to those at lower latitudes are discussed, as well as implications for the Arctic mercury cycle. The first calculations of multi-year trends in reactive gaseous mercury (RGM and total particulate mercury (TPM at Alert were also performed, indicating increases from 2002 to 2009

  19. Nonrandom community assembly and high temporal turnover promote regional coexistence in tropics but not temperate zone.

    Science.gov (United States)

    Freestone, Amy L; Inouye, Brian D

    2015-01-01

    A persistent challenge for ecologists is understanding the ecological mechanisms that maintain global patterns of biodiversity, particularly the latitudinal diversity gradient of peak species richness in the tropics. Spatial and temporal variation in community composition contribute to these patterns of biodiversity, but how this variation and its underlying processes change across latitude remains unresolved. Using a model system of sessile marine invertebrates across 25 degrees of latitude, from the temperate zone to the tropics, we tested the prediction that spatial and temporal patterns of taxonomic richness and composition, and the community assembly processes underlying these patterns, will differ across latitude. Specifically, we predicted that high beta diversity (spatial variation in composition) and high temporal turnover contribute to the high species richness of the tropics. Using a standardized experimental approach that controls for several confounding factors that hinder interpretation of prior studies, we present results that support our predictions. In the temperate zone, communities were more similar across spatial scales from centimeters to tens of kilometers and temporal scales up to one year than at lower latitudes. Since the patterns at northern latitudes were congruent with a null model, stochastic assembly processes are implicated. In contrast, the communities in the tropics were a dynamic spatial and temporal mosaic, with low similarity even across small spatial scales and high temporal turnover at both local and regional scales. Unlike the temperate zone, deterministic community assembly processes such as predation likely contributed to the high beta diversity in the tropics. Our results suggest that community assembly processes and temporal dynamics vary across latitude and help structure and maintain latitudinal patterns of diversity.

  20. The Vertical-Tube Solar Collector: A Low-Cost Design Suitable for Temperate High-Latitude Locations

    Directory of Open Access Journals (Sweden)

    Luis Juanicó

    2014-01-01

    Full Text Available A new low-cost solar collector based on thick (4.5′′ vertical tubes related to the previous design based on long 1.5′′ plastic hoses connected directly between water-grid supply and consumption is presented. This novel design could noticeably improve its performance for temperate locations mid and high latitudes, as was demonstrated by dynamic thermal modeling. This tool has been useful for understanding the particular characteristics of this kind of water-pond collector and besides, for noticeably improving its performance by optimizing its parameters, like tube diameter and number of glazing layers. By this way, the optimized design could fully satisfy the household demand up to midnight along the whole year for Buenos Aires (35°S and during summers (remaining as a useful preheater for the whole year for Ushuaia (55°S. Besides, its high simplicity makes it available for user’s own construction, costing down 50 dollars for a single-family unit.

  1. Low-latitude particle precipitation and associated local magnetic disturbances

    International Nuclear Information System (INIS)

    Rassoul, H.K.; Rohrbaugh, R.P.; Tinsley, B.A.

    1992-01-01

    The time variations of optical emissions during low-latitude auroral events have been shown to correlate well with those of magnetograms in the region where the aurorae are observed. Two events not previously reported are analyzed and are shown to confirm the nature of the correlations found for two earlier events. The maximum optical emissions at mid-latitudes occur in concert with the maximum positive (northward) excursions in the H trace and with rapid fluctuations in the D trace of nearby magnetograms. The fluctuation in ΔD is usually from the east (positive) to the west (negative) in the vicinity of the ΔH perturbation. The positive excursions in H at low-latitude observatories at the time of the maximum optical emissions are associated with negative H excursions at high latitude observatories in the same longitude sector. The source of the particles has been inferred to be the ring current, with precipitation occurring when the |Dst| index is large at the time of the large short term excursions in the local magnetic field. This result is consistent with the funding of Voss and Smith (1979), derived from a series of rocket measurements of precipitating heavy particles, that the flux correlates better with the product of |Dst| and the exponential of K p than with either alone. In the present case it is shown that the product of |Dst| and the amplitude of the short term excursions in the horizontal component in local magnetograms has better time resolution and better correlation with the observed emission rates than the index using K p

  2. Foraminifera isotopic records... with special attention to high northern latitudes and the impact of sea-ice distillation processes

    Energy Technology Data Exchange (ETDEWEB)

    Hillaire-Marcel, Claude, E-mail: hillaire-marcel.claude@uqam.ca [GEOTOP, Universite du Quebec a Montreal, PO Box 8888, succursale ' centre ville' Montreal, Qc, H3C 3P8 (Canada)

    2011-05-15

    Since the reassessment of oxygen isotope paleotemperatures by N. Shackleton in the late 60s, most papers using isotopic records from planktic or benthic foraminifers imply a direct relationship between oxygen isotopes in seawater and the ice/ocean volume, thus some linkage with salinity, sea level, etc. Such assumptions are also made when incorporating 'isotopic modules' in coupled models. Here, we will further examine the linkages between salinity and oxygen isotope ratios of sea-water recorded by foraminifers, and their potential temporal and spatial variability, especially in the northern North Atlantic and the Arctic oceans. If temporal and spatial changes in the isotopic composition of precipitations and ice meltwaters tune the isotopic properties of the fresh water end-member that dilutes the ocean, rates of sea-ice formation and evaporation at the ocean surface play a further role on the salt and oxygen isotope contents of water masses. Thus, the oxygen 18-salinity relationship carries a specific isotopic signature for any given water mass. At the ocean scale, residence time and mixing of these water masses, as well as the time dependent-achievement of proxy-tracer equilibrium, will also result in variable recordings of mass transfers into the hydrosphere, notable between ice-sheets and ocean. Since these records in water mass may vary in both amplitude and time, direct correlations of isotopic records will potentially be misleading. Implications of such issues on the interpretation of oxygen isotope records from the sub-arctic seas will be discussed, as well as the inherent flaws of such records due to sedimentological and or ecological parameters.

  3. Terrestrial cooling in Northern Europe during the Eocene–Oligocene transition

    Science.gov (United States)

    Hren, Michael T.; Sheldon, Nathan D.; Grimes, Stephen T.; Collinson, Margaret E.; Hooker, Jerry J.; Bugler, Melanie; Lohmann, Kyger C.

    2013-01-01

    Geochemical and modeling studies suggest that the transition from the “greenhouse” state of the Late Eocene to the “icehouse” conditions of the Oligocene 34–33.5 Ma was triggered by a reduction of atmospheric pCO2 that enabled the rapid buildup of a permanent ice sheet on the Antarctic continent. Marine records show that the drop in pCO2 during this interval was accompanied by a significant decline in high-latitude sea surface and deep ocean temperature and enhanced seasonality in middle and high latitudes. However, terrestrial records of this climate transition show heterogeneous responses to changing pCO2 and ocean temperatures, with some records showing a significant time lag in the temperature response to declining pCO2. We measured the Δ47 of aragonite shells of the freshwater gastropod Viviparus lentus from the Solent Group, Hampshire Basin, United Kingdom, to reconstruct terrestrial temperature and hydrologic change in the North Atlantic region during the Eocene–Oligocene transition. Our data show a decrease in growing-season surface water temperatures (∼10 °C) during the Eocene–Oligocene transition, corresponding to an average decrease in mean annual air temperature of ∼4–6 °C from the Late Eocene to Early Oligocene. The magnitude of cooling is similar to observed decreases in North Atlantic sea surface temperature over this interval and occurs during major glacial expansion. This suggests a close linkage between atmospheric carbon dioxide concentrations, Northern Hemisphere temperature, and expansion of the Antarctic ice sheets. PMID:23610424

  4. Dependence of the duration of geomagnetic polarity reversals on site latitude.

    Science.gov (United States)

    Clement, Bradford M

    2004-04-08

    An important constraint on the processes governing the geodynamo--the flow in the outer core responsible for generating Earth's magnetic field--is the duration of geomagnetic polarity reversals; that is, how long it takes for Earth's magnetic field to reverse. It is generally accepted that Earth's magnetic field strength drops to low levels during polarity reversals, and the field direction progresses through a 180 degrees change while the field is weak. The time it takes for this process to happen, however, remains uncertain, with estimates ranging from a few thousand up to 28,000 years. Here I present an analysis of the available sediment records of the four most recent polarity reversals. These records yield an average estimate of about 7,000 years for the time it takes for the directional change to occur. The variation about this mean duration is not random, but instead varies with site latitude, with shorter durations observed at low-latitude sites, and longer durations observed at mid- to high-latitude sites. Such variation of duration with site latitude is predicted by simple geometrical reversal models, in which non-dipole fields are allowed to persist while the axial dipole decays through zero and then builds in the opposite direction, and provides a constraint on numerical dynamo models.

  5. Assessment of IRI-2016 profile parameters over Indian low latitude station

    Science.gov (United States)

    Patel, Nilesh C.; Karia, Sheetal P.; Pathak, Kamlesh N.

    2018-05-01

    The present study reports the assessment of the bottom-side profile thickness (B0), shape (B1) and F2-peak height (hmF2) parameters IRI-2016 model over the Indian region by using digisonde observations. The digisonde data from a low latitude station Ahmedabad, (located at the crest of the northern equatorial anomaly) during three months June-2012, July-2012 and December-2012 are considered for this study. Simultaneous comparison is made on the performance of three different options `Gul-1987', `Bil-2000' and the `ABT-2009' for the bottom-side profile, three different options`AMTB2013 (AMT)', `SHU-2015 (SHU)', and `BSE-1979 (BSE)' for the hmF2 estimation in the latest available IRI-2016 to that obtained from digisonde measurements. Further, the diurnal characteristics of the B0 and B1 from digisonde measurements are also compared with those from the IRI-2016 model using the three different options.

  6. The prevalence of headache in Greece: correlations to latitude and climatological factors.

    Science.gov (United States)

    Mitsikostas, D D; Tsaklakidou, D; Athanasiadis, N; Thomas, A

    1996-03-01

    A questionnaire study on headaches, using a door-to-door survey, was carried out in a representative sample of the general Greek population, including 1737 men and 1764 women, from 15 to 75 years of age. The parameters evaluated included age, sex, education, socioeconomic status, region of domicile, frequency of headache, use of medication, medical consultation, and family history. Latitude and climatologic factors such as humidity, temperature, and atmospheric pressure were also investigated. Headaches were not classified because the interviewers were not specialists. Nineteen percent of men and 40% of women (mean 29%) suffered from headaches in the prior year. Headaches were more frequent in lower social classes, in people with less education, and in those between 45 and 64 years of age. Nineteen percent of sufferers did not take any medication and 33% used medication every time that they had a headache, while 36% sought medical consultation. Twenty-nine percent of headache sufferers had a family history of headaches. Daily headache was present in 15% of headache sufferers. Humidity and atmospheric pressure were not correlated to headache frequency. However, in the northern areas of Greece, as well as in the regions with low mean temperature, more people suffered from daily headaches. These data may explain the lower 1-year prevalence of headaches in other Greece as compared to the prevalence of headaches in other northern European countries.

  7. Exchange across the shelf break at high southern latitudes

    Directory of Open Access Journals (Sweden)

    J. M. Klinck

    2010-05-01

    Full Text Available Exchange of water across the Antarctic shelf break has considerable scientific and societal importance due to its effects on circulation and biology of the region, conversion of water masses as part of the global overturning circulation and basal melt of glacial ice and the consequent effect on sea level rise. The focus in this paper is the onshore transport of warm, oceanic Circumpolar Deep Water (CDW; export of dense water from these shelves is equally important, but has been the focus of other recent papers and will not be considered here. A variety of physical mechanisms are described which could play a role in this onshore flux. The relative importance of some processes are evaluated by simple calculations. A numerical model for the Ross Sea continental shelf is used as an example of a more comprehensive evaluation of the details of cross-shelf break exchange. In order for an ocean circulation model to simulate these processes at high southern latitudes, it needs to have high spatial resolution, realistic geometry and bathymetry. Grid spacing smaller than the first baroclinic radius of deformation (a few km is required to adequately represent the circulation. Because of flow-topography interactions, bathymetry needs to be represented at these same small scales. Atmospheric conditions used to force these circulation models also need to be known at a similar small spatial resolution (a few km in order to represent orographically controlled winds (coastal jets and katabatic winds. Significantly, time variability of surface winds strongly influences the structure of the mixed layer. Daily, if not more frequent, surface fluxes must be imposed for a realistic surface mixed layer. Sea ice and ice shelves are important components of the coastal circulation. Ice isolates the ocean from exchange with the atmosphere, especially in the winter. Melting and freezing of both sea ice and glacial ice influence salinity and thereby the character of shelf

  8. Hydrogeochemistry of high-fluoride groundwater at Yuncheng Basin, northern China

    International Nuclear Information System (INIS)

    Li, Chengcheng; Gao, Xubo; Wang, Yanxin

    2015-01-01

    Hydrogeochemical and environmental isotope methods were integrated to delineate the spatial distribution and enrichment of fluoride in groundwater at Yuncheng Basin in northern China. One hundred groundwater samples and 10 Quaternary sediment samples were collected from the Basin. Over 69% of the shallow groundwater (with a F − concentration of up to 14.1 mg/L), 44% of groundwater samples from the intermediate and 31% from the deep aquifers had F − concentrations above the WHO provisional drinking water guideline of 1.5 mg/L. Groundwater with high F − concentrations displayed a distinctive major ion chemistry: Na-rich and Ca-poor with a high pH value and high HCO 3 − content. Hydrochemical diagrams and profiles and hydrogen and oxygen isotope compositions indicate that variations in the major ion chemistry and pH are controlled by mineral dissolution, cation exchange and evaporation in the aquifer systems, which are important for F − mobilization as well. Leakage of shallow groundwater and/or evaporite (gypsum and mirabilite) dissolution may be the major sources for F − in groundwater of the intermediate and deep aquifers. - Highlights: • High-F − groundwater widely occurs in Yuncheng Basin of northern China. • High-F − groundwater is Na and HCO 3 -rich and Ca-poor, with high pH. • Major hydrogeochemical processes are mineral dissolution, ion exchange and evaporation. • Shallow groundwater leakage/evaporite dissolution may cause F enrichment in lower aquifers

  9. Divergent El Niño responses to volcanic eruptions at different latitudes over the past millennium

    Science.gov (United States)

    Liu, Fei; Li, Jinbao; Wang, Bin; Liu, Jian; Li, Tim; Huang, Gang; Wang, Zhiyuan

    2017-08-01

    Detection and attribution of El Niño-Southern Oscillation (ENSO) responses to radiative forcing perturbation are critical for predicting the future change of ENSO under global warming. One of such forcing perturbation is the volcanic eruption. Our understanding of the responses of ENSO system to explosive tropical volcanic eruptions remains controversial, and we know little about the responses to high-latitude eruptions. Here, we synthesize proxy-based ENSO reconstructions, to show that there exist an El Niño-like response to the Northern Hemisphere (NH) and tropical eruptions and a La Niña-like response to the Southern Hemisphere (SH) eruptions over the past millennium. Our climate model simulation results show good agreement with the proxy records. The simulation reveals that due to different meridional thermal contrasts, the westerly wind anomalies can be excited over the tropical Pacific to the south of, at, or to the north of the equator in the first boreal winter after the NH, tropical, or SH eruptions, respectively. Thus, the eastern-Pacific El Niño can develop and peak in the second winter after the NH and tropical eruptions via the Bjerknes feedback. The model simulation only shows a central-Pacific El Niño-like response to the SH eruptions. The reason is that the anticyclonic wind anomaly associated with the SH eruption-induced southeast Pacific cooling will excite westward current anomalies and prevent the development of eastern-Pacific El Niño-like anomaly. These divergent responses to eruptions at different latitudes and in different hemispheres underline the sensitivity of the ENSO system to the spatial structure of radiative disturbances in the atmosphere.

  10. High-latitude Pc 1 bursts arising in the dayside boundary layer region

    International Nuclear Information System (INIS)

    Hansen, H.J.; Fraser, B.J.; Menk, F.W.; Hu, Y.D.; Newell, P.T.; Meng, C.I.; Morris, R.J.

    1992-01-01

    Dayside Pc 1 geomagnetic pulsation bursts have been studied using a three-station array of induction magnetometers located at high latitudes. Associated magnetic variations in the form of solitary pulses often lead the Pc 1 bursts by 1 to 2 min. These pulses are typically associated with riometer absorption events and consequently the precipitation of fluxes of keV electrons. The Pc 1 bursts are interpreted as resulting from ion cyclotron waves which have propagated to the ionosphere from the equatorial boundary layer region. The associated boundary layer ions, identified by the low-altitude DMSP F7 satellite, range between 1 and 5 keV in energy. These particles are considered to be the most likely free energy source for the ion cyclotron waves. It is considered that such resonant ions enter the magnetosphere via the cleft and cusp because this enables a prenoon time of occurrence of most of the observations to be explained. Measured time delays of 40 to 120 s between the associated riometer absorption and Pc 2 bursts are consistent with an ion cyclotron wave generations region located in the equatorial magnetosphere

  11. Advances in Understanding the Role of Frozen Precipitation in High Latitude Hydrology

    Science.gov (United States)

    L'Ecuyer, T. S.; Wood, N.; Smalley, M.; McIlhattan, E.; Kulie, M.

    2017-12-01

    Satellite-based millimeter wavelength radar observations provide a unique perspective on the global character of frozen precipitation that has been difficult to detect using conventional spaceborne precipitation sensors. This presentation will describe the methodology underpinning the ten-year CloudSat global snowfall product and discuss the results of a number of complementary approaches that have been adopted to quantify its uncertainties. These datasets are shedding new light on the distribution, character, and impacts of frozen precipitation on high latitude hydrology. Inferred regional snowfall accumulations, for example, provide valuable constraints on projected changes in precipitation and mass balance on the Antarctic ice sheet in climate models. When placed in the broader context of complementary observations from other A-Train sensors, instantaneous snowfall estimates also hint at the large-scale processes that influence snow formation including air-sea interactions associated with cold-air outbreaks, lake-effect snows, and orographic enhancement. Simultaneous CloudSat and CALIPSO observations further emphasize the important role snowfall plays in the lifetime of super-cooled liquid containing clouds in the Arctic and highlight a model deficiency with important implications for surface energy and mass balance on the Greenland ice sheet.

  12. Influence of high latitude light conditions on sensory quality and contents of health and sensory-related compounds in swede roots (Brassica napus L. ssp. rapifera Metzg.).

    Science.gov (United States)

    Mølmann, Jørgen Ab; Hagen, Sidsel Fiskaa; Bengtsson, Gunnar B; Johansen, Tor J

    2018-02-01

    Vegetable growers in Arctic areas must increasingly rely on market strategies based on regional origin and product quality. Swede roots (rutabaga) were grown in a phytotron to investigate the effect of high latitude light conditions on sensory quality and some health and sensory-related compounds. Experimental treatments included modifications of 24 h natural day length (69° 39' N) by moving plants at daily intervals to dark chambers with either no light, fluorescent growth light and/or low intensity photoperiod extension. Shortening the photosynthetic light period to 12 h produced smaller roots than 15.7 h and 18 h, with highest scores for bitter and sulfur taste, and lowest scores for sweetness, acidic taste and fibrousness. The photoperiod in combination with the photosynthetic light period also had an influence on glucosinolate (GLS) contents, with lowest concentrations in 24 h natural light and highest in 12 h natural light. Concentrations of vitamin C, glucose, fructose and sucrose were not significantly influenced by any of the treatments. High latitude light conditions, with long photosynthetic light periods and 24 h photoperiod, can enhance sweet/less bitter taste and reduce GLS contents in swede roots, compared to growth under short day conditions. This influence of light conditions on eating quality may benefit marketing of regional products from high latitudes. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  13. The Deep Space Gateway Lightning Mapper (DLM) — Monitoring Global Change and Thunderstorm Processes through Observations of Earth's High-Latitude Lightning from Cis-Lunar Orbit

    Science.gov (United States)

    Lang, T. J.; Blakeslee, R. J.; Cecil, D. J.; Christian, H. J.; Gatlin, P. N.; Goodman, S. J.; Koshak, W. J.; Petersen, W. A.; Quick, M.; Schultz, C. J.; Tatum, P. F.

    2018-02-01

    We propose the Deep Space Gateway Lightning Mapper (DLM) instrument. The primary goal of the DLM is to optically monitor Earth's high-latitude (50° and poleward) total lightning not observed by current and planned spaceborne lightning mappers.

  14. SENTINEL-2 GLOBAL REFERENCE IMAGE VALIDATION AND APPLICATION TO MULTITEMPORAL PERFORMANCES AND HIGH LATITUDE DIGITAL SURFACE MODEL

    Directory of Open Access Journals (Sweden)

    A. Gaudel

    2017-05-01

    Full Text Available In the frame of the Copernicus program of the European Commission, Sentinel-2 is a constellation of 2 satellites with a revisit time of 5 days in order to have temporal images stacks and a global coverage over terrestrial surfaces. Satellite 2A was launched in June 2015, and satellite 2B will be launched in March 2017. In cooperation with the European Space Agency (ESA, the French space agency (CNES is in charge of the image quality of the project, and so ensures the CAL/VAL commissioning phase during the months following the launch. This cooperation is also extended to routine phase as CNES supports European Space Research Institute (ESRIN and the Sentinel-2 Mission performance Centre (MPC for validation in geometric and radiometric image quality aspects, and in Sentinel-2 GRI geolocation performance assessment whose results will be presented in this paper. The GRI is a set of S2A images at 10m resolution covering the whole world with a good and consistent geolocation. This ground reference enables accurate multi-temporal registration of refined Sentinel-2 products. While not primarily intended for the generation of DSM, Sentinel-2 swaths overlap between orbits would also allow for the generation of a complete DSM of land and ices over 60° of northern latitudes (expected accuracy: few S2 pixels in altimetry. This DSM would benefit from the very frequent revisit times of Sentinel-2, to monitor ice or snow level in area of frequent changes, or to increase measurement accuracy in areas of little changes.

  15. SENTINEL-2 Global Reference Image Validation and Application to Multitemporal Performances and High Latitude Digital Surface Model

    Science.gov (United States)

    Gaudel, A.; Languille, F.; Delvit, J. M.; Michel, J.; Cournet, M.; Poulain, V.; Youssefi, D.

    2017-05-01

    In the frame of the Copernicus program of the European Commission, Sentinel-2 is a constellation of 2 satellites with a revisit time of 5 days in order to have temporal images stacks and a global coverage over terrestrial surfaces. Satellite 2A was launched in June 2015, and satellite 2B will be launched in March 2017. In cooperation with the European Space Agency (ESA), the French space agency (CNES) is in charge of the image quality of the project, and so ensures the CAL/VAL commissioning phase during the months following the launch. This cooperation is also extended to routine phase as CNES supports European Space Research Institute (ESRIN) and the Sentinel-2 Mission performance Centre (MPC) for validation in geometric and radiometric image quality aspects, and in Sentinel-2 GRI geolocation performance assessment whose results will be presented in this paper. The GRI is a set of S2A images at 10m resolution covering the whole world with a good and consistent geolocation. This ground reference enables accurate multi-temporal registration of refined Sentinel-2 products. While not primarily intended for the generation of DSM, Sentinel-2 swaths overlap between orbits would also allow for the generation of a complete DSM of land and ices over 60° of northern latitudes (expected accuracy: few S2 pixels in altimetry). This DSM would benefit from the very frequent revisit times of Sentinel-2, to monitor ice or snow level in area of frequent changes, or to increase measurement accuracy in areas of little changes.

  16. Simultaneous observation of traveling ionospheric disturbances in the Northern and Southern Hemispheres

    Directory of Open Access Journals (Sweden)

    C. E. Valladares

    2009-04-01

    Full Text Available Measurements of total electron content (TEC using 263 GPS receivers located in the North and South America continents are presented to demonstrate the simultaneous existence of traveling ionospheric disturbances (TID at high, mid, and low latitudes, and in both Northern and Southern Hemispheres. The TID observations pertain to the magnetically disturbed period of 29–30 October 2003 also known as the Halloween storm. The excellent quality of the TEC measurements makes it possible to calculate and remove the diurnal variability of TEC and then estimate the amplitude, wavelength, spectral characteristics of the perturbations, and the approximate velocity of the AGW. On 29 October 2003 between 17:00 and 19:00 UT, there existed a sequence of TEC perturbations (TECP, which were associated with the transit of atmospheric gravity waves (AGW propagating from both auroral regions toward the geographic equator. A marked difference was found between the northern and southern perturbations. In the Northern Hemisphere, the preferred horizontal wavelength varies between 1500 and 1800 km; the propagation velocity is near 700 m/s and the perturbation amplitude about 1 TEC unit (TECu. South of the geographic equator the wavelength of the TECP is as large as 2700 km, the velocity is about 550 m/s, and the TECP amplitude is 3 TECu. Concurrently with our observations, the Jicamarca digisonde observed virtual height traces that exhibited typical features that are associated with TIDs. Here, it is suggested that differences in the local conductivity between northern and southern auroral ovals create a different Joule heating energy term. The quality of these observations illustrates the merits of GPS receivers to probe the ionosphere and thermosphere.

  17. Meta-analysis of high-latitude nitrogen-addition and warming studies imply ecological mechanisms overlooked by land models

    Science.gov (United States)

    Bouskill, N. J.; Riley, W. J.; Tang, J.

    2014-08-01

    Accurate representation of ecosystem processes in land models is crucial for reducing predictive uncertainty in energy and greenhouse gas feedbacks with the atmosphere. Here we describe an observational and modeling meta-analysis approach to benchmark land models, and apply the method to the land model CLM4.5 with two versions of belowground biogeochemistry. We focused our analysis on the above and belowground high-latitude ecosystem responses to warming and nitrogen addition, and identified mechanisms absent, or poorly parameterized in CLM4.5. While the two model versions predicted similar trajectories for soil carbon stocks following both types of perturbation, other variables (e.g., belowground respiration) differed from the observations in both magnitude and direction, indicating the underlying mechanisms are inadequate for representing high-latitude ecosystems. The observational synthesis attribute these differences to missing representations of microbial dynamics, characterization of above and belowground functional processes, and nutrient competition. We use the observational meta-analyses to discuss potential approaches to improving the current models (e.g., the inclusion of dynamic vegetation or different microbial functional guilds), however, we also raise a cautionary note on the selection of data sets and experiments to be included in a meta-analysis. For example, the concentrations of nitrogen applied in the synthesized field experiments (average =72 kg ha-1 yr-1) are many times higher than projected soil nitrogen concentrations (from nitrogen deposition and release during mineralization), which preclude a rigorous evaluation of the model responses to nitrogen perturbation. Overall, we demonstrate here that elucidating ecological mechanisms via meta-analysis can identify deficiencies in both ecosystem models and empirical experiments.

  18. Climate change and the northern elephant seal (Mirounga angustirostris population in Baja California, Mexico.

    Directory of Open Access Journals (Sweden)

    María C García-Aguilar

    Full Text Available The Earth's climate is warming, especially in the mid- and high latitudes of the Northern Hemisphere. The northern elephant seal (Mirounga angustirostris breeds and haul-outs on islands and the mainland of Baja California, Mexico, and California, U.S.A. At the beginning of the 21st century, numbers of elephant seals in California are increasing, but the status of Baja California populations is unknown, and some data suggest they may be decreasing. We hypothesize that the elephant seal population of Baja California is experiencing a decline because the animals are not migrating as far south due to warming sea and air temperatures. Here we assessed population trends of the Baja California population, and climate change in the region. The numbers of northern elephant seals in Baja California colonies have been decreasing since the 1990s, and both the surface waters off Baja California and the local air temperatures have warmed during the last three decades. We propose that declining population sizes may be attributable to decreased migration towards the southern portions of the range in response to the observed temperature increases. Further research is needed to confirm our hypothesis; however, if true, it would imply that elephant seal colonies of Baja California and California are not demographically isolated which would pose challenges to environmental and management policies between Mexico and the United States.

  19. Search for Very High-energy Gamma Rays from the Northern Fermi Bubble Region with HAWC

    OpenAIRE

    Abeysekara, AU; Albert, A; Alfaro, R; Alvarez, C; Alvarez, JD; Arceo, R; Arteaga-Velázquez, JC; Ayala Solares, HA; Barber, AS; Bautista-Elivar, N; Becerril, A; Belmont-Moreno, E; BenZvi, SY; Berley, D; Braun, J

    2017-01-01

    © 2017. The American Astronomical Society. All rights reserved. We present a search for very high-energy gamma-ray emission from the Northern Fermi Bubble region using data collected with the High Altitude Water Cherenkov gamma-ray observatory. The size of the data set is 290 days. No significant excess is observed in the Northern Fermi Bubble region, so upper limits above 1 TeV are calculated. The upper limits are between and . The upper limits disfavor a proton injection spectrum that exten...

  20. A GIS-based assessment of the suitability of SCIAMACHY satellite sensor measurements for estimating reliable CO concentrations in a low-latitude climate.

    Science.gov (United States)

    Fagbeja, Mofoluso A; Hill, Jennifer L; Chatterton, Tim J; Longhurst, James W S

    2015-02-01

    An assessment of the reliability of the Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY) satellite sensor measurements to interpolate tropospheric concentrations of carbon monoxide considering the low-latitude climate of the Niger Delta region in Nigeria was conducted. Monthly SCIAMACHY carbon monoxide (CO) column measurements from January 2,003 to December 2005 were interpolated using ordinary kriging technique. The spatio-temporal variations observed in the reliability were based on proximity to the Atlantic Ocean, seasonal variations in the intensities of rainfall and relative humidity, the presence of dust particles from the Sahara desert, industrialization in Southwest Nigeria and biomass burning during the dry season in Northern Nigeria. Spatial reliabilities of 74 and 42 % are observed for the inland and coastal areas, respectively. Temporally, average reliability of 61 and 55 % occur during the dry and wet seasons, respectively. Reliability in the inland and coastal areas was 72 and 38 % during the wet season, and 75 and 46 % during the dry season, respectively. Based on the results, the WFM-DOAS SCIAMACHY CO data product used for this study is therefore relevant in the assessment of CO concentrations in developing countries within the low latitudes that could not afford monitoring infrastructure due to the required high costs. Although the SCIAMACHY sensor is no longer available, it provided cost-effective, reliable and accessible data that could support air quality assessment in developing countries.

  1. Plasma structure near the low-latitude boundary layer: A rebuttal

    International Nuclear Information System (INIS)

    Sckopke, N.

    1991-01-01

    A recent reanalysis of a well-documented interval of plasma and magnetic field data led its authors to offer a new model for the structure of the outer magnetosphere and the magnetosheath on the northern dawnside. On November 6, 1977, ISEE 1 and 2 had observed a series of quasi-periodic pulses of magnetosheath-like plasma on northward oriented magnetic field lines which were originally interpreted as repeated encounters of a pulsed low-latitude boundary layer inside a smooth magnetopause followed by a single outward crossing of the magnetopause. D.G. Sibeck and coworkers reinterpreted the ISEE observations as being due to quasi-periodic magnetopause motion causing the satellites to repeatedly exit the magnetosphere and to observe draped northward magnetosheath magnetic field lines in the plasma depletion layer. Their model is based on qualitative arguments concerning the amount of field line draping in the magnetosheath as well as the behavior of energetic electrons near the magnetopause. It is shown in this paper that both arguments are not in accordance with the available evidence

  2. Short- and Long-Timescale Thermospheric Variability as Observed from OI 630.0 nm Dayglow Emissions from Low Latitudes

    Science.gov (United States)

    Pallamraju, Duggirala; Das, Uma; Chakrabarti, Supriya

    2011-01-01

    We carried out high-cadence (5 min) and high-spatial resolution (2deg magnetic latitude) observations of daytime OI 630.0 nm airglow emission brightness from a low-latitude station to understand the behavior of neutral dynamics in the daytime. The results indicate that the wave periodicities of 12.20 min, and 2 h exist over a wide spatial range of around 8deg-12deg magnetic latitudes. The 20.80 min periodicities in the dayglow seem to appear more often in the measurements closer to the magnetic equator and not at latitudes farther away. Further, periodicities in that range are found to be frequent in the variations of the equatorial electrojet (EEJ) strength as well. We show that wave periodicities due to the neutral dynamics, at least until around 8deg magnetic latitude, are influenced by those that affect the EEJ strength variation as well. Furthermore, the average daily OI 630.0 nm emission brightness over 3 months varied in consonance with that of the sunspot numbers indicating a strong solar influence on the magnitudes of dayglow emissions.

  3. Can genetically based clines in plant defence explain greater herbivory at higher latitudes?

    Science.gov (United States)

    Anstett, Daniel N; Ahern, Jeffrey R; Glinos, Julia; Nawar, Nabanita; Salminen, Juha-Pekka; Johnson, Marc T J

    2015-12-01

    Greater plant defence is predicted to evolve at lower latitudes in response to increased herbivore pressure. However, recent studies question the generality of this pattern. In this study, we tested for genetically based latitudinal clines in resistance to herbivores and underlying defence traits of Oenothera biennis. We grew plants from 137 populations from across the entire native range of O. biennis. Populations from lower latitudes showed greater resistance to multiple specialist and generalist herbivores. These patterns were associated with an increase in total phenolics at lower latitudes. A significant proportion of the phenolics were driven by the concentrations of two major ellagitannins, which exhibited opposing latitudinal clines. Our analyses suggest that these findings are unlikely to be explained by local adaptation of herbivore populations or genetic variation in phenology. Rather greater herbivory at high latitudes can be explained by latitudinal clines in the evolution of plant defences. © 2015 John Wiley & Sons Ltd/CNRS.

  4. Evidence of high-elevation amplification versus Arctic amplification.

    Science.gov (United States)

    Wang, Qixiang; Fan, Xiaohui; Wang, Mengben

    2016-01-12

    Elevation-dependent warming in high-elevation regions and Arctic amplification are of tremendous interest to many scientists who are engaged in studies in climate change. Here, using annual mean temperatures from 2781 global stations for the 1961-2010 period, we find that the warming for the world's high-elevation stations (>500 m above sea level) is clearly stronger than their low-elevation counterparts; and the high-elevation amplification consists of not only an altitudinal amplification but also a latitudinal amplification. The warming for the high-elevation stations is linearly proportional to the temperature lapse rates along altitudinal and latitudinal gradients, as a result of the functional shape of Stefan-Boltzmann law in both vertical and latitudinal directions. In contrast, neither altitudinal amplification nor latitudinal amplification is found within the Arctic region despite its greater warming than lower latitudes. Further analysis shows that the Arctic amplification is an integrated part of the latitudinal amplification trend for the low-elevation stations (≤500 m above sea level) across the entire low- to high-latitude Northern Hemisphere, also a result of the mathematical shape of Stefan-Boltzmann law but only in latitudinal direction.

  5. SECULAR TRENDS AND LATITUDE GRADIENTS IN SEX RATIOS AT BIRTH IN THE FORMER SOVIET REPUBLICS

    Directory of Open Access Journals (Sweden)

    Victor Grech

    2013-01-01

    Full Text Available Background: The male-female ratio at birth (M/F: male births divided by total births, which is anticipated to approximate 0.515, has been shown to exhibit latitude gradients and secular trends. Methods: Annual national data for male and female live births for the 15 countries that comprise the former Soviet Union were obtained from the World Health Organisation for the period 1980–2009 (115,167,569 total live births and analysed with contingency tables. Spearman correlation was also carried out to compare percentage annual gross domestic product growth (GDP% – downloaded from the World Bank and M/F. In this context, GDP% is used as a measure for economic hardship or wellbeing within the populace. Results: There have been overall highly significant secular increases in M/F (p < 0.0001 in the countries and regions investigated. M/F is significantly lower in the three more northern regions (Russian Federation, Baltic States and Central Asia. M/F 0.51324, 0.51335-0.51314 than the two more southern regions (Southern Caucasus and Eastern Europe. M/F 0.51654, 0.51635-0.51672. There was a male excess of 113,818 live births.There was a significant positive correlation between GDP% and M/F for Armenia, Azerbaijan and Uzbekistan. There was a significant negative correlation in Estonia. Conclusion: Previous studies have shown that improving socioeconomic conditions increase M/F, and the converse has also been demonstrated. This is a potential influence in this geographical area since this region has relatively recently emerged from communist rule and experienced an overall economic upturn, but is only partially supported using GDP%. Another factor may be the selective termination of female pregnancies. The latitude gradient parallels that of neighbouring Europe but no theory has been put forward to convincingly explain this finding to date.

  6. Comparison of 'electrojet' indices from the northern and southern hemispheres

    International Nuclear Information System (INIS)

    Maclennan, C.G.; Lanzerotti, L.J.; Akasofu, S. I.; Zaitzev, A.N.; Popov, V.; Wilkinson, P.J.; Wolfe, A.

    1991-01-01

    A unique data set of digital and digitized analog magnetic recordings from 22 stations in the Antarctic was used to construct the southern hemisphere equivalent of the northern hemisphere auroral electrojet index, AE, for two separate intervals of magnetic disturbance (totaling seven days) in June 1982. A second index constructed using only 9 stations between ∼ 60 degrees-70 degrees geomagnetic south latitude showed only small differences from that using all 22 stations. For the universal time interval (00-11 UT inclusive) when a reasonably good coverage of ground stations exists in the austral auroral zone, it is found that there is a good correlation between the northern and southern hemisphere indices; this is the case even though the southern ionosphere is largely in total darkness during the interval studied. No effect of the north-south direction of the interplanetary magnetic field is found on the correlation

  7. Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum – Part 2: feedbacks with emphasis on the location of the ITCZ and mid- and high latitudes heat budget

    Directory of Open Access Journals (Sweden)

    Y. Zhao

    2007-06-01

    Full Text Available A set of coupled ocean-atmosphere(-vegetation simulations using state of the art climate models is now available for the Last Glacial Maximum (LGM and the Mid-Holocene (MH through the second phase of the Paleoclimate Modeling Intercomparison Project (PMIP2. Here we quantify the latitudinal shift of the location of the Intertropical Convergence Zone (ITCZ in the tropical regions during boreal summer and the change in precipitation in the northern part of the ITCZ. For both periods the shift is more pronounced over the continents and East Asia. The maritime continent is the region where the largest spread is found between models. We also clearly establish that the larger the increase in the meridional temperature gradient in the tropical Atlantic during summer at the MH, the larger the change in precipitation over West Africa. The vegetation feedback is however not as large as found in previous studies, probably due to model differences in the control simulation. Finally, we show that the feedback from snow and sea-ice at mid and high latitudes contributes for half of the cooling in the Northern Hemisphere for the LGM, with the remaining being achieved by the reduced CO2 and water vapour in the atmosphere. For the MH the snow and albedo feedbacks strengthen the spring cooling and enhance the boreal summer warming, whereas water vapour reinforces the late summer warming. These feedbacks are modest in the Southern Hemisphere. For the LGM most of the surface cooling is due to CO2 and water vapour.

  8. High latitude stratospheric electrical measurements in fair and foul weather under various solar conditions

    International Nuclear Information System (INIS)

    Holzworth, R.H.

    1981-01-01

    Stratospheric electric field and conductivity measurements during a wide variety of weather and solar conditions are presented. These data are all from high latitude sites in the months of either April or August. The vector electric field is determined by orthogonal double probes connected through high impedance inputs to differential electrometers. The direct conductivity measurement involves determining the relaxation time constant of the medium after refloating a shorted pair of separated probes. Vertical electric field data from several balloon flights with average duration of 18 h at ceiling in fair weather are shown to be well modeled by a simple exponential altitude dependent equation. Examples of solar flare and magnetospheric effects on stratospheric electric fields are shown. Data collected over electrified clouds and thunderstorms are presented along with a discussion of the thunderstorm related electric currents. Lightning stroke signatures in the stratosphere during a large thunderstorm are identified in the electric field data. Current surges through the stratosphere due to DC currents as well as the sferic are calculated. In nearly 1000 h of balloon data no direct solar influence is identified in these data except during major flares. (author)

  9. Month of birth as a latitude-dependent risk factor for multiple sclerosis in Norway.

    Science.gov (United States)

    Grytten, Nina; Torkildsen, Øivind; Aarseth, Jan Harald; Benjaminsen, Espen; Celius, Elisabeth Gulowsen; Dahl, Ole Petter; Holmøy, Trygve; Løken-Amsrud, Kristin; Midgard, Rune; Myhr, Kjell-Morten; Risberg, Geir; Vatne, Anita; Kampman, Margitta T

    2013-07-01

    We aimed to determine if the risk of Multiple Sclerosis (MS) is associated with month of birth in Norway and to explore a possible latitudinal gradient. All patients with MS born between 1930 and 1979 registered in the Norwegian MS Registry or ascertained in Norwegian prevalence studies were included (n = 6649). The latitude gradient was divided in Southern, Middle and Northern Norway, according to the estimated regional yearly mean vitamin D effective UV dose. Risk of MS was 11% higher for those born in April (p = 0.045), and 5% higher for those born in May (p = 0.229), 5% lower for those born in November (p = 0.302) and 12% lower for those born in February (p = 0.053) compared with the corresponding population, unaffected mothers and siblings. In Southern Norway the odds ratio of MS births in April and May was 1.05 (0.98-1.24), in Middle Norway 1.11 (0.97-1.27) and in Northern Norway 1.28 (1.0-1.63) compared with the other months. This study confirms previous reports of increased MS births in spring and decreased MS births in the winter months. This could support the role of decreased sunlight exposure during pregnancy and vitamin D deficiency in prenatal life in MS.

  10. Landsat-based trend analysis of lake dynamics across northern permafrost regions

    Science.gov (United States)

    Nitze, Ingmar; Grosse, Guido; Jones, Benjamin M.; Arp, Christopher D.; Ulrich, Mathias; Federov, Alexander; Veremeeva, Alexandra

    2017-01-01

    Lakes are a ubiquitous landscape feature in northern permafrost regions. They have a strong impact on carbon, energy and water fluxes and can be quite responsive to climate change. The monitoring of lake change in northern high latitudes, at a sufficiently accurate spatial and temporal resolution, is crucial for understanding the underlying processes driving lake change. To date, lake change studies in permafrost regions were based on a variety of different sources, image acquisition periods and single snapshots, and localized analysis, which hinders the comparison of different regions. Here we present, a methodology based on machine-learning based classification of robust trends of multi-spectral indices of Landsat data (TM,ETM+, OLI) and object-based lake detection, to analyze and compare the individual, local and regional lake dynamics of four different study sites (Alaska North Slope, Western Alaska, Central Yakutia, Kolyma Lowland) in the northern permafrost zone from 1999 to 2014. Regional patterns of lake area change on the Alaska North Slope (-0.69%), Western Alaska (-2.82%), and Kolyma Lowland (-0.51%) largely include increases due to thermokarst lake expansion, but more dominant lake area losses due to catastrophic lake drainage events. In contrast, Central Yakutia showed a remarkable increase in lake area of 48.48%, likely resulting from warmer and wetter climate conditions over the latter half of the study period. Within all study regions, variability in lake dynamics was associated with differences in permafrost characteristics, landscape position (i.e. upland vs. lowland), and surface geology. With the global availability of Landsat data and a consistent methodology for processing the input data derived from robust trends of multi-spectral indices, we demonstrate a transferability, scalability and consistency of lake change analysis within the northern permafrost region.

  11. Seasonal and Spatial Characteristics of Urban Heat Islands (UHIs in Northern West Siberian Cities

    Directory of Open Access Journals (Sweden)

    Victoria Miles

    2017-09-01

    Full Text Available Anthropogenic heat and modified landscapes raise air and surface temperatures in urbanized areas around the globe. This phenomenon is widely known as an urban heat island (UHI. Previous UHI studies, and specifically those based on remote sensing data, have not included cities north of 60°N. A few in situ studies have indicated that even relatively small cities in high latitudes may exhibit significantly amplified UHIs. The UHI characteristics and factors controlling its intensity in high latitudes remain largely unknown. This study attempts to close this knowledge gap for 28 cities in northern West Siberia (NWS. NWS cities are convenient for urban intercomparison studies as they have relatively similar cold continental climates, and flat, rather homogeneous landscapes. We investigated the UHI in NWS cities using the moderate-resolution imaging spectroradiometer (MODIS MOD 11A2 land surface temperature (LST product in 8-day composites. The analysis reveals that all 28 NWS cities exhibit a persistent UHI in summer and winter. The LST analysis found differences in summer and winter regarding the UHI effect, and supports the hypothesis of seasonal differences in the causes of UHI formation. Correlation analysis found the strongest relationships between the UHI and population (log P. Regression models using log P alone could explain 65–67% of the variability of UHIs in the region. Additional explanatory power—at least in summer—is provided by the surrounding background temperatures, which themselves are strongly correlated with latitude. The performed regression analysis thus confirms the important role of the surrounding temperature in explaining spatial–temporal variation of UHI intensity. These findings suggest a climatological basis for these phenomena and, given the importance of climatic warming, an aspect that deserves future study.

  12. Atmospheric sulfur and climate changes: a modelling study at mid and high-southern latitudes; Soufre atmospherique et changements climatiques: une etude de modelisation pour les moyennes et hautes latitudes Sud

    Energy Technology Data Exchange (ETDEWEB)

    Castebrunet, H

    2007-09-15

    The mid and high-southern latitudes are still marginally affected by anthropogenic sulfur emissions. They are the only regions in the world where the natural cycle of the atmospheric sulfur may still be observed. Sulfur aerosols are well-known for their radiative impact, and thus interact with climate. Climate can in turn affect atmospheric sulfur sources, distribution and chemistry. Antarctic ice cores provide information on the evolution of climate and sulfur deposition at the surface of the ice sheet at glacial-interglacial time scales. The aim of this thesis is to develop and use modeling towards a better understanding of the atmospheric sulfur cycle in antarctic and sub-antarctic regions. Ice core data are used to validate model results under glacial climate conditions. An Atmospheric General Circulation Model (AGCM) coupled to a sulfur chemistry module is used: the LMD-ZTSulfur model, version 4. An update of both the physical and chemical parts of the model. The model was first performed. The impact of there changes on modelled sulfur cycle are evaluated for modern climate. Further, boundary conditions are adapted to simulate the atmospheric circulation and sulfur cycle at the Last Glacial Maximum, approximately 20,000 years ago. In the model, sulfur is found to be highly sensitive to antarctic sea-ice coverage, which is still poorly known during the ice age. An original dataset of ice-age sea-ice coverage was developed. Its impact on the oceanic emissions of dimethyl sulfide, main precursor of sulfur aerosols at high-southern latitudes, is discussed. Using the same oceanic sulfur reservoirs as for present day climate, the model broadly reproduces the glacial deposits of sulfur aerosols on the Antarctic plateau, suggesting little impact of climate on oceanic sulfur production in the Antarctic region. Sensitivity tests were carried out to draw an up-to-date status of major uncertainties and difficulties facing future progress in understanding atmospheric

  13. CUTLASS HF radar observations of high-latitude azimuthally propagating vortical currents in the nightside ionosphere during magnetospheric substorms

    Directory of Open Access Journals (Sweden)

    J. A. Wild

    Full Text Available High-time resolution CUTLASS observations and ground-based magnetometers have been employed to study the occurrence of vortical flow structures propagating through the high-latitude ionosphere during magnetospheric substorms. Fast-moving flow vortices (~800 m s-1 associated with Hall currents flowing around upward directed field-aligned currents are frequently observed propagating at high speed (~1 km s-1 azimuthally away from the region of the ionosphere associated with the location of the substorm expansion phase onset. Furthermore, a statistical analysis drawn from over 1000 h of high-time resolution, nightside radar data has enabled the characterisation of the bulk properties of these vortical flow systems. Their occurrence with respect to substorm phase has been investigated and a possible generation mechanism has been suggested.

    Key words: Ionosphere (auroral ionosphere; electric fields and currents · Magnetospheric physics (storms and substorms

  14. Lidar measurements of mesospheric temperature inversion at a low latitude

    Energy Technology Data Exchange (ETDEWEB)

    Siva Kumar, V.; Bhavani Kumar, Y.; Raghunath, K.; Rao, P.B. [National MST Radar Facility, Tirupati (India); Krishnaiah, M. [Sri Venkateswara Univ., Tirupati (India). Dept. of Physics; Mizutani, K.; Aoki, T.; Yasui, M.; Itabe, T. [Communication Research Lab., Tokyo (Japan)

    2001-08-01

    The Rayleigh lidar data collected on 119 nights from March 1998 to February 2000 were used to study the statistical characteristics of the low latitude mesospheric temperature inversion observed over Gadanki (13.5 N, 79.2 E), India. The occurrence frequency of the inversion showed semiannual variation with maxima in the equinoxes and minima in the summer and winter, which was quite different from that reported for the mid-latitudes. The peak of the inversion layer was found to be confined to the height range of 73 to 79 km with the maximum occurrence centered around 76 km, with a weak seasonal dependence that fits well to an annual cycle with a maximum in June and a minimum in December. The magnitude of the temperature deviation associated with the inversion was found to be as high as 32 K, with the most probable value occurring at about 20 K. Its seasonal dependence seems to follow an annual cycle with a maximum in April and a minimum in October. The observed characteristics of the inversion layer are compared with that of the mid-latitudes and discussed in light of the current understanding of the source mechanisms. (orig.)

  15. Integrative investigations on sediments in the Belauer See catchment (northern Germany)

    Science.gov (United States)

    Dreibrodt, Stefan

    2015-04-01

    The Holocene history of lake development, catchment vegetation, soil formation and human impact since the onset of the Neolithic period was reconstructed via the analysis of sediment sequences at Lake Belau (northern Germany). The chronology of the annually laminated lake sediment sequence was established via varve counts, radiocarbon dating and tephra analysis. Sequences of colluvial sediments and buried soils studied in 19 large exposures and supplementing auger cores within the lake catchment area were dated via radiocarbon dating and archaeological dating of embedded artifacts. The long term development of the lake status was found to be strongly influenced by local human activity. This is indicated by coincidence of phases of landscape openness deduced from pollen data with input of detritus and solutes into the lake. A comparison with palaeo-climate reconstructions reveals that calcite precipitation in the lake reflects climate variability at least to a certain degree. Calibrating the sediment record of the sub-recent lake sediments (micro-facies) on limnological and meteorological records discovered the influence of the NAO as well as solar activity on the limnological processes during the last century reflected by distinguished sedimentation patterns. A comparative study of additional laminated surface sediment sequences from northern Germany corroborates the results. A high resolution reconstruction of Neolithic weather conditions in northern Germany based on the varves of Lake Belau and Lake Poggensee was facilitated by the calibration. The quantitative records of sediments originating from soil erosion (colluvial sediments, allochthonous input into the lake) illustrate the dominance of short distance surface processes (slopes) acting in Holocene mid-latitude landscapes. Coincidence of gully incision in the lake catchment area and increased allochthonous input into the lake indicates the former occurrence of hydrological high energy runoff events (e. g

  16. Comparison of Mars Northern Cap Edge Advance and Recession Rates over the Last 6 Mars Years

    Science.gov (United States)

    Titus, T. N.; Cushing, G. E.; Langevin, Y.; Brown, A. J.; Themis Science Team; CRISM Science Team

    2011-12-01

    The most observable parameter that describes the Mars polar seasonal caps is their size, which has been measured since the days of Herschel. The advance and retreat of the polar cap from year to year may exhibit many clues to help elucidate little understood physical processes. For example, summertime heat storage in the regolith could delay the onset of seasonal CO2 cap formation. The evolution of the seasonal cap could also be directly affected by the thermal inertia of the near-surface regolith and place constraints on the depth of the ice table. Parameterizations of the seasonal cap edges provide useful constraints on atmospheric GCMs and mesoscale models. Longitudinally resolving the cap edges as they advance and retreat constrains the times when zonal means are appropriate and when longitudinal asymmetries make zonal means invalid. These same kinds of parameterizations can also be used when modeling other data that have low spatial resolutions, such as Gamma Ray Spectrometer (GRS )and Neutron Spectrometer (NS) data. By knowing where the cap edge should be, coarse spatial data can correct for subpixel mixing caused by large point-spread functions including both frosted and frost-free areas. The northern cap exhibits a near symmetric retreat, which has been well characterized at visible wavelengths by both telescopic and spacecraft observations. However, the advance of the cap has not been well characterized until the 21st century. Kieffer and Titus (2001) have used zonal means to observe surface temperature and visible bolometric albedo variations with season using MGS/TES. The TES thermal observations show an almost perfectly symmetrical advance; i.e., condensation at consistent latitude across all longitudes, with the most northern edge of the seasonal cap occurring between longitudes 245°E to 265°E and the most southern edge of the seasonal cap occurring between 280°E and 30°E. The advance of the northern cap typically leads the advance of the edge of

  17. Early onset of significant local warming in low latitude countries

    International Nuclear Information System (INIS)

    Mahlstein, I; Knutti, R; Solomon, S; Portmann, R W

    2011-01-01

    The Earth is warming on average, and most of the global warming of the past half-century can very likely be attributed to human influence. But the climate in particular locations is much more variable, raising the question of where and when local changes could become perceptible enough to be obvious to people in the form of local warming that exceeds interannual variability; indeed only a few studies have addressed the significance of local signals relative to variability. It is well known that the largest total warming is expected to occur in high latitudes, but high latitudes are also subject to the largest variability, delaying the emergence of significant changes there. Here we show that due to the small temperature variability from one year to another, the earliest emergence of significant warming occurs in the summer season in low latitude countries (∼25 deg. S-25 deg. N). We also show that a local warming signal that exceeds past variability is emerging at present, or will likely emerge in the next two decades, in many tropical countries. Further, for most countries worldwide, a mean global warming of 1 deg. C is sufficient for a significant temperature change, which is less than the total warming projected for any economically plausible emission scenario. The most strongly affected countries emit small amounts of CO 2 per capita and have therefore contributed little to the changes in climate that they are beginning to experience.

  18. Enhanced gravity-wave activity and interhemispheric coupling during the MaCWAVE/MIDAS northern summer program 2002

    Directory of Open Access Journals (Sweden)

    E. Becker

    2006-07-01

    Full Text Available We present new sensitivity experiments that link observed anomalies of the mesosphere and lower thermosphere at high latitudes during the MaCWAVE/MIDAS summer program 2002 to enhanced planetary Rossby-wave activity in the austral winter troposphere.

    We employ the same general concept of a GCM having simplified representations of radiative and latent heating as in a previous study by Becker et al. (2004. In the present version, however, the model includes no gravity wave (GW parameterization. Instead we employ a high vertical and a moderate horizontal resolution in order to describe GW effects explicitly. This is supported by advanced, nonlinear momentum diffusion schemes that allow for a self-consistent generation of inertia and mid-frequency GWs in the lower atmosphere, their vertical propagation into the mesosphere and lower thermosphere, and their subsequent dissipation which is induced by prescribed horizontal and vertical mixing lengths as functions of height.

    The main anomalies in northern summer 2002 consist of higher temperatures than usual above 82 km, an anomalous eastward mean zonal wind between 70 and 90 km, an altered meridional flow, enhanced turbulent dissipation below 80 km, and enhanced temperature variations associated with GWs. These signals are all reasonably described by differences between two long-integration perpetual model runs, one with normal July conditions, and another run with modified latent heating in the tropics and Southern Hemisphere to mimic conditions that correspond to the unusual austral winter 2002. The model response to the enhanced winter hemisphere Rossby-wave activity has resulted in both an interhemispheric coupling through a downward shift of the GW-driven branch of the residual circulation and an increased GW activity at high summer latitudes. Thus a quantitative explanation of the dynamical state of the northern mesosphere and lower

  19. Effects of electric fields and other processes upon the nighttime high-latitude F layer

    International Nuclear Information System (INIS)

    Schunk, R.W.; Banks, P.M.; Raitt, W.J.

    1976-01-01

    We have studied the dynamics of the nighttime high-latitude F region with special emphasis on the formation of the electron density trough region which lies equatorward of the auroral oval. It is found that the absence of photoionization together with ordinary ionic recombination and slow plasma convection velocity can give a deep trough over a period of many hours. However, the normal global pattern of electric fields has regions of plasma convection sufficiently rapid to affect that rate of O + +N 2 reactions and to speed the rate of ionospheric decay. In addition, the escape of thermal plasma via the polar wind as well as N 2 vibrational excitation and enhanced N 2 densities act to deplete the ionosphere. In combination these destructive processes can readily account for the great variety of troughs found by experimentation. Thus it appears that there is no single cause for the observed troughs but that at various times, different processes act together to create density depressions of substantial magnitude

  20. Effects of Warming Hiatuses on Vegetation Growth in the Northern Hemisphere

    Directory of Open Access Journals (Sweden)

    Hong Wei

    2018-04-01

    Full Text Available There have been hiatuses in global warming since the 1990s, and their potential impacts have attracted extensive attention and discussion. Changes in temperature not only directly affect the greening of vegetation but can also indirectly alter both the growth state and the growth tendency of vegetation by altering other climatic elements. The middle-high latitudes of the Northern Hemisphere (NH constitute the region that has experienced the most warming in recent decades; therefore, identifying the effects of warming hiatuses on the vegetation greening in that region is of great importance. Using satellite-derived Normalized Difference Vegetation Index (NDVI data and climatological observation data from 1982–2013, we investigated hiatuses in warming trends and their impact on vegetation greenness in the NH. Our results show that the regions with warming hiatuses in the NH accounted for 50.1% of the total area and were concentrated in Mongolia, central China, and other areas. Among these regions, 18.8% of the vegetation greenness was inhibited in the warming hiatus areas, but 31.3% of the vegetation grew faster. Because temperature was the main positive climatic factor in central China, the warming hiatuses caused the slow vegetation greening rate. However, precipitation was the main positive climatic factor affecting vegetation greenness in Mongolia; an increase in precipitation accelerated vegetation greening. The regions without a warming hiatus, which were mainly distributed in northern Russia, northern central Asia, and other areas, accounted for 49.9% of the total area. Among these regions, 21.4% of the vegetation grew faster over time, but 28.5% of the vegetation was inhibited. Temperature was the main positive factor affecting vegetation greenness in northern Russia; an increase in temperature promoted vegetation greening. However, radiation was the main positive climatic factor in northern central Asia; reductions in radiation

  1. Mapping plasma structures in the high-latitude ionosphere using beacon satellite, incoherent scatter radar and ground-based magnetometer observations

    Directory of Open Access Journals (Sweden)

    T. Neubert

    2002-06-01

    Full Text Available In the autumn of the year 2000, four radio receivers capable of tracking various beacon satellites were set up along the southwestern coast of Greenland. They are used to reconstruct images of the ionospheric plasma density distribution via the tomographic method. In order to test and validate tomographic imaging under the highly variable conditions often prevailing in the high-latitude ionosphere, a time interval was selected when the Sondrestrom incoherent scatter radar conducted measurements of the ionospheric plasma density while the radio receivers tracked a number of beacon satellites. A comparison between two-dimensional images of the plasma density distribution obtained from the radar and the satellite receivers revealed generally good agreement between radar measurements and tomographic images. Observed discrepancies can be attributed to F region plasma patches moving through the field of view with a speed of several hundred meters per second, thereby smearing out the tomographic image. A notable mismatch occurred around local magnetic midnight when a magnetospheric substorm breakup occurred in the vicinity of southwest Greenland (identified from ground-based magnetometer observations. The breakup was associated with a sudden intensification of the westward auroral electrojet which was centered at about 69 and extended up to some 73 corrected geomagnetic latitude. Ground-based magnetometer data may thus have the potential of indicating when the tomographic method is at risk and may fail. We finally outline the application of tomographic imaging, when combined with magnetic field data, to estimate ionospheric Joule heating rates.

  2. Model of climate evolution based on continental drift and polar wandering

    Science.gov (United States)

    Donn, W. L.; Shaw, D. M.

    1977-01-01

    The thermodynamic meteorologic model of Adem is used to trace the evolution of climate from Triassic to present time by applying it to changing geography as described by continental drift and polar wandering. Results show that the gross changes of climate in the Northern Hemisphere can be fully explained by the strong cooling in high latitudes as continents moved poleward. High-latitude mean temperatures in the Northern Hemisphere dropped below the freezing point 10 to 15 m.y. ago, thereby accounting for the late Cenozoic glacial age. Computed meridional temperature gradients for the Northern Hemisphere steepened from 20 to 40 C over the 200-m.y. period, an effect caused primarily by the high-latitude temperature decrease. The primary result of the work is that the cooling that has occurred since the warm Mesozoic period and has culminated in glaciation is explainable wholly by terrestrial processes.

  3. Deep water convection and biogeochemical cycling of carbon in the Northern North Atlantic

    International Nuclear Information System (INIS)

    Buch, E.; Gissel Nielsen, T.; Lundsgaard, C.; Bendtsen, J.

    2001-01-01

    In 1998, the Danish Research Council launched the Global Change project 'Biochemical cycling of carbon and ocean circulation in the Northern North Atlantic'. The overall aim of the project was to describe the effect of high latitude carbon dynamics on the global ocean-atmosphere carbon system, in general, and on the atmospheric pCO 2 in particular. At present, knowledge concerning the seasonal differences in turnover rates of organic material in polar and sub-polar regions is limited. Thus, in order to achieve the aim of the project, it was necessary to obtain biological and chemical rate measurements for production and mineralization of dissolved and particulate organic material at high latitudes and relate these to ocean dynamics at different times of the year. This was investigated in the project by performing three cruises to the Greenland Sea area at different times of the year. The purpose of the present chapter is to give a review of: 1) The physical environment of the Northern North Atlantic (ocean circulation, deep convection, North Atlantic Oscillation) and its variability including the recent trends of importance to climate change. 2) The chemical and biological processes of importance to carbon cycle and the importance of the carbon cycle to our understanding of climate variability. Additionally preliminary results from the Danish global change investigation in the Greenland Sea will be presented. With regard to circulation it is concluded that the deep water in the Greenland Sea continues to warm up, indicating that the deep water formation in this area is reduced. The biological investigations are providing a highly needed basic knowledge of the structure and function of the pelagic food web as well as of the microbial food web of the intermediate and deep water. These studies form a basis for assessing the productivity, export mechanisms, mineralization rates and mineralization depth-scales in these areas. Especially the questions about the

  4. Atmospheric methane at Cape Meares - Analysis of a high-resolution data base and its environmental implications

    Science.gov (United States)

    Khalil, M. A. K.; Rasmussen, R. A.; Moraes, F.

    1993-01-01

    Between 1979 and 1992 we took some 120,000 measurements of atmospheric methane at Cape Meares on the Oregon coast. The site is representative of methane concentrations in the northern latitudes (from 30 deg N to 90 deg N). The average concentration during the experiment was 1698 parts per billion by volume (ppbv). Methane concentration increased by 190 ppbv (or 11.9 percent) during the 13-year span of the experiment. The rate of increase was about 20 +/- 4 ppbv/yr in the first 2 yr and 10 +/- 2 ppbv/yr in the last 2 yr of the experiment, suggesting a substantial decline in the trend at northern middle and high latitudes. Prominent seasonal cycles were observed. During the year, the concentration stays more or less constant until May and then starts falling, reaching lowest levels in July and August, then rises rapidly to nearly maximum concentrations in October. Interannual variations with small amplitudes of 2-3 ppbv occur with periods of 1.4 and 6.5 yr.

  5. An analysis of fast photochemistry over high northern latitudes during spring and summer using in-situ observations from ARCTAS and TOPSE

    Directory of Open Access Journals (Sweden)

    J. R. Olson

    2012-08-01

    Full Text Available Observations of chemical constituents and meteorological quantities obtained during the two Arctic phases of the airborne campaign ARCTAS (Arctic Research of the Composition of the Troposphere from Aircraft and Satellites are analyzed using an observationally constrained steady state box model. Measurements of OH and HO2 from the Penn State ATHOS instrument are compared to model predictions. Forty percent of OH measurements below 2 km are at the limit of detection during the spring phase (ARCTAS-A. While the median observed-to-calculated ratio is near one, both the scatter of observations and the model uncertainty for OH are at the magnitude of ambient values. During the summer phase (ARCTAS-B, model predictions of OH are biased low relative to observations and demonstrate a high sensitivity to the level of uncertainty in NO observations. Predictions of HO2 using observed CH2O and H2O2 as model constraints are up to a factor of two larger than observed. A temperature-dependent terminal loss rate of HO2 to aerosol recently proposed in the literature is shown to be insufficient to reconcile these differences. A comparison of ARCTAS-A to the high latitude springtime portion of the 2000 TOPSE campaign (Tropospheric Ozone Production about the Spring Equinox shows similar meteorological and chemical environments with the exception of peroxides; observations of H2O2 during ARCTAS-A were 2.5 to 3 times larger than those during TOPSE. The cause of this difference in peroxides remains unresolved and has important implications for the Arctic HOx budget. Unconstrained model predictions for both phases indicate photochemistry alone is unable to simultaneously sustain observed levels of CH2O and H2O2; however when the model is constrained with observed CH2O, H2O2 predictions from a range of

  6. Directional Absorption of Parameterized Mountain Waves and Its Influence on the Wave Momentum Transport in the Northern Hemisphere

    Science.gov (United States)

    Xu, Xin; Tang, Ying; Wang, Yuan; Xue, Ming

    2018-03-01

    The directional absorption of mountain waves in the Northern Hemisphere is assessed by examination of horizontal wind rotation using the 2.5° × 2.5° European Centre for Medium-Range Weather Forecasts ERA-Interim reanalysis between 2011 and 2016. In the deep layer of troposphere and stratosphere, the horizontal wind rotates by more than 120° all over the Northern Hemisphere primary mountainous areas, with the rotation mainly occurring in the troposphere (stratosphere) of lower (middle to high) latitudes. The rotation of tropospheric wind increases markedly in summer over the Tibetan Plateau and Iranian Plateau, due to the influence of Asian summer monsoonal circulation. The influence of directional absorption of mountain waves on the mountain wave momentum transport is also studied using a new parameterization scheme of orographic gravity wave drag (OGWD) which accounts for the effect of directional wind shear. Owing to the directional absorption, the wave momentum flux is attenuated by more than 50% in the troposphere of lower latitudes, producing considerable orographic gravity wave lift which is normal to the mean wind. Compared with the OGWD produced in traditional schemes assuming a unidirectional wind profile, the OGWD in the new scheme is suppressed in the lower stratosphere but enhanced in the upper stratosphere and lower mesosphere. This is because the directional absorption of mountain waves in the troposphere reduces the wave amplitude in the stratosphere. Consequently, mountain waves are prone to break at higher altitudes, which favors the production of stronger OGWD given the decrease of air density with height.

  7. Variation in carbohydrate source-sink relations of forest and treeline white spruce in southern, interior and northern Alaska.

    Science.gov (United States)

    Sveinbjörnsson, Bjartmar; Smith, Matthew; Traustason, Tumi; Ruess, Roger W; Sullivan, Patrick F

    2010-08-01

    Two opposing hypotheses have been presented to explain reduced tree growth at the treeline, compared with growth in lower elevation or lower latitude forests: the carbon source and sink limitation hypotheses. The former states that treeline trees have an unfavorable carbon balance and cannot support growth of the magnitude observed at lower elevations or latitudes, while the latter argues that treeline trees have an adequate carbon supply, but that cold temperatures directly limit growth. In this study, we examined the relative importance of source and sink limitation in forest and treeline white spruce (Picea glauca) in three mountain ranges from southern to northern Alaska. We related seasonal changes in needle nonstructural carbohydrate (NSC) content with branch extension growth, an approach we argue is more powerful than using needle NSC concentration. Branch extension growth in the southernmost Chugach Mountains was much greater than in the White Mountains and the Brooks Range. Trees in the Chugach Mountains showed a greater seasonal decline in needle NSC content than trees in the other mountain ranges, and the seasonal change in NSC was correlated with site-level branch growth across mountain ranges. There was no evidence of a consistent difference in branch growth between the forest and treeline sites, which differ in elevation by approximately 100 m. Our results point to a continuum between source and sink limitation of growth, with high-elevation trees in northern and interior Alaska showing greater evidence of sink limitation, and those in southern Alaska showing greater potential for source limitation.

  8. SuperDARN HOP radars observation of ionospheric convection associated with low-latitude aurora observed at Hokkaido, Japan

    Science.gov (United States)

    Nishitani, N.; Hori, T.; Kataoka, R.; Ebihara, Y.; Shiokawa, K.; Otsuka, Y.; Suzuki, H.; Yoshikawa, A.

    2016-12-01

    The SuperDARN HOkkaido Pair of (HOP) radars, consisting of the Hokkaido East (2006-) and West (2014-) radars, are the SuperDARN radars located at the lowest geomagnetic latitude (36.5 degrees), and have been continuously measuring ionospheric convection at high to subauroral and middle latitudes with high temporal resolutions (Japan from 15 to 19 UT on March 17, 2015 and from 1900 to 2030 UT on December 20, 2015, identified using optical instruments such as all-sky CCD camera, wide field of view digital camera and meridian scanning photometer. Both events occurred during the main phase of the relatively large geomagnetic storms with minimum Dst of -223 nT and -170 nT respectively. The ionospheric convection at mid-latitude regions associated with the low-latitude auroral emission is characterized by (1) transient equatorward flows up to about 500 m/s in the initial phase of the emission (the geomagnetic field data at Paratunka, Far East Russia show corresponding negative excursions), and (2) sheared flow structure consisting of westward flow (about 500 m/s) equatorward of eastward flow (1000 m/s), with the equatorward boundary of auroral emission embedded in the westward flow region which expanded up to below 50 deg geomagnetic latitude. These observations imply that the electric field / convection distribution plays important roles in continuously generating the low latitude auroral emission. In particular the observation of the equatorward flow (dawn-dusk electric field) up to as low as about 50 deg geomagnetic latitude is the direct evidence for the presence of electric field to drive ring current particles into the plasmaspheric regions.

  9. Northern peatlands in global climatic change

    Energy Technology Data Exchange (ETDEWEB)

    Laiho, R.; Laine, J.; Vasander, H. [eds.] [Helsinki Univ. (Finland). Dept. of Forest Ecology

    1996-12-31

    Northern peatlands are important in regulating the global climate. While sequestering carbon dioxide, these peatlands release ca. 24-39 Tg methane annually to the atmosphere. This is 5-20 % of the annual anthropogenic methane emissions to the atmosphere. The greenhouse gas balance of peatlands may change as a consequence of water level draw-down after land-use change, or if summers become warmer and drier, as has been predicted for high latitudes after climatic warming. Subsequent emissions of methane would decrease, whereas emissions of carbon dioxide and nitrous oxide would increase. Within the Finnish Research Programme on Climate Change (SILMU), the research project `Carbon Balance of Peatlands and Climate Change` (SUOSILMU) has been under progress since 1990. It is a co-operative research project, with research groups from the Universities of Helsinki and Joensuu, the Finnish Forest Research Institute, the National Public Health Institute and the Finnish Environment Agency. The research consortium of this project organised a workshop entitled `Northern Peatlands in Global Climatic Change - Hyytiaelae Revisited` October 8-12, 1995. The main objective of the workshop was to review the state of the art of the carbon cycling research in natural and managed peatlands. The role of peatlands in the greenhouse effect, their response and feedback to the predicted climate change, and the consequences of land-use changes were assessed, and the future research needs were evaluated. The latest information on the role of peatlands in the atmospheric change was given in 50 posters and 4 key lectures. Results of SUOSILMU projects were demonstrated during a 1-day field excursion to one of the intensive study sites, Lakkasuo near Hyytiaelae

  10. Modelling horizontal and vertical concentration profiles of ozone and oxides of nitrogen within high-latitude urban areas

    International Nuclear Information System (INIS)

    Nicholson, J.P.; Weston, K.J.

    2001-01-01

    Urban ozone concentrations are determined by the balance between ozone destruction, chemical production and supply through advection and turbulent down-mixing from higher levels. At high latitudes, low levels of solar insolation and high horizontal advection speeds reduce the photochemical production and the spatial ozone concentration patterns are largely determined by the reaction of ozone with nitric oxide and dry deposition to the surface. A Lagrangian column model has been developed to simulate the mean (monthly and annual) three-dimensional structure in ozone and nitrogen oxides (NO x ) concentrations in the boundary-layer within and immediately around an urban area. The short-time-scale photochemical processes of ozone and NO x , as well as emissions and deposition to the ground, are simulated. The model has a horizontal resolution of 1x1km and high resolution in the vertical. It has been applied over a 100x100km domain containing the city of Edinburgh (at latitude 56 o N) to simulate the city-scale processes of pollutants. Results are presented, using averaged wind-flow frequencies and appropriate stability conditions, to show the extent of the depletion of ozone by city emissions. The long-term average spatial patterns in the surface ozone and NO x concentrations over the model domain are reproduced quantitatively. The model shows the average surface ozone concentrations in the urban area to be lower than the surrounding rural areas by typically 50% and that the areas experiencing a 20% ozone depletion are generally restricted to within the urban area. The depletion of the ozone concentration to less than 50% of the rural surface values extends only 20m vertically above the urban area. A series of monitoring sites for ozone, nitric oxide and nitrogen dioxide on a north-south transect through the city - from an urban, through a semi-rural, to a remote rural location - allows the comparison of modelled with observed data for the mean diurnal cycle of ozone

  11. Excitation of twin-vortex flow in the nightside high-latitude ionosphere during an isolated substorm

    Directory of Open Access Journals (Sweden)

    A. Grocott

    Full Text Available We present SuperDARN radar observations of the ionospheric flow during a well-observed high-latitude substorm which occurred during steady northward IMF conditions on 2 December 1999. These data clearly demonstrate the excitation of large-scale flow associated with the substorm expansion phase, with enhanced equatorward flows being observed in the pre-midnight local time sector of the expansion phase auroral bulge and westward electrojet, and enhanced return sunward flows being present at local times on either side, extending into the dayside sector. The flow pattern excited was thus of twin-vortex form, with foci located at either end of the substorm auroral bulge, as imaged by the Polar VIS UV imager. Estimated total transpolar voltages were ~40 kV prior to expansion phase onset, grew to ~80 kV over a ~15 min interval during the expansion phase, and then decayed to ~35 kV over ~10 min during recovery. The excitation of the large-scale flow pattern resulted in the development of magnetic disturbances which extended well outside of the region directly disturbed by the substorm, depending upon the change in the flow and the local ionospheric conductivity. It is estimated that the nightside reconnection rate averaged over the 24-min interval of the substorm was ~65– 75 kV, compared with continuing dayside reconnection rates of ~30–45 kV. The net closure of open flux during the sub-storm was thus ~0.4–0.6 × 108 Wb, representing ~15–20% of the open flux present at onset, and corresponding to an overall contraction of the open-closed field line boundary by ~1° latitude.

    Key words. Ionosphere (auroral ionosphere; ionosphere-magnetosphere interactions; plasma convection

  12. Paleoenvironmental changes across the Cretaceous/Tertiary boundary in the northern Clarence valley, southeastern Marlborough, New Zealand

    International Nuclear Information System (INIS)

    Hollis, C.J.; Rodgers, K.A.; Strong, C.P.; Field, B.D.; Rogers, K.M.

    2003-01-01

    Strata outcropping in Mead and Branch Streams, northern Clarence valley, provide important records of pelagic-hemipelagic sedimentation through the Cretaceous-Paleocene transition in a southern high-latitude, upwelling system flanking a carbonate platform. The two stream sections, 13 C) indicate that high biological productivity continued across the K/T boundary and through the biosiliceous episode. Siliceous plankton thrived in the Marlborough upwelling zone during the Early Paleocene. Fluctuations in abundance and lithofacies can be related to significant changes in sea level, which may be the result of local tectonic or global climate changes. The delayed recovery of calcareous plankton after mass extinction at the K/T boundary, in both outer neritic and bathyal settings, indicates a relatively cool oceanic regime for the first 1.5 m.y. of the Paleocene. (author). 68 refs., 11 figs., 6 tabs

  13. Tidal and near-inertial peak variations around the diurnal critical latitude

    Science.gov (United States)

    van Haren, Hans

    2005-12-01

    Spectra from historic long-term open-ocean moored current meter data between latitudes 0° shift of the peak frequency to 0.97 +/- 0.01f, or a poleward spreading of enhanced energy. This contrasts with more common blue-shift. The enhancement may be the result of sub-harmonic instability, as supported by sparse significant bicoherence at half-D2, although i) systematic enhancement of diurnal tidal frequencies, notably M1, was not observed, ii) the latitudes of low D2-energy and high f-energy do not coincide. This may be due to a mix of coupled and independent waves, whilst the poleward trapping of sub-f energy suggests non-traditional effects.

  14. Constraints on High Northern Photosynthesis Increase Using Earth System Models and a Set of Independent Observations

    Science.gov (United States)

    Winkler, A. J.; Brovkin, V.; Myneni, R.; Alexandrov, G.

    2017-12-01

    Plant growth in the northern high latitudes benefits from increasing temperature (radiative effect) and CO2 fertilization as a consequence of rising atmospheric CO2 concentration. This enhanced gross primary production (GPP) is evident in large scale increase in summer time greening over the 36-year record of satellite observations. In this time period also various global ecosystem models simulate a greening trend in terms of increasing leaf area index (LAI). We also found a persistent greening trend analyzing historical simulations of Earth system models (ESM) participating in Phase 5 of the Coupled Model Intercomparison Project (CMIP5). However, these models span a large range in strength of the LAI trend, expressed as sensitivity to both key environmental factors, temperature and CO2 concentration. There is also a wide spread in magnitude of the associated increase of terrestrial GPP among the ESMs, which contributes to pronounced uncertainties in projections of future climate change. Here we demonstrate that there is a linear relationship across the CMIP5 model ensemble between projected GPP changes and historical LAI sensitivity, which allows using the observed LAI sensitivity as an "emerging constraint" on GPP estimation at future CO2 concentration. This constrained estimate of future GPP is substantially higher than the traditional multi-model mean suggesting that the majority of current ESMs may be significantly underestimating carbon fixation by vegetation in NHL. We provide three independent lines of evidence in analyzing observed and simulated CO2 amplitude as well as atmospheric CO2 inversion products to arrive at the same conclusion.

  15. Evolution of Mars’ Northern Polar Seasonal CO2 deposits: variations in surface brightness and bulk density

    Science.gov (United States)

    Mount, Christopher P.; Titus, Timothy N.

    2015-01-01

    Small scale variations of seasonal ice are explored at different geomorphic units on the Northern Polar Seasonal Cap (NPSC). We use seasonal rock shadow measurements, combined with visible and thermal observations, to calculate density over time. The coupling of volume density and albedo allows us to determine the microphysical state of the seasonal CO2 ice. We find two distinct endmembers across the NPSC: 1) Snow deposits may anneal to form an overlying slab layer that fractures. These low density deposits maintain relatively constant densities over springtime. 2) Porous slab deposits likely anneal rapidly in early spring and fracture in late spring. These high density deposits dramatically increase in density over time. The endmembers appear to be correlated with latitude.

  16. Non-Hawaiian lithostratigraphy of Louisville seamounts and the formation of high-latitude oceanic islands and guyots

    Science.gov (United States)

    Buchs, David M.; Williams, Rebecca; Sano, Shin-ichi; Wright, V. Paul

    2018-05-01

    Guyots are large seamounts with a flat summit that is generally believed to form due to constructional biogenic and/or erosional processes during the formation of volcanic islands. However, despite their large abundance in the oceans, there are still very few direct constraints on the nature and formation of guyots, in particular those formed at high latitude that lack a thick cap of shallow-marine carbonate rocks. It is largely accepted based on geophysical constraints and surficial observations/sampling that the summit platform of these guyots is shaped by wave abrasion during post-volcanic subsidence of volcanic islands. Here we provide novel constraints on this hypothesis and the summit geology of guyots with a lithostratigraphic analysis of cores from three Louisville seamounts (South Pacific) collected during Expedition 330 of the Integrated Ocean Drilling Program (IODP). Thirteen lithofacies of sedimentary and volcanic deposits are described, which include facies not previously recognized on the top of guyots, and offer a new insight into the formation of high-latitude oceanic islands on a fast-moving plate. Our results reveal that the lithostratigraphy of Louisville seamounts preserves a very consistent record of the formation and drowning of volcanic islands, with from bottom to top: (i) volcaniclastic sequences with abundant lava-fed delta deposits, (ii) submarine to subaerial shield lava flows, (iii) post-volcanic shallow to deeper marine sedimentary rocks lacking thick reef deposits, (iv) post-erosional rejuvenated volcanic rocks, and (v) pelagic sediments. Recognition of erosional boundaries between subaerial lava flows and shallow-marine sedimentary rocks provides novel support for post-volcanic wave planation of guyots. However, the summit geology of Louisville seamounts is dissimilar to that of high-latitude Hawaiian-Emperor guyots that have emplaced in a similar tectonic and environmental setting and that include thicker lava stacks with apparently

  17. Physical mechanisms of spring and summertime drought related with the global warming over the northern America

    Science.gov (United States)

    Choi, W.; Kim, K. Y.

    2017-12-01

    Drought during the growing season (spring through summer) is severe natural hazard in the large cropland over the northern America. It is important to understand how the drought is related with the global warming and how it will change in the future. This study aims to investigate the physical mechanism of global warming impact on the spring and summertime drought over the northern America using Cyclostationary Empirical Orthogonal Function (CSEOF) analysis. The Northern Hemisphere surface warming, the most dominant mode of the surface air temperature, has resulted in decreased relative humidity and precipitation over the mid-latitude region of North America. For the viewpoint of atmospheric water demand, soil moisture and evaporation have also decreased significantly, exacerbating vulnerability of drought. These consistent features of changes in water demand and supply related with the global warming can provide a possibility of credible insight for future drought change.

  18. Community, Race, and Curriculum in Detroit: The Northern High School Walkout

    Science.gov (United States)

    Franklin, Barry M.

    2004-01-01

    This essay examines the April 1966 student walkout at Detroit's all-black Northern High School and what the boycott tells us about the conflict between blacks and whites in that city over the education of African-American youth. The protest was one event in an ongoing struggle between Detroit's black citizens and the city's largely white…

  19. Lidar measurements of mesospheric temperature inversion at a low latitude

    Directory of Open Access Journals (Sweden)

    V. Siva Kumar

    2001-08-01

    Full Text Available The Rayleigh lidar data collected on 119 nights from March 1998 to February 2000 were used to study the statistical characteristics of the low latitude mesospheric temperature inversion observed over Gadanki (13.5° N, 79.2° E, India. The occurrence frequency of the inversion showed semiannual variation with maxima in the equinoxes and minima in the summer and winter, which was quite different from that reported for the mid-latitudes. The peak of the inversion layer was found to be confined to the height range of 73 to 79 km with the maximum occurrence centered around 76 km, with a weak seasonal dependence that fits well to an annual cycle with a maximum in June and a minimum in December. The magnitude of the temperature deviation associated with the inversion was found to be as high as 32 K, with the most probable value occurring at about 20 K. Its seasonal dependence seems to follow an annual cycle with a maximum in April and a minimum in October. The observed characteristics of the inversion layer are compared with that of the mid-latitudes and discussed in light of the current understanding of the source mechanisms.Key words. Atmospheric composition and structure (pressure, density and temperature. Meterology and atmospheric dynamics (climatology

  20. Monitoring Coral Health to Determine Coral Bleaching Response at High Latitude Eastern Australian Reefs: An Applied Model for A Changing Climate

    OpenAIRE

    Dalton, Steven J.; Carroll, Andrew G.

    2011-01-01

    Limited information is available on the bleaching susceptibility of coral species that dominate high latitude reefs along the eastern seaboard of Australia. The main aims of this study were to: (i) monitor coral health and spatial patterns of coral bleaching response at the Solitary Islands Marine Park (SIMP) and Lord Howe Island Marine Park (LHIMP), to determine variability of bleaching susceptibility among coral taxa; (ii) predict coral bleaching thresholds at 30 °S and 31.5 °S, extrapolate...

  1. Holocene climate variability revealed by oxygen isotope analysis of Sphagnum cellulose from Walton Moss, northern England

    Science.gov (United States)

    Daley, T. J.; Barber, K. E.; Street-Perrott, F. A.; Loader, N. J.; Marshall, J. D.; Crowley, S. F.; Fisher, E. H.

    2010-07-01

    Stable isotope analyses of Sphagnum alpha-cellulose, precipitation and bog water from three sites across northwestern Europe (Raheenmore, Ireland, Walton Moss, northern England and Dosenmoor, northern Germany) over a total period of 26 months were used to investigate the nature of the climatic signal recorded by Sphagnum moss. The δ18O values of modern alpha-cellulose tracked precipitation more closely than bog water, with a mean isotopic fractionation factor αcellulose-precipitation of 1.0274 ± 0.001 (1 σ) (≈27‰). Sub-samples of isolated Sphagnum alpha-cellulose were subsequently analysed from core WLM22, Walton Moss, northern England yielding a Sphagnum-specific isotope record spanning the last 4300 years. The palaeo-record, calibrated using the modern data, provides evidence for large amplitude variations in the estimated oxygen isotope composition of precipitation during the mid- to late Holocene. Estimates of palaeotemperature change derived from statistical relationships between modern surface air temperatures and δ18O precipitation values for the British Isles give unrealistically large variation in comparison to proxies from other archives. We conclude that use of such relationships to calibrate mid-latitude palaeo-data must be undertaken with caution. The δ18O record from Sphagnum cellulose was highly correlated with a palaeoecologically-derived index of bog surface wetness (BSW), suggesting a common climatic driver.

  2. The impact of volcanic aerosol on the Northern Hemisphere stratospheric polar vortex: mechanisms and sensitivity to forcing structure

    Science.gov (United States)

    Toohey, M.; Krüger, K.; Bittner, M.; Timmreck, C.; Schmidt, H.

    2014-12-01

    Observations and simple theoretical arguments suggest that the Northern Hemisphere (NH) stratospheric polar vortex is stronger in winters following major volcanic eruptions. However, recent studies show that climate models forced by prescribed volcanic aerosol fields fail to reproduce this effect. We investigate the impact of volcanic aerosol forcing on stratospheric dynamics, including the strength of the NH polar vortex, in ensemble simulations with the Max Planck Institute Earth System Model. The model is forced by four different prescribed forcing sets representing the radiative properties of stratospheric aerosol following the 1991 eruption of Mt. Pinatubo: two forcing sets are based on observations, and are commonly used in climate model simulations, and two forcing sets are constructed based on coupled aerosol-climate model simulations. For all forcings, we find that simulated temperature and zonal wind anomalies in the NH high latitudes are not directly impacted by anomalous volcanic aerosol heating. Instead, high-latitude effects result from enhancements in stratospheric residual circulation, which in turn result, at least in part, from enhanced stratospheric wave activity. High-latitude effects are therefore much less robust than would be expected if they were the direct result of aerosol heating. Both observation-based forcing sets result in insignificant changes in vortex strength. For the model-based forcing sets, the vortex response is found to be sensitive to the structure of the forcing, with one forcing set leading to significant strengthening of the polar vortex in rough agreement with observation-based expectations. Differences in the dynamical response to the forcing sets imply that reproducing the polar vortex responses to past eruptions, or predicting the response to future eruptions, depends on accurate representation of the space-time structure of the volcanic aerosol forcing.

  3. Search for Very High Energy Gamma Rays from the Northern $\\textit{Fermi}$ Bubble Region with HAWC

    OpenAIRE

    Abeysekara, A. U.; Albert, A.; Alfaro, R.; Alvarez, C.; Álvarez, J. D.; Arceo, R.; Arteaga-Velázquez, J. C.; Solares, H. A. Ayala; Barber, A. S.; Bautista-Elivar, N.; Becerril, A.; Belmont-Moreno, E.; BenZvi, S. Y.; Berley, D.; Braun, J.

    2017-01-01

    We present a search of very high energy gamma-ray emission from the Northern $\\textit{Fermi}$ Bubble region using data collected with the High Altitude Water Cherenkov (HAWC) gamma-ray observatory. The size of the data set is 290 days. No significant excess is observed in the Northern $\\textit{Fermi}$ Bubble region, hence upper limits above $1\\,\\text{TeV}$ are calculated. The upper limits are between $3\\times 10^{-7}\\,\\text{GeV}\\, \\text{cm}^{-2}\\, \\text{s}^{-1}\\,\\text{sr}^{-1}$ and $4\\times 1...

  4. Effect of geomagnetic storms on the daytime low-latitude thermospheric wave dynamics

    Science.gov (United States)

    Karan, Deepak K.; Pallamraju, Duggirala

    2018-05-01

    The equatorial- and low-latitude thermospheric dynamics is affected by both equatorial electrodynamics and neutral wave dynamics, the relative variation of which is dependent on the prevalent background conditions, which in turn has a seasonal dependence. Depending on the ambient thermospheric conditions, varying effects of the geomagnetic disturbances on the equatorial- and low-latitude thermosphere are observed. To investigate the effect of these disturbances on the equatorial- and low-latitude neutral wave dynamics, daytime airglow emission intensities at OI 557.7 nm, OI 630.0 nm, and OI 777.4 nm are used. These emissions from over a large field-of-view (FOV∼1000) have been obtained using a high resolution slit spectrograph, MISE (Multiwavelength Imaging Spectrograph using Echelle grating), from a low-latitude location, Hyderabad (17.50N, 78.40E; 8.90N MLAT), in India. Variations of the dayglow emission intensities are investigated during three geomagnetic disturbance events that occurred in different seasons. It is seen that the neutral dayglow emission intensities at all the three wavelengths showed different type of variations with the disturbance storm time (Dst) index in different seasons. Even though the dayglow emission intensities over low-latitude regions are sensitive to the variation in the equatorial electric fields, during periods of geomagnetic disturbances, especially in solstices, these are dependent on thermospheric O/N2 values. This shows the dominance of neutral dynamics over electrodynamics in the low-latitude upper atmosphere during geomagnetic disturbances. Further, spectral analyses have been carried out to obtain the zonal scale sizes in the gravity wave regime and their diurnal distributions are compared for geomagnetic quiet and disturbed days. Broadly, the zonal scales seem to be breaking into various scale sizes on days of geomagnetic disturbances when compared to those on quiet days. This contrast in the diurnal distribution of the

  5. Diffuse galactic gamma rays at intermediate and high latitudes. I. Constraints on the ISM properties

    International Nuclear Information System (INIS)

    Cholis, Ilias; Tavakoli, Maryam; Evoli, Carmelo; Ullio, Piero; Maccione, Luca

    2012-01-01

    We study the high latitude (|b| > 10°) diffuse γ-ray emission in the Galaxy in light of the recently published data from the Fermi collaboration at energies between 100 MeV and 100 GeV. The unprecedented accuracy in these measurements allows to probe and constrain the properties of sources and propagation of cosmic rays (CRs) in the Galaxy, as well as confirming conventional assumptions made on the interstellar medium (ISM). Using the publicly available DRAGON code, that has been shown to reproduce local measurements of CRs, we study assumptions made in the literature on atomic (HI) and molecular hydrogen (H2) gas distributions in the ISM, and non spatially uniform models of diffusion in the Galaxy. By performing a combined analysis of CR and γ-ray spectra, we derive constraints on the properties of the ISM gas distribution and the vertical scale height of galactic CR diffusion, which may have implications also on indirect Dark Matter detection. We also discuss some of the possible interpretations of the break at high rigidity in CR protons and helium spectra, recently observed by PAMELA and their impact on γ-rays

  6. Inter-Hemispheric Coupling During Northern Polar Summer Periods of 2002-2010 using TIMED/SABER Measurements

    Science.gov (United States)

    Goldberg, Richard A.; Feofilov, A. G.; Pesnell, W. D.; Kutepov, A. A.

    2012-01-01

    It has been found that for more than one polar summer season between 2002-2010, the northern polar mesospheric region near and above about 80 km was warmer than normal. The strongest warming effect of this type was observed to occur during northern summer 2002. Theoretical studies have implied that these "anomalies" were preceded by unusual dynamical processes in the southern hemisphere. We have analyzed temperature distributions measured by the SABER limb scanning infrared radiometer aboard the NASA TIMED satellite between 2002-2010 at altitudes from 15 to 110 km and for latitudes between 83 S to 83 N. We describe the approach to trace the inter-hemispheric temperature correlations demonstrating the global features that were unique for the "anomalous" northern polar summers. From our analysis of SABER data from 2002-2010, the anomalous heating for the northern mesopause region during northern summer was accompanied by stratospheric heating in the equatorial region. In the winter hemisphere it is accompanied by heating in the lower stratosphere and mesopause region, and cooling in the stratopause region. Also, all the elements of the temperature anomaly structure appear to develop and fade away nearly simultaneously, thereby suggesting either a global influence or a rapid exchange.

  7. Response of equatorial, low- and mid-latitude F-region in the American sector during the intense geomagnetic storm on 24-25 October 2011

    Science.gov (United States)

    de Jesus, R.; Sahai, Y.; Fagundes, P. R.; de Abreu, A. J.; Brunini, C.; Gende, M.; Bittencourt, J. A.; Abalde, J. R.; Pillat, V. G.

    2013-07-01

    In this paper, we present and discuss the response of the ionospheric F-region in the American sector during the intense geomagnetic storm which occurred on 24-25 October 2011. In this investigation ionospheric sounding data obtained of 23, 24, 25, and 26 October 2011 at Puerto Rico (United States), Jicamarca (Peru), Palmas, São José dos Campos (Brazil), and Port Stanley, are presented. Also, the GPS observations obtained at 12 stations in the equatorial, low-, mid- and high-mid-latitude regions in the American sector are presented. During the fast decrease of Dst (about ˜54 nT/h between 23:00 and 01:00 UT) on the night of 24-25 October (main phase), there is a prompt penetration of electric field of magnetospheric origin resulting an unusual uplifting of the F region at equatorial stations. On the night of 24-25 October 2011 (recovery phase) equatorial, low- and mid-latitude stations show h'F variations much larger than the average variations possibly associated with traveling ionospheric disturbances (TIDs) caused by Joule heating at high latitudes. The foF2 variations at mid-latitude stations and the GPS-VTEC observations at mid- and low-latitude stations show a positive ionospheric storm on the night of 24-25 October, possibly due to changes in the large-scale wind circulation. The foF2 observations at mid-latitude station and the GPS-VTEC observations at mid- and high-mid-latitude stations show a negative ionospheric storm on the night of 24-25 October, probably associated with an increase in the density of molecular nitrogen. During the daytime on 25 October, the variations in foF2 at mid-latitude stations show large negative ionospheric storm, possibly due to changes in the O/N2 ratio. On the night of 24-25, ionospheric plasma bubbles (equatorial irregularities that extended to the low- and mid-latitude regions) are observed at equatorial, low- and mid-latitude stations. Also, on the night of 25-26, ionospheric plasma bubbles are observed at equatorial

  8. Classification of Arctic, Mid-Latitude and Tropical Clouds in the Mixed-Phase Temperature Regime

    Science.gov (United States)

    Costa, Anja; Afchine, Armin; Luebke, Anna; Meyer, Jessica; Dorsey, James R.; Gallagher, Martin W.; Ehrlich, André; Wendisch, Manfred; Krämer, Martina

    2016-04-01

    The degree of glaciation and the sizes and habits of ice particles formed in mixed-phase clouds remain not fully understood. However, these properties define the mixed clouds' radiative impact on the Earth's climate and thus a correct representation of this cloud type in global climate models is of importance for an improved certainty of climate predictions. This study focuses on the occurrence and characteristics of two types of clouds in the mixed-phase temperature regime (238-275K): coexistence clouds (Coex), in which both liquid drops and ice crystals exist, and fully glaciated clouds that develop in the Wegener-Bergeron-Findeisen regime (WBF clouds). We present an extensive dataset obtained by the Cloud and Aerosol Particle Spectrometer NIXE-CAPS, covering Arctic, mid-latitude and tropical regions. In total, we spent 45.2 hours within clouds in the mixed-phase temperature regime during five field campaigns (Arctic: VERDI, 2012 and RACEPAC, 2014 - Northern Canada; mid-latitude: COALESC, 2011 - UK and ML-Cirrus, 2014 - central Europe; tropics: ACRIDICON, 2014 - Brazil). We show that WBF and Coex clouds can be identified via cloud particle size distributions. The classified datasets are used to analyse temperature dependences of both cloud types as well as range and frequencies of cloud particle concentrations and sizes. One result is that Coex clouds containing supercooled liquid drops are found down to temperatures of -40 deg C only in tropical mixed clouds, while in the Arctic and mid-latitudes no liquid drops are observed below about -20 deg C. In addition, we show that the cloud particles' aspherical fractions - derived from polarization signatures of particles with diameters between 20 and 50 micrometers - differ significantly between WBF and Coex clouds. In Coex clouds, the aspherical fraction of cloud particles is generally very low, but increases with decreasing temperature. In WBF clouds, where all cloud particles are ice, about 20-40% of the cloud

  9. The excitation of plasma convection in the high-latitude ionosphere

    International Nuclear Information System (INIS)

    Lockwood, M.; Cowley, S.W.H.; Freeman, M.P.

    1990-01-01

    Recent observations of ionospheric flows by ground-based radars, in particular by the European Incoherent Scatter (EISCAT) facility using the Polar experiment, together with previous analyses of the response of geomagnetic disturbance to variations of the interplanetary magnetic field (IMF), suggest that convection in the high-latitude ionosphere should be considered to be the sum of two intrinsically time-dependent patterns, one driven by solar wind-magnetosphere coupling at the dayside magnetopause, the other by the release of energy in the geomagnetic tail (mainly by dayside and nightside reconnection, respectively). The flows driven by dayside coupling are largest on the dayside, where they usually dominate, are associated with an expanding polar cap area, and are excited and decay on ∼ 10-min time scales following southward and northward turnings of the IMF, respectively. The latter finding indicates that the production of new open flux at the dayside magnetopause excites magnetospheric and ionospheric flow only for a short interval, ∼ 10 min, such that the flow driven by this source subsequently decays on this time scale unless maintained by the production of more open flux tubes. Correspondingly, the flows excited by the release of energy in the tail, mainly during substorms, are largest on the nightside, are associated with a contracting polar cap boundary, and are excited on ∼ 1-hour time scales following a southward turn of the IMF. In general, the total ionospheric flow will be the sum of the flows produced by these two sources, such that due to their different response times to changes in the IMF, considerable variations in the flow pattern can occur for a given direction and strength ofthe IMF. Consequently, the ionospheric electric field cannot generally be regarded as arising from a simple mapping of the solar wind electric field along open flux tubes

  10. Simulated global-scale response of the climate system to Dansgaard/Oeschger and Heinrich events

    Energy Technology Data Exchange (ETDEWEB)

    Claussen, M. [Potsdam Institute for Climate Impact Research, P-O Box 601203, 14412 Potsdam (Germany); Institute of Physics, Potsdam University, P-O Box 601553, 14415 Potsdam (Germany); Ganopolski, A.; Brovkin, V.; Gerstengarbe, F.W.; Werner, P. [Potsdam Institute for Climate Impact Research, P-O Box 601203, 14412 Potsdam (Germany)

    2003-11-01

    By using an Earth system model of intermediate complexity we have studied the global-scale response of the glacial climate system during marine isotope stage (MIS) 3 to perturbations at high northern latitudes and the tropics. These perturbations include changes in inland-ice volume over North America, in freshwater flux into the northern North Atlantic and in surface temperatures of the tropical Pacific. The global pattern of temperature series resulting from an experiment in which perturbations of inland ice and freshwater budget are imposed at high northern latitudes only, agree with paleoclimatic reconstructions. In particular, a positive correlation of temperature variations near Greenland and variations in all regions of the Northern Hemisphere and some parts of the southern tropics is found. Over the southern oceans a weak negative correlation appears which is strongest at a time lag of approximately 500 years. Further experimentation with prescribed temperature anomalies applied to the tropical Pacific suggests that perturbation of tropical sea-surface temperatures and hence, the tropical water cycle, is unlikely to have triggered Dansgaard/Oeschger (D/O) events. However, together with random freshwater anomalies prescribed at high northern latitudes, tropical perturbations would be able to synchronize the occurrence of D/O events via the mechanism of stochastic resonance. (orig.)

  11. The climatology of low-latitude ionospheric densities and zonal drifts from IMAGE-FUV.

    Science.gov (United States)

    Immel, T. J.; Sagawa, E.; Frey, H. U.; Mende, S. B.; Patel, J.

    2004-12-01

    The IMAGE satellite was the first dedicated to magnetospheric imaging, but has also provided numerous images of the nightside ionosphere with its Far-Ultraviolet (FUV) spectrographic imager. Nightside emissions of O I at 135.6-nm originating away from the aurora are due to recombination of ionospheric O+, and vary in intensity with (O+)2. IMAGE-FUV, operating in a highly elliptical orbit with apogee at middle latitudes and >7 Re altitude, measures this emission globally with 100-km resolution. During each 14.5 hour orbit, IMAGE-FUV is able to monitor nightside ionospheric densities for up to 6-7 hours. Hundreds of low-latitude ionospheric bubbles, their development and drift speed, and a variety of other dynamical variations in brightness and morphology of the equatorial anomalies have been observed during this mission. Furthermore, the average global distribution of low-latitude ionospheric plasma densities can be determined in 3 days. Imaging data collected from February through June of 2002 are used to compile a dataset containing a variety of parameters (e.g., latitude and brightness of peak plasma density, zonal bubble drift speed) which can be drawn from for climatological studies. Recent results indicate that the average ground speed of low-latitude zonal plasma drifts vary with longitude by up to 50%, and that a periodic variation in ionospheric densities with longitude suggests the influence of a lower-thermospheric non-migrating tide with wave number = 4 on ionospheric densities. An excellent correlation between zonal drift speed and the magnetic storm index Dst is also found.

  12. Energy balance of a sparse coniferous high-latitude forest under winter conditions

    NARCIS (Netherlands)

    Gryning, S.E.; Batchvarova, E.; DeBruin, H.A.R.

    2001-01-01

    Measurements carried out in Northern Finland on radiation and turbulent fluxes over a sparse, sub-arctic boreal forest with snow covered ground were analysed. The measurements represent late winter conditions characterised by low solar elevation angles. During the experiment (12-24 March 1997) day

  13. VTEC behavior in the American sector during high solar activity

    CERN Document Server

    Ezquer, R G; Brunini, C; Conicet; Meza, A; Mosert, M; Radicella, S M

    2002-01-01

    The behavior of the vertical total electron content (VTEC) obtained from GPS signals received during the high solar activity year 1999 at stations placed in the American sector, is reported. The considered latitude range extends from 18.4 to -64.7 and the longitude ranges from 281.3 to 297.7. Median, lower and upper quartiles are used to specify variability, because they have the advantage of being less affected by large deviations that can occur during magnetic storms. The results show that the VTEC values corresponding to equinox are greater than those of solstice and that, the highest VTEC values are observed at low latitude stations. In general, the variability during daylight hours is about 30% of median or less, and that observed for nighttime hours is greater than the mentioned percentage, particularly at last hours of the night near the northern peak of the equatorial anomaly.

  14. VTEC behavior in the American sector during high solar activity

    International Nuclear Information System (INIS)

    Ezquer, R.G.; Brunini, C.; Meza, A.; Azpilicueta, F.; Mosert, M.; Radicella, S.M.

    2003-01-01

    The behavior of the vertical total electron content (VTEC) obtained from GPS signals received during the high solar activity year 1999 at stations placed in the American sector, is reported. The considered latitude range extends from 18.4 to -64.7 and the longitude ranges from 281.3 to 297.7. Median, lower and upper quartiles are used to specify variability, because they have the advantage of being less affected by large deviations that can occur during magnetic storms. The results show that the VTEC values corresponding to equinox are greater than those of solstice and that, the highest VTEC values are observed at low latitude stations. In general, the variability during daylight hours is about 30% of median or less, and that observed for nighttime hours is greater than the mentioned percentage, particularly at last hours of the night near the northern peak of the equatorial anomaly. (author)

  15. Towards understanding of the spatio-temporal composition of Terrestrial Water Storage variations in Northern Latitudes using a model-data fusion approach

    Science.gov (United States)

    Trautmann, Tina; Koirala, Sujan; Carvalhais, Nuno; Niemann, Christoph; Fink, Manfred; Jung, Martin

    2017-04-01

    Understanding variations in the terrestrial water storage (TWS) and its components is essential to gain insights into the dynamics of the hydrological cycle, and to assess temporal and spatial variations of water availability under global changes. We investigated spatio-temporal patterns of TWS variations and their composition in the humid regions of northern mid-to-high latitudes during 2001-2014 by using a simple hydrological model with few effective parameters. Compared to traditional modelling studies, our simple model was informed and constrained by multiple state-of-the-art earth observation products including TWS from Gravity Recovery and Climate Experiment (GRACE) satellites (Wiese 2015), Snow Water Equivalent (SWE) from GlobSnow project (Loujous et al. 2014), evapotranspiration fluxes from eddy covariance measurements (Tramontana et al. 2016), and gridded runoff estimates for Europe (Gudmundsson & Seneviratne 2016). Thorough evaluation of model demonstrates that the model reproduces the observed patterns of hydrological fluxes and states well. The validated model results are then used to assess the contributions of snow pack, soil moisture and groundwater on the integrated TWS across spatial (local grid scale, spatially integrated) and temporal (seasonal, inter-annual) scales. Interestingly, our results show that TWS variations on different scales are dominated by different components. On both, seasonal and inter-annual time scales, the spatially integrated TWS signal mainly originates from dynamics of snow pack. On the local grid scale, mean seasonal TWS variations are driven by snow dynamics as well, whereas inter-annual variations are found to originate from soil moisture availability. Thus, we show that the determinants of TWS variations are scale-dependent, while coincidently underline the potential of model-data fusion techniques to gain insights into the complex hydrological system. References: Gudmundsson, L. and S. I. Seneviratne (2016

  16. Predicting Wetland Distribution Changes under Climate Change and Human Activities in a Mid- and High-Latitude Region

    Directory of Open Access Journals (Sweden)

    Dandan Zhao

    2018-03-01

    Full Text Available Wetlands in the mid- and high-latitudes are particularly vulnerable to environmental changes and have declined dramatically in recent decades. Climate change and human activities are arguably the most important factors driving wetland distribution changes which will have important implications for wetland ecological functions and services. We analyzed the importance of driving variables for wetland distribution and investigated the relative importance of climatic factors and human activity factors in driving historical wetland distribution changes. We predicted wetland distribution changes under climate change and human activities over the 21st century using the Random Forest model in a mid- and high-latitude region of Northeast China. Climate change scenarios included three Representative Concentration Pathways (RCPs based on five general circulation models (GCMs downloaded from the Coupled Model Intercomparison Project, Phase 5 (CMIP5. The three scenarios (RCP 2.6, RCP 4.5, and RCP 8.5 predicted radiative forcing to peak at 2.6, 4.5, and 8.5 W/m2 by the 2100s, respectively. Our results showed that the variables with high importance scores were agricultural population proportion, warmness index, distance to water body, coldness index, and annual mean precipitation; climatic variables were given higher importance scores than human activity variables on average. Average predicted wetland area among three emission scenarios were 340,000 ha, 123,000 ha, and 113,000 ha for the 2040s, 2070s, and 2100s, respectively. Average change percent in predicted wetland area among three periods was greatest under the RCP 8.5 emission scenario followed by RCP 4.5 and RCP 2.6 emission scenarios, which were 78%, 64%, and 55%, respectively. Losses in predicted wetland distribution were generally around agricultural lands and expanded continually from the north to the whole region over time, while the gains were mostly associated with grasslands and water in the

  17. Mid-Latitude versus Polar-Latitude Transitional Impact Craters: Geometric Properties from Mars Orbiter Laser Altimeter (MOLA) Observations and Viking Images

    Science.gov (United States)

    Matias, A.; Garvin, J. B.; Sakimoto, S. E. H.

    1998-01-01

    One intriguing aspect of martian impact crater morphology is the change of crater cavity and ejecta characteristics from the mid-latitudes to the polar regions. This is thought to reflect differences in target properties such as an increasing presence of ice in the polar regions. Previous image-based efforts concerning martian crater morphology has documented some aspects of this, but has been hampered by the lack of adequate topography data. Recent Mars Orbiter Laser Altimeter (MOLA) topographic profiles provide a quantitative perspective for interpreting the detailed morphologies of martian crater cavities and ejecta morphology. This study is a preliminary effort to quantify the latitude-dependent differences in morphology with the goal of identifying target-dependent and crater modification effects from the combined of images and MOLA topography. We combine the available MOLA profiles and the corresponding Viking Mars Digital Image Mosaics (MDIMS), and high resolution Viking Orbiter images to focus on two transitional craters; one on the mid-latitudes, and one in the North Polar region. One MOLA pass (MGS Orbit 34) traverses the center of a 15.9 km diameter fresh complex crater located at 12.8degN 83.8degE on the Hesperian ridge plains unit (Hvr). Viking images, as well as MOLA data, show that this crater has well developed wall terraces and a central peak with 429 m of relative relief. Three MOLA passes have been acquired for a second impact crater, which is located at 69.5degN 41degE on the Vastitas Borealis Formation. This fresh rampart crater lacks terraces and central peak structures and it has a depth af 579 m. Correlation between images and MOLA topographic profiles allows us to construct basic facies maps of the craters. Eight main units were identified, four of which are common on both craters.

  18. Lidar measurements of mesospheric temperature inversion at a low latitude

    Directory of Open Access Journals (Sweden)

    V. Siva Kumar

    Full Text Available The Rayleigh lidar data collected on 119 nights from March 1998 to February 2000 were used to study the statistical characteristics of the low latitude mesospheric temperature inversion observed over Gadanki (13.5° N, 79.2° E, India. The occurrence frequency of the inversion showed semiannual variation with maxima in the equinoxes and minima in the summer and winter, which was quite different from that reported for the mid-latitudes. The peak of the inversion layer was found to be confined to the height range of 73 to 79 km with the maximum occurrence centered around 76 km, with a weak seasonal dependence that fits well to an annual cycle with a maximum in June and a minimum in December. The magnitude of the temperature deviation associated with the inversion was found to be as high as 32 K, with the most probable value occurring at about 20 K. Its seasonal dependence seems to follow an annual cycle with a maximum in April and a minimum in October. The observed characteristics of the inversion layer are compared with that of the mid-latitudes and discussed in light of the current understanding of the source mechanisms.

    Key words. Atmospheric composition and structure (pressure, density and temperature. Meterology and atmospheric dynamics (climatology

  19. The effect of latitude on the performance of different solar trackers in Europe and Africa

    International Nuclear Information System (INIS)

    Bahrami, Arian; Okoye, Chiemeka Onyeka; Atikol, Ugur

    2016-01-01

    Highlights: • The effect of latitude on the performance of seven solar trackers is analyzed in Europe and Africa. • The performance of the trackers is ranked according to the area location latitude. • The results showed five ranking patterns. • Based on the five patterns and the site latitude, designers can select the best available tracker. - Abstract: In this paper, the effect of latitude on the performance of different solar trackers is examined. The hourly solar radiation data of different locations around Europe and Africa measured on a horizontal surface is collected and utilized. Widely validated Perez anisotropic model is used to predict the diffuse component of the solar radiation on an inclined surface. Different solar trackers namely, Full/dual-axis, East–West (EW), North–South (NS), Inclined East–West (IEW), and Vertical-axis (V) trackers are considered in calculating the available solar potential of the locations. The performance of the solar trackers in terms of the energy gain is ranked according to the area location latitudes. The results show that the tracking performance is highly dependent on the locations, thus changes with the latitude. The percentage variation among the implemented one-axis tracking options relative to dual-axis trackers ranges from 0.42% to 23.4%. Overall, the increase in the energy gain of dual-axis trackers compared to the optimal fixed panel for the locations varies from 17.72% to 31.23%, thus emphasizes the importance of solar trackers. Finally, the study is expected to aid designers in the selection and installation of appropriate solar trackers in the regions.

  20. Topside electron density at low latitudes

    International Nuclear Information System (INIS)

    Ezquer, R.G.; Cabrera, M.A.; Flores, R.F.; Mosert, M.

    2002-01-01

    The validity of IRI to predict the electron density at the topside electron density profile over the low latitude region is checked. The comparison with measurements obtained with the Taiyo satellite during low solar activity shows that, the disagreement between prediction and measurement is lower than 40% for 70% of considered cases. These IRI predictions are better than those obtained in a previous work at the southern peak of the equatorial anomaly for high solar activity. Additional studies for low solar activity, using ionosonde data as input parameters in the model, are needed in order to check if the observed deviations are due to the predicted peak characteristics or to the predicted shape of the topside profile. (author)