WorldWideScience

Sample records for high mountain regions

  1. The Impact Snow Albedo Feedback over Mountain Regions as Examined through High-Resolution Regional Climate Change Experiments over the Rocky Mountains

    Letcher, Theodore

    As the climate warms, the snow albedo feedback (SAF) will play a substantial role in shaping the climate response of mid-latitude mountain regions with transient snow cover. One such region is the Rocky Mountains of the western United States where large snow packs accumulate during the winter and persist throughout the spring. In this dissertation, the Weather Research and Forecast model (WRF) configured as a regional climate model is used to investigate the role of the SAF in determining the regional climate response to forced anthropogenic climate change. The regional effects of climate change are investigated by using the pseudo global warming (PGW) framework, which is an experimental configuration in a which a mean climate perturbation is added to the boundary forcing of a regional model, thus preserving the large-scale circulation entering the region through the model boundaries and isolating the mesoscale climate response. Using this framework, the impact of the SAF on the regional energetics and atmospheric dynamics is examined and quantified. Linear feedback analysis is used to quantify the strength of the SAF over the Headwaters region of the Colorado Rockies for a series of high-resolution PGW experiments. This technique is used to test sensitivity of the feedback strength to model resolution and land surface model. Over the Colorado Rockies, and integrated over the entire spring season, the SAF strength is largely insensitive to model resolution, however there are more substantial differences on the sub-seasonal (monthly) timescale. In contrast, the SAF strength over this region is very sensitive to choice of land surface model. These simulations are also used to investigate how spatial and diurnal variability in warming caused by the SAF influences the dynamics of thermally driven mountain-breeze circulations. It is shown that, the SAF causes stronger daytime mountain-breeze circulations by increasing the warming on the mountains slopes thus enhancing

  2. Natural radionuclides in rocks and soils of the high-mountain regions of the Great Caucasus

    Asvarova, T. A.; Abdulaeva, A. S.; Magomedov, M. A.

    2012-06-01

    The results of the radioecological survey in the high-mountain regions of the Great Caucasus at the heights from 2200 to 3800 m a.s.l. are considered. This survey encompassed the territories of Dagestan, Azerbaijan, Georgia, Chechnya, Northern Ossetia-Alania, Kabardino-Balkaria, Karachay-Cherkessia, and the Stavropol and Krasnodar regions. The natural γ background radiation in the studied regions is subjected to considerable fluctuations and varies from 6 to 40 μR/h. The major regularities of the migration of natural radionuclides 238U, 232Th, 226Ra, and 40K in soils in dependence on the particular environmental conditions (the initial concentration of the radionuclides in the parent material; the intensity of pedogenesis; the intensity of the vertical and horizontal migration; and the geographic, climatic, and landscape-geochemical factors) are discussed.

  3. Production of high-resolution digital terrain models in mountain regions to support risk assessment

    Gianfranco Forlani

    2015-07-01

    Full Text Available Demand for high-accuracy digital terrain models (DTMs in the Alpine region has been steadily increasing in recent years in valleys as well as high mountains. In the former, the determination of the geo-mechanical parameters of rock masses is the main objective; global warming, which causes the retreat of glaciers and the reduction of permafrost, is the main drive of the latter. The consequence is the instability of rock masses in high mountains: new cost-effective monitoring techniques are required to deal with the peculiar characteristics of such environment, delivering results at short notice. After discussing the design and execution of photogrammetric surveys in such areas, with particular reference to block orientation and block control, the paper describes the production of DTMs of rock faces and glacier fronts with light instrumentation and data acquisition techniques, allowing highly automated data processing. To this aim, the PhotoGPS technique and structure from motion algorithms are used to speed up the orientation process, while dense matching area-based correlation techniques are used to generate the DTMs.

  4. Geology of the Yucca Mountain Region, Chapter in Stuckless, J.S., ED., Yucca Mountain, Nevada - A Proposed Geologic Repository for High-Level Radioactive Waste

    J.S. Stuckless; D. O' Leary

    2006-09-25

    Yucca Mountain has been proposed as the site for the Nation's first geologic repository for high-level radioactive waste. This chapter provides the geologic framework for the Yucca Mountain region. The regional geologic units range in age from late Precambrian through Holocene, and these are described briefly. Yucca Mountain is composed dominantly of pyroclastic units that range in age from 11.4 to 15.2 Ma. The proposed repository would be constructed within the Topopah Spring Tuff, which is the lower of two major zoned and welded ash-flow tuffs within the Paintbrush Group. The two welded tuffs are separated by the partly to nonwelded Pah Canyon Tuff and Yucca Mountain Tuff, which together figure prominently in the hydrology of the unsaturated zone. The Quaternary deposits are primarily alluvial sediments with minor basaltic cinder cones and flows. Both have been studied extensively because of their importance in predicting the long-term performance of the proposed repository. Basaltic volcanism began about 10 Ma and continued as recently as about 80 ka with the eruption of cones and flows at Lathrop Wells, approximately 10 km south-southwest of Yucca Mountain. Geologic structure in the Yucca Mountain region is complex. During the latest Paleozoic and Mesozoic, strong compressional forces caused tight folding and thrust faulting. The present regional setting is one of extension, and normal faulting has been active from the Miocene through to the present. There are three major local tectonic domains: (1) Basin and Range, (2) Walker Lane, and (3) Inyo-Mono. Each domain has an effect on the stability of Yucca Mountain.

  5. Geology of the Yucca Mountain Region, Chapter in Stuckless, J.S., ED., Yucca Mountain, Nevada - A Proposed Geologic Repository for High-Level Radioactive Waste

    J.S. Stuckless; D. O'Leary

    2006-01-01

    Yucca Mountain has been proposed as the site for the Nation's first geologic repository for high-level radioactive waste. This chapter provides the geologic framework for the Yucca Mountain region. The regional geologic units range in age from late Precambrian through Holocene, and these are described briefly. Yucca Mountain is composed dominantly of pyroclastic units that range in age from 11.4 to 15.2 Ma. The proposed repository would be constructed within the Topopah Spring Tuff, which is the lower of two major zoned and welded ash-flow tuffs within the Paintbrush Group. The two welded tuffs are separated by the partly to nonwelded Pah Canyon Tuff and Yucca Mountain Tuff, which together figure prominently in the hydrology of the unsaturated zone. The Quaternary deposits are primarily alluvial sediments with minor basaltic cinder cones and flows. Both have been studied extensively because of their importance in predicting the long-term performance of the proposed repository. Basaltic volcanism began about 10 Ma and continued as recently as about 80 ka with the eruption of cones and flows at Lathrop Wells, approximately 10 km south-southwest of Yucca Mountain. Geologic structure in the Yucca Mountain region is complex. During the latest Paleozoic and Mesozoic, strong compressional forces caused tight folding and thrust faulting. The present regional setting is one of extension, and normal faulting has been active from the Miocene through to the present. There are three major local tectonic domains: (1) Basin and Range, (2) Walker Lane, and (3) Inyo-Mono. Each domain has an effect on the stability of Yucca Mountain

  6. Landforms of High Mountains

    Derek A. McDougall

    2016-05-01

    Full Text Available Reviewed: Landforms of High Mountains. By Alexander Stahr and Ewald Langenscheidt. Heidelberg, Germany: Springer, 2015. viii + 158 pp. US$ 129.99. Also available as an e-book. ISBN 978-3-642-53714-1.

  7. NASA's High Mountain Asia Team (HiMAT): collaborative research to study changes of the High Asia region

    Arendt, A. A.; Houser, P.; Kapnick, S. B.; Kargel, J. S.; Kirschbaum, D.; Kumar, S.; Margulis, S. A.; McDonald, K. C.; Osmanoglu, B.; Painter, T. H.; Raup, B. H.; Rupper, S.; Tsay, S. C.; Velicogna, I.

    2017-12-01

    The High Mountain Asia Team (HiMAT) is an assembly of 13 research groups funded by NASA to improve understanding of cryospheric and hydrological changes in High Mountain Asia (HMA). Our project goals are to quantify historical and future variability in weather and climate over the HMA, partition the components of the water budget across HMA watersheds, explore physical processes driving changes, and predict couplings and feedbacks between physical and human systems through assessment of hazards and downstream impacts. These objectives are being addressed through analysis of remote sensing datasets combined with modeling and assimilation methods to enable data integration across multiple spatial and temporal scales. Our work to date has focused on developing improved high resolution precipitation, snow cover and snow water equivalence products through a variety of statistical uncertainty analysis, dynamical downscaling and assimilation techniques. These and other high resolution climate products are being used as input and validation for an assembly of land surface and General Circulation Models. To quantify glacier change in the region we have calculated multidecadal mass balances of a subset of HMA glaciers by comparing commercial satellite imagery with earlier elevation datasets. HiMAT is using these tools and datasets to explore the impact of atmospheric aerosols and surface impurities on surface energy exchanges, to determine drivers of glacier and snowpack melt rates, and to improve our capacity to predict future hydrological variability. Outputs from the climate and land surface assessments are being combined with landslide and glacier lake inventories to refine our ability to predict hazards in the region. Economic valuation models are also being used to assess impacts on water resources and hydropower. Field data of atmospheric aerosol, radiative flux and glacier lake conditions are being collected to provide ground validation for models and remote sensing

  8. Rocky Mountain High.

    Hill, David

    2001-01-01

    Describes Colorado's Eagle Rock School, which offers troubled teens a fresh start by transporting them to a tuition- free campus high in the mountains. The program encourages spiritual development as well as academic growth. The atmosphere is warm, loving, structured, and nonthreatening. The article profiles several students' experiences at the…

  9. Assessment of the Suitability of High Resolution Numerical Weather Model Outputs for Hydrological Modelling in Mountainous Cold Regions

    Rasouli, K.; Pomeroy, J. W.; Hayashi, M.; Fang, X.; Gutmann, E. D.; Li, Y.

    2017-12-01

    The hydrology of mountainous cold regions has a large spatial variability that is driven both by climate variability and near-surface process variability associated with complex terrain and patterns of vegetation, soils, and hydrogeology. There is a need to downscale large-scale atmospheric circulations towards the fine scales that cold regions hydrological processes operate at to assess their spatial variability in complex terrain and quantify uncertainties by comparison to field observations. In this research, three high resolution numerical weather prediction models, namely, the Intermediate Complexity Atmosphere Research (ICAR), Weather Research and Forecasting (WRF), and Global Environmental Multiscale (GEM) models are used to represent spatial and temporal patterns of atmospheric conditions appropriate for hydrological modelling. An area covering high mountains and foothills of the Canadian Rockies was selected to assess and compare high resolution ICAR (1 km × 1 km), WRF (4 km × 4 km), and GEM (2.5 km × 2.5 km) model outputs with station-based meteorological measurements. ICAR with very low computational cost was run with different initial and boundary conditions and with finer spatial resolution, which allowed an assessment of modelling uncertainty and scaling that was difficult with WRF. Results show that ICAR, when compared with WRF and GEM, performs very well in precipitation and air temperature modelling in the Canadian Rockies, while all three models show a fair performance in simulating wind and humidity fields. Representation of local-scale atmospheric dynamics leading to realistic fields of temperature and precipitation by ICAR, WRF, and GEM makes these models suitable for high resolution cold regions hydrological predictions in complex terrain, which is a key factor in estimating water security in western Canada.

  10. Multivariate characterization of elements accumulated in King Bolete Boletus edulis mushroom at lowland and high mountain regions.

    Falandysz, J; Kunito, T; Kubota, R; Bielawski, L; Frankowska, A; Falandysz, Justyna J; Tanabe, S

    2008-12-01

    Based on ICP-MS, ICP-OES, HG-AAS, CV-AAS and elementary instrumental analysis of King Bolete collected from four sites of different soil bedrock geochemistry considered could be as mushroom abundant in certain elements. King's Bolete fruiting bodies are very rich in K (> 20 mg/g dry weight), rich in Ca, Mg, Na, Rb and Zn (> 100 microg/g dw), and relatively also rich in Ag, Cd, Cs, Cu, Fe, Mn and Se (> 10 microg/g dw). The caps of King Bolete when compared to stipes around two-to three-fold more abundant are in Ag, Cd, Cs, Cu, Hg, K, Mg, Mo, N, Rb, Se and Zn. King Bolete collected at the lowland and mountain sites showed Ag, Ba, Co, Cr, Hg, K, Mg, Mn, Mo and Na in caps in comparable concentrations, and specimens from the mountain areas accumulated more Cd and Sb. Elements such as Al, Pb and Rb occurred at relatively elevated concentration in King Bolete picked up at the metal ores-rich region of the Sudety Mountains. Because of high bioconcentration potential King Bolete at the background sites accumulate in fruiting bodies great concentrations of problematic elements such as Cd, Pb and Hg, i.e. up to nearly 20, 3 and 5 microg/g dw, on the average, respectively. The interdependence among determined mineral elements examined were using the principal components analysis (PCA) method. The PCA explained 56% of the total variance. The metals tend to cluster together (Ba, Cd, Cs, Cr, Ga, Rb, Se, Sr and V; K and Mg; Cu and Mo). The results provided useful environmental and nutritional background level information on 26 minerals as the composition of King Bolete from the sites of different bedrock soil geochemistry.

  11. Massive post-fire flowering events in a tropical mountain region of Brazil: high episodic supply of floral resources

    Abel Augusto Conceição

    2013-12-01

    Full Text Available The species Vellozia sincorana L.B.Sm. & Ayensu is key to biodiversity conservation in the tropical mountain region of Brazil. The massive post-fire flowering of this endemic species provides a large, episodic supply of floral resources, mostly nectar, to animals.

  12. Origin and Distribution of PAHs in Ambient Particulate Samples at High Mountain Region in Southern China

    Peng-hui Li

    2015-01-01

    Full Text Available To understand the deposition and transport of PAHs in southern China, a measurement campaign was conducted at a high-elevation site (the summit of Mount Heng, 1269 m A.S.L. from April 4 to May 31, 2009, and a total of 39 total suspended particulate samples were collected for measurement of PAH concentrations. The observed particulate-bound PAHs concentrations ranged from 1.63 to 29.83 ng/m3, with a mean concentration of 6.03 ng/m3. BbF, FLA, and PYR were the predominant compounds. Good correlations were found between individual PAHs and meteorological parameters such as atmospheric pressure, relative humidity, and ambient temperature. The backward trajectory analysis suggested that particulate samples measured at the Mount Heng region were predominantly associated with the air masses from southern China, while the air masses transported over northern and northwestern China had relative higher PAHs concentrations. Based on the diagnostic ratios and factor analysis, vehicular emission, coal combustion, industry emission, and unburned fossil fuels were suggested to be the PAHs sources at Mount Heng site. However, the reactivity and degradation of individual PAHs could influence the results of PAH source profiles, which deserves further investigations in the future.

  13. High-resolution DEMs for High-mountain Asia: A systematic, region-wide assessment of geodetic glacier mass balance and dynamics

    Shean, D. E.; Arendt, A. A.; Osmanoglu, B.; Montesano, P.

    2017-12-01

    High Mountain Asia (HMA) constitutes the largest glacierized region outside of the Earth's polar regions. Although available observations are limited, long-term records indicate sustained regional glacier mass loss since 1850, with increased loss in recent decades. Recent satellite data (e.g., GRACE, ICESat-1) show spatially variable glacier mass balance, with significant mass loss in the Himalaya and Hindu Kush and slight mass gain in the Karakoram. We generated 4000 high-resolution digital elevation models (DEMs) from sub-meter commercial stereo imagery (DigitalGlobe WorldView/GeoEye) acquired over glaciers in High-mountain Asia from 2002-present (mostly 2013-present). We produced a regional 8-m DEM mosaic for 2015 and estimated 15-year geodetic mass balance for 40000 glaciers larger than 0.1 km2. We are combining with other regional DEM sources to systematically document the spatiotemporal evolution of glacier mass balance for the entire HMA region. We also generated monthly to interannual DEM and velocity time series for high-priority sites distributed across the region, with >15-20 DEMs available for some locations from 2010-present. These records document glacier dynamics, seasonal snow accumulation/redistribution, and processes that affect glacier mass balance (e.g., ice-cliff retreat, debris cover evolution). These efforts will provide basin-scale assessments of snow/ice melt runoff contributions for model cal/val and downstream water resources applications. We will continue processing all archived and newly available commercial stereo imagery for HMA, and will release all DEMs through the HiMAT DAAC.

  14. REGIONAL ANALYSIS OF INORGANIC NITROGEN YIELD AND RETENTION IN HIGH-ELEVATION ECOSYSTEMS OF THE SIERRA NEVADA AND ROCKY MOUNTAINS

    Yields and retention of inorganic nitrogen (DIN) and nitrate concentrations in surface runoff are summarized for 28 high elevation watersheds in the Sierra Nevada, California and Rocky Mountains of Wyoming and Colorado. Catchments ranged in elevation from 2475 to 3603 m and from...

  15. Evaluating a Local Ensemble Transform Kalman Filter snow cover data assimilation method to estimate SWE within a high-resolution hydrologic modeling framework across Western US mountainous regions

    Oaida, C. M.; Andreadis, K.; Reager, J. T., II; Famiglietti, J. S.; Levoe, S.

    2017-12-01

    Accurately estimating how much snow water equivalent (SWE) is stored in mountainous regions characterized by complex terrain and snowmelt-driven hydrologic cycles is not only greatly desirable, but also a big challenge. Mountain snowpack exhibits high spatial variability across a broad range of spatial and temporal scales due to a multitude of physical and climatic factors, making it difficult to observe or estimate in its entirety. Combing remotely sensed data and high resolution hydrologic modeling through data assimilation (DA) has the potential to provide a spatially and temporally continuous SWE dataset at horizontal scales that capture sub-grid snow spatial variability and are also relevant to stakeholders such as water resource managers. Here, we present the evaluation of a new snow DA approach that uses a Local Ensemble Transform Kalman Filter (LETKF) in tandem with the Variable Infiltration Capacity macro-scale hydrologic model across the Western United States, at a daily temporal resolution, and a horizontal resolution of 1.75 km x 1.75 km. The LETKF is chosen for its relative simplicity, ease of implementation, and computational efficiency and scalability. The modeling/DA system assimilates daily MODIS Snow Covered Area and Grain Size (MODSCAG) fractional snow cover over, and has been developed to efficiently calculate SWE estimates over extended periods of time and covering large regional-scale areas at relatively high spatial resolution, ultimately producing a snow reanalysis-type dataset. Here we focus on the assessment of SWE produced by the DA scheme over several basins in California's Sierra Nevada Mountain range where Airborne Snow Observatory data is available, during the last five water years (2013-2017), which include both one of the driest and one of the wettest years. Comparison against such a spatially distributed SWE observational product provides a greater understanding of the model's ability to estimate SWE and SWE spatial variability

  16. Estimating evapotranspiration in the central mountain region of Veracruz, Mexico

    Ballinas, Mónica; Esperón-Rodríguez, Manuel; Barradas, Víctor L

    2015-01-01

    The global, regional and local hydrological cycle is strongly linked to vegetation distribution. The hydrological cycle is composed by precipitation, infiltration, runoff, transpiration and evaporation. Evaporation is influenced by high temperatures, high winds and low relative humidity. This work is focused on the study of evapotranspiration (ET) as the main variable of water loss in the water balance in the central mountain region of Veracruz, Mexico. ET was estimated using the Penman-Monte...

  17. Can small island mountains provide relief from the Subtropical Precipitation Decline? Simulating future precipitation regimes for small island nations using high resolution Regional Climate Models.

    Bowden, J.; Terando, A. J.; Misra, V.; Wootten, A.

    2017-12-01

    Small island nations are vulnerable to changes in the hydrologic cycle because of their limited water resources. This risk to water security is likely even higher in sub-tropical regions where anthropogenic forcing of the climate system is expected to lead to a drier future (the so-called `dry-get-drier' pattern). However, high-resolution numerical modeling experiments have also shown an enhancement of existing orographically-influenced precipitation patterns on islands with steep topography, potentially mitigating subtropical drying on windward mountain sides. Here we explore the robustness of the near-term (25-45 years) subtropical precipitation decline (SPD) across two island groupings in the Caribbean, Puerto Rico and the U.S. Virgin Islands. These islands, forming the boundary between the Greater and Lesser Antilles, significantly differ in size, topographic relief, and orientation to prevailing winds. Two 2-km horizontal resolution regional climate model simulations are used to downscale a total of three different GCMs under the RCP8.5 emissions scenario. Results indicate some possibility for modest increases in precipitation at the leading edge of the Luquillo Mountains in Puerto Rico, but consistent declines elsewhere. We conclude with a discussion of potential explanations for these patterns and the attendant risks to water security that subtropical small island nations could face as the climate warms.

  18. Regional climate change: Precipitation variability in mountainous part of Bulgaria

    Nikolova Nina

    2007-01-01

    Full Text Available The aim of paper is to analyze temporal and spatial changes in monthly precipitation as well as extremely dry and wet months in mountainous part of Bulgaria. Study precipitation variability in mountainous part is very important because this part is the region where the rivers take its source from. Extreme values of monthly precipitation are important information for better understanding of the whole variability and trends in precipitation time series. The mean investigated period is 1951-2005 and the reference period is so called temporary climate - 1961- 1990. Extreme dry precipitation months are defined as a month whose monthly precipitation is lower than 10% of gamma distribution in the reference period 1961-1990. Extreme wet months are determined with respect to 90% percentiles of gamma distribution (monthly precipitation is higher than 90%. The result of the research show that in mountainous part of Bulgaria during 1950s and 1960s number of extremely wet months is higher than number of dry months. Decreasing of monthly precipitation is a feature for 1980s. This dry period continues till 2004. The years 2000 makes impression as driest year in high mountains with about 7 extremely dry months. The second dry year is 1993. The negative precipitation anomaly is most clearly determined during last decade at study area. The present research points out that fluctuation of precipitation in mountainous part of Bulgaria are coinciding with regional and global climate trends.

  19. Winter climate variability and classification in the Bulgarian Mountainous Regions

    Petkova, Nadezhda; Koleva, Ekaterina

    2004-01-01

    The problems of snowiness and thermal conditions of winters are of high interest of investigations because of the more frequent droughts, occurred in the region. In the present study an attempt to reveal tendencies existing during the last 70 years of 20 th century in the course winter precipitation and,temperature as well as in some of the snow cover parameters. On the base of mean winter air temperature winters in the Bulgarian mountains were analyzed and classified. The main results of the study show that winter precipitation has decrease tendencies more significant in the highest parts of the mountains. On the other hand winter air temperature increases. It shows a relatively well-established maximum at the end of the studied period. In the Bulgarian mountains normal winters are about 35-40% of all winters. (Author)

  20. New lakes in de-glaciating high-mountain regions - a challenge for integrative research about hazard protection and sustainable use

    Haeberli, W.

    2012-12-01

    As a consequence of rapid glacier vanishing, an increasing number of smaller and larger lakes are forming in high-mountain regions worldwide. Such new lakes can be touristic landscape attractions and may also represent interesting potentials for hydropower production. However, they more and more often come into existence at the foot of very large and steep icy mountain walls, which are progressively destabilizing due to changing surface and subsurface ice conditions. The probability of far-reaching flood and debris flow catastrophes caused by impact waves from large rock/ice avalanches into lakes may still appear to be small now but steadily increases for long time periods to come. Corresponding projects related to hazard protection and sustainable use should be combined in an integrative and participatory planning process. This planning process must start soon, because the development in nature is fast and most likely accelerating. Technical tools for creating the necessary scientific knowledge basis at local to regional scales exist and can be used. The location of future new lakes in topographic bed depressions of now still glacier-covered areas can be quite safely assessed on the basis of morphological criteria or by applying ice thickness estimates using digital terrain information. Models for ice-thickness estimates couple the depth to bedrock via the basal shear stress with the surface slope and provide a (relative) bed topography which is much more robust than the (absolute) value of the calculated ice thickness. Numerical models at various levels of sophistication can be used to simulate possible future glacier changes in order to establish the probable time of lake formation and the effects of glacier shrinking on runoff seasonality and water supply. The largest uncertainties thereby relate to the large uncertainties of (absolute) ice thickness and mass/energy fluxes at the surface (climate scenarios, precipitation and albedo changes, etc.). Combined

  1. Snow hydrology in Mediterranean mountain regions: A review

    Fayad, Abbas; Gascoin, Simon; Faour, Ghaleb; López-Moreno, Juan Ignacio; Drapeau, Laurent; Page, Michel Le; Escadafal, Richard

    2017-08-01

    Water resources in Mediterranean regions are under increasing pressure due to climate change, economic development, and population growth. Many Mediterranean rivers have their headwaters in mountainous regions where hydrological processes are driven by snowpack dynamics and the specific variability of the Mediterranean climate. A good knowledge of the snow processes in the Mediterranean mountains is therefore a key element of water management strategies in such regions. The objective of this paper is to review the literature on snow hydrology in Mediterranean mountains to identify the existing knowledge, key research questions, and promising technologies. We collected 620 peer-reviewed papers, published between 1913 and 2016, that deal with the Mediterranean-like mountain regions in the western United States, the central Chilean Andes, and the Mediterranean basin. A large amount of studies in the western United States form a strong scientific basis for other Mediterranean mountain regions. We found that: (1) the persistence of snow cover is highly variable in space and time but mainly controlled by elevation and precipitation; (2) the snowmelt is driven by radiative fluxes, but the contribution of heat fluxes is stronger at the end of the snow season and during heat waves and rain-on-snow events; (3) the snow densification rates are higher in these regions when compared to other climate regions; and (4) the snow sublimation is an important component of snow ablation, especially in high-elevation regions. Among the pressing issues is the lack of continuous ground observation in high-elevation regions. However, a few years of snow depth (HS) and snow water equivalent (SWE) data can provide realistic information on snowpack variability. A better spatial characterization of snow cover can be achieved by combining ground observations with remotely sensed snow data. SWE reconstruction using satellite snow cover area and a melt model provides reasonable information that

  2. THE MOUNTAIN REGIONS IN CONTEXT OF STRATEGY 2020

    ANTONESCU Daniela

    2014-07-01

    Full Text Available The mountain regions in Romania and European Union represent a special territory of interest, with a huge economic, social, environmental and cultural potential. More, mountain area is considerate a natural-economic region and constitutes an important objective for regional development policy. The main sectors of mountain area are presented in agriculture and tourism fields that lead the key role in safeguarding the sensitive eco-system and thereby maintaining the general living and working space.Mountain areas should have a specific policy defined by the sustainable development principle, which meets the needs of the present without compromising the opportunities of future generations. The specific mountain policy aims to reduce the imbalance between favored and disadvantaged mountain regions, permanently marked by natural, economic, social, cultural and environmental constraints. In previous programming period, mountain regions among have profited from the intensive regional support, in specially, for constructing of and connecting them to fresh water and waste water networks, in particular for increasing of life quality. In context of 2020 Strategy, the Member States will concentrate investments on a small number of thematic objectives. In advanced regions, 60 % of funds will used for only two of these objectives (competitiveness of SME and research/innovation. The all less developed regions will received about 50% of Structural Funds In Romania, mountain representing 29.93% out of the total national surface and 20.14% from UAA (Utilised Agricultural Area of total national. The mountain territory has around 20% of the national population and is overlapping almost 100% with the Carpathian Mountains. Due to these conditions, Romania's regional development policy must take into account the specificities of mountain area, the problems they faced, and the requirements of 2020 Strategy.This paper presents the main aspects to be taken into account

  3. Explaining the mechanisms through which regional atmospheric circulation variability drives summer temperatures and glacial melt in western High Mountain Asia (HMA)

    Forsythe, Nathan; Fowler, Hayley; Blenkinsop, Stephen; Li, Xiaofeng; Pritchard, David

    2017-04-01

    Comprehension of mechanisms by which atmospheric circulation influences sub-regional temperature and water resources variability in high-elevation mountainous catchments is of great scientific urgency due to the dependency of large downstream populations on the river flows these basins provide. In this work we quantify a regional atmospheric pattern, the Karakoram Zonal Shear (KZS), with a very pronounced annual cycle which we standardise into a dimensionless (seasonal) circulation metric the Karakoram Zonal Index (KZI). Going beyond previous regional circulation metrics such as the "middle-upper tropospheric temperature index" (MUTTI) or the Webster and Yang Monsoonal Index (WYMI) which have focused solely on the South Asian Summer Monsoon (June to September) season, the KZS/KZI provides an indicator which captures the influence and interactions of the westerly jet throughout the entire annual cycle. Use of the KZS and KZI have led us to identify a further regional atmospheric system, the Karakoram Vortex, which propagates "warm high" (anticyclonic postitive temperature anomaly) and "cold low" (cyclonic negative temperature anomaly) patterns across a very broad swath of Central and South Asia in winter but over a much more constrained area of western HMA in summer. The KV exerts this temperature influence through a combination of adiabatic effects and large-scale advection. Quantify KV influence, the KZI shows strong and statistically significantly near surface (2m) air temperatures both across western HMA both as observed through local meteorological stations and as estimated by an ensemble of global meteorological reanalyses. We show that this strong influence on temperature translates to important consequences for meltwater generation from highly glaciated Indus river tributaries which is logical given that previous studies have established the role of air temperature in modulating glacially-derived river flows in western HMA. By improving the understanding of

  4. Mineral weathering experiments to explore the effects of vegetation shifts in high mountain region (Wind River Range, Wyoming, USA)

    Mavris, Christian; Furrer, Gerhard; Dahms, Dennis; Anderson, Suzanne P.; Blum, Alex; Goetze, Jens; Wells, Aaron; Egli, Markus

    2015-04-01

    Climate change influences the evolution of soil and landscape. With changing climate, both flora and fauna must adapt to new conditions. It is unknown in many respects to what extent soils will react to warming and vegetation change. The aim of this study was to identify possible consequences for soils in a dry-alpine region with respect to weathering of primary minerals and leaching of elements under expected warming climate conditions due to shifts in vegetation. To achieve this, a field empirical approach was used in combination with laboratory weathering experiments simulating several scenarios. Study sites located in Sinks Canyon and in Stough Basin of the Wind River Range, Wyoming, USA, encompass ecotones that consist of tundra, forest, or sagebrush (from moist to dry, with increasing temperature, respectively). All soils are developed on granitoid moraines. The mineralogy of the soils along the altitudinal sequence was analysed using cathodoluminescence and X-ray diffraction, and revealed clear mineral transformations: biotite and plagioclase were both weathered to smectite while plagioclase also weathered to kaolinite. Cooler, wetter, altitude-dependent conditions seemed to promote weathering of these primary minerals. To test the impact of soil solutions from different ecotones on mineral weathering, aqueous extracts from topsoils (A horizons) were reacted with subsoils (B horizons) in batch experiments. Aqueous extracts of topsoil samples were generated for all three ecotones, and these solutions were characterized. For the batch experiments, the topsoil extracts were reacted for 1800 hours with the subsoil samples of the same ecotone, or with the subsoil samples from higher altitude ecotones. Solutions collected periodically during the experiments were measured using ICP-OES and ion chromatography. Dissolved Ca, Mg and K were mainly controlled by the chemical weathering of oligoclase, K-feldspar and biotite. With increasing altitude (and consequently

  5. Climate Change Adaptation in the Carpathian Mountain Region

    Werners, Saskia Elisabeth; Szalai, Sándor; Zingstra, Henk; Kőpataki, Éva; Beckmann, Andreas; Bos, Ernst; Civic, Kristijan; Hlásny, Tomas; Hulea, Orieta; Jurek, Matthias; Koch, Hagen; Kondor, Attila Csaba; Kovbasko, Aleksandra; Lakatos, M.; Lambert, Stijn; Peters, Richard; Trombik, Jiří; De Velde, Van Ilse; Zsuffa, István

    2016-01-01

    The Carpathian mountain region is one of the most significant natural refuges on the European continent. It is home to Europe’s most extensive tracts of montane forest, the largest remaining virgin forest and natural mountain beech-fir forest ecosystems. Adding to the biodiversity are semi-natural

  6. CURRENT MICROBIOLOGICAL ASPECTS IN HIGH MOUNTAIN

    KURT HANSELMANN; MUNTI YUHANA

    2006-01-01

    Remote and normally unpolluted high mountain lakes provide habitats with no or very limited anthropogenic influences and, therefore, their hydrodynamics are mostly regulated by the natural c onditions. Researches in high mountain lakes deal with measuring and modeling the response of the habitats to environmental changes especially correlated to acid deposition, pollutants influx and climatic variability. The microbial world has also become a focus in many studies of these extreme ecosystem...

  7. Waste management outlook for mountain regions: Sources and solutions.

    Semernya, Larisa; Ramola, Aditi; Alfthan, Björn; Giacovelli, Claudia

    2017-09-01

    Following the release of the global waste management outlook in 2015, the United Nations Environment Programme (UN Environment), through its International Environmental Technology Centre, is elaborating a series of region-specific and thematic waste management outlooks that provide policy recommendations and solutions based on current practices in developing and developed countries. The Waste Management Outlook for Mountain Regions is the first report in this series. Mountain regions present unique challenges to waste management; while remoteness is often associated with costly and difficult transport of waste, the potential impact of waste pollutants is higher owing to the steep terrain and rivers transporting waste downstream. The Outlook shows that waste management in mountain regions is a cross-sectoral issue of global concern that deserves immediate attention. Noting that there is no 'one solution fits all', there is a need for a more landscape-type specific and regional research on waste management, the enhancement of policy and regulatory frameworks, and increased stakeholder engagement and awareness to achieve sustainable waste management in mountain areas. This short communication provides an overview of the key findings of the Outlook and highlights aspects that need further research. These are grouped per source of waste: Mountain communities, tourism, and mining. Issues such as waste crime, plastic pollution, and the linkages between exposure to natural disasters and waste are also presented.

  8. Basaltic volcanic episodes of the Yucca Mountain region

    Crowe, B.M.

    1990-01-01

    The purpose of this paper is to summarize briefly the distribution and geologic characteristics of basaltic volcanism in the Yucca Mountain region during the last 10--12 Ma. This interval largely postdates the major period of silicic volcanism and coincides with and postdates the timing of major extensional faulting in the region. Field and geochronologic data for the basaltic rocks define two distinct episodes. The patterns in the volume and spatial distribution of these basaltic volcanic episodes in the central and southern part of the SNVF are used as a basis for forecasting potential future volcanic activity in vicinity of Yucca Mountain. 33 refs., 2 figs

  9. Geodesy and contemporary strain in the Yucca Mountain region, Nevada

    Keefer, W.R.; Coe, J.A.; Pezzopane, S.K.; Hunter, W.C.

    1997-01-01

    Geodetic surveys provide important information for estimating recent ground movement in support of seismotectonic investigations of the potential nuclear-waste storage site at Yucca Mountain, Nevada. Resurveys of established level lines document up to 22 millimeters of local subsidence related to the 1992 Little Skull Mountain earthquake, which is consistent with seismic data that show normal-slip rupture and with data from a regional trilateration network. Comparison of more recent surveys with a level line first established in 1907 suggests 3 to 13 centimeters of subsidence in the Crater Flat-Yucca Mountain structural depression that coincides with the Bare Mountain fault; small uplifts also were recorded near normal faults at Yucca Mountain. No significant deformation was recorded by a trilateration network over a 10-year period, except for coseismic deformation associated with the Little Skull Mountain earthquake, but meaningful results are limited by the short temporal period of that data set and the small rate of movement. Very long baseline interferometry that is capable of measuring direction and rates of deformation is likewise limited by a short history of observation, but rates of deformation between 8 and 13 millimeters per year across the basin and Range province are indicated by the available data

  10. Modeling Urban Spatial Growth in Mountainous Regions of Western China

    Guoping Huang

    2017-08-01

    Full Text Available The scale and speed of urbanization in the mountainous regions of western China have received little attention from researchers. These cities are facing rapid population growth and severe environmental degradation. This study analyzed historical urban growth trends in this mountainous region to better understand the interaction between the spatial growth pattern and the mountainous topography. Three major factors—slope, accessibility, and land use type—were studied in light of their relationships with urban spatial growth. With the analysis of historical data as the basis, a conceptual urban spatial growth model was devised. In this model, slope, accessibility, and land use type together create resistance to urban growth, while accessibility controls the sequence of urban development. The model was tested and evaluated using historical data. It serves as a potential tool for planners to envision and assess future urban growth scenarios and their potential environmental impacts to make informed decisions.

  11. Forested communities of the pine mountain region, Georgia, USA

    Robert Floyd; Robert Carter

    2013-01-01

    Seven landscape scale communities were identified in the Pine Mountain region having a mixture of Appalachian, Piedmont, and Coastal Plain species. The diagnostic environmental variables included elevation, B-horizon depth, A-horizon silt, topographic relative moisture index, and A-horizon potassium (K).

  12. Field guide to diseases & insects of the Rocky Mountain Region

    Forest Health Protection. Rocky Mountain Region

    2010-01-01

    This field guide is a forest management tool for field identification of biotic and abiotic agents that damage native trees in Colorado, Kansas, Nebraska, South Dakota, and Wyoming, which constitute the USDA Forest Service's Rocky Mountain Region. The guide focuses only on tree diseases and forest insects that have significant economic, ecological, and/ or...

  13. Assessing climate change impacts on water resources in remote mountain regions

    Buytaert, Wouter; De Bièvre, Bert

    2013-04-01

    From a water resources perspective, remote mountain regions are often considered as a basket case. They are often regions where poverty is often interlocked with multiple threats to water supply, data scarcity, and high uncertainties. In these environments, it is paramount to generate locally relevant knowledge about water resources and how they impact local livelihoods. This is often problematic. Existing environmental data collection tends to be geographically biased towards more densely populated regions, and prioritized towards strategic economic activities. Data may also be locked behind institutional and technological barriers. These issues create a "knowledge trap" for data-poor regions, which is especially acute in remote and hard-to-reach mountain regions. We present lessons learned from a decade of water resources research in remote mountain regions of the Andes, Africa and South Asia. We review the entire tool chain of assessing climate change impacts on water resources, including the interrogation and downscaling of global circulation models, translating climate variables in water availability and access, and assessing local vulnerability. In global circulation models, mountain regions often stand out as regions of high uncertainties and lack of agreement of future trends. This is partly a technical artifact because of the different resolution and representation of mountain topography, but it also highlights fundamental uncertainties in climate impacts on mountain climate. This problem also affects downscaling efforts, because regional climate models should be run in very high spatial resolution to resolve local gradients, which is computationally very expensive. At the same time statistical downscaling methods may fail to find significant relations between local climate properties and synoptic processes. Further uncertainties are introduced when downscaled climate variables such as precipitation and temperature are to be translated in hydrologically

  14. CanWEA regional issues and wind energy project siting : mountainous areas

    D' Entremont, M. [Jacques Whitford Ltd., Vancouver, BC (Canada)]|[Axys Environmental Consulting Ltd., Vancouver, BC (Canada)

    2008-07-01

    Planning and permitting considerations for wind energy project siting in mountainous areas were discussed. Mountainous regions have a specific set of environmental and socio-economic concerns. Potential disruptions to wildlife, noise, and visual impacts are a primary concern in the assessment of potential wind farm projects. Alpine habitats are unique and often contain fragile and endangered species. Reclamation techniques for mountainous habitats have not been extensively tested, and the sites are not as resilient as sites located in other ecosystems. In addition, alpine habitats are often migratory corridors and breeding grounds for threatened or endangered birds. In the winter months, alpine habitats are used by caribou, grizzly bears, and wolverine dens. Bats are also present at high elevations. It is often difficult to conduct baseline and monitoring studies in mountainous areas since alpine habitat is subject to rapid weather changes, and has a very short construction period. tabs., figs.

  15. Community-based control of the brown dog tick in a region with high rates of Rocky Mountain spotted fever, 2012-2013.

    Drexler, Naomi; Miller, Mark; Gerding, Justin; Todd, Suzanne; Adams, Laura; Dahlgren, F Scott; Bryant, Nelva; Weis, Erica; Herrick, Kristen; Francies, Jessica; Komatsu, Kenneth; Piontkowski, Stephen; Velascosoltero, Jose; Shelhamer, Timothy; Hamilton, Brian; Eribes, Carmen; Brock, Anita; Sneezy, Patsy; Goseyun, Cye; Bendle, Harty; Hovet, Regina; Williams, Velda; Massung, Robert; McQuiston, Jennifer H

    2014-01-01

    Rocky Mountain spotted fever (RMSF) transmitted by the brown dog tick (Rhipicephalus sanguineus sensu lato) has emerged as a significant public health risk on American Indian reservations in eastern Arizona. During 2003-2012, more than 250 RMSF cases and 19 deaths were documented among Arizona's American Indian population. The high case fatality rate makes community-level interventions aimed at rapid and sustained reduction of ticks urgent. Beginning in 2012, a two year pilot integrated tick prevention campaign called the RMSF Rodeo was launched in a ∼ 600-home tribal community with high rates of RMSF. During year one, long-acting tick collars were placed on all dogs in the community, environmental acaricides were applied to yards monthly, and animal care practices such as spay and neuter and proper tethering procedures were encouraged. Tick levels, indicated by visible inspection of dogs, tick traps and homeowner reports were used to monitor tick presence and evaluate the efficacy of interventions throughout the project. By the end of year one, <1% of dogs in the RMSF Rodeo community had visible tick infestations five months after the project was started, compared to 64% of dogs in Non-Rodeo communities, and environmental tick levels were reduced below detectable levels. The second year of the project focused on use of the long-acting collar alone and achieved sustained tick control with fewer than 3% of dogs in the RMSF Rodeo community with visible tick infestations by the end of the second year. Homeowner reports of tick activity in the domestic and peridomestic setting showed similar decreases in tick activity compared to the non-project communities. Expansion of this successful project to other areas with Rhipicephalus-transmitted RMSF has the potential to reduce brown dog tick infestations and save human lives.

  16. Community-based control of the brown dog tick in a region with high rates of Rocky Mountain spotted fever, 2012-2013.

    Naomi Drexler

    Full Text Available Rocky Mountain spotted fever (RMSF transmitted by the brown dog tick (Rhipicephalus sanguineus sensu lato has emerged as a significant public health risk on American Indian reservations in eastern Arizona. During 2003-2012, more than 250 RMSF cases and 19 deaths were documented among Arizona's American Indian population. The high case fatality rate makes community-level interventions aimed at rapid and sustained reduction of ticks urgent. Beginning in 2012, a two year pilot integrated tick prevention campaign called the RMSF Rodeo was launched in a ∼ 600-home tribal community with high rates of RMSF. During year one, long-acting tick collars were placed on all dogs in the community, environmental acaricides were applied to yards monthly, and animal care practices such as spay and neuter and proper tethering procedures were encouraged. Tick levels, indicated by visible inspection of dogs, tick traps and homeowner reports were used to monitor tick presence and evaluate the efficacy of interventions throughout the project. By the end of year one, <1% of dogs in the RMSF Rodeo community had visible tick infestations five months after the project was started, compared to 64% of dogs in Non-Rodeo communities, and environmental tick levels were reduced below detectable levels. The second year of the project focused on use of the long-acting collar alone and achieved sustained tick control with fewer than 3% of dogs in the RMSF Rodeo community with visible tick infestations by the end of the second year. Homeowner reports of tick activity in the domestic and peridomestic setting showed similar decreases in tick activity compared to the non-project communities. Expansion of this successful project to other areas with Rhipicephalus-transmitted RMSF has the potential to reduce brown dog tick infestations and save human lives.

  17. Community-Based Control of the Brown Dog Tick in a Region with High Rates of Rocky Mountain Spotted Fever, 2012–2013

    Drexler, Naomi; Miller, Mark; Gerding, Justin; Todd, Suzanne; Adams, Laura; Dahlgren, F. Scott; Bryant, Nelva; Weis, Erica; Herrick, Kristen; Francies, Jessica; Komatsu, Kenneth; Piontkowski, Stephen; Velascosoltero, Jose; Shelhamer, Timothy; Hamilton, Brian; Eribes, Carmen; Brock, Anita; Sneezy, Patsy; Goseyun, Cye; Bendle, Harty; Hovet, Regina; Williams, Velda; Massung, Robert; McQuiston, Jennifer H.

    2014-01-01

    Rocky Mountain spotted fever (RMSF) transmitted by the brown dog tick (Rhipicephalus sanguineus sensu lato) has emerged as a significant public health risk on American Indian reservations in eastern Arizona. During 2003–2012, more than 250 RMSF cases and 19 deaths were documented among Arizona's American Indian population. The high case fatality rate makes community-level interventions aimed at rapid and sustained reduction of ticks urgent. Beginning in 2012, a two year pilot integrated tick prevention campaign called the RMSF Rodeo was launched in a ∼600-home tribal community with high rates of RMSF. During year one, long-acting tick collars were placed on all dogs in the community, environmental acaricides were applied to yards monthly, and animal care practices such as spay and neuter and proper tethering procedures were encouraged. Tick levels, indicated by visible inspection of dogs, tick traps and homeowner reports were used to monitor tick presence and evaluate the efficacy of interventions throughout the project. By the end of year one, <1% of dogs in the RMSF Rodeo community had visible tick infestations five months after the project was started, compared to 64% of dogs in Non-Rodeo communities, and environmental tick levels were reduced below detectable levels. The second year of the project focused on use of the long-acting collar alone and achieved sustained tick control with fewer than 3% of dogs in the RMSF Rodeo community with visible tick infestations by the end of the second year. Homeowner reports of tick activity in the domestic and peridomestic setting showed similar decreases in tick activity compared to the non-project communities. Expansion of this successful project to other areas with Rhipicephalus-transmitted RMSF has the potential to reduce brown dog tick infestations and save human lives. PMID:25479289

  18. Mountain biking injuries requiring trauma center admission: a 10-year regional trauma system experience.

    Kim, Peter T W; Jangra, Dalbhir; Ritchie, Alec H; Lower, Mary Ellen; Kasic, Sharon; Brown, D Ross; Baldwin, Greg A; Simons, Richard K

    2006-02-01

    Mountain biking has become an increasingly popular recreational and competitive sport with increasingly recognized risks. The purpose of this study was to review a population based approach to serious injuries requiring trauma center admission related to mountain biking, identify trends and develop directions for related injury prevention programs. Three trauma centers in the Greater Vancouver area exclusively serve a major mountain bike park and the North Shore Mountains biking trails. The Trauma Registries and the patient charts were reviewed for mountain bike injuries from 1992 to 2002. The data were analyzed according to demographics, distribution, and severity of injuries, and need for operative intervention. Findings were reviewed with injury prevention experts and regional and national mountain-biking stakeholders to provide direction to injury prevention programs. A total of 1,037 patients were identified as having bicycling-related injuries. Of these, 399 patients sustained 1,092 injuries while mountain biking. There was a threefold increase in the incidence of mountain biking injuries over a 10-year period. Young males were most commonly affected. Orthopedic injuries were most common (46.5%) followed by head (12.2%), spine (12%), chest (10.3%), facial (10.2%), abdominal (5.4%), genitourinary (2.2%), and neck injuries (1%). High operative rate was observed: 38% of injuries and 66% of patients required surgery. One patient died from his injuries. Injury prevention programs were developed and successfully engaged the target population. Mountain biking is a growing cause of serious injuries. Young males are principally at risk and serious injuries result from intended activity and despite protective equipment. Injury prevention programs were developed to address these concerns.

  19. Cultural ecosystem services of mountain regions: Modelling the aesthetic value

    Schirpke, Uta; Timmermann, Florian; Tappeiner, Ulrike; Tasser, Erich

    2016-01-01

    Mountain regions meet an increasing demand for pleasant landscapes, offering many cultural ecosystem services to both their residents and tourists. As a result of global change, land managers and policy makers are faced with changes to this landscape and need efficient evaluation techniques to assess cultural ecosystem services. This study provides a spatially explicit modelling approach to estimating aesthetic landscape values by relating spatial landscape patterns to human perceptions via a...

  20. Assessing the hydrologic response to wildfires in mountainous regions

    Havel, Aaron; Tasdighi, Ali; Arabi, Mazdak

    2018-04-01

    This study aims to understand the hydrologic responses to wildfires in mountainous regions at various spatial scales. The Soil and Water Assessment Tool (SWAT) was used to evaluate the hydrologic responses of the upper Cache la Poudre Watershed in Colorado to the 2012 High Park and Hewlett wildfire events. A baseline SWAT model was established to simulate the hydrology of the study area between the years 2000 and 2014. A procedure involving land use and curve number updating was implemented to assess the effects of wildfires. Application of the proposed procedure provides the ability to simulate the hydrologic response to wildfires seamlessly through mimicking the dynamic of the changes due to wildfires. The wildfire effects on curve numbers were determined comparing the probability distribution of curve numbers after calibrating the model for pre- and post-wildfire conditions. Daily calibration and testing of the model produced very good results. No-wildfire and wildfire scenarios were created and compared to quantify changes in average annual total runoff volume, water budgets, and full streamflow statistics at different spatial scales. At the watershed scale, wildfire conditions showed little impact on the hydrologic responses. However, a runoff increase up to 75 % was observed between the scenarios in sub-watersheds with high burn intensity. Generally, higher surface runoff and decreased subsurface flow were observed under post-wildfire conditions. Flow duration curves developed for burned sub-watersheds using full streamflow statistics showed that less frequent streamflows become greater in magnitude. A linear regression model was developed to assess the relationship between percent burned area and runoff increase in Cache la Poudre Watershed. A strong (R2 > 0.8) and significant (p statistics through application of flow duration curves revealed that the wildfires had a higher effect on peak flows, which may increase the risk of flash floods in post

  1. Changes in the Mountain Cryosphere and Potential Risks to Downstream Communities: Insights from the Indian Himalayan Region

    Allen, Simon; Ballesteros, Juan Antonio; Huggel, Christian; Linsbauer, Andreas; Mal, Suraj; Singh Rana, Ranbir; Singh Randhawa, Surjeet; Ruiz-Villanueva, Virginia; Salzmann, Nadine; Singh Samant, Sher; Stoffel, Markus

    2017-04-01

    Mountain environments around the world are often considered to be amongst the most sensitive to the impacts of climate change. For people living in mountain communities, there are clear challenges to be faced as their livelihoods and subsistence are directly dependent on their surrounding natural environment. But what of the wider implications for societies and large urban settlements living downstream - why should they care about the climate-driven changes occurring potentially hundreds of kilometers away in the snow and ice capped mountains? In this contribution we address this question, drawing on studies and experiences gained within joint Indo-Swiss research collaborations focused on the Indian Himalayan states of Himachal Pradesh and Uttarakhand. With the Intergovernmental Panel on Climate Change currently embarking on the scoping of their 6th Assessment Cycle, which includes a planned Special Report on Oceans and the Cryosphere, this contribution provides a timely reminder of the importance of mountain regions, and potential far-reaching consequences of changes in the mountain cryosphere. Our studies highlight several key themes which link the mountain environment to the lowland populated areas, including the role of the mountain cryosphere as a water source, far-reaching hazards and disasters that can originate from mountain regions, the role of mountains in providing essential ecosystem services, the economic importance of tourism in mountain regions, and the importance of transportation routes which pass through mountain environments. These themes are intricately linked, as for example demonstrated during the 2013 Uttarakhand flood disaster where many of the approximately 6000 fatalities were tourists visiting high mountain pilgrimage sites. As a consequence of the disaster, tourists stayed away during subsequent seasons with significant economic impacts felt across the State. In Himachal Pradesh, a key national transportation corridor is the Rohtang pass

  2. Water beetles in mountainous regions in southeastern Brazil

    MO. Segura

    Full Text Available Inventories provide information on the state of biodiversity at a site or for a geographic region. Species inventories are the basis for systematic study and critical to ecology, biogeography and identification of biological indicators and key species. They also provide key information for assessments of environmental change, for natural resource conservation or recovery of degraded ecosystems. Thus, inventories play a key role in planning strategies for conservation and sustainable use. This study aimed to inventory the fauna of water beetles, larvae and adults, in two mountainous regions in the state of São Paulo, in Serra da Mantiqueira (Parque Estadual de Campos do Jordão and Pindamonhangaba region and in Serra do Mar (Santa Virgínia and Picinguaba Divisions as well as to generate information about the habitats used by the different genera recorded. Specimens were collected in lotic and lentic systems, between the years 2005 to 2010. In total 14,492 specimens were collected and 16 families and 50 genera of Coleoptera were identified. This study in mountainous regions showed a significant portion of the faunal composition of South America and the state of São Paulo. The composition of the fauna, in terms of richness and abundance by family, indicated the predominance of Elmidae, followed by Hydrophilidae and Dytiscidae. Despite the diversity found, the results of estimated richness indicated the need for additional sampling effort for both regions, since the curves of estimated richness did not reach an asymptote, suggesting that new species can be found in future surveys.

  3. Changing climate and endangered high mountain ecosystems in Colombia.

    Ruiz, Daniel; Moreno, Hernán Alonso; Gutiérrez, María Elena; Zapata, Paula Andrea

    2008-07-15

    High mountain ecosystems are among the most sensitive environments to changes in climatic conditions occurring on global, regional and local scales. The article describes the changing conditions observed over recent years in the high mountain basin of the Claro River, on the west flank of the Colombian Andean Central mountain range. Local ground truth data gathered at 4150 m, regional data available at nearby weather stations, and satellite info were used to analyze changes in the mean and the variance, and significant trends in climatic time series. Records included minimum, mean and maximum temperatures, relative humidity, rainfall, sunshine, and cloud characteristics. In high levels, minimum and maximum temperatures during the coldest days increased at a rate of about 0.6 degrees C/decade, whereas maximum temperatures during the warmest days increased at a rate of about 1.3 degrees C/decade. Rates of increase in maximum, mean and minimum diurnal temperature range reached 0.6, 0.7, and 0.5 degrees C/decade. Maximum, mean and minimum relative humidity records showed reductions of about 1.8, 3.9 and 6.6%/decade. The total number of sunny days per month increased in almost 2.1 days. The headwaters exhibited no changes in rainfall totals, but evidenced an increased occurrence of unusually heavy rainfall events. Reductions in the amount of all cloud types over the area reached 1.9%/decade. In low levels changes in mean monthly temperatures and monthly rainfall totals exceeded + 0.2 degrees C and - 4% per decade, respectively. These striking changes might have contributed to the retreat of glacier icecaps and to the disappearance of high altitude water bodies, as well as to the occurrence and rapid spread of natural and man-induced forest fires. Significant reductions in water supply, important disruptions of the integrity of high mountain ecosystems, and dramatic losses of biodiversity are now a steady menu of the severe climatic conditions experienced by these

  4. Research on Structure Innovation of Agricultural Organization in China's Southwestern Mountainous Regions

    Du, Qiang; Luo, Min; Wang, Ping

    2012-01-01

    Taking agricultural organization in China's southwestern mountainous regions as research object, on the basis of analysis of the status quo of agricultural organization development in China's southwestern mountainous regions, we use related theoretical knowledge on economics and organization science, we probe into the process of innovation and mechanism of action concerning the structure of agricultural organization in China's southwestern mountainous regions over the past 30 years. Finally w...

  5. Ground magnetic studies along a regional seismic-reflection profile across Bare Mountain, Crater Flat and Yucca Mountain, Nevada

    Langenheim, V.E.; Ponce, D.A.

    1995-01-01

    Ground magnetic data were collected along a 26-km-long regional seismic-reflection profile in southwest Nevada that starts in the Amargosa Desert, crosses Bare Mountain, Crater Flat and Yucca Mountain, and ends in Midway Valley. Parallel ground magnetic profiles were also collected about 100 m to either side of the western half of the seismic-reflection line. The magnetic data indicate that the eastern half of Crater Flat is characterized by closely-spaced faulting (1--2 km) in contrast to the western half of Crater Flat. Modeling of the data indicates that the Topopah Spring Tuff is offset about 250 m on the Solitario Canyon fault and about 50 m on the Ghost Dance fault. These estimates of fault offset are consistent with seismic-reflection data and geologic mapping. A broad magnetic high of about 500--600 nT is centered over Crater Flat. Modeling of the magnetic data indicates that the source of this high is not thickening and doming of the Bullfrog Tuff, but more likely lies below the Bullfrog Tuff. Possible source lithologies for this magnetic high include altered argillite of the Eleana Formation, Cretaceous or Tertiary intrusions, and mafic sills

  6. Improving Land Surface Temperature Retrievals over Mountainous Regions

    Virgílio A. Bento

    2017-01-01

    Full Text Available Algorithms for Land Surface Temperature (LST retrieval from infrared measurements are usually sensitive to the amount of water vapor present in the atmosphere. The Satellite Application Facilities on Climate Monitoring and Land Surface Analysis (CM SAF and LSA SAF are currently compiling a 25 year LST Climate data record (CDR, which uses water vapor information from ERA-Int reanalysis. However, its relatively coarse spatial resolution may lead to systematic errors in the humidity profiles with implications in LST, particularly over mountainous areas. The present study compares LST estimated with three different retrieval algorithms: a radiative transfer-based physical mono-window (PMW, a statistical mono-window (SMW, and a generalized split-windows (GSW. The algorithms were tested over the Alpine region using ERA-Int reanalysis data and relied on the finer spatial scale Consortium for Small-Scale Modelling (COSMO model data as a reference. Two methods were developed to correct ERA-Int water vapor misestimation: (1 an exponential parametrization of total precipitable water (TPW appropriate for SMW/GSW; and (2 a level reduction method to be used in PMW. When ERA-Int TPW was used, the algorithm missed the right TPW class in 87% of the cases. When the exponential parametrization was used, the missing class rate decreased to 9%, and when the level reduction method was applied, the LST corrections went up to 1.7 K over the study region. Overall, the correction for pixel orography in TPW leads to corrections in LST estimations, which are relevant to ensure that long-term LST records meet climate requirements, particularly over mountainous regions.

  7. Causal Chains Arising from Climate Change in Mountain Regions: the Core Program of the Mountain Research Initiative

    Greenwood, G. B.

    2014-12-01

    Mountains are a widespread terrestrial feature, covering from 12 to 24 percent of the world's terrestrial surface, depending of the definition. Topographic relief is central to the definition of mountains, to the benefits and costs accruing to society and to the cascade of changes expected from climate change. Mountains capture and store water, particularly important in arid regions and in all areas for energy production. In temperate and boreal regions, mountains have a great range in population densities, from empty to urban, while tropical mountains are often densely settled and farmed. Mountain regions contain a wide range of habitats, important for biodiversity, and for primary, secondary and tertiary sectors of the economy. Climate change interacts with this relief and consequent diversity. Elevation itself may accentuate warming (elevationi dependent warming) in some mountain regions. Even average warming starts complex chains of causality that reverberate through the diverse social ecological mountain systems affecting both the highlands and adjacent lowlands. A single feature of climate change such as higher snow lines affect the climate through albedo, the water cycle through changes in timing of release , water quality through the weathering of newly exposed material, geomorphology through enhanced erosion, plant communities through changes in climatic water balance, and animal and human communities through changes in habitat conditions and resource availabilities. Understanding these causal changes presents a particular interdisciplinary challenge to researchers, from assessing the existence and magnitude of elevation dependent warming and monitoring the full suite of changes within the social ecological system to climate change, to understanding how social ecological systems respond through individual and institutional behavior with repercussions on the long-term sustainability of these systems.

  8. Hydrological Dynamics In High Mountain Catchment Areas of Central Norway

    Löffler, Jörg; Rößler, Ole

    Large-scaled landscape structure is regarded as a mosaic of ecotopes where process dynamics of water and energy fluxes are analysed due to its effects on ecosystem functioning. The investigations have been carried out in the continental most Vågå/Oppland high mountains in central Norway since 1994 (LÖFFLER &WUNDRAM 1999, 2000, 2001). Additionally, comparable investigations started in 2000 dealing with the oceanic high mountain landscapes on same latitudes (LÖFFLER et al. 2001). The theoretical and methodological framework of the project is given by the Landscape-Ecological Complex Analysis (MOSIMANN 1984, 1985) and its variations due to technical and principle methodical challenges in this high mountain landscape (KÖHLER et al. 1994, LÖFFLER 1998). The aim of the project is to characterize high mountain ecosystem structure, functioning and dynamics within small catchment areas, that are chosen in two different altitudinal belts each in the eastern continental and the western oceanic region of central Norway. In the frame of this research project hydrological and meteorological measurements on ground water, percolation and soil moisture dynamics as well as on evaporation, air humidity and air-, surface- and soil-temperatures have been conducted. On the basis of large-scaled landscape-ecological mappings (LÖFFLER 1997) one basic meteorological station and several major data logger run stations have been installed in representative sites of each two catchment areas in the low and mid alpine belts of the investigation regions ( JUNGet al. 1997, LÖFFLER &WUNDRAM 1997). Moreover, spatial differentiations of groundwater level, soil moisture and temperature profiles have been investigated by means of hand held measurements at different times of the day, during different climatic situations and different seasons. Daily and annual air-, surface- and soil-temperature dynamics are demonstrated by means of thermoisopleth-diagrams for different types of ecotopes of the

  9. A Guide to Ordinary High Water Mark (OHWM) Delineation for Non-Perennial Streams in the Western Mountains, Valleys, and Coast Region of the United States

    2014-08-01

    38 15 Remotely sensed images acquired from Google Earth and ground-based images from 2011 of a non-perennial stream in Teton County, WY...less confined. Debris flows and landslides are common in the region, accounting for much, if not most, of the sediment flux from headwater streams in...information is becoming in- creasingly available and easy to analyze via free, open-access resources such as Google Earth (www.earth.google.com). Where

  10. A New Estimate of North American Mountain Snow Accumulation From Regional Climate Model Simulations

    Wrzesien, Melissa L.; Durand, Michael T.; Pavelsky, Tamlin M.; Kapnick, Sarah B.; Zhang, Yu; Guo, Junyi; Shum, C. K.

    2018-02-01

    Despite the importance of mountain snowpack to understanding the water and energy cycles in North America's montane regions, no reliable mountain snow climatology exists for the entire continent. We present a new estimate of mountain snow water equivalent (SWE) for North America from regional climate model simulations. Climatological peak SWE in North America mountains is 1,006 km3, 2.94 times larger than previous estimates from reanalyses. By combining this mountain SWE value with the best available global product in nonmountain areas, we estimate peak North America SWE of 1,684 km3, 55% greater than previous estimates. In our simulations, the date of maximum SWE varies widely by mountain range, from early March to mid-April. Though mountains comprise 24% of the continent's land area, we estimate that they contain 60% of North American SWE. This new estimate is a suitable benchmark for continental- and global-scale water and energy budget studies.

  11. Manganese Deposits in the Artillery Mountains Region, Mohave County, Arizona

    Lasky, S.G.; Webber, B.N.

    1944-01-01

    The manganese deposits of the Artillery Mountains region lie within an area of about 25 square miles between the Artillery and Rawhide Mountains, on the west side of the Bill Williams River in west-central Arizona. The richest croppings are on the northeast side of this area, among the foothills of the Artillery Mountains. They are 6 to 10 miles from Alamo. The nearest shipping points are Congress, about 50 miles to the east, and Aguila, about 50 miles to the southeast. The principal manganese deposits are part of a sequence of alluvial fan and playa material, probably of early Pliocene age, which were laid down in a fault basin. They are overlain by later Pliocene (?) basalt flows and sediments and by Quaternary basalt and alluvium. The Pliocene (?) rocks are folded into a shallow composite S1ncline ttat occupies the valley between the Artillery and Rawhide Mountains, and the folded rocks along either side of the valley, together with the overlying Quaternary basalt, are broken by faults that have produced a group of horsts, grabens, and step-fault blocks. The manganiferous beds, lie at two zones, 750 to 1,000 feet apart stratigraphically, each of which is locally as much as 300 to 400 feet thick. The main, or upper, zone contains three kinds of ore - sandstone ore, clay ore, and 'hard' ore. The sandstone and clay ores differ from the associated barren sandstone and clay, with which they are interlayered and into which they grade, primarily in containing a variable proportion of amorphous manganese oxides, besides iron oxides and clayey material such as are present in the barren beds. The 'hard' ore is sandstone that has been impregnated with opal and calcite and in which the original amorphous manganese oxides have been largely converted to psilomelane and manganite. The average manganese content of the sandstone and clay ores is between 3 and 4 percent and that of the 'hard' ore is between 6 and 7 percent. The ore contains an average of 3 percent of iron, 0

  12. Landscape genetics of high mountain frog metapopulations

    Murphy, M.A.; Dezzani, R.; Pilliod, D.S.; Storfer, A.

    2010-01-01

    Explaining functional connectivity among occupied habitats is crucial for understanding metapopulation dynamics and species ecology. Landscape genetics has primarily focused on elucidating how ecological features between observations influence gene flow. Functional connectivity, however, may be the result of both these between-site (landscape resistance) landscape characteristics and at-site (patch quality) landscape processes that can be captured using network based models. We test hypotheses of functional connectivity that include both between-site and at-site landscape processes in metapopulations of Columbia spotted frogs (Rana luteiventris) by employing a novel justification of gravity models for landscape genetics (eight microsatellite loci, 37 sites, n = 441). Primarily used in transportation and economic geography, gravity models are a unique approach as flow (e.g. gene flow) is explained as a function of three basic components: distance between sites, production/attraction (e.g. at-site landscape process) and resistance (e.g. between-site landscape process). The study system contains a network of nutrient poor high mountain lakes where we hypothesized a short growing season and complex topography between sites limit R. luteiventris gene flow. In addition, we hypothesized production of offspring is limited by breeding site characteristics such as the introduction of predatory fish and inherent site productivity. We found that R. luteiventris connectivity was negatively correlated with distance between sites, presence of predatory fish (at-site) and topographic complexity (between-site). Conversely, site productivity (as measured by heat load index, at-site) and growing season (as measured by frost-free period between-sites) were positively correlated with gene flow. The negative effect of predation and positive effect of site productivity, in concert with bottleneck tests, support the presence of source-sink dynamics. In conclusion, gravity models provide a

  13. Peculiarities of high-altitude landscapes formation in the Small Caucasus mountains

    Trifonova, Tatiana

    2014-05-01

    Various mountain systems differ in character of landscapes and soil. Basic problem of present research: conditions and parameters determining the development of various landscapes and soils in mountain areas. Our research object is the area of Armenia where Small Caucasus, a part of Armenian upland is located. The specific character of the area is defined by the whole variety of all mountain structures like fold, block folding mountain ridges, volcanic upland, individual volcanoes, and intermountain depressions. As for the climate, the area belongs to dry subtropics. We have studied the peculiarities of high-altitude landscapes formation and mountain river basins development. We have used remote sensing data and statistic database of climatic parameters in this research. Field observations and landscape pictures analysis of space images allow distinguishing three types of mountain geosystems clearly: volcanic massifs, fold mountainous structures and closed high mountain basins - area of the lakes. The distribution of precipitation according to altitude shows some peculiarities. It has been found that due to this factor the investigated mountain area may be divided into three regions: storage (fold) mountainous area; Ararat volcanic area (southern macro exposure); closed high mountainous basin-area of the lake Sevan. The mountainous nature-climatic vertical landscapes appear to be horizontally oriented and they are more or less equilibrium (stable) geosystems, where the stable functional relationship between the landscape components is formed. Within their limits, definite bioclimatic structure of soil is developed. Along the slopes of fold mountains specific landscape shapes like litho-drainage basins are formed. They are intensively developing like relatively independent vertical geosystems. Mechanism of basin formation is versatile resulting in formation of the polychronous soil mantle structure. Landscapes and soils within the basin are of a different age, since

  14. A comparative review of multi-risk modelling methodologies for climate change adaptation in mountain regions

    Terzi, Stefano; Torresan, Silvia; Schneiderbauer, Stefan

    2017-04-01

    Keywords: Climate change, mountain regions, multi-risk assessment, climate change adaptation. Climate change has already led to a wide range of impacts on the environment, the economy and society. Adaptation actions are needed to cope with the impacts that have already occurred (e.g. storms, glaciers melting, floods, droughts) and to prepare for future scenarios of climate change. Mountain environment is particularly vulnerable to the climate changes due to its exposure to recent climate warming (e.g. water regime changes, thawing of permafrost) and due to the high degree of specialization of both natural and human systems (e.g. alpine species, valley population density, tourism-based economy). As a consequence, the mountain local governments are encouraged to undertake territorial governance policies to climate change, considering multi-risks and opportunities for the mountain economy and identifying the best portfolio of adaptation strategies. This study aims to provide a literature review of available qualitative and quantitative tools, methodological guidelines and best practices to conduct multi-risk assessments in the mountain environment within the context of climate change. We analyzed multi-risk modelling and assessment methods applied in alpine regions (e.g. event trees, Bayesian Networks, Agent Based Models) in order to identify key concepts (exposure, resilience, vulnerability, risk, adaptive capacity), climatic drivers, cause-effect relationships and socio-ecological systems to be integrated in a comprehensive framework. The main outcomes of the review, including a comparison of existing techniques based on different criteria (e.g. scale of analysis, targeted questions, level of complexity) and a snapshot of the developed multi-risk framework for climate change adaptation will be here presented and discussed.

  15. Uncertainty of future projections of species distributions in mountainous regions.

    Ying Tang

    Full Text Available Multiple factors introduce uncertainty into projections of species distributions under climate change. The uncertainty introduced by the choice of baseline climate information used to calibrate a species distribution model and to downscale global climate model (GCM simulations to a finer spatial resolution is a particular concern for mountainous regions, as the spatial resolution of climate observing networks is often insufficient to detect the steep climatic gradients in these areas. Using the maximum entropy (MaxEnt modeling framework together with occurrence data on 21 understory bamboo species distributed across the mountainous geographic range of the Giant Panda, we examined the differences in projected species distributions obtained from two contrasting sources of baseline climate information, one derived from spatial interpolation of coarse-scale station observations and the other derived from fine-spatial resolution satellite measurements. For each bamboo species, the MaxEnt model was calibrated separately for the two datasets and applied to 17 GCM simulations downscaled using the delta method. Greater differences in the projected spatial distributions of the bamboo species were observed for the models calibrated using the different baseline datasets than between the different downscaled GCM simulations for the same calibration. In terms of the projected future climatically-suitable area by species, quantification using a multi-factor analysis of variance suggested that the sum of the variance explained by the baseline climate dataset used for model calibration and the interaction between the baseline climate data and the GCM simulation via downscaling accounted for, on average, 40% of the total variation among the future projections. Our analyses illustrate that the combined use of gridded datasets developed from station observations and satellite measurements can help estimate the uncertainty introduced by the choice of baseline

  16. Quantifying the changes in the High Mountain Asia snow hydrology

    Yoon, Y.; Kumar, S.; Mocko, D. M.; Rosenberg, R. I.; Kwon, Y.; Forman, B. A.; Zaitchik, B. F.

    2017-12-01

    The melting of snow and glaciers in the High Mountain Asia (HMA) provides the water needs of approximately 1.3 billion people in the region. Increasing temperatures have large effects on the hydrologic cycle, influencing snowmelt, snowpack, stream flow, and water runoff, which can impact all aspects of water security, such as water allocation, conservation, efficiency and land-use planning. Most mountain regions, however, remain ungauged without in-situ measurement of precipitation or snowpack due to the complex terrain, and thus it is difficult to understand the regional water balance and assess how it might change in the future. In this study, we focus on characterizing the spatiotemporal patterns of snowpack states and fluxes over the last 30+ years (1980 - present) and assessing the relationship between snowmelt and runoff. The Noah land surface model with multi-parameterization options, version 3.6 (Noah-MP.3.6) in the NASA Land Information System (LIS) is used to establish a high resolution (1 km) modeling environment over the HMA. Combining information from satellite observations and the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) is used to provide an effective way to develop spatially and temporally continuous estimates of changes. To improve the spatial representativeness of the precipitation field for modeling at 1km resolution, the input field is downscaled using a stochastic downscaling method with the monthly WorldClim data. The other meteorological inputs (e.g., air temperature, humidity, pressure, wind, and downward shortwave and longwave) are corrected for elevation through lapse-rate and slope-aspect methods. Evaluation of the model estimates is presented using satellite-derived data (e.g., MODIS and GRACE) and reanalysis products (e.g., CMC and ERA-interim).

  17. Mountains

    Regina M. Rochefort; Laurie L. Kurth; Tara W. Carolin; Robert R. Mierendorf; Kimberly Frappier; David L. Steenson

    2006-01-01

    This chapter concentrates on subalpine parklands and alpine meadows of southern British Columbia, Washington, Oregon, and western Montana. These areas lie on the flanks of several mountain ranges including the Olympics, the Cascades of Oregon and Washington, and the Coast Mountains in British Columbia.

  18. Performance of CMORPH, TMPA, and PERSIANN rainfall datasets over plain, mountainous, and glacial regions of Pakistan

    Hussain, Yawar; Satgé, Frédéric; Hussain, Muhammad Babar; Martinez-Carvajal, Hernan; Bonnet, Marie-Paule; Cárdenas-Soto, Martin; Roig, Henrique Llacer; Akhter, Gulraiz

    2018-02-01

    The present study aims at the assessment of six satellite rainfall estimates (SREs) in Pakistan. For each assessed products, both real-time (RT) and post adjusted (Adj) versions are considered to highlight their potential benefits in the rainfall estimation at annual, monthly, and daily temporal scales. Three geomorphological climatic zones, i.e., plain, mountainous, and glacial are taken under considerations for the determination of relative potentials of these SREs over Pakistan at global and regional scales. All SREs, in general, have well captured the annual north-south rainfall decreasing patterns and rainfall amounts over the typical arid regions of the country. Regarding the zonal approach, the performance of all SREs has remained good over mountainous region comparative to arid regions. This poor performance in accurate rainfall estimation of all the six SREs over arid regions has made their use questionable in these regions. Over glacier region, all SREs have highly overestimated the rainfall. One possible cause of this overestimation may be due to the low surface temperature and radiation absorption over snow and ice cover, resulting in their misidentification with rainy clouds as daily false alarm ratio has increased from mountainous to glacial regions. Among RT products, CMORPH-RT is the most biased product. The Bias was almost removed on CMORPH-Adj thanks to the gauge adjustment. On a general way, all Adj versions outperformed their respective RT versions at all considered temporal scales and have confirmed the positive effects of gauge adjustment. CMORPH-Adj and TMPA-Adj have shown the best agreement with in situ data in terms of Bias, RMSE, and CC over the entire study area.

  19. Do Red Edge and Texture Attributes from High-Resolution Satellite Data Improve Wood Volume Estimation in a Semi-Arid Mountainous Region?

    Schumacher, Paul; Mislimshoeva, Bunafsha; Brenning, Alexander

    2016-01-01

    to overcome this issue. However, clear recommendations on the suitability of specific proxies to provide accurate biomass information in semi-arid to arid environments are still lacking. This study contributes to the understanding of using multispectral high-resolution satellite data (RapidEye), specifically...... red edge and texture attributes, to estimate wood volume in semi-arid ecosystems characterized by scarce vegetation. LASSO (Least Absolute Shrinkage and Selection Operator) and random forest were used as predictive models relating in situ-measured aboveground standing wood volume to satellite data...

  20. Paleozoic and mesozoic GIS data from the Geologic Atlas of the Rocky Mountain Region: Volume 1

    Graeber, Aimee; Gunther, Gregory

    2017-01-01

    The Rocky Mountain Association of Geologists (RMAG) is, once again, publishing portions of the 1972 Geologic Atlas of the Rocky Mountain Region (Mallory, ed., 1972) as a geospatial map and data package. Georeferenced tiff (Geo TIFF) images of map figures from this atlas has served as the basis for these data products. Shapefiles and file geodatabase features have been generated and cartographically represented for select pages from the following chapters:• Phanerozoic Rocks (page 56)• Cambrian System (page 63)• Ordovician System (pages 78 and 79)• Silurian System (pages 87 - 89)• Devonian System (pages 93, 94, and 96 - 98)• Mississippian System (pages 102 and 103)• Pennsylvanian System (pages 114 and 115)• Permian System (pages 146 and 149 - 154)• Triassic System (pages 168 and 169)• Jurassic System (pages 179 and 180)• Cretaceous System (pages 197 - 201, 207 - 210, 215, - 218, 221, 222, 224, 225, and 227).The primary purpose of this publication is to provide regional-scale, as well as local-scale, geospatial data of the Rocky Mountain Region for use in geoscience studies. An important aspect of this interactive map product is that it does not require extensive GIS experience or highly specialized software.

  1. Neotectonic inversion of the Hindu Kush-Pamir mountain region

    Ruleman, C.A.

    2011-01-01

    The Hindu Kush-Pamir region of southern Asia is one of Earth's most rapidly deforming regions and it is poorly understood. This study develops a kinematic model based on active faulting in this part of the Trans-Himalayan orogenic belt. Previous studies have described north-verging thrust faults and some strike-slip faults, reflected in the northward-convex geomorphologic and structural grain of the Pamir Mountains. However, this structural analysis suggests that contemporary tectonics are changing the style of deformation from north-verging thrusts formed during the initial contraction of the Himalayan orogeny to south-verging thrusts and a series of northwest-trending, dextral strike-slip faults in the modern transpressional regime. These northwest-trending fault zones are linked to the major right-lateral Karakoram fault, located to the east, as synthetic, conjugate shears that form a right-stepping en echelon pattern. Northwest-trending lineaments with dextral displacements extend continuously westward across the Hindu Kush-Pamir region indicating a pattern of systematic shearing of multiple blocks to the northwest as the deformation effects from Indian plate collision expands to the north-northwest. Locally, east-northeast- and northwest-trending faults display sinistral and dextral displacement, respectively, yielding conjugate shear pairs developed in a northwest-southeast compressional stress field. Geodetic measurements and focal mechanisms from historical seismicity support these surficial, tectono-morphic observations. The conjugate shear pairs may be structurally linked subsidiary faults and co-seismically slip during single large magnitude (> M7) earthquakes that occur on major south-verging thrust faults. This kinematic model provides a potential context for prehistoric, historic, and future patterns of faulting and earthquakes.

  2. [Gerontology in rural and mountains regions aged people in the country and in mountain regions (author's transl)].

    Gsell, O

    1977-04-01

    The gerontologic problems of people living in the country and in mountain regions always were neglected in comparison to those of townsmen. In the last decade an important structural change has happened, caused on the one side by the fact that more and more people leave the country for the towns, and by the problem of overaged persons in the country; on the other side this change is a consequence of improvement by modern technical acquisitions (more agricultural machines, silos), living hygiene and the tourism. The living conditions in the past and today in Switzerland are shown, referring to various publications. The ecological change also hits the aged people, financially by revenues, completion of private help organizations, rebuilding of homes for the aged persons in every village and regional nursing home, as well as household helps for those elderly people who still live in the country in their own houses. The qualitative differences between living conditions in the country and in town will in the near future be equalized--which is especially mentionned.

  3. Piecewise Delamination Drives Uplift in the Atlas Mountains Region of Morocco

    Bezada, M. J.; Humphreys, E.; Martin Davila, J.; mimoun, H.; Josep, G.; Palomeras, I.

    2013-12-01

    The elevation of the intra-continental Atlas Mountains of Morocco and surrounding regions requires a mantle component of buoyancy, and there is consensus that this buoyancy results from an abnormally thin lithosphere. Lithospheric delamination under the Atlas Mountains and thermal erosion caused by upwelling mantle have each been suggested as thinning mechanisms. We use seismic tomography to image the upper mantle of Morocco by inverting teleseimic p-wave delay times, complemented with local delays, recorded on a dense array of stations in the Iberian peninsula and Morocco. A surface wave model provides constraint on the shallower layers. We determine the geometry of lithospheric cavities and mantle upwelling beneath the Middle Atlas and central High Atlas, and image delaminated lithosphere at ~400 km beneath the Middle Atlas. We propose discontinuous delamination of an intrinsically unstable Atlas lithosphere, enabled by the presence of anomalously hot mantle, as a mechanism for producing the imaged structures. The Atlas lithosphere was made unstable by a combination of tectonic shortening and eclogite loading during Mesozoic rifting and Cenozoic magmatism. The presence of hot mantle, sourced from regional upwellings in northern Africa or the Canary Islands, enabled the mobilization of this lithosphere. Flow around the retreating Alboran slab focused upwelling mantle under the Middle Atlas, where we image the most recent delamination. The Atlas Mountains of Morocco stand as an example of mantle-generated uplift and large-scale lithospheric loss in a mildly contractional orogen.

  4. ACUTE PHASE PROTEIN INCREASE IN HIGH ALTITUDE MOUNTAINEERS

    Tolga Saka

    Full Text Available ABSTRACT Introduction: Many middle-aged Turks go hiking in mountains to breathe some fresh air or to maintain fitness. Objective: This study investigated the effects of regular high altitude mountain climbing on the metabolic and hematological responses of mountaineers. Methods: Hematological and biochemical parameters were studied, as well as some hormonal values of 21 mountaineers and 16 healthy age-matched sedentary volunteers. Results: The neutrophil to lymphocyte ratio (NLR was significantly lower (p<0.04 in mountaineers compared with the sedentary group. Total protein (p<0.001 and albumin (p<0.001 were lower, while the levels of ferritin (p<0.04, creatine (p<0.03 and creatine phosphokinase (p<0.01 were higher in mountaineers. Other hematological and biochemical parameters, i.e., erythrocytes, leukocytes, hemoglobin and hematocrit, did not change significantly. Conclusion: Our results show that regular exposure to high altitude increased the serum levels of some acute phase proteins with anti-inflammatory properties.

  5. Mountains Under Pressure: Evaluating Ecosystem Services and Livelihoods in the Upper Himalayan Region of Nepal

    Bhusal, Jagat K.; Chapagain, Prem Sagar; Regmi, Santosh; Gurung, Praju; Zulkafli, Zed; Karpouzoglou, T.D.; Pandeya, Bhopal; Buytaert, Wouter; Clark, Julian

    2016-01-01

    Natural resource-based livelihoods in mountainous regions are subject to new types of development as well as climate related pressures and vulnerabilities. On one hand, the integrity of the mountainous landscape is under pressure from the melting of glaciers, changes in water availability, rainfall

  6. S-40: Acute Phase Protein Increse in High Altitude Mountaineers

    Tolga Saka

    2017-03-01

    Full Text Available “Erciyes Tigers” are an elite group of high altitude climbers. They have been climbing ErciyesMountain (3500 m, in Kayseri, Turkey once a week at least for ten years. When they climb Erciyes in winter, they also take a snow bath. This study investigated the effects of regular high altitude climbing on the metabolic and hematological responses of mountaineers. Venous blood samples were taken to investigate hematological, biochemical parameters and some hormone values from 21 mountaineers and 16 healthy age-matched sedentary volunteers at resting condition. The neutrophil/lymphocyte (N/L ratio was calculated. The N/L was associated with an increased risk of long-term mortality and it could provide a good measure of exercise stress and subsequent recovery. Most of the hematological and biochemical parameters i.e., erythrocyte, leukocyte, hemoglobin and hematocrit values did not change significantly. The neutrophil to lymphocyte (N/L ratio was significantly (p<0.04 decreased in the mountaineer compared with the sedentary group. Total protein (p<0.000 and albumin (0.001 were lower, while ferritin (p<0.04, creatine (p<0.03 and creatine phosphokinase levels (p<0.01 were higher in mountaineers. Our results show that regular high altitude climbing increased serum levels of some acute-phase proteins and these increments were not transient.

  7. The history of development of balneology in Mountain-Badakhshan autonomous region

    Bobokhodjaev, I.Ya.; Davlatmamadov, Sh.M.

    1994-01-01

    This chapter of book is about the history of development of balneology in Mountain-Badakhshan autonomous region, about useful application of mineral sources on human organism not only for sick people, but on healthy people too

  8. Specialty Crop Profile: Blueberries for the Upper Piedmont and Mountain Regions

    Bratsch, Tony

    2009-01-01

    Discusses blueberries as a small fruit crop for the upper Piedmont and mountain regions of Virginia. Provides information about best ways to plant the blueberries, mulching, irrigation, fertilization, pruning, harvesting and handling, marketing and more.

  9. Microbial eukaryote plankton communities of high-mountain lakes from three continents exhibit strong biogeographic patterns.

    Filker, Sabine; Sommaruga, Ruben; Vila, Irma; Stoeck, Thorsten

    2016-05-01

    Microbial eukaryotes hold a key role in aquatic ecosystem functioning. Yet, their diversity in freshwater lakes, particularly in high-mountain lakes, is relatively unknown compared with the marine environment. Low nutrient availability, low water temperature and high ultraviolet radiation make most high-mountain lakes extremely challenging habitats for life and require specific molecular and physiological adaptations. We therefore expected that these ecosystems support a plankton diversity that differs notably from other freshwater lakes. In addition, we hypothesized that the communities under study exhibit geographic structuring. Our rationale was that geographic dispersal of small-sized eukaryotes in high-mountain lakes over continental distances seems difficult. We analysed hypervariable V4 fragments of the SSU rRNA gene to compare the genetic microbial eukaryote diversity in high-mountain lakes located in the European Alps, the Chilean Altiplano and the Ethiopian Bale Mountains. Microbial eukaryotes were not globally distributed corroborating patterns found for bacteria, multicellular animals and plants. Instead, the plankton community composition emerged as a highly specific fingerprint of a geographic region even on higher taxonomic levels. The intraregional heterogeneity of the investigated lakes was mirrored in shifts in microbial eukaryote community structure, which, however, was much less pronounced compared with interregional beta-diversity. Statistical analyses revealed that on a regional scale, environmental factors are strong predictors for plankton community structures in high-mountain lakes. While on long-distance scales (>10 000 km), isolation by distance is the most plausible scenario, on intermediate scales (up to 6000 km), both contemporary environmental factors and historical contingencies interact to shift plankton community structures. © 2016 John Wiley & Sons Ltd.

  10. Multiscale radar mapping of surface melt over mountain glaciers in High Mountain Asia

    Steiner, N.; McDonald, K. C.

    2017-12-01

    Glacier melt dominates input for many hydrologic systems in the Himalayan Hindukush region that feed rivers that are critical for downstream ecosystems and hydropower generation in this highly populated area. Deviation in seasonal surface melt timing and duration with a changing climate has the potential to affect up to a billion people on the Indian Subcontinent. Satellite-borne microwave remote sensing has unique capabilities that allow monitoring of numerous landscape processes associated with snowmelt and freeze/thaw state, without many of the limitations in optical-infrared sensors such as solar illumination or atmospheric conditions. The onset of regional freeze/thaw and surface melting transitions determine important surface hydrologic variables like river discharge. Theses regional events are abrupt therefore difficult to observe with low-frequency observation sensors. Recently launched synthetic aperture radar (SAR) onboard the Sentinel-1 A and B satellites from the European Space Agency (ESA) provide wide-swath and high spatial resolution (50-100 m) C-Band SAR observations with observations frequencies not previously available, on the order of 8 to 16 days. The Sentinel SARs provide unique opportunity to study freeze/thaw and mountain glacier melt dynamics at process level scales, spatial and temporal. The melt process of individual glaciers, being fully resolved by imaging radar, will inform on the radiometric scattering physics associated with surface hydrology during the transition from melted to thawed state and during refreeze. Backscatter observations, along with structural information about the surface will be compared with complimentary coarse spatial resolution C-Band radar scatterometers, Advanced Scatterometer (ASCAT Met Op A+B), to understand the sub-pixel contribution of surface melting and freeze/thaw signals. This information will inform on longer-scale records of backscatter from ASCAT, 2006-2017. We present a comparison of polarimetric C

  11. Investigating a high ozone episode in a rural mountain site

    Monteiro, A.; Strunk, A.; Carvalho, A.; Tchepel, O.; Miranda, A.I.; Borrego, C.; Saavedra, S.; Rodríguez, A.; Souto, J.; Casares, J.; Friese, E.; Elbern, H.

    2012-01-01

    A very high ozone episode with observed hourly values above 350 μg m −3 occurred in July 2005 at the Lamas d’Olo air quality monitoring station, located in a mountainous area in the north of Portugal. Aiming to identify the origin and formation of this ozone-rich episode, a statistical analysis and a modelling approach were applied. A cross-spectrum analysis in the frequency domain and a synoptic analysis of the meteorological and air quality time series were performed. In order to go further in this analysis, a numerical modelling approach was applied. The results indicate that the transport of ozone and its precursors is the main responsible for the high ozone concentrations. Together with the local mountain breeze and subsidence conditions, the sea-breeze circulation transporting pollutants from the coastal urban and industrialized areas that reach the site during late afternoon turn out to be the driving forces for the ozone peaks. - Highlights: ► A very high ozone episode occurred in a rural mountain site of Portugal in 2004. ► Data cross-spectrum analysis in the frequency domain was performed. ► A numerical modelling approach was also applied. ► The sea-breeze circulation transported pollutants from the urban and industrialized coast. ► The mountain breeze and subsidence conditions were also driving forces for ozone peaks. - The sea-breeze transporting pollutants from the coast, the mountain breeze and subsidence conditions, were the driving forces for the ozone episode occurred in a rural mountain site.

  12. Characteristics of soil seed bank in plantation forest in the rocky mountain region of Beijing, China

    HU Zeng-hui; YANG Yang; LENG Ping-sheng; DOU De-quan; ZHANG Bo; HOU Bing-fei

    2013-01-01

    We investigated characteristics (scales and composition) of soil seed banks at eight study sites in the rocky mountain region of Beijing by seed identification and germination monitoring.We also surveyed the vegetation communities at the eight study sites to explore the role of soil seed banks in vegetation restoration.The storage capacity of soil seed banks at the eight sites ranked from 766.26 to 2461.92 seedsm-2.A total of 23 plant species were found in soil seed banks,of which 63-80%of seeds were herbs in various soil layers and 60% of seeds were located in the soil layer at 0-5 cm depth.Biodiversity indices indicated clear differences in species diversity of soil seed banks among different plant communities.The species composition of aboveground vegetation showed low similarity with that based on soil seed banks.In the aboveground plant community,the afforestation tree species showed high importance values.The plant species originating from soil seed banks represented natural regeneration,which also showed relatively high importance values.This study suggests that in the rocky mountain region of Beijing the soil seed banks played a key role in the transformation from pure plantation forest to near-natural forest,promoting natural ecological processes,and the role of the seed banks in vegetation restoration was important to the improvement of ecological restoration methods.

  13. Yucca Mountain, Nevada - A Proposed Geologic Repository for High-Level Radioactive Waste (Volume 1) Introduction

    R.A. Levich; J.S. Stuckless

    2006-01-01

    Yucca Mountain in Nevada represents the proposed solution to what has been a lengthy national effort to dispose of high-level radioactive waste, waste which must be isolated from the biosphere for tens of thousands of years. This chapter reviews the background of that national effort and includes some discussion of international work in order to provide a more complete framework for the problem of waste disposal. Other chapters provide the regional geologic setting, the geology of the Yucca Mountain site, the tectonics, and climate (past, present, and future). These last two chapters are integral to prediction of long-term waste isolation

  14. Yucca Mountain, Nevada - A Proposed Geologic Repository for High-Level Radioactive Waste (Volume 1) Introduction

    R.A. Levich; J.S. Stuckless

    2006-09-25

    Yucca Mountain in Nevada represents the proposed solution to what has been a lengthy national effort to dispose of high-level radioactive waste, waste which must be isolated from the biosphere for tens of thousands of years. This chapter reviews the background of that national effort and includes some discussion of international work in order to provide a more complete framework for the problem of waste disposal. Other chapters provide the regional geologic setting, the geology of the Yucca Mountain site, the tectonics, and climate (past, present, and future). These last two chapters are integral to prediction of long-term waste isolation.

  15. Pathophysiology of acute mountain sickness and high altitude pulmonary oedema

    Sutton, J R; Lassen, N

    1979-01-01

    We review the evidence that acute mountain sickness (AMS) and high altitude pulmonary oedema (HAPO) occur together more often than is realized. We hypothesize that AMS and HAPO have a common pathophysiological basis: both are due to increased pressure and flow in the microcirculation, causing...

  16. The High-mountain Cryosphere: Environmental Changes and Human Risks

    Maria Shahgedanova

    2016-08-01

    Full Text Available Reviewed: The High-mountain Cryosphere: Environmental Changes and Human Risks Edited by Christian Huggel, Mark Carey, John J. Clague, and Andreas Kääb. Cambridge, UK: Cambridge University Press, 2015. xii + 363 pp. Hardcover: US$ 140.00, ISBN 978-1-107-06584-0. E-book: US$ 112.00, ISBN 978-1-316-35515-2.

  17. Advances in global mountain geomorphology

    Slaymaker, Olav; Embleton-Hamann, Christine

    2018-05-01

    Three themes in global mountain geomorphology have been defined and reinforced over the past decade: (a) new ways of measuring, sensing, and analyzing mountain morphology; (b) a new emphasis on disconnectivity in mountain geomorphology; and (c) the emergence of concerns about the increasing influence of anthropogenic disturbance of the mountain geomorphic environment, especially in intertropical mountains where population densities are higher than in any other mountain region. Anthropogenically induced hydroclimate change increases geomorphic hazards and risks but also provides new opportunities for mountain landscape enhancement. Each theme is considered with respect to the distinctiveness of mountain geomorphology and in relation to important advances in research over the past decade. The traditional reliance on the high energy condition to define mountain geomorphology seems less important than the presence of unique mountain landforms and landscapes and the distinctive ways in which human activity and anthropogenically induced hydroclimate change are transforming mountain landscapes.

  18. Faulting in the Yucca Mountain region: Critical review and analyses of tectonic data from the central Basin and Range

    Ferrill, D.A.; Stirewalt, G.L.; Henderson, D.B.; Stamatakos, J.; Morris, A.P.; Spivey, K.H.; Wernicke, B.P.

    1996-03-01

    Yucca Mountain, Nevada, has been proposed as the potential site for a high-level waste (HLW) repository. The tectonic setting of Yucca Mountain presents several potential hazards for a proposed repository, such as potential for earthquake seismicity, fault disruption, basaltic volcanism, magma channeling along pre-existing faults, and faults and fractures that may serve as barriers or conduits for groundwater flow. Characterization of geologic structures and tectonic processes will be necessary to assess compliance with regulatory requirements for the proposed high level waste repository. In this report, we specifically investigate fault slip, seismicity, contemporary stain, and fault-slip potential in the Yucca Mountain region with regard to Key Technical Uncertainties outlined in the License Application Review Plan (Sections 3.2.1.5 through 3.2.1.9 and 3.2.2.8). These investigations center on (i) alternative methods of determining the slip history of the Bare Mountain Fault, (ii) cluster analysis of historic earthquakes, (iii) crustal strain determinations from Global Positioning System measurements, and (iv) three-dimensional slip-tendency analysis. The goal of this work is to assess uncertainties associated with neotectonic data sets critical to the Nuclear Regulatory Commission and the Center for Nuclear Waste Regulatory Analyses' ability to provide prelicensing guidance and perform license application review with respect to the proposed HLW repository at Yucca Mountain

  19. Diseases and parasites in wolves of the Riding Mountain National Park region, Manitoba, Canada.

    Stronen, Astrid V; Sallows, Tim; Forbes, Graham J; Wagner, Brent; Paquet, Paul C

    2011-01-01

    We examined wolf (Canis lupus) blood and fecal samples from the Riding Mountain National Park (RMNP) region of Manitoba, Canada. In 601 fecal samples collected during two study periods in RMNP and the Duck Mountain Provincial Park and Forest (DMPPF) we found gastrointestinal helminth eggs from Alaria sp. (15.5%), Capillaria sp. (1.0%), taeniid tapeworms (30.8%), Toxascaris sp. (1.7%), Toxocara sp. (0.2%), Trichuris sp. (2.2%), and Moniezia sp. (0.5%). In addition, we found Demodex sp. (0.2%) and the protozoal cysts/oocysts of Sarcocystis sp. (37.3%), Cryptosporidium sp. (1.2%), coccidia (Isospora sp. or Eimeria sp.) (1.7%), and Giardia sp. (29.5%). No fecal shedding of canine parvovirus (CPV, n=387) was detected. All 18 blood samples collected in RMNP showed CPV exposure and eight of 18 blood samples indicated canine distemper virus (CDV) exposure. One wolf died from CDV. Our results are consistent with previous findings on pathogens affecting wolves and with high Giardia sp. prevalence in wolves inhabiting agricultural regions.

  20. Equilibrium of vegetation and climate at the European rear edge. A reference for climate change planning in mountainous Mediterranean regions.

    Ruiz-Labourdette, Diego; Martínez, Felipe; Martín-López, Berta; Montes, Carlos; Pineda, Francisco D

    2011-05-01

    Mediterranean mountains harbour some of Europe's highest floristic richness. This is accounted for largely by the mesoclimatic variety in these areas, along with the co-occurrence of a small area of Eurosiberian, Boreal and Mediterranean species, and those of Tertiary Subtropical origin. Throughout the twenty-first century, we are likely to witness a climate change-related modification of the biogeographic scenario in these mountains, and there is therefore a need for accurate climate regionalisations to serve as a reference of the abundance and distribution of species and communities, particularly those of a relictic nature. This paper presents an objective mapping method focussing on climate regions in a mountain range. The procedure was tested in the Cordillera Central Mountains of the Iberian Peninsula, in the western Mediterranean, one of the ranges occupying the largest area of the Mediterranean Basin. This regionalisation is based upon multivariate analyses and upon detailed cartography employing 27 climatic variables. We used spatial interpolation of data based on geographic information. We detected high climatic diversity in the mountain range studied. We identified 13 climatic regions, all of which form a varying mosaic throughout the annual temperature and rainfall cycle. This heterogeneity results from two geographically opposed gradients. The first one is the Mediterranean-Euro-Siberian variation of the mountain range. The second gradient involves the degree of oceanicity, which is negatively related to distance from the Atlantic Ocean. The existing correlation between the climatic regions detected and the flora existing therein enables the results to be situated within the projected trends of global warming, and their biogeographic and ecological consequences to be analysed.

  1. Selected ground-water data for Yucca Mountain Region, southern Nevada and eastern California, through December 22

    La Camera, R.J.; Westenburg, C.L.

    1994-01-01

    The U.S. Geological Survey, in support of the U.S. Department of Energy, Yucca Mountain Site-Characterization Project, collects, compiles, and summarizes hydrologic data in the Yucca Mountain region. The data are collected to allow assessments of ground-water resources during studies to determine the potential suitability of Yucca Mountain for storing high-level nuclear waste. Data on ground-water levels at 36 sites, ground-water discharge at 6 sites, ground-water quality at 19 sites, and ground-water withdrawals within Crater Flat, Jackass Flats, Mercury Valley, and the Amargosa Desert are presented. Data on ground-water levels, discharges, and withdrawals collected by other agencies (or as part of other programs) are included to further indicate variations through time at selected monitoring locations. Data are included in this report from 1910 through 1992

  2. Adaptation to Climate Change in Panchase Mountain Ecological Regions of Nepal

    Shankar Adhikari; Himlal Baral; Craig Nitschke

    2018-01-01

    Rural mountain communities in developing countries are considered particularly vulnerable to environmental change, including climate change. Forests and agriculture provide numerous ecosystem goods and services (EGS) to local communities and can help people adapt to the impacts of climate change. There is however poor documentation on the role of EGS in people’s livelihood and adaptation practices. This study in the rural Panchase Mountain Ecological Region of Nepal identifies practices being...

  3. A computer simulation model to compute the radiation transfer of mountainous regions

    Li, Yuguang; Zhao, Feng; Song, Rui

    2011-11-01

    In mountainous regions, the radiometric signal recorded at the sensor depends on a number of factors such as sun angle, atmospheric conditions, surface cover type, and topography. In this paper, a computer simulation model of radiation transfer is designed and evaluated. This model implements the Monte Carlo ray-tracing techniques and is specifically dedicated to the study of light propagation in mountainous regions. The radiative processes between sun light and the objects within the mountainous region are realized by using forward Monte Carlo ray-tracing methods. The performance of the model is evaluated through detailed comparisons with the well-established 3D computer simulation model: RGM (Radiosity-Graphics combined Model) based on the same scenes and identical spectral parameters, which shows good agreements between these two models' results. By using the newly developed computer model, series of typical mountainous scenes are generated to analyze the physical mechanism of mountainous radiation transfer. The results show that the effects of the adjacent slopes are important for deep valleys and they particularly affect shadowed pixels, and the topographic effect needs to be considered in mountainous terrain before accurate inferences from remotely sensed data can be made.

  4. Ground-based measurements of the vertical E-field in mountainous regions and the "Austausch" effect

    Yaniv, Roy; Yair, Yoav; Price, Colin; Mkrtchyan, Hripsime; Lynn, Barry; Reymers, Artur

    2017-06-01

    Past measurements of the atmospheric vertical electric field (Ez or potential gradient) at numerous land stations showed a strong response of the daily electric field to a morning local effect known as ;Austausch; - the transport of electrical charges due to increased turbulence. In mountainous regions, nocturnal charge accumulation, followed by an attachment process to aerosols near the surface in valleys, known as the electrode effect, is lifted as a charged aerosol layer by anabatic (upslope) winds during the morning hours due to solar heating. Ground-based measurements during fair weather days were conducted at three mountain stations in Israel and Armenia. We present results of the mean diurnal variation of Ez and make comparisons with the well-known Carnegie curve and with past measurements of Ez on mountains. We report a good agreement between the mean diurnal curves of Ez at various mountain stations and the time of local sunrise when the Ez is found to increase. We attribute this morning maximum to the Austausch (or exchange) layer effect. We support our findings with conduction and turbulent current measurements showing high values of ions and charged aerosols being transported by winds from morning to noon local time, and by model simulations showing the convergence of winds in the early morning hours toward the mountain peak.

  5. Remote sensing of glacier- and permafrost-related hazards in high mountains: an overview

    A. Kääb

    2005-01-01

    Full Text Available Process interactions and chain reactions, the present shift of cryospheric hazard zones due to atmospheric warming, and the potential far reach of glacier disasters make it necessary to apply modern remote sensing techniques for the assessment of glacier and permafrost hazards in high-mountains. Typically, related hazard source areas are situated in remote regions, often difficult to access for physical and/or political reasons. In this contribution we provide an overview of air- and spaceborne remote sensing methods suitable for glacier and permafrost hazard assessment and disaster management. A number of image classification and change detection techniques support high-mountain hazard studies. Digital terrain models (DTMs, derived from optical stereo data, synthetic aperture radar or laserscanning, represent one of the most important data sets for investigating high-mountain processes. Fusion of satellite stereo-derived DTMs with the DTM from the Shuttle Radar Topography Mission (SRTM is a promising way to combine the advantages of both technologies. Large changes in terrain volume such as from avalanche deposits can indeed be measured even by repeat satellite DTMs. Multitemporal data can be used to derive surface displacements on glaciers, permafrost and landslides. Combining DTMs, results from spectral image classification, and multitemporal data from change detection and displacement measurements significantly improves the detection of hazard potentials. Modelling of hazardous processes based on geographic information systems (GIS complements the remote sensing analyses towards an integrated assessment of glacier and permafrost hazards in mountains. Major present limitations in the application of remote sensing to glacier and permafrost hazards in mountains are, on the one hand, of technical nature (e.g. combination and fusion of different methods and data; improved understanding of microwave backscatter. On the other hand, better

  6. Study on Regional Geology and Uranium Mineralization of Schwaner Mountains West and Central Kalimantan

    Soepradto-Tjokrokardono; Djoko-Soetarno; MS; Liliek-Subiantoro; Retno-Witjahyati

    2004-01-01

    Uranium occurrences indication in Kalimantan has been discovered at metamorphic and granites rocks of Schwaner Mountains as the radioactivity and geochemical anomalies. A regional geology of Schwaner Mountains show a watershed of West and East Kalimantan consist of Pinoh metamorphic rocks that was intruded by tonalitic and granitic batholite. The goal of this study is to observe the mechanism of the Uranium occurrences related to the regional tectonic, metamorphic rocks, tonalite and granitic batholite. Permokarbonaferrous metamorphic rocks as the big masses of roof pendant within tonalite mass. The metamorphic rocks originally as the big masses of roof pendant within tonalite mass. The metamorphic rocks originally derived from sedimentary process that produce a high content of uranium as well as a fine grained volcanic material. This uranium is deposited within neritic facies. Those sediments have been metamorphosed by low grade Abukuma regional metamorphism at the condition about 540 o C and 2000 bar. In early Cretaceous Tonalite of Sep auk intruded the rock and both metamorphics and tonalites. Those rocks were intruded by Late Cretaceous alkalin granite of Sukadana. Those crystalline rocks overlaid by an unconformity-related Kampari and Tebidah Formations that including within Melawi Group of Tertiary age. Uranium mineralization as the centimetric-metric veins related to tectonic N 100 o -110 o E and N 50 o E lineaments. Uranium was interpreted as a volcanic sedimentary origin, than it re mobilized by low grade regional metamorphism process. This enuchment process was carried out by fluor, boron and other metalliferous mineral within hydrothermal solutions of Sukadana granite. (author)

  7. Role of land use change in landslide-related sediment fluxes in tropical mountain regions

    Guns, M.; Vanacker, V.; Demoulin, A.

    2012-04-01

    Tropical mountain regions are characterised by high denudation rates. Landslides are known to be recurrent phenomena in active mountain belts, but their contribution to the overall sedimentary fluxes is not yet well known. Previous studies on sedimentary cascades have mostly focused on natural environments, without considering the impact of human and/or anthropogenic disturbances on sedimentary budgets. In our work, we hypothesise that human-induced land use change might alter the sediment cascade through shifts in the landslide magnitude-frequency relationship. We have tested this assumption in the Virgen Yacu catchment (approximately 11km2), in the Ecuadorian Cordillera Occidental. Landslide inventories and land use maps were established based on a series of sequential aerial photos (1963, 1977, 1984 and 1989), a HR Landsat image (2001) and a VHR WorldView2 image (2010). Aerial photographs were ortho-rectified, and coregistred with the WorldView2 satellite image. Field campaigns were realised in 2010 and 2011 to collect field-based data on landslide type and geometry (depth, width and length). This allowed us to establish an empirical relationship between landslide area and volume, which was then applied to the landslide inventories to estimate landslide-related sediment production rates for various time periods. The contribution of landslides to the overall sediment flux of the catchment was estimated by comparing the landslide-related sediment production to the total sediment yield. The empirical landslide area-volume relationship established here for the Ecuadorian Andes is similar to that derived for the Himalayas. It suggests that landslides are the main source of sediment in this mountainous catchment. First calculations indicate that human-induced land use change alters the magnitude-frequency relationship through strong increase of small landslides.

  8. Regression-Correlation of Petrophysical Inter-Parameter of Igneous Rocks and Limestone from Kulonprogo Mountain Region, Yogyakarta Special Region

    Sigit Maryanto

    2014-06-01

    Full Text Available DOI: 10.17014/ijog.v6i4.127Laboratory test of complete petrophysic parameters encompasing water absorption, compressive strength, Los Angeles abrasive strength, Rudellof abrasive strength, and wear resistance with Na2SO4 has been carried out for igneous and carbonate rocks taken from Kulonprogo Mountains region. Statistical verification of the data exhibits variation of correlation coefficients among parameters ranging from medium to very high value. The values of petrophysic test results are determined by the rock types. The result of this study is useful to estimate the accuracy of values of each parameter test result in Geological Survey Institute Laboratory using regression formula representing each relationship.

  9. Low-level radioactive waste facility siting in the Rocky Mountain compact region

    Whitman, M.

    1983-09-01

    The puprose of the Rocky Mountain Low-Level Radioactive Waste Compact is to develop a regional management system for low-level waste (LLW) generated in the six states eligible for membership: Arizona, Colorado, Nevada, New Mexico, Utah and Wyoming. Under the terms of the compact, any party state generating at least 20% of the region's waste becomes responsible for hosting a regional LLW management facility. However, the compact prescribes no system which the host state must follow to develop a facility, but rather calls on the state to fulfill its responsibility through reliance on its own laws and regulations. Few of the Rocky Mountain compact states have legislation dealing specifically with LLW facility siting. Authority for LLW facility siting is usually obtained from radiation control statutes and solid or hazardous waste statutes. A state-by-state analysis of the siting authorities of each of the Rock Mountain compact states as they pertain to LLW disposal facility siting is presented. Siting authority for LLW disposal facilities in the Rocky Mountain compact region runs from no authority, as in Wyoming, to general statutory authority for which regulations would have to be promulgated, as in Arizona and Nevada, to more detailed siting laws, as in Colorado and New Mexico. Barring an amendment to, or different interpretation of, the Utah Hazardous Waste Facility Siting Act, none of the Rocky Mountain States' LLW facility siting authorities preempt local veto authorities

  10. MAPPING ECOSYSTEM SERVICES SUPPLY IN MOUNTAIN REGIONS: A CASE STUDY FROM SOUTH TYROL (ITALY

    U. Schirpke

    2014-04-01

    Full Text Available Mountain regions provide many ecosystem services and spatially explicit assessments have to account for their specific topographic and climatic conditions. Moreover, it is fundamental to understand synergies and trade-offs of multiple ecosystem services. In this study, ecosystem services supply, including forage production, timber production, water supply, carbon sequestration, soil stability, soil quality, and the aesthetic value, was quantified in bio-physical terms on the landscape scale for South Tyrol. Mean ecosystem services values of the 116 municipalities were grouped in 5 clusters. The results indicate that carbon stock is the prevailing ecosystem service of valley municipalities. On contrast, they suffer from water deficit and depend on water supply from high mountain municipalities. Trade-offs can be also found between the aesthetic value on one hand and timber production, carbon sequestration and soil stability on the other hand. The latter are characteristic for municipalities dominated by forest. The resulting maps can support landscape planning, ecosystem management and conservation of biodiversity.

  11. What can we learn from fluvial incision in high mountains?

    Fuchs, Margret; Gloaguen, Richard; Krbetschek, Matthias

    2013-04-01

    High and actively deforming mountain ranges attract the attention of geoscientists as they provide natural laboratories of fast evolving process-response systems. Tectonic compressional settings, often linked to perpendicular extension, control the topographic growth and hence, erosion, transport pathways and sedimentation. High altitude differences within short horizontal distances promote material re-organisation and high rates of surface processes. Furthermore, high mountains constitute orographic barriers that affect atmospheric circulations as well as host different climate regimes similar to those of widely separated latitudinal belts. Both cause a high sensitivity of surface processes to changes in climatic conditions. However, feedbacks between climatic and tectonic forcing are complex. Additionally, the dominance of one or the other varies in space and also over time, inheriting various traces of the paleo-morphodynamic conditions to the subsequent process regimes. To unravel the forces driving the evolution of relief in active mountains, numerous studies employ the drainage network of the corresponding mountains as a proxy of landscape evolution. Especially the rates of river incision provide a powerful tool to characterize the surface response and infer causes behind it. Several parameters of river incision are available to describe the fluvial incision at individual sites (e.g. terrace incision rates), along the river course (e.g. longitudinal river profiles, Hack index) and in its perpendicular dimension (e.g. valley cross sections, valley shape ratios). But they require careful interpretation. They are sensitive to both, climatic and tectonic forcing. Therefore, the synopsis of such indices for fluvial incision is essential to evaluate the role of climatic versus tectonic forcing. Here, we use the Panj river system, the major river draining the Pamir mountains of Central Asia, as an example. The Panj experiences high altitude changes of more than 4000

  12. Characterization of Most Promising Sequestration Formations in the Rocky Mountain Region (RMCCS)

    McPherson, Brian; Matthews, Vince

    2013-09-30

    The primary objective of the “Characterization of Most Promising Carbon Capture and Sequestration Formations in the Central Rocky Mountain Region” project, or RMCCS project, is to characterize the storage potential of the most promising geologic sequestration formations within the southwestern U.S. and the Central Rocky Mountain region in particular. The approach included an analysis of geologic sequestration formations under the Craig Power Station in northwestern Colorado, and application or extrapolation of those local-scale results to the broader region. A ten-step protocol for geologic carbon storage site characterization was a primary outcome of this project.

  13. Regional groundwater modeling of the saturated zone in the vicinity of Yucca Mountain, Nevada

    Ahola, M.; Sagar, B.

    1992-10-01

    Results of groundwater modeling of the saturated zone in the vicinity of Yucca Mountain are presented. Both a regional (200 x 200 km) and subregional (50 x 50 km) model were used in the analyses. Simulations were conducted to determine the impact of various disruptive that might take place over the life span of a proposed Yucca Mountain geologic conditions repository on the groundwater flow field, as well as changes in the water-table elevations. These conditions included increases in precipitation and groundwater recharge within the regional model, changes in permeability of existing hydrogeologic barriers, a:nd the vertical intrusion of volcanic dikes at various orientations through the saturated zone. Based on the regional analysis, the rise in the water-table under Yucca Mountain due to various postulated conditions ranged from only a few meters to 275 meters. Results of the subregional model analysis, which was used to simulate intrusive dikes approximately 4 kilometers in length in the vicinity of Yucca Mountain, showed water-table rises ranging from a few meters to as much as 103 meters. Dikes oriented approximately north-south beneath Yucca Mountain produced the highest water-table rises. The conclusions drawn from this analysis are likely to change as more site-specific data become available and as the assumptions in the model are improved

  14. Sustainable Land Use in Mountain Regions Under Global Change: Synthesis Across Scales and Disciplines

    Robert Huber

    2013-09-01

    Full Text Available Mountain regions provide essential ecosystem goods and services (EGS for both mountain dwellers and people living outside these areas. Global change endangers the capacity of mountain ecosystems to provide key services. The Mountland project focused on three case study regions in the Swiss Alps and aimed to propose land-use practices and alternative policy solutions to ensure the provision of key EGS under climate and land-use changes. We summarized and synthesized the results of the project and provide insights into the ecological, socioeconomic, and political processes relevant for analyzing global change impacts on a European mountain region. In Mountland, an integrative approach was applied, combining methods from economics and the political and natural sciences to analyze ecosystem functioning from a holistic human-environment system perspective. In general, surveys, experiments, and model results revealed that climate and socioeconomic changes are likely to increase the vulnerability of the EGS analyzed. We regard the following key characteristics of coupled human-environment systems as central to our case study areas in mountain regions: thresholds, heterogeneity, trade-offs, and feedback. Our results suggest that the institutional framework should be strengthened in a way that better addresses these characteristics, allowing for (1 more integrative approaches, (2 a more network-oriented management and steering of political processes that integrate local stakeholders, and (3 enhanced capacity building to decrease the identified vulnerability as central elements in the policy process. Further, to maintain and support the future provision of EGS in mountain regions, policy making should also focus on project-oriented, cross-sectoral policies and spatial planning as a coordination instrument for land use in general.

  15. Constructing Consistent Multiscale Scenarios by Transdisciplinary Processes: the Case of Mountain Regions Facing Global Change

    Fridolin Simon. Brand; Roman Seidl; Quang Bao. Le; Julia Maria. Brändle; Roland Werner. Scholz

    2013-01-01

    Alpine regions in Europe, in particular, face demanding local challenges, e.g., the decline in the agriculture and timber industries, and are also prone to global changes, such as in climate, with potentially severe impacts on tourism. We focus on the Visp region in the Upper Valais, Switzerland, and ask how the process of stakeholder involvement in research practice can contribute to a better understanding of the specific challenges and future development of mountainous regions under global ...

  16. Approach to identification and development of mountain tourism regions and destinations in Serbia with special reference to the Stara Planina mountain

    Milijić Saša

    2010-01-01

    Full Text Available This paper deals with theoretical-methodological issues of tourism offer planning and regulation of settlements in mountain destinations. The basic determinants of the development of mountain tourist regions destinations in EU countries, in which respectable development results have been achieved, first of all in terms of income, together with appropriately adjusted development and environmental management system, have been emphasized. The ongoing transition and structural processes in Serbia will have an impact on application of these experiences. At the same time, a basis for competitiveness of mountain regions will not be determined only by spatial capacity and geological location, but also by creative-innovative developing environment. Taking into account the spatial-functional criteria and criteria for the development and protection, the possible spatial definition of mountain tourist regions/destinations in Serbia are presented. The justifiability and positioning of tourism development projects are analyzed aiming at uniform regional development, where two segments of demand are of particularly importance, i.e. demand for mountain tourism services and for real estates in mountain centers. Furthermore, holders of tourism offer will be analyzed through a contemporary approach which may be defined as the development and noncommercial and market and commercial one. International criteria which are evaluated while selecting city/mountain destination for Winter Olympic Games are particularly analyzed. Considering experience of countries with higher level of development of mountain regions, the main starting point for positioning projects for sustainable development of tourist destinations are defined by specifying them according to specific local and regional conditions. A rational model for spatial organization of tourism offer is shown on the example of the Stara Planina tourist region.

  17. Association analysis of PRNP gene region with chronic wasting disease in Rocky Mountain elk

    Spraker Terry R

    2010-11-01

    Full Text Available Abstract Background Chronic wasting disease (CWD is a transmissible spongiform encephalopathy (TSE of cervids including white-tailed (Odocoileus virginianus and mule deer (Odocoileus hemionus, Rocky Mountain elk (Cervus elaphus nelsoni, and moose (Alces alces. A leucine variant at position 132 (132L in prion protein of Rocky Mountain elk confers a long incubation time with CWD, but not complete resistance. However, variants in regulatory regions outside the open reading frame of PRNP have been associated with varying degrees of susceptibility to prion disease in other species, and some variants have been observed in similar regions of Rocky Mountain elk PRNP. Thus, additional genetic variants might provide increased protection, either alone or in combination with 132L. Findings This study provided genomic sequence of all exons for PRNP of Rocky Mountain elk. Many functional sites in and around the PRNP gene region were sequenced, and this report approximately doubled (to 75 the number of known variants in this region. A haplotype-tagging approach was used to reduce the number of genetic variants required to survey this variation in the PRNP gene region of 559 Rocky Mountain elk. Eight haplotypes were observed with frequencies over 1.0%, and one haplotype was present at 71.2% frequency, reflecting limited genetic diversity in the PRNP gene region. Conclusions The presence of 132L cut odds of CWD by more than half (Odds Ratio = 0.43; P = 0.0031, which was similar to a previous report. However after accounting for 132L, no association with CWD was found for any additional variants in the PRNP region (P > 0.05.

  18. Soils Developed on Geomorphic Surfaces in the Mountain Region of the State of Rio de Janeiro

    Ademir Fontana

    2018-01-01

    Full Text Available ABSTRACT: The evaluation of soils in representative landscapes constitutes an opportunity to evaluate spatial distribution, discuss formation processes, and apply this knowledge to land use and management. In this sense, from the perspective of an environmentally diversified region, the aim of the present study is to evaluate the occurrence and understand the formation of soils in different geomorphic surfaces of a landscape from a mountain region in the state of Rio de Janeiro. The study was developed in the Pito Aceso microbasin in the municipality of Bom Jardim, composed of narrow valleys and a rugged mountain domain, with elevation between 640 and 1,270 m. In a representative landscape, the geomorphic surfaces were obtained from the slope segments and flow lines. On the geomorphic surfaces, soil profiles were described by their morphological properties, collected, and analyzed to describe the chemical and physical properties of each horizon. Geomorphological aspects and possible variations of the parent material directly affected pedogenesis and led to distinct soil classes in the landscape. Variation in the geomorphic surfaces directs the processes for soil formation under current conditions, as well as the preservation of polygenetic soils. Soils of lower development and with greater participation of the exchangeable cations were identified at the summit (talus deposit (Neossolo Litólico and Cambissolo Húmico and toeslope (colluvial-alluvial (Neossolo Flúvico, whereas more developed soils with lower nutrient content occur in the concave (Argissolos Vermelho and Amarelo and convex (Latossolo Amarelo backslope, except for the Argissolo Vermelho-Amarelo in the shoulder, which had high exchangeable cations contents.

  19. Fog water collection and reforestation at mountain locations in a western Mediterranean basin region

    Valiente, Ja; Estrela, Mj; Corell, D.; Fuentes, D.; Valdecantos, A.

    2010-07-01

    Previous studies carried out by the authors have shown the potential of fog water collection at several mountain locations in the Valencia region (western Mediterranean basin). This coastal region features typical conditions for a dry Mediterranean climate characterized by a pluviometric regime ranging from 400 to 600 mm with a strong annual dependence. Dry conditions together with land degradation that frequently results after recurrent fires occurred in the past make a difficult self-recovery for native forest vegetation so that some kind of human intervention is always recommended. In plots reforested with Mediterranean woody species, periods of more than 120 days without significant precipitation (>5 mm) result in mortality rates above 80% during the first summer in the field. The good potential of fog-water collection at certain mountain locations is considered in this study as an easily available water resource for the reforestation of remote areas where native vegetation cannot be reestablished by itself. A large flat panel made of UV-resistant HD-polyethylene monofilament mesh was deployed at a mountain location for bulk fog water harvesting. Water was stored in high-capacity tanks for the whole length of the experimental campaign and small timely water pulses localized deep in the planting holes were conducted during the summer dry periods. Survival rates and seedling performance of two forest tree species, Pinus pinaster and Quercus ilex, were quantified and correlated to irrigation pulses in a reforestation plot that took an area of about 2500 m2 and contained 620 1-year-old plants. Before and concurrently to the flat panel deployment, a passive omnidirectional fog-water collector of cylindrical shape was set in the area in combination to other environmental instruments such as a rain gauge, a wind direction and velocity sensor and a temperature and humidity probe. Proper orientation of the large flat panel was possible once the direction of local winds

  20. Past and future changes in frost day indices on Catskill Mountain Region of New York

    Changes in frost indices in the New York’s Catskill Mountains region, the location of water supply reservoirs for New York City, have potentially important implications. Frost day is defined as a day with Tmin < 0ºC. The objective of this study was to investigate past and predicted changes in minimu...

  1. Research on Structure Innovation of Agricultural Organization in China’s Southwestern Mountainous Regions

    2012-01-01

    Taking agricultural organization in China’s southwestern mountainous regions as research object,on the basis of analysis of the status quo of agricultural organization development in China’s southwestern mountainous regions,we use related theoretical knowledge on economics and organization science,we probe into the process of innovation and mechanism of action concerning the structure of agricultural organization in China’s southwestern mountainous regions over the past 30 years.Finally we draw several general conclusions regarding structure innovation of agricultural organization in China’s southwestern mountainous regions as follows:first,the structure innovation of agricultural organization,a gradual process,proceeds ceaselessly along with ongoing progress and development of agriculture,and in this process,farmers always play a fundamental role;second,the structure innovation of agricultural organization is affected by many factors,and government institutional arrangement and change in market conditions is undoubtedly the most critical factor;third,the probable evolving direction of structure innovation of agricultural organization includes internal differentiation of the same form of agricultural organization,association of different forms of agricultural organization,and emergence of other forms of agricultural organization.

  2. [Rocky Mountain regional low-level waste compact development and establishment of disposals

    1986-01-01

    This Compact Issue Study was intended to determine if state institutions in the Rocky Mountain region could reduce low-level radioactive waste shipping and disposal costs through jointly shipping their low-level radioactive wastes. Public institutions in the state of Colorado were used as a test case for this study

  3. Development of Education Programs in Mountainous Regions to Enhance the Culture and Knowledge of Minority Nationalities.

    Wei, Shiyuan; Zhou, Guangda

    1989-01-01

    Describes the historical development of educational programs which could enhance the culture and knowledge of minorities in the mountainous regions of China. Identifies current major problems in minority education and lists statistical information for the school population. Provides guidelines for developing a minority education program. (KO)

  4. Assessing the Economic Situation of Small-Scale Farm Forestry in Mountain Regions: A Case Study in Austria

    Philipp Toscani

    2017-08-01

    Full Text Available Austria is one of the few countries with a long tradition of monitoring the economic performance of forest holdings. The national Farm Accountancy Data Network also addresses some forestry-specific issues, given the high significance of farm forestry in this country. However, it is not possible to assess the profitability of small-scale farm forestry in mountainous regions based on a representative sample. In this paper, we demonstrate how information gaps can be overcome by means of economic modeling and present results of this approach for mountain forestry for the first time. In spite of the unfavorable conditions of an alpine setting, forestry tends to be of special significance for the viability and resilience of family farms in these regions. Sustainable forest management that safeguards the ecosystem services provided by forests relies mostly on the profitability of timber production. Thus, the economic development of farm forestry is a key factor in achieving targets 15.1 and 15.4 of the United Nations Sustainable Development Goals in mountain regions.

  5. MACROZOOBENTHOS OF MOUNTAIN RIVERS OF THE TRANSCARPATHIAN REGION AS A FORAGE BASE OF BENTHOPHAGOUS FISHES AND SAPROBITY INDICATOR

    S. Kruzhylina

    2014-12-01

    Full Text Available Purpose. To study qualitative and qualitative indices of macrozoobenthos as one of main components of the forage base of benthophagous fishes in mountain river reaches of the Transcarpathian region and determination of their saprobity level. Methodology. Thhj,9.e study was carried out in summer period of 2009 in mountain river reaches of the Tisa river catchment. Zoobenthos samples were collected by a Surber sampler (25 × 25 cm on the bottoms of different fractions with different water flow rate (riffle, run, pool. Collection, processing and interpretation of the obtained data was carried out according to generally accepted hydrobiological methods developed for mountain river studies. Saprobity was of the studied rivers was calculated by Pantle-Buck formula. The Zelinka-Marvan saprobity index was used for calculations. Findings. Qualitative and quantitative macrozoobenthos indices have been studied. The number of zoobenthos on the investigated river sections ranged from 416 to 7712 ind./m2 with biomasses from 2.96 to 83.84 g/m2. The major portion of the zoobenthic biomass in the majority of rivers was due to caddis fly larvae composing up to 93% of the total biomass. An important role in the total biomass of the zoobenthos also belonged to mayfly (up to 53% and stonefly (up to 55% larvae and in lower degree amphipods (up to 39%, chironomid larvae (up to 14% and aquatic coleopterans (up to 5%. According to the calculated potential fish productivity, the mountain rivers can be apparently separated into three groups: little productive (4.2–12.7 kg/ha, medium productive (13.2–21.6 kg/ha and high productive (25.3–85.3 kg/ha. Mountain river reaches of the Transcarpathian region were found to belong to pure χ-saprobic, and о- і β-mesosaprobic zones, the saprobity index in which ranged from 0.35 (Rika river to 1.7 (Shipot river. Originality. For further calculation and assessment of brown trout (Salmo trutta and European grayling (Thymallus

  6. Regional Comparative Unit Cost Studies for Maintenance and Operation of Physical Plants in Universities and Colleges in Central States Region and Rocky Mountain Region.

    Association of Physical Plant Administrators, Corvallis, OR.

    Presented in this document are data pertaining to maintenance and operations costs at colleges and universities in the central states region and the Rocky Mountain region. The major accounts included in the cost analysis are: (1) physical plant administration, (2) building maintenance, (3) custodial services, (4) utilities, (5) landscape and…

  7. Animal Fascioliasis: Perspectives from high altitudinal regions.

    Lyngdoh, Damanbha; Sharma, Sunil; Roy, Bishnupada; Tandon, Veena

    2016-12-15

    The parasitic flukes of the genus Fasciola (Platyhelminthes: Trematoda: Digenea) cause fascioliasis or liver-rot disease in ruminant livestock in tropical and sub-tropical regions of the world. Classically, two species of Fasciola- F. hepatica and F. gigantica, are universally recognized as taxonomically valid species. Our survey studies on ovid and bovid animals including yak and mithun from high altitudinal mountainous regions in Northeast India revealed the occurrence of Fasciola gigantica and also Fasciola sp.- an intermediate form, at altitudes between 5000 and 14,085 feet above sea level (asl). Two morphotypes- F. hepatica - like and F. gigantica - like, of Fasciola species were reported from the high altitudinal areas of Northeast India; most of these locales constitute new-locality and first records for the occurrence of these liver flukes. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Degradation of High Mountain Ecosystems in Northern Europe

    J(o)rg L(o)ffler

    2004-01-01

    Data material of a long-term highmountain ecosystem research project was used to interpret the grazing impact of reindeers. In central Norway investigations were conducted to both, areas where reindeer grazing is excluded, and areas where intensive pasturing is present for a long period of time.The comparative analysis of grazing impact was based on similar environmental conditions. The results were transposed to northern Norway where dramatic overgrazing had been exceeding the carrying capacity.Using landscape ecological mappings, especially of vege ation and soils, the impact of reindeer grazing in different areas became obvious. Non-grazedlichen-dominated ecosystems of the snow-free locations functioned sensitively near the limit of organism survival. These localities were most influenced by grazing as they offer the winter forage to the reindeers. So, intensive grazing in central Norway led to landscape degradation by destruction of the vegetation and superinduced by soil erosion.Those features were comparable to the situation in northern Norway, where a broad-scale destruction of the environment combined with a depression of the altitudinal belts had occurred due to overgrazing.Functioning principles of intact high mountain systems were explained and used to interpret the environmental background for the understanding of degradation phenomena. Finally, the use of a new model calculating the carrying capacity of high mountain landscape was discussed.

  9. Wind energy resource atlas. Volume 8. The southern Rocky Mountain region

    Andersen, S.R.; Freeman, D.L.; Hadley, D.L.; Elliott, D.L.; Barchet, W.R.; George, R.L.

    1981-03-01

    The Southern Rocky Mountain atlas assimilates five collections of wind resource data: one for the region and one for each of the four states that compose the Southern Rocky Mountain region (Arizona, Colorado, New Mexico, and Utah). At the state level, features of the climate, topography and wind resource are discussed in greater detail than is provided in the regional discussion, and the data locations on which the assessment is based are mapped. Variations, over several time scales, in the wind resource at selected stations in each state are shown on graphs of monthly average and interannual wind speed and power, and hourly average wind speed for each season. Other graphs present speed, direction, and duration frequencies of the wind at these locations.

  10. Precipitation isotopes link regional climate patterns to water supply in a tropical mountain forest, eastern Puerto Rico

    Scholl, Martha A.; Murphy, Sheila F.

    2014-05-01

    Like many mountainous areas in the tropics, watersheds in the Luquillo Mountains of eastern Puerto Rico have abundant rainfall and stream discharge and provide much of the water supply for the densely populated metropolitan areas nearby. Projected changes in regional temperature and atmospheric dynamics as a result of global warming suggest that water availability will be affected by changes in rainfall patterns. It is essential to understand the relative importance of different weather systems to water supply to determine how changes in rainfall patterns, interacting with geology and vegetation, will affect the water balance. To help determine the links between climate and water availability, stable isotope signatures of precipitation from different weather systems were established to identify those that are most important in maintaining streamflow and groundwater recharge. Precipitation stable isotope values in the Luquillo Mountains had a large range, from fog/cloud water with δ2H, δ18O values as high as +12 ‰, -0.73 ‰ to tropical storm rain with values as low as -127 ‰, -16.8 ‰. Temporal isotope values exhibit a reverse seasonality from those observed in higher latitude continental watersheds, with higher isotopic values in the winter and lower values in the summer. Despite the higher volume of convective and low-pressure system rainfall, stable isotope analyses indicated that under the current rainfall regime, frequent trade -wind orographic showers contribute much of the groundwater recharge and stream base flow. Analysis of rain events using 20 years of 15 -minute resolution data at a mountain station (643 m) showed an increasing trend in rainfall amount, in agreement with increased precipitable water in the atmosphere, but differing from climate model projections of drying in the region. The mean intensity of rain events also showed an increasing trend. The determination of recharge sources from stable isotope tracers indicates that water supply

  11. Seasonal Patterns of Dry Deposition at a High-Elevation Site in the Colorado Rocky Mountains

    Oldani, Kaley M.; Mladenov, Natalie; Williams, Mark W.; Campbell, Cari M.; Lipson, David A.

    2017-10-01

    In the Colorado Rocky Mountains, high-elevation barren soils are deficient in carbon (C) and phosphorus (P) and enriched in nitrogen (N). The seasonal variability of dry deposition and its contributions to alpine elemental budgets is critical to understanding how dry deposition influences biogeochemical cycling in high-elevation environments. In this 2 year study, we evaluated dry and wet deposition inputs to the Niwot Ridge Long Term Ecological Research (NWT LTER) site in the Colorado Rocky Mountains. The total organic C flux in wet + dry (including soluble and particulate C) deposition was >30 kg C ha-1 yr-1 and represents a substantial input for this C-limited environment. Our side-by-side comparison of dry deposition collectors with and without marble insert indicated that the insert improved retention of dry deposition by 28%. Annual average dry deposition fluxes of water-soluble organic carbon (4.25 kg C ha-1 yr-1) and other water-soluble constituents, including ammonium (0.16 kg NH4+ha-1 yr-1), nitrate (1.99 kg NO3- ha-1 yr-1), phosphate (0.08 kg PO43- ha-1 yr-1), and sulfate (1.20 kg SO42- ha-1 yr-1), were comparable to those in wet deposition, with highest values measured in the summer. Backward trajectory analyses implicate air masses passing through the arid west and Four Corners, USA, as dominant source areas for dry deposition, especially in spring months. Synchronous temporal patterns of deposition observed at the NWT LTER site and a distant Rocky Mountain National Park Clean Air Status and Trends Network site indicate that seasonal dry deposition patterns are regional phenomena with important implications for the larger Rocky Mountain region.

  12. SPATIAL PATTERNS OF DISTRIBUTION OF TREE SPECIES IN HIGH MOUNTAIN FORESTS AT THE REGION OF ANTIOQUIA, COLOMBIA PATRONES DE DISTRIBUCIÓN ESPACIAL DE ESPECIES ARBÓREAS EN BOSQUES DE ALTA MONTAÑA DEL DEPARTAMENTO DE ANTIOQUIA, COLOMBIA

    Ronald Alfonso Montañez Valencia

    2010-12-01

    Full Text Available The assessed the patterns of spatial distribution of tree species along an altitudinal gradient in high mountain forests it was evaluated. The study was carried out in three 1-ha plots located in high Andean forests on the northern part of the Central cordillera of Colombia, classifying the data into two categories of size: canopy (DBH>10 cm and understory (DBHSe evaluó el patrón de distribución espacial de especies arbóreas a lo largo de un gradiente altitudinal en bosques de alta montaña. El estudio se realizó en tres (3 parcelas permanentes de 1 ha ubicadas en bosques alto andinos al norte de la cordillera Central de Colombia, clasificando los datos en dos estratos arbóreos: dosel (DAP≥10cm y sotobosque (DAP<10cm. El objeto es responder si: 1. ¿Son similares los patrones de distribución entre dosel y sotobosque? 2. ¿Existen diferencias en el patrón de distribución a lo largo del gradiente altitudinal? Para definir el patrón de distribución de las especies a diferentes escalas se empleó el índice estandarizado de Morisita (Ip. El patrón de distribución predominante fue el gregario para especies de dosel y sotobosque en las tres áreas de estudio. El grado de agrupamiento de las especies de dosel aumentó a medida que incrementó la escala o el tamaño de la parcela. En contraste, en el sotobosque el gregarismo disminuyó con la escala espacial de análisis. Lo anterior sugiere que la denso-dependencia aumenta proporcionalmente con la altitud. Esta tendencia, no obstante, parece estar controlada por mecanismos reguladores contrastantes, tales como la limitación en dispersión y la especialización de hábitat, entre especies del dosel y el sotobosque respectivamente.

  13. Mapping mountain meadow with high resolution and polarimetric SAR data

    Tian, Bangsen; Li, Zhen; Xu, Juan; Fu, Sitao; Liu, Jiuli

    2014-01-01

    This paper presents a method to map the large grassland in the eastern margin of the Tibetan Plateau with the high resolution polarimetric SAR (PolSAR) imagery. When PolSAR imagery is used for land cover classification, the brightness of a SAR image is affected by topography due to varying projection between ground and image coordinates. The objective of this paper is twofold: (1) we first extend the theory of SAR terrain correction to the polarimetric case, to utilize the entire available polarimetric signature, where correction is performed explicitly based on a matrix format like covariance matrix. (2) Next, the orthoectified PolSAR is applied to classify mountain meadow and investigate the potential of PolSAR in mapping grassland. In this paper, the gamma naught radiometric correction estimates the local illuminated area at each grid point in the radar geometry. Then, each element of the coherency matrix is divided by the local area to produce a polarimetric product. Secondly, the impact of radiometric correction upon classification accuracy is investigated. A supervised classification is performed on the orthorectified Radarsat-2 PolSAR to map the spatial distribution of meadow and evaluate monitoring capabilities of mountain meadow

  14. Morphological characteristics of overdeepenings in high-mountain glacier beds

    Haeberli, Wilfried; Cochachin, Alejo; Fischer, Urs; Giráldez, Claudia; Linsbauer, Andreas; Salazar, Cesar

    2014-05-01

    Overdeepenings, i.e. closed topographic depressions with adverse slopes in the flow direction, are characteristic for glacier beds and glacially sculpted landscapes. Besides their importance as geomorphological landforms, groundwater bodies and sedimentary archives, they are of increasing interest in relation to climate-induced lake formation in de-glaciating landscapes and to depth erosion under ice age conditions in connection with the long-term safety of radioactive waste repositories in some mid-latitude countries. Quantitative predictions of their shape, distribution and conditions of occurrence, however, remain difficult. One major problem thereby relates to the still unsatisfactory treatment in glacier erosion theory of sediment evacuation at glacier beds, especially by subglacial meltwater. An alternative way of searching for realistic/empirical quantitative estimates is, therefore, to analyse the geometry of well-documented overdeepenings. The present study attempts to do this by combining statistical analyses of (a) detailed bathymetries from recently exposed lakes in the Peruvian Andes, (b) numerous bed overdeepenigs below still existing glaciers of the Swiss Alps and the Himalaya-Karakoram region modelled with a robust shear stress approximation linking surface slope to ice thickness at high resolution, and (c, for comparison) reconstructed overdeepenings produced by ice age glaciers in the Swiss Plateau based on numerous drillings and geophysical soundings. The sample of (a) has the advantage that geometries are exactly measured and only subject to young/small sedimentation effects. Sample (b) allows for a comparison with a modern model calculation and with known glacier characteristics. Sample (c) may provide some insights into the question how safely results from high mountain topography can be transferred to sites with markedly different topographic, climatic and glaciological controls (cold-arid lowland). Where possible, mean and maximum values of

  15. False alarms and mine seismicity: An example from the Gentry Mountain mining region, Utah. Los Alamos Source Region Project

    Taylor, S.R.

    1992-09-23

    Mining regions are a cause of concern for monitoring of nuclear test ban treaties because they present the opportunity for clandestine nuclear tests (i.e. decoupled explosions). Mining operations are often characterized by high seismicity rates and can provide the cover for excavating voids for decoupling. Chemical explosions (seemingly as part of normal mining activities) can be used to complicate the signals from a simultaneous decoupled nuclear explosion. Thus, most concern about mines has dealt with the issue of missed violations to a test ban treaty. In this study, we raise the diplomatic concern of false alarms associated with mining activities. Numerous reports and papers have been published about anomalous seismicity associated with mining activities. As part of a large discrimination study in the western US (Taylor et al., 1989), we had one earthquake that was consistently classified as an explosion. The magnitude 3.5 disturbance occurred on May 14, 1981 and was conspicuous in its lack of Love waves, relative lack of high- frequency energy, low Lg/Pg ratio, and high m{sub b} {minus} M{sub s}. A moment-tensor solution by Patton and Zandt (1991) indicated the event had a large implosional component. The event occurred in the Gentry Mountain coal mining region in the eastern Wasatch Plateau, Utah. Using a simple source representation, we modeled the event as a tabular excavation collapse that occurred as a result of normal mining activities. This study raises the importance of having a good catalogue of seismic data and information about mining activities from potential proliferant nations.

  16. Late cenozoic evolution of Fortymile Wash: Major change in drainage pattern in the Yucca Mountain, Nevada region during late miocene volcanism

    Lundstrom, S.C.; Warren, R.G.

    1994-01-01

    The site characterization of Yucca Mountain, NV as a potential high level nuclear waste repository includes study of the surficial deposits as a record of the paleoenvironmental history of the Yucca Mountain region. An important aspect of this history is an understanding of the evolution of paleogeography leading to establishment of the present drainage pattern. Establishment of drainage basin evolution is needed before geomorphic response to paleoclimate and tectonics can be assessed, because a major change in drainage basin geometry can predominantly affect the sedimentary record. Because alluvial aquifers are significant to regional hydrology, a major change in surface drainage resulting in buried alluvium could have hydrogeologic significance. In this paper, we report on geologic evidence for a major modification in surface drainage pattern in the Yucca Mountain region, resulting in the probable establishment of the Fortymile Wash drainage basin by latest Miocene time

  17. Russian aeromagnetic surveys of the Prince Charles Mountains and adjacent regions into the 21st century

    Golynsky, Alexander; Golynsky, Dmitry; Kiselev, Alexander; Masolov, Valery

    2014-05-01

    Russian aeromagnetic investigations in the Prince Charles Mountains (PCM) and surrounding areas, seek to contribute data on the tectonics of Precambrian igneous belts and cratonic fragments, the crustal structure of the Lambert Rift system and other major aspects of Antarctic geology, critical to understanding continental growth processes (Golynsky et al., 2006). Over the past decade, the Polar Marine Geoscience Expedition projects acquired approximately 77,400 line-km of aeromagnetic data over the largely ice-covered regions of MacRobertson Land and Princess Elizabeth Land. The airborne surveys were performed with a standard profile spacing of 5 km and tie-line interval of 15-25 km. The total amount of the Russian aeromagnetic data collected in this region exceeded more than 165,000 line-km. Together with the PCMEGA and AGAP surveys (Damaske and McLean, 2005; Ferraccioli et al., 2011) the PMGE dataset forms the longest transect ever mapped in East Antarctica exceeding 1950 km in length. Several distinct crustal subdivisions are clearly differentiated in the magnetic data. The high-amplitude positive anomalies that extend around the Vestfold Hills and Rauer Islands are likely be attributed to the southern boundary of high-grade metamorphic Late Archean craton. The northern PCM that are composed by ~1 Ga orthogneiss and charnockite display a predominantly northeasterly trending magnetic fabric that continues to the eastern shoulder of the Lambert Rift. The aeromagnetic data from the Southern PCM reveal the spatial boundary of the Archaean Ruker Terrane that is characterized by a short-wavelength anomalies and the prominent Ruker Anomaly that is associated with a banded iron formation. The prominent alternating system of linear NE-SW positive and negative anomalies over the eastern shoulder of the Lambert Rift may reflect the western boundary of the Princess Elizabeth Land cratonic(?) block, although its relationships and tectonic origin remained largely ambiguous

  18. Evaluating Satellite Products for Precipitation Estimation in Mountain Regions: A Case Study for Nepal

    Tarendra Lakhankar

    2013-08-01

    Full Text Available Precipitation in mountain regions is often highly variable and poorly observed, limiting abilities to manage water resource challenges. Here, we evaluate remote sensing and ground station-based gridded precipitation products over Nepal against weather station precipitation observations on a monthly timescale. We find that the Tropical Rainfall Measuring Mission (TRMM 3B-43 precipitation product exhibits little mean bias and reasonable skill in giving precipitation over Nepal. Compared to station observations, the TRMM precipitation product showed an overall Nash-Sutcliffe efficiency of 0.49, which is similar to the skill of the gridded station-based product Asian Precipitation-Highly Resolved Observational Data Integration Towards Evaluation of Water Resources (APHRODITE. The other satellite precipitation products considered (Global Satellite Mapping of Precipitation (GSMaP, the Climate Prediction Center Morphing technique (CMORPH, Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks-Cloud Classification System (PERSIANN-CCS were less skillful, as judged by Nash-Sutcliffe efficiency, and, on average, substantially underestimated precipitation compared to station observations, despite their, in some cases, higher nominal spatial resolution compared to TRMM. None of the products fully captured the dependence of mean precipitation on elevation seen in the station observations. Overall, the TRMM product is promising for use in water resources applications.

  19. Soils of Mountainous Forests and Their Transformation under the Impact of Fires in Baikal Region

    Krasnoshchekov, Yu. N.

    2018-04-01

    Data on postpyrogenic dynamics of soils under mountainous taiga cedar ( Pinus sibirica) and pine ( Pinus sylvestris) forests and subtaiga-forest-steppe pine ( Pinus sylvestris) forests in the Baikal region are analyzed. Ground litter-humus fires predominating in this region transform the upper diagnostic organic soil horizons and lead to the formation of new pyrogenic organic horizons (Opir). Adverse effects of ground fires on the stock, fractional composition, and water-physical properties of forest litters are shown. Some quantitative parameters of the liquid and solid surface runoff in burnt areas related to the slope gradient, fire intensity, and the time passed after the fire are presented. Pyrogenic destruction of forest ecosystems inevitably induces the degradation of mountainous soils, whose restoration after fires takes tens of years. The products of soil erosion from the burnt out areas complicate the current situation with the pollution of coastal waters of Lake Baikal.

  20. Dataset of Phenology of Mediterranean high-mountain meadows flora (Sierra Nevada, Spain)

    Antonio Jesús Pérez-Luque; Cristina Patricia Sánchez-Rojas; Regino Zamora; Ramón Pérez-Pérez; Francisco Javier Bonet

    2015-01-01

    Abstract Sierra Nevada mountain range (southern Spain) hosts a high number of endemic plant species, being one of the most important biodiversity hotspots in the Mediterranean basin. The high-mountain meadow ecosystems (borreguiles) harbour a large number of endemic and threatened plant species. In this data paper, we describe a dataset of the flora inhabiting this threatened ecosystem in this Mediterranean mountain. The dataset includes occurrence data for flora collected in those ecosystems...

  1. False alarms and mine seismicity: An example from the Gentry Mountain mining region, Utah

    Taylor, S.R.

    1992-01-01

    Mining regions are a cause of concern for monitoring of nuclear test ban treaties because they present the opportunity for clandestine nuclear tests (i.e. decoupled explosions). Mining operations are often characterized by high seismicity rates and can provide the cover for excavating voids for decoupling. Chemical explosions (seemingly as part of normal mining activities) can be used to complicate the signals from a simultaneous decoupled nuclear explosion. Thus, most concern about mines has dealt with the issue of missed violations to a test ban treaty. In this study, we raise the diplomatic concern of false alarms associated with mining activities. Numerous reports and papers have been published about anomalous seismicity associated with mining activities. As part of a large discrimination study in the western US (Taylor et al., 1989), we had one earthquake that was consistently classified as an explosion. The magnitude 3.5 disturbance occurred on May 14, 1981 and was conspicuous in its lack of Love waves, relative lack of high- frequency energy, low Lg/Pg ratio, and high m b - M s . A moment-tensor solution by Patton and Zandt (1991) indicated the event had a large implosional component. The event occurred in the Gentry Mountain coal mining region in the eastern Wasatch Plateau, Utah. Using a simple source representation, we modeled the event as a tabular excavation collapse that occurred as a result of normal mining activities. This study raises the importance of having a good catalogue of seismic data and information about mining activities from potential proliferant nations

  2. Development of State Interindustry Models for Rocky Mountain Region and California

    Sathaye, Jayant A.; Kunin, Leonard

    1976-02-01

    Interindustry tables have been developed for the eight Rocky Mountain States and California. These tables are based on the 367-order 1967 national interindustry table. The national matrix was expanded to 404 sectors by disaggregating the seven minerals industries to 44 industries. The state tables can be used for energy and other resource analysis. Regional impacts of alternate development strategies can be evaluated with their use. A general computer program has been developed to facilitate construction of state interindustry tables.

  3. Multidimensional poverty and catastrophic health spending in the mountainous regions of Myanmar, Nepal and India.

    Mohanty, Sanjay K; Agrawal, Nand Kishor; Mahapatra, Bidhubhusan; Choudhury, Dhrupad; Tuladhar, Sabarnee; Holmgren, E Valdemar

    2017-01-18

    Economic burden to households due to out-of-pocket expenditure (OOPE) is large in many Asian countries. Though studies suggest increasing household poverty due to high OOPE in developing countries, studies on association of multidimensional poverty and household health spending is limited. This paper tests the hypothesis that the multidimensionally poor are more likely to incur catastrophic health spending cutting across countries. Data from the Poverty and Vulnerability Assessment (PVA) Survey carried out by the International Center for Integrated Mountain Development (ICIMOD) has been used in the analyses. The PVA survey was a comprehensive household survey that covered the mountainous regions of India, Nepal and Myanmar. A total of 2647 households from India, 2310 households in Nepal and 4290 households in Myanmar covered under the PVA survey. Poverty is measured in a multidimensional framework by including the dimensions of education, income and energy, water and sanitation using the Alkire and Foster method. Health shock is measured using the frequency of illness, family sickness and death of any family member in a reference period of one year. Catastrophic health expenditure is defined as 40% above the household's capacity to pay. Results suggest that about three-fifths of the population in Myanmar, two-fifths of the population in Nepal and one-third of the population in India are multidimensionally poor. About 47% of the multidimensionally poor in India had incurred catastrophic health spending compared to 35% of the multidimensionally non-poor and the pattern was similar in both Nepal and Myanmar. The odds of incurring catastrophic health spending was 56% more among the multidimensionally poor than among the multidimensionally non-poor [95% CI: 1.35-1.76]. While health shocks to households are consistently significant predictors of catastrophic health spending cutting across country of residence, the educational attainment of the head of the household is

  4. High bacterial diversity in epilithic biofilms of oligotrophic mountain lakes.

    Bartrons, Mireia; Catalan, Jordi; Casamayor, Emilio O

    2012-11-01

    Benthic microbial biofilms attached to rocks (epilithic) are major sites of carbon cycling and can dominate ecosystem primary production in oligotrophic lakes. We studied the bacterial community composition of littoral epilithic biofilms in five connected oligotrophic high mountain lakes located at different altitudes by genetic fingerprinting and clone libraries of the 16S rRNA gene. Different intra-lake samples were analyzed, and consistent changes in community structure (chlorophyll a and organic matter contents, and bacterial community composition) were observed along the altitudinal gradient, particularly related with the location of the lake above or below the treeline. Epilithic biofilm genetic fingerprints were both more diverse among lakes than within lakes and significantly different between montane (below the tree line) and alpine lakes (above the tree line). The genetic richness in the epilithic biofilm was much higher than in the plankton of the same lacustrine area studied in previous works, with significantly idiosyncratic phylogenetic composition (specifically distinct from lake plankton or mountain soils). Data suggest the coexistence of aerobic, anaerobic, phototrophic, and chemotrophic microorganisms in the biofilm, Bacteroidetes and Cyanobacteria being the most important bacterial taxa, followed by Alpha-, Beta-, Gamma-, and Deltaproteobacteria, Chlorobi, Planctomycetes, and Verrucomicrobia. The degree of novelty was especially high for epilithic Bacteroidetes, and up to 50 % of the sequences formed monophyletic clusters distantly related to any previously reported sequence. More than 35 % of the total sequences matched at <95 % identity to any previously reported 16S rRNA gene, indicating that alpine epilithic biofilms are unexplored habitats that contain a substantial degree of novelty within a short geographical distance. Further research is needed to determine whether these communities are involved in more biogeochemical pathways than

  5. Nuclear interactions of super high energy cosmic-rays observed by mountain emulsion chambers

    1981-01-01

    Here is presented a summary of joint discussions on the results of three mountain experiments with large-scale emulsion chambers, at Pamir, Mt. Fuji and Chacaltaya. The observation covers gamma-quanta, hadrons and their clusters (called ''families''). Following topics are covered concerning on characteristics of nuclear interactions in energy region of 10 14 - 10 16 eV: 1) rapid dissipation seen in atmospheric diffusion of high energy cosmic-rays, 2) multiplicity and p sub(t) increase in produced pimesons in the fragmentation region, 3) existence of large p sub(t) jets, 4) extremely-hadron-rich family of Centauro type, 5) exotic phenomena at extremely high energy region beyond 10 16 eV. (author)

  6. Big mountains but small barriers: population genetic structure of the Chinese wood frog (Rana chensinensis) in the Tsinling and Daba Mountain region of northern China.

    Zhan, Aibin; Li, Cheng; Fu, Jinzhong

    2009-04-09

    Amphibians in general are poor dispersers and highly philopatric, and landscape features often have important impacts on their population genetic structure and dispersal patterns. Numerous studies have suggested that genetic differentiation among amphibian populations are particularly pronounced for populations separated by mountain ridges. The Tsinling Mountain range of northern China is a major mountain chain that forms the boundary between the Oriental and Palearctic zoogeographic realms. We studied the population structure of the Chinese wood frog (Rana chensinensis) to test whether the Tsinling Mountains and the nearby Daba Mountains impose major barriers to gene flow. Using 13 polymorphic microsatellite DNA loci, 523 individuals from 12 breeding sites with geographical distances ranging from 2.6 to 422.8 kilometers were examined. Substantial genetic diversity was detected at all sites with an average of 25.5 alleles per locus and an expected heterozygosity ranging from 0.504 to 0.855, and two peripheral populations revealed significantly lower genetic diversity than the central populations. In addition, the genetic differentiation among the central populations was statistically significant, with pairwise FST values ranging from 0.0175 to 0.1625 with an average of 0.0878. Furthermore, hierarchical AMOVA analysis attributed most genetic variation to the within-population component, and the between-population variation can largely be explained by isolation-by-distance. None of the putative barriers detected from genetic data coincided with the location of the Tsinling Mountains. The Tsinling and Daba Mountains revealed no significant impact on the population genetic structure of R. chensinensis. High population connectivity and extensive juvenile dispersal may account for the significant, but moderate differentiation between populations. Chinese wood frogs are able to use streams as breeding sites at high elevations, which may significantly contribute to the

  7. Big mountains but small barriers: Population genetic structure of the Chinese wood frog (Rana chensinensis in the Tsinling and Daba Mountain region of northern China

    Li Cheng

    2009-04-01

    Full Text Available Abstract Background Amphibians in general are poor dispersers and highly philopatric, and landscape features often have important impacts on their population genetic structure and dispersal patterns. Numerous studies have suggested that genetic differentiation among amphibian populations are particularly pronounced for populations separated by mountain ridges. The Tsinling Mountain range of northern China is a major mountain chain that forms the boundary between the Oriental and Palearctic zoogeographic realms. We studied the population structure of the Chinese wood frog (Rana chensinensis to test whether the Tsinling Mountains and the nearby Daba Mountains impose major barriers to gene flow. Results Using 13 polymorphic microsatellite DNA loci, 523 individuals from 12 breeding sites with geographical distances ranging from 2.6 to 422.8 kilometers were examined. Substantial genetic diversity was detected at all sites with an average of 25.5 alleles per locus and an expected heterozygosity ranging from 0.504 to 0.855, and two peripheral populations revealed significantly lower genetic diversity than the central populations. In addition, the genetic differentiation among the central populations was statistically significant, with pairwise FST values ranging from 0.0175 to 0.1625 with an average of 0.0878. Furthermore, hierarchical AMOVA analysis attributed most genetic variation to the within-population component, and the between-population variation can largely be explained by isolation-by-distance. None of the putative barriers detected from genetic data coincided with the location of the Tsinling Mountains. Conclusion The Tsinling and Daba Mountains revealed no significant impact on the population genetic structure of R. chensinensis. High population connectivity and extensive juvenile dispersal may account for the significant, but moderate differentiation between populations. Chinese wood frogs are able to use streams as breeding sites at high

  8. A closure study of aerosol optical properties at a regional background mountainous site in Eastern China

    Yuan, Liang [Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing 210044 (China); Key Laboratory for Aerosol–Cloud–Precipitation of China Meteorological Administration, School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing 210044 (China); Yin, Yan, E-mail: yinyan@nuist.edu.cn [Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing 210044 (China); Key Laboratory for Aerosol–Cloud–Precipitation of China Meteorological Administration, School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing 210044 (China); Xiao, Hui [Key Laboratory for Aerosol–Cloud–Precipitation of China Meteorological Administration, School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing 210044 (China); Yu, Xingna [Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing 210044 (China); Key Laboratory for Aerosol–Cloud–Precipitation of China Meteorological Administration, School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing 210044 (China); Hao, Jian; Chen, Kui [Key Laboratory for Aerosol–Cloud–Precipitation of China Meteorological Administration, School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing 210044 (China); and others

    2016-04-15

    There is a large uncertainty in evaluating the radiative forcing from aerosol–radiation and aerosol–cloud interactions due to the limited knowledge on aerosol properties. In-situ measurements of aerosol physical and chemical properties were carried out in 2012 at Mt. Huang (the Yellow Mountain), a continental background mountainous site in eastern China. An aerosol optical closure study was performed to verify the model outputs by using the measured aerosol optical properties, in which a spherical Mie model with assumptions of external and core–shell mixtures on the basis of a two-component optical aerosol model and high size-segregated element carbon (EC) ratio was applied. Although the spherical Mie model would underestimate the real scattering with increasing particle diameters, excellent agreement between the calculated and measured values was achieved with correlation coefficients above 0.98. Sensitivity experiments showed that the EC ratio had a negligible effect on the calculated scattering coefficient, but largely influenced the calculated absorption coefficient. The high size-segregated EC ratio averaged over the study period in the closure was enough to reconstruct the aerosol absorption coefficient in the Mie model, indicating EC size resolution was more important than time resolution in retrieving the absorption coefficient in the model. The uncertainties of calculated scattering and absorption coefficients due to the uncertainties of measurements and model assumptions yielded by a Monte Carlo simulation were ± 6% and ± 14% for external mixture and ± 9% and ± 31% for core–shell mixture, respectively. This study provided an insight into the inherent relationship between aerosol optical properties and physicochemical characteristics in eastern China, which could supplement the database of aerosol optical properties for background sites in eastern China and provide a method for regions with similar climate. - Highlights: • A spherical Mie

  9. A closure study of aerosol optical properties at a regional background mountainous site in Eastern China

    Yuan, Liang; Yin, Yan; Xiao, Hui; Yu, Xingna; Hao, Jian; Chen, Kui

    2016-01-01

    There is a large uncertainty in evaluating the radiative forcing from aerosol–radiation and aerosol–cloud interactions due to the limited knowledge on aerosol properties. In-situ measurements of aerosol physical and chemical properties were carried out in 2012 at Mt. Huang (the Yellow Mountain), a continental background mountainous site in eastern China. An aerosol optical closure study was performed to verify the model outputs by using the measured aerosol optical properties, in which a spherical Mie model with assumptions of external and core–shell mixtures on the basis of a two-component optical aerosol model and high size-segregated element carbon (EC) ratio was applied. Although the spherical Mie model would underestimate the real scattering with increasing particle diameters, excellent agreement between the calculated and measured values was achieved with correlation coefficients above 0.98. Sensitivity experiments showed that the EC ratio had a negligible effect on the calculated scattering coefficient, but largely influenced the calculated absorption coefficient. The high size-segregated EC ratio averaged over the study period in the closure was enough to reconstruct the aerosol absorption coefficient in the Mie model, indicating EC size resolution was more important than time resolution in retrieving the absorption coefficient in the model. The uncertainties of calculated scattering and absorption coefficients due to the uncertainties of measurements and model assumptions yielded by a Monte Carlo simulation were ± 6% and ± 14% for external mixture and ± 9% and ± 31% for core–shell mixture, respectively. This study provided an insight into the inherent relationship between aerosol optical properties and physicochemical characteristics in eastern China, which could supplement the database of aerosol optical properties for background sites in eastern China and provide a method for regions with similar climate. - Highlights: • A spherical Mie

  10. Household Perceptions about the Impacts of Climate Change on Food Security in the Mountainous Region of Nepal

    Shobha Poudel

    2017-04-01

    Full Text Available This study tried to understand the mountainous households’ perception of climate change and its impacts on food security in the Lamjung district of Nepal. The study attempted to find out changes in households food security and daily activities in the face of climate change for the last twenty years. The study started with the 150 household surveys along with participatory rural appraisal to understand the climate change perception of local people and its impact on dimensions of food security. Households expressed different levels of perception in terms of climate change on food security. The result shows that most of the mountainous households experienced increased temperature, less rainfall in winter, an increasing number of natural disasters and the emergence of insects for the last twenty years. They perceived the role of climate change in decreased crop production, decreased dairy products and increased household work. The situation of food security is likely to be more vulnerable to climate change in the future. It was also observed that households have been using different autonomous adaptation measures, such as high yielding crop varieties, enhanced irrigation systems and fertilizers, to cope with the changing climate. Finally, the study recommended policy instruments to enhance food security in the mountainous region amidst changing climate.

  11. Mountain birch – potentially large source of sesquiterpenes into high latitude atmosphere

    A. Arneth

    2009-11-01

    Full Text Available Emissions of volatile organic compounds (VOCs from mountain birches were measured in Abisko, northern Sweden. Mountain birches make up the majority of the tree biomass in Scandinavian high latitudes, a region subject to significant climate warming. The measurements were carried out in two growing seasons. The emissions of four branches, each from a different individual tree, were measured in June–August 2006 and one of them again in July 2007. The measurements were conducted using a dynamic flow through chamber covered with Teflon film. The studied mountain birches were found to emit substantial amounts of linalool, monoterpenes and sesquiterpenes. The monoterpene emission was dominated by sabinene. The magnitude and composition of the sesquiterpene emission changed dramatically between the years. For example, the average α-farnesene emission potential in 2006 was almost 2600 ng gdw−1 h−1 (3.5 pmol gdw−1 s−1 while in 2007 α-farnesene was not detected at all. Also the emissions of other sesquiterpenes decreased in 2007 to a fraction of that in 2006. One possible explanation for the change in emissions is the herbivory damage that occurred in the area in 2004. Herbivory is known to enhance the emissions of sesquiterpenes, especially those of α-farnesene, and the effect may last for several years.

  12. High variability of dung beetle diversity patterns at four mountains of the Trans-Mexican Volcanic Belt

    Alfonsina Arriaga-Jiménez

    2018-02-01

    Full Text Available Insect diversity patterns of high mountain ecosystems remain poorly studied in the tropics. Sampling dung beetles of the subfamilies Aphodiinae, Scarabaeinae, and Geotrupinae was carried out at four volcanoes in the Trans-Mexican Volcanic Belt (TMVB in the Mexican transition zone at 2,700 and 3,400 MASL, and on the windward and leeward sides. Sampling units represented a forest–shrubland–pasture (FSP mosaic typical of this mountain region. A total of 3,430 individuals of 29 dung beetle species were collected. Diversity, abundance and compositional similarity (CS displayed a high variability at all scales; elevation, cardinal direction, or FSP mosaics did not show any patterns of higher or lower values of those measures. The four mountains were different regarding dispersion patterns and taxonomic groups, both for species and individuals. Onthophagus chevrolati dominated all four mountains with an overall relative abundance of 63%. CS was not related to distance among mountains, but when O. chevrolati was excluded from the analysis, CS values based on species abundance decreased with increasing distance. Speciation, dispersion, and environmental instability are suggested as the main drivers of high mountain diversity patterns, acting together at different spatial and temporal scales. Three species new to science were collected (>10% of all species sampled. These discoveries may indicate that speciation rate is high among these volcanoes—a hypothesis that is also supported by the elevated number of collected species with a restricted montane distribution. Dispersion is an important factor in driving species composition, although naturally limited between high mountains; horizontal colonization events at different time scales may best explain the observed species composition in the TMVB, complemented by vertical colonization events to a lesser extent. Environmental instability may be the main factor causing the high variability of diversity

  13. High variability of dung beetle diversity patterns at four mountains of the Trans-Mexican Volcanic Belt.

    Arriaga-Jiménez, Alfonsina; Rös, Matthias; Halffter, Gonzalo

    2018-01-01

    Insect diversity patterns of high mountain ecosystems remain poorly studied in the tropics. Sampling dung beetles of the subfamilies Aphodiinae, Scarabaeinae, and Geotrupinae was carried out at four volcanoes in the Trans-Mexican Volcanic Belt (TMVB) in the Mexican transition zone at 2,700 and 3,400 MASL, and on the windward and leeward sides. Sampling units represented a forest-shrubland-pasture (FSP) mosaic typical of this mountain region. A total of 3,430 individuals of 29 dung beetle species were collected. Diversity, abundance and compositional similarity (CS) displayed a high variability at all scales; elevation, cardinal direction, or FSP mosaics did not show any patterns of higher or lower values of those measures. The four mountains were different regarding dispersion patterns and taxonomic groups, both for species and individuals. Onthophagus chevrolati dominated all four mountains with an overall relative abundance of 63%. CS was not related to distance among mountains, but when O. chevrolati was excluded from the analysis, CS values based on species abundance decreased with increasing distance. Speciation, dispersion, and environmental instability are suggested as the main drivers of high mountain diversity patterns, acting together at different spatial and temporal scales. Three species new to science were collected (>10% of all species sampled). These discoveries may indicate that speciation rate is high among these volcanoes-a hypothesis that is also supported by the elevated number of collected species with a restricted montane distribution. Dispersion is an important factor in driving species composition, although naturally limited between high mountains; horizontal colonization events at different time scales may best explain the observed species composition in the TMVB, complemented by vertical colonization events to a lesser extent. Environmental instability may be the main factor causing the high variability of diversity and abundance patterns

  14. Recent and future warm extreme events and high-mountain slope stability.

    Huggel, C; Salzmann, N; Allen, S; Caplan-Auerbach, J; Fischer, L; Haeberli, W; Larsen, C; Schneider, D; Wessels, R

    2010-05-28

    The number of large slope failures in some high-mountain regions such as the European Alps has increased during the past two to three decades. There is concern that recent climate change is driving this increase in slope failures, thus possibly further exacerbating the hazard in the future. Although the effects of a gradual temperature rise on glaciers and permafrost have been extensively studied, the impacts of short-term, unusually warm temperature increases on slope stability in high mountains remain largely unexplored. We describe several large slope failures in rock and ice in recent years in Alaska, New Zealand and the European Alps, and analyse weather patterns in the days and weeks before the failures. Although we did not find one general temperature pattern, all the failures were preceded by unusually warm periods; some happened immediately after temperatures suddenly dropped to freezing. We assessed the frequency of warm extremes in the future by analysing eight regional climate models from the recently completed European Union programme ENSEMBLES for the central Swiss Alps. The models show an increase in the higher frequency of high-temperature events for the period 2001-2050 compared with a 1951-2000 reference period. Warm events lasting 5, 10 and 30 days are projected to increase by about 1.5-4 times by 2050 and in some models by up to 10 times. Warm extremes can trigger large landslides in temperature-sensitive high mountains by enhancing the production of water by melt of snow and ice, and by rapid thaw. Although these processes reduce slope strength, they must be considered within the local geological, glaciological and topographic context of a slope.

  15. Rates and causes of accidents for general aviation aircraft operating in a mountainous and high elevation terrain environment.

    Aguiar, Marisa; Stolzer, Alan; Boyd, Douglas D

    2017-10-01

    Flying over mountainous and/or high elevation terrain is challenging due to rapidly changeable visibility, gusty/rotor winds and downdrafts and the necessity of terrain avoidance. Herein, general aviation accident rates and mishap cause/factors were determined (2001-2014) for a geographical region characterized by such terrain. Accidents in single piston engine-powered aircraft for states west of the US continental divide characterized by mountainous terrain and/or high elevation (MEHET) were identified from the NTSB database. MEHET-related-mishaps were defined as satisfying any one, or more, criteria (controlled flight into terrain/obstacles (CFIT), downdrafts, mountain obscuration, wind-shear, gusting winds, whiteout, instrument meteorological conditions; density altitude, dust-devil) cited as factors/causal in the NTSB report. Statistics employed Poisson distribution and contingency tables. Although the MEHET-related accident rate declined (pairplanes and flying under IFR to assure terrain clearance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Snowmelt and sublimation: field experiments and modelling in the High Atlas Mountains of Morocco

    O. Schulz

    2004-01-01

    Full Text Available Snow in the High Atlas Mountains is a major source for freshwater renewal and for water availability in the semi-arid lowlands of south-eastern Morocco. Snowfall- and snow-ablation monitoring and modelling is important for estimating potential water delivery from the mountain water towers to the forelands. This study is part of GLOWA-IMPETUS, an integrated management project dealing with scarce water resources in West Africa. The Ameskar study area is located to the south of the High Atlas Mountains, in their rain shadow. As a part of the M’Goun river basin within the upper Drâa valley, the study area is characterised by high radiation inputs, low atmospheric humidity and long periods with sub-zero temperatures. Its altitude ranges between 2000 m and 4000 m, with dominant north- and south-facing slopes. Snowfall occurs mainly from November to April but even summit regions can become repeatedly devoid of snow cover. Snow cover maps for the M’Goun basin (1240 km2 are derived from calculations of NDSI (Normalized Difference Snow Index from MODIS satellite images and snow depth is monitored at four automatic weather stations between 2000–4000 m. Snowfall events are infrequent at lower altitudes. The presence of snow penitentes at altitudes above 3000 m indicates that snow sublimation is an important component of snow ablation. Snow ablation was modelled with the UEB Utah Energy Balance Model (Tarboton and Luce, 1996. This single layer, physically-based, point energy and mass balance model is driven by meteorological variables recorded at the automatic weather stations at Tounza (2960 m and Tichki (3260 m. Data from snow pillows at Tounza and Tichki are used to validate the model’s physical performance in terms of energy and water balances for a sequence of two snowfall events in the winter of 2003/4. First UEB modelling results show good overall performance and timing of snowmelt and sublimation compared to field investigations. Up to 44

  17. Tourist phenomenon in Geoagiu Spa region within the Central Metaliferi Mountains

    Dombay Ştefan

    2010-01-01

    Full Text Available The Central Metaliferi Mountains, situated in south-central side of the Apuseni Mountains, have a variety of natural and anthropic touristic potential, but, unfortunately, less known and not enough exploited. After conducting a survey in Geoagiu Spa we specifically recommend the following: increased number of one day tours, which are the main tourist destination in the region, many tours for visiting the major centers of cultural - historical monuments related to our past history, granting economic incentives for organizer of youth groups to attract the youth, diversification of tourist routes with thematic actions: curiosities of nature, environment, organizing sports events with different timetable covering all seasons and all series, attracting local and foreign investors by providing tax incentives and financial programs introducing touristic resort in the international circuit. .

  18. An overview of the Yucca Mountain Global/Regional Climate Modeling Program

    Sandoval, R.P.; Behl, Y.K.; Thompson, S.L.

    1992-01-01

    The US Department of Energy (DOE) has developed a site characterization plan (SCP) to collect detailed information on geology, geohydrology, geochemistry, geoengineering, hydrology, climate, and meteorology (collectively referred to as ''geologic information'') of the Yucca Mountain site. This information will be used to determine if a mined geologic disposal system (MGDS) capable of isolating high-level radioactive waste without adverse effects to public health and safety over 10,000 years, as required by regulations 40 CFR Part 191 and 10 CFR Part 60, could be constructed at the Yucca Mountain site. Forecasts of future climates conditions for the Yucca Mountain area will be based on both empirical and numerical techniques. The empirical modeling is based on the assumption that future climate change will follow past patterns. In this approach, paleclimate records will be analyzed to estimate the nature, timing, and probability of occurrence of certain climate states such as glacials and interglacials over the next 10,000 years. For a given state, key climate parameters such as precipitation and temperature will be assumed to be the same as determined from the paleoclimate data. The numerical approach, which is the primary focus of this paper, involves the numerical solution of basic equations associated with atmospheric motions. This paper describes these equations and the strategy for solving them to predict future climate conditions around Yucca Mountain

  19. Better utilization of ground water in the Piedmont and mountain region of the southeast

    Heath, Ralph C.

    1979-01-01

    The development of water supplies for domestic consumption, and for those commercial and industrial uses requiring relatively pure water, has followed a pattern in the Piedmont and mountain areas of the southeast similar to that in most other humid areas. The first settlers utilized seepage springs on hillsides. Such springs occur along steep slopes where the water table intersects the land surface. As the population of the region grew, it became increasingly necessary to resort to shallow dug wells for domestic water supplies. Such wells also served as sources of water for the villages that developed, in time, around crossroad taverns. Seepage springs and dug wells are a satisfactory source of water in a virgin environment but are quickly polluted by careless waste-disposal practices. Thus disposal of domestic wastes in shallow pits resulted in epidemics of water-borne diseases as the villages grew into towns. This resulted in the third phase of water-supply development, which consisted of installing water lines and supplying water to homes from town-owned wells. In time, some of these wells became polluted and others failed to supply adequate water for the increasing needs of the larger urban areas. In the fourth phase these areas met their needs by drawing water from nearby streams. By the early years of this century it was possible to make this water palatable and relatively safe as a result of improvement in filtration methods. Streams, of course, have highly variable rates of flow and, as towns grew into small cities, the minimum flow of many streams was not adequate to meet the water-supply needs. This problem was solved in the fifth phase by building dams on the streams. We are still in this phase as we build larger and larger reservoirs to meet our growing water needs. Thus, through five phases of growth in the Piedmont and mountains we have advanced from the point where ground water was the sole source of supply to the point where it is the forgotten

  20. Groundwater Recharge and Flow Processes in Taihang Mountains, a Semi-humid Region, North China

    Sakakibara, Koichi; Tsujimura, Maki; Song, Xianfang; Zhang, Jie

    2015-04-01

    Groundwater flow/recharge variations in time and space are crucial for effective water management especially in semi-arid and semi-humid regions. In order to reveal comprehensive groundwater flow/recharge processes in a catchment with a large topographical relief and seasonal hydrological variations, intensive field surveys were undertaken at 4 times in different seasons (June 2011, August 2012, November 2012, February 2014) in the Wangkuai watershed, Taihang mountains, which is a main groundwater recharge area of the North China Plain. The groundwater, spring, stream water and reservoir water were taken, and inorganic solute constituents and stable isotopes of oxygen-18 and deuterium were determined on all water samples. Also, the stream flow rate and the depth of groundwater table were observed. The stable isotopic compositions and inorganic solute constituents in the groundwater are depleted and shown similar values as those of the surface water at the mountain-plain transitional area. Additionally, the groundwater in the vicinity of the Wangkuai Reservoir presents clearly higher stable isotopic compositions and lower d-excess than those of the stream water, indicating the groundwater around the reservoir is affected by evaporation same as the Wangkuai Reservoir itself. Hence, the surface water in the mountain-plain transitional area and Wangkuai Reservoir are principal groundwater recharge sources. An inversion analysis and simple mixing model were applied in the Wangkuai watershed using stable isotopes of oxygen-18 and deuterium to construct a groundwater flow model. The model shows that multi-originated groundwater flows from upstream to downstream along topography with certain mixing. In addition, the groundwater recharge occurs dominantly at the altitude from 421 m to 953 m, and the groundwater recharge rate by the Wangkuai Reservoir is estimated to be 2.4 % of the total groundwater recharge in the Wangkuai watershed. Therefore, the stream water and

  1. The scramble for Africa: pan-temperate elements on the African high mountains.

    Gehrke, Berit; Linder, H Peter

    2009-07-22

    The composition of isolated floras has long been thought to be the result of relatively rare long-distance dispersal events. However, it has recently become apparent that the recruitment of lineages may be relatively easy and that many dispersal events from distant but suitable habitats have occurred, even at an infraspecific level. The evolution of the flora on the high mountains of Africa has been attributed to the recruitment of taxa not only from the African lowland flora or the Cape Floristic Region, but also to a large extent from other areas with temperate climates. We used the species rich, pan-temperate genera Carex, Ranunculus and Alchemilla to explore patterns in the number of recruitment events and region of origin. Molecular phylogenetic analyses, parametric bootstrapping and ancestral area optimizations under parsimony indicate that there has been a high number of colonization events of Carex and Ranunculus into Africa, but only two introductions of Alchemilla. Most of the colonization events have been derived from Holarctic ancestors. Backward dispersal out of Africa seems to be extremely rare. Thus, repeated colonization from the Northern Hemisphere in combination with in situ radiation has played an important role in the composition of the flora of African high mountains.

  2. MARKETIZATION OF GREEN FOOD RESOURCES IN FOREST REGION OF THE CHANGBAI MOUNTAINS

    XIAO Yan

    2004-01-01

    The Changbai Mountains is rich in the resources of green food. At present, the low marketization of green food resources in the forest region of the Changbai Mountains becomes the bottleneck to restrict the benign development of its green food industry. With huge market demands at home and abroad, it is the urgent problem how to improve marketization process of green food resources and transfer the resources superiority into the market superiority in the region. According to the investigation, this paper analyzed the status quo and the cause of formation of low-marketization with the method of combining comparative research and practice research. It pointed out that necessary condition of marketization of green food resources in the forest region, such as strategy, economic environment, marketization allocation of sci-tech resources, etc. should be established. Furthermore, the concrete strategies of marketization of green food resources in the region such as market location, strategies of objective markets, combined strategy of marketing, etc. were advanced.

  3. Impact of climate change on the hydrology of High Mountain Asia

    Lutz, A.

    2016-01-01

    In Asia, water resources largely depend on water generated in the mountainous upstream parts of several large river basins and hundreds of millions of people depend on their waters downstream. The large-scale impacts of climate change for the water resources in High Mountain Asia are poorly

  4. Mountains on Io: High-resolution Galileo observations, initial interpretations, and formation models

    Turtle, E.P.; Jaeger, W.L.; Keszthelyi, L.P.; McEwen, A.S.; Milazzo, M.; Moore, J.; Phillips, C.B.; Radebaugh, J.; Simonelli, D.; Chuang, F.; Schuster, P.; Alexander, D.D.A.; Capraro, K.; Chang, S.-H.; Chen, A.C.; Clark, J.; Conner, D.L.; Culver, A.; Handley, T.H.; Jensen, D.N.; Knight, D.D.; LaVoie, S.K.; McAuley, M.; Mego, V.; Montoya, O.; Mortensen, H.B.; Noland, S.J.; Patel, R.R.; Pauro, T.M.; Stanley, C.L.; Steinwand, D.J.; Thaller, T.F.; Woncik, P.J.; Yagi, G.M.; Yoshimizu, J.R.; Alvarez Del Castillo, E.M.; Beyer, R.; Branston, D.; Fishburn, M.B.; Muller, Birgit; Ragan, R.; Samarasinha, N.; Anger, C.D.; Cunningham, C.; Little, B.; Arriola, S.; Carr, M.H.; Asphaug, E.; Morrison, D.; Rages, K.; Banfield, D.; Bell, M.; Burns, J.A.; Carcich, B.; Clark, B.; Currier, N.; Dauber, I.; Gierasch, P.J.; Helfenstein, P.; Mann, M.; Othman, O.; Rossier, L.; Solomon, N.; Sullivan, R.; Thomas, P.C.; Veverka, J.; Becker, T.; Edwards, K.; Gaddis, L.; Kirk, R.; Lee, E.; Rosanova, T.; Sucharski, R.M.; Beebe, R.F.; Simon, A.; Belton, M.J.S.; Bender, K.; Fagents, S.; Figueredo, P.; Greeley, R.; Homan, K.; Kadel, S.; Kerr, J.; Klemaszewski, J.; Lo, E.; Schwarz, W.; Williams, D.; Williams, K.; Bierhaus, B.; Brooks, S.; Chapman, C.R.; Merline, B.; Keller, J.; Tamblyn, P.; Bouchez, A.; Dyundian, U.; Ingersoll, A.P.; Showman, A.; Spitale, J.; Stewart, S.; Vasavada, A.; Breneman, H.H.; Cunningham, W.F.; Johnson, T.V.; Jones, T.J.; Kaufman, J.M.; Klaasen, K.P.; Levanas, G.; Magee, K.P.; Meredith, M.K.; Orton, G.S.; Senske, D.A.; West, A.; Winther, D.; Collins, G.; Fripp, W.J.; Head, J. W.; Pappalardo, R.; Pratt, S.; Prockter, L.; Spaun, N.; Colvin, T.; Davies, M.; DeJong, E.M.; Hall, J.; Suzuki, S.; Gorjian, Z.; Denk, T.; Giese, B.; Koehler, U.; Neukum, G.; Oberst, J.; Roatsch, T.; Tost, W.; Wagner, R.; Dieter, N.; Durda, D.; Geissler, P.; Greenberg, R.J.; Hoppa, G.; Plassman, J.; Tufts, R.; Fanale, F.P.; Granahan, J.C.

    2001-01-01

    During three close flybys in late 1999 and early 2000 the Galileo spacecraft ac-quired new observations of the mountains that tower above Io's surface. These images have revealed surprising variety in the mountains' morphologies. They range from jagged peaks several kilometers high to lower, rounded structures. Some are very smooth, others are covered by numerous parallel ridges. Many mountains have margins that are collapsing outward in large landslides or series of slump blocks, but a few have steep, scalloped scarps. From these observations we can gain insight into the structure and material properties of Io's crust as well as into the erosional processes acting on Io. We have also investigated formation mechanisms proposed for these structures using finite-element analysis. Mountain formation might be initiated by global compression due to the high rate of global subsidence associated with Io's high resurfacing rate; however, our models demonstrate that this hypothesis lacks a mechanism for isolating the mountains. The large fraction (???40%) of mountains that are associated with paterae suggests that in some cases these features are tectonically related. Therefore we have also simulated the stresses induced in Io's crust by a combination of a thermal upwelling in the mantle with global lithospheric compression and have shown that this can focus compressional stresses. If this mechanism is responsible for some of Io's mountains, it could also explain the common association of mountains with paterae. Copyright 2001 by the American Geophysical Union.

  5. Cross-scale analysis of the region effect on vascular plant species diversity in southern and northern European mountain ranges.

    Jonathan Lenoir

    Full Text Available BACKGROUND: The divergent glacial histories of southern and northern Europe affect present-day species diversity at coarse-grained scales in these two regions, but do these effects also penetrate to the more fine-grained scales of local communities? METHODOLOGY/PRINCIPAL FINDINGS: We carried out a cross-scale analysis to address this question for vascular plants in two mountain regions, the Alps in southern Europe and the Scandes in northern Europe, using environmentally paired vegetation plots in the two regions (n = 403 in each region to quantify four diversity components: (i total number of species occurring in a region (total γ-diversity, (ii number of species that could occur in a target plot after environmental filtering (habitat-specific γ-diversity, (iii pair-wise species compositional turnover between plots (plot-to-plot β-diversity and (iv number of species present per plot (plot α-diversity. We found strong region effects on total γ-diversity, habitat-specific γ-diversity and plot-to-plot β-diversity, with a greater diversity in the Alps even towards distances smaller than 50 m between plots. In contrast, there was a slightly greater plot α-diversity in the Scandes, but with a tendency towards contrasting region effects on high and low soil-acidity plots. CONCLUSIONS/SIGNIFICANCE: We conclude that there are strong regional differences between coarse-grained (landscape- to regional-scale diversity components of the flora in the Alps and the Scandes mountain ranges, but that these differences do not necessarily penetrate to the finest-grained (plot-scale diversity component, at least not on acidic soils. Our findings are consistent with the contrasting regional Quaternary histories, but we also consider alternative explanatory models. Notably, ecological sorting and habitat connectivity may play a role in the unexpected limited or reversed region effect on plot α-diversity, and may also affect the larger-scale diversity

  6. Application of a complex assessment of landslide hazards in mountain regions

    Kateryna E. Boyko

    2017-09-01

    Full Text Available The main regional factors of occurrence and activation of landslides within the mountain region were examined. As a result of study of recommendations made by experts, geologists, and gap analysis of existing methods of forecasting the landslide process, an algorithm of comprehensive assessment of landslide hazard areas based on the construction of models in a GIS environment was proposed. These models describe the spatial patterns of landslides. All factors determining the tendency of the studies area to the landslide process development were divided into actual factors, reflecting the regional peculiarities of the territory and forming the landslide-prone slopes (static model, as well as triggering factors, initiating the landslide process and determining its activity (dynamic model. The first cartographic model was built, showing the distribution of the deterministic indirect indicator of landslide hazard, i.e. stability index.

  7. The relationship of the Yucca Mountain repository block to the regional ground-water system: A geochemical model

    Matuska, N.A.; Hess, J.W.

    1989-08-01

    Yucca Mountain, in southern Nevada, is being studied by the Department of Energy and the State of Nevada as the site of a high-level nuclear waste repository. Geochemical and isotopic modeling were used in this study to define the relationship of the volcanic tuff aquifers and aquitards to the underlying regional carbonate ground-water system. The chemical evolution of a ground water as it passes through a hypothetical tuffaceous aquifer was developed using computer models PHREEQE, WATEQDR and BALANCE. The tuffaceous system was divided into five parts, with specific mineralogies, reaction steps and temperatures. The initial solution was an analysis of a soil water from Rainier Mesa. The ending solution in each part became the initial solution in the next part. Minerals consisted of zeolites, smectites, authigenic feldspars and quartz polymorphs from described diagentic mineral zones. Reaction steps were ion exchange with zeolites. The solution from the final zone, Part V, was chosen as most representative, in terms of pH, element molalities and mineral solubilities, of tuffaceous water. This hypothetical volcanic water from Part V was mixed with water from the regional carbonate aquifer, and the results compared to analyses of Yucca Mountain wells. Mixing and modeling attempts were conducted on wells in which studies indicated upward flow

  8. Physical processes and effects of magmatism in the Yucca Mountain region

    Valentine, G.A.; Crowe, B.M.; Perry, F.V.

    1991-01-01

    This paper describes initial studies related to the effects of volcanism on performance of the proposed Yucca Mountain radioactive waste repository, and to the general processes of magmatism in the Yucca Mountain region. Volcanism or igneous activity can affect the repository performance by ejection of waste onto the earth's surface (eruptive effects), or by subsurface effects of hydrothermal processes and altered hydrology if an intrusion occurs within the repository block. Initial, conservative calculations of the volume of waste that might be erupted during a small-volume basaltic eruption (such as those which occurred in the Yucca Mountain region) indicate that regulatory limits might be exceeded. Current efforts to refine these calculations, based upon field studies at analog sites, are described. Studies of subsurface effects are just beginning, and are currently focused on field studies of intrusion properties and contact metamorphism at deeply eroded analog sites. General processes of magmatism are important for providing a physical basis for predictions of future volcanic activity. Initial studies have focused on modeling basaltic magma chambers in conjunction with petrographic and geochemical studies. An example of the thermal-fluid dynamic evolution of a small basaltic sill is described, based on numerical simulation. Quantification of eruption conditions can provide valuable information on the overall magmatic system. We are developing quantitative methods for mapping pyroclastic facies of small basaltic centers and, in combination with two-phase hydrodynamic simulation, using this information to estimate eruption conditions. Examples of such hydrodynamic simulations are presented, along with comparison to an historical eruption in Hawaii

  9. Adaptation to Climate Change in Panchase Mountain Ecological Regions of Nepal

    Shankar Adhikari

    2018-03-01

    Full Text Available Rural mountain communities in developing countries are considered particularly vulnerable to environmental change, including climate change. Forests and agriculture provide numerous ecosystem goods and services (EGS to local communities and can help people adapt to the impacts of climate change. There is however poor documentation on the role of EGS in people’s livelihood and adaptation practices. This study in the rural Panchase Mountain Ecological Region of Nepal identifies practices being used to adapt to a changing environment through key informant interviews and focus group discussions. At the household level, livelihood diversification, changes in cropping patterns and farming practices, use of multipurpose plant species and income-generation activities were identified as adaptation strategies. Among major strategies at the community level were community forestry-based climate adaptation plans of action for forest and water resource management. Landscape-level adaptation strategies were large-scale collaborative projects and programs, such as Ecosystem-based Adaptation and Chitwan Annapurna Landscape conservation; which had implications at both the local and landscape-level. A proper blending and integration of adaptation strategies from individual households through to the community and to the landscape level is needed for implementing effective adaptation in the region.

  10. Exploring Conservation Options in the Broad-Leaved Korean Pine Mixed Forest of the Changbai Mountain Region

    Lin Ma

    2015-05-01

    Full Text Available The broad-leaved Korean pine (Pinus koraiensis mixed forest (BKPF is one of the most biodiverse zonal communities in the northern temperate zone. Changbai Mountain in northeastern China contains one of the largest BKPFs in the region. The government of China has established a network of 23 nature reserves to protect the BKPF and the species that depend on it for habitat, including the endangered Siberian tiger (Panthera tigris altaica. This study used the conservation planning software C-Plan to calculate the irreplaceability value of each unit to assess how efficiently and comprehensively the existing conservation network supports biodiversity and to identify gap areas that, if integrated into the network, would expand its protection capability. Results show a number of high-conservation-value planning units concentrated along certain ridges. The existing conservation network is structured such that the habitats of only 24 species (out of a total of 75 achieve established conservation targets. Of the other 51 species, 20 achieve less than 50% of their conservation targets. However, expanding the network to include high-conservation-value gap areas could achieve conservation targets for 64 species and could provide different degrees of protection to the other 11 species. Using C-Plan software can guide decision-making to expand the conservation network in this most precious of mountainous ecological zones.

  11. Mosquito (Diptera: Culicidae) grouping based on larval habitat characteristics in high mountain ecosystems of Antioquia, Colombia.

    Rosero-García, Doris; Rúa-Uribe, Guillermo; Correa, Margarita M; Conn, Jan E; Uribe-Soto, Sandra

    2018-06-01

    Information about mosquito ecology in the high mountain ecosystems of the Neotropical region is sparse. In general, few genera and species have been reported in these ecosystems and there is no information available on habitats and the mosquitoes occupying them. In the present study, specimens collected from NW Colombia in HME were grouped using larval habitat data via an Operational Taxonomic Unit (OTU) determination. A total of 719 mosquitoes was analyzed belonging to 44 OTUs. The analysis considered habitat features and clustered the specimens into six groups from A-F. Five of these included species from different genera, suggesting common habitat requirements. Group E with four genera, seven subgenera, and six species occupied the highest areas (above 3,000 m), whereas three groups (B, D, F) were detected at lower altitudes (1,960-2,002 m). Bromeliads were the most common larval habitat, with 47% (335/719) of the specimens; five genera, six subgenera, and eight species were identified and classified into 66% (29/44) of the OTUs. This work showed some similarities to the habitat requirements and provides a grouping system that constitutes an important baseline for the classification of mosquito fauna from high mountain ecosystems according to altitude and larval habitat. © 2018 The Society for Vector Ecology.

  12. THE DRAINAGE EFFICIENCY INDEX (DEI) AS AN MORPHOLOGIAL INDICATOR OF LANDSLIDE SPATIAL OCCURRENCE IN MOUNTAINOUS CATCHMENTS. A case of study applied in the mountainous region of Brazilian Southeastern.

    Henrique Muniz Lima, Pedro; Luiza Coelho Netto, Ana; do Couto Fernandes, Manoel

    2016-04-01

    Morphometric parameters, acquired notoriety mainly after the Drainage Density proposition (Horton 1932, 1945) and after they were applied by geomorphologists on the perspective to understand landscape functionalities, quantifying their characteristics through parameters and indexes. After the drainage density, many other parameters which describe the basin characteristics, behavior and dynamics have been proposed. Among them, for example, the DEI was proposed by Coelho Netto and contributors during the 80's, while they were seek to understand the hydrological and erosive dynamics on Bananal river basin (Brazilian Southeastern). Through this investigations the DEI was created, revealing the importance of parameters as hollow and drainage density, conjugated to the topographic gradient (Meis et al. 1982) who prosecute controls on the water flow efficiency along the hollows in order to activate the regressive erosion of the main channel. Later on this index was applied on the basin scale in several works developed in mountainous regions, showing a remarkable correlation with the occurrence of landslides such as showed by Coelho Netto et al. (2007); that posteriorly use this index as one of the components of the landslide susceptibility map for the Tijuca Massif, located in Rio de Janeiro Municipality. This work aims to establish patterns of the DEI index values (applied to mountainous low order basins) and the relationship on the occurrence of Debriflows or shallow translational slides. For this, the DEI index was applied on 4 different study areas located on the Southeastern mountainous region of Brazil to address deeply the connection between the index and the occurrence of landslides of different types applied for first and second order basins. The major study area is the Córrego Dantas Basin, situated in Nova Friburgo municipality (RJ), which is a 53 km² basin was affected by 327 landslides caused by a heavy rainfall on January 2011; Coelho Netto et al. (in

  13. Apatite fission track dating and thermal history of Qing-He region in Altay Mountains

    Bao Zengkuan; Chinese Academy of Sciences, Beijing; Yuan Wanming; Dong Jinquan; Gao Shaokai

    2005-01-01

    Fission track ages (FTA) and track lengths of apatite from Qing-He diorite intrusion in Altay Mountains are measured. Apatite fission track ages of three diorite samples is range from (78±5) Ma to (95 ± 5) Ma, and the lengths of horizontal confined spontaneous fission tracks are (13.2 ± 1.2)-(13.5 ±1.3) μm. The distribution of the track length is narrow and symmetrical with a mean length of approximately 13.3 μm and a standard deviation of around 0.1 μm. The inverse modeling results show that thermal history of this region has four stages, two rapid uplift of this region still existed magmatic intrusion and tectonic movements in Yanshanian. (authors)

  14. Risk Assessment of Geologic Formation Sequestration in The Rocky Mountain Region, USA

    Lee, Si-Yong; McPherson, Brian

    2013-08-01

    The purpose of this report is to describe the outcome of a targeted risk assessment of a candidate geologic sequestration site in the Rocky Mountain region of the USA. Specifically, a major goal of the probabilistic risk assessment was to quantify the possible spatiotemporal responses for Area of Review (AoR) and injection-induced pressure buildup associated with carbon dioxide (CO₂) injection into the subsurface. Because of the computational expense of a conventional Monte Carlo approach, especially given the likely uncertainties in model parameters, we applied a response surface method for probabilistic risk assessment of geologic CO₂ storage in the Permo-Penn Weber formation at a potential CCS site in Craig, Colorado. A site-specific aquifer model was built for the numerical simulation based on a regional geologic model.

  15. Analysis and Comparison on the Flood Simulation in Typical Hilly & Semi-mountainous Region

    Luan, Qinghua; Wang, Dong; Zhang, Xiang; Liu, Jiahong; Fu, Xiaoran; Zhang, Kun; Ma, Jun

    2017-12-01

    Water-logging and flood are both serious in hilly and semi-mountainous cities of China, but the related research is rare. Lincheng Economic Development Zone (EDZ) in Hebei Province as the typical city was selected and storm water management model (SWMM) was applied for flood simulation in this study. The regional model was constructed through calibrating and verifying the runoff coefficient of different flood processes. Different designed runoff processes in five-year, ten-year and twenty-year return periods in basic scenario and in the low impact development (LID) scenario, respectively, were simulated and compared. The result shows that: LID measures have effect on peak reduction in the study area, but the effectiveness is not significant; the effectiveness of lagging peak time is poor. These simulation results provide decision support for the rational construction of LID in the study area, and provide the references for regional rain flood management.

  16. Riverine CO2 supersaturation and outgassing in a subtropical monsoonal mountainous area (Three Gorges Reservoir Region) of China

    Li, Siyue; Ni, Maofei; Mao, Rong; Bush, Richard T.

    2018-03-01

    Rivers are an important source of CO2 to the atmosphere, however, mountainous rivers and streams with high emission rates are not well studied particularly in China. We report the first detailed investigation on monsoonal mountainous rivers in the Three Gorges Reservoir (TGR) region, with a focus on the riverine CO2 partial pressure (pCO2), CO2 degassing and their potential controls. The pCO2 levels ranged from 50 to 6019 μatm with averages of 1573 (SD. ±1060) in dry Autumn and 1276 (SD. ±1166) μatm in wet Summer seasons. 94% of samples were supersaturated with CO2 with respect to the atmospheric equilibrium (410 μatm). Monsoonal precipitation controlled pCO2 seasonality, with both the maximal and minimal levels occurring in the wet season, and showing the overall effects of dilution. Riverine pCO2 could be predicted better in the dry season using pH, DO% and DTP, whereas pH and DOC were better predictors in the wet season. We conclude that in-situ respiration of allochthonous organic carbon, rather than photosynthesis, resulted in negative relationships between pCO2 and DO and pH, and thus CO2 supersaturation. Photosynthetic primary production was effectively limited by rapid flow velocity and short residence time. The estimated water-to-air CO2 emission rate in the TGR rivers was 350 ± 319 in the Autumn and lower, yet more variable at 326 ± 439 mmol/m2/d in Summer. Our calculated CO2 areal fluxes were in the upper-level magnitude of published data, demonstrating the importance of mountainous rivers and streams as a global greenhouse gas source, and urgency for more detailed studies on CO2 degassing, to address a global data gap for these environments.

  17. On the Relationship between Holocene Geomorphic Evolution of Rivers and Prehistoric Settlements Distribution in the Songshan Mountain Region of China

    Peng Lu

    2017-01-01

    Full Text Available This paper deals with the study of Holocene geomorphic evolution of rivers around Songshan Mountain in relation to human frequentation in Prehistoric periods. The investigations were performed by means of an integration of GIS data processing; field surveys and particle size analysis. In 8000–3000 aBP; in the Songshan Mountain Region, large-scale river sedimentation occurred. This increased the elevation of river beds that were higher than today. After 3000 aBP; the upper reaches of the rivers experienced a down cut; while the lower reaches experienced continuing sedimentation. The data on the elevation of prehistoric settlements above the river levels were obtained from Digital Elevation Models (DEMs. These data were corrected according to the evolutionary features of fluvial landforms in order to obtain synchronous elevations above river levels of prehistoric settlements. The relationship between sediment distribution and the Holocene geomorphic evolution was investigated through the statistical analysis of the elevation above the river levels. Outputs from our analyses enabled us to differentiate three evolutionary stages. During the first one, related to Peiligang culture (9000–7500 aBP, populations mainly settled on both hilly relief and high plateaus depending on their agriculture production modes. During the second stage, from Yangshao (7500–5000 aBP to the Longshan period (5000–4000 aBP, settlements were mainly distributed on mountainous areas and hilly lands to avoid flooding and to develop agriculture. Finally, during the Xiashang culture (4000–3000 aBP, a large number of settlements migrated to the plain area to facilitate trade of goods and cultural exchanges.

  18. Slope Stability Analysis of Mountainous/Hilly regions of Nepal: A case study of Bhotekoshi Hydropower site

    Acharya, A.; Gautam, S.; Kafle, K. R.

    2017-12-01

    Nepal is a mountainous, developing country that straddles the boundary between the Indian and Himalayan tectonic plates. In Nepal, landslides represent a major constraint on development, causing high levels of economic loss and substantial number of fatalities each year. There is a general consensus that the impacts of landslides in mountainous countries such as Nepal are increasing with time due to unstable slopes. The present study deals with the field investigation of slope stability in mountainous/hilly region of Nepal. Among the natural hazards that occur in regularly in Nepal, flood and landslides due to unstable slopes are by far the serious ones. They claim many human lives every year and cause other damages such as destruction and blockage of highway, destruction of hydropower, losses of livestock, crops and agricultural land. Slope Mass Rating system and stereographic projection has been carried out for analysis of slope stability using standard formats and parameters. It has been found that there are few major discontinuities that play the role for the rock/soil slides around the area. The major discontinuities are 235°/67°. These joint sets play the main role to the plane as well as wedge failures around the area. The rock mass rating of the slope has been found to be 27 and the slope mass rating has been found to be 37.8. The obtained slope mass rating value lies on IV class (Bad) that represents unstable slope having planner or big wedge failure and needs to be corrective measures in the slope. From stereographic projection, wedge failure of the slope has been seen according to the conditions of slope failure.

  19. Historical range of variation assessment for wetland and riparian ecosystems, U.S. Forest Service Rocky Mountain Region

    Edward Gage; David J. Cooper

    2013-01-01

    This document provides an overview of historical range of variation concepts and explores their application to wetland and riparian ecosystems in the US Forest Service Rocky Mountain Region (Region 2), which includes National Forests and National Grasslands occurring in the states of Colorado, Wyoming, Nebraska, Kansas, and South Dakota. For each of five ecosystem...

  20. Distribution of uranium 226Ra, 210Pb and 210Po in the ecological cycle in mountain regions of Central Yugoslavia

    Milosevic, Z.; Horsic, E.; Kljajic, R.; Bauman, A.

    1980-01-01

    The distribution of uranium, 226 Ra, 210 Pb and 210 Po in the uncultivated mountain regions of Central Yugoslavia was investigated. Samples of beef (meat and bones), milk, cheese, grass and podsolic soil were analyzed. The results showed that the distribution of these radionuclides in this ecologically unpolluted environment was no different from cultivated regions in other parts of the world. (UK)

  1. Women as Drivers for a Sustainable and Social Inclusive Development in Mountain Regions – The Case of the Austrian Alps

    Oedl-Wieser Theresia

    2017-12-01

    Full Text Available Women in mountain regions play an important role regarding the agricultural production and ensuring sustainable livelihoods. Furthermore, they are active in climate change adaption and preservation of biodiversity. Despite these important activities and performances the vital role of women for a sustainable and social inclusive development in mountain regions is often invisible and not appreciated enough in society. There still exists structural discrimination of women which is caused by patriarchal societies, social and cultural norms as well as difficult economic situations. Considering the need to foster the dynamic and sustainable development of mountain regions all over the world, it is of paramount importance to reflect and integrate women’s issues, problems and needs to a larger extent in research, public policy and in worldwide decision-making agendas.

  2. Developing scenarios to assess future landslide risks: a model-based approach applied to mountainous regions

    Vacquie, Laure; Houet, Thomas

    2016-04-01

    In the last century, European mountain landscapes have experienced significant transformations. Natural and anthropogenic changes, climate changes, touristic and industrial development, socio-economic interactions, and their implications in terms of LUCC (land use and land cover changes) have directly influenced the spatial organization and vulnerability of mountain landscapes. This study is conducted as part of the SAMCO project founded by the French National Science Agency (ANR). It aims at developing a methodological approach, combining various tools, modelling platforms and methods, to identify vulnerable regions to landslide hazards accounting for futures LUCC. It presents an integrated approach combining participative scenarios and a LULC changes simulation models to assess the combined effects of LUCC and climate change on landslide risks in the Cauterets valley (French Pyrenees Mountains) up to 2100. Through vulnerability and risk mapping, the objective is to gather information to support landscape planning and implement land use strategies with local stakeholders for risk management. Four contrasting scenarios are developed and exhibit contrasting trajectories of socio-economic development. Prospective scenarios are based on national and international socio-economic contexts relying on existing assessment reports. The methodological approach integrates knowledge from local stakeholders to refine each scenario during their construction and to reinforce their plausibility and relevance by accounting for local specificities, e.g. logging and pastoral activities, touristic development, urban planning, etc. A process-based model, the Forecasting Scenarios for Mountains (ForeSceM) model, developed on the Dinamica Ego modelling platform is used to spatially allocate futures LUCC for each prospective scenario. Concurrently, a spatial decision support tool, i.e. the SYLVACCESS model, is used to identify accessible areas for forestry in scenario projecting logging

  3. Stream flow regime of springs in the Mantiqueira Mountain Range region, Minas Gerais State

    Alisson Souza de Oliveira

    2014-09-01

    Full Text Available The stream flow regime of four springs located in the Mantiqueira Mountain Range region (MG was evaluated and correlated to the respective recharge area, relief characteristics, land cover and physical and hydrologic soil characteristics. The streamflow regime was characterized by monitoring of discharges, calculating the surface runoff and specific discharge and by modeling the discharge over the recession period using the Maillet method. As all recharge areas have similar relief the effect of it on the streamflow was not possible to identify. Analysis included determining the effect of drainage area size, soil characteristics and land cover on the indicators of the streamflow regime. Size of the recharge area had a positive influence on the indicators mean discharge and surface runoff volume and on the regulation of the streamflow regime (springs L4 and L1. The spring under the smallest area of influence provided the worst results for the above mentioned indicators (spring L3. The effect of forest cover (natural and planted, associated with soil characteristics, was evidenced by the indicators surface runoff (in depth and specific yield, both independent of the recharge area size (springs L4 and L2. The interaction of area size, soil characteristics and forest cover (natural and planted provided the best results for all indicators of streamflow regime in the springs studied in the Mantiqueira Mountain Range (spring L4.

  4. Habitat assessment for giant pandas in the Qinling Mountain region of China

    Feng, Tian-Tian; Van Manen, Frank T.; Zhao, Na-Xun; Li, Ming; Wei, Fu-Wen

    2009-01-01

    Because habitat loss and fragmentation threaten giant pandas (Ailuropoda melanoleuca), habitat protection and restoration are important conservation measures for this endangered species. However, distribution and value of potential habitat to giant pandas on a regional scale are not fully known. Therefore, we identified and ranked giant panda habitat in Foping Nature Reserve, Guanyinshan Nature Reserve, and adjacent areas in the Qinling Mountains of China. We used Mahalanobis distance and 11 digital habitat layers to develop a multivariate habitat signature associated with 247 surveyed giant panda locations, which we then applied to the study region. We identified approximately 128 km2 of giant panda habitat in Foping Nature Reserve (43.6% of the reserve) and 49 km2 in Guanyinshan Nature Reserve (33.6% of the reserve). We defined core habitat areas by incorporating a minimum patch-size criterion (5.5 km2) based on home-range size. Percentage of core habitat area was higher in Foping Nature Reserve (41.8% of the reserve) than Guanyinshan Nature Reserve (26.3% of the reserve). Within the larger analysis region, Foping Nature Reserve contained 32.7% of all core habitat areas we identified, indicating regional importance of the reserve. We observed a negative relationship between distribution of core areas and presence of roads and small villages. Protection of giant panda habitat at lower elevations and improvement of habitat linkages among core habitat areas are important in a regional approach to giant panda conservation.

  5. Dynamics of forest populations in the mountain resort region of the North Caucasus

    Chalaya, Elena; Efimenko, Natalia; Slepykh, Olga; Slepykh, Viktor; Povolotskaya, Nina

    2017-04-01

    Prehistoric formula of forest species composition of the resort region Caucasian Mineralnye Vody (RR CMV) in the North Caucasus is 6Q3Cb1Fe [1]. According to it, undisturbed forests of the region consisted of the pedunculate oak (Quercus robur L.) and the durmast (Quercus cerris L.) by 60%, the European hornbeam (Carpinus betulus L.) by 30% and the European ash (Fraxinus excelsior L.) only by 10%. At present the formula of forest composition of the region is 5Fe3Cb2Q, according to it, the rate of oak-groves (the most valuable to resort landscape gardening) has reduced to 20%, and the ash-tree, though the rate of the hornbeam has not changed, increased up to 50%. Forest breeding populations in the RR CMV are referred to natural medical resources as they have high rehabilitation and climate-regulating properties, the change in forest breeding populations influences the conditions of the resort climate-landscape-therapy. The researches conducted in the perfect oak wood of vegetative origin in Beshtaugorsky Forestry Area (BFA) of the RR CMV have shown the reduction of the pedunculate oak in the tree-stand composition during 1984-2014 from 10 to 8 units in the composition: the European ash (1 unit) and the crataegus monogyna (Crataegus monogyna Jacq.), the checker tree (Sorbus torminalis (L.) Crantz), the common pear (Pyrus communis L.) have appeared [2]. The rate of the pedunculate oak decreased from 10 units to 9 in the perfect planting of the pedunculate oak of the artificial origin (Mashuk section of the forestry of BFA of the RR CMV) during 1986-2016. Among accompanying breeds there was the English field maple (Acer campestre L.), the Chinese elm in singular (Ulmus parvifolia Jacq.), the single-seed hawthorn. The reliable regrowth (4C3Fe3Ac+Q+Cm+Pc+Up) in number of 3,9 thousand pieces/hectare defines the perspective of complete replacement of the oak crop in the future on planting with dominance of the hornbeam and the involvement of the ash-tree and the English

  6. Low-level gamma spectrometry of forest and moor soils from exposed mountain regions in Saxony (Erzgebirge)

    Schleich, N [Technische Univ. Bergakademie Freiberg (Germany). Inst. of Applied Physics; Preusse, W [Technische Univ. Bergakademie Freiberg (Germany). Inst. of Applied Physics; Degering, D [Technische Univ. Bergakademie Freiberg (Germany). Inst. of Applied Physics; Unterricker, S [Technische Univ. Bergakademie Freiberg (Germany). Inst. of Applied Physics

    1997-03-01

    In soils with distinct organic and mineral horizons, radionuclides (RN) can be used to understand geochemical migration processes. In the study presented here high sensitivity HPGe-detectors with active and passive shielding were employed to determine the low activity levels of various natural, cosmogenic and artificial RN. Soils of a spruce forest and a moor from exposed mountain regions in Saxony (Erzgebirge) were investigated as they provide a good example of layered soil systems with vertical transfer of chemical elements. Different soil horizons were sub-sampled as thin slices and analysed to examine the migration processes at sub-horizon level. The depth distributions of chemically different RN were studied considering the geochemical and pedological soil characteristics of the profiles. (orig.)

  7. The ophiolitic North Fork terrane in the Salmon River region, central Klamath Mountains, California

    Ando, C.J.; Irwin, W.P.; Jones, D.L.; Saleeby, J.B.

    1983-01-01

    The North Fork terrane is an assemblage of ophiolitic and other oceanic volcanic and sedimentary rocks that has been internally imbricated and folded. The ophiolitic rocks form a north-trending belt through the central part of the region and consist of a disrupted sequence of homogeneous gabbro, diabase, massive to pillowed basalt, and interleaved tectonitic harzburgite. U-Pb zircon age data on a plagiogranite pod from the gabbroic unit indicate that at least this part of the igneous sequence is late Paleozoic in age.The ophiolitic belt is flanked on either side by mafic volcanic and volcaniclastic rocks, limestone, bedded chert, and argillite. Most of the chert is Triassic, including much of Late Triassic age, but chert with uncertain stratigraphic relations at one locality is Permian. The strata flanking the east side of the ophiolitic belt face eastward, and depositional contacts between units are for the most part preserved. The strata on the west side of the ophiolitic belt are more highly disrupted than those on the east side, contain chert-argillite melange, and have unproven stratigraphic relation to either the ophiolitic rocks or the eastern strata.Rocks of the North Fork terrane do not show widespread evidence of penetrative deformation at elevated temperatures, except an early tectonitic fabric in the harzburgite. Slip-fiber foliation in serpentinite, phacoidal foliation in chert and mafic rocks, scaly foliation in argillite, and mesoscopic folds in bedded chert are consistent with an interpretation of large-scale anti-formal folding of the terrane about a north-south hinge found along the ophiolitic belt, but other structural interpretations are tenable. The age of folding of North Fork rocks is constrained by the involvement of Triassic and younger cherts and crosscutting Late Jurassic plutons. Deformation in the North Fork terrane must have spanned a short period of time because the terrane is bounded structurally above and below by Middle or Late

  8. Human impacts to mountain streams

    Wohl, Ellen

    2006-09-01

    Mountain streams are here defined as channel networks within mountainous regions of the world. This definition encompasses tremendous diversity of physical and biological conditions, as well as history of land use. Human effects on mountain streams may result from activities undertaken within the stream channel that directly alter channel geometry, the dynamics of water and sediment movement, contaminants in the stream, or aquatic and riparian communities. Examples include channelization, construction of grade-control structures or check dams, removal of beavers, and placer mining. Human effects can also result from activities within the watershed that indirectly affect streams by altering the movement of water, sediment, and contaminants into the channel. Deforestation, cropping, grazing, land drainage, and urbanization are among the land uses that indirectly alter stream processes. An overview of the relative intensity of human impacts to mountain streams is provided by a table summarizing human effects on each of the major mountainous regions with respect to five categories: flow regulation, biotic integrity, water pollution, channel alteration, and land use. This table indicates that very few mountains have streams not at least moderately affected by land use. The least affected mountainous regions are those at very high or very low latitudes, although our scientific ignorance of conditions in low-latitude mountains in particular means that streams in these mountains might be more altered than is widely recognized. Four case studies from northern Sweden (arctic region), Colorado Front Range (semiarid temperate region), Swiss Alps (humid temperate region), and Papua New Guinea (humid tropics) are also used to explore in detail the history and effects on rivers of human activities in mountainous regions. The overview and case studies indicate that mountain streams must be managed with particular attention to upstream/downstream connections, hillslope

  9. A bioclimatic characterization of high elevation habitats in the Alborz mountains of Iran.

    Noroozi, Jalil; Körner, Christian

    2018-01-01

    The Alborz mountains in N-Iran at 36° N rise from the Caspian Sea to 5671 m a.s.l., with warm-temperate, winter-deciduous forests in the lower montane belt in northern slopes, and vast treeless terrain at higher elevation. A lack of rainfall (ca. 550 mm at high elevations) cannot explain the absence of trees. Hence, it is an open question, which parts of these mountains belong to the alpine belt. Here we use bioclimatic data to estimate the position of the potential climatic treeline, and thus, define bioclimatologically, what is alpine and what is not. We employed the same miniature data loggers and protocol that had been applied in a Europe-wide assessment of alpine climates and a global survey of treeline temperatures. The data suggest a potential treeline position at ca. 3300 m a.s.l., that is ca. 900 m above the upper edge of the current oak forest, or 450 m above its highest outposts. The alpine terrain above the climatic treeline position shows a temperature regime comparable to sites in the European Alps. At the upper limit of angiosperm life, at 4850 m a.s.l., the growing season lasted 63 days with a seasonal mean root zone temperature of 4.5 °C. We conclude that (1) the absence of trees below 2850 m a.s.l. is clearly due to millennia of land use. The absence of trees between 2850 and 3300 m a.s.l. is either due to the absence of suitable tree taxa, or the only potential regional taxon for those elevations, Juniperus excelsa , had been eradicated by land use as well. (2) These continental mountains provide thermal life conditions in the alpine belt similar to other temperate mountains. (3) Topography and snow melt regimes play a significant role for the structure of the alpine vegetation mosaics.

  10. High Resolution Forecasting System for Mountain area based on KLAPS-WRF

    Chun, Ji Min; Rang Kim, Kyu; Lee, Seon-Yong; Kang, Wee Soo; Park, Jong Sun; Yi, Chae Yeon; Choi, Young-jean; Park, Eun Woo; Hong, Soon Sung; Jung, Hyun-Sook

    2013-04-01

    there was a significant improvement (RMSE: 2.06 ˚C -> 1.73 ˚C) in the temperature prediction in the study area. The results will provide useful guidance of grid size selection on high resolution simulation over the mountain regions in Korea.

  11. Evaluating the relative impact of climate and economic changes on forest and agricultural ecosystem services in mountain regions.

    Briner, Simon; Elkin, Ché; Huber, Robert

    2013-11-15

    Provisioning of ecosystem services (ES) in mountainous regions is predicted to be influenced by i) the direct biophysical impacts of climate change, ii) climate mediated land use change, and iii) socioeconomic driven changes in land use. The relative importance and the spatial distribution of these factors on forest and agricultural derived ES, however, is unclear, making the implementation of ES management schemes difficult. Using an integrated economic-ecological modeling framework, we evaluated the impact of these driving forces on the provision of forest and agricultural ES in a mountain region of southern Switzerland. Results imply that forest ES will be strongly influenced by the direct impact of climate change, but that changes in land use will have a comparatively small impact. The simulation of direct impacts of climate change affects forest ES at all elevations, while land use changes can only be found at high elevations. In contrast, changes to agricultural ES were found to be primarily due to shifts in economic conditions that alter land use and land management. The direct influence of climate change on agriculture is only predicted to be substantial at high elevations, while socioeconomic driven shifts in land use are projected to affect agricultural ES at all elevations. Our simulation results suggest that policy schemes designed to mitigate the negative impact of climate change on forests should focus on suitable adaptive management plans, accelerating adaptation processes for currently forested areas. To maintain provision of agricultural ES policy needs to focus on economic conditions rather than on supporting adaptation to new climate. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Socio-economic vulnerability to climate change in the central mountainous region of eastern Mexico.

    Esperón-Rodríguez, Manuel; Bonifacio-Bautista, Martín; Barradas, Víctor L

    2016-03-01

    Climate change effects are expected to be more severe for some segments of society than others. In Mexico, climate variability associated with climate change has important socio-economic and environmental impacts. From the central mountainous region of eastern Veracruz, Mexico, we analyzed data of total annual precipitation and mean annual temperature from 26 meteorological stations (1922-2008) and from General Circulation Models. We developed climate change scenarios based on the observed trends with projections to 2025, 2050, 2075, and 2100, finding considerable local climate changes with reductions in precipitation of over 700 mm and increases in temperature of ~9°C for the year 2100. Deforested areas located at windward were considered more vulnerable, representing potential risk for natural environments, local communities, and the main crops cultivated (sugarcane, coffee, and corn). Socio-economic vulnerability is exacerbated in areas where temperature increases and precipitation decreases.

  13. Risk and size estimation of debris flow caused by storm rainfall in mountain regions

    CHENG; Genwei

    2003-01-01

    Debris flow is a common disaster in mountain regions. The valley slope, storm rainfall and amassed sand-rock materials in a watershed may influence the types of debris flow. The bursting of debris flow is not a pure random event. Field investigations show the periodicity of its burst, but no directive evidence has been found yet. A risk definition of debris flow is proposed here based upon the accumulation and the starting conditions of loose material in channel. According to this definition, the risk of debris flow is of quasi-periodicity. A formula of risk estimation is derived. Analysis of relative factors reveals the relationship between frequency and size of debris flow. For a debris flow creek, the longer the time interval between two occurrences of debris flows is, the bigger the bursting event will be.

  14. Abbreviated bibliography on energy development—A focus on the Rocky Mountain Region

    Montag, Jessica M.; Willis, Carolyn J.; Glavin, Levi W.

    2011-01-01

    Energy development of all types continues to grow in the Rocky Mountain Region of the western United States. Federal resource managers increasingly need to balance energy demands, effects on the natural landscape and public perceptions towards these issues. To assist in efficient access to valuable information, this abbreviated bibliography provides citations to relevant information for myriad of issues for which resource managers must contend. The bibliography is organized by seven large topics with various sup-topics: broad energy topics (energy crisis, conservation, supply and demand, etc.); energy sources (fossil fuel, nuclear, renewable, etc.); natural landscape effects (climate change, ecosystem, mitigation, restoration, and reclamation, wildlife, water, etc.); human landscape effects (attitudes and perceptions, economics, community effects, health, Native Americans, etc.); research and technology; international research; and, methods and modeling. A large emphasis is placed on the natural and human landscape effects.

  15. Thermal analysis of Yucca Mountain commercial high-level waste packages

    Altenhofen, M.K.; Eslinger, P.W.

    1992-10-01

    The thermal performance of commercial high-level waste packages was evaluated on a preliminary basis for the candidate Yucca Mountain repository site. The purpose of this study is to provide an estimate for waste package component temperatures as a function of isolation time in tuff. Several recommendations are made concerning the additional information and modeling needed to evaluate the thermal performance of the Yucca Mountain repository system

  16. Community-based Monitoring of Water Resources in Remote Mountain Regions

    Buytaert, W.; Hannah, D. M.; Dewulf, A.; Clark, J.; Zulkafli, Z. D.; Karpouzoglou, T.; Mao, F.; Ochoa-Tocachi, B. F.

    2016-12-01

    Remote mountain regions are often represented by pockets of poverty combined with accelerated environmental change. The combination of harsh climatic and topographical conditions with limited infrastructure puts severe pressures on local livelihoods, many of which rely strongly on local ecosystem services (ESS) such as agricultural production and water supply. It is therefore paramount to optimise the management of ESS for the benefit of local people. This is hindered by a scarcity of quantitative data about physical processes such as precipitation and river flow as well as qualitative data concerning the management of water and land. National and conventional scientific monitoring networks tend to be insufficient to cover adequately the spatial and temporal gradients. Additionally, the data that are being collected often fail to be converted into locally relevant and actionable knowledge for ESS management. In such conditions, community-based monitoring of natural resources may be an effective way to reduce this knowledge gap. The participatory nature of such monitoring also enhances knowledge co-production and integration in locally-based decision-making processes. Here, we present the results of a 4-year consortium project on the use of citizen science technologies for ecosystem services management (Mountain-EVO). The project analyzed ecosystem service dynamics and decision-making processes and implemented a comparative analysis of experiments with community-based monitoring of water resources in 4 remote mountain regions, i.e. Peru, Nepal, Kyrgyzstan, and Ethiopia. We find that community-based monitoring can have a transformative impact on local ESS management, because of its potential to be more inclusive, polycentric, and context-driven as compared to conventional monitoring. However, the results and effectiveness of community-based approaches depend strongly on the natural and socio-economic boundary conditions. As such, this requires a tailored and bottom

  17. Mountain peatlands range from CO2 sinks at high elevations to sources at low elevations: Implications for a changing climate

    David J. Millar; David J. Cooper; Kathleen A. Dwire; Robert M. Hubbard; Joseph. von Fischer

    2016-01-01

    Mountain fens found in western North America have sequestered atmospheric carbon dioxide (CO2) for millennia, provide important habitat for wildlife, and serve as refugia for regionally-rare plant species typically found in boreal regions. It is unclear how Rocky Mountain fens are responding to a changing climate. It is possible that fens found at lower elevations may...

  18. Constructing Consistent Multiscale Scenarios by Transdisciplinary Processes: the Case of Mountain Regions Facing Global Change

    Fridolin Simon. Brand

    2013-06-01

    Full Text Available Alpine regions in Europe, in particular, face demanding local challenges, e.g., the decline in the agriculture and timber industries, and are also prone to global changes, such as in climate, with potentially severe impacts on tourism. We focus on the Visp region in the Upper Valais, Switzerland, and ask how the process of stakeholder involvement in research practice can contribute to a better understanding of the specific challenges and future development of mountainous regions under global change. Based on a coupled human-environment system (HES perspective, we carried out a formative scenario analysis to develop a set of scenarios for the future directions of the Visp region. In addition, we linked these regional scenarios to context scenarios developed at the global and Swiss levels via an external consistency analysis. This method allows the coupling of both the scenario building process and the scenarios as such. We used a functional-dynamic approach to theory-practice cooperation, i.e., the involvement of key stakeholders from, for example, tourism, forestry, and administration, differed in type and intensity during the steps of the research process. In our study, we experienced strong problem awareness among the stakeholders concerning the impacts of global change and local challenges. The guiding research question was commonly defined and problem ownership was more or less balanced. We arrived at six multiscale scenarios that open up future trajectories for the Visp region, and present generic strategies to cope with global and local challenges. The results show that local identity, spatial planning, community budget, and demographic development are important steering elements in the region's future development. We suggest that method-guided transdisciplinary processes result in a richer picture and a more systemic understanding, which enable a discussion of critical and surprising issues.

  19. Zonation of High Disaster Potential Communities for Remote Mountainous Areas in Southern Taiwan

    Chen, Yie-Ruey; Tsai, Kuang-Jung; Chang, Chwen-Ming; Chen, Jing-Wen; Chiang, Jie-Lun; Lu, Yi-Ching; Tsai, Hui-Wen

    2017-04-01

    About three-quarters of Taiwan are covered by hillside areas. Most of the hillside regions in Taiwan are sedimentary and metamorphic rocks which are fragile and highly weathered. In recent years, human development coupled with the global impact of extreme weather, typhoons and heavy rains have caused the landslide disasters and leaded to human causalities and properties loss. The landslides also endanger the major public works and almost make the overall industrial economic development and transport path overshadowed by disasters. Therefore, this research assesses the exploration of landslide potential analysis and zonation of high disaster potential communities for remote mountainous areas in southern Taiwan. In this study, the time series of disaster records and land change of remote mountainous areas in southern Taiwan are collected using techniques of interpretation from satellite images corresponding to multi-year and multi-rainfall events. To quantify the slope hazards, we adopt statistical analysis model to analyze massive data of slope disasters and explore the variance, difference and trend of influence factors of hillside disaster; establish the disaster potential analysis model under the climate change and construct the threshold of disaster. Through analysis results of disaster potential assessment, the settlement distribution with high-risk hazard potential of study area is drawn with geographic information system. Results of image classification show that the values of coefficient of agreement for different time periods are at high level. Compared with the historical disaster records of research areas, the accuracy of predicted landslide potential is in reasonable confidence level. The spatial distribution of landslide depends on the interaction of rainfall patterns, slope and elevation of the research area. The results also show that the number and scale of secondary landslide sites are much larger than those of new landslide sites after rainfall

  20. Application of statistical and dynamics models for snow avalanche hazard assessment in mountain regions of Russia

    Turchaninova, A.

    2012-04-01

    The estimation of extreme avalanche runout distances, flow velocities, impact pressures and volumes is an essential part of snow engineering in mountain regions of Russia. It implies the avalanche hazard assessment and mapping. Russian guidelines accept the application of different avalanche models as well as approaches for the estimation of model input parameters. Consequently different teams of engineers in Russia apply various dynamics and statistical models for engineering practice. However it gives more freedom to avalanche practitioners and experts but causes lots of uncertainties in case of serious limitations of avalanche models. We discuss these problems by presenting the application results of different well known and widely used statistical (developed in Russia) and avalanche dynamics models for several avalanche test sites in the Khibini Mountains (The Kola Peninsula) and the Caucasus. The most accurate and well-documented data from different powder and wet, big rare and small frequent snow avalanche events is collected from 1960th till today in the Khibini Mountains by the Avalanche Safety Center of "Apatit". This data was digitized and is available for use and analysis. Then the detailed digital avalanche database (GIS) was created for the first time. It contains contours of observed avalanches (ESRI shapes, more than 50 years of observations), DEMs, remote sensing data, description of snow pits, photos etc. Thus, the Russian avalanche data is a unique source of information for understanding of an avalanche flow rheology and the future development and calibration of the avalanche dynamics models. GIS database was used to analyze model input parameters and to calibrate and verify avalanche models. Regarding extreme dynamic parameters the outputs using different models can differ significantly. This is unacceptable for the engineering purposes in case of the absence of the well-defined guidelines in Russia. The frequency curves for the runout distance

  1. Wind constraints on the thermoregulation of high mountain lizards

    Ortega, Zaida; Mencía, Abraham; Pérez-Mellado, Valentín

    2017-03-01

    Thermal biology of lizards affects their overall physiological performance. Thus, it is crucial to study how abiotic constraints influence thermoregulation. We studied the effect of wind speed on thermoregulation in an endangered mountain lizard ( Iberolacerta aurelioi). We compared two populations of lizards: one living in a sheltered rocky area and the other living in a mountain ridge, exposed to strong winds. The preferred temperature range of I. aurelioi, which reflects thermal physiology, was similar in both areas, and it was typical of a cold specialist. Although the thermal physiology of lizards and the structure of the habitat were similar, the higher wind speed in the exposed population was correlated with a significant decrease in the effectiveness thermoregulation, dropping from 0.83 to 0.74. Our results suggest that wind reduces body temperatures in two ways: via direct convective cooling of the animal and via convective cooling of the substrate, which causes conductive cooling of the animal. The detrimental effect of wind on thermoregulatory effectiveness is surprising, since lizards are expected to thermoregulate more effectively in more challenging habitats. However, wind speed would affect the costs and benefits of thermoregulation in more complex ways than just the cooling of animals and their habitats. For example, it may reduce the daily activity, increase desiccation, or complicate the hunting of prey. Finally, our results imply that wind should also be considered when developing conservation strategies for threatened ectotherms.

  2. The effect of agricultural policy reforms on income inequality in Swiss agriculture - An analysis for valley, hill and mountain regions

    Benni, El N.; Finger, R.

    2013-01-01

    Using FADN data, we analyse the development of income inequality in Swiss agriculture for the valley, hill and mountain regions over the period 1990–2009. While household income inequality remained stable, farm income inequality increased during this period. Estimated Gini elasticities show that

  3. The 2014 assessment of stream quality in the Piedmont and southern Appalachian Mountain region of southeastern United States

    Celeste Journey; Paul M. Bradley; Peter Van Metre

    2016-01-01

    During the spring and summer of 2014, the U.S. Geological Survey (USGS) National Water- Quality Assessment Program (NAWQA) assessed stream quality across the Piedmont and southern Appalachian Mountain region in the southeastern United States.

  4. Contrasting neogene denudation histories of different structural regions in the transantarctic mountains rift flank constrained by cosmogenic isotope measurements

    Wateren, F.M. van der; Dunai, T.J.; Balen, R.T. van; Klas, W.; Verbers, A.L.L.M.; Passchier, S.; Herpers, U.

    1999-01-01

    Separate regions within the Transantarctic Mountains, the uplifted flank of the West Antarctic rift system, appear to have distinct Neogene histories of glaciation and valley downcutting. Incision of deep glacial outlet valleys occurred at different times throughout central and northern Victoria

  5. A Regional View of the Margin: Salmonid Abundance and Distribution in the Southern Appalachian Mountains of North Carolina and Virginia

    Patricia A. Flebbe

    1994-01-01

    In the southern Appalachian Mountains, native brook trout Salvelinus fontinalis and introduced rainbow trout Oncorhynchus mykiss and brown trout Salmo trutta are at the southern extremes of their distributions, an often overlooked kind of marginal habitat. At a regional scale composed of the states of Virginia...

  6. From Mountains to Plains: The Hydrogeochemistry of the Boulder Creek Watershed, Colorado during High- and Low-Flow Conditions 2000

    Verplanck, P. L.; Murphy, S. F.; McCleskey, R. B.; Barber, L. B.; Roth, D. A.

    2002-05-01

    A hydrogeochemical study of the Boulder Creek watershed was undertaken to evaluate natural and anthropogenic sources of solutes and the geochemical processes that affect stream chemistry. The Boulder Creek watershed, 1160 km{2}, is in the Front Range of the Rocky Mountains in Colorado and can be delineated into five physiographic/land use regions: the headwater region (elev. 4100 to 2600 m, tundra to pine/fir forest, Precambrian and Tertiary gneisses and plutons, sparse habitation), the mountain corridor (elev. 2600 to 1750 m, ponderosa pine, Precambrian and Tertiary gneisses and plutons, small mountain communities), the urban region (elev. 1750 to 1560 m, grassland, Mesozoic sedimentary units, City of Boulder), the wastewater-dominated reach (elev. 1560 to 1540 m, grassland, Mesozoic sedimentary units, sewage treatment plant effluent), and the agriculture region (elev. 1540 to 1480 m, grassland, Mesozoic sedimentary units, mixed urban and agricultural). Potential anthropogenic sources of solutes include: mining (hardrock and aggregate), septic systems, highway runoff, urban wastewater, and agricultural practices. A 70 km reach of Boulder Creek (16 sites) and its major inflows (13 sites) were sampled during high- and low-flow conditions in 2000. At all sites, discharge was measured or estimated, and water samples were analyzed for major and trace elements and organic carbon. At selected sites, analyses also included a suite of pesticides, pharmaceuticals, and wastewater-derived organic compounds and the strontium isotopic composition. Stream water in the headwater region is a dilute Ca-Mg-HCO3-SO4- water, and in the mountain corridor a slight increase in solutes was observed. Within the urban reach solute concentrations increased, with the most dramatic increase below the sewage treatment plant. Many constituents continue to increase in concentration through the urban/agriculture region. Similar trends were observed during high- and low-flow conditions with

  7. Classification of High-Mountain Vegetation Communities within a Diverse Giant Mountains Ecosystem Using Airborne APEX Hyperspectral Imagery

    Adriana Marcinkowska-Ochtyra

    2018-04-01

    Full Text Available Mapping plant communities is a difficult and time consuming endeavor. Methods relying on field surveys deliver high quality data but are usually limited to relatively small areas. In this paper we apply airborne hyperspectral data to vegetation mapping in remote and hard to reach areas. We classified 22 vegetation communities in the Giant Mountains on 3.12-m Airborne Prism Experiment (APEX hyperspectral images, registered in 288 spectral bands (10 September 2012. As the classification algorithm, Support Vector Machines (SVM was used. APEX data were corrected geometrically and atmospherically, and three dimensionality reduction methods were performed to select the best dataset. As reference we used a non-forest vegetation map containing vegetation communities of Polish Karkonosze National Park from 2002, orthophotomap and field surveys data from 2013 to 2014. We obtained the post-classification maps of 22 vegetation communities, lakes and areas without any vegetation. Iterative accuracy assessment repeated 100 times was used to obtain the most objective results for individual communities. The median value of overall accuracy (OA was 84%. Fourteen out of twenty-four classes were classified of more than 80% of producer accuracy (PA and sixteen out of twenty-four of user accuracy (UA. APEX data and SVM with the use of iterative accuracy assessment are useful for the mountain communities classification. This can support both Polish and Czech national parks management by giving the information about diversity of communities in the whole transboundary area, helping with identification especially in changing environment caused by humans.

  8. Potentials for development of spa tourism in region of Cer Mountain: Western Serbia

    Grčić Mirko

    2006-01-01

    Full Text Available Because of their particularities, thermal and mineral springs at the foothill of Cer Mountain deserve special analysis. This is the reason we wrote this article, aiming to take reader's attention to the touristic potentials of the spa zone of Cer Mountain and possibilities for its perspective development. From the medical and excursion-recreational tourism point of view, there is a possibility for combining the spa tourism with the complementary values of Cer Mountain.

  9. Analyzing Multidecadal Trends in Cloudiness Over the Subtropical Andes Mountains of South America Using a Regional Climate Model.

    Zaitchik, B. F.; Russell, A.; Gnanadesikan, A.

    2016-12-01

    Satellite-based products indicate that many parts of South America have been experiencing increases in outgoing longwave radiation (OLR) and corresponding decreases in cloudiness over the last few decades, with the strongest trends occurring in the subtropical Andes Mountains - an area that is highly vulnerable to climate change due to its reliance on glacial melt for dry-season runoff. Changes in cloudiness may be contributing to increases in atmospheric temperature, thereby raising the freezing level height (FLH) - a critical geophysical parameter. Yet these trends are only partially captured in reanalysis products, while AMIP climate models generally show no significant trend in OLR over this timeframe, making it difficult to determine the underlying drivers. Therefore, controlled numerical experiments with a regional climate model are performed in order to investigate drivers of the observed OLR and cloudiness trends. The Weather Research and Forecasting model (WRF) is used here because it offers several advantages over global models, including higher resolution - a critical asset in areas of complex topography - as well as flexible physics, parameterization, and data assimilation capabilities. It is likely that changes in the mean states and meridional gradients of SSTs in the Pacific and Atlantic oceans are driving regional trends in clouds. A series of lower boundary manipulations are performed with WRF to determine to what extent changes in SSTs influence regional OLR.

  10. Mapping Asbestos-Cement Roofing with Hyperspectral Remote Sensing over a Large Mountain Region of the Italian Western Alps

    Federico Frassy

    2014-08-01

    Full Text Available The World Health Organization estimates that 100 thousand people in the world die every year from asbestos-related cancers and more than 300 thousand European citizens are expected to die from asbestos-related mesothelioma by 2030. Both the European and the Italian legislations have banned the manufacture, importation, processing and distribution in commerce of asbestos-containing products and have recommended action plans for the safe removal of asbestos from public and private buildings. This paper describes the quantitative mapping of asbestos-cement covers over a large mountainous region of Italian Western Alps using the Multispectral Infrared and Visible Imaging Spectrometer sensor. A very large data set made up of 61 airborne transect strips covering 3263 km2 were processed to support the identification of buildings with asbestos-cement roofing, promoted by the Valle d’Aosta Autonomous Region with the support of the Regional Environmental Protection Agency. Results showed an overall mapping accuracy of 80%, in terms of asbestos-cement surface detected. The influence of topography on the classification’s accuracy suggested that even in high relief landscapes, the spatial resolution of data is the major source of errors and the smaller asbestos-cement covers were not detected or misclassified.

  11. [Vulnerability of eco-economy in northern slope region of Tianshan Mountains].

    Wu, Jian-zhai; Li, Bo; Zhang, Xin-shi; Zhao, Wen-wu; Jiang, Guang-hui

    2008-04-01

    Based on the theoretical meaning of vulnerability, a vulnerability assessment of eco-econom in fifteen counties in the northern slope region of Tianshan Mountains was conducted. The ecosystem services change to land use was regarded as the impact, and based on the fourteen indices from resource holding, society development, and economy development statistic data, the adaptive ability was evaluated by using the methods of analytic hierarchy process (AHP) and fuzzy synthetic evaluation. On the basis of assessment results of impact and adaptive capacity, the fifteen counties were divided into five classes under the assessment principles, and the district with higher-class number was of more vulnerability. The first class included Usu City and Changji City, the second class included Hutubi County, Miquan County, Fukang City, Jimsar County, Qitai County and Mori Kazak Autonomous County, the third class included Karamay City and Urumqi City, the fourth class included Kuitun City and Shawan County, and the fifth class included Jinghe County, Shihezi City and Manas County. The vulnerability reflected the level of eco-environment change and socioeconomic development, and the vulnerability assessment could be a good way to ensure the sustainable development. Aiming to decrease the vulnerability, various districts belonging to different class of vulnerability should establish relevant tactics according to the vulnerability factors to accelerate the region's sustainable development.

  12. Psychopathology of Aboriginal and Non-Aboriginal Adolescents Living in the Mountainous Region of Southern Taiwan

    Cheng-Fang Yen

    2006-11-01

    Full Text Available The aim of this study was to examine the hypothesis that Taiwanese aboriginal adolescents feature more severe psychopathology than non-aboriginal adolescents who live in the same mountainous region of southern Taiwan, and to test the hypothesis by controlling other individual and environmental factors. In this study, a total of 251 aboriginal and 79 non-aboriginal Taiwanese adolescents were enrolled. Their psychopathology was measured by the Symptom Checklist-90-Revised Scale; demographic and family characteristics, and their affinity with their peer group and with their school were also assessed. The results of the multiple regression analysis revealed that aboriginal adolescents feature more severe psychopathology than non-aboriginal adolescents, and indicated that females and adolescents perceiving higher levels of family conflict and lower family support were more likely to experience more severe psychopathology than those perceiving the contrary. Those who devise strategies to improve the mental health of adolescents living in impoverished regions must take into consideration their ethnicity, gender, and family context when devising such treatment strategies.

  13. Decentralized electrification by small-scale hydraulic stations : a viable solution in mountainous regions

    Dahman Saidi, A.

    1998-01-01

    The installation of a small-scale hydroelectric generating station to supply electricity to the small community of Takordmi in Morocco was described. The community of Takordmi consists of 32 households located in the remote mountainous region of Morocco. Takordmi was without electrical power until 1992 when a small 15 kW Pelton turbine was installed to supply electricity to the residents. Water to power the turbine generator was supplied by a small stream with an output of 4 to 8 liters per second and a head of 535 meters. Since the unit was installed, the mean monthly consumption of the community has been only 115 kWh, which averages to 4 kWh per household. The success of the Takordmi project has prompted the electrification of several other small communities in the remote regions of Morocco either by similar micro-hydroelectric stations or by photovoltaic cells. This project, funded by the Republic of Austria, demonstrates that it is feasible to provide electricity to remote rural communities by using local sources of power. 3 figs

  14. A challenge in the high mountains; Defi en haute montagne

    Scaramiglia, V.

    2003-07-01

    The mountain hut Topali above St. Niklaus, Switzerland is situated at 2,700 meters above sea-level in the southern Swiss Alps. Metal and wood have been the main construction materials of this energy efficient building comprising 48 beds on a surface of roughly 100 m{sup 2}. The building includes 12 m{sup 2} of photovoltaic panels as a power supply mainly for lighting and telephone. Space heating and cooking are provided by 8 m{sup 3} of fire wood yearly. Cooking is also possible with a gas stove fueled by liquefied gas. A cool room (0 to 5 {sup o}C) replaces the refrigerator. It is kept at this low temperature by means of a 4.5 m{sup 3} store filled with water from the nearby glacier.

  15. Influence of the orographic roughness of glacier valleys across the Transantarctic Mountains in an atmospheric regional model

    Jourdain, Nicolas C.; Gallee, Hubert [Laboratoire de Glaciologie et Geophysique de l' Environnement, Saint Martin d' Heres (France)

    2011-03-15

    Glacier valleys across the Transantarctic Mountains are not properly taken into account in climate models, because of their coarse resolution. Nonetheless, glacier valleys control katabatic winds in this region, and the latter are thought to affect the climate of the Ross Sea sector, frsater formation to snow mass balance. The purpose of this paper is to investigate the role of the production of turbulent kinetic energy by the subgrid-scale orography in the Transantarctic Mountains using a 20-km atmospheric regional model. A classical orographic roughness length parametrization is modified to produce either smooth or rough valleys. A one-year simulation shows that katabatic winds in the Transantarctic Mountains are strongly improved using smooth valleys rather than rough valleys. Pressure and temperature fields are affected by the representation of the orographic roughness, specifically in the Transantarctic Mountains and over the Ross Ice Shelf. A smooth representation of escarpment regions shows better agreement with automatic weather station observations than a rough representation. This work stresses the need to improve the representation of subgrid-scale orography to simulate realistic katabatic flows. This paper also provides a way of improving surface winds in an atmospheric model without increasing its resolution. (orig.)

  16. Spatiotemporal analysis of the effect of climate change on vegetation health in the Drakensberg Mountain Region of South Africa.

    Mukwada, Geoffrey; Manatsa, Desmond

    2018-05-24

    The impact of climate change on mountain ecosystems has been in the spotlight for the past three decades. Climate change is generally considered to be a threat to ecosystem health in mountain regions. Vegetation indices can be used to detect shifts in ecosystem phenology and climate change in mountain regions while satellite imagery can play an important role in this process. However, what has remained problematic is determining the extent to which ecosystem phenology is affected by climate change under increasingly warming conditions. In this paper, we use climate and vegetation indices that were derived from satellite data to investigate the link between ecosystem phenology and climate change in the Namahadi Catchment Area of the Drakensberg Mountain Region of South Africa. The time series for climate indices as well as those for gridded precipitation and temperature data were analyzed in order to determine climate shifts, and concomitant changes in vegetation health were assessed in the resultant epochs using vegetation indices. The results indicate that vegetation indices should only be used to assess trends in climate change under relatively pristine conditions, where human influence is limited. This knowledge is important for designing climate change monitoring strategies that are based on ecosystem phenology and vegetation health.

  17. Quantifying the National Significance of Local Areas for Regional Conservation Planning: North Carolina’s Mountain Treasures

    R. Travis Belote

    2017-05-01

    Full Text Available Conservation scientists recognize that additional protected areas are needed to maintain biological diversity and ecological processes. As regional conservation planners embark on recommending additional areas for protection in formal ecological reserves, it is important to evaluate candidate lands for their role in building a resilient protected areas system of the future. Here, we evaluate North Carolina’s Mountain Treasures with respect to their (1 ecological integrity, (2 role in connecting existing core protected areas, (3 potential to diversify the ecosystem representation of reserves, and (4 role in maintaining hotspots of biologically-rich areas that are not well protected. Mountain Treasures represent a citizen inventory of roadless areas and serve as candidates for elevated levels of conservation protection on U.S. federal lands. We compared Mountain Treasures to other candidate lands throughout the country to evaluate their potential national significance. While the Mountain Treasures tended to be more impacted by human modifications than other roadless areas, they are as important as other roadless areas with respect to their role in connecting existing protected areas and diversifying representation of ecosystems in conservation reserves. However, Mountain Treasures tended to have a much higher biodiversity priority index than other roadless areas leading to an overall higher composite score compared to other roadless areas. Our analysis serves as an example of how using broad-scale datasets can help conservation planners assess the national significance of local areas.

  18. Changes in the high-mountain vegetation of the Central Iberian Peninsula as a probable sign of global warming.

    Sanz-Elorza, Mario; Dana, Elías D; González, Alberto; Sobrino, Eduardo

    2003-08-01

    Aerial images of the high summits of the Spanish Central Range reveal significant changes in vegetation over the period 1957 to 1991. These changes include the replacement of high-mountain grassland communities dominated by Festuca aragonensis, typical of the Cryoro-Mediterranean belt, by shrub patches of Juniperus communis ssp. alpina and Cytisus oromediterraneus from lower altitudes (Oro-Mediterranean belt). Climatic data indicate a shift towards warmer conditions in this mountainous region since the 1940s, with the shift being particularly marked from 1960. Changes include significantly higher minimum and maximum temperatures, fewer days with snow cover and a redistribution of monthly rainfall. Total yearly precipitation showed no significant variation. There were no marked changes in land use during the time frame considered, although there were minor changes in grazing species in the 19th century. It is hypothesized that the advance of woody species into higher altitudes is probably related to climate change, which could have acted in conjunction with discrete variations in landscape management. The pronounced changes observed in the plant communities of the area reflect the susceptibility of high-mountain Mediterranean species to environmental change.

  19. Patrilineal background of the She minority population from Chaoshan Fenghuang Mountain, an isolated mountain region, in China.

    Liu, Shuhui; Chen, Guangcan; Huang, Haihua; Lin, Wenting; Guo, Dan; Zhao, Shukun; Tian, Dongping; Su, Min

    2017-07-01

    The She ethnic minority population is distributed in southern China. The origin of the She population has been controversial. The purpose of this work was to investigate the genomic diversity of She. The Chaoshan She population living in the Chaoshan Fenghuang mountain is a relatively isolated population. We detected 14 Y chromosome biallelic markers (Y-SNPs) and 6 Y chromosome short tandem repeat (Y-STR) loci in Chaoshan She people. Y-SNP analysis showed the Chaoshan She was closely related to the Chaoshan Hakka, Chaoshanese, Tujia and Gaoshan national minority. Compared with the Fujian She, the Chaoshan She maintained a more southern native genetic structure. Y-STR analysis revealed the Chaoshan She population was more closely related to the Hakka population than the other Hans. We concluded the Chaoshan She population had a closer genetic relationship with the southern national minority and Hakka Han and it may be representative of She ancestors' patrilineal genetic structure. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Spatial distribution and temporal development of high-mountain lakes in western Austria

    Merkl, Sarah; Emmer, Adam; Mergili, Martin

    2015-04-01

    elevation at the cost of moraine-dammed lakes. Multi-temporal analysis of selected near-glacial lakes reveals cases where lakes have appeared as proglacial lakes, but lost contact to the glacier within few decades or even years, or have even been decoupled from the glacial water supply. This goes hand in hand with rapid changes of lake shape and size, with merging or separating of lakes, and with the disappearance of short-lived lakes or lake systems. Consequently, we distinguish three stages of lake development: (a) a pro-glacial, (b) a periglacial and (c) a non-glacial stage. The dynamics - and also the susceptibility of a lake to sudden drainage - decrease substantially from (a) to (c). Lakes in the stages (a) and (b) are less prominent in our study area, compared to other glacierized high-mountain regions, leading us to the conclusion that (1) the current threat to the population by GLOFs is lower but (2) the future development of emerging lakes has to be monitored carefully.

  1. Green Tourism in Mountain Regions - Reducing Vulnerability and Promoting People and Place Centric Development in the Himalayas

    R. B. Singh; D. K. Mishra

    2004-01-01

    In recent years, mountain regions are attracting great attention to Indian tourists in general and foreign tourists in particular. The potential mountain resources for promoting green tourism are enormous in the form of natural and cultural heritage such as biosphere reserves, flora and fauna, lakes and rivers and traditional rural resources. In order to utilise tourism industry market, uncontrolled numbers of tourists and related haphazard infrastructural facilities in the vulnerable mountain regions pose serious environmental implications. The ecological pressures are threatening land, water and wild life resources through direct and indirect environmental impacts together with generation of solid and liquid wastes, so green tourism is emerging as an important task in order to develop new relationship between communities, government agencies and private sectors. The strategy focuses on ecological understanding, environmental protection and ecodevelopment. The major attributes of the green tourism include environmental conservation and education and distribution of income to local people based on strong partnership. Various knowledge systems go a long way for achieving the goals of the green tourism, which creates awareness about the value of environmental resources.Mountains have ecological, recreational, educational and scientific values, which need to be utilised in sustainable way. Various tourist activities and facilities need to be diversified in order to achieve multiple benefits including scientific field excursion,recreation in natural and cultural areas, community festivals and sport tourisms. Green tourism considers tourism development as an integral part of a national and regional development. The paper discusses the social, economic and environmental dimensions of the green tourism with particular reference to village tourism development programme taking empirical evidences from the Himalaya. Such programme also minimises biophysical and human

  2. Climate Change Impacts on Ecosystem Services in High Mountain Areas: A Literature Review

    Ignacio Palomo

    2017-05-01

    Full Text Available High mountain areas are experiencing some of the earliest and greatest impacts of climate change. However, knowledge on how climate change impacts multiple ecosystem services that benefit different stakeholder groups remains scattered in the literature. This article presents a review of the literature on climate change impacts on ecosystem services benefiting local communities and tourists in high mountain areas. Results show a lack of studies focused on the global South, especially where there are tropical glaciers, which are likely to be the first to disappear. Climate change impacts can be classified as impacts on food and feed, water availability, natural hazards regulation, spirituality and cultural identity, aesthetics, and recreation. In turn, climate change impacts on infrastructure and accessibility also affect ecosystem services. Several of these impacts are a direct threat to the lives of mountain peoples, their livelihoods and their culture. Mountain tourism is experiencing abrupt changes too. The magnitude of impacts make it necessary to strengthen measures to adapt to climate change in high mountain areas.

  3. Predicting the Spatial Distribution of Wolf (Canis lupus Breeding Areas in a Mountainous Region of Central Italy.

    Elena Bassi

    Full Text Available Wolves (Canis lupus in Italy represent a relict west European population. They are classified as vulnerable by IUCN, though have increased in number and expanded their range in recent decades. Here we use 17 years of monitoring data (from 1993 to 2010 collected in a mountainous region of central Italy (Arezzo, Tuscany in an ecological niche-based model (MaxEnt to characterize breeding sites (i.e. the areas where pups were raised within home ranges, as detected from play-back responses. From a suite of variables related to topography, habitat and human disturbance we found that elevation and distance to protected areas were most important in explaining the locality of wolf responses. Rendezvous sites (family play-back response sites typically occurred between 800 and 1200 m a.s.l., inside protected areas, and were usually located along mountain chains distant from human settlements and roads. In these areas human disturbance is low and the densities of ungulates are typically high. Over recent years, rendezvous sites have occurred closer to urban areas as the wolf population has continued to expand, despite the consequent human disturbance. This suggests that undisturbed landscapes may be reaching their carrying capacity for wolves. This, in turn, may lead to the potential for increased human-wolf interactions in future. Applying our model, both within and beyond the species' current range, we identify sites both within the current range and also further afield, that the species could occupy in future. Our work underlines the importance of the present protected areas network in facilitating the recolonisation by wolves. Our projections of suitability of sites for future establishment as the population continues to expand could inform planning to minimize future wolf-human conflicts.

  4. Does Geology Matter? Post-Hurricane Maria Landslide Distribution Across the Mountainous Regions of Puerto Rico, USA

    Cerovski-Darriau, C.; Bessette-Kirton, E.; Schulz, W. H.; Kean, J. W.; Godt, J.; Coe, J. A.

    2017-12-01

    Heavy rainfall from Hurricane Maria—category 4 hurricane that made landfall Sept 20, 2017 on Puerto Rico and produced >500 mm of rain—caused widespread landsliding in mountainous regions throughout the territory. Landslides impacted roads, bridges, and reservoirs—cutting off communities, hindering recovery efforts, and affecting water quality and storage capacity. FEMA tasked the USGS with determining the level of imminent threat posed by landslides to life and property, and helping inform recovery efforts. The USGS landslide response team remotely quantified the spatial density of landslides, then deployed to Puerto Rico to assess damage in the field. These are our initial findings from work currently underway. We used post-hurricane satellite (WorldView 0.5 m resolution) and aerial (Sanborn and QuantumSpatial at 0.15 m resolution) imagery collected Sept 26-Oct 8, 2017 to visually estimate landslide concentration and determine the heaviest hit regions. We divided the territory into 2 x 2 km grids and classified each cell as no visible landslides, 25 LS/km2. Hurricane-induced defoliation made landslides readily visible in the imagery as areas of exposed soil or rock with morphology typical of landslides. This method proved to be a rapid way to visualize the spatial distribution of landslides to direct our field efforts. In the field, we found it was a conservative estimate. Landslides occurred in steep areas along the storm track, but high-density pockets occurred in the municipalities of Barranquitos, Jayuya, Lares, Naranjito, Utuado. Assuming Maria produced sufficient rainfall to trigger landslides in all mountainous regions, what controls the density and failure style? We found the highest slide densities disproportionately occurred in the Utuado granodiorite (60% of the unit was >25 LS/km2). Most of the landslides failed as shallow, translational slides. Bedrock slope failures were scarce. Some geologic units, with sufficient topographic relief, generated

  5. Natural foci of Borrelia lusitaniae in a mountain region of Central Europe.

    Tarageľová, Veronika Rusňáková; Mahríková, Lenka; Selyemová, Diana; Václav, Radovan; Derdáková, Markéta

    2016-03-01

    Lyme borreliosis is the most prevalent tick-borne disease in Europe. It is caused by spirochaetes of the Borrelia burgdorferi sensu lato (s.l.) complex and transmitted to humans by ticks of the genus Ixodes. Borrelia afzelii, Borrelia garinii, and Borrelia valaisiana are the most common genospecies in Central Europe. In contrast, Borrelia lusitaniae predominates in Mediterranean countries such as Portugal, Morocco, and Tunisia. In Slovakia, its prevalence is low and restricted to only a few sites. The aim of our research was to study the expansion of ticks into higher altitudes in the ecosystem of the Malá Fatra mountains (north Slovakia) and their infection with B. burgdorferi s.l. pathogens. Questing ticks were collected by flagging in seven years (2004, 2006-2011) at three different altitudes: low (630-660 m above sea level (ASL)), intermediate (720-750 m ASL), and high (1040-1070 m ASL). Tick abundance was highest at the lowest altitude and lowest at the highest altitude. The average infection prevalence of B. burgdorferi s.l. in nymphs and adults was 16.8% and 36.2%, respectively. The number of infected ticks decreased from 38.5% at the lowest altitude to 4.4% at the highest altitude. B. lusitaniae was the most frequently found genospecies (>60% of the ticks found positive for B. burgdorferi s.l.) in all sites in all the studied years with the exception of 2008 when B. afzelii predominated (62%). Our study confirms the spread of Ixodes ricinus ticks to higher altitudes in Slovakia. The discovery that our mountain study sites were a natural foci of B. lusitaniae was unexpected because this genospecies is usually associated with lizards and xerothermic habitats. Copyright © 2015 Elsevier GmbH. All rights reserved.

  6. Assessing Watershed-Wildfire Risks on National Forest System Lands in the Rocky Mountain Region of the United States

    Jessica R. Haas

    2013-07-01

    Full Text Available Wildfires can cause significant negative impacts to water quality with resultant consequences for the environment and human health and safety, as well as incurring substantial rehabilitation and water treatment costs. In this paper we will illustrate how state-of-the-art wildfire simulation modeling and geospatial risk assessment methods can be brought to bear to identify and prioritize at-risk watersheds for risk mitigation treatments, in both pre-fire and post-fire planning contexts. Risk assessment results can be particularly useful for prioritizing management of hazardous fuels to lessen the severity and likely impacts of future wildfires, where budgetary and other constraints limit the amount of area that can be treated. Specifically we generate spatially resolved estimates of wildfire likelihood and intensity, and couple that information with spatial data on watershed location and watershed erosion potential to quantify watershed exposure and risk. For a case study location we focus on National Forest System lands in the Rocky Mountain Region of the United States. The Region houses numerous watersheds that are critically important to drinking water supplies and that have been impacted or threatened by large wildfires in recent years. Assessment results are the culmination of a broader multi-year science-management partnership intended to have direct bearing on wildfire management decision processes in the Region. Our results suggest substantial variation in the exposure of and likely effects to highly valued watersheds throughout the Region, which carry significant implications for prioritization. In particular we identified the San Juan National Forest as having the highest concentration of at-risk highly valued watersheds, as well as the greatest amount of risk that can be mitigated via hazardous fuel reduction treatments. To conclude we describe future opportunities and challenges for management of wildfire-watershed interactions.

  7. Assessing Climate-Induced Change in River Flow Using Satellite Remote Sensing and Process Modeling in High Mountain Asia

    McDonald, K. C.

    2017-12-01

    Snow- and glacier-fed river systems originating from High Mountain Asia (HMA) support diverse ecosystems and provide the basis for food and energy production for more than a billion people living downstream. Climate-driven changes in the melting of snow and glaciers and in precipitation patterns are expected to significantly alter the flow of the rivers in the HMA region at various temporal scales, which in turn could heavily affect the socioeconomics of the region. Hence, climate change effects on seasonal and long-term hydrological conditions may have far reaching economic impact annually and over the century. We are developing a decision support tool utilizing integrated microwave remote sensing datasets, process modeling and economic models to inform water resource management decisions and ecosystem sustainability as related to the High Mountain Asia (HMA) region's response to climate change. The availability of consistent time-series microwave remote sensing datasets from Earth-orbiting scatterometers, radiometers and synthetic aperture radar (SAR) imagery provides the basis for the observational framework of this monitoring system. We discuss the assembly, processing and application of scatterometer and SAR data sets from the Advanced Scatterometer (ASCAT) and Sentinal-1 SARs, and the enlistment of these data to monitor seasonal melt and thaw status of glacier-dominated and surrounding regions. We present current status and future plans for this effort. Our team's study emphasizes processes and economic modeling within the Trishuli basin; our remote sensing analysis supports analyses across the HiMAT domain.

  8. A Ten Step Protocol and Plan for CCS Site Characterization, Based on an Analysis of the Rocky Mountain Region, USA

    McPherson, Brian; Matthews, Vince

    2013-09-15

    This report expresses a Ten-Step Protocol for CO2 Storage Site Characterization, the final outcome of an extensive Site Characterization analysis of the Rocky Mountain region, USA. These ten steps include: (1) regional assessment and data gathering; (2) identification and analysis of appropriate local sites for characterization; (3) public engagement; (4) geologic and geophysical analysis of local site(s); (5) stratigraphic well drilling and coring; (6) core analysis and interpretation with other data; (7) database assembly and static model development; (8) storage capacity assessment; (9) simulation and uncertainty assessment; (10) risk assessment. While the results detailed here are primarily germane to the Rocky Mountain region, the intent of this protocol is to be portable or generally applicable for CO2 storage site characterization.

  9. How a geomorphosite inventory can contribute to regional sustainable development? The case of the Simen Mountains National Park, Ethiopia

    Mauerhofer, Lukas; Reynard, Emmanuel; Asrat, Asfawossen; Hurni, Hans; Wildlife Conservation Authority, Ethiopian

    2016-04-01

    This research aimed at investigating how an inventory of geomorphosites can foster or improve the knowledge and management of geomorphological heritages in the context of developing countries. Accordingly, a geomorphosite inventory in the Simen Mountains National Park (SMNP), Ethiopia was conducted following the method of Reynard et al. (2015). The national context of geoheritage and geoconservation in Ethiopia was appraised and a road map for the management of the inventoried sites in the SMNP was elaborated. Ethiopia hosts numerous geoheritage sites, some of which of highest international significance. Therefore, geotourism has recently been promoted throughout the country (Asrat et al., 2008). Despite numerous trials of the scientific community, there is not yet a national policy for geoconservation in the country. Many parts of Ethiopia are underdeveloped in terms of economic subsistence and infrastructure, making these immediate priorities over conservation efforts. Nevertheless, this study showed that the Simen Mountains have the potential to become a UNESCO Global Geopark and that geosites could be used to develop geotourism within SMNP, and that development and conservation are not contradictory. Twenty-one geomorphosites were identified and assessed. Diverse geomorphological contexts including fluvial, structural, glacial, periglacial, anthropic and organic characterize the SMNP. The temporal stages, which allow the reconstitution of the morphogenesis of the Simen Mountains, are the Cenozoic volcanism, Last Glacial Maximum, Holocene as well as historic/modern landscape modification. Four synthesis maps were elaborated to present the results of the assessment. The average scientific value of the inventoried geomorphosites is very high compared to other inventories realized using the same method. This is particularly due to the extremely high integrity of the sites. Almost all geomorphosites are in a good state of conservation and only few sites are

  10. SCaMF–RM: A Fused High-Resolution Land Cover Product of the Rocky Mountains

    Rodríguez-Jeangros, Nicolás

    2017-10-02

    Land cover (LC) products, derived primarily from satellite spectral imagery, are essential inputs for environmental studies because LC is a critical driver of processes involved in hydrology, ecology, and climatology, among others. However, existing LC products each have different temporal and spatial resolutions and different LC classes that rarely provide the detail required by these studies. Using multiple existing LC products, we implement our Spatiotemporal Categorical Map Fusion (SCaMF) methodology over a large region of the Rocky Mountains (RM), encompassing sections of six states, to create a new LC product, SCaMF–RM. To do this, we must adapt SCaMF to address the prediction of LC in large space–time regions that present nonstationarities, and we add more flexibility in the LC classifications of the predicted product. SCaMF–RM is produced at two high spatial resolutions, 30 and 50 m, and a yearly frequency for the 30-year period 1983–2012. When multiple products are available in time, we illustrate how SCaMF–RM captures relevant information from the different LC products and improves upon flaws observed in other products. Future work needed includes an exhaustive validation not only of SCaMF–RM but also of all input LC products.

  11. Hydrochemical and environmental isotope analysis of groundwater and surface water in a dry mountain region in Northern Chile.

    Zang, Carina; Dame, Juliane; Nüsser, Marcus

    2018-05-08

    This case study examines the geological imprint and land use practices on water quality in the arid Huasco Valley against the backdrop of ongoing water conflicts surrounding competing demands for agriculture and mining. The study is based on a detailed analysis of spatial and temporal variations of monthly surface and bi-monthly groundwater quality samples measured during the Chilean summer of 2015/16. Additional information on source regions and river-groundwater interactions were collected using stable water isotopes. Regarding the geological impact on water quality, high concentrations of Ca 2+ , SO 4 2- and HCO 3 - indicate a strong influence of magmatic rocks, which constitute this high mountain basin, on the hydrochemistry. Piper and Gibbs-diagrams revealed that all samples show a homogenous distribution dominated by rock-water interactions. Measured NO 3 - concentrations in surface water are generally low. However, groundwater aquifers exhibit higher concentrations. Mn is the only heavy metal with elevated concentrations in surface water, which are possibly related to mining activities. The results illustrate that both surface and groundwater can be classified as suitable for irrigation. In addition, groundwater has been found to be suitable as drinking water. High similarities in isotopic signatures indicate a strong connection between surface and groundwater. Isotopic analyses suggest a strong influence of evaporation. This combined approach of hydrogeochemical and isotopic analysis proved to be a helpful tool in characterizing the catchment and can serve as a basis for future sustainable water management.

  12. MEAT PERFORMANCE OF THE CZECH SPOTTED CATTLE BULLS BRED IN MOUNTAIN REGION

    J. VOŘÍŠKOVÁ

    2008-10-01

    Full Text Available Chosen indicators of meat performance of 98 bulls of Czech Spotted cattle bred in elevation above 720 m above sea-level in the mountain region of Šumava are presented in the article. The fattening was realized in a barn with a deep litter. The feed ration consisted of haylage throughout the year. The bulls were divided into three groups according to their genotype - C100, C75-85R (CxR and C75-85A (CxA. The highest live weight at slaughter was achieved in the group C100 with 650 kg with the average age of 726 days and the weight of the carcasses of 363.8 kg. On the other hand, the worst results were achieved in the group CxA. For comparison a group of 14 bulls of the Holstein breed was created (H100, which was fattened in the same conditions. The bulls achieved their highest live weight before slaughter (664.6 kg, but at the highest age (743 days. Statistically significant differences were proven in the meat performance after individual fathers – the best results were documented with the offspring of the bull BO-837. After the separation of the set of bulls according to live weight at the end of fattening, the highest results were achieved by the group above 700 kg. The best class using the SEUROP method was achieved by the group with slaughtering live weight between 650 kg and 700 kg.

  13. Environmental impact assessment of mountain tourism in developing regions: A study in Ladakh, Indian Himalaya

    Geneletti, Davide; Dawa, Dorje

    2009-01-01

    Mountain tourism in developing countries is becoming a growing environmental concern due to extreme seasonality, lack of suitable infrastructures and planning, and interference with fragile ecosystems and protected areas. This paper presents a study devoted to assess the adverse environmental impacts of tourism, and in particular of trekking-related activities, in Ladakh, Indian Himalaya. The proposed approach is based on the use of Geographical Information System (GIS) modeling and remote sensing imageries to cope with the lack of data that affect the region. First, stressors associated with trekking, and environmental receptors potentially affected were identified. Subsequently, a baseline study on stressors (trail use, waste dumping, camping, pack animal grazing and off-road driving) and receptors (soil, water, wildlife, vegetation) was conducted through field work, data collection, and data processing supported by GIS. Finally, impacts were modeled by considering the intensity of the stressors, and the vulnerability and the value of the receptors. The results were spatially aggregated into watershed units, and combined to generate composite impact maps. The study concluded that the most affected watersheds are located in the central and southeastern part of Ladakh, along some of the most visited trails and within the Hemis and the Tsokar Tsomoriri National parks. The main objective of the study was to understand patterns of tourism-induced environmental degradation, so as to support mitigation interventions, as well as the development of suitable tourism policies.

  14. [Natural regeneration of young Excentrodendron hsienmu in karst mountainous region in Southwest Guangxi, China].

    Ou, Zhi-Yang; Su, Zhi-Yao; Peng, Yu-Hua; Hu, Qin-Fei; Huang, Xiao-Rong

    2013-09-01

    A field survey was conducted in the karst mountainous region in Pingguo County of Southwest Guangxi, China to explore the structural characteristics, spatial distribution pattern, and growth dynamics of young Excentrodendron hsienmu as well as the main environmental factors affecting the natural regeneration of the E. hsienmu population. In the study area, the population structure of the young E. hsienmu was stable, and exhibited a clumped spatial pattern for the seedlings and seedling sprouts. The ground diameter growth and height growth of the young E. hsienmu presented the same variation trend, i. e., the ground diameter increased with increasing height. The ground diameter growth and height growth of the E. hsienmu seedlings were limited by population density, i. e., decreased with increasing population density. The correlation analysis showed that the trees more than 2.5 m in height and the shrubs were the major stand factors affecting the natural regeneration of young E. hsienmu, while the herbs had no significant correlation with the regeneration. The percentage of covered rock also had no significant effects on the regeneration. Kruskal-Wallis ANOVA showed that there existed significant differences in the height and ground diameter of young E. hsienmu at different slope degrees and slope positions. The population density, height, and ground diameter had significant differences across slope aspects. The natural regeneration of young E. hsienmu was comprehensively affected by the species biological characteristics, intraspecific competition, interspecific competition, heterogeneous habitat, and anthropogenic disturbances.

  15. Natural radioactivity survey in Al-Jabal Al-Gharbi Mountain Region Libya

    Askouri, N.A.; Hussain, M.O.; Al-Ojaily, A.S.

    2011-01-01

    The measurement of natural radioactivity in a given region or country is essential to provide a reference base-line map to follow up a possible variation in future. In order to perform such measurement, the natural radioactivity was measured in different locations. The locations (50 sites) were distributed over Al-Jabal Al-Gharbi Mountain, starting from the city Al-Azeeziah in the eastern part to Wazen on the Tunisian border in the west. The measurements showed obvious variation from one site to another. The levels were fluctuating from (12.8 counts/minute) in Bir-Ayad to (45.7 counts/minute) in Gherian. In order to investigate the cause for such variation, samples were collected from (27) sites for detailed study. The levels of natural radioactivity were determined in the laboratory, and were ranging from (58.7 Bq/kg) in Bir-Ayad to (102.1 Bq/kg) in Gherian. The variation in measured radioactivity was related to the geological structures taken in six perpendicular sections, namely, Gharian, Yevren, Zintan, Nalut, Wazen and Al-Azeeziah taking the naturally occurred radioisotopes concentration of 4 0K, 232 Th and 238 U present in consideration.

  16. Studies on the evaluation of thermal belts and radiation fog over mountainous regions by LANDSAT data

    Kurose, Y.; Hayashi, Y.; Horiguchi, I.; Fukaishi, K.; Kanechika, O.; Ishida, H.; Sakurai, Y.; Sakai, T.; Yamauchi, Y.; Kohno, Y.

    1996-01-01

    Local meteorological phenomena and characteristics under conditions of nocturnal radiative cooling in winter were investigated using Landsat data and physiographic parameters over the hilly and mountainous regions of the western part of shikoku. (1) Relative elevation between thermal belts and underlying ground such as bottom of basin or valley was 400m on an average. (2) Thermal belts appeared in the zone between 400m and 1000m above the sea level in the western part of Shikoku. (3) Temperature of the thermal belts varied with the elevation in a ratio of about 1 degrees C/100m. This observation indicated that the thermal belt temperature was closely related to the altitude of the zone where the thermal belts originated. (4) Radiation fog was frequently recorded over some part along the Hiji river and over the area along Ootoyo to Motoyama; fog was present even at 10 a.m. (3 hours after sunrise). (5) Upper surface of the fog layer was located at 200m and 600m above the sea level in the Oozu basin and in the area along Ootoyo to Motoyama respectively. (6) In the Oozu basin, the distribution of hamlets on the mountainside was often recognized in the localities within the upper limit of foggy areas

  17. [Molluscicidal effect of film on ditches in mountainous schistosomiasis endemic regions].

    Zhu, Hong-Qing; Zhong, Bo; Zhang, Gui-Rong; Tang, Shu-Gui; Cao, Chun-Li; Zhang, Xu-Dong; Jia, Bin; Zhang, Yi; Li, Jian-Guo; Fu, Tao; Chen, Lin; Lu, Ding; Bao, Zi-Ping

    2011-04-01

    To evaluate the molluscicidal effect of film on ditches in mountainous schistosomiasis endemic regions. A ditch with Oncomelania hupensis snails was selected as experimental field. The ditch was divided into 3 parts (groups): a niclosamide plus film covering group (film covering after spraying by wettable powder of 50% niclosamide ethanolamine salt upon 2 g/m2), a film covering group (film covering directly without niclosamide spraying), and a control group (no molluscicidal measures). The snail investigation was performed 7, 10, 40, 60 d and 90 d after film covering. The temperatures outside and inside film were determined twice a day during the experiment. The temperature inside the film was significantly higher than that outside the film (t = 4.12, P film in the niclosamide plus film covering group and film covering group respectively; 96.58% and 93.06% ten days post-film respectively; both 100% forty days post-film. The multi-factor regression model indicated that covering film with niclosamide applying, extending film covering time, and increasing cumulate temperature inside film could enhance the molluscicidal effect. The film covering has well molluscicidal effect. The molluscicidal effect of covering film with niclosamide is better than that of covering film alone in short time. However, the covering film alone also has good molluscicidal effect when increasing covering time.

  18. Surface strain rate colour map of the Tatra Mountains region (Slovakia based on GNSS data

    Bednárik Martin

    2016-12-01

    Full Text Available The surface deformation of the Tatra Mountains region in Western Carpathians can nowadays be studied directly thanks to precise geodetic measurements using the GNSS. The strain or stress tensor field is, however, a rather complex “data structure” difficult to present legibly and with sufficient resolution in the form of a classical map. A novel and promising approach to the solution of this problem is coding the three principal strain or stress values into the three colour channels (red, green, blue of an RGB colour. In our previous study, the colour depended on the stress tensor shape descriptors. In the current study, the adapted colouring scheme uses a subset of shape descriptors common to stress and strain, which differ only in the scaling factor. In this manner, we generate the colour map of the surface strain rate field, where the colour of each grid point carries the information about the shape of the strain rate tensor at that point. The resulting strain rate colour map can be displayed simultaneously with the map of the faults or elevations and be easily checked for the data or interpolation method errors and incompatibility with the geophysical and geological expectations.

  19. Characterizing the emission implications of future natural gas production and use in the U.S. and Rocky Mountain region: A scenario-based energy system modeling approach

    McLeod, Jeffrey

    The recent increase in U.S. natural gas production made possible through advancements in extraction techniques including hydraulic fracturing has transformed the U.S. energy supply landscape while raising questions regarding the balance of environmental impacts associated with natural gas production and use. Impact areas at issue include emissions of methane and criteria pollutants from natural gas production, alongside changes in emissions from increased use of natural gas in place of coal for electricity generation. In the Rocky Mountain region, these impact areas have been subject to additional scrutiny due to the high level of regional oil and gas production activity and concerns over its links to air quality. Here, the MARKAL (MArket ALlocation) least-cost energy system optimization model in conjunction with the EPA-MARKAL nine-region database has been used to characterize future regional and national emissions of CO 2, CH4, VOC, and NOx attributed to natural gas production and use in several sectors of the economy. The analysis is informed by comparing and contrasting a base case, business-as-usual scenario with scenarios featuring variations in future natural gas supply characteristics, constraints affecting the electricity generation mix, carbon emission reduction strategies and increased demand for natural gas in the transportation sector. Emission trends and their associated sensitivities are identified and contrasted between the Rocky Mountain region and the U.S. as a whole. The modeling results of this study illustrate the resilience of the short term greenhouse gas emission benefits associated with fuel switching from coal to gas in the electric sector, but also call attention to the long term implications of increasing natural gas production and use for emissions of methane and VOCs, especially in the Rocky Mountain region. This analysis can help to inform the broader discussion of the potential environmental impacts of future natural gas production

  20. Environmental program overview for a high-level radioactive waste repository at Yucca Mountain

    1988-12-01

    The United States plans to begin operating the first repository for the permanent disposal of high-level nuclear waste early in the next century. In February 1983, the US Department of Energy (DOE) identified Yucca Mountain, in Nevada, as one of nine potentially acceptable sites for a repository. To determine its suitability, the DOE evaluated the Yucca Mountain site, along with eight other potentially acceptable sites, in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. The purpose of the Environmental Program Overview (EPO) for the Yucca Mountain site is to provide an overview of the overall, comprehensive approach being used to satisfy the environmental requirements applicable to sitting a repository at Yucca Mountain. The EPO states how the DOE will address the following environmental areas: aesthetics, air quality, cultural resources (archaeological and Native American components), noise, radiological studies, soils, terrestrial ecosystems, and water resources. This EPO describes the environmental program being developed for the sitting of a repository at Yucca Mountain. 1 fig., 3 tabs

  1. High mountain origin, phylogenetics, evolution, and niche conservatism of arctic lineages in the hemiparasitic genus Pedicularis (Orobanchaceae).

    Tkach, Natalia; Ree, Richard H; Kuss, Patrick; Röser, Martin; Hoffmann, Matthias H

    2014-07-01

    The origin of the arctic flora covering the northernmost treeless areas is still poorly understood. Arctic plants may have evolved in situ or immigrated from the adjacent ecosystems. Frequently arctic species have disjunctive distributions between the Arctic and high mountain systems of the temperate zone. This pattern may result from long distance dispersal or from glacial plant migrations and extinctions of intermediate populations. The hemiparasitic genus Pedicularis is represented in the Arctic by c. 28 taxa and ranks among the six most species-rich vascular plant genera of this region. In this study, we test the hypothesis that these lineages evolved from predecessors occurring in northern temperate mountain ranges, many of which are current centers of diversity for the genus. We generated a nuclear ribosomal and chloroplast DNA phylogeny including almost all of the arctic taxa and nearly half of the genus as a whole. The arctic taxa of Pedicularis evolved 12-14 times independently and are mostly nested in lineages that otherwise occur in the high mountains of Eurasia and North America. It appears that only three arctic lineages arose from the present-day center of diversity of the genus, in the Hengduan Mountains and Himalayas. Two lineages are probably of lowland origin. Arctic taxa of Pedicularis show considerable niche conservatism with respect to soil moisture and grow predominantly in moist to wet soils. The studied characteristics of ecology, morphology, and chromosome numbers of arctic Pedicularis show a heterogeneous pattern of evolution. The directions of morphological changes among the arctic lineages show opposing trends. Arctic taxa are chiefly diploid, the few tetraploid chromosome numbers of the genus were recorded only for arctic taxa. Five arctic Pedicularis are annuals or biennials, life forms otherwise rare in the Arctic. Other genera of the Orobanchaceae consist also of an elevated number of short-lived species, thus hemiparasitism may

  2. The stoneflies (Insecta, Plecoptera) of the Talladega Mountain region, Alabama, USA: distribution, elevation, endemism, and rarity patterns.

    Grubbs, Scott A; Sheldon, Andrew L

    2018-01-01

    Background The Talladega Mountain region of eastern Alabama is the southernmost outlier of the ancient Appalachian Mountains, including the highest peaks and ranges in the state. Collections of stoneflies (Plecoptera) previously here have been sporadic yet has led to several new species descriptions in modern times (James 1974, James 1976, Stark and Szczytko 1976, Kondratieff and Kirchner 1996, Szczytko and Kondratieff 2015) and expanded our understanding of southeastern US stoneflies. During the period 2003-2012 we conducted an intensive inventory of the stonefly fauna of the Talladega Mountain region. We collected across all months from 192 unique localities, covering a broad range of stream sizes and elevation gradients present in the region. New information A total of 57 confirmed species across eight of the nine Nearctic families were collected as adults (Table 4), including four species described as new during the study period (Table 2). Leuctra crossi James, 1974 was easily the most common species collected. Median elevations per species ranged from 174 m ( Clioperla clio (Newman, 1839)) to 410 m ( Leuctra triloba Claassen, 1923 (Fig. 3). Dot distribution maps were included for all 57 species plus one for undetermined nymphs of Pteronarcys Newman, 1838 (Figs. 4-19). As many as seven species may be endemic to the region but sampling efforts northeastward into Georgia, plus additional focused sampling in Alabama and a comprehensive examination of all available material held in museums and personal collections, are needed for confirmation.

  3. Gastric cancer incidence and mortality is associated with altitude in the mountainous regions of Pacific Latin America.

    Torres, Javier; Correa, Pelayo; Ferreccio, Catterina; Hernandez-Suarez, Gustavo; Herrero, Rolando; Cavazza-Porro, Maria; Dominguez, Ricardo; Morgan, Douglas

    2013-02-01

    In Latin America, gastric cancer is a leading cancer, and countries in the region have some of the highest mortality rates worldwide, including Chile, Costa Rica, and Colombia. Geographic variation in mortality rates is observed both between neighboring countries and within nations. We discuss epidemiological observations suggesting an association between altitude and gastric cancer risk in Latin America. In the Americas, the burden of gastric cancer mortality is concentrated in the mountainous areas along the Pacific rim, following the geography of the Andes sierra, from Venezuela to Chile, and the Sierra Madre and Cordillera de Centroamérica, from southern Mexico to Costa Rica. Altitude is probably a surrogate for host genetic, bacterial, dietary, and environmental factors that may cluster in the mountainous regions. For example, H. pylori strains from patients of the Andean Nariño region of Colombia display European ancestral haplotypes, whereas strains from the Pacific coast are predominantly of African origin. The observation of higher gastric cancer rates in the mountainous areas is not universal: the association is absent in Chile, where risk is more strongly associated with the age of H. pylori acquisition and socio-economic determinants. The dramatic global and regional variations in gastric cancer incidence and mortality rates offer the opportunity for scientific discovery and focused prevention programs.

  4. Emissions implications of future natural gas production and use in the U.S. and in the Rocky Mountain region.

    McLeod, Jeffrey D; Brinkman, Gregory L; Milford, Jana B

    2014-11-18

    Enhanced prospects for natural gas production raise questions about the balance of impacts on air quality, as increased emissions from production activities are considered alongside the reductions expected when natural gas is burned in place of other fossil fuels. This study explores how trends in natural gas production over the coming decades might affect emissions of greenhouse gases (GHG), volatile organic compounds (VOCs) and nitrogen oxides (NOx) for the United States and its Rocky Mountain region. The MARKAL (MARKet ALlocation) energy system optimization model is used with the U.S. Environmental Protection Agency's nine-region database to compare scenarios for natural gas supply and demand, constraints on the electricity generation mix, and GHG emissions fees. Through 2050, total energy system GHG emissions show little response to natural gas supply assumptions, due to offsetting changes across sectors. Policy-driven constraints or emissions fees are needed to achieve net reductions. In most scenarios, wind is a less expensive source of new electricity supplies in the Rocky Mountain region than natural gas. U.S. NOx emissions decline in all the scenarios considered. Increased VOC emissions from natural gas production offset part of the anticipated reductions from the transportation sector, especially in the Rocky Mountain region.

  5. Molybdenum, vanadium, and uranium weathering in small mountainous rivers and rivers draining high-standing islands

    Gardner, Christopher B.; Carey, Anne E.; Lyons, W. Berry; Goldsmith, Steven T.; McAdams, Brandon C.; Trierweiler, Annette M.

    2017-12-01

    Rivers draining high standing islands (HSIs) and small mountainous rivers (SMRs) are known to have extremely high sediment fluxes, and can also have high chemical weathering yields, which makes them potentially important contributors to the global riverine elemental flux to the ocean. This work reports on the riverine concentrations, ocean flux, and weathering yields of Molybdenum (Mo), Vanadium (V), and Uranium (U) in a large number of small but geochemically important rivers using 338 river samples from ten lithologically-diverse regions. These redox-sensitive elements are used extensively to infer paleo-redox conditions in the ocean, and Mo and V are also important rock-derived micronutrients used by microorganisms in nitrogen fixation. Unlike in large river systems, in which dissolved Mo has been attributed predominately to pyrite dissolution, Mo concentrations in these rivers did not correlate with sulfate concentrations. V was found to correlate strongly with Si in terrains dominated by silicate rocks, but this trend was not observed in primarily sedimentary regions. Many rivers exhibited much higher V/Si ratios than larger rivers, and rivers draining young Quaternary volcanic rocks in Nicaragua had much higher dissolved V concentrations (mean = 1306 nM) than previously-studied rivers. U concentrations were generally well below the global average with the exception of rivers draining primarily sedimentary lithologies containing carbonates and shales. Fluxes of U and Mo from igneous terrains of intermediate composition are lower than the global average, while fluxes of V from these regions are higher, and up to two orders of magnitude higher in the Nicaragua rivers. Weathering yields of Mo and V in most regions are above the global mean, despite lower than average concentrations measured in some of those systems, indicating that the chemical weathering of these elements are higher in these SMR watersheds than larger drainages. In regions of active boundaries

  6. Department of Energy perspective on high-level waste standards for Yucca Mountain

    Brocoum, S.J.; Gil, A.V.; Van Luik, A.E.; Lugo, M.A.

    1996-01-01

    This paper provides a regulatory perspective from the viewpoint of the potential licensee, the U.S. Department of Energy (DOE), on the National Academy of Sciences (NAS) report on Yucca Mountain standards issued in August 1995, and on how the recommendations in that report should be considered in the development of high-level radioactive waste standards applicable to Yucca Mountain. The paper first provides an overview of the DOE perspective and then discusses several of the issues that are of most importance in the development of the regulatory framework for Yucca Mountain, including both the U.S. Environmental Protection Agency (EPA) standard and the U.S. Nuclear Regulatory Commission (NRC) implementing regulation. These issues include: the regulatory time frame, the risk/dose limit, the definition of the reference biosphere, human intrusion, and natural processes and events

  7. Genetic structure and evolutionary history of three alpine sclerophyllous oaks in East Himalaya-Hengduan Mountains and adjacent regions

    Li Feng

    2016-11-01

    Full Text Available The East Himalaya-Hengduan Mountains (EH-HM region has a high biodiversity and harbours numerous endemic alpine plants. This is probably the result of combined orographic and climate oscillations occurring since late Tertiary. Here, we determined the genetic structure and evolutionary history of alpine oak species (including Q. spinosa, Q. aquifolioides and Q. rehderiana using both cytoplasmic-nuclear markers and ecological niche models (ENMs, and elucidated the impacts of climate oscillations and environmental heterogeneity on their population demography. Our results indicate there were mixed genetic structure and asymmetric contemporary gene flow within them. The ENMs revealed a similar demographic history for the three species expanded their ranges from the last interglacial (LIG to the last glacial maximum (LGM, which was consistent with effective population sizes changes. Effects of genetic drift and fragmentation of habitats were responsible for the high differentiation and the lack of phylogeographic structure. Our results support that geological and climatic factors since Miocene triggered the differentiation, evolutionary origin and range shifts of the three oak species in the studied area and also emphasize that a multidisciplinary approach combining molecular markers, ENMs and population genetics can yield deep insights into diversification and evolutionary dynamics of species.

  8. Genetic Structure and Evolutionary History of Three Alpine Sclerophyllous Oaks in East Himalaya-Hengduan Mountains and Adjacent Regions.

    Feng, Li; Zheng, Qi-Jian; Qian, Zeng-Qiang; Yang, Jia; Zhang, Yan-Ping; Li, Zhong-Hu; Zhao, Gui-Fang

    2016-01-01

    The East Himalaya-Hengduan Mountains (EH-HM) region has a high biodiversity and harbors numerous endemic alpine plants. This is probably the result of combined orographic and climate oscillations occurring since late Tertiary. Here, we determined the genetic structure and evolutionary history of alpine oak species (including Quercus spinosa, Quercus aquifolioides , and Quercus rehderiana ) using both cytoplasmic-nuclear markers and ecological niche models (ENMs), and elucidated the impacts of climate oscillations and environmental heterogeneity on their population demography. Our results indicate there were mixed genetic structure and asymmetric contemporary gene flow within them. The ENMs revealed a similar demographic history for the three species expanded their ranges from the last interglacial (LIG) to the last glacial maximum (LGM), which was consistent with effective population sizes changes. Effects of genetic drift and fragmentation of habitats were responsible for the high differentiation and the lack of phylogeographic structure. Our results support that geological and climatic factors since Miocene triggered the differentiation, evolutionary origin and range shifts of the three oak species in the studied area and also emphasize that a multidisciplinary approach combining molecular markers, ENMs and population genetics can yield deep insights into diversification and evolutionary dynamics of species.

  9. Strong topographic sheltering effects lead to spatially complex treeline advance and increased forest density in a subtropical mountain region.

    Greenwood, Sarah; Chen, Jan-Chang; Chen, Chaur-Tzuhn; Jump, Alistair S

    2014-12-01

    Altitudinal treelines are typically temperature limited such that increasing temperatures linked to global climate change are causing upslope shifts of treelines worldwide. While such elevational increases are readily predicted based on shifting isotherms, at the regional level the realized response is often much more complex, with topography and local environmental conditions playing an important modifying role. Here, we used repeated aerial photographs in combination with forest inventory data to investigate changes in treeline position in the Central Mountain Range of Taiwan over the last 60 years. A highly spatially variable upslope advance of treeline was identified in which topography is a major driver of both treeline form and advance. The changes in treeline position that we observed occurred alongside substantial increases in forest density, and lead to a large increase in overall forest area. These changes will have a significant impact on carbon stocking in the high altitude zone, while the concomitant decrease in alpine grassland area is likely to have negative implications for alpine species. The complex and spatially variable changes that we report highlight the necessity for considering local factors such as topography when attempting to predict species distributional responses to warming climate. © 2014 John Wiley & Sons Ltd.

  10. YUCCA MOUNTAIN SITE DESCRIPTION

    Simmons, A.M.

    2004-01-01

    The ''Yucca Mountain Site Description'' summarizes, in a single document, the current state of knowledge and understanding of the natural system at Yucca Mountain. It describes the geology; geochemistry; past, present, and projected future climate; regional hydrologic system; and flow and transport within the unsaturated and saturated zones at the site. In addition, it discusses factors affecting radionuclide transport, the effect of thermal loading on the natural system, and tectonic hazards. The ''Yucca Mountain Site Description'' is broad in nature. It summarizes investigations carried out as part of the Yucca Mountain Project since 1988, but it also includes work done at the site in earlier years, as well as studies performed by others. The document has been prepared under the Office of Civilian Radioactive Waste Management quality assurance program for the Yucca Mountain Project. Yucca Mountain is located in Nye County in southern Nevada. The site lies in the north-central part of the Basin and Range physiographic province, within the northernmost subprovince commonly referred to as the Great Basin. The basin and range physiography reflects the extensional tectonic regime that has affected the region during the middle and late Cenozoic Era. Yucca Mountain was initially selected for characterization, in part, because of its thick unsaturated zone, its arid to semiarid climate, and the existence of a rock type that would support excavation of stable openings. In 1987, the United States Congress directed that Yucca Mountain be the only site characterized to evaluate its suitability for development of a geologic repository for high-level radioactive waste and spent nuclear fuel

  11. YUCCA MOUNTAIN SITE DESCRIPTION

    A.M. Simmons

    2004-04-16

    The ''Yucca Mountain Site Description'' summarizes, in a single document, the current state of knowledge and understanding of the natural system at Yucca Mountain. It describes the geology; geochemistry; past, present, and projected future climate; regional hydrologic system; and flow and transport within the unsaturated and saturated zones at the site. In addition, it discusses factors affecting radionuclide transport, the effect of thermal loading on the natural system, and tectonic hazards. The ''Yucca Mountain Site Description'' is broad in nature. It summarizes investigations carried out as part of the Yucca Mountain Project since 1988, but it also includes work done at the site in earlier years, as well as studies performed by others. The document has been prepared under the Office of Civilian Radioactive Waste Management quality assurance program for the Yucca Mountain Project. Yucca Mountain is located in Nye County in southern Nevada. The site lies in the north-central part of the Basin and Range physiographic province, within the northernmost subprovince commonly referred to as the Great Basin. The basin and range physiography reflects the extensional tectonic regime that has affected the region during the middle and late Cenozoic Era. Yucca Mountain was initially selected for characterization, in part, because of its thick unsaturated zone, its arid to semiarid climate, and the existence of a rock type that would support excavation of stable openings. In 1987, the United States Congress directed that Yucca Mountain be the only site characterized to evaluate its suitability for development of a geologic repository for high-level radioactive waste and spent nuclear fuel.

  12. Spatiotemporal patterns of high-mountain lakes and related hazards in western Austria

    Emmer, Adam; Merkl, S.; Mergili, M.

    2015-01-01

    Roč. 246, oct (2015), s. 602-616 ISSN 0169-555X Institutional support: RVO:67179843 Keywords : lake development * geoenvironmental change * GLOF * high-mountain lakes * susceptibility analysis Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 2.813, year: 2015

  13. Heavy metals content in degraded agricultural soils of a mountain region related to soil properties

    Navarro-Pedreño, José; Belén Almendro-Candel, María; Gómez, Ignacio; Jordán, Manuel M.; Bech, Jaume; Zorpas, Antonis

    2017-04-01

    Agriculture has been practiced for long time in Mediterranean regions. Intensive agriculture and irrigation have developed mainly in the valleys and coastal areas. In the mountainous areas, dry farming has been practiced for centuries. Soils have been fertilized using mainly organic amendments. Plants extracted nutrients and other elements like heavy metals presented in soils and agricultural practices modified soil properties that could favor the presence of heavy metals. In this work, it has been checked the content of heavy metals in 100 agricultural soils samples of the NorthWest area of the province of Alicante (Spain) which has been long cultivated with cereals and olive trees, and now soils are abandoned and degraded because of the low agricultural yields. European policy has the aim to improve the sustainable agriculture and recover landscapes of mountain regions. So that, it is important to check the state of the soils (Marques et al. 2007). Soils samples (arable layer) were analyzed determining: pH (1:5, w/v, water extract), equivalent calcium carbonate content, organic matter by Walkley-Black method (Nelson and Sommers 1996), micronutrients (Cu, Fe, Mn, Zn) extracted with DTPA (Lindsay and Norvell, 1978) and measured by atomic absorption spectrometry, and total content of metals (Cd, Cr, Ni, Pb) measured in soil samples after microwave acid digestion (Moral et al. 1996), quantifying the content of metals by ICP analysis. The correlation between soil properties and metals. The results indicated that pH and carbonates are the most important properties of these soils correlated with the metals (both micronutrients and heavy metals). The available micronutrients (all of them) are close correlated with the pH and carbonates in soils. Moreover, heavy metals like Pb and Ni are related to available Mn and Zn. Keywords: pH, carbonates, heavy metals, abandoned soils. References: Lindsay,W.L., andW.A. Norvell. 1978. "Development of a DTPA Soil Test for Zinc, Iron

  14. Accelerated construction of a regional DNA-barcode reference library: Caddisflies (Trichoptera) in the Great Smoky Mountains National Park

    Zhou, X.; Robinson, J.L.; Geraci, C.J.; Parker, C.R.; Flint, O.S.; Etnier, D.A.; Ruiter, D.; DeWalt, R.E.; Jacobus, L.M.; Hebert, P.D.N.

    2011-01-01

    Deoxyribonucleic acid (DNA) barcoding is an effective tool for species identification and lifestage association in a wide range of animal taxa. We developed a strategy for rapid construction of a regional DNA-barcode reference library and used the caddisflies (Trichoptera) of the Great Smoky Mountains National Park (GSMNP) as a model. Nearly 1000 cytochrome c oxidase subunit I (COI) sequences, representing 209 caddisfly species previously recorded from GSMNP, were obtained from the global Trichoptera Barcode of Life campaign. Most of these sequences were collected from outside the GSMNP area. Another 645 COI sequences, representing 80 species, were obtained from specimens collected in a 3-d bioblitz (short-term, intense sampling program) in GSMNP. The joint collections provided barcode coverage for 212 species, 91% of the GSMNP fauna. Inclusion of samples from other localities greatly expedited construction of the regional DNA-barcode reference library. This strategy increased intraspecific divergence and decreased average distances to nearest neighboring species, but the DNA-barcode library was able to differentiate 93% of the GSMNP Trichoptera species examined. Global barcoding projects will aid construction of regional DNA-barcode libraries, but local surveys make crucial contributions to progress by contributing rare or endemic species and full-length barcodes generated from high-quality DNA. DNA taxonomy is not a goal of our present work, but the investigation of COI divergence patterns in caddisflies is providing new insights into broader biodiversity patterns in this group and has directed attention to various issues, ranging from the need to re-evaluate species taxonomy with integrated morphological and molecular evidence to the necessity of an appropriate interpretation of barcode analyses and its implications in understanding species diversity (in contrast to a simple claim for barcoding failure).

  15. Integrated Vulnerability and Impacts Assessment for Natural and Engineered Water-Energy Systems in the Southwest and Southern Rocky Mountain Region

    Tidwell, Vincent C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wolfsberg, Andrew [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Macknick, Jordan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Middleton, Richard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-01-01

    In the Southwest and Southern Rocky Mountains (SWSRM), energy production, energy resource extraction, and other high volume uses depend on water supply from systems that are highly vulnerable to extreme, coupled hydro-ecosystem-climate events including prolonged drought, flooding, degrading snow cover, forest die off, and wildfire. These vulnerabilities, which increase under climate change, present a challenge for energy and resource planners in the region with the highest population growth rate in the nation. Currently, analytical tools are designed to address individual aspects of these regional energy and water vulnerabilities. Further, these tools are not linked, severely limiting the effectiveness of each individual tool. Linking established tools, which have varying degrees of spatial and temporal resolution as well as modeling objectives, and developing next-generation capabilities where needed would provide a unique and replicable platform for regional analyses of climate-water-ecosystem-energy interactions, while leveraging prior investments and current expertise (both within DOE and across other Federal agencies).

  16. Digital modelling of landscape and soil in a mountainous region: A neuro-fuzzy approach

    Viloria, Jesús A.; Viloria-Botello, Alvaro; Pineda, María Corina; Valera, Angel

    2016-01-01

    Research on genetic relationships between soil and landforms has largely improved soil mapping. Recent technological advances have created innovative methods for modelling the spatial soil variation from digital elevation models (DEMs) and remote sensors. This generates new opportunities for the application of geomorphology to soil mapping. This study applied a method based on artificial neural networks and fuzzy clustering to recognize digital classes of land surfaces in a mountainous area in north-central Venezuela. The spatial variation of the fuzzy memberships exposed the areas where each class predominates, while the class centres helped to recognize the topographic attributes and vegetation cover of each class. The obtained classes of terrain revealed the structure of the land surface, which showed regional differences in climate, vegetation, and topography and landscape stability. The land-surface classes were subdivided on the basis of the geological substratum to produce landscape classes that additionally considered the influence of soil parent material. These classes were used as a framework for soil sampling. A redundancy analysis confirmed that changes of landscape classes explained the variation in soil properties (p = 0.01), and a Kruskal-Wallis test showed significant differences (p = 0.01) in clay, hydraulic conductivity, soil organic carbon, base saturation, and exchangeable Ca and Mg between classes. Thus, the produced landscape classes correspond to three-dimensional bodies that differ in soil conditions. Some changes of land-surface classes coincide with abrupt boundaries in the landscape, such as ridges and thalwegs. However, as the model is continuous, it disclosed the remaining variation between those boundaries.

  17. Sphingomonas qilianensis sp. nov., Isolated from Surface Soil in the Permafrost Region of Qilian Mountains, China.

    Piao, Ai-Lian; Feng, Xiao-Min; Nogi, Yuichi; Han, Lu; Li, Yonghong; Lv, Jie

    2016-04-01

    A Gram-stain-negative, strictly aerobic, non-motile and rod-shaped bacterial strain, designated X1(T), was isolated from the permafrost region of Qilian Mountains in northwest of China. Phylogenetic analyses of 16S rRNA gene sequence revealed that strain X1(T) was a member of the genus Sphingomonas and shared the highest 16S rRNA gene sequence similarity with Sphingomonas oligophenolica JCM 12082(T) (96.9%), followed by Sphingomonas glacialis CGMCC 1.8957(T) (96.7%) and Sphingomonas alpina DSM 22537(T) (96.4%). Strain X1(T) was able to grow at 15-30 °C, pH 6.0-10.0 and with 0-0.3% NaCl (w/v). The DNA G+C content of the isolate was 64.8 mol%. Strain X1(T)-contained Q-10 as the dominant ubiquinone and C(18:1)ω7c, C(16:1)ω7c, C(16:0) and C(14:0) 2-OH as the dominant fatty acids. The polar lipid profile of strain XI(T)-contained sphingoglycolipid, phosphatidylglycerol, phosphatidylethanolamine, one unidentified glycolipid and two unidentified phospholipid. Due to the phenotypic and genetic distinctiveness and other characteristic studied in this article, we consider X1(T) as a novel species of the genus Sphingomonas and propose to name it Sphingomonas qilianensis sp. nov. The type strain is X1(T) (=CGMCC 1.15349(T) = KCTC 42862(T)).

  18. Phylogeny and diversification of mountain vipers (Montivipera, Nilson et al., 2001) triggered by multiple Plio-Pleistocene refugia and high-mountain topography in the Near and Middle East.

    Stümpel, Nikolaus; Rajabizadeh, Mehdi; Avcı, Aziz; Wüster, Wolfgang; Joger, Ulrich

    2016-08-01

    The Near and Middle East is a hotspot of biodiversity, but the region remains underexplored at the level of genetic biodiversity. Here, we present an extensive molecular phylogeny of the viperid snake genus Montivipera, including all known taxa. Based on nuclear and mitochondrial data, we present novel insights into the phylogeny of the genus and review the status of its constituent species. Maximum likelihood methods revealed a montane origin of Montivipera at 12.3Mya. We then analyzed factors of mountain viper diversity. Our data support substantial changes in effective population size through Plio-Pleistocene periods. We conclude that climatic oscillations were drivers of allopatric speciation, and that mountain systems of the Near and Middle East have strongly influenced the evolution and survival of taxa, because climatic and topographical heterogeneities induced by mountains have played a crucial role as filters for dispersal and as multiple refugia. The wide diversity of montane microhabitats enabled mountain vipers to retain their ecological niche during climatic pessima. In consequence the varied geological and topographical conditions between refugia favoured genetic isolation and created patterns of species richness resulting in the formation of neoendemic taxa. Our data support high concordance between geographic distributions of Montivipera haplotypes with putative plant refugia. Copyright © 2016. Published by Elsevier Inc.

  19. Mapping Plant Functional Types over Broad Mountainous Regions: A Hierarchical Soft Time-Space Classification Applied to the Tibetan Plateau

    Danlu Cai

    2014-04-01

    Full Text Available Research on global climate change requires plant functional type (PFT products. Although several PFT mapping procedures for remote sensing imagery are being used, none of them appears to be specifically designed to map and evaluate PFTs over broad mountainous areas which are highly relevant regions to identify and analyze the response of natural ecosystems. We present a methodology for generating soft classifications of PFTs from remotely sensed time series that are based on a hierarchical strategy by integrating time varying integrated NDVI and phenological information with topography: (i Temporal variability: a Fourier transform of a vegetation index (MODIS NDVI, 2006 to 2010. (ii Spatial partitioning: a primary image segmentation based on a small number of thresholds applied to the Fourier amplitude. (iii Classification by a supervised soft classification step is based on a normalized distance metric constructed from a subset of Fourier coefficients and complimentary altitude data from a digital elevation model. Applicability and effectiveness is tested for the eastern Tibetan Plateau. A classification nomenclature is determined from temporally stable pixels in the MCD12Q1 time series. Overall accuracy statistics of the resulting classification reveal a gain of about 7% from 64.4% compared to 57.7% by the MODIS PFT products.

  20. Ethnoveterinary treatments by dromedary camel herders in the Suleiman Mountainous Region in Pakistan: an observation and questionnaire study.

    Raziq, Abdul; de Verdier, Kerstin; Younas, Muhammad

    2010-06-21

    The Suleiman mountainous region is an important cradle of animal domestication and the habitat of many indigenous livestock breeds. The dromedary camel is a highly appreciated and valued animal and represents an important genetic resource. Camel herders, living in remote areas, have developed their own ways to treat diseases in camels, based on a long time of experience. Information about the diseases and the ethnoveterinary practices performed was collected from a total of 90 herders and healers by interviews and participant observations. The respondents classified the diseased in major and minor fractions. Clinical signs were given in detail. Mange followed by trypanosomosis and orf were considered the most prevalent diseases, and also caused the greatest economic losses. Orf was regarded the most complex disease. The season was considered to have great influence on the occurrence of the diseases. A variety of different treatments were described, such as medicinal plants, cauterization, odorant/fly repellents, pesticides, larvicides, cold drink, yogurt and supportive therapy (hot food, hot drink). There is paramount need to document and validate the indigenous knowledge about animal agriculture in general and ethnoveterinary practices in particular. This knowledge is rapidly disappearing and represents a cultural heritage as well as a valuable resource for attaining food security and sovereignty.

  1. CO{sub 2} Sequestration Capacity and Associated Aspects of the Most Promising Geologic Formations in the Rocky Mountain Region: Local-Scale Analyses

    Laes, Denise; Eisinger, Chris; Morgan, Craig; Rauzi, Steve; Scholle, Dana; Scott, Phyllis; Lee, Si-Yong; Zaluski, Wade; Esser, Richard; Matthews, Vince; McPherson, Brian

    2013-07-30

    The purpose of this report is to provide a summary of individual local-­scale CCS site characterization studies conducted in Colorado, New Mexico and Utah. These site-­ specific characterization analyses were performed as part of the “Characterization of Most Promising Sequestration Formations in the Rocky Mountain Region” (RMCCS) project. The primary objective of these local-­scale analyses is to provide a basis for regional-­scale characterization efforts within each state. Specifically, limits on time and funding will typically inhibit CCS projects from conducting high-­ resolution characterization of a state-­sized region, but smaller (< 10,000 km{sup 2}) site analyses are usually possible, and such can provide insight regarding limiting factors for the regional-­scale geology. For the RMCCS project, the outcomes of these local-­scale studies provide a starting point for future local-­scale site characterization efforts in the Rocky Mountain region.

  2. Regionalization of soil base cation weathering for evaluating stream water acidification in the Appalachian Mountains, USA

    McDonnell, T.C.; Cosby, B.J.; Sullivan, T.J.

    2012-01-01

    Estimation of base cation supply from mineral weathering (BC w ) is useful for watershed research and management. Existing regional approaches for estimating BC w require generalized assumptions and availability of stream chemistry data. We developed an approach for estimating BC w using regionally specific empirical relationships. The dynamic model MAGIC was used to calibrate BC w in 92 watersheds distributed across three ecoregions. Empirical relationships between MAGIC-simulated BC w and watershed characteristics were developed to provide the basis for regionalization of BC w throughout the entire study region. BC w estimates extracted from MAGIC calibrations compared reasonably well with BC w estimated by regression based on landscape characteristics. Approximately one-third of the study region was predicted to exhibit BC w rates less than 100 meq/m 2 /yr. Estimates were especially low for some locations within national park and wilderness areas. The regional BC w results are discussed in the context of critical loads (CLs) of acidic deposition for aquatic ecosystem protection. - Highlights: ► Base cation weathering (BC w ) estimates are needed to model critical load of acidity. ► Estimating BC w formerly required generalized assumptions and stream chemistry data. ► We describe a high-resolution approach for estimating BC w for regional application. - A new approach is described for deriving regional estimates of effective base cation weathering using empirical relationships with landscape characteristics.

  3. Spatiotemporal dynamics of spring and stream water chemistry in a high-mountain area

    Zelazny, Miroslaw; Astel, Aleksander; Wolanin, Anna; Malek, Stanislaw

    2011-01-01

    The present study deals with the application of the self-organizing map (SOM) technique in the exploration of spatiotemporal dynamics of spring and stream water samples collected in the Chocholowski Stream Basin located in the Tatra Mountains (Poland). The SOM-based classification helped to uncover relationships between physical and chemical parameters of water samples and factors determining the quality of water in the studied high-mountain area. In the upper part of the Chocholowski Stream Basin, located on the top of the crystalline core of the Tatras, concentrations of the majority of ionic substances were the lowest due to limited leaching. Significantly higher concentration of ionic substances was detected in spring and stream samples draining sedimentary rocks. The influence of karst-type springs on the quality of stream water was also demonstrated. - Highlights: → We use SOM approach to explore physiochemical data for mountain waters. → Geologic structure and hydrological events impact water chemistry. → Limited leaching, typical of crystalline core, reflects in low water mineralization. → Sedimentary rocks are susceptible for leaching. → Eutrophication has not been shown to be a threat in the Chocholowska Valley. - Spatiotemporal dynamics of spring and stream water chemistry in unique high-mountain area was evaluated by the self-organizing map technique.

  4. Mercury Speciation and Bioaccumulation In Riparian and Upland Food Webs of the White Mountains Region, New Hampshire, USA

    Rodenhouse, N.; Gebauer, R.; Lowe, W.; McFarland, K.; Bank, M. S.

    2015-12-01

    The soils and foods webs associated with mid to high elevation, forested, headwater streams are potential hotspots for mercury methylation and bioaccumulation but are not well studied. We tested the hypothesis that spatial variation in mercury bioaccumulation in upland taxa associated with headwater streams can be explained by variation in soil conditions promoting Hg methylation such as soil moisture, pH, and sulfur and organic matter content. We sampled at high (c. 700m) and mid elevation (c. 500m) in northern hardwood forest adjacent to and away from (75m) replicate headwater streams in the Hubbard Brook and Jeffers Brook watersheds of the White Mountains region, New Hampshire, USA. These forested watersheds differed primarily in soil calcium content and pH. We measured and assessed spatial variation in total Hg (THg) and methyl Hg (MeHg) concentrations in soils, insects, spiders, salamanders and birds. We also tested whether trophic position, as determined by nitrogen stable isotopes, was a major predictor of Hg bioaccumulation across these riparian and upland forest taxa. We found elevated levels of THg in all measured components of the food web, and conditions for methylation were better in the upland forest sites compared to the riparian sites located adjacent to headwater streams. Both THg and MeHg in biota were positively correlated with trophic position as indicated by 15N enrichment. In fact, trophic position was a better predictor of THg and MeHg content than spatial location, but the spatial patterning of bioaccumulation differed among taxa. Our data show that that significant Hg bioaccumulation and biomagnification can occur in soils and food webs of mid to high elevation temperate deciduous forests of the Northeast. They also suggest that mercury methylation in forested watersheds is a widespread phenomenon and not limited to areas with high soil moisture, such as lotic environments.

  5. Segmented seismicity of the Mw 6.2 Baladeh earthquake sequence (Alborz mountains, Iran) revealed from regional moment tensors

    Donner, Stefanie; Rössler, Dirk; Krüger, Frank

    2013-01-01

    The M w 6.2 Baladeh earthquake occurred on 28 May 2004 in the Alborz Mountains, northern Iran. This earthquake was the first strong shock in this intracontinental orogen for which digital regional broadband data are available. The Baladeh event provides a rare opportunity to study fault geometry...... model, regional waveform data of the mainshock and larger aftershocks (M w  ≥3.3) were inverted for moment tensors. For the Baladeh mainshock, this included inversion for kinematic parameters. All analysed earthquakes show dominant thrust mechanisms at depths between 14 and 26 km, with NW–SE striking...

  6. Analysis of datum-instability effect on calculated results of data from Longmen Mountain regional gravity network

    Sun Shaoan

    2011-11-01

    Full Text Available A statistical correlation method is used to study the effect of instability of the calculation datum (used in traditional method of indirect adjustment on calculated gravity results, using data recorded by Long-men Mountain regional gravity network during 1996 – 2007. The result shows that when this effect is corrected, anomalous gravity changes before the 2008 Wenchuan Ms8.0 earthquake become obvious and characteristically distinctive. Thus the datum-stability problem must be considered when processing and analyzing data recorded by a regional gravity network.

  7. A changing world: Using nuclear techniques to investigate the impact of climate change on polar and mountainous regions

    Henriques, Sasha

    2015-01-01

    Nuclear techniques are being used in polar and mountainous regions to study climate change and its impact on the quality of land, water and ecosystems in order to better conserve and manage these resources. Researchers from around the world will be using data from 13 benchmark sites to draw conclusions about the effects of the rapidly changing climate on the Arctic, mountains and the western part of Antarctica, which have alarmed communities, environmentalists, scientists and policy makers. Between July 2015 and July 2016 they will be using isotopic and nuclear techniques, as well as geochemical and biological analytical methods from other scientific disciplines. This will enable them to track soil and water, to monitor the movement of soil and sediment and to assess the effects of melting permafrost on the atmosphere, as well as on the land, water and fragile ecosystems of mountainous and polar regions. The measurements follow numerous on-site tests carried out since November 2014 to perfect the sampling technique.

  8. Multiscale Spatio-Temporal Dynamics of Economic Development in an Interprovincial Boundary Region: Junction Area of Tibetan Plateau, Hengduan Mountain, Yungui Plateau and Sichuan Basin, Southwestern China Case

    Jifei Zhang

    2016-02-01

    Full Text Available An interprovincial boundary region is a new subject of economic disparity study in China. This study explored the multi-scale spatio-temporal dynamics of economic development from 1995 to 2010 in the interprovincial boundary region of Sichuan-Yunnan-Guizhou, a mountain area and also the junction area of Tibetan Plateau, Hengduan Mountain, Yungui Plateau and Sichuan Basin in southwestern China. A quantitative study on county GDP per capita for different scales of administrative regions was conducted using the Theil index, Markov chains, a geographic information system and exploratory spatial data analysis. Results indicated that the economic disparity was closely related with geographical unit scale in the study area: the smaller the unit, the bigger the disparity, and the regional inequality gradually weakened over time. Moreover, significant positive spatial autocorrelation and clustering of economic development were also found. The spatial pattern of economic development presented approximate circle structure with two cores in the southwest and northeast. The Panxi region in the southwest core and a part of Hilly Sichuan Basin in the northeast core were considered to be hot spots of economic development. Most areas in the east and central region were persistently trapped in the low level of a balanced development state, with a poverty trap being formed in the central and south part. Geographical conditions and location, administrative barriers and the lack of effective growth poles may be the main reasons for the entire low level of balanced development. Our findings suggest that in order to achieve a high level of balanced development, attention should be paid beyond developing transportation and other infrastructure. Breaking down the rigid shackles of administrative districts that hinder trans-provincial cooperation and promoting new regional poles in the Yunnan-Guizhou region may have great significance for the study area.

  9. Source limitation of carbon gas emissions in high-elevation mountain streams and lakes

    Crawford, John T.; Dornblaser, Mark M.; Stanley, Emily H.; Clow, David W.; Striegl, Robert G.

    2015-01-01

    Inland waters are an important component of the global carbon cycle through transport, storage, and direct emissions of CO2 and CH4 to the atmosphere. Despite predictions of high physical gas exchange rates due to turbulent flows and ubiquitous supersaturation of CO2—and perhaps also CH4—patterns of gas emissions are essentially undocumented for high mountain ecosystems. Much like other headwater networks around the globe, we found that high-elevation streams in Rocky Mountain National Park, USA, were supersaturated with CO2 during the growing season and were net sources to the atmosphere. CO2concentrations in lakes, on the other hand, tended to be less than atmospheric equilibrium during the open water season. CO2 and CH4 emissions from the aquatic conduit were relatively small compared to many parts of the globe. Irrespective of the physical template for high gas exchange (high k), we found evidence of CO2 source limitation to mountain streams during the growing season, which limits overall CO2emissions. Our results suggest a reduced importance of aquatic ecosystems for carbon cycling in high-elevation landscapes having limited soil development and high CO2 consumption via mineral weathering.

  10. Analysis of relation between geomorphologic processes and alpine vegetation in the high mountain landscape (Tatry Mts.)

    Boltiziar, M.

    2003-01-01

    The aim was to present some information about starting of high mountains ecological monitoring and its first partial results. The research is focused on a long-term observation of vegetation changes (species composition, species spatial distribution) in relation to geomorphic processes and geo-relief attributes at meso- and micro-scale of landscape. We established in 2002 for this purpose six permanent plots (4 x 4 m) in the selected localities of High and Belianske Tatras Mts. (Author)

  11. The influence of regional urbanization and abnormal weather conditions on the processes of human climatic adaptation on mountain resorts

    Artamonova, M.; Golitsyn, G.; Senik, I.; Safronov, A.; Babyakin, A.; Efimenko, N.; Povolotskaya, N.; Topuriya, D.; Chalaya, E.

    2012-04-01

    in patients with coronary heart disease, hypertension stage I-II syndrome disadaptative using the transcranial mezo diencephalic modulation / L.I.Zherlitsina, N.V. Efimenko, N.P. Povolotskaya, I.I. Velikanov. the Patent for the invention No.2422128, RU (11) 2 422 128 (13) C1 from 6/27/2011; Bull.13). We have observed that such anthropogenic characteristics as accumulation of aerosol with the size of particles 500-5000 nanometers in the lower atmosphere in the quantity more than 60 particles/sm3 (getting to alveoli); decrease in quantity of negative ions (N-) lower than 200 ions/sm3, high coefficient of ions unipolarity (N+/N-) - more than 4-6; mass concentration of aerosol more than 150 mkg/m3 and other modules of the environment can act as limited markers for the forecast of dangerous NAR, SAD and taking of urgent radical preventive measures. These techniques of medical weather forecast and meteo prevention can be used in other mountain regions of the world. The studies were performed by support of the Program "Basic Sciences for Medicine" and RFBR project No.10-05-01014_a.

  12. Cripple Creek and other alkaline-related gold deposits in the Southern Rocky Mountains, USA: Influence of regional tectonics

    Kelley, K.D.; Ludington, S.

    2002-01-01

    Alkaline-related epithermal vein, breccia, disseminated, skarn, and porphyry gold deposits form a belt in the southern Rocky Mountains along the eastern edge of the North American Cordillera. Alkaline igneous rocks and associated hydrothermal deposits formed at two times. The first was during the Laramide orogeny (about 70-40 Ma), with deposits restricted spatially to the Colorado mineral belt (CMB). Other alkaline igneous rocks and associated gold deposits formed later, during the transition from a compressional to an extensional regime (about 35-27 Ma). These younger rocks and associated deposits are more widespread, following the Rocky Mountain front southward, from Cripple Creek in Colorado through New Mexico. All of these deposits are on the eastern margin of the Cordillera, with voluminous calc-alkaline rocks to the west. The largest deposits in the belt include Cripple Creek and those in the CMB. The most important factor in the formation of all of the gold deposits was the near-surface emplacement of relatively oxidized volatile-rich alkaline magmas. Strontium and lead isotope compositions suggest that the source of the magmas was subduction-modified subcontinental lithosphere. However, Cripple Creek alkaline rocks and older Laramide alkaline rocks in the CMB that were emplaced through hydrously altered LREE-enriched rocks of the Colorado (Yavapai) province have 208Pb/204Pb ratios that suggest these magmas assimilated and mixed with significant amounts of lower crust. The anomalously hot, thick, and light crust beneath Colorado may have been a catalyst for large-scale transfer of volatiles and crustal melting. Increased dissolved H2O (and CO2, F, Cl) of these magmas may have resulted in more productive gold deposits due to more efficient magmatic-hydrothermal systems. High volatile contents may also have promoted Te and V enrichment, explaining the presence of fluorite, roscoelite (vanadium-rich mica) and tellurides in the CMB deposits and Cripple Creek as

  13. Genotype and year variability of the chemical composition of walnut oil of Moroccan seedlings from the high Atlas Mountains

    Kodad, O.; EstopaNan, G.; Juan, T.; Socias i Company, R.; Sindic, M.

    2016-07-01

    Protein and oil content, fatty acid composition and tocopherol concentration were determined for two years in the kernel of ten candidate walnut selections from the high Atlas Mountains in Morocco. Considerable variation between genotypes was found for all parameters. The ranges of protein content (11.58–14.5% of kernel dry weight, DW), oil content (54.4–67.48% of kernel DW), oleic (12.47–22.01% of total oil), linoleic (55.03–60.01%), linolenic (9.3–15.87%), palmitic (6.84–9.12%), and stearic (1.7–2.92%) acid percentages, ?-tocopherol (188.1–230.7 mg·kg-1 of oil), d-tocopherol (23.3–43.4 mg·kg-1), and a-tocopherol (8.9–16.57 mg·kg-1) contents agreed with previous results obtained from other commercial walnut cultivars. The effect of year was significant for all the chemical components, except for oil content and palmitic acid percentage. Some genotypes showed high oil contents and consistently high values of ?-tocopherol in both years of study. The introduction of these genotypes as new cultivars by vegetative propagation may result in a an increase in quality of the walnuts from the high Atlas Mountains of Morocco, and as a seed source for forest walnut propagation in the same region. (Author)

  14. Glacier evolution in high-mountain Asia under stratospheric sulfate aerosol injection geoengineering

    L. Zhao

    2017-06-01

    Full Text Available Geoengineering by stratospheric sulfate aerosol injection may help preserve mountain glaciers by reducing summer temperatures. We examine this hypothesis for the glaciers in high-mountain Asia using a glacier mass balance model driven by climate simulations from the Geoengineering Model Intercomparison Project (GeoMIP. The G3 and G4 schemes specify use of stratospheric sulfate aerosols to reduce the radiative forcing under the Representative Concentration Pathway (RCP 4.5 scenario for the 50 years between 2020 and 2069, and for a further 20 years after termination of geoengineering. We estimate and compare glacier volume loss for every glacier in the region using a glacier model based on surface mass balance parameterization under climate projections from three Earth system models under G3, five models under G4, and six models under RCP4.5 and RCP8.5. The ensemble projections suggest that glacier shrinkage over the period 2010–2069 is equivalent to sea-level rise of 9.0 ± 1.6 mm (G3, 9.8 ± 4.3 mm (G4, 15.5 ± 2.3 mm (RCP4.5, and 18.5 ± 1.7 mm (RCP8.5. Although G3 keeps the average temperature from increasing in the geoengineering period, G3 only slows glacier shrinkage by about 50 % relative to losses from RCP8.5. Approximately 72 % of glaciated area remains at 2069 under G3, as compared with about 30 % for RCP8.5. The widely reported reduction in mean precipitation expected for solar geoengineering is unlikely to be as important as the temperature-driven shift from solid to liquid precipitation for forcing Himalayan glacier change. The termination of geoengineering at 2069 under G3 leads to temperature rise of about 1.3 °C over the period 2070–2089 relative to the period 2050-2069 and corresponding increase in annual mean glacier volume loss rate from 0.17 to 1.1 % yr−1, which is higher than the 0.66 % yr−1 under RCP8.5 during 2070–2089.

  15. Electrical Conductive Mechanism of Gas Hydrate-Bearing Reservoirs in the Permafrost Region of Qilian Mountain

    Peng, C.; Zou, C.; Tang, Y.; Liu, A.; Hu, X.

    2017-12-01

    In the Qilian Mountain, gas hydrates not only occur in pore spaces of sandstones, but also fill in fractures of mudstones. This leads to the difficulty in identification and evaluation of gas hydrate reservoir from resistivity and velocity logs. Understanding electrical conductive mechanism is the basis for log interpretation. However, the research is insufficient in this area. We have collected well logs from 30 wells in this area. Well logs and rock samples from DK-9, DK-11 and DK-12 wells were used in this study. The experiments including SEM, thin section, NMR, XRD, synthesis of gas hydrate in consolidated rock cores under low temperature and measurement of their resistivity and others were performed for understanding the effects of pore structure, rock composition, temperature and gas hydrate on conductivity. The results show that the porosity of reservoir of pore filling type is less than 10% and its clay mineral content is high. As good conductive passages, fractures can reduce resistivity of water-saturated rock. If fractures in the mudstone are filled by calcite, resistivity increases significantly. The resistivity of water-saturated rock at 2°C is twice of that at 18°C. The gas hydrate formation process in the sandstone was studied by resistivity recorded in real time. In the early stage of gas hydrate formation, the increase of residual water salinity may lead to the decrease of resistivity. In the late stage of gas hydrate formation, the continuity decrease of water leads to continuity increase of resistivity. In summary, fractures, rock composition, temperature and gas hydrate are important factors influencing resistivity of formation. This study is helpful for more accurate evaluation of gas hydrate from resistivity log. Acknowledgment: We acknowledge the financial support of the National Special Program for Gas Hydrate Exploration and Test-production (GZH201400302).

  16. Cultural perspectives concerning adolescent use of tobacco and alcohol in the Appalachian mountain region.

    Meyer, Michael G; Toborg, Mary A; Denham, Sharon A; Mande, Mary J

    2008-01-01

    Appalachia has high rates of tobacco use and related health problems, and despite significant impediments to alcohol use, alcohol abuse is common. Adolescents are exposed to sophisticated tobacco and alcohol advertising. Prevention messages, therefore, should reflect research concerning culturally influenced attitudes toward tobacco and alcohol use. With 4 grants from the National Institutes of Health, 34 focus groups occurred between 1999 and 2003 in 17 rural Appalachian jurisdictions in 7 states. These jurisdictions ranged between 4 and 8 on the Rural-Urban Continuum Codes of the Economic Research Service of the US Department of Agriculture. Of the focus groups, 25 sought the perspectives of women in Appalachia, and 9, opinions of adolescents. The family represented the key context where residents of Appalachia learn about tobacco and alcohol use. Experimentation with tobacco and alcohol frequently commenced by early adolescence and initially occurred in the context of the family home. Reasons to abstain from tobacco and alcohol included a variety of reasons related to family circumstances. Adults generally displayed a greater degree of tolerance for adolescent alcohol use than tobacco use. Tobacco growing represents an economic mainstay in many communities, a fact that contributes to the acceptance of its use, and many coal miners use smokeless tobacco since they cannot light up in the mines. The production and distribution of homemade alcohol was not a significant issue in alcohol use in the mountains even though it appeared not to have entirely disappeared. Though cultural factors support tobacco and alcohol use in Appalachia, risk awareness is common. Messages tailored to cultural themes may decrease prevalence.

  17. Perspectives for an integrated understanding of tropical and temperate high-mountain lakes

    Jordi Catalan

    2016-03-01

    Full Text Available High mountain lakes are extreme freshwater ecosystems and excellent sentinels of current global change. They are likely among the most comparable ecosystems across the world. The largest contrast occurs between lakes in temperate and tropical areas. The main difference arises from the seasonal patterns of heat exchange and the external loadings (carbon, phosphorus, metals. The consequence is a water column structure based on temperature, in temperate lakes, and oxygen, in tropical lakes. This essential difference implies that, in tropical lakes, one can expect a more sustained productivity throughout the year; a higher nutrient internal loading based on the mineralization of external organic matter; higher nitrification-denitrification potential related to the oxyclines; and a higher metal mobilization due to the permanently reduced bottom layer. Quantifying and linking these and other biogeochemical pathways to particular groups of organisms is in the current agenda of high-mountain limnology. The intrinsic difficulties of the taxonomic study of many of the organisms inhabiting these systems can be now overcome with the use of molecular techniques. These techniques will not only provide a much less ambiguous taxonomic knowledge of the microscopic world, but also will unveil new biogeochemical pathways that are difficult to measure chemically and will solve biogeographical puzzles of the distribution of some macroscopic organism, tracing the relationship with other areas. Daily variability and vertical gradients in the tropics are the main factors of phytoplankton species turnover in tropical lakes; whereas seasonality is the main driver in temperate communities. The study of phytoplankton in high-mountain lakes only makes sense in an integrated view of the microscopic ecosystem. A large part of the plankton biomass is in heterotrophic, and mixotrophic organisms and prokaryotes compete for dissolved resources with eukaryotic autotrophs. In fact

  18. Characteristics of extreme precipitation in the Vosges Mountains region (north-eastern France)

    Minářová, Jana; Müller, Miloslav; Clappier, A.; Kašpar, Marek

    2017-01-01

    Roč. 37, č. 13 (2017), s. 4529-4542 ISSN 0899-8418 Institutional support: RVO:68378289 Keywords : Vosges Mountains * extreme precipitation * heavy rainfall * WEI * synoptic conditions * precipitation * Grosswetterlagen * trend analysis Subject RIV: DG - Athmosphere Sciences, Meteorology OBOR OECD: Meteorology and atmospheric sciences Impact factor: 3.760, year: 2016 http://onlinelibrary.wiley.com/doi/10.1002/joc.5102/abstract

  19. Literature review and ethnohistory of Native American occupancy and use of the Yucca Mountain Region

    Stoffle, R.W.; Olmsted, J.E.; Evans, M.J.

    1990-01-01

    This report presents a review of the literature concerning Native American occupancy and use of the Yucca Mountain area and vicinity. It draws on a wide range of material, including early traveler reports, government documents, ethnographic and historical works, and local newspapers. The report complements two other concurrent studies, one focused on the cultural resources of Native American people in the study area and the other an ethnobotanical study of plant resources used by Native American people in the study area. The literature review has had two principal purposes: to determine the completeness of the Yucca Mountain Native American study design and to contribute to the understanding of the presence of Native American people in the Yucca Mountain area. A review of the existing literature about the Yucca Mountain area and southern Nye County, supplemented by the broader literature about the Great Basin, has verified three aspects of the study design. First, the review has aided in assessing the completeness of the list of Native American ethnic groups that have traditional or historical ties to the site. Second, it has aided in the production of a chronology of Native American activities that occurred on or near the site during the late nineteenth and early twentieth centuries. Third, it has helped to identify the location of cultural resources, including burials and other archaeological sites, in the study area and vicinity. 200 refs., 16 figs., 6 tabs

  20. Population demography of alpine butterflies: Boloria pales and Boloria napaea (Lepidoptera: Nymphalidae) and their specific adaptations to high mountain environments

    Ehl, Stefan; Ebertshäuser, Marlene; Gros, Patrick; Schmitt, Thomas

    2017-11-01

    High mountain ecosystems are extreme habitats, and adaptation strategies to this ecosystem are still poorly understood in most groups. To unravel such strategies, we performed a MRR study in the Hohe Tauern National Park (Salzburg, Austria) with two nymphalid butterfly species, Boloria pales and B. napaea. We analysed their population structure over one flight period by studying the development of population size and wing wear. B. pales had more individuals and a higher survival probability than B. napaea; the sensitivity to extreme weather conditions or other external influences was higher in B. napaea. We only observed proterandry in B. pales. Imagines of both species survived under snow for at least some days. Additionally, we observed a kind of risk-spreading, in that individuals of both species, and especially B. pales, have regularly emerged throughout the flight period. This emergence pattern divided the population's age structure into three phases: an initial phase with decreasing wing quality (emergence > mortality), followed by an equilibrium phase with mostly constant average wing condition (emergence = mortality) and a final ageing phase with strongly deteriorating wing condition (mortality » emergence). Consequently, neither species would likely become extinct because of particularly unsuitable weather conditions during a single flight period. The observed differences between the two species suggest a better regional adaptation of B. pales, which is restricted to high mountain systems of Europe. In contrast, the arctic-alpine B. napaea might be best adapted to conditions in the Arctic and not the more southern high mountain systems. However, this needs to be examined during future research in the Arctic.

  1. Regional patterns and proximal causes of the recent snowpack decline in the Rocky Mountains, U.S.

    Pederson, Gregory T.; Betancourt, Julio L.; McCabe, Gregory J.

    2013-01-01

    We used a first-order, monthly snow model and observations to disentangle seasonal influences on 20th century,regional snowpack anomalies in the Rocky Mountains of western North America, where interannual variations in cool-season (November–March) temperatures are broadly synchronous, but precipitation is typically antiphased north to south and uncorrelated with temperature. Over the previous eight centuries, regional snowpack variability exhibits strong, decadally persistent north-south (N-S) antiphasing of snowpack anomalies. Contrary to the normal regional antiphasing, two intervals of spatially synchronized snow deficits were identified. Snow deficits shown during the 1930s were synchronized north-south by low cool-season precipitation, with spring warming (February–March) since the 1980s driving the majority of the recent synchronous snow declines, especially across the low to middle elevations. Spring warming strongly influenced low snowpacks in the north after 1958, but not in the south until after 1980. The post-1980, synchronous snow decline reduced snow cover at low to middle elevations by ~20% and partly explains earlier and reduced streamflow and both longer and more active fire seasons. Climatologies of Rocky Mountain snowpack are shown to be seasonally and regionally complex, with Pacific decadal variability positively reinforcing the anthropogenic warming trend.

  2. Increased vulnerability to wildfires and post fire hydro-geomorphic processes in Portuguese mountain regions: what has changed?

    Nunes A. N.

    2017-02-01

    Full Text Available The main objectives of this study were to understand the frequency of forest fires, post-fire off-site hydrological response and erosional processes from a social and ecological perspective in two basins located in the central cordillera, Portugal. It also discusses the driving forces that contribute towards increasing the social-ecological vulnerability of systems in the face of hazards and emphasizes the importance of learning from disasters. Based on the historical incidence of wildfires, it is possible to identify several areas affected by two, three or four fires, since 1975. Following the two major fires, in 1987 and 2005, flash floods, intense soil erosion and sedimentation processes were generated, causing severe damage. Significant socioeconomic, political and ecological changes have been affecting mountain regions in the last decades. Approximately 80% of the population and more than 90% of the livestock have disappeared, common lands have been afforested with Pinus pinaster, and several agricultural plots have been abandoned. These factors have all contributed towards creating non- or submanaged landscapes that have led to a dramatic increase in the magnitude and frequency of wildfires and to post-fire hydrological and erosional processes when heavy rainfall occurs. Moreover, the low population density, high level of population ageing and very fire-prone vegetation that now covers large areas of both basins, contribute to a situation of extreme socio-ecological vulnerability, meaning that disasters will continue to occur unless resilience can be restored to improve the capacity to cope with this high susceptibility to hazards.

  3. High energy nucleonic component of cosmic rays at mountain altitudes

    Stora, Raymond Félix

    The diffusion equations describing the unidimensional propagation of .the high energy nucleonic component of cosmic rays throughout the atmosphere are sol"V'ed under two assumptions: (l) The nucleon-nucleon collisions are described according to Fermi's therlnOdynamical model involving completely inelastic pion and.nucleon-antinucleon pair production. (2) A somewhat opposite assumption is made assuming partially elastic collisions without nucleon-anti.nucleon pair production. Due to the present inaccuracy of experiments, we are able to derive only tentati v.e conclusions. The values computed under both hypotheses for the absorption mean free path and the charged to neutral particles ratio are found in acceptable ranges when compared to experimental data. The diffeential energy spectrum at a given depth is always found steeper than the primary, and steeper than indicated by experimental values if the primary is taken proportional to the 2.5 inverse power of energy.

  4. Environmental program planning for the proposed high-level nuclear waste repository at Yucca Mountain, Nevada

    1987-08-01

    This report was prepared to illustrate the policy and actions that the State of Nevada believe are required to assure that the quality of the environment is adequately considered during the course of the DOE work at the proposed high-level nuclear waste repository at Yucca Mountain. The report describes the DOE environmental program and the studies planned by NWPO to reflect the State's position toward environmental protection. 41 refs., 2 figs., 11 tabs

  5. Palaeoethnobotanical Data from the High Mountainous Early Bronze Age Settlement of Tsaghkasar-1 (Mt. Aragats, Armenia)

    Roman Hovsepyan

    2011-01-01

    Palaeoethnobotanical investigations suggest that at least part of the Early Bronze Age population of Tsaghkasar was settled and practiced agriculture in the high mountainous zone. People there appear to have cultivated hexa‐ and tetraploid wheats (probably bread wheat and emmer) and barley (possibly hulled). Bronze Age agriculture in the Southern Caucasus differs from earlier and later period when cultivation of pulses, oil‐producing plants, and other plants was common. This emphasis on the c...

  6. Soil physical properties of high mountain fields under bauxite mining

    Dalmo Arantes de Barros

    2013-10-01

    Full Text Available Mining contributes to the life quality of contemporary society, but can generate significant impacts, these being mitigated due to environmental controls adopted. This study aimed to characterize soil physical properties in high-altitude areas affected by bauxite mining, and to edaphic factors responses to restoration techniques used to recover mined areas in Poços de Caldas plateau, MG, Brazil. The experiment used 3 randomized block design involving within 2 treatments (before mining intervention and after environmental recovery, and 4 replicates (N=24. In each treatment, soil samples with deformed structures were determined: granulometry, water-dispersible clay content, flocculation index, particle density, stoniness level, water aggregate stability, and organic matter contend. Soil samples with preserved structures were used to determine soil density and the total volume of pores, macropores, and micropores. Homogenization of stoniness between soil layers as a result of soil mobilization was observed after the mined area recovery. Stoniness decreased in 0.10-0.20 m layer after recovery, but was similar in the 0-0.10 m layer in before and after samples. The recovery techniques restored organic matter levels to pre-mining levels. However, changes in soil, including an increase in soil flocculation degree and a decrease in water-dispersible clays, were still apparent post-recovery. Furthermore, mining operations caused structural changes to the superficial layer of soil, as demonstrated by an increase in soil density and a decrease in total porosity and macroporosity. Decreases in the water stability of aggregates were observed after mining operations.

  7. Regional difference of the start time of the recent warming in Eastern China: prompted by a 165-year temperature record deduced from tree rings in the Dabie Mountains

    Cai, Qiufang; Liu, Yu; Duan, Bingchuang; Sun, Changfeng

    2018-03-01

    Tree-ring studies from tropical to subtropical regions are rarer than that from extratropical regions, which greatly limit our understanding of some critical climate change issues. Based on the tree-ring-width chronology of samples collected from the Dabie Mountains, we reconstructed the April-June mean temperature for this region with an explained variance of 46.8%. Five cold (1861-1869, 1889-1899, 1913-1920, 1936-1942 and 1952-1990) and three warm (1870-1888, 1922-1934 and 2000-2005) periods were identified in the reconstruction. The reconstruction not only agreed well with the instrumental records in and around the study area, but also showed good resemblance to previous temperature reconstructions from nearby regions, indicating its spatial and temporal representativeness of the temperature variation in the central part of eastern China. Although no secular warming trend was found, the warming trend since 1970 was unambiguous in the Dabie Mountains (0.064 °C/year). Further temperature comparison indicated that the start time of the recent warming in eastern China was regional different. It delayed gradually from north to south, starting at least around 1940 AD in the north part, around 1970 AD in the central part and around 1980s in the south part. This work enriches the high-resolution temperature reconstructions in eastern China. We expect that climate warming in the future would promote the radial growth of alpine Pinus taiwanensis in the subtropical areas of China, therefore promote the carbon capture and carbon storage in the Pinus taiwanensis forest. It also helps to clarify the regional characteristic of recent warming in eastern China.

  8. Investigations of natural groundwater hazards at the proposed Yucca Mountain high level nuclear waste repository. Part A: Geology at Yucca Mountain. Part B: Modeling of hydro-tectonic phenomena relevant to Yucca Mountain. Annual report - Nevada

    Szymanski, J.S.; Schluter, C.M.; Livingston, D.E.

    1993-05-01

    This document is an annual report describing investigations of natural groundwater hazards at the proposed Yucca Mountain, Nevada High-Level Nuclear Waste Repository.This document describes research studies of the origin of near surface calcite/silica deposits at Yucca Mountain. The origin of these deposits is controversial and the authors have extended and strengthened the basis of their arguments for epigenetic, metasomatic alteration of the tuffs at Yucca Mountain. This report includes stratigraphic, mineralogical, and geochronological information along with geochemical data to support the conclusions described by Livingston and Szymanski, and others. As part of their first annual report, they take this opportunity to clarify the technical basis of their concerns and summarize the critical geological field evidence and related information. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  9. Impact of cattle grazing on soil and vegetation - a case study in a mountainous region of Austria

    Bohner, Andreas; Foldal, Cecilie; Jandl, Robert

    2015-04-01

    In mountainous regions of Austria and of many other European countries, climate change may cause a further intensification of grassland management. Therefore, the effects of intensive cattle grazing on selected soil chemical and physical properties, above- and below-ground phytomass, forage quality, plant species composition and plant species richness at the scale of a representative paddock in a mountainous region of Austria were investigated. At the study site (Styrian Enns valley; 675 m a.s.l.), climate is relatively cool and humid, with a mean annual air temperature of 6.7°C and a mean annual precipitation of 970 mm, of which 66% falls during the vegetation period (April-October). The soil is a deep, base-rich Cambisol with a loamy sand texture. The paddock investigated has a total area of about 2 ha and had been grazed by dairy cows (Brown Swiss) five times per grazing season. The stocking density was 4 cows ha-1 during 180 days from early May to the end of October with a grazing time of about 8 hours per day. The strip grazed permanent pasture was manured annually for a long time, mostly with cattle slurry. Vegetation surveys were carried out using the method of Braun-Blanquet. Above- and below-ground phytomass, forage quality and mineral element concentration in the harvestable above-ground plant biomass were determined by using standard methods. During the grazing season surface soil samples (0-10 cm depth) for chemical analyses were collected before each grazing period (5 analyses of composite samples per site). At the beginning and the end of the grazing season also soil samples for physical analyses were taken from the topsoil (0-15 cm depth). Heavy cattle treading led to a substantial soil compaction especially in the 5-10 cm layer and to a deterioration of topsoil structure. The porous crumb structure was replaced by a compact platy structure. The topsoil was enriched with nutrients (mainly nitrogen, potassium, phosphorus and boron). The degree of

  10. An Analysis of Rural Household Livelihood Change and the Regional Effect in a Western Impoverished Mountainous Area of China

    Chuansheng Wang

    2018-05-01

    Full Text Available Taking Longnan, in the western Qinling Mountains region of Gansu province, China, as our study area, and using the Sixth National Population Census alongside household survey data, we analyze changes in household livelihoods, and consequent regional effects, following the instigation of the “Grain for Green” program in 1999. Our results show rural livelihood changes with respect to natural assets (e.g., reduction of arable land, planting structure changes, human assets (e.g., labor quality improvement, fluidity of population, financial assets (e.g., income channels widening, income increasing, physical assets (e.g., optimized production tools, and social assets (e.g., information network development, increased outreach opportunities. We suggest that increased household livelihoods play an important role in improving land space utilization efficiency, resource conservation and use, and the ecological environment. However, owing to the natural environment, there are also some problems, such as “hollows” in rural production and living spaces, as well as local environmental degradation. To address these issues, regions such as the western, mountainous, impoverished area of our study should establish a policy of using ecosystems, as well as agriculture, for development in order to improve household livelihoods, build an efficient spatial structure, and providing support for the creation of a resource-saving societal system.

  11. Selection criteria for container materials at the proposed Yucca Mountain high level nuclear waste repository

    Halsey, W.G.

    1989-11-01

    A geological repository has been proposed for the permanent disposal of the nation's high level nuclear waste at Yucca Mountain in the Nevada desert. The containers for this waste must remain intact for the unprecedented service lifetime of 1000 years. A combination of engineering, regulatory, and licensing requirements complicate the container material selection. In parallel to gathering information regarding the Yucca Mountain service environment and material performance data, a set of selection criteria have been established which compare candidate materials to the performance requirements, and allow a quantitative comparison of candidates. These criteria assign relative weighting to varied topic areas such as mechanical properties, corrosion resistance, fabricability, and cost. Considering the long service life of the waste containers, it is not surprising that the corrosion behavior of the material is a dominant factor. 7 refs

  12. Seismotectonic investigations for Yucca Mountain high-level waste repository: Rationale for defining scope

    Gupta, D.C.; Blackford, M.E.

    1990-01-01

    The geologic, seismic, and engineering characteristics of the Yucca Mountain site and its environs need to be investigated in sufficient scope and detail to provide reasonable assurance that they are sufficiently well understood to permit an adequate evaluation of the proposed site for the development of a high-level waste repository. The paper examines the extent of seismotectonic investigations needed for proper evaluation of the geologic setting. At the Yucca Mountain site, a thorough understanding of tectonic phenomena such as seismicity and faulting is critical to the identification of potentially disqualifying conditions. Study of the tectonic movement, stress, or co-tectonic effects that could affect the performance of the waste-handling facilities, waste package, underground openings, shaft and borehole seals, and long-term alteration of geohydrology would be necessary. In addition, the uncertainties involved in evaluating the effect of seismotectonics on the radionuclide transport mechanism need to be thoroughly investigated. 8 refs., 1 fig

  13. Discernibility of Burial Mounds in High-Resolution X-Band SAR Images for Archaeological Prospections in the Altai Mountains

    Timo Balz

    2016-09-01

    Full Text Available The Altai Mountains are a heritage-rich archaeological landscape with monuments in almost every valley. Modern nation state borders dissect the region and limit archaeological landscape analysis to intra-national areas of interest. Remote sensing can help to overcome these limitations. Due to its high precision, Synthetic Aperture Radar (SAR data can be a very useful tool for supporting archaeological prospections, but compared to optical imagery, the detectability of sites of archaeological interest is limited. We analyzed the limitations of SAR using TerraSAR-X images in different modes. Based on ground truth, the discernibility of burial mounds was analyzed in different SAR acquisition modes. We show that very-high-resolution TerraSAR-X staring spotlight images are very well suited for the task, with >75% of the larger mounds being discernible, while in images with a lower spatial resolution only a few large sites can be detected, at rates below 50%.

  14. Dataset of Phenology of Mediterranean high-mountain meadows flora (Sierra Nevada, Spain)

    Pérez-Luque, Antonio Jesús; Sánchez-Rojas, Cristina Patricia; Zamora, Regino; Pérez-Pérez, Ramón; Bonet, Francisco Javier

    2015-01-01

    Abstract Sierra Nevada mountain range (southern Spain) hosts a high number of endemic plant species, being one of the most important biodiversity hotspots in the Mediterranean basin. The high-mountain meadow ecosystems (borreguiles) harbour a large number of endemic and threatened plant species. In this data paper, we describe a dataset of the flora inhabiting this threatened ecosystem in this Mediterranean mountain. The dataset includes occurrence data for flora collected in those ecosystems in two periods: 1988–1990 and 2009–2013. A total of 11002 records of occurrences belonging to 19 orders, 28 families 52 genera were collected. 73 taxa were recorded with 29 threatened taxa. We also included data of cover-abundance and phenology attributes for the records. The dataset is included in the Sierra Nevada Global-Change Observatory (OBSNEV), a long-term research project designed to compile socio-ecological information on the major ecosystem types in order to identify the impacts of global change in this area. PMID:25878552

  15. Dataset of Phenology of Mediterranean high-mountain meadows flora (Sierra Nevada, Spain).

    Pérez-Luque, Antonio Jesús; Sánchez-Rojas, Cristina Patricia; Zamora, Regino; Pérez-Pérez, Ramón; Bonet, Francisco Javier

    2015-01-01

    Sierra Nevada mountain range (southern Spain) hosts a high number of endemic plant species, being one of the most important biodiversity hotspots in the Mediterranean basin. The high-mountain meadow ecosystems (borreguiles) harbour a large number of endemic and threatened plant species. In this data paper, we describe a dataset of the flora inhabiting this threatened ecosystem in this Mediterranean mountain. The dataset includes occurrence data for flora collected in those ecosystems in two periods: 1988-1990 and 2009-2013. A total of 11002 records of occurrences belonging to 19 orders, 28 families 52 genera were collected. 73 taxa were recorded with 29 threatened taxa. We also included data of cover-abundance and phenology attributes for the records. The dataset is included in the Sierra Nevada Global-Change Observatory (OBSNEV), a long-term research project designed to compile socio-ecological information on the major ecosystem types in order to identify the impacts of global change in this area.

  16. Late glacial vegetation and climate changes in the high mountains of Bulgaria (Southeast Europe)

    Bozilova, E.D.; Tonkov, S.B.

    2005-01-01

    Full text: The Late glacial vegetation history in the high mountains of Southern Bulgaria (Rila, Pirin, Western Rhodopes) is reconstructed by means of pollen analysis, plant macrofossils and radiocarbon dating of sediments from lakes and peat-bogs located between 1300 and 2200 m a.s.l. The vegetation response to the climate fluctuations after 13000 14 C yrs. BP in the Rila Mountains is bound for the first time to a detailed chronological framework. Two stadial and one interstadial phases are delimited analogous with the Oldest Dryas-Bolling/Allerod-Younger Dryas cycle for Western Europe. During the stadials mountain-steppe vegetation composed of Artemisia, Chenopodiaceae, Poaceae and other cold-resistant herbs dominated at high elevation with sparse stands of Pinus, Betula, and shrubland of Juniperus and Ephedra. The climate improvement in the interstadial resulted in the initial spread of deciduous and coniferous trees (Quercus, Tilia, Corylus, Carpinus, Abies, Picea) from their local refugia below 1000 m. The palaeoecological record from the climate deterioration during the Younger Dryas is documented in thin sections of the cores investigated. (author)

  17. Carbon partitioning in the food web of a high mountain lake: from bacteria to zooplankton

    Alessandra PUGNETTI

    1999-08-01

    Full Text Available The organisms of the microbial loop in Lake Paione Superiore (LPS, a high mountain lake in the Italian Alpine region, were studied together with phytoplankton and zooplankton for three successive years. The biomass of bacteria, HNF (heterotrophic nanoflagellates, ciliates and phytoplankton, as mean carbon concentration in the three years, was 30 and 37 μg C l-1 near the surface (SUR and the bottom (BOT respectively. Under the ice-cover the mean biomass carbon decreased especially at the BOT, whereas at SUR the decrease was less evident due to the maintenance of higher phytoplankton biomass (mixotrophic flagellates. In LPS ~50% of the carbon was confined in bacteria, 20% in protozoa and 30% in phytoplankton. The ratio Autotrophs/Heterotrophs was lower than 1 (mean: 0,97 at SUR and 0,58 at BOT thus indicating a system with a predominance of the heterotrophs. This might be the result of light inhibition of algal growth coupled to a production of dissolved carbon, utilized by bacteria. During late summer the peak of Daphnia longispina, the main component of the zooplankton of LPS, increased the carbon content in the lake to a total of 158 and 300 μg C l-1 in 1997 and 1998 respectively. At the late summer peaks, zooplankton represented from 78 to 89% of the total carbon of the pelagic communities. Furthermore, the presence of Daphnia could be responsible for a decrease in the biomass carbon of a variety of organisms (algae, protozoa and bacteria. It may be possible that this is an instance of zooplankton grazing on algae, protozoa and also bacteria, as Daphnia has very broad niches and may eat pico-, nanoplankton and small ciliates. In the oligotrophic LPS, a diet which also includes protozoa could give Daphnia a further chance of survival, as ciliates are an important source of fatty acids and sterols.

  18. Analysis of microseismic signals and temperature recordings for rock slope stability investigations in high mountain areas

    C. Occhiena

    2012-07-01

    Full Text Available The permafrost degradation is a probable cause for the increase of rock instabilities and rock falls observed in recent years in high mountain areas, particularly in the Alpine region. The phenomenon causes the thaw of the ice filling rock discontinuities; the water deriving from it subsequently freezes again inducing stresses in the rock mass that may lead, in the long term, to rock falls. To investigate these processes, a monitoring system composed by geophones and thermometers was installed in 2007 at the Carrel hut (3829 m a.s.l., Matterhorn, NW Alps. In 2010, in the framework of the Interreg 2007–2013 Alcotra project no. 56 MASSA, the monitoring system has been empowered and renovated in order to meet project needs.

    In this paper, the data recorded by this renewed system between 6 October 2010 and 5 October 2011 are presented and 329 selected microseismic events are analysed. The data processing has concerned the classification of the recorded signals, the analysis of their distribution in time and the identification of the most important trace characteristics in time and frequency domain. The interpretation of the results has evidenced a possible correlation between the temperature trend and the event occurrence.

    The research is still in progress and the data recording and interpretation are planned for a longer period to better investigate the spatial-temporal distribution of microseismic activity in the rock mass, with specific attention to the relation of microseismic activity with temperatures. The overall goal is to verify the possibility to set up an effective monitoring system for investigating the stability of a rock mass under permafrost conditions, in order to supply the researchers with useful data to better understand the relationship between temperature and rock mass stability and, possibly, the technicians with a valid tool for decision-making.

  19. Risk-based consequences of extreme natural hazard processes in mountain regions - Multi-hazard analysis in Tyrol (Austria)

    Huttenlau, Matthias; Stötter, Johann

    2010-05-01

    Reinsurance companies are stating a high increase in natural hazard related losses, both insured and economic losses, within the last decades on a global scale. This ongoing trend can be described as a product of the dynamic in the natural and in the anthroposphere. To analyze the potential impact of natural hazard process to a certain insurance portfolio or to the society in general, reinsurance companies or risk management consultants have developed loss models. However, those models are generally not fitting the scale dependent demand on regional scales like it is appropriate (i) for analyses on the scale of a specific province or (ii) for portfolio analyses of regional insurance companies. Moreover, the scientific basis of most of the models is not transparent documented and therefore scientific evaluations concerning the methodology concepts are not possible (black box). This is contrary to the scientific principles of transparency and traceability. Especially in mountain regions like the European Alps with their inherent (i) specific characteristic on small scales, (ii) the relative high process dynamics in general, (iii) the occurrence of gravitative mass movements which are related to high relief energy and thus only exists in mountain regions, (iv) the small proportion of the area of permanent settlement on the overall area, (v) the high value concentration in the valley floors, (vi) the exposition of important infrastructures and lifelines, and others, analyses must consider these circumstances adequately. Therefore, risk-based analyses are methodically estimating the potential consequences of hazard process on the built environment standardized with the risk components (i) hazard, (ii) elements at risk, and (iii) vulnerability. However, most research and progress have been made in the field of hazard analyses, whereas the other both components are not developed accordingly. Since these three general components are influencing factors without any

  20. Barrier effects of remote high mountain on atmospheric metal transport in the eastern Tibetan Plateau.

    Bing, Haijian; Zhou, Jun; Wu, Yanhong; Luo, Xiaosan; Xiang, Zhongxiang; Sun, Hongyang; Wang, Jipeng; Zhu, He

    2018-07-01

    Anthropogenic metals adsorbed on suspended fine particles can be deposited on remote and inaccessible high mountains by long-range atmospheric transport. In this study, we investigated the cadmium (Cd) and lead (Pb) in the soils, mosses and rainfall of three transects on the Gongga Mountain, eastern Tibetan Plateau, to understand the mountain interception effects on their atmospheric transport. The concentrations of Cd and Pb in the soils and mosses displayed a pattern of eastern transect>northern transect>western transect. The distribution of Cd and Pb on the eastern transect increased from 2000 to 2900m a.s.l. (above sea level), decreased toward the timberline, and increased again with altitude; on the northern transect, it generally decreased with altitude whereas a distribution trend was not clearly observed on the western transect. The Cd and Pb concentrations in the rainfall of the eastern transect generally decreased with altitude, and they were higher inside forests than outside forests and temporally higher in the winter than the summer. The Pb isotopic ratios coupled with moss bio-monitoring distinguished anthropogenic sources of Cd and Pb on the eastern and northern transects, whereas bedrock weathering was the main source of Cd and Pb on the western transect. We proposed a conceptual model to delineate the effects of terrain, local climate and vegetation on the transport of atmospheric metals. Our results highlighted the high mountains in the eastern Tibetan Plateau as an effective natural barrier limiting atmospheric metal transport. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Depths to Ice-cemented Soils in High-elevation Quartermain Mountains, Dry Valleys, Antarctica, Version 1

    National Aeronautics and Space Administration — This data set is comprised of four surveyed valleys focusing on the depth to ground ice in the high-elevation Quartermain Mountains in the Beacon Valley area:...

  2. Assurance of risk assessment and protection distant transportation and fall out of pollutants under large anthropogenic on nuclear power stations due to mountainous regional peculiarities

    Tsitskishvili, M.; Tsitskishvili, N.; Kordzakhia, G.; Valiaev, A.; Kazakov, S.; Aitmatov, I.; Petrov, V.

    2005-01-01

    Full text: All types of industrial activities require the norms of protection, assessment of corresponding risks to preserve the pollution and degradation of corresponding areas. To make available the sustainable development of the country the risk assessment of possible accidents on the big enterprises is foreseen that provides preparedness of the country and possibility of the prevention measures and mitigation of the accidents. While big anthropogenic accidents in mountainous countries - the main paths for transportation of the pollution are the rivers and sea basins. Due to overpopulation of these areas assessment of the pollution risks are very important. Problem of forecast and distant atmospheric transportation of the toxic products and corresponding risk assessment under anthropogenic damages is multi-component and depends on meteorological conditions and frontier layer of atmosphere. Generally, for real relief and basic fields the problem is not solved yet especially taking into consideration the big level and shortest time of the process being of the natural anthropogenic accidents in mountainous regions. Usually, geostropic drawing for determined relief is used. Integral differential equations taking into consideration a physical- chemical characteristic of the pollutants, their transformations, fall out, coagulations, washing out and self rectification in general cannot be solved. In last time essential success in formalization of above-mentioned equations i.e. carrying out some simplifications give possibility to establish necessary modeling on the basis of numerical calculations. In the most general case forecasting model is essentially limited because of bulky size of accounting schemes and necessity of powerful and high-speed computers. Main ways of achievement of further success is connected with so called 'seasonal typification' with applied a priory calculation of probabilistic picture of the pollutants concentration fields, as well as

  3. Hydrological Utility and Uncertainty of Multi-Satellite Precipitation Products in the Mountainous Region of South Korea

    Jong Pil Kim

    2016-07-01

    Full Text Available Satellite-derived precipitation can be a potential source of forcing data for assessing water availability and managing water supply in mountainous regions of East Asia. This study investigates the hydrological utility of satellite-derived precipitation and uncertainties attributed to error propagation of satellite products in hydrological modeling. To this end, four satellite precipitation products (tropical rainfall measuring mission (TRMM multi-satellite precipitation analysis (TMPA version 6 (TMPAv6 and version 7 (TMPAv7, the global satellite mapping of precipitation (GSMaP, and the climate prediction center (CPC morphing technique (CMORPH were integrated into a physically-based hydrologic model for the mountainous region of South Korea. The satellite precipitation products displayed different levels of accuracy when compared to the intra- and inter-annual variations of ground-gauged precipitation. As compared to the GSMaP and CMORPH products, superior performances were seen when the TMPA products were used within streamflow simulations. Significant dry (negative biases in the GSMaP and CMORPH products led to large underestimates of streamflow during wet-summer seasons. Although the TMPA products displayed a good level of performance for hydrologic modeling, there were some over/underestimates of precipitation by satellites during the winter season that were induced by snow accumulation and snowmelt processes. These differences resulted in streamflow simulation uncertainties during the winter and spring seasons. This study highlights the crucial need to understand hydrological uncertainties from satellite-derived precipitation for improved water resource management and planning in mountainous basins. Furthermore, it is suggested that a reliable snowfall detection algorithm is necessary for the new global precipitation measurement (GPM mission.

  4. Nitrogen cycling responses to mountain pine beetle disturbance in a high elevation whitebark pine ecosystem.

    Keville, Megan P; Reed, Sasha C; Cleveland, Cory C

    2013-01-01

    Ecological disturbances can significantly affect biogeochemical cycles in terrestrial ecosystems, but the biogeochemical consequences of the extensive mountain pine beetle outbreak in high elevation whitebark pine (WbP) (Pinus albicaulis) ecosystems of western North America have not been previously investigated. Mountain pine beetle attack has driven widespread WbP mortality, which could drive shifts in both the pools and fluxes of nitrogen (N) within these ecosystems. Because N availability can limit forest regrowth, understanding how beetle-induced mortality affects N cycling in WbP stands may be critical to understanding the trajectory of ecosystem recovery. Thus, we measured above- and belowground N pools and fluxes for trees representing three different times since beetle attack, including unattacked trees. Litterfall N inputs were more than ten times higher under recently attacked trees compared to unattacked trees. Soil inorganic N concentrations also increased following beetle attack, potentially driven by a more than two-fold increase in ammonium (NH₄⁺) concentrations in the surface soil organic horizon. However, there were no significant differences in mineral soil inorganic N or soil microbial biomass N concentrations between attacked and unattacked trees, implying that short-term changes in N cycling in response to the initial stages of WbP attack were restricted to the organic horizon. Our results suggest that while mountain pine beetle attack drives a pulse of N from the canopy to the forest floor, changes in litterfall quality and quantity do not have profound effects on soil biogeochemical cycling, at least in the short-term. However, continuous observation of these important ecosystems will be crucial to determining the long-term biogeochemical effects of mountain pine beetle outbreaks.

  5. Nitrogen cycling responses to mountain pine beetle disturbance in a high elevation whitebark pine ecosystem

    Keville, Megan P.; Reed, Sasha C.; Cleveland, Cory C.

    2013-01-01

    Ecological disturbances can significantly affect biogeochemical cycles in terrestrial ecosystems, but the biogeochemical consequences of the extensive mountain pine beetle outbreak in high elevation whitebark pine (WbP) (Pinus albicaulis) ecosystems of western North America have not been previously investigated. Mountain pine beetle attack has driven widespread WbP mortality, which could drive shifts in both the pools and fluxes of nitrogen (N) within these ecosystems. Because N availability can limit forest regrowth, understanding how beetle-induced mortality affects N cycling in WbP stands may be critical to understanding the trajectory of ecosystem recovery. Thus, we measured above- and belowground N pools and fluxes for trees representing three different times since beetle attack, including unattacked trees. Litterfall N inputs were more than ten times higher under recently attacked trees compared to unattacked trees. Soil inorganic N concentrations also increased following beetle attack, potentially driven by a more than two-fold increase in ammonium (NH4+) concentrations in the surface soil organic horizon. However, there were no significant differences in mineral soil inorganic N or soil microbial biomass N concentrations between attacked and unattacked trees, implying that short-term changes in N cycling in response to the initial stages of WbP attack were restricted to the organic horizon. Our results suggest that while mountain pine beetle attack drives a pulse of N from the canopy to the forest floor, changes in litterfall quality and quantity do not have profound effects on soil biogeochemical cycling, at least in the short-term. However, continuous observation of these important ecosystems will be crucial to determining the long-term biogeochemical effects of mountain pine beetle outbreaks.

  6. Microbial and Functional Diversity within the Phyllosphere of Espeletia Species in an Andean High-Mountain Ecosystem.

    Ruiz-Pérez, Carlos A; Restrepo, Silvia; Zambrano, María Mercedes

    2016-01-08

    Microbial populations residing in close contact with plants can be found in the rhizosphere, in the phyllosphere as epiphytes on the surface, or inside plants as endophytes. Here, we analyzed the microbiota associated with Espeletia plants, endemic to the Páramo environment of the Andes Mountains and a unique model for studying microbial populations and their adaptations to the adverse conditions of high-mountain neotropical ecosystems. Communities were analyzed using samples from the rhizosphere, necromass, and young and mature leaves, the last two analyzed separately as endophytes and epiphytes. The taxonomic composition determined by performing sequencing of the V5-V6 region of the 16S rRNA gene indicated differences among populations of the leaf phyllosphere, the necromass, and the rhizosphere, with predominance of some phyla but only few shared operational taxonomic units (OTUs). Functional profiles predicted on the basis of taxonomic affiliations differed from those obtained by GeoChip microarray analysis, which separated community functional capacities based on plant microenvironment. The identified metabolic pathways provided insight regarding microbial strategies for colonization and survival in these ecosystems. This study of novel plant phyllosphere microbiomes and their putative functional ecology is also the first step for future bioprospecting studies in search of enzymes, compounds, or microorganisms relevant to industry or for remediation efforts. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  7. Unique parallel radiations of high-mountainous species of the genus Sedum (Crassulaceae) on the continental island of Taiwan.

    Ito, Takuro; Yu, Chih-Chieh; Nakamura, Koh; Chung, Kuo-Fang; Yang, Qin-Er; Fu, Cheng-Xin; Qi, Zhe-Chen; Kokubugata, Goro

    2017-08-01

    We explored the temporal and spatial diversification of the plant genus Sedum L. (Crassulaceae) in Taiwan based on molecular analysis of nrITS and cpDNA sequences from East Asian Sedum members. Our phylogenetic and ancestral area reconstruction analysis showed that Taiwanese Sedum comprised two lineages that independently migrated from Japan and Eastern China. Furthermore, the genetic distances among species in these two clades were smaller than those of other East Asian Sedum clades, and the Taiwanese members of each clade occupy extremely varied habitats with similar niches in high-mountain regions. These data indicate that species diversification occurred in parallel in the two Taiwanese Sedum lineages, and that these parallel radiations could have occurred within the small continental island of Taiwan. Moreover, the estimated time of divergence for Taiwanese Sedum indicates that the two radiations might have been correlated to the formation of mountains in Taiwan during the early Pleistocene. We suggest that these parallel radiations may be attributable to the geographical dynamics of Taiwan and specific biological features of Sedum that allow them to adapt to new ecological niches. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Phylogeographic Structure of a Tethyan Relict Capparis spinosa (Capparaceae) Traces Pleistocene Geologic and Climatic Changes in the Western Himalayas, Tianshan Mountains, and Adjacent Desert Regions.

    Wang, Qian; Zhang, Ming-Li; Yin, Lin-Ke

    2016-01-01

    Complex geological movements more or less affected or changed floristic structures, while the alternation of glacials and interglacials is presumed to have further shaped the present discontinuous genetic pattern of temperate plants. Here we consider Capparis spinosa, a xeromorphic Tethyan relict, to discuss its divergence pattern and explore how it responded in a stepwise fashion to Pleistocene geologic and climatic changes. 267 individuals from 31 populations were sampled and 24 haplotypes were identified, based on three cpDNA fragments (trnL-trnF, rps12-rpl20, and ndhF). SAMOVA clustered the 31 populations into 5 major clades. AMOVA suggests that gene flow between them might be restricted by vicariance. Molecular clock dating indicates that intraspecific divergence began in early Pleistocene, consistent with a time of intense uplift of the Himalaya and Tianshan Mountains, and intensified in mid-Pleistocene. Species distribution modeling suggests range reduction in the high mountains during the Last Glacial Maximum (LGM) as a result of cold climates when glacier advanced, while gorges at midelevations in Tianshan appear to have served as refugia. Populations of low-altitude desert regions, on the other hand, probably experienced only marginal impacts from glaciation, according to the high levels of genetic diversity.

  9. Phylogeographic Structure of a Tethyan Relict Capparis spinosa (Capparaceae Traces Pleistocene Geologic and Climatic Changes in the Western Himalayas, Tianshan Mountains, and Adjacent Desert Regions

    Qian Wang

    2016-01-01

    Full Text Available Complex geological movements more or less affected or changed floristic structures, while the alternation of glacials and interglacials is presumed to have further shaped the present discontinuous genetic pattern of temperate plants. Here we consider Capparis spinosa, a xeromorphic Tethyan relict, to discuss its divergence pattern and explore how it responded in a stepwise fashion to Pleistocene geologic and climatic changes. 267 individuals from 31 populations were sampled and 24 haplotypes were identified, based on three cpDNA fragments (trnL-trnF, rps12-rpl20, and ndhF. SAMOVA clustered the 31 populations into 5 major clades. AMOVA suggests that gene flow between them might be restricted by vicariance. Molecular clock dating indicates that intraspecific divergence began in early Pleistocene, consistent with a time of intense uplift of the Himalaya and Tianshan Mountains, and intensified in mid-Pleistocene. Species distribution modeling suggests range reduction in the high mountains during the Last Glacial Maximum (LGM as a result of cold climates when glacier advanced, while gorges at midelevations in Tianshan appear to have served as refugia. Populations of low-altitude desert regions, on the other hand, probably experienced only marginal impacts from glaciation, according to the high levels of genetic diversity.

  10. Implications of seismic reflection and potential field geophysical data on the structural framework of the Yucca Mountain--Crater Flat region, Nevada

    Brocher, T.M.; Langenheim, V.E.; Hunter, W.C.

    1998-01-01

    Seismic reflection and gravity profiles collected across Yucca Mountain, Nevada, together with geologic data, provide evidence against proposed active detachment faults at shallow depth along the pre-Tertiary-Tertiary contact beneath this potential repository for high-level nuclear waste. The new geophysical data show that the inferred pre-Tertiary-Tertiary contact is offset by moderate-to-high-angle faults beneath Crater Flat and Yucca Mountain, and thus this shallow surface cannot represent an active detachment surface. The reflection lines reveal that the Amargosa Desert rift zone is an asymmetric half-graben having a maximum depth of about 4 km and a width of about 25 km. The east-dipping Bare Mountain fault that bounds this graben to the west can be traced by seismic reflection data to a depth of at least 3.5 km and possibly as deep as 6 km, with a constant dip of 64 degree ± 5 degree. Along the profile the transition from east- to west-dipping faults occurs at or just west of the Solitario Canyon fault, which bounds the western side of Yucca Mountain. The interaction at depth of these east- and west-dipping faults, having up to hundreds of meters offset, is not imaged by the seismic reflection profile. Understanding potential seismic hazards at Yucca Mountain requires knowledge of the subsurface geometry of the faults near Yucca Mountain, since earthquakes generally nucleate and release the greatest amount of their seismic energy at depth. The geophysical data indicate that many fault planes near the potential nuclear waste facility dip toward Yucca Mountain, including the Bare Mountain range-front fault and several west-dipping faults east of Yucca Mountain. Thus, earthquake ruptures along these faults would lie closer to Yucca Mountain than is often estimated from their surface locations and could therefore be more damaging

  11. Essential oil composition, phytotoxic and antifungal activities of Ruta chalepensis L. leaves from High Atlas Mountains (Morocco).

    Bouajaj, Sana; Romane, Abderrahmane; Benyamna, Abdennaji; Amri, Ismail; Hanana, Mohsen; Hamrouni, Lamia; Romdhane, Mehrez

    2014-01-01

    This study aimed at the determination of chemical composition of essential oil obtained by hydrodistillation, and to evaluate their phytotoxic and antifungal activities. Leaves of Ruta chalepensis L. were collected from the region of Tensift Al Haouz (High Atlas Mountains) Marrakech, Morocco. The essential oil (oil yield is 0.56%) was analysed by GC-FID and GC/MS. Twenty-two compounds were identified and accounted for 92.4% of the total oil composition. The major components were undecan-2-one (49.08%), nonan-2-one (33.15%), limonene (4.19%) and decanone (2.71%). Antifungal ability of essential oils was tested by disc agar diffusion against five plant pathogenic fungi: Fusarium proliferatum, Fusarium pseudograminearum, Fusarium culmorum, Fusarium graminearum and Fusarium polyphialidicum. The oils were also tested in vitro for herbicidal activity by determining their influence on the germination and the shoot and root growth of two weed species, Triticum durum and Phalaris canariensis L.

  12. Preliminary evaluation of techniques for transforming regional climate model output to the potential repository site in support of Yucca Mountain future climate synthesis

    Church, H.W.; Zak, B.D.; Behl, Y.K.

    1995-06-01

    The report describes a preliminary evaluation of models for transforming regional climate model output from a regional to a local scale for the Yucca Mountain area. Evaluation and analysis of both empirical and numerical modeling are discussed which is aimed at providing site-specific, climate-based information for use by interfacing activities. Two semiempirical approaches are recommended for further analysis

  13. Possible evidence for contemporary doming of the Adirondack Mountains, New York, and suggested implications for regional tectonics and seismicity

    Isachsen, Y.W.

    1975-01-01

    The Adirondack Mountain massif is a dissected elongate dome having a north-northeast axis about 190 km long, and an east-west dimension of about 140 km. The dome exposes a core of Proterozoic metamorphic rocks from which the Paleozoic cover rocks have been eroded, except in several north-northeast-trending graben. The minimum amplitude of the dome, based on a 'reconstruction' of the Proterozoic-Paleozoic unconformity is 1600 m. The Adirondack dome is an anomalous feature of the eastern edge of the North American craton. It differs from other uplifts in the Interior Lowlands of the craton not only in terms of the greater combined amplitude and area of its uplift, but in the present high elevation of its Mountains (up to 1600 m) which are unequalled on the craton except along the Rocky Mountain front and in the Torngat Mountains of northernmost Labrador. This prompted an interest in the possibility that the Adirondack dome has undergone neotectonic regeneration and may be undergoing domical uplift at the present time. Accordingly, leveling records were consulted at the National Geodetic Survey data base in Rockville, Maryland, and used to construct leveling profiles. The most informative of these extends north-south along the block-faulted eastern flank of the Adirondack dome, extending from Saratoga Springs to Rouses Point, a distance of 245 km. A comparison of the level lines for 1955 and 1973 demonstrates that arching has occurred. An uplift of 40 mm along the central portion of the line, and a corresponding subsidence of 50 mm at the northern end, has produced a net increase in the amplitude of arching of 90 mm in the 18-year interval. This differential uplift, particularly with subsidence at the northern end, argues for a tectonic rather than glacio-isostatic mechanism. Pending releveling across the center of the Adirondack dome, it is tempting to extrapolate the releveling profile and suggest that the Adirondacks as a whole may be undergoing contemporary doming

  14. Crustal structure under the central High Atlas Mountains (Morocco) from geological and gravity data

    Ayarza, P.; Alvarez-Lobato, F.; Teixell, A.; Arboleya, M. L.; Tesón, E.; Julivert, M.; Charroud, M.

    2005-05-01

    Seismic wide angle and receiver function results together with geological data have been used as constraints to build a gravity-based crustal model of the central High Atlas of Morocco. Integration of a newly acquired set of gravity values with public data allowed us to undertake 2-2.5D gravity modelling along two profiles that cross the entire mountain chain. Modelling suggests moderate crustal thickening, and a general state of Airy isostatic undercompensation. Localized thickening appears restricted to the vicinity of a north-dipping crustal-scale thrust fault, that offsets the Moho discontinuity and defines a small crustal root which accounts for the minimum Bouguer gravity anomaly values. Gravity modelling indicates that this root has a northeasterly strike, slightly oblique to the ENE general orientation of the High Atlas belt. A consequence of the obliquity between the High Atlas borders and its internal and deep structure is the lack of correlation between Bouguer gravity anomaly values and topography. Active buckling affecting the crust, a highly elevated asthenosphere, or a combination of both are addressed as side mechanisms that help to maintain the high elevations of the Atlas mountains.

  15. A statistical adjustment approach for climate projections of snow conditions in mountain regions using energy balance land surface models

    Verfaillie, Deborah; Déqué, Michel; Morin, Samuel; Lafaysse, Matthieu

    2017-04-01

    Projections of future climate change have been increasingly called for lately, as the reality of climate change has been gradually accepted and societies and governments have started to plan upcoming mitigation and adaptation policies. In mountain regions such as the Alps or the Pyrenees, where winter tourism and hydropower production are large contributors to the regional revenue, particular attention is brought to current and future snow availability. The question of the vulnerability of mountain ecosystems as well as the occurrence of climate-related hazards such as avalanches and debris-flows is also under consideration. In order to generate projections of snow conditions, however, downscaling global climate models (GCMs) by using regional climate models (RCMs) is not sufficient to capture the fine-scale processes and thresholds at play. In particular, the altitudinal resolution matters, since the phase of precipitation is mainly controlled by the temperature which is altitude-dependent. Simulations from GCMs and RCMs moreover suffer from biases compared to local observations, due to their rather coarse spatial and altitudinal resolution, and often provide outputs at too coarse time resolution to drive impact models. RCM simulations must therefore be adjusted using empirical-statistical downscaling and error correction methods, before they can be used to drive specific models such as energy balance land surface models. In this study, time series of hourly temperature, precipitation, wind speed, humidity, and short- and longwave radiation were generated over the Pyrenees and the French Alps for the period 1950-2100, by using a new approach (named ADAMONT for ADjustment of RCM outputs to MOuNTain regions) based on quantile mapping applied to daily data, followed by time disaggregation accounting for weather patterns selection. We first introduce a thorough evaluation of the method using using model runs from the ALADIN RCM driven by a global reanalysis over the

  16. Global Monitoring of Mountain Glaciers Using High-Resolution Spotlight Imaging from the International Space Station

    Donnellan, A.; Green, J. J.; Bills, B. G.; Goguen, J.; Ansar, A.; Knight, R. L.; Hallet, B.; Scambos, T. A.; Thompson, L. G.; Morin, P. J.

    2013-12-01

    Mountain glaciers around the world are retreating rapidly, contributing about 20% to present-day sea level rise. Numerous studies have shown that mountain glaciers are sensitive to global environmental change. Temperate-latitude glaciers and snowpack provide water for over 1 billion people. Glaciers are a resource for irrigation and hydroelectric power, but also pose flood and avalanche hazards. Accurate mass balance assessments have been made for only 280 glaciers, yet there are over 130,000 in the World Glacier Inventory. The rate of glacier retreat or advance can be highly variable, is poorly sampled, and inadequately understood. Liquid water from ice front lakes, rain, melt, or sea water and debris from rocks, dust, or pollution interact with glacier ice often leading to an amplification of warming and further melting. Many mountain glaciers undergo rapid and episodic events that greatly change their mass balance or extent but are sparsely documented. Events include calving, outburst floods, opening of crevasses, or iceberg motion. Spaceborne high-resolution spotlight optical imaging provides a means of clarifying the relationship between the health of mountain glaciers and global environmental change. Digital elevation models (DEMs) can be constructed from a series of images from a range of perspectives collected by staring at a target during a satellite overpass. It is possible to collect imagery for 1800 targets per month in the ×56° latitude range, construct high-resolution DEMs, and monitor changes in high detail over time with a high-resolution optical telescope mounted on the International Space Station (ISS). Snow and ice type, age, and maturity can be inferred from different color bands as well as distribution of liquid water. Texture, roughness, albedo, and debris distribution can be estimated by measuring bidirectional reflectance distribution functions (BRDF) and reflectance intensity as a function of viewing angle. The non-sun-synchronous orbit

  17. Correction of Excessive Precipitation Over Steep and High Mountains in a General Circulation Model

    Chao, Winston C.

    2012-01-01

    Excessive precipitation over steep and high mountains (EPSM) is a well-known problem in GCMs and meso-scale models. This problem impairs simulation and data assimilation products. Among the possible causes investigated in this study, we found that the most important one, by far, is a missing upward transport of heat out of the boundary layer due to the vertical circulations forced by the daytime upslope winds, which are forced by the heated boundary layer on subgrid-scale slopes. These upslope winds are associated with large subgrid-scale topographic variation, which is found over steep and high mountains. Without such subgridscale heat ventilation, the resolvable-scale upslope flow in the boundary layer generated by surface sensible heat flux along the mountain slopes is excessive. Such an excessive resolvablescale upslope flow combined with the high moisture content in the boundary layer results in excessive moisture transport toward mountaintops, which in turn gives rise to EPSM. Other possible causes of EPSM that we have investigated include 1) a poorly-designed horizontal moisture flux in the terrain-following coordinates, 2) the condition for cumulus convection being too easily satisfied at mountaintops, 3) the presence of conditional instability of the computational kind, and 4) the absence of blocked flow drag. These are all minor or inconsequential. We have parameterized the ventilation effects of the subgrid-scale heated-slope-induced vertical circulation (SHVC) by removing heat from the boundary layer and depositing it in layers higher up when the topographic variance exceeds a critical value. Test results using NASA/Goddard's GEOS-S GCM have shown that this largely solved the EPSM problem.

  18. Soil monitoring in agro-ecosystems of high mountain zone in Quindio

    Sadeghian, Siavosh; Orozco, O l; Murgueitio, E

    2001-01-01

    Were evaluated soil characteristics in 4 common agro-ecosystems of high mountain zone of Quindio department, soil forest exhibit better indicators that others systems. Low macro porosity and hydraulic conductivity were consequences more important of cattle ranching systems. In pinus plantations were registered lower value of organic matter, pH, interchanging bases, gravimetric moisture and microbial activity CO 2 . As a result of pinus establishment on pasture ground increase drainable porosity and hydraulic conductivity. In granadilla cultivation were lower organism diversity and structural stability

  19. Palaeoethnobotanical Data from the High Mountainous Early Bronze Age Settlement of Tsaghkasar-1 (Mt. Aragats, Armenia

    Roman Hovsepyan

    2011-09-01

    Full Text Available Palaeoethnobotanical investigations suggest that at least part of the Early Bronze Age population of Tsaghkasar was settled and practiced agriculture in the high mountainous zone. People there appear to have cultivated hexa‐ and tetraploid wheats (probably bread wheat and emmer and barley (possibly hulled. Bronze Age agriculture in the Southern Caucasus differs from earlier and later period when cultivation of pulses, oil‐producing plants, and other plants was common. This emphasis on the cultivation and use of certain cereal grains at Early Bronze sites such as Tsaghkasar can tentatively be added to a constellation of practices associated with the Kura‐Araxes culture in the South Caucasus.

  20. Small-scale variations of climate change in mountainous forested terrain - a regional study from H.J. Andrews Long Term Ecological Research site in Oregon, USA

    Honzakova, Katerina; Hoffmann, Peter; Jones, Julia; Thomas, Christoph

    2017-04-01

    There has been conflicting evidence as to whether high elevations are experiencing more pronounced climate warming than lower elevations in mountainous regions. In this study we analyze temperature records from H.J. Andrews Long Term Ecological Research, Oregon, USA and several nearby areas, comprising together 28 stations located in Cascade Mountains. The data, starting in 1958, are first checked for quality and homogenized using the Standard Normal Homogeneity Test. As a reference, composite climate time series based on the Global Historic Climate Network is created and together with cross-referencing against station records used to correct breaks and shifts in the data. In the next step, we investigate temperature patterns of the study site from 1958 to 2016 and compare them for valley and hill stations. In particular, we explore seasonality and inter-annual variability of the records and trends of the last day of frost. Additionally, 'cold' sums (positive and negative) are calculated to obtain a link between temperature and ecosystems' responses (such as budbreaks). So far, valley stations seem to be more prone to climate change than ridge or summit stations, contrary to current thinking. Building on previous knowledge, we attempt to provide physical explanations for the temperature records, focusing on wind patterns and associated phenomena such as cold air drainage and pooling. To aid this we analyze wind speed and direction data available for some of the stations since 1996, including seasonality and inter-annual variability of the observed flows.

  1. Correction of Excessive Precipitation over Steep and High Mountains in a GCM: A Simple Method of Parameterizing the Thermal Effects of Subgrid Topographic Variation

    Chao, Winston C.

    2015-01-01

    The excessive precipitation over steep and high mountains (EPSM) in GCMs and meso-scale models is due to a lack of parameterization of the thermal effects of the subgrid-scale topographic variation. These thermal effects drive subgrid-scale heated slope induced vertical circulations (SHVC). SHVC provide a ventilation effect of removing heat from the boundary layer of resolvable-scale mountain slopes and depositing it higher up. The lack of SHVC parameterization is the cause of EPSM. The author has previously proposed a method of parameterizing SHVC, here termed SHVC.1. Although this has been successful in avoiding EPSM, the drawback of SHVC.1 is that it suppresses convective type precipitation in the regions where it is applied. In this article we propose a new method of parameterizing SHVC, here termed SHVC.2. In SHVC.2 the potential temperature and mixing ratio of the boundary layer are changed when used as input to the cumulus parameterization scheme over mountainous regions. This allows the cumulus parameterization to assume the additional function of SHVC parameterization. SHVC.2 has been tested in NASA Goddard's GEOS-5 GCM. It achieves the primary goal of avoiding EPSM while also avoiding the suppression of convective-type precipitation in regions where it is applied.

  2. Comparison of Observed Temperature and Wind in Mountainous and Coastal Regions in Korea

    Park, Y. S.

    2015-12-01

    For more than one year, temperature and wind are observed at several levels in three different environments in Korea. First site is located in a ski jump stadium in a mountain area and observations are performed at 5 heights. Second site is located in an agricultural land 1.4km inland from the seaside and the observing tower is 300m tall. Third site is located in the middle of sea 30km away from the seaside and the tower is 100m tall. The vertical gradients of air temperature are compared on the daily and seasonal bases. Not only the strengths of atmospheric stability are analyzed but also the times when the turnover of the signs of vertical gradients of temperature are occurred. The comparison is also applied to vertical gradients of wind speed and turning of wind direction due to surface slope and sea/land breeze. This study may suggest characteristics of local climate over different environments quantitatively.

  3. Runoff and soil erosion of field plots in a subtropical mountainous region of China

    Fang, N. F.; Wang, L.; Shi, Z. H.

    2017-09-01

    Anthropogenic pressure coupled with strong precipitation events and a mountainous landscape have led to serious soil erosion and associated problems in the subtropical climate zone of China. This study analyzes 1576 rainfall-runoff-soil loss events at 36 experimental plots (a total of 148 plot-years of data) under a wide range of conditions in subtropical mountainous areas of China where slope farming is commonly practiced. The plots, which have standardized dimensions, represent five common types of land use and have four different slopes. Event-based analyses show that almost half of the total rainfall caused soil erosion in the study area. The dominant factor controlling the runoff coefficient is the slope gradient rather than the land use type. The maximum soil lossfor crop plots under steep tillage (35°) is 5004 t km-2 for a single event. Among the common local crops, the average soil loss values increase in the following order: buckwheat soil loss increase in the following order: red clover soil loss is caused by a small number of extreme events. The annual average soil loss of the 44 plots ranges from 19 to 4090 t km-2 year-1. The annual soil loss of plots of different land use types decrease in the following order: bare land (1533 t km-2 year-1) > cropland (1179 t km-2 year-1) > terraced cropland (1083 t km-2 year-1) > orchard land (1020 t km-2 year-1) > grassland (762 t km-2 year-1) > terraced orchard land (297 t km-2 year-1) > forest and grassland (281 t km-2 year-1).

  4. StaMPS Improvement for Deformation Analysis in Mountainous Regions: Implications for the Damavand Volcano and Mosha Fault in Alborz

    Sanaz Vajedian

    2015-06-01

    Full Text Available Interferometric Synthetic Aperture Radar (InSAR capability to detect slow deformation over terrain areas is limited by temporal decorrelation, geometric decorrelation and atmospheric artefacts. Multitemporal InSAR methods such as Persistent Scatterer (PS-InSAR and Small Baseline Subset (SBAS have been developed to deal with various aspects of decorrelation and atmospheric problems affecting InSAR observations. Nevertheless, the applicability of both PS-InSAR and SBAS in mountainous regions is still challenging. Correct phase unwrapping in both methods is hampered due to geometric decorrelation in particular when using C-band SAR data for deformation analysis. In this paper, we build upon the SBAS method implemented in StaMPS software and improved the technique, here called ISBAS, to assess tectonic and volcanic deformation in the center of the Alborz Mountains in Iran using both Envisat and ALOS SAR data. We modify several aspects within the chain of the processing including: filtering prior to phase unwrapping, topographic correction within three-dimensional phase unwrapping, reducing the atmospheric noise with the help of additional GPS data, and removing the ramp caused by ionosphere turbulence and/or orbit errors to better estimate crustal deformation in this tectonically active region. Topographic correction is done within the three-dimensional unwrapping in order to improve the phase unwrapping process, which is in contrast to previous methods in which DEM error is estimated before/after phase unwrapping. Our experiments show that our improved SBAS approach is able to better characterize the tectonic and volcanic deformation in the center of the Alborz region than the classical SBAS. In particular, Damavand volcano shows an average uplift rate of about 3 mm/year in the year 2003–2010. The Mosha fault illustrates left-lateral motion that could be explained with a fault that is locked up to 17–18 km depths and slips with 2–4 mm

  5. Conservation of biodiversity in mountain ecosystems -- At a glance

    MacKinnon, K.

    2002-01-01

    Metadata only record Mountains are especially important for biodiversity conservation since many harbor unique assemblages of plants and animals, including high levels of endemic species. Mountain biodiversity and natural habitats bestow multiple ecosystem, soil conservation, and watershed benefits. Mountains are often centers of endemism, where species are prevalent in or peculiar to a particular region, and Pleistocene refuges, which are hypothesized to have high levels of diversity wher...

  6. Land-use effect on hydropedology in a mountainous region of Southeastern Brazil

    Leandro Campos Pinto

    Full Text Available ABSTRACT In Brazil, the Mantiqueira Range, southeastern region, shelters the last remnants of the ecologically important Upper Montane Tropical Forest. since extensive exploration that has been taking place in this biome for decades, the influence of land-use changes on hydropedology in these areas must be investigated once major land-use changes have been observed. This study aims to evaluate the land-use influence on soil drainable porosity (SDP in a headwater watershed located in the Mantiqueira Range region, and to validate the proposed methods based on micromorphological and hydrological indicators. The native vegetation of the study area is Atlantic forest that occupies 62% of the area, and the remaining 38% has been used for pasture. Thirty nine combinations of environmental variables were tested, each one generating a map for predicting SDP. The performance of the spatial prediction of SDP was assessed using 20% of the data from the total number of samples collected throughout the watershed. The least values of SDP are due to the process of removal of native forest and replacement by pasture. Areas with high to moderate SDP are associated with native forest fragments demonstrating the effects of the Atlantic Forest on the water infiltration and groundwater recharge processes, given by the greater contribution of baseflow in a forested catchment located within the studied watershed. The analysis of soil micromorphological images provided useful supporting information on the soil porosity system and along with hydrological properties of the watershed helped understand the SDP behavior on subsurface and groundwater storage capacity.

  7. Changing regional emissions of airborne pollutants reflected in the chemistry of snowpacks and wetfall in the Rocky Mountain region, USA, 1993–2012

    Ingersoll, George P.; Miller, Debra C.; Morris, Kristi H.; McMurray, Jill A.; Port, Garrett M.; Caruso, Brian

    2016-01-01

    Wintertime precipitation sample data from 55 Snowpack sites and 17 National Atmospheric Deposition Program (NADP)/National Trends Network Wetfall sites in the Rocky Mountain region were examined to identify long-term trends in chemical concentration, deposition, and precipitation using Regional and Seasonal Kendall tests. The Natural Resources Conservation Service snow-telemetry (SNOTEL) network provided snow-water-equivalent data from 33 sites located near Snowpack- and NADP Wetfall-sampling sites for further comparisons. Concentration and deposition of ammonium, calcium, nitrate, and sulfate were tested for trends for the period 1993–2012. Precipitation trends were compared between the three monitoring networks for the winter seasons and downward trends were observed for both Snowpack and SNOTEL networks, but not for the NADP Wetfall network. The dry-deposition fraction of total atmospheric deposition, relative to wet deposition, was shown to be considerable in the region. Potential sources of regional airborne pollutant emissions were identified from the U.S. Environmental Protection Agency 2011 National Emissions Inventory, and from long-term emissions data for the period 1996–2013. Changes in the emissions of ammonia, nitrogen oxides, and sulfur dioxide were reflected in significant trends in snowpack and wetfall chemistry. In general, ammonia emissions in the western USA showed a gradual increase over the past decade, while ammonium concentrations and deposition in snowpacks and wetfall showed upward trends. Emissions of nitrogen oxides and sulfur dioxide declined while regional trends in snowpack and wetfall concentrations and deposition of nitrate and sulfate were downward.

  8. Impacts of conflict on land use and land cover in the Imatong Mountain region of South Sudan and northern Uganda

    Gorsevski, Virginia B.

    The Imatong Mountain region of South Sudan makes up the northern most part of the Afromontane conservation 'biodiversity hotspot' due to the numerous species of plants and animals found here, some of which are endemic. At the same time, this area (including the nearby Dongotana Hills and the Agoro-Agu region of northern Uganda) has witnessed decades of armed conflict resulting from the Sudan Civil War and the presence of the Ugandan Lord's Resistance Army (LRA). The objective of my research was to investigate the impact of war on land use and land cover using a combination of satellite remote sensing data and semi-structured interviews with local informants. Specifically, I sought to (1) assess and compare changes in forest cover and location during both war and peace; (2) compare trends in fire activity with human population patterns; and (3) investigate the underlying causes influencing land use patterns related to war. I did this by using a Disturbance Index (DI), which isolates un-vegetated spectral signatures associated with deforestation, on Landsat TM and ETM+ data in order to compare changes in forest cover during conflict and post-conflict years, mapping the location and frequency of fires in subsets of the greater study area using MODIS active fire data, and by analyzing and summarizing information derived from interviews with key informants. I found that the rate of forest recovery was significantly higher than the rate of disturbance both during and after wartime in and around the Imatong Central Forest Reserve (ICFR) and that change in net forest cover remained largely unchanged for the two time periods. In contrast, the nearby Dongotana Hills experienced relatively high rates of disturbance during both periods; however, post war period losses were largely offset by gains in forest cover, potentially indicating opposing patterns in human population movements and land use activities within these two areas. For the Agoro-Agu Forest Reserve (AFR) region

  9. Risk Factors for Fatal Outcome From Rocky Mountain Spotted Fever in a Highly Endemic Area—Arizona, 2002–2011

    Regan, Joanna J.; Traeger, Marc S.; Humpherys, Dwight; Mahoney, Dianna L.; Martinez, Michelle; Emerson, Ginny L.; Tack, Danielle M.; Geissler, Aimee; Yasmin, Seema; Lawson, Regina; Williams, Velda; Hamilton, Charlene; Levy, Craig; Komatsu, Ken; Yost, David A.; McQuiston, Jennifer H.

    2016-01-01

    Background Rocky Mountain spotted fever (RMSF) is a disease that now causes significant morbidity and mortality on several American Indian reservations in Arizona. Although the disease is treatable, reported RMSF case fatality rates from this region are high (7%) compared to the rest of the nation (<1%), suggesting a need to identify clinical points for intervention. Methods The first 205 cases from this region were reviewed and fatal RMSF cases were compared to nonfatal cases to determine clinical risk factors for fatal outcome. Results Doxycycline was initiated significantly later in fatal cases (median, day 7) than nonfatal cases (median, day 3), although both groups of case patients presented for care early (median, day 2). Multiple factors increased the risk of doxycycline delay and fatal outcome, such as early symptoms of nausea and diarrhea, history of alcoholism or chronic lung disease, and abnormal laboratory results such as elevated liver aminotransferases. Rash, history of tick bite, thrombocytopenia, and hyponatremia were often absent at initial presentation. Conclusions Earlier treatment with doxycycline can decrease morbidity and mortality from RMSF in this region. Recognition of risk factors associated with doxycycline delay and fatal outcome, such as early gastrointestinal symptoms and a history of alcoholism or chronic lung disease, may be useful in guiding early treatment decisions. Healthcare providers should have a low threshold for initiating doxycycline whenever treating febrile or potentially septic patients from tribal lands in Arizona, even if an alternative diagnosis seems more likely and classic findings of RMSF are absent. PMID:25697742

  10. Indirect quantification of fine root production in a near tropical wet mountainous region

    Lu, X.; Zhang, J.; Huang, C.

    2016-12-01

    The main functions of fine root (defined as diameter floristic) and external (environmental) factors into account, including litter production, canopy density (leaf area index), leaf nutrients (N, K, Ca, Mg, P), weather and/or soil physical conditions (air temperature, humidity, precipitation, solar radiation and soil moisture). The study was conducted in near tropical broadleaf (700 m asl) and conifer (1700 m asl) forests in northeastern Taiwan, generally receiving more than 4000 mm of precipitation per year. For each site, 16 50-cm long minirhizotron tubes were installed. Fine root images were acquired every three weeks. Growth and decline, newly presence and absence of fine roots were delineated by image processing algorithms to derive fine-root productivity through time. Aforementioned internal and external attributes were simultaneously collected as well. Some of these variables were highly correlated and were detrended using principal component analysis. We found that these transformed variables (mainly associated with litter production, precipitation and solar radiation) can delineate the spatiotemporal dynamics of root production well (r2 = 0.87, p = 0.443). In conclusion, this study demonstrated the feasibility of utilized aboveground variables to indirectly assess fine root growth, which could be further developed for the regional scale mapping with aid of remote sensing.

  11. Supplemental Performance Analyses for the Potential High-Level Nuclear Waste Repository at Yucca Mountain

    Sevougian, S. D.; McNeish, J. A.; Coppersmith, K.; Jenni, K. E.; Rickertsen, L. D.; Swift, P. N.; Wilson, M. L.

    2002-01-01

    The U.S. Department of Energy (DOE) is considering the possible recommendation of a site at Yucca Mountain, Nevada, for the potential development of a geologic repository for the disposal of high-level radioactive waste and spent nuclear fuel. To facilitate public review and comment, in May 2001 the DOE released the Yucca Mountain Science and Engineering Report (S and ER) (1), which presents technical information supporting the consideration of the possible site recommendation. The report summarizes the results of more than 20 years of scientific and engineering studies. Based on internal reviews of the S and ER and its key supporting references, the Total System Performance Assessment for the Site Recommendation (TSPA-SR) (2) and the Analysis Model Reports and Process Model Reports cited therein, the DOE has recently identified and performed several types of analyses to supplement the treatment of uncertainty in support of the consideration of a possible site recommendation. The results of these new analyses are summarized in the two-volume report entitled FY01 Supplemental Science and Performance Analysis (SSPA) (3,4). The information in this report is intended to supplement, not supplant, the information contained in the S and ER. The DOE recognizes that important uncertainties will always remain in any assessment of the performance of a potential repository over thousands of years (1). One part of the DOE approach to recognizing and managing these uncertainties is a commitment to continued testing and analysis and to the continued evaluation of the technical basis supporting the possible recommendation of the site, such as the analysis contained in the SSPA. The goals of the work described here are to provide insights into the implications of newly quantified uncertainties, updated science, and evaluations of lower operating temperatures on the performance of a potential Yucca Mountain repository and to increase confidence in the results of the TSPA described

  12. The Steens Mountain ( Oregon) geomagnetic polarity transition ( USA). 3. Its regional significance.

    Mankinen, E.A.; Larson, E.E.; Gromme, C.S.; Prevot, M.; Coe, R.S.

    1987-01-01

    Study of the variations of direction and intensity of the geomagnetic field as recorded by the Miocene lava flows on Steens Mountain, SE Oregon, has resulted in a detailed description of total field behavior during a reversal in polarity. In addition to information about the polarity reversal itself, the detailed paleomagnetic record includes several thousand years of geomagnetic history preceding and following the polarity transition at 15.5 Ma. To test the feasibility of using this record as a means of correlation in this part of the western US, comparisons are made of reconnaissance and previously published paleomagnetic records obtained from what has been thought to be the Steens Basalt or rocks of equivalent age. Despite the fact that many of these earlier studies were not detailed and were not intended for correlation purposes, convincing similarities among some of the records are evident. The Steens Basalt paleomagnetic record does, indeed, have potential as a correlation tool during this time of widespread basaltic volcanism. Concludes that findings indicate no post-20 Ma differential rotation between S-E Washington and S-central Oregon, in contrast to previous interpretations. -from Authors

  13. Probable Maximum Precipitation (PMP) over mountainous region of Cameron Highlands- Batang Padang Catchment of Malaysia

    Sidek, L. M.; Mohd Nor, M. D.; Rakhecha, P. R.; Basri, H.; Jayothisa, W.; Muda, R. S.; Ahmad, M. N.; Razad, A. Z. Abdul

    2013-06-01

    The Cameron Highland Batang Padang (CHBP) catchment situated on the main mountain range of Peninsular Malaysia is of large economical importance where currently a series of three dams (Sultan Abu Bakar, Jor and Mahang) exist in the development of water resources and hydropower. The prediction of the design storm rainfall values for different return periods including PMP values can be useful to review the adequacy of the current spillway capacities of these dams. In this paper estimates of the design storm rainfalls for various return periods and also the PMP values for rainfall stations in the CHBP catchment have been computed for the three different durations of 1, 3 & 5 days. The maximum values for 1 day, 3 days and 5 days PMP values are found to be 730.08mm, 966.17mm and 969.0mm respectively at Station number 4513033 Gunung Brinchang. The PMP values obtained were compared with previous study results undertaken by NAHRIM. However, the highest ratio of 1 day, 3 day and 5 day PMP to highest observed rainfall are found to be 2.30, 1.94 and 1.82 respectively. This shows that the ratio tend to decrease as the duration increase. Finally, the temporal pattern for 1 day, 3day and 5 days have been developed based on observed extreme rainfall at station 4513033 Gunung Brinchang for the generation of Probable Maximum Flood (PMF) in dam break analysis.

  14. Probable Maximum Precipitation (PMP) over mountainous region of Cameron Highlands- Batang Padang Catchment of Malaysia

    Sidek, L M; Basri, H; Jayothisa, W; Nor, M D Mohd; Rakhecha, P R; Muda, R S; Ahmad, M N; Razad, A Z Abdul

    2013-01-01

    The Cameron Highland Batang Padang (CHBP) catchment situated on the main mountain range of Peninsular Malaysia is of large economical importance where currently a series of three dams (Sultan Abu Bakar, Jor and Mahang) exist in the development of water resources and hydropower. The prediction of the design storm rainfall values for different return periods including PMP values can be useful to review the adequacy of the current spillway capacities of these dams. In this paper estimates of the design storm rainfalls for various return periods and also the PMP values for rainfall stations in the CHBP catchment have been computed for the three different durations of 1, 3 and 5 days. The maximum values for 1 day, 3 days and 5 days PMP values are found to be 730.08mm, 966.17mm and 969.0mm respectively at Station number 4513033 Gunung Brinchang. The PMP values obtained were compared with previous study results undertaken by NAHRIM. However, the highest ratio of 1 day, 3 day and 5 day PMP to highest observed rainfall are found to be 2.30, 1.94 and 1.82 respectively. This shows that the ratio tend to decrease as the duration increase. Finally, the temporal pattern for 1 day, 3day and 5 days have been developed based on observed extreme rainfall at station 4513033 Gunung Brinchang for the generation of Probable Maximum Flood (PMF) in dam break analysis.

  15. Fatalities in high altitude mountaineering: a review of quantitative risk estimates.

    Weinbruch, Stephan; Nordby, Karl-Christian

    2013-12-01

    Quantitative estimates for mortality in high altitude mountaineering are reviewed. Special emphasis is placed on the heterogeneity of the risk estimates and on confounding. Crude estimates for mortality are on the order of 1/1000 to 40/1000 persons above base camp, for both expedition members and high altitude porters. High altitude porters have mostly a lower risk than expedition members (risk ratio for all Nepalese peaks requiring an expedition permit: 0.73; 95 % confidence interval 0.59-0.89). The summit bid is generally the most dangerous part of an expedition for members, whereas most high altitude porters die during route preparation. On 8000 m peaks, the mortality during descent from summit varies between 4/1000 and 134/1000 summiteers (members plus porters). The risk estimates are confounded by human and environmental factors. Information on confounding by gender and age is contradictory and requires further work. There are indications for safety segregation of men and women, with women being more risk averse than men. Citizenship appears to be a significant confounder. Prior high altitude mountaineering experience in Nepal has no protective effect. Commercial expeditions in the Nepalese Himalayas have a lower mortality than traditional expeditions, though after controlling for confounding, the difference is not statistically significant. The overall mortality is increasing with increasing peak altitude for expedition members but not for high altitude porters. In the Nepalese Himalayas and in Alaska, a significant decrease of mortality with calendar year was observed. A few suggestions for further work are made at the end of the article.

  16. Assessing the Impact of Climate Change on Land-Water-Ecosystem Quality in Polar and Mountainous Regions: A New Interregional Project (INT5153)

    Dercon, Gerd [Soil and Water Management and Crop Nutrition Subprogramme, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, IAEA, Seibersdorf (Austria); Gerardo-Abaya, Jane [Division for Asia and the Pacific Section 2, Department of Technical Cooperation, IAEA, Vienna (Austria); Mavlyudov, Bulat [Institute of Geography, Russian Academy of Sciences, Moscow (Russian Federation); others, and

    2014-07-15

    The INT5153 project aims to improve the understanding of the impact of climate change on fragile polar and mountainous ecosystems on both a local and global scale for their better management and conservation. Seven core and five related benchmark sites have been selected from different global regions for specific assessments of the impact of climate change with the following expected outcomes and outputs: Outcomes: • Improved understanding of the impact of climate change on the cryosphere in polar and mountainous ecosystems and its effects on landwater- ecosystem quality at both local and global scales. • Recommendations for improvement of regional policies for soil and agricultural water management, conservation, and environmental protection in polar and mountainous regions. Outputs: • Specific strategies to minimize the adverse effects of, and adapt to, reduced seasonal snow and glacier covered areas on land-water-ecosystem quality in polar and mountain regions across the world. • Enhanced interregional network of laboratories and institutions competent in the assessment of climate change impacts on the cryosphere and land-water-ecosystem quality, using isotopic and nuclear techniques. • Increased number of young scientists trained in the use of isotope and nuclear techniques to assess the impact of climate change on the cryosphere and land-water-ecosystem quality in polar and mountainous ecosystems. • Platform/database with global access for continuing work and monitoring of impact of climate change on fragile polar and mountainous ecosystems at local and global scales, as well as for communicating findings to policy makers and communities. • Improved understanding of the effects of climate change disseminated through appropriate publications, policy briefs, and through a dedicated internet platform. • Methodologies and protocols for investigations in specific ecosystems and conservation/adaptation measures for agriculture areas.

  17. Assessing the Impact of Climate Change on Land-Water-Ecosystem Quality in Polar and Mountainous Regions: A New Interregional Project (INT5153)

    Dercon, Gerd; Gerardo-Abaya, Jane; Mavlyudov, Bulat

    2014-01-01

    The INT5153 project aims to improve the understanding of the impact of climate change on fragile polar and mountainous ecosystems on both a local and global scale for their better management and conservation. Seven core and five related benchmark sites have been selected from different global regions for specific assessments of the impact of climate change with the following expected outcomes and outputs: Outcomes: • Improved understanding of the impact of climate change on the cryosphere in polar and mountainous ecosystems and its effects on landwater- ecosystem quality at both local and global scales. • Recommendations for improvement of regional policies for soil and agricultural water management, conservation, and environmental protection in polar and mountainous regions. Outputs: • Specific strategies to minimize the adverse effects of, and adapt to, reduced seasonal snow and glacier covered areas on land-water-ecosystem quality in polar and mountain regions across the world. • Enhanced interregional network of laboratories and institutions competent in the assessment of climate change impacts on the cryosphere and land-water-ecosystem quality, using isotopic and nuclear techniques. • Increased number of young scientists trained in the use of isotope and nuclear techniques to assess the impact of climate change on the cryosphere and land-water-ecosystem quality in polar and mountainous ecosystems. • Platform/database with global access for continuing work and monitoring of impact of climate change on fragile polar and mountainous ecosystems at local and global scales, as well as for communicating findings to policy makers and communities. • Improved understanding of the effects of climate change disseminated through appropriate publications, policy briefs, and through a dedicated internet platform. • Methodologies and protocols for investigations in specific ecosystems and conservation/adaptation measures for agriculture areas

  18. Vegetation and Cold Trapping Modulating Elevation-dependent Distribution of Trace Metals in Soils of a High Mountain in Eastern Tibetan Plateau.

    Bing, Haijian; Wu, Yanhong; Zhou, Jun; Li, Rui; Luo, Ji; Yu, Dong

    2016-04-07

    Trace metals adsorbed onto fine particles can be transported long distances and ultimately deposited in Polar Regions via the cold condensation effect. This study indicated the possible sources of silver (Ag), cadmium (Cd), copper (Cu), lead (Pb), antimony (Sb) and zinc (Zn) in soils on the eastern slope of Mt. Gongga, eastern Tibetan Plateau, and deciphered the effects of vegetation and mountain cold condensation on their distributions with elevation. The metal concentrations in the soils were comparable to other mountains worldwide except the remarkably high concentrations of Cd. Trace metals with high enrichment in the soils were influenced from anthropogenic contributions. Spatially, the concentrations of Cu and Zn in the surface horizons decreased from 2000 to 3700 m a.s.l., and then increased with elevation, whereas other metals were notably enriched in the mid-elevation area (approximately 3000 m a.s.l.). After normalization for soil organic carbon, high concentrations of Cd, Pb, Sb and Zn were observed above the timberline. Our results indicated the importance of vegetation in trace metal accumulation in an alpine ecosystem and highlighted the mountain cold trapping effect on trace metal deposition sourced from long-range atmospheric transport.

  19. Hydraulic fracturing stress measurements at Yucca Mountain, Nevada, and relationship to the regional stress field

    Stock, J.M.; Healy, J.H.; Hickman, S.H.; Zoback, M.D.

    1985-01-01

    Hydraulic fracturing stress measurements and acoustic borehole televiewer logs were run in holes USW G-1 and USW G-2 at Yucca Mountain as part of the Nevada Nuclear Waste Storage Investigations for the U. S. Department of Energy. Eight tests in the saturated zone, at depths from 646 to 1288 m, yielded values of the least horizontal stress S/sub h/ that are considerably lower than the vertical principal stress S/sub v/. In tests for which the greatest horizontal principal stress S/sub H/ could be determined, it was found to be less than S/sub v/, indicating a normal faulting stress regime. The borehole televiewer logs showed the presence of long (in excess of 10 m), vertical, drilling-induced fractures in the first 300 m below the water table. These are believed to form by the propagation of small preexisting cracks under the excess downhole fluid pressures (up to 5.2 MPa) applied during drilling. The presence of these drilling-induced hydrofractures provides further confirmation of the low value of the least horizontal stresses. A least horizontal principal stress direction of N60 0 W--N65 0 W is indicated by the orientation of the drilling-induced hydrofractures (N25 0 E--N30 0 E), and the orientation of stress-induced well bore breakouts in the lower part of USW G-2 (N65 0 W). This direction is in good agreement with indicators of stress direction from elsewhere at the Nevada Test Site. The observed stress magnitudes and directions were examined for the possibility of slip on preexisting faults. Using these data, the Coulomb criterion for frictional sliding suggests that for coefficients of friction close to 0.6, movement on favorably oriented faults could be expected

  20. Characterizing the proposed geologic repository for high-level radioactive waste at Yucca Mountain, Nevada: hydrology and geochemistry

    Stuckless, John S.; Levich, Robert A.

    2012-01-01

    This hydrology and geochemistry volume is a companion volume to the 2007 Geological Society of America Memoir 199, The Geology and Climatology of Yucca Mountain and Vicinity, Southern Nevada and California, edited by Stuckless and Levich. The work in both volumes was originally reported in the U.S. Department of Energy regulatory document Yucca Mountain Site Description, for the site characterization study of Yucca Mountain, Nevada, as the proposed U.S. geologic repository for high-level radioactive waste. The selection of Yucca Mountain resulted from a nationwide search and numerous committee studies during a period of more than 40 yr. The waste, largely from commercial nuclear power reactors and the government's nuclear weapons programs, is characterized by intense penetrating radiation and high heat production, and, therefore, it must be isolated from the biosphere for tens of thousands of years. The extensive, unique, and often innovative geoscience investigations conducted at Yucca Mountain for more than 20 yr make it one of the most thoroughly studied geologic features on Earth. The results of these investigations contribute extensive knowledge to the hydrologic and geochemical aspects of radioactive waste disposal in the unsaturated zone. The science, analyses, and interpretations are important not only to Yucca Mountain, but also to the assessment of other sites or alternative processes that may be considered for waste disposal in the future. Groundwater conditions, processes, and geochemistry, especially in combination with the heat from radionuclide decay, are integral to the ability of a repository to isolate waste. Hydrology and geochemistry are discussed here in chapters on unsaturated zone hydrology, saturated zone hydrology, paleohydrology, hydrochemistry, radionuclide transport, and thermally driven coupled processes affecting long-term waste isolation. This introductory chapter reviews some of the reasons for choosing to study Yucca Mountain as a

  1. Characterizing the proposed geologic repository for high-level radioactive waste at Yucca Mountain, Nevada--hydrology and geochemistry

    Stuckless, John S.; Levich, Robert A.

    2012-01-01

    This hydrology and geochemistry volume is a companion volume to the 2007 Geological Society of America Memoir 199, The Geology and Climatology of Yucca Mountain and Vicinity, Southern Nevada and California, edited by Stuckless and Levich. The work in both volumes was originally reported in the U.S. Department of Energy regulatory document Yucca Mountain Site Description, for the site characterization study of Yucca Mountain, Nevada, as the proposed U.S. geologic repository for high-level radioactive waste. The selection of Yucca Mountain resulted from a nationwide search and numerous committee studies during a period of more than 40 yr. The waste, largely from commercial nuclear power reactors and the government's nuclear weapons programs, is characterized by intense penetrating radiation and high heat production, and, therefore, it must be isolated from the biosphere for tens of thousands of years. The extensive, unique, and often innovative geoscience investigations conducted at Yucca Mountain for more than 20 yr make it one of the most thoroughly studied geologic features on Earth. The results of these investigations contribute extensive knowledge to the hydrologic and geochemical aspects of radioactive waste disposal in the unsaturated zone. The science, analyses, and interpretations are important not only to Yucca Mountain, but also to the assessment of other sites or alternative processes that may be considered for waste disposal in the future. Groundwater conditions, processes, and geochemistry, especially in combination with the heat from radionuclide decay, are integral to the ability of a repository to isolate waste. Hydrology and geochemistry are discussed here in chapters on unsaturated zone hydrology, saturated zone hydrology, paleohydrology, hydrochemistry, radionuclide transport, and thermally driven coupled processes affecting long-term waste isolation. This introductory chapter reviews some of the reasons for choosing to study Yucca Mountain as a

  2. Policies for the environment and rural development in the mountain area of Austria

    Hovorka, Gerhard

    1998-01-01

    38th European Regional Science Association ? Congress 1998 Topic G: Environmental Management, Sustainability and Development Policies for the Environment and Rural Development in the Mountain Area of Austria (Abstract) by Gerhard Hovorka The cultural landscape in Austria is characterised by the high proportion of mountain areas. Mountain agriculture bears the key role in safeguarding the sensitive eco-system in the mountain areas and thereby maintaining the general living and working space as...

  3. A low-altitude mountain range as an important refugium for two narrow endemics in the Southwest Australian Floristic Region biodiversity hotspot

    Keppel, Gunnar; Robinson, Todd P.; Wardell-Johnson, Grant W.; Yates, Colin J.; Niel, Van Kimberly P.; Byrne, Margaret; Schut, Tom

    2016-01-01

    Background and Aims Low-altitude mountains constitute important centres of diversity in landscapes with little topographic variation, such as the Southwest Australian Floristic Region (SWAFR). They also provide unique climatic and edaphic conditions that may allow them to function as refugia. We

  4. Changes in composition, ecology and structure of high-mountain vegetation: a re-visitation study over 42 years.

    Evangelista, Alberto; Frate, Ludovico; Carranza, Maria Laura; Attorre, Fabio; Pelino, Giovanni; Stanisci, Angela

    2016-01-27

    High-mountain ecosystems are increasingly threatened by climate change, causing biodiversity loss, habitat degradation and landscape modifications. However, very few detailed studies have focussed on plant biodiversity in the high mountains of the Mediterranean. In this study, we investigated the long-term changes that have occurred in the composition, structure and ecology of high-mountain vegetation in the central Apennines (Majella) over the last 42 years. We performed a re-visitation study, using historical and newly collected vegetation data to explore which ecological and structural features have been the most successful in coping with climatic changes. Vegetation changes were analysed by comparing geo-referenced phytosociological relevés collected in high-mountain habitats (dolines, gentle slopes and ridges) on the Majella massif in 1972 and in 2014. Composition analysis was performed by detrended correspondence analysis, followed by an analysis of similarities for statistical significance assessment and by similarity percentage procedure (SIMPER) for identifying which species indicate temporal changes. Changes in ecological and structural indicators were analysed by a permutational multivariate analysis of variance, followed by a post hoc comparison. Over the last 42 years, clear floristic changes and significant ecological and structural variations occurred. We observed a significant increase in the thermophilic and mesonitrophilic plant species and an increment in the frequencies of hemicryptophytes. This re-visitation study in the Apennines agrees with observations in other alpine ecosystems, providing new insights for a better understanding of the effects of global change on Mediterranean high-mountain biodiversity. The observed changes in floristic composition, the thermophilization process and the shift towards a more nutrient-demanding vegetation are likely attributable to the combined effect of higher temperatures and the increase in soil nutrients

  5. Incentives for Collaborative Governance: Top-Down and Bottom-Up Initiatives in the Swedish Mountain Region

    Katarina Eckerberg

    2015-08-01

    Full Text Available Governance collaborations between public and private partners are increasingly used to promote sustainable mountain development, yet information is limited on their nature and precise extent. This article analyzes collaboration on environment and natural resource management in Swedish mountain communities to critically assess the kinds of issues these efforts address, how they evolve, who leads them, and what functional patterns they exhibit based on Margerum's (2008 typology of action, organizational, and policy collaboration. Based on official documents, interviews, and the records of 245 collaborative projects, we explore the role of the state, how perceptions of policy failure may inspire collaboration, and the opportunities that European Union funds have created. Bottom-up collaborations, most of which are relatively recent, usually have an action and sometimes an organizational function. Top-down collaborations, however, are usually organizational or policy oriented. Our findings suggest that top-down and bottom-up collaborations are complementary in situations with considerable conflict over time and where public policies have partly failed, such as for nature protection and reindeer grazing. In less contested areas, such as rural development, improving tracks and access, recreation, and fishing, there is more bottom-up, action-oriented collaboration. State support, especially in the form of funding, is central to explaining the emergence of bottom-up action collaboration. Our findings show that the state both initiates and coordinates policy networks and retains a great deal of power over the nature and functioning of collaborative governance. A practical consequence is that there is great overlap—aggravated by sectorized approaches—that creates a heavy workload for some regional partners.

  6. Isotopic composition of dissolved inorganic nitrogen in high mountain lakes: variation with altitude in the Pyrenees

    Bartrons, M.; Camarero, L.; Catalan, J.

    2010-05-01

    Nitrogen deposition in remote areas has increased, but the effect on ecosystems is still poorly understood. For aquatic systems, knowledge of the main processes driving the observed variation is limited, as is knowledge of how changes in nitrogen supply affect lake biogeochemical and food web processes. Differences in dissolved inorganic nitrogen (DIN) between lakes cannot be understood without considering catchment characteristics. In mountains, catchment features (e.g., thermal conditions, land cover) vary considerably with elevation. The isotopic composition of nitrogen (δ15N) is increasingly used to study aquatic ecosystem dynamics. Here we explore the variability of δ15N in DIN in high mountain lakes and show that environmental conditions that change with altitude can affect the isotopic ratio. We measured ammonium and nitrate δ15N values in atmospheric deposition, epilimnetic water, deep chlorophyll maximum water (DCMW) and sediment pore water (SPW) from eight mountain lakes in the Pyrenees, both above and below the treeline. Lakes showed relatively uniform δ15N-NH4+ values in SPW (2.2±1.6‰), with no variation corresponding to catchment or lake characteristics. We suggest that organic matter diagenesis under similar sediment conditions is responsible for the low variation between the lakes. In the water column, the range of δ15N values was larger for ammonium (-9.4‰ to 7.4‰) than for nitrate (-11.4‰ to -3.4‰), as a result of higher variation both between and within lakes (epilimnetic vs. DCM water). For both compounds part of the difference correlated with altitude or catchment features (e.g., scree proportion). Based on concentration, chemical and isotopic tendencies, we suggest that patterns arise from the distinct relative contributions of two types of water flow paths to the lakes: one from snowpack melting, with little soil interaction; and another highly influenced by soil conditions. The snow-type flow path contributes low DIN

  7. Impacts of 1.5°C warming on high mountain systems: state of knowledge, challenges and the way forward

    Huggel, Christian; Salzmann, Nadine; Allen, Simon; Frey, Holger; Haeberli, Wilfried; Linsbauer, Andreas; Paul, Frank

    2016-04-01

    Recently, both in science and policy, discussions have intensified about whether the 2°C 'guardrail' can really be considered a safety margin, i.e. natural and human systems would be reasonably safe when global warming can be limited to below 2°C with reference to preindustrial levels. Concerns about the 'safety' of the 2°C warming mounted especially with reference to highly vulnerable systems such as small islands, polar regions and high mountains where 2°C may imply crossing thresholds with major irreversible impacts. Several countries and organizations therefore called for a 1.5°C target, and it was one of the remarkable aspects of the Paris Climate Conference in December 2015 that 1.5°C was explicitly included in the Paris Agreement. However, scientifically, little is known about the difference between 1.5°C and 2°C warming in terms of impacts on natural and human systems. This was also corroborated by the final report of the UNFCCC Structured Expert Dialogue (SED) which was based on the outcomes of the IPCC 5th Assessment Report and subsequent expert discussions. Here we respond to this gap and challenge of understanding the differences of impacts as related to 1.5°C and 2°C above preindustrial levels. We concentrate on high mountains and impacts related to changes in the cryosphere because these systems are very sensitive to climatic changes (in particular to the key climate variables temperature and precipitation) and acknowledged as highly vulnerable areas. We start with a systematic literature review and find that the mountain research community has addressed this issue only in a marginal way. We then develop a conceptual but evidence-based model how this challenge could be addressed: We suggest to first study the changes and corresponding impacts seen in high mountain systems since the Little Ice Age focusing on specified periods with 0.5°C global warming (corresponding regional warming, for instance in the Swiss Alps, in these periods was

  8. Summer freezing resistance: a critical filter for plant community assemblies in Mediterranean high mountains

    David Sánchez Pescador

    2016-02-01

    Full Text Available Assessing freezing community response and whether freezing resistance is related to other functional traits is essential for understanding alpine community assemblages, particularly in Mediterranean environments where plants are exposed to freezing temperatures and summer droughts. Thus, we characterized the leaf freezing resistance of 42 plant species in 38 plots at Sierra de Guadarrama (Spain by measuring their ice nucleation temperature, freezing point (FP, and low-temperature damage (LT50, as well as determining their freezing resistance mechanisms (i.e., tolerance or avoidance. The community response to freezing was estimated for each plot as community weighted means (CWMs and functional diversity, and we assessed their relative importance with altitude. We established the relationships between freezing resistance, growth forms, and four key plant functional traits (i.e., plant height, specific leaf area, leaf dry matter content, and seed mass. There was a wide range of freezing resistance responses and more than in other alpine habitats. At the community level, the CWMs of FP and LT50 responded negatively to altitude, whereas the functional diversity of both traits increased with altitude. The proportion of freezing-tolerant species also increased with altitude. The ranges of FP and LT50 varied among growth forms, and only the leaf dry matter content correlated negatively with freezing-resistance traits. Summer freezing events represent important abiotic filters for assemblies of Mediterranean high mountain communities, as suggested by the CWMs. However, a concomitant summer drought constraint may also explain the high freezing resistance of species that thrive in these areas and the lower functional diversity of freezing resistance traits at lower altitudes. Leaves with high dry matter contents may maintain turgor at lower water potential and enhance drought tolerance in parallel to freezing resistance. This adaptation to drought seems to

  9. Even between-lap pacing despite high within-lap variation during mountain biking.

    Martin, Louise; Lambeth-Mansell, Anneliese; Beretta-Azevedo, Liane; Holmes, Lucy A; Wright, Rachel; St Clair Gibson, Alan

    2012-09-01

    Given the paucity of research on pacing strategies during competitive events, this study examined changes in dynamic high-resolution performance parameters to analyze pacing profiles during a multiple-lap mountain-bike race over variable terrain. A global-positioning-system (GPS) unit (Garmin, Edge 305, USA) recorded velocity (m/s), distance (m), elevation (m), and heart rate at 1 Hz from 6 mountain-bike riders (mean±SD age=27.2±5.0 y, stature=176.8±8.1 cm, mass=76.3±11.7 kg, VO2max=55.1±6.0 mL·kg(-1)·min1) competing in a multilap race. Lap-by-lap (interlap) pacing was analyzed using a 1-way ANOVA for mean time and mean velocity. Velocity data were averaged every 100 m and plotted against race distance and elevation to observe the presence of intralap variation. There was no significant difference in lap times (P=.99) or lap velocity (P=.65) across the 5 laps. Within each lap, a high degree of oscillation in velocity was observed, which broadly reflected changes in terrain, but high-resolution data demonstrated additional nonmonotonic variation not related to terrain. Participants adopted an even pace strategy across the 5 laps despite rapid adjustments in velocity during each lap. While topographical and technical variations of the course accounted for some of the variability in velocity, the additional rapid adjustments in velocity may be associated with dynamic regulation of self-paced exercise.

  10. Rocky Mountain Regional CO{sub 2} Storage Capacity and Significance

    Laes, Denise; Eisinger, Chris; Esser, Richard; Morgan, Craig; Rauzi, Steve; Scholle, Dana; Matthews, Vince; McPherson, Brian

    2013-08-30

    The purpose of this study includes extensive characterization of the most promising geologic CO{sub 2} storage formations on the Colorado Plateau, including estimates of maximum possible storage capacity. The primary targets of characterization and capacity analysis include the Cretaceous Dakota Formation, the Jurassic Entrada Formation and the Permian Weber Formation and their equivalents in the Colorado Plateau region. The total CO{sub 2} capacity estimates for the deep saline formations of the Colorado Plateau region range between 9.8 metric GT and 143 metric GT, depending on assumed storage efficiency, formations included, and other factors.

  11. Mountain tourism development in Serbia and neighboring countries

    Krunić Nikola

    2010-01-01

    Full Text Available Mountain areas with their surroundings are important parts of tourism regions with potentials for all-season tourism development and complementary activities. Development possibilities are based on size of high mountain territory, nature protection regimes, infrastructural equipment, provided conditions for leisure and recreation as well as involvement of local population in processes of development and protection. This paper analyses the key aspects of tourism development, winter tourism in high-mountain areas of Serbia and some neighboring countries (Slovakia, Romania, Bulgaria, and Greece. Common determinants of cohesion between nature protection and mountain tourism development, national development policies, applied models and concepts and importance of trans-border cooperation are indicated.

  12. The economic viability of value-based food chain for dairy farms in mountain regions: an econometric analysis approach

    Jernej Prišenk

    2016-07-01

    Full Text Available The attention of this paper is drawn to analyze the economic potential of involvement of farmers into the small-medium sized value-based food chain (VBFC. The survey represents a solid dana basis from which econometric modelling approach was further developed. Empirical results reveal the positive economic viability on a general level; this means more stable purchase price of raw milk for dairy farms, which are the part of value-based food chain. Results point at inelastic demand for milk and milk related products. Furthermore, there are some accompanying and underlying indirect social benefits, such as production of high-quality food products, more stable and constant demand for raw milk, steady payments and better social situation. The last one is especially important for the farms operating in less-favored mountain areas where the survey was actually conducted.

  13. [Effect of artificial mountain climate on the functional state of higher regions of the central nervous system in man].

    Berezovskiĭ, V A; Levashov, M I

    2009-01-01

    The study included 97 patients with vegetative vascular dystonia and chronic non-specific pulmonary diseases exposed to artificial high-altitude climate in an Orotron climatic chamber during 2 weeks. Atmospheric conditions maintained in the chamber had the following parameters: partial pressure of oxygen--147-160 gPa, relative humidity--60-70%, air temperature--16-18 degrees C, light aeroion content--up to 6000 cub.cm. It was shown that the exposure to artificial mountain climatic conditions enhanced functional mobility of nervous processes and decreased the length of the sensorimotor reactions of the patients. Individual differences in the change of parameters being measured depended on the degree of initial functional flexibility of nervous processes.

  14. DEM-based delineation for improving geostatistical interpolation of rainfall in mountainous region of Central Himalayas, India

    Kumari, Madhuri; Singh, Chander Kumar; Bakimchandra, Oinam; Basistha, Ashoke

    2017-10-01

    In mountainous region with heterogeneous topography, the geostatistical modeling of the rainfall using global data set may not confirm to the intrinsic hypothesis of stationarity. This study was focused on improving the precision of the interpolated rainfall maps by spatial stratification in complex terrain. Predictions of the normal annual rainfall data were carried out by ordinary kriging, universal kriging, and co-kriging, using 80-point observations in the Indian Himalayas extending over an area of 53,484 km2. A two-step spatial clustering approach is proposed. In the first step, the study area was delineated into two regions namely lowland and upland based on the elevation derived from the digital elevation model. The delineation was based on the natural break classification method. In the next step, the rainfall data was clustered into two groups based on its spatial location in lowland or upland. The terrain ruggedness index (TRI) was incorporated as a co-variable in co-kriging interpolation algorithm. The precision of the kriged and co-kriged maps was assessed by two accuracy measures, root mean square error and Chatfield's percent better. It was observed that the stratification of rainfall data resulted in 5-20 % of increase in the performance efficiency of interpolation methods. Co-kriging outperformed the kriging models at annual and seasonal scale. The result illustrates that the stratification of the study area improves the stationarity characteristic of the point data, thus enhancing the precision of the interpolated rainfall maps derived using geostatistical methods.

  15. Soil movements and surface erosion rates on rocky slopes in the mountain areas of the karst region of Southwest China

    Zhang, X. B.; Bai, X. Y.; Long, Y.

    2012-04-01

    The karst region of Southwest China with an area of 54 × 104 km2 is one of the largest karst areas in the world and experiences subtropical climate. Hill-depressions are common landforms in the mountain areas of this region. Downslope soil movement on the ground by surface water erosion and soil sinking into underground holes by creeping or pipe erosion are mayor types of soil movements on rocky carbonate slopes. The 137Cs technique was used to date the sediment deposits in six karst depressions, to estimate average surface erosion rates on slopes from their catchments. The estimates of soil loss rates obtained from this study evidenced considerable variability. A value of 1.0 t km-2 year-1 was obtained for a catchment under original dense karst forest, but the erosion rates ranged between 19.3 t km-2 year-1 and 48.7 t km-2 year-1 in four catchments under secondary forest or grasses, where the original forest cover had been removed in the Ming and Qing dynasties, several hundred years ago. The highest rate of 1643 t km-2 year-1 was obtained for a catchment underlain by clayey carbonate rocks, where the soil cover was thicker and more extensive than in the other catchments and extensive land reclamation for cultivation had occurred during the period 1979-1981, immediately after the Cultural Revolution.

  16. Dataset of Passerine bird communities in a Mediterranean high mountain (Sierra Nevada, Spain)

    Pérez-Luque, Antonio Jesús; Barea-Azcón, José Miguel; Álvarez-Ruiz, Lola; Bonet-García, Francisco Javier; Zamora, Regino

    2016-01-01

    Abstract In this data paper, a dataset of passerine bird communities is described in Sierra Nevada, a Mediterranean high mountain located in southern Spain. The dataset includes occurrence data from bird surveys conducted in four representative ecosystem types of Sierra Nevada from 2008 to 2015. For each visit, bird species numbers as well as distance to the transect line were recorded. A total of 27847 occurrence records were compiled with accompanying measurements on distance to the transect and animal counts. All records are of species in the order Passeriformes. Records of 16 different families and 44 genera were collected. Some of the taxa in the dataset are included in the European Red List. This dataset belongs to the Sierra Nevada Global-Change Observatory (OBSNEV), a long-term research project designed to compile socio-ecological information on the major ecosystem types in order to identify the impacts of global change in this area. PMID:26865820

  17. Dataset of Passerine bird communities in a Mediterranean high mountain (Sierra Nevada, Spain).

    Pérez-Luque, Antonio Jesús; Barea-Azcón, José Miguel; Álvarez-Ruiz, Lola; Bonet-García, Francisco Javier; Zamora, Regino

    2016-01-01

    In this data paper, a dataset of passerine bird communities is described in Sierra Nevada, a Mediterranean high mountain located in southern Spain. The dataset includes occurrence data from bird surveys conducted in four representative ecosystem types of Sierra Nevada from 2008 to 2015. For each visit, bird species numbers as well as distance to the transect line were recorded. A total of 27847 occurrence records were compiled with accompanying measurements on distance to the transect and animal counts. All records are of species in the order Passeriformes. Records of 16 different families and 44 genera were collected. Some of the taxa in the dataset are included in the European Red List. This dataset belongs to the Sierra Nevada Global-Change Observatory (OBSNEV), a long-term research project designed to compile socio-ecological information on the major ecosystem types in order to identify the impacts of global change in this area.

  18. The Role of Regional Factors in Structuring Ouachita Mountain Stream Assemblages

    Lance R. Williams; Christopher M. Taylor; Melvin L. Warren; J. Alan Clingenpeel

    2004-01-01

    Abstract - We used Basin Area Stream Survey data from the USDA Forest Service, Ouachita National Forest to evaluate the relationship between regional fish and macroinvertebrate assemblages and environmental variability (both natural and anthropogenic). Data were collected for three years (1990-1992) from six hydrologically variable stream systems in...

  19. Ozone air pollution in the Ukrainian Carpathian Mountains and Kiev region

    Oleg Blum; Andrzej Bytnerowicz; William Manning; Ludmila Popovicheva

    1998-01-01

    Ambient concentrations of ozone (O3) were measured at five highland forest locations in the Ukrainian Carpathians and in two lowland locations in the Kiev region during August to September 1995 by using O3 passive samplers. The ozone passive samplers were calibrated against a Thermo Environmental Model 49 ozone monitor...

  20. A synthesis of the Jurassic system in the southern Rocky Mountain region

    Peterson, F.

    1988-01-01

    This chapter includes important stratigraphic revisions and nomenclatural changes made especially in the Colorado Plateau region in recent years. For the purpose of the discussion, these rocks are divided into six divisions. The stratigraphy and depositional environments of the rocks are discussed, along with the economic resources of these rocks which include uranium and hydrocarbons

  1. Moisture source in the Hyblean Mountains region (south-eastern Sicily, Italy): Evidence from stable isotopes signature

    Grassa, Fausto [Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Palermo, Via Ugo La Malfa, 153, 90146 Palermo (Italy)]. E-mail: f.grassa@pa.ingv.it; Favara, Rocco [Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Palermo, Via Ugo La Malfa, 153, 90146 Palermo (Italy); Valenza, Mariano [Dipartimento CFTA, Universita di Palermo, Palermo, Via Archirafi, 36, 90123, Palermo (Italy)

    2006-12-15

    Here the authors present results of an isotope study on precipitation collected during a 2-a period from a rain-gauge network consisting of 6 stations located at different elevations in the Hyblean Mountains (HM) region, in south-eastern Sicily. The slope of the local meteoric water line ({delta}D = 6.50 {delta} {sup 18}O + 9.87) obtained for the region suggests that precipitation is affected by evaporation during rainfall events. The main variations in rainwater isotope composition are due to seasonal effects and elevation. An average {sup 2}H excess value of +21.2 per mille was found for precipitation events less affected by evaporation (i.e. when the rainfall was >65 mm/month). The spatial distribution of O isotope composition of precipitation shows a negative gradient from east and south to the inner areas. The depositional rate of Cl, used as a tracer of the origin of air masses, is highest at the coastal rain-gauges (SR and MRG stations) and lowest on the northern flank of the HM region (SC station). Based on these findings, a model is proposed for the origin of precipitation in the HM region, which assumes that a Mediterranean-derived component is the main source of moisture in the studied area. D/H and {sup 18}O/{sup 16}O ratios of inferred meteoric recharge waters were also compared with the isotope composition of waters collected from the main local springs and wells. The best linear fit of the {delta} {sup 18}O vs {delta}D relationship for Hyblean groundwater is {delta}D = 4.85 {delta} {sup 18}O-2.01. The enrichment of heavy isotopes in Hyblean groundwater is probably due to evaporation occurring after precipitation events or to a recharging contribution from surface waters (lakes or rivers) enriched in heavy isotopes.

  2. Moisture source in the Hyblean Mountains region (south-eastern Sicily, Italy): Evidence from stable isotopes signature

    Grassa, Fausto; Favara, Rocco; Valenza, Mariano

    2006-01-01

    Here the authors present results of an isotope study on precipitation collected during a 2-a period from a rain-gauge network consisting of 6 stations located at different elevations in the Hyblean Mountains (HM) region, in south-eastern Sicily. The slope of the local meteoric water line (δD = 6.50 δ 18 O + 9.87) obtained for the region suggests that precipitation is affected by evaporation during rainfall events. The main variations in rainwater isotope composition are due to seasonal effects and elevation. An average 2 H excess value of +21.2 per mille was found for precipitation events less affected by evaporation (i.e. when the rainfall was >65 mm/month). The spatial distribution of O isotope composition of precipitation shows a negative gradient from east and south to the inner areas. The depositional rate of Cl, used as a tracer of the origin of air masses, is highest at the coastal rain-gauges (SR and MRG stations) and lowest on the northern flank of the HM region (SC station). Based on these findings, a model is proposed for the origin of precipitation in the HM region, which assumes that a Mediterranean-derived component is the main source of moisture in the studied area. D/H and 18 O/ 16 O ratios of inferred meteoric recharge waters were also compared with the isotope composition of waters collected from the main local springs and wells. The best linear fit of the δ 18 O vs δD relationship for Hyblean groundwater is δD = 4.85 δ 18 O-2.01. The enrichment of heavy isotopes in Hyblean groundwater is probably due to evaporation occurring after precipitation events or to a recharging contribution from surface waters (lakes or rivers) enriched in heavy isotopes

  3. Modeling flash floods in ungauged mountain catchments of China: A decision tree learning approach for parameter regionalization

    Ragettli, S.; Zhou, J.; Wang, H.; Liu, C.; Guo, L.

    2017-12-01

    Flash floods in small mountain catchments are one of the most frequent causes of loss of life and property from natural hazards in China. Hydrological models can be a useful tool for the anticipation of these events and the issuing of timely warnings. One of the main challenges of setting up such a system is finding appropriate model parameter values for ungauged catchments. Previous studies have shown that the transfer of parameter sets from hydrologically similar gauged catchments is one of the best performing regionalization methods. However, a remaining key issue is the identification of suitable descriptors of similarity. In this study, we use decision tree learning to explore parameter set transferability in the full space of catchment descriptors. For this purpose, a semi-distributed rainfall-runoff model is set up for 35 catchments in ten Chinese provinces. Hourly runoff data from in total 858 storm events are used to calibrate the model and to evaluate the performance of parameter set transfers between catchments. We then present a novel technique that uses the splitting rules of classification and regression trees (CART) for finding suitable donor catchments for ungauged target catchments. The ability of the model to detect flood events in assumed ungauged catchments is evaluated in series of leave-one-out tests. We show that CART analysis increases the probability of detection of 10-year flood events in comparison to a conventional measure of physiographic-climatic similarity by up to 20%. Decision tree learning can outperform other regionalization approaches because it generates rules that optimally consider spatial proximity and physical similarity. Spatial proximity can be used as a selection criteria but is skipped in the case where no similar gauged catchments are in the vicinity. We conclude that the CART regionalization concept is particularly suitable for implementation in sparsely gauged and topographically complex environments where a proximity

  4. Elevated plasma cholecystokinin at high altitude: metabolic implications for the anorexia of acute mountain sickness.

    Bailey, D M; Davies, B; Milledge, J S; Richards, M; Williams, S R; Jordinson, M; Calam, J

    2000-01-01

    The aims of the present study were to measure the satiety neuropeptide cholecystokinin (CCK) in humans at terrestrial high altitude to investigate its possible role in the pathophysiology of anorexia, cachexia, and acute mountain sickness (AMS). Nineteen male mountaineers aged 38 +/- 12 years participated in a 20 +/- 5 day trek to Mt. Kanchenjunga basecamp (BC) located at 5,100 m, where they remained for 7 +/- 5 days. Subjects were examined at rest and during a maximal exercise test at sea-level before/after the expedition (SL1/SL2) and during the BC sojourn. There was a mild increase in Lake Louise AMS score from 1.1 +/- 1.2 points at SL1 to 2.3 +/- 2.3 points by the end of the first day at BC (P anorexia on Day 2 compared with those with a normal appetite. While there was no relationship between the increase in CCK and AMS score at BC, a more pronounced increase in resting CCK was observed in subjects with AMS (> or =3 points at the end of Day 1 at BC) compared with those without (+98.9 +/- 1.4 pmol/L(-1) vs. +67.6 +/- 37.2 pmol/L(-1), P < 0.05). Caloric intake remained remarkably low during the stay at BC (8.9 +/- 1.4 MJ.d(-1)) despite a progressive decrease in total body mass (-4.5 +/- 2.1 kg after 31 +/- 13 h at BC, P < 0.05 vs. SL1/SL2), which appeared to be due to a selective loss of torso adipose tissue. These findings suggest that the satiogenic effects of CCK may have contributed to the observed caloric deficit and subsequent cachexia at high altitude despite adequate availability of palatable foods. The metabolic implications of elevated CCK in AMS remain to be elucidated.

  5. Thermal modeling for a potential high-level nuclear waste repository at Yucca Mountain, Nevada

    Pruess, K.; Tsang, Y.

    1994-03-01

    Repository performance models based on numerical simulation of fluid and heat flows have recently been developed by several different groups. Model conceptualizations generally focus on large-scale average behavior. This comparison finds that current performance assessment (PA) models use generally similar approximations and parameters. Certain differences exist in some performance-relevant parameters, especially absolute permeabilities, characteristic curves, and thermal conductivities. These reflect present uncertainties about the most appropriate parameters applicable to Yucca Mountain and must be resolved through future field observations and laboratory measurements. For a highly heterogeneous fractured-porous hydrogeologic system such as Yucca Mountain, water infiltration through the unsaturated zone is expected to be dominated by highly localized phenomena. These include fast channelized flow along preferential paths in fractures, and frequent local ponding. The extended dry repository concept proposed by the Livermore group is reviewed. Predictions of large-scale drying around the repository on the average for large thermal loads cannot be taken to indicate that waste packages will not be contacted by liquid water, and that aqueous-phase transport of contaminants is not possible. Specifically, the authors find that modest water infiltration, on the order of a few millimeters per year, would be sufficient to overwhelm the vaporization capacity of the repository heat and inundate the waste packages within a time frame of a few thousand years. A preliminary analysis indicates that channelized flow of water may persist over large vertical distances. The vaporization-condensation cycle has a capacity for generating huge amounts of ponded water. A small fraction of the total condensate, if ponded and then episodically released, would be sufficient to cause liquid phase to make contact with the waste packages

  6. Novel drugs in the management of acute mountain sickness and high altitude pulmonary edema

    Sikri G

    2015-12-01

    Full Text Available Gaurav Sikri, Anirban Bhattacharya Department of Physiology, Armed Forces Medical College, Wanowarie, Pune, IndiaWe read with great interest the review article titled “Wilderness medicine at high altitude: recent developments in the field” by Shah et al.1 The authors have comprehensively summarized the recent advances in the field of high altitude medicine relevant to sports and travel medicine. However, Shah et al have described potential drugs for management of high-altitude illnesses, such as acute mountain sickness (AMS, high altitude cerebral edema, and high altitude pulmonary edema (HAPE as one group under the section “Novel drug treatment for AMS”. The pathophysiologies of these two sets of diseases (AMS/high altitude cerebral edema as one and HAPE as another set are different2 and hence it would have been nice to have had the novel drugs described separately to elucidate the therapeutic approach for the two different classes of diseases.View original paper by Shah et al.

  7. Vertical structure and microphysical characteristics of precipitation on the high terrain and lee side of the Olympic Mountains

    Zagrodnik, J. P.; McMurdie, L. A.; Houze, R.

    2017-12-01

    As mid-latitude cyclones pass over coastal mountain ranges, the processes producing their clouds and precipitation are modified when they encounter complex terrain, leading to a maximum in precipitation fallout on the windward slopes and a minimum on the lee side. The precipitation that does reach the high terrain and lee side of a mountain range can be theoretically determined by a complex interaction between the dynamics of air lifting over the terrain, the thermodynamics of moist air, and the microphysical time required to grow particles large enough to fall out. To date, there have been few observational studies that have focused on the nonlinear microphysical processes contributing to the variability of precipitation that is received on the lee side slopes of a mountain range such as the Olympic Mountains. The 2015-16 Olympic Mountains Experiment (OLYMPEX) collected unprecedented observations on the high terrain and lee side of the Olympic Mountains including frequent soundings on Vancouver Island, dual-polarization Doppler radar, multi-frequency airborne radar, and ground-based particle size and crystal habit observations at the higher elevation Hurricane Ridge site. We utilize these observations to examine the evolution of the vertical structure and microphysical precipitation characteristics over the high terrain and leeside within the context of large-scale dynamic and thermodynamic conditions that evolve during the passage of cold season mid-latitude cyclones. The primary goal is to determine the degree to which the observed variability in lee side precipitation amount and microphysical properties are controlled by variations in temperature, flow speed and direction, shear, and stability associated with characteristic synoptic storm sectors and frontal passages.

  8. Interpreting landscape change in high mountains of northeastern Oregon from long-term repeat photography.

    Jon M. Skovlin; Gerald S. Strickler; Jesse L. Peterson; Arthur W. Sampson

    2001-01-01

    We compared 45 photographs taken before 1925 to photographs taken as late as 1999 and documented landscape changes above 5,000 feet elevation in the Wallowa, Elkhorn, and Greenhorn Mountains of northeastern Oregon. We noted the following major changes from these comparisons: (1) the expansion of subalpine fir into mountain grasslands, (2) the invasion of moist and wet...

  9. Geodiversity and geohazards of the Susa Valley (W-Alps, Italy): combining scientific research and new technologies for enhanced knowledge and proactive management of geoheritage in mountain regions

    Giardino, Marco; Bacenetti, Marco; Perotti, Luigi; Giordano, Enrico; Ghiraldi, Luca; Palomba, Mauro

    2013-04-01

    Mountain regions have a range of geological and geomorphological features that make them very attractive for tourism activities. As a consequence, increased human "pressure" causes impacts on geoheritage sites and higher geomorphological risks. These effects are magnified by active geomorphic processes characterizing mountains areas, highly sensitive to climate change. In term of "human sensitivity", several sociological surveys have shown that "perceived risk", not "real risk", influences people's behavior towards natural hazards. The same approach can be applied to geodiversity and geoheritage. Based on these assumptions, we considered the possible strategic roles played by diffusion of scientific research and application of new technologies: 1) to enhance awareness, either of geodiversity or environmental dynamics and 2) to improve knowledge, both on geoheritage management and natural risk reduction. Within the activities of the "ProGEO-Piemonte Project" (Progetti d'Ateneo 2011, cofunded by Universita? degli Studi di Torino and Compagnia di San Paolo Bank Foundation), we performed a systematic review of geodiversity and natural hazards information in the Piemonte Region (NW-Italy). Then we focused our attention on the Susa Valley, an area of the Western Alps where the geoheritage is affected by very active morphodynamics, as well as by a growing tourism, after the 2006 winter Olympics. The Susa Valley became one of the 9 strategic geothematic areas have been selected to represent the geodiversity of the Piemonte region, each characterized by high potential for enhancement of public understanding of science, and recreation activities supported by local communities. Then we contributed to the awareness-raising communication strategy of the "RiskNat project" (Interreg Alcotra 2007-2013, Action A.4.3) by synthesizing geoscience knowledge on the Susa Valley and information on slope instabilities and models/prevention measures/warning systems. Visual representations

  10. Milestones for Selection, Characterization, and Analysis of the Performance of a Repository for Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain.

    Rechard, Robert P.

    2014-02-01

    This report presents a concise history in tabular form of events leading up to site identification in 1978, site selection in 1987, subsequent characterization, and ongoing analysis through 2008 of the performance of a repository for spent nuclear fuel and high-level radioactive waste at Yucca Mountain in southern Nevada. The tabulated events generally occurred in five periods: (1) commitment to mined geologic disposal and identification of sites; (2) site selection and analysis, based on regional geologic characterization through literature and analogous data; (3) feasibility analysis demonstrating calculation procedures and importance of system components, based on rough measures of performance using surface exploration, waste process knowledge, and general laboratory experiments; (4) suitability analysis demonstrating viability of disposal system, based on environment-specific laboratory experiments, in-situ experiments, and underground disposal system characterization; and (5) compliance analysis, based on completed site-specific characterization. Because the relationship is important to understanding the evolution of the Yucca Mountain Project, the tabulation also shows the interaction between four broad categories of political bodies and government agencies/institutions: (a) technical milestones of the implementing institutions, (b) development of the regulatory requirements and related federal policy in laws and court decisions, (c) Presidential and agency directives and decisions, and (d) critiques of the Yucca Mountain Project and pertinent national and world events related to nuclear energy and radioactive waste.

  11. Noninvasive Assessment of Excessive Erythrocytosis as a Screening Method for Chronic Mountain Sickness at High Altitude.

    Vyas, Kaetan J; Danz, David; Gilman, Robert H; Wise, Robert A; León-Velarde, Fabiola; Miranda, J Jaime; Checkley, William

    2015-06-01

    Vyas, Kaetan J., David Danz, Robert H. Gilman, Robert A. Wise, Fabiola León-Velarde, J. Jaime Miranda, and William Checkley. Noninvasive assessment of excessive erythrocytosis as a screening method for chronic mountain sickness at high altitude. High Alt Med Biol 16:162-168, 2015.--Globally, over 140 million people are at risk of developing chronic mountain sickness, a common maladaptation to life at high altitude (>2500 meters above sea level). The diagnosis is contingent upon the identification of excessive erythrocytosis (EE). Current best practices to identify EE require a venous blood draw, which is cumbersome for large-scale surveillance. We evaluated two point-of-care biomarkers to screen for EE: noninvasive spot-check tests of total hemoglobin and oxyhemoglobin saturation (Pronto-7, Masimo Corporation). We conducted paired evaluations of total serum hemoglobin from a venous blood draw and noninvasive, spot-check testing of total hemoglobin and oxyhemoglobin saturation with the Pronto-7 in 382 adults aged ≥35 years living in Puno, Peru (3825 meters above sea level). We used the Bland-Altman method to measure agreement between the noninvasive hemoglobin assessment and the gold standard lab hemoglobin analyzer. Mean age was 58.8 years and 47% were male. The Pronto-7 test was unsuccessful in 21 (5%) participants. Limits of agreement between total hemoglobin measured via venous blood draw and the noninvasive, spot-check test ranged from -2.8 g/dL (95% CI -3.0 to -2.5) to 2.5 g/dL (95% CI 2.2 to 2.7), with a bias of -0.2 g/dL (95% CI -0.3 to -0.02) for the difference between total hemoglobin and noninvasive hemoglobin concentrations. Overall, the noninvasive spot-check test of total hemoglobin had a better area under the receiver operating characteristic curve compared to oxyhemoglobin saturation for the identification of EE as measured by a gold standard laboratory hemoglobin analyzer (0.96 vs. 0.82; p<0.001). Best cut-off values to screen for EE with

  12. Tracking channel bed resiliency in forested mountain catchments using high temporal resolution channel bed movement

    Martin, Sarah E.; Conklin, Martha H.

    2018-01-01

    This study uses continuous-recording load cell pressure sensors in four, high-elevation (1500-1800 m), Sierra Nevada headwater streams to collect high-temporal-resolution, bedload-movement data for investigating the channel bed movement patterns within these streams for water years 2012-2014. Data show an annual pattern where channel bed material in the thalweg starts to build up in early fall, peaks around peak snow melt, and scours back to baseline levels during hydrograph drawdown and base flow. This pattern is punctuated by disturbance and recovery of channel bed material associated with short-term storm events. A conceptual model, linking sediment sources at the channel margins to patterns of channel bed fill and scour in the thalweg, is proposed building on the results of Martin et al. (2014). The material in the thalweg represents a balance between sediment supply from the channel margins and sporadic, conveyor-belt-like downstream transport in the thalweg. The conceptual model highlights not only the importance of production and transport rates but also that seasonal connectedness between the margins and thalweg is a key sediment control, determining the accumulation rate of sediment stores at the margins and the redistribution of sediment from margins to thalweg that feeds the conveyor belt. Disturbance and recovery cycles are observed at multiple temporal scales; but long term, the channel beds are stable, suggesting that the beds act as short-term storage for sediment but are in equilibrium interannually. The feasibility of use for these sensors in forested mountain stream environments is tested. Despite a high failure rate (50%), load cell pressure sensors show potential for high-temporal-resolution bedload measurements, allowing for the collection of channel bed movement data to move beyond time-integrated change measurements - where many of the subtleties of bedload movement patterns may be missed - to continuous and/or real-time measurements. This

  13. Modelling magma-drift interaction at the proposed high-level radioactive waste repository at Yucca Mountain, Nevada, USA

    Woods, Andrew W.; Sparks, Steve; Bokhove, Onno; Lejeune, Anne-Marie; Connor, Charles B.; Hill, Britain E.

    2002-01-01

    We examine the possible ascent of alkali basalt magma containing 2 wt percent water through a dike and into a horizontal subsurface drift as part of a risk assessment for the proposed high-level radioactive waste repository beneath Yucca Mountain, Nevada, USA. On intersection of the dike with the

  14. Increased site fertility and litter decomposition rate in high-pollution sites in the San Bernardino Mountains

    Mark E. Fenn

    1991-01-01

    Some possible factors causing enhanced litter decomposition in high-pollution sites in the San Bernardino Mountains of southern California were investigated. Nitrogen concentration of soil, as well as foliage and litter of ponderosa pine (Pinus ponderosa Laws.) and Jeffrey pine (Pinus jeffreyi Grev. & Balf.) were greater in...

  15. Bacterioplankton community composition along a salinity gradient of sixteen high-mountain lakes located on the Tibetan Plateau, China

    Wu, Q.L.; Zwart, G.; Schauer, M.; Kamst-van Agterveld, M.P.; Hahn, M.W.

    2006-01-01

    The influence of altitude and salinity on bacterioplankton community composition (BCC) in 16 high-mountain lakes located at altitudes of 2,817 to 5,134 m on the Eastern Qinghai-Xizang (Tibetan) Plateau, China, spanning a salinity gradient from 0.02% (freshwater) to 22.3% (hypersaline), was

  16. Chernobyl fallout radionuclides in soil, plant and honey of a mountain region

    Djuric, G.; Todorovic, D.; Popovic, D.

    1997-01-01

    Honey bee and the products (honey, pollen, wax, propolis) are generally considered as efficient bioindicators of the environmental pollution. Honey bee activity upon a territory is well defined both in space and time and honey bee itself is easier to control than other animal bioindicators (birds, fish, wild animals). Networks of bee hives near nuclear and industrial installations are therefore often used for, environment pollution research and control. The investigations started in 1983/84. Gamma exposure and Cs-137 activity measurements provided information on ''zero status'' of the radioecological situation in the region. During the nuclear plant accident at Chernobyl in April 1986 and afterworks through the year, over two hundred samples of honey, grass and meadow flora have been examined. Investigations of the radioactivity in soils, meadow flora and honey in the region continued up to 1991 and afterwards. The vertical distribution of Cs-134 and Cs-137 in different soils provided data on the migration rate through soil and on concentration factors for different phases of the ''soil-plant-honey'' ecosystem

  17. The Participatory Construction of Agro-Ecological Knowledge As A Soil Conservation Strategy In The Mountain Region of Rio de Janeiro State (Brazil

    de Assis Renato Linhares

    2018-02-01

    Full Text Available Agriculture in the mountain region of Rio de Janeiro State is characterized by intensive soil use and input. Such mountainous environments are vulnerable to climate events; thus, the current article presents a report on methods applied to exchange academic and traditional knowledge. The aim is to expand farmers’ perception about the need of implementing agro-ecological practices, mainly soil management practices, which are important for agricultural sustainability in mountainous environments. The study was conducted in a Nova Friburgo family production unit, in the mountain region of Rio de Janeiro State (Brazil. It consisted of implementing three observation and soil organic-matter management units. The idea was to reduce the incidence of clubroot of crucifers disease caused by Plasmidiophora brassicae. The soil fauna was discussed with local farmers, with emphasis on the association between ecological processes and soil management. The present study improved the discussion with farmers and the need of introducing other innovative conservation practices such as no-tillage system and participatory research based on agro-ecological propositions.

  18. MOUNTAIN TOURISM-PLEASURE AND NECESSITY

    Gabriela Corina SLUSARIUC

    2015-07-01

    Full Text Available Tourism has a more and more important role in the economic development of many countries. Mountain tourism is an anti-stress solutions and a type of disconnection from the citadel life style through replacing some activities of media consuming type, games and virtual socializing with therapy through movement, the physical activity being an essential dimension in assuring the high life quality. Mountaineering is searched for: practicing winter sports, its invigorating and comforting, relaxing role, medical spa treatments practicing hiking, alpinism. Mountain tourism generates increased economic benefits for the surrounding areas, improves the life quality of the local communities and can assure the prosperity of some disadvantaged areas, being able to be a remedy for unindustrialised regions. Mountain tourism contributes to the economic development of the region and also to satisfying spiritual and psychological needs of the people, representing a necessity for a touristic area and a pleasure for tourist consumers.

  19. [Influence of fire disturbance on aboveground deadwood debris carbon storage in Huzhong forest region of Great Xing'an Mountains, Northeast China].

    Yang, Da; He, Hong-shi; Wu, Zhi-wei; Liang, Yu; Huang, Chao; Luo, Xu; Xiao, Jiang-tao; Zhang, Qing-long

    2015-02-01

    Based on the field inventory data, the aboveground deadwood debris carbon storage under different fire severities was analyzed in Huzhong forest region of Great Xing' an Mountains. The results showed that the fire severity had a significant effect on aboveground deadwood debris carbon storage. The deadwood debris carbon storage was in the order of high-severity > low-severity > unburned in Larix gmelinii stands, and mixed conifer-broadleaf stands ( L. gmelinii and Betula platyphylla), and in the order of high severity > unburned > low-severity in B. platyphylla stands. Fire disturbance significantly changed the component percentage of the deadwood debris carbon storage. The component percentage of snags increased and litter decreased with the increasing fire severity. Logs and stumps did not change significantly with the increasing fire severity. The spatial variation of deadwood debris carbon storage in forests burned with low-severity fire was higher than that in unburned forests. The spatial variation of deadwood debris carbon storage with high-severity fires was lowest. This spatial variation needed to be accounted when calculating forest deadwood debris carbon storage.

  20. Poverty targeting and income impact of subsidised credit on accessed households in the Northern Mountainous Region of Vietnam

    Do Xuan Luan

    2015-10-01

    Full Text Available This paper uses the data of 1338 rural households in the Northern Mountainous Region of Vietnam to examine the extent to which subsidised credit targets the poor and its impacts. Principal Component Analysis and Propensity Score Matching were used to evaluate the depth of outreach and the income impact of credit. To address the problem of model uncertainty, the approach of Bayesian Model Average applied to the probit model was used. Results showed that subsidised credit successfully targeted the poor households with 24.10% and 69.20% of clients falling into the poorest group and the three bottom groups respectively. Moreover, those who received subsidised credit make up 83% of ethnic minority households. These results indicate that governmental subsidies are necessary to reach the poor and low income households, who need capital but are normally bypassed by commercial banks. Analyses also showed that ethnicity and age of household heads, number of helpers, savings, as well as how affected households are by shocks were all factors that further explained the probability at which subsidised credit has been assessed. Furthermore, recipients obtained a 2.61% higher total income and a 5.93% higher farm income compared to non-recipients. However, these small magnitudes of effects are statistically insignificant at a 5% level. Although the subsidised credit is insufficient to significantly improve the income of the poor households, it possibly prevents these households of becoming even poorer.

  1. Landslide hazard assessment along a mountain highway in the Indian Himalayan Region (IHR) using remote sensing and computational models

    Krishna, Akhouri P.; Kumar, Santosh

    2013-10-01

    Landslide hazard assessments using computational models, such as artificial neural network (ANN) and frequency ratio (FR), were carried out covering one of the important mountain highways in the Central Himalaya of Indian Himalayan Region (IHR). Landslide influencing factors were either calculated or extracted from spatial databases including recent remote sensing data of LANDSAT TM, CARTOSAT digital elevation model (DEM) and Tropical Rainfall Measuring Mission (TRMM) satellite for rainfall data. ANN was implemented using the multi-layered feed forward architecture with different input, output and hidden layers. This model based on back propagation algorithm derived weights for all possible parameters of landslides and causative factors considered. The training sites for landslide prone and non-prone areas were identified and verified through details gathered from remote sensing and other sources. Frequency Ratio (FR) models are based on observed relationships between the distribution of landslides and each landslide related factor. FR model implementation proved useful for assessing the spatial relationships between landslide locations and factors contributing to its occurrence. Above computational models generated respective susceptibility maps of landslide hazard for the study area. This further allowed the simulation of landslide hazard maps on a medium scale using GIS platform and remote sensing data. Upon validation and accuracy checks, it was observed that both models produced good results with FR having some edge over ANN based mapping. Such statistical and functional models led to better understanding of relationships between the landslides and preparatory factors as well as ensuring lesser levels of subjectivity compared to qualitative approaches.

  2. Composition of Solid Waste in Al Jabal Al Akhdar, a Mountain Region Undergoing Rapid Urbanization in Northern Oman

    Abdullah I. Al-Mahrouqi

    2017-01-01

    Full Text Available There is a lack of data on the generation and composition of waste in rural areas worldwide. The present study analyzed the composition of solid waste in Al Jabal Al Akhdar, a rural mountain region in the Sultanate of Oman, which is presently experiencing a rapid rate of urbanization due to tourism development. The solid wastes here are generated by the municipality collecting waste from residential, commercial, institutional and recreational areas, the military from a training camp and a few non-governmental private companies from their camps and hotels. The whole load from each of the three sources was manually segregated each month from June 2013 – May 2014. The results indicated that plastic is the dominant category in the wastes collected by the municipality and accounts for 26.7%, followed by paper (17.9% and then food (14.4%. Food is the dominant category in the wastes collected by the military and private companies and accounts for 36.5% and 45.5% respectively. Management issues associated with solid waste are briefly considered. The study concluded that the municipality should implement an improved system for the collection of plastic waste and initiate a system for recycling it; the military and private companies should reduce the quantities of food waste by improved planning and management of the catering services.

  3. Woody species diversity in forest plantations in a mountainous region of Beijing, China: effects of sampling scale and species selection.

    Yuxin Zhang

    Full Text Available The role of forest plantations in biodiversity conservation has gained more attention in recent years. However, most work on evaluating the diversity of forest plantations focuses only on one spatial scale; thus, we examined the effects of sampling scale on diversity in forest plantations. We designed a hierarchical sampling strategy to collect data on woody species diversity in planted pine (Pinus tabuliformis Carr., planted larch (Larix principis-rupprechtii Mayr., and natural secondary deciduous broadleaf forests in a mountainous region of Beijing, China. Additive diversity partition analysis showed that, compared to natural forests, the planted pine forests had a different woody species diversity partitioning pattern at multi-scales (except the Simpson diversity in the regeneration layer, while the larch plantations did not show multi-scale diversity partitioning patterns that were obviously different from those in the natural secondary broadleaf forest. Compare to the natural secondary broadleaf forests, the effects of planted pine forests on woody species diversity are dependent on the sampling scale and layers selected for analysis. Diversity in the planted larch forest, however, was not significantly different from that in the natural forest for all diversity components at all sampling levels. Our work demonstrated that the species selected for afforestation and the sampling scales selected for data analysis alter the conclusions on the levels of diversity supported by plantations. We suggest that a wide range of scales should be considered in the evaluation of the role of forest plantations on biodiversity conservation.

  4. Limits and possibilities for building “territories of development” in the Rio de Janeiro mountain region

    Maria José Carneiro

    2009-10-01

    Full Text Available This article proposes to evaluate two inter-municipal projects involving family farmers in the social construction of territories of development. Our starting point is the hypothesis that the building of this territoriality is mediated by a political culture that imposes limits and conditions territorial dynamics. The municipality of Nova Friburgo has been taken as a point of reference for the mapping of projects and/or actions that mobilize multi-functional farmers located in other municipalities of the mountainous region of the state of Rio de Janeiro. Based on a rapid characterization of the development trajectory of the chosen universe and on the problematization of the category of territory, we seek to elucidate the way in which a constitutive trait of Brazilian society – patronage and clientelism – operates within the context of family farmers’ quest for territorial construction, as social actors and as the primary beneficiaries of the public policies that have been implemented in recent times Keywords: Sustainable territorial development, public policies, family farming, clientelism.

  5. Composition of the root mycorrhizal community associated with Coffea arabica in Fifa Mountains (Jazan region, Saudi Arabia).

    Mahdhi, Mosbah; Tounekti, Taieb; Al-Turki, Turki Ali; Khemira, Habib

    2017-08-01

    Arbuscular mycorrhizal fungi (AMF) constitute a key functional group of soil biota that can greatly contribute to crop productivity and ecosystem sustainability. They improve nutrient uptake and enhance the ability of plants to cope with abiotic stresses. The presence of AMF in coffee (Coffea arabica L.) plant roots have been reported in several locations but not in Saudi Arabia despite the fact that coffee has been in cultivation here since ancient times. The objective of the present study was to investigate the diversity of AMF communities colonizing the roots of coffee trees growing in two sites of Fifa Mountains (south-west Saudi Arabia): site 1 at 700 m altitude and site 2 at 1400 m. The AMF large subunit rDNA regions (LSU) were subjected to nested PCR, cloning, sequencing, and phylogenetic analysis. Microscopic observations indicated higher mycorrhizal intensity (24.3%) and spore density (256 spores/100 g of soil) in site 2 (higher altitude). Phylogenetic analysis revealed 10 phylotypes, six belonging to the family Glomeraceae, two to Claroideoglomercea, one to Acaulosporaceae and one to Gigasporaceae family. Glomus was the dominant genus at both sites and the genus Gigaspora was detected only at site 2. This is the first study reporting the presence of AMF in coffee roots and the composition of this particular mycorrhizal community in Saudi Arabia. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Risk factors for fatal outcome from rocky mountain spotted Fever in a highly endemic area-Arizona, 2002-2011.

    Regan, Joanna J; Traeger, Marc S; Humpherys, Dwight; Mahoney, Dianna L; Martinez, Michelle; Emerson, Ginny L; Tack, Danielle M; Geissler, Aimee; Yasmin, Seema; Lawson, Regina; Williams, Velda; Hamilton, Charlene; Levy, Craig; Komatsu, Ken; Yost, David A; McQuiston, Jennifer H

    2015-06-01

    Rocky Mountain spotted fever (RMSF) is a disease that now causes significant morbidity and mortality on several American Indian reservations in Arizona. Although the disease is treatable, reported RMSF case fatality rates from this region are high (7%) compared to the rest of the nation (<1%), suggesting a need to identify clinical points for intervention. The first 205 cases from this region were reviewed and fatal RMSF cases were compared to nonfatal cases to determine clinical risk factors for fatal outcome. Doxycycline was initiated significantly later in fatal cases (median, day 7) than nonfatal cases (median, day 3), although both groups of case patients presented for care early (median, day 2). Multiple factors increased the risk of doxycycline delay and fatal outcome, such as early symptoms of nausea and diarrhea, history of alcoholism or chronic lung disease, and abnormal laboratory results such as elevated liver aminotransferases. Rash, history of tick bite, thrombocytopenia, and hyponatremia were often absent at initial presentation. Earlier treatment with doxycycline can decrease morbidity and mortality from RMSF in this region. Recognition of risk factors associated with doxycycline delay and fatal outcome, such as early gastrointestinal symptoms and a history of alcoholism or chronic lung disease, may be useful in guiding early treatment decisions. Healthcare providers should have a low threshold for initiating doxycycline whenever treating febrile or potentially septic patients from tribal lands in Arizona, even if an alternative diagnosis seems more likely and classic findings of RMSF are absent. Published by Oxford University Press on behalf of the Infectious Diseases Society of America 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  7. Cultural Perspectives Concerning Adolescent Use of Tobacco and Alcohol in the Appalachian Mountain Region

    Meyer, Michael G.; Toborg, Mary A.; Denham, Sharon A.; Mande, Mary J.

    2008-01-01

    Context: Appalachia has high rates of tobacco use and related health problems, and despite significant impediments to alcohol use, alcohol abuse is common. Adolescents are exposed to sophisticated tobacco and alcohol advertising. Prevention messages, therefore, should reflect research concerning culturally influenced attitudes toward tobacco and…

  8. Cost estimate of high-level radioactive waste containers for the Yucca Mountain Site Characterization Project

    Russell, E.W.; Clarke, W. [Lawrence Livermore National Lab., CA (United States); Domian, H.A. [Babcock and Wilcox Co., Lynchburg, VA (United States); Madson, A.A. [Kaiser Engineers California Corp., Oakland, CA (United States)

    1991-08-01

    This report summarizes the bottoms-up cost estimates for fabrication of high-level radioactive waste disposal containers based on the Site Characterization Plan Conceptual Design (SCP-CD). These estimates were acquired by Babcock and Wilcox (B&S) under sub-contract to Lawrence Livermore National Laboratory (LLNL) for the Yucca Mountain Site Characterization Project (YMP). The estimates were obtained for two leading container candidate materials (Alloy 825 and CDA 715), and from other three vendors who were selected from a list of twenty solicited. Three types of container designs were analyzed that represent containers for spent fuel, and for vitrified high-level waste (HLW). The container internal structures were assumed to be AISI-304 stainless steel in all cases, with an annual production rate of 750 containers. Subjective techniques were used for estimating QA/QC costs based on vendor experience and the specifications derived for the LLNL-YMP Quality Assurance program. In addition, an independent QA/QC analysis is reported which was prepared by Kasier Engineering. Based on the cost estimates developed, LLNL recommends that values of $825K and $62K be used for the 1991 TSLCC for the spent fuel and HLW containers, respectively. These numbers represent the most conservative among the three vendors, and are for the high-nickel anstenitic steel (Alloy 825). 6 refs., 7 figs.

  9. Cost estimate of high-level radioactive waste containers for the Yucca Mountain Site Characterization Project

    Russell, E.W.; Clarke, W.; Domian, H.A.; Madson, A.A.

    1991-08-01

    This report summarizes the bottoms-up cost estimates for fabrication of high-level radioactive waste disposal containers based on the Site Characterization Plan Conceptual Design (SCP-CD). These estimates were acquired by Babcock and Wilcox (B ampersand S) under sub-contract to Lawrence Livermore National Laboratory (LLNL) for the Yucca Mountain Site Characterization Project (YMP). The estimates were obtained for two leading container candidate materials (Alloy 825 and CDA 715), and from other three vendors who were selected from a list of twenty solicited. Three types of container designs were analyzed that represent containers for spent fuel, and for vitrified high-level waste (HLW). The container internal structures were assumed to be AISI-304 stainless steel in all cases, with an annual production rate of 750 containers. Subjective techniques were used for estimating QA/QC costs based on vendor experience and the specifications derived for the LLNL-YMP Quality Assurance program. In addition, an independent QA/QC analysis is reported which was prepared by Kasier Engineering. Based on the cost estimates developed, LLNL recommends that values of $825K and $62K be used for the 1991 TSLCC for the spent fuel and HLW containers, respectively. These numbers represent the most conservative among the three vendors, and are for the high-nickel anstenitic steel (Alloy 825). 6 refs., 7 figs

  10. Highlighting High Performance: Whitman Hanson Regional High School; Whitman, Massachusetts

    2006-06-01

    This brochure describes the key high-performance building features of the Whitman-Hanson Regional High School. The brochure was paid for by the Massachusetts Technology Collaborative as part of their Green Schools Initiative. High-performance features described are daylighting and energy-efficient lighting, indoor air quality, solar and wind energy, building envelope, heating and cooling systems, water conservation, and acoustics. Energy cost savings are also discussed.

  11. Denitrification and Biodiversity of Denitrifiers in a High-Mountain Mediterranean Lake

    Antonio Castellano-Hinojosa

    2017-10-01

    Full Text Available Wet deposition of reactive nitrogen (Nr species is considered a main factor contributing to N inputs, of which nitrate (NO3− is usually the major component in high-mountain lakes. The microbial group of denitrifiers are largely responsible for reduction of nitrate to molecular dinitrogen (N2 in terrestrial and aquatic ecosystems, but the role of denitrification in removal of contaminant nitrates in high-mountain lakes is not well understood. We have used the oligotrophic, high-altitude La Caldera lake in the Sierra Nevada range (Spain as a model to study the role of denitrification in nitrate removal. Dissolved inorganic Nr concentration in the water column of la Caldera, mainly nitrate, decreased over the ice-free season which was not associated with growth of microbial plankton or variations in the ultraviolet radiation. Denitrification activity, estimated as nitrous oxide (N2O production, was measured in the water column and in sediments of the lake, and had maximal values in the month of August. Relative abundance of denitrifying bacteria in sediments was studied by quantitative polymerase chain reaction of the 16S rRNA and the two phylogenetically distinct clades nosZI and nosZII genes encoding nitrous oxide reductases. Diversity of denitrifiers in sediments was assessed using a culture-dependent approach and after the construction of clone libraries employing the nosZI gene as a molecular marker. In addition to genera Polymorphum, Paracoccus, Azospirillum, Pseudomonas, Hyphomicrobium, Thauera, and Methylophaga, which were present in the clone libraries, Arthrobacter, Burkholderia, and Rhizobium were also detected in culture media that were not found in the clone libraries. Analysis of biological activities involved in the C, N, P, and S cycles from sediments revealed that nitrate was not a limiting nutrient in the lake, allowed N2O production and determined denitrifiers’ community structure. All these results indicate that

  12. Denitrification and Biodiversity of Denitrifiers in a High-Mountain Mediterranean Lake

    Castellano-Hinojosa, Antonio; Correa-Galeote, David; Carrillo, Presentación; Bedmar, Eulogio J.; Medina-Sánchez, Juan M.

    2017-01-01

    Wet deposition of reactive nitrogen (Nr) species is considered a main factor contributing to N inputs, of which nitrate (NO3−) is usually the major component in high-mountain lakes. The microbial group of denitrifiers are largely responsible for reduction of nitrate to molecular dinitrogen (N2) in terrestrial and aquatic ecosystems, but the role of denitrification in removal of contaminant nitrates in high-mountain lakes is not well understood. We have used the oligotrophic, high-altitude La Caldera lake in the Sierra Nevada range (Spain) as a model to study the role of denitrification in nitrate removal. Dissolved inorganic Nr concentration in the water column of la Caldera, mainly nitrate, decreased over the ice-free season which was not associated with growth of microbial plankton or variations in the ultraviolet radiation. Denitrification activity, estimated as nitrous oxide (N2O) production, was measured in the water column and in sediments of the lake, and had maximal values in the month of August. Relative abundance of denitrifying bacteria in sediments was studied by quantitative polymerase chain reaction of the 16S rRNA and the two phylogenetically distinct clades nosZI and nosZII genes encoding nitrous oxide reductases. Diversity of denitrifiers in sediments was assessed using a culture-dependent approach and after the construction of clone libraries employing the nosZI gene as a molecular marker. In addition to genera Polymorphum, Paracoccus, Azospirillum, Pseudomonas, Hyphomicrobium, Thauera, and Methylophaga, which were present in the clone libraries, Arthrobacter, Burkholderia, and Rhizobium were also detected in culture media that were not found in the clone libraries. Analysis of biological activities involved in the C, N, P, and S cycles from sediments revealed that nitrate was not a limiting nutrient in the lake, allowed N2O production and determined denitrifiers’ community structure. All these results indicate that denitrification could be a

  13. Approximation and spatial regionalization of rainfall erosivity based on sparse data in a mountainous catchment of the Yangtze River in Central China.

    Schönbrodt-Stitt, Sarah; Bosch, Anna; Behrens, Thorsten; Hartmann, Heike; Shi, Xuezheng; Scholten, Thomas

    2013-10-01

    In densely populated countries like China, clean water is one of the most challenging issues of prospective politics and environmental planning. Water pollution and eutrophication by excessive input of nitrogen and phosphorous from nonpoint sources is mostly linked to soil erosion from agricultural land. In order to prevent such water pollution by diffuse matter fluxes, knowledge about the extent of soil loss and the spatial distribution of hot spots of soil erosion is essential. In remote areas such as the mountainous regions of the upper and middle reaches of the Yangtze River, rainfall data are scarce. Since rainfall erosivity is one of the key factors in soil erosion modeling, e.g., expressed as R factor in the Revised Universal Soil Loss Equation model, a methodology is needed to spatially determine rainfall erosivity. Our study aims at the approximation and spatial regionalization of rainfall erosivity from sparse data in the large (3,200 km(2)) and strongly mountainous catchment of the Xiangxi River, a first order tributary to the Yangtze River close to the Three Gorges Dam. As data on rainfall were only obtainable in daily records for one climate station in the central part of the catchment and five stations in its surrounding area, we approximated rainfall erosivity as R factors using regression analysis combined with elevation bands derived from a digital elevation model. The mean annual R factor (R a) amounts for approximately 5,222 MJ mm ha(-1) h(-1) a(-1). With increasing altitudes, R a rises up to maximum 7,547 MJ mm ha(-1) h(-1) a(-1) at an altitude of 3,078 m a.s.l. At the outlet of the Xiangxi catchment erosivity is at minimum with approximate R a=1,986 MJ mm ha(-1) h(-1) a(-1). The comparison of our results with R factors from high-resolution measurements at comparable study sites close to the Xiangxi catchment shows good consistance and allows us to calculate grid-based R a as input for a spatially high-resolution and area-specific assessment of

  14. Long-Term Waste Package Degradation Studies at the Yucca Mountain Potential High-Level Nuclear Waste Repository

    Mon, K. G.; Bullard, B. E.; Longsine, D. E.; Mehta, S.; Lee, J. H.; Monib, A. M.

    2002-01-01

    The Site Recommendation (SR) process for the potential repository for spent nuclear fuel (SNF) and high-level nuclear waste (HLW) at Yucca Mountain, Nevada is underway. Fulfillment of the requirements for substantially complete containment of the radioactive waste emplaced in the potential repository and subsequent slow release of radionuclides from the Engineered Barrier System (EBS) into the geosphere will rely on a robust waste container design, among other EBS components. Part of the SR process involves sensitivity studies aimed at elucidating which model parameters contribute most to the drip shield and waste package degradation characteristics. The model parameters identified included (a) general corrosion rate model parameters (temperature-dependence and uncertainty treatment), and (b) stress corrosion cracking (SCC) model parameters (uncertainty treatment of stress and stress intensity factor profiles in the Alloy 22 waste package outer barrier closure weld regions, the SCC initiation stress threshold, and the fraction of manufacturing flaws oriented favorably for through-wall penetration by SCC). These model parameters were reevaluated and new distributions were generated. Also, early waste package failures due to improper heat treatment were added to the waste package degradation model. The results of these investigations indicate that the waste package failure profiles are governed by the manufacturing flaw orientation model parameters and models used

  15. Remotely Sensed Estimation of Net Primary Productivity (NPP and Its Spatial and Temporal Variations in the Greater Khingan Mountain Region, China

    Qiang Zhu

    2017-07-01

    Full Text Available We improved the CASA model based on differences in the types of land use, the values of the maximum light use efficiency, and the calculation methods of solar radiation. Then, the parameters of the model were examined and recombined into 16 cases. We estimated the net primary productivity (NPP using the NDVI3g dataset, meteorological data, and vegetation classification data from the Greater Khingan Mountain region, China. We assessed the accuracy and temporal-spatial distribution characteristics of NPP in the Greater Khingan Mountain region from 1982 to 2013. Based on a comparison of the results of the 16 cases, we found that different values of maximum light use efficiency affect the estimation more than differences in the fraction of photosynthetically active radiation (FPAR. However, the FPARmax and the constant Tε2 values did not show marked effects. Different schemes were used to assess different model combinations. Models using a combination of parameters established by scholars from China and the United States produced different results and had large errors. These ideas are meaningful references for the estimation of NPP in other regions. The results reveal that the annual average NPP in the Greater Khingan Mountain region was 760 g C/m2·a in 1982–2013 and that the inter-annual fluctuations were not dramatic. The NPP estimation results of the 16 cases exhibit an increasing trend. In terms of the spatial distribution of the changes, the model indicated that the values in 75% of this area seldom or never increased. Prominent growth occurred in the areas of Taipingling, Genhe, and the Oroqen Autonomous Banner. Notably, NPP decreased in the southeastern region of the Greater Khingan Mountains, the Hulunbuir Pasture Land, and Holingol.

  16. Isotopic composition of dissolved inorganic nitrogen in high mountain lakes: variation with altitude in the Pyrenees

    M. Bartrons

    2010-05-01

    Full Text Available Nitrogen deposition in remote areas has increased, but the effect on ecosystems is still poorly understood. For aquatic systems, knowledge of the main processes driving the observed variation is limited, as is knowledge of how changes in nitrogen supply affect lake biogeochemical and food web processes. Differences in dissolved inorganic nitrogen (DIN between lakes cannot be understood without considering catchment characteristics. In mountains, catchment features (e.g., thermal conditions, land cover vary considerably with elevation. The isotopic composition of nitrogen (δ15N is increasingly used to study aquatic ecosystem dynamics. Here we explore the variability of δ15N in DIN in high mountain lakes and show that environmental conditions that change with altitude can affect the isotopic ratio.

    We measured ammonium and nitrate δ15N values in atmospheric deposition, epilimnetic water, deep chlorophyll maximum water (DCMW and sediment pore water (SPW from eight mountain lakes in the Pyrenees, both above and below the treeline. Lakes showed relatively uniform δ15N-NH4+ values in SPW (2.2±1.6‰, with no variation corresponding to catchment or lake characteristics. We suggest that organic matter diagenesis under similar sediment conditions is responsible for the low variation between the lakes.

    In the water column, the range of δ15N values was larger for ammonium (−9.4‰ to 7.4‰ than for nitrate (−11.4‰ to −3.4‰, as a result of higher variation both between and within lakes (epilimnetic vs. DCM water. For both compounds part of the difference correlated with altitude or catchment features (e.g., scree proportion. Based on concentration, chemical and isotopic tendencies, we suggest that patterns arise from the distinct relative contributions of two types of water flow paths to the lakes: one from snowpack melting, with little soil

  17. Gold deposits in the Xiaoqinling-Xiong'ershan region, Qinling mountains, central China

    Mao, J.; Goldfarb, R.J.; Zhang, Z.; Xu, W.; Qiu, Yumin; Deng, J.

    2002-01-01

    The gold-rich Xiaoqinling-Xiong'ershan region in eastern Shaanxi and western Henan provinces, central China, lies about 30-50 km inland of the southern margin of the North China craton. More than 100 gold deposits and occurrences are concentrated in the Xiaoqinling (west), Xiaoshan (middle), and Xiong'ershan (east) areas. Late Archean gneiss of the Taihua Group, and Middle Proterozoic metavolcanic rocks of the Xiong'er Group are the main host rocks for the deposits. Mesozoic granitoids (ca. 178-104 Ma) are present in most gold districts, but deposits are typically hosted in the Precambrian basement rocks hundreds of meters to as far as 10 km from the intrusions and related hornfels zones. Deposits in the Xiaoqinling and Xiaoshan areas are best classified as orogenic gold deposits, with ores occurring in a number of distinct belts both in quartz veins and disseminated in altered metamorphic rocks. Alteration assemblages are dominated by quartz, sericite, pyrite, and carbonate minerals. The ore-forming fluids were low salinity, CO2-rich, and characterized by isotopically heavy ??18O. Four deposits (Dongchuang, Wenyu, Yangzhaiyu, and Dahu) in the Xiaoqinling area each contain resources of about 1 Moz Au. Some of the gold deposits in the Xiong'ershan area represent more shallowly emplaced tellurium-enriched orogenic systems, which include resources of approximately 1-1.5 Moz Au at Shanggong and Beiling (or Tantou). Others are epithermal deposits (e.g., Qiyugou and Dianfang) that are hosted in volcanic breccia pipes. Isotopic dates for all gold deposits, although often contradictory, generally cluster between 172-99 Ma and are coeval with emplacement of the post-kinematic granitoids. The gold deposits formed during a period of relaxation of far-field compressional stresses, clearly subsequent to the extensive Paleozoic-early Mesozoic accretion of are terranes and the Yangtze craton onto the southern margin of the North China craton. Hydrothermal and magmatic events

  18. Baseflow characterization of the inter-mountainous regions of northern Idaho and eastern Washington, USA

    Sanchez-Murillo, R.; Brooks, E. S.; Boll, J.; Elliot, W.

    2012-12-01

    Baseflow is one of the most important components of the streamflow regime of any river or creek since it provides continuous habitat to aquatic biota; regulates water temperature and dissolved oxygen during summer; and functions as an essential supply for drinking water and irrigation in most temperate regions. Understanding which factors control how water is released to streams during baseflow periods has become critical for watershed management worldwide, especially, in arid and semiarid areas. This study analyzed storage-discharge relationships of 26 watersheds of northern Idaho and eastern Washington using Brutsaert and Nieber (1977) baseflow recession analysis. Daily streamflow and precipitation records ranged from 7 to 70 years. Mean annual precipitation fluctuated from 536 to 1,312 mm. Drainage basin areas varied from 6.35 to 12,357 km2, with streamgage elevation ranging from 536 to 2,172 m. Mean watershed slope varied from 9.24 to 46.53%. Because of the non-uniqueness watershed shapes, illustrated by the natural spectrum of data points, organic correlation analysis was used to determine the recession coefficients (kb). Numerous climatic attributes and geomorphology characteristics were evaluated as potential predictors of kb rates using a Pearson's correlation matrix. Baseflow coefficients ranged from 0.015 to 0.08 day-1. The mean characteristic timescale for baseflow drainage was found to be 33±15 days with extremes of 12.5 and 66.7 days. Watersheds dominated by basalt features showed the lowest drainage times (12.5-20.0 days). The drainage time increased as the metamorphic and sedimentary rock composition increased (33.3-66.7 days). Watersheds mainly composed by granitic features ranged from 29.1 to 50.0 days. The ratio of mean annual precipitation (MAP) to annual potential evapotranspiration (PET), also known as Aridity Index (AI), was found to explain 67% of kb variability. Mean watershed slope exhibited a moderate negative correlation of -0.57. Other

  19. Regional approaches in high-rise construction

    Iconopisceva, O. G.; Proskurin, G. A.

    2018-03-01

    The evolutionary process of high-rise construction is in the article focus. The aim of the study was to create a retrospective matrix reflecting the tasks of the study such as: structuring the most iconic high-rise objects within historic boundaries. The study is based on contemporary experience of high-rise construction in different countries. The main directions and regional specifics in the field of high-rise construction as well as factors influencing the further evolution process are analyzed. The main changes in architectural stylistics, form-building, constructive solutions that focus on the principles of energy efficiency and bio positivity of "sustainable buildings", as well as the search for a new typology are noted. The most universal constructive methods and solutions that turned out to be particularly popular are generalized. The new typology of high-rises and individual approach to urban context are noted. The results of the study as a graphical scheme made it possible to represent the whole high-rise evolution. The new spatial forms of high-rises lead them to new role within the urban environments. Futuristic hyperscalable concepts take the autonomous urban space functions itself and demonstrate us how high-rises can replace multifunctional urban fabric, developing it inside their shells.

  20. [Limnology of high mountain tropical lake, in Ecuador: characteristics of sediments and rate of sedimentation].

    Gunkel, Günter

    2003-06-01

    Equatorial high mountain lakes are a special type of lake occurring mainly in the South American Andes as well as in Central Africa and Asia. They occur at altitudes of a few thousand meters above sea level and are cold-water lakes (limnological study was therefore undertaken at Lake San Pablo, Ecuador, to analyze the basic limnological processes of the lake, which has a tendency for eutrophication. Sediment quality of San Pablo Lake is given under consideration of horizontal and vertical distribution using sediment cores. Significance of sediments for eutrophication process of lakes is demonstrated using phosphorus concentration of sediments as well as the phosphorus retention capacity of the sediments by ratio Fe/P. Dating of the sediments is done using 137Cs and 210Pb, but the activity of 137Cs in the sediment was very low nearly at the detection level. Sedimentation rate is determined to be 3.5 mm/year and the sediment cores represent about 110 years. P concentration of the sediments is high (approximately 5 g/kg dry substance), and P retention capacity by Fe is insufficient (Fe/P = 4). The sediment quality did not change significantly during the past decades, and the trophic state of San Pablo Lake was already less or more eutrophic 110 years ago. The contamination of the lake sediments by heavy metals is insignificant.

  1. Development of hydrological models and surface process modelization Study case in High Mountain slopes

    Loaiza, Juan Carlos; Pauwels, Valentijn R

    2011-01-01

    Hydrological models are useful because allow to predict fluxes into the hydrological systems, which is useful to predict foods and violent phenomenon associated to water fluxes, especially in materials under a high meteorization level. The combination of these models with meteorological predictions, especially with rainfall models, allow to model water behavior into the soil. On most of cases, this type of models is really sensible to evapotranspiration. On climatic studies, the superficial processes have to be represented adequately. Calibration and validation of these models is necessary to obtain reliable results. This paper is a practical exercise of application of complete hydrological information at detailed scale in a high mountain catchment, considering the soil use and types more representatives. The information of soil moisture, infiltration, runoff and rainfall is used to calibrate and validate TOPLATS hydrological model to simulate the behavior of soil moisture. The finds show that is possible to implement an hydrological model by means of soil moisture information use and an equation of calibration by Extended Kalman Filter (EKF).

  2. Ukpik: testbed for a miniaturized robotic astronomical observatory on a high Arctic mountain

    Steinbring, Eric; Leckie, Brian; Hardy, Tim; Caputa, Kris; Fletcher, Murray

    2012-09-01

    Mountains along the northwestern coast of Ellesmere Island, Canada, possess the highest peaks nearest the Pole. This geography, combined with an atmospheric thermal inversion restricted to below ~1000 m during much of the long arctic night, provides excellent opportunities for uninterrupted cloud-free astronomy - provided the challenges of these incredibly remote locations can be overcome. We present a miniaturized robotic observatory for deployment on a High Arctic mountaintop. This system tested the operability of precise optical instruments during winter, and the logistics of installation and maintenance during summer. It is called Ukpik after the Inuktitut name for the snowy owl, and was deployed at two sites accessible only by helicopter, each north of 82 degrees latitude; one on rock at 1100 m elevation and another on a glacier at 1600 m. The instrument suite included at first an all-sky-viewing camera, with the later addition of a small telescope to monitor Polaris, both protected by a retractable weather-proof enclosure. Expanding this to include a narrow-field drift-scanning camera for studying extra-solar planet transits was also investigated, but not implemented. An unique restriction was that all had to be run on batteries recharged primarily by a wind turbine. Supplementary power came from a methanol fuel-cell electrical generator. Communications were via the Iridium satellite network. The system design, and lessons learned from three years of operation are discussed, along with prospects for time-domain astronomy from isolated, high-elevation polar mountaintops.

  3. [Altitudinal distribution, richness and composition of bird assemblages in a mountainous region in Southern Nayarit, Mexico].

    Jaime-Escalante, Nidia Gissell; Figueroa-Esquivel, Elsa Margarita; Villaseñor Gómez, José Fernando; Jacobo-Sapien, Edwin Alberto; Puebla-Olivares, Fernando

    2016-12-01

    Elevation gradient studies have strengthened the evaluation of changes in richness and composition of bird assemblages. They also provide information on environmental variables that determine bird distribution, and the variables that define their population structure. Our aim was to describe their variation through an elevational cline in Southern Nayarit, Mexico. To analyze the behavior of richness across the gradient, we gathered information through point counts in nine elevational intervals (300 m from each other) from sea level to 2 700 m of elevation. With a standardized sampling effort, we produced rarefaction curves and analyzed changes in species composition by hierarchical classification using the TWINSPAN technique. In order to identify variables associated with richness changes, we examined the effect of precipitation and habitat structure via regression trees. An analysis of nonmetric multidimensional scaling (NMDS) was implemented with the purpose to determine if the changes in composition correspond to changes in vegetation types. Species richness varied significantly across the gradient: high in the lower parts of the gradient, reached its peak in the middle, and decreased monotonically with elevation. Species responded to changes in the cline and were grouped in three elevational zones. Analyses suggest that changes in richness and species composition are influenced by vegetation, its structure and precipitation regime, as well as various aspects related to habitat features and disturbance. These aspects should be taken into account in order to design appropriate strategies for the conservation of the birds of Nayarit.

  4. Realisation of a joint consumer engagement strategy in the Nepean Blue Mountains region.

    Blignault, Ilse; Aspinall, Diana; Reay, Lizz; Hyman, Kay

    2017-02-15

    Ensuring consumer engagement at different levels of the health system - direct care, organisational design and governance and policy - has become a strategic priority. This case study explored, through interviews with six purposively selected 'insiders' and document review, how one Medicare Local (now a Primary Health Network, PHN) and Local Health District worked together with consumers, to establish a common consumer engagement structure and mechanisms to support locally responsive, integrated and consumer-centred services. The two healthcare organisations worked as partners across the health system, sharing ownership and responsibility. Critical success factors included a consumer champion working with other highly motivated consumers concerned with improving the health system, a budget, and ongoing commitment from the Medicare Local or PHN and the Local Health District at executive and board level. Shared boundaries were an enormous advantage. Activities were jointly planned and executed, with consumer participation paramount. Training and mentoring enhanced consumer capacity and confidence. Bringing everyone on board and building on existing structures required time, effort and resources. The initiative produced immediate and lasting benefits, with consumer engagement now embedded in organisational governance and practice.

  5. Utility of high-altitude infrared spectral data in mineral exploration: Application to Northern Patagonia Mountains, Arizona

    Berger, B.R.; King, T.V.V.; Morath, L.C.; Phillips, J.D.

    2003-01-01

    Synoptic views of hydrothermal alteration assemblages are of considerable utility in regional-scale minerals exploration. Recent advances in data acquisition and analysis technologies have greatly enhanced the usefulness of remotely sensed imaging spectroscopy for reliable alteration mineral assemblages mapping. Using NASA's Airborne Visible Infrared Imaging Spectrometer (AVIRIS) sensor, this study mapped large areas of advanced argillic and phyllic-argillic alteration assemblages in the southeastern Santa Rita and northern Patagonia mountains, Arizona. Two concealed porphyry copper deposits have been identified during past exploration, the Red Mountain and Sunnyside deposits, and related published hydrothermal alteration zoning studies allow the comparison of the results obtained from AVIRIS data to the more traditional field mapping approaches. The AVIRIS mapping compares favorably with field-based studies. An analysis of iron-bearing oxide minerals above a concealed supergene chalcocite deposit at Red Mountain also indicates that remotely sensed data can be of value in the interpretation of leached caps above porphyry copper deposits. In conjunction with other types of geophysical data, AVIRIS mineral maps can be used to discriminate different exploration targets within a region.

  6. Volcanoes of the Wrangell Mountains and Cook Inlet region, Alaska: selected photographs

    Neal, Christina A.; McGimsey, Robert G.; Diggles, Michael F.

    2001-01-01

    Alaska is home to more than 40 active volcanoes, many of which have erupted violently and repeatedly in the last 200 years. This CD-ROM contains 97 digitized color 35-mm images which represent a small fraction of thousands of photographs taken by Alaska Volcano Observatory scientists, other researchers, and private citizens. The photographs were selected to portray Alaska's volcanoes, to document recent eruptive activity, and to illustrate the range of volcanic phenomena observed in Alaska. These images are for use by the interested public, multimedia producers, desktop publishers, and the high-end printing industry. The digital images are stored in the 'images' folder and can be read across Macintosh, Windows, DOS, OS/2, SGI, and UNIX platforms with applications that can read JPG (JPEG - Joint Photographic Experts Group format) or PCD (Kodak's PhotoCD (YCC) format) files. Throughout this publication, the image numbers match among the file names, figure captions, thumbnail labels, and other references. Also included on this CD-ROM are Windows and Macintosh viewers and engines for keyword searches (Adobe Acrobat Reader with Search). At the time of this publication, Kodak's policy on the distribution of color-management files is still unresolved, and so none is included on this CD-ROM. However, using the Universal Ektachrome or Universal Kodachrome transforms found in your software will provide excellent color. In addition to PhotoCD (PCD) files, this CD-ROM contains large (14.2'x19.5') and small (4'x6') screen-resolution (72 dots per inch; dpi) images in JPEG format. These undergo downsizing and compression relative to the PhotoCD images.

  7. Spatiotemporal patterns of High Mountain Asia's snowmelt season identified with an automated snowmelt detection algorithm, 1987-2016

    Smith, Taylor; Bookhagen, Bodo; Rheinwalt, Aljoscha

    2017-10-01

    High Mountain Asia (HMA) - encompassing the Tibetan Plateau and surrounding mountain ranges - is the primary water source for much of Asia, serving more than a billion downstream users. Many catchments receive the majority of their yearly water budget in the form of snow, which is poorly monitored by sparse in situ weather networks. Both the timing and volume of snowmelt play critical roles in downstream water provision, as many applications - such as agriculture, drinking-water generation, and hydropower - rely on consistent and predictable snowmelt runoff. Here, we examine passive microwave data across HMA with five sensors (SSMI, SSMIS, AMSR-E, AMSR2, and GPM) from 1987 to 2016 to track the timing of the snowmelt season - defined here as the time between maximum passive microwave signal separation and snow clearance. We validated our method against climate model surface temperatures, optical remote-sensing snow-cover data, and a manual control dataset (n = 2100, 3 variables at 25 locations over 28 years); our algorithm is generally accurate within 3-5 days. Using the algorithm-generated snowmelt dates, we examine the spatiotemporal patterns of the snowmelt season across HMA. The climatically short (29-year) time series, along with complex interannual snowfall variations, makes determining trends in snowmelt dates at a single point difficult. We instead identify trends in snowmelt timing by using hierarchical clustering of the passive microwave data to determine trends in self-similar regions. We make the following four key observations. (1) The end of the snowmelt season is trending almost universally earlier in HMA (negative trends). Changes in the end of the snowmelt season are generally between 2 and 8 days decade-1 over the 29-year study period (5-25 days total). The length of the snowmelt season is thus shrinking in many, though not all, regions of HMA. Some areas exhibit later peak signal separation (positive trends), but with generally smaller magnitudes

  8. Spatiotemporal patterns of High Mountain Asia's snowmelt season identified with an automated snowmelt detection algorithm, 1987–2016

    T. Smith

    2017-10-01

    Full Text Available High Mountain Asia (HMA – encompassing the Tibetan Plateau and surrounding mountain ranges – is the primary water source for much of Asia, serving more than a billion downstream users. Many catchments receive the majority of their yearly water budget in the form of snow, which is poorly monitored by sparse in situ weather networks. Both the timing and volume of snowmelt play critical roles in downstream water provision, as many applications – such as agriculture, drinking-water generation, and hydropower – rely on consistent and predictable snowmelt runoff. Here, we examine passive microwave data across HMA with five sensors (SSMI, SSMIS, AMSR-E, AMSR2, and GPM from 1987 to 2016 to track the timing of the snowmelt season – defined here as the time between maximum passive microwave signal separation and snow clearance. We validated our method against climate model surface temperatures, optical remote-sensing snow-cover data, and a manual control dataset (n = 2100, 3 variables at 25 locations over 28 years; our algorithm is generally accurate within 3–5 days. Using the algorithm-generated snowmelt dates, we examine the spatiotemporal patterns of the snowmelt season across HMA. The climatically short (29-year time series, along with complex interannual snowfall variations, makes determining trends in snowmelt dates at a single point difficult. We instead identify trends in snowmelt timing by using hierarchical clustering of the passive microwave data to determine trends in self-similar regions. We make the following four key observations. (1 The end of the snowmelt season is trending almost universally earlier in HMA (negative trends. Changes in the end of the snowmelt season are generally between 2 and 8 days decade−1 over the 29-year study period (5–25 days total. The length of the snowmelt season is thus shrinking in many, though not all, regions of HMA. Some areas exhibit later peak signal separation (positive

  9. Bioclimatic changes and landslide recurrence in the mountainous region of Rio de Janeiro: are we ready to face the next landslide disaster?

    Luiza Coelho Netto, Ana; Facadio, Ana Carolina; Pereira, Roberta; Lima, Pedro Henrique

    2017-04-01

    Paleo-environmental studies point out an alternation of wet and dry periods during the Holocene in southeastern Brazil, marked by the expansion and retraction of the humid tropical rainforest in alternation with the campos de altitude vegetation ('high altitude grassland'); successive episodes of natural fire were recorded from 10,000 to 4,000 years BP in the mountainous region of SE-Brazil, reflecting warm-dry conditions. Present seasonal climatic variability is indicated by an increasing dry spell frequency throughout the XX and early XXI centuries together with an increasing rainfall concentration in the summer when extreme daily totals (above 100 mm) become progressively more frequent. Historical land use changes, at both regional and local scales, are mostly related to this climatic variability. Therefore extreme rainfall induced landslides have been responsible for severe disasters as recorded along the Atlantic slopes of Serra do Mar. The extreme one occurred in January 2011, affecting the municipalities of Nova Friburgo, Teresópolis and Petrópolis. Studies in Nova Friburgo shown the occurrence of 3.622 landslides scars within an area of 421 km2; this rainfall event reached the expected average monthly rainfall (300 mm) in less than 10 hours. The D'Antas creek basin (53 km2) was the most affected area by landslides; 86% of 326 scars where associated with shallow translational mechanisms among which 67% occurred within shallow concave up topographic hollows of 32° slope angle in average. Most of these landslide scars occurred in granite rocks and degraded vegetation due to historical land use changes (last 200 years) including secondary forest (64%) and grasslands (25%). The present-day association between extreme rainfall induced landslides and human induced vegetation changes seem to reflect similar geomorphic responses to natural Holocene bioclimatic changes; a common phenomenon between the two periods is fire (natural fire in the past time and man

  10. Controls on the deposition and preservation of the Cretaceous Mowry Shale and Frontier Formation and equivalents, Rocky Mountain region, Colorado, Utah, and Wyoming

    Kirschbaum, Mark A.; Mercier, Tracey J.

    2013-01-01

    Regional variations in thickness and facies of clastic sediments are controlled by geographic location within a foreland basin. Preservation of facies is dependent on the original accommodation space available during deposition and ultimately by tectonic modification of the foreland in its postthrusting stages. The preservation of facies within the foreland basin and during the modification stage affects the kinds of hydrocarbon reservoirs that are present. This is the case for the Cretaceous Mowry Shale and Frontier Formation and equivalent strata in the Rocky Mountain region of Colorado, Utah, and Wyoming. Biostratigraphically constrained isopach maps of three intervals within these formations provide a control on eustatic variations in sea level, which allow depositional patterns across dip and along strike to be interpreted in terms of relationship to thrust progression and depositional topography. The most highly subsiding parts of the Rocky Mountain foreland basin, near the fold and thrust belt to the west, typically contain a low number of coarse-grained sandstone channels but limited sandstone reservoirs. However, where subsidence is greater than sediment supply, the foredeep contains stacked deltaic sandstones, coal, and preserved transgressive marine shales in mainly conformable successions. The main exploration play in this area is currently coalbed gas, but the enhanced coal thickness combined with a Mowry marine shale source rock indicates that a low-permeability, basin-centered play may exist somewhere along strike in a deep part of the basin. In the slower subsiding parts of the foreland basin, marginal marine and fluvial sandstones are amalgamated and compartmentalized by unconformities, providing conditions for the development of stratigraphic and combination traps, especially in areas of repeated reactivation. Areas of medium accommodation in the most distal parts of the foreland contain isolated marginal marine shoreface and deltaic sandstones

  11. Relationship between landslide processes and land use-land cover changes in mountain regions: footprint identification approach.

    Petitta, Marcello; Pregnolato, Marco; Pedoth, Lydia; Schneiderbauer, Stefan

    2015-04-01

    The present investigation aims to better understand the relationship between landslide events and land use-land cover (LULC) changes. Starting from the approach presented last year at national level ("In search of a footprint: an investigation about the potentiality of large datasets and territorial analysis in disaster and resilience research", Geophysical Research Abstracts Vol. 16, EGU2014-11253, 2014) we focused our study at regional scale considering South Tyrol, a mountain region in Italy near the Austrian border. Based on the concept exploited in the previous work, in which a disaster footprint was shown using land features and changes maps, in this study we start from the hypothesis that LULC can have a role in activation of landslides events. In this study, we used LULC data from CORINE and from a regional map called REAKART and we used the Italian national database IFFI (Inventario Fenomeni Franosi in Italia, Italian inventory of landslides) from which it is possible to select the landslides present in the national inventory together with other vector layers (the urban areas - Corine Land Cover 2000, the roads and railways, the administrative boundaries, the drainage system) and raster layers (the digital terrain model, digital orthophoto TerraItaly it2000, Landsat satellite images and IGM topographic map). Moreover it's possible to obtain information on the most important parameters of landslides, view documents, photos and videos. For South Tyrol, the IFFI database is updated in real time. In our investigation we analyzed: 1) LULC from CORINE and from REAKART, 2) landslides occurred nearby a border of two different LULC classes, 3) landslides occurred in a location in which a change in LULC classification in observed in time, 4) landslides occurred nearby road and railroad. Using classification methods and statistical approaches we investigated relationship between the LULC and the landslides events. The results confirm that specific LULC classes are

  12. Modeling flash floods in ungauged mountain catchments of China: A decision tree learning approach for parameter regionalization

    Ragettli, S.; Zhou, J.; Wang, H.; Liu, C.

    2017-12-01

    Flash floods in small mountain catchments are one of the most frequent causes of loss of life and property from natural hazards in China. Hydrological models can be a useful tool for the anticipation of these events and the issuing of timely warnings. Since sub-daily streamflow information is unavailable for most small basins in China, one of the main challenges is finding appropriate parameter values for simulating flash floods in ungauged catchments. In this study, we use decision tree learning to explore parameter set transferability between different catchments. For this purpose, the physically-based, semi-distributed rainfall-runoff model PRMS-OMS is set up for 35 catchments in ten Chinese provinces. Hourly data from more than 800 storm runoff events are used to calibrate the model and evaluate the performance of parameter set transfers between catchments. For each catchment, 58 catchment attributes are extracted from several data sets available for whole China. We then use a data mining technique (decision tree learning) to identify catchment similarities that can be related to good transfer performance. Finally, we use the splitting rules of decision trees for finding suitable donor catchments for ungauged target catchments. We show that decision tree learning allows to optimally utilize the information content of available catchment descriptors and outperforms regionalization based on a conventional measure of physiographic-climatic similarity by 15%-20%. Similar performance can be achieved with a regionalization method based on spatial proximity, but decision trees offer flexible rules for selecting suitable donor catchments, not relying on the vicinity of gauged catchments. This flexibility makes the method particularly suitable for implementation in sparsely gauged environments. We evaluate the probability to detect flood events exceeding a given return period, considering measured discharge and PRMS-OMS simulated flows with regionalized parameters

  13. High-intensification regions of gravitational lenses

    Benson, J.R.; Cooke, J.H.

    1979-01-01

    We examine the intensification, I, near the singular points in the object plane of an extended spherical gravitational lens. Geometrical optics predicts an infinite I for a point object located on a singularity. The function I, however, turns out to be integrable over the object plane. We make a detailed physical optics calculation for I. No singularities appear, and there are some interesting, marginally detectable diffraction phenomena. The two types of bright regions, the ''halo'' and the ''spike,'' behave very differently. Simple order-of-magnitude expressions give estimates for the brightness and duration of a high-intensification event

  14. Mountainous Region Wind Power Project Features and Turbine Hoisting Technology%山区风电工程特点与风机吊装技术

    张栋

    2014-01-01

    In recent years,domestic mountainous region wind power location is allocated in higher and higher altitude, thereby leading to more and more difficult turbine installation.How to safely and efficiently complete turbine installation is an important issue faced by all wind power construction enterprises.Hebei Bashang Luotuogou Stage II wind power field is adopted as an example in the paper.Mountainous region wind power project features and turbine hoisting technologies are summarized and analyzed,thereby providing some guidance experience for installing more mountainous region turbines.%近年来国内山区风电场所处海拔越来越高,风机安装难度越来越大,如何保证在紧张的工期内安全高效地完成风机安装,是每个风电施工企业面临的重要课题。本文以河北坝上骆驼沟二期风电场为例,对山区风电工程特点和风机吊装技术进行总结分析,以期对更多山区风机安装作一些指导。

  15. Isotope techniques to identify recharge areas of springs for rainwater harvesting in the mountainous region of Gaucher area, Chamoli district, Uttarakhand

    Shivanna, K.; Tirumalesh, K.; Noble, J.; Joseph, T.B.; Singh, Gursharan; Joshi, A.P.; Khati, V.S.

    2008-01-01

    Environmental isotope techniques have been employed to identify the recharge areas of springs in India, in order to construct artificial recharge structures for rainwater harvesting and groundwater augmentation for their rejuvenation. A model project was taken up in the mountainous region of Gaucher area, Chamoli District, Uttarakhand for this purpose. The springs in this regions are seasonal and are derived from seepage waters flowing through the shallow weathered and fractured zone. The chemistry of high-altitude springs is similar to that of precipitation, whereas water-rock interactions contributes to increased mineralization in low-altitude springs. The stable isotopic variation in precipitation suggests that the altitude effect for Gaucher area is -0.55% for δ 18 O and -3.8% for δ 2 H per 100 m rise in altitude. Based on local geology, geomorphology, hydrochemistry and isotope information, the possible recharge areas inferred for valleys 1, 2 and 3 are located at altitudes of 1250, 1330 and 1020 m amsl respectively. Water conservation and recharge structures such as subsurface dykes, check bunds and contour trenches were constructed at the identified recharge areas in the respective valleys for controlling the subsurface flow, rainwater harvesting and groundwater augmentation respectively. As a result, during and after the following monsoon, the discharge rates of the springs not only increased significantly, but also did not dry up even during the dry period. The study shows that the isotope techniques can be effectively used in identifying recharge areas of springs in the Himalayan region. It also demonstrates the advantage of isotope techniques over conventional methods. (author)

  16. Effects of climate and geochemistry on soil organic matter stabilization and greenhouse gas emissions along altitudinal transects in different mountain regions

    Griepentrog, Marco; Bodé, Samuel; Boudin, Mathieu; Dercon, Gerd; Doetterl, Sebastian; Matulanya, Machibya; Msigwa, Anna; Vermeir, Pieter; Boeckx, Pascal

    2017-04-01

    Terrestrial ecosystems are strongly influenced by climate change and soils are key compartments of the global carbon (C) cycle in terms of their potential to store or release significant amounts of C. This study is part of the interregional IAEA Technical Cooperation Project ``Assessing the Impact of Climate Change and its Effects on Soil and Water Resources in Polar and Mountainous Regions (INT5153)'' aiming to improve the understanding of climate change impacts on soil organic carbon (SOC) in fragile polar and high mountainous ecosystems at local and global scale for their better management and conservation. The project includes 13 benchmark sites situated around the world. Here we present novel data from altitudinal transects of three different mountain regions (Mount Kilimanjaro, Tanzania; Mount Gongga, China; Cordillera Blanca, Peru). All altitudinal transects cover a wide range of natural ecosystems under different climates and soil geochemistry. Bulk soil samples (four field replicates per ecosystem) were subjected to a combination of aggregate and particle-size fractionation followed by organic C, total nitrogen, stable isotope (13C, 15N) and radiocarbon (14C) analyses of all fractions. Bulk soils were further characterized for their geochemistry (Na, K, Ca, Mg, Al, Fe, Mn, Si, P) and incubated for 63 days to assess greenhouse gas emissions (CO2, CH4, NO, N2O). Further, stable C isotopic signature of CO2 was measured to determine the isotopic signature of soil respiration (using Keeling plots) and to estimate potential respiration sources. The following four ecosystems were sampled at an altitudinal transect on the (wet) southern slopes of Mount Kilimanjaro: savannah (920m), lower montane rain forests with angiosperm trees (2020m), upper montane cloud forest with gymnosperm trees (2680m), subalpine heathlands (3660m). Both forests showed highest C contents followed by subalpine and savannah. The largest part of SOC was found in particulate organic matter

  17. High mountain soils and periglacial features at the Torres del Paine, National Park Torres del Paine, Chile.

    Senra, Eduardo; Schaefer, Carlos; Simas, Felipe; Gjorup, Davi

    2015-04-01

    The Torres del Paine National Park (TPNP) is located on the southern limit of the Andean Southern Ice Field, part of the Magallanes and Antartica Chilena region, in the province of Ultima Esperanza. The TPNP has a very heterogeneous climate due to orographic influence and wet air masses from the Pacific. The geology is basically Cretaceous metasedimentary rocks and Miocene granitic plutons and batholiths. We studied the main soils and geoenvironments of Mt Ferrier mountain and its surroundings, based on soils , landforms and vegetation aspects. The geoenvironmental stratification was based on the combined variation and integration of pedo-litho-geomorphological features with the vegetation. WE used detailed geological maps, a DEM and slope maps and WorlView II satellite images. Fifteen soils profiles were sampled and classified according to Soil Taxonomy (2010) at all genovironments, ranging from 50 m a.s.l to the at high plateau just below the permanent snowline, under periglacial conditions (~1004m asl). Three soil temperature and moisture monitoring sites were set, allowing for 24 consecutive months (2011 to 2013). Seven geoenvironments were identified with distinct soil and landform characteristics, all with a similar geological substrate. The landform and vegetation have a strong connection with the landscape dynamic, controlling erosional and depositional processes, resulting from glacier advances and retreats in the Late Quaternary. Wind blown materials is widespread, in the form of loess material, accumulating in the higher parts of the landscape. On the other hand, accumulation of organic matter in the water-saturated depressions is common in all altitudes. Generally the soils are acidic and dystrophic, with little exceptions. The following geoenvironments were identified: Periglacial Tundra, Loess slopes, Talus and scarpmentd, Fluvio-glacial terraces, Fluvio-lacustrine plains, Moraines and Paleodunes. The regional pedology show the occurrence of five soil

  18. TECHNICAL ASPECTS RELATED TO THE APPLICATION OF SFM PHOTOGRAMMETRY IN HIGH MOUNTAIN

    M. Scaioni

    2018-05-01

    Full Text Available Structure-from-Motion (SfM photogrammetry is a flexible and powerful tool to provide 3D point clouds describing the surface of objects. Due to the easy transportability and low-cost of necessary equipment with respect to laser scanning techniques, SfM photogrammetry has great potential to be applied in harsh high-mountain environment. Here point clouds and derived by-products (DEM’s, orthoimages, Virtual-Reality models are needed to document surface morphology and to investigate dynamic processes such as landslides, avalanches, river and soil erosion, glacier retreat. On the other hand, from both the literature and the direct experience of the authors, there are some technical issues that still deserve thorough investigations. The paper would like to address some open problems and suggest solutions, in particular on regards of the photogrammetric network design, the strategy for georeferencing the final products, and for their comparison within time. The discussion is documented with some examples, mainly from surveying campaigns at the Forni Glacier in Italian Alps.

  19. Disruption scenarios for a high-level waste repository at Yucca Mountain, Nevada

    Ross, B.

    1986-01-01

    A high-level waste repository located in unsaturated welded tuff at Yucca Mountain, Nevada, would rely on six different, although not entirely independent, barriers to prevent escape of radioactivity. These barriers are the waste canister, fuel cladding, slow dissolution of the spent fuel itself, and slow movement of released contaminants in three different hydrogeologic units: the unsaturated Topopah Spring welded tuff unit, the unsaturated Calico Hills nonwelded tuff unit, and the saturated tuff aquifer. Fifty-eight processes and events that might affect such a repository were reviewed. Eighty-three different sequences were identified by which these processes and events could lead to failure of one or more barriers. Sequences which had similar consequences were grouped, yielding 17 categories. The repository system has considerable redundancy; most of the more likely disruptions affect only one or a few barriers. Occurrence of more than one disruption is needed before such disruptions would cause release of radioactivity. Future studies of repository performance must assess the likelihood and consequences of multiple-disruption scenarios to evaluate how well the repository meets performance standards

  20. Assessment of radargrammetric DSMs from TerraSAR-X Stripmap images in a mountainous relief area of the Amazon region

    de Oliveira, Cleber Gonzales; Paradella, Waldir Renato; da Silva, Arnaldo de Queiroz

    The Brazilian Amazon is a vast territory with an enormous need for mapping and monitoring of renewable and non-renewable resources. Due to the adverse environmental condition (rain, cloud, dense vegetation) and difficult access, topographic information is still poor, and when available needs to be updated or re-mapped. In this paper, the feasibility of using Digital Surface Models (DSMs) extracted from TerraSAR-X Stripmap stereo-pair images for detailed topographic mapping was investigated for a mountainous area in the Carajás Mineral Province, located on the easternmost border of the Brazilian Amazon. The quality of the radargrammetric DSMs was evaluated regarding field altimetric measurements. Precise topographic field information acquired from a Global Positioning System (GPS) was used as Ground Control Points (GCPs) for the modeling of the stereoscopic DSMs and as Independent Check Points (ICPs) for the calculation of elevation accuracies. The analysis was performed following two ways: (1) the use of Root Mean Square Error (RMSE) and (2) calculations of systematic error (bias) and precision. The test for significant systematic error was based on the Student's-t distribution and the test of precision was based on the Chi-squared distribution. The investigation has shown that the accuracy of the TerraSAR-X Stripmap DSMs met the requirements for 1:50,000 map (Class A) as requested by the Brazilian Standard for Cartographic Accuracy. Thus, the use of TerraSAR-X Stripmap images can be considered a promising alternative for detailed topographic mapping in similar environments of the Amazon region, where available topographic information is rare or presents low quality.

  1. Prevalence and characteristics of fetal alcohol syndrome and partial fetal alcohol syndrome in a Rocky Mountain Region City.

    May, Philip A; Keaster, Carol; Bozeman, Rosemary; Goodover, Joelene; Blankenship, Jason; Kalberg, Wendy O; Buckley, David; Brooks, Marita; Hasken, Julie; Gossage, J Phillip; Robinson, Luther K; Manning, Melanie; Hoyme, H Eugene

    2015-10-01

    The prevalence and characteristics of fetal alcohol syndrome (FAS) and partial FAS (PFAS) in the United States (US) are not well known. This active case ascertainment study in a Rocky Mountain Region City assessed the prevalence and traits of children with FAS and PFAS and linked them to maternal risk factors. Diagnoses made by expert clinical dysmorphologists in multidisciplinary case conferences utilized all components of the study: dysmorphology and physical growth, neurobehavior, and maternal risk interviews. Direct parental (active) consent was obtained for 1278 children. Averages for key physical diagnostic traits and several other minor anomalies were significantly different among FAS, PFAS, and randomly-selected, normal controls. Cognitive tests and behavioral checklists discriminated the diagnostic groups from controls on 12 of 14 instruments. Mothers of children with FAS and PFAS were significantly lower in educational attainment, shorter, later in pregnancy recognition, and suffered more depression, and used marijuana and methamphetamine during their pregnancy. Most pre-pregnancy and pregnancy drinking measures were worse for mothers of FAS and PFAS. Excluding a significant difference in simply admitting drinking during the index pregnancy (FAS and PFAS=75% vs. 39.4% for controls), most quantitative intergroup differences merely approached significance. This community's prevalence of FAS is 2.9-7.5 per 1000, PFAS is 7.9-17.7 per 1000, and combined prevalence is 10.9-25.2 per 1000 or 1.1-2.5%. Comprehensive, active case ascertainment methods produced rates of FAS and PFAS higher than predicted by long-standing, popular estimates. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Milestones for Selection, Characterization, and Analysis of the Performance of a Repository for Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain.

    Rechard, Robert P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-02-01

    This report presents a concise history in tabular form of events leading up to site identification in 1978, site selection in 1987, subsequent characterization, and ongoing analysis through 2009 of the performance of a repository for spent nuclear fuel and high - level radioactive waste at Yucca Mountain in southern Nevada. The tabulated events generally occurred in five periods: (1) commitment to mined geologic disposal and identification of sites; (2) site selection and analysis, based on regional geologic characterization through literature and analogous data; (3) feasibility analysis demonstrating calculation procedures and importance of system components, based on rough measures of performance using surface exploration, waste process knowledge, and general laboratory experiments; (4) suitability analysis demonstrating viability of disposal system, based on environment - specific laboratory experiments, in - situ experiments, and underground disposal system characterization; and (5) compliance analysis, based on completed site - specific characterization . The current sixth period beyond 2010 represents a new effort to set waste management policy in the United States. Because the relationship is important to understanding the evolution of the Yucca Mountain Project , the tabulation also shows the interaction between the policy realm and technical realm using four broad categories of events : (a) Regulatory requirements and related federal policy in laws and court decisions, (c) Presidential and agency directives, (c) technical milestones of implementing institutions, and (d) critiques of the Yucca Mountain Project and pertinent national and world events related to nuclear energy and radioactive waste. Preface The historical progression of technical milestones for the Yucca Mountain Project was originally developed for 10 journal articles in a special issue of Reliability Engineering System Safety on the performance assessment for the Yucca Mountain license

  3. [Dynamics and modeling of water content of ten shrub species in their growth period in Maoershan Mountain region of Northeast China].

    Jin, Sen; Yan, Xue-Jiao

    2012-12-01

    Based on the two successive years observation of the water content of ten representative shrub species in Maoershan Mountain region of Northeast China, this paper studied the dynamics of the water content of these shrub species during their growth period and related affecting factors, with the prediction models of the shrub water content established. For the ten shrub species, their minimal water content during growth period was higher than 100% , and most of the species had a water content higher than 200% within the period from the late phase of leaf-unfolding to early phase of leaf-falling. Euonymus verrucosus, Sorbaria sorbifolia, and Sambucus williamsii were incombustible in their whole growth period due to the extremely high water content, while Syringa reticulate, Philadelphus schrenkii, Euonymus verrucosus, Spiraea chamaedryfolia, Lonicera maackii, Lonicera ruprechtiana, and Rhamnus parvifolia were combustible only in the phases of budding and leaf-falling. Soil moisture content and daily maximum temperature had effects on the water content of most (7) of the ten shrubs, and canopy drought severity index affected the water content of 5 of the ten shrubs. The established 9 prediction models could explain more than 35% of the water content variance of the shrub species, with a mean MRE of 35.9% and a mean MRE of 13.4%.

  4. Spatiotemporal variation of the surface water effect on the groundwater recharge in a low-precipitation region: Application of the multi-tracer approach to the Taihang Mountains, North China

    Sakakibara, Koichi; Tsujimura, Maki; Song, Xianfang; Zhang, Jie

    2017-02-01

    Groundwater recharge variations in time and space are crucial for effective water management, especially in low-precipitation regions. To determine comprehensive groundwater recharge processes in a catchment with large seasonal hydrological variations, intensive field surveys were conducted in the Wangkuai Reservoir watershed located in the Taihang Mountains, North China, during three different times of the year: beginning of the rainy season (June 2011), mid-rainy season (August 2012), and dry season (November 2012). Oxygen and hydrogen isotope and chemical analyses were conducted on the groundwater, spring water, stream water, and reservoir water of the Wangkuai Reservoir watershed. The results were processed using endmember mixing analysis to determine the amount of contribution of the groundwater recharging processes. Similar isotopic and chemical signatures between the surface water and groundwater in the target area indicate that the surface water in the mountain-plain transitional area and the Wangkuai Reservoir are the principal groundwater recharge sources, which result from the highly permeable geological structure of the target area and perennial large-scale surface water, respectively. Additionally, the widespread and significant effect of the diffuse groundwater recharge on the Wangkuai Reservoir was confirmed with the deuterium (d) excess indicator and the high contribution throughout the year, calculated using endmember mixing analysis. Conversely, the contribution of the stream water to the groundwater recharge in the mountain-plain transitional area clearly decreases from the beginning of the rainy season to the mid-rainy season, whereas that of the precipitation increases. This suggests that the main groundwater recharge source shifts from stream water to episodic/continuous heavy precipitation in the mid-rainy season. In other words, the surface water and precipitation commonly affect the groundwater recharge in the rainy season, whereas the

  5. Collaborative Project. 3D Radiative Transfer Parameterization Over Mountains/Snow for High-Resolution Climate Models. Fast physics and Applications

    Liou, Kuo-Nan [Univ. of California, Los Angeles, CA (United States)

    2016-02-09

    Under the support of the aforementioned DOE Grant, we have made two fundamental contributions to atmospheric and climate sciences: (1) Develop an efficient 3-D radiative transfer parameterization for application to intense and intricate inhomogeneous mountain/snow regions. (2) Innovate a stochastic parameterization for light absorption by internally mixed black carbon and dust particles in snow grains for understanding and physical insight into snow albedo reduction in climate models. With reference to item (1), we divided solar fluxes reaching mountain surfaces into five components: direct and diffuse fluxes, direct- and diffuse-reflected fluxes, and coupled mountain-mountain flux. “Exact” 3D Monte Carlo photon tracing computations can then be performed for these solar flux components to compare with those calculated from the conventional plane-parallel (PP) radiative transfer program readily available in climate models. Subsequently, Parameterizations of the deviations of 3D from PP results for five flux components are carried out by means of the multiple linear regression analysis associated with topographic information, including elevation, solar incident angle, sky view factor, and terrain configuration factor. We derived five regression equations with high statistical correlations for flux deviations and successfully incorporated this efficient parameterization into WRF model, which was used as the testbed in connection with the Fu-Liou-Gu PP radiation scheme that has been included in the WRF physics package. Incorporating this 3D parameterization program, we conducted simulations of WRF and CCSM4 to understand and evaluate the mountain/snow effect on snow albedo reduction during seasonal transition and the interannual variability for snowmelt, cloud cover, and precipitation over the Western United States presented in the final report. With reference to item (2), we developed in our previous research a geometric-optics surface-wave approach (GOS) for the

  6. On a possibility to use the remote sensing techniques for glaciological analysis in mountain regions of Uzbekistan

    E. R. Semakova

    2017-01-01

    Full Text Available The ALOS/AVNIR-2 satellite data (2007–2010 allowed estimating areas of glaciers, change in the areas for 50 years, and the number and areas of new naturally-dammed lakes in the mountain regions of Uzbekistan. Boundaries of these gla‑ ciers together with the ALOS/PALSAR data (2010 were used as the basis to determine position of the firn line. It was revealed that since 1980s elevation range of the line gradually decreased. The relationship between average elevation of the firn line and the upper limit of the juniper tree occurrence as well as changing of this relation since 1980s are consid‑ ered. The revealed lakes served as the basis for verification of probabilistic model of the moraine-dammed lake forma‑ tions due to the glacier recessions in the basins under consideration. It was shown that the GIS-techniques based on the use of this model together with data on glaciation and the relief digital model may significantly simplify searching of new lakes. Application of a system of the mudflow movement modeling makes possible to estimate a risk level in a case of a lake bursting. Current information about changing elevations of the glacier surfaces was obtained duet to the radar inter‑ ferometry and the altimeter data. The digital model of the river Pskem upper course (the DEM had been built using the satellite TerraSAR‑X/TanDEM‑X data (2011–2012. All datasets of the elevations were checked for horizontal shifts of the relief digital models relative to the ICESat profiles (2003–2008. Evaluation of accuracy and morphological analysis of all the relief models for the investigated region were also made. DEMs differencing, the difference between ICESat measure‑ ments and DEM, nearby ICESat footprints within one track and between the tracks were carried out to assess the change in elevations of the glacier surfaces. Average rate of the surface lowering of an individual glacier with the maximal number of footprints (7 in the track

  7. Snowmelt in a High Latitude Mountain Catchment: Effect of Vegetation Cover and Elevation

    Pomeroy, J. W.; Essery, R. L.; Ellis, C. R.; Hedstrom, N. R.; Janowicz, R.; Granger, R. J.

    2004-12-01

    The energetics and mass balance of snowpacks in the premelt and melt period were compared from three elevation bands in a high latitude mountain catchment, Wolf Creek Research Basin, Yukon. Elevation is strongly correlated with vegetation cover and in this case the three elevation bands (low, middle, high) correspond to mature spruce forest, dense shrub tundra and sparse tundra (alpine). Measurements of radiation, ground heat flux, snow depth, snowfall, air temperature, wind speed were made on a half-hourly basis at the three elevations for a 10 year period. Sondes provided vertical gradients of air temperature, humidity, wind speed and air pressure. Snow depth and density surveys were conducted monthly. Comparisons of wind speed, air temperature and humidity at three elevations show that the expected elevational gradients in the free atmosphere were slightly enhanced just above the surface canopies, but that the climate at the snow surface was further influenced by complex canopy effects. Premelt snow accumulation was strongly affected by intercepted snow in the forest and blowing snow sublimation in the sparse tundra but not by the small elevational gradients in snowfall. As a result the maximum premelt SWE was found in the mid-elevation shrub tundra and was roughly double that of the sparse tundra or forest. Minimum variability of SWE was observed in the forest and shrub tundra (CV=0.25) while in the sparse tundra variability doubled (CV=0.5). Snowmelt was influenced by differences in premelt accumulation as well as differences in the net energy fluxes to snow. Elevation had a strong effect on the initiation of melt with the forest melt starting on average 16 days before the shrub tundra and 19 days before the sparse tundra. Mean melt rates showed a maximum in middle elevations and increased from 860 kJ/day in the forest to 1460 kJ/day in the sparse tundra and 2730 kJ/day in the shrub tundra. The forest canopy reduced melt while the shrub canopy enhanced it

  8. Heavy metals in precipitation waters under conditions of varied anthropopressure in typical of European low mountain regions

    Rabajczyk A.

    2013-04-01

    Full Text Available The environment is a dynamic system, subject to change resulting from a variety of physicochemical factors, such as temperature, pressure, pH, redox potential and human activity. The quantity and variety of these determinants cause the inflow of substances into individual environmental elements to vary in both time and space, as well as in terms of substance types and quantities. The energy and matter flow in the environment determines its integrity, which means that the processes occurring in one element of the environment affect the others. A certain measure of the energy and matter flow is the migration of chemical substances in various forms from one place to another. In a particular geographical space, under natural conditions, a specific level of balance between individual processes appears; in areas subject to anthropopressure, the correlations are different. In small areas, varying deposition volumes and chemism of precipitation waters which reach the substratum directly can both be observed. The study area is similar in terms of geological origins as well as morphological, structural and physico-chemical properties, and is typical of European low mountain regions. A qualitative and quantitative study of wet atmospheric precipitation was conducted between February 2009 and May 2011 in the Bobrza river catchment in the Holy Cross (Świętokrzyskie Mountains (Poland, at three sampling sites of varying land development and distance from sources of various acidic-alkaline emissions. Field and laboratory work was conducted over 29 months, from February 2009 to May 2011. Atmospheric precipitation measurements were carried out in a continuous manner by means of a Hellman rain gauge (200cm2. The collecting surface was placed at ground level (0m AGL. The application of a collecting funnel and an adequately prepared polyethylene collecting can in the rain gauge enabled the measurement of precipitation volume and water sampling for chemical

  9. Prioritising watersheds on the basis of regional flood susceptibility and vulnerability in mountainous areas through the use of indicators

    Rogelis, Carolina; Werner, Micha

    2013-04-01

    Settlements in peri-urban areas of many cities in mountainous areas such as in the Andes are susceptible to hazards such as flash floods and debris flows. Additionally these settlements are in many cases informal and thus vulnerable to such hazards, resulting in significant risk. Such watersheds are often quiet small, and generally there is little or no information from gauges to help characterise risk. To help identify watersheds in which flood management measures are to be targeted, a rapid assessment of risk is required. In this paper a novel approach is presented where indicators of susceptibility and vulnerability to flash floods were used to prioritize 106 mountain watersheds in Bogotá (Colombia). Variables recognized in literature to determine the dominant processes both in susceptibility and vulnerability to flash floods were used to construct the indicators. Susceptibility was considered to increase with flashiness and the possibility of debris flow events occurring. This was assessed through the use of an indicator composed of a morphometric indicator and a land use indicator. The former was constructed using morphological variables recognized in literature to significantly influence flashiness and occurrence of debris flows; the latter was constructed in terms of percentage of vegetation cover, urban area and bare soil. The morphometric indicator was compared with the results of a debris flow propagation algorithm to assess its capacity in indentifying the morphological conditions of a watershed that make it able to transport debris flows. Propagation was carried out through the use of the Modified Single Flow Direction algorithm, following previous identification of source areas by applying thresholds identified in the area-slope curve of the watersheds and empirical thresholds. Results show that the morphometric variables can be grouped in four categories: size, shape, hypsometry and energy, with the energy the component found to best explain the

  10. Fabrication and closure development of corrosion resistant containers for Nevada's Yucca Mountain high-level nuclear waste repository

    Russell, E.W.; Nelson, T.A.; Domian, H.A.; LaCount, D.F.; Robitz, E.S.; Stein, K.O.

    1989-11-01

    US Congress and the President have determined that the Yucca Mountain site in Nevada is to be characterized to determine its suitability for construction of the first US high-level nuclear waste repository. Work in connection with this site is carried out within the Yucca Mountain Project (YMP). Lawrence Livermore National Laboratory (LLNL) has the responsibility for designing, developing, and projecting the performance of the waste package for the permanent storage of high-level nuclear waste. Babcock ampersand Wilcox (B ampersand W) is involved with the YMP as a subcontractor to LLNL. B ampersand W's role is to recommend and demonstrate a method for fabricating the metallic waste container and a method for performing the final closure of the container after it has been filled with waste. Various fabrication and closure methods are under consideration for the production of containers. This paper presents progress to date in identifying and evaluating the candidate manufacturing processes. 2 refs., 2 figs., 4 tabs

  11. Sensitivity of Support Vector Machine Predictions of Passive Microwave Brightness Temperature Over Snow-covered Terrain in High Mountain Asia

    Ahmad, J. A.; Forman, B. A.

    2017-12-01

    High Mountain Asia (HMA) serves as a water supply source for over 1.3 billion people, primarily in south-east Asia. Most of this water originates as snow (or ice) that melts during the summer months and contributes to the run-off downstream. In spite of its critical role, there is still considerable uncertainty regarding the total amount of snow in HMA and its spatial and temporal variation. In this study, the NASA Land Information Systems (LIS) is used to model the hydrologic cycle over the Indus basin. In addition, the ability of support vector machines (SVM), a machine learning technique, to predict passive microwave brightness temperatures at a specific frequency and polarization as a function of LIS-derived land surface model output is explored in a sensitivity analysis. Multi-frequency, multi-polarization passive microwave brightness temperatures as measured by the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) over the Indus basin are used as training targets during the SVM training process. Normalized sensitivity coefficients (NSC) are then computed to assess the sensitivity of a well-trained SVM to each LIS-derived state variable. Preliminary results conform with the known first-order physics. For example, input states directly linked to physical temperature like snow temperature, air temperature, and vegetation temperature have positive NSC's whereas input states that increase volume scattering such as snow water equivalent or snow density yield negative NSC's. Air temperature exhibits the largest sensitivity coefficients due to its inherent, high-frequency variability. Adherence of this machine learning algorithm to the first-order physics bodes well for its potential use in LIS as the observation operator within a radiance data assimilation system aimed at improving regional- and continental-scale snow estimates.

  12. Total system performance predictions (TSPA-1995) for the potential high-level waste repository at Yucca Mountain

    Sevougian, S.D.; Andrews, R.W.; McNeish, J.A.

    1996-01-01

    The management and operating contractor for the potential high-level nuclear waste repository at Yucca Mountain, Nevada, has been recently completed a new performance assessment of the ability of the repository to isolate and contain nuclear waste for long time periods (up to 1,000,000 years). Sensitivity analyses determine the most important physical parameters and processes, using the most current information and models

  13. Experimental Evaluation of Performance of Constant Power Prime-Mover Driven Isolated 3-φ SEIG for Pico-Hydro Power Generation System in Remote Mountainous Region of Himalayas

    Rathore Umesh C.

    2016-01-01

    Full Text Available This paper presents the experimental evaluation of the performance of 3-φ self-excited induction generator (SEIG suitable for pico-hydro power generation system feeding domestic load in remote mountainous region. The use of induction generators is most suitable for renewable energy conversion systems due to their enormous advantages over conventional synchronous generators. Important features of induction generators include the simplicity in construction, ruggedness, simplified control, ease in maintenance and small size per generated kW. The performance characteristics of 3-φ SEIG feeding isolated load are evaluated using MATLAB-Simulink model based on the prevalent renewable energy sources inputs and loading conditions in mountainous terrain of Himalayas. The results are validated using an experimental set-up comprising of 3-φ, 3 HP induction motor run as 3- φ induction generator driven by 5HP, 4-pole DC shunt motor acting as prime-mover.

  14. Use of an analog site near Raymond, California, to develop equipment and methods for characterizing a potential high-level, nuclear waste repository site at Yucca Mountain, Nevada

    Umari, A.M.J.; Geldon, A.; Patterson, G.; Gemmell, J.; Earle, J.; Darnell, J.

    1994-01-01

    Yucca Mountain, Nevada, currently is being investigated by the U.S. Geological Survey as a potential site for a high-level nuclear waste repository. Planned hydraulic-stress and tracer tests in fractured, tuffaceous rocks below the water table at Yucca Mountain will require work at depths in excess of 1,300 feet. To facilitate prototype testing of equipment and methods to be used in aquifer tests at Yucca Mountain, an analog site was selected in the foothills of the Sierra Nevada near Raymond, California. Two of nine 250- to 300-feet deep wells drilled into fractured, granitic rocks at the Raymond site have been instrumented with packers, pressure transducers, and other equipment that will be used at Yucca Mountain. Aquifer tests conducted at the Raymond site to date have demonstrated a need to modify some of the equipment and methods conceived for use at Yucca Mountain

  15. [Biogeochemical cycles in natural forest and conifer plantations in the high mountains of Colombia].

    León, Juan Diego; González, María Isabel; Gallardo, Juan Fernando

    2011-12-01

    Plant litter production and decomposition are two important processes in forest ecosystems, since they provide the main organic matter input to soil and regulate nutrient cycling. With the aim to study these processes, litterfall, standing litter and nutrient return were studied for three years in an oak forest (Quercus humboldtii), pine (Pinus patula) and cypress (Cupressus lusitanica) plantations, located in highlands of the Central Cordillera of Colombia. Evaluation methods included: fine litter collection at fortnightly intervals using litter traps; the litter layer samples at the end of each sampling year and chemical analyses of both litterfall and standing litter. Fine litter fall observed was similar in oak forest (7.5 Mg ha/y) and in pine (7.8 Mg ha/y), but very low in cypress (3.5 Mg ha/y). Litter standing was 1.76, 1.73 and 1.3 Mg ha/y in oak, pine and cypress, respectively. The mean residence time of the standing litter was of 3.3 years for cypress, 2.1 years for pine and 1.8 years for oak forests. In contrast, the total amount of retained elements (N, P, S, Ca, Mg, K, Cu, Fe, Mn and Zn) in the standing litter was higher in pine (115 kg/ha), followed by oak (78 kg/ha) and cypress (24 kg/ha). Oak forests showed the lowest mean residence time of nutrients and the highest nutrients return to the soil as a consequence of a faster decomposition. Thus, a higher nutrient supply to soils from oaks than from tree plantations, seems to be an ecological advantage for recovering and maintaining the main ecosystem functioning features, which needs to be taken into account in restoration programs in this highly degraded Andean mountains.

  16. High rates of energy expenditure and water flux in free-ranging Point Reyes mountain beavers Aplodontia rufa phaea

    Crocker, D.E.; Kofahl, N.; Fellers, G.D.; Gates, N.B.; Houser, D.S.

    2007-01-01

    We measured water flux and energy expenditure in free-ranging Point Reyes mountain beavers Aplodontia rufa phaea by using the doubly labeled water method. Previous laboratory investigations have suggested weak urinary concentrating ability, high rates of water flux, and low basal metabolic rates in this species. However, free-ranging measurements from hygric mammals are rare, and it is not known how these features interact in the environment. Rates of water flux (210 ?? 32 mL d-1) and field metabolic rates (1,488 ?? 486 kJ d-1) were 159% and 265%, respectively, of values predicted by allometric equations for similar-sized herbivores. Mountain beavers can likely meet their water needs through metabolic water production and preformed water in food and thus remain in water balance without access to free water. Arginine-vasopressin levels were strongly correlated with rates of water flux and plasma urea : creatinine ratios, suggesting an important role for this hormone in regulating urinary water loss in mountain beavers. High field metabolic rates may result from cool burrow temperatures that are well below lower critical temperatures measured in previous laboratory studies and suggest that thermoregulation costs may strongly influence field energetics and water flux in semifossorial mammals. ?? 2007 by The University of Chicago. All rights reserved.

  17. Genotype and year variability of the chemical composition of walnut oil of Moroccan seedlings from the high Atlas Mountains

    Kodad, O.

    2016-03-01

    Full Text Available Protein and oil content, fatty acid composition and tocopherol concentration were determined for two years in the kernel of ten candidate walnut selections from the high Atlas Mountains in Morocco. Considerable variation between genotypes was found for all parameters. The ranges of protein content (11.58–14.5% of kernel dry weight, DW, oil content (54.4–67.48% of kernel DW, oleic (12.47–22.01% of total oil, linoleic (55.03–60.01%, linolenic (9.3–15.87%, palmitic (6.84–9.12%, and stearic (1.7–2.92% acid percentages, γ-tocopherol (188.1–230.7 mg·kg-1 of oil, δ-tocopherol (23.3–43.4 mg·kg-1, and α-tocopherol (8.9–16.57 mg·kg-1 contents agreed with previous results obtained from other commercial walnut cultivars. The effect of year was significant for all the chemical components, except for oil content and palmitic acid percentage. Some genotypes showed high oil contents and consistently high values of γ-tocopherol in both years of study. The introduction of these genotypes as new cultivars by vegetative propagation may result in a an increase in quality of the walnuts from the high Atlas Mountains of Morocco, and as a seed source for forest walnut propagation in the same region.Se determinó durante dos años el contenido en proteína y aceite, la composición en ácidos grasos y la concentración en tocoferoles en la pepita de diez plantones de nogal seleccionados en el Alto Atlas de Marruecos, encontrándose una considerable variación entre genotipos para todos los parámetros. Los rangos del contenido en proteína (11.58–14.5 % del peso seco, PS, contenido en aceite (54.4–67.48 % PS, porcentaje de ácido oleico (12.47–22.01% del aceite total, linoleico (55.03–60.01 %, linolénico (9.3–15.87 %, palmítico (6.84–9.12 %, y esteárico (1.7–2.92 %, contenido en γ-tocoferol (188.1–230.7 mg·kg−1 de aceite, δ-tocoferol (23.3–43.4 mg·kg−1 y α-tocoferol (8.9–16.57 mg·kg−1, coincidieron con

  18. A cloud-based home health care information sharing system to connect patients with home healthcare staff -A case report of a study in a mountainous region.

    Nomoto, Shinichi; Utsumi, Momoe; Sasayama, Satoshi; Dekigai, Hiroshi

    2017-01-01

    We have developed a cloud system, the e-Renraku Notebook (e-RN) for sharing of home care information based on the concept of "patient-centricity". In order to assess the likelihood that our system will enhance the communication and sharing of information between home healthcare staff members and home-care patients, we selected patients who were residing in mountainous regions for inclusion in our study. We herein report the findings.Eighteen staff members from 7 medical facilities and 9 patients participated in the present study.The e-RN was developed for two reasons: to allow patients to independently report their health status and to have staff members view and respond to the information received. The patients and staff members were given iPads with the pre-installed applications and the information being exchanged was reviewed over a 54-day period.Information was mainly input by the patients (61.6%), followed by the nurses who performed home visits (19.9%). The amount of information input by patients requiring high-level nursing care and their corresponding staff member was significantly greater than that input by patients who required low-level of nursing care.This patient-centric system in which patients can independently report and share information with a member of the healthcare staff provides a sense of security. It also allows staff members to understand the patient's health status before making a home visit, thereby giving them a sense of security and confidence. It was also noteworthy that elderly patients requiring high-level nursing care and their staff counterpart input information in the system significantly more frequently than patients who required low-level care.

  19. Glacial survival east and west of the 'Mekong-Salween Divide' in the Himalaya-Hengduan Mountains region as revealed by AFLPs and cpDNA sequence variation in Sinopodophyllum hexandrum (Berberidaceae).

    Li, Yong; Zhai, Sheng-Nan; Qiu, Ying-Xiong; Guo, Yan-Ping; Ge, Xue-Jun; Comes, Hans Peter

    2011-05-01

    Molecular phylogeographic studies have recently begun to elucidate how plant species from the Qinghai-Tibetan Plateau (QTP) and adjacent regions responded to the Quaternary climatic oscillations. In this regard, however, far less attention has been paid to the southern and south-eastern declivities of the QTP, i.e. the Himalaya-Hengduan Mountains (HHM) region. Here, we report a survey of amplified fragment length polymorphisms (AFLPs) and chloroplast DNA (cpDNA) sequence variation in the HHM endemic Sinopodophyllum hexandrum, a highly selfing alpine perennial herb with mainly gravity-dispersed berries (105 individuals, 19 localities). We specifically aimed to test a vicariant evolutionary hypothesis across the 'Mekong-Salween Divide', a known biogeographic and phytogeographic boundary of north-to-south trending river valleys separating the East Himalayas and Hengduan Mts. Both cpDNA and AFLPs identified two divergent phylogroups largely congruent with these mountain ranges. There was no genetic depauperation in the more strongly glaciated East Himalayas (AFLPs: H(E)=0.031; cpDNA: h(S)=0.133) compared to the mainly ice-free Hengduan Mts. (AFLPs: H(E)=0.037; cpDNA: h(S)=0.082), while population differentiation was consistently higher in the former region (AFLPs: Φ(ST)=0.522 vs. 0.312; cpDNA: Φ(ST)=0.785 vs. 0.417). Our results suggest that East Himalayan and Hengduan populations of S. hexandrum were once fragmented, persisted in situ during glacials in both areas, and have not merged again, except for a major instance of inter-lineage chloroplast capture identified at the MSD boundary. Our coalescent time estimate for all cpDNA haplotypes (c. 0.37-0.48 mya), together with paleogeological evidence, strongly rejects paleo-drainage formation as a mechanism underlying allopatric fragmentation, whereas mountain glaciers following the ridges of the MSD during glacials (and possible interglacials) could have been responsible. This study thus indicates an important role

  20. Quantifying uncertainty due to internal variability using high-resolution regional climate model simulations

    Gutmann, E. D.; Ikeda, K.; Deser, C.; Rasmussen, R.; Clark, M. P.; Arnold, J. R.

    2015-12-01

    The uncertainty in future climate predictions is as large or larger than the mean climate change signal. As such, any predictions of future climate need to incorporate and quantify the sources of this uncertainty. One of the largest sources comes from the internal, chaotic, variability within the climate system itself. This variability has been approximated using the 30 ensemble members of the Community Earth System Model (CESM) large ensemble. Here we examine the wet and dry end members of this ensemble for cool-season precipitation in the Colorado Rocky Mountains with a set of high-resolution regional climate model simulations. We have used the Weather Research and Forecasting model (WRF) to simulate the periods 1990-2000, 2025-2035, and 2070-2080 on a 4km grid. These simulations show that the broad patterns of change depicted in CESM are inherited by the high-resolution simulations; however, the differences in the height and location of the mountains in the WRF simulation, relative to the CESM simulation, means that the location and magnitude of the precipitation changes are very different. We further show that high-resolution simulations with the Intermediate Complexity Atmospheric Research model (ICAR) predict a similar spatial pattern in the change signal as WRF for these ensemble members. We then use ICAR to examine the rest of the CESM Large Ensemble as well as the uncertainty in the regional climate model due to the choice of physics parameterizations.

  1. Transportation of Spent Nuclear Fuel and High Level Waste to Yucca Mountain: The Next Step in Nevada

    Sweeney, Robin L.; Lechel, David J.

    2003-01-01

    In the U.S. Department of Energy's ''Final Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada,'' the Department states that certain broad transportation-related decisions can be made. These include the choice of a mode of transportation nationally (mostly legal-weight truck or mostly rail) and in Nevada (mostly rail, mostly legal-weight truck, or mostly heavy-haul truck with use of an associated intermodal transfer station), as well as the choice among alternative rail corridors or heavy-haul truck routes with use of an associated intermodal transfer station in Nevada. Although a rail line does not service the Yucca Mountain site, the Department has identified mostly rail as its preferred mode of transportation, both nationally and in the State of Nevada. If mostly rail is selected for Nevada, the Department would then identify a preference for one of the rail corridors in consultation with affected stakeholders, particularly the State of Nevada. DOE would then select the rail corridor and initiate a process to select a specific rail alignment within the corridor for the construction of a rail line. Five proposed rail corridors were analyzed in the Final Environmental Impact Statement. The assessment considered the impacts of constructing a branch rail line in the five 400-meter (0.25mile) wide corridors. Each corridor connects the Yucca Mountain site with an existing mainline railroad in Nevada

  2. A comparative study of artificial neural network, adaptive neuro fuzzy inference system and support vector machine for forecasting river flow in the semiarid mountain region

    He, Zhibin; Wen, Xiaohu; Liu, Hu; Du, Jun

    2014-02-01

    Data driven models are very useful for river flow forecasting when the underlying physical relationships are not fully understand, but it is not clear whether these data driven models still have a good performance in the small river basin of semiarid mountain regions where have complicated topography. In this study, the potential of three different data driven methods, artificial neural network (ANN), adaptive neuro fuzzy inference system (ANFIS) and support vector machine (SVM) were used for forecasting river flow in the semiarid mountain region, northwestern China. The models analyzed different combinations of antecedent river flow values and the appropriate input vector has been selected based on the analysis of residuals. The performance of the ANN, ANFIS and SVM models in training and validation sets are compared with the observed data. The model which consists of three antecedent values of flow has been selected as the best fit model for river flow forecasting. To get more accurate evaluation of the results of ANN, ANFIS and SVM models, the four quantitative standard statistical performance evaluation measures, the coefficient of correlation (R), root mean squared error (RMSE), Nash-Sutcliffe efficiency coefficient (NS) and mean absolute relative error (MARE), were employed to evaluate the performances of various models developed. The results indicate that the performance obtained by ANN, ANFIS and SVM in terms of different evaluation criteria during the training and validation period does not vary substantially; the performance of the ANN, ANFIS and SVM models in river flow forecasting was satisfactory. A detailed comparison of the overall performance indicated that the SVM model performed better than ANN and ANFIS in river flow forecasting for the validation data sets. The results also suggest that ANN, ANFIS and SVM method can be successfully applied to establish river flow with complicated topography forecasting models in the semiarid mountain regions.

  3. Conflict or synergy? Understanding interaction between municipalities and village commons (regole in polycentric governance of mountain areas in the Veneto Region, Italy

    Matteo Favero

    2016-08-01

    Full Text Available A particular challenge for mountainous areas in Italy is the definition of suitable governance models for local resources. Several solutions have been proposed over time, resulting in the co-existence of a number of decision-making centers. A crucial role is played by municipalities, but, in recent years, village commons – regola (singular / regole (plural in the local language – have been re-constituted as institutions with local power. In this dynamic context, little is known on how municipalities and regole interact. This paper aims at improving the understanding of local governance of mountain areas in the Veneto Region, from the viewpoint of municipalities, which represent the political, legal and administrative authority. The analysis is grounded in the polycentric governance literature, especially crucial in drawing attention to level and extent of cooperation, trustworthiness, mutual learning and effort for adaptation. Tensions, conflicts and conflict-resolution mechanisms were also assessed. We carried out a survey of 14 municipalities containing regole within their administrative jurisdictions. The results of our work provide evidence that this relationship is mostly a synergistic one. Municipalities showed adaptive capacity in mirroring values and views of the regole and proved willing to share responsibilities. Their decisions were formulated whilst taking into account the need for creating the appropriate linkages with local communities. Where conflicts or discontent have emerged, they have been mostly resolved, or considered as reflecting a need for greater coordination. This outcome can be looked upon as a local polycentric governance innovation that so far has only partially received policy support at the regional level. We conclude that municipalities will continue to play a central role in regulation of local-level socio-economic dynamics, remaining the institutional reference point for mountainous areas in the Veneto

  4. Possible paths towards sustainable tourism development in a high-mountain resort

    Laurent Arcuset

    2009-12-01

    Full Text Available This text starts from the teachings stemming from an evaluation of the tourist practices in the light of sustainable tourism principles, realized in 2004 within the framework of a national network piloted by the French Agency of Touristic Engineering (today ODIT France, for the ski resort of Valloire, first-generation resort in the Maurienne, which development and modernization in the 2000s kept pace with a vast real estate program. The article investigates the stakes and difficulties of the implementation of sustainable development in Valloire, asks the question of the "cultural revolution" which the actors should achieve to change the model of economic development, and suggest some tracks to reach there. The local approach of "sustainable tourism", indeed, seems for the moment rather to aim - as in many other high mountain ski resorts - towards a more environmental management of the basic urban functions than a real questioning of a tourist model based upon the triptych development of the ski slopes, securizing of the snow resource and touristic real estate programs.Ce texte part des enseignements issus d’une évaluation des pratiques touristiques à l’aune des principes du tourisme durable, réalisée en 2004 dans le cadre d’un réseau national piloté par l’Agence Française d’Ingénierie Touristique (aujourd’hui ODIT France, pour la station de Valloire, station de première génération de Maurienne dont le développement et la modernisation dans les années 2000 sont allés de pair avec un vaste programme immobilier. L’article explore les enjeux et les difficultés de la mise en œuvre du développement durable à Valloire, pose la question de la « révolution culturelle » que les acteurs devraient accomplir pour changer de modèle de développement économique, et suggère quelques pistes pour y parvenir. L’approche locale du « tourisme durable », en effet, semble pour l’heure plutôt tendre – comme dans bien

  5. Zooplankton abundance, species composition and ecology of tropical high-mountain crater lake Wonchi, Ethiopia

    Fasil Degefu

    2014-11-01

    Full Text Available The highlands of Ethiopia represent some of the remnants of undisturbed aquatic ecosystems; they are however highly threatened by significant socio–economic developments and associated anthropogenic impacts. Lake Wonchi is one of the few remaining fairly pristine high–mountain crater lakes in the central highlands and has never been investigated in detail. We present a first study on zooplankton taxa composition, abundance and biomass conducted over more than one year including the underlying environmental drivers. The lake is basic (pH 7.9-8.9, dilute (specific conductivity 185-245 µS cm-1 and oligotrophic with mean trophic status index of 36. The zooplankton community composition showed low species richness comprising a total of fourteen taxa with six cladocerans, one copepod and seven rotifers. Simpson´s index of diversity with values between 0.6 and 0.8 pointed towards a homogenous taxa occurrence within the single sample units. The overall mean (±SD standing biomass of zooplankton was 62.02±25.76 mg dry mass m-3,which is low compared to other highland and rift valley lakes in Ethiopia. Cyclopoid copepods, in particular Thermocyclops ethiopiensis were the most abundant group and contributed 50% to the total zooplankton abundance followed by cladocerans (38% and rotifers (12%. Non-metric multi-dimensional scaling resulted in a 3-dimensional model, which revealed similar community composition on successive sampling dates except in December/January and May. Temperature, alkalinity, conductivity and nitrate-N had significant influence on this seasonal pattern. A weak, but significant positive correlation (r=0.482, N=20, P=0.037 between Chlorophyll a and zooplankton biomass mirrors a bottom-up effect of phytoplankton biomass on zooplankton dynamics. The zooplankton of Lake Wonchi displayed some degree of segregation along the epi– and metalimnion during this study, but diel vertical migration was not observed. The results show that fish

  6. A preliminary assessment of earthquake ground shaking hazard at Yucca Mountain, Nevada and implications to the Las Vegas region

    Wong, I.G.; Green, R.K.; Sun, J.I. [Woodward-Clyde Federal Services, Oakland, CA (United States); Pezzopane, S.K. [Geological Survey, Denver, CO (United States); Abrahamson, N.A. [Abrahamson (Norm A.), Piedmont, CA (United States); Quittmeyer, R.C. [Woodward-Clyde Federal Services, Las Vegas, NV (United States)

    1996-12-31

    As part of early design studies for the potential Yucca Mountain nuclear waste repository, the authors have performed a preliminary probabilistic seismic hazard analysis of ground shaking. A total of 88 Quaternary faults within 100 km of the site were considered in the hazard analysis. They were characterized in terms of their probability o being seismogenic, and their geometry, maximum earthquake magnitude, recurrence model, and slip rate. Individual faults were characterized by maximum earthquakes that ranged from moment magnitude (M{sub w}) 5.1 to 7.6. Fault slip rates ranged from a very low 0.00001 mm/yr to as much as 4 mm/yr. An areal source zone representing background earthquakes up to M{sub w} 6 1/4 = 1/4 was also included in the analysis. Recurrence for these background events was based on the 1904--1994 historical record, which contains events up to M{sub w} 5.6. Based on this analysis, the peak horizontal rock accelerations are 0.16, 0.21, 0.28, and 0.50 g for return periods of 500, 1,000, 2,000, and 10,000 years, respectively. In general, the dominant contributor to the ground shaking hazard at Yucca Mountain are background earthquakes because of the low slip rates of the Basin and Range faults. A significant effect on the probabilistic ground motions is due to the inclusion of a new attenuation relation developed specifically for earthquakes in extensional tectonic regimes. This relation gives significantly lower peak accelerations than five other predominantly California-based relations used in the analysis, possibly due to the lower stress drops of extensional earthquakes compared to California events. Because Las Vegas is located within the same tectonic regime as Yucca Mountain, the seismic sources and path and site factors affecting the seismic hazard at Yucca Mountain also have implications to Las Vegas. These implications are discussed in this paper.

  7. A preliminary assessment of earthquake ground shaking hazard at Yucca Mountain, Nevada and implications to the Las Vegas region

    Wong, I.G.; Green, R.K.; Sun, J.I.; Pezzopane, S.K.; Abrahamson, N.A.; Quittmeyer, R.C.

    1996-01-01

    As part of early design studies for the potential Yucca Mountain nuclear waste repository, the authors have performed a preliminary probabilistic seismic hazard analysis of ground shaking. A total of 88 Quaternary faults within 100 km of the site were considered in the hazard analysis. They were characterized in terms of their probability o being seismogenic, and their geometry, maximum earthquake magnitude, recurrence model, and slip rate. Individual faults were characterized by maximum earthquakes that ranged from moment magnitude (M w ) 5.1 to 7.6. Fault slip rates ranged from a very low 0.00001 mm/yr to as much as 4 mm/yr. An areal source zone representing background earthquakes up to M w 6 1/4 = 1/4 was also included in the analysis. Recurrence for these background events was based on the 1904--1994 historical record, which contains events up to M w 5.6. Based on this analysis, the peak horizontal rock accelerations are 0.16, 0.21, 0.28, and 0.50 g for return periods of 500, 1,000, 2,000, and 10,000 years, respectively. In general, the dominant contributor to the ground shaking hazard at Yucca Mountain are background earthquakes because of the low slip rates of the Basin and Range faults. A significant effect on the probabilistic ground motions is due to the inclusion of a new attenuation relation developed specifically for earthquakes in extensional tectonic regimes. This relation gives significantly lower peak accelerations than five other predominantly California-based relations used in the analysis, possibly due to the lower stress drops of extensional earthquakes compared to California events. Because Las Vegas is located within the same tectonic regime as Yucca Mountain, the seismic sources and path and site factors affecting the seismic hazard at Yucca Mountain also have implications to Las Vegas. These implications are discussed in this paper

  8. Dose assessment from exposure to radon, thoron and their progeny concentrations in the dwellings of sub-mountainous region of Jammu and Kashmir, India

    Kaur, M.; Dr. B. R. Ambedkar National Institute of Technology, Jalandhar, Punjab; Kumar, A.; Mehra, R.; Mishra, R.

    2018-01-01

    The present work deals with the assessment of annual inhalation dose due to exposure of indoor radon, thoron and their progeny concentrations in the villages situated in sub-mountainous region of Jammu and Kashmir, India. The distribution of the data and the homogeneity of medians among different seasons and dwellings were assessed with the Shapiro-Wilk test and the Mann-Whitney test. The estimated total annual inhalation dose in these villages varied from 0.5 to 1.9 mSv year -1 which is less than the prescribed limit by ICRP (2008). Thus, the investigated area is safe from irradiation of radon, thoron and their progeny. (author)

  9. Regional Operations Research Program for Commercialization of Geothermal Energy in the Rocky Mountain Basin and Range. Final Technical Report, January 1980--March 1981

    None

    1981-07-01

    This report describes the work accomplished from January 1980 to March 1981 in the Regional Operations Research efforts for the Rocky Mountain Basin and Range Geothermal Commercialization Program. The scope of work is as described in New Mexico State University Proposal 80-20-207. The work included continued data acquisition and extension of the data base, enhancement and refinement of the economic models for electric and direct use applications, site-specific and aggregated analyses in support of the state teams, special analyses in support of several federal agencies, and marketing assistance to the state commercialization teams.

  10. Atmospheric Science Research at the Whiteface Mountain Adirondack High Peaks Observatory

    Schwab, J. J.; Brandt, R. E.; Casson, P.; Demerjian, K. L.; Crandall, B. A.

    2014-12-01

    The Atmospheric Sciences Research Center established an atmospheric observatory at Whiteface Mountain in the Adirondacks in 1961. The current mountain top observatory building was built by the University at Albany in 1969-70 and the New York State Department of Environmental Conservation (DEC) began ozone measurements at this summit location in 1973. Those measurements continue to this day and constitute a valuable long term data record for tropospheric ozone in the northeastern U.S. The elevation of the summit is 1483 m above sea level, and is roughly 90 m above the tree line in this location. With a mean cloud base height of less than 1100 m at the summit, it is a prime location for cloud research. The research station headquarters, laboratories, offices, and a second measurement site are located at the Marble Mountain Lodge, perched on a shoulder northeast of the massif at an elevation of 604 m above sea level. Parameters measured at the site include meteorological variables, trace gases, precipitation chemistry, aerosol mass and components, and more. Precipitation and cloud chemistry has a long history at the lodge and summit locations, respectively, and continues to this day. Some data from the 40-year record will be shown in the presentation. In the late 1980's the summit site was outfitted with instrumentation to measure oxides of nitrogen and other ozone precursors. Measurements of many of these same parameters were added at the lodge site and continue to this day. In this poster we will give an overview of the Whiteface Mountain Observatory and its two measurement locations. We will highlight the parameters currently being measured at our sites, and indicate those measured by ASRC, as well as those measured by other organizations. We will also recap some of the historical activities and measurement programs that have taken place at the site, as alluded to above. Also included will be examples of the rich archive of trends data for gas phase species

  11. Emissions of BVOC from lodgepole pine in response to mountain pine beetle attack in high and low mortality forest stands

    T. R. Duhl

    2013-01-01

    Full Text Available In this screening study, biogenic volatile organic compound (BVOC emissions from intact branches of lodgepole pine (Pinus contorta trees were measured from trees at two forested sites that have been impacted differently by the mountain pine beetle (MPB, with one having higher mortality and the other with lower mortality. Differences in the amounts and chemical diversity of BVOC between the two sites and from apparently healthy trees versus trees in different stages of MPB attack are presented, as well as (for one site observed seasonal variability in emissions. A brief comparison is made of geological and climatic characteristics as well as prior disturbances (both natural and man-made at each site. Trees sampled at the site experiencing high MPB-related tree mortality had lower chemodiversity in terms of monoterpene (MT emission profiles, while profiles were more diverse at the lower-mortality site. Also at the higher-mortality site, MPB-infested trees in various stages of decline had lower emissions of sesquiterpenes (SQTs compared to healthy trees, while at the site with lower mortality, MPB-survivors had significantly higher SQT emissions during part of the growing season when compared to both uninfested and newly infested trees. SQT profiles differed between the two sites and, like monoterpene and oxygenated VOC profiles, varied through the season. For the low-mortality site in which repeated measurements were made over the course of the early summer–late fall, higher chemical diversity was observed in early- compared to late-season measurements for all compound classes investigated (MT, oxygenated VOC, and SQT, with the amount of change appearing to correlate to the MPB status of the trees studied. Emissions of 2-methyl-3-buten-2-ol (MBO had a distinct seasonal signal but were not much different between healthy or infested trees, except in trees with dead needles, from which emissions of this compound were negligible, and in late

  12. The mountains influence on Turkey Climate

    Sensoy, Serhat

    2004-01-01

    Since the Black sea mountains at the north of the country and the Taurus mountains in the south lay parallel to the seashore and rise very sharply rain clouds can not penetrate to the internal part of the country. Rain clouds drops most of their water on the slopes opposite the sea. As rain clouds pass over the mountains and reach Central Anatolia they have no significant capability of rain. For this reason, the Central Anatolia does not have very much precipitation. The difference between the rates of precipitation on the inner and outer slopes seems to be effective on the expansion of plants. For example, there is a subtropical climate prevailing on the Black sea shore between Sinop and Batum where precipitation is more than 1000-2000 mm yearly. Going from Sinop to the mouth of the Sakarya River the rate of precipitation goes down to 800-1250 mm in a year. Running from the Sakarya River to the western area covering Thrace the climate seems to be continental, and in the area dominant plant cover is of the Mediterranean type. Since the succession of the mountains in Western Anatolia lay perpendicular to the seashore, rain clouds penetrate towards the inner regions for about 400 km. The continental climate with long, dry and summer affects this area. In the Eastern region of Anatolia, since the elevation of the mountains exceeds 2500-3000 m, valleys are disorderly scattered and located at high elevations, and the northern Black sea mountains and Caucasian mountains hold the rain clouds, the area is effected by the continental climate with long and very cold winters. Consequently precipitation at the lgdir River goes down to 300 mm while it is 500-800 mm in most of areas and 1000-1500 mm in some regions towards northern Mu and Bingol provinces. As mentioned above, high mountains, which hold rain clouds, surround the Central Anatolia, which has caused drought in this region. In the central Anatolia covering Afyon, Eski hir, Ankara, Qankiri, Qorum, Amasya, Kayseri

  13. MOUNTAIN NATURAL BIODIVERSITY CONSERVATION IN RUSSIA

    Arkady Tishkov

    2012-01-01

    Full Text Available High biodiversity and degree of endemism of mountain biota strengthen the mountain regions’ status for the territorial nature conservation. Analysis of the protected areas’ representativeness in various mountain regions of Russia shows some discrepancy between their quantity, square and regional biodiversity originality. The biggest divergences are marked for the Northern Caucasus. The main problems: small area of the protected territories and also cluster character of their spatial distribution, mostly in the high mountains are not supposed to conform with the highest values of the regional flora’s and fauna’s uniqueness, to compensate representativeness of the protected biota and, in anyway, to correspond with the purpose of nature protection frame—the protected territories ecologic network’s forming. The situation in the Urals, Siberia and the Far East seems to be better. The large areas of the protected territories are in general agreement with the high originality of the nature ecosystems. Nevertheless each concrete case needs analysis of the regional biota’s and ecosystems’ biodiversity distribution within the protected areas, including character and (or unique elements of the regional biodiversity to be held. The development of the effectual territorial conservation of mountain regions needs differential approach. The creation of the large representative parcels of nature landscapes in the key-areas has the considerable meaning in the low-developed regions, difficult to access. And well-developed regions have the necessity of nature protected territories’ network development and the planning of the ecological frame’s forming. The territorial biodiversity conservation, including the system of federal, regional and local levels with protective conservation of the rare species has to be combined with ecosystem’s restoration, especially in the zones disturbed by erosion, recreation and military actions. Also it is

  14. Genetic conservation and utilization of foxtail millet (Setaria italica (L.) Beauv. for nutritious food production: a case of sustainable agriculture responding to climate change in the mountainous region in Vietnam

    Pham Van Cuong; Hoang Viet Cuong; Nguyen Duc Doan; Duong Thi Thu Hang; Nguyen Thi Thanh Thuy; Cao Huong Giang

    2009-01-01

    Foxtail millet a plant with high nutrient and high heavy metal content in the grain, is suitable to grow under drought conditions. Using millet grain to produce food for man is necessary and will bring higher economic impacts for farmers in the mountainous regions. In this study, a total of four varieties of foxtail millet (CM1, CM9, CM10 and CM11), collected in Vietnam, are described and their botanical characters characterized. Correlations were made between photosynthetic characters and dry matter accumulation under irrigated, drought and recovering conditions in a pot experiment. A field experiment was also conducted to estimate the effect of three ecological regions such as Gialam (Red River Delta with an altitude of 5-20 meters), Bacha (northern mountainous region with an altitude of 800-1000 meters) and Sapa (northern mountainous region with an altitude of 1500-1800 meters) on several agronomic characters viz., growth duration, dry matter accumulation, grain yield and grain quality of four cultivars. The average grain yield of all millet varieties were the highest in Sapa (2.7 ton/ha), followed by Bacha (2.0 ton/ha) and Gialam (1.1 ton/ha), mainly because of the large number spikelets per panicle and the higher 1000-grain weight. The highest grain yield was observed for CM1 in Gialam, whereas it was CM9 in Bacha and Sapa. This was due to the different varietal response to temperature, water supply and/or radiation. Protein content was highest for CM1 in Hanoi (14.44%) and Sapa (12.66%) but it was CM11 in Bacha (11.69%). CM11 showed the highest starch content in all three ecological regions. In Hanoi and Sapa, CM9 manifested the highest lipid content but in Bacha, it was CM10. Four levels of N fertilizer (0, 30, 45 and 60 kg N per ha) were applied in Gialam, resulting in highest grain yield for CM1 at 60 kg N level (2.78 ton per ha), but the highest for CM10 was at 45 kg N level (3.02 ton per ha). This was due to the higher chlorophyll content at the

  15. How endangered is sexual reproduction of high-mountain plants by summer frosts? Frost resistance, frequency of frost events and risk assessment

    Ladinig, Ursula; Hacker, J?rgen; Neuner, Gilbert; Wagner, Johanna

    2013-01-01

    In temperate-zone mountains, summer frosts usually occur during unpredictable cold spells with snow-falls. Earlier studies have shown that vegetative aboveground organs of most high-mountain plants tolerate extracellular ice in the active state. However, little is known about the impact of frost on reproductive development and reproductive success. In common plant species from the European Alps (Cerastium uniflorum, Loiseleuria procumbens, Ranunculus glacialis, Rhododendron ferrugineum, Saxif...

  16. Analysis of water supply and demand in high mountain cities of Bolivia under growing population and changing climate

    Kinouchi, T.; Mendoza, J.; Asaoka, Y.; Fuchs, P.

    2017-12-01

    Water resources in La Paz and El Alto, high mountain capital cities of Bolivia, strongly depend on the surface and subsurface runoff from partially glacierized catchments located in the Cordillera Real, Andes. Due to growing population and changing climate, the balance between water supply from the source catchments and demand for drinking, agriculture, industry and hydropower has become precarious in recent years as evidenced by a serious drought during the 2015-2016 El Nino event. To predict the long-term availability of water resources under changing climate, we developed a semi-distributed glacio-hydrological model that considers various runoff pathways from partially glacierized high-altitude catchments. Two GCM projections (MRI-AGCM and INGV-ECHAM4) were used for the prediction with bias corrected by reanalysis data (ERA-INTERIM) and downscaled to target areas using data monitored at several weather stations. The model was applied to three catchments from which current water resources are supplied and eight additional catchments that will be potentially effective in compensating reduced runoff from the current water resource areas. For predicting the future water demand, a cohort-component method was used for the projection of size and composition of population change, considering natural and social change (birth, death and transfer). As a result, total population is expected to increase from 1.6 million in 2012 to 2.0 million in 2036. The water demand was predicted for given unit water consumption, non-revenue water rate (NWR), and sectorial percentage of water consumption for domestic, industrial and commercial purposes. The results of hydrological simulations and the analysis of water demand indicated that water supply and demand are barely balanced in recent years, while the total runoff from current water resource areas will continue to decrease and unprecedented water shortage is likely to occur since around 2020 toward the middle of 21st century even

  17. Specialized or opportunistic-how does the high mountain endemic butterfly Erebia nivalis survive in its extreme habitats?

    Ehl, Stefan; Dalstein, Vivian; Tull, Fabienne; Gros, Patrick; Schmitt, Thomas

    2018-02-01

    High mountain ecosystems are a challenge for the survival of animal and plant species, which have to evolve specific adaptations to cope with the prevailing extreme conditions. The strategies to survive may reach from opportunistic to highly adapted traits. One species successfully surviving under these conditions is the here studied butterfly Erebia nivalis. In a mark-release-recapture study performed in the Hohe Tauern National Park (Austria) from 22 July to 26 August 2013, we marked 1386 individuals and recaptured 342 of these. For each capture event, we recorded the exact point of capture and various other traits (wing conditions, behavior, nectar sources). The population showed a partial protandrous demography with the minority of males emerging prior to the females, but the majority being synchronized with them. Males and females differed significantly in their behavior with males being more flight active and females nectaring and resting more. Both sexes showed preferences for the same plant species as nectar sources, but this specialization apparently is the result of a rapid individual adaptation to the locally available flowers. Estimates of the realized dispersal distances predicted a comparatively high amount of long-distance flights, especially for females. Therefore, the adaptation of Erebia nivalis to the unpredictable high mountain conditions might be a mixture of opportunism and specialized traits. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  18. Regional and local meteorology influences high-resolution tropospheric ozone concentration in the Los Angeles Basin

    Koutzoukis, S.; Jenerette, D.; Chandler, M.; Wang, J.; Ge, C.; Ripplinger, J.

    2017-12-01

    Urban air quality and climate directly affect resident health. The Los Angeles (LA) Basin is a highly populated metropolitan area, with widespread point sources of ozone (O3) precursors (NOx , Volatile Organic Compounds, CO) from fossil fuel combustion. The LA basin exists on a coast-to-mountain gradient, with increasing temperatures towards the Transverse Ranges, which rise to 1700m. Frequently not compliant with 8-hour O3 standards, the LA and South Coast Air Basins are designated as severe and extreme non-attainment areas. Summer weather in the LA basin is characterized by a persistent high pressure system, creating an inversion that traps air pollutants, including O3 precursors, coupled with physical geography that blocks prevailing upper atmosphere air flow. These interactions make neighborhood-level O3 levels more variable than common regional models. Over the summer of 2017, we investigated the importance of local meteorology, wind patterns and air temperature, in transporting and mixing ozone precursors from point sources along the coast-to-mountain gradient. We deployed a network of six EPA federal equivalent method ozone and meteorological sensors in three campaigns in the LA basin along the coast-to-mountain transect. Each campaign, we collaborated with citizen scientists to deploy three sensor stations in two, 4 km2 quadrats, for a total of six high-resolution 4 km2 pixels. O3 concentrations vary greatly along the transect. At the coastal sites, daily O3 ranges from 0ppm to 60ppm and the range increases at the inland sites, to 100ppm. At all sites, there was a positive relationship between wind speed, air temperature, and O3 concentration, with increasing correlation inland. The Pearson correlation coefficient between wind speed and O3 concentration doubles from the coast to inland, and triples between air temperature and O3. The site-specific relationships between O3 and wind direction and temperature vary, suggesting neighborhood-effects from local

  19. Trends in dynamics of forest upper boundary in high mountains of northern Baikal area

    V. I. Voronin

    2016-08-01

    Full Text Available Studies of spatial-temporal variability of the upper boundary of the forest on the north-western coast of Lake Baikal (Baikal and Upper Angara Ridges are performed on the base of the analysis of forests renewal processes and of the dynamics of larch radial increment in the ecotone of the forest upper boundary and out of it. The presence of a large amount of well-developed uplands and circuses with considerable heights drops in the structure of mountain system favours formation of interrupted boundary between forest and subgoltsy belt. The timber stand of the upper forest boundary in the studied area is represented by Daurian larch. Three tree-ring chronologies of larch are obtained. The longest chronology is obtained for mountain taiga belt of Baikal Ridge and is as long as 460 years. Since 1980ies, a sustainable trend of increase of radial trees growth is observed. It is observed the most distinctly in trees of the upper forest boundary on the Baikal Ridge. There is advancing of trees species into subgoltsy belt and into mountain tundra, which depends, respectively, on slopes heights, exposition and tilting, on sites of growth of concrete cenoses. Modern peculiarity of the vegetation of the studied area is presence of abundant viable larch undergrowth (from 2–3 to 25 y.o. and fir in the ecotone of upper forest boundary and in subgoltsy belt, as well as appearing of single specimens of spruce. Main undergrowth mass (2/3 is presented by trees aged in average 15–25 y.o., i.e., they appeared in late 1980ies. Due to increase of snow cover thickness in winter, the trees young growth obtained great protection from freezing resulting in the increase of ability of young growth to live up to elder age.

  20. Applications of natural analogue studies to Yucca Mountain as a potential high level radioactive waste repository

    1995-02-01

    The 5-member group convened in Las Vegas, Nov. 11-13, 1991, to clarify the extent to which studies of natural analogues can assist the Yucca Mountain site characterization (SC) project. This document is to provide guidance and recommendations to DOE for the implementation of natural analogue studies in the SC program. Performance assessment, integrity of engineered barriers, and communication to the public and the scientific community are stressed. The reference design being developed by Babcock ampersand Wilcox Fuel Company are reviewed. Guidelines for selecting natural analogues are given. Quality assurance is discussed. Recommendations are given for developing an effective natural analogue program within the SC program

  1. Some Materials Degradation Issues in the U.S. High-Level Nuclear Waste Repository Study (The Yucca Mountain Project)

    F. Hua; P. Pasupathi; N. Brown; K. Mon

    2005-09-19

    The safe disposal of radioactive waste requires that the waste be isolated from the environment until radioactive decay has reduced its toxicity to innocuous levels for plants, animals, and humans. All of the countries currently studying the options for disposing of high-level nuclear waste (HLW) have selected deep geologic formations to be the primary barrier for accomplishing this isolation. In U.S.A., the Nuclear Waste Policy Act of 1982 (as amended in 1987) designated Yucca Mountain in Nevada as the potential site to be characterized for high-level nuclear waste (HLW) disposal. Long-term containment of waste and subsequent slow release of radionuclides into the geosphere will rely on a system of natural and engineered barriers including a robust waste containment design. The waste package design consists of a highly corrosion resistant Ni-based Alloy 22 cylindrical barrier surrounding a Type 316 stainless steel inner structural vessel. The waste package is covered by a mailbox-shaped drip shield composed primarily of Ti Grade 7 with Ti Grade 24 structural support members. The U.S. Yucca Mountain Project has been studying and modeling the degradation issues of the relevant materials for some 20 years. This paper reviews the state-of-the-art understanding of the degradation processes based on the past 20 years studies on Yucca Mountain Project (YMP) materials degradation issues with focus on interaction between the in-drift environmental conditions and long-term materials degradation of waste packages and drip shields within the repository system during the 10,000 years regulatory period. This paper provides an overview of the current understanding of the likely degradation behavior of the waste package and drip shield in the repository after the permanent closure of the facility. The degradation scenario discussed in this paper include aging and phase instability, dry oxidation, general and localized corrosion, stress corrosion cracking and hydrogen induced

  2. Some Materials Degradation Issues in the U.S. High-Level Nuclear Waste Repository Study (The Yucca Mountain Project)

    Hua, F.; Pasupathi, P.; Brown, N.; Mon, K.

    2005-01-01

    The safe disposal of radioactive waste requires that the waste be isolated from the environment until radioactive decay has reduced its toxicity to innocuous levels for plants, animals, and humans. All of the countries currently studying the options for disposing of high-level nuclear waste (HLW) have selected deep geologic formations to be the primary barrier for accomplishing this isolation. In U.S.A., the Nuclear Waste Policy Act of 1982 (as amended in 1987) designated Yucca Mountain in Nevada as the potential site to be characterized for high-level nuclear waste (HLW) disposal. Long-term containment of waste and subsequent slow release of radionuclides into the geosphere will rely on a system of natural and engineered barriers including a robust waste containment design. The waste package design consists of a highly corrosion resistant Ni-based Alloy 22 cylindrical barrier surrounding a Type 316 stainless steel inner structural vessel. The waste package is covered by a mailbox-shaped drip shield composed primarily of Ti Grade 7 with Ti Grade 24 structural support members. The U.S. Yucca Mountain Project has been studying and modeling the degradation issues of the relevant materials for some 20 years. This paper reviews the state-of-the-art understanding of the degradation processes based on the past 20 years studies on Yucca Mountain Project (YMP) materials degradation issues with focus on interaction between the in-drift environmental conditions and long-term materials degradation of waste packages and drip shields within the repository system during the 10,000 years regulatory period. This paper provides an overview of the current understanding of the likely degradation behavior of the waste package and drip shield in the repository after the permanent closure of the facility. The degradation scenario discussed in this paper include aging and phase instability, dry oxidation, general and localized corrosion, stress corrosion cracking and hydrogen induced

  3. Very high-resolution regional climate simulations over Scandinavia-present climate

    Christensen, Ole B.; Christensen, Jens H.; Machenhauer, Bennert

    1998-01-01

    realistically simulated. It is found in particular that in mountainous regions the high-resolution simulation shows improvements in the simulation of hydrologically relevant fields such as runoff and snow cover. Also, the distribution of precipitation on different intensity classes is most realistically...... on a high-density station network for the Scandinavian countries compiled for the present study. The simulated runoff is compared with observed data from Sweden extracted from a Swedish climatological atlas. These runoff data indicate that the precipitation analyses are underestimating the true...... simulated in the high-resolution simulation. It does, however, inherit certain large-scale systematic errors from the driving GCM. In many cases these errors increase with increasing resolution. Model verification of near-surface temperature and precipitation is made using a new gridded climatology based...

  4. Assessment and management of debris-flow risk in a tropical high-mountain catchment in Santa Teresa, Peru

    Frey, Holger; Buis, Daniel; Huggel, Christian; Bühler, Yves; Choquevilca, Walter; Fernandez, Felipe; García, Javier; Giráldez, Claudia; Loarte, Edwin; Masias, Paul; Portocarreo, César; Price, Karen; Walser, Marco

    2015-04-01

    movements and temporal damming of the river with trigger cables, geophones, and water level measurements. Independent energy supply, real-time data transfer to the data center in the municipality of Santa Teresa and remote access to the system via internet allows constant monitoring from within and outside the catchment. On a later stage the system is open to be enhanced by adding further sensors, cameras, meteorological stations, monitoring stations at glacier lakes, and related communication infrastructure. Risk management in such a context is a complex task: on one hand the data and information scarcity as well as the environmental conditions challenge scientific and technical aspects of debris-flow modeling and the design of the EWS. On the other hand, social aspects must be taken into account to make actions coherent with local risk perceptions and to achieve a good preparedness of the population. For a successful realization of the EWS and the entire risk management scheme, the local and regional institutional framework must also be considered. This contribution thus illustrates the implementation of an integrated risk management strategy under the challenging conditions common for remote high-mountain regions.

  5. Tritium dating of underground water from the Jian River valley and Houjialiang loess platform in the basin side-band of the East-Mountain Region of Taiyuan

    Yu Songsheng; Wu Qinghua

    1991-01-01

    The tritium content is measured in underground water from the basin side-band of the East-Mountain Region of Taiyuan, Shanxi Province, and hence the age, i.e. resident time, of underground water is estimated. The region belongs to deep water-poor zone in a long loess ridge situated in a loess hill plateau. The level of underground water is 40-80 m deep hidden. In the runway and the scouring channel the aqueous bed is of river pebble and cobble, with a level of 2-10 m in depth. The age of underground water from different wells were determined to be 23a, 14a, 25a, 41a and 53a respectively

  6. Chronology of Miocene-Pliocene deposits at Split Mountain Gorge, Southern California: A record of regional tectonics and Colorado River evolution

    Dorsey, R.J.; Fluette, A.; McDougall, K.; Housen, B.A.; Janecke, S.U.; Axen, G.J.; Shirvell, C.R.

    2007-01-01

    Late Miocene to early Pliocene deposit at Split Mountain Gorge, California, preserve a record of basinal response to changes in regional tectonics, paleogeography, and evolution of the Colorado River. The base of the Elephant Trees Formation, magnetostratigraphically dated as 8.1 ?? 0.4 Ma, provides the earliest well-dated record of extension in the southwestern Salton Trough. The oldest marine sediments are ca. 6.3 Ma. The nearly synchronous timing of marine incursion in the Salton Trough and northern Gulf of California region supports a model for localization of Pacific-North America plate motion in the Gulf ca. 6 Ma. The first appearance of Colorado River sand at the Miocene-Pliocene boundary (5.33 Ma) suggests rapid propagation of the river to the Salton Trough, and supports a lake-spillover hypothesis for initiation of the lower Colorado River. ?? 2007 Geological Society of America.

  7. Variability of morphological needle traits of Scots pine (Pinus sylvestris L. among populations from mountain and lowland regions of Poland

    Łabiszak Bartosz

    2017-06-01

    Full Text Available The main goal of this work was to examine interpopulational needle traits variability of Scots pine (Pinus sylvestris L. from four mountain, one foothill and three lowland, natural populations located in Poland. This choice of locations was motivated by the presumed different origins of mountainous populations and the necessity to demonstrate how closely they are related to lowland populations. Variation in the studied populations was determined using seven morphological traits of needles: 1 - needle length, 2 - number of stomatal rows on the flat side of a needle, 3 - number of stomata per 2 mm of needle length on the flat side, 4 - number of stomatal rows on the convex side of a needle, 5 - number of stomata per 2 mm of needle length on the convex side, 6 - number of serrations per 2 mm of the needle length on the left side and 7 - number of serrations per 2 mm of the needle length on the right side. Biometric data were analysed statistically, and it was found that (i needle traits differentiate studied populations; (ii the postulated division of the population into two groups is reflected in the obtained results; and (iii a particularly strong relationship was found between two relict pine populations from the Pieniny (Sokolica, Kazalnica, Czertezik and Tatra Mts. (Wielke Koryciska, which may be the result of the common origins and history of these two populations

  8. Water towers of the Great Basin: climatic and hydrologic change at watershed scales in a mountainous arid region

    Weiss, S. B.

    2017-12-01

    Impacts of climate change in the Great Basin will manifest through changes in the hydrologic cycle. Downscaled climate data and projections run through the Basin Characterization Model (BCM) produce time series of hydrologic response - recharge, runoff, actual evapotranspiration (AET), and climatic water deficit (CWD) - that directly affect water resources and vegetation. More than 50 climate projections from CMIP5 were screened using a cluster analysis of end-century (2077-2099) seasonal precipitation and annual temperature to produce a reduced subset of 12 climate futures that cover a wide range of macroclimate response. Importantly, variations among GCMs in summer precipitation produced by the SW monsoon are captured. Data were averaged within 84 HUC8 watersheds with widley varying climate, topography, and geology. Resultant time series allow for multivariate analysis of hydrologic response, especially partitioning between snowpack, recharge, runoff, and actual evapotranspiration. Because the bulk of snowpack accumulation is restricted to small areas of isolated mountain ranges, losses of snowpack can be extreme as snowline moves up the mountains with warming. Loss of snowpack also affects recharge and runoff rates, and importantly, the recharge/runoff ratio - as snowpacks fade, recharge tends to increase relative to runoff. Thresholds for regime shifts can be identified, but the unique topography and geology of each basin must be considered in assessing hydrologic response.

  9. PREREQUISITES FOR CALENDAR RITUALISM INTEGRATION TO THE PROCESS OF SPIRITUAL DEVELOPMENT OF STUDENTS OF MODERN SCHOOL OF MOUNTAIN REGIONS

    Violetta Lappo

    2015-04-01

    Full Text Available The profit of involving calendar holidays in the process of school children bringing up is proved in the article. The author confirms that there are many good customs and rituals with deep bringing up content. Ethnic Hutsul traditions had symbolic meaning and contributed their moral bringing up. The number of examples about children's upbringing in Hutsul families is given here, which helps in training them to religious and secular traditions. It is also said about holiday rituals, where small Hutsul children were involved. A lot of Hutsul customs and rituals have already been forgotten. But the author appeals to their renascence. The author is sure of it because customs and rituals form upbringing tradition, which proved its effectiveness during many centuries. Partly, it is important to meet children to new traditions of modern mountain schools of Hutsulshchyna (Hutsulland to form true valuable orientation. Only this is the basis of the personality spiritual world. The author proposes to reveal the celebrations of ancient traditions such holidays as: Christmas, Easter, Trinity. During these holidays Hutsul people tried to do a lot of charity things, helping sick people, visiting ill, and making mention of the departed. That's why it is important that the modern pupils of mountain schools not only new, but followed public calendar traditions. It has to be not only following certain ritual actions, but it has to be the ability to the spiritual perception of Hutsul cultural heritage.

  10. Escaping to the summits: phylogeography and predicted range dynamics of Cerastium dinaricum, an endangered high mountain plant endemic to the western Balkan Peninsula.

    Kutnjak, Denis; Kuttner, Michael; Niketić, Marjan; Dullinger, Stefan; Schönswetter, Peter; Frajman, Božo

    2014-09-01

    The Balkans are a major European biodiversity hotspot, however, almost nothing is known about processes of intraspecific diversification of the region's high-altitude biota and their reaction to the predicted global warming. To fill this gap, genome size measurements, AFLP fingerprints, plastid and nuclear sequences were employed to explore the phylogeography of Cerastium dinaricum. Range size changes under future climatic conditions were predicted by niche-based modeling. Likely the most cold-adapted plant endemic to the Dinaric Mountains in the western Balkan Peninsula, the species has conservation priority in the European Union as its highly fragmented distribution range includes only few small populations. A deep phylogeographic split paralleled by divergent genome size separates the populations into two vicariant groups. Substructure is pronounced within the southeastern group, corresponding to the area's higher geographic complexity. Cerastium dinaricum likely responded to past climatic oscillations with altitudinal range shifts, which, coupled with high topographic complexity of the region and warmer climate in the Holocene, sculptured its present fragmented distribution. Field observations revealed that the species is rarer than previously assumed and, as shown by modeling, severely endangered by global warming as viable habitat was predicted to be reduced by more than 70% by the year 2080. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. FIELD ACTIVITIES AND PRELIMINARY RESULTS FROM THE INVESTIGATION OF WESTERN AIRBORNE CONTAMINANTS IN TWO HIGH ELEVATION WATERSHEDS OF ROCKY MOUNTAIN NATIONAL PARK

    The National Park Service initiated the Western Airborne Contaminants Assessment Project (WACAP) in 2002 to determine if airborne contaminants from long-range transport and/or regional sources are having an impact on remote western ecosystems, including AK. Rocky Mountain Nation...

  12. Estimating density of a rare and cryptic high-mountain Galliform species, the Buff-throated Partridge Tetraophasis szechenyii

    Yu Xu

    2016-06-01

    Full Text Available Estimates of abundance or density are essential for wildlife management and conservation. There are few effective density estimates for the Buff-throated Partridge Tetraophasis szechenyii, a rare and elusive high-mountain Galliform species endemic to western China. In this study, we used the temporary emigration N-mixture model to estimate density of this species, with data acquired from playback point count surveys around a sacred area based on indigenous Tibetan culture of protection of wildlife, in Yajiang County, Sichuan, China, during April-June 2009. Within 84 125-m radius points, we recorded 53 partridge groups during three repeats. The best model indicated that detection probability was described by covariates of vegetation cover type, week of visit, time of day, and weather with weak effects, and a partridge group was present during a sampling period with a constant probability. The abundance component was accounted for by vegetation association. Abundance was substantially higher in rhododendron shrubs, fir-larch forests, mixed spruce-larch-birch forests, and especially oak thickets than in pine forests. The model predicted a density of 5.14 groups/km², which is similar to an estimate of 4.7 - 5.3 groups/km² quantified via an intensive spot-mapping effort. The post-hoc estimate of individual density was 14.44 individuals/km², based on the estimated mean group size of 2.81. We suggest that the method we employed is applicable to estimate densities of Buff-throated Partridges in large areas. Given importance of a mosaic habitat for this species, local logging should be regulated. Despite no effect of the conservation area (sacred on the abundance of Buff-throated Partridges, we suggest regulations linking the sacred mountain conservation area with the official conservation system because of strong local participation facilitated by sacred mountains in land conservation.

  13. Rocky Mountain Spotted Fever Characterization and Comparison to Similar Illnesses in a Highly Endemic Area—Arizona, 2002–2011

    Traeger, Marc S.; Regan, Joanna J.; Humpherys, Dwight; Mahoney, Dianna L.; Martinez, Michelle; Emerson, Ginny L.; Tack, Danielle M.; Geissler, Aimee; Yasmin, Seema; Lawson, Regina; Hamilton, Charlene; Williams, Velda; Levy, Craig; Komatsu, Kenneth; McQuiston, Jennifer H.; Yost, David A.

    2015-01-01

    Background Rocky Mountain spotted fever (RMSF) has emerged as a significant cause of morbidity and mortality since 2002 on tribal lands in Arizona. The explosive nature of this outbreak and the recognition of an unexpected tick vector, Rhipicephalus sanguineus, prompted an investigation to characterize RMSF in this unique setting and compare RMSF cases to similar illnesses. Methods We compared medical records of 205 patients with RMSF and 175 with non-RMSF illnesses that prompted RMSF testing during 2002–2011 from 2 Indian reservations in Arizona. Results RMSF cases in Arizona occurred year-round and peaked later (July–September) than RMSF cases reported from other US regions. Cases were younger (median age, 11 years) and reported fever and rash less frequently, compared to cases from other US regions. Fever was present in 81% of cases but not significantly different from that in patients with non-RMSF illnesses. Classic laboratory abnormalities such as low sodium and platelet counts had small and subtle differences between cases and patients with non-RMSF illnesses. Imaging studies reflected the variability and complexity of the illness but proved unhelpful in clarifying the early diagnosis. Conclusions RMSF epidemiology in this region appears different than RMSF elsewhere in the United States. No specific pattern of signs, symptoms, or laboratory findings occurred with enough frequency to consistently differentiate RMSF from other illnesses. Due to the nonspecific and variable nature of RMSF presentations, clinicians in this region should aggressively treat febrile illnesses and sepsis with doxycycline for suspected RMSF. PMID:25697743

  14. High altitude headache and acute mountain sickness at moderate elevations in a military population during battalion-level training exercises.

    Norris, Jacob N; Viirre, Erik; Aralis, Hilary; Sracic, Michael K; Thomas, Darren; Gertsch, Jeffery H

    2012-08-01

    Few studies have evaluated high altitude headache (HAH) and acute mountain sickness (AMS) in military populations training at moderate (1,500-2,500 m) to high altitudes (>2,500 m). In the current study, researchers interviewed active duty personnel training at Marine Corps Mountain Warfare Training Center. Participants were asked about HAH and AMS symptoms, potential risk factors, and medications used. In a sample of 192 U.S. Navy and Marine Corps personnel, 14.6% reported AMS (Lake Louise Criteria > or = 3) and 28.6% reported HAH. Dehydration and recent arrival at altitude (defined as data collected on days 2-3) were significantly associated with AMS; decreased sleep allowance was significantly associated with HAH. Although ibuprofen/Motrin users were more likely to screen positive for AMS, among AMS-positive participants, ibuprofen/Motrin users had decreased likelihood of reporting robust AMS relative to non-ibuprofen/Motrin users (p altitude. Further, ibuprofen/Motrin may be a reasonable treatment for the symptoms of AMS and HAH, although further study is warranted.

  15. Incorporating wind availability into land use regression modelling of air quality in mountainous high-density urban environment.

    Shi, Yuan; Lau, Kevin Ka-Lun; Ng, Edward

    2017-08-01

    Urban air quality serves as an important function of the quality of urban life. Land use regression (LUR) modelling of air quality is essential for conducting health impacts assessment but more challenging in mountainous high-density urban scenario due to the complexities of the urban environment. In this study, a total of 21 LUR models are developed for seven kinds of air pollutants (gaseous air pollutants CO, NO 2 , NO x , O 3 , SO 2 and particulate air pollutants PM 2.5 , PM 10 ) with reference to three different time periods (summertime, wintertime and annual average of 5-year long-term hourly monitoring data from local air quality monitoring network) in Hong Kong. Under the mountainous high-density urban scenario, we improved the traditional LUR modelling method by incorporating wind availability information into LUR modelling based on surface geomorphometrical analysis. As a result, 269 independent variables were examined to develop the LUR models by using the "ADDRESS" independent variable selection method and stepwise multiple linear regression (MLR). Cross validation has been performed for each resultant model. The results show that wind-related variables are included in most of the resultant models as statistically significant independent variables. Compared with the traditional method, a maximum increase of 20% was achieved in the prediction performance of annual averaged NO 2 concentration level by incorporating wind-related variables into LUR model development. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Timing of glacier advances and climate in the High Tatra Mountains (Western Carpathians) during the Last Glacial Maximum

    Makos, Michał; Dzierżek, Jan; Nitychoruk, Jerzy; Zreda, Marek

    2014-07-01

    During the Last Glacial Maximum (LGM), long valley glaciers developed on the northern and southern sides of the High Tatra Mountains, Poland and Slovakia. Chlorine-36 exposure dating of moraine boulders suggests two major phases of moraine stabilization, at 26-21 ka (LGM I - maximum) and at 18 ka (LGM II). The dates suggest a significantly earlier maximum advance on the southern side of the range. Reconstructing the geometry of four glaciers in the Sucha Woda, Pańszczyca, Mlynicka and Velicka valleys allowed determining their equilibrium-line altitudes (ELAs) at 1460, 1460, 1650 and 1700 m asl, respectively. Based on a positive degree-day model, the mass balance and climatic parameter anomaly (temperature and precipitation) has been constrained for LGM I advance. Modeling results indicate slightly different conditions between northern and southern slopes. The N-S ELA gradient finds confirmation in slightly higher temperature (at least 1 °C) or lower precipitation (15%) on the south-facing glaciers during LGM I. The precipitation distribution over the High Tatra Mountains indicates potentially different LGM atmospheric circulation than at the present day, with reduced northwesterly inflow and increased southerly and westerly inflows of moist air masses.