WorldWideScience

Sample records for high modulus fibers

  1. Application of diffusion barriers to high modulus fibers

    Science.gov (United States)

    Veltri, R. D.; Douglas, F. C.; Paradis, E. L.; Galasso, F. S.

    1977-01-01

    Barrier layers were coated onto high-modulus fibers, and nickel and titanium layers were overcoated as simulated matrix materials. The objective was to coat the high-strength fibers with unreactive selected materials without degrading the fibers. The fibers were tungsten, niobium, and single-crystal sapphire, while the materials used as barrier coating layers were Al2O3, Y2O3, TiC, ZrC, WC with 14% Co, and HfO2. An ion-plating technique was used to coat the fibers. The fibers were subjected to high-temperature heat treatments to evaluate the effectiveness of the barrier layer in preventing fiber-metal interactions. Results indicate that Al2O3, Y2O3, and HfO2 can be used as barrier layers to minimize the nickel-tungsten interaction. Further investigation, including thermal cycling tests at 1090 C, revealed that HfO2 is probably the best of the three.

  2. Static and Dynamic Behavior of High Modulus Hybrid Boron/Glass/Aluminum Fiber Metal Laminates

    Science.gov (United States)

    Yeh, Po-Ching

    2011-12-01

    This dissertation presents the investigation of a newly developed hybrid fiber metal laminates (FMLs) which contains commingled boron fibers, glass fibers, and 2024-T3 aluminum sheets. Two types of hybrid boron/glass/aluminum FMLs are developed. The first, type I hybrid FMLs, contained a layer of boron fiber prepreg in between two layers of S2-glass fiber prepreg, sandwiched by two aluminum alloy 2024-T3 sheets. The second, type II hybrid FMLs, contained three layer of commingled hybrid boron/glass fiber prepreg layers, sandwiched by two aluminum alloy 2024-T3 sheets. The mechanical behavior and deformation characteristics including blunt notch strength, bearing strength and fatigue behavior of these two types of hybrid boron/glass/aluminum FMLs were investigated. Compared to traditional S2-glass fiber reinforced aluminum laminates (GLARE), the newly developed hybrid boron/glass/aluminum fiber metal laminates possess high modulus, high yielding stress, and good blunt notch properties. From the bearing test result, the hybrid boron/glass/aluminum fiber metal laminates showed outstanding bearing strength. The high fiber volume fraction of boron fibers in type II laminates lead to a higher bearing strength compared to both type I laminates and traditional GLARE. Both types of hybrid FMLs have improved fatigue crack initiation lives and excellent fatigue crack propagation resistance compared to traditional GLARE. The incorporation of the boron fibers improved the Young's modulus of the composite layer in FMLs, which in turn, improved the fatigue crack initiation life and crack propagation rates of the aluminum sheets. Moreover, a finite element model was established to predict and verify the properties of hybrid boron/glass/aluminum FMLs. The simulated results showed good agreement with the experimental results.

  3. Failure Modes of a Unidirectional Ultra-High-Modulus Carbon-Fiber/Carbon-Matrix Composite

    National Research Council Canada - National Science Library

    Zaldivar, R

    1998-01-01

    The objective of this study was to observe the effects of various microstructural features on the in situ, room-temperature tensile fracture behavior of an ultra-high-modulus, unidirectional carbon/carbon (C/C...

  4. High modulus rare earth and beryllium containing silicate glass compositions. [for glass reinforcing fibers

    Science.gov (United States)

    Bacon, J. F. (Inventor)

    1976-01-01

    Glass compositions having a Young's modulus of at least 16 million psi and a specific modulus of at least 110 million inches consisting essentially of approximately, by weight, 20 to 43% SiO2, 8 to 21% Al2O3, 4 to 10% BeO, 27 to 58% of at least one oxide selected from a first group consisting of Y2O3, La2O3, Nd2O3, Ce2O3, Ce2O3, and the mixed rare earth oxides, and 3 to 12% of at least one oxide selected from a second group consisting of MgO, ZrO2, ZnO and CaO are described. The molar ratio of BeO to the total content of the first group oxides is from 1.0 to 3.0.

  5. Assessment of dynamic modulus of high density polypropylene waste fiber reinforcement in asphalt concrete

    Directory of Open Access Journals (Sweden)

    Hassan S. OTUOZE

    2015-12-01

    Full Text Available Traditional asphalt tests like Hveem and Marshall tests are at best mere characterization than effective test of pavement field performance because of complex viscoelastic behavior of asphalt. Mechanical properties otherwise called simple performance tests (SPT are performance criteria of asphalt. Dynamic modulus among other SPT’s like permanent deformation, fatigue cracking, thermal cracking, moisture susceptibility, shear and friction properties; determines stress-strain to time-temperature relationships that imparts on strength, service life and durability. The test followed the recommendations of NCHRP 1-37a (2004 and mixes were prepared using 0, 0.5, 1.0 and 1.5% HDPP contents. The parameters tested for dynamic modulus, /E*/, are stiffness, recoverable strain (ε, and phase angle (ξ. Time – temperature superposition (TTS called master curve was fitted using sigmoidal curve to interpolate the parameters beyond measured data set so as to observe the viscoelastic behavior outside the physical properties. The performance of 0.5% HDPP asphalt is better enhanced than the conventional asphalt to improve upon strength, service and durability.

  6. Non-toxic invert analog glass compositions of high modulus

    Science.gov (United States)

    Bacon, J. F. (Inventor)

    1974-01-01

    Glass compositions having a Young's modulus of at least 15 million psi are described. They and a specific modulus of at least 110 million inches consist essentially of, in mols, 15 to 40% SiO2, 6 to 15% Li2O, 24 to 45% of at least two bivalent oxides selected from the group consisting of Ca, NzO, MgO and CuO; 13 to 39% of at least two trivalent oxides selected from the group consisting of Al2O3, Fe2O3, B2O3, La2O3, and Y2O3 and up to 15% of one or more tetravelent oxides selected from the group consisting of ZrO2, TiO2 and CeO2. The high modulus, low density glass compositions contain no toxic elements. The composition, glass density, Young's modulus, and specific modulus for 28 representative glasses are presented. The fiber modulus of five glasses are given.

  7. Young modulus and internal friction of a fiber-reinforced composite

    International Nuclear Information System (INIS)

    Ledbetter, H.M.; Lei, M.; Austin, M.W.

    1986-01-01

    By a kilohertz-frequency resonance method we determined the Young modulus and internal friction of a uniaxially fiber-reinforced composite. The composite comprised glass fibers in an epoxy-resin matrix. We studied three fiber contents: 0, 41, and 49 vol %. The Young modulus fit a linear rule of mixture. The internal friction fit a classical free-damped-oscillator model where one assumes a linear rule of mixture for three quantities: mass, force constant, and mechanical-resistance constant

  8. The effect of gamma ray irradiation on PAN-based intermediate modulus carbon fibers

    International Nuclear Information System (INIS)

    Li, Bin; Feng, Yi; Qian, Gang; Zhang, Jingcheng; Zhuang, Zhong; Wang, Xianping

    2013-01-01

    Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) were conducted on PAN-based intermediate modulus carbon fibers to investigate the structure and surface hydrophilicity of the carbon fibers before and after gamma irradiation. Two methods were used to determine Young’s modulus of the carbon fibers. The results show that gamma ray irradiation improved the degree of graphitization and introduced compressive stress into carbon fiber surface. Gamma ray also improved the carbon fiber surface hydrophilicity through increasing the value of O/C and enhancing the quantity of oxygen functional groups on carbon fibers. No distinct morphology change was observed after gamma ray irradiation. The Young’s modulus of the fibers increased with increasing irradiation dose

  9. Short cellulosic fiber/starch acetate composites — micromechanical modeling of Young’s modulus

    DEFF Research Database (Denmark)

    Madsen, Bo; Joffe, Roberts; Peltola, Heidi

    2011-01-01

    This study is presented to predict the Young’s modulus of injection-molded short cellulosic fiber/plasticized starch acetate composites with variable fiber and plasticizer content. A modified rule of mixtures model is applied where the effect of porosity is included, and where the fiber weight...... (density and Young’s modulus). The measured Young’s modulus of the composites varies in the range 1.1—8.3 GPa, and this is well predicted by the model calculations. A property diagram is presented to be used for the tailor-making of composites with Young’s modulus in the range 0.2—10 GPa....

  10. A Research on Low Modulus Distributed Fiber Optical Sensor for Pavement Material Strain Monitoring.

    Science.gov (United States)

    Meng, Lingjian; Wang, Linbing; Hou, Yue; Yan, Guannan

    2017-10-19

    The accumulated irreversible deformation in pavement under repeated vehicle loadings will cause fatigue failure of asphalt concrete. It is necessary to monitor the mechanical response of pavement under load by using sensors. Previous studies have limitations in modulus accommodation between the sensor and asphalt pavement, and it is difficult to achieve the distributed monitoring goal. To solve these problems, a new type of low modulus distributed optical fiber sensor (DOFS) for asphalt pavement strain monitoring is fabricated. Laboratory experiments have proved the applicability and accuracy of the newly-designed sensor. This paper presents the results of the development.

  11. Elastic Modulus at High Frequency of Polymerically Stabilized Suspensions

    NARCIS (Netherlands)

    Nommensen, P.A.; Duits, Michael H.G.; van den Ende, Henricus T.M.; Mellema, J.

    2000-01-01

    The elastic moduli of polymerically stabilized suspensions consisting of colloidal silica particles coated with endgrafted PDMS (Mn = 80 000) in heptane, were measured as a function of concentration. And the elastic modulus at high frequency G'.. was quantitatively described by model calculations

  12. Vitamin A deficiency alters the pulmonary parenchymal elastic modulus and elastic fiber concentration in rats

    Directory of Open Access Journals (Sweden)

    Holmes Amey J

    2005-07-01

    Full Text Available Abstract Background Bronchial hyperreactivity is influenced by properties of the conducting airways and the surrounding pulmonary parenchyma, which is tethered to the conducting airways. Vitamin A deficiency (VAD is associated with an increase in airway hyperreactivity in rats and a decrease in the volume density of alveoli and alveolar ducts. To better define the effects of VAD on the mechanical properties of the pulmonary parenchyma, we have studied the elastic modulus, elastic fibers and elastin gene-expression in rats with VAD, which were supplemented with retinoic acid (RA or remained unsupplemented. Methods Parenchymal mechanics were assessed before and after the administration of carbamylcholine (CCh by determining the bulk and shear moduli of lungs that that had been removed from rats which were vitamin A deficient or received a control diet. Elastin mRNA and insoluble elastin were quantified and elastic fibers were enumerated using morphometric methods. Additional morphometric studies were performed to assess airway contraction and alveolar distortion. Results VAD produced an approximately 2-fold augmentation in the CCh-mediated increase of the bulk modulus and a significant dampening of the increase in shear modulus after CCh, compared to vitamin A sufficient (VAS rats. RA-supplementation for up to 21 days did not reverse the effects of VAD on the elastic modulus. VAD was also associated with a decrease in the concentration of parenchymal elastic fibers, which was restored and was accompanied by an increase in tropoelastin mRNA after 12 days of RA-treatment. Lung elastin, which was resistant to 0.1 N NaOH at 98°, decreased in VAD and was not restored after 21 days of RA-treatment. Conclusion Alterations in parenchymal mechanics and structure contribute to bronchial hyperreactivity in VAD but they are not reversed by RA-treatment, in contrast to the VAD-related alterations in the airways.

  13. Fiber-based polarimetric stress sensor for measuring the Young's modulus of biomaterials

    Science.gov (United States)

    Harrison, Mark C.; Armani, Andrea M.

    2015-03-01

    Polarimetric optical fiber-based stress and pressure sensors have proven to be a robust tool for measuring and detecting changes in the Young's modulus (E) of materials in response to external stimuli, including the real-time monitoring of the structural integrity of bridges and buildings. These sensors typically work by using a pair of polarizers before and after the sensing region of the fiber, and often require precise alignment to achieve high sensitivity. The ability to perform similar measurements in natural and in engineered biomaterials could provide significant insights and enable research advancement and preventative healthcare. However, in order for this approach to be successful, it is necessary to reduce the complexity of the system by removing free-space components and the need for alignment. As the first step in this path, we have developed a new route for performing these measurements. By generalizing and expanding established theoretical analyses for these types of sensors, we have developed a predictive theoretical model. Additionally, by replacing the conventional free space components and polarization filters with a polarimeter, we have constructed a sensor system with higher sensitivity and which is semi-portable. In initial experiments, a series of polydimethylsiloxane (PDMS) samples with several base:curing agent ratios ranging from 5:1 up to 30:1 were prepared to simulate tissues with different stiffnesses. By simultaneously producing stress-strain curves using a load frame and monitoring the polarization change of light traveling through the samples, we verified the accuracy of our theoretical model.

  14. A Study on Accelerated Thermal Aging of High Modulus Carbon/Epoxy Composite Material

    Directory of Open Access Journals (Sweden)

    Ju Min Kyung

    2015-01-01

    Full Text Available Composite materials have been used increasingly for various space applications due to the favorable characteristic of high modulus to density ratio and potential for near-zero coefficient of thermal expansion. In composite system, depending on the orientation of fibers, strength and stiffness can be changed so that the optimum structure can be accomplished. This is because the coefficient of thermal expansion (CTE of carbon fibers is negative. For spacecraft and orbiting space structure, which are thermally cycled by moving through the earth' shadow for at least 5 years, it is necessary to investigate the change of properties of the material over time. In this study, thermal aging of epoxy matrix/high modulus carbon fiber composite materials are accelerated to predict the long term creep property. Specimens are tested at various temperatures of 100~140°C with dynamic mechanical analysis to obtain creep compliances that are functions of time and temperature. Using Time Temperature Superposition method, creep compliance curves at each temperature are shifted to the reference temperature by shift factor and a master curve is generated at the reference temperature. This information is useful to predict the long term thermal aging of high modulus composite material for spacecraft application.

  15. High performance polyethylene nanocomposite fibers

    Directory of Open Access Journals (Sweden)

    A. Dorigato

    2012-12-01

    Full Text Available A high density polyethylene (HDPE matrix was melt compounded with 2 vol% of dimethyldichlorosilane treated fumed silica nanoparticles. Nanocomposite fibers were prepared by melt spinning through a co-rotating twin screw extruder and drawing at 125°C in air. Thermo-mechanical and morphological properties of the resulting fibers were then investigated. The introduction of nanosilica improved the drawability of the fibers, allowing the achievement of higher draw ratios with respect to the neat matrix. The elastic modulus and creep stability of the fibers were remarkably improved upon nanofiller addition, with a retention of the pristine tensile properties at break. Transmission electronic microscope (TEM images evidenced that the original morphology of the silica aggregates was disrupted by the applied drawing.

  16. Comparative study of flexural strength and elasticity modulus in two types of direct fiber-reinforced systems.

    Science.gov (United States)

    Gaspar Junior, Alfredo de Aquino; Lopes, Manuela Wanderley Ferreira; Gaspar, Gabriela da Silveira; Braz, Rodivan

    2009-01-01

    The objective of this study was to compare the flexural strength and elasticity modulus of two types of staple reinforcement fibers, Interlig - Angelus/glass (Londrina, PR, Brazil) and Connect - KerrLab(R)/polyethylene (MFG Co., West Collins Orange, CA, USA), which are widely used in Dentistry for chairside use, after varying the number of layers employed and submitting or not to thermocycling. This study was performed on 72 specimens, divided into 8 groups: G1 - single layer of Interlig fibers without thermocycling; G2 - double layer of Interlig fibers without thermocycling; G3 - single layer of Interlig fibers with thermocycling; and G4 - double layer of Interlig fibers with thermocycling; G5 - single layer of Connect fibers without termocycling; G6 - double layer of Connect fibers without termocycling; G7 - single layer of Connect fibers with termocycling; G8 - double layer of Connect fibers with termocycling. For each group, values for flexural strength and elasticity modulus were obtained. The polyethylene fiber employed in a double layer presented the highest flexural strength (p elasticity modulus, when compared to the other groups (p < 0.05). Within the limits of this study, it was concluded that the polyethylene fiber in a double layer appears to be more resistant, regardless of whether it was submitted to thermocycling or not.

  17. Mechanical Components from Highly Recoverable, Low Apparent Modulus Materials

    Science.gov (United States)

    Padula, Santo, II (Inventor); Noebe, Ronald D. (Inventor); Stanford, Malcolm K. (Inventor); DellaCorte, Christopher (Inventor)

    2015-01-01

    A material for use as a mechanical component is formed of a superelastic intermetallic material having a low apparent modulus and a high hardness. The superelastic intermetallic material is conditioned to be dimensionally stable, devoid of any shape memory effect and have a stable superelastic response without irrecoverable deformation while exhibiting strains of at least 3%. The method of conditioning the superelastic intermetallic material is described. Another embodiment relates to lightweight materials known as ordered intermetallics that perform well in sliding wear applications using conventional liquid lubricants and are therefore suitable for resilient, high performance mechanical components such as gears and bearings.

  18. A Fiber-Coupled Self-Mixing Laser Diode for the Measurement of Young’s Modulus

    Directory of Open Access Journals (Sweden)

    Ke Lin

    2016-06-01

    Full Text Available This paper presents the design of a fiber-coupled self-mixing laser diode (SMLD for non-contact and non-destructive measurement of Young’s modulus. By the presented measuring system, the Young’s modulus of aluminum 6061 and brass are measured as 70.0 GPa and 116.7 GPa, respectively, showing a good agreement within the standards in the literature and yielding a much smaller deviation and a higher repeatability compared with traditional tensile testing. Its fiber-coupled characteristics make the system quite easy to be installed in many application cases.

  19. High-fiber foods

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/patientinstructions/000193.htm High-fiber foods To use the sharing features on this page, ... Read food labels carefully to see how much fiber they have. Choose foods that have higher amounts of fiber, such as ...

  20. High modulus invert analog glass compositions containing beryllia

    Science.gov (United States)

    Bacon, J. F. (Inventor)

    1974-01-01

    Glass compositions having a Young's modulus of at least 15 million psi and a specific modulus of at least 110 million inches consisting essentially of, in mols, 10-45% SiO2, 2-15% Li2O, 3-34% BeO, 12-36% of at least one bivalent oxide selected from the group consisting of CaO, ZnO, MgO and CuO, 10-39% of at least one trivalent oxide selected from the group consisting of Al2O3, B2O3, La2O3, Y2O3 and the mixed rare earth oxides, the total number of said bivalent and trivalent oxides being at least three, and up to 10% of a tetravalent oxide selected from the group consisting of ZrO2, TiO2 and CeO2.

  1. Supersonic Shear Imaging Elastography in Skeletal Muscles: Relationship Between In Vivo and Synthetic Fiber Angles and Shear Modulus.

    Science.gov (United States)

    Lima, Kelly; Rouffaud, Remi; Pereira, Wagner; Oliveira, Liliam F

    2018-04-30

    To verify a relationship between the pennation angle of synthetic fibers and muscle fibers with the shear modulus (μ) generated by Supersonic shear imaging (SSI) elastography and to compare the anisotropy of synthetic and in vivo pennate muscle fibers in the x 2 -x 3 plane (probe perpendicular to water surface or skin). First, the probe of Aixplorer ultrasound scanner (v.9, Supersonic Imagine, Aix-en-Provence, France) was placed in 2 positions (parallel [aligned] and transverse to the fibers) to test the anisotropy in the x 2 -x 3 plane. Subsequently, it was inclined (x 1 -x 3 plane) in relation to the fibers, forming 3 angles (18.25 °, 21.55 °, 36.86 °) for synthetic fibers and one (approximately 0 °) for muscle fibers. On the x 2 -x 3 plane, μ values of the synthetic and vastus lateralis fibers were significantly lower (P < .0001) at the transverse probe position than the longitudinal one. In the x 1 -x 3 plane, the μ values were significantly reduced (P < .0001) with the probe angle increasing, only for the synthetic fibers (approximately 0.90 kPa for each degree of pennation angle). The pennation angle was not related to the μ values generated by SSI elastography for the in vivo lateral head of the gastrocnemius and vastus lateralis muscles. However, a μ reduction with an angle increase in the synthetic fibers was observed. These findings contribute to increasing the applicability of SSI in distinct muscle architecture at normal or pathologic conditions. © 2018 by the American Institute of Ultrasound in Medicine.

  2. Effect of Treated Coconut Shell and Fiber on the Resilient Modulus of Double-layer Porous Asphalt at Different Aging

    Science.gov (United States)

    Ting, T. L.; Ramadhansyah, P. J.; Norhidayah, A. H.; Yaacob, H.; Hainin, M. R.; Ibrahim, M. H. Wan; Jayanti, D. S.; Abdullahi, A. M.

    2018-04-01

    Coconut shell (CS) and coconut fiber (CF) are new waste products that have been of growing interest recently in the highway asphalt pavement industry. This study investigated the effect of CS and CF on the resilient modulus of double-layer porous asphalt (DLPA). CS aggregate 5 mm in size was substituted for the DLPA at 5%, 10%, and 15% by weight, while CF was added to the asphalt at 0.3% and 0.5% by weight. Before mixing with other aggregates, the CS and CF were treated with 5%wt Sodium hydroxide (NaOH) to reduce their water absorption ability. The samples were prepared via the Marshall method. The result shows that DLPA with 10% CS aggregate has better resilient modulus under 25 °C for unaged and aged samples compared with the other substitution percentages. However, the sample with CF has a lower resilient modulus because the amount of CF has increased. In general, the substitution of 10% CS provided better resilient modulus among the other percentages.

  3. Effect of high pressure hydrogen on the mechanical characteristics of single carbon fiber

    Science.gov (United States)

    Jeon, Sang Koo; Kwon, Oh Heon; Jang, Hoon-Sik; Ryu, Kwon Sang; Nahm, Seung Hoon

    2018-02-01

    In this study, carbon fiber was exposed to a pressure of 7 MPa for 24 h in high pressure chamber. The tensile test for carbon fiber was conducted to estimate the effect on the high pressure hydrogen in the atmosphere. To determine the tensile strength and Weibull modulus, approximately thirty carbon fiber samples were measured in all cases, and carbon fiber exposed to high pressure argon was evaluated to verify only the effect of hydrogen. Additionally, carbon fiber samples were annealed at 1950 °C for 1 h for a comparison with normal carbon fiber and then tested under identical conditions. The results showed that the tensile strength scatter of normal carbon fiber exposed to hydrogen was relatively wider and the Weibull modulus was decreased. Moreover, the tensile strength of the annealed carbon fiber exposed to hydrogen was increased, and these samples indicated a complex Weibull modulus because the hydrogen stored in the carbon fiber influenced the mechanical characteristic.

  4. Laboratory Performance Evaluation of High Modulus Asphalt Concrete Modified with Different Additives

    Directory of Open Access Journals (Sweden)

    Peng Li

    2017-01-01

    Full Text Available The objective of this study is to evaluate comprehensive performance of high modulus asphalt concrete (HMAC and propose common values for establishing evaluation system. Three gradations with different modifiers were conducted to study the high and low temperature performance, shearing behavior, and water stability. The laboratory tests for HMAC included static and dynamic modulus tests, rutting test, uniaxial penetration test, bending test, and immersion Marshall test. Dynamic modulus test results showed that modifier can improve the static modulus and the improvements were remarkable at higher temperature. Moreover, modulus of HMAC-20 was better than those of HMAC-16 and HMAC-25. The results of performance test indicated that HMAC has good performance to resist high temperature rutting, and the resistances of the HMAC-20 and HMAC-25 against rutting were better than that of HMAC-16. Then, the common values of dynamic stability were recommended. Furthermore, common values of HMAC performance were established based on pavement performance tests.

  5. High-density multicore fibers

    DEFF Research Database (Denmark)

    Takenaga, K.; Matsuo, S.; Saitoh, K.

    2016-01-01

    High-density single-mode multicore fibers were designed and fabricated. A heterogeneous 30-core fiber realized a low crosstalk of −55 dB. A quasi-single-mode homogeneous 31-core fiber attained the highest core count as a single-mode multicore fiber.......High-density single-mode multicore fibers were designed and fabricated. A heterogeneous 30-core fiber realized a low crosstalk of −55 dB. A quasi-single-mode homogeneous 31-core fiber attained the highest core count as a single-mode multicore fiber....

  6. Effect of Polypropylene Fibers on Self-Healing and Dynamic Modulus of Elasticity Recovery of Fiber Reinforced Concrete

    Directory of Open Access Journals (Sweden)

    Adham El-Newihy

    2018-02-01

    Full Text Available This study aims to evaluate self-healing properties and recovered dynamic moduli of engineered polypropylene fiber reinforced concrete using non-destructive resonant frequency testing. Two types of polypropylene fibers (0.3% micro and 0.6% macro and two curing conditions have been investigated: Water curing (at ~25 Celsius and air curing. The Impact Resonance Method (IRM has been conducted in both transverse and longitudinal modes on concrete cylinders prior/post crack induction and post healing of cracks. Specimens were pre-cracked at 14 days, obtaining values of crack width in the range of 0.10–0.50 mm. Addition of polypropylene fibers improved the dynamic response of concrete post-cracking by maintaining a fraction of the original resonant frequency and elastic properties. Macro fibers showed better improvement in crack bridging while micro fiber showed a significant recovery of the elastic properties. The results also indicated that air-cured Polypropylene Fiber Reinforced Concrete (PFRC cylinders produced ~300 Hz lower resonant frequencies when compared to water-cured cylinders. The analyses showed that those specimens with micro fibers exhibited a higher recovery of dynamic elastic moduli.

  7. Effects of SBS Configuration on Performance of High Modulus Bitumen Based on Dynamic Mechanical Analysis

    Directory of Open Access Journals (Sweden)

    Ming Liang

    2016-07-01

    Full Text Available High modulus bitumens modified by polystyrene-block-polybutadiene-block-polystyrene (SBS with different molecular structure were investigated on dynamic shear rheometer and fluorescence microscopy to evaluate viscoelastic properties and morphology of binders. The results shows that storage modulus (G’ is obviously less than loss modulus (G”, which means viscous behaviour of bitumen is dominant, and anti-rutting factor (G* ⁄ sin δ is markedly enhanced by star SBS than by linear SBS. The morphology indicated that star SBS improved the softening point more obviously, tending to form a cross-linked network in bitumen. As for linear SBS, it is dispersed in bitumen in the form of globules and enhances the ductility of binder.

  8. High modulus asphalt (EME) technology transfer to South Africa and Australia: shared experiences

    CSIR Research Space (South Africa)

    Denneman, E

    2015-08-01

    Full Text Available The paper describes experiences with the implementation of French enrobés à module élevé (EME) (high modulus asphalt) technology in South Africa and Australia. Tentative performance specifications for EME mixes were set in the two countries based...

  9. Magneto-carbonization method for production of carbon fiber, and high performance carbon fibers made thereby

    Science.gov (United States)

    Naskar, Amit K.; Ozcan, Soydan; Eberle, Claude C.; Abdallah, Mohamed Gabr; Mackiewicz, Ludtka Gail; Ludtka, Gerard Michael; Paulauskas, Felix Leonard; Rivard, John Daniel Kennedy

    2017-08-08

    Method for the preparation of carbon fiber from fiber precursor, wherein the fiber precursor is subjected to a magnetic field of at least 3 Tesla during a carbonization process. The carbonization process is generally conducted at a temperature of at least 400.degree. C. and less than 2200.degree. C., wherein, in particular embodiments, the carbonization process includes a low temperature carbonization step conducted at a temperature of at least or above 400.degree. C. or 500.degree. C. and less than or up to 1000.degree. C., 1100.degree. C., or 1200.degree. C., followed by a high temperature carbonization step conducted at a temperature of at least or above 1200.degree. C. In particular embodiments, particularly in the case of a polyacrylonitrile (PAN) fiber precursor, the resulting carbon fiber may possess a minimum tensile strength of at least 600 ksi, a tensile modulus of at least 30 Msi, and an ultimate elongation of at least 1.5%.

  10. Fast, High Resolution, and Wide Modulus Range Nanomechanical Mapping with Bimodal Tapping Mode.

    Science.gov (United States)

    Kocun, Marta; Labuda, Aleksander; Meinhold, Waiman; Revenko, Irène; Proksch, Roger

    2017-10-24

    Tapping mode atomic force microscopy (AFM), also known as amplitude modulated (AM) or AC mode, is a proven, reliable, and gentle imaging mode with widespread applications. Over the several decades that tapping mode has been in use, quantification of tip-sample mechanical properties such as stiffness has remained elusive. Bimodal tapping mode keeps the advantages of single-frequency tapping mode while extending the technique by driving and measuring an additional resonant mode of the cantilever. The simultaneously measured observables of this additional resonance provide the additional information necessary to extract quantitative nanomechanical information about the tip-sample mechanics. Specifically, driving the higher cantilever resonance in a frequency modulated (FM) mode allows direct measurement of the tip-sample interaction stiffness and, with appropriate modeling, the set point-independent local elastic modulus. Here we discuss the advantages of bimodal tapping, coined AM-FM imaging, for modulus mapping. Results are presented for samples over a wide modulus range, from a compliant gel (∼100 MPa) to stiff materials (∼100 GPa), with the same type of cantilever. We also show high-resolution (subnanometer) stiffness mapping of individual molecules in semicrystalline polymers and of DNA in fluid. Combined with the ability to remain quantitative even at line scan rates of nearly 40 Hz, the results demonstrate the versatility of AM-FM imaging for nanomechanical characterization in a wide range of applications.

  11. Natural asphalt modified binders used for high stiffness modulus asphalt concrete

    Science.gov (United States)

    Bilski, Marcin; Słowik, Mieczysław

    2018-05-01

    This paper presents a set of test results supporting the possibility of replacing, in Polish climate conditions, hard road 20/30 penetration grade bitumen used in the binder course and/or base course made of high stiffness modulus asphalt concrete with binders comprising of 35/50 or 50/70 penetration grade bitumens and additives in the form of natural Gilsonite or Trinidad Epuré asphalts. For the purpose of comparing the properties of the discussed asphalt binders, values of the Performance Grade have been determined according to the American Superpave system criteria.

  12. High-birefringent photonic crystal fiber

    DEFF Research Database (Denmark)

    Libori, Stig E. Barkou; Broeng, Jes; Knudsen, Erik

    2001-01-01

    A highly birefringent photonic crystal fiber design is analysed. Birefringence up to 10-3 is found. Random fluctuations in the cladding design are analysed, and the fiber is found to be a feasible polarization maintaining fiber.......A highly birefringent photonic crystal fiber design is analysed. Birefringence up to 10-3 is found. Random fluctuations in the cladding design are analysed, and the fiber is found to be a feasible polarization maintaining fiber....

  13. High elastic modulus polymer electrolytes suitable for preventing thermal runaway in lithium batteries

    Science.gov (United States)

    Mullin, Scott; Panday, Ashoutosh; Balsara, Nitash Pervez; Singh, Mohit; Eitouni, Hany Basam; Gomez, Enrique Daniel

    2014-04-22

    A polymer that combines high ionic conductivity with the structural properties required for Li electrode stability is useful as a solid phase electrolyte for high energy density, high cycle life batteries that do not suffer from failures due to side reactions and dendrite growth on the Li electrodes, and other potential applications. The polymer electrolyte includes a linear block copolymer having a conductive linear polymer block with a molecular weight of at least 5000 Daltons, a structural linear polymer block with an elastic modulus in excess of 1.times.10.sup.7 Pa and an ionic conductivity of at least 1.times.10.sup.-5 Scm.sup.-1. The electrolyte is made under dry conditions to achieve the noted characteristics. In another aspect, the electrolyte exhibits a conductivity drop when the temperature of electrolyte increases over a threshold temperature, thereby providing a shutoff mechanism for preventing thermal runaway in lithium battery cells.

  14. High bulk modulus of ionic liquid and effects on performance of hydraulic system.

    Science.gov (United States)

    Kambic, Milan; Kalb, Roland; Tasner, Tadej; Lovrec, Darko

    2014-01-01

    Over recent years ionic liquids have gained in importance, causing a growing number of scientists and engineers to investigate possible applications for these liquids because of their unique physical and chemical properties. Their outstanding advantages such as nonflammable liquid within a broad liquid range, high thermal, mechanical, and chemical stabilities, low solubility for gases, attractive tribological properties (lubrication), and very low compressibility, and so forth, make them more interesting for applications in mechanical engineering, offering great potential for new innovative processes, and also as a novel hydraulic fluid. This paper focuses on the outstanding compressibility properties of ionic liquid EMIM-EtSO4, a very important physical chemically property when IL is used as a hydraulic fluid. This very low compressibility (respectively, very high Bulk modulus), compared to the classical hydraulic mineral oils or the non-flammable HFDU type of hydraulic fluids, opens up new possibilities regarding its usage within hydraulic systems with increased dynamics, respectively, systems' dynamic responses.

  15. A superplastic Al-Li-Cu-Mg-Zr powder alloy with high hardness and modulus

    International Nuclear Information System (INIS)

    Phillips, V.A.

    1986-01-01

    Structure/property studies were made on an experimental Al-3.18% Li-4.29% Cu-1.17% Mg-0.18% Zr powder alloy, which is of the low density/high modulus type. Alloy powder was made by the P and W/GPD rapid solidification rate (RSR) process, canned, and extruded to bar. The density was 2.458 x 10/sup 6/ g/m/sup 3/. The material was solution-treated, and aged at 149 0 C(300 0 F), 171 0 C(340 0 F), and 193 0 C(380 0 F), using hardness tests to determine the aging curves. Testpieces solution-treated at 516 0 C(961 0 F) showed an average yield strength (0.2% offset) of 43.3 ksi (299 MPa) and ultimate tensile strength of 50.0 ksi (345 MPa), with 1% elongation, which increased to 73.0 ksi (503 MPa) and 73.1 ksi (504 MPa), respectively, with only 0.2% elongation, on peak aging at 193 0 C(380 0 F), with a modulus of elasticity of 11.4 x 10/sup 6/ psi (78.3 GPa). Hardness values reached 90-92 R/sub B/ on aging at 149-193 0 C(300-380 0 F). The as-extruded alloy showed superplastic behavior at 400-500 0 C(752-932 0 F) with elongations of 80-185% on 25.6 mm, peaking at 450 0 C(842 0 F). An RSR Al-2.53% Li-2.82% Mn-0.02% Zr extruded allow showed only 18-23% elongation at 400-500 0 C(752-932 0 F)

  16. Process for preparing polyolefin gel articles as well as for preparing herefrom articles having a high tensile strength and modulus

    NARCIS (Netherlands)

    1990-01-01

    A process is described for the preparation of highly stretchable high-molecular weight polyolefin gel articles and polyolefin gel articles prepared therefrom having combined high tensile strength and high modulus, wherein an initial shaped article of the polyolefin is exposed to or contacted with a

  17. Stiff, light, strong and ductile: nano-structured High Modulus Steel.

    Science.gov (United States)

    Springer, H; Baron, C; Szczepaniak, A; Uhlenwinkel, V; Raabe, D

    2017-06-05

    Structural material development for lightweight applications aims at improving the key parameters strength, stiffness and ductility at low density, but these properties are typically mutually exclusive. Here we present how we overcome this trade-off with a new class of nano-structured steel - TiB 2 composites synthesised in-situ via bulk metallurgical spray-forming. Owing to the nano-sized dispersion of the TiB 2 particles of extreme stiffness and low density - obtained by the in-situ formation with rapid solidification kinetics - the new material has the mechanical performance of advanced high strength steels, and a 25% higher stiffness/density ratio than any of the currently used high strength steels, aluminium, magnesium and titanium alloys. This renders this High Modulus Steel the first density-reduced, high stiffness, high strength and yet ductile material which can be produced on an industrial scale. Also ideally suited for 3D printing technology, this material addresses all key requirements for high performance and cost effective lightweight design.

  18. High Bulk Modulus of Ionic Liquid and Effects on Performance of Hydraulic System

    Directory of Open Access Journals (Sweden)

    Milan Kambic

    2014-01-01

    Full Text Available Over recent years ionic liquids have gained in importance, causing a growing number of scientists and engineers to investigate possible applications for these liquids because of their unique physical and chemical properties. Their outstanding advantages such as nonflammable liquid within a broad liquid range, high thermal, mechanical, and chemical stabilities, low solubility for gases, attractive tribological properties (lubrication, and very low compressibility, and so forth, make them more interesting for applications in mechanical engineering, offering great potential for new innovative processes, and also as a novel hydraulic fluid. This paper focuses on the outstanding compressibility properties of ionic liquid EMIM-EtSO4, a very important physical chemically property when IL is used as a hydraulic fluid. This very low compressibility (respectively, very high Bulk modulus, compared to the classical hydraulic mineral oils or the non-flammable HFDU type of hydraulic fluids, opens up new possibilities regarding its usage within hydraulic systems with increased dynamics, respectively, systems’ dynamic responses.

  19. Highly porous, low elastic modulus 316L stainless steel scaffold prepared by selective laser melting.

    Science.gov (United States)

    Čapek, Jaroslav; Machová, Markéta; Fousová, Michaela; Kubásek, Jiří; Vojtěch, Dalibor; Fojt, Jaroslav; Jablonská, Eva; Lipov, Jan; Ruml, Tomáš

    2016-12-01

    Recently, porous metallic materials have been extensively studied as candidates for use in the fabrication of scaffolds and augmentations to repair trabecular bone defects, e.g. in surroundings of joint replacements. Fabricating these complex structures by using common approaches (e.g., casting and machining) is very challenging. Therefore, rapid prototyping techniques, such as selective laser melting (SLM), have been investigated for these applications. In this study, we characterized a highly porous (87 vol.%) 316L stainless steel scaffold prepared by SLM. 316L steel was chosen because it presents a biomaterial still widely used for fabrication of joint replacements and, from the practical point of view, use of the same material for fabrication of an augmentation and a joint replacement is beneficial for corrosion prevention. The results are compared to the reported properties of two representative nonporous 316L stainless steels prepared either by SLM or casting and subsequent hot forging. The microstructural and mechanical properties and the surface chemical composition and interaction with the cells were investigated. The studied material exhibited mechanical properties that were similar to those of trabecular bone (compressive modulus of elasticity ~0.15GPa, compressive yield strength ~3MPa) and cytocompatibility after one day that was similar to that of wrought 316L stainless steel, which is a commonly used biomaterial. Based on the obtained results, SLM is a suitable method for the fabrication of porous 316L stainless steel scaffolds with highly porous structures. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Fatigue Life Prediction of High Modulus Asphalt Concrete Based on the Local Stress-Strain Method

    Directory of Open Access Journals (Sweden)

    Mulian Zheng

    2017-03-01

    Full Text Available Previously published studies have proposed fatigue life prediction models for dense graded asphalt pavement based on flexural fatigue test. This study focused on the fatigue life prediction of High Modulus Asphalt Concrete (HMAC pavement using the local strain-stress method and direct tension fatigue test. First, the direct tension fatigue test at various strain levels was conducted on HMAC prism samples cut from plate specimens. Afterwards, their true stress-strain loop curves were obtained and modified to develop the strain-fatigue life equation. Then the nominal strain of HMAC course determined using finite element method was converted into local strain using the Neuber method. Finally, based on the established fatigue equation and converted local strain, a method to predict the pavement fatigue crack initiation life was proposed and the fatigue life of a typical HMAC overlay pavement which runs a risk of bottom-up cracking was predicted and validated. Results show that the proposed method was able to produce satisfactory crack initiation life.

  1. A high-damping magnetorheological elastomer with bi-directional magnetic-control modulus for potential application in seismology

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Miao, E-mail: yumiao@cqu.edu.cn; Qi, Song; Fu, Jie; Zhu, Mi [Key Lab for Optoelectronic Technology and Systems, Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044 (China)

    2015-09-14

    A high-damping magnetorheological elastomer (MRE) with bi-directional magnetic-control modulus is developed. This MRE was synthesized by filling NdFeB particles into polyurethane (PU)/ epoxy (EP) interpenetrating network (IPN) structure. The anisotropic samples were prepared in a permanent magnetic field and magnetized in an electromagnetic field of 1 T. Dynamic mechanical responses of the MRE to applied magnetic fields are investigated through magneto-rheometer, and morphology of MREs is observed via scanning electron microscope (SEM). Test result indicates that when the test field orientation is parallel to that of the sample's magnetization, the shear modulus of sample increases. On the other hand, when the orientation is opposite to that of the sample's magnetization, shear modulus decreases. In addition, this PU/EP IPN matrix based MRE has a high-damping property, with high loss factor and can be controlled by applying magnetic field. It is expected that the high damping property and the ability of bi-directional magnetic-control modulus of this MRE offer promising advantages in seismologic application.

  2. The influence of removing sizing on strength and stiffness of conventional and high modulus E-glass fibres

    DEFF Research Database (Denmark)

    Petersen, Helga Nørgaard; Kusano, Yukihiro; Brøndsted, Povl

    2016-01-01

    Two types of E-glass fibres, a conventional and a high modulus where the last one in the following will be denoted as ECR-glass fibre, were investigated regarding density, diameter, stiffness and strength. The fibres were analysed as pristine and after sizing removal treatments. The sizing was re...

  3. Evaluation of the use of polymer modified bitumen in the production of high modulus asphalt for heavily-trafficked roads

    CSIR Research Space (South Africa)

    Komba, Julius J

    2015-05-01

    Full Text Available Enrobé à Module Élevé (EME) technology, a High Modulus Asphalt (HiMA), has been introduced to South Africa to provide an optimum solution for the design and construction of heavily trafficked roads. Implementation of EME technology in South Africa...

  4. Long-term pavement performance monitoring and the revision of performance criteria for high modulus asphalt in South Africa

    CSIR Research Space (South Africa)

    Komba, Julius

    2016-09-01

    Full Text Available Enrobé à Module Élevé (EME) technology, a High Modulus Asphalt (HiMA), was originally developed in France. The technology is primarily suitable for construction of heavily trafficked routes, airports and container terminals. The key performance...

  5. Highly Stretchable, Strain Sensing Hydrogel Optical Fibers.

    Science.gov (United States)

    Guo, Jingjing; Liu, Xinyue; Jiang, Nan; Yetisen, Ali K; Yuk, Hyunwoo; Yang, Changxi; Khademhosseini, Ali; Zhao, Xuanhe; Yun, Seok-Hyun

    2016-12-01

    A core-clad fiber made of elastic, tough hydrogels is highly stretchable while guiding light. Fluorescent dyes are easily doped into the hydrogel fiber by diffusion. When stretched, the transmission spectrum of the fiber is altered, enabling the strain to be measured and also its location. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Rheological Behavior of Tomato Fiber Suspensions Produced by High Shear and High Pressure Homogenization and Their Application in Tomato Products

    Science.gov (United States)

    Sun, Ping; Adhikari, Benu P.; Li, Dong

    2018-01-01

    This study investigated the effects of high shear and high pressure homogenization on the rheological properties (steady shear viscosity, storage and loss modulus, and deformation) and homogeneity in tomato fiber suspensions. The tomato fiber suspensions at different concentrations (0.1%–1%, w/w) were subjected to high shear and high pressure homogenization and the morphology (distribution of fiber particles), rheological properties, and color parameters of the homogenized suspensions were measured. The homogenized suspensions were significantly more uniform compared to unhomogenized suspension. The homogenized suspensions were found to better resist the deformation caused by external stress (creep behavior). The apparent viscosity and storage and loss modulus of homogenized tomato fiber suspension are comparable with those of commercial tomato ketchup even at the fiber concentration as low as 0.5% (w/w), implying the possibility of using tomato fiber as thickener. The model tomato sauce produced using tomato fiber showed desirable consistency and color. These results indicate that the application of tomato fiber in tomato-based food products would be desirable and beneficial. PMID:29743890

  7. Elastic modulus and internal friction of SOFC electrolytes at high temperatures under controlled atmospheres

    Science.gov (United States)

    Kushi, Takuto; Sato, Kazuhisa; Unemoto, Atsushi; Hashimoto, Shinichi; Amezawa, Koji; Kawada, Tatsuya

    2011-10-01

    Mechanical properties such as Young's modulus, shear modulus, Poisson's ratio and internal friction of conventional electrolyte materials for solid oxide fuel cells, Zr0.85Y0.15 O1.93 (YSZ), Zr0.82Sc0.18O1.91 (ScSZ), Zr0.81Sc0.18Ce0.01O2-δ (ScCeSZ), Ce0.9Gd0.1O2-δ (GDC), La0.8Sr0.2Ga0.8Mg0.15Co0.05O3-δ (LSGMC), La0.8Sr0.2Ga0.8Mg0.2O3-δ (LSGM), were evaluated by a resonance method at temperatures from room temperature to 1273 K in various oxygen partial pressures. The Young's modulus of GDC gradually decreased with increasing temperature in oxidizing conditions. The Young's moduli of the series of zirconia and lanthanum gallate based materials drastically decreased in an intermediate temperature range and increased slightly with increasing temperature at higher temperatures. The Young's modulus of GDC considerably decreased above 823 K in reducing atmospheres in response to the change of oxygen nonstoichiometry. However, temperature dependences of the Young's moduli of ScCeSZ and LSGMC in reducing atmospheres did not show any significant differences with those in oxidizing atmospheres.

  8. Young modulus variation of a brickwork masonry element submitted to high temperatures

    Directory of Open Access Journals (Sweden)

    Maciá, M. E.

    2013-03-01

    Full Text Available In order to understand the thermal behavior of the masonry elements submitted to high temperatures we need to know the variation of their thermal properties with regard to the temperature. Submitted to high temperatures clay brick masonry presents thermomechanical effects (as the variation of Young's modulus, the thermal expansion of the unit and the mortar, spalling, losses of resistance … as well as variation of the properties of the material as result of its degradation. In this article the variation of the module of elasticity of the unit and the mortar is described with regard to high temperatures according to the state of the knowledge. In this article is also exposed the results obtained from the experimental program carried out on elements of clay brick masonry submitted to high temperatures in order to observe the variation of Young's module related to temperature.

    La definición del comportamiento térmico de los elementos de fábrica sometidos a la acción del fuego requiere del conocimiento de la variación de sus propiedades termomecánicas con respecto a la temperatura. Ante las altas temperaturas la fábrica cerámica presenta efectos termomecánicos, como la variación del módulo de Young entre otros, así como la variación de las propiedades del material debidas a la degradación del mismo. En este artículo se describe la variación del módulo de elasticidad de la pieza y el mortero con respecto a altas temperaturas según el estado del conocimiento y se exponen los resultados obtenidos del programa experimental llevado a cabo sobre elementos de fábrica sometidos a altas temperaturas con el fin de observar la variación del módulo de Young con respecto a la temperatura.

  9. Optimisation of hybrid high-modulus/high-strength carbon fiber reinforced plastic composite drive

    OpenAIRE

    Montagnier, Olivier; Hochard, Christian

    2011-01-01

    International audience; This study deals with the optimisation of hybrid composite drive shafts operating at subcritical or supercritical speeds, using a genetic algorithm. A formulation for the flexural vibrations of a composite drive shaft mounted on viscoelastic supports including shear effects is developed. In particular, an analytic stability criterion is developed to ensure the integrity of the system in the supercritical regime. Then it is shown that the torsional strength can be compu...

  10. In situ determination of a rock mass modulus using a high resolution tiltmeter

    Energy Technology Data Exchange (ETDEWEB)

    Saleh, B.; Husein Malkawi, A.I. [University of Jordan, Amman (Jordan); Blum, P.A. [Universite Pierre et Marie Curie, 75 - Paris (France)

    1996-04-01

    A very sensitive, compact tiltmeter made of melted silica, developed for the measurement of small deformations of various civil engineering structures, was described. The instrument is capable of giving a continuous record and was used to establish a new approach to directly evaluating the in situ average elastic rock mass modulus. Such information is important in decision making during the design stages of large civil engineering works, such as dams, nuclear plant facilities, and underground structures. Five tiltmeters were installed on the facades of the Louvre in Paris to study the deformation induced by internal structural work and by the impact of the Paris metro traffic movement. The data was used to determine displacement using the Boussinesq equation. Results were consistent with typical elastic rock-mass modulus for the rock found in the museum`s foundations. 13 refs., 1 tab., 10 figs.

  11. Evaluation of Young’s modulus of MgB2 filaments in composite wires for the superconducting links for the high-luminosity LHC upgrade

    Science.gov (United States)

    Sugano, Michinaka; Ballarino, Amalia; Bartova, Barbora; Bjoerstad, Roger; Gerardin, Alexandre; Scheuerlein, Christian

    2016-02-01

    MgB2 wire is a promising superconductor for the superconducting links for the high-luminosity upgrade of the large Hadron collider at CERN. The mechanical properties of MgB2 must be fully quantified for the cable design, and in this study, we evaluate the Young’s modulus of MgB2 filaments in wires with a practical level of critical current. The Young’s moduli of MgB2 filaments by two different processes, in situ and ex situ, were compared. Two different evaluation methods were applied to an in situ MgB2 wire, a single-fiber tensile test and a tensile test after removing Monel. In addition, the Young’s modulus of the few-micron-thick Nb-Ni reaction layer in an ex situ processed wire was evaluated using a nanoindentation testing technique to improve the accuracy of analysis based on the rule of mixtures. The Young’s moduli of the in situ and ex situ MgB2 wires were in the range of 76-97 GPa and no distinct difference depending on the fabrication process was found.

  12. submitter Evaluation of Young’s modulus of MgB2 filaments in composite wires for the superconducting links for the high-luminosity LHC upgrade

    CERN Document Server

    Sugano, Michinaka; Bartova, Barbora; Bjoerstad, Roger; Gerardin, Alexandre; Scheuerlein, Christian

    2015-01-01

    MgB2 wire is a promising superconductor for the superconducting links for the high-luminosity upgrade of the large Hadron collider at CERN. The mechanical properties of MgB2 must be fully quantified for the cable design, and in this study, we evaluate the Young's modulus of MgB2 filaments in wires with a practical level of critical current. The Young's moduli of MgB2 filaments by two different processes, in situ and ex situ, were compared. Two different evaluation methods were applied to an in situ MgB2 wire, a single-fiber tensile test and a tensile test after removing Monel. In addition, the Young's modulus of the few-micron-thick Nb–Ni reaction layer in an ex situ processed wire was evaluated using a nanoindentation testing technique to improve the accuracy of analysis based on the rule of mixtures. The Young's moduli of the in situ and ex situ MgB2 wires were in the range of 76–97 GPa and no distinct difference depending on the fabrication process was found.

  13. Advanced specialty fiber designs for high power fiber lasers

    Science.gov (United States)

    Gu, Guancheng

    The output power of fiber lasers has increased rapidly over the last decade. There are two major limiting factors, namely nonlinear effects and transverse mode instability, prohibiting the power scaling capability of fiber lasers. The nonlinear effects, originating from high optical intensity, primarily limit the peak power scaling. The mode instability, on the other hand, arises from quantum-defect driven heating, causing undesired mode coupling once the power exceeds the threshold and degradation of beam quality. The mode instability has now become the bottleneck for average output power scaling of fiber lasers. Mode area scaling is the most effective way to mitigate nonlinear effects. However, the use of large mode area may increase the tendency to support multiple modes in the core, resulting in lower mode instability threshold. Therefore, it is critical to maintain single mode operation in a large mode area fiber. Sufficient higher order mode suppression can lead to effective single-transverse-mode propagation. In this dissertation, we explore the feasibility of using specialty fiber to construct high power fiber lasers with robust single-mode output. The first type of fiber discussed is the resonantly-enhanced leakage channel fiber. Coherent reflection at the fiber outer boundary can lead to additional confinement especially for highly leaky HOM, leading to lower HOM losses than what are predicted by conventional finite element mothod mode solver considering infinite cladding. In this work, we conducted careful measurements of HOM losses in two leakage channel fibers (LCF) with circular and rounded hexagonal boundary shapes respectively. Impact on HOM losses from coiling, fiber boundary shapes and coating indexes were studied in comparison to simulations. This work demonstrates the limit of the simulation method commonly used in the large-mode-area fiber designs and the need for an improved approach. More importantly, this work also demonstrates that a

  14. Relationship between low-temperature boson heat capacity peak and high-temperature shear modulus relaxation in a metallic glass

    International Nuclear Information System (INIS)

    Vasiliev, A. N.; Voloshok, T. N.; Granato, A. V.; Joncich, D. M.; Mitrofanov, Yu. P.; Khonik, V. A.

    2009-01-01

    Low-temperature (2 K≤T≤350 K) heat capacity and room-temperature shear modulus measurements (ν=1.4 MHz) have been performed on bulk Pd 41.25 Cu 41.25 P 17.5 in the initial glassy, relaxed glassy, and crystallized states. It has been found that the height of the low-temperature Boson heat capacity peak strongly correlates with the changes in the shear modulus upon high-temperature annealing. It is this behavior that was earlier predicted by the interstitialcy theory, according to which dumbbell interstitialcy defects are responsible for a number of thermodynamic and kinetic properties of crystalline, (supercooled) liquid, and solid glassy states.

  15. Advances in Computational High-Resolution Mechanical Spectroscopy HRMS Part II: Resonant Frequency – Young's Modulus

    International Nuclear Information System (INIS)

    Majewski, M; Magalas, L B

    2012-01-01

    In this paper, we compare the values of the resonant frequency f 0 of free decaying oscillations computed according to the parametric OMI method (Optimization in Multiple Intervals) and nonparametric DFT-based (discrete Fourier transform) methods as a function of the sampling frequency. The analysis is carried out for free decaying signals embedded in an experimental noise recorded for metallic samples in a low-frequency resonant mechanical spectrometer. The Yoshida method (Y), the Agrez' method (A), and new interpolated discrete Fourier transform (IpDFT) methods, that is, the Yoshida-Magalas (YM) and (YM C ) methods developed by the authors are carefully compared for the resonant frequency f 0 = 1.12345 Hz and the logarithmic decrement, δ = 0.0005. Precise estimation of the resonant frequency (Youngs' modulus ∼ f 0 2 ) for real experimental conditions, i.e., for exponentially damped harmonic signals embedded in an experimental noise, is a complex task. In this work, various computing methods are analyzed as a function of the sampling frequency used to digitize free decaying oscillations. The importance of computing techniques to obtain reliable and precise values of the resonant frequency (i.e. Young's modulus) in materials science is emphasized.

  16. Fiber facet gratings for high power fiber lasers

    Science.gov (United States)

    Vanek, Martin; Vanis, Jan; Baravets, Yauhen; Todorov, Filip; Ctyroky, Jiri; Honzatko, Pavel

    2017-12-01

    We numerically investigated the properties of diffraction gratings designated for fabrication on the facet of an optical fiber. The gratings are intended to be used in high-power fiber lasers as mirrors either with a low or high reflectivity. The modal reflectance of low reflectivity polarizing grating has a value close to 3% for TE mode while it is significantly suppressed for TM mode. Such a grating can be fabricated on laser output fiber facet. The polarizing grating with high modal reflectance is designed as a leaky-mode resonant diffraction grating. The grating can be etched in a thin layer of high index dielectric which is sputtered on fiber facet. We used refractive index of Ta2O5 for such a layer. We found that modal reflectance can be close to 0.95 for TE polarization and polarization extinction ratio achieves 18 dB. Rigorous coupled wave analysis was used for fast optimization of grating parameters while aperiodic rigorous coupled wave analysis, Fourier modal method and finite difference time domain method were compared and used to compute modal reflectance of designed gratings.

  17. Effects of creep and oxidation on reduced modulus in high-temperature nanoindentation

    International Nuclear Information System (INIS)

    Li, Yan; Fang, Xufei; Lu, Siyuan; Yu, Qingmin; Hou, Guohui; Feng, Xue

    2016-01-01

    Nanoindentation tests were performed on single crystal Ni-based superalloy at temperatures ranging from 20 °C to 800 °C in inert environment. Load-displacement curves at temperatures higher than 500 °C exhibit obvious creep inferred by increasing displacements at load-holding segments. Load-displacement curves obtained at 800 °C also display negative unloading stiffness. Examination of the microstructure beneath the indented area using Transmission Electron Microscope (TEM) reveals abundant dislocation piling up as well as oxide formation on the substrate. A method considering the creep effect is proposed to calculate the reduced modulus. In addition, a dimensionless ratio relating indentation depth and oxide film thickness is introduced to explain the oxidation effect on the mechanical properties derived from the load-displacement curves.

  18. High Frequency Acoustic Microscopy for the Determination of Porosity and Young's Modulus in High Burnup Uranium Dioxide Nuclear Fuel

    Science.gov (United States)

    Marchetti, Mara; Laux, Didier; Cappia, Fabiola; Laurie, M.; Van Uffelen, P.; Rondinella, V. V.; Wiss, T.; Despaux, G.

    2016-06-01

    During irradiation UO2 nuclear fuel experiences the development of a non-uniform distribution of porosity which contributes to establish varying mechanical properties along the radius of the pellet. Radial variations of both porosity and elastic properties in high burnup UO2 pellet can be investigated via high frequency acoustic microscopy. For this purpose ultrasound waves are generated by a piezoelectric transducer and focused on the sample, after having travelled through a coupling liquid. The elastic properties of the material are related to the velocity of the generated Rayleigh surface wave (VR). A UO2 pellet with a burnup of 67 GWd/tU was characterized using the acoustic microscope installed in the hot cells of the JRC-ITU at a 90 MHz frequency, with methanol as coupling liquid. VR was measured at different radial positions. A good agreement was found, when comparing the porosity values obtained via acoustic microscopy with those determined using SEM image analysis, especially in the areas close to the centre. In addition, Young's modulus was calculated and its radial profile was correlated to the corresponding burnup profile and to the hardness radial profile data obtained by Vickers micro-indentation.

  19. Fiber Scrambling for High Precision Spectrographs

    Science.gov (United States)

    Kaplan, Zachary; Spronck, J. F. P.; Fischer, D.

    2011-05-01

    The detection of Earth-like exoplanets with the radial velocity method requires extreme Doppler precision and long-term stability in order to measure tiny reflex velocities in the host star. Recent planet searches have led to the detection of so called "super-Earths” (up to a few Earth masses) that induce radial velocity changes of about 1 m/s. However, the detection of true Earth analogs requires a precision of 10 cm/s. One of the largest factors limiting Doppler precision is variation in the Point Spread Function (PSF) from observation to observation due to changes in the illumination of the slit and spectrograph optics. Thus, this stability has become a focus of current instrumentation work. Fiber optics have been used since the 1980's to couple telescopes to high-precision spectrographs, initially for simpler mechanical design and control. However, fiber optics are also naturally efficient scramblers. Scrambling refers to a fiber's ability to produce an output beam independent of input. Our research is focused on characterizing the scrambling properties of several types of fibers, including circular, square and octagonal fibers. By measuring the intensity distribution after the fiber as a function of input beam position, we can simulate guiding errors that occur at an observatory. Through this, we can determine which fibers produce the most uniform outputs for the severest guiding errors, improving the PSF and allowing sub-m/s precision. However, extensive testing of fibers of supposedly identical core diameter, length and shape from the same manufacturer has revealed the "personality” of individual fibers. Personality describes differing intensity patterns for supposedly duplicate fibers illuminated identically. Here, we present our results on scrambling characterization as a function of fiber type, while studying individual fiber personality.

  20. High Power Fiber Laser Test Bed

    Data.gov (United States)

    Federal Laboratory Consortium — This facility, unique within DoD, power-combines numerous cutting-edge fiber-coupled laser diode modules (FCLDM) to integrate pumping of high power rare earth-doped...

  1. Nanocrystalline β-Ti alloy with high hardness, low Young's modulus and excellent in vitro biocompatibility for biomedical applications

    International Nuclear Information System (INIS)

    Xie, Kelvin Y.; Wang, Yanbo; Zhao, Yonghao; Chang, Li; Wang, Guocheng; Chen, Zibin; Cao, Yang; Liao, Xiaozhou; Lavernia, Enrique J.; Valiev, Ruslan Z.; Sarrafpour, Babak; Zoellner, Hans; Ringer, Simon P.

    2013-01-01

    High strength, low Young's modulus and good biocompatibility are desirable but difficult to simultaneously achieve in metallic implant materials for load bearing applications, and these impose significant challenges in material design. Here we report that a nano-grained β-Ti alloy prepared by high-pressure torsion exhibits remarkable mechanical and biological properties. The hardness and modulus of the nano-grained Ti alloy were respectively 23% higher and 34% lower than those of its coarse-grained counterpart. Fibroblast cell attachment and proliferation were enhanced, demonstrating good in vitro biocompatibility of the nano-grained Ti alloy, consistent with demonstrated increased nano-roughness on the nano-grained Ti alloy. Results suggest that the nano-grained β-Ti alloy may have significant application as an implant material in dental and orthopedic applications. - Highlights: • A bulk nanocrystalline β-Ti alloy was produced by high-pressure torsion processing. • Excellent mechanical properties for biomedical implants were obtained. • Enhanced in vitro biocompatibility was also demonstrated

  2. Structure and bulk modulus of Ln-doped UO{sub 2} (Ln = La, Nd) at high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Rittman, Dylan R., E-mail: drittman@stanford.edu [Department of Geological Sciences, Stanford University, Stanford, CA 94305 (United States); Park, Sulgiye; Tracy, Cameron L. [Department of Geological Sciences, Stanford University, Stanford, CA 94305 (United States); Zhang, Lei [Peter A. Rock Thermochemistry Laboratory and NEAT ORU, University of California Davis, Davis, CA 95616 (United States); Department of Chemical Engineering and Materials Science, University of California Davis, Davis, CA 95616 (United States); Palomares, Raul I.; Lang, Maik [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Navrotsky, Alexandra [Peter A. Rock Thermochemistry Laboratory and NEAT ORU, University of California Davis, Davis, CA 95616 (United States); Department of Chemical Engineering and Materials Science, University of California Davis, Davis, CA 95616 (United States); Mao, Wendy L. [Department of Geological Sciences, Stanford University, Stanford, CA 94305 (United States); Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Ewing, Rodney C. [Department of Geological Sciences, Stanford University, Stanford, CA 94305 (United States)

    2017-07-15

    The structure of lanthanide-doped uranium dioxide, Ln{sub x}U{sub 1-x}O{sub 2-0.5x+y} (Ln = La, Nd), was investigated at pressures up to ∼50–55 GPa. Samples were synthesized with different lanthanides at different concentrations (x ∼ 0.2 and 0.5), and all were slightly hyperstoichiometric (y ∼ 0.25–0.4). In situ high-pressure synchrotron X-ray diffraction was used to investigate their high-pressure phase behavior and determine their bulk moduli. All samples underwent a fluorite-to-cotunnite phase transformation with increasing pressure. The pressure of the phase transformation increased with increasing hyperstoichiometry, which is consistent with results from previous computational simulations. Bulk moduli are inversely proportional to both the ionic radius of the lanthanide and its concentration, as quantified using a weighted cationic radius ratio. This trend was found to be consistent with the behavior of other elastic properties measured for Ln-doped UO{sub 2}, such as Young's modulus. - Highlights: •Ln-doped UO{sub 2} transforms from fluorite to cotunnite at high pressure. •Transition pressure increases with increasing hyperstoichiometry. •Bulk modulus decreases with increasing Ln-dopant radius and concentration.

  3. Silorane- and high filled-based"low-shrinkage" resin composites: shrinkage, flexural strength and modulus

    Directory of Open Access Journals (Sweden)

    Cesar Augusto Galvão Arrais

    2013-04-01

    Full Text Available This study compared the volumetric shrinkage (VS, flexural strength (FS and flexural modulus (FM properties of the low-shrinkage resin composite Aelite LS (Bisco to those of Filtek LS (3M ESPE and two regular dimethacrylate-based resin composites, the microfilled Heliomolar (Ivoclar Vivadent and the microhybrid Aelite Universal (Bisco. The composites (n = 5 were placed on the Teflon pedestal of a video-imaging device, and VS was recorded every minute for 5 min after 40 s of light exposure. For the FS and FM tests, resin discs (0.6 mm in thickness and 6.0 mm in diameter were obtained (n = 12 and submitted to a piston-ring biaxial test in a universal testing machine. VS, FS, and FM data were submitted to two-way repeated measures and one-way ANOVA, respectively, followed by Tukey's post-hoc test (a = 5%. Filtek LS showed lower VS than did Aelite LS, which in turn showed lower shrinkage than did the other composites. Aelite Universal and Filtek LS exhibited higher FS than did Heliomolar and Aelite LS, both of which exhibited the highest FM. No significant difference in FM was noted between Filtek LS and Aelite Universal, while Heliomolar exhibited the lowest values. Aelite LS was not as effective as Filtek LS regarding shrinkage, although both low-shrinkage composites showed lower VS than did the other composites. Only Filtek LS exhibited FS and FM comparable to those of the regular microhybrid dimethacrylate-based resin composite.

  4. Experimental determination of bulk modulus of 14Å tobermorite using high pressure synchrotron X-ray diffraction

    KAUST Repository

    Oh, Jae Eun; Clark, Simon M.; Wenk, Hans-Rudolf; Monteiro, Paulo J.M.

    2012-01-01

    Using a diamond anvil cell, 14 Å tobermorite, a structural analogue of calcium silicate hydrates (C-S-H), was examined by high-pressure synchrotron X-ray diffraction up to 4.8 GPa under hydrostatic conditions. The bulk modulus of 14 Å tobermorite was calculated, K o = 47 GPa. Comparison of the current results with previous high pressure studies on C-S-H(I) indicates that: (1) the compression behavior of the lattice parameters a and b of 14 Å tobermorite and C-S-H(I) are very similar, implying that both materials may have very similar Ca-O layers, and also implying that an introduction of structural defects into the Ca-O layers may not substantially change in-plane incompressibility of the ab plane of 14 Å tobermorite; and (2) the bulk modulus values of 14 Å tobermorite and C-S-H(I) are dominated by the incompressibility of the lattice parameter c, which is directly related to the interlayer spacing composed of dreierketten silicate chains, interlayer Ca, and water molecules. © 2011 Elsevier Ltd. All rights reserved.

  5. Experimental determination of bulk modulus of 14Å tobermorite using high pressure synchrotron X-ray diffraction

    KAUST Repository

    Oh, Jae Eun

    2012-02-01

    Using a diamond anvil cell, 14 Å tobermorite, a structural analogue of calcium silicate hydrates (C-S-H), was examined by high-pressure synchrotron X-ray diffraction up to 4.8 GPa under hydrostatic conditions. The bulk modulus of 14 Å tobermorite was calculated, K o = 47 GPa. Comparison of the current results with previous high pressure studies on C-S-H(I) indicates that: (1) the compression behavior of the lattice parameters a and b of 14 Å tobermorite and C-S-H(I) are very similar, implying that both materials may have very similar Ca-O layers, and also implying that an introduction of structural defects into the Ca-O layers may not substantially change in-plane incompressibility of the ab plane of 14 Å tobermorite; and (2) the bulk modulus values of 14 Å tobermorite and C-S-H(I) are dominated by the incompressibility of the lattice parameter c, which is directly related to the interlayer spacing composed of dreierketten silicate chains, interlayer Ca, and water molecules. © 2011 Elsevier Ltd. All rights reserved.

  6. Study on Mechanical Properties of Hybrid Fiber Reinforced Concrete

    Science.gov (United States)

    He, Dongqing; Wu, Min; Jie, Pengyu

    2017-12-01

    Several common high elastic modulus fibers (steel fibers, basalt fibers, polyvinyl alcohol fibers) and low elastic modulus fibers (polypropylene fiber) are incorporated into the concrete, and its cube compressive strength, splitting tensile strength and flexural strength are studied. The test result and analysis demonstrate that single fiber and hybrid fiber will improve the integrity of the concrete at failure. The mechanical properties of hybrid steel fiber-polypropylene fiber reinforced concrete are excellent, and the cube compressive strength, splitting tensile strength and flexural strength respectively increase than plain concrete by 6.4%, 3.7%, 11.4%. Doped single basalt fiber or polypropylene fiber and basalt fibers hybrid has little effect on the mechanical properties of concrete. Polyvinyl alcohol fiber and polypropylene fiber hybrid exhibit ‘negative confounding effect’ on concrete, its splitting tensile and flexural strength respectively are reduced by 17.8% and 12.9% than the single-doped polyvinyl alcohol fiber concrete.

  7. High Average Power, High Energy Short Pulse Fiber Laser System

    Energy Technology Data Exchange (ETDEWEB)

    Messerly, M J

    2007-11-13

    Recently continuous wave fiber laser systems with output powers in excess of 500W with good beam quality have been demonstrated [1]. High energy, ultrafast, chirped pulsed fiber laser systems have achieved record output energies of 1mJ [2]. However, these high-energy systems have not been scaled beyond a few watts of average output power. Fiber laser systems are attractive for many applications because they offer the promise of high efficiency, compact, robust systems that are turn key. Applications such as cutting, drilling and materials processing, front end systems for high energy pulsed lasers (such as petawatts) and laser based sources of high spatial coherence, high flux x-rays all require high energy short pulses and two of the three of these applications also require high average power. The challenge in creating a high energy chirped pulse fiber laser system is to find a way to scale the output energy while avoiding nonlinear effects and maintaining good beam quality in the amplifier fiber. To this end, our 3-year LDRD program sought to demonstrate a high energy, high average power fiber laser system. This work included exploring designs of large mode area optical fiber amplifiers for high energy systems as well as understanding the issues associated chirped pulse amplification in optical fiber amplifier systems.

  8. Effect of a High Density of Stacking Faults on the Young's Modulus of GaAs Nanowires.

    Science.gov (United States)

    Chen, Yujie; Burgess, Tim; An, Xianghai; Mai, Yiu-Wing; Tan, H Hoe; Zou, Jin; Ringer, Simon P; Jagadish, Chennupati; Liao, Xiaozhou

    2016-03-09

    Stacking faults (SFs) are commonly observed crystalline defects in III-V semiconductor nanowires (NWs) that affect a variety of physical properties. Understanding the effect of SFs on NW mechanical properties is critical to NW applications in nanodevices. In this study, the Young's moduli of GaAs NWs with two distinct structures, defect-free single crystalline wurtzite (WZ) and highly defective wurtzite containing a high density of SFs (WZ-SF), are investigated using combined in situ compression transmission electron microscopy and finite element analysis. The Young's moduli of both WZ and WZ-SF GaAs NWs were found to increase with decreasing diameter due to the increasing volume fraction of the native oxide shell. The presence of a high density of SFs was further found to increase the Young's modulus by 13%. This stiffening effect of SFs is attributed to the change in the interatomic bonding configuration at the SFs.

  9. Isolation of aramid nanofibers for high strength multiscale fiber reinforced composites

    Science.gov (United States)

    Lin, Jiajun; Patterson, Brendan A.; Malakooti, Mohammad H.; Sodano, Henry A.

    2018-03-01

    Aramid fibers are famous for their high specific strength and energy absorption properties and have been intensively used for soft body armor and ballistic protection. However, the use of aramid fiber reinforced composites is barely observed in structural applications. Aramid fibers have smooth and inert surfaces that are unable to form robust adhesion to polymeric matrices due to their high crystallinity. Here, a novel method to effectively integrate aramid fibers into composites is developed through utilization of aramid nanofibers. Aramid nanofibers are prepared from macroscale aramid fibers (such as Kevlar®) and isolated through a simple and scalable dissolution method. Prepared aramid nanofibers are dispersible in many polymers due to their improved surface reactivity, meanwhile preserve the conjugated structure and likely the strength of their macroscale counterparts. Simultaneously improved elastic modulus, strength and fracture toughness are observed in aramid nanofiber reinforced epoxy nanocomposites. When integrated in continuous fiber reinforced composites, aramid nanofibers can also enhance interfacial properties by forming hydrogen bonds and π-π coordination to bridge matrix and macroscale fibers. Such multiscale reinforcement by aramid nanofibers and continuous fibers results in strong polymeric composites with robust mechanical properties that are necessary and long desired for structural applications.

  10. Small compression modulus of the flux line lattice and large density fluctuations at high fields may explain peak effect

    International Nuclear Information System (INIS)

    Brandt, E.H.

    1976-01-01

    The elastic properties of the flux line lattice in Type II superconductors as calculated from the Ginsburg-Landau theory are discussed. They are non-local on a length scale much larger than the flux line distance and divergent at Hsub(c2). The compression modulus may become much smaller than its long-wavelength limit, B 2 /4π, and if the deformation is not homogeneous, at Hsub(c2) the modulus vanishes as (Hsub(c2) - B) 2 . At arbitrary induction the compression modulus of strain waves with wavelengths of several flux line distances is of the order of the (small) shear modulus. (author)

  11. Hull Fiber From DDGS and Corn Grain as Alternative Fillers in Polymer Composites with High Density Polyethylene

    Science.gov (United States)

    Pandey, Pankaj

    The steady increase in corn based ethanol production has resulted in a dramatic rise in the supply of its co-product known as distillers' dried grain with solubles (DDGS). Currently, the main outlet for DDGS is the animal feed industry, but the presence of fibers makes them indigestible by non-ruminants such as swine and poultry. Separation of fiber from DDGS would increase the nutritional value of DDGS with higher protein and fat contents and reduced fiber content. The fiber from DDGS can be separated through a physical separation process known as elusieve. The DDGS fiber has the potential to be used as a fiber filler in thermoplastic composites. This research project evaluates DDGS fiber as a filler in thermoplastic composites. The fibers from corn hull and DDGS have been used as fillers at 30% and 50% fiber loading in high density polyethylene (HDPE) composites and compared against a standard oak fiber filler composites at a lab scale. DDGS and corn fiber composites showed comparable mechanical properties as the oak wood fiber HDPE composites. Further evaluation was completed on the performance of composite samples at commercial scale with six combinations of oak fiber, corn hull fiber and DDGS fiber with fiber loading maintained at 50%, and then samples were exposed to UV accelerated weathering for 2000 h. The UV weathering decreased the mechanical properties of all the exposed samples compared to the unexposed samples. Also, UV weathering resulted in a severe chain scission of the HDPE polymer, increasing their crystallinity. The performance of mercerized or sodium hydroxide (NaOH) treated DDGS fiber as filler was investigated by characterizing the effects of treated and untreated DDGS fibers on physical, mechanical, and thermal properties of HDPE composites. The NaOH treated DDGS fiber at 25% loading showed consistent improvement in flexural and tensile modulus of elasticities of the composites compared to the neat HDPE.

  12. Effect of High Energy Radiation on Mechanical Properties of Graphite Fiber Reinforced Composites. M.S. Thesis

    Science.gov (United States)

    Naranong, N.

    1980-01-01

    The flexural strength and average modulus of graphite fiber reinforced composites were tested before and after exposure to 0.5 Mev electron radiation and 1.33 Mev gamma radiation by using a three point bending test (ASTM D-790). The irradiation was conducted on vacuum treated samples. Graphite fiber/epoxy (T300/5208), graphite fiber/polyimide (C6000/PMR 15) and graphite fiber/polysulfone (C6000/P1700) composites after being irradiated with 0.5 Mev electron radiation in vacuum up to 5000 Mrad, show increases in stress and modulus of approximately 12% compared with the controls. Graphite fiber/epoxy (T300/5208 and AS/3501-6), after being irradiated with 1.33 Mev gamma radiation up to 360 Mrads, show increases in stress and modulus of approximately 6% at 167 Mrad compared with the controls. Results suggest that the graphite fiber composites studied should withstand the high energy radiation in a space environment for a considerable time, e.g., over 30 years.

  13. High-capacity optical long data memory based on enhanced Young's modulus in nanoplasmonic hybrid glass composites.

    Science.gov (United States)

    Zhang, Qiming; Xia, Zhilin; Cheng, Yi-Bing; Gu, Min

    2018-03-22

    Emerging as an inevitable outcome of the big data era, long data are the massive amount of data that captures changes in the real world over a long period of time. In this context, recording and reading the data of a few terabytes in a single storage device repeatedly with a century-long unchanged baseline is in high demand. Here, we demonstrate the concept of optical long data memory with nanoplasmonic hybrid glass composites. Through the sintering-free incorporation of nanorods into the earth abundant hybrid glass composite, Young's modulus is enhanced by one to two orders of magnitude. This discovery, enabling reshaping control of plasmonic nanoparticles of multiple-length allows for continuous multi-level recording and reading with a capacity over 10 terabytes with no appreciable change of the baseline over 600 years, which opens new opportunities for long data memory that affects the past and future.

  14. Design and Construction of Large Amyloid Fibers

    OpenAIRE

    Ridgley, Devin M.; Rippner, Caitlin M. W.; Barone, Justin R.

    2015-01-01

    Mixtures of “template” and “adder” proteins self-assemble into large amyloid fibers of varying morphology and modulus. Fibers range from low modulus, rectangular cross-sectioned tapes to high modulus, circular cross-sectioned cylinders. Varying the proteins in the mixture can elicit “in-between” morphologies, such as elliptical cross-sectioned fibers and twisted tapes, both of which have moduli in-between rectangular tapes and cylindrical fibers. Experiments on mixtures of proteins of known a...

  15. Influence of the Testing Gage Length on the Strength, Young's Modulus and Weibull Modulus of Carbon Fibres and Glass Fibres

    Directory of Open Access Journals (Sweden)

    Luiz Claudio Pardini

    2002-10-01

    Full Text Available Carbon fibres and glass fibres are reinforcements for advanced composites and the fiber strength is the most influential factor on the strength of the composites. They are essentially brittle and fail with very little reduction in cross section. Composites made with these fibres are characterized by a high strength/density ratio and their properties are intrisically related to their microstructure, i.e., amount and orientation of the fibres, surface treatment, among other factors. Processing parameters have an important role in the fibre mechanical behaviour (strength and modulus. Cracks, voids and impurities in the case of glass fibres and fibrillar misalignments in the case of carbon fibres are created during processing. Such inhomogeneities give rise to an appreciable scatter in properties. The most used statistical tool that deals with this characteristic variability in properties is the Weibull distribution. The present work investigates the influence of the testing gage length on the strength, Young's modulus and Weibull modulus of carbon fibres and glass fibres. The Young's modulus is calculated by two methods: (i ASTM D 3379M, and (ii interaction between testing equipment/specimen The first method resulted in a Young modulus of 183 GPa for carbon fibre, and 76 GPa for glass fibre. The second method gave a Young modulus of 250 GPa for carbon fibre and 50 GPa for glass fibre. These differences revelead differences on how the interaction specimen/testing machine can interfere in the Young modulus calculations. Weibull modulus can be a tool to evaluate the fibre's homogeneity in terms of properties and it is a good quality control parameter during processing. In the range of specimen gage length tested the Weibull modulus for carbon fibre is ~ 3.30 and for glass fibres is ~ 5.65, which indicates that for the batch of fibres tested, the glass fibre is more uniform in properties.

  16. Elastic modulus and flexural strength comparisons of high-impact and traditional denture base acrylic resins

    Directory of Open Access Journals (Sweden)

    Nour M. Ajaj-ALKordy

    2014-01-01

    Conclusion: Within the limitations of this study, it can be concluded that the high-impact acrylic resin is a suitable denture base material for patients with clinical fracture of the acrylic denture.

  17. Photonic crystal fiber technology for compact fiber-delivered high-power ultrafast fiber lasers

    Science.gov (United States)

    Triches, Marco; Michieletto, Mattia; Johansen, Mette M.; Jakobsen, Christian; Olesen, Anders S.; Papior, Sidsel R.; Kristensen, Torben; Bondue, Magalie; Weirich, Johannes; Alkeskjold, Thomas T.

    2018-02-01

    Photonic crystal fiber (PCF) technology has radically impacted the scientific and industrial ultrafast laser market. Reducing platform dimensions are important to decrease cost and footprint while maintaining high optical efficiency. We present our recent work on short 85 μm core ROD-type fiber amplifiers that maintain single-mode performance and excellent beam quality. Robust long-term performance at 100 W average power and 250 kW peak power in 20 ps pulses at 1030 nm wavelength is presented, exceeding 500 h with stable performance in terms of both polarization and power. In addition, we present our recent results on hollow-core ultrafast fiber delivery maintaining high beam quality and polarization purity.

  18. Mechanical behavior of high strength ceramic fibers at high temperatures

    Science.gov (United States)

    Tressler, R. E.; Pysher, D. J.

    1991-01-01

    The mechanical behavior of commercially available and developmental ceramic fibers, both oxide and nonoxide, has been experimentally studied at expected use temperatures. In addition, these properties have been compared to results from the literature. Tensile strengths were measured for three SiC-based and three oxide ceramic fibers for temperatures from 25 C to 1400 C. The SiC-based fibers were stronger but less stiff than the oxide fibers at room temperature and retained more of both strength and stiffness to high temperatures. Extensive creep and creep-rupture experiments have been performed on those fibers from this group which had the best strengths above 1200 C in both single filament tests and tests of fiber bundles. The creep rates for the oxides are on the order of two orders of magnitude faster than the polymer derived nonoxide fibers. The most creep resistant filaments available are single crystal c-axis sapphire filaments. Large diameter CVD fabricated SiC fibers are the most creep and rupture resistant nonoxide polycrystalline fibers tested to date.

  19. Composite materials based on high-modulus compounds for additive technology

    Science.gov (United States)

    Grigoriev, M.; Kotelnikov, N.; Buyakova, S.; Kulkov, S.

    2016-07-01

    The effect of adding nanocrystalline ZrO2 and submicron TiC to ultrafine Al2O3 on mechanical properties and the microstructure of the composites developed by hot pressing was investigated. It was shown that by means of hot pressing in argon atmosphere at the sintering temperature of 1500 °C one can obtain the composites of Al2O3-ZrO2-TiC with a fine structure and minimal porosity. It was shown that in the material a multi-scale hierarchical structure is formed, which possesses high physical and mechanical properties: the hardness and fracture toughness was 22 GPa and 5.2 MPa*m1/2, respectively. It has been shown that mechanical properties of the composite are better than those of commercial composites based on aluminum oxide (Al2O3, ZTA, Al2O3-TiC) and are comparable to those of silicon nitride.

  20. Preparation of High Modulus Poly(Ethylene Terephthalate: Influence of Molecular Weight, Extrusion, and Drawing Parameters

    Directory of Open Access Journals (Sweden)

    Jian Min Zhang

    2017-01-01

    Full Text Available Poly(ethylene terephthalate (PET which is one of the most commercially important polymers, has for many years been an interesting candidate for the production of high performance fibres and tapes. In current study, we focus on investigating the effects of the various processing variables on the mechanical properties of PET produced by a distinctive process of melt spinning and uniaxial two-stage solid-state drawing (SSD. These processing variables include screw rotation speed during extrusion, fibre take-up speed, molecular weight, draw-ratio, and drawing temperature. As-spun PET production using a single-screw extrusion process was first optimized to induce an optimal polymer microstructure for subsequent drawing processes. It was found that less crystallization which occurred during this process would lead to better drawability, higher draw-ratio, and mechanical properties in the subsequent SSD process. Then the effect of drawing temperature (DT in uniaxial two-stage SSD process was studied to understand how DT (

  1. Young Modulus of Crystalline Polyethylene from ab Initio Molecular Dynamics

    NARCIS (Netherlands)

    Hageman, J.C.L.; Meier, Robert J.; Heinemann, M.; Groot, R.A. de

    1997-01-01

    The Young modulus for crystalline polyethylene is calculated using ab initio molecular dynamics based on density functional theory in the local density approximation (DFT-LDA). This modulus, which can be seen as the ultimate value for the Young modulus of polyethylene fibers, is found to be 334 GPa.

  2. Fiber optics in high dose radiation fields

    International Nuclear Information System (INIS)

    Partin, J.K.

    1985-01-01

    A review of the behavior of state-of-the-art optical fiber waveguides in high dose (greater than or equal to 10 5 rad), steady state radiation fields is presented. The influence on radiation-induced transmission loss due to experimental parameters such as dose rate, total dose, irradiation history, temperature, wavelength, and light intensity, for future work in high dose environments are given

  3. Pyrolyzed feather fibers for adsorbent and high temperature applications

    Science.gov (United States)

    Senoz, Erman

    Chicken feather fibers (CFF) are problematic and costly for the poultry industry in terms of managing maintenance and disposal. Considering their great availability, low cost, and unique protein structure, CFF can be an environmentally friendly and bio-renewable candidate to replace petroleum products. CFF's low degradation and melting temperature render them useless at high temperatures. Pyrolysis methods were developed for CFF by using two temperature steps to convert them into high temperature resistant and adsorbent fibers while retaining their original physical appearance and affine dimensions. An intermolecular crosslinking mechanism in the first step of pyrolysis at 215 ºC for 24 h provided an intact fibrous structure with no subsequent melting. The evidence obtained from the thermal, bulk, and surface analysis techniques was indication of the simultaneous side chain degradation, polypeptide backbone scission, disulfide bond cleavage, and isopeptide crosslinking. The variation in the reaction kinetics of disulfide bond cleavage and isopeptide crosslinking played an important role in the melting transition. Consequently, long-lasting heat treatments below the melting point provided sufficient crosslinks in the protein matrix to keep the fibrous structure intact. Water-insoluble and crosslinked CFF reinforced the triglyceride-fatty acid based composites by providing a 15 fold increase in storage and tensile modulus at room temperature. These thermally stable fibers can be used instead of CFF in composites which may require high temperature compounding and molding processes. The second step of pyrolysis at 400--450 ºC for 1 h resulted in microporous fibers with a micropore volume of ˜0.18 cm3/g STP and with a narrower pore size distribution than commercial activated carbons through thermal degradation. Nearly all accessible pores in the microporous pyrolyzed chicken feather fibers (PCFF) had diameters less than 1 nm and therefore, showed a potential to be

  4. Effect of young’s modulus on springback for low, medium and high carbon steels during cold drawing of seamless tubes

    Science.gov (United States)

    Karanjule, D. B.; Bhamare, S. S.; Rao, T. H.

    2018-04-01

    Cold drawing is widely used deformation process for seamless tube manufacturing. Springback is one of the major problem faced in tube drawing. Springback is due to the elastic energy stored in the tubes during forming process. It is found that this springback depends upon Young’s modulus of the material. This paper reports mechanical testing of three grades of steels viz. low carbon steel, medium carbon steel and high carbon steel to measure their Young’s modulus and corresponding springback. The results shows that there is 10-20 % variation in the Young’s modulus and inverse proportion between the springback and Young’s modulus. More the percentage of carbon, more the strength, less the value of Young’s modulus and more will springback. The study further leads to identify optimum die semi angle of 15 degree, land width of 10 mm and drawing speed of 8, 6 and 4 m/min for least springback in all the three grades respectively and die semi angle as a most dominant factor causing springback.

  5. Structural stability of PAN fiber under high electron beam radiation doses

    International Nuclear Information System (INIS)

    Pino, Eddy S.; Machado, Luci D.B.; Arruda, Clarissa P. Zelinschi de; Carvalho, Alvaro A. Silva de; Giovedi, Claudia

    2009-01-01

    Fiber-reinforced composite are an important class of engineering material. A relevant task of composite technology in order to produce materials for structures of high mechanical performance is to obtain the best carbon fiber. One of the main ways to produce carbon fibers of high Young's modulus and tensile strength is to use as starting material polyacrylonitrile (PAN) fibers which after a rigorous and carefully thermal process become carbon fibers. Since some chemical modifications produced in the thermal treatment can be induced by ionizing radiation, the aim of this paper is to evaluate the effect of high electron beam (EB) doses on a commercial PAN fiber in order to evaluate the use of this technology as an alternative treatment to improve the properties and characteristics of the produced carbon fiber. The doses applied were: 0.2, 0.4, 0.6, 0.8, 1.0 and 1.2 MGy. The irradiation effects induced on the PAN fiber were evaluated by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and thermogravimetry (TG). FTIR obtained data have shown that the main functional groups remain practically unchanged in the non-irradiated and irradiated samples. The single DSC exothermic peak obtained for non-irradiated sample, becomes a double peak after the irradiation, presenting lower initial and higher final temperatures for exothermic DSC curves. The enthalpy involved in the chemical reaction decreases for irradiated samples as compared with the non-irradiated PAN fiber. TG data have shown that irradiated samples start a decomposition process at lower temperatures compared to the non-irradiated sample. (author)

  6. OptoCeramic-Based High Speed Fiber Multiplexer for Multimode Fiber, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A fiber-based fixed-array laser transmitter can be combined with a fiber-arrayed detector to create the next-generation NASA array LIDAR systems. High speed optical...

  7. Visible high power fiber coupled diode lasers

    Science.gov (United States)

    Köhler, Bernd; Drovs, Simon; Stoiber, Michael; Dürsch, Sascha; Kissel, Heiko; Könning, Tobias; Biesenbach, Jens; König, Harald; Lell, Alfred; Stojetz, Bernhard; Löffler, Andreas; Strauß, Uwe

    2018-02-01

    In this paper we report on further development of fiber coupled high-power diode lasers in the visible spectral range. New visible laser modules presented in this paper include the use of multi single emitter arrays @ 450 nm leading to a 120 W fiber coupled unit with a beam quality of 44 mm x mrad, as well as very compact modules with multi-W output power from 405 nm to 640 nm. However, as these lasers are based on single emitters, power scaling quickly leads to bulky laser units with a lot of optical components to be aligned. We also report on a new approach based on 450 nm diode laser bars, which dramatically reduces size and alignment effort. These activities were performed within the German government-funded project "BlauLas": a maximum output power of 80 W per bar has been demonstrated @ 450 nm. We show results of a 200 μm NA0.22 fiber coupled 35 W source @ 450 nm, which has been reduced in size by a factor of 25 compared to standard single emitter approach. In addition, we will present a 200 μm NA0.22 fiber coupled laser unit with an output power of 135 W.

  8. Modeling the high-frequency complex modulus of silicone rubber using standing Lamb waves and an inverse finite element method.

    Science.gov (United States)

    Jonsson, Ulf; Lindahl, Olof; Andersson, Britt

    2014-12-01

    To gain an understanding of the high-frequency elastic properties of silicone rubber, a finite element model of a cylindrical piezoelectric element, in contact with a silicone rubber disk, was constructed. The frequency-dependent elastic modulus of the silicone rubber was modeled by a fourparameter fractional derivative viscoelastic model in the 100 to 250 kHz frequency range. The calculations were carried out in the range of the first radial resonance frequency of the sensor. At the resonance, the hyperelastic effect of the silicone rubber was modeled by a hyperelastic compensating function. The calculated response was matched to the measured response by using the transitional peaks in the impedance spectrum that originates from the switching of standing Lamb wave modes in the silicone rubber. To validate the results, the impedance responses of three 5-mm-thick silicone rubber disks, with different radial lengths, were measured. The calculated and measured transitional frequencies have been compared in detail. The comparison showed very good agreement, with average relative differences of 0.7%, 0.6%, and 0.7% for the silicone rubber samples with radial lengths of 38.0, 21.4, and 11.0 mm, respectively. The average complex elastic moduli of the samples were (0.97 + 0.009i) GPa at 100 kHz and (0.97 + 0.005i) GPa at 250 kHz.

  9. Experimental investigation on high temperature anisotropic compression properties of ceramic-fiber-reinforced SiO{sub 2} aerogel

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Duoqi; Sun, Yantao [School of Energy and Power Engineering, Beihang University, P.O. Box 405, Beijing 100191 (China); Feng, Jian [National Key Laboratory of Science and Technology on Advanced Ceramic Fibers and Composites, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073 (China); Yang, Xiaoguang, E-mail: yxg@buaa.edu.cn [School of Energy and Power Engineering, Beihang University, P.O. Box 405, Beijing 100191 (China); Han, Shiwei; Mi, Chunhu [School of Energy and Power Engineering, Beihang University, P.O. Box 405, Beijing 100191 (China); Jiang, Yonggang [National Key Laboratory of Science and Technology on Advanced Ceramic Fibers and Composites, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073 (China); Qi, Hongyu [School of Energy and Power Engineering, Beihang University, P.O. Box 405, Beijing 100191 (China)

    2013-11-15

    Compression tests were conducted on a ceramic-fiber-reinforced SiO{sub 2} aerogel at high temperature. Anisotropic mechanical property was found. In-plane Young's modulus is more than 10 times higher than that of out-of-plane, but fracture strain is much lower by a factor of 100. Out-of-plane Young's modulus decreases with increasing temperature, but the in-plane modulus and fracture stress increase with temperature. The out-of-plane property does not change with loading rates. Viscous flow at high temperature is found to cause in-plane shrinkage, and both in-plane and out-of-plane properties change. Compression induced densification of aerogel matrix was also found by Scanning Electron Microscope analysis.

  10. Experimental investigation on high temperature anisotropic compression properties of ceramic-fiber-reinforced SiO2 aerogel

    International Nuclear Information System (INIS)

    Shi, Duoqi; Sun, Yantao; Feng, Jian; Yang, Xiaoguang; Han, Shiwei; Mi, Chunhu; Jiang, Yonggang; Qi, Hongyu

    2013-01-01

    Compression tests were conducted on a ceramic-fiber-reinforced SiO 2 aerogel at high temperature. Anisotropic mechanical property was found. In-plane Young's modulus is more than 10 times higher than that of out-of-plane, but fracture strain is much lower by a factor of 100. Out-of-plane Young's modulus decreases with increasing temperature, but the in-plane modulus and fracture stress increase with temperature. The out-of-plane property does not change with loading rates. Viscous flow at high temperature is found to cause in-plane shrinkage, and both in-plane and out-of-plane properties change. Compression induced densification of aerogel matrix was also found by Scanning Electron Microscope analysis

  11. Construction of a high modulus asphalt (HiMA) trial section Ethekwini: South Africa's first practical experience with design, manufacturing and paving of HiMA

    CSIR Research Space (South Africa)

    Nkgapele, M

    2012-07-01

    Full Text Available A trial section was paved with the recently introduced High Modulus Asphalt (HiMA) technology on South Coast road in eThekwini (Durban). The trial section forms part of an effort to transfer HiMA technology to South Africa, in an initiative aimed...

  12. Highly thermal conductive carbon fiber/boron carbide composite material

    International Nuclear Information System (INIS)

    Chiba, Akio; Suzuki, Yasutaka; Goto, Sumitaka; Saito, Yukio; Jinbo, Ryutaro; Ogiwara, Norio; Saido, Masahiro.

    1996-01-01

    In a composite member for use in walls of a thermonuclear reactor, if carbon fibers and boron carbide are mixed, since they are brought into contact with each other directly, boron is reacted with the carbon fibers to form boron carbide to lower thermal conductivity of the carbon fibers. Then, in the present invention, graphite or amorphous carbon is filled between the carbon fibers to provide a fiber bundle of not less than 500 carbon fibers. Further, the surface of the fiber bundle is coated with graphite or amorphous carbon to suppress diffusion or solid solubilization of boron to carbon fibers or reaction of them. Then, lowering of thermal conductivity of the carbon fibers is prevented, as well as the mixing amount of the carbon fiber bundles with boron carbide, a sintering temperature and orientation of carbon fiber bundles are optimized to provide a highly thermal conductive carbon fiber/boron carbide composite material. In addition, carbide or boride type short fibers, spherical graphite, and amorphous carbon are mixed in the boron carbide to prevent development of cracks. Diffusion or solid solubilization of boron to carbon fibers is reduced or reaction of them if the carbon fibers are bundled. (N.H.)

  13. An enhanced method to determine the Young’s modulus of technical single fibres by means of high resolution digital image correlation

    Science.gov (United States)

    Huether, Jonas; Rupp, Peter; Kohlschreiber, Ina; André Weidenmann, Kay

    2018-04-01

    To obtain mechanical tensile properties of materials it is customary to equip the specimen directly with a device to measure strain and Young’s modulus correctly and only within the measuring length defined by the standards. Whereas a variety of tools such as extensometers, strain gauges and optical systems are available for specimens on coupon level, no market-ready tools to measure strains of single fibres during single fibre tensile tests are available. Although there is a standard for single fibre testing, the procedures described there are only capable of measuring strains of the whole testing setup rather than the strain of the fibre. Without a direct strain measurement on the specimen, the compliance of the test rig itself influences the determination of the Young’s modulus. This work aims to fill this gap by establishing an enhanced method to measure strains directly on the tested fibre and thus provide accurate values for Young’s modulus. It is demonstrated that by applying and then optically tracking fluorescing polymeric beads on single glass fibres, Young’s modulus is determined directly and with high repeatability, without a need to measure at different measuring lengths or compensating for the system compliance. Employing this method to glass fibres, a Young’s modulus of approximately 82.5 GPa was determined, which is in the range of values obtained by applying a conventional procedure. This enhanced measuring technology achieves high accuracy and repeatability while reducing scatter of the data. It was demonstrated that the fluorescing beads do not affect the fibre properties.

  14. Improving UV Resistance of High Performance Fibers

    Science.gov (United States)

    Hassanin, Ahmed

    High performance fibers are characterized by their superior properties compared to the traditional textile fibers. High strength fibers have high modules, high strength to weight ratio, high chemical resistance, and usually high temperature resistance. It is used in application where superior properties are needed such as bulletproof vests, ropes and cables, cut resistant products, load tendons for giant scientific balloons, fishing rods, tennis racket strings, parachute cords, adhesives and sealants, protective apparel and tire cords. Unfortunately, Ultraviolet (UV) radiation causes serious degradation to the most of high performance fibers. UV lights, either natural or artificial, cause organic compounds to decompose and degrade, because the energy of the photons of UV light is high enough to break chemical bonds causing chain scission. This work is aiming at achieving maximum protection of high performance fibers using sheathing approaches. The sheaths proposed are of lightweight to maintain the advantage of the high performance fiber that is the high strength to weight ratio. This study involves developing three different types of sheathing. The product of interest that need be protected from UV is braid from PBO. First approach is extruding a sheath from Low Density Polyethylene (LDPE) loaded with different rutile TiO2 % nanoparticles around the braid from the PBO. The results of this approach showed that LDPE sheath loaded with 10% TiO2 by weight achieved the highest protection compare to 0% and 5% TiO2. The protection here is judged by strength loss of PBO. This trend noticed in different weathering environments, where the sheathed samples were exposed to UV-VIS radiations in different weatheromter equipments as well as exposure to high altitude environment using NASA BRDL balloon. The second approach is focusing in developing a protective porous membrane from polyurethane loaded with rutile TiO2 nanoparticles. Membrane from polyurethane loaded with 4

  15. High-Temperature Performance and Multiscale Damage Mechanisms of Hollow Cellulose Fiber-Reinforced Concrete

    Directory of Open Access Journals (Sweden)

    Liping Guo

    2016-01-01

    Full Text Available Spalling resistance properties and their damage mechanisms under high temperatures are studied in hollow cellulose fiber-reinforced concrete (CFRC used in tunnel structures. Measurements of mass loss, relative dynamic elastic modulus, compressive strength, and splitting tensile strength of CFRC held under high temperatures (300, 600, 800, and 1050°C for periods of 2.5, 4, and 5.5 h were carried out. The damage mechanism was analyzed using scanning electron microscopy, mercury intrusion porosimetry, thermal analysis, and X-ray diffraction phase analysis. The results demonstrate that cellulose fiber can reduce the performance loss of concrete at high temperatures; the effect of holding time on the performance is more noticeable below 600°C. After exposure to high temperatures, the performance of ordinary concrete deteriorates faster and spalls at 700–800°C; in contrast, cellulose fiber melts at a higher temperature, leaving a series of channels in the matrix that facilitate the release of the steam pressure inside the CFRC. Hollow cellulose fibers can thereby slow the damage caused by internal stress and improve the spalling resistance of concrete under high temperatures.

  16. Highly Conductive Graphene/Ag Hybrid Fibers for Flexible Fiber-Type Transistors.

    Science.gov (United States)

    Yoon, Sang Su; Lee, Kang Eun; Cha, Hwa-Jin; Seong, Dong Gi; Um, Moon-Kwang; Byun, Joon-Hyung; Oh, Youngseok; Oh, Joon Hak; Lee, Wonoh; Lee, Jea Uk

    2015-11-09

    Mechanically robust, flexible, and electrically conductive textiles are highly suitable for use in wearable electronic applications. In this study, highly conductive and flexible graphene/Ag hybrid fibers were prepared and used as electrodes for planar and fiber-type transistors. The graphene/Ag hybrid fibers were fabricated by the wet-spinning/drawing of giant graphene oxide and subsequent functionalization with Ag nanoparticles. The graphene/Ag hybrid fibers exhibited record-high electrical conductivity of up to 15,800 S cm(-1). As the graphene/Ag hybrid fibers can be easily cut and placed onto flexible substrates by simply gluing or stitching, ion gel-gated planar transistors were fabricated by using the hybrid fibers as source, drain, and gate electrodes. Finally, fiber-type transistors were constructed by embedding the graphene/Ag hybrid fiber electrodes onto conventional polyurethane monofilaments, which exhibited excellent flexibility (highly bendable and rollable properties), high electrical performance (μh = 15.6 cm(2) V(-1) s(-1), Ion/Ioff > 10(4)), and outstanding device performance stability (stable after 1,000 cycles of bending tests and being exposed for 30 days to ambient conditions). We believe that our simple methods for the fabrication of graphene/Ag hybrid fiber electrodes for use in fiber-type transistors can potentially be applied to the development all-organic wearable devices.

  17. A new approach for high performance fiber manufacturing via simultaneous fiber spinning and UV initiated polymerization

    Science.gov (United States)

    Ellison, Chris

    Synthetic fibers have been manufactured for decades using solvents or heat to reduce the viscosity of pre-formed polymers and promote drawing. However, nature has engineered spiders and silkworms with benign ways of making silk fibers with high strength and toughness. Conceptually, their approach of chemically linking small functional units (i.e., proteins) into long chain molecules and solid fibrillar structures ``on-demand'' is fundamentally different from current synthetic fiber manufacturing methods. Drawing inspiration from nature, a method will be described that uses light to trigger a thiol-ene photopolymerization to rapidly transform reactive liquid mixtures into solid thread-like structures as they are forced out of a capillary at high speeds. Besides being manufactured without using solvents/volatile components or heat, these fibers are mechanically robust and have excellent chemical and thermal stability due to their crosslinked nature. During processing, the balance between curing kinetics, fiber flight time, and monomer mixture viscoelasticity is essential for the formation of defect free fibers. This work focuses on developing a universal operating diagram to show how the intricate interplay of gel time, flight time, and fluid relaxation time leads to the formation of uniform fibers and other undesirable fiber morphologies such as beads-on-string, fused fibers, non-uniform fibers, and droplets. This predictive capability enables adaptation of this spinning concept to all existing fiber spinning platforms, and customization of monomer formulations to target desired properties.

  18. Compression Behavior of High Performance Polymeric Fibers

    National Research Council Canada - National Science Library

    Kumar, Satish

    2003-01-01

    Hydrogen bonding has proven to be effective in improving the compressive strength of rigid-rod polymeric fibers without resulting in a decrease in tensile strength while covalent crosslinking results in brittle fibers...

  19. High pressure fiber optic sensor system

    Science.gov (United States)

    Guida, Renato; Xia, Hua; Lee, Boon K; Dekate, Sachin N

    2013-11-26

    The present application provides a fiber optic sensor system. The fiber optic sensor system may include a small diameter bellows, a large diameter bellows, and a fiber optic pressure sensor attached to the small diameter bellows. Contraction of the large diameter bellows under an applied pressure may cause the small diameter bellows to expand such that the fiber optic pressure sensor may measure the applied pressure.

  20. Effect of PVA fiber content on creep property of fiber reinforced high-strength concrete columns

    Science.gov (United States)

    Xu, Zongnan; Wang, Tao; Wang, Weilun

    2018-04-01

    The effect of PVA (polyvinyl alcohol) fiber content on the creep property of fiber reinforced high-strength concrete columns was investigated. The correction factor of PVA fiber content was proposed and the creep prediction model of ACI209 was modified. Controlling the concrete strength as C80, changing the content of PVA fiber (volume fraction 0%, 0.25%, 0.5%, 1% respectively), the creep experiment of PVA fiber reinforced concrete columns was carried out, the creep coefficient of each specimen was calculated to characterize the creep property. The influence of PVA fiber content on the creep property was analyzed based on the creep coefficient and the calculation results of several frequently used creep prediction models. The correction factor of PVA fiber content was proposed to modify the ACI209 creep prediction model.

  1. High Capacity Radio over Fiber Transmission Links

    DEFF Research Database (Denmark)

    Caballero Jambrina, Antonio

    . This achievement has satisfied the requirements on transmission robustness and high capacity of next generation hybrid optical fibre-wireless networks. One important contribution of this thesis is the novel concept of photonic downconversion with free-running pulsed laser source for phase modulated Radio-over-Fiber......This thesis expands the state-of-the-art on the detection of high speed wireless signals using optics. Signal detection at speeds over 1 Gbps at carrier Radio Frequency (RF) ranging from 5 GHz to 100 GHz have been achieved by applying novel concepts on optical digital coherent receivers......-wave frequencies at carrier frequencies exceeding 60 GHz, using photonic baseband technologies. For signal generation, high spectral-efficient optical modulation technologies are used together with optical heterodyning. In the detection side, the mm-wave signal is modulated in the optical domain and received using...

  2. High alkali-resistant basalt fiber for reinforcing concrete

    International Nuclear Information System (INIS)

    Lipatov, Ya.V.; Gutnikov, S.I.; Manylov, M.S.; Zhukovskaya, E.S.; Lazoryak, B.I.

    2015-01-01

    Highlights: • Doping of basalt fiber with ZrSiO 4 increased its alkali resistance. • Alkali treatment results in formation of protective surface layer on fibers. • Morphology and chemical composition of surface layer were investigated. • Mechanical properties of fibers were analyzed by a Weibull distribution. • Zirconia doped basalt fibers demonstrate high performance in concrete. - Abstract: Basalt glasses and fibers with zirconia content in the range from 0 to 7 wt% were obtained using ZrSiO 4 as a zirconium source. Weight loss and tensile strength loss of fibers after refluxing in alkali solution were determined. Basalt fiber with 5.7 wt% ZrO 2 had the best alkali resistance properties. Alkali treatment results in formation of protective surface layer on fibers. Morphology and chemical composition of surface layer were investigated. It was shown that alkali resistance of zirconia doped basalt fibers is caused by insoluble compounds of Zr 4+ , Fe 3+ and Mg 2+ in corrosion layer. Mechanical properties of initial and leached fibers were evaluated by a Weibull distribution. The properties of basalt fibers with ZrSiO 4 were compared with AR-glass fibers. The performance of concrete with obtained fibers was investigated

  3. High-resolution wavefront shaping with a photonic crystal fiber for multimode fiber imaging

    NARCIS (Netherlands)

    Amitonova, L. V.; Descloux, A.; Petschulat, J.; Frosz, M. H.; Ahmed, G.; Babic, F.; Jiang, X.; Mosk, A. P.; Russell, P. S. J.; Pinkse, P.W.H.

    2016-01-01

    We demonstrate that a high-numerical-aperture photonic crystal fiber allows lensless focusing at an unparalleled res- olution by complex wavefront shaping. This paves the way toward high-resolution imaging exceeding the capabilities of imaging with multi-core single-mode optical fibers. We analyze

  4. Thermal expansivity and bulk modulus of ZnO with NaCl-type cubic structure at high pressures and temperatures

    International Nuclear Information System (INIS)

    Sun Xiaowei; Liu Zijiang; Chen Qifeng; Chu Yandong; Wang Chengwei

    2006-01-01

    The thermal expansivity and bulk modulus of ZnO with NaCl-type cubic structure were estimated by using the constant temperature and pressure molecular dynamics technique with effective pair potentials which consist of the Coulomb, dispersion, and repulsion interaction at high pressures and temperatures. It is shown that the calculated thermodynamic parameters including linear thermal expansion coefficient, isothermal bulk modulus and its pressure derivative are in good agreement with the available experimental data and the latest theoretical results. At an extended pressure and temperature ranges, linear thermal expansion coefficient and isothermal bulk modus have also been predicted. The thermodynamic properties of ZnO with NaCl-type cubic structure are summarized in the pressure 0-150 GPa ranges and the temperature up to 3000 K

  5. Determination of the bulk modulus of hydroxycancrinite, a possible zeolitic precursor in geopolymers, by high-pressure synchrotron X-ray diffraction

    KAUST Repository

    Oh, Jae Eun

    2011-11-01

    Crystalline zeolitic materials, such as hydroxycancrinite, hydroxysodalite, herschelite and nepheline, are often synthesized from geopolymerization using fly-ash and solutions of NaOH at high temperatures. Comprised mainly of 6-membered aluminosilicate rings that act as basic building units, their crystal structures may provide insight into the reaction products formed in NaOH-activated fly ash-based geopolymers. Recent research indicates that the hydroxycancrinite and hydroxysodalite may play an important role as possible analogues of zeolitic precursor in geopolymers. Herein is reported a high pressure synchrotron study of the behavior of hydroxycancrinite exposed to pressures up to 6.1 GPa in order to obtain its bulk modulus. A refined equation of state for hydroxycancrinite yielded a bulk modulus of Ko = 46 ± 5 GPa (assuming Ko′ = 4.0) for a broad range of applied pressure. When low pressure values are excluded from the fit and only the range of 2.5 and 6.1 GPa is considered, the bulk modulus of hydroxycancrinite was found to be Ko = 46.9 ± 0.9 GPa (Ko′ = 4.0 ± 0.4, calculated). Comparison with the literature shows that all zeolitic materials possessing single 6-membered rings (i.e., hydroxycancrinite, sodalite and nepheline) have similar bulk moduli. © 2011 Elsevier Ltd. All rights reserved.

  6. Experimental Young's modulus calculations

    International Nuclear Information System (INIS)

    Chen, Y.; Jayakumar, R.; Yu, K.

    1994-01-01

    Coil is a very important magnet component. The turn location and the coil size impact both mechanical and magnetic behavior of the magnet. The Young's modulus plays a significant role in determining the coil location and size. Therefore, Young's modulus study is essential in predicting both the analytical and practical magnet behavior. To determine the coil Young's modulus, an experiment has been conducted to measure azimuthal sizes of a half quadrant QSE101 inner coil under different loading. All measurements are made at four different positions along an 8-inch long inner coil. Each measurement is repeated three times to determine the reproducibility of the experiment. To ensure the reliability of this experiment, the same measurement is performed twice with a open-quotes dummy coil,close quotes which is made of G10 and has the same dimension and similar azimuthal Young's modulus as the inner coil. The difference between the G10 azimuthal Young's modulus calculated from the experiments and its known value from the manufacturer will be compared. Much effort has been extended in analyzing the experimental data to obtain a more reliable Young's modulus. Analysis methods include the error analysis method and the least square method

  7. The Young's modulus of high-aspect-ratio carbon/carbon nanotube composite microcantilevers by experimental and modeling validation

    International Nuclear Information System (INIS)

    Zhou, Peng; Yang, Xiao; He, Liang; Hao, Zhimeng; Luo, Wen; Xiong, Biao; Xu, Xu; Niu, Chaojiang; Yan, Mengyu; Mai, Liqiang

    2015-01-01

    This paper reports the Young's modulus of a carbon nanotube (CNT)-reinforced carbon/CNT (C/CNT) composite microcantilevers measured by laser Doppler vibrometer and validated by finite element method. Also, the microfabrication process of the high-aspect-ratio C/CNT microcantilever arrays based on silicon micromolding and pyrolysis is presented in detail. With the in-plane natural resonant frequencies of the microcantilevers measured by a laser Doppler vibrometer, a single degree of freedom (SDoF) model based on Euler-Bernoulli (E-B) beam theory is used to calculate the Young's modulus of this composite. To figure out whether this SDoF model can be applied to these composite microcantilevers, the finite element (FE) simulation of these microcantilevers was performed. The Young's modulus of C/CNT composite microcantilevers fabricated by the pyrolysis process at 600 °C is 9391 MPa, and a good agreement between the results from experiments and FE simulation is obtained

  8. Microdroplet-etched highly birefringent low-loss fiber tapers.

    Science.gov (United States)

    Mikkelsen, Jared C; Poon, Joyce K S

    2012-07-01

    We use hydrofluoric acid microdroplets to directly etch highly birefringent biconical fiber tapers from standard single-mode fibers. The fiber tapers have micrometer-sized cross sections, which are controlled by the etching condition. The characteristic teardrop cross section leads to a high group birefringence of B(G)≈0.017 and insertion losses <0.7 dB over waist lengths of about 2.1 mm.

  9. Interfacial (Fiber-matrix) Properties of High-strength Mortar (150 MPa) from Fiber Pullout

    DEFF Research Database (Denmark)

    Shannag, M.J.; Brincker, Rune; Hansen, Will

    1996-01-01

     The steel fiber-matrix properties of high-strength mortar (150 MPa), such as DSP (densified small particle), are obtained and compared to an ordinary strength mortar (40 MPa) using a specially designed fiber pullout apparatus. A new method for estimating the debonding energy of the interfacial z......-strength DSP mortar has significantly improved interfacial properties compared to ordinary strength mortar. These results are important in the understanding of the role of steel fibers in improving the tensile properties of high-strength, brittle, cement-matrix composites....... The steel fiber-matrix properties of high-strength mortar (150 MPa), such as DSP (densified small particle), are obtained and compared to an ordinary strength mortar (40 MPa) using a specially designed fiber pullout apparatus. A new method for estimating the debonding energy of the interfacial...

  10. Characterization of High Temperature Modulus of Elasticity of Lightweight Foamed Concrete under Static Flexural and Compression: An Experimental Investigations

    Directory of Open Access Journals (Sweden)

    Md Azree Othuman Mydin

    2012-09-01

    Full Text Available This paper focused on an experimental works that have been performed to examine the young’s modulus of foamed concrete at elevated temperatures up to 600°C. Foamed concrete of 650 and 1000 kg/m3 density were cast and tested under compression and bending. The experimental results of this study consistently demonstrated that the loss in stiffness for cement based material like foamed concrete at elevated temperatures occurs predominantly after about 95°C, regardless of density. This indicates that the primary mechanism causing stiffness degradation is microcracking, which occurs as water expands and evaporates from the porous body. As expected, reducing the density of LFC reduces its strength and stiffness. However, for LFC of different densities, the normalised strength-temperature and stiffness-temperature relationships are very similar.

  11. Bi-based superconducting fibers with high critical parameters

    International Nuclear Information System (INIS)

    Huo Yujing; He Yusheng; Liu Menglin; Mao Sining; Cai Liying; Wang Ying; Zhang Jincang; He Aisheng; Wang Jinsong

    1991-01-01

    Superconducting fibers of Bi(Pb)-Sr-Ca-Cu-O high Tc superconducting materials have been prepared by means of the laser-heated pedestal growth (LHPG) method. The highest zero resistance temperature T c0 reaches is 114K, and the highest critical current density J c (77K, O T) is greater than 5000 A/cm 2 . As-grown superconducting fibers were successfully fabricated without post growth heat treatment. Amorphous materials were used for the first time to make high quality fibers. The influence of growth conditions, thermal treatment and the composition of the fibers were discussed. (author). 5 refs., 7 figs., 3 tabs

  12. Hollow-core fibers for high power pulse delivery

    DEFF Research Database (Denmark)

    Michieletto, Mattia; Lyngsø, Jens K.; Jakobsen, Christian

    2016-01-01

    We investigate hollow-core fibers for fiber delivery of high power ultrashort laser pulses. We use numerical techniques to design an anti-resonant hollow-core fiber having one layer of non-touching tubes to determine which structures offer the best optical properties for the delivery of high power...... picosecond pulses. A novel fiber with 7 tubes and a core of 30 mu m was fabricated and it is here described and characterized, showing remarkable low loss, low bend loss, and good mode quality. Its optical properties are compared to both a 10 mu m and a 18 mu m core diameter photonic band gap hollow......-core fiber. The three fibers are characterized experimentally for the delivery of 22 picosecond pulses at 1032nm. We demonstrate flexible, diffraction limited beam delivery with output average powers in excess of 70W. (C) 2016 Optical Society of America...

  13. Highly phosphorescent hollow fibers inner-coated with tungstate nanocrystals

    Science.gov (United States)

    Ng, Pui Fai; Bai, Gongxun; Si, Liping; Lee, Ka I.; Hao, Jianhua; Xin, John H.; Fei, Bin

    2017-12-01

    In order to develop luminescent microtubes from natural fibers, a facile biomimetic mineralization method was designed to introduce the CaWO4-based nanocrystals into kapok lumens. The structure, composition, and luminescence properties of resultant fibers were investigated with microscopes, x-ray diffraction, thermogravimetric analysis, and fluorescence spectrometry. The yield of tungstate crystals inside kapok was significantly promoted with a process at high temperature and pressure—the hydrothermal treatment. The tungstate crystals grown on the inner wall of kapok fibers showed the same crystal structure with those naked powders, but smaller in crystal size. The resultant fiber assemblies demonstrated reduced phosphorescence intensity in comparison to the naked tungstate powders. However, the fibers gave more stable luminescence than the naked powders in wet condition. This approach explored the possibility of decorating natural fibers with high load of nanocrystals, hinting potential applications in anti-counterfeit labels, security textiles, and even flexible and soft optical devices.

  14. High-Power ZBLAN Glass Fiber Lasers: Review and Prospect

    Directory of Open Access Journals (Sweden)

    Xiushan Zhu

    2010-01-01

    Full Text Available ZBLAN (ZrF4-BaF2-LaF3-AlF3-NaF, considered as the most stable heavy metal fluoride glass and the excellent host for rare-earth ions, has been extensively used for efficient and compact ultraviolet, visible, and infrared fiber lasers due to its low intrinsic loss, wide transparency window, and small phonon energy. In this paper, the historical progress and the properties of fluoride glasses and the fabrication of ZBLAN fibers are briefly described. Advances of infrared, upconversion, and supercontinuum ZBLAN fiber lasers are addressed in detail. Finally, constraints on the power scaling of ZBLAN fiber lasers are analyzed and discussed. ZBLAN fiber lasers are showing promise of generating high-power emissions covering from ultraviolet to mid-infrared considering the recent advances in newly designed optical fibers, beam-shaped high-power pump diodes, beam combining techniques, and heat-dissipating technology.

  15. Fabrication of highly conductive carbon nanotube fibers for electrical application

    International Nuclear Information System (INIS)

    Guo, Fengmei; Li, Can; Wei, Jinquan; Xu, Ruiqiao; Zhang, Zelin; Cui, Xian; Wang, Kunlin; Wu, Dehai

    2015-01-01

    Carbon nanotubes (CNTs) have great potential for use as electrical wires because of their outstanding electrical and mechanical properties. Here, we fabricate lightweight CNT fibers with electrical conductivity as high as that of stainless steel from macroscopic CNT films by drawing them through diamond wire-drawing dies. The entangled CNT bundles are straightened by suffering tension, which improves the alignment of the fibers. The loose fibers are squeezed by the diamond wire-drawing dies, which reduces the intertube space and contact resistance. The CNT fibers prepared by drawing have an electrical conductivity as high as 1.6 × 10 6 s m −1 . The fibers are very stable when kept in the air and under cyclic tensile test. A prototype of CNT motor is demonstrated by replacing the copper wires with the CNT fibers. (paper)

  16. Optical Fiber for High-Power Optical Communication

    Directory of Open Access Journals (Sweden)

    Kenji Kurokawa

    2012-09-01

    Full Text Available We examined optical fibers suitable for avoiding such problems as the fiber fuse phenomenon and failures at bends with a high power input. We found that the threshold power for fiber fuse propagation in photonic crystal fiber (PCF and hole-assisted fiber (HAF can exceed 18 W, which is more than 10 times that in conventional single-mode fiber (SMF. We considered this high threshold power in PCF and HAF to be caused by a jet of high temperature fluid penetrating the air holes. We showed examples of two kinds of failures at bends in conventional SMF when the input power was 9 W. We also observed the generation of a fiber fuse under a condition that caused a bend-loss induced failure. We showed that one solution for the failures at bends is to use optical fibers with a low bending loss such as PCF and HAF. Therefore, we consider PCF and HAF to be attractive solutions to the problems of the fiber fuse phenomenon and failures at bends with a high power input.

  17. Lightweight, high-opacity Bible paper by fiber loading

    Science.gov (United States)

    Klaus Doelle; Oliver Heise; John H. Klungness; Said M. AbuBakr

    2000-01-01

    This paper has been prepared in order to discuss Fiber Loading™ for lightweight, high-opacity bible paper. Incorporating fillers within pulp fibers has been subject to research since 1960 (Green et al. 1962, Scallan et al. 1985, Allen et al. 1992). Fiber Loading™ is a method for manufacturing precipitated calcium carbonate (PCC) directly within the pulp processing...

  18. High-temperature fiber optic pressure sensor

    Science.gov (United States)

    Berthold, J. W.

    1984-01-01

    Attention is given to a program to develop fiber optic methods to measure diaphragm deflection. The end application is intended for pressure transducers capable of operating to 540 C. In this paper are reported the results of a laboratory study to characterize the performance of the fiber-optic microbend sensor. The data presented include sensitivity and spring constant. The advantages and limitations of the microbend sensor for static pressure measurement applications are described. A proposed design is presented for a 540 C pressure transducer using the fiber optic microbend sensor.

  19. High frequency acoustic microscopy for the determination of porosity and Young's modulus in high burnup uranium dioxide nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Marchetti, M. [European Commission, Joint Research Centre, Institute for Transuranium Elements P.O. Box 2340 76125 Karlsruhe (Germany); University of Montpellier, IES, UMR 5214, F-34000, Montpellier (France); Laux, D. [University of Montpellier, IES, UMR 5214, F-34000, Montpellier (France); CNRS, IES, UMR 5214, F-34000, Montpellier (France); Cappia, F. [European Commission, Joint Research Centre, Institute for Transuranium Elements P.O. Box 2340 76125 Karlsruhe (Germany); Technische Universitaet Muenchen, Department of Nuclear Engineering, Boltzmannstrasse 15, 85747 Garching bei Munchen (Germany); Laurie, M.; Van Uffelen, P.; Rondinella, V.V. [European Commission, Joint Research Centre, Institute for Transuranium Elements P.O. Box 2340 76125 Karlsruhe (Germany); Despaux, G. [University of Montpellier, IES, UMR 5214, F-34000, Montpellier (France); CNRS, IES, UMR 5214, F-34000, Montpellier (France)

    2015-07-01

    During irradiation UO{sub 2} nuclear fuel experiences the development of a non-uniform distribution of porosity which contributes to establish varying mechanical properties along the radius of the pellet. Radial variations of the porosity and of elastic properties in high burnup UO{sub 2} pellet can be investigated via high frequency acoustic microscopy. Ultrasound waves are generated by a piezoelectric transducer and focused on the sample, after having travelled through a coupling liquid. The elastic properties of the material are related to the velocity of the generated Rayleigh surface wave (VR). A 67 MWd/kgU UO{sub 2} pellet was characterized using the acoustic microscope installed in the hot cells of the Institute of Transuranium Elements: 90 MHz frequency was applied, methanol was used as coupling liquid and VR was measured at different radial positions. By comparing the porosity values obtained via acoustic microscopy with those determined using ceramographic image analysis a good agreement was found, especially in the areas close to the centre. In addition Young's modulus was calculated and its radial profile was correlated to the corresponding burnup profile. (authors)

  20. High frequency acoustic microscopy for the determination of porosity and Young's modulus in high burnup uranium dioxide nuclear fuel

    International Nuclear Information System (INIS)

    Marchetti, M.; Laux, D.; Cappia, F.; Laurie, M.; Van Uffelen, P.; Rondinella, V.V.; Despaux, G.

    2015-01-01

    During irradiation UO 2 nuclear fuel experiences the development of a non-uniform distribution of porosity which contributes to establish varying mechanical properties along the radius of the pellet. Radial variations of the porosity and of elastic properties in high burnup UO 2 pellet can be investigated via high frequency acoustic microscopy. Ultrasound waves are generated by a piezoelectric transducer and focused on the sample, after having travelled through a coupling liquid. The elastic properties of the material are related to the velocity of the generated Rayleigh surface wave (VR). A 67 MWd/kgU UO 2 pellet was characterized using the acoustic microscope installed in the hot cells of the Institute of Transuranium Elements: 90 MHz frequency was applied, methanol was used as coupling liquid and VR was measured at different radial positions. By comparing the porosity values obtained via acoustic microscopy with those determined using ceramographic image analysis a good agreement was found, especially in the areas close to the centre. In addition Young's modulus was calculated and its radial profile was correlated to the corresponding burnup profile. (authors)

  1. Optimization of High Temperature and Pressurized Steam Modified Wood Fibers for High-Density Polyethylene Matrix Composites Using the Orthogonal Design Method

    Directory of Open Access Journals (Sweden)

    Xun Gao

    2016-10-01

    Full Text Available The orthogonal design method was used to determine the optimum conditions for modifying poplar fibers through a high temperature and pressurized steam treatment for the subsequent preparation of wood fiber/high-density polyethylene (HDPE composites. The extreme difference, variance, and significance analyses were performed to reveal the effect of the modification parameters on the mechanical properties of the prepared composites, and they yielded consistent results. The main findings indicated that the modification temperature most strongly affected the mechanical properties of the prepared composites, followed by the steam pressure. A temperature of 170 °C, a steam pressure of 0.8 MPa, and a processing time of 20 min were determined as the optimum parameters for fiber modification. Compared to the composites prepared from untreated fibers, the tensile, flexural, and impact strength of the composites prepared from modified fibers increased by 20.17%, 18.5%, and 19.3%, respectively. The effect on the properties of the composites was also investigated by scanning electron microscopy and dynamic mechanical analysis. When the temperature, steam pressure, and processing time reached the highest values, the composites exhibited the best mechanical properties, which were also well in agreement with the results of the extreme difference, variance, and significance analyses. Moreover, the crystallinity and thermal stability of the fibers and the storage modulus of the prepared composites improved; however, the hollocellulose content and the pH of the wood fibers decreased.

  2. High Performance Graded Index Polymer Optical Fibers

    National Research Council Canada - National Science Library

    Garito, Anthony

    1998-01-01

    ...) plastic optical fibers (POF) and graded index (GI) POFs are reported. A set of criteria and analyses of physical parameters are developed in context to the major issues of POF applications in short-distance communication systems...

  3. Ultra-high Frequency Linear Fiber Optic Systems

    CERN Document Server

    Lau, Kam

    2011-01-01

    This book provides an in-depth treatment of both linear fiber-optic systems and their key enabling devices. It presents a concise but rigorous treatment of the theory and practice of analog (linear) fiber-optics links and systems that constitute the foundation of Hybrid Fiber Coax infrastructure in present-day CATV distribution and cable modem Internet access. Emerging applications in remote fiber-optic feed for free-space millimeter wave enterprise campus networks are also described. Issues such as dispersion and interferometric noise are treated quantitatively, and means for mitigating them are explained. This broad but concise text will thus be invaluable not only to students of fiber-optics communication but also to practicing engineers. To the second edition of this book important new aspects of linear fiber-optic transmission technologies are added, such as high level system architectural issues, algorithms for deriving the optimal frequency assignment, directly modulated or externally modulated laser t...

  4. High pumping-power fiber combiner for double-cladding fiber lasers and amplifiers

    Science.gov (United States)

    Zheng, Jinkun; Zhao, Wei; Zhao, Baoyin; Li, Zhe; Chang, Chang; Li, Gang; Gao, Qi; Ju, Pei; Gao, Wei; She, Shengfei; Wu, Peng; Hou, Chaoqi; Li, Weinan

    2018-03-01

    A high pumping-power fiber combiner for backward pumping configurations is fabricated and demonstrated by manufacturing process refinement. The pump power handling capability of every pump fiber can extend to 600 W, corresponding to the average pump coupling efficiency of 94.83%. Totally, 2.67-kW output power with the beam quality factor M2 of 1.41 was obtained, using this combiner in the fiber amplifier experimental setup. In addition, the temperature of the splicing region was less than 50.0°C in the designed combiner under the action of circulating cooling water. The experimental results prove that the designed combiner is a promising integrated all-fiber device for multikilowatt continuous-wave fiber laser with excellent beam quality.

  5. An inexpensive high-temperature optical fiber thermometer

    International Nuclear Information System (INIS)

    Moore, Travis J.; Jones, Matthew R.; Tree, Dale R.; Allred, David D.

    2017-01-01

    An optical fiber thermometer consists of an optical fiber whose tip is coated with a highly conductive, opaque material. When heated, this sensing tip becomes an isothermal cavity that emits like a blackbody. This emission is used to predict the sensing tip temperature. In this work, analytical and experimental research has been conducted to further advance the development of optical fiber thermometry. An inexpensive optical fiber thermometer is developed by applying a thin coating of a high-temperature cement onto the tip of a silica optical fiber. An FTIR spectrometer is used to detect the spectral radiance exiting the fiber. A rigorous mathematical model of the irradiation incident on the detection system is developed. The optical fiber thermometer is calibrated using a blackbody radiator and inverse methods are used to predict the sensing tip temperature when exposed to various heat sources. - Highlights: • An inexpensive coating for an optical fiber thermometer sensing tip is tested. • Inverse heat transfer methods are used to estimate the sensing tip temperature. • An FTIR spectrometer is used as the detector to test the optical fiber thermometer using various heat sources.

  6. High-power fiber-coupled pump lasers for fiber lasers

    Science.gov (United States)

    Kasai, Yohei; Aizawa, Takuya; Tanaka, Daiichiro

    2018-02-01

    We present high-power fiber-coupled pump modules utilized effectively for ultra-high power single-mode (SM) fiber lasers. Maximum output power of 392 W was achieved at 23 A for 915 nm pump, and 394 W for 976 nm pump. Fiber core diameter is 118 μm and case temperature is 25deg. C. Polarization multiplexing technique was newly applied to our optical system. High-reliability of the laser diodes (LD) at high-power operation has been demonstrated by aging tests. Advanced package structure was developed that manages uncoupled light around input end of the fiber. 800 hours continuous drive with uncoupled light power of 100 W has been achieved.

  7. Surface modification of lignocellulosic fibers using high-frequency ultrasound

    Science.gov (United States)

    Jayant B. Gadhe; Ram B. Gupta; Thomas Elder

    2005-01-01

    Enzymatic and chemical oxidation of fiber surfaces has been reported in the literature as a method for producing medium density fiberboards without using synthetic adhesives. This work focuses on modifying the surface properties of wood fibers by the generation of free radicals using high-frequency ultrasound. A sonochemical reactor operating at 610 kHz is used to...

  8. Nanocrystalline β-Ti alloy with high hardness, low Young's modulus and excellent in vitro biocompatibility for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Kelvin Y. [Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, NSW 2006 (Australia); School of Aerospace, Mechanical and Mechatronics Engineering, The University of Sydney, Sydney, NSW 2006 (Australia); Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218 (United States); Wang, Yanbo, E-mail: yanbo.wang@sydney.edu.au [School of Aerospace, Mechanical and Mechatronics Engineering, The University of Sydney, Sydney, NSW 2006 (Australia); Zhao, Yonghao [School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Chang, Li; Wang, Guocheng; Chen, Zibin; Cao, Yang [School of Aerospace, Mechanical and Mechatronics Engineering, The University of Sydney, Sydney, NSW 2006 (Australia); Liao, Xiaozhou, E-mail: xiaozhou.liao@sydney.edu.au [School of Aerospace, Mechanical and Mechatronics Engineering, The University of Sydney, Sydney, NSW 2006 (Australia); Lavernia, Enrique J. [Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95616 (United States); Valiev, Ruslan Z. [Institute of Physics of Advanced Materials, Ufa State Aviation Technical University, K. Marksa 12, Ufa 450000 (Russian Federation); Sarrafpour, Babak; Zoellner, Hans [The Cellular and Molecular Pathology Research Unit, Department of Oral Pathology and Oral Medicine, Faculty of Dentistry, The University of Sydney, Westmead Centre for Oral Health, Westmead Hospital, NSW 2145 (Australia); Ringer, Simon P. [Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, NSW 2006 (Australia); School of Aerospace, Mechanical and Mechatronics Engineering, The University of Sydney, Sydney, NSW 2006 (Australia)

    2013-08-01

    High strength, low Young's modulus and good biocompatibility are desirable but difficult to simultaneously achieve in metallic implant materials for load bearing applications, and these impose significant challenges in material design. Here we report that a nano-grained β-Ti alloy prepared by high-pressure torsion exhibits remarkable mechanical and biological properties. The hardness and modulus of the nano-grained Ti alloy were respectively 23% higher and 34% lower than those of its coarse-grained counterpart. Fibroblast cell attachment and proliferation were enhanced, demonstrating good in vitro biocompatibility of the nano-grained Ti alloy, consistent with demonstrated increased nano-roughness on the nano-grained Ti alloy. Results suggest that the nano-grained β-Ti alloy may have significant application as an implant material in dental and orthopedic applications. - Highlights: • A bulk nanocrystalline β-Ti alloy was produced by high-pressure torsion processing. • Excellent mechanical properties for biomedical implants were obtained. • Enhanced in vitro biocompatibility was also demonstrated.

  9. Welding with high power fiber lasers - A preliminary study

    International Nuclear Information System (INIS)

    Quintino, L.; Costa, A.; Miranda, R.; Yapp, D.; Kumar, V.; Kong, C.J.

    2007-01-01

    The new generation of high power fiber lasers presents several benefits for industrial purposes, namely high power with low beam divergence, flexible beam delivery, low maintenance costs, high efficiency and compact size. This paper presents a brief review of the development of high power lasers, and presents initial data on welding of API 5L: X100 pipeline steel with an 8 kW fiber laser. Weld bead geometry was evaluated and transition between conduction and deep penetration welding modes was investigated

  10. Thermal oxidation induced degradation of carbon fiber reinforced composites and carbon nanotube sheet enhanced fiber/matrix interface for high temperature aerospace structural applications

    Science.gov (United States)

    Haque, Mohammad Hamidul

    Recent increase in the use of carbon fiber reinforced polymer matrix composite, especially for high temperature applications in aerospace primary and secondary structures along with wind energy and automotive industries, have generated new challenges to predict its failure mechanisms and service life. This dissertation reports the experimental study of a unidirectional carbon fiber reinforced bismaleimide (BMI) composites (CFRC), an excellent candidate for high temperature aerospace components, undergoing thermal oxidation at 260 °C in air for over 3000 hours. The key focus of the work is to investigate the mechanical properties of the carbon fiber BMI composite subjected to thermal aging in three key aspects - first, studying its bulk flexural properties (in macro scale), second, characterizing the crack propagation along the fiber direction, representing the interfacial bonding strength between fiber and matrix (in micro scale), and third, introducing nano-structured materials to modify the interface (in nano scale) between the carbon fiber and BMI resin and mechanical characterization to study its influence on mitigating the aging effect. Under the first category, weight loss and flexural properties have been monitored as the oxidation propagates through the fiber/matrix interface. Dynamic mechanical analysis and micro-computed tomography analysis have been performed to analyze the aging effects. In the second category, the long-term effects of thermal oxidation on the delamination (between the composite plies) and debonding (between fiber and matrix) type fracture toughness have been characterized by preparing two distinct types of double cantilever beam specimens. Digital image correlation has been used to determine the deformation field and strain distribution around the crack propagation path. Finally the resin system and the fiber/matrix interface have been modified using nanomaterials to mitigate the degradations caused by oxidation. Nanoclay modified

  11. CARBON FIBER COMPOSITES IN HIGH VOLUME

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Charles David [ORNL; Das, Sujit [ORNL; Jeon, Dr. Saeil [Volvo Trucks North America

    2014-01-01

    Vehicle lightweighting represents one of several design approaches that automotive and heavy truck manufacturers are currently evaluating to improve fuel economy, lower emissions, and improve freight efficiency (tons-miles per gallon of fuel). With changes in fuel efficiency and environmental regulations in the area of transportation, the next decade will likely see considerable vehicle lightweighting throughout the ground transportation industry. Greater use of carbon fiber composites and light metals is a key component of that strategy. This paper examines the competition between candidate materials for lightweighting of heavy vehicles and passenger cars. A 53-component, 25 % mass reduction, body-in-white cost analysis is presented for each material class, highlighting the potential cost penalty for each kilogram of mass reduction and then comparing the various material options. Lastly, as the cost of carbon fiber is a major component of the elevated cost of carbon fiber composites, a brief look at the factors that influence that cost is presented.

  12. Transforming Pristine Carbon Fiber Tows into High Performance Solid-State Fiber Supercapacitors.

    Science.gov (United States)

    Yu, Dingshan; Zhai, Shengli; Jiang, Wenchao; Goh, Kunli; Wei, Li; Chen, Xudong; Jiang, Rongrong; Chen, Yuan

    2015-09-02

    A facile activation strategy can transform pristine carbon fiber tows into high-performance fiber electrodes with a specific capacitance of 14.2 F cm(-3) . The knottable fiber supercapacitor shows an energy density of 0.35 mW h cm(-3) , an ultrahigh power density of 3000 mW cm(-3) , and a remarkable capacitance retention of 68%, when the scan rate increases from 10 to 1000 mV s(-1) . © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Review of High-Speed Fiber Optic Grating Sensors Systems

    Energy Technology Data Exchange (ETDEWEB)

    Udd, E; Benterou, J; May, C; Mihailov, S J; Lu, P

    2010-03-24

    Fiber grating sensors can be used to support a wide variety of high speed measurement applications. This includes measurements of vibrations on bridges, traffic monitoring on freeways, ultrasonic detection to support non-destructive tests on metal plates and providing details of detonation events. This paper provides a brief overview of some of the techniques that have been used to support high speed measurements using fiber grating sensors over frequency ranges from 10s of kHz, to MHZ and finally toward frequencies approaching the GHz regime. Very early in the development of fiber grating sensor systems it was realized that a high speed fiber grating sensor system could be realized by placing an optical filter that might be a fiber grating in front of a detector so that spectral changes in the reflection from a fiber grating were amplitude modulated. In principal the only limitation on this type of system involved the speed of the output detector which with the development of high speed communication links moved from the regime of 10s of MHz toward 10s of GHz. The earliest deployed systems involved civil structures including measurements of the strain fields on composite utility poles and missile bodies during break tests, bridges and freeways. This was followed by a series of developments that included high speed fiber grating sensors to support nondestructive testing via ultrasonic wave detection, high speed machining and monitoring ship hulls. Each of these applications involved monitoring mechanical motion of structures and thus interest was in speeds up to a few 10s of MHz. Most recently there has been interest in using fiber grating to monitor the very high speed events such as detonations and this has led to utilization of fiber gratings that are consumed during an event that may require detection speeds of hundreds of MHz and in the future multiple GHz.

  14. Disentangled solid state and metastable polymer melt; a solvent free route to high-modulus high-strength tapes and films of UHMWPE

    Science.gov (United States)

    Rastogi, Sanjay

    2013-03-01

    Ultra High Molecular Weight Polyethylene (UHMWPE) having average molar mass greater than a million g/mol is an engineering polymer. Due to its light-weight, high abrasion resistance and biocompatibility it is used for demanding applications such as body armour, prostheses etc. At present, because of its high melt viscosity to achieve the uniaxial/biaxial properties in the form of fibers/films the polymer is processed via solution route where nearly 95wt% of the solvent is used to process 5wt% of the polymer. In past several attempts have been made to process the polymer without using any solvent. However, compared to the solvent processing route the achieved mechanical properties were rather poor. Here we show that by controlled synthesis it is feasible to obtain UHMWPE that could be processed free of solvent to make uniaxial tapes and biaxial films, having unprecedented mechanical properties, exceeding that of the solution spun fibers. We address some of the fundamental aspects of chemistry, physics, rheology and processing for the development of desired morphological features to achieve the ultimate mechanical properties in tapes and films. The paper will also address the metastable melt state obtained on melting of the disentangled crystals and its implication on rheology in linear and nonlinear viscoelastic region. Solid state NMR studies will be applied to establish disentangled state in solid state to the polymerisation conditions. References: Macromolecules 2011, 44(14), 5558-5568; Nature Materials 2005, 4, 635-641; Phys Rev Lett 2006, 96(21), 218303-218205. The authors acknowledge financial support by the Dutch Polymer Institute.

  15. Synthetic fiber technology evolving into a high-tech field

    Energy Technology Data Exchange (ETDEWEB)

    Yumura, Takao

    1988-07-01

    This paper reports the trend of synthetic fiber technology. Representative synthetic fibers are nylon, polyester, and acrylic. Researchers are studying the continuation of polymerization processes, high-efficiency catalysts, thin-film polymerization, the possibility of energy saving by interfacial polymerization, and small quantities of a large variety of items method. They are making considerable progress in accelerating, simplifying, and rationalizing production processes. As a result, they have already omitted the elongation chamber and realized the continuation of spinning and elongation processes. The textile industry is planning to adopt a super-fast spinning system. To meet customers' needs for a wider variety of advanced materials, researchers are developing differential, high-value-added materials. High functions are added to fibers during all processes including polymerization, spinning, thread or cotton making, knitting, and after-treatment. Researchers have developed new materials looking exactly like silk or wool, having aesthetic properties, artificial suede, and combining moisture permeability and waterproofness. New materials developed for high-technology purposes include carbon fiber, aramid fiber that obtains high strength and elasticity without being elongated, high-strength, and high-elasticity super-high-polymer polyethylene fiber. (3 figs, 1 tab)

  16. Sapphire-fiber-based distributed high-temperature sensing system.

    Science.gov (United States)

    Liu, Bo; Yu, Zhihao; Hill, Cary; Cheng, Yujie; Homa, Daniel; Pickrell, Gary; Wang, Anbo

    2016-09-15

    We present, for the first time to our knowledge, a sapphire-fiber-based distributed high-temperature sensing system based on a Raman distributed sensing technique. High peak power laser pulses at 532 nm were coupled into the sapphire fiber to generate the Raman signal. The returned Raman Stokes and anti-Stokes signals were measured in the time domain to determine the temperature distribution along the fiber. The sensor was demonstrated from room temperature up to 1200°C in which the average standard deviation is about 3.7°C and a spatial resolution of about 14 cm was achieved.

  17. High Performance Fiber Reinforced Cement Composites 6 HPFRCC 6

    CERN Document Server

    Reinhardt, Hans; Naaman, A

    2012-01-01

    High Performance Fiber Reinforced Cement Composites (HPFRCC) represent a class of cement composites whose stress-strain response in tension undergoes strain hardening behaviour accompanied by multiple cracking, leading to a high strain prior to failure. The primary objective of this International Workshop was to provide a compendium of up-to-date information on the most recent developments and research advances in the field of High Performance Fiber Reinforced Cement Composites. Approximately 65 contributions from leading world experts are assembled in these proceedings and provide an authoritative perspective on the subject. Special topics include fresh and hardening state properties; self-compacting mixtures; mechanical behavior under compressive, tensile, and shear loading; structural applications; impact, earthquake and fire resistance; durability issues; ultra-high performance fiber reinforced concrete; and textile reinforced concrete. Target readers: graduate students, researchers, fiber producers, desi...

  18. Effect of electron beam radiation on the structure and mechanical properties of ultra high molecular weight polyethylene fibers

    International Nuclear Information System (INIS)

    Li Shujun; Sun Weijun; Liu Xiuju; Gao Yongzhong; Li Huisheng

    1998-01-01

    Ultra high molecular weight polyethylene fibers have been crosslinked by electron beam. The structure and mechanical properties of them have been investigated in different irradiation atmospheres. The obtained results show that the gel content and crosslinking density increase with the increase of dose, the swelling ratio and average molecular weight of crosslinked net decrease with the increase of dose, the tensile strength and failure elongation decrease with the increase of dose, the tensile modulus increases with the increase of dose. When the samples are irradiated in air, vacuum and acetylene atmospheres, the effect of irradiation in acetylene atmosphere is best

  19. Reinforcement of tire tread and radiator hose rubbers with short aramid fibers

    OpenAIRE

    Shirazi, Morteza; Noordermeer, Jacobus W.M.

    2010-01-01

    Short fiber reinforced rubber composites have gained great importance due to their advantages in processing and low cost, coupled with high strength. Reinforcement with short fibers offers attractive features such as design flexibility, high modulus, tear strength, etc. The degree of reinforcement depends upon many parameters, such as: the nature of the rubber matrix, the type of fiber, the concentration and orientation of the fibers, fiber to rubber adhesion to generate a strong interface, f...

  20. Fiber optic chemical sensors: The evolution of high- density fiber-optic DNA microarrays

    Science.gov (United States)

    Ferguson, Jane A.

    2001-06-01

    Sensors were developed for multianalyte monitoring, fermentation monitoring, lactate analysis, remote oxygen detection for use in bioremediation monitoring and in a fuel spill clean-up project, heavy metal analysis, and high density DNA microarrays. The major focus of this thesis involved creating and improving high-density DNA gene arrays. Fiber optic sensors are created using fluorescent indicators, polymeric supports, and optical fiber substrates. The fluorescent indicator is entrapped in a polymer layer and attached to the tip of the optical fiber. The tip of the fiber bearing the sensing layer (the distal end) is placed in the sample of interest while the other end of the fiber (the proximal end) is connected to an analysis system. Any length of fiber can be used without compromising the integrity or sensitivity of the system. A fiber optic oxygen sensor was designed incorporating an oxygen sensitive fluorescent dye and a gas permeable polymer attached to an optical fiber. The construction simplicity and ruggedness of the sensor enabled its deployment for in situ chemical oxidation and bioremediation studies. Optical fibers were also used as the substrate to detect biomolecules in solution. To monitor bioprocesses, the production of the analyte of interest must be coupled with a species that is optically measurable. For example, oxygen is consumed in many metabolic functions. The fiber optic oxygen sensor is equipped with an additional sensing layer. Upon contact with a specific biochemical in the sample, a reaction occurs in the additional sensing layer that either consumes or produces oxygen. This dual layer system was used to monitor the presence of lactate, an important metabolite for clinical and bioprocess analysis. In many biological and environmental systems, the generation of one species occurs coincidentally with the generation or consumption of another species. A multianalyte sensor was prepared that can monitor the simultaneous activity of pH, CO2

  1. Gain optimization in fiber optical parametric amplifiers by combining standard and high-SBS threshold highly nonlinear fibers

    DEFF Research Database (Denmark)

    Da Ros, Francesco; Rottwitt, Karsten; Peucheret, Christophe

    2012-01-01

    Combining Al-doped and Ge-doped HNLFs as gain media in FOPAs is proposed and optimized, resulting in efficient SBS mitigation while circumventing the additional loss of the high SBS threshold Al-doped fiber.......Combining Al-doped and Ge-doped HNLFs as gain media in FOPAs is proposed and optimized, resulting in efficient SBS mitigation while circumventing the additional loss of the high SBS threshold Al-doped fiber....

  2. Development of HMPE fiber for deep water permanent mooring applications

    Energy Technology Data Exchange (ETDEWEB)

    Vlasblom, Martin; Fronzaglia, Bill; Boesten, Jorn [DSM Dyneema, Urmond (Netherlands); Leite, Sergio [Lankhorst Ropes, Sneek (Netherlands); Davies, Peter [Institut Francais de Recherche pour L' Exploration de la Mer (IFREMER) (France)

    2012-07-01

    For a number of years, the creep performance of standard High Modulus Polyethylene (HMPE) fiber types has limited their use in synthetic offshore mooring systems. In 2003, a low creep HMPE fiber was introduced and qualified for semi-permanent MODU moorings. This paper reports on a new High Modulus Polyethylene fiber type with significantly improved creep properties compared to any other HMPE fiber type, which, for the first time, allows its use in permanent offshore mooring systems, for example for deep water FPSO moorings. Results on fiber and rope creep experiments and stiffness measurements are reported. Laboratory testing shows that ropes made with the new fiber type retain the properties characteristic of HMPE such as high static strength, high fatigue resistance and stiffness, and illustrate that stiffness properties determined on HMPE fiber or rope are dependent on the applied load and temperature. (author)

  3. Superconducting properties and uniaxial strain characteristics of Nb3Sn fiber-reinforced superconductors with tantalum reinforcement fibers

    International Nuclear Information System (INIS)

    Arai, Kazuaki; Umeda, Masaichi; Agatsuma, Koh; Tateishi, Hiroshi

    1998-01-01

    We have been developing fiber-reinforced superconductors (FRS) for high-field and large-scale magnets. Tungsten fibers have been selected as the reinforcement fiber for FRS so far because tungsten has the highest elastic modulus of approximately 400 GPa which can minimize the strain from electromagnetic force. The preparation process of FRS consists of sputtering deposition and heat treatment because it may be difficult to apply drawing methods to materials of high-elastic modulus such as tungsten. Tantalum has high elastic modulus of 178 GPa and its thermal expansion coefficient that is closer to that of Nb 3 Sn than tungsten's, which means prestrain in Nb 3 Sn in FRS is reduced by adopting tantalum fibers. Tantalum has been used as barriers between bronze and copper in conventional Nb 3 Sn superconductors which are usually prepared with drawing process despite of the tantalum's high elastic modulus. That implies drawing process may be applied to prepare FRS with tantalum reinforcement fibers. In this paper, FRS using tantalum fibers prepared with sputtering process are described with making comparison with FRS of tungsten to clarify the basic properties of FRS using tantalum fibers. Depth profiles in Nb 3 Sn layer in FRS were measured to examine reaction between superconducting layers and reinforcement fibers. Superconducting properties including strain and stress characteristics were shown. Those data will contribute to design of FRS using tantalum reinforcement fibers with adopts the drawing processes. (author)

  4. Hydrostatic Pressure Sensing with High Birefringence Photonic Crystal Fibers

    Science.gov (United States)

    Fávero, Fernando C.; Quintero, Sully M. M.; Martelli, Cicero; Braga, Arthur M.B.; Silva, Vinícius V.; Carvalho, Isabel C. S.; Llerena, Roberth W. A.; Valente, Luiz C. G.

    2010-01-01

    The effect of hydrostatic pressure on the waveguiding properties of high birefringence photonic crystal fibers (HiBi PCF) is evaluated both numerically and experimentally. A fiber design presenting form birefringence induced by two enlarged holes in the innermost ring defining the fiber core is investigated. Numerical results show that modal sensitivity to the applied pressure depends on the diameters of the holes, and can be tailored by independently varying the sizes of the large or small holes. Numerical and experimental results are compared showing excellent agreement. A hydrostatic pressure sensor is proposed and demonstrated using an in-fiber modal interferometer where the two orthogonally polarized modes of a HiBi PCF generate fringes over the optical spectrum of a broad band source. From the analysis of experimental results, it is concluded that, in principle, an operating limit of 92 MPa in pressure could be achieved with 0.0003% of full scale resolution. PMID:22163435

  5. High dietary fiber intake prevents stroke at a population level.

    Science.gov (United States)

    Casiglia, Edoardo; Tikhonoff, Valérie; Caffi, Sandro; Boschetti, Giovanni; Grasselli, Carla; Saugo, Mario; Giordano, Nunzia; Rapisarda, Valentina; Spinella, Paolo; Palatini, Paolo

    2013-10-01

    This research was aimed at clarifying whether high dietary fiber intake has an impact on incidence and risk of stroke at a population level. In 1647 unselected subjects, dietary fiber intake (DFI) was detected in a 12-year population-based study, using other dietary variables, anagraphics, biometrics, blood pressure, heart rate, blood lipids, glucose, insulin, uricaemia, fibrinogenaemia, erytrosedimentation rate, diabetes, insulin resistance, smoking, pulmonary disease and left ventricular hypertrophy as covariables. In adjusted Cox models, high DFI reduced the risk of stroke. In analysis based on quintiles of fiber intake adjusted for confounders, HR for incidence of stroke was lower when the daily intake of soluble fiber was >25 g or that of insoluble fiber was >47 g. In multivariate analyses, using these values as cut-off of DFI, the risk of stroke was lower in those intaking more that the cut-off of soluble (HR 0.31, 0.17-0.55) or insoluble (HR 0.35, 0.19-0.63) fiber. Incidence of stroke was also lower (-50%, p < 0.003 and -46%, p < 0.01, respectively). Higher dietary DFI is inversely and independently associated to incidence and risk of stroke in general population. Copyright © 2012 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  6. Field test investigation of high sensitivity fiber optic seismic geophone

    Science.gov (United States)

    Wang, Meng; Min, Li; Zhang, Xiaolei; Zhang, Faxiang; Sun, Zhihui; Li, Shujuan; Wang, Chang; Zhao, Zhong; Hao, Guanghu

    2017-10-01

    Seismic reflection, whose measured signal is the artificial seismic waves ,is the most effective method and widely used in the geophysical prospecting. And this method can be used for exploration of oil, gas and coal. When a seismic wave travelling through the Earth encounters an interface between two materials with different acoustic impedances, some of the wave energy will reflect off the interface and some will refract through the interface. At its most basic, the seismic reflection technique consists of generating seismic waves and measuring the time taken for the waves to travel from the source, reflect off an interface and be detected by an array of geophones at the surface. Compared to traditional geophones such as electric, magnetic, mechanical and gas geophone, optical fiber geophones have many advantages. Optical fiber geophones can achieve sensing and signal transmission simultaneously. With the development of fiber grating sensor technology, fiber bragg grating (FBG) is being applied in seismic exploration and draws more and more attention to its advantage of anti-electromagnetic interference, high sensitivity and insensitivity to meteorological conditions. In this paper, we designed a high sensitivity geophone and tested its sensitivity, based on the theory of FBG sensing. The frequency response range is from 10 Hz to 100 Hz and the acceleration of the fiber optic seismic geophone is over 1000pm/g. sixteen-element fiber optic seismic geophone array system is presented and the field test is performed in Shengli oilfield of China. The field test shows that: (1) the fiber optic seismic geophone has a higher sensitivity than the traditional geophone between 1-100 Hz;(2) The low frequency reflection wave continuity of fiber Bragg grating geophone is better.

  7. High-Capacity Transmission Using High-Density Multicore Fiber

    DEFF Research Database (Denmark)

    Morioka, Toshio

    2017-01-01

    There have been intense research activities on SDM technologies including SDM fibers, MC-, MM-amplifiers, DEMUXs/DEMUXs with record-breaking transmission demonstrations up to 2 Pbit/s. 100 (20 dB) SDM gain, i.e. 10 Pbit/s per fiber will be a short-term goal in order for the new fibers to be consi......There have been intense research activities on SDM technologies including SDM fibers, MC-, MM-amplifiers, DEMUXs/DEMUXs with record-breaking transmission demonstrations up to 2 Pbit/s. 100 (20 dB) SDM gain, i.e. 10 Pbit/s per fiber will be a short-term goal in order for the new fibers...... to be considered for installation in the future systems although the far long term demand should be transporting 1 Ebit/s per fiber over 1000 km meaning Zbit/s-km. Cost effective network capability such as ADM and XC should also be investigated based on the new SDM schemes. In the 10-20 years time frame, we need...

  8. Dietary fiber and lipid peroxidation: effect of dietary fiber on levels of lipids and lipid peroxides in high fat diet.

    Science.gov (United States)

    Thampi, B S; Manoj, G; Leelamma, S; Menon, V P

    1991-06-01

    Effect of feeding coconut and blackgram fiber isolated as neutral detergent fiber (NDF) on the levels of lipids and lipid peroxides was studied in rats given a high fat diet. Concentration of cholesterol, free falty acid and phospholipids showed significant decrease in the serum, liver aorta and intestine of coconut and blackgram fiber groups. Concentration of malondialdehyde (MDA) and conjugated dienes was significantly decreased in liver and intestine of both fiber groups, while hydroperoxides showed significant increase in liver and heart of both the fiber groups. SOD and catalase activity was found to be increased in liver, intestine, heart proximal colon and distal colon of both the fiber groups. Serum ceruloplasmin levels showed a slight increase in animals fed coconut and blackgram fiber groups. Glutathione levels in liver, intestine proximal colon, distal colon and heart also showed a significant decrease in the animals of both the fiber groups.

  9. Feasibility of Reducing the Fiber Content in Ultra-High-Performance Fiber-Reinforced Concrete under Flexure.

    Science.gov (United States)

    Park, Jung-Jun; Yoo, Doo-Yeol; Park, Gi-Joon; Kim, Sung-Wook

    2017-01-28

    In this study, the flexural behavior of ultra-high-performance fiber-reinforced concrete (UHPFRC) is examined as a function of fiber length and volume fraction. Straight steel fiber with three different lengths ( l f ) of 13, 19.5, and 30 mm and four different volume fractions ( v f ) of 0.5%, 1.0%, 1.5%, and 2.0% are considered. Test results show that post-cracking flexural properties of UHPFRC, such as flexural strength, deflection capacity, toughness, and cracking behavior, improve with increasing fiber length and volume fraction, while first-cracking properties are not significantly influenced by fiber length and volume fraction. A 0.5 vol % reduction of steel fiber content relative to commercial UHPFRC can be achieved without deterioration of flexural performance by replacing short fibers ( l f of 13 mm) with longer fibers ( l f of 19.5 mm and 30 mm).

  10. Curaua fiber reinforced high-density polyethylene composites: effect of impact modifier and fiber loading

    Directory of Open Access Journals (Sweden)

    Jaqueline Albano de Morais

    Full Text Available Abstract Short fibers are used in thermoplastic composites to increase their tensile and flexural resistance; however, it often decreases impact resistance. Composites with short vegetal fibers are not an exception to this behavior. The purpose of this work is to produce a vegetal fiber reinforced composite with improved tensile and impact resistance in relation to the polymer matrix. We used poly(ethylene-co-vinyl acetate, EVA, to recover the impact resistance of high density polyethylene, HDPE, reinforced with Curauá fibers, CF. Blends and composites were processed in a corotating twin screw extruder. The pure polymers, blends and composites were characterized by differential scanning calorimetry, thermogravimetry, infrared spectroscopy, scanning electron microscopy, tensile mechanical properties and Izod impact resistance. EVA used as impact modifier in the HDPE matrix exhibited a co-continuous phase and in the composites the fibers were homogeneously dispersed. The best combination of mechanical properties, tensile, flexural and impact, were obtained for the formulations of composites with 20 wt. % of CF and 20 to 40 wt. % of EVA. The composite prepared with 20 wt. % EVA and containing 30 wt. % of CF showed impact resistance comparable to pure HDPE and improved tensile and flexural mechanical properties.

  11. Nanomechanics of electrospun phospholipid fiber

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, Ana C., E-mail: anac@food.dtu.dk, E-mail: ioach@food.dtu.dk; Chronakis, Ioannis S., E-mail: anac@food.dtu.dk, E-mail: ioach@food.dtu.dk [Technical University of Denmark, DTU-Food, Søltofts Plads B227, DK-2800, Kgs. Lyngby (Denmark); Nikogeorgos, Nikolaos; Lee, Seunghwan [Department of Mechanical Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark)

    2015-06-01

    Electrospun asolectin phospholipid fibers were prepared using isooctane as a solvent and had an average diameter of 6.1 ± 2.7 μm. Their mechanical properties were evaluated by nanoindentation using Atomic Force Microscopy, and their elastic modulus was found to be approximately 17.2 ± 1 MPa. At a cycle of piezo expansion-retraction (loading-unloading) of a silicon tip on a fiber, relatively high adhesion was observed during unloading. It is proposed that this was primarily due to molecular rearrangements at the utmost layers of the fiber caused by the indentation of the hydrophilic tip. The phospholipid fibers were shown to be stable in ambient conditions, preserving the modulus of elasticity up to 24 h.

  12. Nanomechanics of electrospun phospholipid fiber

    DEFF Research Database (Denmark)

    Mendes, Ana Carina Loureiro; Nikogeorgos, Nikolaos; Lee, Seunghwan

    2015-01-01

    Electrospun asolectin phospholipid fibers were prepared using isooctane as a solvent and had an average diameter of 6.1 +/- 2.7 mu m. Their mechanical properties were evaluated by nanoindentation using Atomic Force Microscopy, and their elastic modulus was found to be approximately 17.2 +/- 1MPa....... At a cycle of piezo expansion-retraction (loading-unloading) of a silicon tip on a fiber, relatively high adhesion was observed during unloading. It is proposed that this was primarily due to molecular rearrangements at the utmost layers of the fiber caused by the indentation of the hydrophilic tip....... The phospholipid fibers were shown to be stable in ambient conditions, preserving the modulus of elasticity up to 24 h. (c) 2015 AIP Publishing LLC....

  13. Unusual Formation of Precursors for Crystallization of Ultra-High Performance Polypropylene and Poly(ethylene terephthalate) Fibers by Utilization of Ecologically Friendly Horizontal Isothermal Bath

    Science.gov (United States)

    Avci, Huseyin

    The concept of production of new families of high performance polymers and engineering fibers has been reported many times in the technical literature. Such fibers have various end uses in industrial applications and exhibit the enhanced potential in the challenging areas such as ballistic, automotive, aerospace, bullet-proof vests, energy, and electronics. Since the first commercial synthesis of high polymers by Carothers and Hill, filament manufacturers have looked for ways to increase strength and fibers dimensional stability, thermal degradation resistance, etc., even at extreme conditions. Therefore, studies on the fine structure development and its relation with production conditions during the wet, dry, and melt spinning processes have received much attention by researchers to describe in detail the fundamental aspects of the fiber formation. The production of ultra-high performance fibers at relatively high throughputs by a simple method using fiber-forming polymers via developing an ecologically friendly isothermal bath (ECOB) is the first aim of this study. In this case, polypropylene (PP) was chosen as a semicrystalline thermoplastic polymer which is extensively used in industry and our daily lives. A unique, highly oriented precursor (fa = 0.60), and yet noncrystallized, undrawn fibers were obtained with superior mechanical properties. Fibrillated break, high crystalline and amorphous orientation factors of 0.95 and 0.87, respectively, demonstrate an unusual structural development after only 1.34 draw ratio for the treated fibers. The second melting peak increased 9 °C for the treated fibers, which implies a higher level of molecular ordering and thermodynamically more stable phase. After hot drawing and 1.49 draw ratio, the fibers tenacity was close to 12 g/d, the initial modulus was higher than 150 g/d, and the ultimate elongation was at a break of about 20 %. In the next phase of the research, the effects of horizontal isothermal bath (hIB)11 on the

  14. Highly-stable monolithic femtosecond Yb-fiber laser system based on photonic crystal fibers

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Lægsgaard, Jesper; Turchinovich, Dmitry

    2010-01-01

    in the oscillator cavity for dispersion balancing and nonlinear optical limiting, and another one is used for low nonlinearity final pulse recompression. The chirped-pulse amplification and recompression of the 232-fs, 45-pJ/pulse oscillator output yields a final direct fiber-end delivery of 7.3-nJ energy pulses......A self-starting, passively stabilized, monolithic all polarizationmaintaining femtosecond Yb-fiber master oscillator / power amplifier with very high operational and environmental stability is demonstrated. The system is based on the use of two different photonic crystal fibers. One is used...... of around 297 fs duration. Our laser shows exceptional stability. No Q-switched modelocking events were detected during 4-days long observation. An average fluctuation of only 7.85 · 10−4 over the mean output power was determined as a result of more than 6-hours long measurement. The laser is stable towards...

  15. Mode profiling of optical fibers at high laser powers

    DEFF Research Database (Denmark)

    Nielsen, Peter Carøe; Pedersen, David Bue; Simonsen, R.B.

    2008-01-01

    of the focused spot can be determined. The analyser is based on the principle of a rotating wire being swept though the laser beam, while the reflected signal is recorded [1]. By changing the incident angle of the rotating rod from 0° to 360° in relation to the fiber, the full profile of the laser beam...... is obtained. Choosing a highly reflective rod material and a sufficiently high rotation speed, these measurements can be done with high laser powers, without any additional optical elements between the fiber and analyzer. The performance of the analyzer was evaluated by coupling laser light into different...

  16. High-sensitivity bend angle measurements using optical fiber gratings.

    Science.gov (United States)

    Rauf, Abdul; Zhao, Jianlin; Jiang, Biqiang

    2013-07-20

    We present a high-sensitivity and more flexible bend measurement method, which is based on the coupling of core mode to the cladding modes at the bending region in concatenation with optical fiber grating serving as band reflector. The characteristics of a bend sensing arm composed of bending region and optical fiber grating is examined for different configurations including single fiber Bragg grating (FBG), chirped FBG (CFBG), and double FBGs. The bend loss curves for coated, stripped, and etched sections of fiber in the bending region with FBG, CFBG, and double FBG are obtained experimentally. The effect of separation between bending region and optical fiber grating on loss is measured. The loss responses for single FBG and CFBG configurations are compared to discover the effectiveness for practical applications. It is demonstrated that the sensitivity of the double FBG scheme is twice that of the single FBG and CFBG configurations, and hence acts as sensitivity multiplier. The bend loss response for different fiber diameters obtained through etching in 40% hydrofluoric acid, is measured in double FBG scheme that resulted in a significant increase in the sensitivity, and reduction of dead-zone.

  17. Electrospun fibers for high performance anodes in microbial fuel cells. Optimizing materials and architecture

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shuiliang

    2010-04-15

    the results of above, the porosity and the pore size in the fiber mat are utmost important for the performance of anode in MFCs. With concept of curve or helix in fibers can lead to higher porosity in the fiber mat, a novel 3D porous architecture, nanospring, was designed for high performance anode structure in future MFC. Polymeric nanospring was prepared by bicomponent electrospinning. The reasons for the formation of polymeric nanosprings were investigated by coaxial electrospinning of bicomponent rigid i.e. Nomex {sup registered} or polysulfonamide (PSA) (rigid) and flexible polymers i.e. thermoplastic polyurethane (TPU) (flexible). The results indicated that the nanospring formation is attributed to longitudinal compressive forces which are resulted from the different shrinkages of the rigid and flexible two polymer components and a good electrical conductivity of one of the polymer solutions in coaxial electrospinning system. The modified electrospinning i.e. off-centered electrospinning and side-by-side electrospinning are much more effective than the coaxial electrospinning for generating polymer spring or helical structures, because of the higher longitudinal compressive forces which derived from the lopsided elastic forces. The aligned nanofiber mat with high percent of nanospring shows higher elongation and higher storage modulus below transition glass temperature (T{sub g}) compared to that with straight fibers. The nanospring or helical shape preserves much void-space in the mat. It would be a potential architecture for highly efficient anode in future MFCs. (orig.)

  18. Application of Fiber Reinforcement Concrete Technique in Civil ...

    African Journals Online (AJOL)

    modulus of elasticity, high tensile strength, improved fatigue and impact resistance. Reinforcing the concrete structures with fibers such as polyester is one of the possible ways to provide all the criteria of the durable repair material. This type of reinforcement is called Fiber Reinforcement of Concrete Structures. There is an ...

  19. Fiber lightguide-coupled high frequency analog data system

    International Nuclear Information System (INIS)

    Davies, T.J.; Nelson, M.A.; Morton, J.R.; Pruett, B.

    1976-06-01

    An experimental system is described for measuring the time history of a high voltage, high frequency electrical pulse from a radiation detector. The system employs several fibers of a 500-m graded index light-guide cable to carry modelocked laser pulses from a safe location to an electro-optical Kerr cell located near the detector. These 200-ps pulses are widened to 500 ps at the cell by fiber dispersion. They are intensity-modulated in the cell by the electrical signal and returned over other cable fibers to an optical detector and recorder located near the laser. System frequency response exceeds 500 MHz over an amplitude dynamic range of 1000:1

  20. Behaviors of SiC fibers at high temperature

    International Nuclear Information System (INIS)

    Colin, C.; Falanga, V.; Gelebart, L.

    2010-01-01

    On the one hand, considering the improvements of mechanical and thermal behaviours of the last generation of SiC fibers (Hi-Nicalon S, Tyranno SA3); on the other hand, regarding physical and chemical properties and stability under irradiation, SiC/SiC composites are potential candidates for nuclear applications in advanced fission and fusion reactors. CEA must characterize and optimize these composites before their uses in reactors. In order to study this material, CEA is developing a multi-scale approach by modelling from fibers to bulk composite specimen: fibres behaviours must be well known in first. Thus, CEA developed a specific tensile test device on single fibers at high temperature, named MecaSiC. Using this device, we have already characterized the thermoelastic and thermoelectric behaviours of SiC fibers. Additional results about the plastic properties at high temperatures were also obtained. Indeed, we performed tensile tests between 1200 degrees C up to 1700 degrees C to characterize this plastic behaviour. Some thermal annealing, up to 3 hours at 1700 degrees C, had been also performed. Furthermore, we compare the mechanical behaviours with the thermal evolution of the electric resistivity of these SiC fibers. Soon, MecaSiC will be coupled to a new charged particle accelerator. Thus, in this configuration, we will be able to study in-situ irradiation effects on fibre behaviours, as swelling or creep for example

  1. High-power picosecond pulse delivery through hollow core photonic band gap fibers

    DEFF Research Database (Denmark)

    Michieletto, Mattia; Johansen, Mette Marie; Lyngsø, Jens Kristian

    2015-01-01

    We demonstrated robust and bend insensitive fiber delivery of high power pulsed laser with diffraction limited beam quality for two different kind of hollow core photonic band gap fibers......We demonstrated robust and bend insensitive fiber delivery of high power pulsed laser with diffraction limited beam quality for two different kind of hollow core photonic band gap fibers...

  2. Effects of electron beam irradiation on mechanical properties at low and high temperature of fiber reinforced composites using PEEK as matrix material

    International Nuclear Information System (INIS)

    Sasuga, Tsuneo; Seguchi, Tadao; Sakai, Hideo; Odajima, Toshikazu; Nakakura, Toshiyuki; Masutani, Masahiro.

    1987-11-01

    Carbon fiber reinforced composite (PEEK-CF) using polyarylether-ether-ketone (PEEK) as a matrix material was prepared and the electron beam radiation effects on the mechanical properties at low and high temperature and the effects of annealing after irradiation were studied. Cooling down to 77 K, the flexural strength of PEEK-CF increased to about 20 % than that at room temperature. The data of flexural strength for the irradiated specimens showed some scattering, but the strength and modulus at 77 K were changed scarcely up to 120 MGy. The flexural strength and modulus in the unirradiated specimen decreased with increasing of measurement temperature, and the strength at 140 deg C, which is the just below temperature of the glass transition of PEEK, was to 70 % of the value at room temperature. For the irradiated specimens, the strength and modulus increased with dose and the values at 140 deg C for the specimen irradiated with 120 MGy were nearly the same with the unirradiated specimen measured at room temperature. The improvement of mechanical properties at high temperature by irradiation was supported by a viscoelastic measurement in which the glass transition shifted to the higher temperature by the radiation-induced crosslinking. A glass fiber reinforced PEEK composite (PEEK-GF) was prepared and its irradiation effects by electron beam was studied. Unirradiated PEEK-GF showed the same performance with that for GFRP of epoxide resin as matrix material, but by irradiation the flexual strength and modulus decreased with dose. It was revealed that this composite was destroyed by delamination because inter laminar shear strength (ILSS) decreased with dose and analysis of the profile of S-S curve showed typical delamination. Fractoglaphy by electron microscopy supported the delamination which is caused by the lowering of adhesion on interface between the fiber and matrix with increase of dose. (author)

  3. Gel spinning of PVA composite fibers with high content of multi-walled carbon nanotubes and graphene oxide hybrids

    International Nuclear Information System (INIS)

    Wei, Yizhe; Lai, Dengpan; Zou, Liming; Ling, Xinlong; Lu, Hongwei; Xu, Yongjing

    2015-01-01

    In this report, poly (vinyl alcohol) (PVA) composite fibers with high content of multi-walled carbon nanotubes and graphene oxide (MWCNTs-GO) hybrids were prepared by gel spinning, and were characterized by TGA, DSC, SEM, XL-2 yarn strength tester and electrical conductivity measurement. The total content of MWCNTs-GO hybrids in the PVA composite fibers, which is up to 25 wt%, was confirmed by TGA analysis. The DSC measurement shows that the melting and crystallization peaks decreased after the addition of nano-fillers. This is due to the reason that the motion of PVA chains is completely confined by strong hydrogen bonding interaction between PVA and nano-fillers. After the addtion of GO, the dispersibility of MWCNTs in composite fibers improved slightly. And the tensile strength and Young's modulus increased by 38% and 67%, respectively. This is caused by the increased hydrogen bonding interaction and synergistic effect through hybridization of MWCNTs and GO. More significantly, the electrical conductivity of PVA/MWCNTs/GO composite fibers enhanced by three orders of magnitude with the addition of GO. (paper)

  4. Fiber Bragg Gratings for High-Temperature Thermal Characterization

    International Nuclear Information System (INIS)

    Stinson-Bagby, Kelly L.; Fielder, Robert S.

    2004-01-01

    Fiber Bragg grating (FBG) sensors were used as a characterization tool to study the SAFE-100 thermal simulator at the Nasa Marshal Space Flight Center. The motivation for this work was to support Nasa space nuclear power initiatives through the development of advanced fiber optic sensors for space-based nuclear power applications. Distributed high temperature measurements, up to 1150 deg. C, were made with FBG temperature sensors. Additionally, FBG strain measurements were taken at elevated temperatures to provide a strain profile of the core during operation. This paper will discuss the contribution of these measurements to meet the goals of Nasa Marshall Space Flight Center's Propulsion Research Center. (authors)

  5. Design of Ultra High Performance Fiber Reinforced Concrete Shells

    DEFF Research Database (Denmark)

    Jepsen, Michael S.; Lambertsen, Søren Heide; Damkilde, Lars

    2013-01-01

    Fiber Reinforced Concrete shell. The major challenge in the design phase has been securing sufficient stiffness of the structure while keeping the weight at a minimum. The weight/stiffness issue has been investigated by means of the finite element method, to optimize the structure regarding overall......The paper treats the redesign of the float structure of the Wavestar wave energy converter. Previously it was designed as a glass fiber structure, but due to cost reduction requirements a redesign has been initiated. The new float structure will be designed as a double curved Ultra High Performance...

  6. High selectivity ZIF-93 hollow fiber membranes for gas separation.

    Science.gov (United States)

    Cacho-Bailo, Fernando; Caro, Guillermo; Etxeberría-Benavides, Miren; Karvan, Oğuz; Téllez, Carlos; Coronas, Joaquín

    2015-06-30

    Zeolitic imidazolate framework-93 (ZIF-93) continuous membranes were synthesized on the inner side of P84 co-polyimide hollow fiber supports by microfluidics. MOFs and polymers showed high compatibility and the membrane exhibited H2-CH4 and CO2-CH4 separation selectivities of 97 (100 °C) and 17 (35 °C), respectively.

  7. Photonic bandgap fiber lasers and multicore fiber lasers for next generation high power lasers

    DEFF Research Database (Denmark)

    Shirakawa, A.; Chen, M.; Suzuki, Y.

    2014-01-01

    Photonic bandgap fiber lasers are realizing new laser spectra and nonlinearity mitigation that a conventional fiber laser cannot. Multicore fiber lasers are a promising tool for power scaling by coherent beam combination. © 2014 OSA....

  8. High rate response of ultra-high-performance fiber-reinforced concretes under direct tension

    Energy Technology Data Exchange (ETDEWEB)

    Tran, Ngoc Thanh [Department of Civil and Environmental Engineering, Sejong University, 98 Gunja-Dong, Gwangjin-Gu, Seoul 143-747 (Korea, Republic of); Tran, Tuan Kiet [Department of Civil and Environmental Engineering, Sejong University, 98 Gunja-Dong, Gwangjin-Gu, Seoul 143-747 (Korea, Republic of); Department of Civil Engineering and Applied Mechanics, Ho Chi Minh City University of Technology and Education, 01 Vo Van Ngan, Thu Duc District, Ho Chi Minh City (Viet Nam); Kim, Dong Joo, E-mail: djkim75@sejong.ac.kr [Department of Civil and Environmental Engineering, Sejong University, 98 Gunja-Dong, Gwangjin-Gu, Seoul 143-747 (Korea, Republic of)

    2015-03-15

    The tensile response of ultra-high-performance fiber-reinforced concretes (UHPFRCs) at high strain rates (5–24 s{sup −} {sup 1}) was investigated. Three types of steel fibers, including twisted, long and short smooth steel fibers, were added by 1.5% volume content in an ultra high performance concrete (UHPC) with a compressive strength of 180 MPa. Two different cross sections, 25 × 25 and 25 × 50 mm{sup 2}, of tensile specimens were used to investigate the effect of the cross section area on the measured tensile response of UHPFRCs. Although all the three fibers generated strain hardening behavior even at high strain rates, long smooth fibers produced the highest tensile resistance at high rates whereas twisted fiber did at static rate. The breakages of twisted fibers were observed from the specimens tested at high strain rates unlike smooth steel fibers. The tensile behavior of UHPFRCs at high strain rates was clearly influenced by the specimen size, especially in post-cracking strength.

  9. Recycling high-performance carbon fiber reinforced polymer composites using sub-critical and supercritical water

    Science.gov (United States)

    Knight, Chase C.

    of the polymer matrix. To date, very few studies have been reported in this area and the studies thus far have only focused on small scale feasibility and have only shown the recovery of random fibers. The goal of this research is to advance the knowledge in the field of sub-critical and supercritical fluid recycling by providing fundamental information that will be necessary to move this process forward to an industrial scale. This dissertation work consists of several phases of studies. In the first phase of this research, the feasibility of recycling woven CFRP was established on a scale approximately 30 times larger than previously reported. The industrial relevance was also conveyed, as the process was shown to remove up 99% of a highly cross-linked resin from an aerospace grade composite system with 100% retention of the single filament tensile strength and modulus whilst also retaining the highly valuable woven fiber structure. The second phase of research demonstrated the power of this technology to recycle multi-layer composites and provide the ability to reuse the highly valuable materials. Up to 99% resin elimination was achieved for a woven 12-layer aerospace grade composite. The recycled woven fabric layers, with excellent retention of the fiber architecture, were directly reused to fabricate reclaimed fiber composites (RFC). Manufacturing issues associated with the use of the recycled fiber were investigated. Several fabrication technologies were used to fabricate the composite, and the composites show moderate short beam shear strength and may be suitable for certain industrial applications. Moreover, fresh composites were also recycled, recovered, and reused to investigate the retention of flexural properties of the fibers after recycling. Up to 95% of the flexural strength and 98% of the flexural modulus was retained in the reclaimed fiber composites. The recycled resin residual can be incorporated into fresh resin and cured, demonstrating a near

  10. Structural Laminate Aluminum-Glass-Fiber Materials 1441-Sial

    Science.gov (United States)

    Shestov, V. V.; Antipov, V. V.; Senatorova, O. G.; Sidel'nikov, V. V.

    2014-01-01

    The structure, composition and set of properties of specimens and components, and some parameters of the process of production of a promising FML class of metallic polymers based on sheets of high-modulus ( E 79 GPa) alloy 1441 with reduced density ( d 2.6 g/cm3) and an optimized glued prepreg reinforced with fibers of high-strength high-modulus VMPglass are described. Results of fire and fatigue tests of a promising 1441-SIAL structural laminate are presented.

  11. High power nickel - cadmium cells with fiber electrodes (FNC)

    International Nuclear Information System (INIS)

    Haschka, F.; Schlieck, D.

    1986-01-01

    Nickel cadmium batteries differ greatly in their mechanical design and construction of the electrodes. Using available electrode constructions, batteries are designed which meet the requirements of specific applications and offer optimum performance. Pocket- and tubular cells are basically developed with the technology of the year 1895. Since then some improvements with todays technology have been made. The sintered cells use the technology of the 1930's and they are still limited to high power application. With this knowledge and the technology of today the fiber-structured nickel electrode (FNC) was developed at DAUG laboratory, a subsidiary company of Mercedes-Benz and Volkswagen. After ten years of experience in light weight prototype batteries for electric vehicles (1-2), the system was brought into production by a new company, DAUG-HOPPECKE. Characteristics of fiber electrodes: thickness and size can be easily changed; pure active materials are used; high conductor density; high elasticity of the structure; high porosity. Since 1983 NiCd-batteries with fiber-structured nickel electrodes (FNC) have been in production. Starting with the highly demanded cell-types for low, medium and high performance called L, M and H according to IEC 623 for low, medium and high performance applications, the program was recently completed with the X-type cell for very high power, as an alternative to sintered cells

  12. A fiber optic temperature sensor based on multi-core microstructured fiber with coupled cores for a high temperature environment

    Science.gov (United States)

    Makowska, A.; Markiewicz, K.; Szostkiewicz, L.; Kolakowska, A.; Fidelus, J.; Stanczyk, T.; Wysokinski, K.; Budnicki, D.; Ostrowski, L.; Szymanski, M.; Makara, M.; Poturaj, K.; Tenderenda, T.; Mergo, P.; Nasilowski, T.

    2018-02-01

    Sensors based on fiber optics are irreplaceable wherever immunity to strong electro-magnetic fields or safe operation in explosive atmospheres is needed. Furthermore, it is often essential to be able to monitor high temperatures of over 500°C in such environments (e.g. in cooling systems or equipment monitoring in power plants). In order to meet this demand, we have designed and manufactured a fiber optic sensor with which temperatures up to 900°C can be measured. The sensor utilizes multi-core fibers which are recognized as the dedicated medium for telecommunication or shape sensing, but as we show may be also deployed advantageously in new types of fiber optic temperature sensors. The sensor presented in this paper is based on a dual-core microstructured fiber Michelson interferometer. The fiber is characterized by strongly coupled cores, hence it acts as an all-fiber coupler, but with an outer diameter significantly wider than a standard fused biconical taper coupler, which significantly increases the coupling region's mechanical reliability. Owing to the proposed interferometer imbalance, effective operation and high-sensitivity can be achieved. The presented sensor is designed to be used at high temperatures as a result of the developed low temperature chemical process of metal (copper or gold) coating. The hermetic metal coating can be applied directly to the silica cladding of the fiber or the fiber component. This operation significantly reduces the degradation of sensors due to hydrolysis in uncontrolled atmospheres and high temperatures.

  13. Optical Fiber High Temperature Sensor Instrumentation for Energy Intensive Industries

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Kristie L.; Wang, Anbo; Pickrell, Gary R.

    2006-11-14

    This report summarizes technical progress during the program “Optical Fiber High Temperature Sensor Instrumentation for Energy Intensive Industries”, performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The objective of this program was to use technology recently invented at Virginia Tech to develop and demonstrate the application of self-calibrating optical fiber temperature and pressure sensors to several key energy-intensive industries where conventional, commercially available sensors exhibit greatly abbreviated lifetimes due primarily to environmental degradation. A number of significant technologies were developed under this program, including • a laser bonded silica high temperature fiber sensor with a high temperature capability up to 700°C and a frequency response up to 150 kHz, • the world’s smallest fiber Fabry-Perot high temperature pressure sensor (125 x 20 μm) with 700°C capability, • UV-induced intrinsic Fabry-Perot interferometric sensors for distributed measurement, • a single crystal sapphire fiber-based sensor with a temperature capability up to 1600°C. These technologies have been well demonstrated and laboratory tested. Our work plan included conducting major field tests of these technologies at EPRI, Corning, Pratt & Whitney, and Global Energy; field validation of the technology is critical to ensuring its usefulness to U.S. industries. Unfortunately, due to budget cuts, DOE was unable to follow through with its funding commitment to support Energy Efficiency Science Initiative projects and this final phase was eliminated.

  14. Unidirectional high fiber content composites: Automatic 3D FE model generation and damage simulation

    DEFF Research Database (Denmark)

    Qing, Hai; Mishnaevsky, Leon

    2009-01-01

    A new method and a software code for the automatic generation of 3D micromechanical FE models of unidirectional long-fiber-reinforced composite (LFRC) with high fiber volume fraction with random fiber arrangement are presented. The fiber arrangement in the cross-section is generated through random...

  15. High-Temperature Hot Air/Silane Coupling Modification of Wood Fiber and Its Effect on Properties of Wood Fiber/HDPE Composites

    Directory of Open Access Journals (Sweden)

    Feng Chen

    2017-03-01

    Full Text Available The surfaces of poplar wood fibers were modified using high-temperature hot air (HTHA treatment and silane coupling agent. The single factor test was then used to investigate the performances (e.g., the change of functional groups, polarity, cellulose crystallinity, and thermal stability of modified poplar wood fibers (mPWF through Fourier transform infrared spectrometry, X-ray diffraction and thermo-gravimetric analysis for the subsequent preparation of wood-plastic composites (WPCs. The effect of HTHA treatment conditions—such as temperature, inlet air velocity, and feed rate—on the performances of WPCs was also investigated by scanning electron microscopy and dynamic mechanical analysis. The main findings indicated that HTHA treatment could promote the hydration of mPWF and improve the mechanical properties of WPCs. Treatment temperature strongly affected the mechanical properties and moisture adsorption characteristics of the prepared composites. With the increase of treated temperature and feed rate, the number of hydroxyl groups, holocellulose content, and the pH of mPWF decreased. The degree of crystallinity and thermal stability and the storage modulus of the prepared composites of mPWF increased. However, dimensional stability and water absorption of WPCs significantly reduced. The best mechanical properties enhancement was observed with treatment temperature at 220 °C. This study demonstrated the feasibility for the application of an HTHA treatment in the WPC production industry.

  16. Latest development of high-power fiber lasers in SPI

    Science.gov (United States)

    Norman, Stephen; Zervas, Mikhail N.; Appleyard, Andrew; Durkin, Michael K.; Horley, Ray; Varnham, Malcolm P.; Nilsson, Johan; Jeong, Yoonchan

    2004-06-01

    High Power Fiber Lasers (HPFLs) and High Power Fiber Amplifiers (HPFAs) promise a number of benefits in terms of their high optical efficiency, degree of integration, beam quality, reliability, spatial compactness and thermal management. These benefits are driving the rapid adoption of HPFLs in an increasingly wide range of applications and power levels ranging from a few Watts, in for example analytical applications, to high-power >1kW materials processing (machining and welding) applications. This paper describes SPI"s innovative technologies, HPFL products and their performance capabilities. The paper highlights key aspects of the design basis and provides an overview of the applications space in both the industrial and aerospace domains. Single-fiber CW lasers delivering 1kW output power at 1080nm have been demonstrated and are being commercialized for aerospace and industrial applications with wall-plug efficiencies in the range 20 to 25%, and with beam parameter products in the range 0.5 to 100 mm.mrad (corresponding to M2 = 1.5 to 300) tailored to application requirements. At power levels in the 1 - 200 W range, SPI"s proprietary cladding-pumping technology, GTWaveTM, has been employed to produce completely fiber-integrated systems using single-emitter broad-stripe multimode pump diodes. This modular construction enables an agile and flexible approach to the configuration of a range of fiber laser / amplifier systems for operation in the 1080nm and 1550nm wavelength ranges. Reliability modeling is applied to determine Systems martins such that performance specifications are robustly met throughout the designed product lifetime. An extensive Qualification and Reliability-proving programme is underway to qualify the technology building blocks that are utilized for the fiber laser cavity, pump modules, pump-driver systems and thermo-mechanical management. In addition to the CW products, pulsed fiber lasers with pulse energies exceeding 1mJ with peak pulse

  17. Thermoplastic polyolefins as formaldehyde free binders in highly filled lignocellulosic panel boards: using glycerine as a processing aid in kenaf fiber polypropylene boards

    Directory of Open Access Journals (Sweden)

    Anand Ramesh Sanadi

    2008-12-01

    Full Text Available A new technique was developed to make highly loaded (up to 95% formaldehyde free natural fiber boards. The purpose of the paper is to report a broad study on 85% kenaf boards using linear thermoplastic polymers as the binder in preparing the boards to determine if these materials have potential in commercial applications by comparing them to other commercial materials. In these materials, linear thermoplastic polymer chains act as an adhesive and the product resembles a typical wood based panel (e.g., phenol formaldehyde fiber board. The process involved the use of small amount of glycerine in the fiber to enhance processibility in a thermo-kinetic mixer followed by hot pressing. In this paper, we report the properties of 85% by weight kenaf fiber boards using polypropylene as the adhesive. A maleated polypropylene was used to improve the adhesion and stress transfer between the adhesive and kenaf fiber. The addition of 2% by weight of glycerine based on the dry weight of kenaf fiber resulted in the best properties of the boards. Differential scanning calorimetric studies suggested that the glycerine had a little effect on the percent crystallinity of the matrix. Dynamic mechanical tests of the 85% boards showed some differences compared to conventional 60% by weight kenaf-PP composites. The 85% kenaf boards had a flexural strength of 75 MPa and a flexural modulus of 6.8 GPa with a specific gravity of 1.24. These properties are comparable to standard formaldehyde free high density hardboards with flexural strengths of 48.3 MPa and flexural modulus of 5.5 GPa, and a specific gravity of 1.28. This paper gives a broad overview of an initial study of these new materials.

  18. High force measurement sensitivity with fiber Bragg gratings fabricated in uniform-waist fiber tapers

    International Nuclear Information System (INIS)

    Wieduwilt, Torsten; Brückner, Sven; Bartelt, Hartmut

    2011-01-01

    Fiber Bragg gratings inscribed in the waist of tapered photosensitive fibers offer specific attractive properties for sensing applications. A small-diameter fiber reduces structural influences for imbedded fiber sensing elements. In the case of application as a force-sensing element for tensile forces, sensitivity scales inversely with the fiber cross-sectional area. It is therefore possible to increase force sensitivity by several orders of magnitude compared to Bragg grating sensors in conventionally sized fibers. Special requirements for such Bragg grating arrangements are discussed and experimental measurements for different fiber taper diameters down to 4 µm are presented

  19. High power pulsed sources based on fiber amplifiers

    Science.gov (United States)

    Canat, Guillaume; Jaouën, Yves; Mollier, Jean-Claude; Bouzinac, Jean-Pierre; Cariou, Jean-Pierre

    2017-11-01

    Cladding-pumped rare-earth-doped fiber laser technologies are currently among the best sources for high power applications. Theses extremely compact and robust sources appoint them as good candidate for aeronautical and space applications. The double-clad (DC) fiber converts the poor beamquality of high-power large-area pump diodes from the 1st cladding to laser light at another wavelength guided in an active single-mode core. High-power coherent MOPA (Master Oscillator Power Amplifier) sources (several 10W CW or several 100W in pulsed regime) will soon be achieved. Unfortunately it also brings nonlinear effects which quickly impairs output signal distortions. Stimulated Brillouin scattering (SBS) and optical parametric amplification (OPA) have been shown to be strong limitations. Based on amplifier modeling and experiments we discuss the performances of these sources.

  20. Radiation distribution sensor with optical fibers for high radiation fields

    International Nuclear Information System (INIS)

    Takada, Eiji; Kimura, Atsushi; Hosono, Yoneichi; Takahashi, Hiroyuki; Nakazawa, Masaharu

    1999-01-01

    Radiation distribution sensors with their feasibilities have been described in earlier works. However, due to large radiation induced transmission losses in optical fibers, especially in the visible wavelength region, it has been difficult to apply these techniques to high radiation fields. In this study, we proposed a new concept of optical fiber based radiation distribution measurements with near infrared (IR) emission. Near IR scintillators were attached to the ends of optical fibers, where the fibers were bundled and connected to an N-MOS line sensor or a cooled CCD camera. From the measurements of each area density, the radiation levels at the positions of the scintillators can be known. The linearity between the gamma dose rate at each scintillator and the registered counts has been examined. For correcting the radiation induced loss effects, we applied the Optical Time Domain Reflectometry technique to measure the loss distribution and from the results, a possibility for correction of the loss effect has been demonstrated. The applicable dose rate range was evaluated to be from 0.1 to 10 3 Gy/h. This system can be a promising tool as a flexible dose rate distribution monitor in radiation facilities like nuclear plants and accelerator facilities. (author)

  1. No-core fiber-based highly sensitive optical fiber pH sensor.

    Science.gov (United States)

    Bhardwaj, Vanita; Pathak, Akhilesh Kumar; Singh, Vinod Kumar

    2017-05-01

    The present work describes the fabrication and characterization of an optical fiber pH sensor using a sol–gel technique. The sensing head configuration is incorporated using a short section of no-core fiber, coated with tetraethyl orthosilicate and spliced at the end of a single mode fiber with a bulge. Different types of indicators (bromophenol blue, cresol red, and chlorophenol red) were used to achieve a wide pH range from 2 to 13. High sensitivities of the fabricated device were found to be 1.02 and ? 0.93 ?? nm / pH for acidic and alkaline solutions, respectively. From the characterization results, it was noted that there is an impact of ionic strength and an effect of the temperature of liquid on the response characteristic, which is an advantage of the existing device over the other pH sensors. The fabricated sensor exhibited good reflection spectrum, indicating a blueshift in resonance wavelength for alkaline solutions and a redshift for acidic solutions.

  2. Development of Steel Fiber-Reinforced Expanded-Shale Lightweight Concrete with High Freeze-Thaw Resistance

    Directory of Open Access Journals (Sweden)

    Mingshuang Zhao

    2018-01-01

    Full Text Available For the popularized structural application, steel fiber-reinforced expanded-shale lightweight concrete (SFRELC with high freeze-thaw resistance was developed. The experimental study of this paper figured out the effects of air-entraining content, volume fraction of steel fibers, and fine aggregate type. Results showed that while the less change of mass loss rate was taken place for SFRELC after 300 freeze-thaw cycles, the relative dynamic modulus of elasticity and the relative flexural strength presented clear trends of freeze-thaw resistance of SFRELC. The compound effect of the air-entraining agent and the steel fibers was found to support the SFRELC with high freeze-thaw resistance, and the mechanisms were explored with the aid of the test results of water penetration of SFRELC. The beneficial effect was appeared from the replacement of lightweight sand with manufactured sand. Based on the test results, suggestions are given out for the optimal mix proportion of SFRELC to satisfy the durability requirement of freeze-thaw resistance.

  3. Recent trends in steel fibered high-strength concrete

    International Nuclear Information System (INIS)

    Shah, Abid A.; Ribakov, Y.

    2011-01-01

    Highlights: → Recent studies on steel fibred high strength concrete (SFHSC) are reviewed. → Different design provisions for SFHSC are compared. → Applications of SFHSC in new and existing structures and elements are discussed. → Using non-destructive techniques for quality control of SFHSC are reviewed. -- Abstract: Steel fibered high-strength concrete (SFHSC) became in the recent decades a very popular material in structural engineering. High strength attracts designers and architects as it allows improving the durability as well as the esthetics of a construction. As a result of increased application of SFHSC, many experimental studies are conducted to investigate its properties and to develop new rules for proper design. One of the trends in SFHSC structures is to provide their ductile behavior that is desired for proper structural response to dynamic loadings. An additional goal is to limit development and propagation of macro-cracks in the body of SFHSC elements. SFHSC is tough and demonstrates high residual strengths after appearance of the first crack. Experimental studies were carried out to select effective fiber contents as well as suitable fiber types, to study most efficient combination of fiber and regular steel bar reinforcement. Proper selection of other materials like silica fume, fly ash and super plasticizer has also high importance because of the influence on the fresh and hardened concrete properties. Combination of normal-strength concrete with SFHSC composite two-layer beams leads to effective and low cost solutions that may be used in new structures as well as well as for retrofitting existing ones. Using modern nondestructive testing techniques like acoustic emission and nonlinear ultrasound allows verification of most design parameters and control of SFHSC properties during casting and after hardening. This paper presents recent experimental results, obtained in the field SFHSC and non-destructive testing. It reviews the

  4. Zeonex microstructured polymer optical fiber: fabrication friendly fibers for high temperature and humidity insensitive Bragg grating sensing

    DEFF Research Database (Denmark)

    Woyessa, Getinet; Fasano, Andrea; Markos, Christos

    2017-01-01

    In the quest of finding the ideal polymer optical fiber (POF) for Bragg grating sensing, we have fabricated and characterized an endlessly single mode microstructured POF (mPOF). This fiber is made from cyclo-olefin homopolymer Zeonex grade 480R which has a very high glass transition temperature...

  5. Fiber-Optic Refractometer Based on an Etched High-Q ?-Phase-Shifted Fiber-Bragg-Grating

    OpenAIRE

    Zhang, Qi; Ianno, Natale J.; Han, Ming

    2013-01-01

    We present a compact and highly-sensitive fiber-optic refractometer based on a high-Q p-phase-shifted fiber-Bragg-grating (pFBG) that is chemically etched to the core of the fiber. Due to the p phase-shift, a strong pFBG forms a high-Q optical resonator and the reflection spectrum features an extremely narrow notch that can be used for highly sensitivity refractive index measurement. The etched pFBG demonstrated here has a diameter of ~9.3 μm and a length of only 7 mm, leading to a refractive...

  6. High-Order Modulation for Optical Fiber Transmission

    CERN Document Server

    Seimetz, Matthias

    2009-01-01

    Catering to the current interest in increasing the spectral efficiency of optical fiber networks by the deployment of high-order modulation formats, this monograph describes transmitters, receivers and performance of optical systems with high-order phase and quadrature amplitude modulation. In the first part of the book, the author discusses various transmitter implementation options as well as several receiver concepts based on direct and coherent detection, including designs of new structures. Hereby, both optical and electrical parts are considered, allowing the assessment of practicability and complexity. In the second part, a detailed characterization of optical fiber transmission systems is presented, regarding a wide range of modulation formats. It provides insight in the fundamental behavior of different formats with respect to relevant performance degradation effects and identifies the major trends in system performance.

  7. Highly-wrinkled reduced graphene oxide-conductive polymer fibers for flexible fiber-shaped and interdigital-designed supercapacitors

    Science.gov (United States)

    Li, Bo; Cheng, Jianli; Wang, Zhuanpei; Li, Yinchuan; Ni, Wei; Wang, Bin

    2018-02-01

    Flexible supercapacitors have attracted great interest due to outstanding flexibility and light weight. Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) fibers have the great potential in using as electrodes for flexible supercapacitors due to the good flexibility. However, the reported conductivity and specific capacitance of these PEDOT: PSS fibers are not very high, which limit their electrochemical performances. In this work, composite fibers of reduced graphene oxide(rGO)-PEDOT: PSS with a highly-wrinkled structure on the surface and pores inside are prepared by wet spinning. The fibers with different ratios of graphene to PEDOT:PSS show a distinctly enhanced conductivity up to ca. 590 S·cm-1 and high strength up to ca. 18.4 MPa. Meanwhile, the composite fibers show an improved electrochemical performances, including a high specific areal capacitance of 131 mF cm-2 and high specific areal energy density of 4.55 μWh·cm-2. The flexible supercapacitors including fiber-shaped supercapacitors and interdigital designed supercapacitors not only could work in different bending states without obvious capacitance decay, but also have small leakage current. The interdigital design can further improve the performances of composite fibers with high capacitance and high utilization compared with traditional parallel connected structure.

  8. Review of high bandwidth fiber optics radiation sensors

    International Nuclear Information System (INIS)

    Lyons, P.B.

    1985-01-01

    This paper summarizes the use of fiber optics or guided optical systems for radiation sensors. It is limited a passive systems wherein electrical is not required at the sensor location. However, electrically powered light sources, receivers and/or recorders may still be required for detection and data storage in sensor system operation. This paper emphasizes sensor technologies that permit high bandwidth measurements of transient radiation levels, and will also discuss several low bandwidth applications. 60 refs

  9. Ultrathin Coaxial Fiber Supercapacitors Achieving High Energy and Power Densities.

    Science.gov (United States)

    Shen, Caiwei; Xie, Yingxi; Sanghadasa, Mohan; Tang, Yong; Lu, Longsheng; Lin, Liwei

    2017-11-15

    Fiber-based supercapacitors have attracted significant interests because of their potential applications in wearable electronics. Although much progress has been made in recent years, the energy and power densities, mechanical strength, and flexibility of such devices are still in need of improvement for practical applications. Here, we demonstrate an ultrathin microcoaxial fiber supercapacitor (μCFSC) with high energy and power densities (2.7 mW h/cm 3 and 13 W/cm 3 ), as well as excellent mechanical properties. The prototype with the smallest reported overall diameter (∼13 μm) is fabricated by successive coating of functional layers onto a single micro-carbon-fiber via a scalable process. Combining the simulation results via the electrochemical model, we attribute the high performance to the well-controlled thin coatings that make full use of the electrode materials and minimize the ion transport path between electrodes. Moreover, the μCFSC features high bending flexibility and large tensile strength (more than 1 GPa), which make it promising as a building block for various flexible energy storage applications.

  10. Reinforcement of tire tread and radiator hose rubbers with short aramid fibers

    NARCIS (Netherlands)

    Shirazi, Morteza; Noordermeer, Jacobus W.M.

    2010-01-01

    Short fiber reinforced rubber composites have gained great importance due to their advantages in processing and low cost, coupled with high strength. Reinforcement with short fibers offers attractive features such as design flexibility, high modulus, tear strength, etc. The degree of reinforcement

  11. Computational model of spalling and effective fibers on toughening in fiber reinforced composites at an early stage of crack formation

    Directory of Open Access Journals (Sweden)

    Chong Wang

    Full Text Available This work suggests a computational model that takes account of effective fibers on toughening in FRC at an early stage of crack formation. We derived the distribution of pressure provoked by a random inclined fiber in the matrix and calculated stresses through integrating the pressure and tangent stress along the fiber/matrix interface with the Kelvin's fundamental solution and the Mindlin's complementary solution. The evolution of spalling in the matrix was traced. The percentages of effective fibers were evaluated with variations in strength, interface resistance, diameter and elasticity modulus. The main conclusion is that low elasticity modulus combined high strength of fibers raises dramatically the effective fibers, which would benefit toughening.

  12. Effect of carbon fiber addition on the electromagnetic shielding properties of carbon fiber/polyacrylamide/wood based fiberboards

    Science.gov (United States)

    Dang, Baokang; Chen, Yipeng; Yang, Ning; Chen, Bo; Sun, Qingfeng

    2018-05-01

    Carbon fiber (CF) reinforced polyacrylamide/wood fiber composite boards are fabricated by mechanical grind-assisted hot-pressing, and are used for electromagnetic interference (EMI) shielding. CF with an average diameter of 150 nm is distributed on wood fiber, which is then encased by polyacrylamide. The CF/polyacrylamide/wood fiber (CPW) composite exhibits an optimal EMI shielding effectiveness (SE) of 41.03 dB compared to that of polyacrylamide/wood fiber composite (0.41 dB), which meets the requirements of commercial merchandise. Meanwhile, the CPW composite also shows high mechanical strength. The maximum modulus of rupture (MOR) and modulus of elasticity (MOE) of CPW composites are 39.52 MPa and 5823.15 MPa, respectively. The MOR and MOE of CPW composites increased by 38% and 96%, respectively, compared to that of polyacrylamide/wood fiber composite (28.64 and 2967.35 MPa).

  13. A High Energy and High Efficiency Spectral Shaping Single Frequency Fiber Laser, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR phase I project proposes a tunable single frequency high energy fiber laser system for coherent Lidar systems for remote sensing. Current state-of-art...

  14. A High Energy and High Efficiency Spectral Shaping Single Frequency Fiber Laser, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR phase II project proposes a single frequency high energy fiber laser system for coherent Lidar systems for remote sensing. Current state-of-art...

  15. High Speed and High Spatial Density Parameter Measurement Using Fiber Optic Sensing Technology

    Science.gov (United States)

    Parker, Allen R. Jr. (Inventor); Chan, Hon Man (Inventor); Richards, William Lance (Inventor); Piazza, Anthony (Inventor); Hamory, Philip J (Inventor)

    2017-01-01

    The present invention is an improved fiber optic sensing system (FOSS) having the ability to provide both high spatial resolution and high frequency strain measurements. The inventive hybrid FOSS fiber combines sensors from high acquisition speed and low spatial resolution Wavelength-Division Multiplexing (WDM) systems and from low acquisition speed and high spatial resolution Optical Frequency Domain Reflection (OFDR) systems. Two unique light sources utilizing different wavelengths are coupled with the hybrid FOSS fiber to generate reflected data from both the WDM sensors and OFDR sensors operating on a single fiber optic cable without incurring interference from one another. The two data sets are then de-multiplexed for analysis, optionally with conventionally-available WDM and OFDR system analyzers.

  16. Effect of high- and low-fiber diets on plasma lipids and insulin.

    Science.gov (United States)

    Albrink, M J; Newman, T; Davidson, P C

    1979-07-01

    Seven healthy young adults were maintained for two separate 1-week periods on each of two very high-carbohydrate diets, one with low-fiber and one with high-fiber content. In both diets 15% of the calories were from protein, 15% from fat, and 70% were from carbohydrate. The low-fiber diet consisted of milk, glucose, and dextrins in liquid formula form, the high-fiber diet was composed of starchy foods. The crude fiber content of the high- and low-fiber diets was 18.0 and 1.0 g, respectively. The diets were isocaloric and the subjects maintained a stable weight. During the low-fiber diet the fasting triglycerides rose, reaching a peak 45% above base-line in 6 days. During the high-fiber diet the triglycerides fell to a level slightly below base-line. The cholesterol fell 16 and 23% below base-line on the low- and high-fiber diets. The glucose response to test meals representative of each diet was similar. The insulin response to a low-fiber meal was twice as great as that to a high-fiber meal containing an equivalent amount of carbohydrate. The results suggest that carbohydrate-induced hyperlipemia does not occur if the high carbohydrate diet is rich in dietary fiber, and furthermore that the insulin-stimulating potential of foods in a very high-carbohydrate diet is a critical determinant of the magnitude of carbohydrate-induced lipemia.

  17. High-power picosecond pulse delivery through hollow core photonic band gap fibers

    DEFF Research Database (Denmark)

    Michieletto, Mattia; Johansen, Mette Marie; Lyngsø, Jens Kristian

    2016-01-01

    We demonstrated robust and bend insensitive fiber delivery of high power laser with diffraction limited beam quality for two different kinds of hollow core band gap fibers. The light source for this experiment consists of ytterbium-doped double clad fiber aeroGAIN-ROD-PM85 in a high power amplifier...

  18. High Power Narrow Linewidth 1.26 Micron Ho-Doped Fiber Amplifier, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal is for the development of an innovative, high power, and extremely reliable 1.26-micron Ho-doped fluoride fiber amplifier. The proposed fiber amplifier...

  19. High Power Narrow Linewidth 1.26 Micron Ho-Doped Fiber Amplifier, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal is for the development of an innovative, high power, and extremely reliable 1.26-micron Ho-doped fluoride fiber amplifier. The proposed fiber amplifier...

  20. High numerical aperture imaging by using multimode fibers with micro-fabricated optics

    KAUST Repository

    Bianchi, Silvio; Rajamanickam, V.; Ferrara, Lorenzo; Di Fabrizio, Enzo M.; Di Leonardo, Roberto; Liberale, Carlo

    2014-01-01

    Controlling light propagation into multimode optical fibers through spatial light modulators provides highly miniaturized endoscopes and optical micromanipulation probes. We increase the numerical aperture up to nearly 1 by micro-optics fabricated on the fiber-end.

  1. High-Speed Fiber Optic Micromultiplexer for Space and Airborne Lidar, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — To address the NASA Earth Science Division need for high-speed fiber optic multiplexers for next generation lidar systems, Luminit proposes to develop a new Fiber...

  2. Efficient high power 2 micron Tm3+-Doped Fiber Laser, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal is for the development of new Tm3+ doped germanate glass fibers for efficient high power 2 micron fiber lasers capable of generating an output power of...

  3. High-power ultrashort fiber laser for solar cells micromachining

    Science.gov (United States)

    Lecourt, J.-B.; Duterte, C.; Liegeois, F.; Lekime, D.; Hernandez, Y.; Giannone, D.

    2012-02-01

    We report on a high-power ultra-short fiber laser for thin film solar cells micromachining. The laser is based on Chirped Pulse Amplification (CPA) scheme. The pulses are stretched to hundreds of picoseconds prior to amplification and can be compressed down to picosecond at high energy. The repetition rate is adjustable from 100 kHz to 1 MHz and the optical average output power is close to 13 W (before compression). The whole setup is fully fibred, except the compressor achieved with bulk gratings, resulting on a compact and reliable solution for cold ablation.

  4. Fiber laser front end for high energy petawatt laser systems

    International Nuclear Information System (INIS)

    Dawson, J W; Messerly, M J; Phan, H; Mitchell, S; Drobshoff, A; Beach, R J; Siders, C; Lucianetti, A; Crane, J K; Barty, C J

    2006-01-01

    We are developing a fiber laser front end suitable for high energy petawatt laser systems on large glass lasers such as NIF. The front end includes generation of the pulses in a fiber mode-locked oscillator, amplification and pulse cleaning, stretching of the pulses to >3ns, dispersion trimming, timing, fiber transport of the pulses to the main laser bay and amplification of the pulses to an injection energy of 150 (micro)J. We will discuss current status of our work including data from packaged components. Design detail such as how the system addresses pulse contrast, dispersion trimming and pulse width adjustment and impact of B-integral on the pulse amplification will be discussed. A schematic of the fiber laser system we are constructing is shown in figure 1 below. A 40MHz packaged mode-locked fiber oscillator produces ∼1nJ pulses which are phase locked to a 10MHz reference clock. These pulses are down selected to 100kHz and then amplified while still compressed. The amplified compressed pulses are sent through a non-linear polarization rotation based pulse cleaner to remove background amplified spontaneous emission (ASE). The pulses are then stretched by a chirped fiber Bragg grating (CFBG) and then sent through a splitter. The splitter splits the signal into two beams. (From this point we follow only one beam as the other follows an identical path.) The pulses are sent through a pulse tweaker that trims dispersion imbalances between the final large optics compressor and the CFBG. The pulse tweaker also permits the dispersion of the system to be adjusted for the purpose of controlling the final pulse width. Fine scale timing between the two beam lines can also be adjusted in the tweaker. A large mode area photonic crystal single polarization fiber is used to transport the pulses from the master oscillator room to the main laser bay. The pulses are then amplified a two stage fiber amplifier to 150mJ. These pulses are then launched into the main amplifier

  5. Mechanical properties of steel fiber reinforced reactive powder concrete following exposure to high temperature reaching 800 deg. C

    Energy Technology Data Exchange (ETDEWEB)

    Tai, Yuh-Shiou, E-mail: ystai@cc.cma.edu.tw [Department of Civil Engineering, ROC Military Academy, Kaohsiung, Taiwan (China); Pan, Huang-Hsing; Kung, Ying-Nien [Department of Civil Engineering, Kaohsiung University of Applied Sciences, Kaohsiung, Taiwan (China)

    2011-07-15

    Highlights: > The stress-strain relation of reactive powder concrete after exposure to high temperatures are tested by using displacement control. > Develops regression formulae to estimate the mechanical properties of RPC. > Valuable experimental data have been obtained about RPC with various fiber contents. These data include compressive strength, peak strain and modulus of elasticity. - Abstract: This study investigates the stress-strain relation of RPC in quasi-static loading after an elevated temperature. The cylinder specimens of RPC with {phi} 50 mm x 100 mm are examined at the room temperature and after 200-800 deg. C. Experimental results indicate that the residual compressive strength of RPC after heating from 200-300 deg. C increases more than that at room temperature, but, significantly decreases when the temperature exceeds 300 deg. C. The residual peak strains of RPC also initially increase up to 400-500 deg. C, then decrease gradually beyond 500 deg. C. Meanwhile, Young's modulus diminishes with an increasing temperature. Based on the regression analysis results, this study also develops regression formulae to estimate the mechanical properties of RPC after an elevated temperature, thus providing a valuable reference for industrial applications and design.

  6. High-power fiber lasers for photocathode electron injectors

    Directory of Open Access Journals (Sweden)

    Zhi Zhao

    2014-05-01

    Full Text Available Many new applications for electron accelerators require high-brightness, high-average power beams, and most rely on photocathode-based electron injectors as a source of electrons. To achieve such a photoinjector, one requires both a high-power laser system to produce the high average current beam, and also a system at reduced repetition rate for electron beam diagnostics to verify high beam brightness. Here we report on two fiber laser systems designed to meet these specific needs, at 50 MHz and 1.3 GHz repetition rate, together with pulse pickers, second harmonic generation, spatiotemporal beam shaping, intensity feedback, and laser beam transport. The performance and flexibility of these laser systems have allowed us to demonstrate electron beam with both low emittance and high average current for the Cornell energy recovery linac.

  7. Fiber Reinforced Concrete (FRC) for High Rise Construction: Case Studies

    Science.gov (United States)

    Gharehbaghi, Koorosh; Chenery, Rhea

    2017-12-01

    Due to its material element, Fiber Reinforced Concrete (FRC) could be stronger than traditional Concrete. This is due to FRC internal material compounds and elements. Furthermore, FRC can also significantly improve flexural strength when compared to traditional Concrete. This improvement in flexural strength can be varied depending on the actual fibers used. Although not new, FRC is gradually gaining popularity in the construction industry, in particular for high rise structures. This is due to its flexural strength, especially for high seismic zones, as it will provide a better solution then reinforced Concrete. The main aim of this paper is to investigate the structural importance of FRC for the high rise construction. Although there has been numerous studies and literature in justifying the FRC for general construction; this paper will consider its use specifically for high rise construction. Moreover, this paper will closely investigate eight case studies from Australian and United States as a part of the FRC validation for high rise construction. In doing so, this paper will examine their Structural Health Monitoring (SHM) to determine their overall structural performance.

  8. High Power Spark Delivery System Using Hollow Core Kagome Lattice Fibers

    Directory of Open Access Journals (Sweden)

    Ciprian Dumitrache

    2014-08-01

    Full Text Available This study examines the use of the recently developed hollow core kagome lattice fibers for delivery of high power laser pulses. Compared to other photonic crystal fibers (PCFs, the hollow core kagome fibers have larger core diameter (~50 µm, which allows for higher energy coupling in the fiber while also maintaining high beam quality at the output (M2 = 1.25. We have conducted a study of the maximum deliverable energy versus laser pulse duration using a Nd:YAG laser at 1064 nm. Pulse energies as high as 30 mJ were transmitted for 30 ns pulse durations. This represents, to our knowledge; the highest laser pulse energy delivered using PCFs. Two fiber damage mechanisms were identified as damage at the fiber input and damage within the bulk of the fiber. Finally, we have demonstrated fiber delivered laser ignition on a single-cylinder gasoline direct injection engine.

  9. Fiber

    Science.gov (United States)

    ... meals instead of white rice. Add beans (kidney, black, navy, and pinto) to rice dishes for even more fiber. Spice up salads with berries and almonds, chickpeas, cooked artichokes, and beans (kidney, black, navy, or pinto). Use whole-grain (corn or ...

  10. High-quality fiber fabrication in buffered hydrofluoric acid solution with ultrasonic agitation.

    Science.gov (United States)

    Zhong, Nianbing; Liao, Qiang; Zhu, Xun; Wang, Yongzhong; Chen, Rong

    2013-03-01

    An etching method for preparing high-quality fiber-optic sensors using a buffered etchant with ultrasonic agitation is proposed. The effects of etching conditions on the etch rate and surface morphology of the etched fibers are investigated. The effect of surface roughness is discussed on the fibers' optical properties. Linear etching behavior and a smooth fiber surface can be repeatedly obtained by adjusting the ultrasonic power and etchant pH. The fibers' spectral quality is improved as the ratio of the pit depth to size decreases, and the fibers with smooth surfaces are more sensitive to a bacterial suspension than those with rough surfaces.

  11. Theory of thermal expansivity and bulk modulus

    International Nuclear Information System (INIS)

    Kumar, Munish

    2005-01-01

    The expression for thermal expansivity and bulk modulus, claimed by Shanker et al. to be new [Physica B 233 (1977) 78; 245 (1998) 190; J. Phys. Chem. Solids 59 (1998) 197] are compared with the theory of high pressure-high temperature reported by Kumar and coworkers. It is concluded that the Shanker formulation and the relations based on this are equal to the approach of Kumar et al. up to second order

  12. Advances in high power linearly polarized fiber laser and its application

    Science.gov (United States)

    Zhou, Pu; Huang, Long; Ma, Pengfei; Xu, Jiangming; Su, Rongtao; Wang, Xiaolin

    2017-10-01

    Fiber lasers are now attracting more and more research interest due to their advantages in efficiency, beam quality and flexible operation. Up to now, most of the high power fiber lasers have random distributed polarization state. Linearlypolarized (LP) fiber lasers, which could find wide application potential in coherent detection, coherent/spectral beam combining, nonlinear frequency conversion, have been a research focus in recent years. In this paper, we will present a general review on the achievements of various kinds of high power linear-polarized fiber laser and its application. The recent progress in our group, including power scaling by using power amplifier with different mechanism, high power linearly polarized fiber laser with diversified properties, and various applications of high power linear-polarized fiber laser, are summarized. We have achieved 100 Watt level random distributed feedback fiber laser, kilowatt level continuous-wave (CW) all-fiber polarization-maintained fiber amplifier, 600 watt level average power picosecond polarization-maintained fiber amplifier and 300 watt level average power femtosecond polarization-maintained fiber amplifier. In addition, high power linearly polarized fiber lasers have been successfully applied in 5 kilowatt level coherent beam combining, structured light field and ultrasonic generation.

  13. PROPERTIES OF NR AND NR/ENR BASED RUBBER COMPOUNDS REINFORCED WITH CHOPPED AND SIZED CARBON FIBER

    Directory of Open Access Journals (Sweden)

    Bağdagül Karaağaç

    2016-12-01

    Full Text Available High elasticity, mechanical resistance and antivibration characteristics of natural rubber (NR are essential issue in the main area of vehicle tyres and high modulus demanding bearing applications. In this study, especially in bearing applications, where natural rubber modulus properties are limited, natural rubber has been reinforced with chopped and hydrocarbon sized carbon fiber to get improved tensile modulus. Besides, epoxidized natural rubber (ENR, which was produced by chemical modification of natural rubber, blended with NR and the compounds have been reinforced with epoxy sized carbon fiber. NR and NR/ENR based rubber compounds’ rheological, mechanical, and aging properties have been systematically investigated and evaluated.

  14. Fiber Optic Temperature Sensor Insert for High Temperature Environments

    Science.gov (United States)

    Black, Richard James (Inventor); Costa, Joannes M. (Inventor); Moslehi, Behzad (Inventor); Zarnescu, Livia (Inventor)

    2017-01-01

    A thermal protection system (TPS) test plug has optical fibers with FBGs embedded in the optical fiber arranged in a helix, an axial fiber, and a combination of the two. Optionally, one of the optical fibers is a sapphire FBG for measurement of the highest temperatures in the TPS plug. The test plug may include an ablating surface and a non-ablating surface, with an engagement surface with threads formed, the threads having a groove for placement of the optical fiber. The test plug may also include an optical connector positioned at the non-ablating surface for protection of the optical fiber during insertion and removal.

  15. Modulus D-term inflation

    Science.gov (United States)

    Kadota, Kenji; Kobayashi, Tatsuo; Saga, Ikumi; Sumita, Keigo

    2018-04-01

    We propose a new model of single-field D-term inflation in supergravity, where the inflation is driven by a single modulus field which transforms non-linearly under the U(1) gauge symmetry. One of the notable features of our modulus D-term inflation scenario is that the global U(1) remains unbroken in the vacuum and hence our model is not plagued by the cosmic string problem which can exclude most of the conventional D-term inflation models proposed so far due to the CMB observations.

  16. Scintillating plastic optical fiber radiation detectors in high energy particle physics

    International Nuclear Information System (INIS)

    Bross, A.D.

    1991-01-01

    We describe the application of scintillating optical fiber in instrumentation for high energy particle physics. The basic physics of the scintillation process in polymers is discussed first and then we outline the fundamentals of scintillating fiber technology. Fiber performance, optimization, and characterization measurements are given. Detector applications in the areas of particle tracking and particle energy determination are then described. 13 refs., 12 figs

  17. High-brightness fiber-coupled pump laser development

    Science.gov (United States)

    Price, Kirk; Karlsen, Scott; Leisher, Paul; Martinsen, Robert

    2010-02-01

    We report on the continued development of high brightness laser diode modules at nLIGHT Photonics. These modules, based on nLIGHT's PearlTM product platform, demonstrate excellence in output power, brightness, wavelength stabilization, and long wavelength performance. This system, based on 14 single emitters, is designed to couple diode laser light into a 105 μm fiber at an excitation NA of under 0.14. We demonstrate over 100W of optical power at 9xx nm with a diode brightness exceeding 20 MW/cm2-str with an operating efficiency of approximately 50%. Additional results show over 70W of optical coupled at 8xx nm. Record brilliance at wavelengths 14xx nm and longer will also be demonstrated, with over 15 W of optical power with a beam quality of 7.5 mm-mrad. These results of high brightness, high efficiency, and wavelength stabilization demonstrate the pump technology required for next generation solid state and fiber lasers.

  18. Elastic moduli, damping and modulus of rupture changes in a high alumina refractory castable due to different types of thermal shock

    Directory of Open Access Journals (Sweden)

    Pereira, A. H. A.

    2012-06-01

    Full Text Available The work herein verifies the changes of the elastic moduli, damping and modulus of rupture (MOR of a high alumina refractory castable due to heating, cooling and heating-cooling thermal shock damage. Twelve prismatic specimens were prepared for the tests and divided into four groups. The thermal shocks were performed on three groups, each containing three specimens having abrupt temperature changes of 1100°C during heating in the first group, during cooling in the second and during heating followed by cooling in the third group. The fourth group, which was taken as a reference did not receive any thermal shock. The elastic moduli were measured after each thermal shock cycle. After 10 cycles, the MOR, the damping and the damping dependence on excitation amplitude were measured at room temperature for all specimens. The elastic moduli showed a similar decrease and the damping a similar increase due to the cooling and heating-cooling thermal shocks. The heating thermal shocks caused no significant changes on the elastic moduli and damping. However, the MOR appeared to be sensitive to the heating thermal shock. This work also shows that the damping for the studied refractory castable is non-linear (i.e., amplitude of excitation sensitive and that this non-linearity increases when the damage level rises.

    En este trabajo se investigaron las alteraciones de los módulos elásticos dinámicos, del amortiguamiento y del módulo de rotura (MOR de un material refractario moldeable de alta alúmina después de recibir choques térmicos de calentamiento, enfriamiento y calentamiento seguido de enfriamiento (calentamiento-enfriamiento. Para ello se prepararon doce cuerpos prismáticos dividiéndolos en cuatro grupos. Los choques térmicos se le aplicaron a sólo tres grupos, cada uno con tres muestras. Al primer grupo se le aplicó un cambio brusco de temperatura de 1100 °C en calentamiento, en enfriamiento al segundo grupo y calentamiento seguido

  19. Optical fiber pressure sensor based on fiber Bragg grating

    Science.gov (United States)

    Song, Dongcao

    In oil field, it is important to measure the high pressure and temperature for down-hole oil exploration and well-logging, the available traditional electronic sensor is challenged due to the harsh, flammable environment. Recently, applications based on fiber Bragg grating (FBG) sensor in the oil industry have become a popular research because of its distinguishing advantages such as electrically passive operation, immunity to electromagnetic interference, high resolution, insensitivity to optical power fluctuation etc. This thesis is divided into two main sections. In the first section, the design of high pressure sensor based on FBG is described. Several sensing elements based on FBG for high pressure measurements have been proposed, for example bulk-modulus or free elastic modulus. But the structure of bulk-modulus and free elastic modulus is relatively complex and not easy to fabricate. In addition, the pressure sensitivity is not high and the repeatability of the structure has not been investigated. In this thesis, a novel host material of carbon fiber laminated composite (CFLC) for high pressure sensing is proposed. The mechanical characteristics including principal moduli in three directions and the shape repeatability are investigated. Because of it's Young's modulus in one direction and anisotropic characteristics, the pressure sensor made by CFLC has excellent sensitivity. This said structure can be used in very high pressure measurement due to carbon fiber composite's excellent shape repetition even under high pressure. The experimental results show high pressure sensitivity of 0.101nm/MPa and high pressure measurement up to 70MPa. A pressure sensor based on CFLC and FBG with temperature compensation has been designed. In the second section, the design of low pressure sensor based on FBG is demonstrated. Due to the trade off between measurement range and sensitivity, a sensor for lower pressure range needs more sensitivity. A novel material of carbon

  20. Evolution of Durable High-Strength Flowable Mortar Reinforced with Hybrid Fibers

    OpenAIRE

    Dawood, Eethar Thanon; Ramli, Mahyuddin

    2012-01-01

    The production and use of durable materials in construction are considered as one of the most challenging things for the professional engineers. Therefore, this research was conducted to investigate the mechanical properties and the durability by using of different percentages of steel fiber with high-strength flowable mortar (HSFM) and also the use of the hybridization of steel fibers, palm fibers, and synthetic fiber (Barchip). Different experimental tests (compressive strength, splitting t...

  1. Heat suppression of the fiber coating on a cladding light stripper in high-power fiber laser.

    Science.gov (United States)

    Yan, Ming-Jian; Wang, Zheng; Meng, Ling-Qiang; Yin, Lu; Han, Zhi-Gang; Shen, Hua; Wang, Hai-Lin; Zhu, Ri-Hong

    2018-01-20

    We present a theoretical model for the thermal effect of the fiber coating on a high-power cladding light stripper, which is fabricated by chemical etching. For the input and output of the fiber coating, a novel segmented corrosion method and increasing attenuation method are proposed for heat suppression, respectively. The relationship between the attenuation and temperature rise of the fiber coating at the output is experimentally demonstrated. The temperature distribution of the fiber coating at the input as well as the return light power caused by scattering are measured for the etched fiber with different surface roughness values. The results suggest that the rise in temperature is primarily caused by the scattering light propagating into the coating. Finally, an attenuation of 27 dB is achieved. At a room temperature of 23°C and input pump power of 438 W, the highest temperature of the input fiber coating decreases from 39.5°C to 27.9°C by segmented corrosion, and the temperature rise of the output fiber coating is close to 0.

  2. Preparation and properties of banana fiber-reinforced composites based on high density polyethylene (HDPE)/Nylon-6 blends.

    Science.gov (United States)

    Liu, H; Wu, Q; Zhang, Q

    2009-12-01

    Banana fiber (BaF)-filled composites based on high density polyethylene (HDPE)/Nylon-6 blends were prepared via a two-step extrusion method. Maleic anhydride grafted styrene/ethylene-butylene/styrene triblock polymer (SEBS-g-MA) and maleic anhydride grafted polyethylene (PE-g-MA) were used to enhance impact performance and interfacial bonding between BaF and the resins. Mechanical, crystallization/melting, thermal stability, water absorption, and morphological properties of the composites were investigated. In the presence of SEBS-g-MA, better strengths and moduli were found for HDPE/Nylon-6 based composites compared with corresponding HDPE based composites. At a fixed weight ratio of PE-g-MA to BaF, an increase of BaF loading up to 48.2 wt.% led to a continuous improvement in moduli and flexural strength of final composites, while impact toughness was lowered gradually. Predicted tensile modulus by the Hones-Paul model for three-dimensional random fiber orientation agreed well with experimental data at the BaF loading of 29.3 wt.%. However, the randomly-oriented fiber models underestimated experimental data at higher fiber levels. It was found that the presence of SEBS-g-MA had a positive influence on reinforcing effect of the Nylon-6 component in the composites. Thermal analysis results showed that fractionated crystallization of the Nylon-6 component in the composites was induced by the addition of both SEBS-g-MA and PE-g-MA. Thermal stability of both composite systems differed slightly, except an additional decomposition peak related to the minor Nylon-6 for the composites from the HDPE/Nylon-6 blends. In the presence of SEBS-g-MA, the addition of Nylon-6 and increased BaF loading level led to an increase in the water absorption value of the composites.

  3. Single mode step-index polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors

    DEFF Research Database (Denmark)

    Woyessa, Getinet; Fasano, Andrea; Stefani, Alessio

    2016-01-01

    We have fabricated the first single-mode step-index and humidity insensitive polymer optical fiber operating in the 850 nm wavelength ranges. The step-index preform is fabricated using injection molding, which is an efficient method for cost effective, flexible and fast preparation of the fiber...... preform. The fabricated single-mode step-index (SI) polymer optical fiber (POF) has a 4.8µm core made from TOPAS grade 5013S-04 with a glass transition temperature of 134°C and a 150 µm cladding made from ZEONEX grade 480R with a glass transition temperature of 138°C. The key advantages of the proposed...... SIPOF are low water absorption, high operating temperature and chemical inertness to acids and bases and many polar solvents as compared to the conventional poly-methyl-methacrylate (PMMA) and polystyrene based POFs. In addition, the fiber Bragg grating writing time is short compared to microstructured...

  4. The effects of high temperature and fiber diameter on the quasi static compressive behavior of metal fiber sintered sheets

    Energy Technology Data Exchange (ETDEWEB)

    Song, Weidong, E-mail: swdgh@bit.edu.cn [State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081 (China); Liu, Ge [State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081 (China); Wang, Jianzhong; Tang, Huiping [State Key Laboratory of Porous Metal Materials, Northwest Institute for Non-ferrous Metal Research, Xi’an 710016 (China)

    2017-04-06

    The compressive mechanical properties of the sintered sheets of continuous stainless steel fibers with different fiber diameters (8 µm, 12 µm, 28 µm) are investigated at temperatures from 298 K to 1073 K. The stress-strain curves of metal fiber sintered sheet (MFSS) are obtained by testing under uniaxial compression and 0.2% offset yield stress are determined. Inner micro-structures of the material are revealed by using scanning electron microscope (SEM) and microscopic computer tomography. The results indicates that fabrication technique and porosity are two principle factors affecting the yield strength of MFSS and the strength of MFSS is insensitive to the temperature below 873 K while softening occurs at temperature 1073 K. At relative high porosity (e.g. 77%), the material with small diameter fibers tends to have higher yield strength while at low porosity, MFSS's yield strength becomes high with the increase of the fiber diameter, which is probably attributed to the joint size, the surface appearance of fibers and prehardening generated during the manufacturing of MFSS. A simplified structure model taking joint size into consideration is established to explain the influence of the joint size on the yield strength of MFSS.

  5. High capacity fiber optic sensor networks using hybrid multiplexing techniques and their applications

    Science.gov (United States)

    Sun, Qizhen; Li, Xiaolei; Zhang, Manliang; Liu, Qi; Liu, Hai; Liu, Deming

    2013-12-01

    Fiber optic sensor network is the development trend of fiber senor technologies and industries. In this paper, I will discuss recent research progress on high capacity fiber sensor networks with hybrid multiplexing techniques and their applications in the fields of security monitoring, environment monitoring, Smart eHome, etc. Firstly, I will present the architecture of hybrid multiplexing sensor passive optical network (HSPON), and the key technologies for integrated access and intelligent management of massive fiber sensor units. Two typical hybrid WDM/TDM fiber sensor networks for perimeter intrusion monitor and cultural relics security are introduced. Secondly, we propose the concept of "Microstructure-Optical X Domin Refecltor (M-OXDR)" for fiber sensor network expansion. By fabricating smart micro-structures with the ability of multidimensional encoded and low insertion loss along the fiber, the fiber sensor network of simple structure and huge capacity more than one thousand could be achieved. Assisted by the WDM/TDM and WDM/FDM decoding methods respectively, we built the verification systems for long-haul and real-time temperature sensing. Finally, I will show the high capacity and flexible fiber sensor network with IPv6 protocol based hybrid fiber/wireless access. By developing the fiber optic sensor with embedded IPv6 protocol conversion module and IPv6 router, huge amounts of fiber optic sensor nodes can be uniquely addressed. Meanwhile, various sensing information could be integrated and accessed to the Next Generation Internet.

  6. Effect of jute and kapok fibers on properties of thermoplastic cassava starch composites

    International Nuclear Information System (INIS)

    Prachayawarakorn, Jutarat; Chaiwatyothin, Sudarat; Mueangta, Suwat; Hanchana, Areeya

    2013-01-01

    Highlights: ► TPCS matrix was reinforced by the low (jute) and high (kapok) absorbency cellulosic fibers. ► Water absorption of the TPCS/jute and TPCS/kapok fiber composites decreases. ► Stress and Young’s modulus of the TPCS/jute and TPCS/kapok fiber composites increase. ► Thermal degradation temperature of the TPCS/kapok fiber composite decreases. - Abstract: Since mechanical properties and water uptake of biodegradable thermoplastic cassava starch (TPCS) was still the main disadvantages for many applications. The TPCS matrix was, therefore, reinforced by two types of cellulosic fibers, i.e. jute or kapok fibers; classified as the low and high oil absorbency characteristics, respectively. The TPCS, plasticized by glycerol, was compounded by internal mixer and shaped by compression molding machine. It was found that water absorption of the TPCS/jute fiber and TPCS/kapok fiber composites was clearly reduced by the addition of the cellulosic fibers. Moreover, stress at maximum load and Young’s modulus of the composites increased significantly by the incorporation of both jute and kapok fibers. Thermal degradation temperature, determined from thermogravimetric analysis (TGA), of the TPCS matrix increased by the addition of jute fibers; however, thermal degradation temperature decreased by the addition of kapok fibers. Functional group analysis and morphology of the TPCS/jute fiber and TPCS/kapok fiber composites were also examined using Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM) techniques

  7. High efficiency, monolithic fiber chirped pulse amplification system for high energy femtosecond pulse generation.

    Science.gov (United States)

    Peng, Xiang; Kim, Kyungbum; Mielke, Michael; Jennings, Stephen; Masor, Gordon; Stohl, Dave; Chavez-Pirson, Arturo; Nguyen, Dan T; Rhonehouse, Dan; Zong, Jie; Churin, Dmitriy; Peyghambarian, N

    2013-10-21

    A novel monolithic fiber-optic chirped pulse amplification (CPA) system for high energy, femtosecond pulse generation is proposed and experimentally demonstrated. By employing a high gain amplifier comprising merely 20 cm of high efficiency media (HEM) gain fiber, an optimal balance of output pulse energy, optical efficiency, and B-integral is achieved. The HEM amplifier is fabricated from erbium-doped phosphate glass fiber and yields gain of 1.443 dB/cm with slope efficiency >45%. We experimentally demonstrate near diffraction-limited beam quality and near transform-limited femtosecond pulse quality at 1.55 µm wavelength. With pulse energy >100 µJ and pulse duration of 636 fs (FWHM), the peak power is estimated to be ~160 MW. NAVAIR Public Release Distribution Statement A-"Approved for Public release; distribution is unlimited".

  8. Resilient modulus of black cotton soil

    Directory of Open Access Journals (Sweden)

    K.H. Mamatha

    2017-03-01

    Full Text Available Resilient modulus (MR values of pavement layers are the basic input parameters for the design of pavements with multiple layers in the current mechanistic empirical pavement design guidelines. As the laboratory determination of resilient modulus is costly, time consuming and cumbersome, several empirical models are developed for the prediction of resilient modulus for different regions of the world based on the database of resilient modulus values of local soils. For use of these relationships there is a need to verify the suitability of these models for local conditions. Expansive clay called black cotton soil (BC soil is found in several parts of India and is characterized by low strength and high compressibility. This soil shows swell – shrink behaviour upon wetting and drying and are problematic. The BC soil shows collapse behaviour on soaking and therefore the strength of the soil needs to be improved. Additive stabilization is found to be very effective in stabilizing black cotton soils and generally lime is used to improve the strength and durability of the black cotton soil. In this paper, the results of repeated load tests on black cotton soil samples for the determination of MR under soaked and unsoaked conditions at a relative compaction levels of 100% and 95% of both standard and modified proctor conditions are reported. The results indicate that the black cotton soil fails to meet the density requirement of the subgrade soil and shows collapse behaviour under soaked condition. To overcome this, lime is added as an additive to improve the strength of black cotton soil and repeated load tests were performed as per AASHTO T 307 - 99 for MR determination. The results have shown that the samples are stable under modified proctor condition with MR values ranging from 36 MPa to 388 MPa for a lime content of 2.5% and curing period ranging from 7 to 28 days. Also, it is observed that, the CBR based resilient modulus is not in agreement

  9. Method for making a high current fiber brush collector

    Science.gov (United States)

    Scuro, S. J.

    1986-05-01

    An axial-type homopolar motor having high density, high current fiber brush collectors affording efficient, low contact resistance and low operating temperatures is discussed. The collectors include a ring of concentric row of brushes in equally spaced beveled holes soldered in place using a fixture for heating the ring to just below the solder melting point at a soldering iron for the local application of additional heat at each brush. Prior to soldering, an oxide film is formed on the surfaces of the brushes and ring, and the bevels are burnished to form a wetting surface. Flux applied with the solder at each bevel removes to an effective soldering depth the oxide film on the brushes and the holes.

  10. Highly Nonlinear and Birefringent Spiral Photonic Crystal Fiber

    Directory of Open Access Journals (Sweden)

    S. Revathi

    2014-01-01

    Full Text Available We propose and design a spiral photonic crystal fiber with elliptical air holes for achieving high birefringence, large nonlinearity, and negative dispersion. The structure is designed using chalcogenide glass (As2S3 for different ellipticity ratios of air holes in the cladding and the effect on various properties is observed. The proposed structure has birefringence of the order 10−2, nonlinearity of 26739.42 W−1 m−1, and dispersion of −1136.69 at 0.85 μm. An accurate numerical approach based on finite element method is used for the design and simulation of the structure. Due to high birefringence and negative dispersion, the proposed structure can be used for polarization control and dispersion compensation, respectively.

  11. High-performance fiber/epoxy composite pressure vessels

    Science.gov (United States)

    Chiao, T. T.; Hamstad, M. A.; Jessop, E. S.; Toland, R. H.

    1978-01-01

    Activities described include: (1) determining the applicability of an ultrahigh-strength graphite fiber to composite pressure vessels; (2) defining the fatigue performance of thin-titanium-lined, high-strength graphite/epoxy pressure vessel; (3) selecting epoxy resin systems suitable for filament winding; (4) studying the fatigue life potential of Kevlar 49/epoxy pressure vessels; and (5) developing polymer liners for composite pressure vessels. Kevlar 49/epoxy and graphite fiber/epoxy pressure vessels, 10.2 cm in diameter, some with aluminum liners and some with alternation layers of rubber and polymer were fabricated. To determine liner performance, vessels were subjected to gas permeation tests, fatigue cycling, and burst tests, measuring composite performance, fatigue life, and leak rates. Both the metal and the rubber/polymer liner performed well. Proportionately larger pressure vessels (20.3 and 38 cm in diameter) were made and subjected to the same tests. In these larger vessels, line leakage problems with both liners developed the causes of the leaks were identified and some solutions to such liner problems are recommended.

  12. Effect of Chopped Basalt Fibers on the Mechanical Properties and Microstructure of High Performance Fiber Reinforced Concrete

    Directory of Open Access Journals (Sweden)

    Tehmina Ayub

    2014-01-01

    Full Text Available This paper presents the mechanical properties and the microstructure of the high performance fiber reinforced concrete (HPFRC containing up to 3% volume fraction of chopped Basalt fibers. Three types of the concrete were prepared, out of which, the first type was prepared by utilizing 100% cement content. The other two types of the concrete were prepared by replacing 10% cement content with silica fume and the locally produced metakaolin. Using each concrete type, four mixes were prepared in which Basalt fibers were added in the range of 0–3%; that is, total twelve mixes of the HPFRC concrete were prepared. From each of the twelve concrete mixes, total twelve specimens were cast to determine the mechanical properties of the HPFRC including compressive strength (cube and cylinder, splitting tensile strength, and the flexural strength. In this way, a total of 108 specimens were cast and tested in this study. Test results showed that the addition of the Basalt fibers significantly increased the tensile splitting strength and the flexural strength of the HPFRC, while there was slight improvement in the compressive strength with the addition of Basalt fibers. The microstructure of HPFRC was examined to determine the interfacial transition zone (ITZ between the aggregates and the paste by using field emission scanning electron microscope (FESEM, which showed the improvement of the ITZ due to the addition of the Basalt fibers.

  13. High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees

    DEFF Research Database (Denmark)

    Markos, Christos; Stefani, Alessio; Nielsen, Kristian

    2013-01-01

    We present the fabrication and characterization of fiber Bragg gratings (FBGs) in an endlessly single-mode microstructured polymer optical fiber (mPOF) made of humidity-insensitive high-Tg TOPAS cyclic olefin copolymer. The mPOF is the first made from grade 5013 TOPAS with a glass transition...... temperature of Tg = 135°C and we experimentally demonstrate high strain operation (2.5%) of the FBG at 98°C and stable operation up to a record high temperature of 110°C. The Bragg wavelengths of the FBGs are around 860 nm, where the propagation loss is 5.1dB/m, close to the fiber loss minimum of 3.67d...

  14. Examining Young's modulus for wood

    International Nuclear Information System (INIS)

    Perkalskis, Benjamin S; Freeman, J Reuben; Suhov, Alexander

    2004-01-01

    Symmetry considerations, dimensional analysis and simple approximations are used to derive a formula for Young's modulus of a simple anisotropic system, a straight-layer wood bar whose fibre axis makes an angle with respect to the bar's longitudinal axis. Agreement between the derived formula and experiment (carried out in far from ideal conditions) is within 10%. Improvements and extensions are suggested for this undergraduate physics experiment

  15. Behavior of fiber reinforced metal laminates at high strain rate

    Science.gov (United States)

    Newaz, Golam; Sasso, Marco; Amodio, Dario; Mancini, Edoardo

    2018-05-01

    Carbon Fiber Reinforced Aluminum Laminate (CARALL) is a good system for energy absorption through plastic deformation in aluminum and micro-cracking in the composite layers. Moreover, CARALL FMLs also provide excellent impact resistance due to the presence of aluminum layer. The focus of this research is to characterize the CARALL behavior under dynamic conditions. High strain rate tests on sheet laminate samples have been carried out by means of direct Split Hopkinson Tension Bar. The sample geometry and the clamping system were optimized by FEM simulations. The clamping system has been designed and optimized in order reduce impedance disturbance due to the fasteners and to avoid the excessive plastic strain outside the gauge region of the samples.

  16. Metal-coated optical fibers for high temperature sensing applications

    Science.gov (United States)

    Fidelus, Janusz D.; Wysokiński, Karol; Stańczyk, Tomasz; Kołakowska, Agnieszka; Nasiłowski, Piotr; Lipiński, Stanisław; Tenderenda, Tadeusz; Nasiłowski, Tomasz

    2017-10-01

    An novel low-temperature method was used to enhance the corrosion resistance of copper or gold-coated optical fibers. A characterization of the elaborated materials and reports on selected studies such as cyclic temperature tests together with tensile tests is presented. Gold-coated optical fibers are proposed as a component of optical fiber sensors working in oxidizing atmospheres under temperatures exceeding 900 °C.

  17. AN EFFICIENT, COMPACT, AND VERSATILE FIBER DOUBLE SCRAMBLER FOR HIGH PRECISION RADIAL VELOCITY INSTRUMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Halverson, Samuel; Roy, Arpita; Mahadevan, Suvrath; Ramsey, Lawrence; Levi, Eric; Schwab, Christian; Hearty, Fred [Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States); MacDonald, Nick, E-mail: shalverson@psu.edu, E-mail: aur17@psu.edu [Department of Astronomy, University of Washington, Seattle, WA 98195 (United States)

    2015-06-10

    We present the design and test results of a compact optical fiber double-scrambler for high-resolution Doppler radial velocity instruments. This device consists of a single optic: a high-index n ∼ 2 ball lens that exchanges the near and far fields between two fibers. When used in conjunction with octagonal fibers, this device yields very high scrambling gains (SGs) and greatly desensitizes the fiber output from any input illumination variations, thereby stabilizing the instrument profile of the spectrograph and improving the Doppler measurement precision. The system is also highly insensitive to input pupil variations, isolating the spectrograph from telescope illumination variations and seeing changes. By selecting the appropriate glass and lens diameter the highest efficiency is achieved when the fibers are practically in contact with the lens surface, greatly simplifying the alignment process when compared to classical double-scrambler systems. This prototype double-scrambler has demonstrated significant performance gains over previous systems, achieving SGs in excess of 10,000 with a throughput of ∼87% using uncoated Polymicro octagonal fibers. Adding a circular fiber to the fiber train further increases the SG to >20,000, limited by laboratory measurement error. While this fiber system is designed for the Habitable-zone Planet Finder spectrograph, it is more generally applicable to other instruments in the visible and near-infrared. Given the simplicity and low cost, this fiber scrambler could also easily be multiplexed for large multi-object instruments.

  18. Design of highly sensitive multichannel bimetallic photonic crystal fiber biosensor

    Science.gov (United States)

    Hameed, Mohamed Farhat O.; Alrayk, Yassmin K. A.; Shaalan, Abdelhamid A.; El Deeb, Walid S.; Obayya, Salah S. A.

    2016-10-01

    A design of a highly sensitive multichannel biosensor based on photonic crystal fiber is proposed and analyzed. The suggested design has a silver layer as a plasmonic material coated by a gold layer to protect silver oxidation. The reported sensor is based on detection using the quasi transverse electric (TE) and quasi transverse magnetic (TM) modes, which offers the possibility of multichannel/multianalyte sensing. The numerical results are obtained using a finite element method with perfect matched layer boundary conditions. The sensor geometrical parameters are optimized to achieve high sensitivity for the two polarized modes. High-refractive index sensitivity of about 4750 nm/RIU (refractive index unit) and 4300 nm/RIU with corresponding resolutions of 2.1×10-5 RIU, and 2.33×10-5 RIU can be obtained according to the quasi TM and quasi TE modes of the proposed sensor, respectively. Further, the reported design can be used as a self-calibration biosensor within an unknown analyte refractive index ranging from 1.33 to 1.35 with high linearity and high accuracy. Moreover, the suggested biosensor has advantages in terms of compactness and better integration of microfluidics setup, waveguide, and metallic layers into a single structure.

  19. Surface modification of carbon fibers and its effect on the fiber–matrix interaction of UHMWPE based composites

    International Nuclear Information System (INIS)

    Chukov, D.I.; Stepashkin, A.A.; Gorshenkov, M.V.; Tcherdyntsev, V.V.; Kaloshkin, S.D.

    2014-01-01

    Highlights: • Both chemical and thermal treatments of UKN 5000 carbon fibers allow one to obtain well-developed surface. • The changes of structure and properties of VMN-4 fibers after both thermal and chemical oxidation are insignificant due to more perfect initial structure of these fibers. • The oxidative treatment of carbon fibers allows one to improve the interfacial interaction in the UHMWPE-based composites. • The oxidative treatment of the fibers allows one to a triple increase of Young’s modulus of the modified fibers reinforced UHMWPE composites. -- Abstract: The PAN-based carbon fibers (CF) were subjected to thermal and chemical oxidation under various conditions. The variation in the surface morphology of carbon fibers after surface treatment was analyzed by scanning electron microscopy (SEM). It was found that the tensile strength of carbon fibers changed after surface modification. The interaction between the fibers and the matrix OF ultra-high molecular weight polyethylene (UHMWPE) was characterized by the Young modulus of produced composites. It was shown that the Young modulus of composites reinforced with modified carbon fibers was significantly higher than that of composites reinforced with non-modified fibers

  20. Strength Development of High-Strength Ductile Concrete Incorporating Metakaolin and PVA Fibers

    Directory of Open Access Journals (Sweden)

    Muhammad Fadhil Nuruddin

    2014-01-01

    Full Text Available The mechanical properties of high-strength ductile concrete (HSDC have been investigated using Metakaolin (MK as the cement replacing material and PVA fibers. Total twenty-seven (27 mixes of concrete have been examined with varying content of MK and PVA fibers. It has been found that the coarser type PVA fibers provide strengths competitive to control or higher than control. Concrete with coarser type PVA fibers has also refined microstructure, but the microstructure has been undergone with the increase in aspect ratio of fibers. The microstructure of concrete with MK has also more refined and packing of material is much better with MK. PVA fibers not only give higher stiffness but also showed the deflection hardening response. Toughness Index of HSDC reflects the improvement in flexural toughness over the plain concrete and the maximum toughness indices have been observed with 10% MK and 2% volume fraction of PVA fibers.

  1. Strength development of high-strength ductile concrete incorporating Metakaolin and PVA fibers.

    Science.gov (United States)

    Nuruddin, Muhammad Fadhil; Khan, Sadaqat Ullah; Shafiq, Nasir; Ayub, Tehmina

    2014-01-01

    The mechanical properties of high-strength ductile concrete (HSDC) have been investigated using Metakaolin (MK) as the cement replacing material and PVA fibers. Total twenty-seven (27) mixes of concrete have been examined with varying content of MK and PVA fibers. It has been found that the coarser type PVA fibers provide strengths competitive to control or higher than control. Concrete with coarser type PVA fibers has also refined microstructure, but the microstructure has been undergone with the increase in aspect ratio of fibers. The microstructure of concrete with MK has also more refined and packing of material is much better with MK. PVA fibers not only give higher stiffness but also showed the deflection hardening response. Toughness Index of HSDC reflects the improvement in flexural toughness over the plain concrete and the maximum toughness indices have been observed with 10% MK and 2% volume fraction of PVA fibers.

  2. High-order harmonics from an ultraintense laser pulse propagating inside a fiber

    International Nuclear Information System (INIS)

    Bulanov, S.V.; Esirkepov, T. Zh.; Naumova, N.M.; Sokolov, I.V.

    2003-01-01

    A strong effect of high harmonic radiation during the propagation of a high intensity short laser pulse in a thin wall hollow channel ('fiber') is found and studied via relativistic particle-in-cell simulations. The fiber has finite width walls comprised of an overdense plasma. Only the harmonic radiation with the harmonic number above critical value, for which the fiber walls are transparent, propagates outwards in the form of a coherent ultrashort pulse with very short wavelength

  3. Crystallization and mechanical behavior of the ferroelectric polymer nonwoven fiber fabrics for highly durable wearable sensor applications

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Z.H. [Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan (China); Center for Nanoscience & Nanotechnology, National Sun Yat-Sen University, Taiwan (China); National Science Council Core Facilities Laboratory for Nano-Science and Nano-Technology in Kaohsiung-Pingtung Area, Taiwan (China); Micro/Meso Mechanical Manufacturing R& D Department, Metal Industries Research and Development Centre, Kaohsiung 81160, Taiwan (China); Pan, C.T., E-mail: panct@mail.nsysu.edu.tw [Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan (China); Center for Nanoscience & Nanotechnology, National Sun Yat-Sen University, Taiwan (China); National Science Council Core Facilities Laboratory for Nano-Science and Nano-Technology in Kaohsiung-Pingtung Area, Taiwan (China); Yen, C.K. [Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan (China); Center for Nanoscience & Nanotechnology, National Sun Yat-Sen University, Taiwan (China); National Science Council Core Facilities Laboratory for Nano-Science and Nano-Technology in Kaohsiung-Pingtung Area, Taiwan (China); Lin, L.W. [Department of Mechanical Engineering, University of California, Berkeley, CA 94720 (United States); Berkeley Sensor and Actuator Center, University of California, Berkeley, CA 94720 (United States); Huang, J.C. [Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, Taiwan (China); Ke, C.A. [Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan (China)

    2015-08-15

    Highlights: • Performance of the hollow cylindrical near-field electrospinning (HCNFES). • Well-aligned self-assembled PVDF nonwoven fiber fabrics. • Highly durable wearable sensors. • The mechanical characterization of HCNFES piezoelectric NFFs. • The formation of β-form extended-chain crystallites in the PVDF nanofibers. - Abstract: The mechanical characterization of the electrospinning polyvinylidene fluoride (PVDF) nonwoven fiber fabrics (NFFs) doped with multi-walled carbon nanotubes (MWCNTs) was investigated. Piezoelectric composite nanofibers of the PVDF/MWCNTs were directly electrospun by the hollow cylindrical near-field electrospinning (HCNFES) without any post-poling treatment. We have made the HCNFES NFFs consisted of high-orderly arranged nanofiber assemblies for further characterizing the effect of MWCNTs filling PVDF nanofibers. An in situ electrical poling and high uniaxial stretching imparted on the polymer jet during the HCNFES process, which naturally align the dipoles in the PVDF crystals and promote the formation of the polar β-crystalline phase within the fibers. Moreover, the reinforcement of the HCNFES PVDF nanofibers indicated the improvement in mechanical properties and the degree of high oriented extended-chain crystallites through adding adequate contents of MWCNTs. In the case of alignment of the all-trans polymer chains in the vicinity of MWCNTs along the fiber axis, X-ray diffraction (XRD) patterns showed the strongest diffraction peak of the β-crystalline phase. In the comparison of the near-field electrospinning (NFES), the HCNFES nanofibers with smooth surface and smaller diameter can easily form high density structural NFFs. After nano-indentation and tensile strength measurements, the results indicated that the mechanical properties of the HCNFES NFFs are better than the NFES ones. When 16 wt% PVDF solution doped with 0.03 wt% MWCNTs, the results reveal that Young's modulus, hardness, yield stress, yield strain

  4. Structure and properties of melt-spun high acrylonitrile copolymer fibers via continuous zone-drawing and zone-annealing processes

    International Nuclear Information System (INIS)

    Wu Zongquan; Zhang Anqiu; Percec, Simona; Jin Shi; Jing, Alexander J.; Ge, Jason J.; Cheng, Stephen Z.D.

    2003-01-01

    Continuous zone-drawing and zone-annealing processes have been utilized to probe improvements in mechanical performance of melt-spun high acrylonitrile copolymer fibers (AMLON TM ). The as-spun fibers were zone-drawn at different ratios in a narrow temperature range of 100-105 deg. C and then zone-annealed. As a result of these processes, the fibers show substantial increases in tensile strength and tensile modulus (about three times) and significant improvements in elongation-at-break (about two times) after zone annealing. The thermal transition behavior, dimensional stability and dynamic relaxation properties of the as-spun, zone-drawn and zone-annealed fibers have been studied using differential scanning calorimetry, thermal mechanical and dynamic mechanical experiments. Their mechanical and thermal property changes after the zone-drawing and zone-annealing processes can be associated with the microscopic structural evolution including crystallinity, crystal orientation and apparent crystallite size detected by wide angle X-ray diffraction experiments

  5. High precision optical fiber alignment using tube laser bending

    NARCIS (Netherlands)

    Folkersma, Ger; Römer, Gerardus Richardus, Bernardus, Engelina; Brouwer, Dannis Michel; Herder, Justus Laurens

    2016-01-01

    In this paper, we present a method to align optical fibers within 0.2 μm of the optimal position, using tube laser bending and in situ measuring of the coupling efficiency. For near-UV wavelengths, passive alignment of the fibers with respect to the waveguides on photonic integrated circuit chips

  6. Ultra-high Frequency Linear Fiber Optic Systems

    CERN Document Server

    Lau, Kam Y

    2009-01-01

    Designed for a one-semester course on fiber-optics systems and communication links, this book provides a concise but rigorous treatment of the theory and practice of analog (linear) fiber-optics links and systems that constitute the foundation of Hybrid Fiber Coax infrastructure in present-day CATV distribution and cable modem Internet access. Emerging applications in remote fiber-optic feed for free-space millimeter wave enterprise campus networks are also described. Issues such as dispersion and interferometric noise are treated quantitatively, and means for mitigating them are explained. This broad but concise text will thus be invaluable not only to students of fiber-optics communication but also to practicing engineers.

  7. Next-generation fiber lasers enabled by high-performance components

    Science.gov (United States)

    Kliner, D. A. V.; Victor, B.; Rivera, C.; Fanning, G.; Balsley, D.; Farrow, R. L.; Kennedy, K.; Hampton, S.; Hawke, R.; Soukup, E.; Reynolds, M.; Hodges, A.; Emery, J.; Brown, A.; Almonte, K.; Nelson, M.; Foley, B.; Dawson, D.; Hemenway, D. M.; Urbanek, W.; DeVito, M.; Bao, L.; Koponen, J.; Gross, K.

    2018-02-01

    Next-generation industrial fiber lasers enable challenging applications that cannot be addressed with legacy fiber lasers. Key features of next-generation fiber lasers include robust back-reflection protection, high power stability, wide power tunability, high-speed modulation and waveform generation, and facile field serviceability. These capabilities are enabled by high-performance components, particularly pump diodes and optical fibers, and by advanced fiber laser designs. We summarize the performance and reliability of nLIGHT diodes, fibers, and next-generation industrial fiber lasers at power levels of 500 W - 8 kW. We show back-reflection studies with up to 1 kW of back-reflected power, power-stability measurements in cw and modulated operation exhibiting sub-1% stability over a 5 - 100% power range, and high-speed modulation (100 kHz) and waveform generation with a bandwidth 20x higher than standard fiber lasers. We show results from representative applications, including cutting and welding of highly reflective metals (Cu and Al) for production of Li-ion battery modules and processing of carbon fiber reinforced polymers.

  8. Effects of Thermal and Humidity Aging on the Interfacial Adhesion of Polyketone Fiber Reinforced Natural Rubber Composites

    OpenAIRE

    Lee, Han Ki; Kim, Dae Sik; Won, Jong Sung; Jin, Da Young; Lee, Hyun Jae; Lee, Seung Goo

    2016-01-01

    Polyketone fiber is considered as a reinforcement of the mechanical rubber goods (MRG) such as tires, automobile hoses, and belts because of its high strength and modulus. In order to apply it to those purposes, the high adhesion of fiber/rubber interface and good sustainability to aging conditions are very important. In this study, polyketone fiber reinforced natural rubber composites were prepared and they were subjected to thermal and humidity aging, to assess the changes of the interfacia...

  9. Nonlinear High-Energy Pulse Propagation in Graded-Index Multimode Optical Fibers for Mode-Locked Fiber Lasers

    Science.gov (United States)

    2014-12-23

    power kW at nm in a C-GIMF segment in the lowest order mode ; this pulse can be ob- tained from a typical titanium –sapphire mode-locked laser . A much...single- andmulticore double- clad and PCF lasers . He was a Senior Research Scientist at Corning Inc. from 2005 to 2008. He is currently an Assistant...High-Energy Pulse Propagation in Graded-Index Multimode Optical Fibers for Mode-Locked Fiber Lasers 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-12-1

  10. Energy absorption at high strain rate of glass fiber reinforced mortars

    Directory of Open Access Journals (Sweden)

    Fenu Luigi

    2015-01-01

    Full Text Available In this paper, the dynamic behaviour of cement mortars reinforced with glass fibers was studied. The influence of the addition of glass fibers on energy absorption and tensile strength at high strain-rate was investigated. Static tests in compression, in tension and in bending were first performed. Dynamic tests by means of a Modified Hopkinson Bar were then carried out in order to investigate how glass fibers affected energy absorption and tensile strength at high strain-rate of the fiber reinforced mortar. The Dynamic Increase Factor (DIF was finally evaluated.

  11. High-rate tensile behavior of steel fiber-reinforced concrete for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Jin; Park, Gi-Joon [Department of Civil and Environmental Engineering, Sejong University, 98 Gunja-Dong, Gwangjin-Gu, Seoul 143-747 (Korea, Republic of); Kim, Dong Joo, E-mail: djkim75@sejong.ac.kr [Department of Civil and Environmental Engineering, Sejong University, 98 Gunja-Dong, Gwangjin-Gu, Seoul 143-747 (Korea, Republic of); Moon, Jae Heum; Lee, Jang Hwa [Korea Institute of Construction Technology, 2311 Daewha-Dong, Ilsan-Gu, Goyang-Si, Gyeonggi-Do 411-712 (Korea, Republic of)

    2014-01-15

    Highlights: • The final goal is to develop a fiber reinforced concrete for containment buildings. • High rate tensile behavior of FRC was investigated. • Strain energy frame impact machine was used for tensile impact tests. • Different rate sensitivity of FRC was found according to the type fiber. • Adding more fibers by increasing S/a is positive for higher impact resistance of FRC. -- Abstract: The direct tensile behavior of fiber-reinforced concrete (FRC) at high strain rates were investigated for their potential to enhance the resistance of the containment building of nuclear power plants (NPPs) against aircraft impact. Two types of deformed steel, hooked (H) and twisted (T) fibers were employed. To improve the tensile resistance of FRCs even at higher rates by adding more fibers, the mixture of concrete was modified by either increasing the sand-to-coarse aggregate ratio or decreasing the maximum size of coarse aggregate. All FRC specimens produced two to six times greater tensile strength and one to five times higher toughness at high strain rates (4–53 s{sup −1}) than those at a static rate (0.000167 s{sup −1}). T-fiber generally produced higher tensile strength and toughness than H-fiber at both static and high rates. Although both fibers showed favorable rate sensitivity, T-fiber produced much greater enhancement, at higher strain rates, in tensile strength and slightly lower enhancement in toughness than H-fiber. As the maximum size of coarse aggregate decreased from 19 to 5 mm, the tensile strength and toughness of FRCs with T-fibers noticeably increased at both static and high strain rates.

  12. Fiber-optic refractometer based on an etched high-Q π-phase-shifted fiber-Bragg-grating.

    Science.gov (United States)

    Zhang, Qi; Ianno, Natale J; Han, Ming

    2013-07-10

    We present a compact and highly-sensitive fiber-optic refractometer based on a high-Q π-phase-shifted fiber-Bragg-grating (πFBG) that is chemically etched to the core of the fiber. Due to the p phase-shift, a strong πFBG forms a high-Q optical resonator and the reflection spectrum features an extremely narrow notch that can be used for highly sensitivity refractive index measurement. The etched πFBG demonstrated here has a diameter of ~9.3 μm and a length of only 7 mm, leading to a refractive index responsivity of 2.9 nm/RIU (RIU: refractive index unit) at an ambient refractive index of 1.318. The reflection spectrum of the etched πFBG features an extremely narrow notch with a linewidth of only 2.1 pm in water centered at ~1,550 nm, corresponding to a Q-factor of 7.4 × 10(5), which allows for potentially significantly improved sensitivity over refractometers based on regular fiber Bragg gratings.

  13. Fiber-Optic Refractometer Based on an Etched High-Q π-Phase-Shifted Fiber-Bragg-Grating

    Directory of Open Access Journals (Sweden)

    Ming Han

    2013-07-01

    Full Text Available We present a compact and highly-sensitive fiber-optic refractometer based on a high-Q p-phase-shifted fiber-Bragg-grating (pFBG that is chemically etched to the core of the fiber. Due to the p phase-shift, a strong pFBG forms a high-Q optical resonator and the reflection spectrum features an extremely narrow notch that can be used for highly sensitivity refractive index measurement. The etched pFBG demonstrated here has a diameter of ~9.3 μm and a length of only 7 mm, leading to a refractive index responsivity of 2.9 nm/RIU (RIU: refractive index unit at an ambient refractive index of 1.318. The reflection spectrum of the etched pFBG features an extremely narrow notch with a linewidth of only 2.1 pm in water centered at ~1,550 nm, corresponding to a Q-factor of 7.4 ´ 105, which allows for potentially significantly improved sensitivity over refractometers based on regular fiber Bragg gratings.

  14. 3 kW single stage all-fiber Yb-doped single-mode fiber laser for highly reflective and highly thermal conductive materials processing

    Science.gov (United States)

    Ikoma, S.; Nguyen, H. K.; Kashiwagi, M.; Uchiyama, K.; Shima, K.; Tanaka, D.

    2017-02-01

    A 3 kW single stage all-fiber Yb-doped single-mode fiber laser with bi-directional pumping configuration has been demonstrated. Our newly developed high-power LD modules are employed for a high available pump power of 4.9 kW. The length of the delivery fiber is 20 m which is long enough to be used in most of laser processing machines. An output power of 3 kW was achieved at a pump power of 4.23 kW. The slope efficiency was 70%. SRS was able to be suppressed at the same output power by increasing ratio of backward pump power. The SRS level was improved by 5dB when 57% backward pump ratio was adopted compared with the case of 50%. SRS was 35dB below the laser power at the output power of 3 kW even with a 20-m delivery fiber. The M-squared factor was 1.3. Single-mode beam quality was obtained. To evaluate practical utility of the 3 kW single-mode fiber laser, a Bead-on-Plate (BoP) test onto a pure copper plate was executed. The BoP test onto a copper plate was made without stopping or damaging the laser system. That indicates our high power single-mode fiber lasers can be used practically in processing of materials with high reflectivity and high thermal conductivity.

  15. Mitigation of stimulated Raman scattering in high power fiber lasers using transmission gratings

    Science.gov (United States)

    Heck, Maximilian; Bock, Victor; Krämer, Ria G.; Richter, Daniel; Goebel, Thorsten A.; Matzdorf, Christian; Liem, Andreas; Schreiber, Thomas; Tünnermann, Andreas; Nolte, Stefan

    2018-02-01

    The average output power of fiber lasers have been scaled deep into the kW regime within the recent years. However a further scaling is limited due to nonlinear effects like stimulated Raman scattering (SRS). Using the special characteristics of femtosecond laser pulse written transmission fiber gratings, it is possible to realize a notch filter that mitigates efficiently this negative effect by coupling the Raman wavelength from the core into the cladding of the fiber. To the best of our knowledge, we realized for the first time highly efficient gratings in large mode area (LMA) fibers with cladding diameters up to 400 μm. The resonances show strong attenuation at design wavelength and simultaneously low out of band losses. A high power fiber amplifier with an implemented passive fiber grating is shown and its performance is carefully investigated.

  16. Quality and performance of laser cutting with a high power SM fiber laser

    DEFF Research Database (Denmark)

    Kristiansen, Morten; Selchau, Jacob; Olsen, F. O.

    2013-01-01

    The introduction of high power single mode fiber lasers allows for a beam of high power and a good beam quality factor (M2 ” 1.2), compared to the multimode fiber lasers often utilised in macro laser metal cutting. This paper describes fundamental studies of macro laser metal cutting with a singl...

  17. A Novel Low Loss, Highly Birefringent Photonic Crystal Fiber in THz Regime

    DEFF Research Database (Denmark)

    Hasanuzzaman, G. K. M.; Rana, Sohel; Habib, Selim

    2016-01-01

    We present a new kind of dual-hole unit-based porous-core hexagonal photonic crystal fiber (H-PCF) with low loss and high birefringence in terahertz regime. The proposed fiber offers simultaneously high birefringence and low effective material loss (EML) in the frequency range of 0.5-0.85 THz wit...

  18. Compressive behaviour of hybrid fiber-reinforced reactive powder concrete after high temperature

    International Nuclear Information System (INIS)

    Zheng, Wenzhong; Li, Haiyan; Wang, Ying

    2012-01-01

    Highlights: ► We complete the high temperature test and compression test of RPC after 20–900 °C. ► The presence of steel fiber and polypropylene fiber can prevent RPC from spalling. ► Compressive strength increases first and then decreases with elevated temperatures. ► Microstructure deterioration is the root cause of macro-properties recession. ► Equations to express the compressive strength change with temperature are proposed. -- Abstract: This study focuses on the compressive properties and microstructures of reactive powder concrete (RPC) mixed with steel fiber and polypropylene fiber after exposure to 20–900 °C. The volume dosage of steel fiber and polypropylene fiber is (2%, 0.1%), (2%, 0.2%) and (1%, 0.2%). The effects of heating temperature, fiber content and specimen size on the compressive properties are analyzed. The microstructures of RPC exposed to different high temperatures are studied by scanning electron microscope (SEM). The results indicate that the compressive strength of hybrid fiber-reinforced RPC increases at first, then decreases with the increasing temperature, and the basic reason for the degradation of macro-mechanical properties is the deterioration of RPC microstructure. Based on the experimental results, equations to express the relationships of the compressive strength with the heating temperatures are established. Compared with normal-strength and high-strength concrete, the hybrid fiber-reinforced RPC has excellent capacity in resistance to high temperature.

  19. Evidence for ACTN3 as a Speed Gene in Isolated Human Muscle Fibers.

    Directory of Open Access Journals (Sweden)

    Siacia Broos

    Full Text Available To examine the effect of α-actinin-3 deficiency due to homozygosity for the ACTN3 577X-allele on contractile and morphological properties of fast muscle fibers in non-athletic young men.A biopsy was taken from the vastus lateralis of 4 RR and 4 XX individuals to test for differences in morphologic and contractile properties of single muscle fibers. The cross-sectional area of the fiber and muscle fiber composition was determined using standard immunohistochemistry analyses. Skinned single muscle fibers were subjected to active tests to determine peak normalized force (P0, maximal unloading velocity (V0 and peak power. A passive stretch test was performed to calculate Young's Modulus and hysteresis to assess fiber visco-elasticity.No differences were found in muscle fiber composition. The cross-sectional area of type IIa and IIx fibers was larger in RR compared to XX individuals (P<0.001. P0 was similar in both groups over all fiber types. A higher V0 was observed in type IIa fibers of RR genotypes (P<0.001 but not in type I fibers. The visco-elasticity as determined by Young's Modulus and hysteresis was unaffected by fiber type or genotype.The greater V0 and the larger fast fiber CSA in RR compared to XX genotypes likely contribute to enhanced whole muscle performance during high velocity contractions.

  20. Self-centering fiber alignment structures for high-precision field installable single-mode fiber connectors

    Science.gov (United States)

    Van Erps, Jürgen; Ebraert, Evert; Gao, Fei; Vervaeke, Michael; Berghmans, Francis; Beri, Stefano; Watté, Jan; Thienpont, Hugo

    2014-05-01

    There is a steady increase in the demand for internet bandwidth, primarily driven by cloud services and high-definition video streaming. Europe's Digital Agenda states the ambitious objective that by 2020 all Europeans should have access to internet at speeds of 30Mb/s or above, with 50% or more of households subscribing to connections of 100Mb/s. Today however, internet access in Europe is mainly based on the first generation of broadband, meaning internet accessed over legacy telephone copper and TV cable networks. In recent years, Fiber-To-The-Home (FTTH) networks have been adopted as a replacement of traditional electrical connections for the `last mile' transmission of information at bandwidths over 1Gb/s. However, FTTH penetration is still very low (economies. The main reason for this is the high deployment cost of FTTH networks. Indeed, the success and adoption of optical access networks critically depend on the quality and reliability of connections between optical fibers. In particular a further reduction of insertion loss of field- installable connectors must be achieved without a significant increase in component cost. This requires precise alignment of fibers that can differ in terms of ellipticity, eccentricity or diameter and seems hardly achievable using today's widespread ferrule-based alignment systems. In this paper, we present a field-installable connector based on deflectable/compressible spring structures, providing a self-centering functionality for the fiber. This way, it can accommodate for possible fiber cladding diameter variations (the tolerance on the cladding diameter of G.652 fiber is typically +/-0.7μm). The mechanical properties of the cantilever are derived through an analytical approximation and a mathematical model of the spring constant, and finite element-based simulations are carried out to find the maximum first principal stress as well as the stress distribution distribution in the fiber alignment structure. Elastic

  1. Evaluation of environmental degradation effects in morphology of ultra-high molecular weight polyethylene (UHMWPE) fibers

    International Nuclear Information System (INIS)

    Vivas, Viviane; Zylberberg, Marcel P.; Cardoso, Andre Luis V.; Pereira, Iaci M.; Weber, Ricardo P.; Suarez, Joao C. Miguez

    2015-01-01

    This study aims to evaluate changes in the morphology of ultra-high molecular weight polyethylene fiber (UHMWPE), before and after exposure to environmental agents. Fibers produced by two different manufacturers were analyzed. To characterize the morphology, we used the technique of small angle x-ray scattering (SAXS). The results demonstrate that the original morphology of the fibers was UHMWPE affected by the defects caused by exposure to environmental agents. (author)

  2. Flexural Behavior of High-Volume Steel Fiber Cementitious Composite Externally Reinforced with Basalt FRP Sheet

    OpenAIRE

    Seungwon Kim; Cheolwoo Park

    2016-01-01

    High-performance fiber-reinforced cementitious composites (HPFRCCs) are characterized by unique tensile strain hardening and multiple microcracking behaviors. The HPFRCC, which demonstrates remarkable properties such as strength, ductility, toughness, durability, stiffness, and thermal resistance, is a class of fiber cement composite with fine aggregates. It can withstand tensile stresses by forming distributed microcracks owing to the embedded fibers in the concrete, which improve the energy...

  3. Influence of natural fibers on the phase transitions in high-density polyethylene composites using dynamic mechanical analysis

    Science.gov (United States)

    Mehdi Tajvidi; Robert H. Falk; John C. Hermanson; Colin Felton

    2003-01-01

    Dynamic mechanical analysis was employed to evaluate the performance of various natural fibers in high-density polyethylene composites. Kenaf, newsprint, rice hulls, and wood flour were sources of fiber. Composites were made at 25 percent and 50 percent by weight fiber contents. Maleic anhydride modified polyethylene was also added at 1:25 ratio to the fiber....

  4. High-power fiber optic cable with integrated active sensors for live process monitoring

    Science.gov (United States)

    Blomster, Ola; Blomqvist, Mats; Bergstrand, Hans; Pålsson, Magnus

    2012-03-01

    In industrial applications using high-brilliance lasers at power levels up to and exceeding 20 kW and similarly direct diode lasers of 10 kW, there is an increasing demand to continuously monitor component status even in passive components such as fiber-optic cables. With fiber-optic cables designed according to the European Automotive Industry fiber standard interface there is room for integrating active sensors inside the connectors. In this paper we present the integrated active sensors in the new Optoskand QD fiber-optic cable designed to handle extreme levels of power losses, and how these sensors can be employed in industrial manufacturing. The sensors include photo diodes for detection of scattered light inside the fiber connector, absolute temperature of the fiber connector, difference in temperature of incoming and outgoing cooling water, and humidity measurement inside the fiber connector. All these sensors are connected to the fiber interlock system, where interlock break enable functions can be activated when measured signals are higher than threshold levels. It is a very fast interlock break system as the control of the signals is integrated in the electronics inside the fiber connector. Also, since all signals can be logged it is possible to evaluate what happened inside the connector before the interlock break instance. The communication to the fiber-optic connectors is via a CAN interface. Thus it is straightforward to develop the existing laser host control to also control the CAN-messages from the QD sensors.

  5. High efficient and continuous surface modification of carbon fibers with improved tensile strength and interfacial adhesion

    Science.gov (United States)

    Sun, Jingfeng; Zhao, Feng; Yao, Yue; Jin, Zhen; Liu, Xu; Huang, Yudong

    2017-08-01

    Most of the surface modification technologies for carbon fibers, no matter in laboratory scale or for commercial manufacture, are accompanied by a simultaneous decrease in tensile strength. In this paper, a feasible and high efficient strategy for carbon fiber treatment which could obviously improve both tensile strength and interfacial adhesion was proposed. Continuously moving carbon fibers were treated with atmospheric helium plasma for 1 min, followed by a 5 min pyrolytic carbon deposition using ethanol as precursor at 800 °C. The effects of the new approach were characterized by SEM, AFM, nanoindentation, XPS, Raman, wettability analysis, single fiber tensile strength testing and single fiber pull-out testing. After modification, pyrolytic carbon coating was deposited on the fiber surface uniformly, and the roughness and surface energy increased significantly. The single fiber tensile testing results indicate that the resulting fiber strength increased 15.7%, rising from 3.13 to 3.62 GPa. Meanwhile, the interfacial shear strength of its epoxy composites increased from 65.3 to 83.5 MPa. The comparative studies of carbon fibers modified with commercial anodic oxidation and sizing were also carried out. The results demonstrate that the new method can be utilized in the carbon fiber manufacture process and is more efficient than the traditional approaches.

  6. Variations in local elastic modulus along the length of the aorta as observed by use of a scanning haptic microscope (SHM).

    Science.gov (United States)

    Moriwaki, Takeshi; Oie, Tomonori; Takamizawa, Keiichi; Murayama, Yoshinobu; Fukuda, Toru; Omata, Sadao; Kanda, Keiichi; Nakayama, Yasuhide

    2011-12-01

    Variations in microscopic elastic structures along the entire length of canine aorta were evaluated by use of a scanning haptic microscope (SHM). The total aorta from the aortic arch to the abdominal aorta was divided into 6 approximately equal segments. After embedding the aorta in agar, it was cut into horizontal circumferential segments to obtain disk-like agar portions containing ring-like samples of aorta with flat surfaces (thickness, approximately 1 mm). The elastic modulus and topography of the samples under no-load conditions were simultaneously measured along the entire thickness of the wall by SHM by using a probe with a diameter of 5 μm and a spatial resolution of 2 μm at a rate of 0.3 s/point. The elastic modulus of the wall was the highest on the side of the luminal surface and decreased gradually toward the adventitial side. This tendency was similar to that of the change in the elastin fiber content. During the evaluation of the mid-portion of each tunica media segment, the highest elastic modulus (40.8 ± 3.5 kPa) was identified at the thoracic section of the aorta that had the highest density of elastic fibers. Under no-load conditions, portions of the aorta with high elastin density have a high elastic modulus.

  7. Design of Low Cost, Highly Adsorbent Activated Carbon Fibers

    National Research Council Canada - National Science Library

    Mangun, Christian

    2003-01-01

    .... EKOS has developed a novel activated carbon fiber - (ACF) that combines the low cost and durability of GAC with tailored pore size and pore surface chemistry for improved defense against chemical agents...

  8. High density thoria-silica-metal (III) oxide fibers

    International Nuclear Information System (INIS)

    1974-01-01

    Transparent refractory fibers, at least 50% thoria and additionally containing silica and metal(III) oxides, particularly Al 2 O 3 and B 2 O 3 or Cr 2 O 3 are made by shaping and dehydratively gelling, particularly by extruding in air, viscous aqueous thoria solutions or sols containing colloidal silica with boric acid-stabilized aluminum acetate, or additionally chromium acetate or colloidal Cr 2 O 3 , and heating the resulting gelled fibers in a controlled manner to decompose and volatilize undesired constituents and convert fibers to refractory fibers which are useful to form, for example, refractory fabrics, or as reinforcement for composites. The fabrics are heat resistant. A special application is X-ray protective clothing

  9. Highly Efficient Fiber Lasers for Wireless Power Transmission, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop ytterbium (Yb) fiber lasers with an electrical-to-optical efficiency of nominally 64% by directly coupling 80%-efficient diode lasers with Yb...

  10. Noncontact measurement of high temperature using optical fiber sensors

    Science.gov (United States)

    Claus, R. O.

    1990-01-01

    The primary goal of this research program was the investigation and application of noncontact temperature measurement techniques using optical techniques and optical fiber methods. In particular, a pyrometer utilizing an infrared optical light pipe and a multiwavelength filtering approach was designed, revised, and tested. This work was motivated by the need to measure the temperatures of small metallic pellets (approximately 3 mm diameter) in free fall at the Microgravity Materials Processing Drop Tube at NASA Marshall Space Flight Center. In addition, research under this program investigated the adaptation of holography technology to optical fiber sensors, and also examined the use of rare-earth dopants in optical fibers for use in measuring temperature. The pyrometer development effort involved both theoretical analysis and experimental tests. For the analysis, a mathematical model based on radiative transfer principles was derived. Key parameter values representative of the drop tube system, such as particle size, tube diameter and length, and particle temperature, were used to determine an estimate of the radiant flux that will be incident on the face of an optical fiber or light pipe used to collect radiation from the incandescent falling particle. An extension of this work examined the advantage of inclining or tilting the collecting fiber to increase the time that the falling particle remains in the fiber field-of-view. Those results indicate that increases in total power collected of about 15 percent may be realized by tilting the fiber. In order to determine the suitability of alternative light pipes and optical fibers, and experimental set-up for measuring the transmittance and insertion loss of infrared fibers considered for use in the pyrometer was assembled. A zirconium fluoride optical fiber and several bundles of hollow core fiber of varying diameters were tested. A prototype two-color pyrometer was assembled and tested at Virginia Tech, and then

  11. High-density multicore fiber with heterogeneous core arrangement

    DEFF Research Database (Denmark)

    Amma, Y.; Sasaki, Y.; Takenaga, K.

    2015-01-01

    A 30-core fiber with heterogeneous cores that achieved large spatial multiplicity and low crosstalk of less than −40 dB at 100 km was demonstrated. The correlation lengths were estimated to be more than 1 m.......A 30-core fiber with heterogeneous cores that achieved large spatial multiplicity and low crosstalk of less than −40 dB at 100 km was demonstrated. The correlation lengths were estimated to be more than 1 m....

  12. Highly efficient fluorescence sensing with hollow core photonic crystal fibers

    DEFF Research Database (Denmark)

    Smolka, Stephan; Barth, Michael; Benson, Oliver

    2008-01-01

    We investigate hollow core photonic crystal fibers for ultra-sensitive fluorescence detection by selectively infiltrating the central hole with fluorophores. Dye concentrations down to 10(-9) M can be detected using only nanoliter sample volumes.......We investigate hollow core photonic crystal fibers for ultra-sensitive fluorescence detection by selectively infiltrating the central hole with fluorophores. Dye concentrations down to 10(-9) M can be detected using only nanoliter sample volumes....

  13. Neutron irradiation effects on high Nicalon silicon carbide fibers

    International Nuclear Information System (INIS)

    Osborne, M.C.; Steiner, D.; Snead, L.L.

    1996-01-01

    The effects of neutron irradiation on the mechanical properties and microstructure of SiC and SiC-based fibers is a current focal point for the development of radiation damage resistant SiC/SiC composites. This report discusses the radiation effects on the Nippon Carbon Hi-Nicalon trademark fiber system and also discusses an erratum on earlier results published by the authors on this material. The radiation matrix currently under study is also summarized

  14. Neutron irradiation effects on high Nicalon silicon carbide fibers

    Energy Technology Data Exchange (ETDEWEB)

    Osborne, M.C.; Steiner, D.; Snead, L.L. [Oak Ridge National Laboratory, TN (United States)

    1996-10-01

    The effects of neutron irradiation on the mechanical properties and microstructure of SiC and SiC-based fibers is a current focal point for the development of radiation damage resistant SiC/SiC composites. This report discusses the radiation effects on the Nippon Carbon Hi-Nicalon{trademark} fiber system and also discusses an erratum on earlier results published by the authors on this material. The radiation matrix currently under study is also summarized.

  15. Extremely high-brightness kW-class fiber coupled diode lasers with wavelength stabilization

    Science.gov (United States)

    Huang, Robin K.; Chann, Bien; Glenn, John D.

    2011-06-01

    TeraDiode has produced ultra-high brightness fiber-coupled direct diode lasers. A fiber-coupled direct diode laser with a power level of 1,040 W from a 200 μm core diameter, 0.18 numerical aperture (NA) output fiber at a single center wavelength was demonstrated. This was achieved with a novel beam combining and shaping technique using COTS diode lasers. The fiber-coupled output corresponds to a Beam Parameter Product (BPP) of 18 mm-mrad and is the lowest BPP kW-class direct diode laser yet reported. The laser has been used to demonstrate laser cutting and welding of steel sheet metal up to 6.65 mm thick. Higher brightness fiber-coupled diode lasers, including a module with 418 W of power coupled to a 100 μm, 0.15 NA fiber, have also been demonstrated.

  16. Scale-up of Novel Low-Cost Carbon Fibers Leading to High-Volume Commercial Launch

    Energy Technology Data Exchange (ETDEWEB)

    Spalding, Mark A [The Dow Chemical Company

    2014-08-27

    The project started in September, 2012 with the goal of scaling up from the existing laboratory scale process for producing carbon fiber (CF) from polyolefin (PO) based precursor fiber using a Dow proprietary sulfonation-desulfonation stabilization process. The award was used to develop a process that was capable of producing market development quantities of CF from PO precursor fiber at a rate of 4 kg/h of CF. The CF would target properties that met or exceeded the Department of Energy (DOE) Vehicles Technology [1] standard; i.e., 172 GPa modulus and 1.72 GPa strength at greater than or equal to 1% strain. The Dow proprietary process was capable of meeting and exceeding these targets properties. Project DE-EE0005760 resulted from a Collaborative Research and Development Agreement (CRADA) between Dow and Oak Ridge National Laboratory (ORNL) with support from the Michigan Economic Development Corporation (MEDC) and DOE. In the first budget period, the main goal was to design a sulfonation-desulfonation market development plant capable of stabilizing PO precursor fiber at a rate of 5 kg/h using a sulfonation solution. The detailed design, location, and cost estimate were determined as scheduled in the Project Management Plan (PMP). In parallel with this DOE award project was a fundamentals and economic evaluation funded by The Dow Chemical Company (Dow). The goal of the Dow sponsored project was to finalize the mass balances, energy balances, and levelized cost to produce CF using the Dow process. A Go-No-Go decision was scheduled in June, 2013 based on the findings of the DOE sponsored scale up project and the Dow sponsored project. In June, 2013, Dow made the No-Go decision to halt and abandon the Dow proprietary sulfonation-desulfonation process for stabilizing PO precursor fibers for the manufacturing of CF. This No-Go decision was identified in the original proposal and at the start of this project, and the decision was made as scheduled. The decision was based

  17. Characterization and modeling of performance of Polymer Composites Reinforced with Highly Non-Linear Cellulosic Fibers

    International Nuclear Information System (INIS)

    Rozite, L; Joffe, R; Varna, J; Nyström, B

    2012-01-01

    The behaviour of highly non-linear cellulosic fibers and their composite is characterized. Micro-mechanisms occurring in these materials are identified. Mechanical properties of regenerated cellulose fibers and composites are obtained using simple tensile test. Material visco-plastic and visco-elastic properties are analyzed using creep tests. Two bio-based resins are used in this study – Tribest and EpoBioX. The glass and flax fiber composites are used as reference materials to compare with Cordenka fiber laminates.

  18. Characterization and modeling of performance of Polymer Composites Reinforced with Highly Non-Linear Cellulosic Fibers

    Science.gov (United States)

    Rozite, L.; Joffe, R.; Varna, J.; Nyström, B.

    2012-02-01

    The behaviour of highly non-linear cellulosic fibers and their composite is characterized. Micro-mechanisms occurring in these materials are identified. Mechanical properties of regenerated cellulose fibers and composites are obtained using simple tensile test. Material visco-plastic and visco-elastic properties are analyzed using creep tests. Two bio-based resins are used in this study - Tribest and EpoBioX. The glass and flax fiber composites are used as reference materials to compare with Cordenka fiber laminates.

  19. High performance maleated lignocellulose epicarp fibers for copper ion removal

    Directory of Open Access Journals (Sweden)

    A. P. Vieira

    2014-03-01

    Full Text Available Natural lignocellulosic fiber epicarp extracted from the babassu coconut (Orbignya speciosa was chemically modified through reaction with molten maleic anhydride without solvent, with incorporation of 189.34 mg g-1 of carboxylic acid groups into the biopolymer structure. The success of this reaction was also confirmed by the presence of carboxylic acid bands at 1741 and 1164 cm-1 in the infrared spectrum. Identically, the same group is observed through 13C NMR CP/MAS in the solid state, via high field signals in the 167 pm region. Both the precursor and the immobilized maleated biopolymers presented nearly the same thermal stability and similar crystallinity to cellulose. However, the pendant carboxylic groups have the ability to remove copper with maximum sorption through a batchwise process at pH 6.0, as expected from the point of zero charge, determined to be 6.45. The sorption kinetic data were fitted to pseudo-first order, pseudo-second order, Elovich-chemisorption and intra-particle diffusion models and the equilibrium data were fitted to the Langmuir, the Freundlich and Tenkim isotherm models. Taking into account a statistical error function and determination coefficients, the data were fit to the pseudo-first and pseudo-second order kinetic and Langmuir isotherm models, with a maximum sorption capacity of copper ions of 55.09 mg g-1. This value suggests the application of this biopolymer with incorporated carboxylate groups as a favorable agent for copper removal from appropriate systems.

  20. High-fiber rye diet increases ileal excretion of energy and macronutrients compared with low-fiber wheat diet independent of meal frequency in ileostomy subjects.

    Science.gov (United States)

    Isaksson, Hanna; Landberg, Rikard; Sundberg, Birgitta; Lundin, Eva; Hallmans, Göran; Zhang, Jie-Xian; Tidehag, Per; Erik Bach Knudsen, Knud; Moazzami, Ali A; Aman, Per

    2013-01-01

    Whole-grain foods and cereal dietary fiber intake is associated with lower body weight. This may partly result from lower energy utilization of high-fiber diets. In the present study, the impact on ileal excretion of energy and macronutrients in response to a rye bread high-fiber diet compared to a refined wheat low-fiber diet was investigated. Furthermore, the effect of meal frequency on apparent absorption of nutrients was studied for the first time. Ten participants that had undergone ileostomy consumed standardized iso-caloric diets, including low-fiber wheat bread (20 g dietary fiber per day) for 2 weeks followed by high-fiber rye bread (52 g dietary fiber per day) for 2 weeks. The diets were consumed in an ordinary (three meals per day) and a nibbling (seven meals per day) meal frequency in a cross-over design. Ileal effluents were collected during 24 h at the third day of each of the four dietary periods and analyzed for gross energy and nutrient contents. The results showed that intake of rye bread high-fiber diet compared to the refined wheat low-fiber diet caused an increase in ileal excretion of energy and macronutrients. The effect was independent of meal frequency. This suggests that a high intake of rye may result in lower availability of macronutrients for small intestinal digestion and absorption. A regular intake of rye may therefore have implications for weight management.

  1. Development of a biotechnological process for the production of high quality linen fibers.

    Science.gov (United States)

    Valladares Juárez, Ana Gabriela; Rost, Gernot; Heitmann, Uwe; Heger, Egon; Müller, Rudolf

    2011-10-01

    A novel biotechnological process for the production of high-quality flax fibers was developed. In this process, decorticated fibers from green flax were washed with 0.5% soda solution and treated with the pectinolytic strain Geobacillus thermoglucosidasius PB94A. Before drying the fibers, they were treated with the textile softener Adulcinol BUN. If the fibers contained contaminant shives, a bleaching step with hydrogen peroxide was performed before the softener treatment. In experiments where fibers were treated by the new process, and in which the bacterial solutions were reused seven times, the fiber quality was similar in all batches. The resolution of the treated fibers was 2.7 ± 0.4 and the fineness was 11.1 ± 1.1 dtex, while the starting material had a resolution of 7.3 and a fineness of 37 dtex. The new biotechnological treatment eliminates the weather-associated risks of the traditional fiber retting completely and produces consistently high-quality fibers that can be used to produce fine linen yarns.

  2. Waveguide-loaded silica fibers for coupling to high-index micro-resonators

    Science.gov (United States)

    Latawiec, P.; Burek, M. J.; Venkataraman, V.; Lončar, M.

    2016-01-01

    Tapered silica fibers are often used to rapidly probe the optical properties of micro-resonators. However, their low refractive index precludes phase-matching when coupling to high-index micro-resonators, reducing efficiency. Here, we demonstrate efficient optical coupling from tapered fibers to high-index micro-resonators by loading the fibers with an ancillary adiabatic waveguide-coupler fabricated via angled-etching. We demonstrate greatly enhanced coupling to a silicon multimode micro-resonator when compared to coupling via the bare fiber only. Signatures of resonator optical bistability are observed at high powers. This scheme can be applied to resonators of any size and material, increasing the functional scope of fiber coupling.

  3. Thermo-optical effects in high-power Ytterbium-doped fiber amplifiers

    DEFF Research Database (Denmark)

    Hansen, Kristian Rymann; Alkeskjold, Thomas Tanggaard; Broeng, Jes

    2011-01-01

    We investigate the effect of temperature gradients in high-power Yb-doped fiber amplifiers by a numerical beam propagation model, which takes thermal effects into account in a self-consistent way. The thermally induced change in the refractive index of the fiber leads to a thermal lensing effect...

  4. Dynamic modulus of nanosilica modified porous asphalt

    Science.gov (United States)

    Arshad, A. K.; Masri, K. A.; Ahmad, J.; Samsudin, M. S.

    2017-11-01

    Porous asphalt (PA) is a flexible pavement layer with high interconnected air void contents and constructed using open-graded aggregates. Due to high temperature environment and increased traffic volume in Malaysia, PA may have deficiencies particularly in rutting and stiffness of the mix. A possible way to improve these deficiencies is to improve the asphalt binder used. Binder is normally modified using polymer materials to improve its properties. However, nanotechnology presently is being gradually used for asphalt modification. Nanosilica (NS), a byproduct of rice husk and palm oil fuel ash is used as additive in this study. The aim of this study is to enhance the rutting resistance and stiffness performance of PA using NS. This study focused on the performance of PA in terms of dynamic modulus with the addition of NS modified binder to produce better and more durable PA. From the result of Dynamic SPT Test, it shows that the addition of NS was capable in enhancing the stiffness and rutting resistance of PA. The addition of NS also increase the dynamic modulus value of PA by 50%.

  5. Core-Shell Composite Fibers for High-Performance Flexible Supercapacitor Electrodes.

    Science.gov (United States)

    Lu, Xiaoyan; Shen, Chen; Zhang, Zeyang; Barrios, Elizabeth; Zhai, Lei

    2018-01-31

    Core-shell nanofibers containing poly(acrylic acid) (PAA) and manganese oxide nanoparticles as the core and polypyrrole (PPy) as the shell were fabricated through electrospinning the solution of PAA and manganese ions (PAA/Mn 2+ ). The obtained nanofibers were stabilized by Fe 3+ through the interaction between Fe 3+ ions and carboxylate groups. Subsequent oxidation of Mn 2+ by KMnO 4 produced uniform manganese dioxide (MnO 2 ) nanoparticles in the fibers. A PPy shell was created on the fibers by immersing the fibers in a pyrrole solution where the Fe 3+ ions in the fiber polymerized the pyrrole on the fiber surfaces. In the MnO 2 @PAA/PPy core-shell composite fibers, MnO 2 nanoparticles function as high-capacity materials, while the PPy shell prevents the loss of MnO 2 during the charge/discharge process. Such a unique structure makes the composite fibers efficient electrode materials for supercapacitors. The gravimetric specific capacity of the MnO 2 @PAA/PPy core-shell composite fibers was 564 F/g based on cyclic voltammetry curves at 10 mV/s and 580 F/g based on galvanostatic charge/discharge studies at 5 A/g. The MnO 2 @PAA/PPy core-shell composite fibers also present stable cycling performance with 100% capacitance retention after 5000 cycles.

  6. Effect of Hybrid Fibers on the Mechanical Properties of High Strength Concrete

    Directory of Open Access Journals (Sweden)

    Hamid H. Hussein, Saeed K. Rejeb Hayder T. Abd

    2014-04-01

    Full Text Available In this study, high strength concrete of 75 MPa compressive strength was investigated. The experimental program was designed to study the effect of fibers and hybrid fibers (steel and polypropylene fibers on the fresh (workability and wet density and hardened properties (compressive strength, splitting strength, flexural strength and dry density of high strength concrete. Results show that decreases in slump flow of all concrete mixtures containing steel, polypropylene and hybrid fibers compared with control mix (0% fiber. Hybrid high strength concrete with steel and polypropylene fibers showed superior compressive, splitting, flexural strengths over the others concrete without or with single fibers content. The test results indicate that the maximum increase in compressive and flexural strengths are obtains with the hybridization ratio (70%steel + 30% polypropylene and were equal to 14.54% and 23.34% respectively, compared with the control mix. While, the maximum increase in splitting tensile strength with (100% steel fiber + 0 polypropylene is 21.19%. 

  7. Measurements of print-through in graphite fiber epoxy composites

    Science.gov (United States)

    Jaworske, Donald A.; Jeunnette, Timothy T.; Anzic, Judith M.

    1989-01-01

    High-reflectance accurate-contour mirrors are needed for solar dynamic space power systems. Graphite fiber epoxy composites are attractive candidates for such applications owing to their high modulus, near-zero coefficient of thermal expansion, and low mass. However, mirrors prepared from graphite fiber epoxy composite substrates often exhibit print-through, a distortion of the surface, which causes a loss in solar specular reflectance. Efforts to develop mirror substrates without print-through distortion require a means of quantifying print-through. Methods have been developed to quantify the degree of print-through in graphite fiber epoxy composite specimens using surface profilometry.

  8. An instrument for the high-statistics measurement of plastic scintillating fibers

    International Nuclear Information System (INIS)

    Buontempo, S.; Ereditato, A.; Marchetti-Stasi, F.; Riccardi, F.; Strolin, P.

    1994-01-01

    There is today widespread use of plastic scintillating fibers in particle physics, mainly for calorimetric and tracking applications. In the case of calorimeters, we have to cope with very massive detectors and a large quantity of scintillating fibers. The CHORUS Collaboration has built a new detector to search for ν μ -ν τ oscillations in the CERN neutrino beam. A crucial task of the detector is ruled by the high-energy resolution calorimeter. For its construction more than 400 000 scintillating plastic fibers have been used. In this paper we report on the design and performance of a new instrument for the high-statistics measurement of the fiber properties, in terms of light yield and light attenuation length. The instrument has been successfully used to test about 3% of the total number of fibers before the construction of the calorimeter. ((orig.))

  9. Flexural Behavior of High-Volume Steel Fiber Cementitious Composite Externally Reinforced with Basalt FRP Sheet

    Directory of Open Access Journals (Sweden)

    Seungwon Kim

    2016-01-01

    Full Text Available High-performance fiber-reinforced cementitious composites (HPFRCCs are characterized by unique tensile strain hardening and multiple microcracking behaviors. The HPFRCC, which demonstrates remarkable properties such as strength, ductility, toughness, durability, stiffness, and thermal resistance, is a class of fiber cement composite with fine aggregates. It can withstand tensile stresses by forming distributed microcracks owing to the embedded fibers in the concrete, which improve the energy absorption capacity and apparent ductility. This high energy absorbing capacity can be enhanced further by an external stiff fiber-reinforced polymer (FRP. Basalt fabric is externally bonded as a sheet on concrete materials to enhance the durability and resistance to fire and other environmental attacks. This study investigates the flexural performance of an HPFRCC that is externally reinforced with multiple layers of basalt FRP. The HPFRCC considered in the study contains steel fibers at a volume fraction of 8%.

  10. A New Three-Dimensional High-Accuracy Automatic Alignment System For Single-Mode Fibers

    Science.gov (United States)

    Yun-jiang, Rao; Shang-lian, Huang; Ping, Li; Yu-mei, Wen; Jun, Tang

    1990-02-01

    In order to achieve the low-loss splices of single-mode fibers, a new three-dimension high-accuracy automatic alignment system for single -mode fibers has been developed, which includes a new-type three-dimension high-resolution microdisplacement servo stage driven by piezoelectric elements, a new high-accuracy measurement system for the misalignment error of the fiber core-axis, and a special single chip microcomputer processing system. The experimental results show that alignment accuracy of ±0.1 pin with a movable stroke of -±20μm has been obtained. This new system has more advantages than that reported.

  11. K3-fibered Calabi-Yau threefolds II, singular fibers

    OpenAIRE

    Hunt, Bruce

    1999-01-01

    In part I of this paper we constructed certain fibered Calabi-Yaus by a quotient construction in the context of weighted hypersurfaces. In this paper look at the case of K3 fibrations more closely and study the singular fibers which occur. This differs from previous work since the fibrations we discuss have constant modulus, and the singular fibers have torsion monodromy.

  12. Preparation and properties of hexagonal boron nitride fibers used as high temperature membrane filter

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Xinmei, E-mail: houxinmei@ustb.edu.cn; Yu, Ziyou; Li, Yang; Chou, Kuo-Chih

    2014-01-01

    Graphical abstract: - Highlights: • h-BN fibers were successfully fabricated using H{sub 3}BO{sub 3} and C{sub 3}H{sub 6}N{sub 6} as raw materials. • The obtained BN fibers were polycrystalline and uniform in morphology. • It exhibited good oxidation resistance and low thermal expansion coefficient. - Abstract: Hexagonal boron nitride fibers were synthesized via polymeric precursor method using boric acid (H{sub 3}BO{sub 3}) and melamine (C{sub 3}H{sub 6}N{sub 6}) as raw materials. The precursor fibers were synthesized by water bath and BN fibers were prepared from the precursor at 1873 K for 3 h in flowing nitrogen atmosphere. The crystalline phase and microstructures of BN fibers were examined by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy and high resolution electron microscopy. The results showed that h-BN fibers with uniform morphology were successfully fabricated. The well-synthesized BN fibers were polycrystalline with 0.4–1.5 μm in diameter and 200–500 μm in length. The as-prepared samples exhibited good oxidation resistance and low thermal expansion coefficient at high temperature.

  13. High-fiber rye diet increases ileal excretion of energy and macronutrients compared with low-fiber wheat diet independent of meal frequency in ileostomy subjects

    DEFF Research Database (Denmark)

    Isaksson, Hanna; Landberg, Rikard; Sundberg, Birgitta

    2013-01-01

    -fiber diet compared to a refined wheat low-fiber diet was investigated. Furthermore, the effect of meal frequency on apparent absorption of nutrients was studied for the first time. Design: Ten participants that had undergone ileostomy consumed standardized iso-caloric diets, including low-fiber wheat bread...... (20 g dietary fiber per day) for 2 weeks followed by high-fiber rye bread (52 g dietary fiber per day) for 2 weeks. The diets were consumed in an ordinary (three meals per day) and a nibbling (seven meals per day) meal frequency in a cross-over design. Ileal effluents were collected during 24 h...... was independent of meal frequency. This suggests that a high intake of rye may result in lower availability of macronutrients for small intestinal digestion and absorption. A regular intake of rye may therefore have implications for weight management....

  14. Giant Pulse Phenomena in a High Gain Erbium Doped Fiber Amplifier

    Science.gov (United States)

    Li, Stephen X.; Merritt, Scott; Krainak, Michael A.; Yu, Anthony

    2018-01-01

    High gain Erbium Doped Fiber Amplifiers (EDFAs) are vulnerable to optical damage when unseeded, e.g. due to nonlinear effects that produce random, spontaneous Q-switched (SQS) pulses with high peak power, i.e. giant pulses. Giant pulses can damage either the components within a high gain EDFA or external components and systems coupled to the EDFA. We explore the conditions under which a reflective, polarization-maintaining (PM), core-pumped high gain EDFA generates giant pulses, provide details on the evolution of normal pulses into giant pulses, and provide results on the transient effects of giant pulses on an amplifier's fused-fiber couplers, an effect which we call Fiber Overload Induced Leakage (FOIL). While FOIL's effect on fused-fiber couplers is temporary, its damage to forward pump lasers in a high gain EDFA can be permanent.

  15. Fabricating and strengthening the carbon nanotube/copper composite fibers with high strength and high electrical conductivity

    Science.gov (United States)

    Han, Baoshuai; Guo, Enyu; Xue, Xiang; Zhao, Zhiyong; Li, Tiejun; Xu, Yanjin; Luo, Liangshun; Hou, Hongliang

    2018-05-01

    Combining the excellent properties of carbon nanotube (CNT) and copper, CNT/Cu composite fibers were fabricated by physical vapor deposition (PVD) and rolling treatment. Dense and continuous copper film (∼2 μm) was coated on the surface of the CNT fibers by PVD, and rolling treatment was adopt to strengthen the CNT/Cu composite fibers. After the rolling treatment, the defects between the Cu grains and the CNT bundles were eliminated, and the structure of both the copper film and the core CNT fibers were optimized. The rolled CNT/Cu composite fibers possess high tensile effective strength (1.01 ± 0.13 GPa) and high electrical conductivity ((2.6 ± 0.3) × 107 S/m), and thus, this material may become a promising wire material.

  16. High power supercontinuum generation in tapered photonic crystal fibers

    DEFF Research Database (Denmark)

    Møller, Uffe; Sørensen, Simon Toft; Larsen, Casper

    2012-01-01

    the concept of a group-acceleration mismatch, that for a given taper length, the downtapering section should be as long as possible to enhance the amount of blueshifted light. We also discuss the noise properties of supercontinuum in uniform and tapered fibers and we demonstrate that the amplitude noise...

  17. Multicore fibers for high-capacity submarine transmission systems

    DEFF Research Database (Denmark)

    Nooruzzaman, Md.; Morioka, Toshio

    2018-01-01

    Applications of multicore fibers (MCFs) in undersea transmission systems are investigated, and various potential architectures of branching units for MCF-based undersea transmission systems are presented. Some MCF-based submarine network architectures based on the amount of data traffic are also...

  18. Thermal compression modulus of polarized neutron matter

    International Nuclear Information System (INIS)

    Abd-Alla, M.

    1990-05-01

    We applied the equation of state for pure polarized neutron matter at finite temperature, calculated previously, to calculate the compression modulus. The compression modulus of pure neutron matter at zero temperature is very large and reflects the stiffness of the equation of state. It has a little temperature dependence. Introducing the spin excess parameter in the equation of state calculations is important because it has a significant effect on the compression modulus. (author). 25 refs, 2 tabs

  19. Highly Sensitive Multifilament Fiber Strain Sensors with Ultrabroad Sensing Range for Textile Electronics.

    Science.gov (United States)

    Lee, Jaehong; Shin, Sera; Lee, Sanggeun; Song, Jaekang; Kang, Subin; Han, Heetak; Kim, SeulGee; Kim, Seunghoe; Seo, Jungmok; Kim, DaeEun; Lee, Taeyoon

    2018-05-22

    Highly stretchable fiber strain sensors are one of the most important components for various applications in wearable electronics, electronic textiles, and biomedical electronics. Herein, we present a facile approach for fabricating highly stretchable and sensitive fiber strain sensors by embedding Ag nanoparticles into a stretchable fiber with a multifilament structure. The multifilament structure and Ag-rich shells of the fiber strain sensor enable the sensor to simultaneously achieve both a high sensitivity and largely wide sensing range despite its simple fabrication process and components. The fiber strain sensor simultaneously exhibits ultrahigh gauge factors (∼9.3 × 10 5 and ∼659 in the first stretching and subsequent stretching, respectively), a very broad strain-sensing range (450 and 200% for the first and subsequent stretching, respectively), and high durability for more than 10 000 stretching cycles. The fiber strain sensors can also be readily integrated into a glove to control a hand robot and effectively applied to monitor the large volume expansion of a balloon and a pig bladder for an artificial bladder system, thereby demonstrating the potential of the fiber strain sensors as candidates for electronic textiles, wearable electronics, and biomedical engineering.

  20. Determination of the bulk modulus of hydroxycancrinite, a possible zeolitic precursor in geopolymers, by high-pressure synchrotron X-ray diffraction

    KAUST Repository

    Oh, Jae Eun; Clark, Simon M.; Monteiro, Paulo J.M.

    2011-01-01

    Crystalline zeolitic materials, such as hydroxycancrinite, hydroxysodalite, herschelite and nepheline, are often synthesized from geopolymerization using fly-ash and solutions of NaOH at high temperatures. Comprised mainly of 6-membered

  1. Monolithic Highly Stable Yb-Doped Femtosecond Fiber Lasers for Applications in Practical Biophotonics

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Lægsgaard, Jesper; Turchinovich, Dmitry

    2012-01-01

    in the development of all-fiber nonlinear-optical laser control schemes, which resulted in the demonstration of highly stable monolithic, i.e., not containing any free-space elements, lasers with direct fiber-end delivery of femtosecond pulses. This paper provides an overview of the progress in the development...... of such all-fiber mode-locked lasers based on Yb-fiber as gain medium, operating at the wavelength around 1 $\\mu$m, and delivering femtosecond pulses reaching tens of nanojoules of energy.......Operational and environmental stability of ultrafast laser systems is critical for their applications in practical biophotonics. Mode-locked fiber lasers show great promise in applications such as supercontinuum sources or multiphoton microscopy systems. Recently, substantial progress has been made...

  2. High tensile strength fly ash based geopolymer composite using copper coated micro steel fiber

    DEFF Research Database (Denmark)

    Ranjbar, Navid; Mehrali, Mehdi; Mehrali, Mohammad

    2016-01-01

    -matrix interaction. In this present study, effects of micro steel fibers (MSF) incorporation on mechanical properties of fly ash based geopolymer was investigated at different volume ratio of matrix. Various properties of the composite were compared in terms of fresh state by flow measurement and hardened state......As a ceramic-like material, geopolymers show a high quasi-brittle behavior and relatively low fracture energy. To overcome this, the addition of fibers to a brittle matrix is a well-known method to improve the flexural strength. Moreover, the success of the reinforcements is dependent on the fiber...... by variation of shrinkage over time to assess performance of the composites subjected to flexural and compressive load. The fiber-matrix interface, fiber surface and toughening mechanisms were assessed using field emission scan electron microscopy (FESEM) and atomic force microscopy (AFM) through a period...

  3. Mechanical Properties of Wood Flour Reinforced High Density Polyethylene Composites with Basalt Fibers

    Directory of Open Access Journals (Sweden)

    Guojun LU

    2014-12-01

    Full Text Available Basalt fibers (BFs were surface-treated with a vinyl triethoxy silane coupling agent to improve the mechanical properties of wood fiber-reinforced high density polyethylene (HDPE composites. Basalt fibers were characterized with SEM and FT-IR. The effects of the basalt fiber content and apparent morphology on the mechanical properties of the hybrid composites were investigated in this paper. The results show that the BF coated with the vinyl triethoxy silane coupling agent resulted in an improvement in mechanical properties due to the increased interfacial compatibility between the BF and HDPE. The flexural strength and impact properties significantly increased with 4 wt.% modified basalt fibers. DOI: http://dx.doi.org/10.5755/j01.ms.20.4.6441

  4. Achieving Hydrogen Storage Goals through High-Strength Fiber Glass - Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hong [PPG Industries, Inc., Cheswick, PA (United States); Johnson, Kenneth I. [PPG Industries, Inc., Cheswick, PA (United States); Newhouse, Norman L. [PPG Industries, Inc., Cheswick, PA (United States)

    2017-06-05

    Led by PPG and partnered with Hexagon Lincoln and Pacific Northwest National Laboratory (PNNL), the team recently carried out a project “Achieving Hydrogen Storage Goals through High-Strength Fiber Glass”. The project was funded by DOE’s Fuel Cell Technologies office within the Office of Energy Efficiency and Renewable Energy, starting on September 1, 2014 as a two-year project to assess technical and commercial feasibilities of manufacturing low-cost, high-strength glass fibers to replace T700 carbon fibers with a goal of reducing the composite total cost by 50% of the existing, commercial 700 bar hydrogen storage tanks used in personal vehicles.

  5. New High-Performance SiC Fiber Developed for Ceramic Composites

    Science.gov (United States)

    DiCarlo, James A.; Yun, Hee Mann

    2002-01-01

    Sylramic-iBN fiber is a new type of small-diameter (10-mm) SiC fiber that was developed at the NASA Glenn Research Center and was recently given an R&D 100 Award for 2001. It is produced by subjecting commercially available Sylramic (Dow Corning, Midland, MI) SiC fibers, fabrics, or preforms to a specially designed high-temperature treatment in a controlled nitrogen environment for a specific time. It can be used in a variety of applications, but it currently has the greatest advantage as a reinforcement for SiC/SiC ceramic composites that are targeted for long-term structural applications at temperatures higher than the capability of metallic superalloys. The commercial Sylramic SiC fiber, which is the precursor for the Sylramic-iBN fiber, is produced by Dow Corning, Midland, Michigan. It is derived from polymers at low temperatures and then pyrolyzed and sintered at high temperatures using boron-containing sintering aids (ref. 1). The sintering process results in very strong fibers (>3 GPa) that are dense, oxygen-free, and nearly stoichiometric. They also display an optimum grain size that is beneficial for high tensile strength, good creep resistance, and good thermal conductivity (ref. 2). The NASA-developed treatment allows the excess boron in the bulk to diffuse to the fiber surface where it reacts with nitrogen to form an in situ boron nitride (BN) coating on the fiber surface (thus the product name of Sylramic-iBN fiber). The removal of boron from the fiber bulk allows the retention of high tensile strength while significantly improving creep resistance and electrical conductivity, and probably thermal conductivity since the grains are slightly larger and the grain boundaries cleaner (ref. 2). Also, as shown in the graph, these improvements allow the fiber to display the best rupture strength at high temperatures in air for any available SiC fiber. In addition, for CMC applications under oxidizing conditions, the formation of an in situ BN surface layer

  6. High-energy ion implantation of polymeric fibers for modification of reinforcement-matrix adhesion

    International Nuclear Information System (INIS)

    Grummon, D.S.; Schalek, R.; Ozzello, A.; Kalantar, J.; Drzal, L.T.

    1991-01-01

    We have previously reported on the effect of high-energy ion irradiation of ultrahigh molecular weight polyethylene (UHMW-PE), and Kevlar-49 polyaramid fibers, on fiber-matrix adhesion and interfacial shear strength (ISS) in epoxy matrix composites. Irradiation of UHMW-PE fibers produced large improvements in interfacial shear strength, without degrading fiber tensile strength. ISS was not generally affected in irradiated Kevlar-49, and fiber tensile strength decreased. The divergence in response between polyaramid and polyethylene relates both to differences in the mesoscopic structure of the individual fibers, and to the different forms of beam induced structural modification favored by the individual polymer chemistries. Here we report results of surface energy measurements, infrared spectroscopy analysis, and X-ray photoelectron spectroscopy studies on UHMW-PE and polyaramid fibers, irradiated to fluences between 2x10 12 and 5x10 15 cm -2 with N + , Ar + , Ti + , Na + , and He + at energies between 30 and 400 keV. UHMW-PE fibers showed a pronounced increase in the polar component of surface energy which could be associated with carbonyl, hydroxyl and hydroperoxide groups at the surface. Kevlar, on the other hand, tended toward carbonization and showed a decrease in nitrogen and oxygen concentrations and a sharp drop in polar surface energy. (orig.)

  7. High Power (50W) WDM Space Lasercom 1.5um Fiber Laser Transmitter, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Fibertek proposes to develop and demonstrate a spaceflight prototype of a wideband, high power (up to 50W), polarization maintaining (PM), 1.5-um fiber laser...

  8. Characterization of High Thermal Conductivity Carbon Fibers and a Self-Reinforced Graphite Panel

    National Research Council Canada - National Science Library

    Adams, P

    1998-01-01

    ... (XRD) and high-resolution field emission (FE) scanning electron microscopy (SEM). Of the four experimental fibers, two were produced from Amoco's standard petroleum pitch, and two were produced from an Amoco experimental pitch precursor...

  9. Monolithic, High-Speed Fiber-Optic Switching Array for Lidar, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This NASA SBIR Phase II effort will develop a 1 x 10 prototype non-mechanical fiber optic switch for use with high power lasers. The proposed optical device is a...

  10. Distributed Anemometry via High-Definition Fiber Optic Sensing, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Luna is developing a distributed anemometer that can directly measure flow field velocity profiles using high-definition fiber optic sensing (HD-FOS). The concept is...

  11. High-power random distributed feedback fiber laser: From science to application

    Energy Technology Data Exchange (ETDEWEB)

    Du, Xueyuan [College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha 410073 (China); Naval Academy of Armament, Beijing 100161 (China); Zhang, Hanwei; Xiao, Hu; Ma, Pengfei; Wang, Xiaolin; Zhou, Pu; Liu, Zejin [College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha 410073 (China)

    2016-10-15

    A fiber laser based on random distributed feedback has attracted increasing attention in recent years, as it has become an important photonic device and has found wide applications in fiber communications or sensing. In this article, recent advances in high-power random distributed feedback fiber laser are reviewed, including the theoretical analyses, experimental approaches, discussion on the practical applications and outlook. It is found that a random distributed feedback fiber laser can not only act as an information photonics device, but also has the feasibility for high-efficiency/high-power generation, which makes it competitive with conventional high-power laser sources. In addition, high-power random distributed feedback fiber laser has been successfully applied for midinfrared lasing, frequency doubling to the visible and high-quality imaging. It is believed that the high-power random distributed feedback fiber laser could become a promising light source with simple and economic configurations. (copyright 2016 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Controlling Stimulated Brillouin/Raman Scattering in High Power Fiber Lasers

    Science.gov (United States)

    2017-08-09

    AFRL-RD-PS- AFRL-RD-PS- TR-2017-0043 TR-2017-0043 CONTROLLING STIMULATED BRILLOUIN/RAMAN SCATTERING IN HIGH POWER FIBER LASERS Cody Mart Ben...average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed...unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT This research addressed suppression of stimulated Brillouin/Raman scattering in high power fiber lasers

  13. Optical fiber cable for transmission of high power laser energy over great distances

    Science.gov (United States)

    Zediker, Mark S.; Rinzler, Charles C.; Faircloth, Brian O.; Moxley, Joel F.; Koblick, Yeshaya

    2016-05-24

    There is provided a system and apparatus for the transmission of high power laser energy over great distances without substantial power loss and without the presence of stimulated Raman scattering. There is further provided systems and optical fiber cable configurations and optical fiber structures for the delivering high power laser energy over great distances to a tool or surface to perform an operation or work with the tool or upon the surface.

  14. Effects of high-speed homogenization and high-pressure homogenization on structure of tomato residue fibers.

    Science.gov (United States)

    Hua, Xiao; Xu, Shanan; Wang, Mingming; Chen, Ying; Yang, Hui; Yang, Ruijin

    2017-10-01

    Tomato residue fibers obtained after derosination and deproteinization were processed by high-speed homogenization (HSH) and high-pressure homogenization (HPH), and their effects on fiber structure was investigated, respectively. Characterizations including particle size distribution, SEM, TEM and XRD were performed. HSH could break raw fibers to small particles of around 60μm, while HPH could reshape fibers to build network structure. Microfibrils were released and their nanostructure consisting of elementary fibrils was observed by TEM. XRD patterns indicated both HSH and HPH could hardly alter the nanostructure of the fibers. Physicochemical properties including expansibility, WHC and OHC were determined. Both HSH and HPH could increase the soluble fiber content by about 8%, but HSH-HPH combined processing did not show better result. Acid (4mol/L HCl) was used in replacement of water medium and the acidic degradation of fibers could be promoted by high speed shearing or high pressure processing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. "Green" composites from renewable resources: preparation of epoxidized soybean oil and flax fiber composites.

    Science.gov (United States)

    Liu, Zengshe; Erhan, Sevim Z; Akin, Danny E; Barton, Franklin E

    2006-03-22

    In recent years there has been considerable interest in using natural plant fibers as reinforcements for plastics. The motivation includes cost, performance enhancement, weight reduction, and environment concerns. High performance flax fiber could potentially substitute for glass or carbon fibers as reinforcements for plastics. This study reports the "green" composites obtained from a mixture of epoxidized soybean oil and epoxy resin, 1,1,1-tris(p-hydroxyphenyl)ethane triglycidyl ether (THPE-GE), reinforced with flax fiber. The compression molding method is used for making the composites. Curing agents triethylenetetramine and diethylenetriamine provide better physical properties of the composites than Jeffamine agents D-230 and EDR-148. Both the flexural modulus and the tensile modulus of the composites increase as the amount of THPE-GE increases. The flexural modulus increased at a fiber content of fiber content until a maximum at 13.5 wt %, and then it decreases. The flax fiber length affected the mechanical properties of the composites: the longer the fiber length, the better are the mechanical properties observed.

  16. High performance maleated lignocellulose epicarp fibers for copper ion removal

    OpenAIRE

    Vieira,A. P.; Santana,S. A. A.; Bezerra,C. W. B.; Silva,H. A. S.; Santos,K. C. A.; Melo,J. C. P.; Silva Filho,E. C.; Airoldi,C.

    2014-01-01

    Natural lignocellulosic fiber epicarp extracted from the babassu coconut (Orbignya speciosa) was chemically modified through reaction with molten maleic anhydride without solvent, with incorporation of 189.34 mg g(-1) of carboxylic acid groups into the biopolymer structure. The success of this reaction was also confirmed by the presence of carboxylic acid bands at 1741 and 1164 cm(-1) in the infrared spectrum. Identically, the same group is observed through C-13 NMR CP/MAS in the solid state,...

  17. Development of high capacity, high rate lithium ion batteries utilizing metal fiber conductive additives

    Science.gov (United States)

    Ahn, Soonho; Kim, Youngduk; Kim, Kyung Joon; Kim, Tae Hyung; Lee, Hyungkeun; Kim, Myung H.

    As lithium ion cells dominate the battery market, the performance improvement is an utmost concern among developers and researchers. Conductive additives are routinely employed to enhance electrode conductivity and capacity. Carbon particulates—graphite or carbon black powders—are conventional and popular choices as conductive fillers. However, percolation requirements of particles demand significant volumetric content of impalpable, and thereby high area conductive fillers. As might be expected, the electrode active surface area escalates unnecessarily, resulting in overall increase in reaction with electrolytes and organic solvents. The increased reactions usually manifest as an irreversible loss of anode capacity, gradual oxidation and consumption of electrolyte on the cathode—which causes capacity decline during cycling—and an increased threat to battery safety by gas evolution and exothermic solvent oxidation. In this work we have utilized high aspect ratio, flexible, micronic metal fibers as low active area and high conductivity additives. The metal fibers appear well dispersed within the electrode and to satisfy percolation requirements very efficiently at very low volumetric content compared to conventional carbon-based conductive additives. Results from 18650-type cells indicate significant enhancements in electrode capacity and high rate capability while the irreversible capacity loss is negligible.

  18. Photon Counting System for High-Sensitivity Detection of Bioluminescence at Optical Fiber End.

    Science.gov (United States)

    Iinuma, Masataka; Kadoya, Yutaka; Kuroda, Akio

    2016-01-01

    The technique of photon counting is widely used for various fields and also applicable to a high-sensitivity detection of luminescence. Thanks to recent development of single photon detectors with avalanche photodiodes (APDs), the photon counting system with an optical fiber has become powerful for a detection of bioluminescence at an optical fiber end, because it allows us to fully use the merits of compactness, simple operation, highly quantum efficiency of the APD detectors. This optical fiber-based system also has a possibility of improving the sensitivity to a local detection of Adenosine triphosphate (ATP) by high-sensitivity detection of the bioluminescence. In this chapter, we are introducing a basic concept of the optical fiber-based system and explaining how to construct and use this system.

  19. High Pressure Sensing and Dynamics Using High Speed Fiber Bragg Grating Interrogation Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, G. [LANL; Sandberg, R. L. [LANL; Lalone, B. M. [NSTec; Marshall, B. R. [NSTec; Grover, M. [NSTec; Stevens, G. D. [NSTec; Udd, E. [Columbia Gorge Research

    2014-06-01

    Fiber Bragg gratings (FBGs) are developing into useful sensing tools for measuring high pressure dynamics in extreme environments under shock loading conditions. Approaches using traditional diode array coupled FBG interrogation systems are often limited to readout speeds in the sub-MHz range. For shock wave physics, required detection speeds approaching 100 MHz are desired. We explore the use of two types of FBG sensing systems that are aimed at applying this technology as embedded high pressure probes for transient shock events. Both approaches measure time resolved spectral shifts in the return light from short (few mm long) uniform FBGs at 1550 nm. In the first approach, we use a fiber coupled spectrometer to demultiplex spectral channels into an array (up to 12) of single element InGaAs photoreceivers. By monitoring the detectors during a shock impact event with high speed recording, we are able to track the pressure induced spectral shifting in FBG down to a time resolution of 20 ns. In the second approach, developed at the Special Technologies Lab, a coherent mode-locked fiber laser is used to illuminate the FBG sensor. After the sensor, wavelength-to-time mapping is accomplished with a chromatic dispersive element, and entire spectra are sampled using a single detector at the modelocked laser repetition rate of 50 MHz. By sampling with a 12 GHz InGaAs detector, direct wavelength mapping in time is recorded, and the pressure induced FBG spectral shift is sampled at 50 MHz. Here, the sensing systems are used to monitor the spectral shifts of FBGs that are immersed into liquid water and shock compressed using explosives. In this configuration, the gratings survive to pressures approaching 50 kbar. We describe both approaches and present the measured spectral shifts from the shock experiments.

  20. High pressure sensing and dynamics using high speed fiber Bragg grating interrogation systems

    Science.gov (United States)

    Rodriguez, G.; Sandberg, R. L.; Lalone, B. M.; Marshall, B. R.; Grover, M.; Stevens, G.; Udd, E.

    2014-06-01

    Fiber Bragg gratings (FBGs) are developing into useful sensing tools for measuring high pressure dynamics in extreme environments under shock loading conditions. Approaches using traditional diode array coupled FBG interrogation systems are often limited to readout speeds in the sub-MHz range. For shock wave physics, required detection speeds approaching 100 MHz are desired. We explore the use of two types of FBG sensing systems that are aimed at applying this technology as embedded high pressure probes for transient shock events. Both approaches measure time resolved spectral shifts in the return light from short (few mm long) uniform FBGs at 1550 nm. In the first approach, we use a fiber coupled spectrometer to demultiplex spectral channels into an array (up to 12) of single element InGaAs photoreceivers. By monitoring the detectors during a shock impact event with high speed recording, we are able to track the pressure induced spectral shifting in FBG down to a time resolution of 20 ns. In the second approach, developed at the Special Technologies Lab, a coherent mode-locked fiber laser is used to illuminate the FBG sensor. After the sensor, wavelength-to-time mapping is accomplished with a chromatic dispersive element, and entire spectra are sampled using a single detector at the modelocked laser repetition rate of 50 MHz. By sampling with a 12 GHz InGaAs detector, direct wavelength mapping in time is recorded, and the pressure induced FBG spectral shift is sampled at 50 MHz. Here, the sensing systems are used to monitor the spectral shifts of FBGs that are immersed into liquid water and shock compressed using explosives. In this configuration, the gratings survive to pressures approaching 50 kbar. We describe both approaches and present the measured spectral shifts from the shock experiments.

  1. New approach for high reliability, low loss splicing between silica and ZBLAN fibers

    Science.gov (United States)

    Carbonnier, Robin; Zheng, Wenxin

    2018-02-01

    In the past decade, ZBLAN (ZrF4-BaF2-LaF3-NaF) fibers have drawn increasing interest for laser operations at wavelengths where Fused Silica-based (SiO2) fibers do not perform well. One limitation to the expansion of ZBLAN fiber lasers today is the difficulty to efficiently inject and extract light in/from the guiding medium using SiO2 fibers. Although free space and butt coupling have provided acceptable results, consistent and long lasting physical joints between SiO2 and ZBLAN fibers will allow smaller, cheaper, and more robust component manufacturing. While low loss splices have been reported using a traditional splicing approach, the very low mechanical strength of the joint makes it difficult to scale. Difficulties in achieving a strong bond are mainly due to the large difference of transition temperature between ZBLAN and SiO2 fibers ( 260°C vs 1175°C). This paper presents results obtained by using the high thermal expansion coefficient of the ZBLAN fiber to encapsulate a smaller SiO2 fiber. A CO2 laser glass processing system was used to control the expansion and contraction of the ZBLAN material during the splicing process for optimum reliability. This method produced splices between 125μm ZBLAN to 80μm SiO2 fibers with average transmission loss of 0.225dB (measured at 1550nm) and average ultimate tension strength of 121.4gf. The Resulting splices can be durably packaged without excessive care. Other combinations using 125μm SiO2 fibers tapered to 80μm are also discussed.

  2. Molecular modeling of the microstructure evolution during carbon fiber processing

    Science.gov (United States)

    Desai, Saaketh; Li, Chunyu; Shen, Tongtong; Strachan, Alejandro

    2017-12-01

    The rational design of carbon fibers with desired properties requires quantitative relationships between the processing conditions, microstructure, and resulting properties. We developed a molecular model that combines kinetic Monte Carlo and molecular dynamics techniques to predict the microstructure evolution during the processes of carbonization and graphitization of polyacrylonitrile (PAN)-based carbon fibers. The model accurately predicts the cross-sectional microstructure of the fibers with the molecular structure of the stabilized PAN fibers and physics-based chemical reaction rates as the only inputs. The resulting structures exhibit key features observed in electron microcopy studies such as curved graphitic sheets and hairpin structures. In addition, computed X-ray diffraction patterns are in good agreement with experiments. We predict the transverse moduli of the resulting fibers between 1 GPa and 5 GPa, in good agreement with experimental results for high modulus fibers and slightly lower than those of high-strength fibers. The transverse modulus is governed by sliding between graphitic sheets, and the relatively low value for the predicted microstructures can be attributed to their perfect longitudinal texture. Finally, the simulations provide insight into the relationships between chemical kinetics and the final microstructure; we observe that high reaction rates result in porous structures with lower moduli.

  3. Fiber Optic Cables for Transmission of High-Power Laser Pulses in Spaceflight Applications

    Science.gov (United States)

    Thomes, W. J., Jr.; Ott, M. N.; Chuska, R. F.; Switzer, R. C.; Blair, D. E.

    2010-01-01

    Lasers with high peak power pulses are commonly used in spaceflight missions for a wide range of applications, from LIDAR systems to optical communications. Due to the high optical power needed, the laser has to be located on the exterior of the satellite or coupled through a series of free space optics. This presents challenges for thermal management, radiation resistance, and mechanical design. Future applications will require multiple lasers located close together, which further complicates the design. Coupling the laser energy into a fiber optic cable allows the laser to be relocated to a more favorable position on the spacecraft. Typical fiber optic termination procedures are not sufficient for injection of these high-power laser pulses without catastrophic damage to the fiber endface. In the current study, we will review the causes of fiber damage during high-power injection and discuss our new manufacturing procedures that overcome these issues to permit fiber use with high reliability in these applications. We will also discuss the proper methods for launching the laser pulses into the fiber to avoid damage and how this is being implemented for current spaceflight missions.

  4. Fiber optic cables for transmission of high-power laser pulses in spaceflight applications

    Science.gov (United States)

    Thomes, W. J.; Ott, M. N.; Chuska, R. F.; Switzer, R. C.; Blair, D. E.

    2017-11-01

    Lasers with high peak power pulses are commonly used in spaceflight missions for a wide range of applications, from LIDAR systems to optical communications. Due to the high optical power needed, the laser has to be located on the exterior of the satellite or coupled through a series of free space optics. This presents challenges for thermal management, radiation resistance, and mechanical design. Future applications will require multiple lasers located close together, which further complicates the design. Coupling the laser energy into a fiber optic cable allows the laser to be relocated to a more favorable position on the spacecraft. Typical fiber optic termination procedures are not sufficient for injection of these high-power laser pulses without catastrophic damage to the fiber endface. In the current study, we will review the causes of fiber damage during high-power injection and discuss our new manufacturing procedures that overcome these issues to permit fiber use with high reliability in these applications. We will also discuss the proper methods for launching the laser pulses into the fiber to avoid damage and how this is being implemented for current spaceflight missions.

  5. Direct growth of vanadium nitride nanosheets on carbon nanotube fibers as novel negative electrodes for high-energy-density wearable fiber-shaped asymmetric supercapacitors

    Science.gov (United States)

    Guo, Jiabin; Zhang, Qichong; Sun, Juan; Li, Chaowei; Zhao, Jingxin; Zhou, Zhenyu; He, Bing; Wang, Xiaona; Man, Ping; Li, Qiulong; Zhang, Jun; Xie, Liyan; Li, Mingxing; Yao, Yagang

    2018-04-01

    Significant efforts have been recently devoted to constructing high-performance fiber-shaped asymmetric supercapacitors. However, it is still a paramount challenge to develop high-energy-density fiber-shaped asymmetric supercapacitors for practical applications in portable and wearable electronics. This work reports a simple and efficient method to directly grow vanadium nitride nanosheets on carbon nanotube fibers as advanced negative electrodes with a high specific capacitance of 188 F/cm3 (564 mF/cm2). Taking advantage of their attractive structure, we successfully fabricated a fiber-shaped asymmetric supercapacitor device with a maximum operating voltage of 1.6 V by assembling the vanadium nitride/carbon nanotube fiber negative electrode with the Zinc-Nickel-Cobalt ternary oxides nanowire arrays positive electrode. Due to the excellent synergistic effects between positive and negative electrodes, a remarkable specific capacitance of 50 F/cm3 (150 mF/cm2) and an outstanding energy density of 17.78 mWh/cm3 (53.33 μWh/cm2) for our fiber-shaped asymmetric supercapacitor can be achieved. Furthermore, the as-assembled fiber-shaped asymmetric supercapacitor device has excellent mechanical flexibility in that 91% of the capacitance retained after bending 90° for 3000 times. Thus, this work exploits a pathway to construct high-energy-density fiber-shaped asymmetric supercapacitor for next-generation portable and wearable electronics.

  6. Preventive effect on spalling of UFC using jute fiber at high temperature

    Directory of Open Access Journals (Sweden)

    Ozawa M.

    2013-09-01

    Full Text Available In this study, we examined the relationship between spalling behaviour and spalling ratio of UFC with three kinds of short fibers (jute, polypropylene, water-soluble polyvinyl alcohol at high temperature. The heating temperatures were 400 °C and 600 °C. Although the specimen with jute fiber dosage of 0.19% by volume was occurred explosive spalling, the damage of specimen was slightly small. It appears that the addition of jute fiber to UFC is effective for preventing spalling.

  7. Transverse mode instability in high-power ytterbium doped fiber ampliers

    DEFF Research Database (Denmark)

    Hansen, Kristian Rymann

    The last couple of decades have brought an impressive growth in the output power of rare-earth doped fiber lasers and amplifiers, reaching the kW average power regime in both CW and pulsed systems. As a result, even though fiber lasers have excellent heat dissipation properties, thermal effects due...... is to provide a theoretical understanding of the thermo-optical effects in high-power ytterbium doped fiber amplifiers, with a particular emphasis on understanding the aforementioned mode instability issue. Two main approaches to the problem have been used. The first is the development of a numerical model...

  8. Signal enhancement by spectral equalization of high frequency broadband signals transmitted through optical fibers

    International Nuclear Information System (INIS)

    Lyons, P.B.; Ogle, J.W.; Holzman, M.A.

    1980-01-01

    A new technique is discussed for enhancing the bandwidth and intensity of high frequency (> 1 GHz) analog, spectrally broad (40 nm) signals transmitted through one kilometer of optical fiber. The existing method for bandwidth enhancement of such a signal uses a very narrow (approx. 1 nm) filter between the fiber and detector to limit bandwidth degradation due to material dispersion. Using this method, most of the available optical intensity is rejected and lost. This new technique replaces the narrow-band filter with a spectral equalizer device which uses a reflection grating to disperse the input signal spectrum and direct it onto a linear array of fibers

  9. Large motion high cycle high speed optical fibers for space based applications.

    Energy Technology Data Exchange (ETDEWEB)

    Stromberg, Peter G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tandon, Rajan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gibson, Cory S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Reedlunn, Benjamin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rasberry, Roger David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rohr, Garth David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-10-01

    Future remote sensing applications will require higher resolution and therefore higher data rates (up to perhaps 100 gigabits per second) while achieving lower mass and cost. A current limitation to the design space is high speed high bandwidth data does not cross movable gimbals because of cabling issues. This requires the detectors to be off gimbal. The ability to get data across the gimbal would open up efficiencies in designs where the detectors and the electronics can be placed anywhere on the system. Fiber optic cables provide light weight high speed high bandwidth connections. Current options are limited to 20,000 cycles as opposed to the 1,000,000 cycles needed for future space based applications. To extend this to the million+ regime, requires a thorough understanding of the failure mechanisms and the materials, proper selection of materials (e.g., glass and jacket material) allowable geometry changes to the cable, radiation hardness, etc.

  10. Highly Doped Phosphate Glass Fibers for Compact Lasers and Amplifiers: A Review

    Directory of Open Access Journals (Sweden)

    Nadia Giovanna Boetti

    2017-12-01

    Full Text Available In recent years, the exploitation of compact laser sources and amplifiers in fiber form has found extensive applications in industrial and scientific fields. The fiber format offers compactness, high beam quality through single-mode regime and excellent heat dissipation, thus leading to high laser reliability and long-term stability. The realization of devices based on this technology requires an active medium with high optical gain over a short length to increase efficiency while mitigating nonlinear optical effects. Multicomponent phosphate glasses meet these requirements thanks to the high solubility of rare-earth ions in their glass matrix, alongside with high emission cross-sections, chemical stability and high optical damage threshold. In this paper, we review recent advances in the field thanks to the combination of highly-doped phosphate glasses and innovative fiber drawing techniques. We also present the main performance achievements and outlook both in continuous wave (CW and pulsed mode regimes.

  11. High repetition rate tunable femtosecond pulses and broadband amplification from fiber laser pumped parametric amplifier.

    Science.gov (United States)

    Andersen, T V; Schmidt, O; Bruchmann, C; Limpert, J; Aguergaray, C; Cormier, E; Tünnermann, A

    2006-05-29

    We report on the generation of high energy femtosecond pulses at 1 MHz repetition rate from a fiber laser pumped optical parametric amplifier (OPA). Nonlinear bandwidth enhancement in fibers provides the intrinsically synchronized signal for the parametric amplifier. We demonstrate large tunability extending from 700 nm to 1500 nm of femtosecond pulses with pulse energies as high as 1.2 muJ when the OPA is seeded by a supercontinuum generated in a photonic crystal fiber. Broadband amplification over more than 85 nm is achieved at a fixed wavelength. Subsequent compression in a prism sequence resulted in 46 fs pulses. With an average power of 0.5 W these pulses have a peak-power above 10 MW. In particular, the average power and pulse energy scalability of both involved concepts, the fiber laser and the parametric amplifier, will enable easy up-scaling to higher powers.

  12. High sensitivity optical fiber liquid level sensor based on a compact MMF-HCF-FBG structure

    Science.gov (United States)

    Zhang, Yunshan; Zhang, Weigang; Chen, Lei; Zhang, Yanxin; Wang, Song; Yan, Tieyi

    2018-05-01

    An ultra-high sensitivity fiber liquid level sensor based on wavelength demodulation is proposed and demonstrated. The sensor is composed of a segment of multimode fiber and a large aperture hollow-core fiber assisted by a fiber Bragg grating (FBG). Interference occurs due to core mismatching and different modes with different effective refractive indices. The experimental results show that the liquid level sensitivity of the sensor is 1.145 nm mm‑1, and the linearity is up to 0.996. The dynamic temperature compensation of the sensor can be achieved by cascading an FBG. Considering the high sensitivity and compact structure of the sensor, it can be used for real-time intelligent monitoring of tiny changes in liquid level.

  13. High Strength Concrete Columns under Axial Compression Load: Hybrid Confinement Efficiency of High Strength Transverse Reinforcement and Steel Fibers

    Science.gov (United States)

    Perceka, Wisena; Liao, Wen-Cheng; Wang, Yo-de

    2016-01-01

    Addition of steel fibers to high strength concrete (HSC) improves its post-peak behavior and energy absorbing capability, which can be described well in term of toughness. This paper attempts to obtain both analytically and experimentally the efficiency of steel fibers in HSC columns with hybrid confinement of transverse reinforcement and steel fibers. Toughness ratio (TR) to quantify the confinement efficiency of HSC columns with hybrid confinement is proposed through a regression analysis by involving sixty-nine TRs of HSC without steel fibers and twenty-seven TRs of HSC with hybrid of transverse reinforcement and steel fibers. The proposed TR equation was further verified by compression tests of seventeen HSC columns conducted in this study, where twelve specimens were reinforced by high strength rebars in longitudinal and transverse directions. The results show that the efficiency of steel fibers in concrete depends on transverse reinforcement spacing, where the steel fibers are more effective if the spacing transverse reinforcement becomes larger in the range of 0.25–1 effective depth of the section column. Furthermore, the axial load–strain curves were developed by employing finite element software (OpenSees) for simulating the response of the structural system. Comparisons between numerical and experimental axial load–strain curves were carried out. PMID:28773391

  14. Highly scalable ZIF-based mixed-matrix hollow fiber membranes for advanced hydrocarbon separations

    KAUST Repository

    Zhang, Chen

    2014-05-29

    ZIF-8/6FDA-DAM, a proven mixed-matrix material that demonstrated remarkably enhanced C3H6/C3H8 selectivity in dense film geometry, was extended to scalable hollow fiber geometry in the current work. We successfully formed dual-layer ZIF-8/6FDA-DAM mixed-matrix hollow fiber membranes with ZIF-8 nanoparticle loading up to 30 wt % using the conventional dry-jet/wet-quench fiber spinning technique. The mixed-matrix hollow fibers showed significantly enhanced C3H6/C3H8 selectivity that was consistent with mixed-matrix dense films. Critical variables controlling successful formation of mixed-matrix hollow fiber membranes with desirable morphology and attractive transport properties were discussed. Furthermore, the effects of coating materials on selectivity recovery of partially defective fibers were investigated. To our best knowledge, this is the first article reporting successful formation of high-loading mixed-matrix hollow fiber membranes with significantly enhanced selectivity for separation of condensable olefin/paraffin mixtures. Therefore, it represents a major step in the research area of advanced mixed-matrix membranes. © 2014 American Institute of Chemical Engineers.

  15. MoXy fiber with active cooling cap for bovine prostate vaporization with high power 200W 532 nm laser

    Science.gov (United States)

    Peng, Steven Y.; Kang, Hyun Wook; Pirzadeh, Homa; Stinson, Douglas

    2011-03-01

    A novel MoXyTM fiber delivery device with Active Cooling Cap (ACCTM) is designed to transmit up to 180W of 532 nm laser light to treat benign prostatic hyperplasia (BPH). Under such high power tissue ablation, effective cooling is key to maintaining fiber power transmission and ensuring the reliability of the fiber delivery device To handle high power and reduce fiber degradation, the MoXy fiber features a larger core size (750 micrometer) and an internal fluid channel to ensure better cooling of the fiber tip to prevent the cap from burning, detaching, or shattering during the BPH treatment. The internal cooling channel was created with a metal cap and tubing that surrounds the optical fiber. In this study MoXy fibers were used to investigate the effect of power levels of 120 and 200 W on in-vitro bovine prostate ablation using a 532 nm XPSTM laser system. For procedures requiring more than 100 kJ, the MoXy fiber at 200W removed tissue at twice the rate of the current HPS fiber at 120W. The fiber maintained a constant tissue vaporization rate during the entire tissue ablation process. The coagulation at 200W was about 20% thicker than at 120W. In conclusion, the new fibers at 200W doubled the tissue removal rate, maintained vaporization efficiency throughout delivery of 400kJ energy, and induced similar coagulation to the existing HPS fiber at 120W.

  16. Fabrication of high strength PVA/SWCNT composite fibers by gel spinning

    OpenAIRE

    Xu, Xuezhu; Uddin, Ahmed Jalal; Aoki, Kenta; Gotoh, Yasuo; Saito, Takeshi; Yumura, Motoo

    2010-01-01

    High-strength composite fibers were prepared from polyvinyl alcohol (PVA) (Degree of polymerization: 1500) reinforced by single-walled carbon nanotubes (SWCNTs) containing few defects. The SWCNTs were dispersed in a 10 wt.% PVA/dimethylsulfoxide solution using a mechanical homogenizer that reduced the size of SWCNT aggregations to smaller bundles. The macroscopically homogeneous dispersion was extruded into cold methanol to form fibers by gel spinning followed by a hot-drawing. The tensile st...

  17. Determination of Young's Modulus of Graphene by Raman Spectroscopy

    Science.gov (United States)

    Lee, Jae-Ung; Yoon, Duhee; Cheong, Hyeonsik

    2012-02-01

    The mechanical properties of graphene are interesting research subjects because its Young's modulus and strength are extremely high. Values of ˜1 TPa for the Young's modulus have been reported [Lee et al. Science, 321, 385 (2008), Koenig et al. Nat. Nanotech. 6, 543 (2011)]. We made a graphene sample on a SiO2/Si substrate with closed-bottom holes by mechanical exfoliation. A pressure difference across the graphene membrane was applied by putting the sample in a vacuum chamber. This pressure difference makes the graphene membrane bulge upward like a balloon. By measuring the shifts of the Raman G and 2D bands, we estimated the amount of strain on the graphene membrane. By comparing the strain estimated from the Raman measurements with numerical simulations based on the finite element method, we obtained the Young's modulus of graphene.

  18. Impact of Steel Fiber Size and Shape on the Mechanical Properties of Ultra-High Performance Concrete

    Science.gov (United States)

    2015-08-01

    characteristics of steel fiber reinforcement to the mechanical properties of high-strength concretes , this study investigated four commercially available...Standard test method for flexural performance of fiber - reinforced concrete (using beam with third-point loading). Designation: C1609/1609M. West...STEEL FIBERS are low-carbon, drawn w ire for reinforced concrete . NYCON-SF fibers distribute stresses within the concrete and provide improvement

  19. Improved Resolution Optical Time Stretch Imaging Based on High Efficiency In-Fiber Diffraction.

    Science.gov (United States)

    Wang, Guoqing; Yan, Zhijun; Yang, Lei; Zhang, Lin; Wang, Chao

    2018-01-12

    Most overlooked challenges in ultrafast optical time stretch imaging (OTSI) are sacrificed spatial resolution and higher optical loss. These challenges are originated from optical diffraction devices used in OTSI, which encode image into spectra of ultrashort optical pulses. Conventional free-space diffraction gratings, as widely used in existing OTSI systems, suffer from several inherent drawbacks: limited diffraction efficiency in a non-Littrow configuration due to inherent zeroth-order reflection, high coupling loss between free-space gratings and optical fibers, bulky footprint, and more importantly, sacrificed imaging resolution due to non-full-aperture illumination for individual wavelengths. Here we report resolution-improved and diffraction-efficient OTSI using in-fiber diffraction for the first time to our knowledge. The key to overcome the existing challenges is a 45° tilted fiber grating (TFG), which serves as a compact in-fiber diffraction device offering improved diffraction efficiency (up to 97%), inherent compatibility with optical fibers, and improved imaging resolution owning to almost full-aperture illumination for all illumination wavelengths. 50 million frames per second imaging of fast moving object at 46 m/s with improved imaging resolution has been demonstrated. This conceptually new in-fiber diffraction design opens the way towards cost-effective, compact and high-resolution OTSI systems for image-based high-throughput detection and measurement.

  20. High Per formance and Flexible Supercapacitors based on Carbonized Bamboo Fibers for Wide Temperature Applications

    Science.gov (United States)

    Zequine, Camila; Ranaweera, C. K.; Wang, Z.; Singh, Sweta; Tripathi, Prashant; Srivastava, O. N.; Gupta, Bipin Kumar; Ramasamy, K.; Kahol, P. K.; Dvornic, P. R.; Gupta, Ram K.

    2016-08-01

    High performance carbonized bamboo fibers were synthesized for a wide range of temperature dependent energy storage applications. The structural and electrochemical properties of the carbonized bamboo fibers were studied for flexible supercapacitor applications. The galvanostatic charge-discharge studies on carbonized fibers exhibited specific capacity of ~510F/g at 0.4 A/g with energy density of 54 Wh/kg. Interestingly, the carbonized bamboo fibers displayed excellent charge storage stability without any appreciable degradation in charge storage capacity over 5,000 charge-discharge cycles. The symmetrical supercapacitor device fabricated using these carbonized bamboo fibers exhibited an areal capacitance of ~1.55 F/cm2 at room temperature. In addition to high charge storage capacity and cyclic stability, the device showed excellent flexibility without any degradation to charge storage capacity on bending the electrode. The performance of the supercapacitor device exhibited ~65% improvement at 70 °C compare to that at 10 °C. Our studies suggest that carbonized bamboo fibers are promising candidates for stable, high performance and flexible supercapacitor devices.

  1. High-power fused assemblies enabled by advances in fiber-processing technologies

    Science.gov (United States)

    Wiley, Robert; Clark, Brett

    2011-02-01

    The power handling capabilities of fiber lasers are limited by the technologies available to fabricate and assemble the key optical system components. Previous tools for the assembly, tapering, and fusion of fiber laser elements have had drawbacks with regard to temperature range, alignment capability, assembly flexibility and surface contamination. To provide expanded capabilities for fiber laser assembly, a wide-area electrical plasma heat source was used in conjunction with an optimized image analysis method and a flexible alignment system, integrated according to mechatronic principles. High-resolution imaging and vision-based measurement provided feedback to adjust assembly, fusion, and tapering process parameters. The system was used to perform assembly steps including dissimilar-fiber splicing, tapering, bundling, capillary bundling, and fusion of fibers to bulk optic devices up to several mm in diameter. A wide range of fiber types and diameters were tested, including extremely large diameters and photonic crystal fibers. The assemblies were evaluated for conformation to optical and mechanical design criteria, such as taper geometry and splice loss. The completed assemblies met the performance targets and exhibited reduced surface contamination compared to assemblies prepared on previously existing equipment. The imaging system and image analysis algorithms provided in situ fiber geometry measurement data that agreed well with external measurement. The ability to adjust operating parameters dynamically based on imaging was shown to provide substantial performance benefits, particularly in the tapering of fibers and bundles. The integrated design approach was shown to provide sufficient flexibility to perform all required operations with a minimum of reconfiguration.

  2. Monolithic, High-Speed Fiber-Optic Switching Array for Lidar

    Science.gov (United States)

    Suckow, Will; Roberts, Tony; Switzer, Gregg; Terwilliger, Chelle

    2011-01-01

    Current fiber switch technologies use mechanical means to redirect light beams, resulting in slow switch time, as well as poor reliability due to moving parts wearing out quickly at high speeds. A non-mechanical ability to switch laser output into one of multiple fibers within a fiber array can provide significant power, weight, and costs savings to an all-fiber system. This invention uses an array of crystals that act as miniature prisms to redirect light as an electric voltage changes the prism s properties. At the heart of the electro-optic fiber-optic switch is an electro- optic crystal patterned with tiny prisms that can deflect the beam from the input fiber into any one of the receiving fibers arranged in a linear array when a voltage is applied across the crystal. Prism boundaries are defined by a net dipole moment in the crystal lattice that has been poled opposite to the surrounding lattice fabricated using patterned, removable microelectrodes. When a voltage is applied across the crystal, the resulting electric field changes the index of refraction within the prism boundaries relative to the surrounding substrate, causing light to deflect slightly according to Snell s Law. There are several materials that can host the necessary monolithic poled pattern (including, but not limited to, SLT, KTP, LiNbO3, and Mg:LiNbO3). Be cause this is a solid-state system without moving parts, it is very fast, and does not wear down easily. This invention is applicable to all fiber networks, as well as industries that use such networks. The unit comes in a compact package, can handle both low and high voltages, and has a high reliability (100,000 hours without maintenance).

  3. High-power ultralong-wavelength Tm-doped silica fiber laser cladding-pumped with a random distributed feedback fiber laser.

    Science.gov (United States)

    Jin, Xiaoxi; Du, Xueyuan; Wang, Xiong; Zhou, Pu; Zhang, Hanwei; Wang, Xiaolin; Liu, Zejin

    2016-07-15

    We demonstrated a high-power ultralong-wavelength Tm-doped silica fiber laser operating at 2153 nm with the output power exceeding 18 W and the slope efficiency of 25.5%. A random distributed feedback fiber laser with the center wavelength of 1173 nm was employed as pump source of Tm-doped fiber laser for the first time. No amplified spontaneous emissions or parasitic oscillations were observed when the maximum output power reached, which indicates that employing 1173 nm random distributed feedback fiber laser as pump laser is a feasible and promising scheme to achieve high-power emission of long-wavelength Tm-doped fiber laser. The output power of this Tm-doped fiber laser could be further improved by optimizing the length of active fiber, reflectivity of FBGs, increasing optical efficiency of pump laser and using better temperature management. We also compared the operation of 2153 nm Tm-doped fiber lasers pumped with 793 nm laser diodes, and the maximum output powers were limited to ~2 W by strong amplified spontaneous emission and parasitic oscillation in the range of 1900-2000 nm.

  4. Scintillating fiber tracking at high luminosities using Visible Light Photon counter readout

    International Nuclear Information System (INIS)

    Atac, M.

    1995-11-01

    This paper reviews the research work on the Visible Light Photon Counters (VLPC) that have been developed for the scintillating fiber tracking at high luminosity colliders and high rate fixed target experiments. The devices originated from the joint work between UCLA and Rockwell International Science Center. The VLPCs are capable of counting photons very efficiently down to a single photon level with high avalanche gain, producing pulses at very high rates with very short rise times. Due to small gain dispersions they can be used in counting photons with high quantum efficiencies, therefore they are excellent devices for charged particle tracking using small diameter scintillating plastic fibers. In this paper, fiber tracking for the CDF and D0 upgrades and a possible usage of the VLPC readout for the experiment E803 at Fermilab will be discussed

  5. FOCEX: A fiber-optic extender for a high speed parallel RS485 data cable

    International Nuclear Information System (INIS)

    Meadows, J.T.; Anderson, J.T.; Cooper, P.S.; Engelfried, J.; Franzen, J.W.; Forster, B.G.; Levinson, F.; Rawls, J.; Haber, S.

    1995-05-01

    For longer-distant, high speed data links, optical fibre becomes most cost-effective than copper or other hard wire cable systems. Fermilab supplied to Finisar Corp. of Menlo Park, CA., a set of specifications for card functions, sizes and interconnector pin assignments. Finisar designed and assembled a set of fiber optical P.C. cards using 100 megabyte/sec commercial optoelectronics and a serialization and deserialization HOT-ROD chipset designed by GAZELLE Microcircuits, Inc. (A Tri Quint Semiconductors company). The cooperative effort between Fermilab and Finisar has allowed Fermilab to created a reliable 50 Megabytes/sec (40 bit parallel RS485 DART data bus) cable to cable extender using a virtually invisible Fiber Channel point-to-point(FC-0) fiber optical single-simplex system. The system is easily capable of sustaining a 50 megabytes/sec of data, control and status line throughput at distances of 1625 feet (500 meters) using standard multi-mode fiber

  6. Kilowatt-level cladding light stripper for high-power fiber laser.

    Science.gov (United States)

    Yan, Ping; Sun, Junyi; Huang, Yusheng; Li, Dan; Wang, Xuejiao; Xiao, Qirong; Gong, Mali

    2017-03-01

    We designed and fabricated a high-power cladding light stripper (CLS) by combining a fiber-etched CLS with a cascaded polymer-recoated CLS. The etched fiber reorganizes the numerical aperture (NA) distribution of the cladding light, leading to an increase in the leakage power and a flatter distribution of the leakage proportion in the cascaded polymer-recoated fiber. The index distribution of the cascaded polymer-recoated fiber is carefully designed to ensure an even leakage of cladding light. More stages near the index of 1.451 are included to disperse the heat. The CLS is capable of working consistently under 1187 W of cladding light with an attenuation of 26.59 dB, and the highest local temperature is less than 35°C.

  7. A Fiber-Optic System Generating Pulses of High Spectral Density

    Science.gov (United States)

    Abramov, A. S.; Zolotovskii, I. O.; Korobko, D. A.; Fotiadi, A. A.

    2018-03-01

    A cascade fiber-optic system that generates pulses of high spectral density by using the effect of nonlinear spectral compression is proposed. It is demonstrated that the shape of the pulse envelope substantially influences the degree of compression of its spectrum. In so doing, maximum compression is achieved for parabolic pulses. The cascade system includes an optical fiber exhibiting normal dispersion that decreases along the fiber length, thereby ensuring that the pulse envelope evolves toward a parabolic shape, along with diffraction gratings and a fiber spectral compressor. Based on computer simulation, we determined parameters of cascade elements leading to maximum spectral density of radiation originating from a subpicosecond laser pulse of medium energy.

  8. Volume Bragg grating narrowed high-power and highly efficient cladding-pumped Raman fiber laser.

    Science.gov (United States)

    Liu, Jun; Yao, Weichao; Zhao, Chujun; Shen, Deyuan; Fan, Dianyuan

    2014-12-10

    High-power and highly efficient operation of a single-mode cladding-pumped Raman fiber laser with narrow lasing bandwidth is demonstrated. The spectral narrowing was realized by an external cavity containing a volume Bragg grating with a center wavelength of 1658 nm. A maximum output power of 10.4 W at 1658.3 nm with a spectral linewidth (FWHM) of ∼0.1  nm was obtained for the launched pump power of 18.4 W, corresponding to a slope efficiency of 109% with respect to the launched pump power. Lasing characteristics of free-running operation are also evaluated and discussed.

  9. Yb-doped aluminophosphosilicate ternary fiber with high efficiency and excellent laser stability

    Science.gov (United States)

    Li, Yuwei; Peng, Kun; Zhan, Huan; Liu, Shuang; Ni, Li; Wang, Yuying; Yu, Juan; Wang, Xiaolong; Wang, Jianjun; Jing, Feng; Lin, Aoxiang

    2018-03-01

    By using chelate precursor doping technique and traditional modified chemical vapor deposition system, we fabricated Yb-doped aluminophosphosilicate (Al2O3-P2O5-SiO2, ternary Yb-APS) large-mode-area fiber and reported on its laser performance. The fiber preform was doped with Al, P and Yb with concentration of ∼8000 ppm, ∼1700 ppm and ∼400 ppm in molar percent, respectively. Tested with master oscillator power amplifier system, the home-made Yb-APS fiber was found to present 1.02 kW at 1061.1 nm with a high slope efficiency of 81.2% and excellent laser stability with power fluctuation less than ±1.1% for over 10 h. Compared with Yb-doped aluminosilicate (Al2O3-SiO2, binary Yb-AS) fiber, the introduction of P2O5 effectively suppressed photodarkening effect even the P/Al ratio is much less than 1, indicating that Yb-APS fiber is a better candidate for high power fiber lasers.

  10. Highly stretchable and conductive fibers enabled by liquid metal dip-coating

    Science.gov (United States)

    Zhang, Qiang; Roach, Devin J.; Geng, Luchao; Chen, Haosen; Qi, H. Jerry; Fang, Daining

    2018-03-01

    Highly stretchable and conductive fibers have been fabricated by dip-coating of a layer of liquid metal (eutectic gallium indium, EGaIn) on printed silicone elastomer filaments. This fabrication method exploits a nanolayer of oxide skin that rapidly forms on the surface of EGaIn when exposed to air. Through dip-coating, the sticky nature of the oxide skin leads to the formation of a thin EGaIn coating (˜5 μm thick) on the originally nonconductive filaments and renders these fibers excellent conductivity. Electrical characterization shows that the fiber resistance increases moderately as the fiber elongates but always maintains conductivity even when stretched by 800%. Besides this, these fibers possess good cyclic electrical stability with little degradation after hundreds of stretching cycles, which makes them an excellent candidate for stretchable conductors. We then demonstrate a highly stretchable LED circuit as well as a conductive stretchable net that extends the 1D fibers into a 2D configuration. These examples demonstrate potential applications for topologically complex stretchable electronics.

  11. Sharp burnout failure observed in high current-carrying double-walled carbon nanotube fibers

    Science.gov (United States)

    Song, Li; Toth, Geza; Wei, Jinquan; Liu, Zheng; Gao, Wei; Ci, Lijie; Vajtai, Robert; Endo, Morinobu; Ajayan, Pulickel M.

    2012-01-01

    We report on the current-carrying capability and the high-current-induced thermal burnout failure modes of 5-20 µm diameter double-walled carbon nanotube (DWNT) fibers made by an improved dry-spinning method. It is found that the electrical conductivity and maximum current-carrying capability for these DWNT fibers can reach up to 5.9 × 105 S m - 1 and over 1 × 105 A cm - 2 in air. In comparison, we observed that standard carbon fiber tended to be oxidized and burnt out into cheese-like morphology when the maximum current was reached, while DWNT fiber showed a much slower breakdown behavior due to the gradual burnout in individual nanotubes. The electron microscopy observations further confirmed that the failure process of DWNT fibers occurs at localized positions, and while the individual nanotubes burn they also get aligned due to local high temperature and electrostatic field. In addition a finite element model was constructed to gain better understanding of the failure behavior of DWNT fibers.

  12. A high spatial resolution distributed optical fiber grating sensing system based on OFDR

    Science.gov (United States)

    Dong, Ke; Xiong, Yuchuan; Wen, Hongqiao; Tong, Xinlin; Zhang, Cui; Deng, Chengwei

    2017-10-01

    A distributed optical fiber grating sensing system with large capacity and high spatial resolution is presented. Since highdensity identical weak grating array was utilized as sensing fiber, the multiplexing number was greatly increased, meanwhile, optical frequency domain reflectometry (OFDR) technology was used to implement high resolution distributed sensing system. In order to eliminate the nonlinear effect of tunable light source, a windowed FFT algorithm based on cubic spline interpolation was applied. The feasibility of the algorithm was experimentally testified, ultimately, the spatial resolution of system can reach mm-level. The influence of the crosstalk signal in the grating array on the OFDR system was analyzed. A method that a long enough delay fiber was added before the first FBG to remove crosstalk signal was proposed. The experiment was verified using an optical fiber with 113 uniform Bragg gratings at an interval of 10cm whose reflectivity are less than 1%. It demonstrates that crosstalk signal and measurement signal can be completely separated in the distance domain after adding a long enough delay fiber. Finally, the temperature experiment of distributed grating sensing system was carried out. The results display that each raster's center wavelength in the fiber link is independent of each other and the center wavelength drift has a good linear relationship with the temperature. The sensitivity of linear fitting is equal to 11.1pm/°C.

  13. Measurement and removal of cladding light in high power fiber systems

    Science.gov (United States)

    Walbaum, Till; Liem, Andreas; Schreiber, Thomas; Eberhardt, Ramona; Tünnermann, Andreas

    2018-02-01

    The amount of cladding light is important to ensure longevity of high power fiber components. However, it is usually measured either by adding a cladding light stripper (and thus permanently modifying the fiber) or by using a pinhole to only transmit the core light (ignoring that there may be cladding mode content in the core area). We present a novel noninvasive method to measure the cladding light content in double-clad fibers based on extrapolation from a cladding region of constant average intensity. The method can be extended to general multi-layer radially symmetric fibers, e.g. to evaluate light content in refractive index pedestal structures. To effectively remove cladding light in high power systems, cladding light strippers are used. We show that the stripping efficiency can be significantly improved by bending the fiber in such a device and present respective experimental data. Measurements were performed with respect to the numerical aperture as well, showing the dependency of the CLS efficiency on the NA of the cladding light and implying that efficiency data cannot reliably be given for a certain fiber in general without regard to the properties of the guided light.

  14. Influence of thermal conditions on the tensile properties of basalt fiber reinforced polypropylene–clay nanocomposites

    International Nuclear Information System (INIS)

    Eslami-Farsani, Reza; Reza Khalili, S. Mohammad; Hedayatnasab, Ziba; Soleimani, Neda

    2014-01-01

    Highlights: • We studied tensile properties of basalt fiber/nanoclay-polypropylene (BF–PPCN). • Addition of nanoclay improves the yield strength and Young’s modulus of BF–PPCN. • The tensile properties of BF–PPCN are high at low temperature (−196 °C). - Abstract: In this paper, a comparative study on the tensile properties of clay reinforced polypropylene (PP) nanocomposites (PPCN) and chopped basalt fiber reinforced PP–clay nanocomposites (PPCN-B) is presented. PP matrix are filled with 1, 3 and 5 wt.% of nanoclays. The ultimate tensile strength, yield strength, Young’s modulus and toughness are measured at various temperature conditions. The thermal conditions are included the room temperature (RT), low temperature (LT) and high temperature (HT). The basal spacing of clay in the composites is measured by X-ray diffraction (XRD). Nanoscale morphology of the samples is observed by transmission electron microscopy (TEM). Addition of nanoclay improves the yield strength and Young’s modulus of PPCN and PPCN-B; however, it reduces the ultimate tensile strength. Furthermore, the addition of chopped basalt fibers to PPCN improves the Young’s modulus of the composites. The Young’s modulus and the yield strength of both PPCN and PPCN-B are significantly high at LT (−196 °C), descend at RT (25 °C) and then low at HT (120 °C)

  15. Fabrication and characterization of polycarbonate microstructured polymer optical fibers for high-temperature-resistant fiber Bragg grating strain sensors

    DEFF Research Database (Denmark)

    Fasano, Andrea; Woyessa, Getinet; Stajanca, Pavol

    2016-01-01

    Here we present the fabrication of a solid-core microstructured polymer optical fiber (mPOF) made of polycarbonate (PC), and report the first experimental demonstration of a fiber Bragg grating (FBG) written in a PC optical fiber. The PC used in this work has a glass transition temperature of 145°C...

  16. Influence of muscle fiber type composition on early fat accumulation under high-fat diet challenge.

    Science.gov (United States)

    Hua, Ning; Takahashi, Hirokazu; Yee, Grace M; Kitajima, Yoichiro; Katagiri, Sayaka; Kojima, Motoyasu; Anzai, Keizo; Eguchi, Yuichiro; Hamilton, James A

    2017-01-01

    To investigate whether differences in muscle fiber types affect early-stage fat accumulation, under high fat diet challenge in mice. Twelve healthy male C57BL/6 mice experienced with short-term (6 weeks) diet treatment for the evaluation of early pattern changes in muscular fat. The mice were randomly divided into two groups: high fat diet (n = 8) and normal control diet (n = 4). Extra- and intra-myocellular lipid (EMCL and IMCL) in lumbar muscles (type I fiber predominant) and tibialis anterior (TA) muscle (type II fiber predominant) were determined using magnetic resonance spectroscopy (MRS). Correlation of EMCL, IMCL and their ratio between TA and lumbar muscles was evaluated. EMCL increased greatly in both muscle types after high fat diet. IMCL in TA and lumbar muscles increased to a much lower extent, with a slightly greater increase in TA muscles. EMCLs in the 2 muscles were positively correlated (r = 0.84, p = 0.01), but IMCLs showed a negative relationship (r = -0.84, p = 0.01). In lumbar muscles, high fat diet significantly decreased type I fiber while it increased type II fiber (all p≤0.001). In TA muscle, there was no significant fiber type shifting (p>0.05). Under short-time high fat diet challenge, lipid tends to initially accumulate extra-cellularly. In addition, compared to type II dominant muscle, Type I dominant muscle was less susceptible to IMCL accumulation but more to fiber type shifting. These phenomena might reflect compensative responses of skeletal muscle to dietary lipid overload in order to regulate metabolic homeostasis.

  17. Review of high and ultrahigh performance cementitious composites incorporating various combinations of fibers and ultrafines

    Directory of Open Access Journals (Sweden)

    M.I. Khan

    2017-10-01

    Full Text Available The outcomes of the research in modern cementitious composites have paved the way for their wide use in construction industry. The introduction of short, discontinuous and randomly distributed fibers to these composites has altered their inherent brittleness. Extensive research has been carried out on the effects of using of mono-fibers in a cementitious composite. However, limited reports in the approachable references on the use of hybrid fibers are available. The synergetic interaction between hybrid fibers have beneficial impact on cementitious composites. The incorporation of micro- and nano-pozzolanic materials, such as fly ash and silica fume have been used to develop high performance cementitious composites such as reactive powder concrete, DUCTAL and CEMTEC multiscale. Further developments were recently achieved by the development of ultra-high performance cementitious composites. The matter of developing high and ultrahigh cementitious composites using various kinds of fibers and particles has received enormous attention from the scientific community. This paper presents a comprehensive critical literature review on the area of high and ultra-high performance cement-based materials.

  18. Processing and Characterization of Basalt Fiber Reinforced Ceramic Composites for High Temperature Applications Using Polymer Precursors

    Science.gov (United States)

    Cox, Sarah B.; Lui, Donovan; Gou, Jihua

    2014-01-01

    The development of high temperature structural composite materials has been very limited due to the high cost of the materials and the processing needed. Polymer Derived Ceramics (PDCs) begin as a polymer matrix, which allows a shape to be formed prior to the cure, and is then pyrolized in order to obtain a ceramic with the associated thermal and mechanical properties. The two PDCs used in this development are polysiloxane and polycarbosilane. Basalt fibers are used for the reinforcement in the composite system. The use of basalt in structural and high temperature applications has been under development for over 50 years, yet there has been little published research on the incorporation of basalt fibers as a reinforcement in composites. Continuous basalt fiber reinforced PDCs have been fabricated and tested for the applicability of this composite system as a high temperature structural composite material.

  19. Structure evolution and mechanical behavior of poly(ethylene terephthalate fibers drawn at different number of drawing stages

    Directory of Open Access Journals (Sweden)

    Haji Aminoddin

    2012-01-01

    Full Text Available In this work, the structure, mechanical and thermal properties of PET fiber obtained by hot multi-stage drawing have been investigated in terms of their dependence on the number of drawing steps at an equivalent total draw ratio. Differential scanning calorimetry, birefringence, wide-angle x-ray diffraction, FTIR spectroscopy, tensile properties, and taut-tie molecules were used to characterize the fine structure and physical properties of the fibers. Results have been explained in terms of a higher drawing residence time at an equivalent drawing speed. For single stage drawn fiber, a high tensile strength is obtained, whereas a high initial modulus is obtained for fiber drawn at three-stage drawing. According to the results, an important finding is that three-stage drawing process has the potential to produce high-modulus fibers. The enhanced fraction of taut-tie molecules is found in three-stage drawn fiber, which is believed to be one of the important factors leading to the high modulus achieved in fibers drawn in hot multistage.

  20. High thermal conductivity of graphite fiber silicon carbide composites for fusion reactor application

    International Nuclear Information System (INIS)

    Snead, L.L.; Balden, M.; Causey, R.A.; Atsumi, H.

    2002-01-01

    The benefits of using CVI SiC/graphite fiber composites as low tritium retaining, high thermal conductivity composites for fusion applications are presented. Three-dimensional woven composites have been chemically vapor infiltrated with SiC and their thermophysical properties measured. One material used an intermediate grade graphite fiber in all directions (Amoco P55) while a second material used very high thermal conductive fiber (Amoco K-1100) in the high fiber density direction. The overall void was less than 20%. Strength as measured by four-point bending was comparable to those of SiC/SiC composite. The room temperature thermal conductivity in the high conductivity direction was impressive for both materials, with values >70 W/m K for the P-55 and >420 W/m K for the K-1100 variant. The thermal conductivity was measured as a function of temperature and exceeds the highest thermal conductivity of CVD SiC currently available at fusion relevant temperatures (>600 deg. C). Limited data on the irradiation-induced degradation in thermal conductivity is consistent with carbon fiber composite literature

  1. The Effect of Fiber Strength Stochastics and Local Fiber Volume Fraction on Multiscale Progressive Failure of Composites

    Science.gov (United States)

    Ricks, Trenton M.; Lacy, Jr., Thomas E.; Bednarcyk, Brett A.; Arnold, Steven M.

    2013-01-01

    Continuous fiber unidirectional polymer matrix composites (PMCs) can exhibit significant local variations in fiber volume fraction as a result of processing conditions that can lead to further local differences in material properties and failure behavior. In this work, the coupled effects of both local variations in fiber volume fraction and the empirically-based statistical distribution of fiber strengths on the predicted longitudinal modulus and local tensile strength of a unidirectional AS4 carbon fiber/ Hercules 3502 epoxy composite were investigated using the special purpose NASA Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC); local effective composite properties were obtained by homogenizing the material behavior over repeating units cells (RUCs). The predicted effective longitudinal modulus was relatively insensitive to small (8%) variations in local fiber volume fraction. The composite tensile strength, however, was highly dependent on the local distribution in fiber strengths. The RUC-averaged constitutive response can be used to characterize lower length scale material behavior within a multiscale analysis framework that couples the NASA code FEAMAC and the ABAQUS finite element solver. Such an approach can be effectively used to analyze the progressive failure of PMC structures whose failure initiates at the RUC level. Consideration of the effect of local variations in constituent properties and morphologies on progressive failure of PMCs is a central aspect of the application of Integrated Computational Materials Engineering (ICME) principles for composite materials.

  2. High-rate sputter deposition of NiAl on sapphire fibers

    Energy Technology Data Exchange (ETDEWEB)

    Reichert, K.; Martinez, C.; Cremer, R.; Neuschuetz, D. [Lehrstuhl fuer Theoretische Huettenkunde, RWTH Aachen, Aachen (Germany)

    2002-07-01

    Once the fiber-matrix bonding has been optimized to meet the different requirements during fabrication and operation of the later composite component, sapphire fiber reinforced NiAl will be a potential candidate to substitute conventional superalloys as structural material for gas turbine blades. To improve the composite fabrication process, a direct deposition of the intermetallic matrix material onto hBN coated sapphire fibers prior to the consolidation of the fiber-matrix composite is proposed. It is believed that this will simplify the fabrication process and prevent pore formation during the diffusion bonding. In addition, the fiber volume fraction can be quite easily adjusted by varying the NiAl coating thickness. For this, a high-rate deposition of NiAl is in any case necessary. It has been achieved by a pulsed DC magnetron sputtering of combined Al-Ni targets with the fibers rotating between the two facing cathodes. The obtained nickel aluminide coatings were analyzed as to structure and composition by means of X-ray (GIXRD) as well as electron diffraction (RHEED) and X-ray photoelectron spectroscopy (XPS), respectively. The morphology of the NiAl coatings was examined by SEM. (orig.)

  3. Tensile strength and durability characteristics of high-performance fiber reinforced concrete

    International Nuclear Information System (INIS)

    Ramadoss, P.; Nagamani, K.

    2008-01-01

    This paper presents investigations towards developing a better understanding of the contribution of steel fibers to the tensile strength of high-performance fiber reinforced concrete (HPFRC). For 32 series of mixes, flexural and splitting tensile strengths were determined at 28 days. The variables investigated were fiber volume fraction (0%, 0.5%, 1% and 1.5% with an aspect of 80), silica fume replacement level (SF/CM=0.05 and 0.10) and matrix composition (w/cm ratios ranging from 0.25 t 0.40). The influence of fiber content in terms of fiber reinforcing index on the flexural and splitting tensile strengths of HPFRC is presented. Comparative studies were performed on the tensile behavior of SFRC measured by two different loading tests: flexural test and splitting test. Based on the test results, using the least square method, empirical expressions were developed to predict 28-day tensile strength of HPFRC in terms of fiber reinforcing index. Durability tests were carried out to examine the performance of the SFRC. Relationship between flexural and splitting tensile strengths has been developed using regression analysis. The experimental values of previous researchers were compared with the values predicted by the empirical equations and the absolute variation obtained was within 6% and 5% for flexural and splitting tensile strengths respectively. (author)

  4. Physical Properties of AR-Glass Fibers in Continuous Fiber Spinning Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ji-Sun; Lee, MiJai; Lim, Tae-Young; Lee, Youngjin; Jeon, Dae-Woo; Kim, Jin-Ho [Korea Institute of Ceramic Engineering and Technology, Jinju (Korea, Republic of); Hyun, Soong-Keun [Inha University, Incheon (Korea, Republic of)

    2017-04-15

    In this study, a glass fiber is fabricated using a continuous spinning process from alkali resistant (AR) glass with 4 wt%zirconia. In order to confirm the melting properties of the marble glass, the raw material is placed into a Pt crucible and melted at 1650 ℃ for 2 h, and then annealed. In order to confirm the transparency of the clear marble glass, the visible transmittance is measured and the fiber spinning condition is investigated by using high temperature viscosity measurements. A change in the diameter is observed according to the winding speed in the range of 100–900 rpm; it is also verified as a function of the fiberizing temperature in the range of 1200–1260 ℃. The optimum winding speed and spinning temperature are 500 rpm and 1240 ℃, respectively. The properties of the prepared spinning fiber are confirmed using optical microscope, tensile strength, modulus, and alkali-resistant tests.

  5. High brightness fiber laser pump sources based on single emitters and multiple single emitters

    Science.gov (United States)

    Scheller, Torsten; Wagner, Lars; Wolf, Jürgen; Bonati, Guido; Dörfel, Falk; Gabler, Thomas

    2008-02-01

    Driven by the potential of the fiber laser market, the development of high brightness pump sources has been pushed during the last years. The main approaches to reach the targets of this market had been the direct coupling of single emitters (SE) on the one hand and the beam shaping of bars and stacks on the other hand, which often causes higher cost per watt. Meanwhile the power of single emitters with 100μm emitter size for direct coupling increased dramatically, which also pushed a new generation of wide stripe emitters or multi emitters (ME) of up to 1000μm emitter size respectively "minibars" with apertures of 3 to 5mm. The advantage of this emitter type compared to traditional bars is it's scalability to power levels of 40W to 60W combined with a small aperture which gives advantages when coupling into a fiber. We show concepts using this multiple single emitters for fiber coupled systems of 25W up to 40W out of a 100μm fiber NA 0.22 with a reasonable optical efficiency. Taking into account a further efficiency optimization and an increase in power of these devices in the near future, the EUR/W ratio pushed by the fiber laser manufacturer will further decrease. Results will be shown as well for higher power pump sources. Additional state of the art tapered fiber bundles for photonic crystal fibers are used to combine 7 (19) pump sources to output powers of 100W (370W) out of a 130μm (250μm) fiber NA 0.6 with nominal 20W per port. Improving those TFB's in the near future and utilizing 40W per pump leg, an output power of even 750W out of 250μm fiber NA 0.6 will be possible. Combined Counter- and Co-Propagated pumping of the fiber will then lead to the first 1kW fiber laser oscillator.

  6. High-efficiency, 154  W CW, diode-pumped Raman fiber laser with brightness enhancement.

    Science.gov (United States)

    Glick, Yaakov; Fromzel, Viktor; Zhang, Jun; Ter-Gabrielyan, Nikolay; Dubinskii, Mark

    2017-01-20

    We demonstrate a high-power, high-efficiency Raman fiber laser pumped directly by laser diode modules at 978 nm. 154 W of CW power were obtained at a wavelength of 1023 nm with an optical to optical efficiency of 65%. A commercial graded-index (GRIN) core fiber acts as the Raman fiber in a power oscillator configuration, which includes spectral selection to prevent generation of the second Stokes. In addition, brightness enhancement of the pump beam by a factor of 8.4 is attained due to the Raman gain distribution profile in the GRIN fiber. To the best of our knowledge this is the highest power and highest efficiency Raman fiber laser demonstrated in any configuration allowing brightness enhancement (i.e., in either cladding-pumped configuration or with GRIN fibers, excluding step-index core pumped), regardless of pumping scheme (i.e., either diode pumped or fiber laser pumped).

  7. Preparation and Properties of Nano Dy/TiO2 Films Supported on High Silica Fiber

    Directory of Open Access Journals (Sweden)

    HUANG Feng-ping

    2017-07-01

    Full Text Available In order to improve the photocatalytic degradation performance and stability of nano TiO2, Dy doped TiO2 supported on high silica glass fiber was prepared by microwave-sol method combined with dip-coating method. The samples were analyzed by XRD,SEM,PL,EDS,XPS and other equipments for phase composition of films,surface topography, surface elements and the stability of films. And the effects of pretreatment solution and coating method on the high-silica fiber film were investigated.In addition, the photocatalytic performance of the sample has been investigated by degrading methylene blue. The results show that the catalytic stability of Dy doping TiO2 nanofilms supported on high silica glass fiber can be improved and the degradation of methyl orange can reach 94% in 30min after 5 times of coating treatment.

  8. Radiation tolerant fiber optic humidity sensors for High Energy Physics applications

    CERN Document Server

    Berruti, Gaia Maria; Cusano, Andrea

    This work is devoted to the development of fiber optic humidity sensors to be applied in high-energy physics applications and in particular in experiments currently running at CERN. The high radiation level resulting from the operation of the accelerator at full luminosity can cause serious performance deterioration of the silicon sensors which are responsible for the particle tracking. To increase their lifetime, the sensors must be kept cold at temperatures below 0 C. At such low temperatures, any condensation risk has to be prevented and a precise thermal and hygrometric control of the air filling and surrounding the tracker detector cold volumes is mandatory. The technologies proposed at CERN for relative humidity monitoring are mainly based on capacitive sensing elements which are not designed with radiation resistance characteristic. In this scenario, fiber optic sensors seem to be perfectly suitable. Indeed, the fiber itself, if properly selected, can tolerate a very high level of radiation, optical fi...

  9. Multimode fiber tip Fabry-Perot cavity for highly sensitive pressure measurement.

    Science.gov (United States)

    Chen, W P; Wang, D N; Xu, Ben; Zhao, C L; Chen, H F

    2017-03-23

    We demonstrate an optical Fabry-Perot interferometer fiber tip sensor based on an etched end of multimode fiber filled with ultraviolet adhesive. The fiber device is miniature (with diameter of less than 60 μm), robust and low cost, in a convenient reflection mode of operation, and has a very high gas pressure sensitivity of -40.94 nm/MPa, a large temperature sensitivity of 213 pm/°C within the range from 55 to 85 °C, and a relatively low temperature cross-sensitivity of 5.2 kPa/°C. This device has a high potential in monitoring environment of high pressure.

  10. Effects of high-intensity physical training on muscle fiber characteristics in poststroke patients

    DEFF Research Database (Denmark)

    Andersen, Jesper Løvind; Jørgensen, Jørgen R.; Zeeman, Peter

    2017-01-01

    INTRODUCTION: Stroke is a leading cause of disability worldwide. High-intensity physical training can improve muscle strength and gait speed, but adaptive mechanisms at the muscle cellular level are largely unknown. METHODS: Outpatients with poststroke hemiparesis participated in a 3-month...... rehabilitation program combining high-intensity strength and body-weight supported treadmill-training. Biopsies sampled bilaterally from vastus lateralis muscles, before, after, and at 1-year follow-up after intervention, were analyzed for fiber size, type, and capillarization. RESULTS: At baseline, paretic...... lower limbs had smaller muscle fiber size and lower type I and IIA and higher type IIX percentages than nonparetic lower limbs. Paretic lower limbs had increased type IIA fibers after training. At follow-up, no difference between the lower limbs remained. CONCLUSIONS: Although high-intensity training...

  11. Optimization of E r-density profile for efficient pumping and high signal gain in Erbium-doped fiber amplifiers

    International Nuclear Information System (INIS)

    Arzi, E.; Hassani, A.; Esmaili Seraji, F.

    2000-01-01

    Recently, the Erbium-Doped Fiber Amplifier has been shown to have a great potentiality in Fiber-Optics Communication. A model is suggested for calculating the E r-density profile, using the propagation and rate equations of a homogeneous two-level laser medium in Erbium-Doped Fiber Amplifier, such that efficient pumping and high signal gain is achieved for different fiber waveguide structure. The result of this numerical calculation shows that the gain, compared with the gain of the existing Erbium-Doped Fiber Amplifier, is higher by a factor of 3.5. This model is applicable in all active waveguides and any other dopant as well

  12. Harvest timing and techniques to optimize fiber quality in the Texas High Plains

    Science.gov (United States)

    Production conditions typical to the Texas High Plains region can produce cotton crops with high short fiber and nep content, both of which have a detrimental impact on ring spinning performance. Since Texas now produces nearly 50% of the US cotton crop annually, it is critical that research focuses...

  13. Extremely High-Birefringent Asymmetric Slotted-Core Photonic Crystal Fiber in THz Regime

    DEFF Research Database (Denmark)

    Islam, Raonaqul; Habib, Selim; Hasanuzzaman, G.K.M.

    2015-01-01

    We present a thorough numerical analysis of a highly birefringent slotted porous-core circular photonic crystal fiber (PCF) for terahertz (THz) wave guidance. The slot shaped air-holes break the symmetry of the porous-core which offers a very high birefringence whereas the compact geometry of the...

  14. Impact of gain saturation on the mode instability threshold in high-power fiber amplifiers

    DEFF Research Database (Denmark)

    Hansen, Kristian Rymann; Lægsgaard, Jesper

    2014-01-01

    We present a coupled-mode model of transverse mode instability in high-power fiber amplifiers, which takes the effect of gain saturation into account. The model provides simple semi-analytical formulas for the mode instability threshold, which are valid also for highly saturated amplifiers...

  15. High performance fiber reinforced concrete : Progress in knowledge and design codes

    NARCIS (Netherlands)

    Walraven, J.C.

    2009-01-01

    High performance fiber reinforced concrete is developing quickly to a modern structural material with a high potential. As for instance testified by the recent symposium on HPFRC in Kassel, Germany (April 2008) the number of structural applications increases. At this moment studies are carried out

  16. Behavior and strength of beams cast with ultra high strength concrete containing different types of fibers

    Directory of Open Access Journals (Sweden)

    M.M. Kamal

    2014-04-01

    Full Text Available Ultra-high performance concrete (UHPC is a special type of concrete with extraordinary potentials in terms of strength and durability performance. Its production and application implement the most up-to-date knowledge and technology of concrete manufacturing. Sophisticated structural designs in bridges and high-rise buildings, repair works and special structures like nuclear facilities are currently the main fields of applications of UHPC. This paper aimed to evaluate the behavior of ultra-high strength concrete beams. This paper also aimed to determine the effect of adding fibers and explore their effect upon the behavior and strength of the reinforced concrete beams. A total of twelve simple concrete beams with and without shear reinforcements were tested in flexure. The main variables taken into consideration in this research were the type of fibers and the percentage of longitudinal reinforcement as well as the existence or absence of the web reinforcement. Two types of fibers were used including steel and polypropylene fibers. The behavior of the tested beams was investigated with special attention to the deflection under different stages of loading, initial cracking, cracking pattern, and ultimate load. Increased number of cracks was observed at the end of loading due to the use of fibers, which led to the reduced width of cracks. This led to increased stiffness and higher values of maximum loads.

  17. Characterization of a New Fully Recycled Carbon Fiber Reinforced Composite Subjected to High Strain Rate Tension

    Science.gov (United States)

    Meftah, H.; Tamboura, S.; Fitoussi, J.; BenDaly, H.; Tcharkhtchi, A.

    2018-06-01

    The aim of this study is the complete physicochemical characterization and strain rate effect multi-scale analysis of a new fully recycled carbon fiber reinforced composites for automotive crash application. Two composites made of 20% wt short recycled carbon fibers (CF) are obtained by injection molding. The morphology and the degree of dispersion of CF in the matrixes were examined using a new ultrasonic method and SEM. High strain tensile behavior up to 100 s-1 is investigated. In order to avoid perturbation due to inertial effect and wave propagation, the specimen geometry was optimized. The elastic properties appear to be insensitive to the strain rate. However, a high strain rate effect on the local visco-plasticity of the matrix and fiber/matrix interface visco-damageable behavior is emphasized. The predominant damage mechanisms evolve from generalized matrix local ductility at low strain rate regime to fiber/matrix interface debonding and fibers pull-out at high strain rate regime.

  18. Combining high power diode lasers using fiber bundles for beam delivery in optoacoustic endoscopy applications

    Science.gov (United States)

    Gawali, Sandeep Babu; Leggio, Luca; Sánchez, Miguel; Rodríguez, Sergio; Dadrasnia, Ehsan; Gallego, Daniel C.; Lamela, Horacio

    2016-05-01

    Optoacoustic (OA) effect refers to the generation of the acoustic waves due to absorption of light energy in a biological tissue. The incident laser pulse is absorbed by the tissue, resulting in the generation of ultrasound that is typically detected by a piezoelectric detector. Compared to other techniques, the advantage of OA imaging (OAI) technique consists in combining the high resolution of ultrasound technique with the high contrast of optical imaging. Generally, Nd:YAG and OPO systems are used for the generation of OA waves but their use in clinical environment is limited for many aspects. On the other hand, high-power diode lasers (HPDLs) emerge as potential alternative. However, the power of HPDLs is still relatively low compared to solid-state lasers. We show a side-by-side combination of several HPDLs in an optical fiber bundle to increase the amount of power for OA applications. Initially, we combine the output optical power of several HPDLs at 905 nm using two 7 to 1 round optical fiber bundles featuring a 675 μm and 1.2 mm bundle aperture. In a second step, we couple the output light of these fiber bundles to a 600 μm core diameter endoscopic fiber, reporting the corresponding coupling efficiencies. The fiber bundles with reasonable small diameter are likely to be used for providing sufficient light energy to potential OA endoscopy (OAE) applications.

  19. Development in High-Density Cobra Fiber Positioners for the Subaru Telescope's Prime Focus Spectrometer

    Science.gov (United States)

    Fisher, Charles D.; Braun, David F.; Kaluzny, Joel V.; Seiffert, Mic D.; Dekany, Richard G.; Ellis, Richard S.; Smith, Roger S.

    2012-01-01

    The Prime Focus Spectrograph (PFS) is a fiber fed multi-object spectrometer for the Subaru Telescope that will conduct a variety of targeted surveys for studies of dark energy, galaxy evolution, and galactic archaeology. The key to the instrument is a high density array of fiber positioners placed at the prime focus of the Subaru Telescope. The system, nicknamed "Cobra", will be capable of rapidly reconfiguring the array of 2394 optical fibers to the image positions of astronomical targets in the focal plane with high accuracy. The system uses 2394 individual "SCARA robot" mechanisms that are 7.7mm in diameter and use 2 piezo-electric rotary motors to individually position each of the optical fibers within its patrol region. Testing demonstrates that the Cobra positioner can be moved to within 5 micrometers of an astronomical target in 6 move iterations with a success rate of 95%. The Cobra system is a key aspect of PFS that will enable its unprecedented combination of high-multiplex factor and observing efficiency on the Subaru telescope. The requirements, design, and prototyping efforts for the fiber positioner system for the PFS are described here as are the plans for modular construction, assembly, integration, functional testing, and performance validation.

  20. Optical fiber sensors technology for supervision, control and protection of high power systems

    Science.gov (United States)

    Nascimento, Ivo Maciel

    The work described in this PhD Thesis focuses on the post-processing of optical fibers and their enhancement as sensing element. Since the majority of sensors presented are based in Fabry-Perot interferometers, an historical overview of this category of optical fiber sensors is firstly presented. This review considers the works published since the early years, in the beginning of the 1980s, until the middle of 2015. The incorporation of microcavities at the tip of a single mode fiber was extensively studied, particularly for the measurement of nitrogen and methane gas pressure. These cavities were fabricated using hollow core silica tubes and a hollow core photonic crystal fiber. Following a different approach, the microcavities were incorporated between two sections of single mode fiber. In this case, the low sensitivity to temperature makes these microcavities highly desirable for the measurement of strain at high temperatures. Competences in post-processing techniques such as the chemical etching and the writing of periodical structures in the fiber core by means of an excimer or a femtosecond laser were also acquired in the course of the PhD programme. One of the works consisted in the design and manufacturing of a double clad optical fiber. The refractive index of the inner cladding was higher than the one of the outer cladding and the core. Thus, light was guided in the inner cladding instead of propagating in the core. This situation was overcome by applying chemical etching, thus removing the inner cladding. The core, surrounded by air, was then able to guide light. Two different applications were found for this fiber, as a temperature sensor and as an optical refractometer. In the last, the optical phase changes with the liquid refractive index. Two different types of fiber Bragg gratings were characterized in strain and temperature. Sensing structures obtained through the phase mask technique at the tip of an optical fiber were subjected to chemical

  1. High-efficiency ytterbium-free erbium-doped all-glass double cladding silicate glass fiber for resonantly-pumped fiber lasers.

    Science.gov (United States)

    Qiang, Zexuan; Geng, Jihong; Luo, Tao; Zhang, Jun; Jiang, Shibin

    2014-02-01

    A highly efficient ytterbium-free erbium-doped silicate glass fiber has been developed for high-power fiber laser applications at an eye-safe wavelength near 1.55 μm. Our preliminary experiments show that high laser efficiency can be obtained from a relatively short length of the gain fiber when resonantly pumped at 1535 nm in both core- and cladding-pumping configurations. With a core-pumping configuration as high as 75%, optical-to-optical efficiency and 4 W output power were obtained at 1560 nm from a 1 m long gain fiber. When using a cladding-pumping configuration, approximately 13 W output power with 67.7% slope efficiency was demonstrated from a piece of 2 m long fiber. The lengths of silicate-based gain fiber are much shorter than their silica-based counterparts used in other experiments, which is significantly important for high-power narrow-band and/or pulsed laser applications.

  2. Lack of effect of dietary fiber on serum lipids, glucose, and insulin in healthy young men fed high starch diets.

    Science.gov (United States)

    Ullrich, I H; Albrink, M J

    1982-07-01

    Eight healthy young men were fed a 72% carbohydrate high starch diet either high or low in dietary fiber for 4 days in a double cross-over design. Both groups showed a slight transient increase in plasma triglyceride level and a decrease in total and high-density lipoprotein cholesterol. There were few differences in glucose and insulin levels after glucose and meal tolerance tests after each diet. Fasting triglycerides and high-density lipoprotein cholesterol were inversely related at base-line; insulin response to oral glucose was inversely related to high-density lipoprotein cholesterol levels at the end of the study. We conclude that a high carbohydrate high starch diet, whether high or low in fiber, caused little increase in triglycerides, with little difference between the high and low fiber diets. Dietary fiber did not influence the fall in plasma cholesterol or high-density lipoprotein cholesterol concentrations over and above that seen after the low fiber diet.

  3. Prompting one low-fat, high-fiber selection in a fast-food restaurant.

    Science.gov (United States)

    Wagner, J L; Winett, R A

    1988-01-01

    Evidence increasingly links a high-fat, low-fiber diet to coronary heart disease and certain site cancers, indicating a need for large-scale dietary change. Studies showing the effectiveness of particular procedures in specific settings are important at this point. The present study, using an A-B-A-B design and sales data from computerized cash registers, replicated and extended previous work by showing that inexpensive prompts (i.e., signs and fliers) in a national fast-food restaurant could increase the sales of salads, a low-fat, high-fiber menu selection. Suggestions also are made pertinent to more widespread use of the procedures.

  4. Research on Dynamic Torque Measurement of High Speed Rotating Axis Based on Whole Optical Fiber Technique

    Energy Technology Data Exchange (ETDEWEB)

    Ma, H P; Jin, Y Q; Ha, Y W; Liu, L H [Department of Automatic Measurement and Control, Harbin Institute of Technology, PO Box 305, Harbin, 150001 (China)

    2006-10-15

    Non-contact torque measurement system of fiber grating is proposed in this paper. It is used for the dynamic torque measurement of the rotating axis in the spaceflight servo system. Optical fiber is used as sensing probe with high sensitivity, anti-electromagnetic interference, resistance to high temperature and corrosion. It is suitable to apply in a bad environment. Signals are processed by digital circuit and Single Chip Microcomputer. This project can realize super speed dynamic measurement and it is the first time to apply the project in the spaceflight system.

  5. Research on Dynamic Torque Measurement of High Speed Rotating Axis Based on Whole Optical Fiber Technique

    Science.gov (United States)

    Ma, H. P.; Jin, Y. Q.; Ha, Y. W.; Liu, L. H.

    2006-10-01

    Non-contact torque measurement system of fiber grating is proposed in this paper. It is used for the dynamic torque measurement of the rotating axis in the spaceflight servo system. Optical fiber is used as sensing probe with high sensitivity, anti-electromagnetic interference, resistance to high temperature and corrosion. It is suitable to apply in a bad environment. Signals are processed by digital circuit and Single Chip Microcomputer. This project can realize super speed dynamic measurement and it is the first time to apply the project in the spaceflight system.

  6. Cascaded quadratic soliton compression of high-power femtosecond fiber lasers in Lithium Niobate crystals

    DEFF Research Database (Denmark)

    Bache, Morten; Moses, Jeffrey; Wise, Frank W.

    2008-01-01

    The output of a high-power femtosecond fiber laser is typically 300 fs with a wavelength around $\\lambda=1030-1060$ nm. Our numerical simulations show that cascaded quadratic soliton compression in bulk LiNbO$_3$ can compress such pulses to below 100 fs.......The output of a high-power femtosecond fiber laser is typically 300 fs with a wavelength around $\\lambda=1030-1060$ nm. Our numerical simulations show that cascaded quadratic soliton compression in bulk LiNbO$_3$ can compress such pulses to below 100 fs....

  7. High-dimensional quantum key distribution based on multicore fiber using silicon photonic integrated circuits

    DEFF Research Database (Denmark)

    Ding, Yunhong; Bacco, Davide; Dalgaard, Kjeld

    2017-01-01

    is intrinsically limited to 1 bit/photon. Here we propose and experimentally demonstrate, for the first time, a high-dimensional quantum key distribution protocol based on space division multiplexing in multicore fiber using silicon photonic integrated lightwave circuits. We successfully realized three mutually......-dimensional quantum states, and enables breaking the information efficiency limit of traditional quantum key distribution protocols. In addition, the silicon photonic circuits used in our work integrate variable optical attenuators, highly efficient multicore fiber couplers, and Mach-Zehnder interferometers, enabling...

  8. Research on Dynamic Torque Measurement of High Speed Rotating Axis Based on Whole Optical Fiber Technique

    International Nuclear Information System (INIS)

    Ma, H P; Jin, Y Q; Ha, Y W; Liu, L H

    2006-01-01

    Non-contact torque measurement system of fiber grating is proposed in this paper. It is used for the dynamic torque measurement of the rotating axis in the spaceflight servo system. Optical fiber is used as sensing probe with high sensitivity, anti-electromagnetic interference, resistance to high temperature and corrosion. It is suitable to apply in a bad environment. Signals are processed by digital circuit and Single Chip Microcomputer. This project can realize super speed dynamic measurement and it is the first time to apply the project in the spaceflight system

  9. Cellulose/inorganic-composite fibers for producing textile fabrics of high X-ray absorption properties

    International Nuclear Information System (INIS)

    Günther, Karoline; Giebing, Christina; Askani, Antonia; Leisegang, Tilmann; Krieg, Marcus; Kyosev, Yordan; Weide, Thomas; Mahltig, Boris

    2015-01-01

    Common textile materials as cotton or polyester do not possess reliable X-ray absorption properties. This is due to their morphology and chemical composition in particular. Common fibers are built up from organic polymers containing mainly the elements carbon, hydrogen, oxygen and nitrogen. These “light” elements only have low X-ray absorption coefficients. In contrast, inorganic materials composed of “heavy” elements with high atomic numbers, e.g. barium or bismuth, exhibit X-ray absorption coefficients higher by up to two orders of magnitude. To obtain a flexible yarn with high X-ray absorption properties both these materials, the organic polymer and the inorganic X-ray absorber, are combined to an inorganic/organic composite fiber material. Hence, as the organic component cellulose from modified Lyocell-process is used as carrier fiber and blended with inorganic absorber particles of low toxicity and high absorption coefficients, as bariumsulphate, bariumtitanate or bismuthoxide. A content of inorganic absorber particles equally distributed in the whole fiber of up to 20% is achieved. The composite fibers are produced as staple or filament fibers and processed to multifilament or staple fiber yarns. The staple fiber yarns are rotor-spinned to increase the comfort of the subsequent textile material. Several woven fabrics, considering multilayer structure and different warp/weft density, are developed. The energy dependent X-ray shielding properties are determined in dependence on the different yarn compositions, yarn types and structural parameters of the woven fabrics. As a result, a production process of textile materials with comfortable and dedicated X-ray absorption properties is established. It offers a promising opportunity for manufacturing of specialized textiles, working clothes or uniforms applicable for medicine, air craft and security personal, mining as well as for innovative composite materials. - Highlights: • Preparation of cellulosic

  10. Cellulose/inorganic-composite fibers for producing textile fabrics of high X-ray absorption properties

    Energy Technology Data Exchange (ETDEWEB)

    Günther, Karoline; Giebing, Christina; Askani, Antonia [FTB, Hochschule Niederrhein – University of Applied Science, Faculty of Textile and Clothing Technology, Webschulstr. 31, 41065 Mönchengladbach (Germany); Leisegang, Tilmann [Saxray GmbH, Maria-Reiche-Str. 1, 01109 Dresden (Germany); Krieg, Marcus [TITK, Thüringisches Institut für Textil- und Kunststoff-Forschung e.V., Breitscheidstraße 97, 07407 Rudolstadt (Germany); Kyosev, Yordan; Weide, Thomas [FTB, Hochschule Niederrhein – University of Applied Science, Faculty of Textile and Clothing Technology, Webschulstr. 31, 41065 Mönchengladbach (Germany); Mahltig, Boris, E-mail: Boris.Mahltig@hs-niederrhein.de [FTB, Hochschule Niederrhein – University of Applied Science, Faculty of Textile and Clothing Technology, Webschulstr. 31, 41065 Mönchengladbach (Germany)

    2015-11-01

    Common textile materials as cotton or polyester do not possess reliable X-ray absorption properties. This is due to their morphology and chemical composition in particular. Common fibers are built up from organic polymers containing mainly the elements carbon, hydrogen, oxygen and nitrogen. These “light” elements only have low X-ray absorption coefficients. In contrast, inorganic materials composed of “heavy” elements with high atomic numbers, e.g. barium or bismuth, exhibit X-ray absorption coefficients higher by up to two orders of magnitude. To obtain a flexible yarn with high X-ray absorption properties both these materials, the organic polymer and the inorganic X-ray absorber, are combined to an inorganic/organic composite fiber material. Hence, as the organic component cellulose from modified Lyocell-process is used as carrier fiber and blended with inorganic absorber particles of low toxicity and high absorption coefficients, as bariumsulphate, bariumtitanate or bismuthoxide. A content of inorganic absorber particles equally distributed in the whole fiber of up to 20% is achieved. The composite fibers are produced as staple or filament fibers and processed to multifilament or staple fiber yarns. The staple fiber yarns are rotor-spinned to increase the comfort of the subsequent textile material. Several woven fabrics, considering multilayer structure and different warp/weft density, are developed. The energy dependent X-ray shielding properties are determined in dependence on the different yarn compositions, yarn types and structural parameters of the woven fabrics. As a result, a production process of textile materials with comfortable and dedicated X-ray absorption properties is established. It offers a promising opportunity for manufacturing of specialized textiles, working clothes or uniforms applicable for medicine, air craft and security personal, mining as well as for innovative composite materials. - Highlights: • Preparation of cellulosic

  11. Fabrication and physical properties of glass-fiber-reinforced thermoplastics for non-metal-clasp dentures.

    Science.gov (United States)

    Nagakura, Manamu; Tanimoto, Yasuhiro; Nishiyama, Norihiro

    2017-11-01

    Recently, non-metal-clasp dentures (NMCDs) made from thermoplastic resins such as polyamide, polyester, polycarbonate, and polypropylene have been used as removable partial dentures (RPDs). However, the use of such RPDs can seriously affect various tissues because of their low rigidity. In this study, we fabricated high-rigidity glass-fiber-reinforced thermoplastics (GFRTPs) for use in RPDs, and examined their physical properties such as apparent density, dynamic hardness, and flexural properties. GFRTPs made from E-glass fibers and polypropylene were fabricated using an injection-molding. The effects of the fiber content on the GFRTP properties were examined using glass-fiber contents of 0, 5, 10, 20, 30, 40, and 50 mass%. Commercially available denture base materials and NMCD materials were used as controls. The experimental densities of GFRTPs with various fiber contents agreed with the theoretical densities. Dynamic micro-indentation tests confirmed that the fiber content does not affect the GFRTP surface properties such as dynamic hardness and elastic modulus, because most of the reinforcing glass fibers are embedded in the polypropylene. The flexural strength increased from 55.8 to 217.6 MPa with increasing glass-fiber content from 0 to 50 mass%. The flexural modulus increased from 1.75 to 7.42 GPa with increasing glass-fiber content from 0 to 50 mass%, that is, the flexural strength and modulus of GFRTP with a fiber content of 50 mass% were 3.9 and 4.2 times, respectively, those of unreinforced polypropylene. These results suggest that fiber reinforcement has beneficial effects, and GFRTPs can be used in NMCDs because their physical properties are better than those of controls. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2254-2260, 2017. © 2016 Wiley Periodicals, Inc.

  12. Interfacial Properties of Bamboo Fiber-Reinforced High-Density Polyethylene Composites by Different Methods for Adding Nano Calcium Carbonate

    Directory of Open Access Journals (Sweden)

    Cuicui Wang

    2017-11-01

    Full Text Available The focus of this study was to observe the effect of nano calcium carbonate (CaCO3 modification methods on bamboo fiber (BF used in BF-reinforced high-density polyethylene (HDPE composites manufactured by extrusion molding. Two methods were used to introduce the nano CaCO3 into the BF for modification; the first was blending modification (BM and the second was impregnation modification (IM. In order to determine the effects of the modification methods, the water absorption, surface free energy and interfacial properties of the unmodified composites were compared to those of the composites made from the two modification methods. The results revealed that the percentage increase in the weight of the composite treated by nano CaCO3 decreased and that of the IMBF/HDPE composite was the lowest over the seven months of time. The results obtained by the acid-base model according to the Lewis and Owens-Wendt- Rabel-Kaelble (OWRK equations indicated that the surface energy of the composites was between 40 and 50 mJ/m2. When compared to the control sample, the maximum storage modulus (E′max of the BMBF/HDPE and IMBF/HDPE composites increased 1.43- and 1.53-fold, respectively. The values of the phase-to-phase interaction parameter B and the k value of the modified composites were higher than those of the unmodified composites, while the apparent activation energy Ea and interface parameter A were lower in the modified composites. It can be concluded that nano CaCO3 had an effect on the interfacial properties of BF-reinforced HDPE composites, and the interface bonding between IMBF and HDPE was greatest among the composites.

  13. High-Capacity Hybrid Optical Fiber-Wireless Communications Links in Access Networks

    DEFF Research Database (Denmark)

    Pang, Xiaodan

    of broadband services access. To realize the seamless convergence between the two network segments, the lower capacity of wireless systems need to be increased to match the continuously increasing bandwidth of fiber-optic systems. The research works included in this thesis are devoted to experimental...... investigations of photonic-wireless links with record high capacities to fulfill the requirements of next generation hybrid optical fiber-wireless access networks. The main contributions of this thesis have expanded the state-of-the-art in two main areas: high speed millimeter-wave (mm-wave) communication links......Integration between fiber-optic and wireless communications systems in the "last mile" access networks is currently considered as a promising solution for both service providers and users, in terms of minimizing deployment cost, shortening upgrading period and increasing mobility and flexibility...

  14. Specific-heat measurement of single metallic, carbon, and ceramic fibers at very high temperature

    International Nuclear Information System (INIS)

    Pradere, C.; Goyheneche, J.M.; Batsale, J.C.; Dilhaire, S.; Pailler, R.

    2005-01-01

    The main objective of this work is to present a method for measuring the specific heat of single metallic, carbon, and ceramic fibers at very high temperature. The difficulty of the measurement is due to the microscale of the fiber (≅10 μm) and the important range of temperature (700-2700 K). An experimental device, a modelization of the thermal behavior, and an analytic model have been developed. A discussion on the measurement accuracy yields a global uncertainty lower than 10%. The characterization of a tungsten filament with thermal properties identical to those of the bulk allows the validation of the device and the thermal estimation method. Finally, measurements on carbon and ceramic fibers have been done at very high temperature

  15. A wide range and highly sensitive optical fiber pH sensor using polyacrylamide hydrogel

    Science.gov (United States)

    Pathak, Akhilesh Kumar; Singh, Vinod Kumar

    2017-12-01

    In the present study we report the fabrication and characterization of no-core fiber sensor (NCFS) using smart hydrogel coating for pH measurement. The no-core fiber (NCF) is stubbed between two single-mode fibers with SMA connector before immobilizing of smart hydrogel. The wavelength interrogation technique is used to calculate the sensitivity of the proposed sensor. The result shows a high sensitivity of 1.94 nm/pH for a wide range of pH values varied from 3 to 10 with a good linear response. In addition to high sensitivity, the fabricated sensor provides a fast response time with a good stability, repeatability and reproducibility.

  16. High-power fiber-coupled 100W visible spectrum diode lasers for display applications

    Science.gov (United States)

    Unger, Andreas; Küster, Matthias; Köhler, Bernd; Biesenbach, Jens

    2013-02-01

    Diode lasers in the blue and red spectral range are the most promising light sources for upcoming high-brightness digital projectors in cinemas and large venue displays. They combine improved efficiency, longer lifetime and a greatly improved color space compared to traditional xenon light sources. In this paper we report on high-power visible diode laser sources to serve the demands of this emerging market. A unique electro-optical platform enables scalable fiber coupled sources at 638 nm with an output power of up to 100 W from a 400 μm NA0.22 fiber. For the blue diode laser we demonstrate scalable sources from 5 W to 100 W from a 400 μm NA0.22 fiber.

  17. Detailed characterization of CW- and pulsed-pump four-wave mixing in highly nonlinear fibers

    DEFF Research Database (Denmark)

    Lillieholm, Mads; Galili, Michael; Grüner-Nielsen, L.

    2016-01-01

    We present a quantitative comparison of continuouswave- (CW) and pulsed-pump four-wave mixing (FWM) in commercially available highly nonlinear fibers (HNLFs), and suggest properties for which the CW and pulsed FWM bandwidths are limited in practice. The CWand pulsed-pump parametric gain is charac......We present a quantitative comparison of continuouswave- (CW) and pulsed-pump four-wave mixing (FWM) in commercially available highly nonlinear fibers (HNLFs), and suggest properties for which the CW and pulsed FWM bandwidths are limited in practice. The CWand pulsed-pump parametric gain...... bandwidth. However, an inverse scaling of the TOD with the dispersion fluctuations, leads to different CW-optimized fibers, which depend only on the even dispersion-orders....

  18. Highly birefringent phase-shifted fiber Bragg gratings inscribed with femtosecond laser.

    Science.gov (United States)

    He, Jun; Wang, Yiping; Liao, Changrui; Wang, Qiaoni; Yang, Kaiming; Sun, Bing; Yin, Guolu; Liu, Shen; Zhou, Jiangtao; Zhao, Jing

    2015-05-01

    We demonstrate a highly birefringent phase-shifted fiber Bragg grating (PS-FBG) inscribed in H2-free fiber with a near-infrared femtosecond Gaussian laser beam and uniform phase mask. The PS-FBG was fabricated from an ordinary fiber Bragg grating (FBG) in a case in which overexposure was applied. The spectral evolution from FBG to FS-FBG was observed experimentally with a decrease in transmission loss at dip wavelength, blueshift of the dip wavelength, decrease in the cladding mode loss, and an increase in the insertion loss. A high birefringence was demonstrated experimentally with the existence of PS-FBG only in TM polarization. The formation of the PS-FBG may be due to a negative index change induced by the higher intensity in the center of the Gaussian laser beam.

  19. High precision Cross-correlated imaging in Few-mode fibers

    DEFF Research Database (Denmark)

    Muliar, Olena; Usuga Castaneda, Mario A.; Kristensen, Torben

    2017-01-01

    us to distinguishing differential time delays between HOMs in the picosecond timescale. Broad wavelength scanning in combination with spectral shaping, allows us to estimate the modal behavior of FMF without prior knowledge of the fiber parameters. We performed our demonstration at wavelengths from...... existing approaches for modal content analysis, several methods as S2, C2 in time and frequency domain are available. In this contribution we will present an improved time-domain cross-correlated (C2) imaging technique for the experimental evaluation of modal properties in HOM fibers over a broad range......) in a few-mode fiber (FMF) are used as multiple spatial communication channels, comes in this context as a viable approach to enable the optimization of high-capacity links. From this perspective, it becomes highly necessary to possess a diagnostic tool for the precise modal characterization of FMFs. Among...

  20. Electrodeposited manganese dioxide nanostructures on electro-etched carbon fibers: High performance materials for supercapacitor applications

    Energy Technology Data Exchange (ETDEWEB)

    Kazemi, Sayed Habib, E-mail: habibkazemi@iasbs.ac.ir [Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731 (Iran, Islamic Republic of); Center for Research in Climate Change and Global Warming (CRCC), Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731 (Iran, Islamic Republic of); Maghami, Mostafa Ghaem [Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731 (Iran, Islamic Republic of); Kiani, Mohammad Ali [Chemistry and Chemical Engineering Research Center of Iran, P.O. Box 14335-186, Tehran (Iran, Islamic Republic of)

    2014-12-15

    Highlights: • We report a facile method for fabrication of MnO{sub 2} nanostructures on electro-etched carbon fiber. • MnO{sub 2}-ECF electrode shows outstanding supercapacitive behavior even at high discharge rates. • Exceptional cycle stability was achieved for MnO{sub 2}-ECF electrode. • The coulombic efficiency of MnO{sub 2}-ECF electrode is nearly 100%. - Abstract: In this article we introduce a facile, low cost and additive/template free method to fabricate high-rate electrochemical capacitors. Manganese oxide nanostructures were electrodeposited on electro-etched carbon fiber substrate by applying a constant anodic current. Nanostructured MnO{sub 2} on electro-etched carbon fiber was characterized by scanning electron microscopy, X-ray diffraction and energy dispersive X-ray analysis. The electrochemical behavior of MnO{sub 2} electro-etched carbon fiber electrode was investigated by electrochemical techniques including cyclic voltammetry, galvanostatic charge/discharge, and electrochemical impedance spectroscopy. A maximum specific capacitance of 728.5 F g{sup −1} was achieved at a scan rate of 5 mV s{sup −1} for MnO{sub 2} electro-etched carbon fiber electrode. Also, this electrode showed exceptional cycle stability, suggesting that it can be considered as a good candidate for supercapacitor electrodes.

  1. Electrodeposited manganese dioxide nanostructures on electro-etched carbon fibers: High performance materials for supercapacitor applications

    International Nuclear Information System (INIS)

    Kazemi, Sayed Habib; Maghami, Mostafa Ghaem; Kiani, Mohammad Ali

    2014-01-01

    Highlights: • We report a facile method for fabrication of MnO 2 nanostructures on electro-etched carbon fiber. • MnO 2 -ECF electrode shows outstanding supercapacitive behavior even at high discharge rates. • Exceptional cycle stability was achieved for MnO 2 -ECF electrode. • The coulombic efficiency of MnO 2 -ECF electrode is nearly 100%. - Abstract: In this article we introduce a facile, low cost and additive/template free method to fabricate high-rate electrochemical capacitors. Manganese oxide nanostructures were electrodeposited on electro-etched carbon fiber substrate by applying a constant anodic current. Nanostructured MnO 2 on electro-etched carbon fiber was characterized by scanning electron microscopy, X-ray diffraction and energy dispersive X-ray analysis. The electrochemical behavior of MnO 2 electro-etched carbon fiber electrode was investigated by electrochemical techniques including cyclic voltammetry, galvanostatic charge/discharge, and electrochemical impedance spectroscopy. A maximum specific capacitance of 728.5 F g −1 was achieved at a scan rate of 5 mV s −1 for MnO 2 electro-etched carbon fiber electrode. Also, this electrode showed exceptional cycle stability, suggesting that it can be considered as a good candidate for supercapacitor electrodes

  2. Yb-doped phosphate double-cladding optical fiber for high-power laser applications

    Science.gov (United States)

    Mura, E.; Scarpignato, G. C.; Lousteau, J.; Boetti, N. G.; Abrate, S.; Milanese, D.

    2013-02-01

    A Yb-doped phosphate glass double cladding optical fiber was prepared using a custom designed glass composition (P2O5 - Al2O3 - Li2O - B2O3 - BaO - PbO - La2O3) for high-power amplifier and laser applications. The preform drawing method was followed, with the preform being fabricated using the rotational casting technique. This technique, previously developed for tellurite, fluoride or chalcogenide glass preforms is reported for the first time using rare earth doped phosphate glasses. The main challenge was to design an adequate numerical aperture between first and second cladding while maintaining similar thermo-mechanical properties in view of the fiber drawing process. The preform used for the fiber drawing was produced by rod-in-tube technique at a rotation speed of 3000 rpm. The rotational casting technique allowed the manufacturing of an optical fiber featuring high quality interfaces between core and internal cladding and between the internal and external cladding, respectively. Loss attenuation was measured using the cut-back method and lasing was demonstrated at 1022 nm by core pumping with a fiber pigtailed laser diode at the wavelength of 976 nm.

  3. Tunable and switchable multi-wavelength erbium-doped fiber laser with highly nonlinear photonic crystal fiber and polarization controllers

    International Nuclear Information System (INIS)

    Liu, X M; Lin, A; Zhao, W; Lu, K Q; Wang, Y S; Zhang, T Y; Chung, Y

    2008-01-01

    We have proposed a novel multi-wavelength erbium-doped fiber laser by using two polarization controllers and a sampled chirped fiber Bragg grating(SC-FBG). On the assistance of SC-FBG, the proposed fiber lasers with excellent stability and uniformity are tunable and switchable by adjusting the polarization controllers. Our laser can stably lase two waves and up to eight waves simultaneously at room temperature

  4. Fiber optic quench detection via optimized Rayleigh Scattering in high-field YBCO accelerator magnets

    Energy Technology Data Exchange (ETDEWEB)

    Flanagan, Gene [North Carolina State Univ., Raleigh, NC (United States)

    2016-02-17

    Yttrium barium copper oxide (YBCO) coated conductors are known for their ability to operate in the superconducting state at relatively high temperatures, even above the boiling point of liquid nitrogen (77 K). When these same conductors are operated at lower temperatures, they are able to operate in much higher magnetic fields than traditional superconductors like NiTi or Nb3Sn. Thus, YBCO superconducting magnets are one of the primary options for generating the high magnetic fields needed for future high energy physics devices. Due to slow quench propagation, quench detection remains one of the primary limitations to YBCO magnets. Fiber optic sensing, based upon Rayleigh scattering, has the potential for spatial resolution approaching the wavelength of light, or very fast temporal resolution at low spatial resolution, and a continuum of combinations in between. This project has studied, theoretically and experimentally, YBCO magnets and Rayleigh scattering quench detection systems to demonstrate feasibility of the systems for YBCO quench protection systems. Under this grant an experimentally validated 3D quench propagation model was used to accurately define the acceptable range of spatial and temporal resolutions for effective quench detection in YBCO magnets and to evaluate present-day and potentially improved YBCO conductors. The data volume and speed requirements for quench detection via Rayleigh scattering required the development of a high performance fiber optic based quench detection/data acquisition system and its integration with an existing voltage tap/thermo-couple based system. In this project, optical fibers are tightly co-wound into YBCO magnet coils, with the fiber on top of the conductor as turn-to-turn insulation. Local changes in the temperature or strain of the conductor are sensed by the optical fiber, which is in close thermal and mechanical contact with the conductor. Intrinsic imperfections in the fiber reflect Rayleigh

  5. Next Generation Large Mode Area Fiber Technologies for High Power Fiber Laser Arrays

    Science.gov (United States)

    2012-06-08

    pump‐pow A such spect  [17], approx owever, that ined by the S xploring  the  k all fabricat ding, small s is limitation  ed for high p 0μm diamet  in Fig...amage still o due to high h in general su cladding inte umped case, rformance.  wo examples ap, which all ows bulk‐silic so allows ach output‐ xplored ...Dawson, Editors, paper 79140U (2011).  [9] J. L. Wilson, C. Wang, A. E. Fathy, and Y. W. Kang, “Analysis of rapidly twisted hollow waveguides,”  IEEE

  6. Stretchable Fiber Supercapacitors with High Volumetric Performance Based on Buckled MnO2 /Oxidized Carbon Nanotube Fiber Electrodes.

    Science.gov (United States)

    Li, Mingyang; Zu, Mei; Yu, Jinshan; Cheng, Haifeng; Li, Qingwen

    2017-03-01

    A stretchable fiber supercapacitor (SC) based on buckled MnO 2 /oxidized carbon nanotube (CNT) fiber electrode is fabricated by a simple prestraining-then-buckling method. The prepared stretchable fiber SC has a specific volumetric capacitance up to 409.4 F cm -3 , which is 33 times that of the pristine CNT fiber based SC, and shows the outstanding stability and repeatability in performance as a stretchable SC. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Determining the complex modulus of alginate irreversible hydrocolloid dental material.

    Science.gov (United States)

    King, Shalinie; See, Howard; Thomas, Graham; Swain, Michael

    2008-11-01

    The aim of the study is to investigate the visco-elastic response of an alginate irreversible hydrocolloid dental impression material during setting. A novel squeeze film Micro-Fourier Rheometer (MFR, GBC Scientific Equipment, Australia) was used to determine the complex modulus of an alginate irreversible hydrocolloid dental impression material (Algident, ISO 1563 Class A Type 1, Dentalfarm Australia Pty. Ltd.) during setting after mixing. Data was collected every 30s for 10 min in one study and every 10 min for a total of 60 min in another study. A high level of repeatability was observed. The results indicate that the MFR is capable of recording the complex shear modulus of alginate irreversible hydrocolloid for 60 min from the start of mixing and to simultaneously report the changing visco-elastic parameters at all frequencies between 1 Hz and 100 Hz. The storage modulus shows a dramatic increase to 370% of its starting value after 6 min and then reduces to 55% after 60 min. The loss modulus increases to a maximum of 175% of its starting value after 10 min and then reduces to 94% after 60 min. The MFR enables the changes in the complex modulus through the complete setting process to be followed. It is anticipated this approach may provide a better method to compare the visco-elastic properties of impression materials and assist with identification of optimum types for different clinical requirements. The high stiffness of the instrument and the use of band-limited pseudo-random noise as the input signal are the main advantages of this technique over conventional rheometers for determining the changes in alginate visco-elasticity.

  8. Novel high speed fiber-optic pressure sensor systems.

    Science.gov (United States)

    2014-03-01

    The goal of this project is to develop a complete test of this technology for high-speed, high-accuracy applications, specifically cost-effective data acquisition techniques and practical mounting methods tailored for the subject environment. The sec...

  9. High Average Power Fiber Laser for Satellite Communications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Very high average power lasers with high electrical-top-optical (E-O) efficiency, which also support pulse position modulation (PPM) formats in the MHz-data rate...

  10. Influence of substrate modulus on gecko adhesion

    Science.gov (United States)

    Klittich, Mena R.; Wilson, Michael C.; Bernard, Craig; Rodrigo, Rochelle M.; Keith, Austin J.; Niewiarowski, Peter H.; Dhinojwala, Ali

    2017-03-01

    The gecko adhesion system fascinates biologists and materials scientists alike for its strong, reversible, glue-free, dry adhesion. Understanding the adhesion system’s performance on various surfaces can give clues as to gecko behaviour, as well as towards designing synthetic adhesive mimics. Geckos encounter a variety of surfaces in their natural habitats; tropical geckos, such as Gekko gecko, encounter hard, rough tree trunks as well as soft, flexible leaves. While gecko adhesion on hard surfaces has been extensively studied, little work has been done on soft surfaces. Here, we investigate for the first time the influence of macroscale and nanoscale substrate modulus on whole animal adhesion on two different substrates (cellulose acetate and polydimethylsiloxane) in air and find that across 5 orders of magnitude in macroscale modulus, there is no change in adhesion. On the nanoscale, however, gecko adhesion is shown to depend on substrate modulus. This suggests that low surface-layer modulus may inhibit the gecko adhesion system, independent of other influencing factors such as macroscale composite modulus and surface energy. Understanding the limits of gecko adhesion is vital for clarifying adhesive mechanisms and in the design of synthetic adhesives for soft substrates (including for biomedical applications and wearable electronics).

  11. Influence of fiber content on mechanical, morphological and thermal properties of kenaf fibers reinforced poly(vinyl chloride)/thermoplastic polyurethane poly-blend composites

    International Nuclear Information System (INIS)

    El-Shekeil, Y.A.; Sapuan, S.M.; Jawaid, M.; Al-Shuja’a, O.M.

    2014-01-01

    Highlights: • Increasing fiber content decreased tensile strength and strain. • Tensile modulus was increasing with increase in fiber content. • SEM showed fiber/matrix poor adhesion. • Impact strength was decreasing with increase in fiber content. • Lower thermal stability with increase in fiber content was observed. - Abstract: Kenaf (Hibiscus Cannabinus) bast fiber reinforced poly(vinyl chloride) (PVC)/thermoplastic polyurethane (TPU) poly-blend was prepared by melt mixing method using Haake Polydrive R600 internal mixer. The composites were prepared with different fiber content: 20%, 30% and 40% (by weight), with the processing parameters: 140 °C, 11 min, and 40 rpm for temperature, time and speed, respectively. After mixing, the composite was compressed using compressing molding machine. Mechanical properties (i.e. tensile properties, flexural properties, impact strength) were studied. Morphological properties of tensile fracture surface were studied using Scanning electron microscope (SEM). Thermal properties of the composites were studied using Thermogravimetric Analyses (TGA). PVC/TPU/KF composites have shown lower tensile strength and strain with increase in fiber content. Tensile modulus showed an increasing trend with increase in fiber content. Impact strength decreased with increase in fiber content; however, high impact strength was observed even with 40% fiber content (20.2 kJ/m 2 ). Mean while; the 20% and 30% fiber contents showed higher impact strength of 34.9, 27.9 kJ/m 2 ; respectively. SEM showed that there is poor fiber/matrix adhesion. Thermal degradation took place in three steps. In the first step, composites as well as the matrix had a similar stability. At the second step, matrix showed a slightly better stability than the composites. At the last step, composites showed a better stability than the matrix

  12. Test and Evaluation of Fiber Optic Sensors for High-Radiation Space Nuclear Power Applications

    International Nuclear Information System (INIS)

    Klemer, Daniel; Fielder, Robert S.; Stinson-Bagby, Kelly L.

    2004-01-01

    Fiber optic sensors can be used to measure a number of parameters, including temperature, strain, pressure and flow, for instrumentation and control of space nuclear power systems. In the past, this technology has often been rejected for use in such a high-radiation environment based on early experiments that revealed a number of degradation phenomena, including radiation-induced fiber attenuation, or 'graying', and Fiber Bragg Grating (FBG) fading and wavelength shift. However, this paper reports the results of recent experimental testing that demonstrates readability of fiber optic sensors to extremely high levels of neutron and gamma radiation. Both distributed Fiber Bragg Grating (FBG) sensors and single-point Extrinsic Fabry Perot Interferometer (EFPI) sensors were continuously monitored over a 2-month period, during which they were exposed to combined neutron and gamma radiation in both in-core and ex-core positions within a nuclear reactor. Total exposure reached approximately 2 x 10 19 cm -2 fast neutron (E > 1 MeV) fluence and 8.7 x 10 8 Gy gamma for in-core sensors. FBG sensors were interrogated using a standard Luna Innovations FBG measurement system, which is based on optical frequency-domain reflectometer (OFDR) technology. Approximately 74% of the 19 FBG sensors located at the core centerline in the in-core position exhibited sufficient signal-to-noise ratio (SNR) to remain readable even after receiving the maximum dose. EFPI sensors were spectrally interrogated using a broadband probe source operating in the 830 nm wavelength region. While these single-point sensors failed early in the test, important additional fiber spectral transmission data was collected, which indicates that interrogation of EFPI sensors in alternate wavelength regions may allow significant improvement in sensor longevity for operation in high-radiation environments. This work was funded through a Small Business Innovative Research (SBIR) contract with the Nasa Glenn Research

  13. Influence of core NA on thermal-induced mode instabilities in high power fiber amplifiers

    International Nuclear Information System (INIS)

    Tao, Rumao; Ma, Pengfei; Wang, Xiaolin; Zhou, Pu; Liu, Zejin

    2015-01-01

    We report on the influence of core NA on thermal-induced mode instabilities (MI) in high power fiber amplifiers. The influence of core NA and the V-parameter on MI has been investigated numerically. It shows that core NA has a larger influence on MI for fibers with a smaller core-cladding-ratio, and the influence of core NA on the threshold is more obvious when the amplifiers are pumped at 915 nm. The dependence of the threshold on the V-parameter revealed that the threshold increases linearly as the V-parameter decreases when the V-parameter is larger than 3.5, and the threshold shows an exponential increase as the V-parameter decreases when the V-parameter is less than 3.5. We also discussed the effect of linewidth on MI, which indicates that the influence of linewidth can be neglected for a linewidth smaller than 1 nm when the fiber core NA is smaller than 0.07 and the fiber length is shorter than 20 m. Fiber amplifiers with different core NA were experimentally analyzed, which agreed with the theoretical predictions. (letter)

  14. A high precision recipe for correcting images distorted by a tapered fiber optic

    International Nuclear Information System (INIS)

    Islam, M Sirajul; Kitchen, M J; Lewis, R A; Uesugi, K

    2010-01-01

    Images captured with a tapered fiber optic camera show significant spatial distortion mainly because the spatial orientation of the fiber bundles is not identical at each end of the taper. We present three different techniques for the automatic distortion correction of images acquired with a charge-coupled device (CCD) camera bonded to a tapered optical fiber. In this paper we report - (i) comparison of various methods for distortion correction (ii) extensive quantitative analysis of the techniques and (iii) experiments carried out using a high resolution fiber optic camera. A pinhole array was used to find control points in the distorted image space. These control points were then associated with their known true coordinates. To apply geometric correction, three different approaches were investigated - global polynomial fitting, local polynomial fitting and triangulated interpolation. Sub-pixel accuracy was achieved in all approaches, but the experimental results reveal that the triangulated interpolation gave the most satisfactory result for the distortion correction. The effect of proper alignment of the mask with the fiber optic taper (FOT) camera was also investigated. It was found that the overall dewarping error is minimal when the mask is almost parallel to the CCD.

  15. A design method for two-layer beams consisting of normal and fibered high strength concrete

    International Nuclear Information System (INIS)

    Iskhakov, I.; Ribakov, Y.

    2007-01-01

    Two-layer fibered concrete beams can be analyzed using conventional methods for composite elements. The compressed zone of such beam section is made of high strength concrete (HSC), and the tensile one of normal strength concrete (NSC). The problems related to such type of beams are revealed and studied. An appropriate depth of each layer is prescribed. Compatibility conditions between HSC and NSC layers are found. It is based on the shear deformations equality on the layers border in a section with maximal depth of the compression zone. For the first time a rigorous definition of HSC is given using a comparative analysis of deformability and strength characteristics of different concrete classes. According to this definition, HSC has no download branch in the stress-strain diagram, the stress-strain function has minimum exponent, the ductility parameter is minimal and the concrete tensile strength remains constant with an increase in concrete compression strength. The application fields of two-layer concrete beams based on different static schemes and load conditions make known. It is known that the main disadvantage of HSCs is their low ductility. In order to overcome this problem, fibers are added to the HSC layer. Influence of different fiber volume ratios on structural ductility is discussed. An upper limit of the required fibers volume ratio is found based on compatibility equation of transverse tensile concrete deformations and deformations of fibers

  16. Analysis of Fiber Clustering in Composite Materials Using High-Fidelity Multiscale Micromechanics

    Science.gov (United States)

    Bednarcyk, Brett A.; Aboudi, Jacob; Arnold, Steven M.

    2015-01-01

    A new multiscale micromechanical approach is developed for the prediction of the behavior of fiber reinforced composites in presence of fiber clustering. The developed method is based on a coupled two-scale implementation of the High-Fidelity Generalized Method of Cells theory, wherein both the local and global scales are represented using this micromechanical method. Concentration tensors and effective constitutive equations are established on both scales and linked to establish the required coupling, thus providing the local fields throughout the composite as well as the global properties and effective nonlinear response. Two nondimensional parameters, in conjunction with actual composite micrographs, are used to characterize the clustering of fibers in the composite. Based on the predicted local fields, initial yield and damage envelopes are generated for various clustering parameters for a polymer matrix composite with both carbon and glass fibers. Nonlinear epoxy matrix behavior is also considered, with results in the form of effective nonlinear response curves, with varying fiber clustering and for two sets of nonlinear matrix parameters.

  17. Simultaneous measurement of dynamic strain and temperature distribution using high birefringence PANDA fiber Bragg grating

    Science.gov (United States)

    Zhu, Mengshi; Murayama, Hideaki

    2017-04-01

    New approach in simultaneous measurement of dynamic strain and temperature has been done by using a high birefringence PANDA fiber Bragg grating sensor. By this technique, we have succeeded in discriminating dynamic strain and temperature distribution at the sampling rate of 800 Hz and the spatial resolution of 1 mm. The dynamic distribution of strain and temperature were measured with the deviation of 5mm spatially. In addition, we have designed an experimental setup by which we can apply quantitative dynamic strain and temperature distribution to the fiber under testing without bounding it to a specimen.

  18. Theoretical analysis of mode instability in high-power fiber amplifiers

    DEFF Research Database (Denmark)

    Hansen, Kristian Rymann; Alkeskjold, Thomas Tanggaard; Broeng, Jes

    2013-01-01

    We present a simple theoretical model of transverse mode instability in high-power rare-earth doped fiber amplifiers. The model shows that efficient power transfer between the fundamental and higher-order modes of the fiber can be induced by a nonlinear interaction mediated through the thermo......-optic effect, leading to transverse mode instability. The temporal and spectral characteristics of the instability dynamics are investigated, and it is shown that the instability can be seeded by both quantum noise and signal intensity noise, while pure phase noise of the signal does not induce instability...

  19. Experimental investigation of optical fiber temperature sensors at cryogenic temperature and in high magnetic fields

    International Nuclear Information System (INIS)

    Tanaka, Y.; Ogata, M.; Nagashima, K.; Agawa, H.; Matsuura, S.; Kumagai, Y.

    2010-01-01

    If it is possible to monitor the conditions in the cryogenic equipments including the super-conducting magnets, the indication of failure can be detected beforehand and the reliability in the operation can improve. Optical fiber temperature sensing is an advantageous method in terms of heat invasion, electric insulation, etc. Therefore, the experiments which confirm the characteristics of optical fiber temperature sensors at cryogenic temperatures and in high magnetic fields were performed, and the possibility of measuring under these conditions was confirmed. However, since the resolution of temperature was a problem, the method of analysis that predicts the measurements was contrived, and the method to improve the problem was examined.

  20. Low-Cost Bio-Based Carbon Fibers for High Temperature Processing

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Ryan Michael [GrafTech International, Brooklyn Heights, OH (United States); Naskar, Amit [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-03

    GrafTech International Holdings Inc. (GTI), under Award No. DE-EE0005779, worked with Oak Ridge National Laboratory (ORNL) under CRADA No. NFE-15-05807 to develop lignin-based carbon fiber (LBCF) technology and to demonstrate LBCF performance in high-temperature products and applications. This work was unique and different from other reported LBCF work in that this study was application-focused and scalability-focused. Accordingly, the executed work was based on meeting criteria based on technology development, cost, and application suitability. High-temperature carbon fiber based insulation is used in energy intensive industries, such as metal heat treating and ceramic and semiconductor material production. Insulation plays a critical role in achieving high thermal and process efficiency, which is directly related to energy usage, cost, and product competitiveness. Current high temperature insulation is made with petroleum based carbon fibers, and one goal of this protect was to develop and demonstrate an alternative lignin (biomass) based carbon fiber that would achieve lower cost, CO2 emissions, and energy consumption and result in insulation that met or exceeded the thermal efficiency of current commercial insulation. In addition, other products were targeted to be evaluated with LBCF. As the project was designed to proceed in stages, the initial focus of this work was to demonstrate lab-scale LBCF from at least 4 different lignin precursor feedstock sources that could meet the estimated production cost of $5.00/pound and have ash level of less than 500 ppm in the carbonized insulation-grade fiber. Accordingly, a preliminary cost model was developed based on publicly available information. The team demonstrated that 4 lignin samples met the cost criteria. In addition, the ash level for the 4 carbonized lignin samples was below 500 ppm. Processing as-received lignin to produce a high purity lignin fiber was a significant accomplishment in that most industrial

  1. Radiation hardness of Ce-doped sol-gel silica fibers for high energy physics applications.

    Science.gov (United States)

    Cova, Francesca; Moretti, Federico; Fasoli, Mauro; Chiodini, Norberto; Pauwels, Kristof; Auffray, Etiennette; Lucchini, Marco Toliman; Baccaro, Stefania; Cemmi, Alessia; Bártová, Hana; Vedda, Anna

    2018-02-15

    The results of irradiation tests on Ce-doped sol-gel silica using x- and γ-rays up to 10 kGy are reported in order to investigate the radiation hardness of this material for high-energy physics applications. Sol-gel silica fibers with Ce concentrations of 0.0125 and 0.05 mol. % are characterized by means of optical absorption and attenuation length measurements before and after irradiation. The two different techniques give comparable results, evidencing the formation of a main broad radiation-induced absorption band, peaking at about 2.2 eV, related to radiation-induced color centers. The results are compared with those obtained on bulk silica. This study reveals that an improvement of the radiation hardness of Ce-doped silica fibers can be achieved by reducing Ce content inside the fiber core, paving the way for further material development.

  2. A 66 fs highly stable single wall carbon nanotube mode locked fiber laser

    International Nuclear Information System (INIS)

    Yu, Zhenhua; Zhang, Xiao; Dong, Xinzheng; Tian, Jinrong; Song, Yanrong; Wang, Yonggang

    2014-01-01

    We demonstrate a highly stable mode locked fiber laser based on single wall carbon nanotubes. The mode locking is achieved by the evanescent field interaction of the propagating light with a single wall carbon nanotube saturable absorber in a microfiber. The pulse width is 66 fs, which, to the best of our knowledge, is the shortest pulse achieved in a carbon nanotube mode locked fiber laser. The maximum average output power is 26 mW, which is about 20 times larger than that of a typical carbon nanotube mode locked fiber laser. The center of the wavelength is 1555 nm, with 54 nm spectral width. The repetition rate is 146 MHz. To investigate the laser’s stability, the output pulses are monitored for 120 h and there is no significant degradation of the laser spectral width or shape. (paper)

  3. Plasmonic nanoshell functionalized etched fiber Bragg gratings for highly sensitive refractive index measurements.

    Science.gov (United States)

    Burgmeier, Jörg; Feizpour, Amin; Schade, Wolfgang; Reinhard, Björn M

    2015-02-15

    A novel fiber optical refractive index sensor based on gold nanoshells immobilized on the surface of an etched single-mode fiber including a Bragg grating is demonstrated. The nanoparticle coating induces refractive index dependent waveguide losses, because of the variation of the evanescently guided part of the light. Hence the amplitude of the Bragg reflection is highly sensitive to refractive index changes of the surrounding medium. The nanoshell functionalized fiber optical refractive index sensor works in reflectance mode, is suitable for chemical and biochemical sensing, and shows an intensity dependency of 4400% per refractive index unit in the refractive index range between 1.333 and 1.346. Furthermore, the physical length of the sensor is smaller than 3 mm with a diameter of 6 μm, and therefore offers the possibility of a localized refractive index measurement.

  4. A simple-architecture fibered transmission system for dissemination of high stability 100 MHz signals

    Science.gov (United States)

    Bakir, A.; Rocher, C.; Maréchal, B.; Bigler, E.; Boudot, R.; Kersalé, Y.; Millo, J.

    2018-05-01

    We report on the development of a simple-architecture fiber-based frequency distribution system used to transfer high frequency stability 100 MHz signals. This work is focused on the emitter and the receiver performances that allow the transmission of the radio-frequency signal over an optical fiber. The system exhibits a residual fractional frequency stability of 1 × 10-14 at 1 s integration time and in the low 10-16 range after 100 s. These performances are suitable to transfer the signal of frequency references such as those of a state-of-the-art hydrogen maser without any phase noise compensation scheme. As an application, we demonstrate the dissemination of such a signal through a 100 m long optical fiber without any degradation. The proposed setup could be easily extended for operating frequencies in the 10 MHz-1 GHz range.

  5. Zero-velocity solitons in high-index photonic crystal fibers

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper

    2011-01-01

    Nonlinear propagation in slow-light states of high-index photonic crystal fibers (PCFs) is studied numerically. To avoid divergencies in dispersion and nonlinear parameters around the zero-velocity mode, a time-propagating generalized nonlinear Schrödinger equation is formulated. Calculated slow-...

  6. High-speed ultra-wideband wireless signals over fiber systems: Photonic generation and DSP detection

    DEFF Research Database (Denmark)

    Yu, Xianbin; Gibbon, Timothy Braidwood; Tafur Monroy, Idelfonso

    2009-01-01

    We firstly review the efforts in the literature on UWB over-fiber systems. Secondly, we present experimental results on photonic generation of high-speed UWB signals by both direct modulation and external optical injecting an uncooled semiconductor laser. Furthermore, we introduce the use of digi...

  7. The use of synthetic blended fibers to reduce cracking risk in high performance concrete.

    Science.gov (United States)

    2014-09-01

    The aim of this project was to investigate a relatively new technique to control early-age cracking; the : use of blended size polypropylene fibers in high performance concrete mixtures. The key findings : from this work were that the use of drying s...

  8. Label-free biosensing with high sensitivity in dual-core microstructured polymer optical fibers

    DEFF Research Database (Denmark)

    Markos, Christos; Yuan, Wu; Vlachos, Kyriakos

    2011-01-01

    We present experimentally feasible designs of a dual-core microstructured polymer optical fiber (mPOF), which can act as a highly sensitive, label-free, and selective biosensor. An immobilized antigen sensing layer on the walls of the holes in the mPOF provides the ability to selectively capture...

  9. Effects of CO 2 on a High Performance Hollow-Fiber Membrane for Natural Gas Purification

    KAUST Repository

    Omole, Imona C.; Adams, Ryan T.; Miller, Stephen J.; Koros, William J.

    2010-01-01

    A 6FDA-based, cross-linkable polyimide was characterized in the form of a defect-free asymmetric hollow-fiber membrane. The novel membrane was cross-linked at various temperatures and tested for natural gas purification in the presence of high CO2

  10. Measure Guideline: Three High Performance Mineral Fiber Insulation Board Retrofit Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Neuhauser, Ken [Building Science Corporation, Westford, MA (United States)

    2015-01-01

    This Measure Guideline describes a high performance enclosure retrofit package that uses mineral fiber insulation board. The Measure Guideline describes retrofit assembly and details for wood frame roof and walls and for cast concrete foundations. This Measure Guideline is intended to serve contractors and designers seeking guidance for non-foam exterior insulation retrofit.

  11. Measure Guideline: Three High Performance Mineral Fiber Insulation Board Retrofit Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Neuhauser, K. [Building Science Corporation, Westford, MA (United States)

    2015-01-01

    This Measure Guideline describes a high performance enclosure retrofit package that uses mineral fiber insulation board, and is intended to serve contractors and designers seeking guidance for non-foam exterior insulation retrofit processes. The guideline describes retrofit assembly and details for wood frame roof and walls and for cast concrete foundations.

  12. Wedge Splitting Test on Fracture Behaviour of Fiber Reinforced and Regular High Performance Concretes

    DEFF Research Database (Denmark)

    Hodicky, Kamil; Hulin, Thomas; Schmidt, Jacob Wittrup

    2013-01-01

    The fracture behaviour of three fiber reinforced and regular High Performance Concretes (HPC) is presented in this paper. Two mixes are based on optimization of HPC whereas the third mix was a commercial mix developed by CONTEC ApS (Denmark). The wedge splitting test setup with 48 cubical specimens...

  13. Effects of High-Temperature Annealing in Air on Hi-Nicalon Fiber-Reinforced Celsian Matrix Composites

    Science.gov (United States)

    Bansal, Narottam P.

    2008-01-01

    BN/SiC-coated Hi-Nicalon fiber-reinforced celsian matrix composites (CMC) were annealed for 100 h in air at various temperatures to 1200 C, followed by flexural strength measurements at room temperature. Values of yield stress and strain, ultimate strength, and composite modulus remain almost unchanged for samples annealed up to 1100 C. A thin porous layer formed on the surface of the 1100 C annealed sample and its density decreased from 3.09 to 2.90 g/cu cm. The specimen annealed at 1200 C gained 0.43 wt%, was severely deformed, and was covered with a porous layer of thick shiny glaze which could be easily peeled off. Some gas bubbles were also present on the surface. This surface layer consisted of elongated crystals of monoclinic celsian and some amorphous phase(s). The fibers in this surface ply of the CMC had broken into small pieces. The fiber-matrix interface strength was characterized through fiber push-in technique. Values of debond stress, alpha(sub d), and frictional sliding stress, tau(sub f), for the as-fabricated CMC were 0.31+/-0.14 GPa and 10.4+/-3.1 MPa, respectively. These values compared with 0.53+/-0.47 GPa and 8.33+/-1.72 MPa for the fibers in the interior of the 1200 C annealed sample, indicating hardly any change in fiber-matrix interface strength. The effects of thermal aging on microstructure were investigated using scanning electron microscopy. Only the surface ply of the 1200 C annealed specimens had degraded from oxidation whereas the bulk interior part of the CMC was unaffected. A mechanism is proposed explaining the various steps involved during the degradation of the CMC on annealing in air at 1200 C.

  14. Numerical simulation of a high velocity impact on fiber reinforced materials

    International Nuclear Information System (INIS)

    Thoma, Klaus; Vinckier, David

    1994-01-01

    Whereas the calculation of a high velocity impact on isotropical materials can be done on a routine basis, the simulation of the impact and penetration process into nonisotropical materials such as reinforced concrete or fiber reinforced materials still is a research task.We present the calculation of an impact of a metallic fragment on a modern protective wall structure. Such lightweight protective walls typically consist of two layers, a first outer layer made out of a material with high hardness and a backing layer. The materials for the backing layer are preferably fiber reinforced materials. Such types of walls offer a protection against fragments in a wide velocity range.For our calculations we used a non-linear finite element Lagrange code with explicit time integration. To be able to simulate the high velocity penetration process with a continuous erosion of the impacting metallic fragment, we used our newly developed contact algorithm with eroding surfaces. This contact algorithm is vectorized to a high degree and especially robust as it was developed to work for a wide range of contact-impact problems. To model the behavior of the fiber reinforced material under the highly dynamic loads, we present a material model which initially was developed to calculate the crash behavior (automotive applications) of modern high strength fiber-matrix systems. The model can describe the failure and the postfailure behavior up to complete material crushing.A detailed simulation shows the impact of a metallic fragment with a velocity of 750ms -1 on a protective wall with two layers, the deformation and erosion of fragment and wall material and the failure of the fiber reinforced material. ((orig.))

  15. Ultrafast high-repetition imaging of fuel sprays using picosecond fiber laser.

    Science.gov (United States)

    Purwar, Harsh; Wang, Hongjie; Tang, Mincheng; Idlahcen, Saïd; Rozé, Claude; Blaisot, Jean-Bernard; Godin, Thomas; Hideur, Ammar

    2015-12-28

    Modern diesel injectors operate at very high injection pressures of about 2000 bar resulting in injection velocities as high as 700 m/s near the nozzle outlet. In order to better predict the behavior of the atomization process at such high pressures, high-resolution spray images at high repetition rates must be recorded. However, due to extremely high velocity in the near-nozzle region, high-speed cameras fail to avoid blurring of the structures in the spray images due to their exposure time. Ultrafast imaging featuring ultra-short laser pulses to freeze the motion of the spray appears as an well suited solution to overcome this limitation. However, most commercial high-energy ultrafast sources are limited to a few kHz repetition rates. In the present work, we report the development of a custom-designed picosecond fiber laser generating ∼ 20 ps pulses with an average power of 2.5 W at a repetition rate of 8.2 MHz, suitable for high-speed imaging of high-pressure fuel jets. This fiber source has been proof tested by obtaining backlight images of diesel sprays issued from a single-orifice injector at an injection pressure of 300 bar. We observed a consequent improvement in terms of image resolution compared to standard white-light illumination. In addition, the compactness and stability against perturbations of our fiber laser system makes it particularly suitable for harsh experimental conditions.

  16. Characteristics and applications of high-performance fiber reinforced asphalt concrete

    Science.gov (United States)

    Park, Philip

    Steel fiber reinforced asphalt concrete (SFRAC) is suggested in this research as a multifunctional high performance material that can potentially lead to a breakthrough in developing a sustainable transportation system. The innovative use of steel fibers in asphalt concrete is expected to improve mechanical performance and electrical conductivity of asphalt concrete that is used for paving 94% of U. S. roadways. In an effort to understand the fiber reinforcing mechanisms in SFRAC, the interaction between a single straight steel fiber and the surrounding asphalt matrix is investigated through single fiber pull-out tests and detailed numerical simulations. It is shown that pull-out failure modes can be classified into three types: matrix, interface, and mixed failure modes and that there is a critical shear stress, independent of temperature and loading rate, beyond which interfacial debonding will occur. The reinforcing effects of SFRAC with various fiber sizes and shapes are investigated through indirect tension tests at low temperature. Compared to unreinforced specimens, fiber reinforced specimens exhibit up to 62.5% increase in indirect tensile strength and 895% improvements in toughness. The documented improvements are the highest attributed to fiber reinforcement in asphalt concrete to date. The use of steel fibers and other conductive additives provides an opportunity to make asphalt pavement electrically conductive, which opens up the possibility for multifunctional applications. Various asphalt mixtures and mastics are tested and the results indicate that the electrical resistivity of asphaltic materials can be manipulated over a wide range by replacing a part of traditional fillers with a specific type of graphite powder. Another important achievement of this study is development and validation of a three dimensional nonlinear viscoelastic constitutive model that is capable of simulating both linear and nonlinear viscoelasticity of asphaltic materials. The

  17. High-energy master oscillator power amplifier with near-diffraction-limited output based on ytterbium-doped PCF fiber

    Science.gov (United States)

    Li, Rao; Qiao, Zhi; Wang, Xiaochao; Fan, Wei; Lin, Zunqi

    2017-10-01

    With the development of fiber technologies, fiber lasers are able to deliver very high power beams and high energy pulses which can be used not only in scientific researches but industrial fields (laser marking, welding,…). The key of high power fiber laser is fiber amplifier. In this paper, we present a two-level master-oscillator power amplifier system at 1053 nm based on Yb-doped photonic crystal fibers. The system is used in the front-end of high power laser facility for the amplification of nano-second pulses to meet the high-level requirements. Thanks to the high gain of the system which is over 50 dB, the pulse of more than 0.89 mJ energy with the nearly diffraction-limited beam quality has been obtained.

  18. Testing of Sapphire Optical Fiber and Sensors in Intense Radiation Fields When Subjected to Very High Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Blue, Thomas [The Ohio State Univ., Columbus, OH (United States); Windl, Wolfgang [The Ohio State Univ., Columbus, OH (United States)

    2017-12-15

    The primary objective of this project was to determine the optical attenuation and signal degradation of sapphire optical fibers & sensors (temperature & strain), in-situ, operating at temperatures up to 1500°C during reactor irradiation through experiments and modeling. The results will determine the feasibility of extending sapphire optical fiber-based instrumentation to extremely high temperature radiation environments. This research will pave the way for future testing of sapphire optical fibers and fiber-based sensors under conditions expected in advanced high temperature reactors.

  19. Highly Sensitive and Wide-Dynamic-Range Multichannel Optical-Fiber pH Sensor Based on PWM Technique

    OpenAIRE

    Md. Rajibur Rahaman Khan; Shin-Won Kang

    2016-01-01

    In this study, we propose a highly sensitive multichannel pH sensor that is based on an optical-fiber pulse width modulation (PWM) technique. According to the optical-fiber PWM method, the received sensing signal?s pulse width changes when the optical-fiber pH sensing-element of the array comes into contact with pH buffer solutions. The proposed optical-fiber PWM pH-sensing system offers a linear sensing response over a wide range of pH values from 2 to 12, with a high pH-sensing ability. The...

  20. Record power, ultra-broadband supercontinuum source based on highly GeO2 doped silica fiber

    DEFF Research Database (Denmark)

    Jain, Deepak; Sidharthan, R.; Moselund, Peter M.

    2016-01-01

    the potential of germania based photonic crystal fiber or a step-index fiber supercontinuum source for high power ultra-broad band emission being by pumped a 1060 nm or a 1550 nm laser source. To the best of our knowledge, this is the record power, ultra-broadband, and all-fiberized supercontinuum light source...... based on silica and germania fiber ever demonstrated to the date. (C) 2016 Optical Society of America......We demonstrate highly germania doped fibers for mid-infrared supercontinuum generation. Experiments ensure a highest output power of 1.44 W for a broadest spectrum from 700 nm to 3200 nm and 6.4 W for 800 nm to 2700 nm from these fibers, while being pumped by a broadband Erbium-Ytterbium doped...

  1. Compact and high-efficiency device for Raman scattering measurement using optical fibers.

    Science.gov (United States)

    Mitsui, Tadashi

    2014-11-01

    We describe the design and development of a high-efficiency optical measurement device for operation within the small bore of a high-power magnet at low temperature. For the high-efficiency measurement of light emitted from this small region, we designed a compact confocal optics with lens focusing and tilting systems, and used a piezodriven translation stage that allows micron-scale focus control of the sample position. We designed a measurement device that uses 10 m-long optical fibers in order to avoid the influence of mechanical vibration and magnetic field leakage of high-power magnets, and we also describe a technique for minimizing the fluorescence signal of optical fibers. The operation of the device was confirmed by Raman scattering measurements of monolayer graphene on quartz glass with a high signal-to-noise ratio.

  2. Regime dependence of photo-darkening-induced modal degradation in high power fiber amplifier (Conference Presentation)

    Science.gov (United States)

    Boullet, Johan; Vincont, Cyril; Jolly, Alain; Pierre, Christophe

    2017-03-01

    Thermally induced transverse modal instabilities (TMI) have attracted these five years an intense research efforts of the entire fiber laser development community, as it represents the current most limiting effect of further power scaling of high power fiber laser. Anyway, since 2014, a few publications point out a new limiting thermal effect: fiber modal degradation (FMD). It is characterized by a power rollover and simultaneous increase of the cladding light at an average power far from the TMI threshold together with a degraded beam which does not exhibit temporal fluctuations, which is one of the main characteristic of TMI. We report here on the first systemic experimental study of FMD in a high power photonic crystal fiber. We put a particular emphasis on the dependence of its average power threshold on the regime of operation. We experimentally demonstrate that this dependence is intrinsically linked to regime-dependent PD-saturated losses, which are nearly three times higher in CW regime than in short pulse picosecond regime. We make the hypothesis that the existence of these different PD equilibrium states between CW regime and picosecond QCW pulsed regime is due to a partial photo-bleaching of color centers in picosecond regime thanks to a higher probability of multi-photon process induced photobleaching (PB) at high peak power. This hypothesis is corroborated by the demonstration of the reversibility of the FMD induced in CW regime by simply switching the seed CW 1064 nm light by a short pulse, picosecond oscillator.

  3. Design of pseudo-symmetric high bit rate, bend insensitive optical fiber applicable for high speed FTTH

    Science.gov (United States)

    Makouei, Somayeh; Koozekanani, Z. D.

    2014-12-01

    In this paper, with sophisticated modification on modal-field distribution and introducing new design procedure, the single-mode fiber with ultra-low bending-loss and pseudo-symmetric high bit-rate of uplink and downlink, appropriate for fiber-to-the-home (FTTH) operation is presented. The bending-loss reduction and dispersion management are done by the means of Genetic Algorithm. The remarkable feature of this methodology is designing a bend-insensitive fiber without reduction of core radius and MFD. Simulation results show bending loss of 1.27×10-2 dB/turn at 1.55 μm for 5 mm curvature radius. The MFD and Aeff are 9.03 μm and 59.11 μm2. Moreover, the upstream and downstream bit-rates are approximately 2.38 Gbit/s-km and 3.05 Gbit/s-km.

  4. Behavior of hybrid high-strength fiber reinforced concrete slab-column connections under the effect of high tempera

    Directory of Open Access Journals (Sweden)

    Reham H. Ahmed

    2016-04-01

    Full Text Available Concrete can be modified to perform in a more ductile form by the addition of randomly distributed discrete fibers in the concrete matrix. The combined effect of the addition of two types of fibers (steel fiber and polypropylene fiber with different percentages to concrete matrix, which is called hybrid effect is currently under investigation worldwide. The current research work presents the conducted experimental program to observe the behavior of hybrid high strength reinforced concrete slab-column connections under the effect of high temperature. For this purpose, ten slab-column connections were casted and tested. The experimental program was designed to investigate the effect of different variables such as concrete mixture, column location and temperature fighting system. All specimens were exposed to a temperature of 500 °C for duration of two hours. To observe the effect of each variable, specimens were divided into four groups according to the studied parameters. The test results revealed that using hybrid high strength concrete HFHSC produced more strength in punching failure compared with high strength concrete HSC when exposed to elevated temperature. Fighting by air had higher initial crack load compared with that for without fighting and fighting by water. On the other hand, fighting by water decreased the ultimate load.

  5. High dietary fiber intake is associated with decreased inflammation and all-cause mortality in patients with chronic kidney disease

    OpenAIRE

    Raj Krishnamurthy, Vidya M.; Wei, Guo; Baird, Bradley C.; Murtaugh, Maureen; Chonchol, Michel B.; Raphael, Kalani L.; Greene, Tom; Beddhu, Srinivasan

    2011-01-01

    Chronic kidney disease is considered an inflammatory state and a high fiber intake is associated with decreased inflammation in the general population. Here, we determined whether fiber intake is associated with decreased inflammation and mortality in chronic kidney disease, and whether kidney disease modifies the associations of fiber intake with inflammation and mortality. To do this, we analyzed data from 14,543 participants in the National Health and Nutrition Examination Survey III. The ...

  6. Novel hollow fiber compressor for high power, multi-mJ ultrafast lasers

    International Nuclear Information System (INIS)

    Nagy, T.; Simon, P.; Schweinberger, W.; Sommer, A.; Schultze, M.; Kienberger, R.; Krausz, F.

    2010-01-01

    Complete text of publication follows. The current trends in ultrafast laser development include, besides the reduction of the pulse duration, also the up-scaling of the pulse energy and the increase of the repetition rate. Recently, multi-mJ, multi-kHz lasers delivering sub-30 fs pulses have become available. The compression of the output pulses of such lasers to sub-5 fs duration is a challenging task. In order to maintain good temporal contrast and beam profile, the preferred way for spectral broadening is to use noble-gas-filled hollow fibers. For launching multi-mJ pulses in the waveguide, its inner diameter has to be large in order to keep the intensity at low levels so that the ionization losses are still tolerable. For optimal in-coupling the differential pressure scheme is very favourable, which, however requires longer waveguide lengths to compensate for the reduced effective interaction length caused by the pressure gradient. Recently, a novel hollow fiber construction has been developed comprising a waveguide formed by a stretched flexible capillary tube. This special construction resolves the usual strong limitation of the length of the waveguide, provides excellent straightness, and inherently supports the differential pressure scheme. The only drawback of the flexible fiber unit to date was its susceptibility to thermal damage in case of high average power input beams. To solve this problem we present a novel composite fiber unit, which consists of a thick-walled taper followed by a long flexible fiber. This construction combines the advantages of both types: the high resistibility of the taper and the free length-scalability of a flexible fiber. In order to demonstrate the potential of the new fiber design, a 2 m long composite fiber with an inner diameter of 320 μm was placed at the output of a CPA Ti:Sa laser system comprising an oscillator, a grating-prism (grism) stretcher, two multi-pass amplifier stages and a compressor combining bulk glass

  7. Multigene Genetic Programming for Estimation of Elastic Modulus of Concrete

    Directory of Open Access Journals (Sweden)

    Alireza Mohammadi Bayazidi

    2014-01-01

    Full Text Available This paper presents a new multigene genetic programming (MGGP approach for estimation of elastic modulus of concrete. The MGGP technique models the elastic modulus behavior by integrating the capabilities of standard genetic programming and classical regression. The main aim is to derive precise relationships between the tangent elastic moduli of normal and high strength concrete and the corresponding compressive strength values. Another important contribution of this study is to develop a generalized prediction model for the elastic moduli of both normal and high strength concrete. Numerous concrete compressive strength test results are obtained from the literature to develop the models. A comprehensive comparative study is conducted to verify the performance of the models. The proposed models perform superior to the existing traditional models, as well as those derived using other powerful soft computing tools.

  8. High Neutron Fluence Survivability Testing of Advanced Fiber Bragg Grating Sensors

    International Nuclear Information System (INIS)

    Fielder, Robert S.; Klemer, Daniel; Stinson-Bagby, Kelly L.

    2004-01-01

    The motivation for the reported research was to support NASA space nuclear power initiatives through the development of advanced fiber optic sensors for space-based nuclear power applications. The purpose of the high-neutron fluence testing was to demonstrate the survivability of fiber Bragg grating (FBG) sensors in a fission reactor environment. 520 FBGs were installed in the Ford reactor at the University of Michigan. The reactor was operated for 1012 effective full power hours resulting in a maximum neutron fluence of approximately 5x1019 n/cm2, and a maximum gamma dose of 2x103 MGy gamma. This work is significant in that, to the knowledge of the authors, the exposure levels obtained are approximately 1000 times higher than for any previously published experiment. Four different fiber compositions were evaluated. An 87% survival rate was observed for fiber Bragg gratings located at the fuel centerline. Optical Frequency Domain Reflectometry (OFDR), originally developed at the NASA Langley Research Center, can be used to interrogate several thousand low-reflectivity FBG strain and/or temperature sensors along a single optical fiber. A key advantage of the OFDR sensor technology for space nuclear power is the extremely low mass of the sensor, which consists of only a silica fiber 125μm in diameter. The sensors produced using this technology will fill applications in nuclear power for current reactor plants, emerging Generation-IV reactors, and for space nuclear power. The reported research was conducted by Luna Innovations and was funded through a Small Business Innovative Research (SBIR) contract with the NASA Glenn Research Center

  9. Research in high speed fiber optics local area networks

    Science.gov (United States)

    Tobagi, F. A.

    1986-01-01

    The design of high speed local area networks (HSLAN) for communication among distributed devices requires solving problems in three areas: the network medium and its topology, the medium access control, and the network interface. Considerable progress was already made in the first two areas. Accomplishments are divided into two groups according to their theoretical or experimental nature. A brief summary is given.

  10. Fiber based hydrophones for ultra-high energy neutrino detection

    NARCIS (Netherlands)

    Buis, E.J.; Doppenberg, E.J.J.; Eijk, D. van; Lahmann, R.; Nieuwland, R.A.; Toet, P.M.

    2014-01-01

    It is a well studied process [1, 2] that energy deposition of cosmic ray particles in water that generate thermo-acoustic signals. Hydrophones of sufficient sensitivity could measure this signal and provide a means of detecting ultra-high energetic cosmic neutrinos. We investigate optical

  11. Long-Period Gratings in Highly Germanium-Doped, Single-Mode Optical Fibers for Sensing Applications

    Science.gov (United States)

    Schlangen, Sebastian; Bremer, Kort; Zheng, Yulong; Böhm, Sebastian; Steinke, Michael; Wellmann, Felix; Neumann, Jörg; Overmeyer, Ludger

    2018-01-01

    Long-period fiber gratings (LPGs) are well known for their sensitivity to external influences, which make them interesting for a large number of sensing applications. For these applications, fibers with a high numerical aperture (i.e., fibers with highly germanium (Ge)-doped fused silica fiber cores) are more attractive since they are intrinsically photosensitive, as well as less sensitive to bend- and microbend-induced light attenuations. In this work, we introduce a novel method to inscribe LPGs into highly Ge-doped, single-mode fibers. By tapering the optical fiber, and thus, tailoring the effective indices of the core and cladding modes, for the first time, an LPG was inscribed into such fibers using the amplitude mask technique and a KrF excimer laser. Based on this novel method, sensitive LPG-based fiber optic sensors only a few millimeters in length can be incorporated in bend-insensitive fibers for use in various monitoring applications. Moreover, by applying the described inscription method, the LPG spectrum can be influenced and tailored according to the specific demands of a particular application. PMID:29702600

  12. Long-Period Gratings in Highly Germanium-Doped, Single-Mode Optical Fibers for Sensing Applications

    Directory of Open Access Journals (Sweden)

    Sebastian Schlangen

    2018-04-01

    Full Text Available Long-period fiber gratings (LPGs are well known for their sensitivity to external influences, which make them interesting for a large number of sensing applications. For these applications, fibers with a high numerical aperture (i.e., fibers with highly germanium (Ge-doped fused silica fiber cores are more attractive since they are intrinsically photosensitive, as well as less sensitive to bend- and microbend-induced light attenuations. In this work, we introduce a novel method to inscribe LPGs into highly Ge-doped, single-mode fibers. By tapering the optical fiber, and thus, tailoring the effective indices of the core and cladding modes, for the first time, an LPG was inscribed into such fibers using the amplitude mask technique and a KrF excimer laser. Based on this novel method, sensitive LPG-based fiber optic sensors only a few millimeters in length can be incorporated in bend-insensitive fibers for use in various monitoring applications. Moreover, by applying the described inscription method, the LPG spectrum can be influenced and tailored according to the specific demands of a particular application.

  13. Design of robust hollow fiber membranes with high power density for osmotic energy production

    KAUST Repository

    Zhang, Sui; Sukitpaneenit, Panu; Chung, Neal Tai-Shung

    2014-01-01

    This study highlights the design strategy of highly asymmetric hollow fiber membranes that possess both characteristics of high flux and high mechanical strength to effectively reap the osmotic energy from seawater brine with an ultrahigh power density. An advanced co-extrusion technology was employed to fabricate the polyethersulfone (PES) hollow fiber supports with diversified structures from macrovoid to sponge-like. The microstructure of the supports is found critical for the stability and water permeability of the thin film composite (TFC) membranes. A high porosity in the porous layer is needed to reduce internal concentration polarization, while a thick and relatively dense skin layer underneath the TFC layer is required to maintain good mechanical stability and stress dissipation. The pore size of the supporting layer underneath the TFC layer must be small with a narrow pore size distribution to ensure the formation of a less-defective, highly permeable and mechanically stable TFC layer. The newly developed hollow fiber comprising high asymmetry, high porosity, and a thick skin layer with a small and narrow pore size distribution underneath the TFC layer produces a maximum power density of 24.3W/m2 at 20.0bar by using 1M NaCl as the concentrated brine and deionized (DI) water as the feed. The proposed design strategy for ultrahigh power density membranes clearly advances the osmotic energy production close to commercialization with a quite cost-effective and practicable approach. © 2013 Elsevier B.V.

  14. Design of robust hollow fiber membranes with high power density for osmotic energy production

    KAUST Repository

    Zhang, Sui

    2014-04-01

    This study highlights the design strategy of highly asymmetric hollow fiber membranes that possess both characteristics of high flux and high mechanical strength to effectively reap the osmotic energy from seawater brine with an ultrahigh power density. An advanced co-extrusion technology was employed to fabricate the polyethersulfone (PES) hollow fiber supports with diversified structures from macrovoid to sponge-like. The microstructure of the supports is found critical for the stability and water permeability of the thin film composite (TFC) membranes. A high porosity in the porous layer is needed to reduce internal concentration polarization, while a thick and relatively dense skin layer underneath the TFC layer is required to maintain good mechanical stability and stress dissipation. The pore size of the supporting layer underneath the TFC layer must be small with a narrow pore size distribution to ensure the formation of a less-defective, highly permeable and mechanically stable TFC layer. The newly developed hollow fiber comprising high asymmetry, high porosity, and a thick skin layer with a small and narrow pore size distribution underneath the TFC layer produces a maximum power density of 24.3W/m2 at 20.0bar by using 1M NaCl as the concentrated brine and deionized (DI) water as the feed. The proposed design strategy for ultrahigh power density membranes clearly advances the osmotic energy production close to commercialization with a quite cost-effective and practicable approach. © 2013 Elsevier B.V.

  15. High-efficiency 2 μm Tm-doped fiber laser

    International Nuclear Information System (INIS)

    Dvornikov, D.

    2013-01-01

    Full text: Tm doped fiber laser operating in so called 'eye safe' wavelength region and designed in a MOPA configuration has been demonstrated. Large-mode-area fiber design and availability of high-brightness, high-power pump diodes at 795 nm made possible maximum output power of 25 W achieved at incident pump power of 72 W resulting in optical conversion efficiency about 35%. An important factor that led to an interest in 2 μm Tm-doped lasers is significantly broader spectral tunability of Tm-doped fibers compared to Yb-doped fibers, spanning wavelengths from below 1850 nm to beyond 2100 nm, corresponding to more than 200 nm of available bandwidth. This wavelength region covers the water absorption peaks around 1940 nm, making these lasers a valuable tool for precise medical procedures including noninvasive surgery, as well as several atmospheric transmission windows that are useful for remote sensing, laser radar and range-finding. This work was carried out as part of the EU funded Joint Operational Programme 'Black Sea Basin 2007-2013' and project 2.2.1.74459.339, MIS-ETC 1443 'Research networking for the environmental monitoring and mitigation of adverse ecological effects in the Black Sea Basin (BSB Net-Eco)'.

  16. E- and W-band high-capacity hybrid fiber-wireless link

    DEFF Research Database (Denmark)

    Vegas Olmos, Juan José; Pang, Xiaodan; Tafur Monroy, Idelfonso

    2014-01-01

    In this paper we summarize the work conducted in our group in the area of E- and W-band optical high-capacity fiber-wireless links. We present performance evaluations of E- and W-band mm-wave signal generation using photonic frequency upconversion employing both VCSELs and ECLs, along with transm...... in mobile backhaul/fronthaul applications, dense distributed antenna systems and fiber-over-radio scenarios.......In this paper we summarize the work conducted in our group in the area of E- and W-band optical high-capacity fiber-wireless links. We present performance evaluations of E- and W-band mm-wave signal generation using photonic frequency upconversion employing both VCSELs and ECLs, along...... with transmission over different type of optical fibers and for a number of values for the wireless link distance. Hybrid wireless-optical links can be composed of mature and resilient technology available off-the-shelf, and provide functionalities that can add value to optical access networks, specifically...

  17. FOREX-A Fiber Optics Diagnostic System For Study Of Materials At High Temperatures And Pressures

    Science.gov (United States)

    Smith, D. E.; Roeske, F.

    1983-03-01

    We have successfully fielded a Fiber Optics Radiation EXperiment system (FOREX) designed for measuring material properties at high temperatures and pressures on an underground nuclear test. The system collects light from radiating materials and transmits it through several hundred meters of optical fibers to a recording station consisting of a streak camera with film readout. The use of fiber optics provides a faster time response than can presently be obtained with equalized coaxial cables over comparable distances. Fibers also have significant cost and physical size advantages over coax cables. The streak camera achieves a much higher information density than an equivalent oscilloscope system, and it also serves as the light detector. The result is a wide bandwidth high capacity system that can be fielded at a relatively low cost in manpower, space, and materials. For this experiment, the streak camera had a 120 ns time window with a 1.2 ns time resolution. Dynamic range for the system was about 1000. Beam current statistical limitations were approximately 8% for a 0.3 ns wide data point at one decade above the threshold recording intensity.

  18. Highly reflective Bragg gratings in slightly etched step-index polymer optical fiber.

    Science.gov (United States)

    Hu, Xuehao; Pun, Chi-Fung Jeff; Tam, Hwa-Yaw; Mégret, Patrice; Caucheteur, Christophe

    2014-07-28

    During the past few years, a strong progress has been made in the photo-writing of fiber Bragg gratings (FBGs) in polymer optical fibers (POFs), animated by the constant wish to enhance the grating reflectivity and improve the sensing performances. In this paper, we report the photo-inscription of highly reflective gratings in step-index POFs, obtained thanks to a slight etching of the cladding. We demonstrate that a cladding diameter decrease of ~12% is an ideal trade-off to produce highly reflective gratings with enhanced axial strain sensitivity, while keeping almost intact their mechanical resistance. For this, we make use of Trans-4-stilbenemethanol-doped photosensitive step-index poly(methyl methacrylate) (PMMA) POFs. FBGs are inscribed at ~1550 nm by the scanning phase mask technique in POFs of different external diameters. Reflectivity reaching 97% is achieved for 6 mm long FBGs, compared to 25% for non-etched POFs. We also report that a cladding decrease enhances the FBG axial tension while keeping unchanged temperature and surrounding refractive index sensitivities. Finally and for the first time, a measurement is conducted in transmission with polarized light, showing that a photo-induced birefringence of 7 × 10(-6) is generated (one order of magnitude higher than the intrinsic fiber birefringence), which is similar to the one generated in silica fiber using ultra-violet laser.

  19. Single-longitudinal mode distributed-feedback fiber laser with low-threshold and high-efficiency

    Science.gov (United States)

    Jiang, Man; Zhou, Pu; Gu, Xijia

    2018-01-01

    Single-frequency fiber laser has attracted a lot of interest in recent years due to its numerous application potentials in telecommunications, LIDAR, high resolution sensing, atom frequency standard, etc. Phosphate glass fiber is one of the candidates for building compact high gain fiber lasers because of its capability of high-concentration of rare-earth ions doping in fiber core. Nevertheless, it is challenging for the integration of UV-written intra-core fiber Bragg gratings into the fiber laser cavity due to the low photosensitivity of phosphate glass fiber. The research presented in this paper will focus on demonstration of UV-written Bragg gratings in phosphate glass fiber and its application in direct-written short monolithic single-frequency fiber lasers. Strong π-phase shift Bragg grating structure is direct-inscribed into the Er/Yb co-doped gain fiber using an excimer laser, and a 5-cm-long phase mask is used to inscribe a laser cavity into the Er/Yb co-doped phosphate glass fibers. The phase mask is a uniform mask with a 50 μm gap in the middle. The fiber laser device emits output power of 10.44 mW with a slope efficiency of 21.5% and the threshold power is about 42.8 mW. Single-longitudinal mode operation is validated by radio frequency spectrum measurement. Moreover, the output spectrum at the highest power shows an excellent optical signal to noise ratio of about 70 dB. These results, to the best of our knowledge, show the lowest power threshold and highest efficiency among the reports that using the same structure to achieve single-longitudinal mode laser output.

  20. Active Photonic crystal fibers for high power applications

    DEFF Research Database (Denmark)

    Olausson, Christina Bjarnal Thulin

    The photonic crystal ber technology provides means to realize bers optimized for high power operation, due to the large single-mode cores and the unique design exibility of the microstructure. The work presented in this thesis focuses on improving the properties of active photonic crystal bers...... contributed to the compounding of new and improved material compositions. The second part is an investigation of pump absorption in photonic crystal bers, demonstrating that the microstructure in photonic crystal bers improves the pump absorption by up to a factor of two compared to step-index bers....... This plays an important role in high power lasers and ampliers with respect to efficiency, packaging, and thermal handling. The third part of the work has involved developing tools for characterizing the mode quality and stability of large core bers. Stable, single-mode bers with larger cores are essential...

  1. Elastic modulus and fracture of boron carbide

    International Nuclear Information System (INIS)

    Hollenberg, G.W.; Walther, G.

    1978-12-01

    The elastic modulus of hot-pressed boron carbide with 1 to 15% porosity was measured at room temperature. K/sub IC/ values were determined for the same porosity range at 500 0 C by the double torsion technique. The critical stress intensity factor of boron carbide with 8% porosity was evaluated from 25 to 1200 0 C

  2. Structural relaxation monitored by instantaneous shear modulus

    DEFF Research Database (Denmark)

    Olsen, Niels Boye; Dyre, Jeppe; Christensen, Tage Emil

    1998-01-01

    time definition based on a recently proposed expression for the relaxation time, where G [infinity] reflects the fictive temperature. All parameters entering the reduced time were determined from independent measurements of the frequency-dependent shear modulus of the equilibrium liquid....

  3. Thickness dependence of nanofilm elastic modulus

    Czech Academy of Sciences Publication Activity Database

    Fedorchenko, Alexander I.; Wang, A. B.; Cheng, H.H.

    2009-01-01

    Roč. 94, č. 15 (2009), s. 152111-152113 ISSN 0003-6951 Institutional research plan: CEZ:AV0Z20760514 Keywords : nanofilm * elastic modulus * thickness dependence Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.554, year: 2009 http://link.aip.org/link/?APPLAB/94/152111/1

  4. Development of Synthetic Spider Silk Fibers for High Performance Applications

    Science.gov (United States)

    2013-08-08

    complete with N- and C-termini. • Transformed all protein variants into a proprietary yeast strain and screened for expression. While all encoded...mammals1- 6,10-12. Among the most successfully expressing organisms has been the methylotropic yeast Pichia pastoris. Yeast are an attractive...modifications, recombinant proteins can be secreted into their culture media, and they are well adapted to high density fermentation . In addition, P

  5. SYLRAMICTM SiC fibers for CMC reinforcement

    International Nuclear Information System (INIS)

    Jones, Richard E.; Petrak, Dan; Rabe, Jim; Szweda, Andy

    2000-01-01

    Dow Corning researchers developed SYLRAMIC SiC fiber specifically for use in ceramic-matrix composite (CMC) components for use in turbine engine hot sections where excellent thermal stability, high strength and high thermal conductivity are required. This is a stoichiometric SiC fiber with a high degree of crystallinity, high tensile strength, high tensile modulus and good thermal conductivity. Owing to the small diameter, this textile-grade fiber can be woven into 2-D and 3-D structures for CMC fabrication. These properties are also of high interest to the nuclear community. Some initial studies have shown that SYLRAMIC fiber shows very good dimensional stability in a neutron flux environment, which offers further encouragement. This paper will review the properties of SYLRAMIC SiC fiber and then present the properties of polymer impregnation and pyrolysis (PIP) processed CMC made with this fiber at Dow Corning. While these composites may not be directly applicable to applications of interest to this audience, we believe that the properties shown will give good evidence that the fiber should be suitable for high temperature structural applications in the nuclear arena

  6. Proposal of Design Formulae for Equivalent Elasticity of Masonry Structures Made with Bricks of Low Modulus

    Directory of Open Access Journals (Sweden)

    Muhammad Ridwan

    2017-01-01

    Full Text Available Bricks of low elastic modulus are occasionally used in some developing countries, such as Indonesia and India. Most of the previous research efforts focused on masonry structures built with bricks of considerably high elastic modulus. The objective of this study is to quantify the equivalent elastic modulus of lower-stiffness masonry structures, when the mortar has a higher modulus of elasticity than the bricks, by employing finite element (FE simulations and adopting the homogenization technique. The reported numerical simulations adopted the two-dimensional representative volume elements (RVEs using quadrilateral elements with four nodes. The equivalent elastic moduli of composite elements with various bricks and mortar were quantified. The numerically estimated equivalent elastic moduli from the FE simulations were verified using previously established test data. Hence, a new simplified formula for the calculation of the equivalent modulus of elasticity of such masonry structures is proposed in the present study.

  7. High speed fiber optics local area networks: Design and implementation

    Science.gov (United States)

    Tobagi, Fouad A.

    1988-01-01

    The design of high speed local area networks (HSLAN) for communication among distributed devices requires solving problems in three areas: (1) the network medium and its topology; (2) the medium access control; and (3) the network interface. Considerable progress has been made in all areas. Accomplishments are divided into two groups according to their theoretical or experimental nature. A brief summary is given in Section 2, including references to papers which appeared in the literature, as well as to Ph.D. dissertations and technical reports published at Stanford University.

  8. Resilient modulus characteristics of soil subgrade with geopolymer additive in peat

    Science.gov (United States)

    Zain, Nasuhi; Hadiwardoyo, Sigit Pranowo; Rahayu, Wiwik

    2017-06-01

    Resilient modulus characteristics of peat soil are generally very low with high potential of deformation and low bearing capacity. The efforts to improve the peat subgrade resilient modulus characteristics is required, one among them is by adding the geopolymer additive. Geopolymer was made as an alternative to replace portland cement binder in the concrete mix in order to promote environmentally friendly, low shrinkage value, low creep value, and fire resistant material. The use of geopolymer to improve the mechanical properties of peat as a road construction subgrade, hence it becomes important to identify the effect of geopolymer addition on the resilient modulus characteristics of peat soil. This study investigated the addition of 0% - 20% geopolymer content on peat soil derived from Ogan Komering Ilir, South Sumatera Province. Resilient modulus measurement was performed by using cyclic triaxial test to determine the resilience modulus model as a function of deviator stresses and radial stresses. The test results showed that an increase in radial stresses did not necessarily lead to an increase in modulus resilient, and on the contrary, an increase in deviator stresses led to a decrease in modulus resilient. The addition of geopolymer in peat soil provided an insignificant effect on the increase of resilient modulus value.

  9. Fatigue crack initiation in hybrid boron/glass/aluminum fiber metal laminates

    International Nuclear Information System (INIS)

    Chang, P.-Y.; Yeh, P.-C.; Yang, J.-M.

    2008-01-01

    The fatigue crack initiation behavior of a high modulus and hybrid boron/glass/aluminum fiber/metal laminate (FML) was investigated experimentally and analytically. Two types of hybrid boron/glass/aluminum FMLs were fabricated and studied, which consisted of aluminum alloy sheets as the metal layers and a mixture of boron fibers and glass fibers as the composite layers. For the first type, the boron fiber/prepreg and the glass fiber/prepreg were used separately in the composite layers, and for the second type, the boron fibers and the glass fibers were mingled together to form a hybrid boron/glass/prepreg composite layer. These hybrid FMLs were consolidated using an autoclave curing process. The incorporation of the boron fibers improved the Young's modulus of the composite layer in FMLs, which in turn, would improve the fatigue crack initiation life of the Al sheet. The experimental results clearly showed that the fatigue crack initiation lives for both types of hybrid boron/glass/aluminum FMLs were superior to the monolithic aluminum alloy under the same loading condition. An analytical approach was proposed to calculate the fatigue crack initiation lives of hybrid boron/glass/aluminum FMLs based on the classical laminate theory and the small-crack theory. A good correlation was obtained between the predictions and the experimental results

  10. Deuterium trapping in carbon fiber composites under high fluence

    International Nuclear Information System (INIS)

    Airapetov, A.A.; Begrambekov, L.B.; Kuzmin, A.A.; Shigin, P.A.; Zakharov, A.M.

    2010-01-01

    The paper is devoted to investigation of deuterium trapping in CFC, dance graphite MPG-8 and pyrolytic graphite (PG) under plasma ion- and electron irradiation. Number of specific features of deuterium trapping and retention under plasma ion and electron irradiation is presented and discussed. In particular it is shown that 1) deuterium trapping takes place even when energy of impinging ions approaches zero; 2) deuterium is trapped under irradiation by plasma electrons; 3) under irradiation at equal fluences deuterium trapping is higher, when ion flux is smaller. High energy ion penetrating the surfaces are trapped in the traps created at the expense of their kinetic energy. The process may be named 'kinetic trapping'. Under low energy (smaller than 200 eV) electron and/or ion irradiation the energy of inelastic interaction on the surface provides creation of active centers, which initiate dissociation of deuterium sorbed on the surface, penetration of deuterium atoms into graphite and their trapping in specific low energy traps. The term 'potential trapping' is proposed for this type of trapping. Under high energy irradiation such atoms can fill the traps formed through kinetic mechanism. Origination of moveable deuterium atoms from the layer of surface sorption seems to be time dependent process and it is a reason of increase of trapping along with irradiation time. New features of deuterium trapping and retention in graphite evaluated in this study offer new opportunities for analysis and correct estimation of hydrogen isotope trapping and retention in tokamaks having graphite tiles. (authors)

  11. Effects of heat treatment on the mechanical properties of kenaf fiber

    Energy Technology Data Exchange (ETDEWEB)

    Carada, Paulo Teodoro D. L. [Master’s student in the Graduate School of Science and Engineering, Mechanical Engineering, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe City, Kyoto Prefecture, 610-0394 (Japan); Fujii, Toru; Okubo, Kazuya [Professor in the Faculty of Science and Engineering, Department of Mechanical and Systems Engineering, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe City, Kyoto Prefecture, 610-0394 (Japan)

    2016-05-18

    Natural fibers are utilized in various ways. One specific application of it, is in the field natural fiber composite (NFC). Considerable amount of researches are conducted in this field due to rising concerns in the harmful effects of synthetic materials to the environment. Additionally, these researches are done in order to overcome the drawbacks which limit the wide use of natural fiber. A way to improve NFC is to look into the reinforcing component (natural fiber). Treatments, which are classified as mechanical or chemical in nature, can be done in order to improve the performance of the natural fiber. The aim of this study is to assess the effects of heat treatment in the mechanical properties of kenaf fiber. In addition, the response of mechanical properties after exposure to high moisture environment of heat-treated kenaf fibers was observed. Heat treatment was done for one hour with the following heating temperatures: 140, 160, 180, and 200 °C. X-ray diffraction analysis was done to calculate the crystallinity index of kenaf fibers after heat treatment. The results showed that increase in tensile strength can be attained when kenaf fibers are heat treated at 140 °C. However, the tensile modulus showed inconsistency with respect to heat treatment temperature. The computed crystallinity index of the fiber matched the tensile strength observed in non-treated and heat-treated kenaf fibers. The results obtained in this study can be used for applications where heat treatment on kenaf fibers is needed.

  12. High-Strength / High Alkaline Resistant Fe-Phosphate Glass Fibers as Concrete Reinforcement

    Energy Technology Data Exchange (ETDEWEB)

    Mariano Velez

    2008-03-31

    Calcium-iron-phosphate glasses were developed whose chemical durabilities in alkaline solutions (pH 13) were comparable or superior to those of commercial alkaline-resistant (AR) silica-based glasses. However, the tensile strength of Ca-Fe-phosphate fibers, after being exposed to alkaline environments, including wet Portland cement pastes, is lower than that of current AR silicate fibers. Another series of Ca-Fe-phosphate glasses were developed with excellent chemical durability in strong acidic solutions (H2SO4, HF), indicating potential applications where silica-based fibers degrade very quickly, including E-glass. The new Ca-Fe-phosphate glasses can be melted and processed 300 to 500°C lower than silica-based glasses. This offers the possibility of manufacturing glass fibers with lower energy costs by 40-60% and the potential to reduce manufacturing waste and lower gas emissions. It was found that Ca-Fe-phosphate melts can be continuously pulled into fibers depending on the slope of the viscosity-temperature curve and with viscosity ~100 poise, using multi-hole Pt/Rh bushings.

  13. Fault-tolerance techniques for high-speed fiber-optic networks

    Science.gov (United States)

    Deruiter, John

    1991-01-01

    Four fiber optic network topologies (linear bus, ring, central star, and distributed star) are discussed relative to their application to high data throughput, fault tolerant networks. The topologies are also examined in terms of redundancy and the need to provide for single point, failure free (or better) system operation. Linear bus topology, although traditionally the method of choice for wire systems, presents implementation problems when larger fiber optic systems are considered. Ring topology works well for high speed systems when coupled with a token passing protocol, but it requires a significant increase in protocol complexity to manage system reconfiguration due to ring and node failures. Star topologies offer a natural fault tolerance, without added protocol complexity, while still providing high data throughput capability.

  14. Study on creep of fiber reinforced ultra-high strength concrete based on strength

    Science.gov (United States)

    Peng, Wenjun; Wang, Tao

    2018-04-01

    To complement the creep performance of ultra-high strength concrete, the long creep process of fiber reinforced concrete was studied in this paper. The long-term creep process and regularity of ultra-high strength concrete with 0.5% PVA fiber under the same axial compression were analyzed by using concrete strength (C80/C100/C120) as a variable. The results show that the creep coefficient of ultra-high strength concrete decreases with the increase of concrete strength. Compared with ACI209R (92), GL2000 models, it is found that the predicted value of ACI209R (92) are close to the experimental value, and the creep prediction model suitable for this experiment is proposed based on ACI209R (92).

  15. Effects of CO 2 on a High Performance Hollow-Fiber Membrane for Natural Gas Purification

    KAUST Repository

    Omole, Imona C.

    2010-05-19

    A 6FDA-based, cross-linkable polyimide was characterized in the form of a defect-free asymmetric hollow-fiber membrane. The novel membrane was cross-linked at various temperatures and tested for natural gas purification in the presence of high CO2 partial pressures. The cross-linked membrane material shows high intrinsic separation performance for CO2 and CH4 (selectivity ∼49, CO2 permeability ∼161 barrer, with a feed at 65 psia, 35 °C, and 10% CO2). Cross-linked asymmetric hollow-fiber membranes made from the material show good resistance to CO2-induced plasticization. Carbon dioxide partial pressures as high as ∼400 psia were employed, and the membrane was shown to be promisingly stable under these aggressive conditions. The performance of the membrane was also analyzed using the dual-mode sorption/transport model. © 2010 American Chemical Society.

  16. High core count single-mode multicore fiber for dense space division multiplexing

    DEFF Research Database (Denmark)

    Aikawa, K.; Sasaki, Y.; Amma, Y.

    2016-01-01

    Multicore fibers and few-mode fibers have the potential to realize dense-space-division multiplexing systems. Several dense-space-division multiplexing system transmission experiments over multicore fibers and few-mode fibers have been demonstrated so far. Multicore fibers, including recent resul...

  17. Intestinal Microbiota and Microbial Metabolites Are Changed in a Pig Model Fed a High-Fat/Low-Fiber or a Low-Fat/High-Fiber Diet.

    Directory of Open Access Journals (Sweden)

    Sonja N Heinritz

    Full Text Available The intestinal microbiota and its metabolites appear to be an important factor for gastrointestinal function and health. However, research is still needed to further elaborate potential relationships between nutrition, gut microbiota and host's health by means of a suitable animal model. The present study examined the effect of two different diets on microbial composition and activity by using the pig as a model for humans. Eight pigs were equally allotted to two treatments, either fed a low-fat/high-fiber (LF, or a high-fat/low-fiber (HF diet for 7 weeks. Feces were sampled at day 7 of every experimental week. Diet effects on fecal microbiota were assessed using quantitative real-time PCR, DNA fingerprinting and metaproteomics. Furthermore, fecal short-chain fatty acid (SCFA profiles and ammonia concentrations were determined. Gene copy numbers of lactobacilli, bifidobacteria (P0.05. Results provide evidence that beginning from the start of the experiment, the LF diet stimulated beneficial bacteria and SCFA production, especially butyrate (P<0.05, while the HF diet fostered those bacterial groups which have been associated with a negative impact on health conditions. These findings correspond to results in humans and might strengthen the hypothesis that the response of the porcine gut microbiota to a specific dietary modulation is in support of using the pig as suitable animal model for humans to assess diet-gut-microbiota interactions. Data are available via ProteomeXchange with identifier PXD003447.

  18. Extraction and characterization of Retama monosperma fibers | Aizi ...

    African Journals Online (AJOL)

    The Young's modulus was 13.3 GPa, tensile strength was 110 MPa and density was 1.3 g/cm3. The average fiber length was 155.7 mm. The fibers yield and characteristics showed that R. monosperma plant may in future be suitable source for natural fibers. Key words: Retama monosperma young stems, fibers, extraction, ...

  19. High-resolution 3D laser imaging based on tunable fiber array link

    Science.gov (United States)

    Zhao, Sisi; Ruan, Ningjuan; Yang, Song

    2017-10-01

    Airborne photoelectric reconnaissance system with the bore sight down to the ground is an important battlefield situational awareness system, which can be used for reconnaissance and surveillance of complex ground scene. Airborne 3D imaging Lidar system is recognized as the most potential candidates for target detection under the complex background, and is progressing in the directions of high resolution, long distance detection, high sensitivity, low power consumption, high reliability, eye safe and multi-functional. However, the traditional 3D laser imaging system has the disadvantages of lower imaging resolutions because of the small size of the existing detector, and large volume. This paper proposes a high resolution laser 3D imaging technology based on the tunable optical fiber array link. The echo signal is modulated by a tunable optical fiber array link and then transmitted to the focal plane detector. The detector converts the optical signal into electrical signals which is given to the computer. Then, the computer accomplishes the signal calculation and image restoration based on modulation information, and then reconstructs the target image. This paper establishes the mathematical model of tunable optical fiber array signal receiving link, and proposes the simulation and analysis of the affect factors on high density multidimensional point cloud reconstruction.

  20. High-damage-resistant tungsten disulfide saturable absorber mirror for passively Q-switched fiber laser.

    Science.gov (United States)

    Chen, Hao; Chen, YuShan; Yin, Jinde; Zhang, Xuejun; Guo, Tuan; Yan, Peiguang

    2016-07-25

    In this paper, we demonstrate a high-damage-resistant tungsten disulfide saturable absorber mirror (WS2-SAM) fabricated by magnetron sputtering technique. The WS2-SAM has an all-fiber-integrated configuration and high-damage-resistant merit because the WS2 layer is protected by gold film so as to avoid being oxidized and destroyed at high pump power. Employing the WS2-SAM in an Erbium-doped fiber laser (EDFL) with linear cavity, the stable Q-switching operation is achieved at central wavelength of 1560 nm, with the repetition rates ranging from 29.5 kHz to 367.8 kHz and the pulse duration ranging from 1.269 μs to 154.9 ns. For the condition of the maximum pump power of 600 mW, the WS2-SAM still works stably with an output power of 25.2 mW, pulse energy of 68.5 nJ, and signal-noise-ratio of 42 dB. The proposed WS2-SAM configuration provides a promising solution for advanced pulsed fiber lasers with the characteristics of high damage resistance, high output energy, and wide tunable frequency.

  1. Improvements to a high-frequency fiber-optic system for plasma diagnostics

    International Nuclear Information System (INIS)

    Ogle, J.W.; Lyons, P.B.; Looney, L.; Hocker, L.; Nelson, M.A.; Zagarino, P.A.; Davies, T.J.; Simmons, R.D.; Selk, R.; Hopkins, B.

    1981-01-01

    A system for high-frequency recording of plasma diagnostics has previously been reported. Substantial improvements have been made in the system response, dynamic range, and calibration of the system. Plastic-clad silica fiber is used as a radiation-to-light converter using the Cerenkov process. A spectral equalizer device is used to compensate for the material dispersion in the fiber, increasing the frequency response (approx. = 1 GHz-km) and the dynamic range (a factor of > 20 over a FWHM 1 nm, 50% transmitting interference filter). The calibration system uses a pulsed injection laser diode (< 100 ps FWHM) injected into the fiber at the radiation end of the fiber and detected by a microchannel plate photomultiplier tube on the recording end. The injection laser diode is triggered by a synchronous trigger delay unit, which also triggers a sampling or real time scope after as much as 10 μs delay with < 50 ps jitter. The system improvements are described in detail and the utility of these components in other plasma diagnostic systems is discussed

  2. High spatial resolution distributed fiber system for multi-parameter sensing based on modulated pulses.

    Science.gov (United States)

    Zhang, Jingdong; Zhu, Tao; Zhou, Huan; Huang, Shihong; Liu, Min; Huang, Wei

    2016-11-28

    We demonstrate a cost-effective distributed fiber sensing system for the multi-parameter detection of the vibration, the temperature, and the strain by integrating phase-sensitive optical time domain reflectometry (φ-OTDR) and Brillouin optical time domain reflectometry (B-OTDR). Taking advantage of the fast changing property of the vibration and the static properties of the temperature and the strain, both the width and intensity of the laser pulses are modulated and injected into the single-mode sensing fiber proportionally, so that three concerned parameters can be extracted simultaneously by only one photo-detector and one data acquisition channel. A data processing method based on Gaussian window short time Fourier transform (G-STFT) is capable of achieving high spatial resolution in B-OTDR. The experimental results show that up to 4.8kHz vibration sensing with 3m spatial resolution at 10km standard single-mode fiber can be realized, as well as the distributed temperature and stress profiles along the same fiber with 80cm spatial resolution.

  3. Distributed Optical Fiber Radiation and Temperature Sensing at High Energy Accelerators and Experiments

    CERN Document Server

    AUTHOR|(CDS)2090137; Brugger, Markus

    The aim of this Thesis is to investigate the feasibility of a distributed optical fiber radiation sensing system to be used at high energy physics accelerators and experiments where complex mixed-field environments are present. In particular, after having characterized the response of a selection of radiation sensitive optical fibers to ionizing radiation coming from a 60Co source, the results of distributed optical fiber radiation measurements in a mixed-field environment are presented along with the method to actually estimate the dose variation. This study demonstrates that distributed optical fiber dosimetry in the above mentioned mixed-field radiation environment is feasible, allowing to detect dose variations of about 10-15 Gy with a 1 m spatial resolution. The proof of principle has fully succeeded and we can now tackle the challenge of an industrial installation taking into account that some optimizations need to be done both on the control unit of the system as well as on the choice of the sensing f...

  4. High peak power picosecond hybrid fiber and solid-state amplifier system

    International Nuclear Information System (INIS)

    Wushouer, X; Yan, P; Yu, H; Liu, Q; Fu, X; Yan, X; Gong, M

    2010-01-01

    We report the high peak power picosecond hybrid fiber and solid-state laser amplifier system. The passively mode-locked solid-state seed source produced an average power of 1.8 W with pulse width of 14 ps and repetition rate of 86 MHz. It was directly coupled into the first Yb-doped polarized photonic crystal fiber amplifier stage. To avoid the nonlinear effects in fiber, the output power from the first stage was merely amplified to 24 W with the narrow spectra broadening of 0.21 nm. For the improvement of the peak power, the dual-end pumped composite Nd:YVO 4 amplifier system has been chosen at the second stage. To reduce the serious thermal effect, the thermally bonded composite YVO 4 – Nd:YVO 4 – YVO 4 rod crystal was used as the gain medium. The 53 W TEM 00 mode with the peak power of 40 kW, beam quality of M 2 < 1.15, corresponding to the optical-optical efficiency of 42.4% was obtained at the hybrid amplifier laser system. The system allows using a low power seed source and demonstrates an increase in the peak power beyond a fiber master oscillator power amplifier's (MOPA's) limit

  5. Water Absorption Properties of Heat-Treated Bamboo Fiber and High Density Polyethylene Composites

    Directory of Open Access Journals (Sweden)

    Lanxing Du

    2014-01-01

    Full Text Available To modify water absorption properties of bamboo fiber (BF and high density polyethylene (HDPE composites, heat treatment of BFs was performed prior to compounding them with HDPE to form the composites. The moisture sorption property of the composites was measured and their diffusion coefficients (Dm were evaluated using a one-dimensional diffusion model. Moisture diffusion coefficient values of all composites were in the range of 0.115x10-8 to 1.267x10-8 cm2/s. The values of Dm decreased with increasing BF heat-treatment temperature, and increased with increasing BF loading level. The Dm value of 40 wt% bamboo fiber/HDPE composites with BFs treated with 100 oC was the greatest (i.e., 1.267x10-8cm2/s. Morphology analysis showed increased fiber-matrix interfacial bonding damage due to fiber swelling and shrinking from water uptaking and drying. The mechanism of water absorption of the composite, indicated a general Fickian diffusion process.

  6. Detection of Crossing White Matter Fibers with High-Order Tensors and Rank-k Decompositions

    KAUST Repository

    Jiao, Fangxiang; Gur, Yaniv; Johnson, Chris R.; Joshi, Sarang

    2011-01-01

    Fundamental to high angular resolution diffusion imaging (HARDI), is the estimation of a positive-semidefinite orientation distribution function (ODF) and extracting the diffusion properties (e.g., fiber directions). In this work we show that these two goals can be achieved efficiently by using homogeneous polynomials to represent the ODF in the spherical deconvolution approach, as was proposed in the Cartesian Tensor-ODF (CT-ODF) formulation. Based on this formulation we first suggest an estimation method for positive-semidefinite ODF by solving a linear programming problem that does not require special parameterization of the ODF. We also propose a rank-k tensor decomposition, known as CP decomposition, to extract the fibers information from the estimated ODF. We show that this decomposition is superior to the fiber direction estimation via ODF maxima detection as it enables one to reach the full fiber separation resolution of the estimation technique. We assess the accuracy of this new framework by applying it to synthetic and experimentally obtained HARDI data. © 2011 Springer-Verlag.

  7. Portable evanescent wave fiber biosensor for highly sensitive detection of Shigella

    Science.gov (United States)

    Xiao, Rui; Rong, Zhen; Long, Feng; Liu, Qiqi

    2014-11-01

    A portable evanescent wave fiber biosensor was developed to achieve the rapid and highly sensitive detection of Shigella. In this study, a DNA probe was covalently immobilized onto fiber-optic biosensors that can hybridize with a fluorescently labeled complementary DNA. The sensitivity of detection for synthesized oligonucleotides can reach 10-10 M. The surface of the sensor can be regenerated with 0.5% sodium dodecyl sulfate solution (pH 1.9) for over 30 times without significant deterioration of performance. The total analysis time for a single sample, including the time for measurement and surface regeneration, was less than 6 min. We employed real-time polymerase chain reaction (PCR) and compared the results of both methods to investigate the actual Shigella DNA detection capability of the fiber-optic biosensor. The fiber-optic biosensor could detect as low as 102 colony-forming unit/mL Shigella. This finding was comparable with that by real-time PCR, which suggests that this method is a potential alternative to existing detection methods.

  8. High-functionalization of fiber-forming materials. Polymer membrane as separation media

    Energy Technology Data Exchange (ETDEWEB)

    Kamide, Kenji; Iijima, Hideki (Asahi Chemical Industry Co. Ltd., Osaka, (Japan))

    1989-07-05

    For obtaining higher functions by donating specific functions to the fiber, it is effective to change its structure. Various separating films which is known as an example of the high-functionalization of the fiber materials is an example of the fiber structure conversion from the view-point of substance-permeating function. This report firstly describes the features and types of the film separation method and the production of films, and then on the correlation between the structure and functions of the fibers, the correlation of the structure and the separating characteristics of the films, and the mechanism of the emergence of the film structure. Finally, applied examples of the film separating method in the medical field are described. In the medical liquid film separation, blood or plasma are the object of the separation. Blood has various components whose concentration and particle size are multiplicated, and yet requires a tremendous separating accuracy when compared with the industrial separation. Examples are a blood dialyzer film and an ultrafiltration film (film for plasma separation and virus separation), etc.. 28 refs., 6 figs., 2 tabs.

  9. Design of FHiRE: the Fiber High Resolution Echelle Spectrograph

    Science.gov (United States)

    Pierce, Michael J.; McLane, Jacob N.; Pilachowski, C. A.; Kobulnicky, Henry; Jang-Condell, Hannah

    2018-01-01

    The enormous success of the Kepler mission in the discovery of transiting exoplanets implies that the majority of stars have planetary systems. NASA's upcomming Transiting Exoplanet Survey Satellite (TESS) is designed to survey the brightest stars over the entire sky, systems that are accessible to spectroscopic follow-up with mid-sized telescopes. We have undertaken the development of a precision radial velocity spectrograph with the goal of providing ground-based suppoert for TESS. The instrument, known as FHiRE (Fiber High Resolution Echelle spectrograph), is being developed in collaboration with Indiana University and will deployed at the 2.3-meter telescope of the Wyoming InfraRed Observatory (WIRO). FHiRE features a traditional white pupil echelle design with R ~ 60,000 that is fed via two optical fibers from the telescope. Both the science fiber and a simultaneously sampled Thorium-Argon comparison fiber will make use of double mode scramblers. FHiRE itself will be housed within a vacuum enclosure in order to minimize any temperatue variations of the instrument and maximize its radial velocity precision. Together, these two features should enable FHiRE to reach a long-term velocity precision of < 1 m/s. We present the design of FHiRE and its expected performance. In a companion poster (Jang-Condell et al.) we will present the exoplanet science goals of the project.

  10. Restrained Shrinkage Cracking of Fiber-Reinforced High-Strength Concrete

    Directory of Open Access Journals (Sweden)

    Ashkan Saradar

    2018-02-01

    Full Text Available Concrete shrinkage and volume reduction happens due to the loss of moisture, which eventually results in cracks and more concrete deformation. In this study, the effect of polypropylene (PP, steel, glass, basalt, and polyolefin fibers on compressive and flexural strength, drying shrinkage, and cracking potential, using the ring test at early ages of high-strength concrete mixtures, was investigated. The restrained shrinkage test was performed on concrete ring specimens according to the ASTM C1581 standard. The crack width and age of restrained shrinkage cracking were the main parameters studied in this research. The results indicated that the addition of fiber increases the compressive strength by 16%, 20%, and 3% at the age of 3, 7, and 28 days, respectively, and increases the flexural toughness index up to 7.7 times. Steel and glass fibers had a better performance in flexural strength, but relatively poor action in the velocity reduction and cracking time of the restrained shrinkage. Additionally, cracks in all concrete ring specimens except for the polypropylene-containing mixture, was developed to a full depth crack. The mixture with polypropylene fiber indicated a reduction in crack width up to 62% and an increasing age cracking up to 84%.

  11. Highly sensitive rotation sensing based on orthogonal fiber-optic structures

    Science.gov (United States)

    Yang, Yi; Wang, Zi-nan; Xu, Lian-yu; Wang, Cui-yun; Jia, Lei; Yu, Xiao-qi; Shao, Shan; Li, Zheng-bin

    2011-08-01

    In traditional fiber-optic gyroscopes (FOG), the polarization state of counter propagating waves is critically controlled, and only the mode polarized along one particular direction survives. This is important for a traditional single mode fiber gyroscope as the requirement of reciprocity. However, there are some fatal defects such as low accuracy and poor bias stability in traditional structures. In this paper, based on the idea of polarization multiplexing, a double-polarization structure is put forward and experimentally studied. In highly birefringent fibers or standard single mode fibers with induced anisotropy, two orthogonal polarization modes can be used at the same time. Therefore, in polarization maintaining fibers (PMF), each pair of counter propagating beams preserve reciprocity within their own polarization state. Two series of sensing results are gotten in the fast and slow axes in PMF. The two sensing results have their own systematic drifts and the correlation of random noise in them is approximately zero. So, beams in fast and slow axes work as two independent and orthogonal gyroscopes. In this way, amount of information is doubled, providing opportunity to eliminate noise and improve sensitivity. Theoretically, this double-polarization structure can achieve a sensitivity of 10-18 deg/h. Computer simulation demonstrates that random noise and systematic drifts are largely reduced in this novel structure. In experiment, a forty-hour stability test targeting the earth's rotation velocity is carried out. Experiment result shows that the orthogonal fiber-optic structure has two big advantages compared with traditional ones. Firstly, the structure gets true value without any bias correction in any axis and even time-varying bias does not affect the acquisition of true value. The unbiasedness makes the structure very attractive when sudden disturbances or temperature drifts existing in working environment. Secondly, the structure lowers bias for more than

  12. Low-cost and high-capacity short-range optical interconnects using graded-index plastic optical fiber

    NARCIS (Netherlands)

    Tangdiongga, E.; Yang, H.; Lee, S.C.J.; Okonkwo, C.M.; Boom, van den H.P.A.; Randel, S.; Koonen, A.M.J.

    2010-01-01

    We demonstrate a transmission rate of 51.8 Gb/s over 100-meters of perfluorinated multimode graded-index plastic optical fiber using discrete multitone modulation. The results prove suitability of plastic fibers for low-cost high-capacity optical interconnects.

  13. Investigations on birefringence effects in polymer optical fiber Bragg gratings

    DEFF Research Database (Denmark)

    Hu, Xiaolian; Saez-Rodriguez, D.; Bang, Ole

    2014-01-01

    Step-index polymer optical fiber Bragg gratings (POFBGs) and microstructured polymer optical fiber Bragg gratings (mPOFBGs) present several attractive features, especially for sensing purposes. In comparison to FBGs written in silica fibers, they are more sensitive to temperature and pressure...... because of the larger thermo-optic coefficient and smaller Young's modulus of polymer materials. (M)POFBGs are most often photowritten in poly(methylmethacrylate) (PMMA) materials using a continuous-wave 325 nm HeCd laser. For the first time to the best of our knowledge, we study photoinduced...... birefringence effects in (m)POFBGs. To achieve this, highly reflective gratings were inscribed with the phase mask technique. They were then monitored in transmission with polarized light. For this, (m)POF sections a few cm in length containing the gratings were glued to angled silica fibers. Polarization...

  14. Is a high-fiber diet able to influence ovalbumin-induced allergic airway inflammation in a mouse model?

    Science.gov (United States)

    Zhang, Zhiyu; Shi, Lei; Pang, Wenhui; Wang, Xiaoting; Li, Jianfeng; Wang, Haibo; Shi, Guanggang

    2016-01-01

    More recently, a large amount of experimental and clinical discovered that dietary- fiber intake would decrease the susceptibility to allergic airway disease (AAD) and respiratory inflammation. To investigate whether a fiber-intake supplement is able to influence the induction of AAD and to elucidate the interactive relationship. AAD model mice and control mice were raised on a fundamental diet with standard 4% fiber content, whereas other mice were fed a 10% fiber-content diet in the high fiber-content group, along with a 25% fiber-content diet instead in very-high fiber-content group. All experimental mice were sensitized and challenged with ovalbumin to induce allergic inflammation in both the upper and lower airways. Hallmarks of AAD were examined in terms of eosinophil infiltration and goblet cell metaplasia in subepithelial mucosa, T-helper type 1 (Th1) to Th2 skewing of the immune response. Furthermore, to elucidate the interrelations, we generated 16S ribosomal DNA from fecal samples and further validated the variation of colony composition in each group. The excessive high-fiber supplement induced a promoting effect rather than a suppressive effect, including a rise in nasal rubbing and sneezing, an increase in eosinophil inflammation and goblet cell metaplasia in subepithelial mucosa, and promoted Th2 skewing of the immune response as well as the production of serum levels of ovalbumin-specific immunoglobulin E. Moreover, overconsumption of dietary fiber greatly altered the construction of bacterial flora in the intestinal tract, including an increased proportion of Firmicutes, Actinobacteria, and Proteobacteria, and a decreased proportion of Bacteroidetes. Our work indicated that, instead of a protecting impact, excessive fiber intake preformed a negative influence on the induction of AAD. Therefore, we suspected that an excessive supplement of dietary fiber might not be an advisable method for the prevention and treatment of AADs.

  15. Differentiation of molecular chain entanglement structure through laser Raman spectrum measurement of High strength PET fibers under stress

    Science.gov (United States)

    Go, D.; Takarada, W.; Kikutani, T.

    2017-10-01

    The aim of this study was to investigate the mechanism for the improvement of mechanical properties of poly(ethylene terephthalate) (PET) fibers based on the concept of controlling the state of molecular entanglement. For this purpose, five different PET fibers were prepared through either the conventional melt spinning and drawing/annealing process or the high-speed melt spinning process. In both cases, the melt spinning process was designed so as to realize different Deborah number conditions. The prepared fibers were subjected to the laser Raman spectroscopy measurement and the characteristics of the scattering peak at around 1616 cm-1, which corresponds to the C-C/C=C stretching mode of the aromatic ring in the main chain, were investigated in detail. It was revealed that the fibers drawn and annealed after the melt spinning process of lower Deborah number showed higher tensile strength as well as lower value of full width at half maximum (FWHM) in the laser Raman spectrum. Narrow FWHM was considered to represent the homogeneous state of entanglement structure, which may lead to the higher strength and toughness of fibers because individual molecular chains tend to bare similar level of tensile stress when the fiber is stretched. In case of high-speed spun fibers prepared with a high Deborah number condition, the FWHM was narrow presumably because much lower tensile stress in comparison with the drawing/annealing process was applied when the fiber structure was developed, however the value increased significantly upon applying tensile load to the fibers during the laser Raman spectrum measurement. From these results, it was concluded that the Laser Raman spectroscopy could differentiate molecular chain entanglement structure of various fiber samples, in that low FWHM, which corresponds to either homogeneous state of molecular entanglement or lower level of mean residual stress, and small increase of FWTH upon applying tensile stress are considered to be the key

  16. Low–Cost Bio-Based Carbon Fiber for High-Temperature Processing

    Energy Technology Data Exchange (ETDEWEB)

    Naskar, Amit K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Akato, Kokouvi M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Tran, Chau D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Paul, Ryan M. [GrafTech International Holdings, Inc., Brooklyn Heights, OH (United States); Dai, Xuliang [GrafTech International Holdings, Inc., Brooklyn Heights, OH (United States)

    2017-02-01

    GrafTech International Holdings Inc. (GTI), worked with Oak Ridge National Laboratory (ORNL) under CRADA No. NFE-15-05807 to develop lignin-based carbon fiber (LBCF) technology and to demonstrate LBCF performance in high-temperature products and applications. This work was unique and different from other reported LBCF work in that this study was application-focused and scalability-focused. Accordingly, the executed work was based on meeting criteria based on technology development, cost, and application suitability. The focus of this work was to demonstrate lab-scale LBCF from at least 4 different precursor feedstock sources that could meet the estimated production cost of $5.00/pound and have ash level of less than 500 ppm in the carbonized insulation-grade fiber. Accordingly, a preliminary cost model was developed based on publicly available information. The team demonstrated that 4 lignin samples met the cost criteria, as highlighted in Table 1. In addition, the ash level for the 4 carbonized lignin samples were below 500 ppm. Processing asreceived lignin to produce a high purity lignin fiber was a significant accomplishment in that most industrial lignin, prior to purification, had greater than 4X the ash level needed for this project, and prior to this work there was not a clear path of how to achieve the purity target. The lab scale development of LBCF was performed with a specific functional application in mind, specifically for high temperature rigid insulation. GTI is currently a consumer of foreignsourced pitch and rayon based carbon fibers for use in its high temperature insulation products, and the motivation was that LBCF had potential to decrease costs and increase product competitiveness in the marketplace through lowered raw material costs, lowered energy costs, and decreased environmental footprint. At the end of this project, the Technology Readiness Level (TRL) remained at 5 for LBCF in high temperature insulation.

  17. Research on mechanical and sensoric set-up for high strain rate testing of high performance fibers

    Science.gov (United States)

    Unger, R.; Schegner, P.; Nocke, A.; Cherif, C.

    2017-10-01

    Within this research project, the tensile behavior of high performance fibers, such as carbon fibers, is investigated under high velocity loads. This contribution (paper) focuses on the clamp set-up of two testing machines. Based on a kinematic model, weight optimized clamps are designed and evaluated. By analyzing the complex dynamic behavior of conventional high velocity testing machines, it has been shown that the impact typically exhibits an elastic characteristic. This leads to barely predictable breaking speeds and will not work at higher speeds when acceleration force exceeds material specifications. Therefore, a plastic impact behavior has to be achieved, even at lower testing speeds. This type of impact behavior at lower speeds can be realized by means of some minor test set-up adaptions.

  18. Monolithic, High-Speed Fiber-Optic Switching Array for Lidar, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed optical device is a fiber-based multi-channel switch to quickly switch a fiber-coupled laser among many possible output channels to create a fiber-based...

  19. Improving the bonding between henequen fibers and high density polyethylene using atmospheric pressure ethylene-plasma treatments

    Directory of Open Access Journals (Sweden)

    A. Aguilar-Rios

    2014-07-01

    Full Text Available In order to improve the bonding between henequen fibers (Agave fourcroydes and High Density Polyethylene (HDPE, they were treated in an ethylene-dielectric barrier discharge (DBD plasma operating at atmospheric pressure. A 23 factorial experimental design was used to study the effects of the plasma operational parameters, namely, frequency, flow rate and exposure time, over the fiber tensile mechanical properties and its adhesion to HDPE. The fiber-matrix Interfacial Shear Strength (IFSS was evaluated by means of the single fiber pull-out test. The fiber surface chemical changes were assessed by photoacoustic Fourier transform infrared spectroscopy (PAS-FTIR and the changes in surface morphology with scanning electron microscopy (SEM. The results indicate that individual operational parameters in the DBD plasma treatment have different effects on the tensile properties of the henequen fibers and on its bonding to HDPE. The SEM results show that the plasma treatment increased the roughness of the fiber surface. The FTIR result seems to indicate the presence of a hydrocarbon-like polymer film, bearing some vinyl groups deposited onto the fibers. These suggests that the improvement in the henequen-HDPE bonding could be the result of the enhancement of the mechanical interlocking, due the increment in roughness, and the possible reaction of the vinyl groups on the film deposited onto the fiber with the HDPE.

  20. Optical fiber imaging for high speed plasma motion diagnostics: Applied to low voltage circuit breakers

    International Nuclear Information System (INIS)

    McBride, J. W.; Balestrero, A.; Tribulato, G.; Ghezzi, L.; Cross, K. J.

    2010-01-01

    An integrated portable measurement system is described for the study of high speed and high temperature unsteady plasma flows such as those found in the vicinity of high current switching arcs. An array of optical fibers allows the formation of low spatial resolution images, with a maximum capture rate of 1x10 6 images per second (1 MHz), with 8 bit intensity resolution. Novel software techniques are reported to allow imaging of the arc; and to measure arc trajectories. Results are presented on high current (2 kA) discharge events in a model test fixture and on the application to a commercial low voltage circuit breaker.