WorldWideScience

Sample records for high modulus carbon

  1. Failure Modes of a Unidirectional Ultra-High-Modulus Carbon-Fiber/Carbon-Matrix Composite

    National Research Council Canada - National Science Library

    Zaldivar, R

    1998-01-01

    The objective of this study was to observe the effects of various microstructural features on the in situ, room-temperature tensile fracture behavior of an ultra-high-modulus, unidirectional carbon/carbon (C/C...

  2. A Study on Accelerated Thermal Aging of High Modulus Carbon/Epoxy Composite Material

    Directory of Open Access Journals (Sweden)

    Ju Min Kyung

    2015-01-01

    Full Text Available Composite materials have been used increasingly for various space applications due to the favorable characteristic of high modulus to density ratio and potential for near-zero coefficient of thermal expansion. In composite system, depending on the orientation of fibers, strength and stiffness can be changed so that the optimum structure can be accomplished. This is because the coefficient of thermal expansion (CTE of carbon fibers is negative. For spacecraft and orbiting space structure, which are thermally cycled by moving through the earth' shadow for at least 5 years, it is necessary to investigate the change of properties of the material over time. In this study, thermal aging of epoxy matrix/high modulus carbon fiber composite materials are accelerated to predict the long term creep property. Specimens are tested at various temperatures of 100~140°C with dynamic mechanical analysis to obtain creep compliances that are functions of time and temperature. Using Time Temperature Superposition method, creep compliance curves at each temperature are shifted to the reference temperature by shift factor and a master curve is generated at the reference temperature. This information is useful to predict the long term thermal aging of high modulus composite material for spacecraft application.

  3. The Young's modulus of high-aspect-ratio carbon/carbon nanotube composite microcantilevers by experimental and modeling validation

    International Nuclear Information System (INIS)

    Zhou, Peng; Yang, Xiao; He, Liang; Hao, Zhimeng; Luo, Wen; Xiong, Biao; Xu, Xu; Niu, Chaojiang; Yan, Mengyu; Mai, Liqiang

    2015-01-01

    This paper reports the Young's modulus of a carbon nanotube (CNT)-reinforced carbon/CNT (C/CNT) composite microcantilevers measured by laser Doppler vibrometer and validated by finite element method. Also, the microfabrication process of the high-aspect-ratio C/CNT microcantilever arrays based on silicon micromolding and pyrolysis is presented in detail. With the in-plane natural resonant frequencies of the microcantilevers measured by a laser Doppler vibrometer, a single degree of freedom (SDoF) model based on Euler-Bernoulli (E-B) beam theory is used to calculate the Young's modulus of this composite. To figure out whether this SDoF model can be applied to these composite microcantilevers, the finite element (FE) simulation of these microcantilevers was performed. The Young's modulus of C/CNT composite microcantilevers fabricated by the pyrolysis process at 600 °C is 9391 MPa, and a good agreement between the results from experiments and FE simulation is obtained

  4. Influence of the Testing Gage Length on the Strength, Young's Modulus and Weibull Modulus of Carbon Fibres and Glass Fibres

    Directory of Open Access Journals (Sweden)

    Luiz Claudio Pardini

    2002-10-01

    Full Text Available Carbon fibres and glass fibres are reinforcements for advanced composites and the fiber strength is the most influential factor on the strength of the composites. They are essentially brittle and fail with very little reduction in cross section. Composites made with these fibres are characterized by a high strength/density ratio and their properties are intrisically related to their microstructure, i.e., amount and orientation of the fibres, surface treatment, among other factors. Processing parameters have an important role in the fibre mechanical behaviour (strength and modulus. Cracks, voids and impurities in the case of glass fibres and fibrillar misalignments in the case of carbon fibres are created during processing. Such inhomogeneities give rise to an appreciable scatter in properties. The most used statistical tool that deals with this characteristic variability in properties is the Weibull distribution. The present work investigates the influence of the testing gage length on the strength, Young's modulus and Weibull modulus of carbon fibres and glass fibres. The Young's modulus is calculated by two methods: (i ASTM D 3379M, and (ii interaction between testing equipment/specimen The first method resulted in a Young modulus of 183 GPa for carbon fibre, and 76 GPa for glass fibre. The second method gave a Young modulus of 250 GPa for carbon fibre and 50 GPa for glass fibre. These differences revelead differences on how the interaction specimen/testing machine can interfere in the Young modulus calculations. Weibull modulus can be a tool to evaluate the fibre's homogeneity in terms of properties and it is a good quality control parameter during processing. In the range of specimen gage length tested the Weibull modulus for carbon fibre is ~ 3.30 and for glass fibres is ~ 5.65, which indicates that for the batch of fibres tested, the glass fibre is more uniform in properties.

  5. Effect of young’s modulus on springback for low, medium and high carbon steels during cold drawing of seamless tubes

    Science.gov (United States)

    Karanjule, D. B.; Bhamare, S. S.; Rao, T. H.

    2018-04-01

    Cold drawing is widely used deformation process for seamless tube manufacturing. Springback is one of the major problem faced in tube drawing. Springback is due to the elastic energy stored in the tubes during forming process. It is found that this springback depends upon Young’s modulus of the material. This paper reports mechanical testing of three grades of steels viz. low carbon steel, medium carbon steel and high carbon steel to measure their Young’s modulus and corresponding springback. The results shows that there is 10-20 % variation in the Young’s modulus and inverse proportion between the springback and Young’s modulus. More the percentage of carbon, more the strength, less the value of Young’s modulus and more will springback. The study further leads to identify optimum die semi angle of 15 degree, land width of 10 mm and drawing speed of 8, 6 and 4 m/min for least springback in all the three grades respectively and die semi angle as a most dominant factor causing springback.

  6. The effect of gamma ray irradiation on PAN-based intermediate modulus carbon fibers

    International Nuclear Information System (INIS)

    Li, Bin; Feng, Yi; Qian, Gang; Zhang, Jingcheng; Zhuang, Zhong; Wang, Xianping

    2013-01-01

    Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) were conducted on PAN-based intermediate modulus carbon fibers to investigate the structure and surface hydrophilicity of the carbon fibers before and after gamma irradiation. Two methods were used to determine Young’s modulus of the carbon fibers. The results show that gamma ray irradiation improved the degree of graphitization and introduced compressive stress into carbon fiber surface. Gamma ray also improved the carbon fiber surface hydrophilicity through increasing the value of O/C and enhancing the quantity of oxygen functional groups on carbon fibers. No distinct morphology change was observed after gamma ray irradiation. The Young’s modulus of the fibers increased with increasing irradiation dose

  7. Zipping, entanglement, and the elastic modulus of aligned single-walled carbon nanotube films

    Science.gov (United States)

    Won, Yoonjin; Gao, Yuan; Panzer, Matthew A.; Xiang, Rong; Maruyama, Shigeo; Kenny, Thomas W.; Cai, Wei; Goodson, Kenneth E.

    2013-01-01

    Reliably routing heat to and from conversion materials is a daunting challenge for a variety of innovative energy technologies––from thermal solar to automotive waste heat recovery systems––whose efficiencies degrade due to massive thermomechanical stresses at interfaces. This problem may soon be addressed by adhesives based on vertically aligned carbon nanotubes, which promise the revolutionary combination of high through-plane thermal conductivity and vanishing in-plane mechanical stiffness. Here, we report the data for the in-plane modulus of aligned single-walled carbon nanotube films using a microfabricated resonator method. Molecular simulations and electron microscopy identify the nanoscale mechanisms responsible for this property. The zipping and unzipping of adjacent nanotubes and the degree of alignment and entanglement are shown to govern the spatially varying local modulus, thereby providing the route to engineered materials with outstanding combinations of mechanical and thermal properties. PMID:24309375

  8. Investigation of test methods for measuring compressive strength and modulus of two-dimensional carbon-carbon composites

    Science.gov (United States)

    Ohlhorst, Craig W.; Sawyer, James Wayne; Yamaki, Y. Robert

    1989-01-01

    An experimental evaluation has been conducted to ascertain the the usefulness of two techniques for measuring in-plane compressive failure strength and modulus in coated and uncoated carbon-carbon composites. The techniques involved testing specimens with potted ends as well as testing them in a novel clamping fixture; specimen shape, length, gage width, and thickness were the test parameters investigated for both coated and uncoated 0/90 deg and +/-45 deg laminates. It is found that specimen shape does not have a significant effect on the measured compressive properties. The potting of specimen ends results in slightly higher measured compressive strengths than those obtained with the new clamping fixture. Comparable modulus values are obtained by both techniques.

  9. Shear modulus and damping ratio of natural rubber containing carbon nanotubes

    Science.gov (United States)

    Ismail, R.; Ibrahim, A.; Rusop, M.; Adnan, A.

    2018-05-01

    This paper presents the results of an investigation into the potential application of Natural rubber (NR) containing Carbon Nanotubes (CNTs) by measuring its shear modulus and damping ratio. Four different types of rubber specimens which fabricated with different MWCNT loadings: 0 wt% (pure natural rubber), 1 wt%, 3 wt%, and 5 wt%. It is observed that the shear modulus and damping ratio of CNTs filled rubber composites are remarkably higher than that of raw rubber indicating the inherent reinforcing potential of CNTs.

  10. A molecular dynamics study on Young's modulus and tribology of carbon nanotube reinforced styrene-butadiene rubber.

    Science.gov (United States)

    Chawla, Raj; Sharma, Sumit

    2018-03-18

    Styrene-butadiene rubber is a copolymer widely used in making car tires and has excellent abrasion resistance. The Young's modulus and tribology of pure styrene butadiene rubber (SBR) polymer and carbon nanotube reinforced polymer composites have been investigated using molecular dynamics simulations. The mechanism of enhanced tribology properties using carbon nanotube has been studied and discussed. The obtained Young's modulus shows the enhancement in mechanical properties of SBR polymer when carbon nanotubes are used as reinforcement. The concentration, temperature and velocity profiles, radial distribution function, frictional stresses, and cohesive energy density are calculated and analyzed in detail. The Young's modulus of SBR matrix increases about 29.16% in the presence of the 5% CNT. The atom movement velocity and average cohesive energy density in the friction area of pure SBR matrix was found to be more than that of the CNT/SBR composite. Graphical abstract Initial and final conditions of (a) pure SBR matrix and (b) CNT/SBR matrix subjected toshear loading and frictional stresses of top Fe layers of both pure SBR and CNT/SBR composite.

  11. Effect of high pressure hydrogen on the mechanical characteristics of single carbon fiber

    Science.gov (United States)

    Jeon, Sang Koo; Kwon, Oh Heon; Jang, Hoon-Sik; Ryu, Kwon Sang; Nahm, Seung Hoon

    2018-02-01

    In this study, carbon fiber was exposed to a pressure of 7 MPa for 24 h in high pressure chamber. The tensile test for carbon fiber was conducted to estimate the effect on the high pressure hydrogen in the atmosphere. To determine the tensile strength and Weibull modulus, approximately thirty carbon fiber samples were measured in all cases, and carbon fiber exposed to high pressure argon was evaluated to verify only the effect of hydrogen. Additionally, carbon fiber samples were annealed at 1950 °C for 1 h for a comparison with normal carbon fiber and then tested under identical conditions. The results showed that the tensile strength scatter of normal carbon fiber exposed to hydrogen was relatively wider and the Weibull modulus was decreased. Moreover, the tensile strength of the annealed carbon fiber exposed to hydrogen was increased, and these samples indicated a complex Weibull modulus because the hydrogen stored in the carbon fiber influenced the mechanical characteristic.

  12. Non-toxic invert analog glass compositions of high modulus

    Science.gov (United States)

    Bacon, J. F. (Inventor)

    1974-01-01

    Glass compositions having a Young's modulus of at least 15 million psi are described. They and a specific modulus of at least 110 million inches consist essentially of, in mols, 15 to 40% SiO2, 6 to 15% Li2O, 24 to 45% of at least two bivalent oxides selected from the group consisting of Ca, NzO, MgO and CuO; 13 to 39% of at least two trivalent oxides selected from the group consisting of Al2O3, Fe2O3, B2O3, La2O3, and Y2O3 and up to 15% of one or more tetravelent oxides selected from the group consisting of ZrO2, TiO2 and CeO2. The high modulus, low density glass compositions contain no toxic elements. The composition, glass density, Young's modulus, and specific modulus for 28 representative glasses are presented. The fiber modulus of five glasses are given.

  13. Nonhomogeneous morphology and the elastic modulus of aligned carbon nanotube films

    International Nuclear Information System (INIS)

    Won, Yoonjin; Gao, Yuan; Kenny, Thomas W; Goodson, Kenneth E; Guzman de Villoria, Roberto; Wardle, Brian L; Xiang, Rong; Maruyama, Shigeo

    2015-01-01

    Carbon nanotube (CNT) arrays offer the potential to develop nanostructured materials that leverage their outstanding physical properties. Vertically aligned carbon nanotubes (VACNTs), also named CNT forests, CNT arrays, or CNT turfs, can provide high heat conductivity and sufficient mechanical compliance to accommodate thermal expansion mismatch for use as thermal interface materials (TIMs). This paper reports measurements of the in-plane moduli of vertically aligned, single-walled CNT (SWCNT) and multi-walled CNT (MWCNT) films. The mechanical response of these films is related to the nonhomogeneous morphology of the grown nanotubes, such as entangled nanotubes of a top crust layer, aligned CNTs in the middle region, and CNTs in the bottom layer. To investigate how the entanglements govern the overall mechanical moduli of CNT films, we remove the crust layer consisting of CNT entanglements by etching the CNT films from the top. A microfabricated cantilever technique shows that crust removal reduces the resulting moduli of the etched SWCNT films by as much as 40%, whereas the moduli of the etched MWCNT films do not change significantly, suggesting a minimal crust effect on the film modulus for thick MWCNT films (>90 μm). This improved understanding will allow us to engineer the mechanical moduli of CNT films for TIMs or packaging applications. (paper)

  14. Nonhomogeneous morphology and the elastic modulus of aligned carbon nanotube films

    Science.gov (United States)

    Won, Yoonjin; Gao, Yuan; Guzman de Villoria, Roberto; Wardle, Brian L.; Xiang, Rong; Maruyama, Shigeo; Kenny, Thomas W.; Goodson, Kenneth E.

    2015-11-01

    Carbon nanotube (CNT) arrays offer the potential to develop nanostructured materials that leverage their outstanding physical properties. Vertically aligned carbon nanotubes (VACNTs), also named CNT forests, CNT arrays, or CNT turfs, can provide high heat conductivity and sufficient mechanical compliance to accommodate thermal expansion mismatch for use as thermal interface materials (TIMs). This paper reports measurements of the in-plane moduli of vertically aligned, single-walled CNT (SWCNT) and multi-walled CNT (MWCNT) films. The mechanical response of these films is related to the nonhomogeneous morphology of the grown nanotubes, such as entangled nanotubes of a top crust layer, aligned CNTs in the middle region, and CNTs in the bottom layer. To investigate how the entanglements govern the overall mechanical moduli of CNT films, we remove the crust layer consisting of CNT entanglements by etching the CNT films from the top. A microfabricated cantilever technique shows that crust removal reduces the resulting moduli of the etched SWCNT films by as much as 40%, whereas the moduli of the etched MWCNT films do not change significantly, suggesting a minimal crust effect on the film modulus for thick MWCNT films (>90 μm). This improved understanding will allow us to engineer the mechanical moduli of CNT films for TIMs or packaging applications.

  15. Determination of the effective Young's modulus of vertically aligned carbon nanotube arrays: a simple nanotube-based varactor

    International Nuclear Information System (INIS)

    Olofsson, Niklas; Eriksson, Anders; Ek-Weis, Johan; Campbell, Eleanor E B; Idda, Tonio

    2009-01-01

    The electromechanical properties of arrays of vertically aligned multiwalled carbon nanotubes were studied in a parallel plate capacitor geometry. The electrostatic actuation was visualized using both optical microscopy and scanning electron microscopy, and highly reproducible behaviour was achieved for actuation voltages below the pull-in voltage. The walls of vertically aligned carbon nanotubes behave as solid cohesive units. The effective Young's modulus for the carbon nanotube arrays was determined by comparing the actuation results with the results of electrostatic simulations and was found to be exceptionally low, of the order of 1-10 MPa. The capacitance change and Q-factor were determined by measuring the frequency dependence of the radio-frequency transmission. Capacitance changes of over 20% and Q-factors in the range 100-10 were achieved for a frequency range of 0.2-1.5 GHz.

  16. Laboratory Performance Evaluation of High Modulus Asphalt Concrete Modified with Different Additives

    Directory of Open Access Journals (Sweden)

    Peng Li

    2017-01-01

    Full Text Available The objective of this study is to evaluate comprehensive performance of high modulus asphalt concrete (HMAC and propose common values for establishing evaluation system. Three gradations with different modifiers were conducted to study the high and low temperature performance, shearing behavior, and water stability. The laboratory tests for HMAC included static and dynamic modulus tests, rutting test, uniaxial penetration test, bending test, and immersion Marshall test. Dynamic modulus test results showed that modifier can improve the static modulus and the improvements were remarkable at higher temperature. Moreover, modulus of HMAC-20 was better than those of HMAC-16 and HMAC-25. The results of performance test indicated that HMAC has good performance to resist high temperature rutting, and the resistances of the HMAC-20 and HMAC-25 against rutting were better than that of HMAC-16. Then, the common values of dynamic stability were recommended. Furthermore, common values of HMAC performance were established based on pavement performance tests.

  17. On Young's modulus of multi-walled carbon nanotubes

    Indian Academy of Sciences (India)

    WINTEC

    load transfer in nanocomposites. In the present work, CNT/Al ... calculations. The theoretical modulus of the graphene sheet is supposed to be 1060 GPa (Harris 2004). The reason why multi-walled nanotubes have a modulus > 1060 GPa (that of graphene sheet) is currently not understood. However, in the present paper, ...

  18. Magneto-carbonization method for production of carbon fiber, and high performance carbon fibers made thereby

    Science.gov (United States)

    Naskar, Amit K.; Ozcan, Soydan; Eberle, Claude C.; Abdallah, Mohamed Gabr; Mackiewicz, Ludtka Gail; Ludtka, Gerard Michael; Paulauskas, Felix Leonard; Rivard, John Daniel Kennedy

    2017-08-08

    Method for the preparation of carbon fiber from fiber precursor, wherein the fiber precursor is subjected to a magnetic field of at least 3 Tesla during a carbonization process. The carbonization process is generally conducted at a temperature of at least 400.degree. C. and less than 2200.degree. C., wherein, in particular embodiments, the carbonization process includes a low temperature carbonization step conducted at a temperature of at least or above 400.degree. C. or 500.degree. C. and less than or up to 1000.degree. C., 1100.degree. C., or 1200.degree. C., followed by a high temperature carbonization step conducted at a temperature of at least or above 1200.degree. C. In particular embodiments, particularly in the case of a polyacrylonitrile (PAN) fiber precursor, the resulting carbon fiber may possess a minimum tensile strength of at least 600 ksi, a tensile modulus of at least 30 Msi, and an ultimate elongation of at least 1.5%.

  19. Elastic Modulus at High Frequency of Polymerically Stabilized Suspensions

    NARCIS (Netherlands)

    Nommensen, P.A.; Duits, Michael H.G.; van den Ende, Henricus T.M.; Mellema, J.

    2000-01-01

    The elastic moduli of polymerically stabilized suspensions consisting of colloidal silica particles coated with endgrafted PDMS (Mn = 80 000) in heptane, were measured as a function of concentration. And the elastic modulus at high frequency G'.. was quantitatively described by model calculations

  20. A high-damping magnetorheological elastomer with bi-directional magnetic-control modulus for potential application in seismology

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Miao, E-mail: yumiao@cqu.edu.cn; Qi, Song; Fu, Jie; Zhu, Mi [Key Lab for Optoelectronic Technology and Systems, Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044 (China)

    2015-09-14

    A high-damping magnetorheological elastomer (MRE) with bi-directional magnetic-control modulus is developed. This MRE was synthesized by filling NdFeB particles into polyurethane (PU)/ epoxy (EP) interpenetrating network (IPN) structure. The anisotropic samples were prepared in a permanent magnetic field and magnetized in an electromagnetic field of 1 T. Dynamic mechanical responses of the MRE to applied magnetic fields are investigated through magneto-rheometer, and morphology of MREs is observed via scanning electron microscope (SEM). Test result indicates that when the test field orientation is parallel to that of the sample's magnetization, the shear modulus of sample increases. On the other hand, when the orientation is opposite to that of the sample's magnetization, shear modulus decreases. In addition, this PU/EP IPN matrix based MRE has a high-damping property, with high loss factor and can be controlled by applying magnetic field. It is expected that the high damping property and the ability of bi-directional magnetic-control modulus of this MRE offer promising advantages in seismologic application.

  1. Mechanical Components from Highly Recoverable, Low Apparent Modulus Materials

    Science.gov (United States)

    Padula, Santo, II (Inventor); Noebe, Ronald D. (Inventor); Stanford, Malcolm K. (Inventor); DellaCorte, Christopher (Inventor)

    2015-01-01

    A material for use as a mechanical component is formed of a superelastic intermetallic material having a low apparent modulus and a high hardness. The superelastic intermetallic material is conditioned to be dimensionally stable, devoid of any shape memory effect and have a stable superelastic response without irrecoverable deformation while exhibiting strains of at least 3%. The method of conditioning the superelastic intermetallic material is described. Another embodiment relates to lightweight materials known as ordered intermetallics that perform well in sliding wear applications using conventional liquid lubricants and are therefore suitable for resilient, high performance mechanical components such as gears and bearings.

  2. High performance, freestanding and superthin carbon nanotube/epoxy nanocomposite films.

    Science.gov (United States)

    Li, Jinzhu; Gao, Yun; Ma, Wenjun; Liu, Luqi; Zhang, Zhong; Niu, Zhiqiang; Ren, Yan; Zhang, Xiaoxian; Zeng, Qingshen; Dong, Haibo; Zhao, Duan; Cai, Le; Zhou, Weiya; Xie, Sishen

    2011-09-01

    We develop a facile, effective and filter free infiltration method to fabricate high performance, freestanding and superthin epoxy nanocomposite films with directly synthesized Sing-Walled Carbon Nanotubes (SWNTs) film as reinforcement skeleton. It is found that the thicknesses of the nanocomposite films can be easily controlled in the range of 0.5-3 μm by dripping target amount of acetone diluted epoxy through the skeleton film. The consequent measurements reveal that the mechanical and electrical properties of SWNTs/epoxy nanocomposite films could be tailored in a quite wide range. For examples, the Young's modulus of nanocomposite films can be tuned from 10 to 30 GPa, and the electrical conductivity can be ranged from 1000 S·cm(-1) to be insulated. Moreover, high load transfer efficiency in the nanocomposite films is demonstrated by the measured ultrahigh Raman bands shift rate (-30 ± 5 cm(-1)/% strain) under strain. The high effective modulus is derived as 774 ± 70 GPa for SWNTs inside this nanocomposite film.

  3. Effects of SBS Configuration on Performance of High Modulus Bitumen Based on Dynamic Mechanical Analysis

    Directory of Open Access Journals (Sweden)

    Ming Liang

    2016-07-01

    Full Text Available High modulus bitumens modified by polystyrene-block-polybutadiene-block-polystyrene (SBS with different molecular structure were investigated on dynamic shear rheometer and fluorescence microscopy to evaluate viscoelastic properties and morphology of binders. The results shows that storage modulus (G’ is obviously less than loss modulus (G”, which means viscous behaviour of bitumen is dominant, and anti-rutting factor (G* ⁄ sin δ is markedly enhanced by star SBS than by linear SBS. The morphology indicated that star SBS improved the softening point more obviously, tending to form a cross-linked network in bitumen. As for linear SBS, it is dispersed in bitumen in the form of globules and enhances the ductility of binder.

  4. Young’s Modulus and Poisson’s Ratio of Monolayer Graphyne

    Directory of Open Access Journals (Sweden)

    H. Rouhi

    2013-09-01

    Full Text Available Despite its numerous potential applications, two-dimensional monolayer graphyne, a novel form of carbon allotropes with sp and sp2 carbon atoms, has received little attention so far, perhaps as a result of its unknown properties. Especially, determination of the exact values of its elastic properties can pave the way for future studies on this nanostructure. Hence, this article describes a density functional theory (DFT investigation into elastic properties of graphyne including surface Young’s modulus and Poisson’s ratio. The DFT analyses are performed within the framework of generalized gradient approximation (GGA, and the Perdew–Burke–Ernzerhof (PBE exchange correlation is adopted. This study indicates that the elastic modulus of graphyne is approximately half of that of graphene due to its lower number of bonds.

  5. Application of diffusion barriers to high modulus fibers

    Science.gov (United States)

    Veltri, R. D.; Douglas, F. C.; Paradis, E. L.; Galasso, F. S.

    1977-01-01

    Barrier layers were coated onto high-modulus fibers, and nickel and titanium layers were overcoated as simulated matrix materials. The objective was to coat the high-strength fibers with unreactive selected materials without degrading the fibers. The fibers were tungsten, niobium, and single-crystal sapphire, while the materials used as barrier coating layers were Al2O3, Y2O3, TiC, ZrC, WC with 14% Co, and HfO2. An ion-plating technique was used to coat the fibers. The fibers were subjected to high-temperature heat treatments to evaluate the effectiveness of the barrier layer in preventing fiber-metal interactions. Results indicate that Al2O3, Y2O3, and HfO2 can be used as barrier layers to minimize the nickel-tungsten interaction. Further investigation, including thermal cycling tests at 1090 C, revealed that HfO2 is probably the best of the three.

  6. High modulus asphalt (EME) technology transfer to South Africa and Australia: shared experiences

    CSIR Research Space (South Africa)

    Denneman, E

    2015-08-01

    Full Text Available The paper describes experiences with the implementation of French enrobés à module élevé (EME) (high modulus asphalt) technology in South Africa and Australia. Tentative performance specifications for EME mixes were set in the two countries based...

  7. High modulus invert analog glass compositions containing beryllia

    Science.gov (United States)

    Bacon, J. F. (Inventor)

    1974-01-01

    Glass compositions having a Young's modulus of at least 15 million psi and a specific modulus of at least 110 million inches consisting essentially of, in mols, 10-45% SiO2, 2-15% Li2O, 3-34% BeO, 12-36% of at least one bivalent oxide selected from the group consisting of CaO, ZnO, MgO and CuO, 10-39% of at least one trivalent oxide selected from the group consisting of Al2O3, B2O3, La2O3, Y2O3 and the mixed rare earth oxides, the total number of said bivalent and trivalent oxides being at least three, and up to 10% of a tetravalent oxide selected from the group consisting of ZrO2, TiO2 and CeO2.

  8. Effect of uncertainty parameters on graphene sheets Young's modulus prediction

    International Nuclear Information System (INIS)

    Sahlaoui, Habib; Sidhom Habib; Guedri, Mohamed

    2013-01-01

    Software based on molecular structural mechanics approach (MSMA) and using finite element method (FEM) has been developed to predict the Young's modulus of graphene sheets. Obtained results have been compared to results available in the literature and good agreement has been shown when the same values of uncertainty parameters are used. A sensibility of the models to their uncertainty parameters has been investigated using a stochastic finite element method (SFEM). The different values of the used uncertainty parameters, such as molecular mechanics force field constants k_r and k_θ, thickness (t) of a graphene sheet and length ( L_B) of a carbon carbon bonds, have been collected from the literature. Strong sensibilities of 91% to the thickness and of 21% to the stretching force (k_r) have been shown. The results justify the great difference between Young's modulus predicted values of the graphene sheets and their large disagreement with experimental results.

  9. Stiff, light, strong and ductile: nano-structured High Modulus Steel.

    Science.gov (United States)

    Springer, H; Baron, C; Szczepaniak, A; Uhlenwinkel, V; Raabe, D

    2017-06-05

    Structural material development for lightweight applications aims at improving the key parameters strength, stiffness and ductility at low density, but these properties are typically mutually exclusive. Here we present how we overcome this trade-off with a new class of nano-structured steel - TiB 2 composites synthesised in-situ via bulk metallurgical spray-forming. Owing to the nano-sized dispersion of the TiB 2 particles of extreme stiffness and low density - obtained by the in-situ formation with rapid solidification kinetics - the new material has the mechanical performance of advanced high strength steels, and a 25% higher stiffness/density ratio than any of the currently used high strength steels, aluminium, magnesium and titanium alloys. This renders this High Modulus Steel the first density-reduced, high stiffness, high strength and yet ductile material which can be produced on an industrial scale. Also ideally suited for 3D printing technology, this material addresses all key requirements for high performance and cost effective lightweight design.

  10. Nano-fillers to tune Young’s modulus of silicone matrix

    International Nuclear Information System (INIS)

    Xia Lijin; Xu Zhonghua; Sun Leming; Caveney, Patrick M.; Zhang Mingjun

    2013-01-01

    In this study, we investigated nanoparticles, nanofibers, and nanoclays for their filler effects on tuning the Young’s modulus of silicone matrix, a material with broad in vivo applications. Nano-fillers with different shapes, sizes, and surface properties were added into silicone matrix, and then their filler effects were evaluated through experimental studies. It was found that spherical nanoparticles could clearly improve Young’s modulus of the silicone matrix, while nanoclays and carbon nanofibers had limited effects. Smaller spherical nanoparticles were better in performance compared to larger nanoparticles. In addition, enhanced distribution of the nanoparticles in the matrix has been observed to improve the filler effect. In order to minimize toxicity of the nanoparticles for in vivo applications, spherical nanoparticles coated with amine, acid, or hydroxide groups were also investigated, but they were found only to diminish the filler effect of nanoparticles. This study demonstrated that spherical nanoparticles could serve as fillers to tune Young’s modulus of silicone matrix for potential applications in medicine.

  11. Granular model, percolation-resistivity, ESR and elastic modulus of carbonaceous materials application to the babassu endocarp heat treated up to 22000C

    International Nuclear Information System (INIS)

    Emmerich, F.G.

    1987-01-01

    A microscopic model (granular model) is presented to study heat treated carbons. A granular structure is defined in the carbon matrix, composed of turbostratic graphite-like microcrystallites, cross-linkings and micropores. A general expression is developed to calculate the volume fraction X of the conducting phase of the granular structure as a function of structural parameters obtained from X-ray diffraction small angle X-ray scattering. The granular model and the percolation theory are used to explain the electrical resistivity behaviour with the heat treatment temperature (HTT), where X is the fundamental parameter. An electron spin resonance (ESR) study of the low and high HTT ranges is presented, including the transition range (700-1300 0 C). The elucitation of the spin center nature in this range and the liking with the two adjacent ranges has been pursued. An expression to calculate the elastic modulus (Young's modulus), based on the microscopic granular model with the fundamental participation of the cross-linkings, is derived to account for the behavior of the modulus with the HTT. The granular model with the expression of X, the percolation-resistivity theory, the ESR study, and the expression of the elastic modulus are applied to the babassu endocarp carbon heat treated up to 2200 0 C. This material can be classified as a tipical non-graphitic carbon, being useful to search the validity of the model and the proposed expressions. It is observed that the theoretical expressions describe with reasonable accuracy the respective experimental behaviours. The measurements of physical and chemical parameters of the babassu endocarp treated up to 2200 0 C area also included. (author) [pt

  12. Experimental Young's modulus calculations

    International Nuclear Information System (INIS)

    Chen, Y.; Jayakumar, R.; Yu, K.

    1994-01-01

    Coil is a very important magnet component. The turn location and the coil size impact both mechanical and magnetic behavior of the magnet. The Young's modulus plays a significant role in determining the coil location and size. Therefore, Young's modulus study is essential in predicting both the analytical and practical magnet behavior. To determine the coil Young's modulus, an experiment has been conducted to measure azimuthal sizes of a half quadrant QSE101 inner coil under different loading. All measurements are made at four different positions along an 8-inch long inner coil. Each measurement is repeated three times to determine the reproducibility of the experiment. To ensure the reliability of this experiment, the same measurement is performed twice with a open-quotes dummy coil,close quotes which is made of G10 and has the same dimension and similar azimuthal Young's modulus as the inner coil. The difference between the G10 azimuthal Young's modulus calculated from the experiments and its known value from the manufacturer will be compared. Much effort has been extended in analyzing the experimental data to obtain a more reliable Young's modulus. Analysis methods include the error analysis method and the least square method

  13. Fast, High Resolution, and Wide Modulus Range Nanomechanical Mapping with Bimodal Tapping Mode.

    Science.gov (United States)

    Kocun, Marta; Labuda, Aleksander; Meinhold, Waiman; Revenko, Irène; Proksch, Roger

    2017-10-24

    Tapping mode atomic force microscopy (AFM), also known as amplitude modulated (AM) or AC mode, is a proven, reliable, and gentle imaging mode with widespread applications. Over the several decades that tapping mode has been in use, quantification of tip-sample mechanical properties such as stiffness has remained elusive. Bimodal tapping mode keeps the advantages of single-frequency tapping mode while extending the technique by driving and measuring an additional resonant mode of the cantilever. The simultaneously measured observables of this additional resonance provide the additional information necessary to extract quantitative nanomechanical information about the tip-sample mechanics. Specifically, driving the higher cantilever resonance in a frequency modulated (FM) mode allows direct measurement of the tip-sample interaction stiffness and, with appropriate modeling, the set point-independent local elastic modulus. Here we discuss the advantages of bimodal tapping, coined AM-FM imaging, for modulus mapping. Results are presented for samples over a wide modulus range, from a compliant gel (∼100 MPa) to stiff materials (∼100 GPa), with the same type of cantilever. We also show high-resolution (subnanometer) stiffness mapping of individual molecules in semicrystalline polymers and of DNA in fluid. Combined with the ability to remain quantitative even at line scan rates of nearly 40 Hz, the results demonstrate the versatility of AM-FM imaging for nanomechanical characterization in a wide range of applications.

  14. Natural asphalt modified binders used for high stiffness modulus asphalt concrete

    Science.gov (United States)

    Bilski, Marcin; Słowik, Mieczysław

    2018-05-01

    This paper presents a set of test results supporting the possibility of replacing, in Polish climate conditions, hard road 20/30 penetration grade bitumen used in the binder course and/or base course made of high stiffness modulus asphalt concrete with binders comprising of 35/50 or 50/70 penetration grade bitumens and additives in the form of natural Gilsonite or Trinidad Epuré asphalts. For the purpose of comparing the properties of the discussed asphalt binders, values of the Performance Grade have been determined according to the American Superpave system criteria.

  15. PROPERTIES OF NR AND NR/ENR BASED RUBBER COMPOUNDS REINFORCED WITH CHOPPED AND SIZED CARBON FIBER

    Directory of Open Access Journals (Sweden)

    Bağdagül Karaağaç

    2016-12-01

    Full Text Available High elasticity, mechanical resistance and antivibration characteristics of natural rubber (NR are essential issue in the main area of vehicle tyres and high modulus demanding bearing applications. In this study, especially in bearing applications, where natural rubber modulus properties are limited, natural rubber has been reinforced with chopped and hydrocarbon sized carbon fiber to get improved tensile modulus. Besides, epoxidized natural rubber (ENR, which was produced by chemical modification of natural rubber, blended with NR and the compounds have been reinforced with epoxy sized carbon fiber. NR and NR/ENR based rubber compounds’ rheological, mechanical, and aging properties have been systematically investigated and evaluated.

  16. Large flexibility of high aspect ratio carbon nanostructures fabricated by electron-beam-induced deposition

    Energy Technology Data Exchange (ETDEWEB)

    Beard, J D; Gordeev, S N, E-mail: jdb28@bath.ac.uk [Department of Physics, University of Bath, Bath BA2 7AY (United Kingdom)

    2010-11-26

    The mechanical properties of free-standing electron beam deposited amorphous carbon structures have been studied using atomic force microscopy. The fabricated carbon blades are found to be extraordinarily flexible, capable of undergoing vertical deflection up to {approx} 75% of their total length without inelastic deformation. The elastic bending modulus of these structures was calculated to be 28 {+-} 10 GPa.

  17. The study of stiffness modulus values for AC-WC pavement

    Science.gov (United States)

    Lubis, AS; Muis, Z. A.; Iskandar, T. D.

    2018-02-01

    One of the parameters of the asphalt mixture in order for the strength and durability to be achieved as required is the stress-and-strain showing the stiffness of a material. Stiffness modulus is a very necessary factor that will affect the performance of asphalt pavements. If the stiffness modulus value decreases there will be a cause of aging asphalt pavement crack easily when receiving a heavy load. The high stiffness modulus asphalt concrete causes more stiff and resistant to bending. The stiffness modulus value of an asphalt mixture material can be obtained from the theoretical (indirect methods) and laboratory test results (direct methods). For the indirect methods used Brown & Brunton method, and Shell Bitumen method; while for the direct methods used the UMATTA tool. This study aims to determine stiffness modulus values for AC-WC pavement. The tests were conducted in laboratory that used 3 methods, i.e. Brown & Brunton Method, Shell Bitumen Method and Marshall Test as a substitute tool for the UMATTA tool. Hotmix asphalt made from type AC-WC with pen 60/70 using a mixture of optimum bitumen content was 5.84% with a standard temperature variation was 60°C and several variations of temperature that were 30, 40, 50, 70 and 80°C. The stiffness modulus value results obtained from Brown & Brunton Method, Shell Bitumen Method and Marshall Test which were 1374,93 Mpa, 235,45 Mpa dan 254,96 Mpa. The stiffness modulus value decreases with increasing temperature of the concrete asphalt. The stiffness modulus value from the Bitumen Shell method and the Marshall Test has a relatively similar value.The stiffness modulus value from the Brown & Brunton method is greater than the Bitumen Shell method and the Marshall Test, but can not measure the stiffness modulus value at temperature above 80°C.

  18. Resilient modulus characteristics of soil subgrade with geopolymer additive in peat

    Science.gov (United States)

    Zain, Nasuhi; Hadiwardoyo, Sigit Pranowo; Rahayu, Wiwik

    2017-06-01

    Resilient modulus characteristics of peat soil are generally very low with high potential of deformation and low bearing capacity. The efforts to improve the peat subgrade resilient modulus characteristics is required, one among them is by adding the geopolymer additive. Geopolymer was made as an alternative to replace portland cement binder in the concrete mix in order to promote environmentally friendly, low shrinkage value, low creep value, and fire resistant material. The use of geopolymer to improve the mechanical properties of peat as a road construction subgrade, hence it becomes important to identify the effect of geopolymer addition on the resilient modulus characteristics of peat soil. This study investigated the addition of 0% - 20% geopolymer content on peat soil derived from Ogan Komering Ilir, South Sumatera Province. Resilient modulus measurement was performed by using cyclic triaxial test to determine the resilience modulus model as a function of deviator stresses and radial stresses. The test results showed that an increase in radial stresses did not necessarily lead to an increase in modulus resilient, and on the contrary, an increase in deviator stresses led to a decrease in modulus resilient. The addition of geopolymer in peat soil provided an insignificant effect on the increase of resilient modulus value.

  19. Carbon fibre as a composites materials precursor-A review

    International Nuclear Information System (INIS)

    Ismail, A.F.; Yusof, N.; Mustafa, A.

    2010-01-01

    Carbon fibers are widely used as reinforcement in composite materials such as carbon fiber reinforced plastics, carbon fiber reinforced ceramics, carbon-carbon composites and carbon fiber reinforced metals, due to their high specific strength and modulus. Carbon fiber composites are ideally suited to applications where strength, stiffness, lower weight and outstanding fatigue characteristics are critical requirements. Generally, there are two main sectors of carbon fiber applications. Application of carbon fiber in high technology sectors includes aerospace and nuclear engineering whereby the use of carbon fiber is driven by maximum performance and not significantly influenced by cost factors. Meanwhile, the application in general engineering and transportations sector is dominated by cost constraints. Carbon fibers used in composites are often coated or surface treated to improve interaction between the fiber surface and the matrix. PAN/ CNT composite fibers are good candidates for the development of next generation carbon fibers with improved tensile strength and modulus while retaining its compressive strength. This paper aims at reviewing and critically discussing the fabrication aspects of carbon fiber for composites which can be divided into several sections: precursor selection, spinning process, pretreatment of the precursor, pyrolysis process, and also surface treatment of the carbon fiber. The future direction of carbon fiber for composite is also briefly identified to further extend the boundary of science and technology in order to fully exploit its potential. (author)

  20. Interactive effects between carbon allotrope fillers on the mechanical reinforcement of polyisoprene based nanocomposites

    Directory of Open Access Journals (Sweden)

    M. Galimberti

    2014-06-01

    Full Text Available Interactive effects of carbon allotropes on the mechanical reinforcement of polymer nanocomposites were investigated. Carbon nanotubes (CNT and nano-graphite with high shape anisotropy (nanoG were melt blended with poly(1,4-cis-isoprene, as the only fillers or in combination with carbon black (CB, measuring the shear modulus at low strain amplitudes for peroxide crosslinked composites. The nanofiller was found to increase the low amplitude storage modulus of the matrix, with or without CB, by a factor depending on nanofiller type and content. This factor, fingerprint of the nanofiller, was higher for CNT than for nanoG. The filler-polymer interfacial area was able to correlate modulus data of composites with CNT, CB and with the hybrid filler system, leading to the construction of a common master curve.

  1. Relationship between low-temperature boson heat capacity peak and high-temperature shear modulus relaxation in a metallic glass

    International Nuclear Information System (INIS)

    Vasiliev, A. N.; Voloshok, T. N.; Granato, A. V.; Joncich, D. M.; Mitrofanov, Yu. P.; Khonik, V. A.

    2009-01-01

    Low-temperature (2 K≤T≤350 K) heat capacity and room-temperature shear modulus measurements (ν=1.4 MHz) have been performed on bulk Pd 41.25 Cu 41.25 P 17.5 in the initial glassy, relaxed glassy, and crystallized states. It has been found that the height of the low-temperature Boson heat capacity peak strongly correlates with the changes in the shear modulus upon high-temperature annealing. It is this behavior that was earlier predicted by the interstitialcy theory, according to which dumbbell interstitialcy defects are responsible for a number of thermodynamic and kinetic properties of crystalline, (supercooled) liquid, and solid glassy states.

  2. Process for preparing polyolefin gel articles as well as for preparing herefrom articles having a high tensile strength and modulus

    NARCIS (Netherlands)

    1990-01-01

    A process is described for the preparation of highly stretchable high-molecular weight polyolefin gel articles and polyolefin gel articles prepared therefrom having combined high tensile strength and high modulus, wherein an initial shaped article of the polyolefin is exposed to or contacted with a

  3. Experimental determination of bulk modulus of 14Å tobermorite using high pressure synchrotron X-ray diffraction

    KAUST Repository

    Oh, Jae Eun; Clark, Simon M.; Wenk, Hans-Rudolf; Monteiro, Paulo J.M.

    2012-01-01

    Using a diamond anvil cell, 14 Å tobermorite, a structural analogue of calcium silicate hydrates (C-S-H), was examined by high-pressure synchrotron X-ray diffraction up to 4.8 GPa under hydrostatic conditions. The bulk modulus of 14 Å tobermorite was calculated, K o = 47 GPa. Comparison of the current results with previous high pressure studies on C-S-H(I) indicates that: (1) the compression behavior of the lattice parameters a and b of 14 Å tobermorite and C-S-H(I) are very similar, implying that both materials may have very similar Ca-O layers, and also implying that an introduction of structural defects into the Ca-O layers may not substantially change in-plane incompressibility of the ab plane of 14 Å tobermorite; and (2) the bulk modulus values of 14 Å tobermorite and C-S-H(I) are dominated by the incompressibility of the lattice parameter c, which is directly related to the interlayer spacing composed of dreierketten silicate chains, interlayer Ca, and water molecules. © 2011 Elsevier Ltd. All rights reserved.

  4. Experimental determination of bulk modulus of 14Å tobermorite using high pressure synchrotron X-ray diffraction

    KAUST Repository

    Oh, Jae Eun

    2012-02-01

    Using a diamond anvil cell, 14 Å tobermorite, a structural analogue of calcium silicate hydrates (C-S-H), was examined by high-pressure synchrotron X-ray diffraction up to 4.8 GPa under hydrostatic conditions. The bulk modulus of 14 Å tobermorite was calculated, K o = 47 GPa. Comparison of the current results with previous high pressure studies on C-S-H(I) indicates that: (1) the compression behavior of the lattice parameters a and b of 14 Å tobermorite and C-S-H(I) are very similar, implying that both materials may have very similar Ca-O layers, and also implying that an introduction of structural defects into the Ca-O layers may not substantially change in-plane incompressibility of the ab plane of 14 Å tobermorite; and (2) the bulk modulus values of 14 Å tobermorite and C-S-H(I) are dominated by the incompressibility of the lattice parameter c, which is directly related to the interlayer spacing composed of dreierketten silicate chains, interlayer Ca, and water molecules. © 2011 Elsevier Ltd. All rights reserved.

  5. An enhanced method to determine the Young’s modulus of technical single fibres by means of high resolution digital image correlation

    Science.gov (United States)

    Huether, Jonas; Rupp, Peter; Kohlschreiber, Ina; André Weidenmann, Kay

    2018-04-01

    To obtain mechanical tensile properties of materials it is customary to equip the specimen directly with a device to measure strain and Young’s modulus correctly and only within the measuring length defined by the standards. Whereas a variety of tools such as extensometers, strain gauges and optical systems are available for specimens on coupon level, no market-ready tools to measure strains of single fibres during single fibre tensile tests are available. Although there is a standard for single fibre testing, the procedures described there are only capable of measuring strains of the whole testing setup rather than the strain of the fibre. Without a direct strain measurement on the specimen, the compliance of the test rig itself influences the determination of the Young’s modulus. This work aims to fill this gap by establishing an enhanced method to measure strains directly on the tested fibre and thus provide accurate values for Young’s modulus. It is demonstrated that by applying and then optically tracking fluorescing polymeric beads on single glass fibres, Young’s modulus is determined directly and with high repeatability, without a need to measure at different measuring lengths or compensating for the system compliance. Employing this method to glass fibres, a Young’s modulus of approximately 82.5 GPa was determined, which is in the range of values obtained by applying a conventional procedure. This enhanced measuring technology achieves high accuracy and repeatability while reducing scatter of the data. It was demonstrated that the fluorescing beads do not affect the fibre properties.

  6. Nanocrystalline β-Ti alloy with high hardness, low Young's modulus and excellent in vitro biocompatibility for biomedical applications

    International Nuclear Information System (INIS)

    Xie, Kelvin Y.; Wang, Yanbo; Zhao, Yonghao; Chang, Li; Wang, Guocheng; Chen, Zibin; Cao, Yang; Liao, Xiaozhou; Lavernia, Enrique J.; Valiev, Ruslan Z.; Sarrafpour, Babak; Zoellner, Hans; Ringer, Simon P.

    2013-01-01

    High strength, low Young's modulus and good biocompatibility are desirable but difficult to simultaneously achieve in metallic implant materials for load bearing applications, and these impose significant challenges in material design. Here we report that a nano-grained β-Ti alloy prepared by high-pressure torsion exhibits remarkable mechanical and biological properties. The hardness and modulus of the nano-grained Ti alloy were respectively 23% higher and 34% lower than those of its coarse-grained counterpart. Fibroblast cell attachment and proliferation were enhanced, demonstrating good in vitro biocompatibility of the nano-grained Ti alloy, consistent with demonstrated increased nano-roughness on the nano-grained Ti alloy. Results suggest that the nano-grained β-Ti alloy may have significant application as an implant material in dental and orthopedic applications. - Highlights: • A bulk nanocrystalline β-Ti alloy was produced by high-pressure torsion processing. • Excellent mechanical properties for biomedical implants were obtained. • Enhanced in vitro biocompatibility was also demonstrated

  7. Elastic modulus and internal friction of SOFC electrolytes at high temperatures under controlled atmospheres

    Science.gov (United States)

    Kushi, Takuto; Sato, Kazuhisa; Unemoto, Atsushi; Hashimoto, Shinichi; Amezawa, Koji; Kawada, Tatsuya

    2011-10-01

    Mechanical properties such as Young's modulus, shear modulus, Poisson's ratio and internal friction of conventional electrolyte materials for solid oxide fuel cells, Zr0.85Y0.15 O1.93 (YSZ), Zr0.82Sc0.18O1.91 (ScSZ), Zr0.81Sc0.18Ce0.01O2-δ (ScCeSZ), Ce0.9Gd0.1O2-δ (GDC), La0.8Sr0.2Ga0.8Mg0.15Co0.05O3-δ (LSGMC), La0.8Sr0.2Ga0.8Mg0.2O3-δ (LSGM), were evaluated by a resonance method at temperatures from room temperature to 1273 K in various oxygen partial pressures. The Young's modulus of GDC gradually decreased with increasing temperature in oxidizing conditions. The Young's moduli of the series of zirconia and lanthanum gallate based materials drastically decreased in an intermediate temperature range and increased slightly with increasing temperature at higher temperatures. The Young's modulus of GDC considerably decreased above 823 K in reducing atmospheres in response to the change of oxygen nonstoichiometry. However, temperature dependences of the Young's moduli of ScCeSZ and LSGMC in reducing atmospheres did not show any significant differences with those in oxidizing atmospheres.

  8. Controlled nanostructure and high loading of single-walled carbon nanotubes reinforced polycarbonate composite

    International Nuclear Information System (INIS)

    Wang Shiren; Liang Zhiyong; Pham, Giang; Park, Young-Bin; Wang, Ben; Zhang, Chuck; Kramer, Leslie; Funchess, Percy

    2007-01-01

    This paper presents an effective technique to fabricate thermoplastic nanocomposites with high loading of well-dispersed single-walled carbon nanotubes (SWNTs). SWNT membranes were made from a multi-step dispersion and filtration method, and then impregnated with polycarbonate solution to make thermoplastic nanocomposites. High loading of nanotubes was achieved by controlling the viscosity of polycarbonate solution. SEM and AFM characterization results revealed the controlled nanostructure in the resultant nanocomposites. Dynamic mechanical property tests indicated that the storage modulus of the resulting nanocomposites at 20 wt% nanotubes loading was improved by a factor of 3.4 compared with neat polycarbonate material. These results suggest the developed approach is an effective way to fabricate thermoplastic nanocomposites with good dispersion and high SWNT loading

  9. The influence of removing sizing on strength and stiffness of conventional and high modulus E-glass fibres

    DEFF Research Database (Denmark)

    Petersen, Helga Nørgaard; Kusano, Yukihiro; Brøndsted, Povl

    2016-01-01

    Two types of E-glass fibres, a conventional and a high modulus where the last one in the following will be denoted as ECR-glass fibre, were investigated regarding density, diameter, stiffness and strength. The fibres were analysed as pristine and after sizing removal treatments. The sizing was re...

  10. Long-term pavement performance monitoring and the revision of performance criteria for high modulus asphalt in South Africa

    CSIR Research Space (South Africa)

    Komba, Julius

    2016-09-01

    Full Text Available Enrobé à Module Élevé (EME) technology, a High Modulus Asphalt (HiMA), was originally developed in France. The technology is primarily suitable for construction of heavily trafficked routes, airports and container terminals. The key performance...

  11. Resilient modulus of black cotton soil

    Directory of Open Access Journals (Sweden)

    K.H. Mamatha

    2017-03-01

    Full Text Available Resilient modulus (MR values of pavement layers are the basic input parameters for the design of pavements with multiple layers in the current mechanistic empirical pavement design guidelines. As the laboratory determination of resilient modulus is costly, time consuming and cumbersome, several empirical models are developed for the prediction of resilient modulus for different regions of the world based on the database of resilient modulus values of local soils. For use of these relationships there is a need to verify the suitability of these models for local conditions. Expansive clay called black cotton soil (BC soil is found in several parts of India and is characterized by low strength and high compressibility. This soil shows swell – shrink behaviour upon wetting and drying and are problematic. The BC soil shows collapse behaviour on soaking and therefore the strength of the soil needs to be improved. Additive stabilization is found to be very effective in stabilizing black cotton soils and generally lime is used to improve the strength and durability of the black cotton soil. In this paper, the results of repeated load tests on black cotton soil samples for the determination of MR under soaked and unsoaked conditions at a relative compaction levels of 100% and 95% of both standard and modified proctor conditions are reported. The results indicate that the black cotton soil fails to meet the density requirement of the subgrade soil and shows collapse behaviour under soaked condition. To overcome this, lime is added as an additive to improve the strength of black cotton soil and repeated load tests were performed as per AASHTO T 307 - 99 for MR determination. The results have shown that the samples are stable under modified proctor condition with MR values ranging from 36 MPa to 388 MPa for a lime content of 2.5% and curing period ranging from 7 to 28 days. Also, it is observed that, the CBR based resilient modulus is not in agreement

  12. The instantaneous shear modulus in the shoving model

    DEFF Research Database (Denmark)

    Dyre, J. C.; Wang, W. H.

    2012-01-01

    We point out that the instantaneous shear modulus G∞ of the shoving model for the non-Arrhenius temperature dependence of viscous liquids’ relaxation time is the experimentally accessible highfrequency plateau modulus, not the idealized instantaneous affine shear modulus that cannot be measured....... Data for a large selection of metallic glasses are compared to three different versions of the shoving model. The original shear-modulus based version shows a slight correlation to the Poisson ratio, which is eliminated by the energy-landscape formulation of the model in which the bulk modulus plays...

  13. Sucrose Treated Carbon Nanotube and Graphene Yarns and Sheets

    Science.gov (United States)

    Sauti, Godfrey (Inventor); Kim, Jae-Woo (Inventor); Siochi, Emilie J. (Inventor); Wise, Kristopher E. (Inventor)

    2017-01-01

    Consolidated carbon nanotube or graphene yarns and woven sheets are consolidated through the formation of a carbon binder formed from the dehydration of sucrose. The resulting materials, on a macro-scale are lightweight and of a high specific modulus and/or strength. Sucrose is relatively inexpensive and readily available, and the process is therefore cost-effective.

  14. Modulus D-term inflation

    Science.gov (United States)

    Kadota, Kenji; Kobayashi, Tatsuo; Saga, Ikumi; Sumita, Keigo

    2018-04-01

    We propose a new model of single-field D-term inflation in supergravity, where the inflation is driven by a single modulus field which transforms non-linearly under the U(1) gauge symmetry. One of the notable features of our modulus D-term inflation scenario is that the global U(1) remains unbroken in the vacuum and hence our model is not plagued by the cosmic string problem which can exclude most of the conventional D-term inflation models proposed so far due to the CMB observations.

  15. Young’s modulus of multi-layer microcantilevers

    Directory of Open Access Journals (Sweden)

    Zhikang Deng

    2017-12-01

    Full Text Available A theoretical model for calculating the Young’s modulus of multi-layer microcantilevers with a coating is proposed, and validated by a three-dimensional (3D finite element (FE model using ANSYS parametric design language (APDL and atomic force microscopy (AFM characterization. Compared with typical theoretical models (Rayleigh-Ritz model, Euler-Bernoulli (E-B beam model and spring mass model, the proposed theoretical model can obtain Young’s modulus of multi-layer microcantilevers more precisely. Also, the influences of coating’s geometric dimensions on Young’s modulus and resonant frequency of microcantilevers are discussed. The thickness of coating has a great influence on Young’s modulus and resonant frequency of multi-layer microcantilevers, and the coating should be considered to calculate Young’s modulus more precisely, especially when fairly thicker coating is employed.

  16. Carbon Alloys-Multi-functionalization

    Energy Technology Data Exchange (ETDEWEB)

    Yasuda, Eiichi [MSL, Tokyo Institute of Technology, Yokohama 226-8503 (Japan)], E-mail: yasuda.e.aa.@m.titech.ac.jp; Enami, Takashi; Hoteida, Nobuyuki [MSL, Tokyo Institute of Technology, Yokohama 226-8503 (Japan); Lanticse-Diaz, L.J. [University of the Philippines (Philippines); Tanabe, Yasuhiro [Nagoya University (Japan); Akatsu, Takashi [MSL, Tokyo Institute of Technology, Yokohama 226-8503 (Japan)

    2008-02-25

    Last decade after our proposal of the 'Carbon Alloys' concept, many different kinds of Carbon Alloys, such as carbon nanotubes, carbon nanofibers, graphene sheet with magnetism, semi-conducting BCN compounds, graphite intercalation compounds, exfoliated carbon fiber, etc. have been found and developed. To extend the concept further, it is important to make it into intelligent materials by incorporating multiple functions. One example of the multi-functionalization is the development of homo-atomic Carbon Alloys from glassy carbon (GC) that exhibits high electrical conductivity and low gas permeability after treatment at critical conditions. Glassy carbon underwent metamorphosis to graphite spheres at HIP condition, and improved resistance to oxidation after alloying with Ta. The other one is shape utilization of the nano-sized carbon by understanding the effect of its large surfaces or interfaces in nanotechnology treatment. Recently carbon nanofiber was produced by polymer blend technology (PB) which was proposed by Prof. A. Oya during the Carbon Alloy project and progressed into intelligent carbon nanofiber (CNF) materials. CNF is combined into the polymer composites which is a candidate material for the bipolar separator in fuel cell. The superior properties, i.e., high electrical conductivity, high modulus, high strength, etc., of the CNF is being utilized in the preparation of this polymer composite.

  17. The elastic modulus of alumina-zirconia composite using through transmission ultrasonics

    International Nuclear Information System (INIS)

    Tan, K.S.; Hing, P.

    1996-01-01

    The elastic modulus of unstabilized Al 2 O 3 -ZrO 2 composites is determined from ultrasonic velocities and density measurements. The dynamic elastic modulus and the density of the green unstabilized Al 2 O 3 -ZrO 2 follow the rule of mixture. However, the elastic modulus and density of the sintered Al 2 O 3 -ZrO 2 do not follow the rule of mixture. The elastic modulus and diametrical compressive fracture stress of the Al 2 O 3 can be enhanced by (1) a high green (before sintering) compacting pressure and (2) addition of about 3wt% unstabilized ZrO 2 at a sintering time of two hours at 1550 degC. The ZrO 2 is found to improve the bulk density of the composite by a reduction in the porosity. This improves the elastic modulus and the diametrical compressive fracture stress. The thermal expansion on cooling with > 25wt% ZrO 2 in the Al 2 O 3 matrix has also been established. (author)

  18. Determination of Young's Modulus of Graphene by Raman Spectroscopy

    Science.gov (United States)

    Lee, Jae-Ung; Yoon, Duhee; Cheong, Hyeonsik

    2012-02-01

    The mechanical properties of graphene are interesting research subjects because its Young's modulus and strength are extremely high. Values of ˜1 TPa for the Young's modulus have been reported [Lee et al. Science, 321, 385 (2008), Koenig et al. Nat. Nanotech. 6, 543 (2011)]. We made a graphene sample on a SiO2/Si substrate with closed-bottom holes by mechanical exfoliation. A pressure difference across the graphene membrane was applied by putting the sample in a vacuum chamber. This pressure difference makes the graphene membrane bulge upward like a balloon. By measuring the shifts of the Raman G and 2D bands, we estimated the amount of strain on the graphene membrane. By comparing the strain estimated from the Raman measurements with numerical simulations based on the finite element method, we obtained the Young's modulus of graphene.

  19. Continuous carbon nanotube reinforced composites.

    Science.gov (United States)

    Ci, L; Suhr, J; Pushparaj, V; Zhang, X; Ajayan, P M

    2008-09-01

    Carbon nanotubes are considered short fibers, and polymer composites with nanotube fillers are always analogues of random, short fiber composites. The real structural carbon fiber composites, on the other hand, always contain carbon fiber reinforcements where fibers run continuously through the composite matrix. With the recent optimization in aligned nanotube growth, samples of nanotubes in macroscopic lengths have become available, and this allows the creation of composites that are similar to the continuous fiber composites with individual nanotubes running continuously through the composite body. This allows the proper utilization of the extreme high modulus and strength predicted for nanotubes in structural composites. Here, we fabricate such continuous nanotube polymer composites with continuous nanotube reinforcements and report that under compressive loadings, the nanotube composites can generate more than an order of magnitude improvement in the longitudinal modulus (up to 3,300%) as well as damping capability (up to 2,100%). It is also observed that composites with a random distribution of nanotubes of same length and similar filler fraction provide three times less effective reinforcement in composites.

  20. On the common modulus attack into the LUC4,6 cryptosystem

    Science.gov (United States)

    Wong, Tze Jin; Said, Mohd Rushdan Md; Othman, Mohamed; Koo, Lee Feng

    2015-05-01

    The LUC4,6 cryptosystem is a system analogy with RSA cryptosystem and extended from LUC and LUC3 cryptosystems. The process of encryption and decryption are derived from the fourth order linear recurrence sequence and based on Lucas function. This paper reports an investigation into the common modulus attack on the LUC4,6 cryptosystem. In general, the common modulus attack will be succeeded if the sender sends the plaintext to two users used same RSA-modulus and both of encryption keys of them are relatively prime to each other. However, based on the characteristics of high order Lucas sequence, the LUC4,6 cryptosystem is unattackable

  1. Determination of the bulk modulus of hydroxycancrinite, a possible zeolitic precursor in geopolymers, by high-pressure synchrotron X-ray diffraction

    KAUST Repository

    Oh, Jae Eun

    2011-11-01

    Crystalline zeolitic materials, such as hydroxycancrinite, hydroxysodalite, herschelite and nepheline, are often synthesized from geopolymerization using fly-ash and solutions of NaOH at high temperatures. Comprised mainly of 6-membered aluminosilicate rings that act as basic building units, their crystal structures may provide insight into the reaction products formed in NaOH-activated fly ash-based geopolymers. Recent research indicates that the hydroxycancrinite and hydroxysodalite may play an important role as possible analogues of zeolitic precursor in geopolymers. Herein is reported a high pressure synchrotron study of the behavior of hydroxycancrinite exposed to pressures up to 6.1 GPa in order to obtain its bulk modulus. A refined equation of state for hydroxycancrinite yielded a bulk modulus of Ko = 46 ± 5 GPa (assuming Ko′ = 4.0) for a broad range of applied pressure. When low pressure values are excluded from the fit and only the range of 2.5 and 6.1 GPa is considered, the bulk modulus of hydroxycancrinite was found to be Ko = 46.9 ± 0.9 GPa (Ko′ = 4.0 ± 0.4, calculated). Comparison with the literature shows that all zeolitic materials possessing single 6-membered rings (i.e., hydroxycancrinite, sodalite and nepheline) have similar bulk moduli. © 2011 Elsevier Ltd. All rights reserved.

  2. Printable polymer actuators from ionic liquid, soluble polyimide, and ubiquitous carbon materials.

    Science.gov (United States)

    Imaizumi, Satoru; Ohtsuki, Yuto; Yasuda, Tomohiro; Kokubo, Hisashi; Watanabe, Masayoshi

    2013-07-10

    We present here printable high-performance polymer actuators comprising ionic liquid (IL), soluble polyimide, and ubiquitous carbon materials. Polymer electrolytes with high ionic conductivity and reliable mechanical strength are required for high-performance polymer actuators. The developed polymer electrolytes comprised a soluble sulfonated polyimide (SPI) and IL, 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide ([C2mim][NTf2]), and they exhibited acceptable ionic conductivity up to 1 × 10(-3) S cm(-1) and favorable mechanical properties (elastic modulus >1 × 10(7) Pa). Polymer actuators based on SPI/[C2mim][NTf2] electrolytes were prepared using inexpensive activated carbon (AC) together with highly electron-conducting carbon such as acetylene black (AB), vapor grown carbon fiber (VGCF), and Ketjen black (KB). The resulting polymer actuators have a trilaminar electric double-layer capacitor structure, consisting of a polymer electrolyte layer sandwiched between carbon electrode layers. Displacement, response speed, and durability of the actuators depended on the combination of carbons. Especially the actuators with mixed AC/KB carbon electrodes exhibited relatively large displacement and high-speed response, and they kept 80% of the initial displacement even after more than 5000 cycles. The generated force of the actuators correlated with the elastic modulus of SPI/[C2mim][NTf2] electrolytes. The displacement of the actuators was proportional to the accumulated electric charge in the electrodes, regardless of carbon materials, and agreed well with the previously proposed displacement model.

  3. Structure and bulk modulus of Ln-doped UO{sub 2} (Ln = La, Nd) at high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Rittman, Dylan R., E-mail: drittman@stanford.edu [Department of Geological Sciences, Stanford University, Stanford, CA 94305 (United States); Park, Sulgiye; Tracy, Cameron L. [Department of Geological Sciences, Stanford University, Stanford, CA 94305 (United States); Zhang, Lei [Peter A. Rock Thermochemistry Laboratory and NEAT ORU, University of California Davis, Davis, CA 95616 (United States); Department of Chemical Engineering and Materials Science, University of California Davis, Davis, CA 95616 (United States); Palomares, Raul I.; Lang, Maik [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Navrotsky, Alexandra [Peter A. Rock Thermochemistry Laboratory and NEAT ORU, University of California Davis, Davis, CA 95616 (United States); Department of Chemical Engineering and Materials Science, University of California Davis, Davis, CA 95616 (United States); Mao, Wendy L. [Department of Geological Sciences, Stanford University, Stanford, CA 94305 (United States); Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Ewing, Rodney C. [Department of Geological Sciences, Stanford University, Stanford, CA 94305 (United States)

    2017-07-15

    The structure of lanthanide-doped uranium dioxide, Ln{sub x}U{sub 1-x}O{sub 2-0.5x+y} (Ln = La, Nd), was investigated at pressures up to ∼50–55 GPa. Samples were synthesized with different lanthanides at different concentrations (x ∼ 0.2 and 0.5), and all were slightly hyperstoichiometric (y ∼ 0.25–0.4). In situ high-pressure synchrotron X-ray diffraction was used to investigate their high-pressure phase behavior and determine their bulk moduli. All samples underwent a fluorite-to-cotunnite phase transformation with increasing pressure. The pressure of the phase transformation increased with increasing hyperstoichiometry, which is consistent with results from previous computational simulations. Bulk moduli are inversely proportional to both the ionic radius of the lanthanide and its concentration, as quantified using a weighted cationic radius ratio. This trend was found to be consistent with the behavior of other elastic properties measured for Ln-doped UO{sub 2}, such as Young's modulus. - Highlights: •Ln-doped UO{sub 2} transforms from fluorite to cotunnite at high pressure. •Transition pressure increases with increasing hyperstoichiometry. •Bulk modulus decreases with increasing Ln-dopant radius and concentration.

  4. Evaluation of the use of polymer modified bitumen in the production of high modulus asphalt for heavily-trafficked roads

    CSIR Research Space (South Africa)

    Komba, Julius J

    2015-05-01

    Full Text Available Enrobé à Module Élevé (EME) technology, a High Modulus Asphalt (HiMA), has been introduced to South Africa to provide an optimum solution for the design and construction of heavily trafficked roads. Implementation of EME technology in South Africa...

  5. Determining the complex modulus of alginate irreversible hydrocolloid dental material.

    Science.gov (United States)

    King, Shalinie; See, Howard; Thomas, Graham; Swain, Michael

    2008-11-01

    The aim of the study is to investigate the visco-elastic response of an alginate irreversible hydrocolloid dental impression material during setting. A novel squeeze film Micro-Fourier Rheometer (MFR, GBC Scientific Equipment, Australia) was used to determine the complex modulus of an alginate irreversible hydrocolloid dental impression material (Algident, ISO 1563 Class A Type 1, Dentalfarm Australia Pty. Ltd.) during setting after mixing. Data was collected every 30s for 10 min in one study and every 10 min for a total of 60 min in another study. A high level of repeatability was observed. The results indicate that the MFR is capable of recording the complex shear modulus of alginate irreversible hydrocolloid for 60 min from the start of mixing and to simultaneously report the changing visco-elastic parameters at all frequencies between 1 Hz and 100 Hz. The storage modulus shows a dramatic increase to 370% of its starting value after 6 min and then reduces to 55% after 60 min. The loss modulus increases to a maximum of 175% of its starting value after 10 min and then reduces to 94% after 60 min. The MFR enables the changes in the complex modulus through the complete setting process to be followed. It is anticipated this approach may provide a better method to compare the visco-elastic properties of impression materials and assist with identification of optimum types for different clinical requirements. The high stiffness of the instrument and the use of band-limited pseudo-random noise as the input signal are the main advantages of this technique over conventional rheometers for determining the changes in alginate visco-elasticity.

  6. High elastic modulus polymer electrolytes suitable for preventing thermal runaway in lithium batteries

    Science.gov (United States)

    Mullin, Scott; Panday, Ashoutosh; Balsara, Nitash Pervez; Singh, Mohit; Eitouni, Hany Basam; Gomez, Enrique Daniel

    2014-04-22

    A polymer that combines high ionic conductivity with the structural properties required for Li electrode stability is useful as a solid phase electrolyte for high energy density, high cycle life batteries that do not suffer from failures due to side reactions and dendrite growth on the Li electrodes, and other potential applications. The polymer electrolyte includes a linear block copolymer having a conductive linear polymer block with a molecular weight of at least 5000 Daltons, a structural linear polymer block with an elastic modulus in excess of 1.times.10.sup.7 Pa and an ionic conductivity of at least 1.times.10.sup.-5 Scm.sup.-1. The electrolyte is made under dry conditions to achieve the noted characteristics. In another aspect, the electrolyte exhibits a conductivity drop when the temperature of electrolyte increases over a threshold temperature, thereby providing a shutoff mechanism for preventing thermal runaway in lithium battery cells.

  7. Nanocrystalline β-Ti alloy with high hardness, low Young's modulus and excellent in vitro biocompatibility for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Kelvin Y. [Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, NSW 2006 (Australia); School of Aerospace, Mechanical and Mechatronics Engineering, The University of Sydney, Sydney, NSW 2006 (Australia); Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218 (United States); Wang, Yanbo, E-mail: yanbo.wang@sydney.edu.au [School of Aerospace, Mechanical and Mechatronics Engineering, The University of Sydney, Sydney, NSW 2006 (Australia); Zhao, Yonghao [School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Chang, Li; Wang, Guocheng; Chen, Zibin; Cao, Yang [School of Aerospace, Mechanical and Mechatronics Engineering, The University of Sydney, Sydney, NSW 2006 (Australia); Liao, Xiaozhou, E-mail: xiaozhou.liao@sydney.edu.au [School of Aerospace, Mechanical and Mechatronics Engineering, The University of Sydney, Sydney, NSW 2006 (Australia); Lavernia, Enrique J. [Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95616 (United States); Valiev, Ruslan Z. [Institute of Physics of Advanced Materials, Ufa State Aviation Technical University, K. Marksa 12, Ufa 450000 (Russian Federation); Sarrafpour, Babak; Zoellner, Hans [The Cellular and Molecular Pathology Research Unit, Department of Oral Pathology and Oral Medicine, Faculty of Dentistry, The University of Sydney, Westmead Centre for Oral Health, Westmead Hospital, NSW 2145 (Australia); Ringer, Simon P. [Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, NSW 2006 (Australia); School of Aerospace, Mechanical and Mechatronics Engineering, The University of Sydney, Sydney, NSW 2006 (Australia)

    2013-08-01

    High strength, low Young's modulus and good biocompatibility are desirable but difficult to simultaneously achieve in metallic implant materials for load bearing applications, and these impose significant challenges in material design. Here we report that a nano-grained β-Ti alloy prepared by high-pressure torsion exhibits remarkable mechanical and biological properties. The hardness and modulus of the nano-grained Ti alloy were respectively 23% higher and 34% lower than those of its coarse-grained counterpart. Fibroblast cell attachment and proliferation were enhanced, demonstrating good in vitro biocompatibility of the nano-grained Ti alloy, consistent with demonstrated increased nano-roughness on the nano-grained Ti alloy. Results suggest that the nano-grained β-Ti alloy may have significant application as an implant material in dental and orthopedic applications. - Highlights: • A bulk nanocrystalline β-Ti alloy was produced by high-pressure torsion processing. • Excellent mechanical properties for biomedical implants were obtained. • Enhanced in vitro biocompatibility was also demonstrated.

  8. Static and Dynamic Behavior of High Modulus Hybrid Boron/Glass/Aluminum Fiber Metal Laminates

    Science.gov (United States)

    Yeh, Po-Ching

    2011-12-01

    This dissertation presents the investigation of a newly developed hybrid fiber metal laminates (FMLs) which contains commingled boron fibers, glass fibers, and 2024-T3 aluminum sheets. Two types of hybrid boron/glass/aluminum FMLs are developed. The first, type I hybrid FMLs, contained a layer of boron fiber prepreg in between two layers of S2-glass fiber prepreg, sandwiched by two aluminum alloy 2024-T3 sheets. The second, type II hybrid FMLs, contained three layer of commingled hybrid boron/glass fiber prepreg layers, sandwiched by two aluminum alloy 2024-T3 sheets. The mechanical behavior and deformation characteristics including blunt notch strength, bearing strength and fatigue behavior of these two types of hybrid boron/glass/aluminum FMLs were investigated. Compared to traditional S2-glass fiber reinforced aluminum laminates (GLARE), the newly developed hybrid boron/glass/aluminum fiber metal laminates possess high modulus, high yielding stress, and good blunt notch properties. From the bearing test result, the hybrid boron/glass/aluminum fiber metal laminates showed outstanding bearing strength. The high fiber volume fraction of boron fibers in type II laminates lead to a higher bearing strength compared to both type I laminates and traditional GLARE. Both types of hybrid FMLs have improved fatigue crack initiation lives and excellent fatigue crack propagation resistance compared to traditional GLARE. The incorporation of the boron fibers improved the Young's modulus of the composite layer in FMLs, which in turn, improved the fatigue crack initiation life and crack propagation rates of the aluminum sheets. Moreover, a finite element model was established to predict and verify the properties of hybrid boron/glass/aluminum FMLs. The simulated results showed good agreement with the experimental results.

  9. Thermal expansivity and bulk modulus of ZnO with NaCl-type cubic structure at high pressures and temperatures

    International Nuclear Information System (INIS)

    Sun Xiaowei; Liu Zijiang; Chen Qifeng; Chu Yandong; Wang Chengwei

    2006-01-01

    The thermal expansivity and bulk modulus of ZnO with NaCl-type cubic structure were estimated by using the constant temperature and pressure molecular dynamics technique with effective pair potentials which consist of the Coulomb, dispersion, and repulsion interaction at high pressures and temperatures. It is shown that the calculated thermodynamic parameters including linear thermal expansion coefficient, isothermal bulk modulus and its pressure derivative are in good agreement with the available experimental data and the latest theoretical results. At an extended pressure and temperature ranges, linear thermal expansion coefficient and isothermal bulk modus have also been predicted. The thermodynamic properties of ZnO with NaCl-type cubic structure are summarized in the pressure 0-150 GPa ranges and the temperature up to 3000 K

  10. Small compression modulus of the flux line lattice and large density fluctuations at high fields may explain peak effect

    International Nuclear Information System (INIS)

    Brandt, E.H.

    1976-01-01

    The elastic properties of the flux line lattice in Type II superconductors as calculated from the Ginsburg-Landau theory are discussed. They are non-local on a length scale much larger than the flux line distance and divergent at Hsub(c2). The compression modulus may become much smaller than its long-wavelength limit, B 2 /4π, and if the deformation is not homogeneous, at Hsub(c2) the modulus vanishes as (Hsub(c2) - B) 2 . At arbitrary induction the compression modulus of strain waves with wavelengths of several flux line distances is of the order of the (small) shear modulus. (author)

  11. Thermal compression modulus of polarized neutron matter

    International Nuclear Information System (INIS)

    Abd-Alla, M.

    1990-05-01

    We applied the equation of state for pure polarized neutron matter at finite temperature, calculated previously, to calculate the compression modulus. The compression modulus of pure neutron matter at zero temperature is very large and reflects the stiffness of the equation of state. It has a little temperature dependence. Introducing the spin excess parameter in the equation of state calculations is important because it has a significant effect on the compression modulus. (author). 25 refs, 2 tabs

  12. Evaluating The Performance of Asphalt Concrete Mixes by Utilizing Carbon Black as Asphalt Modifier

    Directory of Open Access Journals (Sweden)

    Aliaa Faleh Al.ani

    2018-02-01

    Full Text Available Carbon black produced from several factories in Iraq is expected to provide a reinforcing agent for asphalt paving materials. Carbon black has many characteristics that distinguish  it from conventional mineral fillers, as well as their different function in pavement mixtures. Theory and exercise advanced  in the inclusive utilize of carbon black as a reinforcing agent for rubber has led to concept of asphalt reinforcement. The very fine particles of micro filler added in different contents will be dispersed in asphalt cement improving the mechanical properties of asphalt concrete mixes. In this Four percentages rates were utilized; 0, 3, 6, and 9 percent adding to asphalt grade (60-70. Mixes of asphalt concrete were destined at their optimum asphalt content (OAC then experienced to assess their engineering characteristics that contain moisture of damage, permanent deformation, modulus of resilient and characteristics of fatigue. These characteristics have been assessed utilizing indirect tensile strength, uniaxial repeated loading and repeated flexural beam tests. Mixtures improved with carbon black were existed to have amended permanent deformation and fatigue characteristics, else exhibited high resilient modulus and lower moisture susceptibility. Result showed that a rate changed from 3 to 9 percent has shown an increase in resilient modulus for increment of carbon black and modulus of resilient for mixes with 9 percent carbon black was 1.4 times that for mixes with 0 percent carbon black. The altering of carbon black from a range (3-9 percent has modified the fatigue property of the asphalt concrete mixes as determined by flexural test, Significantly, to modify the asphalt concrete manner taken the  percent of carbon black 6, and to produce the mixes more durable , higher resistance to distresses by adding the local knowledge.

  13. Surface modification of carbon fibers and its effect on the fiber–matrix interaction of UHMWPE based composites

    International Nuclear Information System (INIS)

    Chukov, D.I.; Stepashkin, A.A.; Gorshenkov, M.V.; Tcherdyntsev, V.V.; Kaloshkin, S.D.

    2014-01-01

    Highlights: • Both chemical and thermal treatments of UKN 5000 carbon fibers allow one to obtain well-developed surface. • The changes of structure and properties of VMN-4 fibers after both thermal and chemical oxidation are insignificant due to more perfect initial structure of these fibers. • The oxidative treatment of carbon fibers allows one to improve the interfacial interaction in the UHMWPE-based composites. • The oxidative treatment of the fibers allows one to a triple increase of Young’s modulus of the modified fibers reinforced UHMWPE composites. -- Abstract: The PAN-based carbon fibers (CF) were subjected to thermal and chemical oxidation under various conditions. The variation in the surface morphology of carbon fibers after surface treatment was analyzed by scanning electron microscopy (SEM). It was found that the tensile strength of carbon fibers changed after surface modification. The interaction between the fibers and the matrix OF ultra-high molecular weight polyethylene (UHMWPE) was characterized by the Young modulus of produced composites. It was shown that the Young modulus of composites reinforced with modified carbon fibers was significantly higher than that of composites reinforced with non-modified fibers

  14. Dynamic modulus of nanosilica modified porous asphalt

    Science.gov (United States)

    Arshad, A. K.; Masri, K. A.; Ahmad, J.; Samsudin, M. S.

    2017-11-01

    Porous asphalt (PA) is a flexible pavement layer with high interconnected air void contents and constructed using open-graded aggregates. Due to high temperature environment and increased traffic volume in Malaysia, PA may have deficiencies particularly in rutting and stiffness of the mix. A possible way to improve these deficiencies is to improve the asphalt binder used. Binder is normally modified using polymer materials to improve its properties. However, nanotechnology presently is being gradually used for asphalt modification. Nanosilica (NS), a byproduct of rice husk and palm oil fuel ash is used as additive in this study. The aim of this study is to enhance the rutting resistance and stiffness performance of PA using NS. This study focused on the performance of PA in terms of dynamic modulus with the addition of NS modified binder to produce better and more durable PA. From the result of Dynamic SPT Test, it shows that the addition of NS was capable in enhancing the stiffness and rutting resistance of PA. The addition of NS also increase the dynamic modulus value of PA by 50%.

  15. Theory of thermal expansivity and bulk modulus

    International Nuclear Information System (INIS)

    Kumar, Munish

    2005-01-01

    The expression for thermal expansivity and bulk modulus, claimed by Shanker et al. to be new [Physica B 233 (1977) 78; 245 (1998) 190; J. Phys. Chem. Solids 59 (1998) 197] are compared with the theory of high pressure-high temperature reported by Kumar and coworkers. It is concluded that the Shanker formulation and the relations based on this are equal to the approach of Kumar et al. up to second order

  16. In situ determination of a rock mass modulus using a high resolution tiltmeter

    Energy Technology Data Exchange (ETDEWEB)

    Saleh, B.; Husein Malkawi, A.I. [University of Jordan, Amman (Jordan); Blum, P.A. [Universite Pierre et Marie Curie, 75 - Paris (France)

    1996-04-01

    A very sensitive, compact tiltmeter made of melted silica, developed for the measurement of small deformations of various civil engineering structures, was described. The instrument is capable of giving a continuous record and was used to establish a new approach to directly evaluating the in situ average elastic rock mass modulus. Such information is important in decision making during the design stages of large civil engineering works, such as dams, nuclear plant facilities, and underground structures. Five tiltmeters were installed on the facades of the Louvre in Paris to study the deformation induced by internal structural work and by the impact of the Paris metro traffic movement. The data was used to determine displacement using the Boussinesq equation. Results were consistent with typical elastic rock-mass modulus for the rock found in the museum`s foundations. 13 refs., 1 tab., 10 figs.

  17. A Two-Step Methodology to Study the Influence of Aggregation/Agglomeration of Nanoparticles on Young's Modulus of Polymer Nanocomposites

    Science.gov (United States)

    Ma, Xinyue; Zare, Yasser; Rhee, Kyong Yop

    2017-12-01

    A two-step technique based on micromechanical models is suggested to determine the influence of aggregated/agglomerated nanoparticles on Young's modulus of polymer nanocomposites. The nanocomposite is assumed to include nanoparticle aggregation/agglomeration and effective matrix phases. This method is examined for different samples, and the effects of important parameters on the modulus are investigated. Moreover, the highest and the lowest levels of predicted modulus are calculated based on the current methodology. The suggested technique can correctly predict Young's modulus for the samples assuming the aggregation/agglomeration of nanoparticles. Additionally, the aggregation/agglomeration of nanoparticles decreases Young's modulus of polymer nanocomposites. It is demonstrated that the high modulus of nanoparticles is not sufficient to obtain a high modulus in nanocomposites, and the surface chemistry of components should be adjusted to prevent aggregation/agglomeration and to disperse nano-sized particles in the polymer matrix.

  18. High Bulk Modulus of Ionic Liquid and Effects on Performance of Hydraulic System

    Directory of Open Access Journals (Sweden)

    Milan Kambic

    2014-01-01

    Full Text Available Over recent years ionic liquids have gained in importance, causing a growing number of scientists and engineers to investigate possible applications for these liquids because of their unique physical and chemical properties. Their outstanding advantages such as nonflammable liquid within a broad liquid range, high thermal, mechanical, and chemical stabilities, low solubility for gases, attractive tribological properties (lubrication, and very low compressibility, and so forth, make them more interesting for applications in mechanical engineering, offering great potential for new innovative processes, and also as a novel hydraulic fluid. This paper focuses on the outstanding compressibility properties of ionic liquid EMIM-EtSO4, a very important physical chemically property when IL is used as a hydraulic fluid. This very low compressibility (respectively, very high Bulk modulus, compared to the classical hydraulic mineral oils or the non-flammable HFDU type of hydraulic fluids, opens up new possibilities regarding its usage within hydraulic systems with increased dynamics, respectively, systems’ dynamic responses.

  19. High bulk modulus of ionic liquid and effects on performance of hydraulic system.

    Science.gov (United States)

    Kambic, Milan; Kalb, Roland; Tasner, Tadej; Lovrec, Darko

    2014-01-01

    Over recent years ionic liquids have gained in importance, causing a growing number of scientists and engineers to investigate possible applications for these liquids because of their unique physical and chemical properties. Their outstanding advantages such as nonflammable liquid within a broad liquid range, high thermal, mechanical, and chemical stabilities, low solubility for gases, attractive tribological properties (lubrication), and very low compressibility, and so forth, make them more interesting for applications in mechanical engineering, offering great potential for new innovative processes, and also as a novel hydraulic fluid. This paper focuses on the outstanding compressibility properties of ionic liquid EMIM-EtSO4, a very important physical chemically property when IL is used as a hydraulic fluid. This very low compressibility (respectively, very high Bulk modulus), compared to the classical hydraulic mineral oils or the non-flammable HFDU type of hydraulic fluids, opens up new possibilities regarding its usage within hydraulic systems with increased dynamics, respectively, systems' dynamic responses.

  20. FEM performance of concrete beams reinforced by carbon fiber bars

    Directory of Open Access Journals (Sweden)

    Hasan Hashim

    2018-01-01

    Full Text Available Concrete structures may be vulnerable to harsh environment, reinforcement with Fiber Reinforced Polymer (FRP bars have an increasing acceptance than normal steel. The nature of (FRP bar is (non-corrosive which is very beneficial for increased durability as well as the reinforcement of FRP bar has higher strength than steel bar. FRP usage are being specified more and more by public structural engineers and individual companies as main reinforcement and as strengthening of structures. Steel reinforcement as compared to (FRP reinforcement are decreasingly acceptable for structural concrete reinforcement including precast concrete, cast in place concrete, columns, beams and other components. Carbon Fiber Reinforcement Polymer (CFRP have a very high modulus of elasticity “high modulus” and very high tensile strength. In aerospace industry, CFRP with high modulus are popular among all FRPs because it has a high strength to weight ratio. In this research, a finite element models will be used to represent beams with Carbon Fiber Reinforcement and beams with steel reinforcement. The primary objective of the research is the evaluation of the effect of (CFR on beam reinforcement.

  1. Highly stretchable carbon aerogels.

    Science.gov (United States)

    Guo, Fan; Jiang, Yanqiu; Xu, Zhen; Xiao, Youhua; Fang, Bo; Liu, Yingjun; Gao, Weiwei; Zhao, Pei; Wang, Hongtao; Gao, Chao

    2018-02-28

    Carbon aerogels demonstrate wide applications for their ultralow density, rich porosity, and multifunctionalities. Their compressive elasticity has been achieved by different carbons. However, reversibly high stretchability of neat carbon aerogels is still a great challenge owing to their extremely dilute brittle interconnections and poorly ductile cells. Here we report highly stretchable neat carbon aerogels with a retractable 200% elongation through hierarchical synergistic assembly. The hierarchical buckled structures and synergistic reinforcement between graphene and carbon nanotubes enable a temperature-invariable, recoverable stretching elasticity with small energy dissipation (~0.1, 100% strain) and high fatigue resistance more than 10 6 cycles. The ultralight carbon aerogels with both stretchability and compressibility were designed as strain sensors for logic identification of sophisticated shape conversions. Our methodology paves the way to highly stretchable carbon and neat inorganic materials with extensive applications in aerospace, smart robots, and wearable devices.

  2. Influence of substrate modulus on gecko adhesion

    Science.gov (United States)

    Klittich, Mena R.; Wilson, Michael C.; Bernard, Craig; Rodrigo, Rochelle M.; Keith, Austin J.; Niewiarowski, Peter H.; Dhinojwala, Ali

    2017-03-01

    The gecko adhesion system fascinates biologists and materials scientists alike for its strong, reversible, glue-free, dry adhesion. Understanding the adhesion system’s performance on various surfaces can give clues as to gecko behaviour, as well as towards designing synthetic adhesive mimics. Geckos encounter a variety of surfaces in their natural habitats; tropical geckos, such as Gekko gecko, encounter hard, rough tree trunks as well as soft, flexible leaves. While gecko adhesion on hard surfaces has been extensively studied, little work has been done on soft surfaces. Here, we investigate for the first time the influence of macroscale and nanoscale substrate modulus on whole animal adhesion on two different substrates (cellulose acetate and polydimethylsiloxane) in air and find that across 5 orders of magnitude in macroscale modulus, there is no change in adhesion. On the nanoscale, however, gecko adhesion is shown to depend on substrate modulus. This suggests that low surface-layer modulus may inhibit the gecko adhesion system, independent of other influencing factors such as macroscale composite modulus and surface energy. Understanding the limits of gecko adhesion is vital for clarifying adhesive mechanisms and in the design of synthetic adhesives for soft substrates (including for biomedical applications and wearable electronics).

  3. Variable modulus cellular structures using pneumatic artificial muscles

    Science.gov (United States)

    Pontecorvo, Michael E.; Niemiec, Robert J.; Gandhi, Farhan S.

    2014-04-01

    This paper presents a novel variable modulus cellular structure based on a hexagonal unit cell with pneumatic artificial muscle (PAM) inclusions. The cell considered is pin-jointed, loaded in the horizontal direction, with three PAMs (one vertical PAM and two horizontal PAMs) oriented in an "H" configuration between the vertices of the cell. A method for calculation of the hexagonal cell modulus is introduced, as is an expression for the balance of tensile forces between the horizontal and vertical PAMs. An aluminum hexagonal unit cell is fabricated and simulation of the hexagonal cell with PAM inclusions is then compared to experimental measurement of the unit cell modulus in the horizontal direction with all three muscles pressurized to the same value over a pressure range up to 758 kPa. A change in cell modulus by a factor of 1.33 and a corresponding change in cell angle of 0.41° are demonstrated experimentally. A design study via simulation predicts that differential pressurization of the PAMs up to 2068 kPa can change the cell modulus in the horizontal direction by a factor of 6.83 with a change in cell angle of only 2.75°. Both experiment and simulation show that this concept provides a way to decouple the length change of a PAM from the change in modulus to create a structural unit cell whose in-plane modulus in a given direction can be tuned based on the orientation of PAMs within the cell and the pressure supplied to the individual muscles.

  4. Application of tearing modulus stability concepts to nuclear piping. Final report

    International Nuclear Information System (INIS)

    Cotter, K.H.; Chang, H.Y.; Zahoor, A.

    1982-02-01

    The recently developed tearing modulus stability concept was successfully applied to several boiling water reactor (BWR) and pressurized water reactor (PWR) piping systems. Circumferentially oriented through-the-thickness cracks were postulated at numerous locations in each system. For each location, the simplified tearing stability methods developed in USNRC Report NUREG/CR-0838 were used to determine crack stability. The J-T diagram was used to present the results of the computations. The piping systems considered included Type 304 stainless steel as well as A106 carbon steel materials. These systems were analyzed using the piping analysis computer code MINK

  5. Fabrication of carbon nanotube/epoxy nanocomposite and characterization of its mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Mubin, Muhammad Shamsul Huda

    2007-02-15

    In this study, carbon nanotube polymer nanocomposites have been fabricated incorporating single walled carbon nantubes (SWNTs) or multiwalled carbon nanotubes (MWNTs) in a thermosetting polymer matrix, epoxy resin. Nanoindentation measurements showed that elastic modulus of epoxy polymer matrix has changed from 3.5 GPa to 4.0 GPa (∼ 15 % increase) only for 0.005 wt% single walled carbon nanotubes loading. The hardness of the single walled carbon nanotube incorporated epoxy nanocomposites remained nearly unchanged for 0.005 wt % nanotube loading. Multiwalled carbon nanotube incorporated epoxy nanocomposites showed deterioration of both the hardness, from 0.2 GPa to 0.08 GPa (∼factor 2.5), and elastic modulus, from 3.5 GPa to 2.1 GPa (∼ factor 1.6), for 0.02 wt % nanotube loading. Homogeneity study using continuous stiffness measurement (CSM) mode of indentation techniques revealed the lack in homogeneity of the fabricated nancomposite may be responsible for deteriorating mechanical properties. High resolution scanning electronic microscopic (SEM) images taken from cross section of carbon nanotubes incorporated epoxy nanocomposites showed several poorly attached thin layers of nanocomposites staked on each other which may be another cause of property deterioration.

  6. Fabrication of carbon nanotube/epoxy nanocomposite and characterization of its mechanical properties

    International Nuclear Information System (INIS)

    Mubin, Muhammad Shamsul Huda

    2007-02-01

    In this study, carbon nanotube polymer nanocomposites have been fabricated incorporating single walled carbon nantubes (SWNTs) or multiwalled carbon nanotubes (MWNTs) in a thermosetting polymer matrix, epoxy resin. Nanoindentation measurements showed that elastic modulus of epoxy polymer matrix has changed from 3.5 GPa to 4.0 GPa (∼ 15 % increase) only for 0.005 wt% single walled carbon nanotubes loading. The hardness of the single walled carbon nanotube incorporated epoxy nanocomposites remained nearly unchanged for 0.005 wt % nanotube loading. Multiwalled carbon nanotube incorporated epoxy nanocomposites showed deterioration of both the hardness, from 0.2 GPa to 0.08 GPa (∼factor 2.5), and elastic modulus, from 3.5 GPa to 2.1 GPa (∼ factor 1.6), for 0.02 wt % nanotube loading. Homogeneity study using continuous stiffness measurement (CSM) mode of indentation techniques revealed the lack in homogeneity of the fabricated nancomposite may be responsible for deteriorating mechanical properties. High resolution scanning electronic microscopic (SEM) images taken from cross section of carbon nanotubes incorporated epoxy nanocomposites showed several poorly attached thin layers of nanocomposites staked on each other which may be another cause of property deterioration

  7. Carbide Coatings for Nickel Alloys, Graphite and Carbon/Carbon Composites to be used in Fluoride Salt Valves

    Energy Technology Data Exchange (ETDEWEB)

    Nagle, Denis [Johns Hopkins Univ., Baltimore, MD (United States); Zhang, Dajie [Johns Hopkins Univ., Baltimore, MD (United States)

    2015-10-22

    The focus of this research was concerned with developing materials technology that supports the evolution of Generation IV Advanced High Temperature Reactor (AHTR) concepts. Specifically, we investigate refractory carbide coatings for 1) nickel alloys, and 2) commercial carbon-carbon composites (CCCs). Numerous compelling reasons have driven us to focus on carbon and carbide materials. First, unlike metals, the strength and modulus of CCCs increase with rising temperature. Secondly, graphite and carbon composites have been proven effective for resisting highly corrosive fluoride melts such as molten cryolite [Na₃AlF₆] at ~1000°C in aluminum reduction cells. Thirdly, graphite and carbide materials exhibit extraordinary radiation damage tolerance and stability up to 2000°C. Finally, carbides are thermodynamically more stable in liquid fluoride salt than the corresponding metals (i.e. Cr and Zr) found in nickel based alloys.

  8. Determination of morphology and properties of carbon nanofibers and carbon nanofiber polymer nanocomposites

    Science.gov (United States)

    Lawrence, Joseph G.

    Vapor grown carbon nanofibers which resemble carbon nanotubes in structure and properties, have been extensively manufactured and investigated in recent years. Carbon nanofibers have been used for producing multifunctional materials due to their excellent properties and low cost of production. Since, commercially available vapor grown carbon nanofibers are subjected to different processing and post processing conditions, the morphology and properties of these nanofibers are not well-known. In this study, we focus on the characterization of the morphology and properties of these nanofibers and the polymer nanocomposites made using these nanofibers as reinforcements. The morphology of the nanofibers was studied employing high resolution Transmission Electron Microscopy (TEM) images. The analysis showed that the nanofibers consist primarily of conical nanofibers, but can contain a significant amount of bamboo nanofibers. Most of the conical nanofibers were found to consist of an ordered inner layer and a disordered outer layer, with the cone angle distribution of the inner layers indicating that these cannot have a stacked cone structure but are compatible with a cone-helix structure. Nanofibers that were heat treated to temperatures above 1,500°C undergo a structural transformation with the ordered inner layers changing from a cone-helix structure to a highly ordered multiwall stacked cone structure. Due to the complexity in the structure of these nanofibers, a novel method to study the elastic properties and corresponding morphology of individual nanofibers has been developed combining Atomic Force Microscopy (AFM), TEM and Focused Ion Beam (FIB) technology. Employing the developed method, the elastic modulus of individual nanofibers and their corresponding dimensions and morphology were determined. The dependence of elastic properties on the wall thickness and the orientation of graphene sheets in the nanofibers were studied. The elastic modulus of these

  9. Dielectric and modulus studies of polycrystalline BaZrO3 ceramic

    Science.gov (United States)

    Saini, Deepash S.; Singh, Sunder; Kumar, Anil; Bhattacharya, D.

    2018-05-01

    In the present work, dielectric and modulus studies of polycrystalline BaZrO3 ceramic, prepared by modified combustion method followed by conventional sintering, are investigated over the frequency range of 100 Hz to 106 Hz at different temperatures from 250 to 500 °C in air. The high value of dielectric constant (ɛ' ˜ 103) of BaZrO3 at high temperature and low frequency can be attributed to the Maxwell-Wagner polarization mechanism as well as to the thermally activated mechanism of charge carriers. Electric modulus reveal two type relaxations in the 250 °C to 800 °C temperature region as studied at different frequencies over 100 Hz to 106 Hz in air.

  10. Ultrathin diamond-like carbon films deposited by filtered carbon vacuum arcs

    International Nuclear Information System (INIS)

    Anders, Andre; Fong, Walton; Kulkarni, Ashok; Ryan, Francis W.; Bhatia, C. Singh

    2001-01-01

    Ultrathin ( and lt; 5 nm) hard carbon films are of great interest to the magnetic storage industry as the areal density approaches 100 Gbit/in(sup 2). These films are used as overcoats to protect the magnetic layers on disk media and the active elements of the read-write slider. Tetrahedral amorphous carbon films can be produced by filtered cathodic arc deposition, but the films will only be accepted by the storage industry only if the ''macroparticle'' issue has been solved. Better plasma filters have been developed over recent years. Emphasis is put on the promising twist filter system - a compact, open structure that operates with pulsed arcs and high magnetic field. Based on corrosion tests it is shown that the macroparticle reduction by the twist filter is satisfactory for this demanding application, while plasma throughput is very high. Ultrathin hard carbon films have been synthesized using S-filter and twist filter systems. Film properties such as hardness, elastic modulus, wear, and corrosion resistance have been tested

  11. Reinforcement of single-walled carbon nanotube bundles by intertube bridging

    Science.gov (United States)

    Kis, A.; Csányi, G.; Salvetat, J.-P.; Lee, Thien-Nga; Couteau, E.; Kulik, A. J.; Benoit, W.; Brugger, J.; Forró, L.

    2004-03-01

    During their production, single-walled carbon nanotubes form bundles. Owing to the weak van der Waals interaction that holds them together in the bundle, the tubes can easily slide on each other, resulting in a shear modulus comparable to that of graphite. This low shear modulus is also a major obstacle in the fabrication of macroscopic fibres composed of carbon nanotubes. Here, we have introduced stable links between neighbouring carbon nanotubes within bundles, using moderate electron-beam irradiation inside a transmission electron microscope. Concurrent measurements of the mechanical properties using an atomic force microscope show a 30-fold increase of the bending modulus, due to the formation of stable crosslinks that effectively eliminate sliding between the nanotubes. Crosslinks were modelled using first-principles calculations, showing that interstitial carbon atoms formed during irradiation in addition to carboxyl groups, can independently lead to bridge formation between neighbouring nanotubes.

  12. Reinforcement of Multiwalled Carbon Nanotube in Nitrile Rubber: In Comparison with Carbon Black, Conductive Carbon Black, and Precipitated Silica

    Directory of Open Access Journals (Sweden)

    Atip Boonbumrung

    2016-01-01

    Full Text Available The properties of nitrile rubber (NBR reinforced by multiwalled carbon nanotube (MWCNT, conductive carbon black (CCB, carbon black (CB, and precipitated silica (PSi were investigated via viscoelastic behavior, bound rubber content, electrical properties, cross-link density, and mechanical properties. The filler content was varied from 0 to 15 phr. MWCNT shows the greatest magnitude of reinforcement considered in terms of tensile strength, modulus, hardness, and abrasion resistance followed by CCB, CB, and PSi. The MWCNT filled system also exhibits extremely high levels of filler network and trapped rubber even at relatively low loading (5 phr leading to high electrical properties and poor dynamic mechanical properties. Although CCB possesses the highest specific surface area, it gives lower level of filler network than MWCNT and also gives the highest elongation at break among all fillers. Both CB and PSi show comparable degree of reinforcement which is considerably lower than CCB and MWCNT.

  13. A superplastic Al-Li-Cu-Mg-Zr powder alloy with high hardness and modulus

    International Nuclear Information System (INIS)

    Phillips, V.A.

    1986-01-01

    Structure/property studies were made on an experimental Al-3.18% Li-4.29% Cu-1.17% Mg-0.18% Zr powder alloy, which is of the low density/high modulus type. Alloy powder was made by the P and W/GPD rapid solidification rate (RSR) process, canned, and extruded to bar. The density was 2.458 x 10/sup 6/ g/m/sup 3/. The material was solution-treated, and aged at 149 0 C(300 0 F), 171 0 C(340 0 F), and 193 0 C(380 0 F), using hardness tests to determine the aging curves. Testpieces solution-treated at 516 0 C(961 0 F) showed an average yield strength (0.2% offset) of 43.3 ksi (299 MPa) and ultimate tensile strength of 50.0 ksi (345 MPa), with 1% elongation, which increased to 73.0 ksi (503 MPa) and 73.1 ksi (504 MPa), respectively, with only 0.2% elongation, on peak aging at 193 0 C(380 0 F), with a modulus of elasticity of 11.4 x 10/sup 6/ psi (78.3 GPa). Hardness values reached 90-92 R/sub B/ on aging at 149-193 0 C(300-380 0 F). The as-extruded alloy showed superplastic behavior at 400-500 0 C(752-932 0 F) with elongations of 80-185% on 25.6 mm, peaking at 450 0 C(842 0 F). An RSR Al-2.53% Li-2.82% Mn-0.02% Zr extruded allow showed only 18-23% elongation at 400-500 0 C(752-932 0 F)

  14. Carbon Nanofiber-Based, High-Frequency, High-Q, Miniaturized Mechanical Resonators

    Science.gov (United States)

    Kaul, Anupama B.; Epp, Larry W.; Bagge, Leif

    2011-01-01

    High Q resonators are a critical component of stable, low-noise communication systems, radar, and precise timing applications such as atomic clocks. In electronic resonators based on Si integrated circuits, resistive losses increase as a result of the continued reduction in device dimensions, which decreases their Q values. On the other hand, due to the mechanical construct of bulk acoustic wave (BAW) and surface acoustic wave (SAW) resonators, such loss mechanisms are absent, enabling higher Q-values for both BAW and SAW resonators compared to their electronic counterparts. The other advantages of mechanical resonators are their inherently higher radiation tolerance, a factor that makes them attractive for NASA s extreme environment planetary missions, for example to the Jovian environments where the radiation doses are at hostile levels. Despite these advantages, both BAW and SAW resonators suffer from low resonant frequencies and they are also physically large, which precludes their integration into miniaturized electronic systems. Because there is a need to move the resonant frequency of oscillators to the order of gigahertz, new technologies and materials are being investigated that will make performance at those frequencies attainable. By moving to nanoscale structures, in this case vertically oriented, cantilevered carbon nanotubes (CNTs), that have larger aspect ratios (length/thickness) and extremely high elastic moduli, it is possible to overcome the two disadvantages of both bulk acoustic wave (BAW) and surface acoustic wave (SAW) resonators. Nano-electro-mechanical systems (NEMS) that utilize high aspect ratio nanomaterials exhibiting high elastic moduli (e.g., carbon-based nanomaterials) benefit from high Qs, operate at high frequency, and have small force constants that translate to high responsivity that results in improved sensitivity, lower power consumption, and im - proved tunablity. NEMS resonators have recently been demonstrated using topdown

  15. High modulus rare earth and beryllium containing silicate glass compositions. [for glass reinforcing fibers

    Science.gov (United States)

    Bacon, J. F. (Inventor)

    1976-01-01

    Glass compositions having a Young's modulus of at least 16 million psi and a specific modulus of at least 110 million inches consisting essentially of approximately, by weight, 20 to 43% SiO2, 8 to 21% Al2O3, 4 to 10% BeO, 27 to 58% of at least one oxide selected from a first group consisting of Y2O3, La2O3, Nd2O3, Ce2O3, Ce2O3, and the mixed rare earth oxides, and 3 to 12% of at least one oxide selected from a second group consisting of MgO, ZrO2, ZnO and CaO are described. The molar ratio of BeO to the total content of the first group oxides is from 1.0 to 3.0.

  16. Structure and Young modulus of age hardening elinvar 45NKhT

    International Nuclear Information System (INIS)

    Baraz, V.R.; Strizhak, V.A.; Tsykin, D.N.

    1996-01-01

    The influence of quenching and ageing on structural features and Young modulus of precipitation hardening elinvar alloy 45 NKhT is under study. It is shown that the quenched alloy possesses a decreased elastic modulus which value drops with a quenching temperature increase. The ally ageing results in restoration of elastic modulus. The temperature range of Young modulus stability is shown to be independent of heat treatment conditions. The anomalies of elastic modulus in quenched alloy are conditioned by structural and magnetoelastic factors. The mechanisms of continuous and discontinuous precipitation mechanism has no effect on efficiency of Young modulus restoration. 13 refs., 6 figs

  17. Effect of Kevlar and carbon fibres on tensile properties of oil palm/epoxy composites

    Science.gov (United States)

    Amir, S. M. M.; Sultan, M. T. H.; Jawaid, M.; Cardona, F.; Ishak, M. R.; Yusof, M. R.

    2017-12-01

    Hybrid composites with natural and synthetic fibers have captured the interests of many researchers. In this work, Kevlar/oil palm Empty Fruit Bunch (EFB)/Kevlar and carbon/oil palm EFB hybrid/carbon composites were prepared using hand lay-up technique by keeping the oil palm EFB fiber as the core material. The tensile properties which include tensile strength, tensile modulus and elongation at break were investigated. It is observed that the tensile strength and modulus for carbon/oil palm EFB/carbon hybrid composites were much higher as compared with Kevlar/oil palm EFB/Kevlar hybrid composites. However, the elongation at break for Kevlar/oil palm EFB/Kevlar hybrid composites exhibited higher value as compared to carbon/oil palm EFB/carbon hybrid composites and oil palm EFB/epoxy composites. The tensile strength for carbon/oil palm EFB/carbon hybrid composites is 93.6 MPa and the tensile modulus for carbon/oil palm EFB/carbon hybrid composites is 6.5 GPa. The elongation at break for Kevlar/oil palm EFB/Kevlar hybrid composites is 3.6%.

  18. Raman Spectra and Bulk Modulus of Nanodiamond in a Size Interval of 2-5 nm

    Science.gov (United States)

    Popov, Mikhail; Churkin, Valentin; Kirichenko, Alexey; Denisov, Viktor; Ovsyannikov, Danila; Kulnitskiy, Boris; Perezhogin, Igor; Aksenenkov, Viktor; Blank, Vladimir

    2017-10-01

    Nanodiamond in a 2-5-nm size interval (which is typical for an appearance of quantum confinement effect) show Raman spectra composed of 3 bands at 1325, 1600, and 1500 cm-1 (at the 458-nm laser excitation) which shifts to 1630 cm-1 at the 257-nm laser excitation. Contrary to sp2-bonded carbon, relative intensities of the bands do not depend on the 458- and 257-nm excitation wavelengths, and a halfwidth and the intensity of the 1600 cm-1 band does not change visibly under pressure at least up to 50 GPa. Bulk modulus of the 2-5-nm nanodiamond determined from the high-pressure study is around 560 GPa. Studied 2-5-nm nanodiamond was purified from contamination layers and dispersed in Si or NaCl.

  19. sp2 carbon allotropes in elastomer matrix: From master curves for the mechanical reinforcement to lightweight materials

    Directory of Open Access Journals (Sweden)

    M. Galimberti

    2018-03-01

    Full Text Available This work presents high surface area sp2 carbon allotropes as important tools to design and prepare lightweight materials. Composites were prepared based on either carbon black (CB or carbon nanotubes (CNT or hybrid CB/CNT filler systems, with either poly(1,4-cis-isoprene or poly(styrene-co-butadiene as the polymer matrix. A correlation was established between the specific interfacial area (i.a., i.e. the surface made available by the filler per unit volume of composite, and the initial modulus of the composite (G′γmin, determined through dynamic mechanical shear tests. Experimental points could be fitted with a common line, a sort of master curve, up to about 30.2 and 9.8 mass% as CB and CNT content, respectively. The equation of such master curve allowed to correlate modulus and density of the composite. Thanks to the master curve, composites with the same modulus and lower density could be designed by substituting part of CB with lower amount of the carbon allotrope with larger surface area, CNT. This work establishes a quantitative correlation as a tool to design lightweight materials and paves the way for large scale application in polymer matrices of innovative sp2 carbon allotropes.

  20. Aligned multi-walled carbon nanotube-reinforced composites: processing and mechanical characterization

    International Nuclear Information System (INIS)

    Thostenson, Erik T.; Chou, Tsuwei

    2002-01-01

    Carbon nanotubes have been the subject of considerable attention because of their exceptional physical and mechanical properties. These properties observed at the nanoscale have motivated researchers to utilize carbon nanotubes as reinforcement in composite materials. In this research, a micro-scale twin-screw extruder was used to achieve dispersion of multi-walled carbon nanotubes in a polystyrene matrix. Highly aligned nanocomposite films were produced by extruding the polymer melt through a rectangular die and drawing the film prior to cooling. Randomly oriented nanocomposites were produced by achieving dispersion first with the twin-screw extruder followed by pressing a film using a hydraulic press. The tensile behaviour of the aligned and random nanocomposite films with 5 wt.{%} loading of nanotubes were characterized. Addition of nanotubes increased the tensile modulus, yield strength and ultimate strengths of the polymer films, and the improvement in elastic modulus with the aligned nanotube composite is five times greater than the improvement for the randomly oriented composite. (author)

  1. Multigene Genetic Programming for Estimation of Elastic Modulus of Concrete

    Directory of Open Access Journals (Sweden)

    Alireza Mohammadi Bayazidi

    2014-01-01

    Full Text Available This paper presents a new multigene genetic programming (MGGP approach for estimation of elastic modulus of concrete. The MGGP technique models the elastic modulus behavior by integrating the capabilities of standard genetic programming and classical regression. The main aim is to derive precise relationships between the tangent elastic moduli of normal and high strength concrete and the corresponding compressive strength values. Another important contribution of this study is to develop a generalized prediction model for the elastic moduli of both normal and high strength concrete. Numerous concrete compressive strength test results are obtained from the literature to develop the models. A comprehensive comparative study is conducted to verify the performance of the models. The proposed models perform superior to the existing traditional models, as well as those derived using other powerful soft computing tools.

  2. Nanocomposites of nitrile (NBR) rubber with multi-walled carbon nanotubes

    Science.gov (United States)

    Warasitthinon, Nuthathai

    Nanotechnology offers the promise of creating new materials with enhanced performance. There are different kinds of fillers used in rubber nanocomposites, such as carbon black, silica, carbon fibers, and organoclays. Carbon nanotube reinforced elastomers have potential for improved rubber properties in aggressive environments. The first chapter is an introduction to the literature. The second chapter investigated the incorporation of multi-walled carbon nanotubes (MWCNTs) into rubber matrix for potential use in high temperature applications. The vulcanization kinetics of acrylonitrile butadiene rubber (NBR) reinforced with multi-walled carbon nanotubes was investigated. The vulcanized NBR rubber with different loading percentages of MWCNTs was also compared to NBR reinforced with carbon black N330. The optimum curing time at 170°C (T90) was found to decrease with increasing content of MWCNTs. Increased filler loading of both carbon black and MWCNTs gave higher modulus and strength. The MWCNTs filled materials gave better retention of modulus and tensile strength at high temperatures, but lower strength as compared to the carbon black filled samples. In the third chapter, carbon black (CB, 50phr) content in nitrile rubber (NBR) nanocomposites was partially replaced by multi-walled carbon nanotubes (MWCNTs). NBR/CB/CNTs nanocomposites with varying ratio of CB/CNTs (50/0 phr to 40/10 phr) were formulated via the melt-mixing method using an internal mixer. The reinforcing effect of single filler (CB) and mixture of fillers (CB and CNTs) on the properties of NBR nanocomposites was investigated. The cure kinetics and bound rubber content were analyzed using rheometry and solvent swelling method. In addition, mechanical behavior at both room temperature and high temperature (350°F/ 121°C) were examined. The scorch time and curing time values showed that there was no significant effect on the curing behavior of NBR nanocomposites after the partial replacement of CB with

  3. The variation in elastic modulus throughout the compression of foam materials

    International Nuclear Information System (INIS)

    Sun, Yongle; Amirrasouli, B.; Razavi, S.B.; Li, Q.M.; Lowe, T.; Withers, P.J.

    2016-01-01

    We present a comprehensive experimental study of the variation in apparent unloading elastic modulus of polymer (largely elastic), aluminium (largely plastic) and fibre-reinforced cement (quasi-brittle) closed-cell foams throughout uniaxial compression. The results show a characteristic “zero-yield-stress” response and thereafter a rapid increase in unloading modulus during the supposedly “elastic” regime of the compressive stress–strain curve. The unloading modulus then falls with strain due to the localised cell-wall yielding or failure in the pre-collapse stage and the progressive cell crushing in the plateau stage, before rising sharply during the densification stage which is associated with global cell crushing and foam compaction. A finite element model based on the actual 3D cell structure of the aluminium foam imaged by X-ray computed tomography (CT) predicts an approximately linear fall of elastic modulus from zero strain until a band of collapsed cells forms. It shows that the subsequent gradual decrease in modulus is caused by the progressive collapse of cells. The elastic modulus rises sharply after the densification initiation strain has been reached. However, the elastic modulus is still well below that of the constituent material even when the “fully” dense state is approached. This work highlights the fact that the unloading elastic modulus varies throughout compression and challenges the idea that a constant elastic modulus can be applied in a homogenised foam model. It is suggested that the most representative value of elastic modulus may be obtained by extrapolating the measured unloading modulus to zero strain.

  4. Fracture Toughness and Elastic Modulus of Epoxy-Based Nanocomposites with Dopamine-Modified Nano-Fillers

    Directory of Open Access Journals (Sweden)

    Kwang Liang Koh

    2017-07-01

    Full Text Available This paper examines the effect of surface treatment and filler shape factor on the fracture toughness and elastic modulus of epoxy-based nanocomposite. Two forms of nanofillers, polydopamine-coated montmorillonite clay (D-clay and polydopamine-coated carbon nanofibres (D-CNF were investigated. It was found that Young’s modulus increases with increasing D-clay and D-CNF loading. However, the fracture toughness decreases with increased D-clay loading but increases with increased D-CNF loading. Explanations have been provided with the aid of fractographic analysis using electron microscope observations of the crack-filler interactions. Fractographic analysis suggests that although polydopamine provides a strong adhesion between the fillers and the matrix, leading to enhanced elastic stiffness, the enhancement prohibits energy release via secondary cracking, resulting in a decrease in fracture toughness. In contrast, 1D fibre is effective in increasing the energy dissipation during fracture through crack deflection, fibre debonding, fibre break, and pull-out.

  5. Fracture Toughness and Elastic Modulus of Epoxy-Based Nanocomposites with Dopamine-Modified Nano-Fillers

    Science.gov (United States)

    Koh, Kwang Liang; Ji, Xianbai; Lu, Xuehong; Lau, Soo Khim; Chen, Zhong

    2017-01-01

    This paper examines the effect of surface treatment and filler shape factor on the fracture toughness and elastic modulus of epoxy-based nanocomposite. Two forms of nanofillers, polydopamine-coated montmorillonite clay (D-clay) and polydopamine-coated carbon nanofibres (D-CNF) were investigated. It was found that Young’s modulus increases with increasing D-clay and D-CNF loading. However, the fracture toughness decreases with increased D-clay loading but increases with increased D-CNF loading. Explanations have been provided with the aid of fractographic analysis using electron microscope observations of the crack-filler interactions. Fractographic analysis suggests that although polydopamine provides a strong adhesion between the fillers and the matrix, leading to enhanced elastic stiffness, the enhancement prohibits energy release via secondary cracking, resulting in a decrease in fracture toughness. In contrast, 1D fibre is effective in increasing the energy dissipation during fracture through crack deflection, fibre debonding, fibre break, and pull-out. PMID:28773136

  6. Molecular modeling of the microstructure evolution during carbon fiber processing

    Science.gov (United States)

    Desai, Saaketh; Li, Chunyu; Shen, Tongtong; Strachan, Alejandro

    2017-12-01

    The rational design of carbon fibers with desired properties requires quantitative relationships between the processing conditions, microstructure, and resulting properties. We developed a molecular model that combines kinetic Monte Carlo and molecular dynamics techniques to predict the microstructure evolution during the processes of carbonization and graphitization of polyacrylonitrile (PAN)-based carbon fibers. The model accurately predicts the cross-sectional microstructure of the fibers with the molecular structure of the stabilized PAN fibers and physics-based chemical reaction rates as the only inputs. The resulting structures exhibit key features observed in electron microcopy studies such as curved graphitic sheets and hairpin structures. In addition, computed X-ray diffraction patterns are in good agreement with experiments. We predict the transverse moduli of the resulting fibers between 1 GPa and 5 GPa, in good agreement with experimental results for high modulus fibers and slightly lower than those of high-strength fibers. The transverse modulus is governed by sliding between graphitic sheets, and the relatively low value for the predicted microstructures can be attributed to their perfect longitudinal texture. Finally, the simulations provide insight into the relationships between chemical kinetics and the final microstructure; we observe that high reaction rates result in porous structures with lower moduli.

  7. Muscle shear elastic modulus is linearly related to muscle torque over the entire range of isometric contraction intensity.

    Science.gov (United States)

    Ateş, Filiz; Hug, François; Bouillard, Killian; Jubeau, Marc; Frappart, Thomas; Couade, Mathieu; Bercoff, Jeremy; Nordez, Antoine

    2015-08-01

    Muscle shear elastic modulus is linearly related to muscle torque during low-level contractions (torque over the entire range of isometric contraction and (ii) the influence of the size of the region of interest (ROI) used to average the shear modulus value. Ten healthy males performed two incremental isometric little finger abductions. The joint torque produced by Abductor Digiti Minimi was considered as an index of muscle torque and elastic modulus. A high coefficient of determination (R(2)) (range: 0.86-0.98) indicated that the relationship between elastic modulus and torque can be accurately modeled by a linear regression over the entire range (0% to 100% of MVC). The changes in shear elastic modulus as a function of torque were highly repeatable. Lower R(2) values (0.89±0.13 for 1/16 of ROI) and significantly increased absolute errors were observed when the shear elastic modulus was averaged over smaller ROI, half, 1/4 and 1/16 of the full ROI) than the full ROI (mean size: 1.18±0.24cm(2)). It suggests that the ROI should be as large as possible for accurate measurement of muscle shear modulus. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Young Modulus of Crystalline Polyethylene from ab Initio Molecular Dynamics

    NARCIS (Netherlands)

    Hageman, J.C.L.; Meier, Robert J.; Heinemann, M.; Groot, R.A. de

    1997-01-01

    The Young modulus for crystalline polyethylene is calculated using ab initio molecular dynamics based on density functional theory in the local density approximation (DFT-LDA). This modulus, which can be seen as the ultimate value for the Young modulus of polyethylene fibers, is found to be 334 GPa.

  9. Determination of elastic modulus of ceramics using ultrasonic testing

    Science.gov (United States)

    Sasmita, Firmansyah; Wibisono, Gatot; Judawisastra, Hermawan; Priambodo, Toni Agung

    2018-04-01

    Elastic modulus is important material property on structural ceramics application. However, bending test as a common method for determining this property require particular specimen preparation. Furthermore, elastic modulus of ceramics could vary because it depends on porosity content. For structural ceramics industry, such as ceramic tiles, this property is very important. This drives the development of new method to improve effectivity or verification method as well. In this research, ultrasonic testing was conducted to determine elastic modulus of soda lime glass and ceramic tiles. The experiment parameter was frequency of probe (1, 2, 4 MHz). Characterization of density and porosity were also done for analysis. Results from ultrasonic testing were compared with elastic modulus resulted from bending test. Elastic modulus of soda-lime glass based on ultrasonic testing showed excellent result with error 2.69% for 2 MHz probe relative to bending test result. Testing on red and white ceramic tiles were still contained error up to 41% and 158%, respectively. The results for red ceramic tile showed trend that 1 MHz probe gave better accuracy in determining elastic modulus. However, testing on white ceramic tile showed different trend. It was due to the presence of porosity and near field effect.

  10. Modelling of single walled carbon nanotube cylindrical structures with finite element method simulations

    Science.gov (United States)

    Günay, E.

    2016-04-01

    In this study, the modulus of elasticity and shear modulus values of single-walled carbon nanotubes SWCNTs were modelled by using both finite element method and the Matlab code. Initially, cylindrical armchair and zigzag single walled 3D space frames were demonstrated as carbon nanostructures. Thereafter, macro programs were written by the Matlab code producing the space truss for zigzag and armchair models. 3D space frames were introduced to the ANSYS software and then tension, compression and additionally torsion tests were performed on zigzag and armchair carbon nanotubes with BEAM4 element in obtaining the exact values of elastic and shear modulus values. In this study, two different boundary conditions were tested and especially used in torsion loading. The equivalent shear modulus data was found by averaging the corresponding values obtained from ten different nodal points on the nanotube path. Finally, in this study it was determined that the elastic constant values showed proportional changes by increasing the carbon nanotube diameters up to a certain level but beyond this level these values remained stable.

  11. Modelling of single walled carbon nanotube cylindrical structures with finite element method simulations

    International Nuclear Information System (INIS)

    Günay, E.

    2016-01-01

    In this study, the modulus of elasticity and shear modulus values of single-walled carbon nanotubes SWCNTs were modelled by using both finite element method and the Matlab code. Initially, cylindrical armchair and zigzag single walled 3D space frames were demonstrated as carbon nanostructures. Thereafter, macro programs were written by the Matlab code producing the space truss for zigzag and armchair models. 3D space frames were introduced to the ANSYS software and then tension, compression and additionally torsion tests were performed on zigzag and armchair carbon nanotubes with BEAM4 element in obtaining the exact values of elastic and shear modulus values. In this study, two different boundary conditions were tested and especially used in torsion loading. The equivalent shear modulus data was found by averaging the corresponding values obtained from ten different nodal points on the nanotube path. Finally, in this study it was determined that the elastic constant values showed proportional changes by increasing the carbon nanotube diameters up to a certain level but beyond this level these values remained stable.

  12. Modelling of single walled carbon nanotube cylindrical structures with finite element method simulations

    Energy Technology Data Exchange (ETDEWEB)

    Günay, E. [Gazi University, Mechanical Engineering Department, 06570, Ankara (Turkey)

    2016-04-21

    In this study, the modulus of elasticity and shear modulus values of single-walled carbon nanotubes SWCNTs were modelled by using both finite element method and the Matlab code. Initially, cylindrical armchair and zigzag single walled 3D space frames were demonstrated as carbon nanostructures. Thereafter, macro programs were written by the Matlab code producing the space truss for zigzag and armchair models. 3D space frames were introduced to the ANSYS software and then tension, compression and additionally torsion tests were performed on zigzag and armchair carbon nanotubes with BEAM4 element in obtaining the exact values of elastic and shear modulus values. In this study, two different boundary conditions were tested and especially used in torsion loading. The equivalent shear modulus data was found by averaging the corresponding values obtained from ten different nodal points on the nanotube path. Finally, in this study it was determined that the elastic constant values showed proportional changes by increasing the carbon nanotube diameters up to a certain level but beyond this level these values remained stable.

  13. Temperature dependence of Young's modulus of silica refractories

    Czech Academy of Sciences Publication Activity Database

    Gregorová, E.; Černý, Martin; Pabst, W.; Esposito, L.; Zanelli, C.; Hamáček, J.; Kutzendorfer, J.

    2015-01-01

    Roč. 41, č. 1 (2015), s. 1129-1138 ISSN 0272-8842 Institutional support: RVO:67985891 Keywords : mechanical properties * elastic modulus (Young's modulus ) * SiO2 * Silica brick materials (cristobalite, tridymite) Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 2.758, year: 2015

  14. Mechanical characterization of epoxy composite with multiscale reinforcements: Carbon nanotubes and short carbon fibers

    International Nuclear Information System (INIS)

    Rahmanian, S.; Suraya, A.R.; Shazed, M.A.; Zahari, R.; Zainudin, E.S.

    2014-01-01

    Highlights: • Multiscale composite was prepared by incorporation of carbon nanotubes and fibers. • Carbon nanotubes were also grown on short carbon fibers to enhance stress transfer. • Significant improvements were achieved in mechanical properties of composites. • Synergic effect of carbon nanotubes and fibers was demonstrated. - Abstract: Carbon nanotubes (CNT) and short carbon fibers were incorporated into an epoxy matrix to fabricate a high performance multiscale composite. To improve the stress transfer between epoxy and carbon fibers, CNT were also grown on fibers through chemical vapor deposition (CVD) method to produce CNT grown short carbon fibers (CSCF). Mechanical characterization of composites was performed to investigate the synergy effects of CNT and CSCF in the epoxy matrix. The multiscale composites revealed significant improvement in elastic and storage modulus, strength as well as impact resistance in comparison to CNT–epoxy or CSCF–epoxy composites. An optimum content of CNT was found which provided the maximum stiffness and strength. The synergic reinforcing effects of combined fillers were analyzed on the fracture surface of composites through optical and scanning electron microscopy (SEM)

  15. Three-Phase Carbon Fiber Amine Functionalized Carbon Nanotubes Epoxy Composite: Processing, Characterisation, and Multiscale Modeling

    Directory of Open Access Journals (Sweden)

    Kamal Sharma

    2014-01-01

    Full Text Available The present paper discusses the key issues of carbon nanotube (CNT dispersion and effect of functionalisation on the mechanical properties of multiscale carbon epoxy composites. In this study, CNTs were added in epoxy matrix and further reinforced with carbon fibres. Predetermined amounts of optimally amine functionalised CNTs were dispersed in epoxy matrix, and unidirectional carbon fiber laminates were produced. The effect of the presence of CNTs (1.0 wt% in the resin was reflected by pronounced increase in Young’s modulus, inter-laminar shear strength, and flexural modulus by 51.46%, 39.62%, and 38.04%, respectively. However, 1.5 wt% CNT loading in epoxy resin decreased the overall properties of the three-phase composites. A combination of Halpin-Tsai equations and micromechanics modeling approach was also used to evaluate the mechanical properties of multiscale composites and the differences between the predicted and experimental values are reported. These multiscale composites are likely to be used for potential missile and aerospace structural applications.

  16. Carbon composites in space vehicle structures

    Science.gov (United States)

    Mayer, N. J.

    1974-01-01

    Recent developments in the technology of carbon or graphite filaments now provide the designer with greatly improved materials offering high specific strength and modulus. Besides these advantages are properties which are distinctly useful for space applications and which provide feasibility for missions not obtainable by other means. Current applications include major and secondary structures of communications satellites. A number of R & D projects are exploring carbon-fiber application to rocket engine motor cases, advanced antenna systems, and space shuttle components. Future system studies are being made, based on the successful application of carbon fibers for orbiting space telescope assemblies, orbital transfer vehicles, and very large deployable energy generation systems. Continued technology development is needed in analysis, material standards, and advanced structural concepts to exploit the full potential of carbon filaments in composite materials.

  17. Aligned Carbon Nanotubes for High-Performance Films and Composites

    Science.gov (United States)

    Zhang, Liwen

    Carbon nanotubes (CNTs) with extraordinary properties and thus many potential applications have been predicted to be the best reinforcements for the next-generation multifunctional composite materials. Difficulties exist in transferring the most use of the unprecedented properties of individual CNTs to macroscopic forms of CNT assemblies. Therefore, this thesis focuses on two main goals: 1) discussing the issues that influence the performance of bulk CNT products, and 2) fabricating high-performance dry CNT films and composite films with an understanding of the fundamental structure-property relationship in these materials. Dry CNT films were fabricated by a winding process using CNT arrays with heights of 230 mum, 300 im and 360 mum. The structures of the as-produced films, as well as their mechanical and electrical properties were examined in order to find out the effects of different CNT lengths. It was found that the shorter CNTs synthesized by shorter time in the CVD furnace exhibited less structural defects and amorphous carbon, resulting in more compact packing and better nanotube alignment when made into dry films, thus, having better mechanical and electrical performance. A novel microcombing approach was developed to mitigate the CNT waviness and alignment in the dry films, and ultrahigh mechanical properties and exceptional electrical performance were obtained. This method utilized a pair of sharp surgical blades with microsized features at the blade edges as micro-combs to, for the first time, disentangle and straighten the wavy CNTs in the dry-drawn CNT sheet at single-layer level. The as-combed CNT sheet exhibited high level of nanotube alignment and straightness, reduced structural defects, and enhanced nanotube packing density. The dry CNT films produced by microcombing had a very high Young's modulus of 172 GPa, excellent tensile strength of 3.2 GPa, and unprecedented electrical conductivity of 1.8x10 5 S/m, which were records for CNT films or

  18. Proposal of Design Formulae for Equivalent Elasticity of Masonry Structures Made with Bricks of Low Modulus

    Directory of Open Access Journals (Sweden)

    Muhammad Ridwan

    2017-01-01

    Full Text Available Bricks of low elastic modulus are occasionally used in some developing countries, such as Indonesia and India. Most of the previous research efforts focused on masonry structures built with bricks of considerably high elastic modulus. The objective of this study is to quantify the equivalent elastic modulus of lower-stiffness masonry structures, when the mortar has a higher modulus of elasticity than the bricks, by employing finite element (FE simulations and adopting the homogenization technique. The reported numerical simulations adopted the two-dimensional representative volume elements (RVEs using quadrilateral elements with four nodes. The equivalent elastic moduli of composite elements with various bricks and mortar were quantified. The numerically estimated equivalent elastic moduli from the FE simulations were verified using previously established test data. Hence, a new simplified formula for the calculation of the equivalent modulus of elasticity of such masonry structures is proposed in the present study.

  19. High-Melt Carbon-Carbon Coating for Nozzle Extensions

    Science.gov (United States)

    Thompson, James

    2015-01-01

    Carbon-Carbon Advanced Technologies, Inc. (C-CAT), has developed a high-melt coating for use in nozzle extensions in next-generation spacecraft. The coating is composed primarily of carbon-carbon, a carbon-fiber and carbon-matrix composite material that has gained a spaceworthy reputation due to its ability to withstand ultrahigh temperatures. C-CAT's high-melt coating embeds hafnium carbide (HfC) and zirconium diboride (ZrB2) within the outer layers of a carbon-carbon structure. The coating demonstrated enhanced high-temperature durability and suffered no erosion during a test in NASA's Arc Jet Complex. (Test parameters: stagnation heat flux=198 BTD/sq ft-sec; pressure=.265 atm; temperature=3,100 F; four cycles totaling 28 minutes) In Phase I of the project, C-CAT successfully demonstrated large-scale manufacturability with a 40-inch cylinder representing the end of a nozzle extension and a 16-inch flanged cylinder representing the attach flange of a nozzle extension. These demonstrators were manufactured without spalling or delaminations. In Phase II, C-CAT worked with engine designers to develop a nozzle extension stub skirt interfaced with an Aerojet Rocketdyne RL10 engine. All objectives for Phase II were successfully met. Additional nonengine applications for the coating include thermal protection systems (TPS) for next-generation spacecraft and hypersonic aircraft.

  20. Low-modulus PMMA bone cement modified with castor oil.

    Science.gov (United States)

    López, Alejandro; Hoess, Andreas; Thersleff, Thomas; Ott, Marjam; Engqvist, Håkan; Persson, Cecilia

    2011-01-01

    Some of the current clinical and biomechanical data suggest that vertebroplasty causes the development of adjacent vertebral fractures shortly after augmentation. These findings have been attributed to high injection volumes as well as high Young's moduli of PMMA bone cements compared to that of the osteoporotic cancellous bone. The aim of this study was to evaluate the use of castor oil as a plasticizer for PMMA bone cements. The Young's modulus, yield strength, maximum polymerization temperature, doughing time, setting time and the complex viscosity curves during curing, were determined. The cytotoxicity of the materials extracts was assessed on cells of an osteoblast-like cell line. The addition of up to 12 wt% castor oil decreased yield strength from 88 to 15 MPa, Young's modulus from 1500 to 446 MPa and maximum polymerization temperature from 41.3 to 25.6°C, without affecting the setting time. However, castor oil seemed to interfere with the polymerization reaction, giving a negative effect on cell viability in a worst-case scenario.

  1. Effect of a High Density of Stacking Faults on the Young's Modulus of GaAs Nanowires.

    Science.gov (United States)

    Chen, Yujie; Burgess, Tim; An, Xianghai; Mai, Yiu-Wing; Tan, H Hoe; Zou, Jin; Ringer, Simon P; Jagadish, Chennupati; Liao, Xiaozhou

    2016-03-09

    Stacking faults (SFs) are commonly observed crystalline defects in III-V semiconductor nanowires (NWs) that affect a variety of physical properties. Understanding the effect of SFs on NW mechanical properties is critical to NW applications in nanodevices. In this study, the Young's moduli of GaAs NWs with two distinct structures, defect-free single crystalline wurtzite (WZ) and highly defective wurtzite containing a high density of SFs (WZ-SF), are investigated using combined in situ compression transmission electron microscopy and finite element analysis. The Young's moduli of both WZ and WZ-SF GaAs NWs were found to increase with decreasing diameter due to the increasing volume fraction of the native oxide shell. The presence of a high density of SFs was further found to increase the Young's modulus by 13%. This stiffening effect of SFs is attributed to the change in the interatomic bonding configuration at the SFs.

  2. Asphalt mix characterization using dynamic modulus and APA testing.

    Science.gov (United States)

    2005-11-01

    final report summarizes two research efforts related to asphalt mix characterization: dynamic modulus and Asphalt Pavement Analyzer testing. One phase of the research consisted of a laboratory-based evaluation of dynamic modulus of Oregon dense-grade...

  3. Effect of carbon fiber dispersion on the mechanical properties of carbon fiber-reinforced cement-based composites

    International Nuclear Information System (INIS)

    Wang Chuang; Li Kezhi; Li Hejun; Jiao Gengsheng; Lu Jinhua; Hou Dangshe

    2008-01-01

    The preparation of carbon fiber-reinforced cement-based composites involved two-step dispersions of carbon fibers. Both steps affected greatly the mechanical properties of the composites. With the aid of ultrasonic wave, a new dispersant hydroxyethyl cellulose was used to help fiber dispersion in the first step. The fracture surface of the composites was observed by scanning electron microscopy. The distribution of major elements was analyzed by the energy dispersive spectroscopy and the composition was analyzed through X-ray diffraction. The flexural strength, tensile strength, modulus, and compression strength were measured. Results showed that the distribution of major elements varied with the variation of the fiber dispersion status. The compressive strength increased by 20%, the tensile strength was 2.4 times that of the material without carbon fibers, the modulus increased by 26.8%, whereas the flexure stress decreased by 12.9%

  4. Frequency-dependent complex modulus of the uterus: preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Kiss, Miklos Z [Department of Medical Physics, University of Wisconsin, Madison, WI 53706 (United States); Hobson, Maritza A [Department of Medical Physics, University of Wisconsin, Madison, WI 53706 (United States); Varghese, Tomy [Department of Medical Physics, University of Wisconsin, Madison, WI 53706 (United States); Harter, Josephine [Department of Surgical Pathology, University of Wisconsin, Madison, WI 53706 (United States); Kliewer, Mark A [Department of Radiology, University of Wisconsin, Madison, WI 53706 (United States); Hartenbach, Ellen M [Department of Obstetrics and Gynecology, University of Wisconsin, Madison, WI 53706 (United States); Zagzebski, James A [Department of Medical Physics, University of Wisconsin, Madison, WI 53706 (United States)

    2006-08-07

    The frequency-dependent complex moduli of human uterine tissue have been characterized. Quantification of the modulus is required for developing uterine ultrasound elastography as a viable imaging modality for diagnosing and monitoring causes for abnormal uterine bleeding and enlargement, as well assessing the integrity of uterine and cervical tissue. The complex modulus was measured in samples from hysterectomies of 24 patients ranging in age from 31 to 79 years. Measurements were done under small compressions of either 1 or 2%, at low pre-compression values (either 1 or 2%), and over a frequency range of 0.1-100 Hz. Modulus values of cervical tissue monotonically increased from approximately 30-90 kPa over the frequency range. Normal uterine tissue possessed modulus values over the same range, while leiomyomas, or uterine fibroids, exhibited values ranging from approximately 60-220 kPa.

  5. Frequency-dependent complex modulus of the uterus: preliminary results

    International Nuclear Information System (INIS)

    Kiss, Miklos Z; Hobson, Maritza A; Varghese, Tomy; Harter, Josephine; Kliewer, Mark A; Hartenbach, Ellen M; Zagzebski, James A

    2006-01-01

    The frequency-dependent complex moduli of human uterine tissue have been characterized. Quantification of the modulus is required for developing uterine ultrasound elastography as a viable imaging modality for diagnosing and monitoring causes for abnormal uterine bleeding and enlargement, as well assessing the integrity of uterine and cervical tissue. The complex modulus was measured in samples from hysterectomies of 24 patients ranging in age from 31 to 79 years. Measurements were done under small compressions of either 1 or 2%, at low pre-compression values (either 1 or 2%), and over a frequency range of 0.1-100 Hz. Modulus values of cervical tissue monotonically increased from approximately 30-90 kPa over the frequency range. Normal uterine tissue possessed modulus values over the same range, while leiomyomas, or uterine fibroids, exhibited values ranging from approximately 60-220 kPa

  6. Application of tearing modulus stability concepts to nuclear piping. Final report. [PWR; BWR

    Energy Technology Data Exchange (ETDEWEB)

    Cotter, K.H.; Chang, H.Y.; Zahoor, A.

    1982-02-01

    The recently developed tearing modulus stability concept was successfully applied to several boiling water reactor (BWR) and pressurized water reactor (PWR) piping systems. Circumferentially oriented through-the-thickness cracks were postulated at numerous locations in each system. For each location, the simplified tearing stability methods developed in USNRC Report NUREG/CR-0838 were used to determine crack stability. The J-T diagram was used to present the results of the computations. The piping systems considered included Type 304 stainless steel as well as A106 carbon steel materials. These systems were analyzed using the piping analysis computer code MINK.

  7. Assessment of dynamic modulus of high density polypropylene waste fiber reinforcement in asphalt concrete

    Directory of Open Access Journals (Sweden)

    Hassan S. OTUOZE

    2015-12-01

    Full Text Available Traditional asphalt tests like Hveem and Marshall tests are at best mere characterization than effective test of pavement field performance because of complex viscoelastic behavior of asphalt. Mechanical properties otherwise called simple performance tests (SPT are performance criteria of asphalt. Dynamic modulus among other SPT’s like permanent deformation, fatigue cracking, thermal cracking, moisture susceptibility, shear and friction properties; determines stress-strain to time-temperature relationships that imparts on strength, service life and durability. The test followed the recommendations of NCHRP 1-37a (2004 and mixes were prepared using 0, 0.5, 1.0 and 1.5% HDPP contents. The parameters tested for dynamic modulus, /E*/, are stiffness, recoverable strain (ε, and phase angle (ξ. Time – temperature superposition (TTS called master curve was fitted using sigmoidal curve to interpolate the parameters beyond measured data set so as to observe the viscoelastic behavior outside the physical properties. The performance of 0.5% HDPP asphalt is better enhanced than the conventional asphalt to improve upon strength, service and durability.

  8. MECHANICAL AND THERMO–MECHANICAL PROPERTIES OF BI-DIRECTIONAL AND SHORT CARBON FIBER REINFORCED EPOXY COMPOSITES

    Directory of Open Access Journals (Sweden)

    G. AGARWAL

    2014-10-01

    Full Text Available This paper based on bidirectional and short carbon fiber reinforced epoxy composites reports the effect of fiber loading on physical, mechanical and thermo-mechanical properties respectively. The five different fiber loading, i.e., 10wt. %, 20wt. %, 30wt. %, 40wt. % and 50wt. % were taken for evaluating the above said properties. The physical and mechanical properties, i.e., hardness, tensile strength, flexural strength, inter-laminar shear strength and impact strength are determined to represent the behaviour of composite structures with that of fiber loading. Thermo-mechanical properties of the material are measured with the help of Dynamic Mechanical Analyser to measure the damping capacity of the material that is used to reduce the vibrations. The effect of storage modulus, loss modulus and tan delta with temperature are determined. Finally, Cole–Cole analysis is performed on both bidirectional and short carbon fiber reinforced epoxy composites to distinguish the material properties of either homogeneous or heterogeneous materials. The results show that with the increase in fiber loading the mechanical properties of bidirectional carbon fiber reinforced epoxy composites increases as compared to short carbon fiber reinforced epoxy composites except in case of hardness, short carbon fiber reinforced composites shows better results. Similarly, as far as Loss modulus, storage modulus is concerned bidirectional carbon fiber shows better damping behaviour than short carbon fiber reinforced composites.

  9. Low modulus Ti–Nb–Hf alloy for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    González, M., E-mail: Marta.Gonzalez.Colominas@upc.edu [Department of Materials Science and Metallurgy, Universitat Politècnica de Catalunya (UPC), Avda. Diagonal 647, 08028 Barcelona (Spain); Materials Science, Elisava Escola Superior de Disseny i Enginyeria de Barcelona, La Rambla 30-32, 08002 Barcelona (Spain); Peña, J. [Department of Materials Science and Metallurgy, Universitat Politècnica de Catalunya (UPC), Avda. Diagonal 647, 08028 Barcelona (Spain); Materials Science, Elisava Escola Superior de Disseny i Enginyeria de Barcelona, La Rambla 30-32, 08002 Barcelona (Spain); Gil, F.J.; Manero, J.M. [Department of Materials Science and Metallurgy, Universitat Politècnica de Catalunya (UPC), Avda. Diagonal 647, 08028 Barcelona (Spain); Ciber-BBN (Spain)

    2014-09-01

    β-Type titanium alloys with a low elastic modulus are a potential strategy to reduce stress shielding effect and to enhance bone remodeling in implants used to substitute failed hard tissue. For biomaterial application, investigation on the mechanical behavior, the corrosion resistance and the cell response is required. The new Ti25Nb16Hf alloy was studied before and after 95% cold rolling (95% C.R.). The mechanical properties were determined by tensile testing and its corrosion behavior was analyzed by potentiostatic equipment in Hank's solution at 37 °C. The cell response was studied by means of cytotoxicity evaluation, cell adhesion and proliferation measurements. The stress–strain curves showed the lowest elastic modulus (42 GPa) in the cold worked alloy and high tensile strength, similar to that of Ti6Al4V. The new alloy exhibited better corrosion resistance in terms of open circuit potential (E{sub OCP}), but was similar in terms of corrosion current density (i{sub CORR}) compared to Ti grade II. Cytotoxicity studies revealed that the chemical composition of the alloy does not induce cytotoxic activity. Cell studies in the new alloy showed a lower adhesion and a higher proliferation compared to Ti grade II presenting, therefore, mechanical features similar to those of human cortical bone and, simultaneously, a good cell response. - Highlights: • Presents low elastic modulus and high strength and elastic deformability. • Exhibits good biocompatibility in terms of cytotoxicity and cell response. • Corrosion resistance of this alloy is good, similar to that of Ti grade II. • Potential candidate for implants used to substitute failed hard tissue.

  10. Modeling and mechanical performance of carbon nanotube/epoxy resin composites

    International Nuclear Information System (INIS)

    Srivastava, Vijay Kumar

    2012-01-01

    Highlights: ► The MWCNT fillers are uniformly dispersed in the epoxy resin, which improved the mechanical properties of epoxy resin. ► Modified Halpin–Tsai model is useful to calculate the Young’s modulus of MWCNT/epoxy resin composite. ► The experimental moduli are within the variation of 27% with the theoretical values. -- Abstract: The effect of multi-walled carbon nanotube (MWCNT) addition on mechanical properties of epoxy resin was investigated to obtain the tensile strength, compressive strength and Young’s modulus from load versus displacement graphs. The result shows that the tensile strength, compressive strength and Young’s modulus of epoxy resin were increased with the addition of MWCNT fillers. The significant improvements in tensile strength, compressive strength and Young’s modulus were obtained due to the excellent dispersion of MWCNT fillers in the epoxy resin. The dispersion of MWCNT fillers in epoxy resin was observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analysis. Also, Halpin–Tsai model was modified by considering the average diameter of internal/external of multi-walled nanotube and orientation factor (α) to calculate the Young’s modulus of multi-walled carbon nanotubes (MWCNTs)/epoxy resin composite. There was a good correlation between the experimentally obtained Young’s modulus and modified Halpin–Tsai model.

  11. Sensitive determination of the Young's modulus of thin films by polymeric microcantilevers

    DEFF Research Database (Denmark)

    Colombi, Paolo; Bergese, Paolo; Bontempi, Elza

    2013-01-01

    A method for the highly sensitive determination of the Young's modulus of TiO2 thin films exploiting the resonant frequency shift of a SU-8 polymer microcantilever (MC) is presented. Amorphous TiO2 films with different thickness ranging from 10 to 125 nm were grown at low temperature (90 °C......) with subnanometer thickness resolution on SU-8 MC arrays by means of atomic layer deposition. The resonant frequencies of the MCs were measured before and after coating and the elastic moduli of the films were determined by a theoretical model developed for this purpose. The Young's modulus of thicker TiO2 films...... (>75 nm) was estimated to be about 110 GPa, this value being consistent with the value of amorphous TiO2. On the other hand we observed a marked decrease of the Young's modulus for TiO2 films with a thickness below 50 nm. This behavior was found not to be related to a decrease of the film mass density...

  12. Investigation of statistical relationship between dynamic modulus and thermal strength of asphalt concrete

    International Nuclear Information System (INIS)

    Qadir, A.; Gular, M.

    2011-01-01

    Dynamic modulus is a performance indicator for asphalt concrete and is used to qualify asphalt mixtures based on stress-strain characteristics under repeated loading. Moreover, the low temperature cracking of asphalt concrete mixes are measured in terms of fracture strength and fracture temperature. Dynamic modulus test was selected as one of the simple performance tests in the AASHTO 2002 guidelines to rate mixtures according to permanent deformation performance. However, AASHTO 2002 guidelines is silent in relating dynamic modulus values to low temperature cracking, probably because of weak correlations reported between these two properties. The present study investigates the relation between these two properties under the influence of aggregate type and mix gradation. Mixtures were prepared with two types of aggregate and gradations, while maintaining the binder type and air voids constant. The mixtures were later tested for dynamic modulus and fracture strength using thermal stress restrained specimen test (TSRST). Results indicate that there exists a fair correlation between the thermal fracture strength and stiffness at a selected test temperature and frequency level. These correlations are highly dependent upon the type of aggregate and mix gradation. (author)

  13. Carbon nanotube reinforced metal binder for diamond cutting tools

    DEFF Research Database (Denmark)

    Sidorenko, Daria; Mishnaevsky, Leon; Levashov, Evgeny

    2015-01-01

    The potential of carbon nanotube reinforcement of metallic binders for the improvement of quality and efficiency of diamond cutting wheels is studied. The effect of multi-walled carbon nanotube (MWCNT) reinforcement on the mechanical properties i.e. hardness, Young modulus, strength and deformation...... of grain size of the structural constituents of the binder, what in turn leads to the improved simultaneously hardness, Young modulus, plastic extension, bending strength and performances of the metallic binders. Comparing service properties of diamond end-cutting drill bits with and without MWCNT one...

  14. Young's modulus of individual ZnO nanowires

    International Nuclear Information System (INIS)

    Jiang, Dayong; Tian, Chunguang; Liu, Qingfei; Zhao, Man; Qin, Jieming; Hou, Jianhua; Gao, Shang; Liang, Qingcheng; Zhao, Jianxun

    2014-01-01

    We used a contact-mode atomic force microscopy (AFM) to study the mechanical properties of an individual ZnO nanowire in the open air. It is noteworthy that the Young's modulus can be determined by an AFM tip compressing a single nanowire on a rigid substrate, which can bring more repeatability and accuracy for the measurements. In particular, the calculated radial Young's modulus of ZnO nanowires is consistent with the data of ZnO bulks and thin films. We also present the Young's modulus with different diameters, and all these are discussed deeply

  15. Raman Spectra and Bulk Modulus of Nanodiamond in a Size Interval of 2-5 nm.

    Science.gov (United States)

    Popov, Mikhail; Churkin, Valentin; Kirichenko, Alexey; Denisov, Viktor; Ovsyannikov, Danila; Kulnitskiy, Boris; Perezhogin, Igor; Aksenenkov, Viktor; Blank, Vladimir

    2017-10-10

    Nanodiamond in a 2-5-nm size interval (which is typical for an appearance of quantum confinement effect) show Raman spectra composed of 3 bands at 1325, 1600, and 1500 cm -1 (at the 458-nm laser excitation) which shifts to 1630 cm -1 at the 257-nm laser excitation. Contrary to sp 2 -bonded carbon, relative intensities of the bands do not depend on the 458- and 257-nm excitation wavelengths, and a halfwidth and the intensity of the 1600 cm -1 band does not change visibly under pressure at least up to 50 GPa. Bulk modulus of the 2-5-nm nanodiamond determined from the high-pressure study is around 560 GPa. Studied 2-5-nm nanodiamond was purified from contamination layers and dispersed in Si or NaCl.

  16. A note on the applied tearing modulus (Tsub(J)sup(app)) in ductile instability testing and analysis

    International Nuclear Information System (INIS)

    Saka, Masumi; Takahashi, Hideaki; Abe, Hiroyuki; Ando, Kotoji.

    1984-01-01

    In the evaluation of the soundness of the structures made of high toughness materials, it is a very important problem to clarify by what dynamic condition the transition from the stable propagation of ductile cracks to ductile unstable breaking is controlled. As a criterion for ductile unstable breaking, Paris et al. proposed that an applied tearing modulus is not smaller than a material tearing modulus, based on J-integral. In order to make highly reliable forecast on the starting point of ductile unstable breaking, it is necessary to sufficiently examine the features of an applied tearing modulus. In this study, referring to the test results of the ductile unstable breaking of ITCT test pieces of A508 steel for reactor pressure vessels, the features of the changing tendency of an applied tearing modulus accompanying crack development and the cause of these features were examined in detail. Moreover, the errors in the theoretical forecast of J-integral and the amount of crack development at the start of ductile unstable breaking in relation to the above features were examined. The test pieces and the experimental method, the method of analysis, the experimental results, the features of an applied tearing modulus and the accuracy of forecast are reported. (Kako, I.)

  17. Regional variation in wood modulus of elasticity (stiffness) and modulus of rupture (strength) of planted loblolly pine in the United States

    Science.gov (United States)

    Antony Finto; Lewis Jordan; Laurence R. Schimleck; Alexander Clark; Ray A. Souter; Richard F. Daniels

    2011-01-01

    Modulus of elasticity (MOE), modulus of rupture (MOR), and specific gravity (SG) are important properties for determining the end-use and value of a piece of lumber. This study addressed the variation in MOE, MOR, and SG with physiographic region, tree height, and wood type. Properties were measured from two static bending samples (dimensions 25.4 mm × 25.4 mm × 406.4...

  18. Dynamic mechanical analysis of multi-walled carbon nanotube/HDPE composites.

    Science.gov (United States)

    Kanagaraj, S; Guedes, R M; Oliveira, Mónica S A; Simões, José A O

    2008-08-01

    Since the discovery of carbon nanotubes (CNTs), their remarkable properties make them ideal candidates to reinforce in advanced composites. In this attempt, an enhancement of mechanical properties of high density polyethylene (HDPE) by adding 1 wt% of CNTs is studied using Dynamic mechanical and Thermal analyzer (DMTA). The chemically treated and functionalized CNTs were homogeneously dispersed with HDPE and the test samples were made using injection molding machine. Using DMTA, storage modulus (E'), loss modulus (E") and damping factor (tan delta) of the sample under oscillating load were studied as a function of frequency of oscillation and temperatures. The storage modulus decreases with an increase of temperature and increases by adding CNTs in the composites where the reinforcing effect of CNT is confirmed. It is concluded that the large scale polymer relaxations in the composites are effectively restrained by the presence of CNTs and thus the mechanical properties of nanocomposites increase. The transition frequency of loss modulus is observed at 1 Hz. The loss modulus decreases with an increase of temperature at below 1 Hz but opposite trend was observed at above 1 Hz. The shift factor could be predicted from Williams-Landel-Ferry (WLF) model which has good agreement with experimental results.

  19. Young’s modulus of [111] germanium nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Maksud, M.; Palapati, N. K. R.; Subramanian, A., E-mail: asubramanian@vcu.edu [Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, Virginia 23284 (United States); Yoo, J. [Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Harris, C. T. [Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)

    2015-11-01

    This paper reports a diameter-independent Young’s modulus of 91.9 ± 8.2 GPa for [111] Germanium nanowires (Ge NWs). When the surface oxide layer is accounted for using a core-shell NW approximation, the YM of the Ge core approaches a near theoretical value of 147.6 ± 23.4 GPa. The ultimate strength of a NW device was measured at 10.9 GPa, which represents a very high experimental-to-theoretical strength ratio of ∼75%. With increasing interest in this material system as a high-capacity lithium-ion battery anode, the presented data provide inputs that are essential in predicting its lithiation-induced stress fields and fracture behavior.

  20. Determination of elastic modulus in nickel alloy from ultrasonic ...

    Indian Academy of Sciences (India)

    als scientists, and solid-state theorists; they connect to tech- nological, structural economics and safety, to various mate- rials phenomena and to their fundamental interatomic forces. (Ledbetter 1983). In any material which is a multiphase alloy, the elastic modulus is determined by the modulus of the indi- vidual phases and ...

  1. Evaluation of linear polymerization shrinkage, flexural strength and modulus of elasticity of dental composites

    Directory of Open Access Journals (Sweden)

    Gabriela Queiroz de Melo Monteiro

    2010-03-01

    Full Text Available Linear polymerization shrinkage (LPS, flexural strength (FS and modulus of elasticity (ME of 7 dental composites (Filtek Z350™, Filtek Z250™/3M ESPE; Grandio™, Polofil Supra™/VOCO; TPH Spectrum™, TPH3™, Esthet-X™/Denstply were measured. For the measurement of LPS, composites were applied to a cylindrical metallic mold and polymerized (n = 8. The gap formed at the resin/mold interface was observed using scanning electron microscopy (1500×. For FS and ME, specimens were prepared according to the ISO 4049 specifications (n = 10. Statistical analysis of the data was performed with one-way ANOVA and the Tukey test. TPH Spectrum presented significantly higher LPS values (29.45 µm. Grandio had significantly higher mean values for FS (141.07 MPa and ME (13.91 GPa. The relationship between modulus of elasticity and polymerization shrinkage is the main challenge for maintenance of the adhesive interface, thus composites presenting high shrinkage values, associated with a high modulus of elasticity tend to disrupt the adhesive interface under polymerization.

  2. Effect of carbon fiber addition on the electromagnetic shielding properties of carbon fiber/polyacrylamide/wood based fiberboards

    Science.gov (United States)

    Dang, Baokang; Chen, Yipeng; Yang, Ning; Chen, Bo; Sun, Qingfeng

    2018-05-01

    Carbon fiber (CF) reinforced polyacrylamide/wood fiber composite boards are fabricated by mechanical grind-assisted hot-pressing, and are used for electromagnetic interference (EMI) shielding. CF with an average diameter of 150 nm is distributed on wood fiber, which is then encased by polyacrylamide. The CF/polyacrylamide/wood fiber (CPW) composite exhibits an optimal EMI shielding effectiveness (SE) of 41.03 dB compared to that of polyacrylamide/wood fiber composite (0.41 dB), which meets the requirements of commercial merchandise. Meanwhile, the CPW composite also shows high mechanical strength. The maximum modulus of rupture (MOR) and modulus of elasticity (MOE) of CPW composites are 39.52 MPa and 5823.15 MPa, respectively. The MOR and MOE of CPW composites increased by 38% and 96%, respectively, compared to that of polyacrylamide/wood fiber composite (28.64 and 2967.35 MPa).

  3. A Carbon Nanotube Cable for a Space Elevator

    Science.gov (United States)

    Bochnícek, Zdenek

    2013-01-01

    In this paper the mechanical properties of carbon nanotubes are discussed in connection with the possibility to use them for the construction of a space elevator. From the fundamental information about the structure of a carbon nanotube and the chemical bond between carbon atoms, Young's modulus and the ultimate tensile strength are…

  4. 2 filler on the dielectric permittivity and electrical modulus of PMMA

    Indian Academy of Sciences (India)

    The real and imaginary part of the dielectric permittivity decreased with the increase in frequency but increased with temperature. The electrical conductivity measurement showed a plateau-like behaviour in the low-frequency region and dispersion in the high-frequency region. The frequency-dependent electrical modulus ...

  5. Construction of a high modulus asphalt (HiMA) trial section Ethekwini: South Africa's first practical experience with design, manufacturing and paving of HiMA

    CSIR Research Space (South Africa)

    Nkgapele, M

    2012-07-01

    Full Text Available A trial section was paved with the recently introduced High Modulus Asphalt (HiMA) technology on South Coast road in eThekwini (Durban). The trial section forms part of an effort to transfer HiMA technology to South Africa, in an initiative aimed...

  6. The temperature dependence of the isothermal bulk modulus at 1 bar pressure

    International Nuclear Information System (INIS)

    Garai, J.; Laugier, A.

    2007-01-01

    It is well established that the product of the volume coefficient of thermal expansion and the bulk modulus is nearly constant at temperatures higher than the Debye temperature. Using this approximation allows predicting the values of the bulk modulus. The derived analytical solution for the temperature dependence of the isothermal bulk modulus has been applied to ten substances. The good correlations to the experiments indicate that the expression may be useful for substances for which bulk modulus data are lacking

  7. Phenomenology of mixed modulus-anomaly mediation in fluxed string compactifications and brane models

    International Nuclear Information System (INIS)

    Choi, Kiwoon; Jeong, Kwang-Sik; Okumura, Ken-ichi

    2005-01-01

    In some string compactifications, for instance the recently proposed KKLT set-up, light moduli are stabilized by nonperturbative effects at supersymmetric AdS vacuum which is lifted to a dS vacuum by supersymmetry breaking uplifting potential. In such models, soft supersymmetry breaking terms are determined by a specific mixed modulus-anomaly mediation in which the two mediations typically give comparable contributions to soft parameters. Similar pattern of soft terms can arise also in brane models to stabilize the radion by nonperturbative effects. We examine some phenomenological consequences of this mixed modulus-anomaly mediation, including the pattern of low energy sparticle spectrum and the possibility of electroweak symmetry breaking. It is noted that adding the anomaly-mediated contributions at M GUT amounts to replacing the messenger scale of the modulus mediation by a mirage messenger scale (m 3/2 /M Pl ) α/2 M GUT where α = m 3/2 /[M 0 ln (M Pl /m 3/2 )] for M 0 denoting the modulus-mediated contribution to the gaugino mass at M GUT . The minimal KKLT set-up predicts α = 1. As a consequence, for α = O(1), the model can lead to a highly distinctive pattern of sparticle masses at TeV scale, particularly when α = 2

  8. EVALUATION OF MICROMECHANICAL PROPERTIES OF CARBON FIBER FABRIC USING NANOINDETATION

    Directory of Open Access Journals (Sweden)

    Pavel Klapálek

    2017-11-01

    Full Text Available This paper is focused mainly on nanoindentation of carbon fibers. Fibers are in form of carbon fiber fabric that is used in larger research that is focused on reinforcing beams made of glued laminated timber. Knowledge of this material on macro and micro level will help to understand its behavior in this specific type of use. Nanoindentation is method used in this paper to obtain material characteristics on micro level such as hardness and modulus of elasticity. Samples of the carbon fiber fabric had to be prepared for this specific testing method by polishing samples of carbon fabric attached in epoxy resin. In particular, it was found that the indentation hardness of the fibers ranges around 3.65 GPa and modulus of elasticity ranges around 26 GPa.

  9. Design of a 5.8 GHz Multi-Modulus Prescaler

    OpenAIRE

    Myklebust, Vidar

    2006-01-01

    A 64-modulus prescaler operating at 5.8 GHz has been designed in a 0.18 μm CMOS process. The prescaler uses a four-phase high-speed ÷4 circuit at the input, composed of two identical cascaded ÷2 circuits implemented in pseudo-NMOS. The high-speed divider is followed by a two-bits phase switching stage, which together with the input divider forms a ÷4/5/6/7 circuit. The phase switching stage is mostly implemented in complementary CMOS. After this follows four identical ÷2/3 cells with local fe...

  10. Control of Pre-treatment for Carbon Nanotube Synthesis Using Proton Ion Beam Irradiation

    International Nuclear Information System (INIS)

    Kim, Y. H.; Kim, D. W.; Lee, S. M.; Kim, W. J.

    2008-04-01

    The carbon nanotubes are the next generation material in fuel storage system, the gas sensor, the life science sensor or the nano-size transistor, the stiffener and the heat dissipation field. For use at appropriate position in various field, it must be developed that control technique makes carbon nanotubes with high performance synthesized at appropriate location. The density of the carbon nanotube is 1 - 2g/cm3 with aluminum (2 - 3g/cm3) to be light, the elastic modulus is the level where as many of as 30 - 50 times of iron's elastic modulus and thermal conductivity is similar to the diamond, electric conductivity is high as well above the metal. Generally, many researchers have tried to synthesize the carbon nanotubes of mm length unit using the hydrogen and porous substrate, which play a role of more activating the catalyst. The proton beam which consist of H+ was able to directly inject the hydrogen into target materials such as Ni, Co, Fe as well as transfer high activation energy to them. so we were able to carry out feasibility of controlling the porosity of thin film and substrate to synthesize carbon nanotubes. The pre-treatment method of existing which is used generally heat treatment and the ammonia controls has generated island of catalyst which has increased the surface to react the hydrocarbon. However, pre-treatment method of existing caused the random nuclear creation so it was hard to control the island size of catalyst. It was not enough to understand the porous effect against synthesis of carbon nanotubes deduced from altering various substrates. In this report, it is possible investigate how hydrogen and the porous effect influence on growth of carbon nanotubes through controlling the nuclear creation of catalysts directly and the porosity of them using proton beam

  11. Carbon fiber polymer-matrix structural composites tailored for multifunctionality by filler incorporation

    Science.gov (United States)

    Han, Seungjin

    This dissertation provides multifunctional carbon fiber polymer-matrix structural composites for vibration damping, thermal conduction and thermoelectricity. Specifically, (i) it has strengthened and stiffened carbon fiber polymer-matrix structural composites by the incorporation of halloysite nanotubes, carbon nanotubes and silicon carbide whiskers, (ii) it has improved mechanical energy dissipation using carbon fiber polymer-matrix structural composites with filler incorporation, (iii) it has increased the through-thickness thermal conductivity of carbon fiber polymer-matrix composite by curing pressure increase and filler incorporation, and (iv) it has enhanced the thermoelectric behavior of carbon fiber polymer-matrix structural composites. Low-cost natural halloysite nanotubes (0.1 microm diameter) were effective for strengthening and stiffening continuous fiber polymer-matrix composites, as shown for crossply carbon fiber (5 microm diameter, ˜59 vol.%) epoxy-matrix composites under flexure, giving 17% increase in strength, 11% increase in modulus and 21% decrease in ductility. They were less effective than expensive multiwalled carbon nanotubes (0.02 microm diameter), which gave 25% increase in strength, 11% increase in modulus and 14% decrease in ductility. However, they were more effective than expensive silicon carbide whiskers (1 microm diameter), which gave 15% increase in strength, 9% increase in modulus and 20% decrease in ductility. Each filler, at ˜2 vol.%, was incorporated in the composite at every interlaminar interface by fiber prepreg surface modification. The flexural strength increase due to halloysite nanotubes incorporation related to the interlaminar shear strength increase. The measured values of the composite modulus agreed roughly with the calculated values based on the Rule of Mixtures. Continuous carbon fiber composites with enhanced vibration damping under flexure are provided by incorporation of fillers between the laminae

  12. Determination of young's modulus of PZT-influence of cantilever orientation

    NARCIS (Netherlands)

    Nazeer, H.; Woldering, L.A.; Abelmann, Leon; Elwenspoek, Michael Curt

    Calculation of the resonance frequency of cantilevers fabricated from an elastically anisotropic material requires the use of an effective Young’s modulus. In this paper a technique to determine the appropriate effective Young’s modulus for arbitrary cantilever geometries is introduced. This

  13. Young's Modulus of Wurtzite and Zinc Blende InP Nanowires.

    Science.gov (United States)

    Dunaevskiy, Mikhail; Geydt, Pavel; Lähderanta, Erkki; Alekseev, Prokhor; Haggrén, Tuomas; Kakko, Joona-Pekko; Jiang, Hua; Lipsanen, Harri

    2017-06-14

    The Young's modulus of thin conical InP nanowires with either wurtzite or mixed "zinc blende/wurtzite" structures was measured. It has been shown that the value of Young's modulus obtained for wurtzite InP nanowires (E [0001] = 130 ± 30 GPa) was similar to the theoretically predicted value for the wurtzite InP material (E [0001] = 120 ± 10 GPa). The Young's modulus of mixed "zinc blende/wurtzite" InP nanowires (E [111] = 65 ± 10 GPa) appeared to be 40% less than the theoretically predicted value for the zinc blende InP material (E [111] = 110 GPa). An advanced method for measuring the Young's modulus of thin and flexible nanostructures is proposed. It consists of measuring the flexibility (the inverse of stiffness) profiles 1/k(x) by the scanning probe microscopy with precise control of loading force in nanonewton range followed by simulations.

  14. Improved lifetime of new fibrous carbon/ceramic composites

    Science.gov (United States)

    Gumula, Teresa

    2018-03-01

    New carbon/ceramic composites have been synthesized from low-cost phenol-formaldehyde resin and polysiloxane preceram. A reference carbon composite reinforced with carbon fibre (CC composite) is obtained in first place from a carbon fibre roving impregnated with a solution of phenol-formaldehyde resin in isopropyl alcohol. To obtain fibrous carbon/ceramic composites the CC perform is impregnated with polymethylphenylsiloxane polymer and then a thermal treatment in an inert atmosphere is applied. Depending on the temperature of this process, the resulting ceramics can be silicon carbide (SiC) or silicon oxycarbide (SiCO). Three representative samples, named CC/SiCO( a) (obtained at 1000 °C), CC/SiCO( b) (1500 °C) and CC/SiC (1700 °C), have been tested for fatigue behaviour and oxidation resistance. The value of the Young's modulus remains constant in fatigue tests done in flexion mode for the three new composites during a high number of cycles until sudden degradation begins. This is an unusual and advantageous characteristic for this type of materials and results in the absence of delamination during the measurements. In contrast, the CC reference composite shows a progressive degradation of the Young's modulus accompanied by delamination. SEM micrographs revealed that the formation of filaments of submicrometer diameter during the heat treatment can be responsible for the improved behaviour of these composites. The CC/SiC composite shows the best oxidation resistance among the three types of composites, with a 44% mass loss after 100 h of oxidation.

  15. High-surface-area active carbon

    International Nuclear Information System (INIS)

    O'Grady, T.M.; Wennerberg, A.N.

    1986-01-01

    This paper describes the preparation and properties of a unique active carbon having exceptionally high surface areas, over 2500 m 2 /gm, and extraordinary adsorptive capacities. The carbon is made by a direct chemical activation route in which petroleum coke or other carbonaceous sources are reacted with excess potassium hydroxide at 400 0 to 500 0 C to an intermediate product that is subsequently pyrolyzed at 800 0 to 900 0 C to active carbon containing potassium salts. These are removed by water washing and the carbon is dried to produce a powdered product. A granular carbon can also be made by further processing the powdered carbon by using specialized granulation techniques. Typical properties of the carbon include Iodine Numbers of 3000 to 3600, methylene blue adsorption of 650 to 750 mg/gm, pore volumes of 2.0 to 2.6 cc/gm and less than 3.0% ash. This carbon's high adsorption capacities make it uniquely suited for numerous demanding applications in the medical area, purifications, removal of toxic substances, as catalyst carriers, etc

  16. Non-linear elastic behaviour of carbon fibres of different structural and mechanical characteristic

    Directory of Open Access Journals (Sweden)

    ISIDOR M. DJORDJEVIC

    2007-05-01

    Full Text Available Five types of polyacrylonitrile, PAN, based carbon fibres, differing in modulus, breaking strain and in crystallite orientation, have been studied. Non-Hookean behaviour was investigated by computing the tangent tensile and compression moduli as a function of strain, from the axial stress–strain response obtained in standard tensile, compression, as well as in modified flexural tests of unidirectional carbon/ epoxy composites. The dependences of the tensile modulus on tensile strain of the carbon fibres were extracted from data obtained in single-filament tensile tests. Analytical expressions for the tensile modulus–tensile strain and compression modulus–compression strain dependences in the performed test were deduced. The structural characterization of the carbon fibres was performed by X-ray diffraction on bundle of parallel fibres. The interlayer spacing d002 and the apparent lateral dimension of the crystallites Lc were deduced by processing the 002 diffraction profiles. The established modulus–strain dependences were correlated with the fibre characteristics (breaking strain and mean modulus values, as well as with the characteristic of the 002 diffraction profile and the d002 and Lc values.

  17. Elastic modulus of tree frog adhesive toe pads.

    Science.gov (United States)

    Barnes, W Jon P; Goodwyn, Pablo J Perez; Nokhbatolfoghahai, Mohsen; Gorb, Stanislav N

    2011-10-01

    Previous work using an atomic force microscope in nanoindenter mode indicated that the outer, 10- to 15-μm thick, keratinised layer of tree frog toe pads has a modulus of elasticity equivalent to silicone rubber (5-15 MPa) (Scholz et al. 2009), but gave no information on the physical properties of deeper structures. In this study, micro-indentation is used to measure the stiffness of whole toe pads of the tree frog, Litoria caerulea. We show here that tree frog toe pads are amongst the softest of biological structures (effective elastic modulus 4-25 kPa), and that they exhibit a gradient of stiffness, being stiffest on the outside. This stiffness gradient results from the presence of a dense network of capillaries lying beneath the pad epidermis, which probably has a shock absorbing function. Additionally, we compare the physical properties (elastic modulus, work of adhesion, pull-off force) of the toe pads of immature and adult frogs.

  18. High Frequency Acoustic Microscopy for the Determination of Porosity and Young's Modulus in High Burnup Uranium Dioxide Nuclear Fuel

    Science.gov (United States)

    Marchetti, Mara; Laux, Didier; Cappia, Fabiola; Laurie, M.; Van Uffelen, P.; Rondinella, V. V.; Wiss, T.; Despaux, G.

    2016-06-01

    During irradiation UO2 nuclear fuel experiences the development of a non-uniform distribution of porosity which contributes to establish varying mechanical properties along the radius of the pellet. Radial variations of both porosity and elastic properties in high burnup UO2 pellet can be investigated via high frequency acoustic microscopy. For this purpose ultrasound waves are generated by a piezoelectric transducer and focused on the sample, after having travelled through a coupling liquid. The elastic properties of the material are related to the velocity of the generated Rayleigh surface wave (VR). A UO2 pellet with a burnup of 67 GWd/tU was characterized using the acoustic microscope installed in the hot cells of the JRC-ITU at a 90 MHz frequency, with methanol as coupling liquid. VR was measured at different radial positions. A good agreement was found, when comparing the porosity values obtained via acoustic microscopy with those determined using SEM image analysis, especially in the areas close to the centre. In addition, Young's modulus was calculated and its radial profile was correlated to the corresponding burnup profile and to the hardness radial profile data obtained by Vickers micro-indentation.

  19. Carbon nanotubes as reinforcement of styrene-butadiene rubber

    International Nuclear Information System (INIS)

    De Falco, Alejandro; Goyanes, Silvia; Rubiolo, Gerardo H.; Mondragon, Inaki; Marzocca, Angel

    2007-01-01

    This study reports an easy technique to produce cured styrene-butadiene rubber (SBR)/multi-walled carbon nanotubes (MWCNT) composites with a sulphur/accelerator system at 150 deg. C. Significant improvement in Young's modulus and tensile strength were achieved by incorporating 0.66 wt% of filler without sacrificing SBR elastomer high elongation at break. A comparison with carbon black filled SBR was also made. Field emission scanning electron microscopy was used to investigate dispersion and fracture surfaces. Results indicated that the homogeneous dispersion of MWCNT throughout SBR matrix and strong interfacial adhesion between oxidized MWCNT and the matrix are responsible for the considerable enhancement of mechanical properties of the composite

  20. Multifunctional Stiff Carbon Foam Derived from Bread.

    Science.gov (United States)

    Yuan, Ye; Ding, Yujie; Wang, Chunhui; Xu, Fan; Lin, Zaishan; Qin, Yuyang; Li, Ying; Yang, Minglong; He, Xiaodong; Peng, Qingyu; Li, Yibin

    2016-07-06

    The creation of stiff yet multifunctional three-dimensional porous carbon architecture at very low cost is still challenging. In this work, lightweight and stiff carbon foam (CF) with adjustable pore structure was prepared by using flour as the basic element via a simple fermentation and carbonization process. The compressive strength of CF exhibits a high value of 3.6 MPa whereas its density is 0.29 g/cm(3) (compressive modulus can be 121 MPa). The electromagnetic interference (EMI) shielding effectiveness measurements (specific EMI shielding effectiveness can be 78.18 dB·cm(3)·g(-1)) indicate that CF can be used as lightweight, effective shielding material. Unlike ordinary foam structure materials, the low thermal conductivity (lowest is 0.06 W/m·K) with high resistance to fire makes CF a good candidate for commercial thermal insulation material. These results demonstrate a promising method to fabricate an economical, robust carbon material for applications in industry as well as topics regarding environmental protection and improvement of energy efficiency.

  1. Standardizing lightweight deflectometer modulus measurements for compaction quality assurance : research summary.

    Science.gov (United States)

    2017-09-01

    The mechanistic-empirical pavement design method requires the elastic resilient modulus as the key input for characterization of geomaterials. Current density-based QA procedures do not measure resilient modulus. Additionally, the density-based metho...

  2. A Prediction Method of Tensile Young's Modulus of Concrete at Early Age

    Directory of Open Access Journals (Sweden)

    Isamu Yoshitake

    2012-01-01

    Full Text Available Knowledge of the tensile Young's modulus of concrete at early ages is important for estimating the risk of cracking due to restrained shrinkage and thermal contraction. However, most often, the tensile modulus is considered equal to the compressive modulus and is estimated empirically based on the measurements of compressive strength. To evaluate the validity of this approach, the tensile Young's moduli of 6 concrete and mortar mixtures are measured using a direct tension test. The results show that the tensile moduli are approximately 1.0–1.3-times larger than the compressive moduli within the material's first week of age. To enable a direct estimation of the tensile modulus of concrete, a simple three-phase composite model is developed based on random distributions of coarse aggregate, mortar, and air void phases. The model predictions show good agreement with experimental measurements of tensile modulus at early age.

  3. Young modulus variation of a brickwork masonry element submitted to high temperatures

    Directory of Open Access Journals (Sweden)

    Maciá, M. E.

    2013-03-01

    Full Text Available In order to understand the thermal behavior of the masonry elements submitted to high temperatures we need to know the variation of their thermal properties with regard to the temperature. Submitted to high temperatures clay brick masonry presents thermomechanical effects (as the variation of Young's modulus, the thermal expansion of the unit and the mortar, spalling, losses of resistance … as well as variation of the properties of the material as result of its degradation. In this article the variation of the module of elasticity of the unit and the mortar is described with regard to high temperatures according to the state of the knowledge. In this article is also exposed the results obtained from the experimental program carried out on elements of clay brick masonry submitted to high temperatures in order to observe the variation of Young's module related to temperature.

    La definición del comportamiento térmico de los elementos de fábrica sometidos a la acción del fuego requiere del conocimiento de la variación de sus propiedades termomecánicas con respecto a la temperatura. Ante las altas temperaturas la fábrica cerámica presenta efectos termomecánicos, como la variación del módulo de Young entre otros, así como la variación de las propiedades del material debidas a la degradación del mismo. En este artículo se describe la variación del módulo de elasticidad de la pieza y el mortero con respecto a altas temperaturas según el estado del conocimiento y se exponen los resultados obtenidos del programa experimental llevado a cabo sobre elementos de fábrica sometidos a altas temperaturas con el fin de observar la variación del módulo de Young con respecto a la temperatura.

  4. Determination of resilient modulus values for typical plastic soils in Wisconsin.

    Science.gov (United States)

    2011-09-01

    "The objectives of this research are to establish a resilient modulus test results database and to develop : correlations for estimating the resilient modulus of Wisconsin fine-grained soils from basic soil properties. A : laboratory testing program ...

  5. Advances in Computational High-Resolution Mechanical Spectroscopy HRMS Part II: Resonant Frequency – Young's Modulus

    International Nuclear Information System (INIS)

    Majewski, M; Magalas, L B

    2012-01-01

    In this paper, we compare the values of the resonant frequency f 0 of free decaying oscillations computed according to the parametric OMI method (Optimization in Multiple Intervals) and nonparametric DFT-based (discrete Fourier transform) methods as a function of the sampling frequency. The analysis is carried out for free decaying signals embedded in an experimental noise recorded for metallic samples in a low-frequency resonant mechanical spectrometer. The Yoshida method (Y), the Agrez' method (A), and new interpolated discrete Fourier transform (IpDFT) methods, that is, the Yoshida-Magalas (YM) and (YM C ) methods developed by the authors are carefully compared for the resonant frequency f 0 = 1.12345 Hz and the logarithmic decrement, δ = 0.0005. Precise estimation of the resonant frequency (Youngs' modulus ∼ f 0 2 ) for real experimental conditions, i.e., for exponentially damped harmonic signals embedded in an experimental noise, is a complex task. In this work, various computing methods are analyzed as a function of the sampling frequency used to digitize free decaying oscillations. The importance of computing techniques to obtain reliable and precise values of the resonant frequency (i.e. Young's modulus) in materials science is emphasized.

  6. Carbon Dioxide Mitigation Benefit of High-Speed Railway in Terms of Carbon Tax

    Directory of Open Access Journals (Sweden)

    Fu Yanbing

    2013-01-01

    Full Text Available This paper calculates the carbon dioxide mitigation benefit of high-speed railway based on the carbon dioxide tax policy. We define the carbon dioxide emission system boundary for high-speed railway in its whole life cycle and estimate the life cycle carbon dioxide inventories during its construction, application, and recovery stages. And then we establish a theoretical model to calculate the life cycle carbon dioxide mitigation quantity for high-speed railway when compared with road transport and then calculate its carbon dioxide mitigation benefit. The numerical example shows that the carbon dioxide mitigation benefit of high-speed railway is better than that of road transport from the whole life cycle perspective.

  7. K-intercalated carbon systems: Effects of dimensionality and substrate

    KAUST Repository

    Kaloni, Thaneshwor P.

    2012-06-01

    Density functional theory is employed to investigate the electronic properties of K-intercalated carbon systems. Young\\'s modulus indicates that the intercalation increases the intrinsic stiffness. For K-intercalated bilayer graphene on SiC(0001) the Dirac cone is maintained, whereas a trilayer configuration exhibits a small splitting at the Dirac point. Interestingly, in contrast to many other intercalated carbon systems, the presence of the SiC(0001) substrate does not suppress but rather enhances the charge carrier density. Reasonably high values are found for all systems, the highest carrier density for the bilayer. The band structure and electron-phonon coupling of free-standing K-intercalated bilayer graphene points to a high probability for superconductivity in this system. © 2012 Europhysics Letters Association.

  8. The bulk modulus of cubic spinel selenides: an experimental and theoretical study

    DEFF Research Database (Denmark)

    Waskowska, A.; Gerward, Leif; Olsen, J.S.

    2009-01-01

    It is argued that mainly the selenium sublattice determines the overall compressibility of the cubic spinel selenides, AB2Se4, and that the bulk modulus for these compounds is about 100GPa. The hypothesis is supported by experiments using high-pressure X-ray diffraction and synchrotron radiation...

  9. Fatigue Life Prediction of High Modulus Asphalt Concrete Based on the Local Stress-Strain Method

    Directory of Open Access Journals (Sweden)

    Mulian Zheng

    2017-03-01

    Full Text Available Previously published studies have proposed fatigue life prediction models for dense graded asphalt pavement based on flexural fatigue test. This study focused on the fatigue life prediction of High Modulus Asphalt Concrete (HMAC pavement using the local strain-stress method and direct tension fatigue test. First, the direct tension fatigue test at various strain levels was conducted on HMAC prism samples cut from plate specimens. Afterwards, their true stress-strain loop curves were obtained and modified to develop the strain-fatigue life equation. Then the nominal strain of HMAC course determined using finite element method was converted into local strain using the Neuber method. Finally, based on the established fatigue equation and converted local strain, a method to predict the pavement fatigue crack initiation life was proposed and the fatigue life of a typical HMAC overlay pavement which runs a risk of bottom-up cracking was predicted and validated. Results show that the proposed method was able to produce satisfactory crack initiation life.

  10. Mechanical Properties of Commercial Carbon Fibers Using a Single Filament Tensile Test

    International Nuclear Information System (INIS)

    Joh, Han-Ik; Song, Hae Kyung; Ku, Bon-Cheol; Lee, Sungho; Kim, Ki-Young; Kang, Phil-Hyun

    2013-01-01

    In this study, mechanical properties of commercial carbon fibers were evaluated using a single filament tensile test with various fiber gauge lengths. Tensile strength increased significantly with a decreasing length of the test specimens possibly due to small defect sites. The compliance method provided more accurate moduli of the carbon fibers, removing system errors during the single filament tensile test. The Weibull modulus revealed that shorter specimens had an inhomogeneous defect distribution, leading to a higher tensile strength and its standard deviation. X-ray diffractograms of carbon fibers showed a similar crystallinity and orientation in spite of significant differences in the fiber modulus and strength, indicating that crystalline structure of the commercial carbon fibers used in the study was not attributable to the difference in their tensile properties.

  11. Ultrahigh Ductility, High-Carbon Martensitic Steel

    Science.gov (United States)

    Qin, Shengwei; Liu, Yu; Hao, Qingguo; Zuo, Xunwei; Rong, Yonghua; Chen, Nailu

    2016-10-01

    Based on the proposed design idea of the anti-transformation-induced plasticity effect, both the additions of the Nb element and pretreatment of the normalization process as a novel quenching-partitioning-tempering (Q-P-T) were designed for Fe-0.63C-1.52Mn-1.49Si-0.62Cr-0.036Nb hot-rolled steel. This high-carbon Q-P-T martensitic steel exhibits a tensile strength of 1890 MPa and elongation of 29 pct accompanied by the excellent product of tensile and elongation of 55 GPa pct. The origin of ultrahigh ductility for high-carbon Q-P-T martensitic steel is revealed from two aspects: one is the softening of martensitic matrix due to both the depletion of carbon in the matensitic matrix during the Q-P-T process by partitioning of carbon from supersaturated martensite to retained austenite and the reduction of the dislocation density in a martensitic matrix by dislocation absorption by retained austenite effect during deformation, which significantly enhances the deformation ability of martensitic matrix; another is the high mechanical stability of considerable carbon-enriched retained austenite, which effectively reduces the formation of brittle twin-type martensite. This work verifies the correctness of the design idea of the anti-TRIP effect and makes the third-generation advanced high-strength steels extend to the field of high-carbon steels from low- and medium-carbon steels.

  12. High pressure Raman and single crystal X-ray diffraction of the alkali/calcium carbonate, shortite

    Science.gov (United States)

    Williams, Q. C.; Vennari, C.; O'Bannon, E. F., III

    2015-12-01

    Raman and synchrotron-based single crystal x-ray diffraction data have been collected on shortite (Na2Ca2(CO3)3) up to 10 GPa at 300 K. Shortite is of geological importance due to its presence in the ground-mass of kimberlites, and the alkaline-/carbon-rich character of kimberlitic eruptions. This investigation focuses on shortite's high pressure behavior and is relevant to the behavior of alkali-carbonate systems within Earth's upper mantle. X-ray data demonstrate that shortite's symmetry remains stable at high pressures—retaining orthorhombic C crystal system (Amm2) up to 10 GPa; diffraction data show a 12% volume decrease from room pressure, and a bulk modulus of 71.0(3) GPa. These also demonstrate that the c-axis is twice as compressible as the a- and b-axes. This anisotropic compression is likely due to the orientation of the relatively stiff carbonate groups, a third of which are oriented close to the plane of the a- and b-axes, c axis compression primarily involves the compaction of the 9-fold coordinate sodium and calcium polyhedral. The two distinct carbonate sites within the unit cell give rise to two Raman symmetric stretching modes of the symmetric stretch; the carbonate group stretching vibration which is close to in plane with the a- and b-axes shifts at 3.75 cm-1/GPa as opposed to the carbonate groups which is closer to in plane with the b- and c-axes which shift at 4.25 cm-1/GPa. This furthers evidence for anisotropic compression observed using x-ray diffraction--as the carbonate in plane with the a- and b-axes is compressed, the strength of oxygen bonds along the c-axis with the cations increases, thus decreasing the pressure shift of the mode. The out of plane bending vibration shifts at -0.48 cm-1/GPa, indicating an enhanced interaction of the oxygens with the cations. The multiple in plane bending modes all shift positively, as do at the low frequency lattice modes, indicating that major changes in bonding do not occur up to 10 GPa. The data

  13. The Effect of Annealing on the Elastic Modulus of Orthodontic Wires

    Science.gov (United States)

    Higginbottom, Kyle

    Introduction: Nickel Titanium orthodontic wires are currently used in orthodontic treatment due to their heat activated properties and their delivery of constant force. The objective of this study was to determine the effect of annealing on the elastic modulus of Nickel Titanium, Stainless Steel and Beta-titanium (TMA) wires. Different points along the wire were tested in order to determine how far from the annealed ends the elastic modulus of the wires was affected. Methods: Eighty (80) orthodontic wires consisting of 4 equal groups (SS/TMA/Classic NitinolRTM/Super Elastic NitinolRTM) were used as the specimens for this study. All wires were measured and marked at 5mm measurements, and cut into 33.00mm sections. The wires were heated with a butane torch until the first 13.00mm of the wires were red hot. Load deflection tests using an InstronRTM universal testing machine were run at 5mm distances from the end of the wire that had been annealed. The change in elastic modulus was then determined. Results: There was a significant difference (F = 533.001, p = 0.0005) in the change in elastic modulus for the four distances. There was also a significant difference (F = 57.571, p = 0.0005) in the change in elastic modulus for the four wire types. There was a significant interaction (F = 19.601, p = 0.005) between wire type and distance, however this interaction negated the differences between the wires. Conclusion: 1) There are significant differences in the changes in elastic modulus between the areas of the wires within the annealed section and those areas 5mm and 10mm away from the annealed section. The change in elastic modulus within the annealed section was significantly greater at 8 mm than it was at 13mm, and this was significantly greater than 18mm and 23mm (5mm and 10mm beyond the annealed section). However, there was no statistical difference in the change in elastic modulus between 5mm and 10mm away from the annealed section (18mm and 23mm respectively). 2

  14. Effects of creep and oxidation on reduced modulus in high-temperature nanoindentation

    International Nuclear Information System (INIS)

    Li, Yan; Fang, Xufei; Lu, Siyuan; Yu, Qingmin; Hou, Guohui; Feng, Xue

    2016-01-01

    Nanoindentation tests were performed on single crystal Ni-based superalloy at temperatures ranging from 20 °C to 800 °C in inert environment. Load-displacement curves at temperatures higher than 500 °C exhibit obvious creep inferred by increasing displacements at load-holding segments. Load-displacement curves obtained at 800 °C also display negative unloading stiffness. Examination of the microstructure beneath the indented area using Transmission Electron Microscope (TEM) reveals abundant dislocation piling up as well as oxide formation on the substrate. A method considering the creep effect is proposed to calculate the reduced modulus. In addition, a dimensionless ratio relating indentation depth and oxide film thickness is introduced to explain the oxidation effect on the mechanical properties derived from the load-displacement curves.

  15. High frequency acoustic microscopy for the determination of porosity and Young's modulus in high burnup uranium dioxide nuclear fuel

    International Nuclear Information System (INIS)

    Marchetti, M.; Laux, D.; Cappia, F.; Laurie, M.; Van Uffelen, P.; Rondinella, V.V.; Despaux, G.

    2015-01-01

    During irradiation UO 2 nuclear fuel experiences the development of a non-uniform distribution of porosity which contributes to establish varying mechanical properties along the radius of the pellet. Radial variations of the porosity and of elastic properties in high burnup UO 2 pellet can be investigated via high frequency acoustic microscopy. Ultrasound waves are generated by a piezoelectric transducer and focused on the sample, after having travelled through a coupling liquid. The elastic properties of the material are related to the velocity of the generated Rayleigh surface wave (VR). A 67 MWd/kgU UO 2 pellet was characterized using the acoustic microscope installed in the hot cells of the Institute of Transuranium Elements: 90 MHz frequency was applied, methanol was used as coupling liquid and VR was measured at different radial positions. By comparing the porosity values obtained via acoustic microscopy with those determined using ceramographic image analysis a good agreement was found, especially in the areas close to the centre. In addition Young's modulus was calculated and its radial profile was correlated to the corresponding burnup profile. (authors)

  16. Finite element modeling of single-walled carbon nanotubes with introducing a new wall thickness

    International Nuclear Information System (INIS)

    Jalalahmadi, B; Naghdabadi, R

    2007-01-01

    A three-dimensional finite element (FE) model for armchair, zigzag and chiral single-walled carbon nanotubes (SWCNTs) is proposed. By considering the covalent bonds as connecting elements between carbon atoms, a nanotube is simulated as a space frame-like structure. Here, the carbon atoms act as joints of the connecting elements. To create the FE models, nodes are placed at the locations of carbon atoms and the bonds between them are modeled using three-dimensional elastic beam elements. Using Morse atomic potential, the elastic moduli of beam elements are obtained via considering a linkage between molecular and continuum mechanics. Also, a new wall thickness ( bond diameter) equal to 0.1296 nm is introduced. In order to demonstrate the applicability of FE model and new wall thickness, the influence of tube wall thickness, diameter and chirality on the Young's modulus of SWCNTs is investigated. It is found that the choice of wall thickness significantly affects the calculation of Young's modulus. For the values of wall thickness used in the literature, the Young's moduli are estimated which agree very well with the corresponding theoretical results and experimental measurements. We also investigate the dependence of elastic moduli on diameter and chirality of the nanotube. The larger tube diameter, the higher Young's modulus of SWCNT. The Young's modulus of chiral SWCNTs is found to be generally larger than that of armchair and zigzag SWCNTs. The presented results demonstrate that the proposed FE model and wall thickness may provide a valuable tool for studying the mechanical behavior of carbon nanotubes and their application in nano-composites

  17. Geometrical modulus of a casting and its influence on solidification process

    Directory of Open Access Journals (Sweden)

    F. Havlicek

    2011-10-01

    Full Text Available Object: The work analyses the importance of the known criterion for evaluating the controlled solidification of castings, so called geometrical modulus defined by N. Chvorinov as the first one. Geometrical modulus influences the solidification process. The modulus has such specificity that during the process of casting formation it is not a constant but its initial value decreases with the solidification progress because the remaining melt volume can decrease faster than its cooling surface.Methodology: The modulus is determined by a simple calculation from the ratio of the casting volume after pouring the metal in the mould to the cooled mould surface. The solidified metal volume and the cooled surface too are changed during solidification. That calculation is much more complicated. Results were checked up experimentally by measuring the temperatures in the cross-section of heavy steel castings during cooling them.Results: The given experimental results have completed the original theoretical calculations by Chvorinov and recent researches done with use of numerical calculations. The contribution explains how the geometrical modulus together with the thermal process in the casting causes the higher solidification rate in the axial part of the casting cross-section and shortening of solidification time. Practical implications: Change of the geometrical modulus negatively affects the casting internal quality. Melt feeding by capillary filtration in the dendritic network in the casting central part decreases and in such a way the shrinkage porosity volume increases. State of stress character in the casting is changed too and it increases.

  18. Mechanical properties of carbon nanotubes

    Science.gov (United States)

    Salvetat, J.-P.; Bonard, J.-M.; Thomson, N. H.; Kulik, A. J.; Forró, L.; Benoit, W.; Zuppiroli, L.

    A variety of outstanding experimental results on the elucidation of the elastic properties of carbon nanotubes are fast appearing. These are based mainly on the techniques of high-resolution transmission electron microscopy (HRTEM) and atomic force microscopy (AFM) to determine the Young's moduli of single-wall nanotube bundles and multi-walled nanotubes, prepared by a number of methods. These results are confirming the theoretical predictions that carbon nanotubes have high strength plus extraordinary flexibility and resilience. As well as summarising the most notable achievements of theory and experiment in the last few years, this paper explains the properties of nanotubes in the wider context of materials science and highlights the contribution of our research group in this rapidly expanding field. A deeper understanding of the relationship between the structural order of the nanotubes and their mechanical properties will be necessary for the development of carbon-nanotube-based composites. Our research to date illustrates a qualitative relationship between the Young's modulus of a nanotube and the amount of disorder in the atomic structure of the walls. Other exciting results indicate that composites will benefit from the exceptional mechanical properties of carbon nanotubes, but that the major outstanding problem of load transfer efficiency must be overcome before suitable engineering materials can be produced.

  19. Structure aggregation of carbon black in ethylene-propylene diene polymer

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available The modulus of filled and unfilled Ethylene-propylene diene rubber (EPDM vulcanizates was used to predict the shape-factor of carbon black aggregation in the polymer. Four types of carbon black that vary in particle size and structure were used in this study. Quadratic curves relating the carbon black volume concentration and the modulus ratio of filled and unfilled rubber vulcanizates were used to adopt the shape factor of certain carbon black type. The shape factor of MT, HAF, SRF and Lampblack were 3, 3.75, 4 and 4.25 respectively. X-ray diffraction technique (XRD was also used to evaluate the relative size of crystallite on the filler surface to that of the rubber and correlating it to the shape factor of carbon black aggregation in the polymer. Effect of the pH values and structure of carbon blacks used on the shape factor of filler aggregates were also studied. It was found that the shape factor is independent on the particle size while it is dependent on the pH value and structure of carbon black. Also the crystallites size of the filler is proportional to the shape factor.

  20. Ultrasound estimation and FE analysis of elastic modulus of Kelvin foam

    International Nuclear Information System (INIS)

    Kim, Nohyu; Yang, Seung Yong

    2016-01-01

    The elastic modulus of a 3D-printed Kelvin foam plate is investigated by measuring the acoustic wave velocity of 1 MHz ultrasound. An isotropic tetrakaidecahedron foam with 3 mm unit cell is designed and printed layer upon layer to fabricate a Kelvin foam plate of 14 mm thickness with a 3D CAD/printer using ABS plastic. The Kelvin foam plate is completely filled with paraffin wax for impedance matching, so that the acoustic wave may propagate through the porous foam plate. The acoustic wave velocity of the foam plate is measured using the time-of-flight (TOF) method and is used to calculate the elastic modulus of the Kelvin foam plate based on acousto-elasticity. Finite element method (FEM) and micromechanics is applied to the Kelvin foam plate to calculate the theoretical elastic modulus using a non-isotropic tetrakaidecahedron model. The predicted elastic modulus of the Kelvin foam plate from FEM and micromechanics model is similar, which is only 3-4% of the bulk material. The experimental value of the elastic modulus from the ultrasonic method is approximately twice as that of the numerical and theoretical methods because of the flexural deformation of the cell edges neglected in the ultrasonic method

  1. Ultrasound estimation and FE analysis of elastic modulus of Kelvin foam

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Nohyu; Yang, Seung Yong [School of Mechatronics Engineering, Korea University of Technology and Education, Cheonan (Korea, Republic of)

    2016-02-15

    The elastic modulus of a 3D-printed Kelvin foam plate is investigated by measuring the acoustic wave velocity of 1 MHz ultrasound. An isotropic tetrakaidecahedron foam with 3 mm unit cell is designed and printed layer upon layer to fabricate a Kelvin foam plate of 14 mm thickness with a 3D CAD/printer using ABS plastic. The Kelvin foam plate is completely filled with paraffin wax for impedance matching, so that the acoustic wave may propagate through the porous foam plate. The acoustic wave velocity of the foam plate is measured using the time-of-flight (TOF) method and is used to calculate the elastic modulus of the Kelvin foam plate based on acousto-elasticity. Finite element method (FEM) and micromechanics is applied to the Kelvin foam plate to calculate the theoretical elastic modulus using a non-isotropic tetrakaidecahedron model. The predicted elastic modulus of the Kelvin foam plate from FEM and micromechanics model is similar, which is only 3-4% of the bulk material. The experimental value of the elastic modulus from the ultrasonic method is approximately twice as that of the numerical and theoretical methods because of the flexural deformation of the cell edges neglected in the ultrasonic method.

  2. Examining Young's modulus for wood

    International Nuclear Information System (INIS)

    Perkalskis, Benjamin S; Freeman, J Reuben; Suhov, Alexander

    2004-01-01

    Symmetry considerations, dimensional analysis and simple approximations are used to derive a formula for Young's modulus of a simple anisotropic system, a straight-layer wood bar whose fibre axis makes an angle with respect to the bar's longitudinal axis. Agreement between the derived formula and experiment (carried out in far from ideal conditions) is within 10%. Improvements and extensions are suggested for this undergraduate physics experiment

  3. Temperature, Frequency and Young’s Modulus of a Wineglass

    Directory of Open Access Journals (Sweden)

    Amitta Miller

    2015-01-01

    Full Text Available A crystal soda-lime wineglass, heated to temperatures ranging from 25 °C to 150 °C, was tapped and the frequency recorded. It was shown that the relative change in the frequency at different temperatures can be used to determine the effect of temperature on Young’s Modulus of the glass. This simple method of tapping a wineglass is proposed as an effective way of determining the relative effect of temperature on Young’ Modulus of glass.

  4. High-capacity optical long data memory based on enhanced Young's modulus in nanoplasmonic hybrid glass composites.

    Science.gov (United States)

    Zhang, Qiming; Xia, Zhilin; Cheng, Yi-Bing; Gu, Min

    2018-03-22

    Emerging as an inevitable outcome of the big data era, long data are the massive amount of data that captures changes in the real world over a long period of time. In this context, recording and reading the data of a few terabytes in a single storage device repeatedly with a century-long unchanged baseline is in high demand. Here, we demonstrate the concept of optical long data memory with nanoplasmonic hybrid glass composites. Through the sintering-free incorporation of nanorods into the earth abundant hybrid glass composite, Young's modulus is enhanced by one to two orders of magnitude. This discovery, enabling reshaping control of plasmonic nanoparticles of multiple-length allows for continuous multi-level recording and reading with a capacity over 10 terabytes with no appreciable change of the baseline over 600 years, which opens new opportunities for long data memory that affects the past and future.

  5. Resilient modulus for unbound granular materials and subgrade soils in Egypt

    Directory of Open Access Journals (Sweden)

    Mousa Rabah

    2017-01-01

    Full Text Available Mechanistic Empirical (ME pavement design methods started to gain attention especially the last couple of years in Egypt and the Middle East. One of the challenges facing the spread of these methods in Egypt is lack of advanced properties of local soil and asphalt, which are needed as input data in ME design. Resilient modulus (Mr for example is an important engineering property that expresses the elastic behavior of soil/unbound granular materials (UGMs under cyclic traffic loading for ME design. In order to overcome the scarcity of the resilient modulus data for soil/UGMs in Egypt, a comprehensive laboratory testing program was conducted to measure resilient modulus of typical UGMs and subgrade soils typically used in pavement construction in Egypt. The factors that affect the resilient modulus of soil/UGMs were reviewed, studied and discussed. Finally, the prediction accuracy of the most well-known Mr Prediction models for the locally investigated materials was investigated.

  6. Influence of dynamic dislocation drag on amplitude dependences of damping decrement and modulus defect in lead

    International Nuclear Information System (INIS)

    Soifer, Y.M.; Golosovskii, M.A.; Kobelev, N.P.

    1981-01-01

    A study was made of the amplitude dependences of the damping decrement and the modulus defect in lead at low temperatures at frequencies of 100 kHz and 5 MHz. It was shown that in pure lead at high frequencies a change in the amplitude dependences of the damping decrement and the modulus defect under the superconducting transition is due mainly to the change in the losses caused by the dynamic drag of dislocations whereas in measurements at low frequencies the influence of the superconducting transition is due to the change in the conditions of dislocation unpinning from point defects. The influence of the dynamic dislocation drag on the amplitude dependences of the damping decrement and the modulus defect is calculated and a method is presented for experimental estimation of the contribution of dynamic effects to the amplitude-dependent internal friction

  7. In silico assembly and nanomechanical characterization of carbon nanotube buckypaper

    International Nuclear Information System (INIS)

    Cranford, Steven W; Buehler, Markus J

    2010-01-01

    Carbon nanotube sheets or films, also known as 'buckypaper', have been proposed for use in actuating, structural and filtration systems, based in part on their unique and robust mechanical properties. Computational modeling of such a fibrous nanostructure is hindered by both the random arrangement of the constituent elements as well as the time- and length-scales accessible to atomistic level molecular dynamics modeling. Here we present a novel in silico assembly procedure based on a coarse-grain model of carbon nanotubes, used to attain a representative mesoscopic buckypaper model that circumvents the need for probabilistic approaches. By variation in assembly parameters, including the initial nanotube density and ratio of nanotube type (single- and double-walled), the porosity of the resulting buckypaper can be varied threefold, from approximately 0.3 to 0.9. Further, through simulation of nanoindentation, the Young's modulus is shown to be tunable through manipulation of nanotube type and density over a range of approximately 0.2-3.1 GPa, in good agreement with experimental findings of the modulus of assembled carbon nanotube films. In addition to carbon nanotubes, the coarse-grain model and assembly process can be adapted for other fibrous nanostructures such as electrospun polymeric composites, high performance nonwoven ballistic materials, or fibrous protein aggregates, facilitating the development and characterization of novel nanomaterials and composites as well as the analysis of biological materials such as protein fiber films and bulk structures.

  8. Estimation of Elastic Modulus of Intact Rocks by Artificial Neural Network

    Science.gov (United States)

    Ocak, Ibrahim; Seker, Sadi Evren

    2012-11-01

    The modulus of elasticity of intact rock ( E i) is an important rock property that is used as an input parameter in the design stage of engineering projects such as dams, slopes, foundations, tunnel constructions and mining excavations. However, it is sometimes difficult to determine the modulus of elasticity in laboratory tests because high-quality cores are required. For this reason, various methods for predicting E i have been popular research topics in recently published literature. In this study, the relationships between the uniaxial compressive strength, unit weight ( γ) and E i for different types of rocks were analyzed, employing an artificial neural network and 195 data obtained from laboratory tests carried out on cores obtained from drilling holes within the area of three metro lines in Istanbul, Turkey. Software was developed in Java language using Weka class libraries for the study. To determine the prediction capacity of the proposed technique, the root-mean-square error and the root relative squared error indices were calculated as 0.191 and 92.587, respectively. Both coefficients indicate that the prediction capacity of the study is high for practical use.

  9. Thickness dependence of nanofilm elastic modulus

    Czech Academy of Sciences Publication Activity Database

    Fedorchenko, Alexander I.; Wang, A. B.; Cheng, H.H.

    2009-01-01

    Roč. 94, č. 15 (2009), s. 152111-152113 ISSN 0003-6951 Institutional research plan: CEZ:AV0Z20760514 Keywords : nanofilm * elastic modulus * thickness dependence Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.554, year: 2009 http://link.aip.org/link/?APPLAB/94/152111/1

  10. Estimation of Bulk modulus and microhardness of tetrahedral semiconductors

    International Nuclear Information System (INIS)

    Gorai, Sanjay Kumar

    2012-01-01

    A general empirical formula was found for calculating of bulk modulus (B) and microhardness (H) from electronegativity and principal quantum number of II-VI, III-V semiconductors. Constant C1, appearing the in the expression of bulk modulus and constants C2 and C3, appearing in the expression of microhardness and the exponent M have following values respectively The numerical values of C1,C2, C3 and M are respectively 206.6, 8.234, 1.291, -1.10 for II-VI 72.4, 31.87, 7.592, -0.95 for III-V semiconductors. Both electro-negativity and principal quantum number can effectively reflect on the chemical bonding behaviour of constituent atoms in these semiconductors. The calculated values of bulk modulus and microhardness are in good agreement with the reported values in the literature. Present study helps in designing novel semiconductor materials, and to further explore the mechanical properties of these semiconductors.

  11. A two-crown finite element technique for the determination of tearing modulus

    International Nuclear Information System (INIS)

    Suo, X.Z.; Combescure, A.

    1989-01-01

    The importance of approach to the subject of crack instability for the design of structures containing cracks has increased considerably over the last few years. The tearing modulus theory recently enunciated by Paris and co-workers has emerged as one of the leading criterions for stable crack growth and for instability, and the estimation of T termed Tearing modulus in the theory has since been extensively investigated theoretically as well as experimentally. Analytical methods exist for calculating the tearing modulus of various crack configurations in simple-shaped structures under certain loading conditions. However, for arbitrary structures under general loading, more sophisticated calculation techniques are required. Extending the virtual crack extension method introduced independently by Hellen and Parks, a new numerical approach for calculating the tearing modulus is presented hereafter and put in a form suitable for the instability analysis of structures containing one single crack or several interacting cracks. As it is well-known that the calculation of the energy release rate in elasticity by the virtual crack extension method is related to a stiffness derivative to which only a small region around the crack tip has a contribution, the technique described in the paper shows that it would be reasonable to evaluate the tearing modulus, or rather, the second derivative of potential energy with respect to the crack length, by means of two stiffness derivative calculations in two crowns around the crack tip. In particular, when one crown is strictly included in another one, computation is largely curtailed at this point with some saving of computer time, but a very accurate value of tearing modulus is obtained. As an interesting consequence, an another expression of the tearing modulus is carried out. In Section 4: the classical tearing modulus is proved to be precisely equivalent to a line integral which is independent of integration path. Numerical example

  12. Ni-coated multi-walled carbon nanotubes enhanced the magnetorheological performance of magnetorheological gel

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Pingan; Yu, Miao, E-mail: yumiao@cqu.edu.cn; Fu, Jie [Chongqing University, Key Lab for Optoelectronic Technology and Systems, Ministry of Education, College of Optoelectronic Engineering (China)

    2016-03-15

    As a kind of new Magnetorheological (MR) material, MR Gel (MRG) can be regarded as the analog of MR fluid (MRF), which can overcome the iron particles sedimentation and unstable application of MRF. Normally, the storage modulus of conventional MRG is relatively small, although it has a very high relative MR effect. Therefore, practical engineering application of conventional MRG has been restricted more or less. In this work, an MRG with high magneto-induced shear storage modulus and excellent relative MR effect has been fabricated by incorporating Ni-coated multi-walled carbon nanotubes (Ni-coated MWCNTs). And several polyurethane-based MRG composites with the addition of Ni-coated MWCNTs were prepared. The dynamic mechanical property of those MRG composites with applying magnetic field is researched through an advanced commercial rheometer. The experimental results indicated that the initial storage modulus and magneto-induced modulus in sample 4 (containing 6 wt% of the Ni-coated MWCNTs) were approximately 4.45 and 2.27 times than that in the sample 1 (without Ni-coated MWCNTs). Moreover, the relative MR effect of sample 4 can reach 3427 %. The high modulus of sample 4 can be mainly attributed to the following points. One is the Ni-coated MWCNTs can be aligned along the direction of the magnetic field within the matrix which provided a better reinforcing efficiency. The other is Ni-coated MWCNTs can be made to form a better bonding between the iron particles and the matrix. It is concluded that this study provides a meaningful way to improve the mechanical properties of MRG and expected to promote the application of MRG in practice.

  13. Determination of elastic modulus and residual stress of plasma-sprayed tungsten coating on steel substrate

    Science.gov (United States)

    You, J. H.; Höschen, T.; Lindig, S.

    2006-01-01

    Plasma-sprayed tungsten, which is a candidate material for the first wall armour, shows a porous, heterogeneous microstructure. Due to its characteristic morphology, the properties are significantly different from those of its dense bulk material. Measurements of the elastic modulus of this coating have not been reported in the literature. In this work Young's modulus of highly porous plasma-sprayed tungsten coatings deposited on steel (F82H) substrates was measured. For the fabrication of the coating system the vacuum plasma-spray process was applied. Measurements were performed by means of three-point and four-point bending tests. The obtained modulus values ranged from 53 to 57 GPa. These values could be confirmed by the test result of a detached coating strip, which was 54 GPa. The applied methods produced consistent results regardless of testing configurations and specimen sizes. The errors were less than 1%. Residual stress of the coating was also estimated.

  14. Determination of elastic modulus and residual stress of plasma-sprayed tungsten coating on steel substrate

    International Nuclear Information System (INIS)

    You, J.H.; Hoeschen, T.; Lindig, S.

    2006-01-01

    Plasma-sprayed tungsten, which is a candidate material for the first wall armour, shows a porous, heterogeneous microstructure. Due to its characteristic morphology, the properties are significantly different from those of its dense bulk material. Measurements of the elastic modulus of this coating have not been reported in the literature. In this work Young's modulus of highly porous plasma-sprayed tungsten coatings deposited on steel (F82H) substrates was measured. For the fabrication of the coating system the vacuum plasma-spray process was applied. Measurements were performed by means of three-point and four-point bending tests. The obtained modulus values ranged from 53 to 57 GPa. These values could be confirmed by the test result of a detached coating strip, which was 54 GPa. The applied methods produced consistent results regardless of testing configurations and specimen sizes. The errors were less than 1%. Residual stress of the coating was also estimated

  15. Young's modulus of defective graphene sheet from intrinsic thermal vibrations

    International Nuclear Information System (INIS)

    Thomas, Siby; Mrudul, M S; Ajith, K M; Valsakumar, M C

    2016-01-01

    Classical molecular dynamics simulations have been performed to establish a relation between thermally excited ripples and Young's modulus of defective graphene sheet within a range of temperatures. The presence of the out-of-plane intrinsic ripples stabilizes the graphene membranes and the mechanical stability is analyzed by means of thermal mean square vibration amplitude in the long wavelength regime. We observed that the presence of vacancy and Stone-Wales (SW) defects reduces the Young's modulus of graphene sheets. Graphene sheet with vacancy defects possess superior Young's modulus to that of a sheet with Stone-Wales defects. The obtained room temperature Young's modulus of pristine and defective graphene sheet is ∼ 1 TPa, which is comparable to the results of earlier experimental and atomistic simulation studies. (paper)

  16. Developing the elastic modulus measurement of asphalt concrete using the compressive strength test

    Science.gov (United States)

    Setiawan, Arief; Suparma, Latif Budi; Mulyono, Agus Taufik

    2017-11-01

    Elastic modulus is a fundamental property of an asphalt mixture. An analytical method of the elastic modulus is needed to determine the thickness of flexible pavement. It has a role as one of the input values on a stress-strain analysis in the finite element method. The aim of this study was to develop the measurement of the elastic modulus by using compressive strength testing. This research used a set of specimen mold tool and Delta Dimensi software to record strain changes occurring in the proving ring of compression machine and the specimens. The elastic modulus of the five types of aggregate gradation and 2 types of asphalt were measured at optimum asphalt content. Asphalt Cement 60/70 and Elastomer Modified Asphalt (EMA) were used as a binder. Manufacturing success indicators of the specimens used void-in-the-mix (VIM) 3-5 % criteria. The success rate of the specimen manufacturing was more than 76%. Thus, the procedure and the compressive strength test equipment could be used for the measurement of the elastic modulus. The aggregate gradation and asphalt types significantly affected the elastic modulus of the asphalt concrete.

  17. Young's Modulus of Single-Crystal Fullerene C Nanotubes

    Directory of Open Access Journals (Sweden)

    Tokushi Kizuka

    2012-01-01

    Full Text Available We performed bending tests on single-crystal nanotubes composed of fullerene C70 molecules by in situ transmission electron microscopy with measurements of loading forces by an optical deflection method. The nanotubes with the outer diameters of 270–470 nm were bent using simple-beam and cantilever-beam loading by the piezomanipulation of silicon nanotips. Young's modulus of the nanotubes increased from 61 GPa to 110 GPa as the outer diameter decreased from 470 nm to 270 nm. Young's modulus was estimated to be 66% of that of single-crystal C60 nanotubes of the same outer diameter.

  18. Short cellulosic fiber/starch acetate composites — micromechanical modeling of Young’s modulus

    DEFF Research Database (Denmark)

    Madsen, Bo; Joffe, Roberts; Peltola, Heidi

    2011-01-01

    This study is presented to predict the Young’s modulus of injection-molded short cellulosic fiber/plasticized starch acetate composites with variable fiber and plasticizer content. A modified rule of mixtures model is applied where the effect of porosity is included, and where the fiber weight...... (density and Young’s modulus). The measured Young’s modulus of the composites varies in the range 1.1—8.3 GPa, and this is well predicted by the model calculations. A property diagram is presented to be used for the tailor-making of composites with Young’s modulus in the range 0.2—10 GPa....

  19. Modular correction method of bending elastic modulus based on sliding behavior of contact point

    International Nuclear Information System (INIS)

    Ma, Zhichao; Zhao, Hongwei; Zhang, Qixun; Liu, Changyi

    2015-01-01

    During the three-point bending test, the sliding behavior of the contact point between the specimen and supports was observed, the sliding behavior was verified to affect the measurements of both deflection and span length, which directly affect the calculation of the bending elastic modulus. Based on the Hertz formula to calculate the elastic contact deformation and the theoretical calculation of the sliding behavior of the contact point, a theoretical model to precisely describe the deflection and span length as a function of bending load was established. Moreover, a modular correction method of bending elastic modulus was proposed, via the comparison between the corrected elastic modulus of three materials (H63 copper–zinc alloy, AZ31B magnesium alloy and 2026 aluminum alloy) and the standard modulus obtained from standard uniaxial tensile tests, the universal feasibility of the proposed correction method was verified. Also, the ratio of corrected to raw elastic modulus presented a monotonically decreasing tendency as the raw elastic modulus of materials increased. (technical note)

  20. Bisphosphonate treatment affects trabecular bone apparent modulus through micro-architecture rather than matrix properties

    DEFF Research Database (Denmark)

    Ding, Ming

    2004-01-01

    and trabecular architecture independently. Conventional histomorphometry and microdamage data were obtained from the second and third lumbar vertebrae of the same dogs [Bone 28 (2001) 524]. Bisphosphonate treatment resulted in an increased apparent Young's modulus, decreased bone turnover, increased calcified...... matrix density, and increased microdamage. We could not detect any change in the effective Young's modulus of the calcified matrix in the bisphosphonate treated groups. The observed increase in apparent Young's modulus was due to increased bone mass and altered trabecular architecture rather than changes...... in the calcified matrix modulus. We hypothesize that the expected increase in the Young's modulus of the calcified matrix due to the increased calcified matrix density was counteracted by the accumulation of microdamage. Udgivelsesdato: 2004 May...

  1. Characterization of multilayer nitride coatings by electron microscopy and modulus mapping

    International Nuclear Information System (INIS)

    Pemmasani, Sai Pramod; Rajulapati, Koteswararao V.; Ramakrishna, M.; Valleti, Krishna; Gundakaram, Ravi C.; Joshi, Shrikant V.

    2013-01-01

    This paper discusses multi-scale characterization of physical vapour deposited multilayer nitride coatings using a combination of electron microscopy and modulus mapping. Multilayer coatings with a triple layer structure based on TiAlN and nanocomposite nitrides with a nano-multilayered architecture were deposited by Cathodic arc deposition and detailed microstructural studies were carried out employing Energy Dispersive Spectroscopy, Electron Backscattered Diffraction, Focused Ion Beam and Cross sectional Transmission Electron Microscopy in order to identify the different phases and to study microstructural features of the various layers formed as a result of the deposition process. Modulus mapping was also performed to study the effect of varying composition on the moduli of the nano-multilayers within the triple layer coating by using a Scanning Probe Microscopy based technique. To the best of our knowledge, this is the first attempt on modulus mapping of cathodic arc deposited nitride multilayer coatings. This work demonstrates the application of Scanning Probe Microscopy based modulus mapping and electron microscopy for the study of coating properties and their relation to composition and microstructure. - Highlights: • Microstructure of a triple layer nitride coating studied at multiple length scales. • Phases identified by EDS, EBSD and SAED (TEM). • Nanolayered, nanocomposite structure of the coating studied using FIB and TEM. • Modulus mapping identified moduli variation even in a nani-multilayer architecture

  2. Carbon nanomaterials for high-performance supercapacitors

    OpenAIRE

    Tao Chen; Liming Dai

    2013-01-01

    Owing to their high energy density and power density, supercapacitors exhibit great potential as high-performance energy sources for advanced technologies. Recently, carbon nanomaterials (especially, carbon nanotubes and graphene) have been widely investigated as effective electrodes in supercapacitors due to their high specific surface area, excellent electrical and mechanical properties. This article summarizes the recent progresses on the development of high-performance supercapacitors bas...

  3. Influence of various factors on the Young modulus of metals

    International Nuclear Information System (INIS)

    Drapkin, B.M.

    1980-01-01

    The equivalence of temperature and pressure effects in the elastic area on the Young modulus of different metals (Ni, Mo, W, Na, Fe and ets.) is established on the basis of the analysis of literature and calculated data. It is shown that the value of the change in the Young modulus of the alloy is connected with mutual arrangement of alloy components in the periodic system of elements

  4. Effect of single-particle magnetostriction on the shear modulus of compliant magnetoactive elastomers

    Science.gov (United States)

    Kalita, Viktor M.; Snarskii, Andrei A.; Shamonin, Mikhail; Zorinets, Denis

    2017-03-01

    The influence of an external magnetic field on the static shear strain and the effective shear modulus of a magnetoactive elastomer (MAE) is studied theoretically in the framework of a recently introduced approach to the single-particle magnetostriction mechanism [V. M. Kalita et al., Phys. Rev. E 93, 062503 (2016), 10.1103/PhysRevE.93.062503]. The planar problem of magnetostriction in an MAE with magnetically soft inclusions in the form of a thin disk (platelet) having the magnetic anisotropy in the plane of this disk is solved analytically. An external magnetic field acts with torques on magnetic filler particles, creates mechanical stresses in the vicinity of inclusions, induces shear strain, and increases the effective shear modulus of these composite materials. It is shown that the largest effect of the magnetic field on the effective shear modulus should be expected in MAEs with soft elastomer matrices, where the shear modulus of the matrix is less than the magnetic anisotropy constant of inclusions. It is derived that the effective shear modulus is nonlinearly dependent on the external magnetic field and approaches the saturation value in magnetic fields exceeding the field of particle anisotropy. It is shown that model calculations of the effective shear modulus correspond to a phenomenological definition of effective elastic moduli and magnetoelastic coupling constants. The obtained theoretical results compare well with known experimental data. Determination of effective elastic coefficients in MAEs and their dependence on magnetic field is discussed. The concentration dependence of the effective shear modulus at higher filler concentrations has been estimated using the method of Padé approximants, which predicts that both the absolute and relative changes of the magnetic-field-dependent effective shear modulus will significantly increase with the growing concentration of filler particles.

  5. Evaluation of Young’s modulus of MgB2 filaments in composite wires for the superconducting links for the high-luminosity LHC upgrade

    Science.gov (United States)

    Sugano, Michinaka; Ballarino, Amalia; Bartova, Barbora; Bjoerstad, Roger; Gerardin, Alexandre; Scheuerlein, Christian

    2016-02-01

    MgB2 wire is a promising superconductor for the superconducting links for the high-luminosity upgrade of the large Hadron collider at CERN. The mechanical properties of MgB2 must be fully quantified for the cable design, and in this study, we evaluate the Young’s modulus of MgB2 filaments in wires with a practical level of critical current. The Young’s moduli of MgB2 filaments by two different processes, in situ and ex situ, were compared. Two different evaluation methods were applied to an in situ MgB2 wire, a single-fiber tensile test and a tensile test after removing Monel. In addition, the Young’s modulus of the few-micron-thick Nb-Ni reaction layer in an ex situ processed wire was evaluated using a nanoindentation testing technique to improve the accuracy of analysis based on the rule of mixtures. The Young’s moduli of the in situ and ex situ MgB2 wires were in the range of 76-97 GPa and no distinct difference depending on the fabrication process was found.

  6. Determination of correlation between backflow volume and mitral valve leaflet young modulus from two dimensional echocardiogram images

    Science.gov (United States)

    Jong, Rudiyanto P.; Osman, Kahar; Adib, M. Azrul Hisham M.

    2012-06-01

    Mitral valve prolapse without proper monitoring might lead to a severe mitral valve failure which eventually leads to a sudden death. Additional information on the mitral valve leaflet condition against the backflow volume would be an added advantage to the medical practitioner for their decision on the patients' treatment. A study on two dimensional echocardiography images has been conducted and the correlations between the backflow volume of the mitral regurgitation and mitral valve leaflet Young modulus have been obtained. Echocardiogram images were analyzed on the aspect of backflow volume percentage and mitral valve leaflet dimensions on different rates of backflow volume. Young modulus values for the mitral valve leaflet were obtained by using the principle of elastic deflection and deformation on the mitral valve leaflet. The results show that the backflow volume increased with the decrease of the mitral valve leaflet Young modulus which also indicate the condition of the mitral valve leaflet approaching failure at high backflow volumes. Mitral valve leaflet Young modulus values obtained in this study agreed with the healthy mitral valve leaflet Young modulus from the literature. This is an initial overview of the trend on the prediction of the behaviour between the fluid and the structure of the blood and the mitral valve which is extendable to a larger system of prediction on the mitral valve leaflet condition based on the available echocardiogram images.

  7. The effect of magnetic stress and stiffness modulus on resonant characteristics of Ni-Mn-Ga ferromagnetic shape memory alloy actuators

    International Nuclear Information System (INIS)

    Techapiesancharoenkij, Ratchatee; Kostamo, Jari; Allen, Samuel M.; O'Handley, Robert C.

    2011-01-01

    The prospect of using ferromagnetic shape memory alloys (FSMAs) is promising for a resonant actuator that requires large strain output and a drive frequency below 1 kHz. In this investigation, three FSMA actuators, equipped with tetragonal off-stoichiometric Ni 2 MnGa single crystals, were developed to study their frequency response and resonant characteristics. The first actuator, labeled as A1, was constructed with low-k bias springs and one Ni-Mn-Ga single crystal. The second actuator, labeled as A2, was constructed with high-k bias springs and one Ni-Mn-Ga crystal. The third actuator, labeled as A3, was constructed with high-k bias springs and two Ni-Mn-Ga crystals connected in parallel. The three actuators were magnetically driven over the frequency range of 10 Hz-1 kHz under 2 and 3.5 kOe magnetic-field amplitudes. The field amplitude of 2 kOe is insufficient to generate significant strain output from all three actuators; the maximum magnetic-field-induced strain (MFIS) at resonance is 2%. The resonant MFIS output improves to 5% under 3.5-kOe amplitude. The frequency responses of all three actuators show a strong effect of the spring k constant and the Ni-Mn-Ga modulus stiffness on the resonant frequencies. The resonant frequency of the Ni-Mn-Ga actuator was raised from 450 to 650 Hz by increasing bias spring k constant and/or the number of Ni-Mn-Ga crystals. The higher number of the Ni-Mn-Ga crystals not only increases the magnetic force output but also raises the total stiffness of the actuator resulting in a higher resonant frequency. The effective modulus of the Ni-Mn-Ga is calculated from the measured resonant frequencies using the mass-spring equation; the calculated modulus values for the three actuators fall in the range of 50-60 MPa. The calculated effective modulus appears to be close to the average modulus value between the low twinning modulus and high elastic modulus of the untwined Ni-Mn-Ga crystal. - Highlights: → Dynamic FSMA actuation shows

  8. Thermal oxidation induced degradation of carbon fiber reinforced composites and carbon nanotube sheet enhanced fiber/matrix interface for high temperature aerospace structural applications

    Science.gov (United States)

    Haque, Mohammad Hamidul

    Recent increase in the use of carbon fiber reinforced polymer matrix composite, especially for high temperature applications in aerospace primary and secondary structures along with wind energy and automotive industries, have generated new challenges to predict its failure mechanisms and service life. This dissertation reports the experimental study of a unidirectional carbon fiber reinforced bismaleimide (BMI) composites (CFRC), an excellent candidate for high temperature aerospace components, undergoing thermal oxidation at 260 °C in air for over 3000 hours. The key focus of the work is to investigate the mechanical properties of the carbon fiber BMI composite subjected to thermal aging in three key aspects - first, studying its bulk flexural properties (in macro scale), second, characterizing the crack propagation along the fiber direction, representing the interfacial bonding strength between fiber and matrix (in micro scale), and third, introducing nano-structured materials to modify the interface (in nano scale) between the carbon fiber and BMI resin and mechanical characterization to study its influence on mitigating the aging effect. Under the first category, weight loss and flexural properties have been monitored as the oxidation propagates through the fiber/matrix interface. Dynamic mechanical analysis and micro-computed tomography analysis have been performed to analyze the aging effects. In the second category, the long-term effects of thermal oxidation on the delamination (between the composite plies) and debonding (between fiber and matrix) type fracture toughness have been characterized by preparing two distinct types of double cantilever beam specimens. Digital image correlation has been used to determine the deformation field and strain distribution around the crack propagation path. Finally the resin system and the fiber/matrix interface have been modified using nanomaterials to mitigate the degradations caused by oxidation. Nanoclay modified

  9. Diagnostic procedure on brake pad assembly based on Young's modulus estimation

    International Nuclear Information System (INIS)

    Chiariotti, P; Santolini, C; Tomasini, E P; Martarelli, M

    2013-01-01

    Quality control of brake pads is an important issue, since the pad is a key component of the braking system. Typical damage of a brake pad assembly is the pad–backing plate detachment that affects and modifies the mechanical properties of the whole system. The most sensitive parameter to the damage is the effective Young's modulus, since the damage induces a decrease of the pad assembly stiffness and therefore of its effective Young's modulus: indeed its variation could be used for diagnostic purposes. The effective Young's modulus can be estimated from the first bending resonance frequency identified from the frequency response function measured on the pad assembly. Two kinds of excitation methods, i.e. conventional impulse excitation and magnetic actuation, will be presented and two different measurement sensors, e.g. laser Doppler vibrometer and microphone, analyzed. The robustness of the effective Young's modulus as a diagnostic feature will be demonstrated in comparison to the first bending resonance frequency, which is more sensitive to geometrical dimensions. Variability in the sample dimension, in fact, will induce a variation of the resonance frequency which could be mistaken for damage. The diagnostic approach has been applied to a set of undamaged and damaged pad assemblies showing good performance in terms of damage identification. The environmental temperature can be an important interfering input for the diagnostic procedure, since it influences the effective Young's modulus of the assembly. For that reason, a test at different temperatures in the range between 15 °C and 30 °C has been performed, evidencing that damage identification technique is efficient at any temperature. The robustness of the Young's modulus as a diagnostic feature with respect to damping is also presented. (paper)

  10. Young's modulus of a copper-stabilized niobium-titanium superconductive wire

    International Nuclear Information System (INIS)

    Ledbetter, H.M.; Moulder, J.C.; Austin, M.W.

    1980-01-01

    Young's modulus was determined for a 0.6-mm-dia niobium-titanium superconductive wire. Two methods were used: continuous-wave-resonance and laser-pulse-excitation. Young's moduli were also determined for the components - copper and Nb-Ti - in both wire and bulk forms. Some mechanical-deformation effects on Young's modulus were also measured. From the component' elastic moduli, that of the composite was predicted accurately by a simple rule-of-mixtures relationship

  11. High frequency acoustic microscopy for the determination of porosity and Young's modulus in high burnup uranium dioxide nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Marchetti, M. [European Commission, Joint Research Centre, Institute for Transuranium Elements P.O. Box 2340 76125 Karlsruhe (Germany); University of Montpellier, IES, UMR 5214, F-34000, Montpellier (France); Laux, D. [University of Montpellier, IES, UMR 5214, F-34000, Montpellier (France); CNRS, IES, UMR 5214, F-34000, Montpellier (France); Cappia, F. [European Commission, Joint Research Centre, Institute for Transuranium Elements P.O. Box 2340 76125 Karlsruhe (Germany); Technische Universitaet Muenchen, Department of Nuclear Engineering, Boltzmannstrasse 15, 85747 Garching bei Munchen (Germany); Laurie, M.; Van Uffelen, P.; Rondinella, V.V. [European Commission, Joint Research Centre, Institute for Transuranium Elements P.O. Box 2340 76125 Karlsruhe (Germany); Despaux, G. [University of Montpellier, IES, UMR 5214, F-34000, Montpellier (France); CNRS, IES, UMR 5214, F-34000, Montpellier (France)

    2015-07-01

    During irradiation UO{sub 2} nuclear fuel experiences the development of a non-uniform distribution of porosity which contributes to establish varying mechanical properties along the radius of the pellet. Radial variations of the porosity and of elastic properties in high burnup UO{sub 2} pellet can be investigated via high frequency acoustic microscopy. Ultrasound waves are generated by a piezoelectric transducer and focused on the sample, after having travelled through a coupling liquid. The elastic properties of the material are related to the velocity of the generated Rayleigh surface wave (VR). A 67 MWd/kgU UO{sub 2} pellet was characterized using the acoustic microscope installed in the hot cells of the Institute of Transuranium Elements: 90 MHz frequency was applied, methanol was used as coupling liquid and VR was measured at different radial positions. By comparing the porosity values obtained via acoustic microscopy with those determined using ceramographic image analysis a good agreement was found, especially in the areas close to the centre. In addition Young's modulus was calculated and its radial profile was correlated to the corresponding burnup profile. (authors)

  12. The effects of the modulus of the lens material on intraocular pressure measurement through soft contact lenses.

    Science.gov (United States)

    Boyraz, S; Güngör, I

    2013-09-01

    To investigate the effects of the modulus of the lens material on the intraocular pressure measurement using the Tono-Pen XL applanation tonometer through soft contact lenses. Thirty eyes of 15 patients with myopia were evaluated. Intraocular pressure (IOP) measurements were performed using Tono-Pen XL directly over cornea, and subsequently through three soft contact lenses made up of different lens materials. All were -3.00 diopter soft contact lenses: lotrafilcon A with a low water content (24%) and high modulus (1.4 MPa) (CL-I), balafilcon A with a moderate water content (36%) and moderate modulus (1.1 MPa) (CL-II), and vifilcon A with a moderate water content (55%) and low modulus (0.79 MPa) (CL-III). IOP measurements through contact lenses were compared with each other, and with direct corneal measurements. The mean age of the patients (11 males and 4 females) was 26.86±5.62 years. All measurements obtained through CLs were significantly higher than the direct corneal measurements. The measurements through CLs differed by 4.61±0.54 mmHg (P=0,001), 2.9±0.46 mmHg (P=0.001), and 1.94±0.51 mmHg (P=0,003) for CL-I, CL-II and CL-III, respectively. In the paired comparisons of measurements through CLs, all comparisons were significant except the comparison of measurements through CL-II and CL-III (P=0.128). IOP measurements through silicone-hydrogel contact lenses with a high modulus and low water content were higher compared to the other contact lenses. While measuring IOP through CLs, the clinicians should consider the effect of the lens material and the features of the device used.

  13. Structural relaxation monitored by instantaneous shear modulus

    DEFF Research Database (Denmark)

    Olsen, Niels Boye; Dyre, Jeppe; Christensen, Tage Emil

    1998-01-01

    time definition based on a recently proposed expression for the relaxation time, where G [infinity] reflects the fictive temperature. All parameters entering the reduced time were determined from independent measurements of the frequency-dependent shear modulus of the equilibrium liquid....

  14. Effect of Carbon Nanofiber-Matrix Adhesion on Polymeric Nanocomposite Properties—Part II

    Directory of Open Access Journals (Sweden)

    Khalid Lafdi

    2008-01-01

    carbon nanocomposite. Carbon nanofibers were subjected to electrochemical oxidation in 0.1 M nitric acid for varying times. The strength of adhesion between the nanofiber and an epoxy matrix was characterized by flexural strength and modulus. The surface functional groups formed and their concentration of nanofibers showed a dependence on the degree of oxidation. The addition of chemical functional groups on the nanofiber surface allows them to physically and chemically adhere to the continuous resin matrix. The chemical interaction with the continuous epoxy matrix results in the creation of an interphase region. The ability to chemically and physically interact with the epoxy region is beneficial to the mechanical properties of a carbon nanocomposite. A tailored degree of surface functionalization was found to increase adhesion to the matrix and increase flexural modulus.

  15. Hardness and Elastic Modulus of Titanium Nitride Coatings Prepared by Pirac Method

    Science.gov (United States)

    Wu, Siyuan; Wu, Shoujun; Zhang, Guoyun; Zhang, Weiguo

    In the present work, hardness and elastic modulus of a titanium nitride coatings prepared on Ti6Al4V by powder immersion reaction-assisted coating (PIRAC) are tested and comparatively studied with a physical vapor deposition (PVD) TiN coating. Surface hardness of the PIRAC coatings is about 11GPa, much lower than that of PVD coating of 22GPa. The hardness distribution profile from surface to substrate of the PVD coatings is steeply decreased from ˜22GPa to ˜4.5GPa of the Ti6Al4V substrate. The PIRAC coatings show a gradually decreasing hardness distribution profile. Elastic modulus of the PVD coating is about 426GPa. The PIRAC coatings show adjustable elastic modulus. Elastic modulus of the PIRAC coatings prepared at 750∘C for 24h and that at 800∘C for 8h is about 234 and 293GPa, respectively.

  16. Investigation of modulus hardening of various co-clusters in aged Al-Cu-Mg-Ag alloy by atom probe tomography

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Song [Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Central South University, Changsha 410083 (China); School of Material Science and Engineering, Central South University, Changsha 410083 (China); Liu, Zhiyi, E-mail: liuzhiyi@csu.edu.cn [Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Central South University, Changsha 410083 (China); School of Material Science and Engineering, Central South University, Changsha 410083 (China); Ying, Puyou; Wang, Jian; Li, Junlin [Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Central South University, Changsha 410083 (China); School of Material Science and Engineering, Central South University, Changsha 410083 (China)

    2016-06-21

    The modulus hardening capability of various co-clusters in a low Cu/Mg ratio Al-Cu-Mg-Ag alloy aged at 165 °C is investigated by quantitative atom probe tomography analysis. Prolonged aging from 5 min to 2 h leads to the simultaneous increase in the critical shear stress of both Mg-Ag and Cu-Mg co-clusters. Regardless of the higher shear modulus of Cu-Mg co-clusters, calculation results show that Mg-Ag co-clusters possess a greater modulus hardening capability than Cu-Mg co-clusters, suggesting its primary contribution to the rapid hardening at the early aging stage. As aging extends from 30 min to 2 h, the increment in the critical shear stress of Mg-Ag co-clusters is lower than that of Cu-Mg co-clusters due to the precipitation of high density Ω phase. In addition, the shear modulus of Mg-Ag co-clusters is generally independent on its size at each investigated condition.

  17. Investigation of modulus hardening of various co-clusters in aged Al-Cu-Mg-Ag alloy by atom probe tomography

    International Nuclear Information System (INIS)

    Bai, Song; Liu, Zhiyi; Ying, Puyou; Wang, Jian; Li, Junlin

    2016-01-01

    The modulus hardening capability of various co-clusters in a low Cu/Mg ratio Al-Cu-Mg-Ag alloy aged at 165 °C is investigated by quantitative atom probe tomography analysis. Prolonged aging from 5 min to 2 h leads to the simultaneous increase in the critical shear stress of both Mg-Ag and Cu-Mg co-clusters. Regardless of the higher shear modulus of Cu-Mg co-clusters, calculation results show that Mg-Ag co-clusters possess a greater modulus hardening capability than Cu-Mg co-clusters, suggesting its primary contribution to the rapid hardening at the early aging stage. As aging extends from 30 min to 2 h, the increment in the critical shear stress of Mg-Ag co-clusters is lower than that of Cu-Mg co-clusters due to the precipitation of high density Ω phase. In addition, the shear modulus of Mg-Ag co-clusters is generally independent on its size at each investigated condition.

  18. Mechanical properties of carbon fibre-reinforced polymer/magnesium alloy hybrid laminates

    Science.gov (United States)

    Zhou, Pengpeng; Wu, Xuan; Pan, Yingcai; Tao, Ye; Wu, Guoqing; Huang, Zheng

    2018-04-01

    In this study, we prepared fibre metal laminates (FMLs) consisting of high-modulus carbon fibre-reinforced polymer (CFRP) prepregs and thin AZ31 alloy sheets by using hot-pressing technology. Tensile and low-velocity impact tests were performed to evaluate the mechanical properties and fracture behaviour of the magnesium alloy-based FMLs (Mg-FMLs) and to investigate the differences in the fracture behaviour between the Mg-FMLs and traditional Mg-FMLs. Results show that the Mg-FMLs exhibit higher specific tensile strength and specific tensile modulus than traditional Mg-FMLs and that the tensile behaviour of the Mg-FMLs is mainly governed by the CFRP because of the combination of high interlaminar shear properties and thin magnesium alloy layers. The Mg-FMLs exhibit excellent bending stiffness. Hence, no significant difference between the residual displacement d r and indentation depth d i , and the permanent deformation is mainly limited to a small zone surrounding the impact location after the impact tests.

  19. Use of carbon filaments in place of carbon black as the current collector of a lithium cell with a thionyl chloride bromine chloride catholyte

    Science.gov (United States)

    Frysz, Christine A.; Shui, Xiaoping; Chung, D. D. L.

    Submicron carbon filaments (ADNH, Applied Sciences Inc.) used in place of carbon black as porous reduction electrodes (i.e., current collectors) in plate and jellyroll configurations in carbon limited lithium batteries with the BCX (bromine chloride in thionyl chloride) catholyte gave a specific capacity (at 2 V cut-off) of up to 8700 mAh/g of carbon, compared with a value of up to 2900 mAh/g of carbon for carbon black. The high specific capacity for the filament electrode is partly due to the filaments' processability into sheets as thin as 0.2 mm with good porosity, acceptable mechanical properties and without binder, and partly due to the high catholyte absorptivity and high rate of catholyte absorption of the filament electrode. Use of solvent-cleansed filaments in place of as-received filaments in making electrodes increased the packing density, thus decreasing capacity per g of carbon. The BCX catholyte acted as a cleanser anyway, due to the thionyl chloride in it. The specific capacity per cm 3 of carbon and that per unit density of carbon were also increased by using carbon filaments in place of carbon black, provided that the filament electrode was not pressed after forming by slurry filtration. Though no binder was needed for the filament plate electrode, it was needed for the filament jellyroll electrode. The Teflon™ binder increased the tensile strength and modulus, but decreased the catholyte absorption and rate of absorption. The filament electrode exhibited 405 less volume electrical resistivity than the carbon black electrode, both without a binder.

  20. Use of carbon filaments in place of carbon black as the current collector of a lithium cell with a thionyl chloride bromine chloride catholyte

    Energy Technology Data Exchange (ETDEWEB)

    Frysz, C.A. [Technology Div., Wilson Greatbatch Ltd., Clarence, NY (United States); Shui Xiaoping [Composite Materials Research Lab., State Univ. of New York, Buffalo, NY (United States); Chung, D.D.L. [Composite Materials Research Lab., State Univ. of New York, Buffalo, NY (United States)

    1996-01-01

    Submicron carbon filaments (ADNH, Applied Sciences Inc.) used in place of carbon black as porous reduction electrodes (i.e., current collectors) in plate and jellyroll configurations in carbon limited lithium batteries with the BCX (bromine chloride in thionyl chloride) catholyte gave a specific capacity (at 2 V cut-off) of up to 8700 mAh/g of carbon, compared with a value of up to 2900 mAh/g of carbon for carbon black. The high specific capacity for the filament electrode is partly due to the filaments` processability into sheets as thin as 0.2 mm with good porosity, acceptable mechanical properties and without binder, and partly due to the high catholyte absorptivity and high rate of catholyte absorption of the filament electrode. Use of solvent-cleansed filaments in place of as-received filaments in making electrodes increased the packing density, thus decreasing capacity per g of carbon. The BCX catholyte acted as a cleanser anyway, due to the thionyl chloride in it. The specific capacity per cm{sup 3} of carbon and that per unit density of carbon were also increased by using carbon filaments in place of carbon black, provided that the filament electrode was not pressed after forming by slurry filtration. Though no binder was needed for the filament plate electrode, it was needed for the filament jellyroll electrode. The Teflon{sup TM} binder increased the tensile strength and modulus, but decreased the catholyte absorption and rate of absorption. The filament electrode exhibited 40% less volume electrical resistivity than the carbon black electrode, both without a binder. (orig.)

  1. A coupled carbonation-rust formation mechanical damage model for steel corrosion in reinforced concrete

    International Nuclear Information System (INIS)

    Nguyen, Huyen; Bary, B.; L'Hostis, Valerie; DeLarrard, T.

    2014-01-01

    This paper aims at presenting a strategy to simulate the corrosion of steel reinforcement due to carbonation of concrete in atmospheric environment. We propose a model coupling drying, carbonation, diffusion of oxygen, formation of rust and mechanics to describe these phenomena. The rust layer is assumed to be composed of two sub-layers with different elastic modulus. An unstable layer with a low modulus (from 0.1 to 5 GPa) is located next to the transformed medium, and another more stable one with a higher modulus (from 100 to 150 GPa) at the interface with steel reinforcement. This model is applied to a numerical meso-structure composed of 4 phases: mortar matrix, randomly distributed aggregates, steel rebar and rust layers to underline the effect of aggregates on damage initiation and corresponding crack pattern of concrete cover. (authors)

  2. Room temperature Young's modulus, shear modulus, Poisson's ratio and hardness of PbTe-PbS thermoelectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Jennifer E [Chemical Engineering and Materials Science Department, Michigan State University, East Lansing, MI 48824 (United States); Case, Eldon D., E-mail: casee@egr.msu.edu [Chemical Engineering and Materials Science Department, Michigan State University, East Lansing, MI 48824 (United States); Khabir, Kristen N; Stewart, Ryan C [Chemical Engineering and Materials Science Department, Michigan State University, East Lansing, MI 48824 (United States); Wu, Chun-I; Hogan, Timothy P [Electrical and Computer Engineering Department, Michigan State University, East Lansing, MI 48824 (United States); Timm, Edward J [Mechanical Engineering Department, Michigan State University, East Lansing, MI 48824 (United States); Girard, Steven N; Kanatzidis, Mercouri G [Department of Chemistry, Northwestern University, Evanston, IL (United States)

    2010-06-15

    Two-phase PbTe-PbS materials, in which PbS is a nanostructured phase, are promising thermoelectric materials for the direct conversion of heat energy into electricity. In this study, a Vickers indentation mean hardness of 1.18 {+-} 0.09 GPa was measured for hot pressed specimens Pb{sub 0.95}Sn{sub 0.05}Te-PbS 8% while the mean hardness of cast specimens was 0.68 {+-} 0.07 GPa. The mean fracture toughness of the not pressed specimens was estimated as 0.35 {+-} 0.04 MPa m{sup 1/2} via Vickers indentation. Resonant Ultrasound Spectroscopy (RUS) measurements on hot pressed specimens gave mean values of Young's modulus, shear modulus and Poisson's ratio of 53.1 GPa, 21.4 GPa and 0.245, respectively while for the cast specimens the Young's and shear moduli were about 10% lower than for the hot pressed, with a mean value of Poisson's ratio of 0.245. The differences between the hardness and elastic moduli values for the cast and hot pressed specimens are discussed.

  3. Young modulus and internal friction of a fiber-reinforced composite

    International Nuclear Information System (INIS)

    Ledbetter, H.M.; Lei, M.; Austin, M.W.

    1986-01-01

    By a kilohertz-frequency resonance method we determined the Young modulus and internal friction of a uniaxially fiber-reinforced composite. The composite comprised glass fibers in an epoxy-resin matrix. We studied three fiber contents: 0, 41, and 49 vol %. The Young modulus fit a linear rule of mixture. The internal friction fit a classical free-damped-oscillator model where one assumes a linear rule of mixture for three quantities: mass, force constant, and mechanical-resistance constant

  4. Highly reversible lead-carbon battery anode with lead grafting on the carbon surface

    KAUST Repository

    Yin, Jian; Lin, Nan; Zhang, Wenli; Lin, Zheqi; Zhang, Ziqing; Wang, Yue; Shi, Jun; Bao, Jinpeng; Lin, Haibo

    2018-01-01

    A novel C/Pb composite has been successfully prepared by electroless plating to reduce the hydrogen evolution and achieve the high reversibility of the anode of lead-carbon battery (LCB). The deposited lead on the surface of C/Pb composite was found to be uniform and adherent to carbon surface. Because lead has been stuck on the surface of C/Pb composite, the embedded structure suppresses the hydrogen evolution of lead-carbon anode and strengthens the connection between carbon additive and sponge lead. Compared with the blank anode, the lead-carbon anode with C/Pb composite displays excellent charge–discharge reversibility, which is attributed to the good connection between carbon additives and lead that has been stuck on the surface of C/Pb composite during the preparation process. The addition of C/Pb composite maintains a solid anode structure with high specific surface area and power volume, and thereby, it plays a significant role in the highly reversible lead-carbon anode.

  5. Highly reversible lead-carbon battery anode with lead grafting on the carbon surface

    KAUST Repository

    Yin, Jian

    2018-03-27

    A novel C/Pb composite has been successfully prepared by electroless plating to reduce the hydrogen evolution and achieve the high reversibility of the anode of lead-carbon battery (LCB). The deposited lead on the surface of C/Pb composite was found to be uniform and adherent to carbon surface. Because lead has been stuck on the surface of C/Pb composite, the embedded structure suppresses the hydrogen evolution of lead-carbon anode and strengthens the connection between carbon additive and sponge lead. Compared with the blank anode, the lead-carbon anode with C/Pb composite displays excellent charge–discharge reversibility, which is attributed to the good connection between carbon additives and lead that has been stuck on the surface of C/Pb composite during the preparation process. The addition of C/Pb composite maintains a solid anode structure with high specific surface area and power volume, and thereby, it plays a significant role in the highly reversible lead-carbon anode.

  6. The use of thermovision technique to estimate the properties of highly filled polyolefins composites with calcium carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Jakubowska, Paulina; Klozinski, Arkadiusz [Poznan University of Technology, Institute of Technology and Chemical Engineering, Polymer Division Pl. M. Sklodowskiej-Curie 2, 60-965 Poznan, Poland, Paulina.Jakubowska@put.poznan.pl (Poland)

    2015-05-22

    The aim of this work was to determine the possibility of thermovision technique usage for estimating thermal properties of ternary highly filled composites (PE-MD/iPP/CaCO{sub 3}) and polymer blends (PE-MD/iPP) during mechanical measurements. The ternary, polyolefin based composites that contained the following amounts of calcium carbonate: 48, 56, and 64 wt % were studied. All materials were applying under tensile cyclic loads (x1, x5, x10, x20, x50, x100, x500, x1000). Simultaneously, a fully radiometric recording, using a TESTO infrared camera, was created. After the fatigue process, all samples were subjected to static tensile test and the maximum temperature at break was also recorded. The temperature values were analyzed in a function of cyclic loads and the filler content. The changes in the Young’s modulus values were also investigated.

  7. An interatomic potential model for carbonates allowing for polarization effects

    International Nuclear Information System (INIS)

    Birse, S.E.A.; Archer, T.D.; Dove, Martin T.; Cygan, Randall Timothy; Gale, Julian D.; Redern, Simon A.T.

    2003-01-01

    An empirical model for investigating the behavior of CaCO 3 polymorphs incorporating a shell model for oxygen has been created. The model was constructed by fitting to: the structure of aragonite and calcite; their elastic, static and high-frequency dielectric constants; phonon frequencies at the wave vectors (1/2 0 2) and (0 0 0) of calcite; and vibrational frequencies of the carbonate deformation modes of calcite. The high-pressure phase transition between calcite I and II is observed. The potentials for the CO 3 group were transferred to other carbonates, by refitting the interaction between CO 3 and the cation to both the experimental structures and their bulk modulus, creating a set of potentials for calculating the properties of a wide range of carbonate materials. Defect energies of substitutional cation defects were analyzed for calcite and aragonite phases. The results were rationalized by studying the structure of calcite and aragonite in greater detail.

  8. Variation of the Young's modulus with plastic strain applying to elastoplastic software

    International Nuclear Information System (INIS)

    Morestin, F.; Boivin, M.

    1993-01-01

    Work hardening of steel involves modifications of the elastic properties of the material, for instance, an increase of its yield stress. It may be also the cause of an appreciable decrease of the Young's modulus. This property decreases as plastic strain increases. Experiments with a microcomputer controlled tensile test machine indicated that diminution could reach more than 10% of the initial value, after only 5% of plastic strain. In spite of this fact, lots of elastoplastic softwares don't combine the decrease of the Young's modulus with plastification though it may involve obvious differences among results. As an application we have developed a software which computes the deformation of steel sheet in press forming, after springback. This software takes into account the decrease of the Young's modulus and its results are very close to experimental values. Quite arbitrarily, we noticed a recovery of the Young's modulus of plastified specimens after few days but not for all steels tested. (author)

  9. On high temperature strength of carbon steels

    International Nuclear Information System (INIS)

    Ichinose, Hiroyuki; Tamura, Manabu; Kanero, Takahiro; Ihara, Yoshihito

    1977-01-01

    In the steels for high temperature use, the oxidation resistance is regarded as important, but carbon steels show enough oxidation resistance to be used continuously at the temperature up to 500 deg. C if the strength is left out of consideration, and up to 450 deg. C even when the strength is taken into account. Moreover, the production is easy, the workability and weldability are good, and the price is cheap in carbon steels as compared with alloy steels. In the boilers for large thermal power stations, 0.15-0.30% C steels are used for reheater tubes, main feed water tubes, steam headers, wall water tubes, economizer tubes, bypass pipings and others, and they account for 70% of all steel materials used for the boilers of 350 MW class and 30% in 1000 MW class. The JIS standard for the carbon steels for high temperature use and the related standards in foreign countries are shown. The high temperature strength of carbon steels changes according to the trace elements, melting and heat treatment as well as the main compositions of C, Si and Mn. Al and N affect the high temperature strength largely. The characteristics of carbon steels after the heating for hours, the factors controlling the microstructure and high temperature strength, and the measures to improve the high temperature strength of carbon steels are explained. (Kako, I.)

  10. Hierarchically structured nanoporous carbon tubes for high pressure carbon dioxide adsorption

    Directory of Open Access Journals (Sweden)

    Julia Patzsch

    2017-05-01

    Full Text Available Mesoscopic, nanoporous carbon tubes were synthesized by a combination of the Stoeber process and the use of electrospun macrosized polystyrene fibres as structure directing templates. The obtained carbon tubes have a macroporous nature characterized by a thick wall structure and a high specific surface area of approximately 500 m²/g resulting from their micro- and mesopores. The micropore regime of the carbon tubes is composed of turbostratic graphitic areas observed in the microstructure. The employed templating process was also used for the synthesis of silicon carbide tubes. The characterization of all porous materials was performed by nitrogen adsorption at 77 K, Raman spectroscopy, infrared spectroscopy, thermal gravimetric analysis (TGA, scanning electron microscopy (SEM as well as transmission electron microscopy (TEM. The adsorption of carbon dioxide on the carbon tubes at 25 °C at pressures of up to 30 bar was studied using a volumetric method. At 26 bar, an adsorption capacity of 4.9 mmol/g was observed. This is comparable to the adsorption capacity of molecular sieves and vertically aligned carbon nanotubes. The high pressure adsorption process of CO2 was found to irreversibly change the microporous structure of the carbon tubes.

  11. Mechanical Researches on Young's Modulus of SCS Nanostructures

    Directory of Open Access Journals (Sweden)

    Qinhua Jin

    2009-01-01

    Full Text Available Nanostructures of SingleCrystalSilicon (SCS with superior electrical, mechanical, thermal, and optical properties are emerging in the development of novel nanodevices. Mechanical properties especially Young's modulus are essential in developing and utilizing such nanodevices. In this paper, experimental researches including bending tests, resonance tests, and tensile tests on Young' s modulus of nanoscaled SCS are reviewed, and their results are compared. It was found that the values of E measured by different testing methods cannot match to each other. As the differences cannot be explained as experimental errors, it should be understood by taking surface effect into account. With a simplified model, we qualitatively explained the difference in E value measured by tensile test and by resonance test for Si nanobeams.

  12. Temperature dependence of bulk modulus and second-order elastic constants

    International Nuclear Information System (INIS)

    Singh, P.P.; Kumar, Munish

    2004-01-01

    A simple theoretical model is developed to investigate the temperature dependence of the bulk modulus and second order elastic constants. The method is based on the two different approaches viz. (i) the theory of thermal expansivity formulated by Suzuki, based on the Mie-Gruneisen equation of state, (ii) the theory of high-pressure-high-temperature equation of state formulated by Kumar, based on thermodynamic analysis. The results obtained for a number of crystals viz. NaCl, KCl, MgO and (Mg, Fe) 2 SiO 4 are discussed and compared with the experimental data. It is concluded that the Kumar formulation is far better that the Suzuki theory of thermal expansivity

  13. E-modulus evolution and its relation to solids formation of pastes from commercial cements

    International Nuclear Information System (INIS)

    Maia, Lino; Azenha, Miguel; Geiker, Mette; Figueiras, Joaquim

    2012-01-01

    Models for early age E-modulus evolution of cement pastes are available in the literature, but their validation is limited. This paper provides correlated measurements of early age evolution of E-modulus and hydration of pastes from five commercial cements differing in limestone content. A recently developed methodology allowed continuous monitoring of E-modulus from the time of casting. The methodology is a variant of classic resonant frequency methods, which are based on determination of the first resonant frequency of a composite beam containing the material. The hydration kinetics — and thus the rate of formation of solids — was determined using chemical shrinkage measurements. For the cements studied similar relationships between E-modulus and chemical shrinkage were observed for comparable water-to-binder ratio. For commercial cements it is suggested to model the E-modulus evolution based on the amount of binder reacted, instead of the degree of hydration.

  14. Obtention and dynamical mechanical behavior of polymer matrix carbon fire reinforced composites

    International Nuclear Information System (INIS)

    Da Silva, Nelson Marques

    2001-01-01

    Polymer matrix composites reinforced with carbon fibres have been extensively used in the nuclear, aeronautics, automotive and leisure industry. This is due to their superior performance when compared to conventional materials in terms of specific strength and specific modulus (3 to 4 times higher than that of mild steels). However, these materials are anisotropic, requiring characterisation for each process and particular application. In the present work, the evaluation of epoxy resin reinforced with unidirectional and continuous carbon fibres was carried out. The composites materials were obtained by filament winding, with three different cure cycles, with two types of carbon fibres (6000 and 12000 filaments per strand) and with fibres volumetric fraction around 60 %. The evaluation of the composites was undertaken using following techniques: scanning electron microscopy (SEM); dynamic mechanical analysis (DMA); thermogravimetric analysis (TGA), and differential scanning calorimeter (DSC). These techniques allowed the evaluation and comparison of storage modulus, internal energy dissipation, glass transition region and glass transition temperature - Tg, cure cycling. Besides, void volumetric fraction was measured. The results indicate that the DMA is a good alternative technique to DSC and TGA. It provides an indication of the quality of the produced composite, both thermal and mechanical. The technique can assist the quality control of composite components by measuring mechanical and thermal properties - modulus and Tg. The DMA technique was sensitive to cure cycling evaluation. Regarding the obtained composites, the results showed the need for the development of specific cure cycle for each application, establishing a compromise between properties such as storage modulus and internal energy dissipation, and involved costs. The results demonstrated differences between the storage modulus and internal energy dissipation for the two types of used fibres. (author)

  15. Uncovering the Driving Factors of Carbon Emissions in an Investment Allocation Model of China’s High-Carbon and Low-Carbon Energy

    Directory of Open Access Journals (Sweden)

    Shumin Jiang

    2017-06-01

    Full Text Available In the view of long-term comprehensive development, the concept of low-carbon economy has long been a concern. In this paper, we build a pure energy-economic system and explore the exact influencing factors in the investment allocation of high-carbon and low-carbon energy with the purpose of mitigating carbon dioxide in the atmosphere. The dynamic analysis shows that the model that we built is applicable for the current market situation and the way we adjust the investments of high-carbon and low-carbon energy are conductive to carbon abatement in the atmosphere. On the basis of the stability analysis and numerical simulation, some strategies are given to decrease the carbon dioxide in the atmosphere. The results show that the social consumption and public consumption behavior are the most important factors responsible for the variation in the atmospheric carbon dioxide. The cleanliness of high carbon presents an obvious mitigating effect on carbon in the atmosphere and the effect of marginal profit of high-carbon energy is the weakest. In addition, enhancing marginal profit, return on investment and investment share of low-carbon energy are beneficial to reduce carbon dioxide in the atmosphere, while a return on investment of high-carbon energy increasing is the detriment of the carbon dioxide in the atmosphere. Finally, we provide carbon mitigation effort by considering both economic development and carbon abatement for policymakers to achieve a desirable emission-reduction effect.

  16. Highly Flexible Freestanding Porous Carbon Nanofibers for Electrodes Materials of High-Performance All-Carbon Supercapacitors.

    Science.gov (United States)

    Liu, Ying; Zhou, Jinyuan; Chen, Lulu; Zhang, Peng; Fu, Wenbin; Zhao, Hao; Ma, Yufang; Pan, Xiaojun; Zhang, Zhenxing; Han, Weihua; Xie, Erqing

    2015-10-28

    Highly flexible porous carbon nanofibers (P-CNFs) were fabricated by electrospining technique combining with metal ion-assistant acid corrosion process. The resultant fibers display high conductivity and outstanding mechanical flexibility, whereas little change in their resistance can be observed under repeatedly bending, even to 180°. Further results indicate that the improved flexibility of P-CNFs can be due to the high graphitization degree caused by Co ions. In view of electrode materials for high-performance supercapacitors, this type of porous nanostructure and high graphitization degree could synergistically facilitate the electrolyte ion diffusion and electron transportation. In the three electrodes testing system, the resultant P-CNFs electrodes can exhibit a specific capacitance of 104.5 F g(-1) (0.2 A g(-1)), high rate capability (remain 56.5% at 10 A g(-1)), and capacitance retention of ∼94% after 2000 cycles. Furthermore, the assembled symmetric supercapacitors showed a high flexibility and can deliver an energy density of 3.22 Wh kg(-1) at power density of 600 W kg(-1). This work might open a way to improve the mechanical properties of carbon fibers and suggests that this type of freestanding P-CNFs be used as effective electrode materials for flexible all-carbon supercapacitors.

  17. Dielectric spectroscopy of PMMA-LiClO4 based polymer electrolyte plasticized with ethylene carbonate EC

    Science.gov (United States)

    Pal, P.; Ghosh, A.

    2018-04-01

    Dielectric spectroscopy covering the frequency range 0.01 Hz - 2 MHz for PMMA-LiClO4 based polymer electrolyte embedded with different concentration of ethylene carbonate (x = 0, 20 and 40 wt%) has been analyzed using Havrilliak-Negami formalism. The reciprocal temperature dependence of inverse relaxation time obtained from the analysis of dielectric spectra follows Vogel-Tammann-Fulcher behaviour. The shape parameters obtained from this analysis change with ethylene carbonate concentrations. From the fits of the experimental result using Kohlrausch-Williams-Watts function. We have obtained stretched exponent β which indicates that the relaxation is highly non-exponential. The decay function obtained from electric modulus data is highly asymmetric.

  18. submitter Evaluation of Young’s modulus of MgB2 filaments in composite wires for the superconducting links for the high-luminosity LHC upgrade

    CERN Document Server

    Sugano, Michinaka; Bartova, Barbora; Bjoerstad, Roger; Gerardin, Alexandre; Scheuerlein, Christian

    2015-01-01

    MgB2 wire is a promising superconductor for the superconducting links for the high-luminosity upgrade of the large Hadron collider at CERN. The mechanical properties of MgB2 must be fully quantified for the cable design, and in this study, we evaluate the Young's modulus of MgB2 filaments in wires with a practical level of critical current. The Young's moduli of MgB2 filaments by two different processes, in situ and ex situ, were compared. Two different evaluation methods were applied to an in situ MgB2 wire, a single-fiber tensile test and a tensile test after removing Monel. In addition, the Young's modulus of the few-micron-thick Nb–Ni reaction layer in an ex situ processed wire was evaluated using a nanoindentation testing technique to improve the accuracy of analysis based on the rule of mixtures. The Young's moduli of the in situ and ex situ MgB2 wires were in the range of 76–97 GPa and no distinct difference depending on the fabrication process was found.

  19. A Regev-Type Fully Homomorphic Encryption Scheme Using Modulus Switching

    Science.gov (United States)

    Chen, Zhigang; Wang, Jian; Song, Xinxia

    2014-01-01

    A critical challenge in a fully homomorphic encryption (FHE) scheme is to manage noise. Modulus switching technique is currently the most efficient noise management technique. When using the modulus switching technique to design and implement a FHE scheme, how to choose concrete parameters is an important step, but to our best knowledge, this step has drawn very little attention to the existing FHE researches in the literature. The contributions of this paper are twofold. On one hand, we propose a function of the lower bound of dimension value in the switching techniques depending on the LWE specific security levels. On the other hand, as a case study, we modify the Brakerski FHE scheme (in Crypto 2012) by using the modulus switching technique. We recommend concrete parameter values of our proposed scheme and provide security analysis. Our result shows that the modified FHE scheme is more efficient than the original Brakerski scheme in the same security level. PMID:25093212

  20. A simple model for calculating the bulk modulus of the mixed ionic ...

    Indian Academy of Sciences (India)

    thermophysical properties, viz., bulk modulus, molecular force constant, reststrahlen fre- quency and Debye temperature using the three-body potential model. The calculated bulk modulus, from the TBPM model, for the pure end members (NH4Cl and NH4Br) are in agreement with the experimental values, as shown in ...

  1. Change and anisotropy of elastic modulus in sheet metals due to plastic deformation

    Science.gov (United States)

    Ishitsuka, Yuki; Arikawa, Shuichi; Yoneyama, Satoru

    2015-03-01

    In this study, the effect of the plastic deformation on the microscopic structure and the anisotropy of the elastic modulus in the cold-rolled steel sheet (SPCC) is investigated. Various uniaxial plastic strains (0%, 2.5%, 5%, 7.5%, and 10%) are applied to the annealed SPCC plates, then, the specimens for the tensile tests are cut out from them. The elastic moduli in the longitudinal direction and the transverse direction to the direction that are pre-strained are measured by the tensile tests. Cyclic tests are performed to investigate the effects of the internal friction caused by the movable dislocations in the elastic deformation. Also, the movable dislocations are quantified by the boundary tracking for TEM micrographs. In addition, the behaviors of the change of the elastic modulus in the solutionized and thermal aged aluminum alloy (A5052) are measured to investigate the effect on the movable dislocations with the amount of the depositions. As a result in SPCC, the elastic moduli of the 0° and 90° directions decrease more than 10% as 10% prestrain applied. On the other hand, the elastic modulus shows the recovery behavior after the strain aging and the annealing. The movable dislocation and the internal friction show a tendency to increase as the plastic strain increases. The marked anisotropy is not observed in the elastic modulus and the internal friction. The elastic modulus in A5052 with many and few depositions decreases similarly by the plastic deformation. From the above, the movable dislocations affect the elastic modulus strongly without depending on the deposition amount. Moreover, the elastic modulus recovers after the plastic deformation by reducing the effects of them with the strain aging and the heat treatment.

  2. Tribological performance of hard carbon coatings on 440C bearing steel

    Energy Technology Data Exchange (ETDEWEB)

    Kustas, F M; Misra, M S; Shepard, D F; Froechtenigt, J F [Martin Marietta Astronautics Group, Denver, CO (United States)

    1991-11-01

    Hard carbon coatings such as amorphous carbon, diamond and diamond-like carbon have received considerable attention for tribological applications owing to their high hardness, high modulus and desirable surface properties. Unfortunately, most of the deposition techniques induce high substrate temperatures that would temper traditional bearing steels and reduce the substrate load-carrying capability. Therefore, to effectively use these desirable coatings, a lower temperature deposition technique is required. Ion beam deposition can provide essentially ambient temperature conditions, accurate control of process parameters and good coating-substrate adhesion. To use these attributes, a test program was initiated to deposit mass-analyzed, high purity C{sup +} and CH{sub 4}{sup +} ions on molybdenum and 440C bearing steel for subsequent characterization by Raman spectroscopy and friction-wear tests. Results for a coating deposited from a carbon monoxide source showed an amorphous carbon-microcrystalline graphtie structure which exhibited very high microhardness and a three fold reduction in coefficient of friction for unlubricated tests compared to untreated 440C steel. In addition, incrementally increasing the applied load (by up to a factor of 5) resulted in progressively lower coefficients of friction, which conforms to solid lubrication theory. End-of-travel wear debris and some limited coating delamination were observed within thinner areas of the coating. Therefore an amorphous carbon-graphite coating applied to 440C steel at ambient temperature exhibits solid lubricating film characteristics with high load-carrying capability. (orig.).

  3. Linear analysis using secants for materials with temperature dependent nonlinear elastic modulus and thermal expansion properties

    Science.gov (United States)

    Pepi, John W.

    2017-08-01

    Thermally induced stress is readily calculated for linear elastic material properties using Hooke's law in which, for situations where expansion is constrained, stress is proportional to the product of the material elastic modulus and its thermal strain. When material behavior is nonlinear, one needs to make use of nonlinear theory. However, we can avoid that complexity in some situations. For situations in which both elastic modulus and coefficient of thermal expansion vary with temperature, solutions can be formulated using secant properties. A theoretical approach is thus presented to calculate stresses for nonlinear, neo-Hookean, materials. This is important for high acuity optical systems undergoing large temperature extremes.

  4. Impacts of trace carbon on the microstructure of as-sintered biomedical Ti-15Mo alloy and reassessment of the maximum carbon limit.

    Science.gov (United States)

    Yan, M; Qian, M; Kong, C; Dargusch, M S

    2014-02-01

    The formation of grain boundary (GB) brittle carbides with a complex three-dimensional (3-D) morphology can be detrimental to both the fatigue properties and corrosion resistance of a biomedical titanium alloy. A detailed microscopic study has been performed on an as-sintered biomedical Ti-15Mo (in wt.%) alloy containing 0.032 wt.% C. A noticeable presence of a carbon-enriched phase has been observed along the GB, although the carbon content is well below the maximum carbon limit of 0.1 wt.% specified by ASTM Standard F2066. Transmission electron microscopy (TEM) identified that the carbon-enriched phase is face-centred cubic Ti2C. 3-D tomography reconstruction revealed that the Ti2C structure has morphology similar to primary α-Ti. Nanoindentation confirmed the high hardness and high Young's modulus of the GB Ti2C phase. To avoid GB carbide formation in Ti-15Mo, the carbon content should be limited to 0.006 wt.% by Thermo-Calc predictions. Similar analyses and characterization of the carbide formation in biomedical unalloyed Ti, Ti-6Al-4V and Ti-16Nb have also been performed. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  5. Effective Elastic Modulus of Structured Adhesives: From Biology to Biomimetics

    Directory of Open Access Journals (Sweden)

    Xin Wang

    2017-06-01

    Full Text Available Micro- and nano-hierarchical structures (lamellae, setae, branches, and spatulae on the toe pads of many animals play key roles for generating strong but reversible adhesion for locomotion. The hierarchical structure possesses significantly reduced, effective elastic modulus (Eeff, as compared to the inherent elastic modulus (Einh of the corresponding biological material (and therefore contributes to a better compliance with the counterpart surface. Learning from nature, three types of hierarchical structures (namely self-similar pillar structure, lamella–pillar hybrid structure, and porous structure have been developed and investigated.

  6. Structural, elastic and electronic Properties of isotropic cubic crystals of carbon and silicon nanotubes : Density functional based tight binding calculations.

    Directory of Open Access Journals (Sweden)

    Alexander L. Ivanovskii

    2008-01-01

    Full Text Available Atomic models of cubic crystals (CC of carbon and graphene-like Si nanotubes are offered and their structural, cohesive, elastic and electronic properties are predicted by means of the DFTB method. Our main findings are that the isotropic crystals of carbon nanotubes adopt a very high elastic modulus B and low compressibility β, namely B = 650 GPa, β = 0.0015 1/GPa. In addition, these crystals preserve the initial conductivity type of their “building blocks”, i.e. isolated carbon and Si nanotubes. This feature may be important for design of materials with the selected conductivity type.

  7. Evaluating elastic modulus and strength of hard coatings by relative method

    International Nuclear Information System (INIS)

    Bao, Y.W.; Zhou, Y.C.; Bu, X.X.; Qiu, Y.

    2007-01-01

    A simple approach named relative method is developed for determining the elastic modulus and strength of hard coatings. Analytical relationship among the moduli of the film, the substrate, and the film/substrate system was derived based on bending model, from which the elastic modulus of the coating can be determined uniquely via the measured moduli of the samples before and after coating. Furthermore, the relationship between the strength of the films and the bending strength of the coated sample is derived, thus both the modulus and the strength of coating can be evaluated via traditional tests on coated samples. Mathematic expressions of those calculations were derived, respectively for rectangular beam samples with three types of coating configurations: single face coating, sandwich coating and around coating. Experimental results using various brittle coatings demonstrated the validity and convenience of this method

  8. Chromium effect on the Young modulus and thermoelastic coefficient of elinvars

    International Nuclear Information System (INIS)

    Sazykina, A.V.; Khomenko, O.A.

    1976-01-01

    The effect was studied of thermal and thermal-mechanical treatment upon the elastic modules and its temperature coefficient in iron-nickel Elinvars with different chromium contents (from 0 to 6.7%). It has been shown that doping with chromium results in an increase in the modulus of elasticity of Elinvars after hardening. The elastic modulus of alloys containing no chromium increases after a cold plastic deformation (drawing), whereas that of chromous Elinvars decreases upon such a treatment. It has been established that the elastic modulus of hardened and cold drawn after hardening Elinvars increases upon ageing. An increase in chromium content in iron-nickel Elinvars reduces the effect of the temperature of ageing upon the thermoelastic coefficient during the usual heat treatment and the thermalmechanical treatment and lowers its sensitivity to the influence of an external magnetic field [ru

  9. Evaluating elastic modulus and strength of hard coatings by relative method

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Y.W. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); China Building Materials Academy, Beijing 100024 (China)], E-mail: ywbao@imr.ac.cn; Zhou, Y.C. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Bu, X.X. [China Building Materials Academy, Beijing 100024 (China); Qiu, Y. [China Building Materials Academy, Beijing 100024 (China)

    2007-06-15

    A simple approach named relative method is developed for determining the elastic modulus and strength of hard coatings. Analytical relationship among the moduli of the film, the substrate, and the film/substrate system was derived based on bending model, from which the elastic modulus of the coating can be determined uniquely via the measured moduli of the samples before and after coating. Furthermore, the relationship between the strength of the films and the bending strength of the coated sample is derived, thus both the modulus and the strength of coating can be evaluated via traditional tests on coated samples. Mathematic expressions of those calculations were derived, respectively for rectangular beam samples with three types of coating configurations: single face coating, sandwich coating and around coating. Experimental results using various brittle coatings demonstrated the validity and convenience of this method.

  10. Negative magnetoresistance of pitch-based carbon fibers Temperature and pressure dependence

    Science.gov (United States)

    Hambourger, P. D.

    1986-01-01

    The negative transverse magnetoresistance of high-modulus pitch-based carbon fibers has been measured over the temperature range 1.3-4.2 K at ambient pressure and at 4.2 K under hydrostatic pressure up to 16 kbar. At low fields (less than 0.5 torr) the magnitude of the magnetoresistance increases markedly as the temperature is lowered from 4.2 K to 1.3 K, in disagreement with Bright's theoretical model, and decreases with pressure at the rate -0.6 percent/kbar.

  11. Resilient Modulus Characterization of Alaskan Granular Base Materials

    Science.gov (United States)

    2010-08-01

    Resilient modulus (MR) of base course material is an important material input for : pavement design. In Alaska, due to distinctiveness of local climate, material source, : fines content and groundwater level, resilient properties of D-1 granular base...

  12. The effect of compressive stress on the Young's modulus of unirradiated and irradiated nuclear graphites

    International Nuclear Information System (INIS)

    Oku, T.; Usui, T.; Ero, M.; Fukuda, Y.

    1977-01-01

    The Young's moduli of unirradiated and high temperature (800 to 1000 0 C) irradiated graphites for HTGR were measured by the ultrasonic method in the direction of applied compressive stress during and after stressing. The Young's moduli of all the tested graphites decreased with increasing compressive stress both during and after stressing. In order to investigate the reason for the decrease in Young's modulus by applying compressive stress, the mercury pore diameter distributions of a part of the unirradiated and irradiated specimens were measured. The change in pore distribution is believed to be associated with structural changes produced by irradiation and compressive stressing. The residual strain, after removing the compressive stress, showed a good correlation with the decrease in Young's modulus caused by the compressive stress. The decrease in Young's modulus by applying compressive stress was considered to be due to the increase in the mobile dislocation density and the growth or formation of cracks. The results suggest, however, that the mechanism giving the larger contribution depends on the brand of graphite, and in anisotropic graphite it depends on the direction of applied stress and the irradiation conditions. (author)

  13. Arithmetic convergent sequence space defined by modulus function

    Directory of Open Access Journals (Sweden)

    Taja Yaying

    2019-10-01

    Full Text Available The aim of this article is to introduce the sequence spaces $AC(f$ and $AS(f$ using arithmetic convergence and modulus function, and study algebraic and topological properties of this space, and certain inclusion results.

  14. Minimization of complementary energy to predict shear modulus of laminates with intralaminar cracks

    International Nuclear Information System (INIS)

    Giannadakis, K; Varna, J

    2012-01-01

    The most common damage mode and the one examined in this work is the formation of intralaminar cracks in layers of laminates. These cracks can occur when the composite structure is subjected to mechanical and/or thermal loading and eventually lead to degradation of thermo-elastic properties. In the present work, the shear modulus reduction due to cracking is studied. Mathematical models exist in literature for the simple case of cross-ply laminates. The in-plane shear modulus of a damaged laminate is only considered in a few studies. In the current work, the shear modulus reduction in cross-plies will be analysed based on the principle of minimization of complementary energy. Hashin investigated the in-plane shear modulus reduction of cross-ply laminates with cracks in inside 90-layer using this variational approach and assuming that the in-plane shear stress in layers does not depend on the thickness coordinate. In the present study, a more detailed and accurate approach for stress estimation is followed using shape functions for this dependence with parameters obtained by minimization. The results for complementary energy are then compared with the respective from literature and finally an expression for shear modulus degradation is derived.

  15. Matrix coatings based on anodic alumina with carbon nanostructures in the pores

    Science.gov (United States)

    Gorokh, G. G.; Pashechko, M. I.; Borc, J. T.; Lozovenko, A. A.; Kashko, I. A.; Latos, A. I.

    2018-03-01

    The nanoporous anodic alumina matrixes thickness of 1.5 mm and pore sizes of 45, 90 and 145 nm were formed on Si substrates. The tubular carbon nanostructures were synthesized into the matrixes pores by pyrolysis of fluid hydrocarbon xylene with 1% ferrocene. The structure and composition of the matrix coatings were examined by scanning electron microscopy, Auger analysis and Raman spectroscopy. The carbon nanostructures completely filled the pores of templates and uniformly covered the tops. The structure of carbon nanostructures corresponded to the structure of multiwall carbon nanotubes. Investigations of mechanical and tribological properties of nanostructured oxide-carbon composite performed by scratching and nanoindentation showed nonlinear dependencies of the frictional force, penetration depth of the cantilever, hardness and plane strain modulus on the load. It was found that the microhardness of the samples increases with reduced of alumina pore diameter, and the penetration depth of the cantilever into the film grows with carbon nanostructures size. The results showed the high mechanical strength of nanostructured oxide-carbon composite.

  16. Microstructural characteristics and mechanical properties of carbon nanotube reinforced aluminum alloy composites produced by ball milling

    International Nuclear Information System (INIS)

    Raviathul Basariya, M.; Srivastava, V.C.; Mukhopadhyay, N.K.

    2014-01-01

    Highlights: • 6082 Al alloy composite with 2 wt% multiwalled carbon nanotubes prepared by milling. • Effect of milling time on structure and property evolution has been studied. • The reinforced composite powders showed a drastic crystallite size refinement. • The presence of carbon nanotube led to a two fold increase in the hardness and modulus. • The composite powder showed good thermal stability studied by DTA. - Abstract: The influence of milling time on the structure, morphology and thermal stability of multi-walled carbon nanotubes (MWCNTs) reinforced EN AW6082 aluminum alloy powders has been studied. After structural and microstructural characterization of the mechanically milled powders micro- and nano-hardness of the composite powder particles were evaluated. The morphological and X-ray diffraction studies on the milled powders revealed that the carbon nanotubes (CNTs) were uniformly distributed and embedded within the aluminum matrix. No reaction products were detected even after long milling up to 50 h. Nanotubes became shorter in length as they fractured under the impact and shearing action during the milling process. A high hardness of about 436 ± 52 HV is achieved for the milled powders, due to the addition of MWCNTs, after milling for 50 h. The increased elastic modulus and nanohardness can be attributed to the finer grain size evolved during high energy ball milling and to the uniform distribution of hard CNTs in the Al-alloy matrix. The hardness values of the composite as well as the matrix alloy compares well with that predicted by the Hall–Petch relationship

  17. Assessment of Characteristic Function Modulus of Vibroacoustic Signal Given a Limit State Parameter of Diagnosed Equipment

    Science.gov (United States)

    Kostyukov, V. N.; Naumenko, A. P.; Kudryavtseva, I. S.

    2018-01-01

    Improvement of distinguishing criteria, determining defects of machinery and mechanisms, by vibroacoustic signals is a recent problem for technical diagnostics. The work objective is assessment of instantaneous values by methods of statistical decision making theory and risk of regulatory values of characteristic function modulus. The modulus of the characteristic function is determined given a fixed parameter of the characteristic function. It is possible to determine the limits of the modulus, which correspond to different machine’s condition. The data of the modulus values are used as diagnostic features in the vibration diagnostics and monitoring systems. Using such static decision-making methods as: minimum number of wrong decisions, maximum likelihood, minimax, Neumann-Pearson characteristic function modulus limits are determined, separating conditions of a diagnosed object.

  18. Analysis of Carbon Nanotubes on the Mechanical Properties at Atomic Scale

    Directory of Open Access Journals (Sweden)

    Xiaowen Lei

    2011-01-01

    Full Text Available This paper aims at developing a mathematic model to characterize the mechanical properties of single-walled carbon nanotubes (SWCNTs. The carbon-carbon (C–C bonds between two adjacent atoms are modeled as Euler beams. According to the relationship of Tersoff-Brenner force theory and potential energy acting on C–C bonds, material constants of beam element are determined at the atomic scale. Based on the elastic deformation energy and mechanical equilibrium of a unit in graphite sheet, simply form ED equations of calculating Young's modulus of armchair and zigzag graphite sheets are derived. Following with the geometrical relationship of SWCNTs in cylindrical coordinates and the structure mechanics approach, Young's modulus and Poisson's ratio of armchair and zigzag SWCNTs are also investigated. The results show that the approach to research mechanical properties of SWCNTs is a concise and valid method. We consider that it will be useful technique to progress on this type of investigation.

  19. Consequence of reduced necrotic bone elastic modulus in a Perthes' hip

    DEFF Research Database (Denmark)

    Salmingo, Remel A.; Skytte, Tina Lercke; Mikkelsen, Lars Pilgaard

    Introduction Perthes is a destructive hip joint disorder characterized as a malformation of the femoral head which affects young children. Several studies have shown the change of mechanical properties of the femoral head in Perthes’ disease. However, the consequence of the changes in bone...... mechanical properties in a Perthes’ hip is not well established. Due to the material differences, changes in bone mechanical properties might lead to localization of stress and deformation. Thus, the objective of this study was to investigate the effects of reduced elastic modulus of necrotic bone...... weight) was applied on the top of the femoral head. The distal part of the femur was fixed. The same Poisson’s ratio 0.3 was set for the femoral and necrotic bone. The elastic modulus (E) of femoral bone was 500 MPa. To investigate the effects of reduced elastic modulus, the necrotic bone E was reduced...

  20. Particle size dependence of the Young's modulus of filled polymers: 1. Preliminary experiments

    NARCIS (Netherlands)

    Vollenberg, P.H.T.; Heikens, D.

    1989-01-01

    Experimental results are reported from which it appears that in the case of polymer filled with silane-treated glass beads the Young's modulus is, in accordance with present theory, independent of the particle size of the filler. However, if pure glass beads are used as filler, the Young's modulus

  1. Elastic Modulus Measurement of ORNL ATF FeCrAl Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Zachary T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yamamoto, Yukinori [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-10-01

    Elastic modulus and Poisson’s ratio for a number of wrought FeCrAl alloys, intended for accident tolerant fuel cladding application, are determined via resonant ultrasonic spectroscopy. The results are reported as a function of temperature from room temperature to 850°C. The wrought alloys were in the fully annealed and unirradiated state. The elastic modulus for the wrought FeCrAl alloys is at least twice that of Zr-based alloys over the temperature range of this study. The Poisson’s ratio of the alloys was 0.28 on average and increased very slightly with increasing temperature.

  2. Spider silk reinforced by graphene or carbon nanotubes

    Science.gov (United States)

    Lepore, Emiliano; Bosia, Federico; Bonaccorso, Francesco; Bruna, Matteo; Taioli, Simone; Garberoglio, Giovanni; Ferrari, Andrea C.; Pugno, Nicola Maria

    2017-09-01

    Spider silk has promising mechanical properties, since it conjugates high strength (~1.5 GPa) and toughness (~150 J g-1). Here, we report the production of silk incorporating graphene and carbon nanotubes by spider spinning, after feeding spiders with the corresponding aqueous dispersions. We observe an increment of the mechanical properties with respect to pristine silk, up to a fracture strength ~5.4 GPa and a toughness modulus ~1570 J g-1. This approach could be extended to other biological systems and lead to a new class of artificially modified biological, or ‘bionic’, materials.

  3. Floating liquid bridge tensile behavior: Electric-field-induced Young's modulus measurements

    Science.gov (United States)

    Teschke, Omar; Mendez Soares, David; Valente Filho, Juracyr Ferraz

    2013-12-01

    A floating bridge is formed spontaneously when high voltage is applied to polar fluids in two capillary tubes that were in contact and then separated. This bridge bends under its own weight, and its bending profile was used to calculate its Young's modulus. For electric field intensities of ˜106 V/m, water bridges exhibit viscoelastic behavior, with Young's moduli of ˜24 MPa; dimethylsulfoxide (DMSO) bridges exhibited Young's moduli of ˜60 kPa. The scheme devised to measure the voltage drop across the water bridge for high voltages applied between the electrodes shows that the bulk water resistance decreases with increasing voltage.

  4. Young`s modulus of ceramic matrix composites with polysiloxane based matrix at elevated temperatures

    Czech Academy of Sciences Publication Activity Database

    Černý, Martin; Glogar, Petr

    2004-01-01

    Roč. 39, č. 6 (2004), s. 2239-2242 ISSN 0022-2461 R&D Projects: GA ČR GA106/02/0177; GA ČR GP106/02/P025 Institutional research plan: CEZ:AV0Z3046908 Keywords : composite material * Young `s modulus * high temperature Subject RIV: JI - Composite Materials Impact factor: 0.864, year: 2004

  5. Electromechanical study of polyurethane films with carbon black nanoparticles for MEMS actuators

    International Nuclear Information System (INIS)

    Roussel, M; Deman, A-L; Chateaux, J-F; Malhaire, C; Petit, L; Seveyrat, L; Galineau, J; Guiffard, B; Seguineau, C; Desmarres, J-M; Martegoutte, J

    2014-01-01

    Pure polyurethane and nanocomposite carbon black (CB) polyurethane solutions were deposited by spin-coating on a silicon substrate using gold as the adhesion layer and electrode. Different test structures were achieved for electrical and mechanical characterizations. The incorporation of CB nanoparticles in the polyurethane matrix has a significant influence on the dielectric permittivity of the material with an increase of about one third of its value. The Young's modulus of PU and nanocomposite PU films was determined by different characterization methods. Nanoindentation experiments have pointed out a Young's modulus gradient through the film thickness. By performing mechanical tests (tensile, bulge, point deflection) on freestanding films, an average Young's modulus value of about 30 MPa was found as well as a residual stress value of about 0.4 MPa. However, no influence of the presence of the nanoparticles was found. Finally, several MEMS actuators were realized and characterized. At their fundamental resonance frequency, the actuation of the nanocomposite membranes is more efficient than that of pure polyurethane. However, the time constant of the material seems to provide a major barrier for the development of high-frequency PU-based micro-actuators. (paper)

  6. Effect of bulk modulus on deformation of the brain under rotational accelerations

    Science.gov (United States)

    Ganpule, S.; Daphalapurkar, N. P.; Cetingul, M. P.; Ramesh, K. T.

    2018-01-01

    Traumatic brain injury such as that developed as a consequence of blast is a complex injury with a broad range of symptoms and disabilities. Computational models of brain biomechanics hold promise for illuminating the mechanics of traumatic brain injury and for developing preventive devices. However, reliable material parameters are needed for models to be predictive. Unfortunately, the properties of human brain tissue are difficult to measure, and the bulk modulus of brain tissue in particular is not well characterized. Thus, a wide range of bulk modulus values are used in computational models of brain biomechanics, spanning up to three orders of magnitude in the differences between values. However, the sensitivity of these variations on computational predictions is not known. In this work, we study the sensitivity of a 3D computational human head model to various bulk modulus values. A subject-specific human head model was constructed from T1-weighted MRI images at 2-mm3 voxel resolution. Diffusion tensor imaging provided data on spatial distribution and orientation of axonal fiber bundles for modeling white matter anisotropy. Non-injurious, full-field brain deformations in a human volunteer were used to assess the simulated predictions. The comparison suggests that a bulk modulus value on the order of GPa gives the best agreement with experimentally measured in vivo deformations in the human brain. Further, simulations of injurious loading suggest that bulk modulus values on the order of GPa provide the closest match with the clinical findings in terms of predicated injured regions and extent of injury.

  7. Thermal Oxidation of a Carbon Condensate Formed in High-Frequency Carbon and Carbon-Nickel Plasma Flow

    Science.gov (United States)

    Churilov, G. N.; Nikolaev, N. S.; Cherepakhin, A. V.; Dudnik, A. I.; Tomashevich, E. V.; Trenikhin, M. V.; Bulina, N. G.

    2018-02-01

    We have reported on the comparative characteristics of thermal oxidation of a carbon condensate prepared by high-frequency arc evaporation of graphite rods and a rod with a hollow center filled with nickel powder. In the latter case, along with different forms of nanodisperse carbon, nickel particles with nickel core-carbon shell structures are formed. It has been found that the processes of the thermal oxidation of carbon condensates with and without nickel differ significantly. Nickel particles with the carbon shell exhibit catalytic properties with respect to the oxidation of nanosized carbon structures. A noticeable difference between the temperatures of the end of the oxidation process for various carbon nanoparticles and nickel particles with the carbon shell has been established. The study is aimed at investigations of the effect of nickel nanoparticles on the dynamics of carbon condensate oxidation upon heating in the argon-oxygen flow.

  8. Shear elastic modulus of magnetic gels with random distribution of magnetizable particles

    Science.gov (United States)

    Iskakova, L. Yu; Zubarev, A. Yu

    2017-04-01

    Magnetic gels present new type of composite materials with rich set of uniquie physical properties, which find active applications in many industrial and bio-medical technologies. We present results of mathematically strict theoretical study of elastic modulus of these systems with randomly distributed magnetizable particles in an elastic medium. The results show that an external magnetic field can pronouncedly increase the shear modulus of these composites.

  9. Elastic modulus and fracture of boron carbide

    International Nuclear Information System (INIS)

    Hollenberg, G.W.; Walther, G.

    1978-12-01

    The elastic modulus of hot-pressed boron carbide with 1 to 15% porosity was measured at room temperature. K/sub IC/ values were determined for the same porosity range at 500 0 C by the double torsion technique. The critical stress intensity factor of boron carbide with 8% porosity was evaluated from 25 to 1200 0 C

  10. Device to measure elastic modulus of superconducting windings

    CERN Multimedia

    CERN PhotoLab

    1979-01-01

    This device was made to measure elastic modulus of the Po dipole superconducting coils. More elaborated devices, but based on the same concept, were later used to measure the apparent elastic moduli of the LHC superconducting magnet coils. See also 7903547X, 7901386.

  11. Cubic martensite in high carbon steel

    Science.gov (United States)

    Chen, Yulin; Xiao, Wenlong; Jiao, Kun; Ping, Dehai; Xu, Huibin; Zhao, Xinqing; Wang, Yunzhi

    2018-05-01

    A distinguished structural characteristic of martensite in Fe-C steels is its tetragonality originating from carbon atoms occupying only one set of the three available octahedral interstitial sites in the body-centered-cubic (bcc) Fe lattice. Such a body-centered-tetragonal (bct) structure is believed to be thermodynamically stable because of elastic interactions between the interstitial carbon atoms. For such phase stability, however, there has been a lack of direct experimental evidence despite extensive studies of phase transformations in steels over one century. In this Rapid Communication, we report that the martensite formed in a high carbon Fe-8Ni-1.26C (wt%) steel at room temperature induced by applied stress/strain has actually a bcc rather than a bct crystal structure. This finding not only challenges the existing theories on the stability of bcc vs bct martensite in high carbon steels, but also provides insights into the mechanism for martensitic transformation in ferrous alloys.

  12. Resilient modulus prediction of soft low-plasticity Piedmont residual soil using dynamic cone penetrometer

    Directory of Open Access Journals (Sweden)

    S. Hamed Mousavi

    2018-04-01

    Full Text Available Dynamic cone penetrometer (DCP has been used for decades to estimate the shear strength and stiffness properties of the subgrade soils. There are several empirical correlations in the literature to predict the resilient modulus values at only a specific stress state from DCP data, corresponding to the predefined thicknesses of pavement layers (a 50 mm asphalt wearing course, a 100 mm asphalt binder course and a 200 mm aggregate base course. In this study, field-measured DCP data were utilized to estimate the resilient modulus of low-plasticity subgrade Piedmont residual soil. Piedmont residual soils are in-place weathered soils from igneous and metamorphic rocks, as opposed to transported or compacted soils. Hence the existing empirical correlations might not be applicable for these soils. An experimental program was conducted incorporating field DCP and laboratory resilient modulus tests on “undisturbed” soil specimens. The DCP tests were carried out at various locations in four test sections to evaluate subgrade stiffness variation laterally and with depth. Laboratory resilient modulus test results were analyzed in the context of the mechanistic-empirical pavement design guide (MEPDG recommended universal constitutive model. A new approach for predicting the resilient modulus from DCP by estimating MEPDG constitutive model coefficients (k1, k2 and k3 was developed through statistical analyses. The new model is capable of not only taking into account the in situ soil condition on the basis of field measurements, but also representing the resilient modulus at any stress state which addresses a limitation with existing empirical DCP models and its applicability for a specific case. Validation of the model is demonstrated by using data that were not used for model development, as well as data reported in the literature. Keywords: Dynamic cone penetrometer (DCP, Resilient modulus, Mechanistic-empirical pavement design guide (MEPDG, Residual

  13. Progress in Research on Carbon Nanotubes Reinforced Cementitious Composites

    Directory of Open Access Journals (Sweden)

    Qinghua Li

    2015-01-01

    Full Text Available As one-dimensional (1D nanofiber, carbon nanotubes (CNTs have been widely used to improve the performance of nanocomposites due to their high strength, small dimensions, and remarkable physical properties. Progress in the field of CNTs presents a potential opportunity to enhance cementitious composites at the nanoscale. In this review, current research activities and key advances on multiwalled carbon nanotubes (MWCNTs reinforced cementitious composites are summarized, including the effect of MWCNTs on modulus of elasticity, porosity, fracture, and mechanical and microstructure properties of cement-based composites. The issues about the improvement mechanisms, MWCNTs dispersion methods, and the major factors affecting the mechanical properties of composites are discussed. In addition, large-scale production methods of MWCNTs and the effects of CNTs on environment and health are also summarized.

  14. Determining a membrane's shear modulus, independent of its area-dilatation modulus, via capsule flow in a converging micro-capillary.

    Science.gov (United States)

    Dimitrakopoulos, P; Kuriakose, S

    2015-04-14

    Determination of the elastic properties of the membrane of artificial capsules is essential for the better design of the various devices that are utilized in their engineering and biomedical applications. However this task is complicated owing to the combined effects of the shear and area-dilatation moduli on the capsule deformation. Based on computational investigation, we propose a new methodology to determine a membrane's shear modulus, independent of its area-dilatation modulus, by flowing strain-hardening capsules in a converging micro-capillary of comparable size under Stokes flow conditions, and comparing the experimental measurements of the capsule elongation overshooting with computational data. The capsule prestress, if any, can also be determined with the same methodology. The elongation overshooting is practically independent of the viscosity ratio for low and moderate viscosity ratios, and thus a wide range of capsule fluids can be employed. Our proposed experimental device can be readily produced via glass fabrication while owing to the continuous flow in the micro-capillary, the characterization of a large number of artificial capsules is possible.

  15. On the properties of nanocomposite amorphous carbon films prepared by off-plane double bend filtered cathodic vacuum arc

    International Nuclear Information System (INIS)

    Tay, B.K.; Zhang, P.

    2002-01-01

    It is known to deposit hard thin films, such as tetrahedral amorphous carbon (ta-C), using a filtered cathode vacuum arc (FCVA). These ta-C films have interesting and useful properties because of the high sp 3 fraction of carbon atoms (up to 87%) in the film. However, the high internal stress in the films can limit their applications as the film may flake away from the substrate. In order to reduce the internal stress of the ta-C films and in an attempt to improve adhesion of thick films of this type, growth modifications such as incorporating metal into the ta-C films have been carried out. Nanocomposite amorphous carbon films were deposited by FCVA technique using metal-carbon composite target. Atomic force microscopy, Raman, and X-ray photoelectron spectroscopy were used to characterize the morphology and structure of the films. Nanoindenter and surface profilometer were used to determine the hardness, Young's modulus, and internal stress. The same metal composition targets for different elements results in different metal composition in the corresponding nanocomposite amorphous carbon films. We attribute this observation to the dynamic balance deposition effect of the FCVA deposition process. The influence of the type of metallic elements and its composition in the films on the structural, mechanical properties, surface energy and field emission (FE) performance was studied. The incorporation of metal into the films results in the decrease of sp 3 fraction, internal stress in the films, but the hardness and Young's modulus remains at high level. The surface energy of the films increases with incorporating Ni atoms, but decreases after incorporating Fe and Al atoms into the films. After heat-treatment, the incorporation of metal into ta-C films can greatly improve the FE performance

  16. High value carbon materials from PET recycling

    International Nuclear Information System (INIS)

    Parra, J.B.; Ania, C.O.; Arenillas, A.; Rubiera, F.; Pis, J.J.

    2004-01-01

    Poly(ethylene) terephthalate (PET), has become one of the major post-consumer plastic waste. In this work special attention was paid to minimising PET residues and to obtain a high value carbon material. Pyrolysis and subsequent activation of PET from post-consumer soft-drink bottles was performed. Activation was carried out at 925 deg. C under CO 2 atmosphere to different burn-off degrees. Textural characterisation of the samples was carried out by performing N 2 adsorption isotherms at -196 deg. C. The obtained carbons materials were mainly microporous, presenting low meso and macroporosity, and apparent BET surface areas of upto 2500 m 2 g -1 . The capacity of these materials for phenol adsorption and PAHs removal from aqueous solutions was measured and compared with that attained with commercial active carbons. Preliminary tests also showed high hydrogen uptake values, as good as the results obtained with high-tech carbon materials

  17. Effect of time of sintering of a castable with andalusite aggregates in the rupture modulus and elastic modulus

    International Nuclear Information System (INIS)

    Oliveira, M.R.; Garcia, G.C.R.; Claudinei, S.; Ribeiro, S.

    2011-01-01

    The studied castable contain andalusite aggregates, and when sintered in temperatures above 1280 deg C, transformed into mullite improving the properties of concrete due to its low expansion and thermal conductivity, creep resistance and thermal shock. The refractory was homogenized in a mixer with 5.5% m/m of water and poured into a metal mold resulting in prismatic bars. After curing for 48 hours, were sintered at 1450 ° C for 0 h, 1 h, 2.5 h and 10 h with heating and cooling rates of 2 ° C / min. The results of elastic modules were, respectively, in GPa: 25.75±1.75, 37.79±0.36, 39.03±1.97 and 54.47±4.01, and rupture, MPa: 8.40±0.78, 11.94±0.68, 10.91±0.91 and 11,34±1.16, showing the increase in elastic modulus for longer times and for times exceeding one hour, no significant changes in results of the modulus of rupture , stabilizing the change of this refractory's properties after the first hour of sintering. (author)

  18. Mechanical properties of concrete with SAP. Part II: Modulus of elasticity

    DEFF Research Database (Denmark)

    Hasholt, Marianne Tange; Jespersen, Morten H. Seneka; Jensen, Ole Mejlhede

    2010-01-01

    In this study, focus is on the modulus of elasticity for concrete with superabsorbent polymers (SAP). The results show that based on composite theory it is possible to establish a model, which predicts overall concrete elasticity. The model assumes a three phase material of aggregate, cement paste......, and air with volume fractions of the three phases as well as elastic properties of paste and aggregates as input parameters. Addition of SAP changes the E-modulus, because it both has an influence on properties of the cement paste and on the volume of air voids. Here, the E-modulus is an example...... a more or less empirical relation. The results show that when introducing SAP, models of a more empirical nature can be misleading (and e.g. relations stated in codes are often of this empirical nature). The reason is twofold: First, the empirical models often have a general problem with the effect...

  19. Influence of grain size distribution on dynamic shear modulus of sands

    Directory of Open Access Journals (Sweden)

    Dyka Ireneusz

    2017-11-01

    Full Text Available The paper presents the results of laboratory tests, that verify the correlation between the grain-size characteristics of non-cohesive soils and the value of the dynamic shear modulus. The problem is a continuation of the research performed at the Institute of Soil Mechanics and Rock Mechanics in Karlsruhe, by T. Wichtmann and T. Triantafyllidis, who derived the extension of the applicability of the Hardin’s equation describing the explicite dependence between the grain size distribution of sands and the values of dynamic shear modulus. For this purpose, piezo-ceramic bender elements generating elastic waves were used to investigate the mechanical properties of the specimens with artificially generated particle distribution. The obtained results confirmed the hypothesis that grain size distribution of non-cohesive soils has a significant influence on the dynamic shear modulus, but at the same time they have shown that obtaining unambiguous results from bender element tests is a difficult task in practical applications.

  20. Use of the laboratory tests of soil modulus in modelling pile behaviour

    Science.gov (United States)

    Dyka, Ireneusz

    2012-10-01

    This article deals with the question of theoretical description of behaviour of a single pile rested in a layered soil medium. Particular attention is paid to soil modulus which is used in calculation method for pile load-settlement curve. A brief analysis of the results obtained by laboratory tests to assess soil modulus and its nonlinear variability has been presented. The results of tests have been used in triaxial apparatus and resonant column/torsional shear device. There have also been presented the results of load-settlement calculation for a single pile under axial load with implementation of different models of soil modulus degradation. On this basis, possibilities of using particular kinds of laboratory tests in calculation procedure of foundation settlement have been presented as well as further developments of them.

  1. Synthesis and characterization of boron incorporated diamond-like carbon thin films

    International Nuclear Information System (INIS)

    Zhang, L.L.; Yang, Q.; Tang, Y.; Yang, L.; Zhang, C.; Hu, Y.; Cui, X.

    2015-01-01

    Boron incorporated diamond-like carbon (B-DLC) (up to 8 wt.% boron) thin films were synthesized on silicon wafers using biased target ion beam deposition technique, where diamond-like carbon (DLC) was deposited by ion beam deposition and boron (B) was simultaneously incorporated by biased target sputtering of a boron carbide (B 4 C) target under different conditions. Pure DLC films and B–C films were also synthesized by ion beam deposition and biased target sputtering of B 4 C under similar conditions, respectively, as reference samples. The microstructure and mechanical properties of the synthesized films have been characterized by various technologies. It has been found that B exists in different states in B-DLC, including carbon-rich and B-rich boron carbides, boron suboxide and boron oxide, and the oxidation of B probably occurs during the film deposition. The incorporation of B into DLC leads to the increase of sp 3 bonded carbon in the films, the increase of both film hardness and elastic modulus, and the decrease of both surface roughness and friction coefficient. Furthermore, the content of sp 3 bonded carbon, film hardness and elastic modulus increase, and the film surface roughness and friction coefficient decrease with the increase of B-rich carbide in the B-DLC films. - Highlights: • Biased target ion beam deposition technique is promising to produce high quality DLC based thin films; • Boron exists in different states in B-DLC thin films; • The incorporation of B to DLC with different levels leads to improved film properties; • The fraction of sp 3 bonded C in B-DLC thin films increase with the increase of B-rich carbide content in the films

  2. Identification of Detrital Carbonate in East Cepu High

    Science.gov (United States)

    Sari, R.; Andika, I. K.; Haris, A.; Miftah, A.

    2018-03-01

    East Cepu High is a part of horst – graben series which formed by extensional tectonic processes during Paleogene in North East Java Basin. Due to excellent paleogeography position, the carbonate build-up was growth very well and as the main reservoir in East Cepu High. Sea level change have important factor to provide variation of facies in each carbonate buildup, one of emerging facies is detrital carbonate. Detrital carbonate indicated by onlap horizon featured with carbonate build up body. Based on paleogeography, fluctuation of sea level change and sediment source, detrital carbonate formed in leeward area in lowstand or highstand phases. Distinguish between detrital carbonate facies with other facies, advanced seismic processing performed by using continuous wavelet transform (CWT) and seismic inversion. CWT is one method of spectral decomposition used to find the frequency that represent a facies. The result from seismic inversion will support the interpretation for facies distribution. As the result, seismic data which have interval frequency 10 – 45 Hz and Acoustic Impedance (AI) value above 35000 (from cross plot between acoustic impedance and gamma ray) can be interpreted as detrital carbonate. Based on seismic interpretation, detrital carbonate facies distributed along leeward area with geometrical spreading. The lateral facies change from detrital carbonate to shale was identified which causing this facies become potential as hydrocarbon reservoir with stratigraphic trap. Based on the earlier studies, North East Java Basin have a strong hydrocarbon migration to fill the reservoir, therefore the detrital carbonate have high chance to be a new hydrocarbon prospect in this area.

  3. Effective elastic modulus of isolated gecko setal arrays.

    Science.gov (United States)

    Autumn, K; Majidi, C; Groff, R E; Dittmore, A; Fearing, R

    2006-09-01

    Conventional pressure sensitive adhesives (PSAs) are fabricated from soft viscoelastic materials that satisfy Dahlquist's criterion for tack with a Young's modulus (E) of 100 kPa or less at room temperature and 1 Hz. In contrast, the adhesive on the toes of geckos is made of beta-keratin, a stiff material with E at least four orders of magnitude greater than the upper limit of Dahlquist's criterion. Therefore, one would not expect a beta-keratin structure to function as a PSA by deforming readily to make intimate molecular contact with a variety of surface profiles. However, since the gecko adhesive is a microstructure in the form of an array of millions of high aspect ratio shafts (setae), the effective elastic modulus (E(eff)) is much lower than E of bulk beta-keratin. In the first test of the E(eff) of a gecko setal adhesive, we measured the forces resulting from deformation of isolated arrays of tokay gecko (Gekko gecko) setae during vertical compression, and during tangential compression at angles of +45 degrees and -45 degrees . We tested the hypothesis that E(eff) of gecko setae falls within Dahlquist's criterion for tack, and evaluated the validity of a model of setae as cantilever beams. Highly linear forces of deformation under all compression conditions support the cantilever model. E(eff) of setal arrays during vertical and +45 degrees compression (along the natural path of drag of the setae) were 83+/-4.0 kPa and 86+/-4.4 kPa (means +/- s.e.m.), respectively. Consistent with the predictions of the cantilever model, setae became significantly stiffer when compressed against the natural path of drag: E(eff) during -45 degrees compression was 110+/-4.7 kPa. Unlike synthetic PSAs, setal arrays act as Hookean elastic solids; setal arrays function as a bed of springs with a directional stiffness, assisting alignment of the adhesive spatular tips with the contact surface during shear loading.

  4. Electrochemical Hydrogen Storage in a Highly Ordered Mesoporous Carbon

    Directory of Open Access Journals (Sweden)

    Dan eLiu

    2014-10-01

    Full Text Available A highly order mesoporous carbon has been synthesized through a strongly acidic, aqueous cooperative assembly route. The structure and morphology of the carbon material were investigated using TEM, SEM and nitrogen adsorption-desorption isotherms. The carbon was proven to be meso-structural and consisted of graphitic micro-domain with larger interlayer space. AC impedance and electrochemical measurements reveal that the synthesized highly ordered mesoporous carbon exhibits a promoted electrochemical hydrogen insertion process and improved capacitance and hydrogen storage stability. The meso-structure and enlarged interlayer distance within the highly ordered mesoporous carbon are suggested as possible causes for the enhancement in hydrogen storage. Both hydrogen capacity in the carbon and mass diffusion within the matrix were improved.

  5. The Near-IR TRGB Magnitude and Distance Modulus to NGC 185

    Directory of Open Access Journals (Sweden)

    Y.-J. Sohn

    2008-09-01

    Full Text Available We determined values of distance modulus to nearby dwarf galaxy NGC 185 from the Tip of Red-Giant Branch (TRGB method. Apparent magnitudes of the TRGB are estimated from the near-infrared JHK luminosity functions (LFs of the resolved giant branch stars. Theoretical absolute magnitudes of the TRGB in near-infrared bands have been extracted from the Yonsei-Yale isochrones. The observed apparent and theoretical absolute magnitudes of the TRGB provide values of distance modulus to NGC 185 as (m - M.

  6. Highly porous, low elastic modulus 316L stainless steel scaffold prepared by selective laser melting.

    Science.gov (United States)

    Čapek, Jaroslav; Machová, Markéta; Fousová, Michaela; Kubásek, Jiří; Vojtěch, Dalibor; Fojt, Jaroslav; Jablonská, Eva; Lipov, Jan; Ruml, Tomáš

    2016-12-01

    Recently, porous metallic materials have been extensively studied as candidates for use in the fabrication of scaffolds and augmentations to repair trabecular bone defects, e.g. in surroundings of joint replacements. Fabricating these complex structures by using common approaches (e.g., casting and machining) is very challenging. Therefore, rapid prototyping techniques, such as selective laser melting (SLM), have been investigated for these applications. In this study, we characterized a highly porous (87 vol.%) 316L stainless steel scaffold prepared by SLM. 316L steel was chosen because it presents a biomaterial still widely used for fabrication of joint replacements and, from the practical point of view, use of the same material for fabrication of an augmentation and a joint replacement is beneficial for corrosion prevention. The results are compared to the reported properties of two representative nonporous 316L stainless steels prepared either by SLM or casting and subsequent hot forging. The microstructural and mechanical properties and the surface chemical composition and interaction with the cells were investigated. The studied material exhibited mechanical properties that were similar to those of trabecular bone (compressive modulus of elasticity ~0.15GPa, compressive yield strength ~3MPa) and cytocompatibility after one day that was similar to that of wrought 316L stainless steel, which is a commonly used biomaterial. Based on the obtained results, SLM is a suitable method for the fabrication of porous 316L stainless steel scaffolds with highly porous structures. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. High value carbon materials from PET recycling

    Energy Technology Data Exchange (ETDEWEB)

    Parra, J.B.; Ania, C.O.; Arenillas, A.; Rubiera, F.; Pis, J.J

    2004-11-15

    Poly(ethylene) terephthalate (PET), has become one of the major post-consumer plastic waste. In this work special attention was paid to minimising PET residues and to obtain a high value carbon material. Pyrolysis and subsequent activation of PET from post-consumer soft-drink bottles was performed. Activation was carried out at 925 deg. C under CO{sub 2} atmosphere to different burn-off degrees. Textural characterisation of the samples was carried out by performing N{sub 2} adsorption isotherms at -196 deg. C. The obtained carbons materials were mainly microporous, presenting low meso and macroporosity, and apparent BET surface areas of upto 2500 m{sup 2} g{sup -1}. The capacity of these materials for phenol adsorption and PAHs removal from aqueous solutions was measured and compared with that attained with commercial active carbons. Preliminary tests also showed high hydrogen uptake values, as good as the results obtained with high-tech carbon materials.

  8. Improvement in electrical, thermal and mechanical properties of epoxy by filling carbon nanotube

    Directory of Open Access Journals (Sweden)

    2008-01-01

    Full Text Available In this study, electrical, thermal and mechanical properties of multi-walled carbon nanotubes (CNTs reinforced Epon 862 epoxy have been evaluated. Firstly, 0.1, 0.2, 0.3, and 0.4 wt% CNT were infused into epoxy through a high intensity ultrasonic liquid processor and then mixed with EpiCure curing agent W using a high speed mechanical agitator. Electric conductivity, dynamic mechanical analysis (DMA, three point bending tests and fracture tests were then performed on unfilled, CNT-filled epoxy to identify the loading effect on the properties of materials. Experimental results show significant improvement in electric conductivity. The resistivity of epoxy decreased from 1014 Ω•m of neat epoxy to 10 Ω•m with 0.4% CNT. The experimental results also indicate that the frequency dependent behavior of CNT/epoxy nanocomposite can be modeled by R-C circuit, permittivity of material increase with increasing of CNT content. DMA studies revealed that filling the carbon nanotube into epoxy can produce a 90% enhancement in storage modulus and a 17°C increase in Tg. Mechanical test results showed that modulus increased with higher CNT loading percentages, but the 0.3 wt% CNT-infusion system showed the maximum strength and fracture toughness enhancement. The decrease in strength and fracture toughness in 0.4% CNT/epoxy was attributed to poor dispersions of nanotubes in the composite.

  9. Wave dispersion of carbon nanotubes conveying fluid supported on linear viscoelastic two-parameter foundation including thermal and small-scale effects

    Science.gov (United States)

    Sina, Nima; Moosavi, Hassan; Aghaei, Hosein; Afrand, Masoud; Wongwises, Somchai

    2017-01-01

    In this paper, for the first time, a nonlocal Timoshenko beam model is employed for studying the wave dispersion of a fluid-conveying single-walled carbon nanotube on Viscoelastic Pasternak foundation under high and low temperature change. In addition, the phase and group velocity for the nanotube are discussed, respectively. The influences of Winkler and Pasternak modulus, homogenous temperature change, steady flow velocity and damping factor of viscoelastic foundation on wave dispersion of carbon nanotubes are investigated. It was observed that the characteristic of the wave for carbon nanotubes conveying fluid is the normal dispersion. Moreover, implying viscoelastic foundation leads to increasing the wave frequencies.

  10. The Use of Carbon Nanotubes to Reinforce 45S5 Bioglass-Based Scaffolds for Tissue Engineering Applications

    Directory of Open Access Journals (Sweden)

    R. Touri

    2013-01-01

    Full Text Available Bioglass has been used for bone-filling material in bone tissue engineering, but its lean mechanical strength limits its applications in load-bearing positions. Carbon nanotubes (CNTs, with their high aspect ratio and excellent mechanical properties, have the potential to strengthen and toughen bioactive glass material without offsetting its bioactivity. Therefore, in this research, multiwall carbon nanotube (MWCNT/45S5 Bioglass composite scaffolds have been successfully prepared by means of freeze casting process. 45S5 Bioglass was synthesized by the sol-gel processing method. The obtained material was characterized with X-ray powder diffraction (XRD. The mechanical properties of the scaffolds, such as compression strength and elastic modulus, were measured. Finally, compared with the scaffolds prepared by 100% 45S5 Bioglass powders, the addition of 0.25 wt.% MWCNTs increases the compressive strength and elastic modulus of 45S5 Bioglass scaffolds from 2.08 to 4.56 MPa (a 119% increase and 111.50 to 266.59 MPa (a 139% increase, respectively.

  11. High frequency conductivity in carbon nanotubes

    Directory of Open Access Journals (Sweden)

    S. S. Abukari

    2012-12-01

    Full Text Available We report on theoretical analysis of high frequency conductivity in carbon nanotubes. Using the kinetic equation with constant relaxation time, an analytical expression for the complex conductivity is obtained. The real part of the complex conductivity is initially negative at zero frequency and become more negative with increasing frequency, until it reaches a resonance minimum at ω ∼ ωB for metallic zigzag CNs and ω < ωB for armchair CNs. This resonance enhancement is indicative for terahertz gain without the formation of current instabilities induced by negative dc conductivity. We noted that due to the high density of states of conduction electrons in metallic zigzag carbon nanotubes and the specific dispersion law inherent in hexagonal crystalline structure result in a uniquely high frequency conductivity than the corresponding values for metallic armchair carbon nanotubes. We suggest that this phenomenon can be used to suppress current instabilities that are normally associated with a negative dc differential conductivity.

  12. Young's modulus of elasticity of Schlemm's canal endothelial cells.

    Science.gov (United States)

    Zeng, Dehong; Juzkiw, Taras; Read, A Thomas; Chan, Darren W-H; Glucksberg, Matthew R; Ethier, C Ross; Johnson, Mark

    2010-02-01

    Schlemm's canal (SC) endothelial cells are likely important in the physiology and pathophysiology of the aqueous drainage system of the eye, particularly in glaucoma. The mechanical stiffness of these cells determines, in part, the extent to which they can support a pressure gradient and thus can be used to place limits on the flow resistance that this layer can generate in the eye. However, little is known about the biomechanical properties of SC endothelial cells. Our goal in this study was to estimate the effective Young's modulus of elasticity of normal SC cells. To do so, we combined magnetic pulling cytometry of isolated cultured human SC cells with finite element modeling of the mechanical response of the cell to traction forces applied by adherent beads. Preliminary work showed that the immersion angles of beads attached to the SC cells had a major influence on bead response; therefore, we also measured bead immersion angle by confocal microscopy, using an empirical technique to correct for axial distortion of the confocal images. Our results showed that the upper bound for the effective Young's modulus of elasticity of the cultured SC cells examined in this study, in central, non-nuclear regions, ranged between 1,007 and 3,053 Pa, which is similar to, although somewhat larger than values that have been measured for other endothelial cell types. We compared these values to estimates of the modulus of primate SC cells in vivo, based on images of these cells under pressure loading, and found good agreement at low intraocular pressure (8-15 mm Hg). However, increasing intraocular pressure (22-30 mm Hg) appeared to cause a significant increase in the modulus of these cells. These moduli can be used to estimate the extent to which SC cells deform in response to the pressure drop across the inner wall endothelium and thereby estimate the extent to which they can generate outflow resistance.

  13. Carbon nanotubes and carbon onions for modification of styrene-acrylate copolymer based nanocomposites

    International Nuclear Information System (INIS)

    Merijs-Meri, Remo; Zicans, Janis; Ivanova, Tatjana; Bitenieks, Juris; Kuzhir, Polina; Maksimenko, Sergey; Kuznetsov, Vladimir; Moseenkov, Sergey

    2014-01-01

    Styrene acrylate polymer (SAC) nanocomposites with various carbon nanofillers (multiwalled carbon nanotubes MWCNTs and onion like carbon OLC) are manufactured by means of latex based routes. Concentration of the carbon nanofillers is changed in a broad interval starting from 0.01 up to 10 wt. %. Elastic, dielectric and electromagnetic properties of SAC nanocomposites are investigated. Elastic modulus, electrical conductivity and electromagnetic radiation absorption of the investigated SAC nanocomposites increase along with rising nanofiller content. The effect of the addition of anisometric MWCNTs on the elastic properties of the composite is higher than in the case of the addition of OLC. Higher electrical conductivity of the OLC containing nanocomposites is explained with the fact that reasonable agglomeration of the nanofiller can promote the development of electrically conductive network. Efficiency of the absorption of electromagnetic radiation depends on the development of conductive network within the SAC matrix

  14. Carbon nanotubes and carbon onions for modification of styrene-acrylate copolymer based nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Merijs-Meri, Remo; Zicans, Janis; Ivanova, Tatjana; Bitenieks, Juris [Institute of Polymer Materials, Riga Technical University, Azenes street 14/24, LV-1048, Riga (Latvia); Kuzhir, Polina; Maksimenko, Sergey [Institute of Nuclear Problems, Belarus State University, Bobruiskaya str. 11, 220030, Minsk (Belarus); Kuznetsov, Vladimir; Moseenkov, Sergey [Boreskov Institute of Catalyst Siberian branch of RAS, pr. Lavrentieva 5, 630090, Novosibirsk (Russian Federation)

    2014-05-15

    Styrene acrylate polymer (SAC) nanocomposites with various carbon nanofillers (multiwalled carbon nanotubes MWCNTs and onion like carbon OLC) are manufactured by means of latex based routes. Concentration of the carbon nanofillers is changed in a broad interval starting from 0.01 up to 10 wt. %. Elastic, dielectric and electromagnetic properties of SAC nanocomposites are investigated. Elastic modulus, electrical conductivity and electromagnetic radiation absorption of the investigated SAC nanocomposites increase along with rising nanofiller content. The effect of the addition of anisometric MWCNTs on the elastic properties of the composite is higher than in the case of the addition of OLC. Higher electrical conductivity of the OLC containing nanocomposites is explained with the fact that reasonable agglomeration of the nanofiller can promote the development of electrically conductive network. Efficiency of the absorption of electromagnetic radiation depends on the development of conductive network within the SAC matrix.

  15. New technology for carbon dioxide at high pressure

    International Nuclear Information System (INIS)

    Hassina, Bazaze; Raouf, Zehioua; Menial, A. H.

    2006-01-01

    Carbon dioxide has long been the nemesis of environmentalists because of its role in global warming, but under just the right conditions-namely, high pressure and high temperature its one of nature's best and most environmentally benign solvents. Decaf-coffee lovers, for instance, benefit from its ability to remove caffeine from coffee beans.During the last few years, carbon dioxide has also made inroads in the dry-cleaning industry, providing a safe cleaning alternative to the chemical perchloroethylene. But it's on the high-tech front that carbon dioxide may make its biggest impact. T here are huge opportunities. Scientists have known for more than a century that at 75 times atmospheric pressure and 31 degree centigrade, carbon dioxide goes into and odd state that chemists called s upercritical . What's interesting to industry is that supercritical carbon dioxide may be an enabling technology for going to smaller dimensions.(Author)

  16. Elastic modulus, thermal expansion, and specific heat at a phase transition

    International Nuclear Information System (INIS)

    Testardi, L.R.

    1975-01-01

    The interrelation of the elastic modulus, thermal-expansion coefficient, and specific heat of a transformed phase relative to the untransformed phase is calculated assuming a particular but useful form of the thermodynamic potential. For second-order phase transitions where this potential applies, measurements of modulus, expansion, and specific heat can yield the general (longitudinal as well as shear) first- and second-order stress (or strain) dependences of the transition temperature and of the order parameter at absolute zero. An exemplary application to one type of phase transition is given

  17. Measurement of ultimate tensile strength and Young modulus in LYSO scintillating crystals

    Energy Technology Data Exchange (ETDEWEB)

    Scalise, Lorenzo, E-mail: l.scalise@univpm.it [Dipartimento di Meccanica, Universita Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona (Italy); Rinaldi, Daniele [Dipartimento di Fisica e Ingegneria dei Materiali e del Territorio, Universita Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona (Italy); Istituto Nazionale di Fisica Nucleare, Section of Perugia (Italy); Davi, Fabrizio [Dipartimento di Architettura Costruzioni e Strutture, Universita Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona (Italy); Paone, Nicola [Dipartimento di Meccanica, Universita Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona (Italy)

    2011-10-21

    Scintillating crystals are employed in high energy physics, in medical imaging, diagnostic and security. Two mechanical properties of lutetium-yttrium oxyorthosilicate cerium-doped Lu{sub 2(1-x)}Y{sub 2x}SiO{sub 5}:Ce with x=0.1 (LYSO) crystals have been measured: the ultimate tensile stress ({sigma}{sub UTS}) and the Young elastic modulus (E). Measurements are made by means of a 4-points loading device and the experimental results account for an elastic-brittle stress-strain relation, which depends heavily on the specimen preparation and the material defects. {sigma}{sub UTS} along the [0 1 0] tensile direction ranges within 68.14 and 115.61 MPa, which, in the lowest case, is more than twice with respect to those measured for PbWO{sub 4} (PWO), exhibiting a marked difference between the annealed and the not-annealed samples. The mean elastic modulus (E), along the same direction, is E=1.80x10{sup 11} ({+-}2.15x10{sup 10}) N/m{sup 2}, with lower dispersion respect to UTS data. This type of analysis and study can be included into quality control procedures of crystals, based on samples taken out of production; such procedures can be established for industrial processing of crystals aimed to the high energy physics (calorimeters) and medical imaging (PET, etc.) applications.

  18. Powder metallurgical low-modulus Ti-Mg alloys for biomedical applications.

    Science.gov (United States)

    Liu, Yong; Li, Kaiyang; Luo, Tao; Song, Min; Wu, Hong; Xiao, Jian; Tan, Yanni; Cheng, Ming; Chen, Bing; Niu, Xinrui; Hu, Rong; Li, Xiaohui; Tang, Huiping

    2015-11-01

    In this work, powder metallurgical (PM) Ti-Mg alloys were prepared using combined techniques of mechanical alloying and spark plasma sintering. The alloys mainly consist of super saturations of Mg in Ti matrix, and some laminar structured Ti- and Mg-rich phases. The PM Ti-Mg alloys contain a homogeneous mixtures of nanocrystalline Mg and Ti phases. The novel microstructures result in unconventional mechanical and biological properties. It has been shown that the PM Ti-Mg alloys have a much lower compression modulus (36-50GPa) compared to other Ti alloys, but still remain a very high compressive strength (1500-1800MPa). In addition, the PM Ti-Mg alloys show good biocompatibility and bioactivity. Mg can dissolve in the simulated body fluids, and induce the formation of the calcium phosphate layer. The compression modulus of PM Ti-Mg alloys decreases with the amount of Mg, while the bioactivity increases. Although the corrosion resistance of Ti-Mg alloys decreases with the content of Mg, the alloys still show good stability in simulated body fluid under electrochemical conditions. The indirect and direct cytotoxicity results show that PM Ti-Mg alloys have a good biocompatibility to NIH-3T3 cells. Therefore, the PM Ti-Mg alloys are promising candidates in biomedical applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Multiscale Hybrid Micro-Nanocomposites Based on Carbon Nanotubes and Carbon Fibers

    Directory of Open Access Journals (Sweden)

    Fawad Inam

    2010-01-01

    Full Text Available Amino-modified double wall carbon nanotube (DWCNT-NH2/carbon fiber (CF/epoxy hybrid micro-nanocomposite laminates were prepared by a resin infusion technique. DWCNT-NH2/epoxy nanocomposites and carbon fiber/epoxy microcomposites were made for comparison. Morphological analysis of the hybrid composites was performed using field emission scanning electron microscope. A good dispersion at low loadings of carbon nanotubes (CNTs in epoxy matrix was achieved by a bath ultrasonication method. Mechanical characterization of the hybrid micro-nanocomposites manufactured by a resin infusion process included three-point bending, mode I interlaminar toughness, dynamic mechanical analysis, and drop-weight impact testing. The addition of small amounts of CNTs (0.025, 0.05, and 0.1 wt% to epoxy resins for the fabrication of multiscale carbon fiber composites resulted in a maximum enhancement in flexural modulus by 35%, a 5% improvement in flexural strength, a 6% improvement in absorbed impact energy, and 23% decrease in the mode I interlaminar toughness. Hybridization of carbon fiber-reinforced epoxy using CNTs resulted in a reduction in and dampening characteristics, presumably as a result of the presence of micron-sized agglomerates.

  20. Multiphase composites with extremal bulk modulus

    DEFF Research Database (Denmark)

    Gibiansky, L. V.; Sigmund, Ole

    2000-01-01

    are described. Most of our new results are related to the two-dimensional problem. A numerical topology optimization procedure that solves the inverse homogenization problem is adopted and used to look for two-dimensional three-phase composites with a maximal effective bulk modulus. For the combination...... isotropic three-dimensional three-phase composites with cylindrical inclusions of arbitrary cross-sections (plane strain problem) or transversely isotropic thin plates (plane stress or bending of plates problems). (C) 2000 Elsevier Science Ltd. All rights reserved....

  1. Effect of thermal annealing on property changes of neutron-irradiated non-graphitized carbon materials and nuclear graphite

    International Nuclear Information System (INIS)

    Matsuo, Hideto

    1991-06-01

    Changes in dimension of non-graphitized carbon materials and nuclear graphite, and the bulk density, electrical resistivity, Young's modulus and thermal expansivity of nuclear graphite were studied after neutron irradiation at 1128-1483 K and the successive thermal annealing up to 2573 K. Carbon materials showed larger and anisotropic dimensional shrinkage than that of nuclear graphite after the irradiation. The irradiation-induced dimensional shrinkage of carbon materials decreased during annealing at temperatures from 1773 to 2023 K, followed by a slight increase at higher temperatures. On the other hand, the irradiated nuclear graphite hardly showed the changes in length, density and thermal expansivity under the thermal annealing, but the electrical resistivity and Young's modulus showed a gradual decrease with annealing temperature. It has been clarified that there exists significant difference in the effect of thermal annealing on irradiation-induced dimensional shrinkage between graphitized nuclear graphite and non-graphitized carbon materials. (author)

  2. E-modulus evolution and its relation to solids formation of pastes from commercial cements

    DEFF Research Database (Denmark)

    Maia, Lino; Azenha, Miguel; Geiker, Mette

    2012-01-01

    Models for early age E-modulus evolution of cement pastes are available in the literature, but their validation is limited. This paper provides correlated measurements of early age evolution of E-modulus and hydration of pastes from five commercial cements differing in limestone content. A recently...

  3. Morphology- and ion size-induced actuation of carbon nanotube architectures

    Science.gov (United States)

    Geier; Mahrholz; Wierach; Sinapius

    2018-04-01

    Future adaptive applications require lightweight and stiff materials with high active strain but low energy consumption. A suitable combination of these properties is offered by carbon nanotube-based actuators. Papers made of carbon nanotubes (CNTs) are charged within an electrolyte, which results in an electrical field forming a double-layer of ions at their surfaces and a deflection of the papers can be detected. Until now, there is no generally accepted theory for the actuation mechanism. This study focuses on the actuation mechanism of CNT papers, which represent architectures of randomly oriented CNTs. The samples are tested electrochemically in an in-plane set-up to detect the free strain. The elastic modulus of the CNT papers is analyzed in a tensile test facility. The influence of various ion sizes of water-based electrolytes is investigated.

  4. Charge mobility modification of semiconducting carbon nanotubes by intrinsic defects

    International Nuclear Information System (INIS)

    Bai, Hongcun; Ma, Yujia; Ma, Jinsuo; Mei, Jingnan; Tong, Yan; Ji, Yongqiang

    2017-01-01

    Charge carrier mobility is a central transport property in nanoscale electronics. Carbon nanotubes (CNTs) are supposed to have high carrier mobility. The preparation methods of CNTs have been greatly improved, but the defects always exist. This work presented first-principle investigations on the charge carrier mobility of carbon nanotubes containing several intrinsic defects. The charge carrier mobilities of zigzag (10, 0) tubes with Stone–Wales, mono vacant and 5/8/5 defects were studied as an example to explore the role of defects. Most carrier mobilities were decreased, but several values of mobility are unexpectedly increased upon the appearance of the defects. This interesting result is discussed based on the changes of the stretching modulus, the effective mass of the carrier and deformation potential constant induced by the defects. (paper)

  5. Standardizing lightweight deflectometer modulus measurements for compaction quality assurance

    Science.gov (United States)

    2017-09-01

    To evaluate the compaction of unbound geomaterials under unsaturated conditions and replace the conventional methods with a practical modulus-based specification using LWD, this study examined three different LWDs, the Zorn ZFG 3000 LWD, Dynatest 303...

  6. Variations in local elastic modulus along the length of the aorta as observed by use of a scanning haptic microscope (SHM).

    Science.gov (United States)

    Moriwaki, Takeshi; Oie, Tomonori; Takamizawa, Keiichi; Murayama, Yoshinobu; Fukuda, Toru; Omata, Sadao; Kanda, Keiichi; Nakayama, Yasuhide

    2011-12-01

    Variations in microscopic elastic structures along the entire length of canine aorta were evaluated by use of a scanning haptic microscope (SHM). The total aorta from the aortic arch to the abdominal aorta was divided into 6 approximately equal segments. After embedding the aorta in agar, it was cut into horizontal circumferential segments to obtain disk-like agar portions containing ring-like samples of aorta with flat surfaces (thickness, approximately 1 mm). The elastic modulus and topography of the samples under no-load conditions were simultaneously measured along the entire thickness of the wall by SHM by using a probe with a diameter of 5 μm and a spatial resolution of 2 μm at a rate of 0.3 s/point. The elastic modulus of the wall was the highest on the side of the luminal surface and decreased gradually toward the adventitial side. This tendency was similar to that of the change in the elastin fiber content. During the evaluation of the mid-portion of each tunica media segment, the highest elastic modulus (40.8 ± 3.5 kPa) was identified at the thoracic section of the aorta that had the highest density of elastic fibers. Under no-load conditions, portions of the aorta with high elastin density have a high elastic modulus.

  7. Maximisation of the ratio of microhardness to the Young's modulus of Ti-12Mo-13Nb alloy through microstructure changes.

    Science.gov (United States)

    Gabriel, Sinara B; de Almeida, Luiz H; Nunes, Carlos A; Dille, Jean; Soares, Glória A

    2013-08-01

    Alloys for orthopaedic and dentistry applications require high mechanical strength and a low Young's modulus to avoid stress shielding. Metastable β titanium alloys appear to fulfil these requirements. This study investigated the correlation of phases precipitated in a Ti-12Mo-13Nb alloy with changes in hardness and the Young's modulus. The alloy was produced by arc melting under an argon atmosphere, after which, it was heat treated and cold forged. Two different routes of heat treatment were employed. Phase transformations were studied by employing X-ray diffraction and transmission electron microscopy. Property characterisation was based on Vickers microhardness tests and Young's modulus measurements. The highest ratio of microhardness to the Young's modulus was obtained using thermomechanical treatment, which consists of heating at 1000°C for 24h, water quenching, cold forging to reduce 80% of the area, and ageing at 500°C for 24h, where the final microstructure consisted of an α phase dispersed in a β matrix. The α phase appeared in two different forms: as fine lamellas (with 240±100 nm length) and massive particles of 200-500 nm size. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Estimate of K-functionals and modulus of smoothness constructed ...

    Indian Academy of Sciences (India)

    2016-08-26

    functional and a modulus of smoothness for the Dunkl transform on Rd. Author Affiliations. M El Hamma1 R Daher1. Department of Mathematics, Faculty of Sciences Aïn Chock, University of Hassan II, Casablanca, Morocco. Dates.

  9. Manufacturing of Nanocomposite Carbon Fibers and Composite Cylinders

    Science.gov (United States)

    Tan, Seng; Zhou, Jian-guo

    2013-01-01

    Pitch-based nanocomposite carbon fibers were prepared with various percentages of carbon nanofibers (CNFs), and the fibers were used for manufacturing composite structures. Experimental results show that these nanocomposite carbon fibers exhibit improved structural and electrical conductivity properties as compared to unreinforced carbon fibers. Composite panels fabricated from these nanocomposite carbon fibers and an epoxy system also show the same properties transformed from the fibers. Single-fiber testing per ASTM C1557 standard indicates that the nanocomposite carbon fiber has a tensile modulus of 110% higher, and a tensile strength 17.7% times higher, than the conventional carbon fiber manufactured from pitch. Also, the electrical resistance of the carbon fiber carbonized at 900 C was reduced from 4.8 to 2.2 ohm/cm. The manufacturing of the nanocomposite carbon fiber was based on an extrusion, non-solvent process. The precursor fibers were then carbonized and graphitized. The resultant fibers are continuous.

  10. Effect of Li level, artificial aging, and TiB2 reinforcement on the modulus of Weldalite (tm) 049

    Science.gov (United States)

    1991-01-01

    The dynamic Young's Modulus (E) was determined for (1) alloys 049(1.3)(heat 072), (2) 049(1.9), and (3) 049(1.3) TiB2 in the T3 temper and after aging at 160 C were made on a single 0.953 cm (0.375 in) cube to reduce scatter from microstructural inhomogeneities. Both shear and transverse wave velocities were measured for the L, LT, and ST directions by a pulse echo technique. These velocities were then used to calculate modulus. The change is shown in E with aging time at 160 C (320 F) for the three alloys. It is clear from the plots that aging has a minor, but measurable, influence on the E of alloys 049(1.3) and 049(1.9): E decreases by -2.5 pct. for 2 and 3 during the initial stages of artificial aging. This decrease in E generally follows the strength reversion. On further aging beyond the reversion well, E increases and then decreases again as the alloy overage. The slightly higher modulus in the T8 than in the T3 temper is consistent with the presence of the high modulus T sub 1 phase in the T8 temper. A similar change in E was observed on aging for the TiB2 reinforced variant that also follows the aging curve.

  11. Effect of part replacement of silica sand with carbon black on composite properties

    International Nuclear Information System (INIS)

    Adeosun, B.F.; Olaofe, O.

    2003-01-01

    We have reported the properties of natural rubber filled with locally available materials (Adu et al 2000). The effect of local clay, limestone, silica sand and charcoal on the properties of natural rubber has been examined. Results have shown detrimental effects of silica sand on the properties of natural rubber compound. It has been reported that when silica is used as a part for part replacement of carbon black, the heat build up the composite decreased whilst tear resistance improved. Results revealed that within the filler content range used in the present work, the hardness, modulus, and tensile strength of composites loaded with silica sand/carbon black showed enhanced magnitude over the composite loaded singly with silica sand. These parameters generally increased with increasing carbon black content in the composite. New area of use requiring moderate level of tensile strength, hardness and modulus (as in soles of shoes and engine mounts) is therefore opened up for silica sand.(author)

  12. A high-performance carbon derived from polyaniline for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Jun [Harbin Engineering University, Harbin (China). Key Laboratory of Superlight Materials and Surface Technology; College of Automation, Harbin Engineering University, Harbin (China); Wei, Tong; Fan, Zhuangjun; Li, Tianyou [Harbin Engineering University, Harbin (China). Key Laboratory of Superlight Materials and Surface Technology; Qiao, Wenming [Harbin Engineering University, Harbin (China). Coll. of Material Science and Chemical Engineering; Zhang, Lijun; Zhao, Qiankun [College of Automation, Harbin Engineering University, Harbin (China)

    2010-10-15

    Activated carbon derived from rod-shaped polyaniline (the diameter of 170 nm) was synthesized by carbonization and subsequent activation with KOH. The obtained activated carbon exhibits a high specific capacitance (455 F g{sup -1}) and remarkable rate capability due to its high specific surface area (1976 m{sup 2}g{sup -1}), narrow pore size distribution (< 3 nm) as well as short diffusion length. It is indicated that the promising synthetic method used in this work can pave the way for designing new carbon based materials from different polymers for high-performance energy applications. (author)

  13. On the Mechanical Properties of Chiral Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Mahnaz Zakeri

    2013-12-01

    Full Text Available Carbon nanotubes (CNTs are specific structures with valuable characteristics. In general, the structure of each nanotube is defined by a unique chiral vector. In this paper, different structures of short single-walled CNTs are simulated and their mechanical properties are determined using finite element method. For this aim, a simple algorithm is presented which is able to model the geometry of single-walled CNTs with any desired structure based on nano-scale continuum mechanics approach. By changing the chiral angle from 0 to 30 degree for constant length to radius ratio, the effect of nanotube chirality on its mechanical properties is evaluated. It is observed that the tensile modulus of CNTs changes between 0.93-1.02 TPa for different structures, and it can be higher for chiral structures than zigzag and armchair ones. Also, for different chiral angles, the bending modulus changes between 0.76-0.82 TPa, while the torsional modulus varies in the range of 0.283-0.301TPa.

  14. Reliable measurement of elastic modulus of cells by nanoindentation in an atomic force microscope

    KAUST Repository

    Zhou, Zhoulong; Ngan, Alfonso H W; Tang, Bin; Wang, Anxun

    2012-01-01

    The elastic modulus of an oral cancer cell line UM1 is investigated by nanoindentation in an atomic force microscope with a flat-ended tip. The commonly used Hertzian method gives apparent elastic modulus which increases with the loading rate, indicating strong effects of viscoelasticity. On the contrary, a rate-jump method developed for viscoelastic materials gives elastic modulus values which are independent of the rate-jump magnitude. The results show that the rate-jump method can be used as a standard protocol for measuring elastic stiffness of living cells, since the measured values are intrinsic properties of the cells. © 2011 Elsevier Ltd.

  15. Reliable measurement of elastic modulus of cells by nanoindentation in an atomic force microscope

    KAUST Repository

    Zhou, Zhoulong

    2012-04-01

    The elastic modulus of an oral cancer cell line UM1 is investigated by nanoindentation in an atomic force microscope with a flat-ended tip. The commonly used Hertzian method gives apparent elastic modulus which increases with the loading rate, indicating strong effects of viscoelasticity. On the contrary, a rate-jump method developed for viscoelastic materials gives elastic modulus values which are independent of the rate-jump magnitude. The results show that the rate-jump method can be used as a standard protocol for measuring elastic stiffness of living cells, since the measured values are intrinsic properties of the cells. © 2011 Elsevier Ltd.

  16. Modulus stabilization in a non-flat warped braneworld scenario

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Indrani [S.N. Bose National Centre for Basic Sciences, Department of Astrophysics and Cosmology, Kolkata (India); SenGupta, Soumitra [Indian Association for the Cultivation of Science, Department of Theoretical Physics, Kolkata (India)

    2017-05-15

    The stability of the modular field in a warped brane world scenario has been a subject of interest for a long time. Goldberger and Wise (GW) proposed a mechanism to achieve this by invoking a massive scalar field in the bulk space-time neglecting the back-reaction. In this work, we examine the possibility of stabilizing the modulus without bringing about any external scalar field. We show that instead of flat 3-branes as considered in Randall-Sundrum (RS) warped braneworld model, if one considers a more generalized version of warped geometry with de Sitter 3-brane, then the brane vacuum energy automatically leads to a modulus potential with a metastable minimum. Our result further reveals that in this scenario the gauge hierarchy problem can also be resolved for an appropriate choice of the brane's cosmological constant. (orig.)

  17. Thermo-physical properties of epoxy nanocomposites reinforced by carbon nanotubes and vapor grown carbon fibers

    International Nuclear Information System (INIS)

    Miyagawa, Hiroaki; Rich, Michael J.; Drzal, Lawrence T.

    2006-01-01

    In this study, the thermo-physical properties of epoxy nanocomposites reinforced by fluorinated single wall carbon nanotubes (FSWCNT) and vapor grown carbon fibers (VGCF) were investigated. A sonication technique using a suspension of FSWCNT and VGCF in acetone was utilized to process nanocomposites in anhydride-cured epoxy. The viscoelastic properties of the nanocomposites were measured with dynamic mechanical analysis. The glass transition temperature decreased approximately 30 deg. C with an addition of 0.14 vol.% (0.2 wt.%) FSWCNT. The depression in T g is attributed to non-stoichiometric balance of the epoxy matrix caused by the fluorine on single wall carbon nanotubes. The correct amount of the anhydride curing agent needed to achieve stoichiometry was experimentally determined by DMA measurements. After adjusting the amount of the anhydride curing agent for stoichiometry, the storage modulus of the epoxy at room temperature increased 0.63 GPa with the addition of only 0.21 vol.% (0.30 wt.%) of FSWCNT, a 20% improvement compared with the anhydride-cured neat epoxy. For VGCF, the storage modulus at room temperature increased 0.48 GPa with the addition of only 0.94 vol.% (1.5 wt.%) and then reached a plateau for larger amounts of VGCF. To understand the influence of VGCF on thermo-physical properties, the microstructure of the nanocomposites was interrogated using transmission electron microscopy (TEM). This study discusses the chemical effects of fluorine on matrix properties and the effect of stoichiometric balance on the thermo-physical properties of nanocomposites

  18. Connecting Jacobi elliptic functions with different modulus parameters

    Indian Academy of Sciences (India)

    found in the literature do not involve any change in the modulus parameter m. For ... Here, the right-hand side contains the sum of two terms with arguments separated ...... able thing is that, it is precisely these sums for which Landen formulas, mentioned above ... ematical sciences (Springer-Verlag, New York, 1989) vol. 80.

  19. High-strength porous carbon and its multifunctional applications

    Science.gov (United States)

    Wojtowicz, Marek A; Rubenstein, Eric P; Serio, Michael A; Cosgrove, Joseph E

    2013-12-31

    High-strength porous carbon and a method of its manufacture are described for multifunctional applications, such as ballistic protection, structural components, ultracapacitor electrodes, gas storage, and radiation shielding. The carbon is produced from a polymer precursor via carbonization, and optionally by surface activation and post-treatment.

  20. Effect of multi-walled carbon nanotubes aspect ratio and temperature on the dielectric behavior of alternating alkene-carbon monoxide polyketone nanocomposites

    Science.gov (United States)

    Abu-Surrah, Adnan S.; Abdul Jawad, Saadi; Al-Ramahi, Esraa; Hallak, Awni B.; Khattari, Z.

    2015-04-01

    New alternating poly(propylene-alt-carbon monoxide/ethylene-alt-carbon monoxide) (PECO)/multiwalled carbon nanotubes (MWCNTs) composites have been prepared. Dielectric permittivity, electric modulus and ac conductivity of the isolated materials were investigated as a function of fiber aspect ratio, frequency and temperature. For aspect ratio of 30 and 200, a transition from insulator to semiconductor was observed at frequency 1×104. However, for high aspect ratio sample (660), no transition was observed and the conductivity is frequency independent in the measured frequency range of 10-106 Hz. The conductivity increases from about 1×10-4 for the sample that contain fibers of aspect ratio 30 and reaches 5×10-2 (Ω m)-1 for aspect ratio was 660. This behavior can be modeled by a circuit that consists of a contact resistance in series with a parallel combination of resistance (R) and capacitance (C). The calculated activation energy for sample filled with fibers having aspect ratio 30 is about 0.26 eV and decreases to about 0.16 eV when the aspect ratio is 660.

  1. Optimisation of hybrid high-modulus/high-strength carbon fiber reinforced plastic composite drive

    OpenAIRE

    Montagnier, Olivier; Hochard, Christian

    2011-01-01

    International audience; This study deals with the optimisation of hybrid composite drive shafts operating at subcritical or supercritical speeds, using a genetic algorithm. A formulation for the flexural vibrations of a composite drive shaft mounted on viscoelastic supports including shear effects is developed. In particular, an analytic stability criterion is developed to ensure the integrity of the system in the supercritical regime. Then it is shown that the torsional strength can be compu...

  2. Increasing Accuracy of Tissue Shear Modulus Reconstruction Using Ultrasonic Strain Tensor Measurement

    Science.gov (United States)

    Sumi, C.

    Previously, we developed three displacement vector measurement methods, i.e., the multidimensional cross-spectrum phase gradient method (MCSPGM), the multidimensional autocorrelation method (MAM), and the multidimensional Doppler method (MDM). To increase the accuracies and stabilities of lateral and elevational displacement measurements, we also developed spatially variant, displacement component-dependent regularization. In particular, the regularization of only the lateral/elevational displacements is advantageous for the lateral unmodulated case. The demonstrated measurements of the displacement vector distributions in experiments using an inhomogeneous shear modulus agar phantom confirm that displacement-component-dependent regularization enables more stable shear modulus reconstruction. In this report, we also review our developed lateral modulation methods that use Parabolic functions, Hanning windows, and Gaussian functions in the apodization function and the optimized apodization function that realizes the designed point spread function (PSF). The modulations significantly increase the accuracy of the strain tensor measurement and shear modulus reconstruction (demonstrated using an agar phantom).

  3. Carbon-carbon composite and copper-composite bond damages for high flux component controlled fusion

    International Nuclear Information System (INIS)

    Chevet, G.

    2010-01-01

    Plasma facing components constitute the first wall in contact with plasma in fusion machines such as Tore Supra and ITER. These components have to sustain high heat flux and consequently elevated temperatures. They are made up of an armour material, the carbon-carbon composite, a heat sink structure material, the copper chromium zirconium, and a material, the OFHC copper, which is used as a compliant layer between the carbon-carbon composite and the copper chromium zirconium. Using different materials leads to the apparition of strong residual stresses during manufacturing, because of the thermal expansion mismatch between the materials, and compromises the lasting operation of fusion machines as damage which appeared during manufacturing may propagate. The objective of this study is to understand the damage mechanisms of the carbon-carbon composite and the composite-copper bond under solicitations that plasma facing components may suffer during their life. The mechanical behaviours of carbon-carbon composite and composite-copper bond were studied in order to define the most suitable models to describe these behaviours. With these models, thermomechanical calculations were performed on plasma facing components with the finite element code Cast3M. The manufacturing of the components induces high stresses which damage the carbon-carbon composite and the composite-copper bond. The damage propagates during the cooling down to room temperature and not under heat flux. Alternative geometries for the plasma facing components were studied to reduce damage. The relation between the damage of the carbon-carbon composite and its thermal conductivity was also demonstrated. (author) [fr

  4. Low modulus and bioactive Ti/α-TCP/Ti-mesh composite prepared by spark plasma sintering.

    Science.gov (United States)

    Guo, Yu; Tan, Yanni; Liu, Yong; Liu, Shifeng; Zhou, Rui; Tang, Hanchun

    2017-11-01

    A titanium mesh scaffold composite filled with Ti/α-TCP particles was prepared by spark plasma sintering (SPS). The microstructures and interfacial reactions of the composites were investigated by scanning electron microscopy (SEM), Energy Dispersive Spectroscopy (EDS) and X-ray diffraction (XRD) analyses. The compressive strength and elastic modulus were also measured. In vitro bioactivity and biocompatibility was evaluated by using simulated body fluid and cells culture, respectively. After high temperature sintering, Ti oxides, Ti x P y and CaTiO 3 were formed. The formation of Ti oxides and Ti x P y were resulted from the diffusion of O and P elements from α-TCP to Ti. CaTiO 3 was the reaction product of Ti and α-TCP. The composite of 70Ti/α-TCP incorporated with Ti mesh showed a high compressive strength of 589MPa and a low compressive modulus of 30GPa. The bioactivity test showed the formation of a thick apatite layer on the composite and well-spread cells attachment. A good combination of mechanical properties and bioactivity indicated a high potential application of Ti/α-TCP/Ti-mesh composite for orthopedic implants. Copyright © 2017. Published by Elsevier B.V.

  5. The comparison of mechanical and thermal properties of carbon nanotubes and graphene naonosheets enhanced phenol-formaldehyde resin

    International Nuclear Information System (INIS)

    Wu, X.F.; Zhang, Y.; Wu, Y.Z.; Li, Y.J.W.H.

    2017-01-01

    Graphene naonosheets were prepared via one-pot hydrothermal process in a Teflon-lined autoclave. Moreover, the mechanical and thermal degradation behaviors of the phenol formaldehyde/carbon nanotubes and phenol formaldehyde/graphene naonosheets composites were discussed. Experimental results showed that the graphene naonosheets possessed better performances than that of carbon nanotubes. When the filler loading was 0.6wt%, tensile strength, Young's modulus, compressive strength and modulus of the as-prepared composites reached their maximum values, which were increased by 77.0, 141.3, 109.1 and 114.8% for graphene naonosheets and 54.7, 85.9, 61.7 and 45.2% for carbon nanotubes than those of pure sample, respectively. In addition, both of these two carbon materials could increase the thermo-stability of the matrix. When their usage amount was 0.6wt%, the thermal degradation temperature (at 10% weight loss) was increased to 255.6°C for phenol formaldehyde/graphene naonosheets composites and 253.5°C for phenol formaldehyde/carbon nanotubes composites from 233.6°C for pure sample. (author)

  6. Carbon nanofibers grafted on activated carbon as an electrode in high-power supercapacitors.

    Science.gov (United States)

    Gryglewicz, Grażyna; Śliwak, Agata; Béguin, François

    2013-08-01

    A hybrid electrode material for high-power supercapacitors was fabricated by grafting carbon nanofibers (CNFs) onto the surface of powdered activated carbon (AC) through catalytic chemical vapor deposition (CCVD). A uniform thin layer of disentangled CNFs with a herringbone structure was deposited on the carbon surface through the decomposition of propane at 450 °C over an AC-supported nickel catalyst. CNF coating was controlled by the reaction time and the nickel content. The superior CNF/AC composite displays excellent electrochemical performance in a 0.5 mol L(-1) solution of K2 SO4 due to its unique structure. At a high scan rate (100 mV s(-1) ) and current loading (20 A g(-1) ), the capacitance values were three- and fourfold higher than those for classical AC/carbon black composites. Owing to this feature, a high energy of 10 Wh kg(-1) was obtained over a wide power range in neutral medium at a voltage of 0.8 V. The significant enhancement of charge propagation is attributed to the presence of herringbone CNFs, which facilitate the diffusion of ions in the electrode and play the role of electronic bridges between AC particles. An in situ coating of AC with short CNFs (below 200 nm) is a very attractive method for producing the next generation of carbon composite materials with a high power performance in supercapacitors working in neutral medium. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Study on Size-Dependent Young’s Modulus of a Silicon Nano beam by Molecular Dynamics Simulation

    International Nuclear Information System (INIS)

    Yu, H.; Sun, C.; Zhang, W.W.; Lei, S.Y.; Huang, K.A.

    2013-01-01

    Young’s modulus of a silicon nano beam with a rectangular cross-section is studied by molecular dynamics method. Dynamic simulations are performed for doubly clamped silicon nano beams with lengths ranging from 4.888 to 12.491 nm and cross-sections ranging from 1.22 nm ×1.22 nm to 3.39 nm × 3.39 nm. The results show that Young’s moduli of such small silicon nano beams are much higher than the value of Young’s modulus for bulk silicon. Moreover, the resonant frequency and Young’s modulus of the Si nano beam are strongly dependent not only on the size of the nano beam but also on surface effects. Young’s modulus increases significantly with the decreasing of the thickness of the silicon nano beam. This result qualitatively agrees with one of the conclusions based on a semi continuum model, in which the surface relaxation and the surface tension were taken into consideration. The impacts of the surface reconstruction with (2 ×1) dimmers on the resonant frequency and Young’s modulus are studied in this paper too. It is shown that the surface reconstruction makes the silicon nano beam stiffer than the one without the surface reconstruction, resulting in a higher resonant frequency and a larger Young’s modulus

  8. Estimation of the Young’s modulus of cellulose Iß by MM3 and quantum mechanics

    Science.gov (United States)

    Young’s modulus provides a measure of the resistance to deformation of an elastic material. In this study, modulus estimations for models of cellulose Iß relied on calculations performed with molecular mechanics (MM) and quantum mechanics (QM) programs. MM computations used the second generation emp...

  9. The Properties of SBR/ENR50 Blend Containing Nanoclay/Carbon Black Dual Filler System Cured by Electron Beam

    Directory of Open Access Journals (Sweden)

    Sima Ahmadi-Shooli

    2017-05-01

    Full Text Available Nanocomposites based on an SBR/ENR50 rubber blend with the blend ratio of 50/50 using Cloisite 15A nanoclay (5 and 10 phr and carbon black (20 phr were prepared by melt mixing process. The rubber compounds were crosslinked by electron beam irradiation process at 50 and 100 kGy doses. A reference sample containing carbon black at 35 phr was prepared using a conventional sulphur curing system. The gel content of the samples was specified using gel fraction measurement. The results showed the maximum gel content for the sample having 5 phr nanoclay and 20 phr carbon black. The dynamic mechanical properties, including the storage modulus, loss modulus, and loss factor, of the nanocomposites were evaluated using dynamic mechanical analysis (DMA tests. The results indicated that, in spite of a well dispersed nanoclay in samples containing 10 phr nanoclay and 20 phr carbon black, a minimum loss factor was observed in the sample containing 5 phr nanoclay and 20 phr carbon black at 100 kGy. On the other hand, the storage modulus of the reference sample was found to be higher than that of the sample with 5 phr nanoclay and 20 phr carbon black. The mechanical properties, including the tensile strength, stress at 100%, 200%, and 300% elongation and the percentage of elongation were measured by a tensile machine. The results showed an increase in tensile strength and the stress at different elongations for a sample with 5 phr nanoclay and 20 phr carbon black compared to the reference sample. In the corresponding SEM images of the samples having nanoclay and carbon black irradiated at 100 kGy a significantly higher surface roughness was observed.

  10. Noninvasive Vascular Displacement Estimation for Relative Elastic Modulus Reconstruction in Transversal Imaging Planes

    Directory of Open Access Journals (Sweden)

    Chris L. de Korte

    2013-03-01

    Full Text Available Atherosclerotic plaque rupture can initiate stroke or myocardial infarction. Lipid-rich plaques with thin fibrous caps have a higher risk to rupture than fibrotic plaques. Elastic moduli differ for lipid-rich and fibrous tissue and can be reconstructed using tissue displacements estimated from intravascular ultrasound radiofrequency (RF data acquisitions. This study investigated if modulus reconstruction is possible for noninvasive RF acquisitions of vessels in transverse imaging planes using an iterative 2D cross-correlation based displacement estimation algorithm. Furthermore, since it is known that displacements can be improved by compounding of displacements estimated at various beam steering angles, we compared the performance of the modulus reconstruction with and without compounding. For the comparison, simulated and experimental RF data were generated of various vessel-mimicking phantoms. Reconstruction errors were less than 10%, which seems adequate for distinguishing lipid-rich from fibrous tissue. Compounding outperformed single-angle reconstruction: the interquartile range of the reconstructed moduli for the various homogeneous phantom layers was approximately two times smaller. Additionally, the estimated lateral displacements were a factor of 2–3 better matched to the displacements corresponding to the reconstructed modulus distribution. Thus, noninvasive elastic modulus reconstruction is possible for transverse vessel cross sections using this cross-correlation method and is more accurate with compounding.

  11. Use of an ultrasonic device for the determination of elastic modulus of dentin.

    Science.gov (United States)

    Miyazaki, Masashi; Inage, Hirohiko; Onose, Hideo

    2002-03-01

    The mechanical properties of dentin substrate are one of the important factors in determining bond strength of dentin bonding systems. The purpose of this study was to determine the elastic modulus of dentin substrate with the use of an ultrasonic device. The dentin disks of about 1 mm thickness were obtaining from freshly extracted human third molars, and the dentin disk was shaped in a rectangular form with a line diamond point. The size and weight of each specimen was measured to calculate the density of the specimen. The ultrasonic equipment employed in this study was composed of a Pulser-Receiver (Model 5900PR, Panametrics), transducers (V155, V156, Panametrics) and an oscilloscope. The measured two-way transit time through the dentin disk was divided by two to account for the down-and-back travel path, and then multiplied by the velocity of sound in the test material. Measuring the longitudinal and share wave sound velocity determine elastic modulus. The mean elastic modulus of horizontally sectioned specimens was 21.8 GPa and 18.5 GPa for the vertically sectioned specimens, and a significant difference was found between the two groups. The ultrasonic method used in this study shows considerable promise for determination of the elastic modulus of the tooth substrate.

  12. Static and Dynamic Mechanical Properties of Graphene Oxide-Incorporated Woven Carbon Fiber/Epoxy Composite

    Science.gov (United States)

    Adak, Nitai Chandra; Chhetri, Suman; Kim, Nam Hoon; Murmu, Naresh Chandra; Samanta, Pranab; Kuila, Tapas

    2018-03-01

    This study investigates the synergistic effects of graphene oxide (GO) on the woven carbon fiber (CF)-reinforced epoxy composites. The GO nanofiller was incorporated into the epoxy resin with variations in the content, and the CF/epoxy composites were manufactured using a vacuum-assisted resin transfer molding process and then cured at 70 and 120 °C. An analysis of the mechanical properties of the GO (0.2 wt.%)/CF/epoxy composites showed an improvement in the tensile strength, Young's modulus, toughness, flexural strength and flexural modulus by 34, 20, 83, 55 and 31%, respectively, when compared to the CF/epoxy composite. The dynamic mechanical analysis of the composites exhibited an enhancement of 56, 114 and 22% in the storage modulus, loss modulus and damping capacity (tan δ), respectively, at its glass transition temperature. The fiber-matrix interaction was studied using a Cole-Cole plot analysis.

  13. Effect of neutron irradiation on the dimension and the strength of carbon fiber/carbon composite derived from thermosetting resin precursor

    International Nuclear Information System (INIS)

    Yasuda, Eiichi; Tanabe, Yasuhiro; Kimura, Shiushichi; Maruyama, Tadashi; Iseki, Takayoshi; Yano, Toyohiko.

    1988-01-01

    Unidirectionally reinforced carbon fiber/carbon composite whose matrix was derived from thermosetting resin, was prepared. The heat-treatment temperature was 2800 deg C. The change in size and 4 point bending strength of the composite was measured after neutron irradiation (640 deg C, 6 x 10 24 n/m 2 , E > 1 MeV). Shrinkage in normal to the fiber direction was larger than that in fiber direction. Increase in strength and Young's modulus of the composite was observed after irradiation. Irradiated composite showed much higher deflection to fracture than unirradiated one. (author)

  14. Modelling of the Elasticity Modulus for Rock Using Genetic Expression Programming

    Directory of Open Access Journals (Sweden)

    Umit Atici

    2016-01-01

    Full Text Available In rock engineering projects, statically determined parameters are more reflective of actual load conditions than dynamic parameters. This study reports a new and efficient approach to the formulation of the static modulus of elasticity Es applying gene expression programming (GEP with nondestructive testing (NDT methods. The results obtained using GEP are compared with the results of multivariable linear regression analysis (MRA, univariate nonlinear regression analysis (URA, and the dynamic elasticity modulus (Ed. The GEP model was found to produce the most accurate calculation of Es. The proposed approach is a simple, nondestructive, and practical way to determine Es for anisotropic and heterogeneous rocks.

  15. Effect of high pressurized carbon dioxide on Escherichia coli ...

    African Journals Online (AJOL)

    Carbon dioxide at high pressure can retard microbial growth and sometimes kill microorganisms depending on values of applied pressure, temperature and exposure time. In this study the effect of high pressurised carbon dioxide (HPCD) on Escherichia coli was investigated. Culture of E. coli was subjected to high ...

  16. Effect of neutron irradiation on vitreous carbon

    International Nuclear Information System (INIS)

    Kurolenkin, E.I.; Virgil'ev, Yu.S.; Chugunova, T.K.

    1989-01-01

    The change in mass (m), volume (V), specific electric resistance (ρ), coefficient of linear thermal expansion (α), dynamic elasticity modulus (E), and limit of bending strength (σ) of vitreous carbon are studied upon neutron irradiation. Samples for study were two forms of vitreous carbon obtained by hardening thermally reactive polymers at 900-1,000 degree K. Phenol-formaldehyde (bakelite lacquer A, Bakelite A) and furfural-phenol-formaldehyde (FM-2) resin were used. They were irradiated in the experimental water - water VVR-M reactor between 360-1,030 degree K. The maximal neutron flux was 1.65·10 21 neut/cm 2 . Neutron irradiation of vitreous carbon led to its shrinkage and accompanied weakening. Shrinkage and weakening of vitreous carbon was decreased with an increase of treatment and irradiation temperatures

  17. Influence of the cementitious paste composition on the E-modulus and heat of hydration evolutions

    International Nuclear Information System (INIS)

    Maia, Lino; Azenha, Miguel; Faria, Rui; Figueiras, Joaquim

    2011-01-01

    E-modulus and heat of hydration are features of cement-based materials that follow a rapid rate of change at early ages. This paper analyses the influence of the composition of cementitious pastes on these features by using two methods: (i) a novel technique for continuously monitoring the E-modulus of cement-based materials, based on evaluating the first resonant frequency of a composite beam containing the material under testing, and (ii) an isothermal calorimeter to determine the released heat of hydration. Seventeen mixes are tested, encompassing pastes with five w/c ratios, as well as different contents of limestone filler, fly ash, silica fume and metakaolin. The results permit the comparison of the E-modulus and heat of hydration sensitivities to mix composition changes, and to check possible relations between these features. This work also helps to establish the technique (i) as a non-destructive method for monitoring the E-modulus evolution in cement-based materials since casting.

  18. High surface area carbon and process for its production

    Energy Technology Data Exchange (ETDEWEB)

    Romanos, Jimmy; Burress, Jacob; Pfeifer, Peter; Rash, Tyler; Shah, Parag; Suppes, Galen

    2016-12-13

    Activated carbon materials and methods of producing and using activated carbon materials are provided. In particular, biomass-derived activated carbon materials and processes of producing the activated carbon materials with prespecified surface areas and pore size distributions are provided. Activated carbon materials with preselected high specific surface areas, porosities, sub-nm (<1 nm) pore volumes, and supra-nm (1-5 nm) pore volumes may be achieved by controlling the degree of carbon consumption and metallic potassium intercalation into the carbon lattice during the activation process.

  19. Highly porous carbon with large electrochemical ion absorption capability for high-performance supercapacitors and ion capacitors.

    Science.gov (United States)

    Wang, Shijie; Wang, Rutao; Zhang, Yabin; Zhang, Li

    2017-11-03

    Carbon-based supercapacitors have attracted extensive attention as the complement to batteries, owing to their durable lifespan and superiority in high-power-demand fields. However, their widespread use is limited by the low energy storage density; thus, a high-surface-area porous carbon is urgently needed. Herein, a highly porous carbon with a Brunauer-Emmett-Teller specific surface area up to 3643 m 2 g -1 has been synthesized by chemical activation of papayas for the first time. This sp 2 -bonded porous carbon has a continuous three-dimensional network of highly curved, atom-thick walls that form narrow mesopores of 2 ∼ 5 nm in width, which can be systematically tailored with varied activation levels. Two-electrode symmetric supercapacitors constructed by this porous carbon achieve energy density of 8.1 Wh kg -1 in aqueous electrolyte and 65.5 Wh kg -1 in ionic-liquid electrolyte. Furthermore, half-cells (versus Li or Na metal) using this porous carbon as ion sorption cathodes yield high specific capacity, e.g., 51.0 and 39.3 mAh g -1 in Li + and Na + based organic electrolyte. These results underline the possibility of obtaining the porous carbon for high-performance carbon-based supercapacitors and ion capacitors in a readily scalable and economical way.

  20. Highly porous carbon with large electrochemical ion absorption capability for high-performance supercapacitors and ion capacitors

    Science.gov (United States)

    Wang, Shijie; Wang, Rutao; Zhang, Yabin; Zhang, Li

    2017-11-01

    Carbon-based supercapacitors have attracted extensive attention as the complement to batteries, owing to their durable lifespan and superiority in high-power-demand fields. However, their widespread use is limited by the low energy storage density; thus, a high-surface-area porous carbon is urgently needed. Herein, a highly porous carbon with a Brunauer-Emmett-Teller specific surface area up to 3643 m2 g-1 has been synthesized by chemical activation of papayas for the first time. This sp2-bonded porous carbon has a continuous three-dimensional network of highly curved, atom-thick walls that form narrow mesopores of 2 ˜ 5 nm in width, which can be systematically tailored with varied activation levels. Two-electrode symmetric supercapacitors constructed by this porous carbon achieve energy density of 8.1 Wh kg-1 in aqueous electrolyte and 65.5 Wh kg-1 in ionic-liquid electrolyte. Furthermore, half-cells (versus Li or Na metal) using this porous carbon as ion sorption cathodes yield high specific capacity, e.g., 51.0 and 39.3 mAh g-1 in Li+ and Na+ based organic electrolyte. These results underline the possibility of obtaining the porous carbon for high-performance carbon-based supercapacitors and ion capacitors in a readily scalable and economical way.

  1. Design of the Elastic Modulus of Nanoparticles-Containing PVA/PVAc Films by the Response Surface Method

    Science.gov (United States)

    Jelinska, N.; Kalnins, M.; Kovalovs, A.; Chate, A.

    2015-11-01

    By the surface response method, a regression equation is constructed, and the tensile elastic modulus of films made from polyvinyl alcohol/polyvinyl acetate (PVA/PVAc) blends filled with montmorillonite clay and microcrystalline cellulose nanoparticles is investigated. It is established that the introduction of the nanoparticles improves the mechanical properties of the blends in tension considerably: their strength and elastic modulus increase with content of the particles. Using the regression equation, the optimum composition of nanoparticlefilled PVA/PVAc blends with the highest value of elastic modulus is found.

  2. High performance carbon nanocomposites for ultracapacitors

    Science.gov (United States)

    Lu, Wen

    2012-10-02

    The present invention relates to composite electrodes for electrochemical devices, particularly to carbon nanotube composite electrodes for high performance electrochemical devices, such as ultracapacitors.

  3. Charged string solutions with dilaton and modulus fields

    CERN Document Server

    Cvetic, M

    1994-01-01

    We find charged, abelian, spherically symmetric solutions (in flat space-time) corresponding to the effective action of $D=4$ heterotic string theory with scale-dependent dilaton $\\p$ and modulus $\\vp$ fields. We take into account perturbative (genus-one), moduli-dependent `threshold' corrections to the coupling function $f(\\p,\\vp)$ in the gauge field kinetic term $f(\\p,\\vp) F^2_{\\m\

  4. Carbonation by fluid-rock interactions at high-pressure conditions: Implications for carbon cycling in subduction zones

    Science.gov (United States)

    Piccoli, Francesca; Vitale Brovarone, Alberto; Beyssac, Olivier; Martinez, Isabelle; Ague, Jay J.; Chaduteau, Carine

    2016-07-01

    Carbonate-bearing lithologies are the main carbon carrier into subduction zones. Their evolution during metamorphism largely controls the fate of carbon, regulating its fluxes between shallow and deep reservoirs. Recent estimates predict that almost all subducted carbon is transferred into the crust and lithospheric mantle during subduction metamorphism via decarbonation and dissolution reactions at high-pressure conditions. Here we report the occurrence of eclogite-facies marbles associated with metasomatic systems in Alpine Corsica (France). The occurrence of these marbles along major fluid-conduits as well as textural, geochemical and isotopic data indicating fluid-mineral reactions are compelling evidence for the precipitation of these carbonate-rich assemblages from carbonic fluids during metamorphism. The discovery of metasomatic marbles brings new insights into the fate of carbonic fluids formed in subducting slabs. We infer that rock carbonation can occur at high-pressure conditions by either vein-injection or chemical replacement mechanisms. This indicates that carbonic fluids produced by decarbonation reactions and carbonate dissolution may not be directly transferred to the mantle wedge, but can interact with slab and mantle-forming rocks. Rock-carbonation by fluid-rock interactions may have an important impact on the residence time of carbon and oxygen in subduction zones and lithospheric mantle reservoirs as well as carbonate isotopic signatures in subduction zones. Furthermore, carbonation may modulate the emission of CO2 at volcanic arcs over geological time scales.

  5. Fibonacci difference sequence spaces for modulus functions

    Directory of Open Access Journals (Sweden)

    Kuldip Raj

    2015-05-01

    Full Text Available In the present paper we introduce Fibonacci difference sequence spaces l(F, Ƒ, p, u and  l_∞(F, Ƒ, p, u by using a sequence of modulus functions and a new band matrix F. We also make an effort to study some inclusion relations, topological and geometric properties of these spaces. Furthermore, the alpha, beta, gamma duals and matrix transformation of the space l(F, Ƒ, p, u are determined.

  6. Determining the Gaussian Modulus and Edge Properties of 2D Materials: From Graphene to Lipid Bilayers

    Science.gov (United States)

    Zelisko, Matthew; Ahmadpoor, Fatemeh; Gao, Huajian; Sharma, Pradeep

    2017-08-01

    The dominant deformation behavior of two-dimensional materials (bending) is primarily governed by just two parameters: bending rigidity and the Gaussian modulus. These properties also set the energy scale for various important physical and biological processes such as pore formation, cell fission and generally, any event accompanied by a topological change. Unlike the bending rigidity, the Gaussian modulus is, however, notoriously difficult to evaluate via either experiments or atomistic simulations. In this Letter, recognizing that the Gaussian modulus and edge tension play a nontrivial role in the fluctuations of a 2D material edge, we derive closed-form expressions for edge fluctuations. Combined with atomistic simulations, we use the developed approach to extract the Gaussian modulus and edge tension at finite temperatures for both graphene and various types of lipid bilayers. Our results possibly provide the first reliable estimate of this elusive property at finite temperatures and appear to suggest that earlier estimates must be revised. In particular, we show that, if previously estimated properties are employed, the graphene-free edge will exhibit unstable behavior at room temperature. Remarkably, in the case of graphene, we show that the Gaussian modulus and edge tension even change sign at finite temperatures.

  7. Gel spinning of PVA composite fibers with high content of multi-walled carbon nanotubes and graphene oxide hybrids

    International Nuclear Information System (INIS)

    Wei, Yizhe; Lai, Dengpan; Zou, Liming; Ling, Xinlong; Lu, Hongwei; Xu, Yongjing

    2015-01-01

    In this report, poly (vinyl alcohol) (PVA) composite fibers with high content of multi-walled carbon nanotubes and graphene oxide (MWCNTs-GO) hybrids were prepared by gel spinning, and were characterized by TGA, DSC, SEM, XL-2 yarn strength tester and electrical conductivity measurement. The total content of MWCNTs-GO hybrids in the PVA composite fibers, which is up to 25 wt%, was confirmed by TGA analysis. The DSC measurement shows that the melting and crystallization peaks decreased after the addition of nano-fillers. This is due to the reason that the motion of PVA chains is completely confined by strong hydrogen bonding interaction between PVA and nano-fillers. After the addtion of GO, the dispersibility of MWCNTs in composite fibers improved slightly. And the tensile strength and Young's modulus increased by 38% and 67%, respectively. This is caused by the increased hydrogen bonding interaction and synergistic effect through hybridization of MWCNTs and GO. More significantly, the electrical conductivity of PVA/MWCNTs/GO composite fibers enhanced by three orders of magnitude with the addition of GO. (paper)

  8. Elastic modulus of muscle and tendon with shear wave ultrasound elastography: variations with different technical settings.

    Directory of Open Access Journals (Sweden)

    Brian Chin Wing Kot

    Full Text Available Standardization on Shear wave ultrasound elastography (SWUE technical settings will not only ensure that the results are accurate, but also detect any differences over time that may be attributed to true physiological changes. The present study evaluated the variations of elastic modulus of muscle and tendon using SWUE when different technical aspects were altered. The results of this study indicated that variations of elastic modulus of muscle and tendon were found when different transducer's pressure and region of interest (ROI's size were applied. No significant differences in elastic modulus of the rectus femoris muscle and patellar tendon were found with different acquisition times of the SWUE sonogram. The SWUE on the muscle and tendon should be performed with the lightest transducer's pressure, a shorter acquisition time for the SWUE sonogram, while measuring the mean elastic modulus regardless the ROI's size.

  9. 3-D FDTD simulation of shear waves for evaluation of complex modulus imaging.

    Science.gov (United States)

    Orescanin, Marko; Wang, Yue; Insana, Michael

    2011-02-01

    The Navier equation describing shear wave propagation in 3-D viscoelastic media is solved numerically with a finite differences time domain (FDTD) method. Solutions are formed in terms of transverse scatterer velocity waves and then verified via comparison to measured wave fields in heterogeneous hydrogel phantoms. The numerical algorithm is used as a tool to study the effects on complex shear modulus estimation from wave propagation in heterogeneous viscoelastic media. We used an algebraic Helmholtz inversion (AHI) technique to solve for the complex shear modulus from simulated and experimental velocity data acquired in 2-D and 3-D. Although 3-D velocity estimates are required in general, there are object geometries for which 2-D inversions provide accurate estimations of the material properties. Through simulations and experiments, we explored artifacts generated in elastic and dynamic-viscous shear modulus images related to the shear wavelength and average viscosity.

  10. Estimating Young’s Modulus of Single-Walled Zirconia Nanotubes Using Nonlinear Finite Element Modeling

    Directory of Open Access Journals (Sweden)

    Ibrahim Dauda Muhammad

    2015-01-01

    Full Text Available The single-walled zirconia nanotube is structurally modeled and its Young’s modulus is valued by using the finite element approach. The nanotube was assumed to be a frame-like structure with bonds between atoms regarded as beam elements. The properties of the beam required for input into the finite element analysis were computed by connecting energy equivalence between molecular and continuum mechanics. Simulation was conducted by applying axial tensile strain on one end of the nanotube while the other end was fixed and the corresponding reaction force recorded to compute Young’s modulus. It was found out that Young’s modulus of zirconia nanotubes is significantly affected by some geometrical parameters such as chirality, diameter, thickness, and length. The obtained values of Young’s modulus for a certain range of diameters are in agreement with what was obtained in the few experiments that have been conducted so far. This study was conducted on the cubic phase of zirconia having armchair and zigzag configuration. The optimal diameter and thickness were obtained, which will assist in designing and fabricating bulk nanostructured components containing zirconia nanotubes for various applications.

  11. Aluminum oxide from trimethylaluminum and water by atomic layer deposition: The temperature dependence of residual stress, elastic modulus, hardness and adhesion

    International Nuclear Information System (INIS)

    Ylivaara, Oili M.E.; Liu, Xuwen; Kilpi, Lauri; Lyytinen, Jussi; Schneider, Dieter; Laitinen, Mikko; Julin, Jaakko; Ali, Saima; Sintonen, Sakari; Berdova, Maria; Haimi, Eero; Sajavaara, Timo; Ronkainen, Helena; Lipsanen, Harri

    2014-01-01

    Use of atomic layer deposition (ALD) in microelectromechanical systems (MEMS) has increased as ALD enables conformal growth on 3-dimensional structures at relatively low temperatures. For MEMS device design and fabrication, the understanding of stress and mechanical properties such as elastic modulus, hardness and adhesion of thin film is crucial. In this work a comprehensive characterization of the stress, elastic modulus, hardness and adhesion of ALD aluminum oxide (Al 2 O 3 ) films grown at 110–300 °C from trimethylaluminum and water is presented. Film stress was analyzed by wafer curvature measurements, elastic modulus by nanoindentation and surface-acoustic wave measurements, hardness by nanoindentation and adhesion by microscratch test and scanning nanowear. The films were also analyzed by ellipsometry, optical reflectometry, X-ray reflectivity and time-of-flight elastic recoil detection for refractive index, thickness, density and impurities. The ALD Al 2 O 3 films were under tensile stress in the scale of hundreds of MPa. The magnitude of the stress decreased strongly with increasing ALD temperature. The stress was stable during storage in air. Elastic modulus and hardness of ALD Al 2 O 3 saturated to a fairly constant value for growth at 150 to 300 °C, while ALD at 110 °C gave softer films with lower modulus. ALD Al 2 O 3 films adhered strongly on cleaned silicon with SiO x termination. - Highlights: • The residual stress of Al 2 O 3 was tensile and stable during the storage in air. • Elastic modulus of Al 2 O 3 saturated to at 170 GPa for films grown at 150 to 300 °C. • At 110 °C Al 2 O 3 films were softer with high residual hydrogen and lower density. • The Al 2 O 3 adhered strongly on the SiO x -terminated silicon

  12. Nanostructured carbon materials based electrothermal air pump actuators

    Science.gov (United States)

    Liu, Qing; Liu, Luqi; Kuang, Jun; Dai, Zhaohe; Han, Jinhua; Zhang, Zhong

    2014-05-01

    Actuator materials can directly convert different types of energy into mechanical energy. In this work, we designed and fabricated electrothermal air pump-type actuators by utilization of various nanostructured carbon materials, including single wall carbon nanotubes (SWCNTs), reduced graphene oxide (r-GO), and graphene oxide (GO)/SWCNT hybrid films as heating elements to transfer electrical stimulus into thermal energy, and finally convert it into mechanical energy. Both the actuation displacement and working temperature of the actuator films show the monotonically increasing trend with increasing driving voltage within the actuation process. Compared with common polymer nanocomposites based electrothermal actuators, our actuators exhibited better actuation performances with a low driving voltage (film actuator due to the intrinsic gas-impermeability nature of graphene platelets. In addition, the high modulus of the r-GO and GO/SWCNT films also guaranteed the large generated stress and high work density. Specifically, the generated stress and gravimetric work density of the GO/SWCNT hybrid film actuator could reach up to more than 50 MPa and 30 J kg-1, respectively, under a driving voltage of 10 V. The resulting stress value is at least two orders of magnitude higher than that of natural muscles (~0.4 MPa).Actuator materials can directly convert different types of energy into mechanical energy. In this work, we designed and fabricated electrothermal air pump-type actuators by utilization of various nanostructured carbon materials, including single wall carbon nanotubes (SWCNTs), reduced graphene oxide (r-GO), and graphene oxide (GO)/SWCNT hybrid films as heating elements to transfer electrical stimulus into thermal energy, and finally convert it into mechanical energy. Both the actuation displacement and working temperature of the actuator films show the monotonically increasing trend with increasing driving voltage within the actuation process. Compared with

  13. Effect of the Young modulus variability on the mechanical behaviour of a nuclear containment vessel

    Energy Technology Data Exchange (ETDEWEB)

    Larrard, T. de, E-mail: delarrard@lmt.ens-cachan.f [LMT-ENS Cachan, CNRS/UPMC/PRES UniverSud Paris (France); Colliat, J.B.; Benboudjema, F. [LMT-ENS Cachan, CNRS/UPMC/PRES UniverSud Paris (France); Torrenti, J.M. [Universite Paris-Est, LCPC (France); Nahas, G. [IRSN/DSR/SAMS/BAGS, Fontenay-aux-Roses (France)

    2010-12-15

    This study aims at investigating the influence of the Young modulus variability on the mechanical behaviour of a nuclear containment vessel in case of a loss of cooling agent accident and under the assumption of an elastic behaviour. To achieve this investigation, the Monte-Carlo Method is carried out thanks to a middleware which encapsulates the different components (random field generation, FE simulations) and enables calculations parallelisation. The main goal is to quantify the uncertainty propagation by comparing the maximal values of outputs of interest (orthoradial stress and Mazars equivalent strain) for each realisation of the considered random field with the ones obtained from a reference calculation taking into account uniform field (equal to the expected value of the random field). The Young modulus is supposed to be accurately represented by a weakly homogeneous random field and realisations are provided through its truncated Karhunen-Loeve expansion. This study reveals that the expected value for the maximal equivalent strain in the structure is more important when considering the Young modulus spatial variability than the value obtained from a deterministic approach with a uniform Young modulus field. The influence of the correlation length is investigated too. Finally it is shown that there is no correlation between the maximal values location of equivalent strain and the ones where the Young modulus extreme values are observed for each realisation.

  14. Preparation and characterization of carbon nanotube-hybridized carbon fiber to reinforce epoxy composite

    International Nuclear Information System (INIS)

    An, Feng; Lu, Chunxiang; Li, Yonghong; Guo, Jinhai; Lu, Xiaoxuan; Lu, Huibin; He, Shuqing; Yang, Yu

    2012-01-01

    Highlights: → CNTs were uniformly grown onto the carbon fibers. → No obvious mechanical properties of carbon fiber were observed after CNT growth. → The IFSS of multiscale epoxy composite was measured by single fiber pull-out tests. → Observing fractography of composite, the fracture modes of CNTs were discussed. -- Abstract: The multiscale carbon nanotube-hybridized carbon fiber was prepared by a newly developed aerosol-assisted chemical vapour deposition. Scanning electron microscopy and transmission electron microscope were carried out to characterize this multiscale material. Compared with the original carbon fibers, the fabrication of this hybrid fiber resulted in an almost threefold increase of BET surface area to reach 2.22 m 2 /g. Meanwhile, there was a slight degradation of fiber tensile strength within 10%, while the fiber modulus was not significantly affected. The interfacial shearing strength of a carbon fiber-reinforced polymer composite with carbon nanotube-hybridized carbon fiber and an epoxy matrix was determined from the single fiber pull-out tests of microdroplet composite. Due to an efficient increase of load transfer at the fiber/matrix interfaces, the interracial shear strength of composite reinforced by carbon nanotube-hybridized carbon fiber is almost 94% higher than that of one reinforced by the original carbon fiber. Based on the fractured morphologies of the composites, the interfacial reinforcing mechanisms were discussed through proposing different types of carbon nanotube fracture modes along with fiber pulling out from epoxy composites.

  15. Hygrothermal effect of salt water environments on mechanical properties of carbon/epoxy composites

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Young Eun; Yoon, Sung Ho [Kumoh Nat' l Institute of Technology, Gumi (Korea, Republic of)

    2012-10-15

    In this study, salt water immersion tests were experimentally performed for up to 12 months to investigate the hygrothermal effect of salt water environments on the mechanical properties of carbon/epoxy composites. The composites were manufactured by laminating prepregs composed of carbon plain woven fabric and epoxy resin. The specimens were subjected to temperatures of 35, 55, and 75 .deg. C while being exposed to the salt water environments. Mechanical test results showed that the tensile modulus and tensile strength decreased at a small rate, and the compressive modulus and compressive strength decreased at a relatively larger rate, as the exposure temperature and time increased. The rate of decrease in compressive strength became larger as the exposure temperature became higher. This is because a higher environmental temperature accelerates the salt water uptake; this, in turn, reduces the compressive strength more rapidly.

  16. Hygrothermal effect of salt water environments on mechanical properties of carbon/epoxy composites

    International Nuclear Information System (INIS)

    Hwang, Young Eun; Yoon, Sung Ho

    2012-01-01

    In this study, salt water immersion tests were experimentally performed for up to 12 months to investigate the hygrothermal effect of salt water environments on the mechanical properties of carbon/epoxy composites. The composites were manufactured by laminating prepregs composed of carbon plain woven fabric and epoxy resin. The specimens were subjected to temperatures of 35, 55, and 75 .deg. C while being exposed to the salt water environments. Mechanical test results showed that the tensile modulus and tensile strength decreased at a small rate, and the compressive modulus and compressive strength decreased at a relatively larger rate, as the exposure temperature and time increased. The rate of decrease in compressive strength became larger as the exposure temperature became higher. This is because a higher environmental temperature accelerates the salt water uptake; this, in turn, reduces the compressive strength more rapidly

  17. Binding Energy and Compression Modulus of Infinite Nuclear Matter ...

    African Journals Online (AJOL)

    ... MeV at the normal nuclear matter saturation density consistent with the best available density-dependent potentials derived from the G-matrix approach. The results of the incompressibility modulus, k∞ is in excellent agreement with the results of other workers. Journal of the Nigerian Association of Mathematical Physics, ...

  18. Microstructure, elastic and inelastic properties of partially graphitized biomorphic carbons

    Science.gov (United States)

    Orlova, T. S.; Kardashev, B. K.; Smirnov, B. I.; Gutierrez-Pardo, A.; Ramirez-Rico, J.; Martinez-Fernandez, J.

    2015-03-01

    The microstructural characteristics and amplitude dependences of the Young's modulus E and internal friction (logarithmic decrement δ) of biocarbon matrices prepared by beech wood carbonization at temperatures T carb = 850-1600°C in the presence of a nickel-containing catalyst have been studied. Using X-ray diffraction and electron microscopy, it has been shown that the use of a nickel catalyst during carbonization results in a partial graphitization of biocarbons at T carb ≥ 1000°C: the graphite phase is formed as 50- to 100-nm globules at T carb = 1000°C and as 0.5- to 3.0-μm globules at T carb = 1600°C. It has been found that the measured dependences E( T carb) and δ( T carb) contain three characteristic ranges of variations in the Young's modulus and logarithmic decrement with a change in the carbonization temperature: E increases and δ decreases in the ranges T carb 1300°C; in the range 1000 biocarbons carbonized in the presence of nickel correlates with the evolution of their microstructure. The largest values of E are obtained for samples with T carb = 1000 and 1600°C. However, the samples with T carb = 1600°C exhibit a higher susceptibility to microplasticity due to the presence of a globular graphite phase that is significantly larger in size and total volume.

  19. Potassium vapor assisted preparation of highly graphitized hierarchical porous carbon for high rate performance supercapacitors

    Science.gov (United States)

    Liu, Zheng; Zeng, Ying; Tang, Qunli; Hu, Aiping; Xiao, Kuikui; Zhang, Shiying; Deng, Weina; Fan, Binbin; Zhu, Yanfei; Chen, Xiaohua

    2017-09-01

    Ultrahigh graphitized carbon microspheres with rich hierarchical pores (AGHPCM-1) have been successfully synthesized through the one-step activation-carbonization strategy (OACS) with porous sulfonated poly-divinylbenzene as the carbon precursor, iron as the hard template and catalyst, and potassium hydroxide (KOH) as activation agent. Through the XRD, TEM, Raman and BET analysis, AGHPCM-1 shows very high graphitization degree and rich micro-, meso- and macro-pores. More importantly, the mechanism for KOH to improve the graphitization degree of carbon materials in OACS has been illustrated by the thermodynamical theory. The tremendous heat releasing from the reaction between the catalyst precursor of Fe2O3 and potassium vapor plays a key role in the formation of graphitized carbon. It may provide a general direction to prepare highly graphitized porous carbon at a moderate temperature. Integrating the advantages of high graphitization degree and rich hierarchical porous structure, the AGHPCM-1 exhibits an excellent rate performance with a response to up to the high current density of 150 A g-1 and high scan rate of 2000 mV s-1. No obvious capacitance decay can be observed after 10000 charge/discharge cycles even at the high current density of 20 A g-1.

  20. Poisson's ratio and Young's modulus of lipid bilayers in different phases

    Directory of Open Access Journals (Sweden)

    Tayebeh eJadidi

    2014-04-01

    Full Text Available A general computational method is introduced to estimate the Poisson's ratio for membranes with small thickness.In this method, the Poisson's ratio is calculated by utilizing a rescaling of inter-particle distancesin one lateral direction under periodic boundary conditions. As an example for the coarse grained lipid model introduced by Lenz and Schmid, we calculate the Poisson's ratio in the gel, fluid, and interdigitated phases. Having the Poisson's ratio, enable us to obtain the Young's modulus for the membranes in different phases. The approach may be applied to other membranes such as graphene and tethered membranes in orderto predict the temperature dependence of its Poisson's ratio and Young's modulus.

  1. Highly porous activated carbons prepared from carbon rich Mongolian anthracite by direct NaOH activation

    Energy Technology Data Exchange (ETDEWEB)

    Byamba-Ochir, Narandalai [School of Chemical Engineering, Chonnam National University, 77 Yongbong-Ro, Gwangju 61186 (Korea, Republic of); Shim, Wang Geun [Department of Polymer Science and Engineering, Sunchon National University, 255 Jungang-Ro, Suncheon, Jeollanam-Do 57922 (Korea, Republic of); Balathanigaimani, M.S., E-mail: msbala@rgipt.ac.in [Department of Chemical Engineering, Rajiv Gandhi Institute of Petroleum Technology, Ratapur Chowk, Rae Bareli, 229316 Uttar Pradesh (India); Moon, Hee, E-mail: hmoon@jnu.ac.kr [School of Chemical Engineering, Chonnam National University, 77 Yongbong-Ro, Gwangju 61186 (Korea, Republic of)

    2016-08-30

    Highlights: • Highly porous carbon materials from Mongolian anthracite by chemical activation. • Cheaper and eco-friendly activation process has been employed. • Activated carbons with graphitic structure and energetically heterogeneous surface. • Surface hydrophobicity and porosity of the activated carbons can be controlled. - Abstract: Highly porous activated carbons (ACs) were prepared from Mongolian raw anthracite (MRA) using sodium hydroxide as an activation agent by varying the mass ratio (powdered MRA/NaOH) as well as the mixing method of chemical agent and powdered MRA. The specific BET surface area and total pore volume of the prepared MRA-based activated carbons (MACs) are in the range of 816–2063 m{sup 2}/g and of 0.55–1.61 cm{sup 3}/g, respectively. The pore size distribution of MACs show that most of the pores are in the range from large micropores to small mesopores and their distribution can be controlled by the mass ratio and mixing method of the activating agent. As expected from the intrinsic property of the MRA, the highly graphitic surface morphology of prepared carbons was confirmed from Raman spectra and transmission electron microscopy (TEM) studies. Furthermore the FTIR and XPS results reveal that the preparation of MACs with hydrophobic in nature is highly possible by controlling the mixing conditions of activating agent and powdered MRA. Based on all the results, it is suggested that the prepared MACs could be used for many specific applications, requiring high surface area, optimal pore size distribution, proper surface hydrophobicity as well as strong physical strength.

  2. Stillinger-Weber potential for elastic and fracture properties in graphene and carbon nanotubes

    Science.gov (United States)

    Hossain, M. Z.; Hao, T.; Silverman, B.

    2018-02-01

    This paper presents a new framework for determining the Stillinger-Weber (SW) potential parameters for modeling fracture in graphene and carbon nanotubes. In addition to fitting the equilibrium material properties, the approach allows fitting the potential to the forcing behavior as well as the mechanical strength of the solid, without requiring ad hoc modification of the nearest-neighbor interactions for avoiding artificial stiffening of the lattice at larger deformation. Consistent with the first-principles results, the potential shows the Young’s modulus of graphene to be isotropic under symmetry-preserving and symmetry-breaking deformation conditions. It also shows the Young’s modulus of carbon nanotubes to be diameter-dependent under symmetry-breaking loading conditions. The potential addresses the key deficiency of existing empirical potentials in reproducing experimentally observed glass-like brittle fracture in graphene and carbon nanotubes. In simulating the entire deformation process leading to fracture, the SW-potential costs several factors less computational time compared to the state-of-the-art interatomic potentials that enables exploration of the fracture processes in large atomistic systems which are inaccessible otherwise.

  3. Improved Strength and Toughness of Carbon Woven Fabric Composites with Functionalized MWCNTs

    Directory of Open Access Journals (Sweden)

    Eslam Soliman

    2014-06-01

    Full Text Available This investigation examines the role of carboxyl functionalized multi-walled carbon nanotubes (COOH-MWCNTs in the on- and off-axis flexure and the shear responses of thin carbon woven fabric composite plates. The chemically functionalized COOH-MWCNTs were used to fabricate epoxy nanocomposites and, subsequently, carbon woven fabric plates to be tested on flexure and shear. In addition to the neat epoxy, three loadings of COOH-MWCNTs were examined: 0.5 wt%, 1.0 wt% and 1.5 wt% of epoxy. While no significant statistical difference in the flexure response of the on-axis specimens was observed, significant increases in the flexure strength, modulus and toughness of the off-axis specimens were observed. The average increase in flexure strength and flexure modulus with the addition of 1.5 wt% COOH-MWCNTs improved by 28% and 19%, respectively. Finite element modeling is used to demonstrate fiber domination in on-axis flexure behavior and matrix domination in off-axis flexure behavior. Furthermore, the 1.5 wt% COOH-MWCNTs increased the toughness of carbon woven composites tested on shear by 33%. Microstructural investigation using Fourier Transform Infrared Spectroscopy (FTIR proves the existence of chemical bonds between the COOH-MWCNTs and the epoxy matrix.

  4. Highly selective and stable carbon dioxide uptake in polyindole-derived microporous carbon materials.

    Science.gov (United States)

    Saleh, Muhammad; Tiwari, Jitendra N; Kemp, K Christain; Yousuf, Muhammad; Kim, Kwang S

    2013-05-21

    Adsorption with solid sorbents is considered to be one of the most promising methods for the capture of carbon dioxide (CO₂) from power plant flue gases. In this study, microporous carbon materials used for CO₂ capture were synthesized by the chemical activation of polyindole nanofibers (PIF) at temperatures from 500 to 800 °C using KOH, which resulted in nitrogen (N)-doped carbon materials. The N-doped carbon materials were found to be microporous with an optimal adsorption pore size for CO₂ of 0.6 nm and a maximum (Brunauer-Emmett-Teller) BET surface area of 1185 m(2) g(-1). The PIF activated at 600 °C (PIF6) has a surface area of 527 m(2) g(-1) and a maximum CO₂ storage capacity of 3.2 mmol g(-1) at 25 °C and 1 bar. This high CO₂ uptake is attributed to its highly microporous character and optimum N content. Additionally, PIF6 material displays a high CO₂ uptake at low pressure (1.81 mmol g(-1) at 0.2 bar and 25 °C), which is the best low pressure CO₂ uptake reported for carbon-based materials. The adsorption capacity of this material remained remarkably stable even after 10 cycles. The isosteric heat of adsorption was calculated to be in the range of 42.7-24.1 kJ mol(-1). Besides the excellent CO₂ uptake and stability, PIF6 also exhibits high selectivity values for CO₂ over N₂, CH₄, and H₂ of 58.9, 12.3, and 101.1 at 25 °C, respectively, and these values are significantly higher than reported values.

  5. MODULUS OF ELASTICITY AND HARDNESS OF COMPRESSION AND OPPOSITE WOOD CELL WALLS OF MASSON PINE

    Directory of Open Access Journals (Sweden)

    Yanhui Huang,

    2012-05-01

    Full Text Available Compression wood is commonly found in Masson pine. To evaluate the mechanical properties of the cell wall of Masson pine compression and opposite wood, nanoindentation was used. The results showed that the average values of hardness and cell wall modulus of elasticity of opposite wood were slightly higher than those of compression wood. With increasing age of the annual ring, the modulus of elasticity showed a negative correlation with microfibril angle, but a weak correlation was observed for hardness. In opposite and compression wood from the same annual ring, the differences in average values of modulus of elasticity and hardness were small. These slight differences were explained by the change of microfibril angle (MFA, the press-in mode of nanoindentation, and the special structure of compression wood. The mechanical properties were almost the same for early, transition, and late wood in a mature annual ring of opposite wood. It can therefore be inferred that the average modulus of elasticity (MOE and hardness of the cell walls in a mature annual ring were not being affected by cell wall thickness.

  6. A computer simulation approach to quantify the true area and true area compressibility modulus of biological membranes

    International Nuclear Information System (INIS)

    Chacón, Enrique; Tarazona, Pedro; Bresme, Fernando

    2015-01-01

    We present a new computational approach to quantify the area per lipid and the area compressibility modulus of biological membranes. Our method relies on the analysis of the membrane fluctuations using our recently introduced coupled undulatory (CU) mode [Tarazona et al., J. Chem. Phys. 139, 094902 (2013)], which provides excellent estimates of the bending modulus of model membranes. Unlike the projected area, widely used in computer simulations of membranes, the CU area is thermodynamically consistent. This new area definition makes it possible to accurately estimate the area of the undulating bilayer, and the area per lipid, by excluding any contributions related to the phospholipid protrusions. We find that the area per phospholipid and the area compressibility modulus features a negligible dependence with system size, making possible their computation using truly small bilayers, involving a few hundred lipids. The area compressibility modulus obtained from the analysis of the CU area fluctuations is fully consistent with the Hooke’s law route. Unlike existing methods, our approach relies on a single simulation, and no a priori knowledge of the bending modulus is required. We illustrate our method by analyzing 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine bilayers using the coarse grained MARTINI force-field. The area per lipid and area compressibility modulus obtained with our method and the MARTINI forcefield are consistent with previous studies of these bilayers

  7. Fe-Catalyzed Synthesis of Porous Carbons Spheres with High Graphitization Degree for High-Performance Supercapacitors

    Science.gov (United States)

    Zhu, Jun; Shi, Hongwei; Zhuo, Xin; Hu, Yalin

    2017-10-01

    We have developed a facile and efficient Fe-catalyzed method for fabrication of porous carbons spheres with high graphitization degree (GNPCs) using glucose as carbon precursor at relatively low carbonization temperature. GNPCs not only have relatively large accessible ion surface area to accommodate greater capacity but also high graphitization degree to accelerate ion diffusion. As a typical application, we demonstrate that GNPCs exhibit excellent electrochemical performance for use in supercapacitors, with high specific capacity of 150.6 F g-1 at current density of 1 A g-1 and good rate capability and superior cycling stability over 10,000 cycles, confirming their potential application for energy storage. Moreover, it is believed that this method offers a new strategy for synthesis of porous carbons with high graphitization degree.

  8. Liquid surface model for carbon nanotube energetics

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Mathew, Maneesh; Solov'yov, Andrey V.

    2008-01-01

    an important insight in the energetics and stability of nanotubes of different chirality and might be important for the understanding of nanotube growth process. For the computations we use empirical Brenner and Tersoff potentials and discuss their applicability to the study of carbon nanotubes. From......In the present paper we developed a model for calculating the energy of single-wall carbon nanotubes of arbitrary chirality. This model, which we call as the liquid surface model, predicts the energy of a nanotube with relative error less than 1% once its chirality and the total number of atoms...... the calculated energies we determine the elastic properties of the single-wall carbon nanotubes (Young modulus, curvature constant) and perform a comparison with available experimental measurements and earlier theoretical predictions....

  9. Processing and characterization of a carbon black-filled electrically conductive Nylon-12 nanocomposite produced by selective laser sintering

    International Nuclear Information System (INIS)

    Athreya, Siddharth Ram; Kalaitzidou, Kyriaki; Das, Suman

    2010-01-01

    Selective laser sintering (SLS), a layered manufacturing technique was explored to process an electrically conductive polymer nanocomposite made of Nylon-12 reinforced with 4 wt% of carbon black. SLS process parameters were optimized in order to maximize the flexural modulus. The porosity and morphology were studied using optical microscopy and scanning electron microscopy (SEM). The crystalline state was characterized using differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The electrical conductivity was determined using the four probe technique. Results indicate that carbon black-filled Nylon-12 nanocomposites can be successfully made by SLS. Maximum flexural modulus values of 1750 MPa and 1450 MPa were achieved for the neat polymer and the nanocomposite, respectively. A reduction in the flexural modulus of the nanocomposite is likely due to the formation of a segregated structure in the nanocomposite and a weak polymer-filler interface. The optimized neat polymer and the nanocomposites had average densities of around 97% and 96% relative to full density, respectively. The electrical conductivity of the nanocomposite was approximately 1 x 10 -4 S/cm, which is five orders of magnitude higher than that of the neat polymer processed by SLS, and indicates that the onset of percolation behavior occurs below the 4 wt% loading of carbon black.

  10. Influence of cold-working and subsequent heat-treatment on young's modulus and strength of Co-Ni-Cr-Mo alloy

    International Nuclear Information System (INIS)

    Otomo, Takuma; Matsumoto, Hiroaki; Chiba, Akihiko; Nomura, Naoyuki

    2009-01-01

    Changes in Young's modulus of the Co-31 mass%Ni-19 mass%Cr-10 mass%Mo alloy (Co-Ni based alloy) with cold-swaging, combined with heat-treatment at temperatures from 673 to 1323 K, was investigated to enhance the Young's modulus of Co-Ni based alloy. After cold-swaging, the Co-Ni based alloy, forming fiber deformation texture, shows the Young's modulus of 220 GPa. Furthermore, after ageing the cold-swaged alloy at temperature from 673 to 1323 K, the Young's modulus increased to 230 GPa, accompanied by a decrease in the internal fiction and an increase in the tensile strength. This suggests that the increment in Young's modulus is caused by a moving of the vacancies to the dislocation cores and a continuous locking of the dislocations along their entire length with solute atoms (trough model). By annealing at 1323 K after cold swaging, Young's modulus slightly increased to 236 GPa. On the other hand, the tensile strength decreases to almost the same value as that before cold swaging due to recrystallization. These results suggest that the Young's modulus and the strength in the present alloy are simultaneously enhanced by the continuous dislocation locking during aging as well as the formation of fiber deformation texture. (author)

  11. Hardness and Elastic Modulus on Six-Fold Symmetry Gold Nanoparticles

    Science.gov (United States)

    Ramos, Manuel; Ortiz-Jordan, Luis; Hurtado-Macias, Abel; Flores, Sergio; Elizalde-Galindo, José T.; Rocha, Carmen; Torres, Brenda; Zarei-Chaleshtori, Maryam; Chianelli, Russell R.

    2013-01-01

    The chemical synthesis of gold nanoparticles (NP) by using gold (III) chloride trihydrate (HAuCl∙3H2O) and sodium citrate as a reducing agent in aqueous conditions at 100 °C is presented here. Gold nanoparticles areformed by a galvanic replacement mechanism as described by Lee and Messiel. Morphology of gold-NP was analyzed by way of high-resolution transmission electron microscopy; results indicate a six-fold icosahedral symmetry with an average size distribution of 22 nm. In order to understand the mechanical behaviors, like hardness and elastic moduli, gold-NP were subjected to nanoindentation measurements—obtaining a hardness value of 1.72 GPa and elastic modulus of 100 GPa in a 3–5 nm of displacement at the nanoparticle’s surface. PMID:28809302

  12. Functional Carbon Nanotube/Mesoporous Carbon/MnO2 Hybrid Network for High-Performance Supercapacitors

    Directory of Open Access Journals (Sweden)

    Tao Tao

    2014-01-01

    Full Text Available A functional carbon nanotube/mesoporous carbon/MnO2 hybrid network has been developed successfully through a facile route. The resulting composites exhibited a high specific capacitance of 351 F/g at 1 A g−1, with intriguing charge/discharge rate performance and cycling stability due to a synergistic combination of large surface area and excellent electron-transport capabilities of MnO2 with the good conductivity of the carbon nanotube/mesoporous carbon networks. Such composite shows great potential to be used as electrodes for supercapacitors.

  13. Bainite formation kinetics in high carbon alloyed steel

    International Nuclear Information System (INIS)

    Luzginova, N.V.; Zhao, L.; Sietsma, J.

    2008-01-01

    In recent years, many investigations have been carried out on the modeling of the bainite formation. In the present work, a physical approach proposed in the literature is implemented to model the formation of lower bainite in high carbon steels (1 wt.% C). In this model, the carbon diffusion is assumed to control the kinetics of the bainite formation. Both the nucleation and the growth rates are considered in an Avrami type analysis. The effect of alloying elements is taken into account considering only the thermodynamics of the system. The results and the physical meaning of the model parameters are discussed. It is shown that the diffusional approach gives a reasonable description of bainite formation kinetics in high carbon steel. Only two fitting parameters are used: the first accounts for carbon grain-boundary diffusion and the second is the initial nucleation-site density. The model satisfactorily accounts for the effect of transformation temperature, but does not take into account the carbide precipitation during bainite formation and the effect of alloying elements on the diffusion coefficient of carbon

  14. Oxidation kinetics and mechanisms of carbon/carbon composites and their components in water vapour at high temperatures

    International Nuclear Information System (INIS)

    Qin, Fei; Peng, Li-na; He, Guo-qiang; Li, Jiang; Yan, Yong

    2015-01-01

    Highlights: • 4D-C/C composite was fabricated using carbon fibre and coal tar pitch. • The rate of mass loss and oxidation kinetics parameters of fibres-H 2 O and matrix-H 2 O are obtained. • The rate of mass loss and oxidation kinetics parameters of C/C–H 2 O are obtained. • Oxidation rate of the fibre bundle is greater than the oxidation rate of the matrix. - Abstract: Thermogravimetric analysis and scanning electron microscopy were used to study the oxidation kinetics of four-direction carbon/carbon composites and their components (fibres and matrices) in a H 2 O–Ar atmosphere at high temperatures. The oxidation processes were restricted to reaction-limited oxidation. The rate of mass loss was estimated for the four-direction carbon/carbon composites and their components at high temperature. The pressure exponent for the reaction of the carbon/carbon composites with H 2 O was 0.59, and the pre-exponential factor and activation energy for the reactions of H 2 O with the carbon/carbon composites, carbon fibres and matrices were determined

  15. Effect of bulk modulus on performance of a hydrostatic transmission ...

    Indian Academy of Sciences (India)

    an induction motor, a fixed or variable displacement motor, and all required ... oped a linear relation between oil bulk modulus and pressure for a HST system. ..... Piotrowska A 2003 The control of the rotational speed of hydraulic engine in ...

  16. High-Flux Carbon Molecular Sieve Membranes for Gas Separation.

    Science.gov (United States)

    Richter, Hannes; Voss, Hartwig; Kaltenborn, Nadine; Kämnitz, Susanne; Wollbrink, Alexander; Feldhoff, Armin; Caro, Jürgen; Roitsch, Stefan; Voigt, Ingolf

    2017-06-26

    Carbon membranes have great potential for highly selective and cost-efficient gas separation. Carbon is chemically stable and it is relative cheap. The controlled carbonization of a polymer coating on a porous ceramic support provides a 3D carbon material with molecular sieving permeation performance. The carbonization of the polymer blend gives turbostratic carbon domains of randomly stacked together sp 2 hybridized carbon sheets as well as sp 3 hybridized amorphous carbon. In the evaluation of the carbon molecular sieve membrane, hydrogen could be separated from propane with a selectivity of 10 000 with a hydrogen permeance of 5 m 3 (STP)/(m 2 hbar). Furthermore, by a post-synthesis oxidative treatment, the permeation fluxes are increased by widening the pores, and the molecular sieve carbon membrane is transformed from a molecular sieve carbon into a selective surface flow carbon membrane with adsorption controlled performance and becomes selective for carbon dioxide. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Pseudo-variables method to calculate HMA relaxation modulus through low-temperature induced stress and strain

    International Nuclear Information System (INIS)

    Canestrari, Francesco; Stimilli, Arianna; Bahia, Hussain U.; Virgili, Amedeo

    2015-01-01

    Highlights: • Proposal of a new method to analyze low-temperature cracking of bituminous mixtures. • Reliability of the relaxation modulus master curve modeling through Prony series. • Suitability of the pseudo-variables approach for a close form solution. - Abstract: Thermal cracking is a critical failure mode for asphalt pavements. Relaxation modulus is the major viscoelastic property that controls the development of thermally induced tensile stresses. Therefore, accurate determination of the relaxation modulus is fundamental for designing long lasting pavements. This paper proposes a reliable analytical solution for constructing the relaxation modulus master curve by measuring stress and strain thermally induced in asphalt mixtures. The solution, based on Boltzmann’s Superposition Principle and pseudo-variables concepts, accounts for time and temperature dependency of bituminous materials modulus, avoiding complex integral transformations. The applicability of the solution is demonstrated by testing a reference mixture using the Asphalt Thermal Cracking Analyzer (ATCA) device. By applying thermal loadings on restrained and unrestrained asphalt beams, ATCA allows the determination of several parameters, but is still unable to provide reliable estimations of relaxation properties. Without them the measurements from ATCA cannot be used in modeling of pavement behavior. Thus, the proposed solution successfully integrates ATCA experimental data. The same methodology can be applied to all test methods that concurrently measure stress and strain. The statistical parameters used to evaluate the goodness of fit show optimum correlation between theoretical and experimental results, demonstrating the accuracy of this mathematical approach

  18. Oxidation kinetics and mechanisms of four-direction carbon/carbon composites and their components in carbon dioxide at high temperature

    International Nuclear Information System (INIS)

    Qin, Fei; Peng, Li-na; He, Guo-qiang; Li, Jiang

    2013-01-01

    Highlights: •Four-direction C/C composite was fabricated using carbon fibres and coal tar pitches. •Large-sized bulk matrix was prepared using same process as matrix of C/C composites. •A and E a of C/C, bulk matrix and fibres in CO 2 were determined, respectively. •Pressure exponent n was 0.62 in C/C–CO 2 . -- Abstract: Thermogravimetric analysis and scanning electron microscopy were used to study the oxidation kinetics of four-direction carbon/carbon composites and their components (fibres and matrix) in a CO 2 atmosphere at high temperature. The ablation processes were restricted to reaction-limited oxidation. The mass loss rate was estimated for the four-direction carbon/carbon composites and their components within the temperature of range of 600–1400 °C. The pressure exponent for the reaction of carbon/carbon composites and CO 2 was 0.62, and the pre-exponential factor and activation energy for the reactions of CO 2 and the carbon/carbon composites, carbon fibres and matrix were determined, respectively

  19. Hybrid carbon nanostructure assemblage for high performance pseudo-capacitors

    Directory of Open Access Journals (Sweden)

    A. K. Mishra

    2012-06-01

    Full Text Available Investigation of novel nanocomposites for pseudo-capacitors with high capacitance and energy density is the spotlight of current energy research. In the present work, hybrid carbon nanostructure assemblage of graphene and multiwalled carbon nanotubes has been used as carbon support to nanostructured RuO2 and polyaniline for high energy supercapacitors. Maximum specific capacitances of 110, 235 and 440 F g−1 at the voltage sweep rate of 10 mV s−1 and maximum energy densities of 7, 12.5 and 20.5 Wh kg−1 were observed for carbon assemblage and its RuO2 and polyanilne decorated nanocomposites, respectively, with 1M H2SO4 as electrolyte.

  20. Synergistic toughening of composite fibres by self-alignment of reduced graphene oxide and carbon nanotubes

    Science.gov (United States)

    Shin, Min Kyoon; Lee, Bommy; Kim, Shi Hyeong; Lee, Jae Ah; Spinks, Geoffrey M.; Gambhir, Sanjeev; Wallace, Gordon G.; Kozlov, Mikhail E.; Baughman, Ray H.; Kim, Seon Jeong

    2012-01-01

    The extraordinary properties of graphene and carbon nanotubes motivate the development of methods for their use in producing continuous, strong, tough fibres. Previous work has shown that the toughness of the carbon nanotube-reinforced polymer fibres exceeds that of previously known materials. Here we show that further increased toughness results from combining carbon nanotubes and reduced graphene oxide flakes in solution-spun polymer fibres. The gravimetric toughness approaches 1,000 J g-1, far exceeding spider dragline silk (165 J g-1) and Kevlar (78 J g-1). This toughness enhancement is consistent with the observed formation of an interconnected network of partially aligned reduced graphene oxide flakes and carbon nanotubes during solution spinning, which act to deflect cracks and allow energy-consuming polymer deformation. Toughness is sensitive to the volume ratio of the reduced graphene oxide flakes to the carbon nanotubes in the spinning solution and the degree of graphene oxidation. The hybrid fibres were sewable and weavable, and could be shaped into high-modulus helical springs.

  1. Industrial-Graded Epoxy Nanocomposites with Mechanically Dispersed Multi-Walled Carbon Nanotubes: Static and Damping Properties

    Directory of Open Access Journals (Sweden)

    Andrea Giovannelli

    2017-10-01

    Full Text Available The majority of currently published dispersion protocols of carbon nanotubes rely on techniques that are not scalable to an industrial level. This work shows how to obtain polymer nanocomposites with good mechanical characteristics using multi-walled carbon nanotubes epoxy resins obtained by mechanical mixing only. The mechanical dispersion method illustrated in this work is easily scalable to industrial level. The high shearing force due to the complex field of motion produces a good and reproducible carbon nanotube dispersion. We have tested an industrial epoxy matrix with good baseline mechanical characteristics at different carbon nanotube weight loads. ASTM-derived tensile and compressive tests show an increment in both Young’s modulus and compressive strength compared with the pristine resin from a starting low wt %. Comparative vibration tests show improvement in the damping capacity. The new carbon nanotube enhanced epoxy resin has superior mechanical proprieties compared to the market average competitor, and is among the top products in the bi-components epoxy resins market. The new dispersion method shows significant potential for the industrial use of CNTs in epoxy matrices.

  2. Synergistic toughening of composite fibres by self-alignment of reduced graphene oxide and carbon nanotubes.

    Science.gov (United States)

    Shin, Min Kyoon; Lee, Bommy; Kim, Shi Hyeong; Lee, Jae Ah; Spinks, Geoffrey M; Gambhir, Sanjeev; Wallace, Gordon G; Kozlov, Mikhail E; Baughman, Ray H; Kim, Seon Jeong

    2012-01-31

    The extraordinary properties of graphene and carbon nanotubes motivate the development of methods for their use in producing continuous, strong, tough fibres. Previous work has shown that the toughness of the carbon nanotube-reinforced polymer fibres exceeds that of previously known materials. Here we show that further increased toughness results from combining carbon nanotubes and reduced graphene oxide flakes in solution-spun polymer fibres. The gravimetric toughness approaches 1,000 J g(-1), far exceeding spider dragline silk (165 J g(-1)) and Kevlar (78 J g(-1)). This toughness enhancement is consistent with the observed formation of an interconnected network of partially aligned reduced graphene oxide flakes and carbon nanotubes during solution spinning, which act to deflect cracks and allow energy-consuming polymer deformation. Toughness is sensitive to the volume ratio of the reduced graphene oxide flakes to the carbon nanotubes in the spinning solution and the degree of graphene oxidation. The hybrid fibres were sewable and weavable, and could be shaped into high-modulus helical springs.

  3. Industrial-Graded Epoxy Nanocomposites with Mechanically Dispersed Multi-Walled Carbon Nanotubes: Static and Damping Properties.

    Science.gov (United States)

    Giovannelli, Andrea; Di Maio, Dario; Scarpa, Fabrizio

    2017-10-24

    The majority of currently published dispersion protocols of carbon nanotubes rely on techniques that are not scalable to an industrial level. This work shows how to obtain polymer nanocomposites with good mechanical characteristics using multi-walled carbon nanotubes epoxy resins obtained by mechanical mixing only. The mechanical dispersion method illustrated in this work is easily scalable to industrial level. The high shearing force due to the complex field of motion produces a good and reproducible carbon nanotube dispersion. We have tested an industrial epoxy matrix with good baseline mechanical characteristics at different carbon nanotube weight loads. ASTM-derived tensile and compressive tests show an increment in both Young's modulus and compressive strength compared with the pristine resin from a starting low wt %. Comparative vibration tests show improvement in the damping capacity. The new carbon nanotube enhanced epoxy resin has superior mechanical proprieties compared to the market average competitor, and is among the top products in the bi-components epoxy resins market. The new dispersion method shows significant potential for the industrial use of CNTs in epoxy matrices.

  4. A maximum modulus theorem for the Oseen problem

    Czech Academy of Sciences Publication Activity Database

    Kračmar, S.; Medková, Dagmar; Nečasová, Šárka; Varnhorn, W.

    2013-01-01

    Roč. 192, č. 6 (2013), s. 1059-1076 ISSN 0373-3114 R&D Projects: GA ČR(CZ) GAP201/11/1304; GA MŠk LC06052 Institutional research plan: CEZ:AV0Z10190503 Keywords : Oseen problem * maximum modulus theorem * Oseen potentials Subject RIV: BA - General Mathematics Impact factor: 0.909, year: 2013 http://link.springer.com/article/10.1007%2Fs10231-012-0258-x

  5. Estimate of K-functionals and modulus of smoothness constructed ...

    Indian Academy of Sciences (India)

    ... and -functionals. The main result of the paper is the proof of the equivalence theorem for a -functional and a modulus of smoothness for the Dunkl transform on R d . Author Affiliations. M El Hamma1 R Daher1. Department of Mathematics, Faculty of Sciences Aïn Chock, University of Hassan II, Casablanca, Morocco ...

  6. Calculation of wear (f.i. wear modulus) in the plastic cup of a hip joint prosthesis

    NARCIS (Netherlands)

    Ligterink, D.J.

    1975-01-01

    The wear equation is applied to the wear process in a hip joint prosthesis and a wear modulus is defined. The sliding distance, wear modulus, wear volume, wear area, contact angle and the maximum normal stress were calculated and the theoretical calculations applied to test results. During the wear

  7. Correlation of sp{sup 3} and sp{sup 2} fraction of carbon with electrical, optical and nano-mechanical properties of argon-diluted diamond-like carbon films

    Energy Technology Data Exchange (ETDEWEB)

    Dwivedi, Neeraj [Physics of Energy Harvesting Division, National Physical Laboratory (CSIR), Dr. K.S. Krishnan Road, New Delhi (India); Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016 (India); Kumar, Sushil, E-mail: skumar@nplindia.org [Physics of Energy Harvesting Division, National Physical Laboratory (CSIR), Dr. K.S. Krishnan Road, New Delhi (India); Malik, H.K. [Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016 (India); Govind [Surface Physics and Nano Structures Group, National Physical Laboratory (CSIR), Dr. K.S. Krishnan Road, New Delhi 110012 (India); Rauthan, C.M.S.; Panwar, O.S. [Physics of Energy Harvesting Division, National Physical Laboratory (CSIR), Dr. K.S. Krishnan Road, New Delhi (India)

    2011-05-15

    In the present work the correlation of electrical, optical and nano-mechanical properties of argon-diluted diamond-like carbon (Ar-DLC) thin films with sp{sup 3} and sp{sup 2} fractions of carbon have been explored. These Ar-DLC thin films have been deposited, under varying C{sub 2}H{sub 2} gas pressures from 25 to 75 mTorr, by radio frequency-plasma enhanced chemical vapor deposition technique. X-ray photoelectron spectroscopy studies are performed to estimate the sp{sup 3} and sp{sup 2} fractions of carbon by deconvoluting C 1s core level spectra. Various electrical, optical and nano-mechanical parameters such as conductivity, I-V characteristics, optical band gap, stress, hardness, elastic modulus, plastic resistance parameter, elastic recovery and plastic deformation energy have been estimated and then correlated with calculated sp{sup 3} and sp{sup 2} fractions of carbon and sp{sup 3}/sp{sup 2} ratios. Observed tremendous electrical, optical and nano-mechanical properties in Ar-DLC films deposited under high base pressure conditions made it a cost effective material for not only hard and protective coating applications but also for electronic and optoelectronic applications.

  8. High performance thiol-ene thermosets based on fully bio-based poly(limonene carbonate)s

    NARCIS (Netherlands)

    Li, C.; Johansson, M.; Sablong, R.J.; Koning, C.E.

    2017-01-01

    High glass transition temperature (Tg) thiol-ene networks (TENs) based on poly(limonene carbonate)s (PLCs), derived from orange oils and of potential degradability are described here. PLCs with moderate molecular weight were prepared by copolymerization of limonene oxide with CO2 and subsequent

  9. A strategy for achieving low percolation and high electrical conductivity in melt-blended polycarbonate (PC/multiwall carbon nanotube (MWCNT nanocomposites: Electrical and thermo-mechanical properties

    Directory of Open Access Journals (Sweden)

    B. B. Khatua

    2013-06-01

    Full Text Available In this work, polycarbonate (PC/multiwall carbon nanotube (MWCNT nanocomposites were prepared by simple melt mixing at a temperature (~350°C well above the processing temperature of PC, followed by compression molding, that exhibited percolation threshold as low as of 0.11 wt% and high electrical conductivity of 1.38x10–3 S•cm–1 at only 0.5 wt% MWCNT loading. Due to the lower interfacial energy between MWCNT and PC, the carbon nanotubes are excellently dispersed and formed continuous conductive network structure throughout the host polymer. AC electrical conductivity and dielectric permittivity of PC/MWCNT nanocomposites were characterized in a broad frequency range, 101–107 Hz. Low percolation threshold (pc of 0.11 wt% and the critical exponent (t of ~3.38 was resulted from scaling law equation. The linear plot of logσDC vs. p–1/3 supported the presence of tunneling conduction among MWCNTs. The thermal property and storage modulus of PC were increased with the incorporation of little amount of MWCNTs. Transmission electron microscopy (TEM and field emission scanning electron microscopy (FESEM confirmed the homogeneous dispersion and distribution of MWCNTs throughout the matrix phase.

  10. Determination of Reliability Index and Weibull Modulus as a Measure of Hypereutectic Silumins Survival

    OpenAIRE

    J. Szymszal; J. Piątkowski; J. Przondziono

    2007-01-01

    The first part of the study describes the methods used to determine Weibull modulus and the related reliability index of hypereutectic silumins containing about 17% Si, assigned for manufacture of high-duty castings to be used in automotive applications and aviation. The second part of the study discusses the importance of chemical composition, including the additions of 3% Cu, 1,5% Ni and 1,5% Mg, while in the third part attention was focussed on the effect of process history, including moul...

  11. Mechanical and Electrical Characterization of Novel Carbon Nano Fiber Ultralow Density Foam

    Science.gov (United States)

    2013-12-01

    reinforced epoxy with 60 vol percent of aligned carbon (CFRE), aramid (AFRE), or glass (GFRE) fibers . [28-32... Poisson ratio of 0.137.................................................................................................................54 xiv...were employed to determine relaxation modulus, stability over time, Poisson ratio , stress and strain versus resistance, gauge factor, etc. The data

  12. Lightweight, Ultra-High-Temperature, CMC-Lined Carbon/Carbon Structures

    Science.gov (United States)

    Wright, Matthew J.; Ramachandran, Gautham; Williams, Brian E.

    2011-01-01

    Carbon/carbon (C/C) is an established engineering material used extensively in aerospace. The beneficial properties of C/C include high strength, low density, and toughness. Its shortcoming is its limited usability at temperatures higher than the oxidation temperature of carbon . approximately 400 C. Ceramic matrix composites (CMCs) are used instead, but carry a weight penalty. Combining a thin laminate of CMC to a bulk structure of C/C retains all of the benefits of C/C with the high temperature oxidizing environment usability of CMCs. Ultramet demonstrated the feasibility of combining the light weight of C/C composites with the oxidation resistance of zirconium carbide (ZrC) and zirconium- silicon carbide (Zr-Si-C) CMCs in a unique system composed of a C/C primary structure with an integral CMC liner with temperature capability up to 4,200 F (.2,315 C). The system effectively bridged the gap in weight and performance between coated C/C and bulk CMCs. Fabrication was demonstrated through an innovative variant of Ultramet fs rapid, pressureless melt infiltration processing technology. The fully developed material system has strength that is comparable with that of C/C, lower density than Cf/SiC, and ultra-high-temperature oxidation stability. Application of the reinforced ceramic casing to a predominantly C/C structure creates a highly innovative material with the potential to achieve the long-sought goal of long-term, cyclic high-temperature use of C/C in an oxidizing environment. The C/C substructure provided most of the mechanical integrity, and the CMC strengths achieved appeared to be sufficient to allow the CMC to perform its primary function of protecting the C/C. Nozzle extension components were fabricated and successfully hot-fire tested. Test results showed good thermochemical and thermomechanical stability of the CMC, as well as excellent interfacial bonding between the CMC liner and the underlying C/C structure. In particular, hafnium-containing CMCs on

  13. High-temperature carbonates in the Stillwater Complex, Montana, USA

    Science.gov (United States)

    Aird, H. M.; Boudreau, A. E.

    2012-12-01

    The processes involved in the petrogenesis of the sulphide-hosted platinum-group-element (PGE) deposits of the Stillwater Complex are controversial, with theories ranging from the purely magmatic to those involving an aqueous fluid. To further constrain these models, we have been examining the trace phase assemblages in rocks away from the ore zones. High-temperature carbonates have been observed in association with sulphide minerals below the platiniferous J-M Reef of the Stillwater Complex. The carbonate assemblage consists of dolomite with exsolved calcite and is found in contact with sulphide minerals: chalcopyrite and pyrrhotite in the Peridotite Zone; and pyrrhotite with pentlandite, pyrite and chalcopyrite in Gabbronorite I of the Lower Banded Series. The minimal silicate alteration and the lack of greenschist minerals in association with the mineral assemblage are consistent with a high-temperature origin for the carbonates. The calcite-dolomite geothermometer [1] yields a minimum formation temperature of ~900°C for the unmixed assemblages. A reaction rim surrounds the carbonate-sulphide assemblages, showing an alteration of the host orthopyroxene to a more Ca-enriched, Fe-depleted composition. This is consistent with diffusive exchange between carbonates and pyroxenes at high temperatures, mediated by an aqueous fluid. The highly variable molar MnO/FeO ratios in both the high-temperature carbonates and their associated altered pyroxene rims also imply their interaction with a fluid. The carbonate assemblages are consistent with Stillwater fluid inclusion studies [2], showing that fluids comprising coexisting Cl-rich brine and carbonic fluid were trapped in pegmatitic quartz at 700-715°C, some of which also contained "accidental" calcite inclusions. The high Cl-content of apatite [3] found below the platiniferous J-M Reef is further evidence that a Cl-rich fluid was migrating through the rocks beneath the Reef. Carbonates have been shown to be stabilized

  14. Influence of Selected Factors on the Relationship between the Dynamic Elastic Modulus and Compressive Strength of Concrete.

    Science.gov (United States)

    Jurowski, Krystian; Grzeszczyk, Stefania

    2018-03-22

    In this paper, the relationship between the static and dynamic elastic modulus of concrete and the relationship between the static elastic modulus and compressive strength of concrete have been formulated. These relationships are based on investigations of different types of concrete and take into account the type and amount of aggregate and binder used. The dynamic elastic modulus of concrete was tested using impulse excitation of vibration and the modal analysis method. This method could be used as a non-destructive way of estimating the compressive strength of concrete.

  15. Influence of Selected Factors on the Relationship between the Dynamic Elastic Modulus and Compressive Strength of Concrete

    Science.gov (United States)

    Jurowski, Krystian; Grzeszczyk, Stefania

    2018-01-01

    In this paper, the relationship between the static and dynamic elastic modulus of concrete and the relationship between the static elastic modulus and compressive strength of concrete have been formulated. These relationships are based on investigations of different types of concrete and take into account the type and amount of aggregate and binder used. The dynamic elastic modulus of concrete was tested using impulse excitation of vibration and the modal analysis method. This method could be used as a non-destructive way of estimating the compressive strength of concrete. PMID:29565830

  16. High nitrogen-containing cotton derived 3D porous carbon frameworks for high-performance supercapacitors

    Science.gov (United States)

    Fan, Li-Zhen; Chen, Tian-Tian; Song, Wei-Li; Li, Xiaogang; Zhang, Shichao

    2015-01-01

    Supercapacitors fabricated by 3D porous carbon frameworks, such as graphene- and carbon nanotube (CNT)-based aerogels, have been highly attractive due to their various advantages. However, their high cost along with insufficient yield has inhibited their large-scale applications. Here we have demonstrated a facile and easily scalable approach for large-scale preparing novel 3D nitrogen-containing porous carbon frameworks using ultralow-cost commercial cotton. Electrochemical performance suggests that the optimal nitrogen-containing cotton-derived carbon frameworks with a high nitrogen content (12.1 mol%) along with low surface area 285 m2 g−1 present high specific capacities of the 308 and 200 F g−1 in KOH electrolyte at current densities of 0.1 and 10 A g−1, respectively, with very limited capacitance loss upon 10,000 cycles in both aqueous and gel electrolytes. Moreover, the electrode exhibits the highest capacitance up to 220 F g−1 at 0.1 A g−1 and excellent flexibility (with negligible capacitance loss under different bending angles) in the polyvinyl alcohol/KOH gel electrolyte. The observed excellent performance competes well with that found in the electrodes of similar 3D frameworks formed by graphene or CNTs. Therefore, the ultralow-cost and simply strategy here demonstrates great potential for scalable producing high-performance carbon-based supercapacitors in the industry. PMID:26472144

  17. High nitrogen-containing cotton derived 3D porous carbon frameworks for high-performance supercapacitors

    Science.gov (United States)

    Fan, Li-Zhen; Chen, Tian-Tian; Song, Wei-Li; Li, Xiaogang; Zhang, Shichao

    2015-10-01

    Supercapacitors fabricated by 3D porous carbon frameworks, such as graphene- and carbon nanotube (CNT)-based aerogels, have been highly attractive due to their various advantages. However, their high cost along with insufficient yield has inhibited their large-scale applications. Here we have demonstrated a facile and easily scalable approach for large-scale preparing novel 3D nitrogen-containing porous carbon frameworks using ultralow-cost commercial cotton. Electrochemical performance suggests that the optimal nitrogen-containing cotton-derived carbon frameworks with a high nitrogen content (12.1 mol%) along with low surface area 285 m2 g-1 present high specific capacities of the 308 and 200 F g-1 in KOH electrolyte at current densities of 0.1 and 10 A g-1, respectively, with very limited capacitance loss upon 10,000 cycles in both aqueous and gel electrolytes. Moreover, the electrode exhibits the highest capacitance up to 220 F g-1 at 0.1 A g-1 and excellent flexibility (with negligible capacitance loss under different bending angles) in the polyvinyl alcohol/KOH gel electrolyte. The observed excellent performance competes well with that found in the electrodes of similar 3D frameworks formed by graphene or CNTs. Therefore, the ultralow-cost and simply strategy here demonstrates great potential for scalable producing high-performance carbon-based supercapacitors in the industry.

  18. Synthesis of high luminescent carbon nanoparticles

    Science.gov (United States)

    Gvozdyuk, Alina A.; Petrova, Polina S.; Goryacheva, Irina Y.; Sukhorukov, Gleb B.

    2017-03-01

    In this article we report an effective and simple method for synthesis of high luminescent carbon nanodots (CDs). In our work as a carbon source sodium dextran sulfate (DS) was used because it is harmless, its analogs are used in medicine as antithrombotic compounds and blood substitutes after hemorrhage. was used as a substrate We investigated the influence of temperature parameters of hydrothermal synthesis on the photoluminescence (PL) intensity and position of emission maxima. We discovered that the PL intensity can be tuned by changing of synthesis temperature and CD concentration.

  19. Modulus of smoothness and theorems concerning approximation on compact groups

    Directory of Open Access Journals (Sweden)

    H. Vaezi

    2003-01-01

    Full Text Available We consider the generalized shift operator defined by (Shuf(g=∫Gf(tut−1gdt on a compact group G, and by using this operator, we define “spherical” modulus of smoothness. So, we prove Stechkin and Jackson-type theorems.

  20. Nanorobotic Manipulation Setup for Pick-and-Place Handling and non-destructive Characterization of Carbon Nanotubes

    DEFF Research Database (Denmark)

    Eicchorn, V.; Carlson, Kenneth; Andersen, Karin Nordström

    2007-01-01

    . The pick-and-place task is carried out by using an electrothermal actuated microgripper, designed for controlled manipulation of nanotubes. The nanotube is picked up from an array of multiwalled carbon nanotubes (MWCNTs) and transferred to the tip of an atomic force microscope (AFM) probe in order...... to assemble a high-aspect ratio AFM supertip. Another application of the nanorobotic setup considered in this paper is the nondestructive mechanical characterization of CNTs. A piezoresistive AFM probe is used to bend MWCNTs, while the bending force is measured, in order to estimate the Young's modulus...

  1. Effects of Bone Young’s Modulus on Finite Element Analysis in the Lateral Ankle Biomechanics

    Directory of Open Access Journals (Sweden)

    W. X. Niu

    2013-01-01

    Full Text Available Finite element analysis (FEA is a powerful tool in biomechanics. The mechanical properties of biological tissue used in FEA modeling are mainly from experimental data, which vary greatly and are sometimes uncertain. The purpose of this study was to research how Young’s modulus affects the computations of a foot-ankle FEA model. A computer simulation and an in-vitro experiment were carried out to investigate the effects of incremental Young’s modulus of bone on the stress and strain outcomes in the computational simulation. A precise 3-dimensional finite element model was constructed based on an in-vitro specimen of human foot and ankle. Young’s moduli were assigned as four levels of 7.3, 14.6, 21.9 and 29.2 GPa respectively. The proximal tibia and fibula were completely limited to six degrees of freedom, and the ankle was loaded to inversion 10° and 20° through the calcaneus. Six cadaveric foot-ankle specimens were loaded as same as the finite element model, and strain was measured at two positions of the distal fibula. The bone stress was less affected by assignment of Young’s modulus. With increasing of Young’s modulus, the bone strain decreased linearly. Young’s modulus of 29.2 GPa was advisable to get the satisfactory surface strain results. In the future study, more ideal model should be constructed to represent the nonlinearity, anisotropy and inhomogeneity, as the same time to provide reasonable outputs of the interested parameters.

  2. Diffusion barrier coatings for high temperature corrosion resistance of advanced carbon/carbon composites

    International Nuclear Information System (INIS)

    Singh Raman, K.S.

    2000-01-01

    Carbon possesses an excellent combination of mechanical and thermal properties, viz., excellent creep resistance at temperatures up to 2400 deg C in non-oxidizing environment and a low thermal expansion coefficient. These properties make carbon a potential material for very high temperature applications. However, the use of carbon materials at high temperatures is considerably restricted due to their extremely poor oxidation resistance at temperatures above 400 deg C. The obvious choice for improving high temperature oxidation resistance of such materials is a suitable diffusion barrier coating. This paper presents an overview of recent developments in advanced diffusion- and thermal-barrier coatings for ceramic composites, with particular reference to C/C composites. The paper discusses the development of multiphase and multi-component ceramic coatings, and recent investigations on the oxidation resistance of the coated C/C composites. The paper also discusses the cases of innovative engineering solutions for traditional problems with the ceramic coatings, and the scope of intelligent processing in developing coatings for the C/C composites. Copyright (2000) AD-TECH - International Foundation for the Advancement of Technology Ltd

  3. Flexural strength and modulus of elasticity of different types of resin-based composites.

    Science.gov (United States)

    Rodrigues Junior, Sinval Adalberto; Zanchi, Cesar Henrique; Carvalho, Rodrigo Varella de; Demarco, Flávio Fernando

    2007-01-01

    The aim of the study was to test whether the filler composition of resin composites influences their flexural strength and modulus of elasticity. Flexural strength and modulus of elasticity were obtained through a three-point bending test. Twelve bar shaped specimens of 5 commercially available composites--Supreme (3M/ESPE), a universal nanofilled composite; Esthet-X (Dentsply), Z-250 (3M/ESPE), Charisma (Heraeus Kulzer), universal hybrid composites; and Helio Fill (Vigodent), a microfine composite--were confectioned according to the ISO 4049/2000 specifications. The test was performed after a 7-days storage time using a universal test machine with a crosshead speed of 1 mm/min. The filler weight content was determined by the ashing technique. The data obtained on the mechanical properties were submitted to ANOVA and Tukey test (p elasticity results were observed among the universal hybrid composites. The nanofilled composite presented intermediary results. Within the limitations of this in vitro study, it could be concluded that the filler content significantly interfered in the flexural strength and modulus of elasticity of the composites tested.

  4. Using data logging to measure Young’s modulus

    Science.gov (United States)

    Richardson, David

    2018-03-01

    Historically the Young’s modulus of a material is measured by increasing the applied force to a wire and measuring the extension. The cross sectional area and original length allow this to be plotted as a graph of stress versus strain. This article describes how data logging sensors can be used to measure how the force changes with extension, allowing a strain versus stress graph to be plotted into the region of plastic deformation.

  5. Crack arrest within teeth at the dentinoenamel junction caused by elastic modulus mismatch.

    Science.gov (United States)

    Bechtle, Sabine; Fett, Theo; Rizzi, Gabriele; Habelitz, Stefan; Klocke, Arndt; Schneider, Gerold A

    2010-05-01

    Enamel and dentin compose the crowns of human teeth. They are joined at the dentinoenamel junction (DEJ) which is a very strong and well-bonded interface unlikely to fail within healthy teeth despite the formation of multiple cracks within enamel during a lifetime of exposure to masticatory forces. These cracks commonly are arrested when reaching the DEJ. The phenomenon of crack arrest at the DEJ is described in many publications but there is little consensus on the underlying cause and mechanism. Explanations range from the DEJ having a larger toughness than both enamel and dentin up to the assumption that not the DEJ itself causes crack arrest but the so-called mantle dentin, a thin material layer close to the DEJ that is somewhat softer than the bulk dentin. In this study we conducted 3-point bending experiments with bending bars consisting of the DEJ and surrounding enamel and dentin to investigate crack propagation and arrest within the DEJ region. Calculated stress intensities around crack tips were found to be highly influenced by the elastic modulus mismatch between enamel and dentin and hence, the phenomenon of crack arrest at the DEJ could be explained accordingly via this elastic modulus mismatch. Copyright 2010 Elsevier Ltd. All rights reserved.

  6. High-resolution mapping of forest carbon stocks in the Colombian Amazon

    Directory of Open Access Journals (Sweden)

    G. P. Asner

    2012-07-01

    Full Text Available High-resolution mapping of tropical forest carbon stocks can assist forest management and improve implementation of large-scale carbon retention and enhancement programs. Previous high-resolution approaches have relied on field plot and/or light detection and ranging (LiDAR samples of aboveground carbon density, which are typically upscaled to larger geographic areas using stratification maps. Such efforts often rely on detailed vegetation maps to stratify the region for sampling, but existing tropical forest maps are often too coarse and field plots too sparse for high-resolution carbon assessments. We developed a top-down approach for high-resolution carbon mapping in a 16.5 million ha region (> 40% of the Colombian Amazon – a remote landscape seldom documented. We report on three advances for large-scale carbon mapping: (i employing a universal approach to airborne LiDAR-calibration with limited field data; (ii quantifying environmental controls over carbon densities; and (iii developing stratification- and regression-based approaches for scaling up to regions outside of LiDAR coverage. We found that carbon stocks are predicted by a combination of satellite-derived elevation, fractional canopy cover and terrain ruggedness, allowing upscaling of the LiDAR samples to the full 16.5 million ha region. LiDAR-derived carbon maps have 14% uncertainty at 1 ha resolution, and the regional map based on stratification has 28% uncertainty in any given hectare. High-resolution approaches with quantifiable pixel-scale uncertainties will provide the most confidence for monitoring changes in tropical forest carbon stocks. Improved confidence will allow resource managers and decision makers to more rapidly and effectively implement actions that better conserve and utilize forests in tropical regions.

  7. Temperature Effects on Adhesive Bond Strengths and Modulus for Commonly Used Spacecraft Structural Adhesives

    Science.gov (United States)

    Ojeda, Cassandra E.; Oakes, Eric J.; Hill, Jennifer R.; Aldi, Dominic; Forsberg, Gustaf A.

    2011-01-01

    A study was performed to observe how changes in temperature and substrate material affected the strength and modulus of an adhesive bondline. Seven different adhesives commonly used in aerospace bonded structures were tested. Aluminum, titanium and Invar adherends were cleaned and primed, then bonded using the manufacturer's recommendations. Following surface preparation, the coupons were bonded with the adhesives. The single lap shear coupons were then pull tested per ASTM D 1002 Standard Test Method for Apparent Shear Strength of Single- Lap-Joint over a temperature range from -150 deg C up to +150 deg C. The ultimate strength was calculated and the resulting data were converted into B-basis design allowables. Average and Bbasis results were compared. Results obtained using aluminum adherends are reported. The effects of using different adherend materials and temperature were also studied and will be reported in a subsequent paper. Dynamic Mechanical Analysis (DMA) was used to study variations in adhesive modulus with temperature. This work resulted in a highly useful database for comparing adhesive performance over a wide range of temperatures, and has facilitated selection of the appropriate adhesive for spacecraft structure applications.

  8. Using the ultrasound and instrumented indentation techniques to measure the elastic modulus of engineering materials

    International Nuclear Information System (INIS)

    Meza, J. M.; Franco, E. E.; Farias, M. C. M.; Buiochi, F.; Souza, R. M.; Cruz, J.

    2008-01-01

    Currently, the acoustic and nano indentation techniques are two of the most used techniques for materials elastic modulus measurement. In this article fundamental principles and limitations of both techniques are shown and discussed. Last advances in nano indentation technique are also reviewed. an experimental study in ceramic, metallic, composite and single crystals was also done. Results shown that ultrasonic technique is capable to provide results in agreement with those reported in literature. However, ultrasonic technique does not allow measuring the elastic modulus of some small samples and single crystals. On the other hand, the nano indentation technique estimates the elastic modulus values in reasonable agreement with those measured by acoustic methods, particularly in amorphous materials, while in some policristaline materials some deviation from expected values was obtained. (Author) 29 refs

  9. Fatigue testing of wood composites for aerogenerator blades. Pt. 11: Assessment of fatigue damage accumulation using a fatigue modulus approach

    Energy Technology Data Exchange (ETDEWEB)

    Hacker, C L; Ansell, M P [Bath Univ. (United Kingdom)

    1996-12-31

    Stress-strain hysteresis loops have been captured during fatigue tests performed at R=10 (compression-compression) and R=0.1 (tension-tension) on Khaya epoxy wood composites. A fatigue modulus approach, proposed by Hwang and Han in 1989, has been applied to the data and a relationship established between the initial change in fatigue modulus and fatigue life. By following changes in fatigue modulus during the first 100 test cycles it is possible to predict the life of the sample allowing rapid evaluation of the fatigue performance of wood composites. Fatigue modulus values have also been calculated for hysteresis loops captured during complex load - time history tests. Similar trends in change in fatigue modulus suggest that this approach could be used in complex loading conditions to evaluate fatigue damage accumulation and predict fatigue life. (Author)

  10. High-Level Heteroatom Doped Two-Dimensional Carbon Architectures for Highly Efficient Lithium-Ion Storage

    Directory of Open Access Journals (Sweden)

    Zhijie Wang

    2018-04-01

    Full Text Available In this work, high-level heteroatom doped two-dimensional hierarchical carbon architectures (H-2D-HCA are developed for highly efficient Li-ion storage applications. The achieved H-2D-HCA possesses a hierarchical 2D morphology consisting of tiny carbon nanosheets vertically grown on carbon nanoplates and containing a hierarchical porosity with multiscale pore size. More importantly, the H-2D-HCA shows abundant heteroatom functionality, with sulfur (S doping of 0.9% and nitrogen (N doping of as high as 15.5%, in which the electrochemically active N accounts for 84% of total N heteroatoms. In addition, the H-2D-HCA also has an expanded interlayer distance of 0.368 nm. When used as lithium-ion battery anodes, it shows excellent Li-ion storage performance. Even at a high current density of 5 A g−1, it still delivers a high discharge capacity of 329 mA h g−1 after 1,000 cycles. First principle calculations verifies that such unique microstructure characteristics and high-level heteroatom doping nature can enhance Li adsorption stability, electronic conductivity and Li diffusion mobility of carbon nanomaterials. Therefore, the H-2D-HCA could be promising candidates for next-generation LIB anodes.

  11. Determining the Young's modulus of a cellular titanium implant by FEM simulation

    Science.gov (United States)

    Loginov, Yu. N.; Golodnov, A. I.; Stepanov, S. I.; Kovalev, E. Yu.

    2017-12-01

    The role of additive manufacturing is noted for the construction of titanium medical implants. The purpose of the study is to determine the Young's modulus of cellular titanium implants, which is based on calculations performed by finite element analysis. A honeycomb structure from intersecting cylinder surfaces is offered for the implant made of the Ti-6Al-4V alloy. Boundary conditions are stated for the loading of the implant structure. It is demonstrated that the Young's modulus can be reduced more than three times comparing to a solid titanium alloy. Zones of strain and stress localization located near the abutment of the cylindrical surfaces. Recommendations for the further improvement of the implant architecture are generated.

  12. Effects of temperature and torsion speed on torsional properties of single-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Khoei, A.R.; Ban, E.; Banihashemi, P.; Abdolhosseini Qomi, M.J.

    2011-01-01

    Carbon nanotubes (CNTs) are excellent candidates for torsional elements used in nanoelectro-mechanical systems (NEMS). Simulations show that after being twisted to a certain angle, they buckle and lose their mechanical strength. In this paper, classical molecular dynamics simulations are performed on single-walled carbon nanotubes (CNTs) to investigate the effects of torsion speed and temperature on CNT torsional properties. The AIREBO potential is employed to describe the bonded interactions between carbon atoms. The MD simulations clearly show that the buckling of CNTs in torsion is a reversible process, in which by unloading the buckled CNT in opposite direction, it returns to its original configuration. In addition, the numerical results reveal that the torsional shear modulus of CNTs increases by increasing the temperature and decreasing the torsion speed. Furthermore, the buckling torsion angle of CNTs increases by increasing the torsion speed and decreasing the temperature. Finally, it is observed that torsional properties of CNTs are highly affected by speed of twist and temperature of the nanotubes.

  13. Measurement of the elastic modulus of Kapton perpendicular to the plane of the film at room and cryogenic temperatures

    International Nuclear Information System (INIS)

    Davidson, M.; Bastian, S.; Markley, F.

    1992-04-01

    Understanding the short term elastic properties, (i.e. the instantaneous modulus) of Kapton is essential in determining the loss of prestress during storage and operation of SSC dipole magnets. The magnet prestress contributes directly to the coil response to the Lorentz forces during ramping. The instantaneous modulus is important in extrapolating short term stress relaxation data to longer times. Most theoretical fits assume a time independent component and a time dependent component. The former may be represented by the Kapton modulus near zero K where all relaxation processes have been ''frozen'' out. Modulus measurements at 77K and 4.2K may point to a correct value for the near zero K modulus. Three companion papers presented at this conference will be: ''Stress Relaxation in SSC 50 mm Dipole Coils'' ''Temperature Dependence of the Viscoelastic Properties of SSC Coil Insulation (Kapton)'' ''Theoretical Methods for Creep and Stress Relaxation Studies of SSC Coil.''

  14. Multifunctional carbon nanotube yarns and transparent sheets: Fabrication, properties, and applications

    International Nuclear Information System (INIS)

    Atkinson, Ken R.; Hawkins, Stephen C.; Huynh, C.; Skourtis, Chris; Dai, Jane; Zhang Mei; Fang Shaoli; Zakhidov, Anvar A.; Lee, Sergey B.; Aliev, Ali E.; Williams, Christopher D.; Baughman, Ray H.

    2007-01-01

    Carbon nanotubes (CNTs) have a range of useful properties, such as high strength and modulus, high electrical and thermal conductivities, are stable at relatively high and low temperatures, and because of a low density, the specific properties are even better. For these reasons, CNTs are of great technological interest, however, difficulties in assembling the trillions of nanotubes into macro-sized objects without the use of binders has retarded the growth of practical applications. The work presented outlines efforts to develop a solid-state process for nanotube assembly that promises to eliminate the requirement to use binders and capture the inherent properties of nanotubes. These processes include spinning CNT forests into yarns having toughness and high electrical conductivity, and drawing the forests to form webs with gravimetric strengths higher than high tensile steel plate. Both yarns and webs have high electrical conductivities and can be used for emission of light by incandescence

  15. Confinement of hydrogen at high pressure in carbon nanotubes

    Science.gov (United States)

    Lassila, David H [Aptos, CA; Bonner, Brian P [Livermore, CA

    2011-12-13

    A high pressure hydrogen confinement apparatus according to one embodiment includes carbon nanotubes capped at one or both ends thereof with a hydrogen-permeable membrane to enable the high pressure confinement of hydrogen and release of the hydrogen therethrough. A hydrogen confinement apparatus according to another embodiment includes an array of multi-walled carbon nanotubes each having first and second ends, the second ends being capped with palladium (Pd) to enable the high pressure confinement of hydrogen and release of the hydrogen therethrough as a function of palladium temperature, wherein the array of carbon nanotubes is capable of storing hydrogen gas at a pressure of at least 1 GPa for greater than 24 hours. Additional apparatuses and methods are also presented.

  16. Spine-like Nanostructured Carbon Interconnected by Graphene for High-performance Supercapacitors

    Science.gov (United States)

    Park, Sang-Hoon; Yoon, Seung-Beom; Kim, Hyun-Kyung; Han, Joong Tark; Park, Hae-Woong; Han, Joah; Yun, Seok-Min; Jeong, Han Gi; Roh, Kwang Chul; Kim, Kwang-Bum

    2014-08-01

    Recent studies on supercapacitors have focused on the development of hierarchical nanostructured carbons by combining two-dimensional graphene and other conductive sp2 carbons, which differ in dimensionality, to improve their electrochemical performance. Herein, we report a strategy for synthesizing a hierarchical graphene-based carbon material, which we shall refer to as spine-like nanostructured carbon, from a one-dimensional graphitic carbon nanofiber by controlling the local graphene/graphitic structure via an expanding process and a co-solvent exfoliation method. Spine-like nanostructured carbon has a unique hierarchical structure of partially exfoliated graphitic blocks interconnected by thin graphene sheets in the same manner as in the case of ligaments. Owing to the exposed graphene layers and interconnected sp2 carbon structure, this hierarchical nanostructured carbon possesses a large, electrochemically accessible surface area with high electrical conductivity and exhibits high electrochemical performance.

  17. Highly thermal conductive carbon fiber/boron carbide composite material

    International Nuclear Information System (INIS)

    Chiba, Akio; Suzuki, Yasutaka; Goto, Sumitaka; Saito, Yukio; Jinbo, Ryutaro; Ogiwara, Norio; Saido, Masahiro.

    1996-01-01

    In a composite member for use in walls of a thermonuclear reactor, if carbon fibers and boron carbide are mixed, since they are brought into contact with each other directly, boron is reacted with the carbon fibers to form boron carbide to lower thermal conductivity of the carbon fibers. Then, in the present invention, graphite or amorphous carbon is filled between the carbon fibers to provide a fiber bundle of not less than 500 carbon fibers. Further, the surface of the fiber bundle is coated with graphite or amorphous carbon to suppress diffusion or solid solubilization of boron to carbon fibers or reaction of them. Then, lowering of thermal conductivity of the carbon fibers is prevented, as well as the mixing amount of the carbon fiber bundles with boron carbide, a sintering temperature and orientation of carbon fiber bundles are optimized to provide a highly thermal conductive carbon fiber/boron carbide composite material. In addition, carbide or boride type short fibers, spherical graphite, and amorphous carbon are mixed in the boron carbide to prevent development of cracks. Diffusion or solid solubilization of boron to carbon fibers is reduced or reaction of them if the carbon fibers are bundled. (N.H.)

  18. Design values of resilient modulus of stabilized and non-stabilized base.

    Science.gov (United States)

    2010-10-01

    The primary objective of this research study is to determine design value ranges for typical base materials, as allowed by LADOTD specifications, through laboratory tests with respect to resilient modulus and other parameters used by pavement design ...

  19. Size-dependent effective Young’s modulus of silicon nitride cantilevers

    NARCIS (Netherlands)

    Babaei Gavan, K.; Westra, H.J.R.; Van der Drift, E.W.J.M.; Venstra, W.J.; Van der Zant, H.S.J.

    2009-01-01

    The effective Young’s modulus of silicon nitride cantilevers is determined for thicknesses in the range of 20–684 nm by measuring resonance frequencies from thermal noise spectra. A significant deviation from the bulk value is observed for cantilevers thinner than 150 nm. To explain the observations

  20. 3D hybrid-porous carbon derived from carbonization of metal organic frameworks for high performance supercapacitors

    Science.gov (United States)

    Bao, Weizhai; Mondal, Anjon Kumar; Xu, Jing; Wang, Chengyin; Su, Dawei; Wang, Guoxiu

    2016-09-01

    We report a rational design and synthesis of 3D hybrid-porous carbon with a hierarchical pore architecture for high performance supercapacitors. It contains micropores (<2 nm diameter) and mesopores (2-4 nm), derived from carbonization of unique porous metal organic frameworks (MOFs). Owning to the synergistic effect of micropores and mesopores, the hybrid-porous carbon has exceptionally high ion-accessible surface area and low ion diffusion resistance, which is desired for supercapacitor applications. When applied as electrode materials in supercapacitors, 3D hybrid-porous carbon demonstrates a specific capacitance of 332 F g-1 at a constant charge/discharge current of 500 mA g-1. The supercapacitors can endure more than 10,000 cycles without degradation of capacitance.

  1. Effect of Cooling Rate on the Longitudinal Modulus of Cu3Sn Phase of Ag-Sn-Cu Amalgam Alloy (Part II

    Directory of Open Access Journals (Sweden)

    R. H. Rusli

    2015-10-01

    Full Text Available Effects of cooling rate (at the time of solidification on the elastic constants of Cu3Sn phase of Ag-Sn-Cu dental amalgam alloy were studied. In this study, three types of alloys were made, with the composition Cu-38-37 wt% Sn by means of casting, where each alloy was subjected to different cooling rate, such as cooling on the air (AC, air blown (AB, and quenched in the water (WQ. X-ray diffraction, metallography, and Scanning Electron Microscopy with Energy Dispersive Spectroscopy studies of three alloys indicated the existence of Cu3Sn phase. Determination of the modulus of elasticity of Cu3Sn (ε phase was carried out by the measurement of longitudinal and transversal waves velocity using ultrasonic technique. The result shows that Cu3Sn (ε phase on AC gives higher modulus of elasticity values than those of Cu3Sn (ε on AB and WQ. The high modulus of elasticity value will produce a strong Ag-Sn-Cu dental amalagam alloy.

  2. Carbon Nanomembranes

    Science.gov (United States)

    Angelova, Polina; Gölzhäuser, Armin

    2017-03-01

    This chapter describes the formation and properties of one nanometer thick carbon nanomembranes (CNMs), made by electron induced cross-linking of aromatic self-assembled monolayers (SAMs). The cross-linked SAMs are robust enough to be released from the surface and placed on solid support or over holes as free-standing membranes. Annealing at 1000K transforms CNMs into graphene accompanied by a change of mechanical stiffness and electrical resistance. The developed fabrication approach is scalable and provides molecular level control over thickness and homogeneity of the produced CNMs. The mechanisms of electron-induced cross-linking process are discussed in details. A variety of polyaromatic thiols: oligophenyls as well as small and extended condensed polycyclic hydrocarbons have been successfully employed, demonstrating that the structural and functional properties of the resulting nanomembranes are strongly determined by the structure of molecular monolayers. The mechanical properties of CNMs (Young's modulus, tensile strength and prestress) are characterized by bulge testing. The interpretation of the bulge test data relates the Young's modulus to the properties of single molecules and to the structure of the pristine SAMs. The gas transport through the CNM is measured onto polydimethylsiloxane (PDMS) - thin film composite membrane. The established relationship of permeance and molecular size determines the molecular sieving mechanism of permeation through this ultrathin sheet.

  3. Highly Enhanced Raman Scattering on Carbonized Polymer Films.

    Science.gov (United States)

    Yoon, Jong-Chul; Hwang, Jongha; Thiyagarajan, Pradheep; Ruoff, Rodney S; Jang, Ji-Hyun

    2017-06-28

    We have discovered a carbonized polymer film to be a reliable and durable carbon-based substrate for carbon enhanced Raman scattering (CERS). Commercially available SU8 was spin coated and carbonized (c-SU8) to yield a film optimized to have a favorable Fermi level position for efficient charge transfer, which results in a significant Raman scattering enhancement under mild measurement conditions. A highly sensitive CERS (detection limit of 10 -8 M) that was uniform over a large area was achieved on a patterned c-SU8 film and the Raman signal intensity has remained constant for 2 years. This approach works not only for the CMOS-compatible c-SU8 film but for any carbonized film with the correct composition and Fermi level, as demonstrated with carbonized-PVA (poly(vinyl alcohol)) and carbonized-PVP (polyvinylpyrollidone) films. Our study certainly expands the rather narrow range of Raman-active material platforms to include robust carbon-based films readily obtained from polymer precursors. As it uses broadly applicable and cheap polymers, it could offer great advantages in the development of practical devices for chemical/bio analysis and sensors.

  4. Effect of cooling rate on the properties of high density polyethylene/multi-walled carbon nanotube composites

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Dong; Harkin-Jones, Eileen [School of Mechanical and Aerospace Engineering, Queen’s University Belfast, BT9 5AH (United Kingdom); Linton, David [School of Electronics, Electrical Engineering and Computer Science, Queen’s University Belfast, BT9 5AH (United Kingdom)

    2015-05-22

    High density polyethylene (HDPE)/multi-walled carbon nanotube (MWCNT) nanocomposites were prepared by melt mixing using twin-screw extrusion. The extruded pellets were compression moulded at 200°C for 5min followed by cooling at different cooling rates (20°C/min and 300°C/min respectively) to produce sheets for characterization. Scanning electron microscopy (SEM) shows that the MWCNTs are uniformly dispersed in the HDPE. At 4 wt% addition of MWCNTs composite modulus increased by over 110% compared with the unfilled HDPE (regardless of the cooling rate). The yield strength of both unfilled and filled HDPE decreased after rapid cooling by about 10% due to a lower crystallinity and imperfect crystallites. The electrical percolation threshold of composites, irrespective of the cooling rate, is between a MWCNT concentration of 1∼2 wt%. Interestingly, the electrical resistivity of the rapidly cooled composite with 2 wt% MWCNTs is lower than that of the slowly cooled composites with the same MWCNT loading. This may be due to the lower crystallinity and smaller crystallites facilitating the formation of conductive pathways. This result may have significant implications for both process control and the tailoring of electrical conductivity in the manufacture of conductive HDPE/MWCNT nanocomposites.

  5. Effect of cooling rate on the properties of high density polyethylene/multi-walled carbon nanotube composites

    International Nuclear Information System (INIS)

    Xiang, Dong; Harkin-Jones, Eileen; Linton, David

    2015-01-01

    High density polyethylene (HDPE)/multi-walled carbon nanotube (MWCNT) nanocomposites were prepared by melt mixing using twin-screw extrusion. The extruded pellets were compression moulded at 200°C for 5min followed by cooling at different cooling rates (20°C/min and 300°C/min respectively) to produce sheets for characterization. Scanning electron microscopy (SEM) shows that the MWCNTs are uniformly dispersed in the HDPE. At 4 wt% addition of MWCNTs composite modulus increased by over 110% compared with the unfilled HDPE (regardless of the cooling rate). The yield strength of both unfilled and filled HDPE decreased after rapid cooling by about 10% due to a lower crystallinity and imperfect crystallites. The electrical percolation threshold of composites, irrespective of the cooling rate, is between a MWCNT concentration of 1∼2 wt%. Interestingly, the electrical resistivity of the rapidly cooled composite with 2 wt% MWCNTs is lower than that of the slowly cooled composites with the same MWCNT loading. This may be due to the lower crystallinity and smaller crystallites facilitating the formation of conductive pathways. This result may have significant implications for both process control and the tailoring of electrical conductivity in the manufacture of conductive HDPE/MWCNT nanocomposites

  6. Elastic Metamaterials with Simultaneously Negative Effective Shear Modulus and Mass Density

    KAUST Repository

    Wu, Ying; Lai, Yun; Zhang, Zhao-Qing

    2011-01-01

    We propose a type of elastic metamaterial comprising fluid-solid composite inclusions which can possess a negative shear modulus and negative mass density over a large frequency region. Such a material has the unique property that only transverse

  7. Method and device for secure, high-density tritium bonded with carbon

    Science.gov (United States)

    Wertsching, Alan Kevin; Trantor, Troy Joseph; Ebner, Matthias Anthony; Norby, Brad Curtis

    2016-04-05

    A method and device for producing secure, high-density tritium bonded with carbon. A substrate comprising carbon is provided. A precursor is intercalated between carbon in the substrate. The precursor intercalated in the substrate is irradiated until at least a portion of the precursor, preferably a majority of the precursor, is transmutated into tritium and bonds with carbon of the substrate forming bonded tritium. The resulting bonded tritium, tritium bonded with carbon, produces electrons via beta decay. The substrate is preferably a substrate from the list of substrates consisting of highly-ordered pyrolytic graphite, carbon fibers, carbon nanotunes, buckministerfullerenes, and combinations thereof. The precursor is preferably boron-10, more preferably lithium-6. Preferably, thermal neutrons are used to irradiate the precursor. The resulting bonded tritium is preferably used to generate electricity either directly or indirectly.

  8. Flexural Properties of Activated Carbon Filled Epoxy Nano composites

    International Nuclear Information System (INIS)

    Khalil, H.P.S.A.; Khalil, H.P.S.A.; Alothman, O.Y.; Paridah, M.T.; Zainudin, E.S.

    2014-01-01

    Activated carbon (AC) filled epoxy nano composites obtained by mixing the desired amount of nano AC viz., bamboo stem, oil palm empty fruit bunch, and coconut shell from agricultural biomass with the epoxy resin. Flexural properties of activated carbons filled epoxy nano composites with 1 %, and 5 % filler loading were measured. In terms of flexural strength and modulus, a significant increment was observed with addition of 1 % vol and 5 % vol nano-activated carbon as compared to neat epoxy. The effect of activated carbon treated by two chemical agents (potassium hydroxide and phosphoric acid) on the flexural properties of epoxy nano composites were also investigated. Flexural strength of activated carbon-bamboo stem, activated carbon-oil palm, and activated carbon-coconut shell reinforced epoxy nano composites showed almost same value in case of 5 % potassium hydroxide activated carbon. Flexural strength of potassium hydroxide activated carbon-based epoxy nano composites was higher than phosphoric acid activated carbon. The flexural toughness of both the potassium hydroxide and phosphoric acid activated carbon reinforced composites range between 0.79 - 0.92 J. It attributed that developed activated carbon filled epoxy nano composites can be used in different applications. (author)

  9. Dynamic mechanical analysis of single walled carbon nanotubes/polymethyl methacrylate nanocomposite films

    International Nuclear Information System (INIS)

    Badawi, Ali; Al Hosiny, N.

    2015-01-01

    Dynamic mechanical properties of nanocomposite films with different ratios of single walled carbon nanotubes/polymethyl methacrylate (SWCNTs/PMMA) are studied. Nanocomposite films of different ratios (0, 0.5, 1.0, and 2.0 weight percent (wt%)) of SWCNTs/PMMA are fabricated by using a casting technique. The morphological and structural properties of both SWCNT powder and SWCNTs/PMMA nanocomposite films are investigated by using a high resolution transmission electron microscope and x-ray diffractometer respectively. The mechanical properties including the storage modulus, loss modulus, loss factor (tan δ) and stiffness of the nanocomposite film as a function of temperature are recorded by using a dynamic mechanical analyzer at a frequency of 1 Hz. Compared with pure PMMA film, the nanocomposite films with different ratios of SWCNTs/PMMA are observed to have enhanced storage moduli, loss moduli and high stiffness, each of which is a function of temperature. The intensity of the tan δ peak for pure PMMA film is larger than those of the nanocomposite films. The glass transition temperature (T g ) of SWCNTs/PMMA nanocomposite film shifts towards the higher temperature side with respect to pure PMMA film from 91.2 °C to 99.5 °C as the ratio of SWCNTs/PMMA increases from 0 to 2.0 wt%. (paper)

  10. Full factorial design analysis of carbon nanotube polymer-cement composites

    Directory of Open Access Journals (Sweden)

    Fábio de Paiva Cota

    2012-08-01

    Full Text Available The work described in this paper is related to the effect of adding carbon nanotubes (CNT on the mechanical properties of polymer-cement composites. A full factorial design has been performed on 160 samples to identify the contribution provided by the following factors: polymeric phase addition, CNT weight addition and water/cement ratio. The response parameters of the full factorial design were the bulk density, apparent porosity, compressive strength and elastic modulus of the polymer-cement-based nanocomposites. All the factors considered in this analysis affected significantly the bulk density and apparent porosity of the composites. The compressive strength and elastic modulus were affected primarily by the cross-interactions between polymeric phase and CNT additions, and the water/cement ratio with polymeric phase factors.

  11. High-performance carbon nanotube-reinforced bioplastic

    CSIR Research Space (South Africa)

    Ramontja, J

    2009-12-01

    Full Text Available -1 High-Performance Carbon Nanotube-Reinforced Bioplastic 1. James Ramontja1,2, 2. Suprakas Sinha Ray1,*, 3. Sreejarani K. Pillai1, 4. Adriaan S. Luyt2 1. 1 DST/CSIR Nanotechnology Innovation Centre, National Centre for Nano-Structured Materials...

  12. Converting biomass waste into microporous carbon with simultaneously high surface area and carbon purity as advanced electrochemical energy storage materials

    Science.gov (United States)

    Sun, Fei; Wang, Lijie; Peng, Yiting; Gao, Jihui; Pi, Xinxin; Qu, Zhibin; Zhao, Guangbo; Qin, Yukun

    2018-04-01

    Developing carbon materials featuring both high accessible surface area and high structure stability are desirable to boost the performance of constructed electrochemical electrodes and devices. Herein, we report a new type of microporous carbon (MPC) derived from biomass waste based on a simple high-temperature chemical activation procedure. The optimized MPC-900 possesses microporous structure, high surface area, partially graphitic structure, and particularly low impurity content, which are critical features for enhancing carbon-based electrochemical process. The constructed MPC-900 symmetric supercapacitor exhibits high performances in commercial organic electrolyte such as widened voltage window up to 3 V and thereby high energy/power densities (50.95 Wh kg-1 at 0.44 kW kg-1; 25.3 Wh kg-1 at 21.5 kW kg-1). Furthermore, a simple melt infiltration method has been employed to enclose SnO2 nanocrystals onto the carbon matrix of MPC-900 as a high-performance lithium storage material. The obtained SnO2-MPC composite with ultrafine SnO2 nanocrystals delivers high capacities (1115 mAh g-1 at 0.2 A g-1; 402 mAh g-1 at 10 A g-1) and high-rate cycling lifespan of over 2000 cycles. This work not only develops a microporous carbon with high carbon purity and high surface area, but also provides a general platform for combining electrochemically active materials.

  13. In vivo performance of a reduced-modulus bone cement

    Science.gov (United States)

    Forehand, Brett Ramsey

    Total joint replacement has become one of the most common procedures in the area of orthopedics and is often the solution in patients with diseased or injured hip joints. Component loosening is a significant problem and is primarily caused by bone resorption at the bone-cement interface in cemented implants. It is our hypothesis that localized shear stresses are responsible for the resorption. It was previously shown analytically that local stresses at the interface could be reduced by using a cement of lower modulus. A new reduced modulus cement, polybutyl methylmethacrylate (PBMMA), was developed to test the hypothesis. PBMMA was formulated to exist as polybutyl methacrylate filler in a polymethyl methacrylate matrix. The success of PBMMA cement is based largely on the fact that the polybutyl component of the cement will be in the rubbery state at body temperature. In vitro characterization of the cement was undertaken previously and demonstrated a modulus of approximately one-eighth that of conventional bone cement, polymethyl methacrylate (PMMA) and increased fracture toughness. The purpose of this experiment was to perform an in vivo comparison of the two cements. A sheep model was selected. Total hip arthroplasty was performed on 50 ewes using either PBMMA or PMMA. Radiographs were taken at 6 month intervals. At one year, the contralateral femur of each sheep was implanted so that each animal served as its own control, and the animals were sacrificed. The stiffness of the bone-cement interface of the femoral component within the femur was assessed by applying a torque to the femoral component and demonstrated a significant difference in loosening between the cements when the specimens were tested in external rotation (p sheep had a greater amount of loosening for each subject, 59% versus 4% for standard PMMA. A radiographic analysis demonstrated more signs of loosening in the PMMA series of subjects. A brief histological examination showed similar bony

  14. Selective laser melting of carbon/AlSi10Mg composites: Microstructure, mechanical and electronical properties

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xiao; Song, Bo, E-mail: bosong@hust.edu.cn; Fan, Wenrui; Zhang, Yuanjie; Shi, Yusheng

    2016-04-25

    Carbon nanotubes/AlSi10Mg composites has drawn lots of attention in structural engineering and functional device applications due to its extraordinary high elastic modulus and mechanical strength as well as excellent electrical and thermal conductivities. In this study, the CNTs/AlSi10Mg composites was firstly prepared and then processed by selective laser melting. The powder preparation, SLM process, and microstructure evolution, properties were clarified. The results showed that CNTs were decomposed due to the direct interaction with the laser beam. The SLMed composites displayed a similar microstructure to that of SLMed AlSi10Mg. The common brittleness phase Al{sub 4}C{sub 3} didn't form, and the carbon dispersion strengthening was observed. The electrical resistivity of the composites was reduced significantly and the hardness was improved. - Highlights: • Carbon nanotubes/AlSi10Mg powder were prepared by slurry ball milling process. • Carbon nanotubes/AlSi10Mg composites were firstly prepared by SLM. • The electrical resistivity of the composites was significantly reduced and hardness was improved.

  15. Intermittent sizing on carbon fiber for composite application

    Energy Technology Data Exchange (ETDEWEB)

    Norris, Jr, Robert E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Paulauskas, Felix L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ozcan, Soydan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Xiong, Fue [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Grappe, Hippolyte A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    Intermittent sizing is a technique designed to improve the bonding of carbon fiber to a resin when manufacturing composite parts. The purpose of this technique is to improve Sheet Molding Composites (SMC) made of non-continuous carbon fibers while using regular material. At the end of the project, tests showed that improved mechanical properties have been achieved using this technique compared to conventional process. Mechanical properties have been improved by 110% for the peak tensile stress and by 60% for the modulus at the laboratory scale. In this project, Continental Structural Plastics and ORNL have worked to demonstrate the scalability and viability of commercialization of this technique.

  16. Back-analysing rock mass modulus from monitoring data of two tunnels in Sydney, Australia

    Directory of Open Access Journals (Sweden)

    Robert Bertuzzi

    2017-10-01

    Full Text Available This paper presents two case studies where the rock mass modulus and in situ stress are estimated from the monitoring data obtained during the construction of underground excavations in Sydney, Australia. The case studies comprise the widening of existing twin road tunnels within Hawkesbury sandstone and the excavation of a large cavern within Ashfield shale. While back-analysis from detailed systematic monitoring has been previously published, this paper presents a relatively simple methodology to derive rock mass modulus and in situ stress from the relatively simple displacement data routinely recorded during tunnelling.

  17. A Fiber-Coupled Self-Mixing Laser Diode for the Measurement of Young’s Modulus

    Directory of Open Access Journals (Sweden)

    Ke Lin

    2016-06-01

    Full Text Available This paper presents the design of a fiber-coupled self-mixing laser diode (SMLD for non-contact and non-destructive measurement of Young’s modulus. By the presented measuring system, the Young’s modulus of aluminum 6061 and brass are measured as 70.0 GPa and 116.7 GPa, respectively, showing a good agreement within the standards in the literature and yielding a much smaller deviation and a higher repeatability compared with traditional tensile testing. Its fiber-coupled characteristics make the system quite easy to be installed in many application cases.

  18. High performance all-carbon composite transparent electrodes containing uniform carbon nanotube networks

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Hyung Duk; Kwak, Jinsung; Kim, Se-Yang [School of Materials Science and Engineering & Low-Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 (Korea, Republic of); Seo, Han; Bang, In Cheol; Kim, Sung Youb [School of Mechanical and Nuclear Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 (Korea, Republic of); Kang, Seoktae [Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 (Korea, Republic of); Kwon, Soon-Yong, E-mail: sykwon@unist.ac.kr [School of Materials Science and Engineering & Low-Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 (Korea, Republic of); School of Mechanical and Nuclear Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 (Korea, Republic of)

    2016-08-05

    Indium tin oxide-free, flexible transparent electrodes (TEs) are crucial for the future commercialization of flexible and wearable electronics. While carbon-based TEs containing carbon nanotube (CNT) networks show promise, they usually exhibit poor dispersion properties, limiting their performance and practicality. In this study, we report a highly efficient and bending durable all-carbon composite TE (ac-TE) that employs uniform CNT networks on a monolayer graphene/polyethylene terephthalate (PET) substrate via a simple air spray deposition method. The air-sprayed CNT/graphene assembly was free-standing on solution, making a polymer-free transfer of carbon composites to target substrates possible. The excellent performance of the ac-TEs was attributed to the uniformly networked CNTs on the polycrystalline graphene with a well-controlled density, effectively bridging the line defects and filling the tears/voids or folds necessarily existing in the as-processed graphene. The sheet resistance of the ac-TEs was increased only 6% from its original value at a bending radius of 2.7 mm, while that of the pristine graphene/PET assembly increased 237%. Mechanical bending of the ac-TEs worsened the electrical performance by only ∼1.7% after 2000 bending cycles at a bending radius of 2.5 mm. Degradation of the performance by the bending was the result of line defects formation in the graphene, demonstrating the potential of the uniform CNT networks to achieve more efficient and flexible carbon-based TEs. Furthermore, the chemically-doped ac-TEs showed commercially suitable electronic and optical properties with much enhanced thermal stability, closer to practical TEs in flexible devices. - Highlights: • Highly efficient and bending durable all-carbon composite transparent electrodes (TEs) are designed. • The performance was strongly dependent on morphology of CNT networks on graphene. • The mechanism relies on the defect reductions in graphene by uniform CNT coating

  19. High performance all-carbon composite transparent electrodes containing uniform carbon nanotube networks

    International Nuclear Information System (INIS)

    Yun, Hyung Duk; Kwak, Jinsung; Kim, Se-Yang; Seo, Han; Bang, In Cheol; Kim, Sung Youb; Kang, Seoktae; Kwon, Soon-Yong

    2016-01-01

    Indium tin oxide-free, flexible transparent electrodes (TEs) are crucial for the future commercialization of flexible and wearable electronics. While carbon-based TEs containing carbon nanotube (CNT) networks show promise, they usually exhibit poor dispersion properties, limiting their performance and practicality. In this study, we report a highly efficient and bending durable all-carbon composite TE (ac-TE) that employs uniform CNT networks on a monolayer graphene/polyethylene terephthalate (PET) substrate via a simple air spray deposition method. The air-sprayed CNT/graphene assembly was free-standing on solution, making a polymer-free transfer of carbon composites to target substrates possible. The excellent performance of the ac-TEs was attributed to the uniformly networked CNTs on the polycrystalline graphene with a well-controlled density, effectively bridging the line defects and filling the tears/voids or folds necessarily existing in the as-processed graphene. The sheet resistance of the ac-TEs was increased only 6% from its original value at a bending radius of 2.7 mm, while that of the pristine graphene/PET assembly increased 237%. Mechanical bending of the ac-TEs worsened the electrical performance by only ∼1.7% after 2000 bending cycles at a bending radius of 2.5 mm. Degradation of the performance by the bending was the result of line defects formation in the graphene, demonstrating the potential of the uniform CNT networks to achieve more efficient and flexible carbon-based TEs. Furthermore, the chemically-doped ac-TEs showed commercially suitable electronic and optical properties with much enhanced thermal stability, closer to practical TEs in flexible devices. - Highlights: • Highly efficient and bending durable all-carbon composite transparent electrodes (TEs) are designed. • The performance was strongly dependent on morphology of CNT networks on graphene. • The mechanism relies on the defect reductions in graphene by uniform CNT coating

  20. Fabrication and mechanical properties of multi-walled carbon nanotubes/epoxy nanocomposites

    International Nuclear Information System (INIS)

    Yeh, M.-K.; Hsieh, T.-H.; Tai, N.-H.

    2008-01-01

    Carbon nanotubes have better physical and mechanical behavior than the traditional materials. In this study, the multi-walled carbon nanotubes (MWNTs) were added to the epoxy resin as a reinforcement to fabricate MWNTs/epoxy nanocomposites. The pressure and temperature were applied to cure the MWNTs/epoxy compound by hot press method. Mechanical properties such as tensile strength, Young's modulus, and Poisson's ratio were measured. The effect of weight percentages of the MWNTs was investigated. Morphologies of the fracture surface of MWNTs/epoxy nanocomposites were observed by scanning electron microscope

  1. Equivalent elastic moduli of a zigzag single-walled carbon nanotube given by uniform radial deformation

    International Nuclear Information System (INIS)

    Li Ying; Qiu Xinming; Yin Yajun; Yang Fan; Fan Qinshan

    2009-01-01

    Under hydrostatic pressure, the equivalent elastic moduli of a zigzag single-walled carbon nanotube (SWNT) are analytically determined by energy conservation, with the consideration of the covalent bond deformation. The theoretical predictions on the transverse mechanical properties of a zigzag SWNT agree reasonably well with those given by the molecular structures mechanics simulations and also the ab initio calculations. From the simple geometry calculation, the circumferential strain is about 2-3 times of the axial strain of a zigzag SWNT under hydrostatic pressure. The bulk modulus of a zigzag SWNT is found to be 3/7 times of its radial Young's modulus.

  2. Highly Crumpled All-Carbon Transistors for Brain Activity Recording.

    Science.gov (United States)

    Yang, Long; Zhao, Yan; Xu, Wenjing; Shi, Enzheng; Wei, Wenjing; Li, Xinming; Cao, Anyuan; Cao, Yanping; Fang, Ying

    2017-01-11

    Neural probes based on graphene field-effect transistors have been demonstrated. Yet, the minimum detectable signal of graphene transistor-based probes is inversely proportional to the square root of the active graphene area. This fundamentally limits the scaling of graphene transistor-based neural probes for improved spatial resolution in brain activity recording. Here, we address this challenge using highly crumpled all-carbon transistors formed by compressing down to 16% of its initial area. All-carbon transistors, chemically synthesized by seamless integration of graphene channels and hybrid graphene/carbon nanotube electrodes, maintained structural integrity and stable electronic properties under large mechanical deformation, whereas stress-induced cracking and junction failure occurred in conventional graphene/metal transistors. Flexible, highly crumpled all-carbon transistors were further verified for in vivo recording of brain activity in rats. These results highlight the importance of advanced material and device design concepts to make improvements in neuroelectronics.

  3. Comparison of Elastic Modulus and Compressive Strength of Ariadent and Harvard Polycarboxylate Cement and Vitremer Resin Modified Glass Ionomer

    Directory of Open Access Journals (Sweden)

    Ahmadian Khoshemehr Leila

    2009-09-01

    Full Text Available Background: Luting agents are used to attach indirect restoration into or on the tooth. Poor mechanical properties of cement may be a cause of fracture of this layer and lead to caries and restoration removal. The purpose of this study was to compare the elastic modulus and compressive strength of Ariadent (A Poly and Harvard polycarboxylate (H Poly cements and Vitremer resin modified glass ionomer (RGl.Materials & Methods: In this experimental study 15 specimens were prepared form each experimental cement in Laboratory of Tehran Oil Refining Company. The cylindrical specimens were compressed in Instron machine after 24 hours. Elastic modulus and compressive strength were calculated from stress/strain curve of each specimen. One way ANOVA and Tukey tests were used for statistical analysis and P values<0.05 were considered to be statistically significant.Results: The mean elastic modulus and mean compressive strength were 2.2 GPa and 87.8MPa in H poly, 2.4 GPa and 56.5 MPa in A Poly, and 0.8GPa and 105.6 MPa in RGI, respectively. Statistical analysis showed that compressive strength and elastic modulus of both polycarboxylate cements were significantly different from hybrid ionomer (P<0.05, but the difference between elastic modulus of two types of polycarboxilate cements was not statistically significant. Compressive strength of two polycarboxilate cements were significantly different (P<0.05. Conclusion: An ideal lutting agent must have the best mechanical properties. Between the tested luttins RGl cement had the lowest elastic modulus and the highest compressive strength, but the A poly cement had the highest elastic modulus and the lowest compressive strength. Therefore none of them was the best.

  4. Electrorefining of High Carbon Ferromanganese in Molten Salts to Produce Pure Ferromanganese

    Directory of Open Access Journals (Sweden)

    Xiao S. J.

    2017-09-01

    Full Text Available High carbon ferromanganese is used as a starting material to prepare pure ferromanganese by electrorefining in molten salts. High carbon ferromanganese was applied as the anode, molybdenum was the cathode and Ag/AgCl was the reference electrode. The anodic dissolution was investigated by linear polarization in molten NaCl-KCl system. Then potentiostatic electrolysis was carried out to produce pure ferromanganese from high carbon ferromanganese. The cathodic product was determined to be a mixture of manganese and iron by x-ray diffraction (XRD. The content of carbon in the product was analyzed by carbon and sulfur analyzer. The post-electrolysis anode was characterized by scanning electron microscope (SEM. The mechanism of the anode dissolution and the distribution of the main impurity of carbon and silicon after electrolysis were discussed.

  5. Self-Sensing of Single Carbon Fiber/Carbon Nanotube-Epoxy Composites Using Electro-Micromechanical Techniques and Acoustic Emission

    International Nuclear Information System (INIS)

    Park, Joung Man; Jang, Jung Hoon; Wang, Zuo Jia; Kwon, Dong Jun; Park, Jong Kyu; Lee, Woo Il

    2010-01-01

    Self-sensing on micro-failure, dispersion degree and relating properties, of carbon nanotube(CNT)/epoxy composites, were investigated using wettability, electro-micromechanical technique with acoustic emission(AE). Specimens were prepared from neat epoxy as well as composites with untreated and acid-treated CNT. Degree of dispersion was evaluated comparatively by measuring volumetric electrical resistivity and its standard deviation. Apparent modulus containing the stress transfer was higher for acid-treated CNT composite than for the untreated case. Applied cyclic loading responded well for a single carbon fiber/CNT-epoxy composite by the change in contact resistivity. The interfacial shear strength between a single carbon fiber and CNT-epoxy, determined in a fiber pullout test, was lower than that between a single carbon fiber and neat epoxy. Regarding on micro-damage sensing using electrical resistivity measurement with AE, the stepwise increment in electrical resistivity was observed for a single carbon fiber/CNT-epoxy composite. On the other hand, electrical resistivity increased infinitely right after the first carbon fiber breaks for a single carbon fiber/neat epoxy composite. The occurrence of AE events of added CNT composites was much higher than the neat epoxy case, due to microfailure at the interfaces by added CNTs

  6. Determination of elastic modulus for hollow spherical shells via resonant ultrasound spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Xiaojun [Institute of Modern Physics, Fudan University, Shanghai 200433 (China); Research Center of Laser Fusion, CAEP, Mianyang 621900 (China); Tang, Xing; Wang, Zongwei [Research Center of Laser Fusion, CAEP, Mianyang 621900 (China); Chen, Qian; Qian, Menglu [Institute of Acoustic, Tongji University, Shanghai 200092 (China); Meng, Jie [Research Center of Laser Fusion, CAEP, Mianyang 621900 (China); Tang, Yongjian [Institute of Modern Physics, Fudan University, Shanghai 200433 (China); Research Center of Laser Fusion, CAEP, Mianyang 621900 (China); Shen, Hao [Institute of Modern Physics, Fudan University, Shanghai 200433 (China); Gao, Dangzhong, E-mail: dgaocn@163.com [Research Center of Laser Fusion, CAEP, Mianyang 621900 (China)

    2017-04-15

    Highlights: • The axisymmetric frequency equation of an isotropic hollow two-layer sphere is deduced by three dimension elasticity theory and global matrix method. • The simulated results demonstrate that the natural frequencies of a hollow sphere are more strongly dependent on Young’s modulus than Poisson's ratio. • The Young’s moduli of polymer capsules with an sub-millimeter inner radius are measured accurately with an uncertainty of ∼10%. - Abstract: The elastic property of a capsule is one of the essential parameters both in engineering applications and scientific understanding of material nature in inertial confinement fusion (ICF) experiments. The axisymmetric frequency equation of an isotropic hollow two-layer sphere is deduced by three dimension elasticity theory and global matrix method, and a combined resonant ultrasound spectroscopy(RUS), which consists of a piezoelectric-based resonant ultrasound spectroscopy(PZT-RUS) and a laser-based resonant ultrasound spectroscopy(LRUS), is developed for determining the elastic modulus of capsule. To understand the behavior of natural frequencies varying with elastic properties, the dependence of natural frequencies on Young’s modulus and Poisson’s ratio are calculated numerically. Some representative polymer capsules are measured using PZT-RUS and LRUS. Based on the theoretical and experimental results, the Young’s moduli of these capsules are measured accurately with an uncertainty of ∼10%.

  7. Microstructure and mechanical properties of a newly developed low Young's modulus Ti-15Zr-5Cr-2Al biomedical alloy.

    Science.gov (United States)

    Wang, Pan; Wu, Lihong; Feng, Yan; Bai, Jiaming; Zhang, Baicheng; Song, Jie; Guan, Shaokang

    2017-03-01

    The Ti-15Zr-5Cr-2Al alloy has been developed and various heat treatments have been investigated to develop new biomedical materials. It is found that the heat treatment conditions strongly affect the phase constitutions and mechanical properties. The as-cast specimen is comprised of β phase and a small fraction of α phase, which is attributed to the suppression of ω phase caused by adding Al. A high yield strength of 1148±36MPa and moderate Young's modulus of 96±3GPa are obtained in the as-cast specimen. Besides the β phase and α phase, ω phase is also detected in the air cooled and liquid nitrogen quenched specimens, which increases the Young's modulus and lowers the ductility. In contrast, only β phase is detected after ice water quenching. The ice water quenched specimen exhibits a good combination of mechanical properties with a high microhardness of 302±10HV, a large plastic strain of 23±2%, a low Young's modulus of 58±4GPa, a moderate yield strength of 625±32MPa and a high compressive strength of 1880±59MPa. Moreover, the elastic energies of the ice water quenched specimen (3.22MJ/m 3 ) and as-cast specimen (6.86MJ/m 3 ) are higher than that of c.p. Ti (1.25MJ/m 3 ). These results demonstrate that as-cast and ice water quenched Ti-15Zr-5Cr-2Al alloys with a superior combination of mechanical properties are potential materials for biomedical applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Photostable epoxy polymerized carbon quantum dots luminescent thin films and the performance study

    Directory of Open Access Journals (Sweden)

    Chang Zhang

    Full Text Available High photostable epoxy polymerized carbon quantum dots (C-dots luminescent thin films were prepared and their performances were compared with the CdTe quantum dots (QDs. First, water soluble C-dots (λem = 543.60 nm were synthesized. Poly (ethylene glycol diglycidyl ether (PEG and diaminooctane were used as the polymer matrix to make the epoxy resin films. FT-IR spectra showed that there were vibration at 3448 cm−1 and 1644 cm−1 which contributed to -OH and -NH respectively. SEM observations showed that the polymerizations of the films were uniform and there were no structure defects. Mechanical tests showed the tensile modulus of C-dots composite films were 4.6, 4.9, 6.4 and 7.8 MPa respectively with corresponding 0%, 1%, 2% and 5% mass fraction of C-dots, while the tensile modulus of CdTe QDs films were 4.6 MPa under the same mass fraction of CdTe QDs. Compared with semiconductor QDs, the decay of quantum yield were 5% and 10% for the C-dots and CdTe QDs, respectively. The pictures in the continuous irradiation of 48 h showed that the C-dots film was more photostable. This study provides much helpful and profound towards the fluorescent enhancement films in the field of flexible displays. Keywords: Carbon-dots, Waterborne epoxy resin, Luminescent materials, Quantum dots displays

  9. Optimal Design for Hybrid Ratio of Carbon/Basalt Hybrid Fiber Reinforced Resin Matrix Composites

    Directory of Open Access Journals (Sweden)

    XU Hong

    2017-08-01

    Full Text Available The optimum hybrid ratio range of carbon/basalt hybrid fiber reinforced resin composites was studied. Hybrid fiber composites with nine different hybrid ratios were prepared before tensile test.According to the structural features of plain weave, the unit cell's performance parameters were calculated. Finite element model was established by using SHELL181 in ANSYS. The simulated values of the sample stiffness in the model were approximately similar to the experimental ones. The stress nephogram shows that there is a critical hybrid ratio which divides the failure mechanism of HFRP into single failure state and multiple failure state. The tensile modulus, strength and limit tensile strain of HFRP with 45% resin are simulated by finite element method. The result shows that the tensile modulus of HFRP with 60% hybrid ratio increases by 93.4% compared with basalt fiber composites (BFRP, and the limit tensile strain increases by 11.3% compared with carbon fiber composites(CFRP.

  10. Nitrogen-doped porous carbon derived from biomass waste for high-performance supercapacitor.

    Science.gov (United States)

    Ma, Guofu; Yang, Qian; Sun, Kanjun; Peng, Hui; Ran, Feitian; Zhao, Xiaolong; Lei, Ziqiang

    2015-12-01

    High capacitance property and low cost are the pivotal requirements for practical application of supercapacitor. In this paper, a low cost and high capacitance property nitrogen-doped porous carbon with high specific capacitance is prepared. The as-prepared nitrogen-doped porous carbon employing potato waste residue (PWR) as the carbon source, zinc chloride (ZnCl2) as the activating agent and melamine as nitrogen doping agent. The morphology and structure of the carbon materials are studied by scanning electron microscopy (SEM), N2 adsorption/desorption, X-ray diffraction (XRD) and Raman spectra. The surface area of the nitrogen-doped carbon which prepared under 700°C is found to be 1052m(2)/g, and the specific capacitance as high as 255Fg(-1) in 2M KOH electrolyte is obtained utilize the carbon as electrode materials. The electrode materials also show excellent cyclability with 93.7% coulombic efficiency at 5Ag(-1) current density of for 5000cycles. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Molecular Modeling of Aerospace Polymer Matrices Including Carbon Nanotube-Enhanced Epoxy

    Science.gov (United States)

    Radue, Matthew S.

    Carbon fiber (CF) composites are increasingly replacing metals used in major structural parts of aircraft, spacecraft, and automobiles. The current limitations of carbon fiber composites are addressed through computational material design by modeling the salient aerospace matrix materials. Molecular Dynamics (MD) models of epoxies with and without carbon nanotube (CNT) reinforcement and models of pure bismaleimides (BMIs) were developed to elucidate structure-property relationships for improved selection and tailoring of matrices. The influence of monomer functionality on the mechanical properties of epoxies is studied using the Reax Force Field (ReaxFF). From deformation simulations, the Young's modulus, yield point, and Poisson's ratio are calculated and analyzed. The results demonstrate an increase in stiffness and yield strength with increasing resin functionality. Comparison between the network structures of distinct epoxies is further advanced by the Monomeric Degree Index (MDI). Experimental validation demonstrates the MD results correctly predict the relationship in Young's moduli for all epoxies modeled. Therefore, the ReaxFF is confirmed to be a useful tool for studying the mechanical behavior of epoxies. While epoxies have been well-studied using MD, there has been no concerted effort to model cured BMI polymers due to the complexity of the network-forming reactions. A novel, adaptable crosslinking framework is developed for implementing 5 distinct cure reactions of Matrimid-5292 (a BMI resin) and investigating the network structure using MD simulations. The influence of different cure reactions and extent of curing are analyzed on the several thermo-mechanical properties such as mass density, glass transition temperature, coefficient of thermal expansion, elastic moduli, and thermal conductivity. The developed crosslinked models correctly predict experimentally observed trends for various properties. Finally, the epoxies modeled (di-, tri-, and tetra

  12. Multi-beam laser heterodyne measurement with ultra-precision for Young modulus based on oscillating mirror modulation

    Science.gov (United States)

    Li, Y. Chao; Ding, Q.; Gao, Y.; Ran, L. Ling; Yang, J. Ru; Liu, C. Yu; Wang, C. Hui; Sun, J. Feng

    2014-07-01

    This paper proposes a novel method of multi-beam laser heterodyne measurement for Young modulus. Based on Doppler effect and heterodyne technology, loaded the information of length variation to the frequency difference of the multi-beam laser heterodyne signal by the frequency modulation of the oscillating mirror, this method can obtain many values of length variation caused by mass variation after the multi-beam laser heterodyne signal demodulation simultaneously. Processing these values by weighted-average, it can obtain length variation accurately, and eventually obtain value of Young modulus of the sample by the calculation. This novel method is used to simulate measurement for Young modulus of wire under different mass by MATLAB, the obtained result shows that the relative measurement error of this method is just 0.3%.

  13. Mechanical and thermal properties of eco-friendly poly(propylene carbonate)/cellulose acetate butyrate blends.

    Science.gov (United States)

    Xing, Chenyang; Wang, Hengti; Hu, Qiaoqiao; Xu, Fenfen; Cao, Xiaojun; You, Jichun; Li, Yongjin

    2013-02-15

    The eco-friendly poly(propylene carbonate) (PPC)/cellulose acetate butyrate (CAB) blends were prepared by melt-blending in a batch mixer for the first time. PPC and CAB were partially miscible because of the drastically shifted glass transition temperatures of both PPC and CAB, which originated from the specific interactions between carbonyl groups and hydroxyl groups. The incorporation of CAB into PPC matrix enhanced not only tensile strength and modulus of PPC dramatically, but also improved heat resistance and thermal stability of PPC significantly. The tensile strength and the modulus of PPC/CAB=50/50 blend are 27.7 MPa and 1.24 GPa, which are 21 times and 28 times higher than those of the unmodified PPC, respectively. Moreover, the elongation at break of PPC/CAB=50/50 blend is as high as 117%. In addition, the obtained blends exhibited good transparency, which is very important for the package materials. The results in this work pave new possibility for the massive application of eco-friendly polymer materials. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Can reliable values of Young's modulus be deduced from Fisher's (1971) spinning lens measurements?

    Science.gov (United States)

    Burd, H J; Wilde, G S; Judge, S J

    2006-04-01

    The current textbook view of the causes of presbyopia rests very largely on a series of experiments reported by R.F. Fisher some three decades ago, and in particular on the values of lens Young's modulus inferred from the deformation caused by spinning excised lenses about their optical axis (Fisher 1971) We studied the extent to which inferred values of Young's modulus are influenced by assumptions inherent in the mathematical procedures used by Fisher to interpret the test and we investigated several alternative interpretation methods. The results suggest that modelling assumptions inherent in Fisher's original method may have led to systematic errors in the determination of the Young's modulus of the cortex and nucleus. Fisher's conclusion that the cortex is stiffer than the nucleus, particularly in middle age, may be an artefact associated with these systematic errors. Moreover, none of the models we explored are able to account for Fisher's claim that the removal of the capsule has only a modest effect on the deformations induced in the spinning lens.

  15. Determination of dynamic Young’s modulus of vulnerable speleothems

    Czech Academy of Sciences Publication Activity Database

    Konečný, Pavel; Lednická, Markéta; Souček, Kamil; Staš, Lubomír; Kubina, Lukáš; Gribovszki, K.

    2015-01-01

    Roč. 20, č. 2 (2015), s. 156-163 ISSN 1335-1788 R&D Projects: GA MŠk ED2.1.00/03.0082; GA MŠk(CZ) LO1406 Institutional support: RVO:68145535 Keywords : dynamic Young´s modulus * speleothem * bulk density * X-Ray Computed Tomography Subject RIV: DB - Geology ; Mineralogy Impact factor: 0.390, year: 2015 http://actamont.tuke.sk/pdf/2015/n2/10Konecny.pdf

  16. Hierarchical porous carbons prepared by an easy one-step carbonization and activation of phenol-formaldehyde resins with high performance for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Zhoujun [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Graduate School, Shanghai Institute of Ceramics, Chinese Academy of Science, 1295 Dingxi Road, Shanghai 200050 (China); Gao, Qiuming [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Graduate School, Shanghai Institute of Ceramics, Chinese Academy of Science, 1295 Dingxi Road, Shanghai 200050 (China); School of Chemistry and Environment, Beihang University, 37 Xueyuan Road, Haidian District, Beijing 100191 (China)

    2011-02-01

    Hierarchical porous carbons are prepared by an easy one-step process of carbonization and activation derived from phenol-formaldehyde resins, in which potassium hydroxide acts as both the catalyst of polymerization and the activation reagent. The simple one-step preparation saves the cost of carbons and leads to high yield. The porous carbons have high surface areas with abundant pore structures. The plenty of micropores and small mesopores increase the capacitance and make the electrolyte ions diffuse fast into the pores. These hierarchical porous carbons show high performance for supercapacitors possessing of the optimized capacitance of 234 F g{sup -1} in aqueous electrolyte and 137 F g{sup -1} in organic electrolyte with high capacitive retention. (author)

  17. Lithology-dependent In Situ Stress in Heterogeneous Carbonate Reservoirs

    Science.gov (United States)

    Pham, C. N.; Chang, C.

    2017-12-01

    Characterization of in situ stress state for various geomechanical aspects in petroleum development may be particularly difficult in carbonate reservoirs in which rock properties are generally heterogeneous. We demonstrate that the variation of in situ stress in highly heterogeneous carbonate reservoirs is closely related to the heterogeneity in rock mechanical property. The carbonate reservoir studied consists of numerous sequential layers gently folded, exhibiting wide ranges of porosity (0.01 - 0.29) and Young's modulus (25 - 85 GPa) depending on lithology. Wellbore breakouts and drilling-induced tensile fractures (DITFs) observed in the image logs obtained from several wells indicate that the in situ state of stress orientation changes dramatically with depth and location. Even in a wellbore, the azimuth of the maximum horizontal stress changes by as much as 60° within a depth interval of 500 m. This dramatic change in stress orientation is inferred to be due to the contrast in elastic properties between different rock layers which are bent by folding in the reservoir. The horizontal principal stress magnitudes are constrained by back-calculating stress conditions necessary to induce the observed wellbore failures using breakout width and the presence of DITFs. The horizontal stresses vary widely, which cannot be represented by a constant stress gradient with depth. The horizontal principal stress gradient increases with Young's modulus of layer monotonically, indicating that a stiffer layer conveys a higher horizontal stress. This phenomenon can be simulated using a numerical modelling, in which the horizontal stress magnitudes depend on stiffness of individual layers although the applied far-field stress conditions are constant. The numerical results also suggest that the stress concentration at the wellbore wall is essentially higher in a stiffer layer, promoting the possibility of wellbore breakout formation. These results are in agreement with our

  18. Fundamental properties of high-quality carbon nanofoam: from low to high density

    Directory of Open Access Journals (Sweden)

    Natalie Frese

    2016-12-01

    Full Text Available Highly uniform samples of carbon nanofoam from hydrothermal sucrose carbonization were studied by helium ion microscopy (HIM, X-ray photoelectron spectroscopy (XPS, and Raman spectroscopy. Foams with different densities were produced by changing the process temperature in the autoclave reactor. This work illustrates how the geometrical structure, electron core levels, and the vibrational signatures change when the density of the foams is varied. We find that the low-density foams have very uniform structure consisting of micropearls with ≈2–3 μm average diameter. Higher density foams contain larger-sized micropearls (≈6–9 μm diameter which often coalesced to form nonspherical μm-sized units. Both, low- and high-density foams are comprised of predominantly sp2-type carbon. The higher density foams, however, show an advanced graphitization degree and a stronger sp3-type electronic contribution, related to the inclusion of sp3 connections in their surface network.

  19. Carbonation Coefficients from Concrete Made with High-Absorption Limestone Aggregate

    Directory of Open Access Journals (Sweden)

    Eric I. Moreno

    2013-01-01

    Full Text Available Normal aggregates employed in concrete have absorption levels in the range of 0.2% to 4% for coarse aggregate and 0.2 to 2% for fine aggregate. However, some aggregates have absorption levels above these values. As the porosity of concrete is related to the porosity of both the cement paste and the aggregate and the carbonation rate is a function, among other things, of the porosity of the material, there is concern about the effect of this high porosity material in achieving good quality concrete from the durability point of view. Thus, the objective of this investigation was to study the carbonation rates of concrete specimens made with high-absorption limestone aggregate. Four different water/cement ratios were used, and cylindrical concrete specimens were exposed to accelerated carbonation. High porosity values were obtained for concrete specimens beyond the expected limits for durable concrete. However, carbonation coefficients related to normal quality concrete were obtained for the lowest water/cement ratio employed suggesting that durable concrete may be obtained with this material despite the high porosity.

  20. Finite element determination of tearing modulus for application to industrial cases

    International Nuclear Information System (INIS)

    Charras, T.; Combescure, A.

    1984-12-01

    The Tearing modulus, coming from a derivative of J with respect to crack-length is difficult to compute, specially in 3D, where computation costs are important. This paper presents a method to determine this value without doing two complete computations with two cracks lengths

  1. Wind Stress, METOP ASCAT, 0.25 degrees, Global, Near Real Time, Modulus

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes near real time wind stress data in zonal, meridional, modulus, and wind stress curl sets. This data begins with wind velocity...

  2. Preparation, Characterization, and Modeling of Carbon Nanofiber/Epoxy Nanocomposites

    Directory of Open Access Journals (Sweden)

    Lan-Hui Sun

    2011-01-01

    Full Text Available There is a lack of systematic investigations on both mechanical and electrical properties of carbon nanofiber (CNF-reinforced epoxy matrix nanocomposites. In this paper, an in-depth study of both static and dynamic mechanical behaviors and electrical properties of CNF/epoxy nanocomposites with various contents of CNFs is provided. A modified Halpin-Tsai equation is used to evaluate the Young's modulus and storage modulus of the nanocomposites. The values of Young's modulus predicted using this method account for the effect of the CNF agglomeration and fit well with those obtained experimentally. The results show that the highest tensile strength is found in the epoxy nanocomposite with a 1.0 wt% CNFs. The alternate-current (AC electrical properties of the CNF/epoxy nanocomposites exhibit a typical insulator-conductor transition. The conductivity increases by four orders of magnitude with the addition of 0.1 wt% (0.058 vol% CNFs and by ten orders of magnitude for nanocomposites with CNF volume fractions higher than 1.0 wt% (0.578 vol%. The percolation threshold (i.e., the critical CNF volume fraction is found to be at 0.057 vol%.

  3. An autonomic self-healing organogel with a photo-mediated modulus

    KAUST Repository

    Xiong, Yubing

    2016-11-15

    A new method is described for fabricating autonomic, self-healing, deformable organogels. We combined imidazolium-based poly(ionic liquid) (PIL) and azobenzene-grafted poly(carboxylic acid) (PAA-Azo) in N,N-dimethyl formamide. Further, complexing PIL with unirradiated (trans) or irradiated (cis) PAA-Azo tuned the elastic modulus of the organogel. © 2016 The Royal Society of Chemistry.

  4. An autonomic self-healing organogel with a photo-mediated modulus

    KAUST Repository

    Xiong, Yubing; Chen, Zhijun; Wang, Hong; Ackermann, Lisa Maria; Klapper, Markus; Butt, Hans Jü rgen; Wu, Si

    2016-01-01

    A new method is described for fabricating autonomic, self-healing, deformable organogels. We combined imidazolium-based poly(ionic liquid) (PIL) and azobenzene-grafted poly(carboxylic acid) (PAA-Azo) in N,N-dimethyl formamide. Further, complexing PIL with unirradiated (trans) or irradiated (cis) PAA-Azo tuned the elastic modulus of the organogel. © 2016 The Royal Society of Chemistry.

  5. Large-deformation and high-strength amorphous porous carbon nanospheres

    Science.gov (United States)

    Yang, Weizhu; Mao, Shimin; Yang, Jia; Shang, Tao; Song, Hongguang; Mabon, James; Swiech, Wacek; Vance, John R.; Yue, Zhufeng; Dillon, Shen J.; Xu, Hangxun; Xu, Baoxing

    2016-04-01

    Carbon is one of the most important materials extensively used in industry and our daily life. Crystalline carbon materials such as carbon nanotubes and graphene possess ultrahigh strength and toughness. In contrast, amorphous carbon is known to be very brittle and can sustain little compressive deformation. Inspired by biological shells and honeycomb-like cellular structures in nature, we introduce a class of hybrid structural designs and demonstrate that amorphous porous carbon nanospheres with a thin outer shell can simultaneously achieve high strength and sustain large deformation. The amorphous carbon nanospheres were synthesized via a low-cost, scalable and structure-controllable ultrasonic spray pyrolysis approach using energetic carbon precursors. In situ compression experiments on individual nanospheres show that the amorphous carbon nanospheres with an optimized structure can sustain beyond 50% compressive strain. Both experiments and finite element analyses reveal that the buckling deformation of the outer spherical shell dominates the improvement of strength while the collapse of inner nanoscale pores driven by twisting, rotation, buckling and bending of pore walls contributes to the large deformation.

  6. Calcium carbonate as a possible dosimeter for high irradiation doses

    International Nuclear Information System (INIS)

    Negron M, A.; Ramos B, S.; Camargo R, C.; Uribe, R. M.; Gomez V, V.; Kobayashi, K.

    2014-08-01

    The aim of this work is to analyze the interactions of 5 MeV electron beam radiation and a 290 MeV/u Carbon beam with calcium carbonate (powder) at 298 K and at different irradiation doses, for the potential use of calcium carbonate as a high-dose dosimeter. The irradiation doses with the electron beam were from 0.015 to 9 MGy, and with Carbon beam from 1.5 kGy to 8 kGy. High-energy radiation induces the formation of free radicals in solid calcium carbonate that can be detected and measured by electron paramagnetic resonance (EPR). An increase of the EPR response for some of the free radicals produced in the sample was observed as a function of the irradiation dose. The response of one of the radicals decreased with the dose. These measurements are reproducible; the preparation of the sample is simple and inexpensive; and the signal is stable for several months. The response curves show that the dosimeter tends to saturate at 10 MGy. Based on these properties, we propose this chemical compound as a high-dose dosimeter, mainly for electron irradiation. (author)

  7. Calcium carbonate as a possible dosimeter for high irradiation doses

    Energy Technology Data Exchange (ETDEWEB)

    Negron M, A.; Ramos B, S.; Camargo R, C. [UNAM, Instituto de Ciencias Nucleares, Ciudad Universitaria, 04510 Mexico D. F. (Mexico); Uribe, R. M. [Kent State University, College of Technology, Kent OH (United States); Gomez V, V. [UNAM, Instituto de Quimica, Ciudad Universitaria, 04510 Mexico D. F. (Mexico); Kobayashi, K., E-mail: negron@nucleares.unam.mx [Yokohama National University (Japan)

    2014-08-15

    The aim of this work is to analyze the interactions of 5 MeV electron beam radiation and a 290 MeV/u Carbon beam with calcium carbonate (powder) at 298 K and at different irradiation doses, for the potential use of calcium carbonate as a high-dose dosimeter. The irradiation doses with the electron beam were from 0.015 to 9 MGy, and with Carbon beam from 1.5 kGy to 8 kGy. High-energy radiation induces the formation of free radicals in solid calcium carbonate that can be detected and measured by electron paramagnetic resonance (EPR). An increase of the EPR response for some of the free radicals produced in the sample was observed as a function of the irradiation dose. The response of one of the radicals decreased with the dose. These measurements are reproducible; the preparation of the sample is simple and inexpensive; and the signal is stable for several months. The response curves show that the dosimeter tends to saturate at 10 MGy. Based on these properties, we propose this chemical compound as a high-dose dosimeter, mainly for electron irradiation. (author)

  8. Insufficiency of the Young’s modulus for illustrating the mechanical behavior of GaN nanowires

    Science.gov (United States)

    Zamani Kouhpanji, Mohammad Reza; Behzadirad, Mahmoud; Feezell, Daniel; Busani, Tito

    2018-05-01

    We use a non-classical modified couple stress theory including the acceleration gradients (MCST-AG), to precisely demonstrate the size dependency of the mechanical properties of gallium nitride (GaN) nanowires (NWs). The fundamental elastic constants, Young’s modulus and length scales of the GaN NWs were estimated both experimentally, using a novel experimental technique applied to atomic force microscopy, and theoretically, using atomic simulations. The Young’s modulus, static and the dynamic length scales, calculated with the MCST-AG, were found to be 323 GPa, 13 and 14.5 nm, respectively, for GaN NWs from a few nanometers radii to bulk radii. Analyzing the experimental data using the classical continuum theory shows an improvement in the experimental results by introducing smaller error. Using the length scales determined in MCST-AG, we explain the inconsistency of the Young’s moduli reported in recent literature, and we prove the insufficiency of the Young’s modulus for predicting the mechanical behavior of GaN NWs.

  9. Thermal and mechanical properties of TPU/PBT reinforced by carbon fiber

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jintao; Liu, Huanyu; Lu, Xiang; Qu, Jinping, E-mail: jpqu@scut.edu.cn [National Engineering Research Center of Novel Equipment for Polymer Processing, The Key Laboratory of Polymer Processing Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510640, Guangdong (China)

    2016-03-09

    In this study, thermal, mechanical properties and processability were performed on a series of carbon fiber (CF) filled thermoplastic polyurethane (TPU)/poly (butylene terephthalate) (PBT) composites to identify the effect of CF weight fraction on the properties of TPU/PBT. Scanning Electronic Microscope (SEM) show that CFs are uniformly dispersed in TPU/PBT matrix and there are no agglomerations. Melt flow index (MFI) show that the melt viscosity increased with the CF loading. Thermogravimetric analysis (TGA) revealed that the introduction of CF into organic materials tend to improve their thermal stability. The mechanical properties indicated that tensile strength and modulus, flexural strength and modulus, improved with an increase in CF loading, but the impact strength decreased by the loading of CF.

  10. A Research on Low Modulus Distributed Fiber Optical Sensor for Pavement Material Strain Monitoring.

    Science.gov (United States)

    Meng, Lingjian; Wang, Linbing; Hou, Yue; Yan, Guannan

    2017-10-19

    The accumulated irreversible deformation in pavement under repeated vehicle loadings will cause fatigue failure of asphalt concrete. It is necessary to monitor the mechanical response of pavement under load by using sensors. Previous studies have limitations in modulus accommodation between the sensor and asphalt pavement, and it is difficult to achieve the distributed monitoring goal. To solve these problems, a new type of low modulus distributed optical fiber sensor (DOFS) for asphalt pavement strain monitoring is fabricated. Laboratory experiments have proved the applicability and accuracy of the newly-designed sensor. This paper presents the results of the development.

  11. Mechanical performance of HMA-2 modified with purified and unpurified carbon nanotubes and nanofibers

    Directory of Open Access Journals (Sweden)

    Mario Rodrigo Rubio

    2017-05-01

    Full Text Available The present study evaluates the mechanical performance of a Hot Mix Asphalt – Type II (HMA-2 modified with carbon nanotubes and carbon nanofibers (CNTF. CNTF were made by means the Catalytic Vapor Deposition (CVD technique at 700° C using a Nickel, Copper and Aluminum (NiCuAl catalyst with a Cu/Ni molar relation of 0,33. In order to properly assess HMA-2 performance, three different mixtures were analyzed: 1 HMA-2 modified with purified CNTF; 2 HMA-2 modified with non-purified CNTF and, 3 a Conventional HMA-2 (control. Samples manufactured in accordance with the Marshall Mix Design were tested in the laboratory to study rutting, resilient modulus (Mr and fatigue. In addition to the aforementioned dynamic characterization, the effect of CNTF purification on the asphalt mixture’s mechanical properties was analyzed. In short, a comparative study was designed to determine whether or not CNTF should be purified before introduction into the HMA-2. This investigation responds to the growing demand for economical materials capable of withstanding traffic loads while simultaneously enhancing pavement durability and mechanical properties. Although purified CNTF increased HMA-2 stiffness and elastic modulus, non-purified CNTF increased the asphalt mixture’s elastic modulus without considerable increases in stiffness. Thus, the latter modification is deemed to help address fatiguerelated issues and improve the long-term durability of flexible pavements.

  12. Nitrogen doped carbon derived from polyimide/multiwall carbon nanotube composites for high performance flexible all-solid-state supercapacitors

    Science.gov (United States)

    Kim, Dae Kyom; Kim, Nam Dong; Park, Seung-Keun; Seong, Kwang-dong; Hwang, Minsik; You, Nam-Ho; Piao, Yuanzhe

    2018-03-01

    Flexible all-solid-state supercapacitors are desirable as potential energy storage systems for wearable technologies. Herein, we synthesize aminophenyl multiwall carbon nanotube (AP-MWCNT) grafted polyimide precursor by in situ polymerization method as a nitrogen-doped carbon precursor. Flexible supercapacitor electrodes are fabricated via a coating of carbon precursor on carbon cloth surface and carbonization at high temperature directly. The as-obtained electrodes, which can be directly used without any binders or additives, can deliver a high specific capacitance of 333.4 F g-1 at 1 A g-1 (based on active material mass) and excellent cycle stability with 103% capacitance retention after 10,000 cycles in a three-electrode system. The flexible all-solid-state supercapacitor device exhibits a high volumetric capacitance of 3.88 F cm-3 at a current density of 0.02 mA cm-3. And also the device can deliver a maximum volumetric energy density of 0.50 mWh cm-3 and presents good cycling stability with 85.3% capacitance retention after 10,000 cycles. This device cell can not only show extraordinary mechanical flexibilities allowing folding, twisting, and rolling but also demonstrate remarkable stable electrochemical performances under their forms. This work provides a novel approach to obtain carbon textile-based flexible supercapacitors with high electrochemical performance and mechanical flexibility.

  13. Influence of seed layer moduli on finite element method-based modulus backcalculation result

    CSIR Research Space (South Africa)

    Matsui, K

    2006-01-01

    Full Text Available ) Static backcalculation E1 0 200 400 600 800 1000 1200 10 50 - 11 00 11 00 - 11 50 11 50 - 12 00 12 00 - 12 50 12 50 - 13 00 13 00 - 13 50 13 50 - 14 00 Layer modulus (MPa) Fr e qu e n c y E2 0 200 400... 600 800 1000 1200 10 0 - 12 0 12 0 - 14 0 14 0 - 16 0 16 0 - 18 0 18 0 - 20 0 20 0 - 22 0 22 0 - 24 0 Layer modulus (MPa) Fr e qu e n c y E3 0 200 400 600 800 1000 1200 70 - 80 80 - 90 90 - 10 0...

  14. Evaluation of time-accelerated irradiation method of elastomer by modulus-ultimate elongation profile

    International Nuclear Information System (INIS)

    Ito, Masayuki; Oka, Toshitaka; Hama, Yosimasa

    2009-01-01

    'Generalized modulus-ultimate elongation profile' was induced from the relationship between the modulus and the ultimate elongation of an elastomer that was quantitatively added crosslinking and scission. This profile can be used to evaluate the time-accelerated irradiation methods of ethylene-propylene-diene elastomer. The irradiation under low dose rate (0.33 kGy/h) at room temperature was the reference condition. The short-time irradiation condition was 4.2 kGy/h in 0.5 MPa oxygen at room temperature and 5.0 kGy/h in air at 70 o C. The former tended to bring about the higher ratio of scission than the reference condition; the latter tended to bring about the higher ratio of crosslinking.

  15. Characterization of the Young's modulus and residual stresses for a sputtered silicon oxynitride film using micro-structures

    International Nuclear Information System (INIS)

    Dong, Jian; Du, Ping; Zhang, Xin

    2013-01-01

    Silicon oxynitride (SiON) is an important material to fabricate micro-electro-mechanical system (MEMS) devices due to its composition-dependent tunability in electronic and mechanical properties. In this work, the SiON film with 41.45% silicon, 32.77% oxygen and 25.78% nitrogen content was deposited by RF magnetron sputtering. Two types of optimized micro-structures including micro-cantilevers and micro-rotating-fingers were designed and fabricated using MEMS surface micromachining technology. The micro-cantilever bending tests were conducted using a nanoindenter to characterize the Young's modulus of the SiON film. Owing to the elimination of the residual stress effect on the micro-cantilever structure, higher accuracy in the Young's modulus was achieved from this technique. With the information of Young's modulus of the film, the residual stresses were characterized from the deflection of the micro-rotating-fingers. This structure was able to locally measure a large range of tensile or compressive residual stresses in a thin film with sufficient sensitivities. The results showed that the Young's modulus of the SiON film was 122 GPa and the residual stresses of the SiON film were 327 MPa in the crystallographic orientation of the wafer and 334 MPa in the direction perpendicular to the crystallographic orientation, both in compression. This work presents a comprehensive methodology to measure the Young's modulus and residual stresses of a thin film with improved accuracy, which is promising for applications in mechanical characterization of MEMS devices. - Highlight: • We measured the Young's modulus and residual stress of SiON film by microstructure. • Micro cantilever structure improved the Young's modulus' measurement accuracy. • We explored the reason for the deviations of residual stress value of SiON film

  16. Nanomechanical Pyrolytic Carbon Resonators: Novel Fabrication Method and Characterization of Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Maksymilian Kurek

    2016-07-01

    Full Text Available Micro- and nanomechanical string resonators, which essentially are highly stressed bridges, are of particular interest for micro- and nanomechanical sensing because they exhibit resonant behavior with exceptionally high quality factors. Here, we fabricated and characterized nanomechanical pyrolytic carbon resonators (strings and cantilevers obtained through pyrolysis of photoresist precursors. The developed fabrication process consists of only three processing steps: photolithography, dry etching and pyrolysis. Two different fabrication strategies with two different photoresists, namely SU-8 2005 (negative and AZ 5214e (positive, were compared. The resonant behavior of the pyrolytic resonators was characterized at room temperature and in high vacuum using a laser Doppler vibrometer. The experimental data was used to estimate the Young’s modulus of pyrolytic carbon and the tensile stress in the string resonators. The Young’s moduli were calculated to be 74 ± 8 GPa with SU-8 and 115 ± 8 GPa with AZ 5214e as the precursor. The tensile stress in the string resonators was 33 ± 7 MPa with AZ 5214e as the precursor. The string resonators displayed maximal quality factor values of up to 3000 for 525-µm-long structures.

  17. A Comparative study of two RVE modelling methods for chopped carbon fiber SMC

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhangxing; Li, Yi; Shao, Yimin; Huang, Tianyu; Xu, Hongyi; Li, Yang; Chen, Wei; Zeng, Danielle; Avery, Katherine; Kang, HongTae; Su, Xuming

    2017-04-06

    To achieve vehicle light-weighting, the chopped carbon fiber sheet molding compound (SMC) is identified as a promising material to replace metals. However, there are no effective tools and methods to predict the mechanical property of the chopped carbon fiber SMC due to the high complexity in microstructure features and the anisotropic properties. In this paper, the Representative Volume Element (RVE) approach is used to model the SMC microstructure. Two modeling methods, the Voronoi diagram-based method and the chip packing method, are developed for material RVE property prediction. The two methods are compared in terms of the predicted elastic modulus and the predicted results are validated using the Digital Image Correlation (DIC) tensile test results. Furthermore, the advantages and shortcomings of these two methods are discussed in terms of the required input information and the convenience of use in the integrated processing-microstructure-property analysis.

  18. Iron, nitrogen and silicon doped diamond like carbon (DLC) thin films: A comparative study

    International Nuclear Information System (INIS)

    Ray, Sekhar C.; Pong, W.F.; Papakonstantinou, P.

    2016-01-01

    The X-ray absorption near edge structure (XANES), X-ray photoelectron spectroscopy (XPS), valence band photoemission (VB-PES) and Raman spectroscopy results show that the incorporation of nitrogen in pulsed laser deposited diamond like carbon (DLC) thin films, reverts the sp"3 network to sp"2 as evidenced by an increase of the sp"2 cluster and I_D/I_G ratio in C K-edge XANES and Raman spectra respectively which reduces the hardness/Young's modulus into the film network. Si-doped DLC film deposited in a plasma enhanced chemical vapour deposition process reduces the sp"2 cluster and I_D/I_G ratio that causes the decrease of hardness/Young's modulus of the film structure. The Fe-doped DLC films deposited by dip coating technique increase the hardness/Young's modulus with an increase of sp"3-content in DLC film structure. - Highlights: • Fe, N and Si doped DLC films deposited by dip, PLD and PECVD methods respectively • DLC:Fe thin films have higher hardness/Young's modulus than DLC:N(:Si) thin films. • sp"3 and sp"2 contents are estimated from C K-edge XANES and VB-PES measurements.

  19. Obtention and dynamical mechanical behavior of polymer matrix carbon fire reinforced composites; Obtencao e comportamento mecanodinamico de compositos com matriz polimerica reforcada com fibras de carbono

    Energy Technology Data Exchange (ETDEWEB)

    Da Silva, Nelson Marques

    2001-07-01

    Polymer matrix composites reinforced with carbon fibres have been extensively used in the nuclear, aeronautics, automotive and leisure industry. This is due to their superior performance when compared to conventional materials in terms of specific strength and specific modulus (3 to 4 times higher than that of mild steels). However, these materials are anisotropic, requiring characterisation for each process and particular application. In the present work, the evaluation of epoxy resin reinforced with unidirectional and continuous carbon fibres was carried out. The composites materials were obtained by filament winding, with three different cure cycles, with two types of carbon fibres (6000 and 12000 filaments per strand) and with fibres volumetric fraction around 60 %. The evaluation of the composites was undertaken using following techniques: scanning electron microscopy (SEM); dynamic mechanical analysis (DMA); thermogravimetric analysis (TGA), and differential scanning calorimeter (DSC). These techniques allowed the evaluation and comparison of storage modulus, internal energy dissipation, glass transition region and glass transition temperature - Tg, cure cycling. Besides, void volumetric fraction was measured. The results indicate that the DMA is a good alternative technique to DSC and TGA. It provides an indication of the quality of the produced composite, both thermal and mechanical. The technique can assist the quality control of composite components by measuring mechanical and thermal properties - modulus and Tg. The DMA technique was sensitive to cure cycling evaluation. Regarding the obtained composites, the results showed the need for the development of specific cure cycle for each application, establishing a compromise between properties such as storage modulus and internal energy dissipation, and involved costs. The results demonstrated differences between the storage modulus and internal energy dissipation for the two types of used fibres. (author)

  20. Maximisation of the ratio of microhardness to the Young's modulus of Ti–12Mo–13Nb alloy through microstructure changes

    Energy Technology Data Exchange (ETDEWEB)

    Gabriel, Sinara B., E-mail: sinara@metalmat.ufrj.br [Universidade Federal do Rio de Janeiro, Departamento de Engenharia Metalúrgica e de Materiais, C.P. 68505, Rio de Janeiro, RJ 21945-970 (Brazil); Centro Universitário de Volta Redonda, Volta Redonda, RJ (Brazil); Almeida, Luiz H. de [Universidade Federal do Rio de Janeiro, Departamento de Engenharia Metalúrgica e de Materiais, C.P. 68505, Rio de Janeiro, RJ 21945-970 (Brazil); Nunes, Carlos A. [Universidade de São Paulo, Departamento de Engenharia de Materiais, C.P. 116, Lorena, SP 12.600-970 (Brazil); Dille, Jean [Université Libre de Bruxelles, Chemical and Materials Department, Av. F. Roosevelt 50, C. P. 194/03, Brussels (Belgium); Soares, Glória A. [Universidade Federal do Rio de Janeiro, Departamento de Engenharia Metalúrgica e de Materiais, C.P. 68505, Rio de Janeiro, RJ 21945-970 (Brazil)

    2013-08-01

    Alloys for orthopaedic and dentistry applications require high mechanical strength and a low Young's modulus to avoid stress shielding. Metastable β titanium alloys appear to fulfil these requirements. This study investigated the correlation of phases precipitated in a Ti–12Mo–13Nb alloy with changes in hardness and the Young's modulus. The alloy was produced by arc melting under an argon atmosphere, after which, it was heat treated and cold forged. Two different routes of heat treatment were employed. Phase transformations were studied by employing X-ray diffraction and transmission electron microscopy. Property characterisation was based on Vickers microhardness tests and Young's modulus measurements. The highest ratio of microhardness to the Young's modulus was obtained using thermomechanical treatment, which consists of heating at 1000 °C for 24 h, water quenching, cold forging to reduce 80% of the area, and ageing at 500 °C for 24 h, where the final microstructure consisted of an α phase dispersed in a β matrix. The α phase appeared in two different forms: as fine lamellas (with 240 ± 100 nm length) and massive particles of 200–500 nm size. - Highlights: • The work presents microstructure change and properties of Ti–12Mo–13Nb alloy. • The better condition was achieved by the α phase distributed in the β matrix. • The values obtained were higher than of the Ti–6Al–4V alloy and cp Ti.

  1. Frequency and temperature dependence behaviour of impedance, modulus and conductivity of BaBi4Ti4O15 Aurivillius ceramic

    Directory of Open Access Journals (Sweden)

    Tanmaya Badapanda

    2014-09-01

    Full Text Available In this work, we report the dielectric, impedance, modulus and conductivity study of BaBi4Ti4O15 ceramic synthesized by solid state reaction. X-ray diffraction (XRD pattern showed orthorhombic structure with space group A21am confirming it to be an m = 4 member of the Aurivillius oxide. The frequency dependence dielectric study shows that the value of dielectric constant is high at lower frequencies and decreases with increase in frequency. Impedance spectroscopy analyses reveal a non-Debye relaxation phenomenon since relaxation frequency moves towards the positive side with increase in temperature. The shift in impedance peaks towards higher frequency side indicates conduction in material and favouring of the long rangemotion of mobile charge carriers. The Nyquist plot from complex impedance spectrum shows only one semicircular arc representing the grain effect in the electrical conduction. The modulus mechanism indicates the non-Debye type of conductivity relaxation in the material, which is supported by impedance data. Relaxation times extracted using imaginary part of complex impedance (Z′′ and modulus (M′′ were also found to follow Arrhenius law. The frequency dependent AC conductivity at different temperatures indicates that the conduction process is thermally activated. The variation of DC conductivity exhibits a negative temperature coefficient of resistance behaviour.

  2. Elastomer Reinforced with Carbon Nanotubes

    Science.gov (United States)

    Hudson, Jared L.; Krishnamoorti, Ramanan

    2009-01-01

    Elastomers are reinforced with functionalized, single-walled carbon nanotubes (SWNTs) giving them high-breaking strain levels and low densities. Cross-linked elastomers are prepared using amine-terminated, poly(dimethylsiloxane) (PDMS), with an average molecular weight of 5,000 daltons, and a functionalized SWNT. Cross-link densities, estimated on the basis of swelling data in toluene (a dispersing solvent) indicated that the polymer underwent cross-linking at the ends of the chains. This thermally initiated cross-linking was found to occur only in the presence of the aryl alcohol functionalized SWNTs. The cross-link could have been via a hydrogen-bonding mechanism between the amine and the free hydroxyl group, or via attack of the amine on the ester linage to form an amide. Tensile properties examined at room temperature indicate a three-fold increase in the tensile modulus of the elastomer, with rupture and failure of the elastomer occurring at a strain of 6.5.

  3. STRUCTURE AND CHARACTERISTICS OF PATENTED HIGH-CARBON WIRE

    Directory of Open Access Journals (Sweden)

    A. Ju. Borisenko

    2011-01-01

    Full Text Available The influence of bainite structure on mechanical characteristics of wire of steel 80 after patenting is studied. The quantity and structure state of bainite, providing high complex of mechanical characteristics of high-carbon wire, is determined.

  4. Thermodynamic diagrams for high temperature plasmas of air, air-carbon, carbon-hydrogen mixtures, and argon

    CERN Document Server

    Kroepelin, H; Hoffmann, K-U

    2013-01-01

    Thermodynamic Diagrams for High Temperature Plasmas of Air, Air-Carbon, Carbon-Hydrogen Mixtures, and Argon provides information relating to the properties of equilibrium gas plasmas formed from hydrocarbons, from air without argon, from pure argon, and from mixtures of air and carbon at various compositions, temperatures and pressures. The data are presented in graphical rather than tabular form to provide a clearer picture of the plasma processes investigated. This book is composed of four chapters, and begins with the introduction to the characteristics of plasmas, with emphasis on their th

  5. Carbon nanotube transistor based high-frequency electronics

    Science.gov (United States)

    Schroter, Michael

    At the nanoscale carbon nanotubes (CNTs) have higher carrier mobility and carrier velocity than most incumbent semiconductors. Thus CNT based field-effect transistors (FETs) are being considered as strong candidates for replacing existing MOSFETs in digital applications. In addition, the predicted high intrinsic transit frequency and the more recent finding of ways to achieve highly linear transfer characteristics have inspired investigations on analog high-frequency (HF) applications. High linearity is extremely valuable for an energy efficient usage of the frequency spectrum, particularly in mobile communications. Compared to digital applications, the much more relaxed constraints for CNT placement and lithography combined with already achieved operating frequencies of at least 10 GHz for fabricated devices make an early entry in the low GHz HF market more feasible than in large-scale digital circuits. Such a market entry would be extremely beneficial for funding the development of production CNTFET based process technology. This talk will provide an overview on the present status and feasibility of HF CNTFET technology will be given from an engineering point of view, including device modeling, experimental results, and existing roadblocks. Carbon nanotube transistor based high-frequency electronics.

  6. Stiffness modulus and creep properties of the coconut shell in an ...

    African Journals Online (AJOL)

    Coconut shell (CS) is an agricultural waste engineered into a road construction material. This study was conducted to evaluate the stiffness modulus and dynamic creep properties of the asphaltic concrete containing CS as an aggregate replacement. A mixture design incorporating the bitumen penetration grade 60/70 was ...

  7. Enhancement and prediction of modulus of elasticity of palm kernel shell concrete

    International Nuclear Information System (INIS)

    Alengaram, U. Johnson; Mahmud, Hilmi; Jumaat, Mohd Zamin

    2011-01-01

    Research highlights: → Micro-pores of size 16-24 μm were found on the outer surface of palm kernel shell. → Infilling of pores by mineral admixtures was evident. → Sand content influenced both modulus of elasticity and compressive strength. → Proposed equation predicts modulus of elasticity within ±1.5 kN/mm 2 of test results. -- Abstract: This paper presents results of an investigation conducted to enhance and predict the modulus of elasticity (MOE) of palm kernel shell concrete (PKSC). Scanning electron microscopic (SEM) analysis on palm kernel shell (PKS) was conducted. Further, the effect of varying sand and PKS contents and mineral admixtures (silica fume and fly ash) on compressive strength and MOE was investigated. The variables include water-to-binder (w/b) and sand-to-cement (s/c) ratios. Nine concrete mixes were prepared, and tests on static and dynamic moduli of elasticity and compressive strength were conducted. The SEM result showed presence of large number of micro-pores on PKS. The mineral admixtures uniformly filled the micro-pores on the outer surface of PKS. Further, the increase in sand content coupled with reduction in PKS content enhanced the compressive strength and static MOE: The highest MOE recorded in this investigation, 11 kN/mm 2 , was twice that previously published. Moreover, the proposed equation based on CEB/FIP code formula appears to predict the MOE close to the experimental values.

  8. High methanol oxidation activity of electrocatalysts supported by directly grown nitrogen-containing carbon nanotubes on carbon cloth

    International Nuclear Information System (INIS)

    Wang, C.-H.; Shih, H.-C.; Tsai, Y.-T.; Du, H.-Y.; Chen, L.-C.; Chen, K.-H.

    2006-01-01

    The microstructure and electrochemical activity of the Pt-Ru supported by nitrogen-containing carbon nanotubes (CN x NTs) directly grown on the carbon cloth have been investigated. The CN x NTs directly grown on the carbon cloth (CN x NTs-carbon cloth composite electrode) were synthesized using microwave-plasma-enhanced chemical vapour deposition first and then use as the template to support the Pt-Ru nanoclusters subsequently sputtered on. The ferricyanide/ferrocyanide redox reaction in cyclic voltammetry (CV) measurements showed a faster electron transfer on the CN x NTs-carbon cloth composite electrode than the one with carbon cloth alone. Comparing their methanol oxidation abilities, it is found that the Pt-Ru nanoclusters supported by the CN x NTs-carbon cloth composite electrode have considerably higher electrocatalytic activity than the carbon cloth counterpart. This result suggests high performance of the CN x NTs-carbon cloth composite electrode, and demonstrates its suitability for direct methanol fuel cell applications

  9. High methanol oxidation activity of electrocatalysts supported by directly grown nitrogen-containing carbon nanotubes on carbon cloth

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C.-H. [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan (China); Shih, H.-C. [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan (China); Institue of Materials Science and Nano Technology, Chinese Culture University, Taipei, Taiwan (China); Tsai, Y.-T. [Institue of Materials Science and Nano Technology, Chinese Culture University, Taipei, Taiwan (China); Du, H.-Y. [Institue of Materials Science and Nano Technology, Chinese Culture University, Taipei, Taiwan (China); Chen, L.-C. [Center for Condensed Matter Sciences, National Taiwan University, Taipei, Taiwan (China); Chen, K.-H. [Center for Condensed Matter Sciences, National Taiwan University, Taipei, Taiwan (China) and Institue of Atomic and Molecular Science, Academia Sinica, Taipei, Taiwan (China)]. E-mail: chenkh@pub.iams.sinica.edu.tw

    2006-12-01

    The microstructure and electrochemical activity of the Pt-Ru supported by nitrogen-containing carbon nanotubes (CN {sub x} NTs) directly grown on the carbon cloth have been investigated. The CN {sub x} NTs directly grown on the carbon cloth (CN {sub x} NTs-carbon cloth composite electrode) were synthesized using microwave-plasma-enhanced chemical vapour deposition first and then use as the template to support the Pt-Ru nanoclusters subsequently sputtered on. The ferricyanide/ferrocyanide redox reaction in cyclic voltammetry (CV) measurements showed a faster electron transfer on the CN {sub x} NTs-carbon cloth composite electrode than the one with carbon cloth alone. Comparing their methanol oxidation abilities, it is found that the Pt-Ru nanoclusters supported by the CN {sub x} NTs-carbon cloth composite electrode have considerably higher electrocatalytic activity than the carbon cloth counterpart. This result suggests high performance of the CN {sub x} NTs-carbon cloth composite electrode, and demonstrates its suitability for direct methanol fuel cell applications.

  10. Size effect of the elastic modulus of rectangular nanobeams: Surface elasticity effect

    International Nuclear Information System (INIS)

    Yao Hai-Yan; Fan Wen-Liang; Yun Guo-Hong

    2013-01-01

    The size-dependent elastic property of rectangular nanobeams (nanowires or nanoplates) induced by the surface elasticity effect is investigated by using a developed modified core-shell model. The effect of surface elasticity on the elastic modulus of nanobeams can be characterized by two surface related parameters, i.e., inhomogeneous degree constant and surface layer thickness. The analytical results show that the elastic modulus of the rectangular nanobeam exhibits a distinct size effect when its characteristic size reduces below 100 nm. It is also found that the theoretical results calculated by a modified core-shell model have more obvious advantages than those by other models (core-shell model and core-surface model) by comparing them with relevant experimental measurements and computational results, especially when the dimensions of nanostructures reduce to a few tens of nanometers. (condensed matter: structural, mechanical, and thermal properties)

  11. Application of probabilistic facies prediction and estimation of rock physics parameters in a carbonate reservoir from Iran

    International Nuclear Information System (INIS)

    Karimpouli, Sadegh; Hassani, Hossein; Nabi-Bidhendi, Majid; Khoshdel, Hossein; Malehmir, Alireza

    2013-01-01

    In this study, a carbonate field from Iran was studied. Estimation of rock properties such as porosity and permeability is much more challenging in carbonate rocks than sandstone rocks because of their strong heterogeneity. The frame flexibility factor (γ) is a rock physics parameter which is related not only to pore structure variation but also to solid/pore connectivity and rock texture in carbonate reservoirs. We used porosity, frame flexibility factor and bulk modulus of fluid as the proper parameters to study this gas carbonate reservoir. According to rock physics parameters, three facies were defined: favourable and unfavourable facies and then a transition facies located between these two end members. To capture both the inversion solution and associated uncertainty, a complete implementation of the Bayesian inversion of the facies from pre-stack seismic data was applied to well data and validated with data from another well. Finally, this method was applied on a 2D seismic section and, in addition to inversion of petrophysical parameters, the high probability distribution of favorable facies was also obtained. (paper)

  12. Patterned growth of carbon nanotubes obtained by high density plasma chemical vapor deposition

    Science.gov (United States)

    Mousinho, A. P.; Mansano, R. D.

    2015-03-01

    Patterned growth of carbon nanotubes by chemical vapor deposition represents an assembly approach to place and orient nanotubes at a stage as early as when they are synthesized. In this work, the carbon nanotubes were obtained at room temperature by High Density Plasmas Chemical Vapor Deposition (HDPCVD) system. This CVD system uses a new concept of plasma generation, where a planar coil coupled to an RF system for plasma generation was used with an electrostatic shield for plasma densification. In this mode, high density plasmas are obtained. We also report the patterned growth of carbon nanotubes on full 4-in Si wafers, using pure methane plasmas and iron as precursor material (seed). Photolithography processes were used to pattern the regions on the silicon wafers. The carbon nanotubes were characterized by micro-Raman spectroscopy, the spectra showed very single-walled carbon nanotubes axial vibration modes around 1590 cm-1 and radial breathing modes (RBM) around 120-400 cm-1, confirming that high quality of the carbon nanotubes obtained in this work. The carbon nanotubes were analyzed by atomic force microscopy and scanning electron microscopy too. The results showed that is possible obtain high-aligned carbon nanotubes with patterned growth on a silicon wafer with high reproducibility and control.

  13. A doped activated carbon prepared from polyaniline for high performance supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Li, Limin; Liu, Enhui; Li, Jian; Yang, Yanjing; Shen, Haijie; Huang, Zhengzheng; Xiang, Xiaoxia; Li, Wen [Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Hunan 411105 (China)

    2010-03-01

    A novel doped activated carbon has been prepared from H{sub 2}SO{sub 4}-doped polyaniline which is prepared by the oxypolymerization of aniline. The morphology, surface chemical composition and surface area of the carbon have been investigated by scanning electron microscope, X-ray photoelectron spectroscopy and Brunaner-Emmett-Teller measurement, respectively. Electrochemical properties of the doped activated carbon have been studied by cyclic voltammograms, galvanostatic charge/discharge, and electrochemical impedance spectroscopy measurements in 6 mol l{sup -1} KOH. The specific capacitance of the carbon is as high as 235 F g{sup -1}, the specific capacitance hardly decreases at a high current density 11 A g{sup -1} after 10,000 cycles, which indicates that the carbon possesses excellent cycle durability and may be a promising candidate for supercapacitors. (author)

  14. Direct synthesis of highly porous interconnected carbon nanosheets and their application as high-performance supercapacitors.

    Science.gov (United States)

    Sevilla, Marta; Fuertes, Antonio B

    2014-05-27

    An easy, one-step procedure is proposed for the synthesis of highly porous carbon nanosheets with an excellent performance as supercapacitor electrodes. The procedure is based on the carbonization of an organic salt, i.e., potassium citrate, at a temperature in the 750-900 °C range. In this way, carbon particles made up of interconnected carbon nanosheets with a thickness of <80 nm are obtained. The porosity of the carbon nanosheets consists essentially of micropores distributed in two pore systems of 0.7-0.85 nm and 0.95-1.6 nm. Importantly, the micropore sizes of both systems can be enlarged by simply increasing the carbonization temperature. Furthermore, the carbon nanosheets possess BET surface areas in the ∼1400-2200 m(2) g(-1) range and electronic conductivities in the range of 1.7-7.4 S cm(-1) (measured at 7.1 MPa). These materials behave as high-performance supercapacitor electrodes in organic electrolyte and exhibit an excellent power handling ability and a superb robustness over long-term cycling. Excellent results were obtained with the supercapacitor fabricated from the material synthesized at 850 °C in terms of both gravimetric and volumetric energy and power densities. This device was able to deliver ∼13 Wh kg(-1) (5.2 Wh L(-1)) at an extremely high power density of 78 kW kg(-1) (31 kW L(-1)) and ∼30 Wh kg(-1) (12 Wh L(-1)) at a power density of 13 kW kg(-1) (5.2 kW L(-1)) (voltage range of 2.7 V).

  15. Aloe vera Derived Activated High-Surface-Area Carbon for Flexible and High-Energy Supercapacitors.

    Science.gov (United States)

    Karnan, M; Subramani, K; Sudhan, N; Ilayaraja, N; Sathish, M

    2016-12-28

    Materials which possess high specific capacitance in device configuration with low cost are essential for viable application in supercapacitors. Herein, a flexible high-energy supercapacitor device was fabricated using porous activated high-surface-area carbon derived from aloe leaf (Aloe vera) as a precursor. The A. vera derived activated carbon showed mesoporous nature with high specific surface area of ∼1890 m 2 /g. A high specific capacitance of 410 and 306 F/g was achieved in three-electrode and symmetric two-electrode system configurations in aqueous electrolyte, respectively. The fabricated all-solid-state device showed a high specific capacitance of 244 F/g with an energy density of 8.6 Wh/kg. In an ionic liquid electrolyte, the fabricated device showed a high specific capacitance of 126 F/g and a wide potential window up to 3 V, which results in a high energy density of 40 Wh/kg. Furthermore, it was observed that the activation temperature has significant role in the electrochemical performance, as the activated sample at 700 °C showed best activity than the samples activated at 600 and 800 °C. The electron microscopic images (FE-SEM and HR-TEM) confirmed the formation of pores by the chemical activation. A fabricated supercapacitor device in ionic liquid with 3 V could power up a red LED for 30 min upon charging for 20s. Also, it is shown that the operation voltage and capacitance of flexible all-solid-state symmetric supercapacitors fabricated using aloe-derived activated carbon could be easily tuned by series and parallel combinations. The performance of fabricated supercapacitor devices using A. vera derived activated carbon in all-solid-state and ionic liquid indicates their viable applications in flexible devices and energy storage.

  16. The Mechanism of High Ductility for Novel High-Carbon Quenching-Partitioning-Tempering Martensitic Steel

    Science.gov (United States)

    Qin, Shengwei; Liu, Yu; Hao, Qingguo; Wang, Ying; Chen, Nailu; Zuo, Xunwei; Rong, Yonghua

    2015-09-01

    In this article, a novel quenching-partitioning-tempering (Q-P-T) process was applied to treat Fe-0.6C-1.5Mn-1.5Si-0.6Cr-0.05Nb hot-rolled high-carbon steel and the microstructures including retained austenite fraction and the average dislocation densities in both martensite and retained austenite were characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy, respectively. The Q-P-T steel exhibits high strength (1950 MPa) and elongation (12.4 pct). Comparing with the steel treated by traditional quenching and tempering (Q&T) process, the mechanism of high ductility for high-carbon Q-P-T steel is revealed as follows. Much more retained austenite existing in Q-P-T steel than in Q&T one remarkably enhances the ductility by the following two effects: the dislocation absorption by retained austenite effect and the transformation-induced plasticity effect. Besides, lower dislocation density in martensite matrix produced by Q-P-T process plays an important role in the improvement of ductility. However, some thin plates of twin-type martensite embedded in dislocation-type martensite matrix in high-carbon Q-P-T steel affect the further improvement of ductility.

  17. Effect of Modified and Nonmodified Carbon Nanotubes on the Rheological Behavior of High Density Polyethylene Nanocomposite

    Directory of Open Access Journals (Sweden)

    Adewunmi A. Ahmad

    2013-01-01

    Full Text Available This paper reports the results of studies on the rheological behavior of nanocomposites of high density polyethylene (HDPE with pristine multiwall carbon nanotubes (CNT as well as phenol and 1-octadecanol (C18 functionalized CNT at 1, 2, 3, 4, 5, and 7 wt% loading. The viscosity reduction at 1 wt% CNT follows the order, pristine CNT < phenol functionalized CNT < C18 functionalized CNT. As the filler loading increases from 1 to 2, 3, and 4 wt%, neat HDPE and filled HDPE systems show similar moduli and viscosity, particularly in the low frequency region. As the filler loading increases further to 5 and 7 wt%, the viscosity and moduli become greater than the neat HDPE. The storage modulus, tan, and the Cole-Cole plots show that CNT network formation occurs at higher CNT loading. The critical CNT loading or the rheological percolation threshold, where network formation occurs is found to be strongly dependant on the functionalization of CNT. For pristine CNT, the rheological percolation threshold is around 4 wt%, but for functionalized CNT it is around 7 wt%. The surface morphologies of CNT and functionalized CNT at 1 wt% loading showed good dispersion while at 7 wt% loading, dispersion was also achieved, but there are few regions with agglomeration of CNT.

  18. A comparative study on the elastic modulus of polyvinyl alcohol sponge using different stress-strain definitions.

    Science.gov (United States)

    Karimi, Alireza; Navidbakhsh, Mahdi; Alizadeh, Mansour; Razaghi, Reza

    2014-10-01

    There have been different stress-strain definitions to measure the elastic modulus of spongy materials, especially polyvinyl alcohol (PVA) sponge. However, there is no agreement as to which stress-strain definition should be implemented. This study was aimed to show how different results are given by the various definitions of stress-strain used, and to recommend a specific definition when testing spongy materials. A fabricated PVA sponge was subjected to a series of tensile tests in order to measure its mechanical properties. Three stress definitions (second Piola-Kichhoff stress, engineering stress, and true stress) and four strain definitions (Almansi-Hamel strain, Green-St. Venant strain, engineering strain, and true strain) were used to determine the elastic modulus. The results revealed that the Almansi-Hamel strain definition exhibited the highest non-linear stress-strain relation and, as a result, may overestimate the elastic modulus at different stress definitions (second Piola-Kichhoff stress, engineering stress, and true stress). The Green-St. Venant strain definition failed to address the non-linear stress-strain relation using different definitions of stress and invoked an underestimation of the elastic modulus values. Engineering stress and strain definitions were only valid for small strains and displacements, which make them impractical when analyzing spongy materials. The results showed that the effect of varying the stress definition on the maximum stress measurements was significant but not when calculating the elastic modulus. It is important to consider which stress-strain definition is employed when characterizing the mechanical properties of spongy materials. Although the true stress-true strain definition exhibits a non-linear relation, we favor it in spongy materials mechanics as it gives more accurate measurements of the material's response using the instantaneous values.

  19. Production of a low young modulus titanium alloy by powder metallurgy

    Directory of Open Access Journals (Sweden)

    Dalcy Roberto dos Santos

    2005-12-01

    Full Text Available Titanium alloys have several advantages over ferrous and non-ferrous metallic materials, such as high strengthto-weight ratio and excellent corrosion resistance. A blended elemental titanium powder metallurgy process has been developed to offer low cost commercial products. The process employs hydride-dehydride (HDH powders as raw material. In this work, results of the Ti-35Nb alloy sintering are presented. This alloy due to its lower modulus of elasticity and high biocompatibility is a promising candidate for aerospace and medical use. Samples were produced by mixing of initial metallic powders followed by uniaxial and cold isostatic pressing with subsequent densification by isochronal sintering between 900 up to 1600 °C, in vacuum. Sintering behavior was studied by means of microscopy and density. Sintered samples were characterized for phase composition, microstructure and microhardness by X-ray diffraction, scanning electron microscopy and Vickers indentation, respectively. Samples sintered at high temperatures display a fine plate-like alpha structure and intergranular beta. A few remaining pores are still found and density above 90% for specimens sintered in temperatures over 1500 °C is reached.

  20. Nano mechanical properties of carbon films modified by ion radiation

    International Nuclear Information System (INIS)

    Foerster, C.E.; Serbena, F.C.; Lepienski, C.M.; Odo, G.Y.; Zawislak, F.C.; Lopes, J.M.J.; Baptista, D.L.; Garcia, I.T.S.

    2000-01-01

    In present work it is measured hardness, Young modulus and friction coefficient values for different types of carbon films. These films were submitted to different ion bombardment conditions (energy and fluencies). The mechanical behavior was obtained by nano indentation technique and analyzed by the Oliver/Pharr method. For friction coefficient determination the nano scratch procedure is used. Pristine C 60 films (fullerenes) has a hardness of 0.33 GPa. After irradiation with different ions (He, N and Bi), the hardness raise to about 14 GPa and the Young modulus change from 20 to about 200 GPa. For photoresist film AZ-1350J irradiation with Ar and He change the hardness from 0.4 to about 14 GPa and the Young modulus raise from 4 to 80 GPa. In a-C-H the hardness change from 3.5 to 11 GPa when submitted to N irradiation. In PPA films the hardness value raise from 0.5 to 11 GPa after irradiation with Ar. These mechanical and tribological results were analyzed in terms of deposited energy by the ion irradiation and compared with those presented in the literature. (author)