WorldWideScience

Sample records for high metabolic activity

  1. A high-throughput method for quantifying metabolically active yeast cells

    DEFF Research Database (Denmark)

    Nandy, Subir Kumar; Knudsen, Peter Boldsen; Rosenkjær, Alexander

    2015-01-01

    By redesigning the established methylene blue reduction test for bacteria and yeast, we present a cheap and efficient methodology for quantitative physiology of eukaryotic cells applicable for high-throughput systems. Validation of themethod in fermenters and highthroughput systems proved....... The drop in metabolic activity associated with the diauxic shift in yeast proved more pronounced for the MBRT-derived curve compared with OD curves, consistent with a dramatic shift in the ratio between live and dead cells at this metabolic event. This method provides a tool with numerous applications, e.......g. characterizing the death phase of stationary phase cultures, or in drug screens with pathogenic yeasts....

  2. Manipulation of dopamine metabolism contributes to attenuating innate high locomotor activity in ICR mice.

    Science.gov (United States)

    Yamaguchi, Takeshi; Nagasawa, Mao; Ikeda, Hiromi; Kodaira, Momoko; Minaminaka, Kimie; Chowdhury, Vishwajit S; Yasuo, Shinobu; Furuse, Mitsuhiro

    2017-06-15

    Attention-deficit hyperactivity disorder (ADHD) is defined as attention deficiency, restlessness and distraction. The main characteristics of ADHD are hyperactivity, impulsiveness and carelessness. There is a possibility that these abnormal behaviors, in particular hyperactivity, are derived from abnormal dopamine (DA) neurotransmission. To elucidate the mechanism of high locomotor activity, the relationship between innate activity levels and brain monoamines and amino acids was investigated in this study. Differences in locomotor activity between ICR, C57BL/6J and CBA/N mice were determined using the open field test. Among the three strains, ICR mice showed the greatest amount of locomotor activity. The level of striatal and cerebellar DA was lower in ICR mice than in C57BL/6J mice, while the level of L-tyrosine (L-Tyr), a DA precursor, was higher in ICR mice. These results suggest that the metabolic conversion of L-Tyr to DA is lower in ICR mice than it is in C57BL/6J mice. Next, the effects of intraperitoneal injection of (6R)-5, 6, 7, 8-tetrahydro-l-biopterin dihydrochloride (BH 4 ) (a co-enzyme for tyrosine hydroxylase) and L-3,4-dihydroxyphenylalanine (L-DOPA) on DA metabolism and behavior in ICR mice were investigated. The DA level in the brain was increased by BH 4 administration, but the increased DA did not influence behavior. However, L-DOPA administration drastically lowered locomotor activity and increased DA concentration in several parts of the brain. The reduced locomotor activity may have been a consequence of the overproduction of DA. In conclusion, the high level of locomotor activity in ICR mice may be explained by a strain-specific DA metabolism. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Naringin ameliorates metabolic syndrome by activating AMP-activated protein kinase in mice fed a high-fat diet.

    Science.gov (United States)

    Pu, Peng; Gao, Dong-Mei; Mohamed, Salim; Chen, Jing; Zhang, Jing; Zhou, Xiao-Ya; Zhou, Nai-Jing; Xie, Jing; Jiang, Hong

    2012-02-01

    Metabolic syndrome is a low-grade inflammatory state in which oxidative stress is involved. Naringin, isolated from the Citrussinensis, is a phenolic compound with anti-oxidative and anti-inflammatory activities. The aim of this study was to explore the effects of naringin on metabolic syndrome in mice. The animal models, induced by high-fat diet in C57BL/6 mice, developed obesity, dyslipidemia, fatty liver, liver dysfunction and insulin resistance. These changes were attenuated by naringin. Further investigations revealed that the inhibitory effect on inflammation and insulin resistance was mediated by blocking activation of the MAPKs pathways and by activating IRS1; the lipid-lowering effect was attributed to inhibiting the synthesis way and increasing fatty acid oxidation; the hypoglycemic effect was due to the regulation of PEPCK and G6pase. The anti-oxidative stress of naringin also participated in the improvement of insulin resistance and lipogenesis. All of these depended on the AMPK activation. To confirm the results of the animal experiment, we tested primary hepatocytes exposed to high glucose system. Naringin was protective by phosphorylating AMPKα and IRS1. Taken together, these results suggested that naringin protected mice exposed to a high-fat diet from metabolic syndrome through an AMPK-dependent mechanism involving multiple types of intracellular signaling and reduction of oxidative damage. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Diversity of Metabolically Active Bacteria in Water-Flooded High-Temperature Heavy Oil Reservoir

    Directory of Open Access Journals (Sweden)

    Tamara N. Nazina

    2017-04-01

    Full Text Available The goal of this work was to study the overall genomic diversity of microorganisms of the Dagang high-temperature oilfield (PRC and to characterize the metabolically active fraction of these populations. At this water-flooded oilfield, the microbial community of formation water from the near-bottom zone of an injection well where the most active microbial processes of oil degradation occur was investigated using molecular, cultural, radiotracer, and physicochemical techniques. The samples of microbial DNA and RNA from back-flushed water were used to obtain the clone libraries for the 16S rRNA gene and cDNA of 16S rRNA, respectively. The DNA-derived clone libraries were found to contain bacterial and archaeal 16S rRNA genes and the alkB genes encoding alkane monooxygenases similar to those encoded by alkB-geo1 and alkB-geo6 of geobacilli. The 16S rRNA genes of methanogens (Methanomethylovorans, Methanoculleus, Methanolinea, Methanothrix, and Methanocalculus were predominant in the DNA-derived library of Archaea cloned sequences; among the bacterial sequences, the 16S rRNA genes of members of the genus Geobacillus were the most numerous. The RNA-derived library contained only bacterial cDNA of the 16S rRNA sequences belonging to metabolically active aerobic organotrophic bacteria (Tepidimonas, Pseudomonas, Acinetobacter, as well as of denitrifying (Azoarcus, Tepidiphilus, Calditerrivibrio, fermenting (Bellilinea, iron-reducing (Geobacter, and sulfate- and sulfur-reducing bacteria (Desulfomicrobium, Desulfuromonas. The presence of the microorganisms of the main functional groups revealed by molecular techniques was confirmed by the results of cultural, radioisotope, and geochemical research. Functioning of the mesophilic and thermophilic branches was shown for the microbial food chain of the near-bottom zone of the injection well, which included the microorganisms of the carbon, sulfur, iron, and nitrogen cycles.

  5. Low resting metabolic rate in exercise-associated amenorrhea is not due to a reduced proportion of highly active metabolic tissue compartments.

    Science.gov (United States)

    Koehler, Karsten; Williams, Nancy I; Mallinson, Rebecca J; Southmayd, Emily A; Allaway, Heather C M; De Souza, Mary Jane

    2016-08-01

    Exercising women with menstrual disturbances frequently display a low resting metabolic rate (RMR) when RMR is expressed relative to body size or lean mass. However, normalizing RMR for body size or lean mass does not account for potential differences in the size of tissue compartments with varying metabolic activities. To explore whether the apparent RMR suppression in women with exercise-associated amenorrhea is a consequence of a lower proportion of highly active metabolic tissue compartments or the result of metabolic adaptations related to energy conservation at the tissue level, RMR and metabolic tissue compartments were compared among exercising women with amenorrhea (AMEN; n = 42) and exercising women with eumenorrheic, ovulatory menstrual cycles (OV; n = 37). RMR was measured using indirect calorimetry and predicted from the size of metabolic tissue compartments as measured by dual-energy X-ray absorptiometry (DEXA). Measured RMR was lower than DEXA-predicted RMR in AMEN (1,215 ± 31 vs. 1,327 ± 18 kcal/day, P < 0.001) but not in OV (1,284 ± 24 vs. 1,252 ± 17, P = 0.16), resulting in a lower ratio of measured to DEXA-predicted RMR in AMEN (91 ± 2%) vs. OV (103 ± 2%, P < 0.001). AMEN displayed proportionally more residual mass (P < 0.001) and less adipose tissue (P = 0.003) compared with OV. A lower ratio of measured to DXA-predicted RMR was associated with lower serum total triiodothyronine (ρ = 0.38, P < 0.001) and leptin (ρ = 0.32, P = 0.004). Our findings suggest that RMR suppression in this population is not the result of a reduced size of highly active metabolic tissue compartments but is due to metabolic and endocrine adaptations at the tissue level that are indicative of energy conservation.

  6. Metabolic and behavioral responses to high-fat feeding in mice selectively bred for high wheel-running activity

    NARCIS (Netherlands)

    Vaanholt, L. M.; Jonas, I.; Doornbos, M.; Schubert, K. A.; Nyakas, C.; Garland, T.; Visser, G. H.; van Dijk, G.; Garland Jr., T.

    2008-01-01

    Objective: Increased dietary fat intake is a precipitating factor for the development of obesity and associated metabolic disturbances. Physically active individuals generally have a reduced risk of developing these unhealthy states, but the underlying mechanisms are poorly understood. In the

  7. Prevalence of Metabolic Syndrome in Patients with HIV in the Era of Highly Active Antiretroviral Therapy.

    Science.gov (United States)

    Lombo, Bernardo; Alkhalil, Imran; Golden, Marjorie P; Fotjadhi, Irma; Ravi, Sreedhar; Virata, Michael; Lievano, Marta; Diez, Jose; Ghantous, Andre; Donohue, Thomas

    2015-05-01

    Since the introduction of combination antiretroviral therapy (cART) as the standard of care for HIV disease, there has been a precipitous decline in the death rate due to HIV/ AIDS. The purpose of this study was to report the prevalence of metabolic syndrome in HIV infected patients. Retrospective, cross-sectional, observational study of 259 patients with HIV infection treated with cART from an urban community hospital. Metabolic syndrome prevalence was defined using the International Diabetes Federation (IDF) and the U.S. National Cholesterol Education Program Adult Treatment Panel III (ATP III) criteria. Study patients were included regardless of the duration of cART. The prevalence of metabolic syndrome was 27% using IDF criteria and 26% using ATP III criteria. Logistic regression analysis found an association between treatment with the protease inhibitor darunavir and metabolic syndrome. (OR 3.32 with 95% confidence interval between 1.54 and 7.15). There is a high prevalence of metabolic syndrome and obesity in HIV patients treated with cART, especially those taking the protease inhibitor darunavir.

  8. Prokaryote metabolism activity

    OpenAIRE

    Biederman, Lori

    2017-01-01

    I wrote this activity to emphasize that prokaryotic organisms can carry out 6 different types of metabolisms (as presented in Freeman’s Biological Science textbook) and this contrasts to eukaryotes, which can only use 2 metabolism pathways (photoautotroph and heterotroph).    For in class materials I remove the  red box (upper right corner) and print slides 3-10, place them back-to-back and laminate them.  The students get a key (slide 2) and a two-sided organism sheet...

  9. Wheel-running activity and energy metabolism in relation to ambient temperature in mice selected for high wheel-running activity

    NARCIS (Netherlands)

    Vaanholt, Lobke M.; Garland, Theodore; Daan, Serge; Visser, G. Henk; Garland Jr., Theodore; Heldmaier, G.

    Interrelationships between ambient temperature, activity, and energy metabolism were explored in mice that had been selectively bred for high spontaneous wheel-running activity and their random-bred controls. Animals were exposed to three different ambient temperatures (10, 20 and 30 degrees C) and

  10. Metabolic in Vivo Labeling Highlights Differences of Metabolically Active Microbes from the Mucosal Gastrointestinal Microbiome between High-Fat and Normal Chow Diet

    NARCIS (Netherlands)

    Oberbach, Andreas; Haange, Sven Bastiaan; Schlichting, Nadine; Heinrich, Marco; Lehmann, Stefanie; Till, Holger; Hugenholtz, Floor; Kullnick, Yvonne; Smidt, Hauke; Frank, Karin; Seifert, Jana; Jehmlich, Nico; Bergen, Von Martin

    2017-01-01

    The gastrointestinal microbiota in the gut interacts metabolically and immunologically with the host tissue in the contact zone of the mucus layer. For understanding the details of these interactions and especially their dynamics it is crucial to identify the metabolically active subset of the

  11. Drug metabolism in human brain: high levels of cytochrome P4503A43 in brain and metabolism of anti-anxiety drug alprazolam to its active metabolite.

    Directory of Open Access Journals (Sweden)

    Varsha Agarwal

    2008-06-01

    Full Text Available Cytochrome P450 (P450 is a super-family of drug metabolizing enzymes. P450 enzymes have dual function; they can metabolize drugs to pharmacologically inactive metabolites facilitating their excretion or biotransform them to pharmacologically active metabolites which may have longer half-life than the parent drug. The variable pharmacological response to psychoactive drugs typically seen in population groups is often not accountable by considering dissimilarities in hepatic metabolism. Metabolism in brain specific nuclei may play a role in pharmacological modulation of drugs acting on the CNS and help explain some of the diverse response to these drugs seen in patient population. P450 enzymes are also present in brain where drug metabolism can take place and modify therapeutic action of drugs at the site of action. We have earlier demonstrated an intrinsic difference in the biotransformation of alprazolam (ALP in brain and liver, relatively more alpha-hydroxy alprazolam (alpha-OHALP is formed in brain as compared to liver. In the present study we show that recombinant CYP3A43 metabolizes ALP to both alpha-OHALP and 4-hydroxy alprazolam (4-OHALP while CYP3A4 metabolizes ALP predominantly to its inactive metabolite, 4-OHALP. The expression of CYP3A43 mRNA in human brain samples correlates with formation of relatively higher levels of alpha-OH ALP indicating that individuals who express higher levels of CYP3A43 in the brain would generate larger amounts of alpha-OHALP. Further, the expression of CYP3A43 was relatively higher in brain as compared to liver across different ethnic populations. Since CYP3A enzymes play a prominent role in the metabolism of drugs, the higher expression of CYP3A43 would generate metabolite profile of drugs differentially in human brain and thus impact the pharmacodynamics of psychoactive drugs at the site of action.

  12. A Shift in the Thermoregulatory Curve as a Result of Selection for High Activity-Related Aerobic Metabolism

    Directory of Open Access Journals (Sweden)

    Clare Stawski

    2017-12-01

    Full Text Available According to the “aerobic capacity model,” endothermy in birds and mammals evolved as a result of natural selection favoring increased persistent locomotor activity, fuelled by aerobic metabolism. However, this also increased energy expenditure even during rest, with the lowest metabolic rates occurring in the thermoneutral zone (TNZ and increasing at ambient temperatures (Ta below and above this range, depicted by the thermoregulatory curve. In our experimental evolution system, four lines of bank voles (Myodes glareolus have been selected for high swim-induced aerobic metabolism and four unselected lines have been maintained as a control. In addition to a 50% higher rate of oxygen consumption during swimming, the selected lines have also evolved a 7.3% higher mass-adjusted basal metabolic rate. Therefore, we asked whether voles from selected lines would also display a shift in the thermoregulatory curve and an increased body temperature (Tb during exposure to high Ta. To test these hypotheses we measured the RMR and Tb of selected and control voles at Ta from 10 to 34°C. As expected, RMR within and around the TNZ was higher in selected lines. Further, the Tb of selected lines within the TNZ was greater than the Tb of control lines, particularly at the maximum measured Ta of 34°C, suggesting that selected voles are more prone to hyperthermia. Interestingly, our results revealed that while the slope of the thermoregulatory curve below the lower critical temperature (LCT is significantly lower in the selected lines, the LCT (26.1°C does not differ. Importantly, selected voles also evolved a higher maximum thermogenesis, but thermal conductance did not increase. As a consequence, the minimum tolerated temperature, calculated from an extrapolation of the thermoregulatory curve, is 8.4°C lower in selected (−28.6°C than in control lines (−20.2°C. Thus, selection for high aerobic exercise performance, even though operating under

  13. A Shift in the Thermoregulatory Curve as a Result of Selection for High Activity-Related Aerobic Metabolism.

    Science.gov (United States)

    Stawski, Clare; Koteja, Paweł; Sadowska, Edyta T

    2017-01-01

    According to the "aerobic capacity model," endothermy in birds and mammals evolved as a result of natural selection favoring increased persistent locomotor activity, fuelled by aerobic metabolism. However, this also increased energy expenditure even during rest, with the lowest metabolic rates occurring in the thermoneutral zone (TNZ) and increasing at ambient temperatures (T a ) below and above this range, depicted by the thermoregulatory curve. In our experimental evolution system, four lines of bank voles ( Myodes glareolus ) have been selected for high swim-induced aerobic metabolism and four unselected lines have been maintained as a control. In addition to a 50% higher rate of oxygen consumption during swimming, the selected lines have also evolved a 7.3% higher mass-adjusted basal metabolic rate. Therefore, we asked whether voles from selected lines would also display a shift in the thermoregulatory curve and an increased body temperature (T b ) during exposure to high T a . To test these hypotheses we measured the RMR and T b of selected and control voles at T a from 10 to 34°C. As expected, RMR within and around the TNZ was higher in selected lines. Further, the T b of selected lines within the TNZ was greater than the T b of control lines, particularly at the maximum measured T a of 34°C, suggesting that selected voles are more prone to hyperthermia. Interestingly, our results revealed that while the slope of the thermoregulatory curve below the lower critical temperature (LCT) is significantly lower in the selected lines, the LCT (26.1°C) does not differ. Importantly, selected voles also evolved a higher maximum thermogenesis, but thermal conductance did not increase. As a consequence, the minimum tolerated temperature, calculated from an extrapolation of the thermoregulatory curve, is 8.4°C lower in selected (-28.6°C) than in control lines (-20.2°C). Thus, selection for high aerobic exercise performance, even though operating under thermally

  14. Piperidine alkaloids from Piperretrofractum Vahl. protect against high-fat diet-induced obesity by regulating lipid metabolism and activating AMP-activated protein kinase

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung Jin [Department of Biomaterials Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Lee, Myoung-Su; Jo, Keunae [Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Hwang, Jae-Kwan, E-mail: jkhwang@yonsei.ac.kr [Department of Biomaterials Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Translational Research Center for Protein Functional Control, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2011-07-22

    Highlights: {yields} Piperidine alkaloids from Piperretrofractum Vahl. (PRPAs), including piperine, pipernonaline, and dehydropipernonaline, are isolated as the anti-obesity constituents. {yields} PRPA administration significantly reduces body weight gain without altering food intake and fat pad mass. {yields} PRPA reduces high-fat diet-induced triglyceride accumulation in liver. {yields} PRPAs attenuate HFD-induced obesity by activating AMPK and PPAR{delta}, and regulate lipid metabolism, suggesting their potential anti-obesity effects. -- Abstract: The fruits of Piperretrofractum Vahl. have been used for their anti-flatulent, expectorant, antitussive, antifungal, and appetizing properties in traditional medicine, and they are reported to possess gastroprotective and cholesterol-lowering properties. However, their anti-obesity activity remains unexplored. The present study was conducted to isolate the anti-obesity constituents from P. retrofractum Vahl. and evaluate their effects in high-fat diet (HFD)-induced obese mice. Piperidine alkaloids from P. retrofractum Vahl. (PRPAs), including piperine, pipernonaline, and dehydropipernonaline, were isolated as the anti-obesity constituents through a peroxisome proliferator-activated receptor {delta} (PPAR{delta}) transactivation assay. The molecular mechanism was investigated in 3T3-L1 adipocytes and L6 myocytes. PRPA treatment activated AMP-activated protein kinase (AMPK) signaling and PPAR{delta} protein and also regulated the expression of lipid metabolism-related proteins. In the animal model, oral PRPA administration (50, 100, or 300 mg/kg/day for 8 weeks) significantly reduced HFD-induced body weight gain without altering the amount of food intake. Fat pad mass was reduced in the PRPA treatment groups, as evidenced by reduced adipocyte size. In addition, elevated serum levels of total cholesterol, low-density lipoprotein cholesterol, total lipid, leptin, and lipase were suppressed by PRPA treatment. PRPA also

  15. Piperidine alkaloids from Piperretrofractum Vahl. protect against high-fat diet-induced obesity by regulating lipid metabolism and activating AMP-activated protein kinase

    International Nuclear Information System (INIS)

    Kim, Kyung Jin; Lee, Myoung-Su; Jo, Keunae; Hwang, Jae-Kwan

    2011-01-01

    Highlights: → Piperidine alkaloids from Piperretrofractum Vahl. (PRPAs), including piperine, pipernonaline, and dehydropipernonaline, are isolated as the anti-obesity constituents. → PRPA administration significantly reduces body weight gain without altering food intake and fat pad mass. → PRPA reduces high-fat diet-induced triglyceride accumulation in liver. → PRPAs attenuate HFD-induced obesity by activating AMPK and PPARδ, and regulate lipid metabolism, suggesting their potential anti-obesity effects. -- Abstract: The fruits of Piperretrofractum Vahl. have been used for their anti-flatulent, expectorant, antitussive, antifungal, and appetizing properties in traditional medicine, and they are reported to possess gastroprotective and cholesterol-lowering properties. However, their anti-obesity activity remains unexplored. The present study was conducted to isolate the anti-obesity constituents from P. retrofractum Vahl. and evaluate their effects in high-fat diet (HFD)-induced obese mice. Piperidine alkaloids from P. retrofractum Vahl. (PRPAs), including piperine, pipernonaline, and dehydropipernonaline, were isolated as the anti-obesity constituents through a peroxisome proliferator-activated receptor δ (PPARδ) transactivation assay. The molecular mechanism was investigated in 3T3-L1 adipocytes and L6 myocytes. PRPA treatment activated AMP-activated protein kinase (AMPK) signaling and PPARδ protein and also regulated the expression of lipid metabolism-related proteins. In the animal model, oral PRPA administration (50, 100, or 300 mg/kg/day for 8 weeks) significantly reduced HFD-induced body weight gain without altering the amount of food intake. Fat pad mass was reduced in the PRPA treatment groups, as evidenced by reduced adipocyte size. In addition, elevated serum levels of total cholesterol, low-density lipoprotein cholesterol, total lipid, leptin, and lipase were suppressed by PRPA treatment. PRPA also protected against the development of

  16. Beneficial Autophagic Activities, Mitochondrial Function, and Metabolic Phenotype Adaptations Promoted by High-Intensity Interval Training in a Rat Model

    Directory of Open Access Journals (Sweden)

    Fang-Hui Li

    2018-05-01

    Full Text Available The effects of high-intensity interval (HIIT and moderate-intensity continuous training (MICT on basal autophagy and mitochondrial function in cardiac and skeletal muscle and plasma metabolic phenotypes have not been clearly characterized. Here, we investigated how 10-weeks HIIT and MICT differentially modify basal autophagy and mitochondrial markers in cardiac and skeletal muscle and conducted an untargeted metabolomics study with proton nuclear magnetic resonance (1H NMR spectroscopy and multivariate statistical analysis of plasma metabolic phenotypes. Male Sprague–Dawley rats were separated into three groups: sedentary control (SED, MICT, and HIIT. Rats underwent evaluation of exercise performance, including exercise tolerance and grip strength, and blood lactate levels were measured immediately after an incremental exercise test. Plasma samples were analyzed by 1H NMR. The expression of autophagy and mitochondrial markers and autophagic flux (LC3II/LC3-I ratio in cardiac, rectus femoris, and soleus muscle were analyzed by western blotting. Time to exhaustion and grip strength increased significantly following HIIT compared with that in both SED and MICT groups. Compared with those in the SED group, blood lactate level, and the expression of SDH, COX-IV, and SIRT3 significantly increased in rectus femoris and soleus muscle of both HIIT and MICT groups. Meanwhile, SDH and COX-IV content of cardiac muscle and COX-IV and SIRT3 content of rectus femoris and soleus muscle increased significantly following HIIT compared with that following MICT. The expression of LC3-II, ATG-3, and Beclin-1 and LC3II/LC3-I ratio were significantly increased only in soleus and cardiac muscle following HIIT. These data indicate that HIIT was more effective for improving physical performance and facilitating cardiac and skeletal muscle adaptations that increase mitochondrial function and basal autophagic activities. Moreover, 1H NMR spectroscopy and multivariate

  17. Beneficial Autophagic Activities, Mitochondrial Function, and Metabolic Phenotype Adaptations Promoted by High-Intensity Interval Training in a Rat Model.

    Science.gov (United States)

    Li, Fang-Hui; Li, Tao; Ai, Jing-Yi; Sun, Lei; Min, Zhu; Duan, Rui; Zhu, Ling; Liu, Yan-Ying; Liu, Timon Cheng-Yi

    2018-01-01

    The effects of high-intensity interval (HIIT) and moderate-intensity continuous training (MICT) on basal autophagy and mitochondrial function in cardiac and skeletal muscle and plasma metabolic phenotypes have not been clearly characterized. Here, we investigated how 10-weeks HIIT and MICT differentially modify basal autophagy and mitochondrial markers in cardiac and skeletal muscle and conducted an untargeted metabolomics study with proton nuclear magnetic resonance ( 1 H NMR) spectroscopy and multivariate statistical analysis of plasma metabolic phenotypes. Male Sprague-Dawley rats were separated into three groups: sedentary control (SED), MICT, and HIIT. Rats underwent evaluation of exercise performance, including exercise tolerance and grip strength, and blood lactate levels were measured immediately after an incremental exercise test. Plasma samples were analyzed by 1 H NMR. The expression of autophagy and mitochondrial markers and autophagic flux (LC3II/LC3-I ratio) in cardiac, rectus femoris, and soleus muscle were analyzed by western blotting. Time to exhaustion and grip strength increased significantly following HIIT compared with that in both SED and MICT groups. Compared with those in the SED group, blood lactate level, and the expression of SDH, COX-IV, and SIRT3 significantly increased in rectus femoris and soleus muscle of both HIIT and MICT groups. Meanwhile, SDH and COX-IV content of cardiac muscle and COX-IV and SIRT3 content of rectus femoris and soleus muscle increased significantly following HIIT compared with that following MICT. The expression of LC3-II, ATG-3, and Beclin-1 and LC3II/LC3-I ratio were significantly increased only in soleus and cardiac muscle following HIIT. These data indicate that HIIT was more effective for improving physical performance and facilitating cardiac and skeletal muscle adaptations that increase mitochondrial function and basal autophagic activities. Moreover, 1 H NMR spectroscopy and multivariate statistical

  18. Functional Comparison for Lipid Metabolism and Intestinal and Fecal Microflora Enzyme Activities between Low Molecular Weight Chitosan and Chitosan Oligosaccharide in High-Fat-Diet-Fed Rats.

    Science.gov (United States)

    Chiu, Chen-Yuan; Feng, Shih-An; Liu, Shing-Hwa; Chiang, Meng-Tsan

    2017-07-24

    The present study investigated and compared the regulatory effects on the lipid-related metabolism and intestinal disaccharidase/fecal bacterial enzyme activities between low molecular weight chitosan and chitosan oligosaccharide in high-fat-diet-fed rats. Diet supplementation of low molecular weight chitosan showed greater efficiency than chitosan oligosaccharide in suppressing the increased weights in body and in liver and adipose tissues of high-fat-diet-fed rats. Supplementation of low molecular weight chitosan also showed a greater improvement than chitosan oligosaccharide in imbalance of plasma, hepatic, and fecal lipid profiles, and intestinal disaccharidase activities in high-fat-diet-fed rats. Moreover, both low molecular weight chitosan and chitosan oligosaccharide significantly decreased the fecal microflora mucinase and β-glucuronidase activities in high-fat-diet-fed rats. These results suggest that low molecular weight chitosan exerts a greater positive improvement than chitosan oligosaccharide in lipid metabolism and intestinal disaccharidase activity in high-fat-diet-induced obese rats.

  19. Prevalence of lipodystrophy and metabolic syndrome among HIV positive individuals on Highly Active Anti-Retroviral treatment in Jimma, South West Ethiopia.

    Science.gov (United States)

    Berhane, Tsegay; Yami, Alemishet; Alemseged, Fessahaye; Yemane, Tilahun; Hamza, Leja; Kassim, Mehedi; Deribe, Kebede

    2012-01-01

    Use of highly active antiretroviral therapy has led to significant reductions in morbidity and mortality rates. However, these agents had also given rise to the metabolic and morphologic abnormalities which are modifiable risk factors for cardiovascular diseases. Evidences elsewhere indicate growing in prevalence of these problems but studies are lacking in Ethiopia. This study was conducted to determine the prevalence of HIV-associated lipodystrophy and metabolic syndrome in patients taking highly active antiretroviral therapy. A cross-sectional study was conducted in 2010 on a sample of 313 patients taking highly active antiretroviral therapy in Jimma University specialized hospital. Structured questionnaire was used to assess patients' sociodemographic characteristics and clinical manifestations of metabolic abnormalities. Checklists were used for reviewing charts about clinical manifestations of metabolic abnormalities and immunologic profile of patients. Data was cleaned, entered in and analyzed using SPSS for windows version 16.0. Metabolic syndrome was detected in 21.1% and HIV-lipodystrophy was detected 12.1% of patients. The factors found to be independently associated with metabolic syndrome were taking the antiretroviral therapy for more than 12 months (AOR=4.2; 95% CI=1.24-14.23) and female sex (AOR=2.30; 95% CI=1.0-5.27) and the factor found to be independently associated with HIV-lipodystrophy was taking the antiretroviral therapy (AOR=3.59; 95% CI=1.03-12.54) for more than 12 months. Metabolic abnormalities were relatively common in the study population. The problems were higher among those who took anti-retroviral treatment for longer duration. Therefore, regular screening for and taking action against the metabolic abnormalities is mandatory.

  20. AMPK Activation Affects Glutamate Metabolism in Astrocytes

    DEFF Research Database (Denmark)

    Voss, Caroline Marie; Pajęcka, Kamilla; Stridh, Malin H

    2015-01-01

    acid (TCA) cycle was studied using high-performance liquid chromatography analysis supplemented with gas chromatography-mass spectrometry technology. It was found that AMPK activation had profound effects on the pathways involved in glutamate metabolism since the entrance of the glutamate carbon...... on glutamate metabolism in astrocytes was studied using primary cultures of these cells from mouse cerebral cortex during incubation in media containing 2.5 mM glucose and 100 µM [U-(13)C]glutamate. The metabolism of glutamate including a detailed analysis of its metabolic pathways involving the tricarboxylic...... skeleton into the TCA cycle was reduced. On the other hand, glutamate uptake into the astrocytes as well as its conversion to glutamine catalyzed by glutamine synthetase was not affected by AMPK activation. Interestingly, synthesis and release of citrate, which are hallmarks of astrocytic function, were...

  1. Pulmonary metabolism of foreign compounds: Its role in metabolic activation

    International Nuclear Information System (INIS)

    Cohen, G.M.

    1990-01-01

    The lung has the potential of metabolizing many foreign chemicals to a vast array of metabolites with different pharmacological and toxicological properties. Because many chemicals require metabolic activation in order to exert their toxicity, the cellular distribution of the drug-metabolizing enzymes in a heterogeneous tissue, such as the lung, and the balance of metabolic activation and deactivation pathways in any particular cell are key factors in determining the cellular specificity of many pulmonary toxins. Environmental factors such as air pollution, cigarette smoking, and diet markedly affect the pulmonary metabolism of some chemicals and, thereby, possibly affect their toxicity

  2. Regulation of Metabolic Activity by p53

    Directory of Open Access Journals (Sweden)

    Jessica Flöter

    2017-05-01

    Full Text Available Metabolic reprogramming in cancer cells is controlled by the activation of multiple oncogenic signalling pathways in order to promote macromolecule biosynthesis during rapid proliferation. Cancer cells also need to adapt their metabolism to survive and multiply under the metabolically compromised conditions provided by the tumour microenvironment. The tumour suppressor p53 interacts with the metabolic network at multiple nodes, mostly to reduce anabolic metabolism and promote preservation of cellular energy under conditions of nutrient restriction. Inactivation of this tumour suppressor by deletion or mutation is a frequent event in human cancer. While loss of p53 function lifts an important barrier to cancer development by deleting cell cycle and apoptosis checkpoints, it also removes a crucial regulatory mechanism and can render cancer cells highly sensitive to metabolic perturbation. In this review, we will summarise the major concepts of metabolic regulation by p53 and explore how this knowledge can be used to selectively target p53 deficient cancer cells in the context of the tumour microenvironment.

  3. Low level of objectively measured physical activity and cardiorespiratory fitness, and high prevalence of metabolic syndrome among Pakistani male immigrants in Oslo, Norway

    Directory of Open Access Journals (Sweden)

    Eivind Andersen

    2011-08-01

    Full Text Available Background: The level of physical fitness in south Asian immigrants living in Norway is largely unknown, but the level of physical activity seems to be low, possibly in part explaining their high prevalence of diabetes and cardiovascular diseases. However, previous studies have used self-reported measures of physical activity, and it might be questioned whether the previous data reflect the true physical activity level.Aim: To describe objectively measured physical activity level, cardiorespiratory fitness and diabetes risk in a group of Pakistani immigrant men living in Oslo, Norway.Methods: One hundred and fifty Pakistani immigrant men in the age group 25-60 years were included. Physical activity level was assessed with an accelerometer. Cardiorespiratory fitness was measured until exhaustion on a treadmill, and diabetes risk was evaluated with an oral glucose tolerance test.Results: Mean age was 37.3 years (SD=7.7. Total physical activity level was 308 counts/min (SD=131, and peak oxygen uptake was 34.2 ml·kg-1·min-1 (SD=5.6. Fifty percent of the participants had the metabolic syndrome, and 76% were obese. Physical activity level and cardiorespiratory fitness level were lower, and prevalence of the metabolic syndrome higher in a subgroup of taxi drivers as compared with those inother occupations (P<0.05.Conclusions: Physical activity and cardiorespiratory fitness levels are low and diabetes risk high among Pakistani immigrant men living in Oslo, especially in taxi drivers

  4. Regulatory landscape of AGE-RAGE-oxidative stress axis and its modulation by PPARγ activation in high fructose diet-induced metabolic syndrome.

    Science.gov (United States)

    Cannizzaro, Luca; Rossoni, Giuseppe; Savi, Federica; Altomare, Alessandra; Marinello, Cristina; Saethang, Thammakorn; Carini, Marina; Payne, D Michael; Pisitkun, Trairak; Aldini, Giancarlo; Leelahavanichkul, Asada

    2017-01-01

    The AGE-RAGE-oxidative stress (AROS) axis is involved in the onset and progression of metabolic syndrome induced by a high-fructose diet (HFD). PPARγ activation is known to modulate metabolic syndrome; however a systems-level investigation looking at the protective effects of PPARγ activation as related to the AROS axis has not been performed. The aim of this work is to simultaneously characterize multiple molecular parameters within the AROS axis, using samples taken from different body fluids and tissues of a rat model of HFD-induced metabolic syndrome, in the presence or absence of a PPARγ agonist, Rosiglitazone (RGZ). Rats were fed with 60% HFD for the first half of the treatment duration (21 days) then continued with either HFD alone or HFD plus RGZ for the second half. Rats receiving HFD alone showed metabolic syndrome manifestations including hypertension, dyslipidemia, increased glucose levels and insulin resistance, as well as abnormal kidney and inflammatory parameters. Systolic blood pressure, plasma triglyceride and glucose levels, plasma creatinine, and albuminuria were significantly improved in the presence of RGZ. The following molecular parameters of the AROS axis were significantly upregulated in our rat model: carboxymethyl lysine (CML) in urine and liver; carboxyethyl lysine (CEL) in urine; advanced glycation end products (AGEs) in plasma; receptor for advanced glycation end products (RAGE) in liver and kidney; advanced oxidation protein products (AOPP) in plasma; and 4-hydroxynonenal (HNE) in plasma, liver, and kidney. Conversely, with RGZ administration, the upregulation of AOPP and AGEs in plasma, CML and CEL in urine, RAGE in liver as well as HNE in plasma and liver was significantly counteracted/prevented. Our data demonstrate (i) the systems-level regulatory landscape of HFD-induced metabolic syndrome involving multiple molecular parameters, including HNE, AGEs and their receptor RAGE, and (ii) attenuation of metabolic syndrome by

  5. High Glucose-Induced Oxidative Stress Mediates Apoptosis and Extracellular Matrix Metabolic Imbalances Possibly via p38 MAPK Activation in Rat Nucleus Pulposus Cells

    Directory of Open Access Journals (Sweden)

    Xiaofei Cheng

    2016-01-01

    Full Text Available Objectives. To investigate whether high glucose-induced oxidative stress is implicated in apoptosis of rat nucleus pulposus cells (NPCs and abnormal expression of critical genes involved in the metabolic balance of extracellular matrix (ECM. Methods. NPCs were cultured with various concentrations of glucose to detect cell viability and apoptosis. Cells cultured with high glucose (25 mM were untreated or pretreated with N-acetylcysteine or a p38 MAPK inhibitor SB 202190. Reactive oxygen species (ROS production was evaluated. Activation of p38 MAPK was measured by Western blot. The expression of ECM metabolism-related genes, including type II collagen, aggrecan, SRY-related high-mobility-group box 9 (Sox-9, matrix metalloproteinase 3 (MMP-3, and tissue inhibitor of metalloproteinase 1 (TIMP-1, was analyzed by semiquantitative RT-PCR. Results. High glucose reduced viability of NPCs and induced apoptosis. High glucose resulted in increased ROS generation and p38 MAPK activation. In addition, it negatively regulated the expression of type II collagen, aggrecan, Sox-9, and TIMP-1 and positively regulated MMP-3 expression. These results were changed by pretreatment with N-acetylcysteine or SB 202190. Conclusions. High glucose might promote apoptosis of NPCs, trigger ECM catabolic pathways, and inhibit its anabolic activities, possibly through a p38 MAPK-dependent oxidative stress mechanism.

  6. Background and stimulus-induced patterns of high metabolic activity in the visual cortex (area 17) of the squirrel and macaque monkey

    International Nuclear Information System (INIS)

    Humphrey, A.L.; Hendrickson, A.E.

    1983-01-01

    We have used 2-deoxy-D-[ 14 C]glucose (2-DG) autoradiography and cytochrome oxidase histochemistry to examine background and stimulus-induced patterns of metabolic activity in monkey striate cortex. In squirrel monkeys (Saimiri sciureus) that binocularly or monocularly viewed diffuse white light or binocularly viewed bars of many orientations and spatial frequencies, 2-DG consumption was not uniform across the cortex but consisted of regularly spaced radial zones of high uptake. The zones extended through all laminae except IVc beta and, when viewed tangentially, formed separate patches 500 microns apart. The cytochrome oxidase stain in these animals also revealed patches of high metabolism which coincided with the 2-DG patches. Squirrel monkeys binocularly viewing vertical stripes showed parallel bands of increased 2-DG uptake in the cortex, while the cytochrome label in these animals remained patchy. When monkeys were kept in the dark during 2-DG exposure, 2-DG-labeled patches were not seen but cytochrome oxidase-positive patches remained. In macaque (Macaca nemestrina) monkeys, binocular stimulation with many orientations and spatial frequencies produced radial zones of high 2-DG uptake in layers I to IVa and VI. When viewed tangentially, these zones formed a dots-in-rows pattern with a spacing of 350 X 500 microns; cytochrome oxidase staining produced an identical pattern. Macaca differed from Saimiri in that monocular stimulation labeled alternate rows. These results indicate that there are radial zones of high background metabolism across squirrel and macaque monkey striate cortex. In Saimiri these zones do not appear to be related to an eye dominance system, while in Macaca they do. The presence of these zones of high metabolism may complicate the interpretation of 2-DG autoradiographs that result from specific visual stimuli

  7. Sedentary activity associated with metabolic syndrome independent of physical activity

    DEFF Research Database (Denmark)

    Bankoski, Andrea; Harris, Tamara B; McClain, James J

    2011-01-01

    This study examined the association between objectively measured sedentary activity and metabolic syndrome among older adults.......This study examined the association between objectively measured sedentary activity and metabolic syndrome among older adults....

  8. VISCOSITY DICTATES METABOLIC ACTIVITY of Vibrio ruber

    Directory of Open Access Journals (Sweden)

    Maja eBoric

    2012-07-01

    Full Text Available Little is known about metabolic activity of bacteria, when viscosity of their environment changes. In this work, bacterial metabolic activity in media with viscosity ranging from 0.8 to 29.4 mPas was studied. Viscosities up to 2.4 mPas did not affect metabolic activity of Vibrio ruber. On the other hand, at 29.4 mPas respiration rate and total dehydrogenase activity increased 8 and 4-fold, respectively. The activity of glucose-6-phosphate dehydrogenase increased up to 13-fold at higher viscosities. However, intensified metabolic activity did not result in faster growth rate. Increased viscosity delayed the onset as well as the duration of biosynthesis of prodigiosin. As an adaptation to viscous environment V. ruber increased metabolic flux through the pentose phosphate pathway and reduced synthesis of a secondary metabolite. In addition, V. ruber was able to modify the viscosity of its environment.

  9. Metabolic assessments during extra-vehicular activity

    Science.gov (United States)

    Osipov, Yu. Yu.; Spichkov, A. N.; Filipenkov, S. N.

    Extra-vehicular activity (EVA) has a significant role during extended space flights. It demonstrates that humans can survive and perform useful work outside the Orbital Space Stations (OSS) while wearing protective space suits (SS). When the International Space Station 'Alpha'(ISSA) is fully operational, EVA assembly, installation, maintenance and repair operations will become an everyday repetitive work activity in space. It needs new ergonomic evaluation of the work/rest schedule for an increasing of the labor amount per EVA hour. The metabolism assessment is a helpful method to control the productivity of the EVA astronaut and to optimize the work/rest regime. Three following methods were used in Russia to estimate real-time metabolic rates during EVA: 1. Oxygen consumption, computed from the pressure drop in a high pressure bottle per unit time (with actual thermodynamic oxygen properties under high pressure and oxygen leakage taken into account). 2. Carbon dioxide production, computed from CO 2 concentration at the contaminant control cartridge and gas flow rate in the life support subsystem closed loop (nominal mode) or gas leakage in the SS open loop (emergency mode). 3. Heat removal, computed from the difference between the temperatures of coolant water or gas and its flow rate in a unit of time (with assumed humidity and wet oxygen state taken into account). Comparison of heat removal values with metabolic rates enables us to determine the thermal balance during an operative medical control of EVA at "Salyut-6", "Salyut-7" and "Mir" OSS. Complex analysis of metabolism, body temperature and heat rate supports a differential diagnosis between emotional and thermal components of stress during EVA. It gives a prognosis of human homeostasis during EVA. Available information has been acquired into an EVA data base which is an effective tool for ergonomical optimization.

  10. Physical activity as a metabolic stressor.

    Science.gov (United States)

    Coyle, E F

    2000-08-01

    Both physical activity and diet stimulate processes that, over time, alter the morphologic composition and biochemical function of the body. Physical activity provides stimuli that promote very specific and varied adaptations according to the type, intensity, and duration of exercise performed. There is further interest in the extent to which diet or supplementation can enhance the positive stimuli. Prolonged walking at low intensity presents little metabolic, hormonal, or cardiovascular stress, and the greatest perturbation from rest appears to be from increased fat oxidation and plasma free fatty acid mobilization resulting from a combination of increased lipolysis and decreased reesterification. More intense jogging or running largely stimulates increased oxidation of glycogen and triacylglycerol, both of which are stored directly within the muscle fibers. Furthermore, these intramuscular stores of carbohydrate and fat appear to be the primary substrates for the enhanced oxidative and performance ability derived from endurance training-induced increases in muscle mitochondrial density. Weightlifting that produces fatigue in brief periods (ie, in 15-90 s and after 15 repetitive contractions) elicits a high degree of motor unit recruitment and muscle fiber stimulation. This is a remarkably potent stimulus for altering protein synthesis in muscle and increasing neuromuscular function. The metabolic stress of physical activity can be measured by substrate turnover and depletion, cardiovascular response, hormonal perturbation, accumulation of metabolites, or even the extent to which the synthesis and degradation of specific proteins are altered, either acutely or by chronic exercise training.

  11. Morphometry, ultrastructure, myosin isoforms, and metabolic capacities of the "mini muscles" favoured by selection for high activity in house mice.

    Science.gov (United States)

    Guderley, Helga; Houle-Leroy, Philippe; Diffee, Gary M; Camp, Dana M; Garland, Theodore

    2006-07-01

    Prolonged selective breeding of mice (Mus musculus) for high levels of voluntary wheel running has favoured an unusual phenotype ("mini muscles"), apparently caused by a single Mendelian recessive allele, in which most hind-limb muscles are markedly reduced in mass, but have increased mass-specific activities of mitochondrial enzymes. We examined whether these changes reflect changes in fibre size, number or ultrastructure in normal and "mini-muscle" mice within the two (of four) selectively bred lines (lab designations L3 and L6) that exhibit the phenotype at generations 26 and 27. In both lines, the gastrocnemius and plantaris muscles are smaller in mass (by >50% and 20%, respectively) in affected individuals. The mass-specific activities of mitochondrial enzymes in the gastrocnemius and plantaris muscles were increased in the mini phenotype in both lines, with stronger effects in the gastrocnemius muscle. In the gastrocnemius, the % myosin heavy chain (MHC) IIb was reduced by 50% in L3 and by 30% in L6, whereas the % MHC IIa and I were higher, particularly in L3. Fibre number in the plantaris muscle did not significantly differ between mini and normal muscles, although muscle mass was a significant positive correlate of fibre number. Small fibres were more abundant in mini than normal muscles in L3. Mitochondrial volume density was significantly higher in mini than normal muscle fibres in L3, but not in L6. Microscopy revealed a surprising attribute of the mini muscles: an abundance of small, minimally differentiated, myofibril-containing cells positioned in a disorderly fashion, particularly in the surface layer. We hypothesise that these unusual cells may be satellite cells or type IIb fibres that did not complete their differentiation. Together, these observations suggest that mice with the mini phenotype have reduced numbers of type IIb fibres in many of their hind-limb muscles, leading to a decrease in mass and an increase in mass-specific aerobic capacity

  12. Metabolic benefits of physical activity

    Directory of Open Access Journals (Sweden)

    Špela Volčanšek

    2014-10-01

    Full Text Available Physical activity is the most beneficial intervention in prevention and treatment of chronic diseases. Life style, which has become mostly sedentary, leads to growing incidence in obesity, what could cause the first so far reduction in life expectancy in developed countries.Physical activity reduces the chronic low-grade inflammation, which plays an important role in the pathogenesis of type 2 diabetes, cardiovascular disease and certain types of cancer. Regular physical activity exerts two anti-inflammatory effects: reduction of visceral fat, which produces the majority of pro-inflammatory cytokines, and production of myokines. It has been proposed that cytokines and other peptides that are produced by muscle fibers should be classified as myokines that exert autocrine, paracrine and endocrine effects. Myokines induce muscle hypertrophy and myogenesis, stimulate fat oxidation, improve insulin sensitivity and have an anti-inflammatory effect.  Therefore, skeletal muscle has been identified as a secretory organ and this provides the basis for understanding how muscles communicate with other organs, such as adipose tissue, liver, pancreas, gut, bones and brain. Physical inactivity leads to an altered myokine profile, associating sedentary life style with some chronic diseases.Physical activity is recommended as a tool for weight management and prevention of weight gain, for weight loss and for prevention of weight regain. High quality studies have confirmed the important impact of exercise on improving blood glucose control in diabetic patients, and on preventing or delaying the onset of type 2 diabetes in predisposed populations. Prescribing specific exercise tailored to individual's needs is an intervention strategy for health improvement. Physical fitness counteracts the detrimental effects of obesity reducing morbidity and mortality.

  13. Industry as a metabolic activity.

    Science.gov (United States)

    Smart, B

    1992-02-01

    The concept of "industrial economic metabolism" can provide a bridge to better understanding between environmentalists and industry. In nature each individual or species reacts to natural stimuli, competing with others for resources, extending its domain until it loses comparative advantage and comes to equilibrium with an adjacent competitor. Those species that succeed over time flourish; those that do not, diminish or disappear. Nature's rule book has no moral or ethical ingredient beyond self-interest. Corporate metabolisms are remarkably similar to those of nature. They too react to stimuli, collect and use resources, and grow or perish based on how effectively they compete. Corporate management recognizes and responds naturally and efficiently to cost and price signals. Through them it selects resources and converts them into useful products. The efficiency with which this is done is measured by profit, the lifeblood of the corporation and its means of growth. Profit thus provides a discipline on corporate behavior, encouraging efficient performers, and, by its absence, weeding out others. Unfettered by influences other than economics, the path to corporate success is unlikely to be a compassionate one. The dilemma of the manager is that to do what is socially "right" often conflicts with what must be done to survive and prosper. Fortunately, corporations' behavior can be altered by society when their purely economic role comes into conflict with other human values. The environment and the economy are not separate systems but intertwined to form a complex natural and social setting. The human-designed economic system depends on natural resource inputs, and in turn its metabolic wastes can overload the ecological system, threatening the long-term survivability of both. Increasing concern for the environment now gives the farsighted manager new latitude. There are competitive benefits in some pollution prevention. But there are not sufficiently strong forces to

  14. High-Concentrate Diet-Induced Change of Cellular Metabolism Leads to Decreases of Immunity and Imbalance of Cellular Activities in Rumen Epithelium

    Directory of Open Access Journals (Sweden)

    Zhongyan Lu

    2018-03-01

    Full Text Available Background/Aims: In animals, the immune and cellular processes of tissue largely depend on the status of local metabolism. However, in the rumen epithelium, how the cellular metabolism affects epithelial immunity, and cellular processes, when the diet is switched from energy-rich to energy-excess status, with regard to animal production and health, have not as yet been reported. Methods: RNA-seq was applied to compare the biological processes altered by an increase of dietary concentration from 10% to 35% with those altered by an increase of dietary concentration from 35% to 65% (dietary concentrate: the non-grass component in diet, including corn, soya bean meal and additive. High concentrate diet composed of 35% grass, 55% corn, 8% soya bean meal and 2% additive. In addition to the functional analysis of enriched genes in terms of metabolism, the immune system, and cellular process, the highly correlated genes to the enriched metabolism genes were identified, and the function and signaling pathways related to the differentially expressed neighbors were compared among the groups. Results: The variation trends of molar proportions of ruminal SCFAs and those of enriched pathways belonging to metabolism, immune system, and cellular process were altered with the change of diets. With regard to metabolism, lipid metabolism and amino acid metabolism were most affected. According to the correlation analysis, both innate and adaptive immune responses were promoted by the metabolism genes enriched under the 65% concentrate diet. However, the majority of immune responses were suppressed under the 35% concentrate diet. Moreover, the exclusive upregulation of cell growth and dysfunction of cellular transport and catabolism were induced by the metabolism genes enriched under the 65% concentrate diet. On the contrary, a balanced regulation of cellular processes was detected under the 35% concentrate diet. Conclusions: These results indicated that the

  15. High-Concentrate Diet-Induced Change of Cellular Metabolism Leads to Decreases of Immunity and Imbalance of Cellular Activities in Rumen Epithelium.

    Science.gov (United States)

    Lu, Zhongyan; Shen, Hong; Shen, Zanming

    2018-01-01

    In animals, the immune and cellular processes of tissue largely depend on the status of local metabolism. However, in the rumen epithelium, how the cellular metabolism affects epithelial immunity, and cellular processes, when the diet is switched from energy-rich to energy-excess status, with regard to animal production and health, have not as yet been reported. RNA-seq was applied to compare the biological processes altered by an increase of dietary concentration from 10% to 35% with those altered by an increase of dietary concentration from 35% to 65% (dietary concentrate: the non-grass component in diet, including corn, soya bean meal and additive. High concentrate diet composed of 35% grass, 55% corn, 8% soya bean meal and 2% additive). In addition to the functional analysis of enriched genes in terms of metabolism, the immune system, and cellular process, the highly correlated genes to the enriched metabolism genes were identified, and the function and signaling pathways related to the differentially expressed neighbors were compared among the groups. The variation trends of molar proportions of ruminal SCFAs and those of enriched pathways belonging to metabolism, immune system, and cellular process were altered with the change of diets. With regard to metabolism, lipid metabolism and amino acid metabolism were most affected. According to the correlation analysis, both innate and adaptive immune responses were promoted by the metabolism genes enriched under the 65% concentrate diet. However, the majority of immune responses were suppressed under the 35% concentrate diet. Moreover, the exclusive upregulation of cell growth and dysfunction of cellular transport and catabolism were induced by the metabolism genes enriched under the 65% concentrate diet. On the contrary, a balanced regulation of cellular processes was detected under the 35% concentrate diet. These results indicated that the alterations of cellular metabolism promote the alterations in cellular

  16. Determination of catechol O-methyltransferase activity in relation to melanin metabolism using high-performance liquid chromatography with fluorimetric detection

    NARCIS (Netherlands)

    Smit, N. P.; Pavel, S.; Kammeyer, A.; Westerhof, W.

    1990-01-01

    A new sensitive method for the determination of catechol O-methyltransferase activity has been developed. The method is based on the O-methylation of the indolic intermediates of melanin metabolism. The substrate, 5,6-dihydroxyindole-2-carboxylic acid, is converted by the enzyme to two O-methylated

  17. Early metabolic adaptation in C57BL/6 mice resistant to high fat diet induced weight gain involves an activation of mitochondrial oxidative pathways.

    Science.gov (United States)

    Boulangé, Claire L; Claus, Sandrine P; Chou, Chieh J; Collino, Sebastiano; Montoliu, Ivan; Kochhar, Sunil; Holmes, Elaine; Rezzi, Serge; Nicholson, Jeremy K; Dumas, Marc E; Martin, François-Pierre J

    2013-04-05

    We investigated the short-term (7 days) and long-term (60 days) metabolic effect of high fat diet induced obesity (DIO) and weight gain in isogenic C57BL/6 mice and examined the specific metabolic differentiation between mice that were either strong-responders (SR), or non-responders (NR) to weight gain. Mice (n = 80) were fed a standard chow diet for 7 days prior to randomization into a high-fat (HF) (n = 56) or a low-fat (LF) (n = 24) diet group. The (1)H NMR urinary metabolic profiles of LF and HF mice were recorded 7 and 60 days after the diet switch. On the basis of the body weight gain (BWG) distribution of HF group, we identified NR mice (n = 10) and SR mice (n = 14) to DIO. Compared with LF, HF feeding increased urinary excretion of glycine conjugates of β-oxidation intermediate (hexanoylglycine), branched chain amino acid (BCAA) catabolism intermediates (isovalerylglycine, α-keto-β-methylvalerate and α-ketoisovalerate) and end-products of nicotinamide adenine dinucleotide (NAD) metabolism (N1-methyl-2-pyridone-5-carboxamide, N1-methyl-4-pyridone-3-carboxamide) suggesting up-regulation of mitochondrial oxidative pathways. In the HF group, NR mice excreted relatively more hexanoylglycine, isovalerylglycine, and fewer tricarboxylic acid (TCA) cycle intermediate (succinate) in comparison to SR mice. Thus, subtle regulation of ketogenic pathways in DIO may alleviate the saturation of the TCA cycle and mitochondrial oxidative metabolism.

  18. Microalgal Metabolic Network Model Refinement through High-Throughput Functional Metabolic Profiling

    International Nuclear Information System (INIS)

    Chaiboonchoe, Amphun; Dohai, Bushra Saeed; Cai, Hong; Nelson, David R.; Jijakli, Kenan; Salehi-Ashtiani, Kourosh

    2014-01-01

    Metabolic modeling provides the means to define metabolic processes at a systems level; however, genome-scale metabolic models often remain incomplete in their description of metabolic networks and may include reactions that are experimentally unverified. This shortcoming is exacerbated in reconstructed models of newly isolated algal species, as there may be little to no biochemical evidence available for the metabolism of such isolates. The phenotype microarray (PM) technology (Biolog, Hayward, CA, USA) provides an efficient, high-throughput method to functionally define cellular metabolic activities in response to a large array of entry metabolites. The platform can experimentally verify many of the unverified reactions in a network model as well as identify missing or new reactions in the reconstructed metabolic model. The PM technology has been used for metabolic phenotyping of non-photosynthetic bacteria and fungi, but it has not been reported for the phenotyping of microalgae. Here, we introduce the use of PM assays in a systematic way to the study of microalgae, applying it specifically to the green microalgal model species Chlamydomonas reinhardtii. The results obtained in this study validate a number of existing annotated metabolic reactions and identify a number of novel and unexpected metabolites. The obtained information was used to expand and refine the existing COBRA-based C. reinhardtii metabolic network model iRC1080. Over 254 reactions were added to the network, and the effects of these additions on flux distribution within the network are described. The novel reactions include the support of metabolism by a number of d-amino acids, l-dipeptides, and l-tripeptides as nitrogen sources, as well as support of cellular respiration by cysteamine-S-phosphate as a phosphorus source. The protocol developed here can be used as a foundation to functionally profile other microalgae such as known microalgae mutants and novel isolates.

  19. Microalgal Metabolic Network Model Refinement through High-Throughput Functional Metabolic Profiling

    Energy Technology Data Exchange (ETDEWEB)

    Chaiboonchoe, Amphun; Dohai, Bushra Saeed; Cai, Hong; Nelson, David R. [Division of Science and Math, New York University Abu Dhabi, Abu Dhabi (United Arab Emirates); Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi Institute, Abu Dhabi (United Arab Emirates); Jijakli, Kenan [Division of Science and Math, New York University Abu Dhabi, Abu Dhabi (United Arab Emirates); Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi Institute, Abu Dhabi (United Arab Emirates); Engineering Division, Biofinery, Manhattan, KS (United States); Salehi-Ashtiani, Kourosh, E-mail: ksa3@nyu.edu [Division of Science and Math, New York University Abu Dhabi, Abu Dhabi (United Arab Emirates); Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi Institute, Abu Dhabi (United Arab Emirates)

    2014-12-10

    Metabolic modeling provides the means to define metabolic processes at a systems level; however, genome-scale metabolic models often remain incomplete in their description of metabolic networks and may include reactions that are experimentally unverified. This shortcoming is exacerbated in reconstructed models of newly isolated algal species, as there may be little to no biochemical evidence available for the metabolism of such isolates. The phenotype microarray (PM) technology (Biolog, Hayward, CA, USA) provides an efficient, high-throughput method to functionally define cellular metabolic activities in response to a large array of entry metabolites. The platform can experimentally verify many of the unverified reactions in a network model as well as identify missing or new reactions in the reconstructed metabolic model. The PM technology has been used for metabolic phenotyping of non-photosynthetic bacteria and fungi, but it has not been reported for the phenotyping of microalgae. Here, we introduce the use of PM assays in a systematic way to the study of microalgae, applying it specifically to the green microalgal model species Chlamydomonas reinhardtii. The results obtained in this study validate a number of existing annotated metabolic reactions and identify a number of novel and unexpected metabolites. The obtained information was used to expand and refine the existing COBRA-based C. reinhardtii metabolic network model iRC1080. Over 254 reactions were added to the network, and the effects of these additions on flux distribution within the network are described. The novel reactions include the support of metabolism by a number of d-amino acids, l-dipeptides, and l-tripeptides as nitrogen sources, as well as support of cellular respiration by cysteamine-S-phosphate as a phosphorus source. The protocol developed here can be used as a foundation to functionally profile other microalgae such as known microalgae mutants and novel isolates.

  20. Aqueous Extract of Black Maca Prevents Metabolism Disorder via Regulating the Glycolysis/Gluconeogenesis-TCA Cycle and PPARα Signaling Activation in Golden Hamsters Fed a High-Fat, High-Fructose Diet.

    Science.gov (United States)

    Wan, Wenting; Li, Hongxiang; Xiang, Jiamei; Yi, Fan; Xu, Lijia; Jiang, Baoping; Xiao, Peigen

    2018-01-01

    Maca ( Lepidium meyenii Walpers) has been used as a dietary supplement and ethnomedicine for centuries. Recently, maca has become a high profile functional food worldwide because of its multiple biological activities. This study is the first explorative research to investigate the prevention and amelioration capacity of the aqueous extract of black maca (AEM) on high-fat, high-fructose diet (HFD)-induced metabolism disorder in golden hamsters and to identify the potential mechanisms involved in these effects. For 20 weeks, 6-week-old male golden hamsters were fed the following respective diets: (1) a standard diet, (2) HFD, (3) HFD supplemented with metformin, or (4) HFD supplemented with three doses of AEM (300, 600, or 1,200 mg/kg). After 20 weeks, the golden hamsters that received daily AEM supplementation presented with the beneficial effects of improved hyperlipidemia, hyperinsulinemia, insulin resistance, and hepatic steatosis in vivo . Based on the hepatic metabolomic analysis results, alterations in metabolites associated with pathological changes were examined. A total of 194 identified metabolites were mapped to 46 relative metabolic pathways, including those of energy metabolism. In addition, via in silico profiling for secondary maca metabolites by a joint pharmacophore- and structure-based approach, a compound-target-disease network was established. The results revealed that 32 bioactive compounds in maca targeted 16 proteins involved in metabolism disorder. Considering the combined metabolomics and virtual screening results, we employed quantitative real-time PCR assays to verify the gene expression of key enzymes in the relevant pathways. AEM promoted glycolysis and inhibited gluconeogenesis via regulating the expression of key genes such as Gck and Pfkm . Moreover, AEM upregulated tricarboxylic acid (TCA) cycle flux by changing the concentrations of intermediates and increasing the mRNA levels of Aco2 , Fh , and Mdh2 . In addition, the lipid

  1. Aqueous Extract of Black Maca Prevents Metabolism Disorder via Regulating the Glycolysis/Gluconeogenesis-TCA Cycle and PPARα Signaling Activation in Golden Hamsters Fed a High-Fat, High-Fructose Diet

    Directory of Open Access Journals (Sweden)

    Wenting Wan

    2018-04-01

    Full Text Available Maca (Lepidium meyenii Walpers has been used as a dietary supplement and ethnomedicine for centuries. Recently, maca has become a high profile functional food worldwide because of its multiple biological activities. This study is the first explorative research to investigate the prevention and amelioration capacity of the aqueous extract of black maca (AEM on high-fat, high-fructose diet (HFD-induced metabolism disorder in golden hamsters and to identify the potential mechanisms involved in these effects. For 20 weeks, 6-week-old male golden hamsters were fed the following respective diets: (1 a standard diet, (2 HFD, (3 HFD supplemented with metformin, or (4 HFD supplemented with three doses of AEM (300, 600, or 1,200 mg/kg. After 20 weeks, the golden hamsters that received daily AEM supplementation presented with the beneficial effects of improved hyperlipidemia, hyperinsulinemia, insulin resistance, and hepatic steatosis in vivo. Based on the hepatic metabolomic analysis results, alterations in metabolites associated with pathological changes were examined. A total of 194 identified metabolites were mapped to 46 relative metabolic pathways, including those of energy metabolism. In addition, via in silico profiling for secondary maca metabolites by a joint pharmacophore- and structure-based approach, a compound-target-disease network was established. The results revealed that 32 bioactive compounds in maca targeted 16 proteins involved in metabolism disorder. Considering the combined metabolomics and virtual screening results, we employed quantitative real-time PCR assays to verify the gene expression of key enzymes in the relevant pathways. AEM promoted glycolysis and inhibited gluconeogenesis via regulating the expression of key genes such as Gck and Pfkm. Moreover, AEM upregulated tricarboxylic acid (TCA cycle flux by changing the concentrations of intermediates and increasing the mRNA levels of Aco2, Fh, and Mdh2. In addition, the lipid

  2. Stress-activated miR-21/miR-21* in hepatocytes promotes lipid and glucose metabolic disorders associated with high-fat diet consumption.

    Science.gov (United States)

    Calo, Nicolas; Ramadori, Pierluigi; Sobolewski, Cyril; Romero, Yannick; Maeder, Christine; Fournier, Margot; Rantakari, Pia; Zhang, Fu-Ping; Poutanen, Matti; Dufour, Jean-François; Humar, Bostjan; Nef, Serge; Foti, Michelangelo

    2016-11-01

    miR-21 is an oncomir highly upregulated in hepatocellular carcinoma and in early stages of liver diseases characterised by the presence of steatosis. Whether upregulation of miR-21 contributes to hepatic metabolic disorders and their progression towards cancer is unknown. This study aims at investigating the role of miR-21/miR-21* in early stages of metabolic liver disorders associated with diet-induced obesity (DIO). Constitutive miR-21/miR-21* knockout (miR21KO) and liver-specific miR-21/miR-21* knockout (LImiR21KO) mice were generated. Mice were then fed with high-fat diet (HFD) and alterations of the lipid and glucose metabolism were investigated. Serum and ex vivo explanted liver tissue were analysed. Under normal breeding conditions and standard diet, miR-21/miR-21* deletion in mice was not associated with any detectable phenotypic alterations. However, when mice were challenged with an obesogenic diet, glucose intolerance, steatosis and adiposity were improved in mice lacking miR-21/miR-21* . Deletion of miR-21/miR-21* specifically in hepatocytes led to similar improvements in mice fed an HFD, indicating a crucial role for hepatic miR-21/miR-21* in metabolic disorders associated with DIO. Further molecular analyses demonstrated that miR-21/miR-21* deletion in hepatocytes increases insulin sensitivity and modulates the expression of multiple key metabolic transcription factors involved in fatty acid uptake, de novo lipogenesis, gluconeogenesis and glucose output. Hepatic miR-21/miR-21* deficiency prevents glucose intolerance and steatosis in mice fed an obesogenic diet by altering the expression of several master metabolic regulators. This study points out miR-21/miR-21 * as a potential therapeutic target for non-alcoholic fatty liver disease and the metabolic syndrome. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  3. Linking neuronal brain activity to the glucose metabolism.

    Science.gov (United States)

    Göbel, Britta; Oltmanns, Kerstin M; Chung, Matthias

    2013-08-29

    Energy homeostasis ensures the functionality of the entire organism. The human brain as a missing link in the global regulation of the complex whole body energy metabolism is subject to recent investigation. The goal of this study is to gain insight into the influence of neuronal brain activity on cerebral and peripheral energy metabolism. In particular, the tight link between brain energy supply and metabolic responses of the organism is of interest. We aim to identifying regulatory elements of the human brain in the whole body energy homeostasis. First, we introduce a general mathematical model describing the human whole body energy metabolism. It takes into account the two central roles of the brain in terms of energy metabolism. The brain is considered as energy consumer as well as regulatory instance. Secondly, we validate our mathematical model by experimental data. Cerebral high-energy phosphate content and peripheral glucose metabolism are measured in healthy men upon neuronal activation induced by transcranial direct current stimulation versus sham stimulation. By parameter estimation we identify model parameters that provide insight into underlying neurophysiological processes. Identified parameters reveal effects of neuronal activity on regulatory mechanisms of systemic glucose metabolism. Our examinations support the view that the brain increases its glucose supply upon neuronal activation. The results indicate that the brain supplies itself with energy according to its needs, and preeminence of cerebral energy supply is reflected. This mechanism ensures balanced cerebral energy homeostasis. The hypothesis of the central role of the brain in whole body energy homeostasis as active controller is supported.

  4. Metabolism

    Science.gov (United States)

    ... Are More Common in People With Type 1 Diabetes Metabolic Syndrome Your Child's Weight Healthy Eating Endocrine System Blood Test: Basic Metabolic Panel (BMP) Activity: Endocrine System Growth Disorders Diabetes Center Thyroid Disorders Your Endocrine System Movie: Endocrine ...

  5. Adaptive metabolic response to 4 weeks of sugar-sweetened beverage consumption in healthy, lightly active individuals and chronic high glucose availability in primary human myotubes.

    Science.gov (United States)

    Sartor, Francesco; Jackson, Matthew J; Squillace, Cesare; Shepherd, Anthony; Moore, Jonathan P; Ayer, Donald E; Kubis, Hans-Peter

    2013-04-01

    Chronic sugar-sweetened beverage (SSB) consumption is associated with obesity and type 2 diabetes mellitus (T2DM). Hyperglycaemia contributes to metabolic alterations observed in T2DM, such as reduced oxidative capacity and elevated glycolytic and lipogenic enzyme expressions in skeletal muscle tissue. We aimed to investigate the metabolic alterations induced by SSB supplementation in healthy individuals and to compare these with the effects of chronic hyperglycaemia on primary muscle cell cultures. Lightly active, healthy, lean subjects (n = 11) with sporadic soft drink consumption underwent a 4-week SSB supplementation (140 ± 15 g/day, ~2 g glucose/kg body weight/day, glucose syrup). Before and after the intervention, body composition, respiratory exchange ratio (RER), insulin sensitivity, muscle metabolic gene and protein expression were assessed. Adaptive responses to hyperglycaemia (7 days, 15 mM) were tested in primary human myotubes. SSB supplementation increased fat mass (+1.0 kg, P < 0.05), fasting RER (+0.12, P < 0.05), fasting glucose (+0.3 mmol/L, P < 0.05) and muscle GAPDH mRNA expressions (+0.94 AU, P < 0.05). PGC1α mRNA was reduced (-0.20 AU, P < 0.05). Trends were found for insulin resistance (+0.16 mU/L, P = 0.09), and MondoA protein levels (+1.58 AU, P = 0.08). Primary myotubes showed elevations in GAPDH, ACC, MondoA and TXNIP protein expressions (P < 0.05). Four weeks of SSB supplementation in healthy individuals shifted substrate metabolism towards carbohydrates, increasing glycolytic and lipogenic gene expression and reducing mitochondrial markers. Glucose-sensing protein MondoA might contribute to this shift, although further in vivo evidence is needed to corroborate this.

  6. High-density lipoprotein modulates glucose metabolism in patients with type 2 diabetes mellitus

    DEFF Research Database (Denmark)

    Drew, Brian G; Duffy, Stephen J; Formosa, Melissa F

    2009-01-01

    BACKGROUND: Low plasma high-density lipoprotein (HDL) is associated with elevated cardiovascular risk and aspects of the metabolic syndrome. We hypothesized that HDL modulates glucose metabolism via elevation of plasma insulin and through activation of the key metabolic regulatory enzyme, AMP...

  7. Nucleons II: cryopreservation and metabolic activity.

    Science.gov (United States)

    Reyes, R; Flores-Alonso, J C; Rodríguez-Hernández, H M; Merchant-Larios, H M; Delgado, N M

    2001-01-01

    The establishment of intracytoplasmatic sperm injection (ICSI) as a routine procedure in assisted fertilization has been used in the treatment of male infertility. The major technical problem that has arisen with the use of immotile sperm for ICSI has been differentiating between live and dead cells. Nucleons from human, pig, hamster, mouse, rat, and bull have been able to induce their chromatin decondensation by the action of heparin/GSH. Cryopreservation is deleterious to sperm function, killing more than 50% of the spermatozoa during the process. Nucleon cryostorage was performed at 5 and -5 degrees C and analyzed for total area (mu2), perimeter (mu), width (mu), and length (mu), using Metamorph Imaging System software. On the other hand, fluorescein diacetate (FDA) is hydrolyzed by intracellular estereases to produce fluorescein, which exhibits green fluorescence when excited by blue light. This fact is a striking result since the presence of this metabolic activity opens the possibility to select the nucleons for ICSI. In the present study, the authors decided to search for a suitable metabolic test, which might reflect the metabolism and viability of these chromatin structures. This is a simple cryostorage technique that after months of cryopreservation, allow the use of nucleons for ICSI with suitable fertilization and pregnancies rates.

  8. Metabolic activation of the bladder carcinogen 4-nitrobiphenyl (NBP)

    International Nuclear Information System (INIS)

    Swaminathan, S.

    1986-01-01

    The metabolism of NBP, a dog bladder carcinogen, was examined in vitro using rat liver tissues. NBP was metabolized by enzymes localized both in the microsomes and cytosol. The microsomal enzyme activity was inducible by Aroclor 1254 and phenobarbital. High pressure liquid chromatography analysis of the ethyl acetate extract of the reaction mixture, following incubation of [ 3 H]NBP with NADPH and microsomes, revealed four radioactive and UV absorbing peaks with retention times of 5, 8, 14 and 28 min. The peaks at 8, 14 and 28 min corresponded with 4-aminobiphenyl (ABP), NBP and azoxy biphenyl, respectively. The early eluting component with a retention time of 5 min has been tentatively identified as a ring hydroxylated derivative. In contrast to microsomal metabolism, cytosol-mediated metabolism yielded only one major metabolite identified as ABP. Cytosol-mediate reduction was inhibited by the xanthine oxidase inhibitor allopurinol. In vitro incubation of NBP with NADH and commercial preparations of xanthine oxidase also yielded ABP and the formation of the latter was blocked by allopurinol. Xanthine oxidase catalyzed also the binding of [ 3 H]NBP to DNA and proteins; the binding was inhibited by allopurinol. These data support the hypothesis that the nitro reduction step is involved in the activation of the bladder carcinogen NBP, and that the nitroreductases occur in both the microsomes and cytosol. The cytosolic activity is primarily due to xanthine oxidase

  9. Physical activity, BMI and metabolic risk in Portuguese adolescents

    Directory of Open Access Journals (Sweden)

    Fernanda Karina dos Santos

    2016-03-01

    Full Text Available DOI: http://dx.doi.org/10.5007/1980-0037.2016v18n1p103   It has been reported, in the last decades, a significant decrease in physical activity (PA levels, with a consequent increase in obesity and metabolic risk factors among youth. The aims of this study were to describe PA levels, the prevalence of overweight/obesity and metabolic risk factors, and to examine the association between PA and body mass index (BMI with metabolic risk among Portuguese youth. The sample comprises 212 Portuguese adolescents (12-16 years old. Height and weight were measured. PA was estimated with the Bouchard questionnaire (3 days recall, as well as with the use of a pedometer (used for 5 consecutive days. Metabolic risk factors comprised fasting glucose, triglycerides, HDL-cholesterol, systolic blood pressure and waist circumference. Subjects were classified as normal weight, overweight or obese according to BMI; the maturational status was indirectly estimated with the maturity offset procedure. A continuous metabolic risk score was computed (zMR and PA values were divided into tertiles. Qui-square test, t-test and ANOVA were used in statistical analyses. SPSS 18.0 and WinPepi softwares were used and p<0.05. A moderate to high prevalence of overweight/obesity and HDL-cholesterol was found, as well as a high prevalence of high blood pressure and low to moderate PA levels among Portuguese youth. The relationship between BMI and zMR showed that obese adolescents have higher zMR when compared to normal weight or overweight adolescents. This finding suggests that increased levels of PA and reduction in the prevalence of overweight/obesity may have a positive role against the development of metabolic risk factors.

  10. Alginate Immobilization of Metabolic Enzymes (AIME) for High ...

    Science.gov (United States)

    Alginate Immobilization of Metabolic Enzymes (AIME) for High-Throughput Screening Assays DE DeGroot, RS Thomas, and SO SimmonsNational Center for Computational Toxicology, US EPA, Research Triangle Park, NC USAThe EPA’s ToxCast program utilizes a wide variety of high-throughput screening (HTS) assays to assess chemical perturbations of molecular and cellular endpoints. A key criticism of using HTS assays for toxicity assessment is the lack of xenobiotic metabolism (XM) which precludes both metabolic detoxification as well as bioactivation of chemicals tested in vitro thereby mischaracterizing the potential risk posed by these chemicals. To address this deficiency, we have developed an extracellular platform to retrofit existing HTS assays with XM activity. This platform utilizes the S9 fraction of liver homogenate encapsulated in an alginate gel network which reduces the cytotoxicity caused by direct addition of S9 to cells in culture. Alginate microspheres containing encapsulated human liver S9 were cross-linked to solid supports extending from a 96-well plate lid and were assayed using a pro-luciferin substrate specific for CYP3A4 (IPA). We demonstrate that S9 was successfully encapsulated and remained enzymatically active post-encapsulation with 5-10X the CYP3A4 activity as compared to 1 µg solubilized human liver S9. Ketoconazole, a known inhibitor of human CYP3A4, inhibited CYP3A4 activity in a concentration-dependent manner (IC50: 0.27 µM) and inhibiti

  11. Mutagenicity of vinyl chloride after metabolic activation

    Energy Technology Data Exchange (ETDEWEB)

    Rannug, U; Johansson, A; Ramel, C; Wachtmeister, C A

    1974-01-01

    Vinyl chloride has recently been shown to cause a malignant liver tumor disease in man after occupational exposure in PVC plants. This actualizes the problem of whether such hazards could be avoided or at least diminished in the future by a screening for mutagenicity of chemicals used in industries. The basis for such a screening procedure is the close correlation between carcinogenic and mutagenic effects of chemicals. Experiments with Salmonella bacteria showed that the carcinogenic hazard of vinyl chloride could have been traced by means of mutagenicity tests. The data indicate that vinyl chloride is not mutagenic per se but becomes mutagenic after a metabolic activation in the liver. 24 references, 1 figure, 4 tables.

  12. A maternal high-fat, high-sucrose diet has sex-specific effects on fetal glucocorticoids with little consequence for offspring metabolism and voluntary locomotor activity in mice.

    Directory of Open Access Journals (Sweden)

    Eunice H Chin

    Full Text Available Maternal overnutrition and obesity during pregnancy can have long-term effects on offspring physiology and behaviour. These developmental programming effects may be mediated by fetal exposure to glucocorticoids, which is regulated in part by placental 11β-hydroxysteroid dehydrogenase (11β-HSD type 1 and 2. We tested whether a maternal high-fat, high-sucrose diet would alter expression of placental 11β-HSD1 and 2, thereby increasing fetal exposure to maternal glucocorticoids, with downstream effects on offspring physiology and behaviour. C57BL/6J mice were fed a high-fat, high-sucrose (HFHS diet or a nutrient-matched low-fat, no-sucrose control diet prior to and during pregnancy and lactation. At day 17 of gestation, HFHS dams had ~20% lower circulating corticosterone levels than controls. Furthermore, there was a significant interaction between maternal diet and fetal sex for circulating corticosterone levels in the fetuses, whereby HFHS males tended to have higher corticosterone than control males, with no effect in female fetuses. However, placental 11β-HSD1 or 11β-HSD2 expression did not differ between diets or show an interaction between diet and sex. To assess potential long-term consequences of this sex-specific effect on fetal corticosterone, we studied locomotor activity and metabolic traits in adult offspring. Despite a sex-specific effect of maternal diet on fetal glucocorticoids, there was little evidence of sex-specific effects on offspring physiology or behaviour, although HFHS offspring of both sexes had higher circulating corticosterone at 9 weeks of age. Our results suggest the existence of as yet unknown mechanisms that mitigate the effects of altered glucocorticoid exposure early in development, making offspring resilient to the potentially negative effects of a HFHS maternal diet.

  13. Physical Activity and Sedentary Behavior Associated with Components of Metabolic Syndrome among People in Rural China.

    Directory of Open Access Journals (Sweden)

    Jing Xiao

    Full Text Available Metabolic syndrome is prevalent worldwide and its prevalence is related to physical activity, race, and lifestyle. Little data is available for people living in rural areas of China. In this study we examined associations of physical activity and sedentary behaviors with metabolic syndrome components among people in rural China.The Nantong Metabolic Syndrome Study recruited 13,505 female and 6,997 male participants between 2007 and 2008. Data of socio-demographic characteristics and lifestyle were collected. The associations of physical activity and sedentary behaviors with metabolic syndrome components were analyzed.Prevalence of metabolic syndrome was 21.6%. It was significantly lower in men than in women. Low risks of metabolic syndrome were observed in those who did less sitting and engaged in more vigorous physical activity. The highest tertile of vigorous physical activity was associated with 15-40% decreased odds of metabolic syndrome and all of its components, except for low high-density lipoprotein cholesterol in men. Women with the highest tertile of moderate physical activity had 15-30% lower odds of central obesity, high glucose, and high triglycerides compared with those in the lowest tertile. Sitting time >42 hours per week had a 4%-12% attributable risk of metabolic syndrome, central obesity, and high triglycerides in both genders, and abnormal glucose and diastolic blood pressure in women. Sleeping for more than 8 hours per day was associated with risk of high serum glucose and lipids.Our data suggested that physical activity has a preventive effect against metabolic syndrome and all its abnormal components, and that longer sitting time and sleep duration are associated with an increased risk of metabolic syndrome components, including central obesity and high triglycerides, glucose, and diastolic blood pressure. This study could provide information for future investigation into these associations. Also, recommendations are

  14. Physical Activity and Sedentary Behavior Associated with Components of Metabolic Syndrome among People in Rural China.

    Science.gov (United States)

    Xiao, Jing; Shen, Chong; Chu, Min J; Gao, Yue X; Xu, Guang F; Huang, Jian P; Xu, Qiong Q; Cai, Hui

    2016-01-01

    Metabolic syndrome is prevalent worldwide and its prevalence is related to physical activity, race, and lifestyle. Little data is available for people living in rural areas of China. In this study we examined associations of physical activity and sedentary behaviors with metabolic syndrome components among people in rural China. The Nantong Metabolic Syndrome Study recruited 13,505 female and 6,997 male participants between 2007 and 2008. Data of socio-demographic characteristics and lifestyle were collected. The associations of physical activity and sedentary behaviors with metabolic syndrome components were analyzed. Prevalence of metabolic syndrome was 21.6%. It was significantly lower in men than in women. Low risks of metabolic syndrome were observed in those who did less sitting and engaged in more vigorous physical activity. The highest tertile of vigorous physical activity was associated with 15-40% decreased odds of metabolic syndrome and all of its components, except for low high-density lipoprotein cholesterol in men. Women with the highest tertile of moderate physical activity had 15-30% lower odds of central obesity, high glucose, and high triglycerides compared with those in the lowest tertile. Sitting time >42 hours per week had a 4%-12% attributable risk of metabolic syndrome, central obesity, and high triglycerides in both genders, and abnormal glucose and diastolic blood pressure in women. Sleeping for more than 8 hours per day was associated with risk of high serum glucose and lipids. Our data suggested that physical activity has a preventive effect against metabolic syndrome and all its abnormal components, and that longer sitting time and sleep duration are associated with an increased risk of metabolic syndrome components, including central obesity and high triglycerides, glucose, and diastolic blood pressure. This study could provide information for future investigation into these associations. Also, recommendations are developed to reduce

  15. Metabolism

    Science.gov (United States)

    ... lin), which signals cells to increase their anabolic activities. Metabolism is a complicated chemical process, so it's not ... how those enzymes or hormones work. When the metabolism of body chemicals is ... Hyperthyroidism (pronounced: hi-per-THIGH-roy-dih-zum). Hyperthyroidism ...

  16. Simple glycolipids of microbes: Chemistry, biological activity and metabolic engineering

    Directory of Open Access Journals (Sweden)

    Ahmad Mohammad Abdel-Mawgoud

    2018-03-01

    Full Text Available Glycosylated lipids (GLs are added-value lipid derivatives of great potential. Besides their interesting surface activities that qualify many of them to act as excellent ecological detergents, they have diverse biological activities with promising biomedical and cosmeceutical applications. Glycolipids, especially those of microbial origin, have interesting antimicrobial, anticancer, antiparasitic as well as immunomodulatory activities. Nonetheless, GLs are hardly accessing the market because of their high cost of production. We believe that experience of metabolic engineering (ME of microbial lipids for biofuel production can now be harnessed towards a successful synthesis of microbial GLs for biomedical and other applications. This review presents chemical groups of bacterial and fungal GLs, their biological activities, their general biosynthetic pathways and an insight on ME strategies for their production.

  17. Ruptured human Achilles tendon has elevated metabolic activity up to 1 year after repair

    DEFF Research Database (Denmark)

    Eliasson, Pernilla; Couppé, Christian; Lonsdale, Markus

    2016-01-01

    PURPOSE: Following Achilles tendon rupture, running is often allowed after 6 months. However, tendon healing is slow and the metabolic status of the tendon at this point is unknown. The purpose of this study was to investigate tendon metabolism (glucose uptake) and vascularization at 3, 6 and 12...... demonstrate that the healing process as determined by metabolic activity and vascularization continues for 6 months after injury when large loads are typically allowed on the tendon. Indeed, metabolic activity remained elevated for more than 1 year after injury despite normalized vascularization. The robust...... negative correlation between tendon metabolism and patient-reported outcome suggests that a high metabolic activity 6 months after the injury may be related to a poor clinical healing outcome....

  18. Association between physical activity and metabolic syndrome among Malay adults in a developing country, Malaysia.

    Science.gov (United States)

    Chu, Anne H Y; Moy, F M

    2014-03-01

    Metabolic syndrome is a highly prevalent health problem within the adult population in developing countries. We aimed to study the association of physical activity levels and metabolic risk factors among Malay adults in Malaysia. Cross-sectional. Body mass index, waist circumference, and systolic/diastolic blood pressure, fasting blood glucose, fasting triglyceride and high-density lipoprotein cholesterol levels were measured in 686 Malay participants (aged 35-74 years). Self-reported physical activity was obtained with the validated International Physical Activity Questionnaire (Malay version) and categorized into low, moderate or high activity levels. Individuals who were classified as overweight and obese predominated (65.6%). On the basis of the modified NCEP ATP III criteria, metabolic syndrome was diagnosed in 31.9% of all participants, of whom 46.1% were men and 53.9% were women. The prevalence of metabolic syndrome among participants with low, moderate or high activity levels was 13.3%, 11.7% and 7.0%, respectively (p<0.001). Statistically significant negative associations were found between a number of metabolic risk factors and activity categories (p<0.05). The odds ratios for metabolic syndrome in the moderate and high activity categories were 0.42 (95% CI: 0.27-0.65) and 0.52 (95% CI: 0.35-0.76), respectively, adjusted for gender. Moderate and high activity levels were each associated with reduced odds for metabolic syndrome independent of gender. Although a slightly lower prevalence of metabolic syndrome was associated with high activity than with moderate activity, potential health benefits were observed when moderate activity was performed. Copyright © 2013 Sports Medicine Australia. All rights reserved.

  19. Linking neuronal brain activity to the glucose metabolism

    OpenAIRE

    Göbel, Britta; Oltmanns, Kerstin M; Chung, Matthias

    2013-01-01

    Background Energy homeostasis ensures the functionality of the entire organism. The human brain as a missing link in the global regulation of the complex whole body energy metabolism is subject to recent investigation. The goal of this study is to gain insight into the influence of neuronal brain activity on cerebral and peripheral energy metabolism. In particular, the tight link between brain energy supply and metabolic responses of the organism is of interest. We aim to identifying regul...

  20. The impact of metabolic syndrome on metabolic, pro-inflammatory and prothrombotic markers according to the presence of high blood pressure criterion.

    Science.gov (United States)

    Gil, Juliana S; Drager, Luciano F; Guerra-Riccio, Grazia M; Mostarda, Cristiano; Irigoyen, Maria C; Costa-Hong, Valeria; Bortolotto, Luiz A; Egan, Brent M; Lopes, Heno F

    2013-12-01

    We explored whether high blood pressure is associated with metabolic, inflammatory and prothrombotic dysregulation in patients with metabolic syndrome. We evaluated 135 consecutive overweight/obese patients. From this group, we selected 75 patients who were not under the regular use of medications for metabolic syndrome as defined by the current Expert Panel on Detection, Evaluation and Treatment of High Blood Cholesterol in Adults criteria. The patients were divided into metabolic syndrome with and without high blood pressure criteria (≥130/≥85 mmHg). Compared to the 45 metabolic syndrome patients without high blood pressure, the 30 patients with metabolic syndrome and high blood pressure had significantly higher glucose, insulin, homeostasis model assessment insulin resistance index, total cholesterol, low-density lipoprotein-cholesterol, triglycerides, uric acid and creatinine values; in contrast, these patients had significantly lower high-density lipoprotein-cholesterol values. Metabolic syndrome patients with high blood pressure also had significantly higher levels of retinol-binding protein 4, plasminogen activator inhibitor 1, interleukin 6 and monocyte chemoattractant protein 1 and lower levels of adiponectin. Moreover, patients with metabolic syndrome and high blood pressure had increased surrogate markers of sympathetic activity and decreased baroreflex sensitivity. Logistic regression analysis showed that high-density lipoprotein, retinol-binding protein 4 and plasminogen activator inhibitor-1 levels were independently associated with metabolic syndrome patients with high blood pressure. There is a strong trend for an independent association between metabolic syndrome patients with high blood pressure and glucose levels. High blood pressure, which may be related to the autonomic dysfunction, is associated with metabolic, inflammatory and prothrombotic dysregulation in patients with metabolic syndrome.

  1. The impact of metabolic syndrome on metabolic, pro-inflammatory and prothrombotic markers according to the presence of high blood pressure criterion

    Directory of Open Access Journals (Sweden)

    Juliana S. Gil

    2013-12-01

    Full Text Available OBJECTIVES: We explored whether high blood pressure is associated with metabolic, inflammatory and prothrombotic dysregulation in patients with metabolic syndrome. METHODS: We evaluated 135 consecutive overweight/obese patients. From this group, we selected 75 patients who were not under the regular use of medications for metabolic syndrome as defined by the current Expert Panel on Detection, Evaluation and Treatment of High Blood Cholesterol in Adults criteria. The patients were divided into metabolic syndrome with and without high blood pressure criteria (≥130/≥85 mmHg. RESULTS: Compared to the 45 metabolic syndrome patients without high blood pressure, the 30 patients with metabolic syndrome and high blood pressure had significantly higher glucose, insulin, homeostasis model assessment insulin resistance index, total cholesterol, low-density lipoprotein-cholesterol, triglycerides, uric acid and creatinine values; in contrast, these patients had significantly lower high-density lipoprotein-cholesterol values. Metabolic syndrome patients with high blood pressure also had significantly higher levels of retinol-binding protein 4, plasminogen activator inhibitor 1, interleukin 6 and monocyte chemoattractant protein 1 and lower levels of adiponectin. Moreover, patients with metabolic syndrome and high blood pressure had increased surrogate markers of sympathetic activity and decreased baroreflex sensitivity. Logistic regression analysis showed that high-density lipoprotein, retinol-binding protein 4 and plasminogen activator inhibitor-1 levels were independently associated with metabolic syndrome patients with high blood pressure. There is a strong trend for an independent association between metabolic syndrome patients with high blood pressure and glucose levels. CONCLUSIONS: High blood pressure, which may be related to the autonomic dysfunction, is associated with metabolic, inflammatory and prothrombotic dysregulation in patients with

  2. Metabolism features in the active rheumatoid disease

    Energy Technology Data Exchange (ETDEWEB)

    Cossermelli, W; Carvalho, N; Papaleo Netto, M [Sao Paulo Univ. (Brazil). Centro de Medicina Nuclear

    1974-02-01

    The /sup 131/I-labelled albumin metabolism was studied in fourteen female patients with rheumatoid arthritis. The half-life of distribution was increased while the turnover half-life and turnover rate was within normal limits. These results led to assume that synthesis and catabolism may not change this disease, not being the responsible mechanism of hypoalbuminemia. Hypoalbuminemia would appear as compensatory mechanism in view of other protein alterations, as hypergammaglobulinemia, without changes of stabilizing and metabolic properties of albumin, perhaps due to albumin molecular alterations.

  3. Metabolism features in the active rheumatoid disease

    International Nuclear Information System (INIS)

    Cossermelli, W.; Carvalho, N.; Papaleo Netto, M.

    1974-01-01

    It was studied the 131 I-labelled albumin metabolism in fourteen female patients with rheumatoid arthritis. The half-life of distribution was increased while the turnover half-life and turnover rate was within normal limits. These results led to assume that synthesis and catabolism may not change this disease, not being the responsible mechanism of hypoalbuminemia. Hypoalbuminemia would appear as compensatory mechanism in view of other protein alterations, as hypergammaglobulinemia, without changes of stabilizing and metabolic properties of albumin, perhaps due to albumin molecular alterations [pt

  4. Peroxisome Proliferator Activated Receptors and Lipoprotein Metabolism

    NARCIS (Netherlands)

    Kersten, A.H.

    2008-01-01

    Plasma lipoproteins are responsible for carrying triglycerides and cholesterol in the blood and ensuring their delivery to target organs. Regulation of lipoprotein metabolism takes place at numerous levels including via changes in gene transcription. An important group of transcription factors that

  5. Involvement of high plasma corticosterone status and activation of brain regional serotonin metabolism in long-term erythrosine-induced rearing motor hyper activity in young adult male rats.

    Science.gov (United States)

    Dalal, Arindam; Poddar, Mrinal K

    2010-07-01

    Long-term consumption of artificial food color(s) can induce behavioral hyperactivity in human and experimental animals, but no neurobiochemical mechanism is defined. This study investigates the role of brain regional serotonin metabolism including its turnover, MAO-A activity, and plasma corticosterone status in relation to behavioral disturbances due to an artificial food color, erythrosine. Long-term (15 or 30 consecutive days) erythrosine administration with higher dosage (10 or 100 mg/kg/day, p.o.) produced optimal hyperactive state in exploratory behavior (rearing motor activity) after 2 h of last erythrosine administration, in young adult male albino rats. Erythrosine-induced stimulation in brain regional (medulla-pons, hypothalamus, hippocampus, and corpus striatum) serotonin metabolism (measuring steady state levels of 5-HT and 5-HIAA, MAO-A activity), including its turnover (pargyline-induced 5-HT accumulation and 5-HIAA declination rate), as well as plasma corticosterone were also observed depending on dosage(s) and duration(s) of erythrosine administration under similar experimental conditions. The lower dosage of erythrosine (1 mg/kg/day, p.o.) under similar conditions did not affect either of the above. These findings suggests (a) the induction as well as optimal effect of long-term erythrosine (artificial food color) on behavioral hyperactivity in parallel with increase in 5-HT level in brain regions, (b) the activation of brain regional serotonin biosynthesis in accordance with plasma corticosterone status under such behavioral hyperactivity, and (c) a possible inhibitory influence of the enhanced glucocorticoids-serotonin interaction on erythrosine-induced rearing motor hyperactivity in young adult mammals.

  6. The pecan nut (Carya illinoinensis) and its oil and polyphenolic fractions differentially modulate lipid metabolism and the antioxidant enzyme activities in rats fed high-fat diets.

    Science.gov (United States)

    Domínguez-Avila, Jesús A; Alvarez-Parrilla, Emilio; López-Díaz, José A; Maldonado-Mendoza, Ignacio E; Gómez-García, María Del Consuelo; de la Rosa, Laura A

    2015-02-01

    Tree nuts such as pecans (Carya illinoinensis) contain mostly oil but are also a source of polyphenols. Nut consumption has been linked to a reduction in serum lipid levels and oxidative stress. These effects have been attributed to the oil while overlooking the potential contribution of the polyphenols. Because the evidence regarding each fraction's bioactivity is scarce, we administered high-fat (HF) diets to male Wistar rats, supplementing them with pecan oil (HF+PO), pecan polyphenols (HF+PP) or whole pecans (HF+WP), and analysed the effects of each fraction. The HF diet increased the serum leptin and total cholesterol (TC) with respect to the control levels. The HF+WP diet prevented hyperleptinemia and decreased the TC compared with the control. The HF+WP diet upregulated the hepatic expression of apolipoprotein B and LDL receptor mRNAs with respect to the HF levels. The HF+PO diet reduced the level of triacylglycerols compared with the control. The HF+PP diet stimulated the hepatic expression of liver X receptor alpha mRNA. The HF+WP diet increased the activities of hepatic catalase, glutathione peroxidase and glutathione S transferase compared with the control, and decreased the degree of lipid peroxidation compared with the HF diet. The most bioactive diet was the WP diet. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Adhesive ability and biofilm metabolic activity of Listeria ...

    African Journals Online (AJOL)

    SWEET

    2012-07-31

    Jul 31, 2012 ... monocytogenes strains were able to adhere to abiotic materials with different degrees. In fact, cold stressed strains ... packaging. Biofilms allow .... reduction of a tetrazolium salt by metabolically active cells to a colored water ...

  8. the prevalence of metabolic syndrome among active sportsmen

    African Journals Online (AJOL)

    User

    ABSTRACT. This study sought to establish the prevalence of the metabolic syndrome (MetS) among active .... Table 1: General characteristic of the studied population stratified by exercise. Parameters ..... Prolonged adaptation to fat- rich diet ...

  9. Physical Activity Dimensions Associated with Impaired Glucose Metabolism

    DEFF Research Database (Denmark)

    Amadid, Hanan; Johansen, Nanna B.; Bjerregaard, Anne-Louise

    2017-01-01

    Purpose Physical activity (PA) is important in the prevention of Type 2 diabetes, yet little is known about the role of specific dimensions of PA, including sedentary time in subgroups at risk for impaired glucose metabolism (IGM). We applied a data-driven decision tool to identify dimensions of PA...... identified subgroups in which different activity dimensions were associated with IGM. Methodology and results from this study may suggest a preliminary step toward the goal of tailoring and targeting PA interventions aimed at Type 2 diabetes prevention....... associated with IGM across age, sex, and body mass index (BMI) groups. Methods This cross-sectional study included 1501 individuals (mean (SD) age, 65.6 (6.8) yr) at high risk for Type 2 diabetes from the ADDITION-PRO study. PA was measured by an individually calibrated combined accelerometer and heart rate...

  10. Metabolic risk factors in mice divergently selected for BMR fed high fat and high carb diets.

    Science.gov (United States)

    Sadowska, Julita; Gębczyński, Andrzej K; Konarzewski, Marek

    2017-01-01

    Factors affecting contribution of spontaneous physical activity (SPA; activity associated with everyday tasks) to energy balance of humans are not well understood, as it is not clear whether low activity is related to dietary habits, precedes obesity or is a result of thereof. In particular, human studies on SPA and basal metabolic rates (BMR, accounting for >50% of human energy budget) and their associations with diet composition, metabolic thrift and obesity are equivocal. To clarify these ambiguities we used a unique animal model-mice selected for divergent BMR rates (the H-BMR and L-BMR line type) presenting a 50% between-line type difference in the primary selected trait. Males of each line type were divided into three groups and fed either a high fat, high carb or a control diet. They then spent 4 months in individual cages under conditions emulating human "sedentary lifestyle", with SPA followed every month and measurements of metabolic risk indicators (body fat mass %, blood lipid profile, fasting blood glucose levels and oxidative damage in the livers, kidneys and hearts) taken at the end of study. Mice with genetically determined high BMR assimilated more energy and had higher SPA irrespective of type of diet. H-BMR individuals were characterized by lower dry body fat mass %, better lipid profile and lower fasting blood glucose levels, but higher oxidative damage in the livers and hearts. Genetically determined high BMR may be a protective factor against diet-induced obesity and most of the metabolic syndrome indicators. Elevated spontaneous activity is correlated with high BMR, and constitutes an important factor affecting individual capability to sustain energy balance even under energy dense diets.

  11. Effects of Cola-Flavored Beverages and Caffeine on Streptococcus mutans Biofilm Formation and Metabolic Activity.

    Science.gov (United States)

    Dotsey, Roger P; Moser, Elizabeth A S; Eckert, George J; Gregory, Richard L

    To examine the effects of cola-flavored beverages and caffeine on growth and metabolism of Streptococcus mutans biofilm. This study was designed to determine if carbonated beverages or caffeine can increase S. mutans growth and biofilm formation and metabolic activity in vitro, potentially leading to increased S. mutans-associated cariogenicity in children that consume them. Six different cola-flavored products, plus pure caffeine, and pure high fructose corn syrup (HFCS), at different concentrations similar to those in the beverages were tested. A 16-hour culture of S. mutans was treated with different dilutions in bacteriological media. To test for the effect on biofilm formation, the biofilm was stained with crystal violet. The absorbance was determined to evaluate biofilm growth. Biofilm metabolic activity was measured based on biofilm having the ability to reduce XTT to a water-soluble orange compound. The inclusion of HFCS in the beverages, as well as pure HFCS, significantly enhanced bacterial biofilm formation and metabolic activity. Pure caffeine and the presence of caffeine in beverages did not significantly increase biofilm formation, but pure caffeine significantly increased metabolism, and Diet Coke had significantly greater metabolic activity than Caffeine-Free Diet Coke. HFCS increases both the biofilm formation and metabolism of S. mutans, and caffeine in some cases increases metabolism of S. mutans.

  12. Activating transcription factor 3 regulates immune and metabolic homeostasis.

    Science.gov (United States)

    Rynes, Jan; Donohoe, Colin D; Frommolt, Peter; Brodesser, Susanne; Jindra, Marek; Uhlirova, Mirka

    2012-10-01

    Integration of metabolic and immune responses during animal development ensures energy balance, permitting both growth and defense. Disturbed homeostasis causes organ failure, growth retardation, and metabolic disorders. Here, we show that the Drosophila melanogaster activating transcription factor 3 (Atf3) safeguards metabolic and immune system homeostasis. Loss of Atf3 results in chronic inflammation and starvation responses mounted primarily by the larval gut epithelium, while the fat body suffers lipid overload, causing energy imbalance and death. Hyperactive proinflammatory and stress signaling through NF-κB/Relish, Jun N-terminal kinase, and FOXO in atf3 mutants deregulates genes important for immune defense, digestion, and lipid metabolism. Reducing the dose of either FOXO or Relish normalizes both lipid metabolism and gene expression in atf3 mutants. The function of Atf3 is conserved, as human ATF3 averts some of the Drosophila mutant phenotypes, improving their survival. The single Drosophila Atf3 may incorporate the diversified roles of two related mammalian proteins.

  13. Peroxisome Proliferators-Activated Receptor (PPAR Modulators and Metabolic Disorders

    Directory of Open Access Journals (Sweden)

    Min-Chul Cho

    2008-01-01

    Full Text Available Overweight and obesity lead to an increased risk for metabolic disorders such as impaired glucose regulation/insulin resistance, dyslipidemia, and hypertension. Several molecular drug targets with potential to prevent or treat metabolic disorders have been revealed. Interestingly, the activation of peroxisome proliferator-activated receptor (PPAR, which belongs to the nuclear receptor superfamily, has many beneficial clinical effects. PPAR directly modulates gene expression by binding to a specific ligand. All PPAR subtypes (α,γ, and σ are involved in glucose metabolism, lipid metabolism, and energy balance. PPAR agonists play an important role in therapeutic aspects of metabolic disorders. However, undesired effects of the existing PPAR agonists have been reported. A great deal of recent research has focused on the discovery of new PPAR modulators with more beneficial effects and more safety without producing undesired side effects. Herein, we briefly review the roles of PPAR in metabolic disorders, the effects of PPAR modulators in metabolic disorders, and the technologies with which to discover new PPAR modulators.

  14. Prevalence of metabolic syndrome and its relationship with physical activity in suburban Beijing, China.

    Science.gov (United States)

    Zhang, Wei-Hong; Xue, Peng; Yao, Meng-Ying; Chang, Hai-Min; Wu, Yan; Zhang, Lei

    2013-01-01

    The present study aimed to estimate the up-to-date prevalence of metabolic syndrome and its relationship with physical activity among suburban adults in Beijing, China. A cross-sectional survey in a representative sample of 19,003 suburban adults aged 18-76 years was carried out in 2007-2008. Data was collected via questionnaires and blood pressure, anthropometric, and laboratory measurements. Of the residents aged 18-76 years in suburban Beijing, 25.9% (27.3% in men and 25.1% in women), 21.3% (19.4% in men and 22.9% in women), and 25.3% (24.2% in men and 26.1% in women) had 1 component, 2 components, and 3 or more components of metabolic syndrome, respectively. The age-standardized prevalence of metabolic syndrome and its components, including abdominal obesity, elevated triglycerides, reduced high-density lipoprotein cholesterol, elevated blood pressure, and elevated fasting plasma glucose, decreased across categories with increasing physical activity. After adjusting for age, sex, education level, smoking, and alcohol consumption, residents were more likely to have metabolic syndrome across categories with decreasing physical activity; a similar relationship also applied to components of metabolic syndrome. A high prevalence of metabolic syndrome and its components is commonly present in suburban Beijing. Increasing physical activity can reduce the relative risk of metabolic syndrome and it components.

  15. Metabolic profile in two physically active Inuit groups consuming either a western or a traditional Inuit diet

    DEFF Research Database (Denmark)

    Andersen, Thor Munch; Olsen, David B; Søndergaard, Hans

    2012-01-01

    To evaluate the effect of regular physical activity on metabolic risk factors and blood pressure in Inuit with high BMI consuming a western diet (high amount of saturated fatty acids and carbohydrates with a high glycemic index).......To evaluate the effect of regular physical activity on metabolic risk factors and blood pressure in Inuit with high BMI consuming a western diet (high amount of saturated fatty acids and carbohydrates with a high glycemic index)....

  16. EFFECT OF ADIPOSITY ON PLASMA-LIPID TRANSFER PROTEIN ACTIVITIES - A POSSIBLE LINK BETWEEN INSULIN-RESISTANCE AND HIGH-DENSITY-LIPOPROTEIN METABOLISM

    NARCIS (Netherlands)

    DULLAART, RPF; SLUITER, WJ; DIKKESCHEI, LD; HOOGENBERG, K; VANTOL, A

    The mechanisms responsible for the decreased high density lipoprotein (HDL) cholesterol levels associated with obesity and insulin resistance are not well understood. Lecithin: cholesterol acyltransferase (LCAT) and cholesterol ester transfer protein (CETP) are key factors in the esterification of

  17. Metaproteomics: Harnessing the power of high performance mass spectrometry to identify the suite of proteins that control metabolic activities in microbial communities

    Science.gov (United States)

    Hettich, Robert L.; Pan, Chongle; Chourey, Karuna; Giannone, Richard J.

    2013-01-01

    Summary The availability of extensive genome information for many different microbes, including unculturable species in mixed communities from environmental samples, has enabled systems-biology interrogation by providing a means to access genomic, transcriptomic, and proteomic information. To this end, metaproteomics exploits the power of high performance mass spectrometry for extensive characterization of the complete suite of proteins expressed by a microbial community in an environmental sample. PMID:23469896

  18. STAT3 Activities and Energy Metabolism: Dangerous Liaisons

    Energy Technology Data Exchange (ETDEWEB)

    Camporeale, Annalisa, E-mail: annalisa.camporeale@unito.it [Molecular Biotechnology Center and Department of Molecular Biotechnology and Life Sciences, University of Turin, Via Nizza 52, Turin 10126 (Italy); Demaria, Marco [Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945 (United States); Monteleone, Emanuele [Molecular Biotechnology Center and Department of Molecular Biotechnology and Life Sciences, University of Turin, Via Nizza 52, Turin 10126 (Italy); Giorgi, Carlotta [Department of Experimental and Diagnostic Medicine, Section of General Pathology, Laboratory for Technologies of Advances Therapies (LTTA), University of Ferrara, Via Fossato di Mortara 70, Ferrara 44121 (Italy); Wieckowski, Mariusz R. [Nencki Institute of Experimental Biology, Department of Biochemistry, Pasteur Str. 3, Warsaw 02-093 (Poland); Pinton, Paolo [Department of Experimental and Diagnostic Medicine, Section of General Pathology, Laboratory for Technologies of Advances Therapies (LTTA), University of Ferrara, Via Fossato di Mortara 70, Ferrara 44121 (Italy); Poli, Valeria, E-mail: annalisa.camporeale@unito.it [Molecular Biotechnology Center and Department of Molecular Biotechnology and Life Sciences, University of Turin, Via Nizza 52, Turin 10126 (Italy)

    2014-07-31

    STAT3 mediates cytokine and growth factor receptor signalling, becoming transcriptionally active upon tyrosine 705 phosphorylation (Y-P). Constitutively Y-P STAT3 is observed in many tumors that become addicted to its activity, and STAT3 transcriptional activation is required for tumor transformation downstream of several oncogenes. We have recently demonstrated that constitutively active STAT3 drives a metabolic switch towards aerobic glycolysis through the transcriptional induction of Hif-1α and the down-regulation of mitochondrial activity, in both MEF cells expressing constitutively active STAT3 (Stat3{sup C/C}) and STAT3-addicted tumor cells. This novel metabolic function is likely involved in mediating pre-oncogenic features in the primary Stat3{sup C/C} MEFs such as resistance to apoptosis and senescence and rapid proliferation. Moreover, it strongly contributes to the ability of primary Stat3{sup C/C} MEFs to undergo malignant transformation upon spontaneous immortalization, a feature that may explain the well known causative link between STAT3 constitutive activity and tumor transformation under chronic inflammatory conditions. Taken together with the recently uncovered role of STAT3 in regulating energy metabolism from within the mitochondrion when phosphorylated on Ser 727, these data place STAT3 at the center of a hub regulating energy metabolism under different conditions, in most cases promoting cell survival, proliferation and malignant transformation even though with distinct mechanisms.

  19. STAT3 Activities and Energy Metabolism: Dangerous Liaisons

    International Nuclear Information System (INIS)

    Camporeale, Annalisa; Demaria, Marco; Monteleone, Emanuele; Giorgi, Carlotta; Wieckowski, Mariusz R.; Pinton, Paolo; Poli, Valeria

    2014-01-01

    STAT3 mediates cytokine and growth factor receptor signalling, becoming transcriptionally active upon tyrosine 705 phosphorylation (Y-P). Constitutively Y-P STAT3 is observed in many tumors that become addicted to its activity, and STAT3 transcriptional activation is required for tumor transformation downstream of several oncogenes. We have recently demonstrated that constitutively active STAT3 drives a metabolic switch towards aerobic glycolysis through the transcriptional induction of Hif-1α and the down-regulation of mitochondrial activity, in both MEF cells expressing constitutively active STAT3 (Stat3 C/C ) and STAT3-addicted tumor cells. This novel metabolic function is likely involved in mediating pre-oncogenic features in the primary Stat3 C/C MEFs such as resistance to apoptosis and senescence and rapid proliferation. Moreover, it strongly contributes to the ability of primary Stat3 C/C MEFs to undergo malignant transformation upon spontaneous immortalization, a feature that may explain the well known causative link between STAT3 constitutive activity and tumor transformation under chronic inflammatory conditions. Taken together with the recently uncovered role of STAT3 in regulating energy metabolism from within the mitochondrion when phosphorylated on Ser 727, these data place STAT3 at the center of a hub regulating energy metabolism under different conditions, in most cases promoting cell survival, proliferation and malignant transformation even though with distinct mechanisms

  20. Physical activity effects on bone metabolism.

    Science.gov (United States)

    Smith, E L; Gilligan, C

    1991-01-01

    The incidence of osteoporotic fractures rises exponentially with age and is increasing faster than the demographic increase in the aging population. Physical activity has great potential to reduce the risk for osteoporotic fractures. Three independent but interactive factors contribute to the risk of fractures: bone strength, the risk of falling, and the effectiveness of neuromuscular response that protects the skeleton from injury. Exercise can reduce fracture risk not only by preventing bone loss, but by decreasing the risk of falling and the force of impact by improving strength, flexibility, balance, and reaction time. Extreme inactivity causes rapid bone loss of up to 40%, while athletic activity results in bone hypertrophy of up to 40%. Exercise intervention programs have reduced bone loss or increased bone mass in both men and women of various ages and initial bone status. These benefits have been shown for arm bone mineral content, total body calcium, spine, calcium bone index, tibia, and calcaneus. In both middle-aged and elderly women, physical activity intervention reduced bone loss or increased bone mass. The mechanisms for maintenance of skeletal integrity rely on a cellular response to hormonal and mechanical load stimuli. Studies in animal models show that training affects cellular activity. In osteoporotics, cellular erosion is increased and mineral apposition rate (MAR) decreased compared with normal age-matched controls. In contrast to this, sows trained on a treadmill 20 min per day for 20 weeks had greater active periosteal surface, periosteal MAR, and osteonal MAR than untrained sows.

  1. Natural Killer Cell Activity and Interleukin-12 in Metabolically Healthy versus Metabolically Unhealthy Overweight Individuals

    Science.gov (United States)

    Kim, Minjoo; Kim, Minkyung; Yoo, Hye Jin; Lee, Jong Ho

    2017-01-01

    The purpose of this study was to determine whether the immune system is involved in the different metabolic circumstances in healthy and unhealthy overweight individuals. We examined the metabolic and immune characteristics of 117 overweight individuals. Subjects were classified as metabolically healthy overweight (MHO, n = 72) or metabolically unhealthy overweight (MUO, n = 45). The immune response was measured by circulating levels of natural killer (NK) cell activity and cytokines. Both groups were comparable with regards to age, sex distribution, smoking and drinking status, and body mass index. When compared to the MHO group, the MUO group showed higher systolic and diastolic blood pressure, serum levels of triglyceride, glucose, glucose-related markers, and lower levels of HDL cholesterol. Compared to the MHO group, the MUO group showed 39% lower interferon-γ levels (not significant) and 41% lower interleukin (IL)-12 levels (significant). The MUO group also showed lower NK cell activity at E:T ratios of 10:1, 5:1, 2.5:1, and 1.25:1 (all Ps < 0.05) than the MHO group. This study indicates that individuals displaying the MUO phenotype present an unfavorable immune system with lower NK cell activities under all assay conditions and lower serum levels of IL-12 than the activities and levels in similarly overweight MHO individuals. This result suggests that the immune system may be altered in overweight individuals who are at risk for overweight/obesity-related comorbidities. PMID:29238351

  2. Natural Killer Cell Activity and Interleukin-12 in Metabolically Healthy versus Metabolically Unhealthy Overweight Individuals

    Directory of Open Access Journals (Sweden)

    Minjoo Kim

    2017-11-01

    Full Text Available The purpose of this study was to determine whether the immune system is involved in the different metabolic circumstances in healthy and unhealthy overweight individuals. We examined the metabolic and immune characteristics of 117 overweight individuals. Subjects were classified as metabolically healthy overweight (MHO, n = 72 or metabolically unhealthy overweight (MUO, n = 45. The immune response was measured by circulating levels of natural killer (NK cell activity and cytokines. Both groups were comparable with regards to age, sex distribution, smoking and drinking status, and body mass index. When compared to the MHO group, the MUO group showed higher systolic and diastolic blood pressure, serum levels of triglyceride, glucose, glucose-related markers, and lower levels of HDL cholesterol. Compared to the MHO group, the MUO group showed 39% lower interferon-γ levels (not significant and 41% lower interleukin (IL-12 levels (significant. The MUO group also showed lower NK cell activity at E:T ratios of 10:1, 5:1, 2.5:1, and 1.25:1 (all Ps < 0.05 than the MHO group. This study indicates that individuals displaying the MUO phenotype present an unfavorable immune system with lower NK cell activities under all assay conditions and lower serum levels of IL-12 than the activities and levels in similarly overweight MHO individuals. This result suggests that the immune system may be altered in overweight individuals who are at risk for overweight/obesity-related comorbidities.

  3. Metabolism of apolipoproteins A-I and A-II in human high-density lipoprotein: a mathematical approach for analysis of their specific activity decay curves

    International Nuclear Information System (INIS)

    Atmeh, R.F.

    1987-01-01

    The differential rate equations describing the compartmental model of human high-density lipoprotein (HDL) were integrated by means of Laplace transforms and an exponential equation was obtained for each of the three compartments. These equations were used to fit the observed plasma decay data and give estimates for the rate constants of the system by means of a written computer program. Furthermore, these estimates were used to calculate the exponential constants of the integrated equations. Consequently, the amount of label in any of the intravascular, extravascular, and urine compartments can be calculated as a fraction of the original dose of label at any time point. This method was tested using data for the (AI)HDL subclass because it contains only apolipoprotein A-I as the major apolipoprotein and does not contain apolipoprotein A-II. The calculated plasma and urine radioactivity data were compared with the experimentally obtained data from two normolipoproteinemic subjects and found to be in good agreement. The significance of this method is its application to the analysis of the decay data of the individual apolipoproteins of (AI + AII) HDL subclass where the urinary radioactivity data resulting from the individual apolipoprotein breakdown on the native particle cannot be measured experimentally at present. Such data are essential for the detailed calculation of the kinetic parameters of these apolipoproteins

  4. Metabolic-epigenetic crosstalk in macrophage activation

    NARCIS (Netherlands)

    Baardman, Jeroen; Licht, Iris; de Winther, Menno P. J.; van den Bossche, Jan

    2015-01-01

    Epigenetic enzymes are emerging as crucial controllers of macrophages, innate immune cells that determine the outcome of many inflammatory diseases. Recent studies demonstrate that the activity of particular chromatin-modifying enzymes is regulated by the availability of specific metabolites like

  5. Feasible metabolisms in high pH springs of the Philippines.

    Science.gov (United States)

    Cardace, Dawn; Meyer-Dombard, D'Arcy R; Woycheese, Kristin M; Arcilla, Carlo A

    2015-01-01

    A field campaign targeting high pH, H2-, and CH4-emitting serpentinite-associated springs in the Zambales and Palawan Ophiolites of the Philippines was conducted in 2012-2013, and enabled description of several springs sourced in altered pillow basalts, gabbros, and peridotites. We combine field observations of pH, temperature, conductivity, dissolved oxygen, and oxidation-reduction potential with analyses of major ions, dissolved inorganic carbon, dissolved organic carbon, and dissolved gas phases in order to model the activities of selected phases important to microbial metabolism, and to rank feasible metabolic reactions based on energy yield. We document changing geochemical inventories in these springs between sampling years, and examine how the environment supports or prevents the function of certain microbial metabolisms. In all, this geochemistry-based assessment of feasible metabolisms indicates methane cycling, hydrogen oxidation, some iron and sulfur metabolisms, and ammonia oxidation are feasible reactions in this continental site of serpentinization.

  6. Effects of activation of endocannabinoid system on myocardial metabolism

    Directory of Open Access Journals (Sweden)

    Agnieszka Polak

    2016-05-01

    Full Text Available Endocannabinoids exert their effect on the regulation of energy homeostasis via activation of specific receptors. They control food intake, secretion of insulin, lipids and glucose metabolism, lipid storage. Long chain fatty acids are the main myocardial energy substrate. However, the heart exerts enormous metabolic flexibility emphasized by its ability to utilzation not only fatty acids, but also glucose, lactate and ketone bodies. Endocannabinoids can directly act on the cardiomyocytes through the CB1 and CB2 receptors present in cardiomyocytes. It appears that direct activation of CB1 receptors promotes increased lipogenesis, pericardial steatosis and bioelectrical dysfunction of the heart. In contrast, stimulation of CB2 receptors exhibits cardioprotective properties, helping to maintain appropriate amount of ATP in cardiomyocytes. Furthermore, the effects of endocannabinoids at both the central nervous system and peripheral tissues, such as liver, pancreas, or adipose tissue, resulting indirectly in plasma availability of energy substrates and affects myocardial metabolism. To date, there is little evidence that describes effects of activation of the endocannabinoid system in the cardiovascular system under physiological conditions. In the present paper the impact of metabolic diseases, i. e. obesity and diabetes, as well as the cardiovascular diseases - hypertension, myocardial ischemia and myocardial infarction on the deregulation of the endocannabinoid system and its effect on the metabolism are described.

  7. Glucose metabolism regulates T cell activation, differentiation and functions

    Directory of Open Access Journals (Sweden)

    Clovis Steve Palmer

    2015-01-01

    Full Text Available The adaptive immune system is equipped to eliminate both tumors and pathogenic microorganisms. It requires a series of complex and coordinated signals to drive the activation, proliferation and differentiation of appropriate T cell subsets. It is now established that changes in cellular activation are coupled to profound changes in cellular metabolism. In addition, emerging evidence now suggest that specific metabolic alterations associated with distinct T cell subsets may be ancillary to their differentiation and influential in their immune functions. The Warburg effect originally used to describe a phenomenon in which most cancer cells relied on aerobic glycolysis for their growth is a key process that sustain T cell activation and differentiation. Here we review how different aspects of metabolism in T cells influence their functions, focusing on the emerging role of key regulators of glucose metabolism such as HIF-1α. A thorough understanding of the role of metabolism in T cell function could provide insights into mechanisms involved in inflammatory-mediated conditions, with the potential for developing novel therapeutic approaches to treat these diseases.

  8. Palaeohistological Evidence for Ancestral High Metabolic Rate in Archosaurs.

    Science.gov (United States)

    Legendre, Lucas J; Guénard, Guillaume; Botha-Brink, Jennifer; Cubo, Jorge

    2016-11-01

    Metabolic heat production in archosaurs has played an important role in their evolutionary radiation during the Mesozoic, and their ancestral metabolic condition has long been a matter of debate in systematics and palaeontology. The study of fossil bone histology provides crucial information on bone growth rate, which has been used to indirectly investigate the evolution of thermometabolism in archosaurs. However, no quantitative estimation of metabolic rate has ever been performed on fossils using bone histological features. Moreover, to date, no inference model has included phylogenetic information in the form of predictive variables. Here we performed statistical predictive modeling using the new method of phylogenetic eigenvector maps on a set of bone histological features for a sample of extant and extinct vertebrates, to estimate metabolic rates of fossil archosauromorphs. This modeling procedure serves as a case study for eigenvector-based predictive modeling in a phylogenetic context, as well as an investigation of the poorly known evolutionary patterns of metabolic rate in archosaurs. Our results show that Mesozoic theropod dinosaurs exhibit metabolic rates very close to those found in modern birds, that archosaurs share a higher ancestral metabolic rate than that of extant ectotherms, and that this derived high metabolic rate was acquired at a much more inclusive level of the phylogenetic tree, among non-archosaurian archosauromorphs. These results also highlight the difficulties of assigning a given heat production strategy (i.e., endothermy, ectothermy) to an estimated metabolic rate value, and confirm findings of previous studies that the definition of the endotherm/ectotherm dichotomy may be ambiguous. © The Author(s) 2016. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. [Coactivators in energy metabolism: peroxisome proliferator-activated receptor-gamma coactivator 1 family].

    Science.gov (United States)

    Wang, Rui; Chang, Yong-sheng; Fang, Fu-de

    2009-12-01

    Peroxisome proliferator-activated receptor gamma coactivator 1 (PGC1) family is highly expressed in tissues with high energy metabolism. They coactivate transcription factors in regulating genes engaged in processes such as gluconeogenesis, adipose beta-oxydation, lipoprotein synthesis and secretion, mitochondrial biogenesis, and oxidative metabolism. Protein conformation studies demonstrated that they lack DNA binding domains and act as coactivators through physical interaction with transcription factors. PGC1 activity is regulated at transcription level or by multiple covalent chemical modifications such as phosphorylation, methylation and acetylation/deacetylation. Abnormal expression of PGC1 coactivators usually is closely correlated with diseases such as diabetes, obesity, hyperglycemia, hyperlipemia, and arterial and brain neuron necrosis diseases.

  10. Metaproteomics: extracting and mining proteome information to characterize metabolic activities in microbial communities.

    Science.gov (United States)

    Abraham, Paul E; Giannone, Richard J; Xiong, Weili; Hettich, Robert L

    2014-06-17

    Contemporary microbial ecology studies usually employ one or more "omics" approaches to investigate the structure and function of microbial communities. Among these, metaproteomics aims to characterize the metabolic activities of the microbial membership, providing a direct link between the genetic potential and functional metabolism. The successful deployment of metaproteomics research depends on the integration of high-quality experimental and bioinformatic techniques for uncovering the metabolic activities of a microbial community in a way that is complementary to other "meta-omic" approaches. The essential, quality-defining informatics steps in metaproteomics investigations are: (1) construction of the metagenome, (2) functional annotation of predicted protein-coding genes, (3) protein database searching, (4) protein inference, and (5) extraction of metabolic information. In this article, we provide an overview of current bioinformatic approaches and software implementations in metaproteome studies in order to highlight the key considerations needed for successful implementation of this powerful community-biology tool. Copyright © 2014 John Wiley & Sons, Inc.

  11. High activity waste disposal

    International Nuclear Information System (INIS)

    Gaul, W.C.

    1990-01-01

    Chem-Nuclear Environmental Services (CNES) has developed a container that is capable of containing high activity waste and can be shipped as a regular DOT Type A shipment. By making the container special form the amount of activity that can be transported in a Type A shipment is greatly enhanced. Special form material presents an extra degree of protection to the environment by requiring the package to be destroyed to get access to the radioactive material and must undergo specific testing requirements, whereas normal form material can allow access to the radioactive material. With the special form container up to 10 caries of radium can be transported in a single package. This paper will describe the considerations that were taken to develop these products

  12. METABOLIC SYNDROME AND PHYSICAL ACTIVITY IN CHILEAN IMMIGRANTS LIVING IN RIO GALLEGOS, SANTA CRUZ, ARGENTINA.

    Directory of Open Access Journals (Sweden)

    Inger Sally Padilla

    2012-12-01

    Full Text Available To study the frequency of metabolic syndrome, its components and its relationship with physical activity in Chilean immigrants living in Río Gallegos, Santa Cruz, Argentina.314 Chilean immigrants (165 women and 149 men were interviewed in Rio Gallegos in 2010, with healthy status in medical records (2000. Anthropometry, blood pressure control, blood test to measure glucose, triglycerides and HDL cholesterol were determined. Metabolic syndrome was established by criteria of the NCEPATPIII.The metabolic syndrome had an overall prevalence of 28.9% (95%CI: 23.9 to 34. Metabolic syndrome prevalence was larger in women (32.1% than in men (25.5%. The prevalence of its components were: abdominal obesity 56%, low levels of HDL cholesterol 48.3%, high levels of triglycerides 68.1%, hypertension 46.1% and high levels of glucose 72.5%. Inadequate physical activity was 66.2% (95%CI: 60.1 to 71.5. Immigrants had more likelihood of metabolic syndrome living in Río Gallegos for 15 years or more(β: 5.74,95%CI:2,81-11,73, p=0.000 and with inadequate physical activity (β: 3.36, 95%CI: 1.57to7.21,p=0.002. The prevalence of metabolic syndrome in Chilean immigrants living in Río Gallegos is higher than that reported in Argentina and Chile

  13. HIV protease inhibitors disrupt lipid metabolism by activating endoplasmic reticulum stress and inhibiting autophagy activity in adipocytes.

    Directory of Open Access Journals (Sweden)

    Beth S Zha

    Full Text Available HIV protease inhibitors (PI are core components of Highly Active Antiretroviral Therapy (HAART, the most effective treatment for HIV infection currently available. However, HIV PIs have now been linked to lipodystrophy and dyslipidemia, which are major risk factors for cardiovascular disease and metabolic syndrome. Our previous studies have shown that HIV PIs activate endoplasmic reticulum (ER stress and disrupt lipid metabolism in hepatocytes and macrophages. Yet, little is known on how HIV PIs disrupt lipid metabolism in adipocytes, a major cell type involved in the pathogenesis of metabolic syndrome.Cultured and primary mouse adipocytes and human adipocytes were used to examine the effect of frequently used HIV PIs in the clinic, lopinavir/ritonavir, on adipocyte differentiation and further identify the underlying molecular mechanism of HIV PI-induced dysregulation of lipid metabolism in adipocytes. The results indicated that lopinavir alone or in combination with ritonavir, significantly activated the ER stress response, inhibited cell differentiation, and induced cell apoptosis in adipocytes. In addition, HIV PI-induced ER stress was closely linked to inhibition of autophagy activity. We also identified through the use of primary adipocytes of CHOP(-/- mice that CHOP, the major transcriptional factor of the ER stress signaling pathway, is involved in lopinavir/ritonavir-induced inhibition of cell differentiation in adipocytes. In addition, lopinavir/ritonavir-induced ER stress appears to be associated with inhibition of autophagy activity in adipocytes.Activation of ER stress and impairment of autophagy activity are involved in HIV PI-induced dysregulation of lipid metabolism in adipocytes. The key components of ER stress and autophagy signaling pathways are potential therapeutic targets for HIV PI-induced metabolic side effects in HIV patients.

  14. Independent associations of physical activity and cardiorespiratory fitness with metabolic risk factors in children: the European youth heart study

    DEFF Research Database (Denmark)

    Ekelund, U; Anderssen, S A; Froberg, K

    2007-01-01

    AIMS/HYPOTHESIS: High levels of cardiorespiratory fitness (CRF) and physical activity (PA) are associated with a favourable metabolic risk profile. However, there has been no thorough exploration of the independent contributions of cardiorespiratory fitness and subcomponents of activity (total PA...... the association between activity and clustered risk is independent of adiposity. Our results suggest that fitness and activity affect metabolic risk through different pathways....

  15. Physical Activity Enhances Metabolic Fitness Independently of Cardiorespiratory Fitness in Marathon Runners

    Directory of Open Access Journals (Sweden)

    M. J. Laye

    2015-01-01

    Full Text Available High levels of cardiovascular fitness (CRF and physical activity (PA are associated with decreased mortality and risk to develop metabolic diseases. The independent contributions of CRF and PA to metabolic disease risk factors are unknown. We tested the hypothesis that runners who run consistently >50 km/wk and/or >2 marathons/yr for the last 5 years have superior metabolic fitness compared to matched sedentary subjects (CRF, age, gender, and BMI. Case-control recruitment of 31 pairs of runner-sedentary subjects identified 10 matched pairs with similar VO2max (mL/min/kg (similar-VO2max. The similar-VO2max group was compared with a group of age, gender, and BMI matched pairs who had the largest difference in VO2max (different-VO2max. Primary outcomes that defined metabolic fitness including insulin response to an oral glucose tolerance test, fasting lipids, and fasting insulin were superior in runners versus sedentary controls despite similar VO2max. Furthermore, performance (velocity at VO2max, running economy, improved exercise metabolism (lactate threshold, and skeletal muscle levels of mitochondrial proteins were superior in runners versus sedentary controls with similar VO2max. In conclusion subjects with a high amount of PA have more positive metabolic health parameters independent of CRF. PA is thus a good marker against metabolic diseases.

  16. Activating Transcription Factor 3 Regulates Immune and Metabolic Homeostasis

    Science.gov (United States)

    Rynes, Jan; Donohoe, Colin D.; Frommolt, Peter; Brodesser, Susanne; Jindra, Marek

    2012-01-01

    Integration of metabolic and immune responses during animal development ensures energy balance, permitting both growth and defense. Disturbed homeostasis causes organ failure, growth retardation, and metabolic disorders. Here, we show that the Drosophila melanogaster activating transcription factor 3 (Atf3) safeguards metabolic and immune system homeostasis. Loss of Atf3 results in chronic inflammation and starvation responses mounted primarily by the larval gut epithelium, while the fat body suffers lipid overload, causing energy imbalance and death. Hyperactive proinflammatory and stress signaling through NF-κB/Relish, Jun N-terminal kinase, and FOXO in atf3 mutants deregulates genes important for immune defense, digestion, and lipid metabolism. Reducing the dose of either FOXO or Relish normalizes both lipid metabolism and gene expression in atf3 mutants. The function of Atf3 is conserved, as human ATF3 averts some of the Drosophila mutant phenotypes, improving their survival. The single Drosophila Atf3 may incorporate the diversified roles of two related mammalian proteins. PMID:22851689

  17. Metabolic activation of 2-methylfuran by rat microsomal systems

    International Nuclear Information System (INIS)

    Ravindranath, V.; Boyd, M.R.

    1985-01-01

    2-Methylfuran (2-MF), a constituent of cigarette smoke and coffee, causes necrosis of liver, lungs, and kidneys in rodents. 2-MF is metabolically activated by mixed-function oxidases to acetylacrolein, a reactive metabolite that binds covalently to microsomal protein. The hepatic microsomal metabolism of 2-MF to reactive metabolite required the presence of NADPH and oxygen and was dependent on incubation time and substrate concentration. The microsomal metabolism of 2-MF was inducible by pretreatment of rats with phenobarbital and was inhibited by piperonyl butoxide and N-octyl imidazole, which indicates that the metabolism of 2-MF may be mediated by cytochrome P-450. Acetylacrolein was a potent inhibitor of mixed-function oxidase and completely inhibited the microsomal metabolism of 2-MF, indicating that 2-MF is a suicide substrate for the enzyme. The sulfhydryl nucleophile cysteine was a better trapping agent of the reactive metabolite of 2-MF than N-acetylcysteine or glutathione. Lysine decreased the covalent binding of 2-MF metabolites, presumably by reacting with the aldehyde group of acetylacrolein. In addition, in the presence of NADPH, 2-MF was bioactivated by both pulmonary and renal cortical microsomes to reactive metabolites that were covalently bound to microsomal proteins

  18. High salt diet induces metabolic alterations in multiple biological processes of Dahl salt-sensitive rats.

    Science.gov (United States)

    Wang, Yanjun; Liu, Xiangyang; Zhang, Chen; Wang, Zhengjun

    2018-06-01

    High salt induced renal disease is a condition resulting from the interactions of genetic and dietary factors causing multiple complications. To understand the metabolic alterations associated with renal disease, we comprehensively analyzed the metabonomic changes induced by high salt intake in Dahl salt-sensitive (SS) rats using GC-MS technology and biochemical analyses. Physiological features, serum chemistry, and histopathological data were obtained as complementary information. Our results showed that high salt (HS) intake for 16 weeks caused significant metabolic alterations in both the renal medulla and cortex involving a variety pathways involved in the metabolism of organic acids, amino acids, fatty acids, and purines. In addition, HS enhanced glycolysis (hexokinase, phosphofructokinase and pyruvate kinase) and amino acid metabolism and suppressed the TCA (citrate synthase and aconitase) cycle. Finally, HS intake caused up-regulation of the pentose phosphate pathway (glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase), the ratio of NADPH/NADP + , NADPH oxidase activity and ROS production, suggesting that increased oxidative stress was associated with an altered PPP pathway. The metabolic pathways identified may serve as potential targets for the treatment of renal damage. Our findings provide comprehensive biochemical details about the metabolic responses to a high salt diet, which may contribute to the understanding of renal disease and salt-induced hypertension in SS rats. Copyright © 2018. Published by Elsevier Inc.

  19. Circulating Metabolic Profile of High Producing Holstein Dairy Cows

    Directory of Open Access Journals (Sweden)

    Aliasghar CHALMEH

    2015-07-01

    Full Text Available Assessing the metabolic profile based on the concept that the laboratory measurement of certain circulating components is a tool to evaluate metabolic status of dairy cows. Veterinarian also can evaluate the energy input-output relationships by assessing the metabolic profile to prevent and control of negative energy balance, metabolic disorders and nutritional insufficiencies. In the present study, 25 multiparous Holstein dairy cows were divided to 5 equal groups containing early, mid and late lactation, and far-off and close-up dry. Blood samples were collected from all cows through jugular venipuncture and sera were evaluated for glucose, insulin, β-hydroxybutyric acid (BHBA, non-esterified fatty acid (NEFA, cholesterol, triglyceride (TG, high, low and very low density lipoproteins (HDL, LDL and VLDL. Insulin levels in mid lactation and close-up dry cows were significantly higher than other groups (P<0.05 and the lowest insulin concentration was detected in far-off dry group. Serum concentrations of NEFA and BHBA in early and mid-lactation and close-up dry cows were significantly higher than late lactation and far-off dry animals (P<0.05. Baseline levels of cholesterol in mid and late lactation were significantly higher than other groups. The level of LDL in mid lactation cows was higher than others significantly, and its value in far-off dry cows was significantly lower than other group (P<0.05. It may be concluded that the detected changes among different groups induce commonly by negative energy balance, lactogenesis and fetal growth in each state. The presented metabolic profile can be considered as a tool to assess the energy balance in dairy cows at different physiologic states. It can be used to evaluate the metabolic situations of herd and manage the metabolic and production disorders.

  20. Physical activity enhances metabolic fitness independently of cardiorespiratory fitness in marathon runners

    DEFF Research Database (Denmark)

    Laye, M J; Nielsen, M B; Hansen, L S

    2015-01-01

    High levels of cardiovascular fitness (CRF) and physical activity (PA) are associated with decreased mortality and risk to develop metabolic diseases. The independent contributions of CRF and PA to metabolic disease risk factors are unknown. We tested the hypothesis that runners who run consisten......High levels of cardiovascular fitness (CRF) and physical activity (PA) are associated with decreased mortality and risk to develop metabolic diseases. The independent contributions of CRF and PA to metabolic disease risk factors are unknown. We tested the hypothesis that runners who run...... consistently >50 km/wk and/or >2 marathons/yr for the last 5 years have superior metabolic fitness compared to matched sedentary subjects (CRF, age, gender, and BMI). Case-control recruitment of 31 pairs of runner-sedentary subjects identified 10 matched pairs with similar VO2max (mL/min/kg) (similar-VO2max......). The similar-VO2max group was compared with a group of age, gender, and BMI matched pairs who had the largest difference in VO2max (different-VO2max). Primary outcomes that defined metabolic fitness including insulin response to an oral glucose tolerance test, fasting lipids, and fasting insulin were superior...

  1. Postprandial Monocyte Activation in Individuals With Metabolic Syndrome

    Science.gov (United States)

    Khan, Ilvira M.; Pokharel, Yashashwi; Dadu, Razvan T.; Lewis, Dorothy E.; Hoogeveen, Ron C.; Wu, Huaizhu

    2016-01-01

    Context: Postprandial hyperlipidemia has been suggested to contribute to atherogenesis by inducing proinflammatory changes in monocytes. Individuals with metabolic syndrome (MS), shown to have higher blood triglyceride concentration and delayed triglyceride clearance, may thus have increased risk for development of atherosclerosis. Objective: Our objective was to examine fasting levels and effects of a high-fat meal on phenotypes of monocyte subsets in individuals with obesity and MS and in healthy controls. Design, Setting, Participants, Intervention: Individuals with obesity and MS and gender- and age-matched healthy controls were recruited. Blood was collected from participants after an overnight fast (baseline) and at 3 and 5 hours after ingestion of a high-fat meal. At each time point, monocyte phenotypes were examined by multiparameter flow cytometry. Main Outcome Measures: Baseline levels of activation markers and postprandial inflammatory response in each of the three monocyte subsets were measured. Results: At baseline, individuals with obesity and MS had higher proportions of circulating lipid-laden foamy monocytes than controls, which were positively correlated with fasting triglyceride levels. Additionally, the MS group had increased counts of nonclassical monocytes, higher CD11c, CX3CR1, and human leukocyte antigen-DR levels on intermediate monocytes, and higher CCR5 and tumor necrosis factor-α levels on classical monocytes in the circulation. Postprandial triglyceride increases in both groups were paralleled by upregulation of lipid-laden foamy monocytes. MS, but not control, subjects had significant postprandial increases of CD11c and percentages of IL-1β+ and tumor necrosis factor-α+ cells in nonclassical monocytes. Conclusions: Compared to controls, individuals with obesity and MS had increased fasting and postprandial monocyte lipid accumulation and activation. PMID:27575945

  2. Physical activity, stress, and metabolic risk score in 8- to 18-year-old boys.

    Science.gov (United States)

    Holmes, Megan E; Eisenmann, Joey C; Ekkekakis, Panteleimon; Gentile, Douglas

    2008-03-01

    We examined whether physical activity modifies the relationship between stress and the metabolic risk score in 8- to 18-year-old males (n = 37). Physical activity (PA) and television (TV)/videogame (VG) use were assessed via accelerometer and questionnaire, respectively. Stress was determined from self-report measures. A metabolic risk score (MRS) was created by summing age-standardized residuals for waist circumference, mean arterial pressure, glycosylated hemoglobin, and high-density lipoprotein cholesterol. Correlations between PA and MRS were low (r adolescents.

  3. 5' adenosine monophosphate-activated protein kinase, metabolism and exercise.

    Science.gov (United States)

    Aschenbach, William G; Sakamoto, Kei; Goodyear, Laurie J

    2004-01-01

    The 5' adenosine monophosphate-activated protein kinase (AMPK) is a member of a metabolite-sensing protein kinase family that functions as a metabolic 'fuel gauge' in skeletal muscle. AMPK is a ubiquitous heterotrimeric protein, consisting of an alpha catalytic, and beta and gamma regulatory subunits that exist in multiple isoforms and are all required for full enzymatic activity. During exercise, AMPK becomes activated in skeletal muscle in response to changes in cellular energy status (e.g. increased adenosine monophosphate [AMP]/adenosine triphosphate [ATP] and creatine/phosphocreatine ratios) in an intensity-dependent manner, and serves to inhibit ATP-consuming pathways, and activate pathways involved in carbohydrate and fatty-acid metabolism to restore ATP levels. Recent evidence shows that although AMPK plays this key metabolic role during acute bouts of exercise, it is also an important component of the adaptive response of skeletal muscles to endurance exercise training because of its ability to alter muscle fuel reserves and expression of several exercise-responsive genes. This review discusses the putative roles of AMPK in acute and chronic exercise responses, and suggests avenues for future AMPK research in exercise physiology and biochemistry.

  4. Alteration In Bones Metabolism In Active Rheumatoid Arthritis

    International Nuclear Information System (INIS)

    Salem, E.S.

    2013-01-01

    The strength and integrity of the human skeleton depends on a delicate equilibrium between bone resorption and bone formation. Osteocalcin (OC) is synthesized by osteoblasts and is considered to be a marker of bone formation and helps in corporating calcium into bone tissue. Rheumatoid arthritis (RA) is an autoimmune inflammatory joint disease characterized by bone complication including bone pain, erosion and osteoporosis. The aim of the present study is to evaluate some factors responsible in bone metabolism termed OC, vitamin D (vit. D), oncostatin M (OSM), ionized calcium and alkaline phosphatase. Fifty pre-menopausal female patients with active RA and twenty healthy controls of the same age were included in the present study. Radioimmunoassay (RIA) was used to estimate serum OC and active vitamin D. The quantitative determination of ionized calcium and alkaline phosphatase were carried out colorimetrically. OSM was measured by ELISA and serum levels of OC and active vitamin D were significantly decreased in RA patients as compared to those of the control group. On the other hand, the levels of serum OSM, ionized calcium and alkaline phosphatase were significantly increased in the RA patients as compared to their healthy control subjects. The results of this study indicated that early investigation and therapy of disturbances of bone metabolism in active RA are necessary for better prognosis and exhibited the importance of OC as a diagnostic tool of alterations of bone metabolism in RA patients.

  5. Genome Sequencing of Streptomyces atratus SCSIOZH16 and Activation Production of Nocardamine via Metabolic Engineering

    Directory of Open Access Journals (Sweden)

    Yan Li

    2018-06-01

    Full Text Available The Actinomycetes are metabolically flexible microorganisms capable of producing a wide range of interesting compounds, including but by no means limited to, siderophores which have high affinity for ferric iron. In this study, we report the complete genome sequence of marine-derived Streptomyces atratus ZH16 and the activation of an embedded siderophore gene cluster via the application of metabolic engineering methods. The S. atratus ZH16 genome reveals that this strain has the potential to produce 26 categories of natural products (NPs barring the ilamycins. Our activation studies revealed S. atratus SCSIO ZH16 to be a promising source of the production of nocardamine-type (desferrioxamine compounds which are important in treating acute iron intoxication and performing ecological remediation. We conclude that metabolic engineering provides a highly effective strategy by which to discover drug-like compounds and new NPs in the genomic era.

  6. Metabolic syndrome and cognitive decline: the role of physical activity

    Directory of Open Access Journals (Sweden)

    M. Rinaldi

    2013-01-01

    Full Text Available Metabolic Syndrome (MetS is a cluster of conditions, each of which represents a risk factor for cardiovascular disease: central obesity, hyperglycemia, dyslipidemia and hypertension. Any of these conditions and MetS itself have been associated to Alzheimer's Disease and Vascular Dementia. In recent years there is a growing evidence for the role of physical activity in preventing metabolic diseases and cognitive decline. In our research we assessed the prevalence of MetS in a sample of 154 elderly people. Furthermore, we evaluated cognition (with Mini Mental State Examination, MMSE  and the physical activity level in every patient. We found a significant association between MetS, borderline cognitive impairment and sedentary lifestyle.

  7. Reconstituted high-density lipoprotein infusion modulates fatty acid metabolism in patients with type 2 diabetes mellitus

    DEFF Research Database (Denmark)

    Drew, BG; Carey, AL; Natoli, AK

    2011-01-01

    We recently demonstrated that reconstituted high-density lipoprotein (rHDL) modulates glucose metabolism in humans via both AMP-activated protein kinase (AMPK) in muscle and by increasing plasma insulin. Given the key roles of both AMPK and insulin in fatty acid metabolism, the current study inve...

  8. Effectiveness of physical activity intervention among government employees with metabolic syndrome.

    Science.gov (United States)

    Huei Phing, Chee; Abu Saad, Hazizi; Barakatun Nisak, M Y; Mohd Nasir, M T

    2017-12-01

    Our study aimed to assess the effects of physical activity interventions via standing banners (point-of-decision prompt) and aerobics classes to promote physical activity among individuals with metabolic syndrome. We conducted a cluster randomized controlled intervention trial (16-week intervention and 8-week follow-up). Malaysian government employees in Putrajaya, Malaysia, with metabolic syndrome were randomly assigned by cluster to a point-of-decision prompt group (n = 44), an aerobics group (n = 42) or a control group (n = 103) based on sample size calculation formula. Step counts were evaluated by Lifecorder e-STEP accelerometers for all participants. Metabolic syndrome was defined according to the 'harmonizing' definition, in which individuals who have at least three of the five metabolic risk factors (waist circumference, high-density lipoprotein cholesterol, triglycerides, fasting glucose levels, systolic and diastolic blood pressure) will be classified as having metabolic syndrome. A total of 80% of the enrolled government employees with metabolic syndrome completed the programme. Data were analyzed using SPSS for Windows (version 20, SPSS, Chicago, IL). There were significantly higher step counts on average in the aerobics group compared to the control group over assessments. Assessments at baseline, post-intervention and follow-up showed a significant difference in step counts between the intervention and control groups. The greatest reductions in the proportions of individuals with metabolic syndrome were observed in the aerobics group with a reduction of 79.4% in the post-intervention assessment compared to the assessment at baseline. The findings of this study suggest that physical activity intervention via aerobics classes is an effective strategy for improving step counts and reducing the prevalence of metabolic syndrome.

  9. Association of physical activity with metabolic syndrome in a predominantly rural Nigerian population.

    Science.gov (United States)

    Oguoma, Victor M; Nwose, Ezekiel U; Skinner, Timothy C; Richards, Ross S; Digban, Kester A; Onyia, Innocent C

    2016-01-01

    Physical activity is an essential determinant of health. However, there is dearth of evidence regarding prevalence of physical activity in developing countries, especially its association with metabolic syndrome risk factors. This study assessed the association of physical activity with metabolic syndrome in a Nigerian population. A cross-sectional study was carried out on apparently healthy persons who are ≥ 18 years old. The World Health Organisation (WHO) Global Physical Activity Questionnaire (GPAQ) was used to collect five domains of physical activity. Participants were classified as physically active or inactive based on meeting the cut-off value of 600 MET-min/week. Metabolic syndrome was diagnosed using the Joint Scientific Statement on Harmonizing the Metabolic Syndrome criteria. Overall prevalence of physically active individuals was 50.1% (CI: 45.6-54.7%). Physical inactivity is significantly more in females (p40 years old (pmetabolic syndrome appeared more likely to be physically active (OR=1.48, CI: 0.71-3.09); physical inactivity showed to exist more among participants who were living in urban area (OR=6.61, CI: 3.40-12.85, pmetabolic syndrome risk factors. The high prevalence of physical inactivity in this study population is a clear indication that concerted efforts to improve physical activity may be required. However, it seems that metabolic syndrome is not improved by being physically active. This suggests that interventions directed at physical activity alone may not produce optimal efficacy in this study population. Copyright © 2015 Diabetes India. Published by Elsevier Ltd. All rights reserved.

  10. High energy reactions in normal metabolism and ageing of animals

    International Nuclear Information System (INIS)

    Avdonina, E.N.; Nesmeyanov, N.

    1983-01-01

    Processes involving reactions on highly excited states are thought to be of great importance for normal metabolism and aging. Excess energy of the organism is transferred to result in the formation of highly excited states of macromolecules. UV, visible light or ionizing radiation created partially by the organism itself can change metabolic process rates. According to the authors, aging is associated with the defects of macromolecules owing to high energy processes. Gerontological changes in biological materials result from the elimination of low molecular weight molecules and from the formation of unsaturated compounds. Crosslinking of the compounds, accumulation of collagen and connective tissues, the energetic overload of the organism are listed as important features of aging. (V.N.)

  11. Prediction of residual metabolic activity after treatment in NSCLC patients

    International Nuclear Information System (INIS)

    Rios Velazquez, Emmanuel; Aerts, Hugo J.W.L.; Oberije, Cary; Ruysscher, Dirk De; Lambin, Philippe

    2010-01-01

    Purpose. Metabolic response assessment is often used as a surrogate of local failure and survival. Early identification of patients with residual metabolic activity is essential as this enables selection of patients who could potentially benefit from additional therapy. We report on the development of a pre-treatment prediction model for metabolic response using patient, tumor and treatment factors. Methods. One hundred and one patients with inoperable NSCLC (stage I-IV), treated with 3D conformal radical (chemo)-radiotherapy were retrospectively included in this study. All patients received a pre and post-radiotherapy fluorodeoxyglucose positron emission tomography-computed tomography FDG-PET-CT scan. The electronic medical record system and the medical patient charts were reviewed to obtain demographic, clinical, tumor and treatment data. Primary outcome measure was examined using a metabolic response assessment on a post-radiotherapy FDG-PET-CT scan. Radiotherapy was delivered in fractions of 1.8 Gy, twice a day, with a median prescribed dose of 60 Gy. Results. Overall survival was worse in patients with residual metabolic active areas compared with the patients with a complete metabolic response (p=0.0001). In univariate analysis, three variables were significantly associated with residual disease: larger primary gross tumor volume (GTVprimary, p=0.002), higher pre-treatment maximum standardized uptake value (SUV max , p=0.0005) in the primary tumor and shorter overall treatment time (OTT, p=0.046). A multivariate model including GTVprimary, SUV max , equivalent radiation dose at 2 Gy corrected for time (EQD2, T) and OTT yielded an area under the curve assessed by the leave-one-out cross validation of 0.71 (95% CI, 0.65-0.76). Conclusion. Our results confirmed the validity of metabolic response assessment as a surrogate of survival. We developed a multivariate model that is able to identify patients at risk of residual disease. These patients may benefit from

  12. Effects of vasoactive and metabolic active substances (measurement of RCBF)

    Energy Technology Data Exchange (ETDEWEB)

    Herrschaft, H.

    1986-09-29

    Methods, principles, normal values, reproducibility and clinical indications of rCBF-measurements, using the intraartrial 133-Xenon-clearance-technique, are presented. The effect of vaso- and metabolically active drugs on cerebral blood flow was examined in 215 patients, suffering from cerebral ischemia. Significant increase of rCBF was ascertained after intravenous injection of centrophenoxine, pyrithioxine, extractum sanguis deproteinatus, piracetam and solutions of low molecular dextran. All the other drugs tested proved to be either without any effect or caused decrease of rCBF. In 130 patients with obstructive disease of internal carotid artery after surgery at an interval of 6 - 8 weeks and 1 year a significant increase of CBF could be stated. The rank of psychological tests and quantitative EEF-investigations relating to evidence of efficacy of metabolically active drugs is discussed critically. Therapeutic efficacy and clinical relevance of vaso- and metabolically active drugs in cerebral ischemia of man are to be substantiated only by double-blind controlled studies.

  13. Effects of vasoactive and metabolic active substances (measurement of RCBF)

    International Nuclear Information System (INIS)

    Herrschaft, H.

    1986-01-01

    Methods, principles, normal values, reproducibility and clinical indications of rCBF-measurements, using the intraartrial 133-Xenon-clearance-technique, are presented. The effect of vaso- and metabolically active drugs on cerebral blood flow was examined in 215 patients, suffering from cerebral ischemia. Significant increase of rCBF was ascertained after intravenous injection of centrophenoxine, pyrithioxine, extractum sanguis deproteinatus, piracetam and solutions of low molecular dextran. All the other drugs tested proved to be either without any effect or caused decrease of rCBF. In 130 patients with obstructive disease of internal carotid artery after surgery at an interval of 6 - 8 weeks and 1 year a significant increase of CBF could be stated. The rank of psychological tests and quantitative EEF-investigations relating to evidence of efficacy of metabolically active drugs is discussed critically. Therapeutic efficacy and clinical relevance of vaso- and metabolically active drugs in cerebral ischemia of man are to be substantiated only by double-blind controlled studies. (orig.) [de

  14. Physical activity, body composition and metabolic syndrome in young adults.

    Directory of Open Access Journals (Sweden)

    Minna K Salonen

    Full Text Available Low physical activity (PA is a major risk factor for cardiovascular and metabolic disorders in all age groups. We measured intensity and volume of PA and examined the associations between PA and the metabolic syndrome (MS, its components and body composition among young Finnish adults.The study comprises 991 men and women born 1985-86, who participated in a clinical study during the years 2009-11 which included assessments of metabolism, body composition and PA. Objectively measured (SenseWear Armband five-day PA data was available from 737 participants and was expressed in metabolic equivalents of task (MET.The prevalence of MS ranged between 8-10%. Higher total mean volume (MET-hours or intensity (MET were negatively associated with the risk of MS and separate components of MS, while the time spent at sedentary level of PA was positively associated with MS.MS was prevalent in approximately every tenth of the young adults at the age of 24 years. Higher total mean intensity and volume rates as well as longer duration spent at moderate and vigorous PA level had a beneficial impact on the risk of MS. Longer time spent at the sedentary level of PA increased the risk of MS.

  15. Inactivation of adipose angiotensinogen reduces adipose tissue macrophages and increases metabolic activity.

    Science.gov (United States)

    LeMieux, Monique J; Ramalingam, Latha; Mynatt, Randall L; Kalupahana, Nishan S; Kim, Jung Han; Moustaïd-Moussa, Naïma

    2016-02-01

    The adipose renin-angiotensin system (RAS) has been linked to obesity-induced inflammation, though mechanisms are not completely understood. In this study, adipose-specific angiotensinogen knockout mice (Agt-KO) were generated to determine whether Agt inactivation reduces inflammation and alters the metabolic profile of the Agt-KO mice compared to wild-type (WT) littermates. Adipose tissue-specific Agt-KO mice were created using the Cre-LoxP system with both Agt-KO and WT littermates fed either a low-fat or high-fat diet to assess metabolic changes. White adipose tissue was used for gene/protein expression analyses and WAT stromal vascular cells for metabolic extracellular flux assays. No significant differences were observed in body weight or fat mass between both genotypes on either diet. However, improved glucose clearance was observed in Agt-KO compared to WT littermates, consistent with higher expression of genes involved in insulin signaling, glucose transport, and fatty acid metabolism. Furthermore, Agt inactivation reduced total macrophage infiltration in Agt-KO mice fed both diets. Lastly, stroma vascular cells from Agt-KO mice revealed higher metabolic activity compared to WT mice. These findings indicate that adipose-specific Agt inactivation leads to reduced adipose inflammation and increased glucose tolerance mediated in part via increased metabolic activity of adipose cells. © 2015 The Obesity Society.

  16. Activity syndromes and metabolism in giant deep-sea isopods

    Science.gov (United States)

    Wilson, Alexander D. M.; Szekeres, Petra; Violich, Mackellar; Gutowsky, Lee F. G.; Eliason, Erika J.; Cooke, Steven J.

    2017-03-01

    Despite growing interest, the behavioural ecology of deep-sea organisms is largely unknown. Much of this scarcity in knowledge can be attributed to deepwater animals being secretive or comparatively 'rare', as well as technical difficulties associated with accessing such remote habitats. Here we tested whether two species of giant marine isopod (Bathynomus giganteus, Booralana tricarinata) captured from 653 to 875 m in the Caribbean Sea near Eleuthera, The Bahamas, exhibited an activity behavioural syndrome across two environmental contexts (presence/absence of food stimulus) and further whether this syndrome carried over consistently between sexes. We also measured routine metabolic rate and oxygen consumption in response to a food stimulus in B. giganteus to assess whether these variables are related to individual differences in personality. We found that both species show an activity syndrome across environmental contexts, but the underlying mechanistic basis of this syndrome, particularly in B. giganteus, is unclear. Contrary to our initial predictions, neither B. giganteus nor B. tricarinata showed any differences between mean expression of behavioural traits between sexes. Both sexes of B. tricarinata showed strong evidence of an activity syndrome underlying movement and foraging ecology, whereas only male B. giganteus showed evidence of an activity syndrome. Generally, individuals that were more active and bolder, in a standard open arena test were also more active when a food stimulus was present. Interestingly, individual differences in metabolism were not related to individual differences in behaviour based on present data. Our study provides the first measurements of behavioural syndromes and metabolism in giant deep-sea isopods.

  17. Influence of metabolism on endocrine activities of bisphenol S.

    Science.gov (United States)

    Skledar, Darja Gramec; Schmidt, Jan; Fic, Anja; Klopčič, Ivana; Trontelj, Jurij; Dolenc, Marija Sollner; Finel, Moshe; Mašič, Lucija Peterlin

    2016-08-01

    Bisphenol S (BPS; bis[4-hydroxyphenyl]sulfone) is commonly used as a replacement for bisphenol A in numerous consumer products. The main goal of this study was to examine the influence of different metabolic reactions that BPS undergoes on the endocrine activity. We demonstrate that hydroxylation of the aromatic ring of BPS, catalyzed mainly by the cytochrome P450 enzymes CYP3A4 and CYP2C9, is its major in-vitro phase I biotransformation. Nevertheless, coupled oxidative-conjugative reactions analyses revealed that glucuronidation and formation of BPS glucuronide is the predominant BPS metabolic pathway. BPS reactive metabolites that can be tracked as glutathione conjugates were not detected in the present study. Two in-vitro systems were used to evaluate the endocrine activity of BPS and its two main metabolites, BPS glucuronide and hydroxylated BPS 4-(4-hydroxy-benzenesulfonyl)-benzene-1,2-diol (BPSM1). In addition, we have tested two structural analogs of BPS, bis[4-(2-hydroxyetoxy)phenyl]sulfone (BHEPS) and 4,4-sulfonylbis(2-methylphenol) (dBPS). The test systems were yeast cells, for evaluating estrogenic and androgenic activities, and the GH3.TRE-Luc reporter cell line for measuring thyroid hormone activity. BPS and BPSM1 were weak agonists of the estrogen receptor, EC50 values of 8.4 × 10(-5) M and 6.7 × 10(-4) M, respectively. Additionally, BPSM1 exhibited weak antagonistic activity toward the thyroid hormone receptor, with an IC50 of 4.3 × 10(-5) M. In contrast to BPSM1, BPS glucuronide was inactive in these assays, inhibiting neither the estrogen nor the thyroid hormone receptors. Hence, glucuronidation appears to be the most important pathway for both BPS metabolism and detoxification. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Determination of the activity signature of key carbohydrate metabolism enzymes in phenolic-rich grapevine tissues

    DEFF Research Database (Denmark)

    Covington, Elizabeth Dunn; Roitsch, Thomas Georg; Dermastia, Marina

    2016-01-01

    Physiological studies in plants often require enzyme extraction from tissues containing high concentrations of phenols and polyphenols. Unless removed or neutralized, such compounds may hinder extraction, inactivate enzymes, and interfere with enzyme detection. The following protocol for activity...... assays for enzymes of primary carbohydrate metabolism, while based on our recently published one for quantitative measurement of activities using coupled spectrophotometric assays in a 96-well format, is tailored to the complexities of phenolic- and anthocyanin-rich extracts from grapevine leaf...

  19. Fibroblast activation protein (FAP) as a novel metabolic target

    DEFF Research Database (Denmark)

    Sánchez-Garrido, Miguel Angel; Habegger, Kirk M; Clemmensen, Christoffer

    2016-01-01

    to block FAP enzymatic activity. RESULTS: TB administration to diet-induced obese (DIO) animals led to profound decreases in body weight, reduced food consumption and adiposity, increased energy expenditure, improved glucose tolerance and insulin sensitivity, and lowered cholesterol levels. Total...... (TB), we explored the impact of FAP inhibition on metabolic regulation in mice. METHODS: To address this question we evaluated the pharmacology of TB in various mouse models including those deficient in FGF21, GLP1 and GIP signaling. We also studied the ability of FAP to process FGF21 in vitro and TB...... and intact plasma FGF21 were observed to be elevated in TB-treated DIO mice but not lean animals where the metabolic impact of TB was significantly attenuated. Furthermore, and in stark contrast to naïve DIO mice, the administration of TB to obese FGF21 knockout animals demonstrated no appreciable effect...

  20. Metabolic Features of Protochlamydia amoebophila Elementary Bodies – A Link between Activity and Infectivity in Chlamydiae

    Science.gov (United States)

    Watzka, Margarete; Wultsch, Anna; Tziotis, Dimitrios; Montanaro, Jacqueline; Richter, Andreas; Schmitt-Kopplin, Philippe; Horn, Matthias

    2013-01-01

    The Chlamydiae are a highly successful group of obligate intracellular bacteria, whose members are remarkably diverse, ranging from major pathogens of humans and animals to symbionts of ubiquitous protozoa. While their infective developmental stage, the elementary body (EB), has long been accepted to be completely metabolically inert, it has recently been shown to sustain some activities, including uptake of amino acids and protein biosynthesis. In the current study, we performed an in-depth characterization of the metabolic capabilities of EBs of the amoeba symbiont Protochlamydia amoebophila. A combined metabolomics approach, including fluorescence microscopy-based assays, isotope-ratio mass spectrometry (IRMS), ion cyclotron resonance Fourier transform mass spectrometry (ICR/FT-MS), and ultra-performance liquid chromatography mass spectrometry (UPLC-MS) was conducted, with a particular focus on the central carbon metabolism. In addition, the effect of nutrient deprivation on chlamydial infectivity was analyzed. Our investigations revealed that host-free P. amoebophila EBs maintain respiratory activity and metabolize D-glucose, including substrate uptake as well as host-free synthesis of labeled metabolites and release of labeled CO2 from 13C-labeled D-glucose. The pentose phosphate pathway was identified as major route of D-glucose catabolism and host-independent activity of the tricarboxylic acid (TCA) cycle was observed. Our data strongly suggest anabolic reactions in P. amoebophila EBs and demonstrate that under the applied conditions D-glucose availability is essential to sustain metabolic activity. Replacement of this substrate by L-glucose, a non-metabolizable sugar, led to a rapid decline in the number of infectious particles. Likewise, infectivity of Chlamydia trachomatis, a major human pathogen, also declined more rapidly in the absence of nutrients. Collectively, these findings demonstrate that D-glucose is utilized by P. amoebophila EBs and provide

  1. Metabolic features of Protochlamydia amoebophila elementary bodies--a link between activity and infectivity in Chlamydiae.

    Directory of Open Access Journals (Sweden)

    Barbara S Sixt

    Full Text Available The Chlamydiae are a highly successful group of obligate intracellular bacteria, whose members are remarkably diverse, ranging from major pathogens of humans and animals to symbionts of ubiquitous protozoa. While their infective developmental stage, the elementary body (EB, has long been accepted to be completely metabolically inert, it has recently been shown to sustain some activities, including uptake of amino acids and protein biosynthesis. In the current study, we performed an in-depth characterization of the metabolic capabilities of EBs of the amoeba symbiont Protochlamydia amoebophila. A combined metabolomics approach, including fluorescence microscopy-based assays, isotope-ratio mass spectrometry (IRMS, ion cyclotron resonance Fourier transform mass spectrometry (ICR/FT-MS, and ultra-performance liquid chromatography mass spectrometry (UPLC-MS was conducted, with a particular focus on the central carbon metabolism. In addition, the effect of nutrient deprivation on chlamydial infectivity was analyzed. Our investigations revealed that host-free P. amoebophila EBs maintain respiratory activity and metabolize D-glucose, including substrate uptake as well as host-free synthesis of labeled metabolites and release of labeled CO2 from (13C-labeled D-glucose. The pentose phosphate pathway was identified as major route of D-glucose catabolism and host-independent activity of the tricarboxylic acid (TCA cycle was observed. Our data strongly suggest anabolic reactions in P. amoebophila EBs and demonstrate that under the applied conditions D-glucose availability is essential to sustain metabolic activity. Replacement of this substrate by L-glucose, a non-metabolizable sugar, led to a rapid decline in the number of infectious particles. Likewise, infectivity of Chlamydia trachomatis, a major human pathogen, also declined more rapidly in the absence of nutrients. Collectively, these findings demonstrate that D-glucose is utilized by P. amoebophila

  2. Metabolic responses to high protein diet in Korean elite bodybuilders with high-intensity resistance exercise

    OpenAIRE

    Kim, Hyerang; Lee, Saningun; Choue, Ryowon

    2011-01-01

    Abstract Background High protein diet has been known to cause metabolic acidosis, which is manifested by increased urinary excretion of nitrogen and calcium. Bodybuilders habitually consumed excessive dietary protein over the amounts recommended for them to promote muscle mass accretion. This study investigated the metabolic response to high protein consumption in the elite bodybuilders. Methods Eight elite Korean bodybuilders within the age from 18 to 25, mean age 21.5 ± 2.6. For data collec...

  3. A gas trapping method for high-throughput metabolic experiments.

    Science.gov (United States)

    Krycer, James R; Diskin, Ciana; Nelson, Marin E; Zeng, Xiao-Yi; Fazakerley, Daniel J; James, David E

    2018-01-01

    Research into cellular metabolism has become more high-throughput, with typical cell-culture experiments being performed in multiwell plates (microplates). This format presents a challenge when trying to collect gaseous products, such as carbon dioxide (CO2), which requires a sealed environment and a vessel separate from the biological sample. To address this limitation, we developed a gas trapping protocol using perforated plastic lids in sealed cell-culture multiwell plates. We used this trap design to measure CO2 production from glucose and fatty acid metabolism, as well as hydrogen sulfide production from cysteine-treated cells. Our data clearly show that this gas trap can be applied to liquid and solid gas-collection media and can be used to study gaseous product generation by both adherent cells and cells in suspension. Since our gas traps can be adapted to multiwell plates of various sizes, they present a convenient, cost-effective solution that can accommodate the trend toward high-throughput measurements in metabolic research.

  4. Mini-review: In vitro Metabolic Engineering for Biomanufacturing of High-value Products

    Directory of Open Access Journals (Sweden)

    Weihua Guo

    Full Text Available With the breakthroughs in biomolecular engineering and synthetic biology, many valuable biologically active compound and commodity chemicals have been successfully manufactured using cell-based approaches in the past decade. However, because of the high complexity of cell metabolism, the identification and optimization of rate-limiting metabolic pathways for improving the product yield is often difficult, which represents a significant and unavoidable barrier of traditional in vivo metabolic engineering. Recently, some in vitro engineering approaches were proposed as alternative strategies to solve this problem. In brief, by reconstituting a biosynthetic pathway in a cell-free environment with the supplement of cofactors and substrates, the performance of each biosynthetic pathway could be evaluated and optimized systematically. Several value-added products, including chemicals, nutraceuticals, and drug precursors, have been biosynthesized as proof-of-concept demonstrations of in vitro metabolic engineering. This mini-review summarizes the recent progresses on the emerging topic of in vitro metabolic engineering and comments on the potential application of cell-free technology to speed up the “design-build-test” cycles of biomanufacturing. Keywords: Cell-free, Biosynthesis, Metabolic pathways, Design-build-test cycle

  5. Adjuvant activity of peptidoglycan monomer and its metabolic products.

    Science.gov (United States)

    Halassy, Beata; Krstanović, Marina; Frkanec, Ruza; Tomasić, Jelka

    2003-02-14

    Peptidoglycan monomer (PGM) is a natural compound of bacterial origin. It is a non-toxic, non-pyrogenic, water-soluble immunostimulator potentiating humoral immune response to ovalbumin (OVA) in mice. It is fast degraded and its metabolic products-the pentapeptide (PP) and the disaccharide (DS)-are excreted from the mammalian organism upon parenteral administration. The present study investigates: (a). whether PGM could influence the long-living memory generation; (b). whether metabolic products retain adjuvant properties of the parent compound and contribute to its adjuvanticity. We report now that mice immunised twice with OVA+PGM had significantly higher anti-OVA IgG levels upon challenge with antigen alone 6 months later in comparison to control group immunised with OVA only. PP and DS were prepared enzymatically in vitro as apyrogenic and chemically pure compounds. When mice were immunised with OVA plus PP and DS, respectively, the level of anti-OVA IgGs in sera was not higher than in mice immunised with OVA alone, while PGM raised the level of specific antibodies. Results implicate that the adjuvant active molecule, capable of enhancing long-living memory generation, is PGM itself, and none of its metabolic products.

  6. In vivo enzyme activity in inborn errors of metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, G.N.; Walter, J.H.; Leonard, J.V.; Halliday, D. (Clinical Research Centre, Harrow (England))

    1990-08-01

    Low-dose continuous infusions of (2H5)phenylalanine, (1-13C)propionate, and (1-13C)leucine were used to quantitate phenylalanine hydroxylation in phenylketonuria (PKU, four subjects), propionate oxidation in methylmalonic acidaemia (MMA, four subjects), and propionic acidaemia (PA, four subjects) and leucine oxidation in maple syrup urine disease (MSUD, four subjects). In vivo enzyme activity in PKU, MMA, and PA subjects was similar to or in excess of that in adult controls (range of phenylalanine hydroxylation in PKU, 3.7 to 6.5 mumol/kg/h, control 3.2 to 7.9, n = 7; propionate oxidation in MMA, 15.2 to 64.8 mumol/kg/h, and in PA, 11.1 to 36.0, control 5.1 to 19.0, n = 5). By contrast, in vivo leucine oxidation was undetectable in three of the four MSUD subjects (less than 0.5 mumol/kg/h) and negligible in the remaining subject (2 mumol/kg/h, control 10.4 to 15.7, n = 6). These results suggest that significant substrate removal can be achieved in some inborn metabolic errors either through stimulation of residual enzyme activity in defective enzyme systems or by activation of alternate metabolic pathways. Both possibilities almost certainly depend on gross elevation of substrate concentrations. By contrast, only minimal in vivo oxidation of leucine appears possible in MSUD.

  7. In vivo enzyme activity in inborn errors of metabolism

    International Nuclear Information System (INIS)

    Thompson, G.N.; Walter, J.H.; Leonard, J.V.; Halliday, D.

    1990-01-01

    Low-dose continuous infusions of [2H5]phenylalanine, [1-13C]propionate, and [1-13C]leucine were used to quantitate phenylalanine hydroxylation in phenylketonuria (PKU, four subjects), propionate oxidation in methylmalonic acidaemia (MMA, four subjects), and propionic acidaemia (PA, four subjects) and leucine oxidation in maple syrup urine disease (MSUD, four subjects). In vivo enzyme activity in PKU, MMA, and PA subjects was similar to or in excess of that in adult controls (range of phenylalanine hydroxylation in PKU, 3.7 to 6.5 mumol/kg/h, control 3.2 to 7.9, n = 7; propionate oxidation in MMA, 15.2 to 64.8 mumol/kg/h, and in PA, 11.1 to 36.0, control 5.1 to 19.0, n = 5). By contrast, in vivo leucine oxidation was undetectable in three of the four MSUD subjects (less than 0.5 mumol/kg/h) and negligible in the remaining subject (2 mumol/kg/h, control 10.4 to 15.7, n = 6). These results suggest that significant substrate removal can be achieved in some inborn metabolic errors either through stimulation of residual enzyme activity in defective enzyme systems or by activation of alternate metabolic pathways. Both possibilities almost certainly depend on gross elevation of substrate concentrations. By contrast, only minimal in vivo oxidation of leucine appears possible in MSUD

  8. Metabolic Syndrome and Physical Activity in Hemodialysis Patients

    Directory of Open Access Journals (Sweden)

    derya atik

    2014-06-01

    Full Text Available Purpose: This descriptive study was carried out to reveal the level of physical activity in patients who receive hemodialysis due to chronic kidney failure and to identify its relationship with the prevalence of metabolic syndrome (MetS. Material and method: The study was conducted with 55 patients at the hemodialysis units of Alanya State Hospital and Private Alanya Anadolu Hospital between 10 and 30 June 2013. The study data were collected using the National Cholesterol Education Program, the Adult Treatment Panel III (NCEP-ATP III, a data collection form containing Metabolic Syndrome Diagnosis Criteria, and the International Physical Activity Questionnaire (IPAQ. The data were analyzed using arithmetic mean +/- standard deviation (SD, number and percentage distributions, independent sample t test, crosstabs, One Way Anova, and Pearson and #8217;s Correlation Analysis. Conclusion and suggestions: It was found that 41.8% of the patients were between 50 and 65 years of age, the majority of them were male (58.2%, hemodialysis had been administered to 69.1% of them for at least 36 months, and 50.9% of them met three and more of the MetS criteria. There was no statistically significant relationship between MetS and physical activity levels, but the length of physical activity was longer in those who did not meet the MetS diagnosis criteria (p>0.05. An increase in sedentary time raised the MetS criteria (p<0.05. Conclusion: Nearly 1/2 of the patients were at risk of MetS. Physical activity level being statistically ineffective on MetS can be associated with low physical activity level and longer sedentary time. It can be said that being completely sedentary increases BMI and therefore MetS. The study can be repeated on different samples and the results can be compared. [J Contemp Med 2014; 4(2.000: 69-75

  9. Metabolic Activity of Radish Sprouts Derived Isothiocyanates in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Nieves Baenas

    2016-02-01

    Full Text Available We used Drosophila melanogaster as a model system to study the absorption, metabolism and potential health benefits of plant bioactives derived from radish sprouts (Raphanus sativus cv. Rambo, a Brassicaceae species rich in glucosinolates and other phytochemicals. Flies were subjected to a diet supplemented with lyophilized radish sprouts (10.6 g/L for 10 days, containing high amounts of glucoraphenin and glucoraphasatin, which can be hydrolyzed by myrosinase to the isothiocyanates sulforaphene and raphasatin, respectively. We demonstrate that Drosophila melanogaster takes up and metabolizes isothiocyanates from radish sprouts through the detection of the metabolite sulforaphane-cysteine in fly homogenates. Moreover, we report a decrease in the glucose content of flies, an upregulation of spargel expression, the Drosophila homolog of the mammalian PPARγ-coactivator 1 α, as well as the inhibition of α-amylase and α-glucosidase in vitro. Overall, we show that the consumption of radish sprouts affects energy metabolism in Drosophila melanogaster which is reflected by lower glucose levels and an increased expression of spargel, a central player in mitochondrial biogenesis. These processes are often affected in chronic diseases associated with aging, including type II diabetes mellitus.

  10. Metabolic Activity of Radish Sprouts Derived Isothiocyanates in Drosophila melanogaster

    Science.gov (United States)

    Baenas, Nieves; Piegholdt, Stefanie; Schloesser, Anke; Moreno, Diego A.; García-Viguera, Cristina; Rimbach, Gerald; Wagner, Anika E.

    2016-01-01

    We used Drosophila melanogaster as a model system to study the absorption, metabolism and potential health benefits of plant bioactives derived from radish sprouts (Raphanus sativus cv. Rambo), a Brassicaceae species rich in glucosinolates and other phytochemicals. Flies were subjected to a diet supplemented with lyophilized radish sprouts (10.6 g/L) for 10 days, containing high amounts of glucoraphenin and glucoraphasatin, which can be hydrolyzed by myrosinase to the isothiocyanates sulforaphene and raphasatin, respectively. We demonstrate that Drosophila melanogaster takes up and metabolizes isothiocyanates from radish sprouts through the detection of the metabolite sulforaphane-cysteine in fly homogenates. Moreover, we report a decrease in the glucose content of flies, an upregulation of spargel expression, the Drosophila homolog of the mammalian PPARγ-coactivator 1 α, as well as the inhibition of α-amylase and α-glucosidase in vitro. Overall, we show that the consumption of radish sprouts affects energy metabolism in Drosophila melanogaster which is reflected by lower glucose levels and an increased expression of spargel, a central player in mitochondrial biogenesis. These processes are often affected in chronic diseases associated with aging, including type II diabetes mellitus. PMID:26901196

  11. High resolution deuterium NMR studies of bacterial metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Aguayo, J.B.; Gamcsik, M.P.; Dick, J.D.

    1988-12-25

    High resolution deuterium NMR spectra were obtained from suspensions of five bacterial strains: Escherichia coli, Clostridium perfringens, Klebsiella pneumoniae, Proteus mirabilis, and Staphylococcus aureus. Deuterium-labeled D-glucose at C-1, C-2, and C-6 was used to monitor dynamically anaerobic metabolism. The flux of glucose through the various bacterial metabolic pathways could be determined by following the disappearance of glucose and the appearance of the major end products in the 2H NMR spectrum. The presence of both labeled and unlabeled metabolites could be detected using 1H NMR spectroscopy since the proton resonances in the labeled species are shifted upfield due to an isotopic chemical shift effect. The 1H-1H scalar coupling observed in both the 2H and 1H NMR spectra was used to assign definitively the resonances of labeled species. An increase in the intensity of natural abundance deuterium signal of water can be used to monitor pathways in which a deuteron is lost from the labeled metabolite. The steps in which label loss can occur are outlined, and the influence these processes have on the ability of 2H NMR spectroscopy to monitor metabolism are assessed.

  12. High resolution deuterium NMR studies of bacterial metabolism

    International Nuclear Information System (INIS)

    Aguayo, J.B.; Gamcsik, M.P.; Dick, J.D.

    1988-01-01

    High resolution deuterium NMR spectra were obtained from suspensions of five bacterial strains: Escherichia coli, Clostridium perfringens, Klebsiella pneumoniae, Proteus mirabilis, and Staphylococcus aureus. Deuterium-labeled D-glucose at C-1, C-2, and C-6 was used to monitor dynamically anaerobic metabolism. The flux of glucose through the various bacterial metabolic pathways could be determined by following the disappearance of glucose and the appearance of the major end products in the 2H NMR spectrum. The presence of both labeled and unlabeled metabolites could be detected using 1H NMR spectroscopy since the proton resonances in the labeled species are shifted upfield due to an isotopic chemical shift effect. The 1H-1H scalar coupling observed in both the 2H and 1H NMR spectra was used to assign definitively the resonances of labeled species. An increase in the intensity of natural abundance deuterium signal of water can be used to monitor pathways in which a deuteron is lost from the labeled metabolite. The steps in which label loss can occur are outlined, and the influence these processes have on the ability of 2H NMR spectroscopy to monitor metabolism are assessed

  13. Effects of bagging on sugar metabolism and the activity of sugar ...

    African Journals Online (AJOL)

    To investigate the effects of bagging on sugar metabolism and the activity of sugar metabolism related enzymes in Qingzhong loquat fruit development, the contents of sucrose, glucose and soluble solids as well as the activities of sugar metabolism related enzymes were evaluated. The content of sucrose, glucose and ...

  14. Oral insulin improves metabolic parameters in high fat diet fed rats

    Directory of Open Access Journals (Sweden)

    LEANDRO C. LIPINSKI

    2017-08-01

    Full Text Available ABSTRACT Introduction/Aim: The gut has shown to have a pivotal role on the pathophysiology of metabolic disease. Food stimulation of distal intestinal segments promotes enterohormones secretion influencing insulin metabolism. In diabetic rats, oral insulin has potential to change intestinal epithelium behavior. This macromolecule promotes positive effects on laboratorial metabolic parameters and decreases diabetic intestinal hypertrophy. This study aims to test if oral insulin can influence metabolic parameters and intestinal weight in obese non-diabetic rats. Methods: Twelve weeks old Wistar rats were divided in 3 groups: control (CTRL standard chow group; high fat diet low carbohydrates group (HFD and HFD plus daily oral 20U insulin gavage (HFD+INS. Weight and food consumption were weekly obtained. After eight weeks, fasting blood samples were collected for laboratorial analysis. After euthanasia gut samples were isolated. Results: Rat oral insulin treatment decreased body weight gain (p<0,001, fasting glucose and triglycerides serum levels (p<0,05 an increased intestinal weight of distal ileum (P<0,05. Animal submitted to high fat diet presented higher levels of HOMA-IR although significant difference to CT was not achieved. HOMA-beta were significantly higher (p<0.05 in HFD+INS. Visceral fat was 10% lower in HFD+INS but the difference was not significant. Conclusions: In non-diabetic obese rats, oral insulin improves metabolic malfunction associated to rescue of beta-cell activity.

  15. Cytosolic Calcium Coordinates Mitochondrial Energy Metabolism with Presynaptic Activity

    Science.gov (United States)

    Chouhan, Amit K.; Ivannikov, Maxim V.; Lu, Zhongmin; Sugimori, Mutsuyuki; Llinas, Rodolfo R.; Macleod, Gregory T.

    2012-01-01

    Most neurons fire in bursts, imposing episodic energy demands, but how these demands are coordinated with oxidative phosphorylation is still unknown. Here, using fluorescence imaging techniques on presynaptic termini of Drosophila motor neurons (MNs), we show that mitochondrial matrix pH (pHm), inner membrane potential (Δψm), and NAD(P)H levels ([NAD(P)H]m) increase within seconds of nerve stimulation. The elevations of pHm, Δψm, and [NAD(P)H]m indicate an increased capacity for ATP production. Elevations in pHm were blocked by manipulations which blocked mitochondrial Ca2+ uptake, including replacement of extracellular Ca2+ with Sr2+, and application of either tetraphenylphosphonium chloride or KB-R7943, indicating that it is Ca2+ that stimulates presynaptic mitochondrial energy metabolism. To place this phenomenon within the context of endogenous neuronal activity, the firing rates of a number of individually identified MNs were determined during fictive locomotion. Surprisingly, although endogenous firing rates are significantly different, there was little difference in presynaptic cytosolic Ca2+ levels ([Ca2+]c) between MNs when each fires at its endogenous rate. The average [Ca2+]c level (329±11nM) was slightly above the average Ca2+ affinity of the mitochondria (281±13nM). In summary, we show that when MNs fire at endogenous rates [Ca2+]c is driven into a range where mitochondria rapidly acquire Ca2+. As we also show that Ca2+ stimulates presynaptic mitochondrial energy metabolism, we conclude that [Ca2+]c levels play an integral role in coordinating mitochondrial energy metabolism with presynaptic activity in Drosophila MNs. PMID:22279208

  16. Metabolic Equivalent in Adolescents, Active Adults and Pregnant Women

    Directory of Open Access Journals (Sweden)

    Katarina Melzer

    2016-07-01

    Full Text Available “Metabolic Equivalent” (MET represents a standard amount of oxygen consumed by the body under resting conditions, and is defined as 3.5 mL O2/kg × min or ~1 kcal/kg × h. It is used to express the energy cost of physical activity in multiples of MET. However, universal application of the 1-MET standard was questioned in previous studies, because it does not apply well to all individuals. Height, weight and resting metabolic rate (RMR, measured by indirect calorimetry were measured in adolescent males (n = 50 and females (n = 50, women during pregnancy (gestation week 35–41, n = 46, women 24–53 weeks postpartum (n = 27, and active men (n = 30, and were compared to values predicted by the 1-MET standard. The RMR of adolescent males (1.28 kcal/kg × h was significantly higher than that of adolescent females (1.11 kcal/kg × h, with or without the effects of puberty stage and physical activity levels. The RMR of the pregnant and post-pregnant subjects were not significantly different. The RMR of the active normal weight (0.92 kcal/kg × h and overweight (0.89 kcal/kg × h adult males were significantly lower than the 1-MET value. It follows that the 1-MET standard is inadequate for use not only in adult men and women, but also in adolescents and physically active men. It is therefore recommended that practitioners estimate RMR with equations taking into account individual characteristics, such as sex, age and Body Mass Index, and not rely on the 1-MET standard.

  17. Feasible Metabolic Schema Associated with High pH Springs in the Philippines

    Directory of Open Access Journals (Sweden)

    DAWN eCARDACE

    2015-02-01

    Full Text Available A field campaign targeting high pH springs in the Zambales and Palawan Ophiolites of the Philippines was conducted in 2012-2013, and enabled description of several springs sourced in altered pillow basalts, gabbros, and peridotites. We combine field observations of pH, temperature, conductivity, dissolved oxygen, and oxidation-reduction potential with analyses of major ions, dissolved inorganic carbon, dissolved organic carbon, and dissolved gas phases in order to model the activities of selected phases important to microbial metabolism, and to evaluate feasible metabolic reactions based on energy yield. We document changing geochemical inventories in these springs, and examine how the environment supports or prevents the function of certain microbial metabolisms.

  18. Metabolic Activity Interferometer: A Powerful Tool for Testing Antibiotics

    Directory of Open Access Journals (Sweden)

    Rachel R. P. Machado

    2012-01-01

    Full Text Available It is demonstrated that the efficiency of antibiotics can be tested using an interferometric method. Two antibiotics were used as models to show that an interferometric method to monitor the metabolic activity of slowly growing bacteria can be a safer method to judge antimicrobial properties of substances than conventional methods. The susceptibility of Mycobacterium bovis to hexane extract of Pterodon emarginatus and to the well-known antibiotic rifampicin was tested with the interferometric method and with the conventional microplate method. The microplate method revealed a potential activity of hexane extract against M. bovis. However, the interferometric method showed that the action of this substance is rather limited. Also in the case of rifampicin, the interferometric method was able to detect resistant bacteria.

  19. Does physical activity during pregnancy adversely influence markers of the metabolic syndrome in adult offspring?

    DEFF Research Database (Denmark)

    Danielsen, Inge; Granström, Charlotta; Rytter, Dorte

    2013-01-01

    It is unknown whether physical activity during pregnancy (PA) has long-term impact on the metabolic profile of the offspring. We investigated associations of PA with markers of the metabolic syndrome (MS) in 20y old offspring.......It is unknown whether physical activity during pregnancy (PA) has long-term impact on the metabolic profile of the offspring. We investigated associations of PA with markers of the metabolic syndrome (MS) in 20y old offspring....

  20. Direct neuronal glucose uptake Heralds activity-dependent increases in cerebral metabolism

    DEFF Research Database (Denmark)

    Lundgaard, Iben; Li, Baoman; Xie, Lulu

    2015-01-01

    Metabolically, the brain is a highly active organ that relies almost exclusively on glucose as its energy source. According to the astrocyte-to-neuron lactate shuttle hypothesis, glucose is taken up by astrocytes and converted to lactate, which is then oxidized by neurons. Here we show, using two......-photon imaging of a near-infrared 2-deoxyglucose analogue (2DG-IR), that glucose is taken up preferentially by neurons in awake behaving mice. Anaesthesia suppressed neuronal 2DG-IR uptake and sensory stimulation was associated with a sharp increase in neuronal, but not astrocytic, 2DG-IR uptake. Moreover......, hexokinase, which catalyses the first enzymatic steps in glycolysis, was highly enriched in neurons compared with astrocytes, in mouse as well as in human cortex. These observations suggest that brain activity and neuronal glucose metabolism are directly linked, and identify the neuron as the principal locus...

  1. Direct neuronal glucose uptake heralds activity-dependent increases in cerebral metabolism.

    Science.gov (United States)

    Lundgaard, Iben; Li, Baoman; Xie, Lulu; Kang, Hongyi; Sanggaard, Simon; Haswell, John D R; Sun, Wei; Goldman, Siri; Blekot, Solomiya; Nielsen, Michael; Takano, Takahiro; Deane, Rashid; Nedergaard, Maiken

    2015-04-23

    Metabolically, the brain is a highly active organ that relies almost exclusively on glucose as its energy source. According to the astrocyte-to-neuron lactate shuttle hypothesis, glucose is taken up by astrocytes and converted to lactate, which is then oxidized by neurons. Here we show, using two-photon imaging of a near-infrared 2-deoxyglucose analogue (2DG-IR), that glucose is taken up preferentially by neurons in awake behaving mice. Anaesthesia suppressed neuronal 2DG-IR uptake and sensory stimulation was associated with a sharp increase in neuronal, but not astrocytic, 2DG-IR uptake. Moreover, hexokinase, which catalyses the first enzymatic steps in glycolysis, was highly enriched in neurons compared with astrocytes, in mouse as well as in human cortex. These observations suggest that brain activity and neuronal glucose metabolism are directly linked, and identify the neuron as the principal locus of glucose uptake as visualized by functional brain imaging.

  2. Direct neuronal glucose uptake heralds activity-dependent increases in cerebral metabolism

    Science.gov (United States)

    Lundgaard, Iben; Li, Baoman; Xie, Lulu; Kang, Hongyi; Sanggaard, Simon; Haswell, John Douglas R; Sun, Wei; Goldman, Siri; Blekot, Solomiya; Nielsen, Michael; Takano, Takahiro; Deane, Rashid; Nedergaard, Maiken

    2015-01-01

    Metabolically, the brain is a highly active organ that relies almost exclusively on glucose as its energy source. According to the astrocyte-to-neuron lactate shuttle hypothesis, glucose is taken up by astrocytes and converted to lactate, which is then oxidized by neurons. Here we show, using 2-photon imaging of a near-infrared 2-deoxyglucose analogue (2DG-IR), that glucose is taken up preferentially by neurons in awake behaving mice. Anesthesia suppressed neuronal 2DG-IR uptake and sensory stimulation was associated with a sharp increase in neuronal, but not astrocytic, 2DG-IR uptake. Moreover, hexokinase, which catalyze the first enzymatic steps in glycolysis, was highly enriched in neurons compared with astrocytes, in mouse as well as in human cortex. These observations suggest that brain activity and neuronal glucose metabolism are directly linked, and identifies the neuron as the principal locus of glucose uptake as visualized by functional brain imaging. PMID:25904018

  3. [Lipid and metabolic profiles in adolescents are affected more by physical fitness than physical activity (AVENA study)].

    Science.gov (United States)

    García-Artero, Enrique; Ortega, Francisco B; Ruiz, Jonatan R; Mesa, José L; Delgado, Manuel; González-Gross, Marcela; García-Fuentes, Miguel; Vicente-Rodríguez, Germán; Gutiérrez, Angel; Castillo, Manuel J

    2007-06-01

    To determine whether the level of physical activity or physical fitness (i.e., aerobic capacity and muscle strength) in Spanish adolescents influences lipid and metabolic profiles. From a total of 2859 Spanish adolescents (age 13.0-18.5 years) taking part in the AVENA (Alimentación y Valoración del Estado Nutricional en Adolescentes) study, 460 (248 male, 212 female) were randomly selected for blood analysis. Their level of physical activity was determined by questionnaire. Aerobic capacity was assessed using the Course-Navette test. Muscle strength was evaluated using manual dynamometry, the long jump test, and the flexed arm hang test. A lipid-metabolic cardiovascular risk index was derived from the levels of triglycerides, low-density lipoprotein cholesterol (LDLC), high-density lipoprotein cholesterol (HDLC), and glucose. No relationship was found between the level of physical activity and lipid-metabolic index in either sex. In contrast, there was an inverse relationship between the lipid-metabolic index and aerobic capacity in males (P=.003) after adjustment for physical activity level and muscle strength. In females, a favorable lipid-metabolic index was associated with greater muscle strength (P=.048) after adjustment for aerobic capacity. These results indicate that, in adolescents, physical fitness, and not physical activity, is related to lipid and metabolic cardiovascular risk. Higher aerobic capacity in males and greater muscle strength in females were associated with lower lipid and metabolic risk factors for cardiovascular disease.

  4. Physiological community ecology: variation in metabolic activity of ecologically important rocky intertidal invertebrates along environmental gradients.

    Science.gov (United States)

    Dahlhoff, Elizabeth P; Stillman, Jonathon H; Menge, Bruce A

    2002-08-01

    Rocky intertidal invertebrates live in heterogeneous habitats characterized by steep gradients in wave activity, tidal flux, temperature, food quality and food availability. These environmental factors impact metabolic activity via changes in energy input and stress-induced alteration of energetic demands. For keystone species, small environmentally induced shifts in metabolic activity may lead to disproportionately large impacts on community structure via changes in growth or survival of these key species. Here we use biochemical indicators to assess how natural differences in wave exposure, temperature and food availability may affect metabolic activity of mussels, barnacles, whelks and sea stars living at rocky intertidal sites with different physical and oceanographic characteristics. We show that oxygen consumption rate is correlated with the activity of key metabolic enzymes (e.g., citrate synthase and malate dehydrogenase) for some intertidal species, and concentrations of these enzymes in certain tissues are lower for starved individuals than for those that are well fed. We also show that the ratio of RNA to DNA (an index of protein synthetic capacity) is highly variable in nature and correlates with short-term changes in food availability. We also observed striking patterns in enzyme activity and RNA/DNA in nature, which are related to differences in rocky intertidal community structure. Differences among species and habitats are most pronounced in summer and are linked to high nearshore productivity at sites favored by suspension feeders and to exposure to stressful low-tide air temperatures in areas of low wave splash. These studies illustrate the great promise of using biochemical indicators to test ecological models, which predict changes in community structure along environmental gradients. Our results also suggest that biochemical indices must be carefully validated with laboratory studies, so that the indicator selected is likely to respond to the

  5. Relationship between metabolic syndrome and moderate-to-vigorous physical activity in youth.

    Science.gov (United States)

    Machado-Rodrigues, Aristides M; Leite, Neiva; Coelho e Silva, Manuel J; Valente-dos-Santos, João; Martins, Raul A; Mascarenhas, Luis P G; Boguszewski, Margaret C S; Padez, Cristina; Malina, Robert M

    2015-01-01

    Associations of metabolic syndrome (MetS) with lifestyle behaviors in youth is potentially important for identifying subgroups at risk and encourage interventions. This study evaluates the associations among the clustering of metabolic risk factors and moderate-to-vigorous physical activity (MVPA) in youth. The sample comprised 522 girls and 402 boys (N = 924) aged 11 to 17 years. Height, weight, waist circumference (WC), fasting glucose, high-density lipoprotein cholesterol, triglycerides, and blood pressures were measured. Cardiorespiratory fitness (CRF) was assessed using the 20-m shuttle run test. MVPA was estimated with a 3-day diary. Outcome variables were statistically normalized and expressed as z scores. A clustered metabolic risk score was computed as the mean of z scores. Multiple linear regression was used to test associations between metabolic risk and MVPA by sex, adjusted for age, WC, and CRF. After adjustment for potential confounders, MVPA was inversely associated with the clustering of metabolic risk factors in girls, but not in boys; in addition, after adjusting for WC, the statistical model of that relationship was substantially improved in girls. MVPA was independently associated with increased risk of MetS in girls. Additional efforts are needed to encourage research with different analytical approach and standardization of criteria for MetS in youth.

  6. Glucose and lipid metabolism in rats supplemented with glycyrrhizic acid exposed to short- or long- term stress and fed on a high-calorie diet

    OpenAIRE

    Yaw, Hui Ping

    2017-01-01

    Stress and consumption of high-calorie diet are well-recognized as the primary contributor to various metabolic diseases such as the metabolic syndrome. Glycyrrhizic acid (GA), an active compound in the root extract of the licorice plant, Glycyrrhiza glabra has been shown to improve hyperglycaemia and dyslipidaemia in rats fed on a high- calorie diet. However, the effect of GA on glucose and lipid metabolism in rats under stress in combination with high- calorie diet has yet to be expl...

  7. Phloretin Prevents High-Fat Diet-Induced Obesity and Improves Metabolic Homeostasis.

    Science.gov (United States)

    Alsanea, Sary; Gao, Mingming; Liu, Dexi

    2017-05-01

    Reactive oxygen species generated as a by-product in metabolism play a central role in the development of obesity and obesity-related metabolic complications. The objective of the current study is to explore the possibility to block obesity and improve metabolic homeostasis via phloretin, a natural antioxidant product from apple tree leaves and Manchurian apricot. Both preventive and therapeutic activities of phloretin were assessed using a high-fat diet-induced obesity mouse model. Phloretin was injected intraperitoneally twice weekly into regular and obese mice fed a high-fat diet. The effects of phloretin treatment on body weight and composition, fat content in the liver, glucose and lipid metabolism, and insulin resistance were monitored and compared to the control animals. Phloretin treatment significantly blocks high-fat diet-induced weight gain but did not induce weight loss in obese animals. Phloretin improved glucose homeostasis and insulin sensitivity and alleviated hepatic lipid accumulation. RT-PCR analysis showed that phloretin treatment suppresses expression of macrophage markers (F4/80 and Cd68) and pro-inflammatory genes (Mcp-1 and Ccr2) and enhances adiponectin gene expression in white adipose tissue. In addition, phloretin treatment elevated the expression of fatty acid oxidation genes such as carnitine palmitoyltransferase 1a and 1b (Cpt1a and Cpt1b) and reduced expression of monocyte chemoattractant protein-1 (Mcp-1), de novo lipogenesis transcriptional factor peroxisome proliferator-activated receptor-γ 2 (Pparγ2), and its target monoacylglycerol O-acyltransferase (Mgat-1) genes. These results provide direct evidence to support a possible use of phloretin for mitigation of obesity and maintenance of metabolic homeostasis.

  8. Metabolic activity and mRNA levels of human cardiac CYP450s involved in drug metabolism.

    Directory of Open Access Journals (Sweden)

    Veronique Michaud

    2010-12-01

    Full Text Available Tissue-specific expression of CYP450s can regulate the intracellular concentration of drugs and explain inter-subject variability in drug action. The overall objective of our study was to determine in a large cohort of samples, mRNA levels and CYP450 activity expressed in the human heart.CYP450 mRNA levels were determined by RTPCR in left ventricular samples (n = 68 of explanted hearts from patients with end-stage heart failure. Samples were obtained from ischemic and non-ischemic hearts. In some instances (n = 7, samples were available from both the left and right ventricles. A technique for the preparation of microsomes from human heart tissue was developed and CYP450-dependent activity was determined using verapamil enantiomers as probe-drug substrates.Our results show that CYP2J2 mRNA was the most abundant isoform in all human heart left ventricular samples tested. Other CYP450 mRNAs of importance were CYP4A11, CYP2E1, CYP1A1 and CYP2C8 mRNAs while CYP2B6 and CYP2C9 mRNAs were present at low levels in only some of the hearts analyzed. CYP450 mRNAs did not differ between ischemic and non-ischemic hearts and appeared to be present at similar levels in the left and right ventricles. Incubation of verapamil with heart microsomes led to the formation of nine CYP450-dependent metabolites: a major finding was the observation that stereoselectivity was reversed compared to human liver microsomes, in which the R-enantiomer is metabolized to a greater extent.This study determined cardiac mRNA levels of various CYP450 isozymes involved in drug metabolism and demonstrated the prevalent expression of CYP2J2 mRNA. It revealed that cardiomyocytes can efficiently metabolize drugs and that cardiac CYP450s are highly relevant with regard to clearance of drugs in the heart. Our results support the claim that drug metabolism in the vicinity of a drug effector site can modulate drug effects.

  9. Preventive role of exercise training in autonomic, hemodynamic, and metabolic parameters in rats under high risk of metabolic syndrome development.

    Science.gov (United States)

    Moraes-Silva, Ivana Cinthya; Mostarda, Cristiano; Moreira, Edson Dias; Silva, Kleiton Augusto Santos; dos Santos, Fernando; de Angelis, Kátia; Farah, Vera de Moura Azevedo; Irigoyen, Maria Claudia

    2013-03-15

    High fructose consumption contributes to metabolic syndrome incidence, whereas exercise training promotes several beneficial adaptations. In this study, we demonstrated the preventive role of exercise training in the metabolic syndrome derangements in a rat model. Wistar rats receiving fructose overload in drinking water (100 g/l) were concomitantly trained on a treadmill (FT) or kept sedentary (F) for 10 wk. Control rats treated with normal water were also submitted to exercise training (CT) or sedentarism (C). Metabolic evaluations consisted of the Lee index and glycemia and insulin tolerance test (kITT). Blood pressure (BP) was directly measured, whereas heart rate (HR) and BP variabilities were evaluated in time and frequency domains. Renal sympathetic nerve activity was also recorded. F rats presented significant alterations compared with all the other groups in insulin resistance (in mg · dl(-1) · min(-1): F: 3.4 ± 0.2; C: 4.7 ± 0.2; CT: 5.0 ± 0.5 FT: 4.6 ± 0.4), mean BP (in mmHG: F: 117 ± 2; C: 100 ± 2; CT: 98 ± 2; FT: 105 ± 2), and Lee index (in g/mm: F = 0.31 ± 0.001; C = 0.29 ± 0.001; CT = 0.27 ± 0.002; FT = 0.28 ± 0.002), confirming the metabolic syndrome diagnosis. Exercise training blunted all these derangements. Additionally, FS group presented autonomic dysfunction in relation to the others, as seen by an ≈ 50% decrease in baroreflex sensitivity and 24% in HR variability, and increases in sympathovagal balance (140%) and in renal sympathetic nerve activity (45%). These impairments were not observed in FT group, as well as in C and CT. Correlation analysis showed that both Lee index and kITT were associated with vagal impairment caused by fructose. Therefore, exercise training plays a preventive role in both autonomic and hemodynamic alterations related to the excessive fructose consumption.

  10. Magnesium deficiency and metabolic syndrome: stress and inflammation may reflect calcium activation.

    Science.gov (United States)

    Rayssiguier, Yves; Libako, Patrycja; Nowacki, Wojciech; Rock, Edmond

    2010-06-01

    Magnesium (Mg) intake is inadequate in the western diet and metabolic syndrome is highly prevalent in populations around the world. Epidemiological studies suggest that high Mg intake may reduce the risk but the possibility of confounding factors exists, given the strong association between Mg and other beneficial nutriments (vegetables, fibers, cereals). The concept that metabolic syndrome is an inflammatory condition may explain the role of Mg.Mg deficiency results in a stress effect and increased susceptibility to physiological damage produced by stress. Stress activates the hypothalamic-pituitary-adrenal axis (HPA) axis and the sympathetic nervous system. The activation of the renin-angiotensin-aldosterone system is a factor in the development of insulin resistance by increasing oxidative stress. In both humans and rats, aldosteronism results in an immunostimulatory state and leads to an inflammatory phenotype. Stress response induces the release of large quantities of excitatory amino acids and activates the nuclear factor NFkappaB, promoting translation of molecules involved in cell regulation, metabolism and apoptosis. The rise in neuropeptides is also well documented. Stress-induced HPA activation has been identified to play an important role in the preferential body fat accumulation but evidence that Mg is involved in body weight regulation is lacking. One of the earliest events in the acute response to stress is endothelial dysfunction. Endothelial cells actively contribute to inflammation by elaborating cytokines, synthesizing chemical mediators and expressing adhesion molecules. Experimental Mg deficiency in rats induces a clinical inflammatory syndrome characterized by leukocyte and macrophage activation, synthesis of inflammatory cytokines and acute phase proteins, extensive production of free radicals. An increase in extracellular Mg concentration decreases inflammatory effects, while reduction in extracellular Mg results in cell activation. The

  11. Fisetin disposition and metabolism in mice: Identification of geraldol as an active metabolite. : Fisetin disposition and metabolism in mice

    OpenAIRE

    Touil, Yasmine,; Auzeil, Nicolas; Boulinguez, François; Saighi, Hanane; Regazzetti, Anne; Scherman, Daniel; Chabot, Guy,

    2011-01-01

    International audience; Although the natural flavonoid fisetin (3,3',4',7-tetrahydroxyflavone) has been recently identified as an anticancer agent with antiangiogenic properties in mice, its in vivo pharmacokinetics and metabolism are presently not characterized. Our purpose was to determine the pharmacokinetics and metabolism of fisetin in mice and determine the biological activity of a detected fisetin metabolite. After fisetin administration of an efficacious dose of 223 mg/kg i.p. in mice...

  12. Ellagic acid attenuates high-carbohydrate, high-fat diet-induced metabolic syndrome in rats.

    Science.gov (United States)

    Panchal, Sunil K; Ward, Leigh; Brown, Lindsay

    2013-03-01

    Fruits and nuts may prevent or reverse common human health conditions such as obesity, diabetes and hypertension; together, these conditions are referred to as metabolic syndrome, an increasing problem. This study has investigated the responses to ellagic acid, present in many fruits and nuts, in a diet-induced rat model of metabolic syndrome. Eight- to nine-week-old male Wistar rats were divided into four groups for 16-week feeding with cornstarch diet (C), cornstarch diet supplemented with ellagic acid (CE), high-carbohydrate, high-fat diet (H) and high-carbohydrate, high-fat diet supplemented with ellagic acid (HE). CE and HE rats were given 0.8 g/kg ellagic acid in food from week 8 to 16 only. At the end of 16 weeks, cardiovascular, hepatic and metabolic parameters along with protein levels of Nrf2, NF-κB and CPT1 in the heart and the liver were characterised. High-carbohydrate, high-fat diet-fed rats developed cardiovascular remodelling, impaired ventricular function, impaired glucose tolerance, non-alcoholic fatty liver disease with increased protein levels of NF-κB and decreased protein levels of Nrf2 and CPT1 in the heart and the liver. Ellagic acid attenuated these diet-induced symptoms of metabolic syndrome with normalisation of protein levels of Nrf2, NF-κB and CPT1. Ellagic acid derived from nuts and fruits such as raspberries and pomegranates may provide a useful dietary supplement to decrease the characteristic changes in metabolism and in cardiac and hepatic structure and function induced by a high-carbohydrate, high-fat diet by suppressing oxidative stress and inflammation.

  13. The metabolic activator FOXO1 binds hepatitis B virus DNA and activates its transcription

    International Nuclear Information System (INIS)

    Shlomai, Amir; Shaul, Yosef

    2009-01-01

    Hepatitis B virus (HBV) is a small DNA virus that targets the liver and infects humans worldwide. Recently we have shown that the metabolic regulator PGC-1α coactivates HBV transcription thereby rendering the virus susceptible to fluctuations in the nutritional status of the liver. PGC-1α coactivation of HBV is mediated through the liver-enriched nuclear receptor HNF4α and through another yet unknown transcription factor(s). Here we show that the forkhead transcription factor FOXO1, a known target for PGC-1α coactivation and a central mediator of glucose metabolism in the liver, binds HBV core promoter and activates its transcription. This activation is further enhanced in the presence of PGC-1α, implying that FOXO1 is a target for PGC-1α coactivation of HBV transcription. Thus, our results identify another key metabolic regulator as an activator of HBV transcription, thereby supporting the principle that HBV gene expression is regulated in a similar way to key hepatic metabolic genes.

  14. ACE Reduces Metabolic Abnormalities in a High-Fat Diet Mouse Model

    Directory of Open Access Journals (Sweden)

    Seong-Jong Lee

    2015-01-01

    Full Text Available The medicinal plants Artemisia iwayomogi (A. iwayomogi and Curcuma longa (C. longa radix have been used to treat metabolic abnormalities in traditional Korean medicine and traditional Chinese medicine (TKM and TCM. In this study we evaluated the effect of the water extract of a mixture of A. iwayomogi and C. longa (ACE on high-fat diet-induced metabolic syndrome in a mouse model. Four groups of C57BL/6N male mice (except for the naive group were fed a high-fat diet freely for 10 weeks. Among these, three groups (except the control group were administered a high-fat diet supplemented with ACE (100 or 200 mg/kg or curcumin (50 mg/kg. Body weight, accumulation of adipose tissues in abdomen and size of adipocytes, serum lipid profiles, hepatic steatosis, and oxidative stress markers were analyzed. ACE significantly reduced the body and peritoneal adipose tissue weights, serum lipid profiles (total cholesterol and triglycerides, glucose levels, hepatic lipid accumulation, and oxidative stress markers. ACE normalized lipid synthesis-associated gene expressions (peroxisome proliferator-activated receptor gamma, PPARγ; fatty acid synthase, FAS; sterol regulatory element-binding transcription factor-1c, SREBP-1c; and peroxisome proliferator-activated receptor alpha, PPARα. The results from this study suggest that ACE has the pharmaceutical potential reducing the metabolic abnormalities in an animal model.

  15. Metabolic responses to high protein diet in Korean elite bodybuilders with high-intensity resistance exercise

    Directory of Open Access Journals (Sweden)

    Choue Ryowon

    2011-07-01

    Full Text Available Abstract Background High protein diet has been known to cause metabolic acidosis, which is manifested by increased urinary excretion of nitrogen and calcium. Bodybuilders habitually consumed excessive dietary protein over the amounts recommended for them to promote muscle mass accretion. This study investigated the metabolic response to high protein consumption in the elite bodybuilders. Methods Eight elite Korean bodybuilders within the age from 18 to 25, mean age 21.5 ± 2.6. For data collection, anthropometry, blood and urinary analysis, and dietary assessment were conducted. Results They consumed large amounts of protein (4.3 ± 1.2 g/kg BW/day and calories (5,621.7 ± 1,354.7 kcal/day, as well as more than the recommended amounts of vitamins and minerals, including potassium and calcium. Serum creatinine (1.3 ± 0.1 mg/dl and potassium (5.9 ± 0.8 mmol/L, and urinary urea nitrogen (24.7 ± 9.5 mg/dl and creatinine (2.3 ± 0.7 mg/dl were observed to be higher than the normal reference ranges. Urinary calcium (0.3 ± 0.1 mg/dl, and phosphorus (1.3 ± 0.4 mg/dl were on the border of upper limit of the reference range and the urine pH was in normal range. Conclusions Increased urinary excretion of urea nitrogen and creatinine might be due to the high rates of protein metabolism that follow high protein intake and muscle turnover. The obvious evidence of metabolic acidosis in response to high protein diet in the subjects with high potassium intake and intensive resistance exercise were not shown in this study results. However, this study implied that resistance exercise with adequate mineral supplementation, such as potassium and calcium, could reduce or offset the negative effects of protein-generated metabolic changes. This study provides preliminary information of metabolic response to high protein intake in bodybuilders who engaged in high-intensity resistance exercise. Further studies will be needed to determine the effects of the intensity

  16. Increased susceptibility of post-weaning rats on high-fat diet to metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Hong Sheng Cheng

    2017-11-01

    Full Text Available The present study aimed to examine the effects of the types of high-calorie diets (high-fat and high-fat-high-sucrose diets and two different developmental stages (post-weaning and young adult on the induction of metabolic syndrome. Male, post-weaning and adult (3- and 8-week old, respectively Sprague Dawley rats were given control, high-fat (60% kcal, and high-fat-high-sucrose (60% kcal fat + 30% sucrose water diets for eight weeks (n = 6 to 7 per group. Physical, biochemical, and transcriptional changes as well as liver histology were noted. Post-weaning rats had higher weight gain, abdominal fat mass, fasting glucose, high density lipoprotein cholesterol, faster hypertension onset, but lower circulating advanced glycation end products compared to adult rats. This is accompanied by upregulation of peroxisome proliferator-activated receptor (PPAR α and γ in the liver and receptor for advanced glycation end products (RAGE in the visceral adipose tissue. Post-weaning rats on high-fat diet manifested all phenotypes of metabolic syndrome and increased hepatic steatosis, which are linked to increased hepatic and adipocyte PPARγ expression. Adult rats on high-fat-high-sucrose diet merely became obese and hypertensive within the same treatment duration. Thus, it is more effective and less time-consuming to induce metabolic syndrome in male post-weaning rats with high-fat diet compared to young adult rats. As male rats were selectively included into the study, the results may not be generalisable to all post-weaning rats and further investigation on female rats is required.

  17. Metabolic signals and innate immune activation in obesity and exercise.

    Science.gov (United States)

    Ringseis, Robert; Eder, Klaus; Mooren, Frank C; Krüger, Karsten

    2015-01-01

    The combination of a sedentary lifestyle and excess energy intake has led to an increased prevalence of obesity which constitutes a major risk factor for several co-morbidities including type 2 diabetes and cardiovascular diseases. Intensive research during the last two decades has revealed that a characteristic feature of obesity linking it to insulin resistance is the presence of chronic low-grade inflammation being indicative of activation of the innate immune system. Recent evidence suggests that activation of the innate immune system in the course of obesity is mediated by metabolic signals, such as free fatty acids (FFAs), being elevated in many obese subjects, through activation of pattern recognition receptors thereby leading to stimulation of critical inflammatory signaling cascades, like IκBα kinase/nuclear factor-κB (IKK/NF- κB), endoplasmic reticulum (ER) stress-induced unfolded protein response (UPR) and NOD-like receptor P3 (NLRP3) inflammasome pathway, that interfere with insulin signaling. Exercise is one of the main prescribed interventions in obesity management improving insulin sensitivity and reducing obesity- induced chronic inflammation. This review summarizes current knowledge of the cellular recognition mechanisms for FFAs, the inflammatory signaling pathways triggered by excess FFAs in obesity and the counteractive effects of both acute and chronic exercise on obesity-induced activation of inflammatory signaling pathways. A deeper understanding of the effects of exercise on inflammatory signaling pathways in obesity is useful to optimize preventive and therapeutic strategies to combat the increasing incidence of obesity and its comorbidities. Copyright © 2015 International Society of Exercise and Immunology. All rights reserved.

  18. Pyrrolizidine Alkaloids: Metabolic Activation Pathways Leading to Liver Tumor Initiation.

    Science.gov (United States)

    Fu, Peter P

    2017-01-17

    Pyrrolizidine alkaloids (PAs) and PA N-oxides are a class of phytochemical carcinogens contained in over 6000 plant species spread around the world. It has been estimated that approximately half of the 660 PAs and PA N-oxides that have been characterized are cytotoxic, genotoxic, and tumorigenic. It was recently determined that a genotoxic mechanism of liver tumor initiation mediated by PA-derived DNA adducts is a common metabolic activation pathway of a number of PAs. We proposed this set of PA-derived DNA adducts could be a common biological biomarker of PA exposure and a potential biomarker of PA-induced liver tumor formation. We have also found that several reactive secondary pyrrolic metabolites can dissociate and interconvert to other secondary pyrrolic metabolites, resulting in the formation of the same exogenous DNA adducts. This present perspective reports the current progress on these new findings and proposes future research needed for obtaining a greater understanding of the role of this activation pathway and validating the use of this set of PA-derived DNA adducts as a biological biomarker of PA-induced liver tumor initiation.

  19. Solidification of highly active wastes

    International Nuclear Information System (INIS)

    Morris, J.B.

    1986-07-01

    This document contains the annual reports for the contracts: (A) Glass Technology; (B) Calcination of Highly Active Waste Liquors; (C) Formation and Trapping of Volatile Ruthenium; (D) Deposition of Ruthenium; (E) Enhancement of Off-Gas Aerosol Collection; (F) Volatilisation of Cs, Tc and Te in High Level Waste Vitrification. (author)

  20. Ruptured human Achilles tendon has elevated metabolic activity up to 1 year after repair

    International Nuclear Information System (INIS)

    Eliasson, Pernilla; Couppe, Christian; Magnusson, S.P.; Lonsdale, Markus; Friberg, Lars; Svensson, Rene B.; Kjaer, Michael; Neergaard, Christian

    2016-01-01

    Following Achilles tendon rupture, running is often allowed after 6 months. However, tendon healing is slow and the metabolic status of the tendon at this point is unknown. The purpose of this study was to investigate tendon metabolism (glucose uptake) and vascularization at 3, 6 and 12 months after Achilles tendon rupture as measured using PET and power Doppler ultrasonography (PDUS). The study group comprised 23 patients with surgically repaired Achilles tendon rupture who were investigated at 3 months (n = 7), 6 months (n = 7) and 12 months (n = 9) after surgery. The triceps surae complex was loaded over 20 min of slow treadmill walking while a radioactive tracer ( 18 F-FDG) was administered prior to PET. Vascularization was measured in terms of PDUS flow activity, and patient-reported outcomes were scored using the Achilles tendon rupture score (ATRS) and sports assessment (VISA-A) questionnaire. Relative glucose uptake ( 18 F-FDG) was higher in repaired tendons than in intact tendons at all time-points (6, 3 and 1.6 times higher at 3, 6 and 12 months, respectively; P ≤ 0.001), and was also higher in the tendon core than in the periphery at 3 and 6 months (P ≤ 0.02), but lower at 12 months (P = 0.06). Relative glucose uptake was negatively related to ATRS at 6 months after repair (r = -0.89, P ≤ 0.01). PDUS flow activity was higher in repaired tendons than in intact tendons at 3 and 6 months (P < 0.05 for both), but had normalized by 12 months. These data demonstrate that the healing process as determined by metabolic activity and vascularization continues for 6 months after injury when large loads are typically allowed on the tendon. Indeed, metabolic activity remained elevated for more than 1 year after injury despite normalized vascularization. The robust negative correlation between tendon metabolism and patient-reported outcome suggests that a high metabolic activity 6 months after the injury may be related to a poor clinical healing outcome. (orig.)

  1. Western Canada: high prices, high activity

    International Nuclear Information System (INIS)

    Savidant, S

    2000-01-01

    The forces responsible for the high drilling and exploration activity in Western Canada (recent high prices, excess pipeline capacity, and the promise of as yet undiscovered natural gas resources) are discussed. Supply and demand signposts, among them weather impacts, political response by governments, the high demand for rigs and services, the intense competition for land, the scarcity of qualified human resources, are reviewed/. The geological potential of Western Canada, the implications of falling average pool sizes, the industry's ability to catch up to increasing declines, are explored. The disappearance of easy large discoveries, rising development costs involved in smaller, more complex hence more expensive pools are assessed and the Canadian equity and capital markets are reviewed. The predicted likely outcome of all the above factors is fewer players, increasing expectation of higher returns, and more discipline among the remaining players

  2. The relationship between metabolic presbycusis and serum paraoxonase/arylesterase activity.

    Science.gov (United States)

    Keleş, Erol; Kapusuz, Zeliha; Gürsu, Mehmet Ferit; Karlıdag, Turgut; Kaygusuz, Irfan; Bulmuş, Funda Gülcü; Yalcın, Sinasi

    2014-01-01

    To determine the presence of a relationship between metabolic presbycusis and serum paraoxonase/arylesterase activity. A total of 30 patients who had been admitted to the Ear, Nose, and Throat (ENT) Clinic of Fırat University Medical Faculty and diagnosed as metabolic presbycusis were included in the study. The control group was composed of 30 healthy volunteers. Pure tone audiometry and impedencemeter were performed on all subjects included in the study at the audiometry laboratory of the ENT clinic. The presence of a regular hearing curve, a symmetrical sensorineural hearing loss more than 25 dB with preserved speech discrimination were accepted as criteria for metabolic presbycusis. Blood samples were drawn from the patients prior to the hearing tests. The sera were separated for measurements of total cholesterol, triglyceride, high-density lipoprotein, very low-density lipoprotein, low-density lipoprotein, human serum paraoxonase and arylesterase levels, respectively. No statistically significant difference was found between the patient and the control groups in terms of age and gender. Paraoxonase, arylesterase and paraoxonase/arylesterase, high-density lipoprotein levels were found to decrease in the study group and the difference was found to be statistically significant compared to the control group (P presbycusis. Furthermore, the results of this study make us think that there could be a relationship between metabolic presbycusis and cardiovascular diseases. In this case, metabolic presbycusis may be a determining parameter in the early diagnosis of cardiovascular diseases. We consider that this study may be the pioneer for further studies conducted with larger patient numbers.

  3. Oxidative Inactivation of Liver Mitochondria in High Fructose Diet-Induced Metabolic Syndrome in Rats: Effect of Glycyrrhizin Treatment.

    Science.gov (United States)

    Sil, Rajarshi; Chakraborti, Abhay Sankar

    2016-09-01

    Metabolic syndrome is a serious health problem in the present world. Glycyrrhizin, a triterpenoid saponin of licorice (Glycyrrhiza glabra) root, has been reported to ameliorate the primary complications and hepatocellular damage in rats with the syndrome. In this study, we have explored metabolic syndrome-induced changes in liver mitochondrial function and effect of glycyrrhizin against the changes. Metabolic syndrome was induced in rats by high fructose (60%) diet for 6 weeks. The rats were then treated with glycyrrhizin (50 mg/kg body weight) by single intra-peritoneal injection. After 2 weeks of the treatment, the rats were sacrificed to collect liver tissue. Elevated mitochondrial ROS, lipid peroxidation and protein carbonyl, and decreased reduced glutathione content indicated oxidative stress in metabolic syndrome. Loss of mitochondrial inner membrane cardiolipin was observed. Mitochondrial complex I activity did not change but complex IV activity decreased significantly. Mitochondrial MTT reduction ability, membrane potential, phosphate utilisation and oxygen consumption decreased in metabolic syndrome. Reduced mitochondrial aconitase activity and increased aconitase carbonyl content suggested oxidative damage of the enzyme. Elevated Fe(2+) ion level in mitochondria might be associated with increased ROS generation in metabolic syndrome. Glycyrrhizin effectively attenuated mitochondrial oxidative stress and aconitase degradation, and improved electron transport chain activity. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  4. Basal metabolic regulatory responses and rhythmic activity of ...

    African Journals Online (AJOL)

    ... Rattus sp. Low concentrations of kola nut extract stimulated the heart by increasing rate and force of contraction as well as metabolic rate. Higher concentrations reduced rate and amplitude of beat resulting, at still higher concentrations in heart failure. Keywords: Kolanut, extract, basal metabolic rate, mammalian heart ...

  5. Intrinsic Xenobiotic Metabolizing Enzyme Activities in Early Life Stages of Zebrafish (Danio rerio).

    Science.gov (United States)

    Otte, Jens C; Schultz, Bernadette; Fruth, Daniela; Fabian, Eric; van Ravenzwaay, Bennard; Hidding, Björn; Salinas, Edward R

    2017-09-01

    Early life stages of zebrafish (Danio rerio, zf) are gaining attention as an alternative invivo test system for drug discovery, early developmental toxicity screenings and chemical testing in ecotoxicological and toxicological testing strategies. Previous studies have demonstrated transcriptional evidence for xenobiotic metabolizing enzymes (XME) during early zf development. However, elaborate experiments on XME activities during development are incomplete. In this work, the intrinsic activities of representative phase I and II XME were monitored by transformation of putative zf model substrates analyzed using photometry and high pressure liquid chromatography techniques. Six different defined stages of zf development (between 2.5 h postfertilization (hpf) to 120 hpf) were investigated by preparing a subcellular fraction from whole organism homogenates. We demonstrated that zf embryos as early as 2.5 hpf possess intrinsic metabolic activities for esterase, Aldh, Gst, and Cyp1a above the methodological detection limit. The activities of the enzymes Cyp3a and Nat were measurable during later stages in development. Activities represent dynamic patterns during development. The role of XME activities revealed in this work is relevant for the assessing toxicity in this test system and therefore contributes to a valuable characterization of zf embryos as an alternative testing organism in toxicology. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. Abnormal metabolic network activity in REM sleep behavior disorder.

    Science.gov (United States)

    Holtbernd, Florian; Gagnon, Jean-François; Postuma, Ron B; Ma, Yilong; Tang, Chris C; Feigin, Andrew; Dhawan, Vijay; Vendette, Mélanie; Soucy, Jean-Paul; Eidelberg, David; Montplaisir, Jacques

    2014-02-18

    To determine whether the Parkinson disease-related covariance pattern (PDRP) expression is abnormally increased in idiopathic REM sleep behavior disorder (RBD) and whether increased baseline activity is associated with greater individual risk of subsequent phenoconversion. For this cohort study, we recruited 2 groups of RBD and control subjects. Cohort 1 comprised 10 subjects with RBD (63.5 ± 9.4 years old) and 10 healthy volunteers (62.7 ± 8.6 years old) who underwent resting-state metabolic brain imaging with (18)F-fluorodeoxyglucose PET. Cohort 2 comprised 17 subjects with RBD (68.9 ± 4.8 years old) and 17 healthy volunteers (66.6 ± 6.0 years old) who underwent resting brain perfusion imaging with ethylcysteinate dimer SPECT. The latter group was followed clinically for 4.6 ± 2.5 years by investigators blinded to the imaging results. PDRP expression was measured in both RBD groups and compared with corresponding control values. PDRP expression was elevated in both groups of subjects with RBD (cohort 1: p abnormalities in subjects with idiopathic RBD are associated with a greater likelihood of subsequent phenoconversion to a progressive neurodegenerative syndrome.

  7. Cancer and Exercise: Warburg Hypothesis, Tumour Metabolism and High-Intensity Anaerobic Exercise.

    Science.gov (United States)

    Hofmann, Peter

    2018-01-31

    There is ample evidence that regular moderate to vigorous aerobic physical activity is related to a reduced risk for various forms of cancer to suggest a causal relationship. Exercise is associated with positive changes in fitness, body composition, and physical functioning as well as in patient-reported outcomes such as fatigue, sleep quality, or health-related quality of life. Emerging evidence indicates that exercise may also be directly linked to the control of tumour biology through direct effects on tumour-intrinsic factors. Beside a multitude of effects of exercise on the human body, one underscored effect of exercise training is to target the specific metabolism of tumour cells, namely the Warburg-type highly glycolytic metabolism. Tumour metabolism as well as the tumour⁻host interaction may be selectively influenced by single bouts as well as regularly applied exercise, dependent on exercise intensity, duration, frequency and mode. High-intensity anaerobic exercise was shown to inhibit glycolysis and some studies in animals showed that effects on tumour growth might be stronger compared with moderate-intensity aerobic exercise. High-intensity exercise was shown to be safe in patients; however, it has to be applied carefully with an individualized prescription of exercise.

  8. Metabolic activity of Glomus intraradices in Arum- and Paris-type arbuscular mycorrhizal colonization

    NARCIS (Netherlands)

    van Aarle, IM; Cavagnaro, TR; Smith, SE; Dickson, S

    Colonization of two plant species by Glomus intraradices was studied to investigate the two morphological types (Arum and Paris), their symbiotic interfaces and metabolic activities. Root pieces and sections were stained to observe the colonization and metabolic activity of all mycorrhizal

  9. Chronic High Fat Diet Consumption Impairs Metabolic Health of Male Mice.

    Science.gov (United States)

    Morselli, Eugenia; Criollo, Alfredo; Rodriguez-Navas, Carlos; Clegg, Deborah J

    We show that chronic high fat diet (HFD) feeding affects the hypothalamus of male but not female mice. In our study we demonstrate that palmitic acid and sphingolipids accumulate in the central nervous system of HFD-fed males. Additionally, we show that HFD-feeding reduces proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) thus reducing estrogen receptor α (ERα) and driving hypothalamic inflammation in male but not female mice. Hypothalamic inflammation correlates with markers of metabolic dysregulation as indicated by dysregulation in glucose intolerance and myocardial function. Lastly, we demonstrate that there are blockages in mitophagy and lipophagy in hypothalamic tissues in males. Our data suggest there is a sexually dimorphic response to chronic HDF exposure, females; despite gaining the same amount of body weight following HFD-feeding, appear to be protected from the adverse metabolic effects of the HFD.

  10. Metabolic and mineral conditions of retained placenta in highly productive dairy cows: pathogenesis, diagnostics and prevention – a review

    Directory of Open Access Journals (Sweden)

    Ryszard Mordak

    2017-01-01

    Full Text Available The time around calving in highly productive dairy cows is a critical period in terms of their metabolism, which is connected with high demands of the foetus as well as with the onset of lactation. Retained placenta in cows may have multifactorial aetiology, but in herds which are free from infectious diseases, the most important reasons are; periparturient metabolic changes and disturbances to the internal balance and stress. During the periparturient period, the most important factor causing immune suppression and hypotony of uterus in cows is metabolic stress due to hormonal and nutritional factors, including metabolic fluctuations, negative energy balance, as well as shortage of proteins, minerals, vitamins and antioxidants. This metabolic stress as a result of an imbalance in the internal metabolic homeostasis activates the hypothalamic-pituitary-adrenocortical axis (HPA and increases serum corticosterid (cortisol concentration, especially on the day of calving. Cortisol is a powerful immune suppressive factor that causes depression of leukocyte proliferation and their functions. The periparturient metabolic stress may also stimulate the production of catecholamines, especially adrenalin. Elevated levels of adrenalin activate adrenoreceptors of the myometrium, which in turn cause hypotony or atony of the uterus at calving in cows. Elevated levels of cortisol and adrenalin may significantly inhibit the rejection and expulsion of foetal membranes in cows, resulting in an increased incidence of their retention. These important mechanisms for placental retention in highly productive dairy cows often have primary nutritional metabolic aetiology, but they also occur during secondary metabolic disturbances and metabolic stress during calving. This metabolic and immunological aetiology and pathogenesis of retained placenta usually occur in highly productive periparturient cows on dairy farms in the absence of bovine infectious diseases, which can

  11. Effects of puerarin on lipid accumulation and metabolism in high-fat diet-fed mice.

    Directory of Open Access Journals (Sweden)

    Guodong Zheng

    Full Text Available In order to investigate the mechanisms by which puerarin from kudzu root extract regulates lipid metabolism, fifty mice were randomly assigned to five groups: normal diet, high-fat diet (HFD, and HFD containing 0.2%, 0.4% or 0.8% puerarin for 12 weeks. Body weight, intraperitioneal adipose tissue (IPAT weight, serum biochemical parameters, and hepatic and feces lipids were measured. Activity and mRNA and protein expressions of hepatic lipid metabolism-related enzymes were analyzed. Compared with HFD, 0.4% and 0.8% puerarin significantly decreased body and IPAT weight. There was a significant decrease in the serum and hepatic concentrations of total cholesterol, triglycerides and leptin in mice fed the 0.4% and 0.8% puerarin diets compared with HFD. Fatty acid synthase activity was suppressed in mice fed the 0.4% and 0.8% puerarin diets, while the activities of AMP-activated protein kinase (AMPK, carnitine acyltransferase (CAT and hormone-sensitive lipase (HSL were increased. mRNA expression of peroxisome proliferator-activated receptor γ 2 (PPARγ 2 was down-regulated in liver of mice fed the 0.8% diet compared with HFD, while mRNA expression of CAT and HSL was considerably up-regulated by 0.4% and 0.8% puerarin diets. The protein expression of PPARγ2 in liver was decreased and those of p-AMPK, HSL and p-HSL were increased in mice fed 0.4% and 0.8% puerarin diets. These results suggest that > 0.4% puerarin influenced the activity, mRNA and protein levels of hepatic lipid metabolism-related enzymes, decreasing serum and liver lipids, body weight gain and fat accumulation. Puerarin might be beneficial to prevent lifestyle-related diseases.

  12. Blood flow to long bones indicates activity metabolism in mammals, reptiles and dinosaurs.

    Science.gov (United States)

    Seymour, Roger S; Smith, Sarah L; White, Craig R; Henderson, Donald M; Schwarz-Wings, Daniela

    2012-02-07

    The cross-sectional area of a nutrient foramen of a long bone is related to blood flow requirements of the internal bone cells that are essential for dynamic bone remodelling. Foramen area increases with body size in parallel among living mammals and non-varanid reptiles, but is significantly larger in mammals. An index of blood flow rate through the foramina is about 10 times higher in mammals than in reptiles, and even higher if differences in blood pressure are considered. The scaling of foramen size correlates well with maximum whole-body metabolic rate during exercise in mammals and reptiles, but less well with resting metabolic rate. This relates to the role of blood flow associated with bone remodelling during and following activity. Mammals and varanid lizards have much higher aerobic metabolic rates and exercise-induced bone remodelling than non-varanid reptiles. Foramen areas of 10 species of dinosaur from five taxonomic groups are generally larger than from mammals, indicating a routinely highly active and aerobic lifestyle. The simple measurement holds possibilities offers the possibility of assessing other groups of extinct and living vertebrates in relation to body size, behaviour and habitat.

  13. High prevalence of metabolic syndrome in antisynthetase syndrome.

    Science.gov (United States)

    Araujo, Paula A O; Silva, Marilda Guimarães; Borba, Eduardo Ferreira; Shinjo, Samuel K

    2018-01-01

    A high frequency of metabolic syndrome (MetS) has been recently described in different idiopathic inflammatory myopathies, but not in antisynthetase syndrome (ASS). Therefore, the aim of the present study was to determine the prevalence of MetS in ASS and also its possible association with cardiovascular the risk factors and ASS-related disease characteristics. A cross-sectional single centre study of 42 consecutive ASS patients was conducted from 2012 to 2015 and compared to 84 healthy individuals matched for gender, age, ethnicity and body mass index-matched (control group). MetS was defined according to the 2009 Join Interim Statement. Clinical and laboratory data were assessed according to a standardised protocol. ASS patients had a median age of 41.1 years with a predominance of female gender and white race. ASS patients had a higher frequency of MetS (42.9% vs. 13.1%; pASS patients had higher resistin, lower leptin and similar adiponectin levels in serum than controls. Further analysis of ASS patients with (n=18) and without (n=24) MetS revealed that older age at disease onset (48.7 vs. 35.4 years; pASS patients that also had serum resistin and low leptin levels. As also identified in other idiopathic inflammatory myopathies, MetS in ASS is more prevalent in older patients.

  14. Transcriptional activity of the giant barrel sponge, Xestospongia muta Holobiont: Molecular Evidence for Metabolic Interchange

    Directory of Open Access Journals (Sweden)

    Cara L Fiore

    2015-04-01

    Full Text Available Compared to our understanding of the taxonomic composition of the symbiotic microbes in marine sponges, the functional diversity of these symbionts is largely unknown. Furthermore, the application of genomic, transcriptomic, and proteomic techniques to functional questions on sponge host-symbiont interactions is in its infancy. In this study, we generated a transcriptome for the host and a metatranscriptome of its microbial symbionts for the giant barrel sponge, Xestospongia muta, from the Caribbean. In combination with a gene-specific approach, our goals were to 1 characterize genetic evidence for nitrogen cycling in X. muta, an important limiting nutrient on coral reefs 2 identify which prokaryotic symbiont lineages are metabolically active and, 3 characterize the metabolic potential of the prokaryotic community. Xestospongia muta expresses genes from multiple nitrogen transformation pathways that when combined with the abundance of this sponge, and previous data on dissolved inorganic nitrogen fluxes, shows that this sponge is an important contributor to nitrogen cycling on coral reefs. Additionally, we observed significant differences in gene expression of the archaeal amoA gene, which is involved in ammonia oxidation, between coral reef locations consistent with differences in the fluxes of dissolved inorganic nitrogen previously reported. In regards to symbiont metabolic potential, the genes in the biosynthetic pathways of several amino acids were present in the prokaryotic metatranscriptome dataset but in the host-derived transcripts only the catabolic reactions for these amino acids were present. A similar pattern was observed for the B vitamins (riboflavin, biotin, thiamin, cobalamin. These results expand our understanding of biogeochemical cycling in sponges, and the metabolic interchange highlighted here advances the field of symbiont physiology by elucidating specific metabolic pathways where there is high potential for host

  15. Tocotrienols Reverse Cardiovascular, Metabolic and Liver Changes in High Carbohydrate, High Fat Diet-Fed Rats

    Directory of Open Access Journals (Sweden)

    Weng-Yew Wong

    2012-10-01

    Full Text Available Tocotrienols have been reported to improve lipid profiles, reduce atherosclerotic lesions, decrease blood glucose and glycated haemoglobin concentrations, normalise blood pressure in vivo and inhibit adipogenesis in vitro, yet their role in the metabolic syndrome has not been investigated. In this study, we investigated the effects of palm tocotrienol-rich fraction (TRF on high carbohydrate, high fat diet-induced metabolic, cardiovascular and liver dysfunction in rats. Rats fed a high carbohydrate, high fat diet for 16 weeks developed abdominal obesity, hypertension, impaired glucose and insulin tolerance with increased ventricular stiffness, lower systolic function and reduced liver function. TRF treatment improved ventricular function, attenuated cardiac stiffness and hypertension, and improved glucose and insulin tolerance, with reduced left ventricular collagen deposition and inflammatory cell infiltration. TRF improved liver structure and function with reduced plasma liver enzymes, inflammatory cell infiltration, fat vacuoles and balloon hepatocytes. TRF reduced plasma free fatty acid and triglyceride concentrations but only omental fat deposition was decreased in the abdomen. These results suggest that tocotrienols protect the heart and liver, and improve plasma glucose and lipid profiles with minimal changes in abdominal obesity in this model of human metabolic syndrome.

  16. Central and Metabolic Effects of High Fructose Consumption: Evidence from Animal and Human Studies

    Directory of Open Access Journals (Sweden)

    Alexandra Stoianov

    2014-12-01

    Full Text Available Fructose consumption has increased dramatically in the last 40 years, and its role in the pathogenesis of the metabolic syndrome has been implicated by many studies. It is most often encountered in the diet as sucrose (glucose and fructose or high-fructose corn syrup (55% fructose. At high levels, dietary exposure to fructose triggers a series of metabolic changes originating in the liver, leading to hepatic steatosis, hypertriglyceridemia, insulin resistance, and decreased leptin sensitivity. Fructose has been identified to alter biological pathways in other tissues including the central nervous system (CNS, adipose tissue, and the gastrointestinal system. Unlike glucose, consumption of fructose produces smaller increases in the circulating satiety hormone glucagon-like peptide 1 (GLP-1, and does not attenuate levels of the appetite suppressing hormone ghrelin. In the brain, fructose contributes to increased food consumption by activating appetite and reward pathways, and stimulating hypothalamic AMPK activity, a nutrient-sensitive regulator of food intake. Recent studies investigating the neurophysiological factors linking fructose consumption and weight gain in humans have demonstrated differential activation of brain regions that govern appetite, motivation and reward processing. Compared to fructose, glucose ingestion produces a greater reduction of hypothalamic neuronal activity, and increases functional connectivity between the hypothalamus and other reward regions of the brain, indicating that these two sugars regulate feeding behavior through distinct neural circuits. This review article outlines the current findings in fructose-feeding studies in both human and animal models, and discusses the central effects on the CNS that may lead to increased appetite and food intake. Keywords: Fructose, Metabolic syndrome, Appetite, Central nervous system

  17. Leisure-time exercise, physical activity during work and commuting, and risk of metabolic syndrome.

    Science.gov (United States)

    Kuwahara, Keisuke; Honda, Toru; Nakagawa, Tohru; Yamamoto, Shuichiro; Akter, Shamima; Hayashi, Takeshi; Mizoue, Tetsuya

    2016-09-01

    Data are limited regarding effect of intensity of leisure-time physical activity on metabolic syndrome. Furthermore, no prospective data are available regarding effect of occupational and commuting physical activity on metabolic syndrome. We compared metabolic syndrome risk by intensity level of leisure-time exercise and by occupational and commuting physical activity in Japanese workers. We followed 22,383 participants, aged 30-64 years, without metabolic syndrome until 2014 March (maximum, 5 years of follow-up). Physical activity was self-reported. Metabolic syndrome was defined by the Joint Statement criteria. We used Cox regression models to estimate the hazard ratios (HRs) and 95 % confidence intervals (CIs) of metabolic syndrome. During a mean follow-up of 4.1 years, 5361 workers developed metabolic syndrome. After adjustment for covariates, compared with engaging in no exercise, the HRs (95 % CIs) for metabolic equivalent hours of exercise per week were 0.99 (0.90, 1.08), 0.99 (0.90, 1.10), and 0.95 (0.83, 1.08), respectively, among individuals engaging in moderate-intensity exercise alone; 0.93 (0.75, 1.14), 0.81 (0.64, 1.02), and 0.84 (0.66, 1.06), among individuals engaging in vigorous-intensity exercise alone; and 0.90 (0.70, 1.17), 0.74 (0.62, 0.89), and 0.81 (0.69, 0.96) among individuals engaging in the two intensities. Higher occupational physical activity was weakly but significantly associated with lower risk of metabolic syndrome. Walking to and from work was not associated with metabolic syndrome. Vigorous-intensity exercise alone or vigorous-intensity combined with moderate-intensity exercise and worksite intervention for physical activity may help prevent metabolic syndrome for Japanese workers.

  18. Global Metabolic Stress of Isoeffort Continuous and High Intensity Interval Aerobic Exercise: A Comparative 1H NMR Metabonomic Study.

    Science.gov (United States)

    Zafeiridis, Andreas; Chatziioannou, Anastasia Chrysovalantou; Sarivasiliou, Haralambos; Kyparos, Antonios; Nikolaidis, Michalis G; Vrabas, Ioannis S; Pechlivanis, Alexandros; Zoumpoulakis, Panagiotis; Baskakis, Constantinos; Dipla, Konstantina; Theodoridis, Georgios A

    2016-12-02

    The overall metabolic/energetic stress that occurs during an acute bout of exercise is proposed to be the main driving force for long-term training adaptations. Continuous and high-intensity interval exercise protocols (HIIE) are currently prescribed to acquire the muscular and metabolic benefits of aerobic training. We applied 1 H NMR-based metabonomics to compare the overall metabolic perturbation and activation of individual bioenergetic pathways of three popular aerobic exercises matched for effort/strain. Nine men performed continuous, long-interval (3 min), and short-interval (30 s) bouts of exercise under isoeffort conditions. Blood was collected before and after exercise. The multivariate PCA and OPLS-DA models showed a distinct separation of pre- and postexercise samples in three protocols. The two models did not discriminate the postexercise overall metabolic profiles of the three exercise types. Analysis focused on muscle bioenergetic pathways revealed an extensive upregulation of carbohydrate-lipid metabolism and the TCA cycle in all three protocols; there were only a few differences among protocols in the postexercise abundance of molecules when long-interval bouts were performed. In conclusion, continuous and HIIE exercise protocols, when performed with similar effort/strain, induce comparable global metabolic response/stress despite their marked differences in work-bout intensities. This study highlights the importance of NMR metabonomics in comprehensive monitoring of metabolic consequences of exercise training in the blood of athletes and exercising individuals.

  19. Metabolic Activation of the Tumorigenic Pyrrolizidine Alkaloid, Retrorsine, Leading to DNA Adduct Formation In Vivo

    Directory of Open Access Journals (Sweden)

    Ming W. Chou

    2005-04-01

    Full Text Available Pyrrolizidine alkaloids are naturally occurring genotoxic chemicals produced by a large number of plants. The high toxicity of many pyrrolizidine alkaloids has caused considerable loss of free-ranging livestock due to liver and pulmonary lesions. Chronic exposure of toxic pyrrolizidine alkaloids to laboratory animals induces cancer. This investigation studies the metabolic activation of retrorsine, a representative naturally occurring tumorigenic pyrrolizidine alkaloid, and shows that a genotoxic mechanism is correlated to the tumorigenicity of retrorsine. Metabolism of retrorsine by liver microsomes of F344 female rats produced two metabolites, 6, 7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine (DHP, at a rate of 4.8 ± 0.1 nmol/mg/min, and retrorsine-N-oxide, at a rate of 17.6±0.5 nmol/mg/min. Metabolism was enhanced 1.7-fold by using liver microsomes prepared from dexamethasone-treated rats. DHP formation was inhibited 77% and retrorsine N-oxide formation was inhibited 29% by troleandomycin, a P450 3A enzyme inhibitor. Metabolism of retrorsine with lung, kidney, and spleen microsomes from dexamethasone-treated rats also generated DHP and the N-oxide derivative. When rat liver microsomal metabolism of retrorsine occurred in the presence of calf thymus DNA, a set of DHP-derived DNA adducts was formed; these adducts were detected and quantified by using a previously developed 32P-postlabeling/HPLC method. These same DNA adducts were also found in liver DNA of rats gavaged with retrorsine. Since DHP-derived DNA adducts are suggested to be potential biomarkers of riddelliine-induced tumorigenicity, our results indicate that (i similar to the metabolic activation of riddelliine, the mechanism of retrorsine-induced carcinogenicity in rats is also through a genotoxic mechanism involving DHP; and (ii the set of DHP-derived DNA adducts found in liver DNA of rats gavaged with retrorsine or riddelliine can serve as biomarkers for the

  20. Metabolic Activation of the Tumorigenic Pyrrolizidine Alkaloid, Retrorsine, Leading to DNA Adduct Formation In Vivo

    Science.gov (United States)

    Wang, Yu-Ping; Fu, Peter P.; Chou, Ming W.

    2005-01-01

    Pyrrolizidine alkaloids are naturally occurring genotoxic chemicals produced by a large number of plants. The high toxicity of many pyrrolizidine alkaloids has caused considerable loss of free-ranging livestock due to liver and pulmonary lesions. Chronic exposure of toxic pyrrolizidine alkaloids to laboratory animals induces cancer. This investigation studies the metabolic activation of retrorsine, a representative naturally occurring tumorigenic pyrrolizidine alkaloid, and shows that a genotoxic mechanism is correlated to the tumorigenicity of retrorsine. Metabolism of retrorsine by liver microsomes of F344 female rats produced two metabolites, 6, 7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine (DHP), at a rate of 4.8 ± 0.1 nmol/mg/min, and retrorsine-N-oxide, at a rate of 17.6±0.5 nmol/mg/min. Metabolism was enhanced 1.7-fold by using liver microsomes prepared from dexamethasone-treated rats. DHP formation was inhibited 77% and retrorsine N-oxide formation was inhibited 29% by troleandomycin, a P450 3A enzyme inhibitor. Metabolism of retrorsine with lung, kidney, and spleen microsomes from dexamethasone-treated rats also generated DHP and the N-oxide derivative. When rat liver microsomal metabolism of retrorsine occurred in the presence of calf thymus DNA, a set of DHP-derived DNA adducts was formed; these adducts were detected and quantified by using a previously developed 32P-postlabeling/HPLC method. These same DNA adducts were also found in liver DNA of rats gavaged with retrorsine. Since DHP-derived DNA adducts are suggested to be potential biomarkers of riddelliine-induced tumorigenicity, our results indicate that (i) similar to the metabolic activation of riddelliine, the mechanism of retrorsine-induced carcinogenicity in rats is also through a genotoxic mechanism involving DHP; and (ii) the set of DHP-derived DNA adducts found in liver DNA of rats gavaged with retrorsine or riddelliine can serve as biomarkers for the tumorigenicity induced by

  1. Metabolic Potential and Activity in Fluids of the Coast Range Ophiolite Microbial Observatory, California, USA

    Science.gov (United States)

    Hoehler, T.; Som, S.; Schrenk, M.; McCollom, T.; Cardace, D.

    2016-01-01

    Metabolic potential and activity associated with hydrogen and carbon monoxide were characterized in fluids sampled from the the Coast Range Ophiolite Microbial Observatory (CROMO). CROMO consists of two clusters of science-dedicated wells drilled to varying depths up to 35m in the actively serpentinizing, Jurassic-age Coast Range Ophiolite of Northern California, along with a suite of pre-existing monitoring wells at the same site. Consistent with the fluid chemistry observed in other serpentinizing systems, CROMO fluids are highly alkaline, with pH up to 12.5, high in methane, with concentrations up 1600 micromolar, and low in dissolved inorganic carbon (DIC), with concentrations of 10's to 100's of micromolar. CROMO is conspicuous for fluid H2 concentrations that are consistently sub-micromolar, orders of magnitude lower than is typical of other systems. However, higher H2 concentrations (10's -100's of micromolar) at an earlier stage of fluid chemical evolution are predicted by, or consistent with: thermodynamic models for fluid chemistry based on parent rock composition equivalent to local peridotite and with water:rock ratio constrained by observed pH; the presence of magnetite at several wt% in CROMO drill cores; and concentrations of formate and carbon monoxide that would require elevated H2 if formed in equilibrium with H2 and DIC. Calculated Gibbs energy changes for reaction of H2 and CO in each of several metabolisms, across the range of fluid composition encompassed by the CROMO wells, range from bioenergetically feasible (capable of driving ATP synthesis) to thermodynamically unfavorable. Active consumption relative to killed controls was observed for both CO and H2 during incubation of fluids from the pre-existing monitoring wells; in incubations of freshly cored solids, consumption was only observed in one sample set (corresponding to the lowest pH) out of three. The specific metabolisms by which H2 and CO are consumed remain to be determined.

  2. An in vitro model for screening estrogen activity of environmental samples after metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Chahbane, N.; Schramm, K.W. [GSF - Forschungszentrum fuer Umwelt und Gesundheit Neuherberg GmbH, Oberschleissheim (Germany). Inst. fuer Oekologische Chemie; Kettrup, A. [Technische Univ. Muenchen, Freising (Germany). Lehrstuhl fuer Oekologische Chemie

    2004-09-15

    For a few years, yeast estrogen assay (YES) was accepted as a reliable and economic model for screening of environmental estrogens. Though the chemicals directly act with estrogen receptor (ER) can be filtered out by this model, there are still chemicals act with ER only after metabolism and some chemicals eliminate their estrogen activities after metabolism. That is to say, their metabolites exert or have stronger estrogen activities than themselves, which can be called bio-activation. In this case, for the lack of the metabolism enzyme system as human and other animals, only the assay with recombinant yeast cells is insufficient. So, it is necessary to combine the YES with metabolism procedure to evaluate the estrogen activities of these chemicals. The most common method used currently for in vitro metabolic activation in mutagenicity testing and also be applied to the estrogen screening field is S-9 mixture. Also, there is an attempt to develop a chemical model for cytochrome P450 as a bio-mimetic metabolic activation system. All these methods can be used as in vitro models for metabolism. Compare with these models, using whole H4II E cells for metabolism is an alternative and with superiorities. It has the excellence of short experiment period as all other in vitro models, but is much more close to the real surroundings as in vivo. Furthermore, the activity of 7-ethoxyresorufin-O-deethylase (EROD) can be easily measured during the whole incubation period for us to discuss the metabolic activities in a quantitative foundation, not only in qualitative. Methoxychlor is one of the chemicals with bio-activation ability. When directly used in the YES, it shows weak estrogen activity. But a main metabolite of methoxychlor, 2,2-bis (p-hydroxyphenyl) - 1,1,1-trichloroethane (HPTE) is a known estrogen mimic. For the long time using methoxychlor as a pesticide and its clear background, it is an ideal chemical to establish this in vitro system.

  3. Silymarin ameliorates metabolic dysfunction associated with Diet-induced Obesity via activation of farnesyl X receptor

    Directory of Open Access Journals (Sweden)

    Ming Gu

    2016-09-01

    Full Text Available AbstractBACKGROUND AND PURPOSESilymarin, a standardized extract of the milk thistle seeds, has been widely used to treat chronic hepatitis, cirrhosis and other types of toxic liver damage. . Despite increasing studies on the action of silymarin and its major active constituent, silybin in their therapeutic properties against insulin resistance, diabetes and hyperlipidaemia in vitro and in vivo, the mechanism underlying silymarin action remains unclear. EXPERIMENTAL APPROACHC57BL/6 mice were fed high-fat diet (HFD for 3 months to induce obesity, insulin resistance, hyperlipidaemia and fatty liver. These mice were then continuously treated with HFD alone or mixed with silymarin at 40 mg/100 g for additional 6 weeks. Biochemical analysis was used to test the serum lipid and bile acid profiles. FXR and NF-κB transactivities were analysed in liver using a gene reporter assay based onquantitative RT-PCR.KEY RESULTSSilymarin treatment ameliorated insulin resistance, dyslipidaemia and inflammation, and reconstituted the bile acid pool in liver of diet-induced obesity. Associated with this, silybin and silymarin enhanced FXR transactivity. Consistently, in HepG2 cells, silybin inhibited NF-κB signalling, which was enhanced by FXR activation. CONCLUSIONS AND IMPLICATIONSOur results suggest that silybin is an effective component of silymarin for treating metabolic syndrome by stimulating FXR signalling. Key words: silymarin; silybin; metabolic syndrome; non-alcoholic fatty liver disease; farnesyl X receptorAbbreviationsALT, alanine aminotransferase; AST, aspartate transaminase; BA, bile acid; DIO, diet-induced obesity; CA, cholic acid; DMSO, dimethylsulfoxide; FXR, farnesyl X receptor; HDL-c, high density lipoprotein cholesterol; HF, high-fat; IPITT, intraperitoneal insulin tolerance test; LDL-c, low density lipoprotein cholesterol; NAFLD, non-alcoholic fatty liver disease; NF-κB, nuclear factor kappa B; NR, nuclear receptor; MS, metabolic syndrome

  4. Hummingbirds rely on both paracellular and carrier-mediated intestinal glucose absorption to fuel high metabolism

    Science.gov (United States)

    McWhorter, Todd J; Bakken, Bradley Hartman; Karasov, William H; del Rio, Carlos Martínez

    2005-01-01

    Twenty years ago, the highest active glucose transport rate and lowest passive glucose permeability in vertebrates were reported in Rufous and Anna's hummingbirds (Selasphorus rufus, Calypte anna). These first measurements of intestinal nutrient absorption in nectarivores provided an unprecedented physiological foundation for understanding their foraging ecology. They showed that physiological processes are determinants of feeding behaviour. The conclusion that active, mediated transport accounts for essentially all glucose absorption in hummingbirds influenced two decades of subsequent research on the digestive physiology and nutritional ecology of nectarivores. Here, we report new findings demonstrating that the passive permeability of hummingbird intestines to glucose is much higher than previously reported, suggesting that not all sugar uptake is mediated. Even while possessing the highest active glucose transport rates measured in vertebrates, hummingbirds must rely partially on passive non-mediated intestinal nutrient absorption to meet their high mass-specific metabolic demands. PMID:17148346

  5. Leisure time sedentary behavior, occupational/domestic physical activity, and metabolic syndrome in U.S. men and women.

    Science.gov (United States)

    Sisson, Susan B; Camhi, Sarah M; Church, Timothy S; Martin, Corby K; Tudor-Locke, Catrine; Bouchard, Claude; Earnest, Conrad P; Smith, Steven R; Newton, Robert L; Rankinen, Tuomo; Katzmarzyk, Peter T

    2009-12-01

    This study examines leisure time sedentary behavior (LTSB) and usual occupational/domestic activity (UODA) and their relationship with metabolic syndrome and individual cardiovascular disease (CVD) risk factors, independent of physical activity level. National Health and Nutrition Examination Survey (NHANES) 2003-2006 data from men (n = 1868) and women (n = 1688) with fasting measures were classified as having metabolic syndrome by the American Heart Association/National Heart, Lung, and Blood Institute (AHA/NHLBI) definition. LTSB was determined from self-reported television viewing and computer usage. UODA was self-reported daily behavior (sitting, standing, walking, carrying loads). LTSB >or=4 hours/day was associated with odds of having metabolic syndrome of 1.94 (95% confidence interval [CI], 1.24, 3.03) in men compared to or=4 hour/day was also associated with higher odds of elevated waist circumference (1.88, CI, 1.03, 3.41), low high-density lipoprotein cholesterol (HDL-C) (1.84, CI, 1.35, 2.51), and high blood pressure (1.55, CI, 1.07, 2.24) in men. LTSB 2-3 hours/day was associated with higher odds of elevated glucose (1.32, CI, 1.00, 1.75) in men. In women, odds of metabolic syndrome were 1.54 (CI, 1.00, 2.37) with >or=4 hours/day LTSB, but LTSB was not associated with risk of the individual CVD risk factors. Higher LTSB was associated with metabolic syndrome in inactive men (1.50, CI, 1.07, 2.09), active men (1.74, CI, 1.11, 2.71), inactive women (1.69, CI, 1.24, 2.33), but not active women (1.62, CI, 0.87,3.01). UODA was not strongly associated with metabolic syndrome or CVD risk factors in either men or women. In men, high LTSB is associated with higher odds of metabolic syndrome and individual CVD risk factors regardless of meeting physical activity recommendations. In women, high LTSB is associated with higher odds of metabolic syndrome only in those not meeting the physical activity recommendations.

  6. Dietary patterns as compared with physical activity in relation to metabolic syndrome among Chinese adults.

    Science.gov (United States)

    He, Y; Li, Y; Lai, J; Wang, D; Zhang, J; Fu, P; Yang, X; Qi, L

    2013-10-01

    To examine the nationally-representative dietary patterns and their joint effects with physical activity on the likelihood of metabolic syndrome (MS) among 20,827 Chinese adults. CNNHS was a nationally representative cross-sectional observational study. Metabolic syndrome was defined according to the Joint Interim Statement definition. The "Green Water" dietary pattern, characterized by high intakes of rice and vegetables and moderate intakes in animal foods was related to the lowest prevalence of MS (15.9%). Compared to the "Green Water" dietary pattern, the "Yellow Earth" dietary pattern, characterized by high intakes of refined cereal products, tubers, cooking salt and salted vegetable was associated with a significantly elevated odds of MS (odds ratio 1.66, 95%CI: 1.40-1.96), after adjustment of age, sex, socioeconomic status and lifestyle factors. The "Western/new affluence" dietary pattern characterized by higher consumption of beef/lamb, fruit, eggs, poultry and seafood also significantly associated with MS (odds ratio: 1.37, 95%CI: 1.13-1.67). Physical activity showed significant interactions with the dietary patterns in relation to MS risk (P for interaction = 0.008). In the joint analysis, participants with the combination of sedentary activity with the "Yellow Earth" dietary pattern or the "Western/new affluence" dietary pattern both had more than three times (95%CI: 2.8-6.1) higher odds of MS than those with active activity and the "Green Water" dietary pattern. Our findings from the large Chinese national representative data indicate that dietary patterns affect the likelihood of MS. Combining healthy dietary pattern with active lifestyle may benefit more in prevention of MS. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Towards high resolution analysis of metabolic flux in cells and tissues.

    Science.gov (United States)

    Sims, James K; Manteiga, Sara; Lee, Kyongbum

    2013-10-01

    Metabolism extracts chemical energy from nutrients, uses this energy to form building blocks for biosynthesis, and interconverts between various small molecules that coordinate the activities of cellular pathways. The metabolic state of a cell is increasingly recognized to determine the phenotype of not only metabolically active cell types such as liver, muscle, and adipose, but also other specialized cell types such as neurons and immune cells. This review focuses on methods to quantify intracellular reaction flux as a measure of cellular metabolic activity, with emphasis on studies involving cells of mammalian tissue. Two key areas are highlighted for future development, single cell metabolomics and noninvasive imaging, which could enable spatiotemporally resolved analysis and thereby overcome issues of heterogeneity, a distinctive feature of tissue metabolism. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Metabolic potential and in situ activity of marine Marinimicrobia bacteria in an anoxic water column.

    Science.gov (United States)

    Bertagnolli, Anthony D; Padilla, Cory C; Glass, Jennifer B; Thamdrup, Bo; Stewart, Frank J

    2017-11-01

    Marinimicrobia bacteria are widespread in subeuphotic areas of the oceans and particularly abundant in oxygen minimum zones (OMZs). Information on Marinimicrobia metabolism is sparse, making the biogeochemical influence of this group challenging to predict. Here, metagenome-assembled genomes representing Marinimicrobia subgroups PN262000N21 and ARCTIC96B-7 were retrieved to near completion (97% and 94%) from OMZ metagenomes, with contamination (14.1%) observed only in ARCTIC96B-7. Genes for aerobic carbon monoxide (CO) oxidation, polysulfide metabolism and hydrogen utilization were identified only in PN262000N21, while genes for partial denitrification occurred in both genomes. Transcripts mapping to these genomes increased from utilizing proteins, including sulfur transferases, were enriched at sulfidic depths. PN262000N21 transcripts encoding a protein with fibronectin domains similar to those in cellulosome-producing bacteria were also abundant, suggesting a potential for high molecular weight carbon cycling. These data provide omic-level descriptions of metabolic potential and activity in OMZ-associated Marinimicrobia, suggesting differentiation between subgroups with roles in carbon and dissimilatory inorganic nitrogen and sulfur cycling. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  9. Dietary patterns as compared with physical activity in relation to metabolic syndrome among Chinese adults

    NARCIS (Netherlands)

    He, Y.; Li, Y.; Lai, J.; Wang, D.; Zhang, J.; Fu, P.; Yang, X.; Qi, L.

    2013-01-01

    Aims: To examine the nationally-representative dietary patterns and their joint effects with physical activity on the likelihood of metabolic syndrome (MS) among 20,827 Chinese adults. Methods and results: CNNHS was a nationally representative cross-sectional observational study. Metabolic syndrome

  10. Physical activity and sedentary behavior in metabolically healthy obese young women

    Science.gov (United States)

    Studies of physical activity (PA) and sedentary behavior (SB) in metabolically healthy obese (MHO) have been limited to postmenopausal white women. We sought to determine whether PA and SB differ between MHO and metabolically abnormal obese (MAO), in young black and white women....

  11. Natural AMPK Activators: An Alternative Approach for the Treatment and Management of Metabolic Syndrome.

    Science.gov (United States)

    Sharma, Hitender; Kumar, Sunil

    2017-01-01

    This review covers recent discoveries of phytoconstituents, herbal extracts and some semi-synthetic compounds for treating metabolic syndrome with AMPK activation as one of their mechanisms of action. Recent researches have demonstrated AMPK activation to ameliorate multiple components of metabolic syndrome by regulating a balance between anabolic and catabolic cellular reactions. The review attempts to delineate the AMPK activation by natural agents from the perspective of its functional consequences on enzymes, transcription factors and signaling molecules and also on other potential factors contributing in the amelioration of metabolic syndrome. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. Fibroblast activation protein (FAP as a novel metabolic target

    Directory of Open Access Journals (Sweden)

    Miguel Angel Sánchez-Garrido

    2016-10-01

    Conclusions: We conclude that pharmacological inhibition of FAP enhances levels of FGF21 in obese mice to provide robust metabolic benefits not observed in lean animals, thus validating this enzyme as a novel drug target for the treatment of obesity and diabetes.

  13. Activating transcription factor 3 regulates immune and metabolic homeostasis

    Czech Academy of Sciences Publication Activity Database

    Ryneš, J.; Donohoe, C. D.; Frommolt, P.; Brodesser, S.; Jindra, Marek; Uhlířová, M.

    2012-01-01

    Roč. 32, č. 19 (2012), s. 3949-3962 ISSN 0270-7306 R&D Projects: GA ČR(CZ) GD204/09/H058 Institutional support: RVO:60077344 Keywords : metabolic homeostasis Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.372, year: 2012

  14. Quantifying interictal metabolic activity in human temporal lobe epilepsy

    International Nuclear Information System (INIS)

    Henry, T.R.; Mazziotta, J.C.; Engel, J. Jr.; Christenson, P.D.; Zhang, J.X.; Phelps, M.E.; Kuhl, D.E.

    1990-01-01

    The majority of patients with complex partial seizures of unilateral temporal lobe origin have interictal temporal hypometabolism on [18F]fluorodeoxyglucose positron emission tomography (FDG PET) studies. Often, this hypometabolism extends to ipsilateral extratemporal sites. The use of accurately quantified metabolic data has been limited by the absence of an equally reliable method of anatomical analysis of PET images. We developed a standardized method for visual placement of anatomically configured regions of interest on FDG PET studies, which is particularly adapted to the widespread, asymmetric, and often severe interictal metabolic alterations of temporal lobe epilepsy. This method was applied by a single investigator, who was blind to the identity of subjects, to 10 normal control and 25 interictal temporal lobe epilepsy studies. All subjects had normal brain anatomical volumes on structural neuroimaging studies. The results demonstrate ipsilateral thalamic and temporal lobe involvement in the interictal hypometabolism of unilateral temporal lobe epilepsy. Ipsilateral frontal, parietal, and basal ganglial metabolism is also reduced, although not as markedly as is temporal and thalamic metabolism

  15. Diminished neuronal metabolic activity in Alzheimer's disease. Review article

    NARCIS (Netherlands)

    Salehi, A.; Swaab, D. F.

    1999-01-01

    An increasing number of studies have appeared in the literature suggesting that Alzheimer's disease (AD) is a hypometabolic brain disorder. Decreased metabolism in AD has been revealed by a variety of in vivo and postmortem methods and techniques including positron emission tomography and glucose

  16. The metabolically active bacterial microbiome of tonsils and mandibular lymph nodes of slaughter pigs

    Directory of Open Access Journals (Sweden)

    Evelyne eMann

    2015-12-01

    Full Text Available The exploration of microbiomes in lymphatic organs is relevant for basic and applied research into explaining microbial translocation processes and understanding cross-contamination during slaughter. This study aimed to investigate whether metabolically active bacteria (MAB could be detected within tonsils and mandibular lymph nodes (MLNs of pigs. The hypervariable V1-V2 region of the bacterial 16S rRNA genes was amplified from cDNA from tonsils and MLNs of eight clinically healthy slaughter pigs. Pyrosequencing yielded 82,857 quality-controlled sequences, clustering into 576 operational taxonomic units (OTUs, which were assigned to 230 genera and 16 phyla. The actual number of detected OTUs per sample varied highly (23-171 OTUs. Prevotella zoogleoformans and Serratia proteamaculans (best type strain hits were most abundant (10.6% and 41.8% respectively in tonsils and MLNs, respectively. To explore bacterial correlation patterns between samples of each tissue, pairwise Spearman correlations (rs were calculated. In total, 194 strong positive and negative correlations |rs| ≥ 0.6 were found. We conclude that (i lymphatic organs harbor a high diversity of metabolically active bacteria, (ii the occurrence of viable bacteria in lymph nodes is not restricted to pathological processes and (iii lymphatic tissues may serve as a contamination source in pig slaughterhouses. This study confirms the necessity of the EFSA regulation with regard to a meat inspection based on visual examinations to foster a minimization of microbial contamination.

  17. Aerobic glycolysis and high level of lactate in cancer metabolism and microenvironment

    Directory of Open Access Journals (Sweden)

    Bo Jiang

    2017-03-01

    Full Text Available Metabolic abnormalities is a hallmark of cancer. About 100 years ago, Nobel laureate Otto Heinrich Warburg first described high rate of glycolysis in cancer cells. Recently more and more novel opinions about cancer metabolism supplement to this hypothesis, consist of glucose uptake, lactic acid generation and secretion, acidification of the microenvironment and cancer immune evasion. Here we briefly review metabolic pathways generating lactate, and discuss the function of higher lactic acid in cancer microenvironments.

  18. Kaempferol ameliorates symptoms of metabolic syndrome by regulating activities of liver X receptor-β.

    Science.gov (United States)

    Hoang, Minh-Hien; Jia, Yaoyao; Mok, Boram; Jun, Hee-jin; Hwang, Kwang-Yeon; Lee, Sung-Joon

    2015-08-01

    Kaempferol is a dietary flavonol previously shown to regulate cellular lipid and glucose metabolism. However, its molecular mechanisms of action and target proteins have remained elusive, probably due to the involvement of multiple proteins. This study investigated the molecular targets of kaempferol. Ligand binding of kaempferol to liver X receptors (LXRs) was quantified by time-resolved fluorescence resonance energy transfer and surface plasmon resonance analyses. Kaempferol directly binds to and induces the transactivation of LXRs, with stronger specificity for the β-subtype (EC50 = 0.33 μM). The oral administration of kaempferol in apolipoprotein-E-deficient mice (150 mg/day/kg body weight) significantly reduced plasma glucose and increased high-density lipoprotein cholesterol levels and insulin sensitivity compared with the vehicle-fed control. Kaempferol also reduced plasma triglyceride concentrations and did not cause liver steatosis, a common side effect of potent LXR activation. In immunoblotting analysis, kaempferol reduced the nuclear accumulation of sterol regulatory element-binding protein-1 (SREBP-1). Our results show that the suppression of SREBP-1 activity and the selectivity for LXR-β over LXR-α by kaempferol contribute to the reductions of plasma and hepatic triglyceride concentrations in mice fed kaempferol. They also suggest that kaempferol activates LXR-β and suppresses SREBP-1 to enhance symptoms in metabolic syndrome. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Stoichiometry and kinetics of poly-{beta}-hydroxybutyrate metabolism in aerobic, slow growing, activated sludge cultures

    Energy Technology Data Exchange (ETDEWEB)

    Beun, J.J.; Paletta, F.; Loosdrecht, M.C.M. Van; Heijnen, J.J.

    2000-02-20

    This paper discusses the poly-{beta}-hydroxybutyrate (PHB) metabolism in aerobic, slow growing, activated sludge cultures, based on experimental data and on a metabolic model. The dynamic conditions which occur in activated sludge processes were simulated in a 2-L sequencing batch reactor (SBR) by subjecting a mixed microbial population to successive periods of external substrate availability (feast period) and no external substrate availability (famine period). Under these conditions intracellular storage and consumption of PHB was observed. It appeared that in the feast period, 66% to almost 100% of the substrate consumed is used for storage of PHB, the remainder is used for growth and maintenance processes. Furthermore, it appeared that at high sludge retention time (SRT) the growth rate in the feast and famine periods was the same. With decreasing SRT the growth rate in the feast period increased relative to the growth rate in the famine period. Acetate consumption and PHB production in the feast period both proceeded with a zero-order rate in acetate and PHB concentration respectively. PHB consumption in the famine period could best be described kinetically with a nth order degradation equation in PHB concentration. The obtained results are discussed in the context of the general activated sludge models.

  20. Effects of a high protein diet on cognition and brain metabolism in cirrhotic rats.

    Science.gov (United States)

    Méndez-López, M; Méndez, M; Arias, J; Arias, J L

    2015-10-01

    Hepatic encephalopathy (HE) is a neurological complication observed in patients with liver disease. Patients who suffer from HE present neuropsychiatric, neuromuscular and behavioral symptoms. Animal models proposed to study HE resulting from cirrhosis mimic the clinical characteristics of cirrhosis and portal hypertension, and require the administration of hepatotoxins such as thioacetamide (TAA). The aim of this study was to assess the effects of a high protein diet on motor function, anxiety and memory processes in a model of cirrhosis induced by TAA administration. In addition, we used cytochrome c-oxidase (COx) histochemistry to assess the metabolic activity of the limbic system regions. Male rats were distributed into groups: control, animals with cirrhosis, Control rats receiving a high protein diet, and animals with cirrhosis receiving a high protein diet. Results showed preserved motor function and normal anxiety levels in all the groups. The animals with cirrhosis showed an impairment in active avoidance behavior and spatial memory, regardless of the diet they received. However, the animals with cirrhosis and a high protein diet showed longer escape latencies on the spatial memory task. The model of cirrhosis presented an under-activation of the dentate gyrus and CA3 hippocampal subfields and the medial part of the medial mammillary nucleus. The results suggest that a high protein intake worsens spatial memory deficits shown by the TAA-induced model of cirrhosis. However, high protein ingestion has no influence on the COx hypoactivity associated with the model. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. High risk of metabolic syndrome among black South African women ...

    African Journals Online (AJOL)

    Background: There is an increased prevalence of metabolic syndrome (MetS) in individuals with severe mental illness (SMI) globally. The prevalence of MetS is higher in black women compared to black men from South Africa. Aim: To compare the prevalence of MetS between black South African men and women with SMI ...

  2. Chronic innate immune activation of TBK1 suppresses mTORC1 activity and dysregulates cellular metabolism.

    Science.gov (United States)

    Hasan, Maroof; Gonugunta, Vijay K; Dobbs, Nicole; Ali, Aktar; Palchik, Guillermo; Calvaruso, Maria A; DeBerardinis, Ralph J; Yan, Nan

    2017-01-24

    Three-prime repair exonuclease 1 knockout (Trex1 -/- ) mice suffer from systemic inflammation caused largely by chronic activation of the cyclic GMP-AMP synthase-stimulator of interferon genes-TANK-binding kinase-interferon regulatory factor 3 (cGAS-STING-TBK1-IRF3) signaling pathway. We showed previously that Trex1-deficient cells have reduced mammalian target of rapamycin complex 1 (mTORC1) activity, although the underlying mechanism is unclear. Here, we performed detailed metabolic analysis in Trex1 -/- mice and cells that revealed both cellular and systemic metabolic defects, including reduced mitochondrial respiration and increased glycolysis, energy expenditure, and fat metabolism. We also genetically separated the inflammatory and metabolic phenotypes by showing that Sting deficiency rescued both inflammatory and metabolic phenotypes, whereas Irf3 deficiency only rescued inflammation on the Trex1 -/- background, and many metabolic defects persist in Trex1 -/- Irf3 -/- cells and mice. We also showed that Leptin deficiency (ob/ob) increased lipogenesis and prolonged survival of Trex1 -/- mice without dampening inflammation. Mechanistically, we identified TBK1 as a key regulator of mTORC1 activity in Trex1 -/- cells. Together, our data demonstrate that chronic innate immune activation of TBK1 suppresses mTORC1 activity, leading to dysregulated cellular metabolism.

  3. Modeling and Classification of Kinetic Patterns of Dynamic Metabolic Biomarkers in Physical Activity.

    Directory of Open Access Journals (Sweden)

    Marc Breit

    2015-08-01

    Full Text Available The objectives of this work were the classification of dynamic metabolic biomarker candidates and the modeling and characterization of kinetic regulatory mechanisms in human metabolism with response to external perturbations by physical activity. Longitudinal metabolic concentration data of 47 individuals from 4 different groups were examined, obtained from a cycle ergometry cohort study. In total, 110 metabolites (within the classes of acylcarnitines, amino acids, and sugars were measured through a targeted metabolomics approach, combining tandem mass spectrometry (MS/MS with the concept of stable isotope dilution (SID for metabolite quantitation. Biomarker candidates were selected by combined analysis of maximum fold changes (MFCs in concentrations and P-values resulting from statistical hypothesis testing. Characteristic kinetic signatures were identified through a mathematical modeling approach utilizing polynomial fitting. Modeled kinetic signatures were analyzed for groups with similar behavior by applying hierarchical cluster analysis. Kinetic shape templates were characterized, defining different forms of basic kinetic response patterns, such as sustained, early, late, and other forms, that can be used for metabolite classification. Acetylcarnitine (C2, showing a late response pattern and having the highest values in MFC and statistical significance, was classified as late marker and ranked as strong predictor (MFC = 1.97, P < 0.001. In the class of amino acids, highest values were shown for alanine (MFC = 1.42, P < 0.001, classified as late marker and strong predictor. Glucose yields a delayed response pattern, similar to a hockey stick function, being classified as delayed marker and ranked as moderate predictor (MFC = 1.32, P < 0.001. These findings coincide with existing knowledge on central metabolic pathways affected in exercise physiology, such as β-oxidation of fatty acids, glycolysis, and glycogenolysis. The presented modeling

  4. High-Activity Dealloyed Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Kongkanand, Anusorn [General Motors LLC, Pontiac, MI (United States)

    2014-09-30

    Reduction of costly Pt usage in proton exchange membrane fuel cell electrodes is one of the major challenges towards development and commercialization of fuel cell vehicles. Although few have met the initial-kinetic activity requirements in a realistic fuel cell device, no catalyst material has ever met the demanding fuel cell durability targets set by DOE. In this project, a team of 4 universities and 2 companies came together to investigate a concept that appeared promising in preliminary non-fuel cell tests then to further develop the catalyst to a mature level ready for vehicle implementation. The team consists of academia with technical leadership in their respective areas, a catalyst supplier, and a fuel cell system integrator.The tightly collaborative project enabled development of a highly active and durable catalyst with performance that significantly exceeds that of previous catalysts and meets the DOE targets for the first time (Figure 1A). The catalyst was then further evaluated in full-active-area stack in a realistic vehicle operating condition (Figure 1B). This is the first public demonstration that one can realize the performance benefit and Pt cost reduction over a conventional pure Pt catalyst in a long-term realistic PEMFC system. Furthermore, systematic analyses of a range of catalysts with different performance after fuel cell testing allowed for correlation between catalyst microstructure and its electrocatalytic activity and durability. This will in turn aid future catalyst development.

  5. The metabolic ER stress sensor IRE1α suppresses alternative activation of macrophages and impairs energy expenditure in obesity.

    Science.gov (United States)

    Shan, Bo; Wang, Xiaoxia; Wu, Ying; Xu, Chi; Xia, Zhixiong; Dai, Jianli; Shao, Mengle; Zhao, Feng; He, Shengqi; Yang, Liu; Zhang, Mingliang; Nan, Fajun; Li, Jia; Liu, Jianmiao; Liu, Jianfeng; Jia, Weiping; Qiu, Yifu; Song, Baoliang; Han, Jing-Dong J; Rui, Liangyou; Duan, Sheng-Zhong; Liu, Yong

    2017-05-01

    Obesity is associated with metabolic inflammation and endoplasmic reticulum (ER) stress, both of which promote metabolic disease progression. Adipose tissue macrophages (ATMs) are key players orchestrating metabolic inflammation, and ER stress enhances macrophage activation. However, whether ER stress pathways underlie ATM regulation of energy homeostasis remains unclear. Here, we identified inositol-requiring enzyme 1α (IRE1α) as a critical switch governing M1-M2 macrophage polarization and energy balance. Myeloid-specific IRE1α abrogation in Ern1 f/f ; Lyz2-Cre mice largely reversed high-fat diet (HFD)-induced M1-M2 imbalance in white adipose tissue (WAT) and blocked HFD-induced obesity, insulin resistance, hyperlipidemia and hepatic steatosis. Brown adipose tissue (BAT) activity, WAT browning and energy expenditure were significantly higher in Ern1 f/f ; Lyz2-Cre mice. Furthermore, IRE1α ablation augmented M2 polarization of macrophages in a cell-autonomous manner. Thus, IRE1α senses protein unfolding and metabolic and immunological states, and consequently guides ATM polarization. The macrophage IRE1α pathway drives obesity and metabolic syndrome through impairing BAT activity and WAT browning.

  6. Quantification of metabolically active transient storage (MATS) in two reaches with contrasting transient storage and ecosystem respiration

    Science.gov (United States)

    Alba Argerich; Roy Haggerty; Eugènia Martí; Francesc Sabater; Jay. Zarnetske

    2011-01-01

    Water transient storage zones are hotspots for metabolic activity in streams although the contribution of different types of transient storage zones to the whole�]reach metabolic activity is difficult to quantify. In this study we present a method to measure the fraction of the transient storage that is metabolically active (MATS) in two consecutive reaches...

  7. Association of Objectively Measured Physical Activity and Metabolic Syndrome Among US Adults With Osteoarthritis.

    Science.gov (United States)

    Liu, Shao-Hsien; Waring, Molly E; Eaton, Charles B; Lapane, Kate L

    2015-10-01

    To investigate the association between objectively measured physical activity and metabolic syndrome among adults with osteoarthritis (OA). Using cross-sectional data from the 2003-2006 National Health and Nutrition Examination Survey, we identified 566 adults with OA with available accelerometer data assessed using Actigraph AM-7164 and measurements necessary to determine metabolic syndrome by the Adult Treatment Panel III. Analysis of variance was conducted to examine the association between continuous variables in each activity level and metabolic syndrome components. Logistic models estimated the relationship of quartile of daily minutes of different physical activity levels to odds of metabolic syndrome adjusted for socioeconomic and health factors. Among persons with OA, most were women average age of 62.1 years and average disease duration of 12.9 years. Half of adults with OA had metabolic syndrome (51.0%; 95% confidence interval [95% CI] 44.2%-57.8%), and only 9.6% engaged in the recommended 150 minutes per week of moderate/vigorous physical activity. Total sedentary time was associated with higher rates of metabolic syndrome and its components, while light and objectively measured moderate/vigorous physical activity was inversely associated with metabolic syndrome and its components. Higher levels of light activity were associated with lower prevalence of metabolic syndrome (quartile 4 versus quartile 1: adjusted odds ratio 0.45, 95% CI 0.24-0.84, P for linear trend physical activity, especially in light intensity, is more likely to be associated with decreasing prevalence of metabolic syndrome among persons with OA. © 2015, American College of Rheumatology.

  8. Diet composition and activity level of at risk and metabolically healthy obese American adults.

    Science.gov (United States)

    Hankinson, Arlene L; Daviglus, Martha L; Van Horn, Linda; Chan, Queenie; Brown, Ian; Holmes, Elaine; Elliott, Paul; Stamler, Jeremiah

    2013-03-01

    Obesity often clusters with other major cardiovascular disease risk factors, yet a subset of the obese appears to be protected from these risks. Two obesity phenotypes are described, (i) "metabolically healthy" obese, broadly defined as body mass index (BMI) ≥ 30 kg/m(2) and favorable levels of blood pressure, lipids, and glucose; and (ii) "at risk" obese, BMI ≥ 30 with unfavorable levels of these risk factors. More than 30% of obese American adults are metabolically healthy. Diet and activity determinants of obesity phenotypes are unclear. We hypothesized that metabolically healthy obese have more favorable behavioral factors, including less adverse diet composition and higher activity levels than at risk obese in the multi-ethnic group of 775 obese American adults ages 40-59 years from the International Population Study on Macro/Micronutrients and Blood Pressure (INTERMAP) cohort. In gender-stratified analyses, mean values for diet composition and activity behavior variables, adjusted for age, race, and education, were compared between metabolically healthy and at risk obese. Nearly one in five (149/775 or 19%) of obese American INTERMAP participants were classified as metabolically healthy obese. Diet composition and most activity behaviors were similar between obesity phenotypes, although metabolically healthy obese women reported higher sleep duration than at risk obese women. These results do not support hypotheses that diet composition and/or physical activity account for the absence of cardiometabolic abnormalities in metabolically healthy obese. Copyright © 2012 The Obesity Society.

  9. Natural compounds regulate energy metabolism by the modulating the activity of lipid-sensing nuclear receptors.

    Science.gov (United States)

    Goto, Tsuyoshi; Kim, Young-Il; Takahashi, Nobuyuki; Kawada, Teruo

    2013-01-01

    Obesity causes excess fat accumulation in various tissues, most notoriously in the adipose tissue, along with other insulin-responsive organs such as skeletal muscle and the liver, which predisposes an individual to the development of metabolic abnormalities. The molecular mechanisms underlying obesity-induced metabolic abnormalities have not been completely elucidated; however, in recent years, the search for therapies to prevent the development of obesity and obesity-associated metabolic disorders has increased. It is known that several nuclear receptors, when activated by specific ligands, regulate carbohydrate and lipid metabolism at the transcriptional level. The expression of lipid metabolism-related enzymes is directly regulated by the activity of various nuclear receptors via their interaction with specific response elements in promoters of those genes. Many natural compounds act as ligands of nuclear receptors and regulate carbohydrate and lipid metabolism by regulating the activities of these nuclear receptors. In this review, we describe our current knowledge of obesity, the role of lipid-sensing nuclear receptors in energy metabolism, and several examples of food factors that act as agonists or antagonists of nuclear receptors, which may be useful for the management of obesity and the accompanying energy metabolism abnormalities. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Involvement of glucocorticoid prereceptor metabolism and signaling in rat visceral adipose tissue lipid metabolism after chronic stress combined with high-fructose diet.

    Science.gov (United States)

    Bursać, Biljana; Djordjevic, Ana; Veličković, Nataša; Milutinović, Danijela Vojnović; Petrović, Snježana; Teofilović, Ana; Gligorovska, Ljupka; Preitner, Frederic; Tappy, Luc; Matić, Gordana

    2018-05-03

    Both fructose overconsumption and increased glucocorticoids secondary to chronic stress may contribute to overall dyslipidemia. In this study we specifically assessed the effects and interactions of dietary fructose and chronic stress on lipid metabolism in the visceral adipose tissue (VAT) of male Wistar rats. We analyzed the effects of 9-week 20% high fructose diet and 4-week chronic unpredictable stress, separately and in combination, on VAT histology, glucocorticoid prereceptor metabolism, glucocorticoid receptor subcellular redistribution and expression of major metabolic genes. Blood triglycerides and fatty acid composition were also measured to assess hepatic Δ9 desaturase activity. The results showed that fructose diet increased blood triglycerides and Δ9 desaturase activity. On the other hand, stress led to corticosterone elevation, glucocorticoid receptor activation and decrease in adipocyte size, while phosphoenolpyruvate carboxykinase, adipose tissue triglyceride lipase, FAT/CD36 and sterol regulatory element binding protein-1c (SREBP-1c) were increased, pointing to VAT lipolysis and glyceroneogenesis. The combination of stress and fructose diet was associated with marked stimulation of fatty acid synthase and acetyl-CoA carboxylase mRNA level and with increased 11β-hydroxysteroid dehydrogenase type 1 and hexose-6-phosphate dehydrogenase protein levels, suggesting a coordinated increase in hexose monophosphate shunt and de novo lipogenesis. It however did not influence the level of peroxisome proliferator-activated receptor-gamma, SREBP-1c and carbohydrate responsive element-binding protein. In conclusion, our results showed that only combination of dietary fructose and stress increase glucocorticoid prereceptor metabolism and stimulates lipogenic enzyme expression suggesting that interaction between stress and fructose may be instrumental in promoting VAT expansion and dysfunction. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Effects of total solar eclipse on the behavioural and metabolic activities of tropical intertidal animals

    Digital Repository Service at National Institute of Oceanography (India)

    Parulekar, A.H.; Ansari, Z.A.; Verlecar, X.N.; Harkantra, S.N.

    To study the effects of total solar eclipse of 16th Feb. 1980, on the behaviour and metabolic activities of intertidal invertebrates - nematodes, gastropods and bivalves - having different habitat preference a set of relevant observations, covering...

  12. A specific metabolic pattern related to the hallucinatory activity in schizophrenia

    International Nuclear Information System (INIS)

    Huret, J.D.; Martinot, J.L.; Lesur, A.; Mazoyer, B.; Pappata, S.; Syrota, A.; Baron, J.C.; Lemperiere, T.

    1988-01-01

    A clinical and PEI study using 18 F - fluorodesoxyglucose for measuring local cerebral glucose metabolism with the aim of showing a specific pattern related to the hallucinatory activity, is presented in schizophrenic patients all experiencing hallucinations or pseudo-halluccinations

  13. Cardiac Autonomic Nervous System Activation and Metabolic Profile in Young Children : The ABCD Study

    NARCIS (Netherlands)

    Vrijkotte, Tanja G M; van den Born, Bert-Jan H; Hoekstra, Christine M C A; Gademan, Maaike G J; van Eijsden, Manon; de Rooij, Susanne R; Twickler, Marcel T B

    2015-01-01

    BACKGROUND: In adults, increased sympathetic and decreased parasympathetic nervous system activity are associated with a less favorable metabolic profile. Whether this is already determined at early age is unknown. Therefore, we aimed to assess the association between autonomic nervous system

  14. Mutagenicity of silver nanoparticles in CHO cells dependent on particle surface functionalization and metabolic activation

    Science.gov (United States)

    Guigas, Claudia; Walz, Elke; Gräf, Volker; Heller, Knut J.; Greiner, Ralf

    2017-06-01

    The potential of engineered nanomaterials to induce genotoxic effects is an important aspect of hazard identification. In this study, cytotoxicity and mutagenicity as a function of metabolic activation of three silver nanoparticle (AgNP) preparations differing in surface coating were determined in Chinese hamster ovary (CHO) subclone K1 cells. Three silver nanoparticle preparations ( x 90,0 culture medium containing 10% fetal calf serum (FCS) than in medium without FCS. The HPRT test without metabolic activation system S9 revealed that compared to the other AgNP formulations, citrate-coated Ag showed a lower genotoxic effect. However, addition of S9 increased the mutation frequency of all AgNPs and especially influenced the genotoxicity of Citrate-Ag. The results showed that exogenous metabolic activation of nanosilver is crucial even if interactions of the metabolic activation system, nanosilver, and cells are not really understood up to now.

  15. Effectiveness of physical activity intervention among government employees with metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Chee Huei Phing

    2017-12-01

    Conclusion: The findings of this study suggest that physical activity intervention via aerobics classes is an effective strategy for improving step counts and reducing the prevalence of metabolic syndrome.

  16. Metabolic activity of boar semen stored in different extenders supplemented with ostrich egg yolk lipoproteins

    OpenAIRE

    Dziekońska Anna; Kinder Marek; Fraser Leyland; Strzeżek Jerzy; Kordan Władysław

    2017-01-01

    Introduction: The aim of this study was to evaluate the effect of lipoprotein fraction isolated from ostrich egg yolk (LPFo) on the metabolic activity of boar spermatozoa following liquid semen storage in different extenders and temperatures.

  17. Metabolic activity of boar semen stored in different extenders supplemented with ostrich egg yolk lipoproteins

    Directory of Open Access Journals (Sweden)

    Dziekońska Anna

    2017-03-01

    Full Text Available Introduction: The aim of this study was to evaluate the effect of lipoprotein fraction isolated from ostrich egg yolk (LPFo on the metabolic activity of boar spermatozoa following liquid semen storage in different extenders and temperatures.

  18. AMP-Activated Protein Kinase (AMPK) Regulates Energy Metabolism through Modulating Thermogenesis in Adipose Tissue

    Science.gov (United States)

    Wu, Lingyan; Zhang, Lina; Li, Bohan; Jiang, Haowen; Duan, Yanan; Xie, Zhifu; Shuai, Lin; Li, Jia; Li, Jingya

    2018-01-01

    Obesity occurs when excess energy accumulates in white adipose tissue (WAT), whereas brown adipose tissue (BAT), which is specialized in dissipating energy through thermogenesis, potently counteracts obesity. White adipocytes can be converted to thermogenic “brown-like” cells (beige cells; WAT browning) under various stimuli, such as cold exposure. AMP-activated protein kinase (AMPK) is a crucial energy sensor that regulates energy metabolism in multiple tissues. However, the role of AMPK in adipose tissue function, especially in the WAT browning process, is not fully understood. To illuminate the effect of adipocyte AMPK on energy metabolism, we generated Adiponectin-Cre-driven adipose tissue-specific AMPK α1/α2 KO mice (AKO). These AKO mice were cold intolerant and their inguinal WAT displayed impaired mitochondrial integrity and biogenesis, and reduced expression of thermogenic markers upon cold exposure. High-fat-diet (HFD)-fed AKO mice exhibited increased adiposity and exacerbated hepatic steatosis and fibrosis and impaired glucose tolerance and insulin sensitivity. Meanwhile, energy expenditure and oxygen consumption were markedly decreased in the AKO mice both in basal conditions and after stimulation with a β3-adrenergic receptor agonist, CL 316,243. In contrast, we found that in HFD-fed obese mouse model, chronic AMPK activation by A-769662 protected against obesity and related metabolic dysfunction. A-769662 alleviated HFD-induced glucose intolerance and reduced body weight gain and WAT expansion. Notably, A-769662 increased energy expenditure and cold tolerance in HFD-fed mice. A-769662 treatment also induced the browning process in the inguinal fat depot of HFD-fed mice. Likewise, A-769662 enhanced thermogenesis in differentiated inguinal stromal vascular fraction (SVF) cells via AMPK signaling pathway. In summary, a lack of adipocyte AMPKα induced thermogenic impairment and obesity in response to cold and nutrient-overload, respectively

  19. Exercise reverses metabolic syndrome in high-fat diet-induced obese rats.

    Science.gov (United States)

    Touati, Sabeur; Meziri, Fayçal; Devaux, Sylvie; Berthelot, Alain; Touyz, Rhian M; Laurant, Pascal

    2011-03-01

    Chronic consumption of a high-fat diet induces obesity. We investigated whether exercise would reverse the cardiometabolic disorders associated with obesity without it being necessary to change from a high- to normal-fat diet. Sprague-Dawley rats were placed on a high-fat (HFD) or control diet (CD) for 12 wk. HFD rats were then divided into four groups: sedentary HFD (HFD-S), exercise trained (motor treadmill for 12 wk) HFD (HFD-Ex), modified diet (HFD to CD; HF/CD-S), and exercise trained with modified diet (HF/CD-Ex). Cardiovascular risk parameters associated with metabolic syndrome were measured, and contents of aortic Akt, phospho-Akt at Ser (473), total endothelial nitric oxide synthase (eNOS), and phospho-eNOS at Ser (1177) were determined by Western blotting. Chronic consumption of HFD induced a metabolic syndrome. Exercise and dietary modifications reduced adiposity, improved glucose and insulin levels and plasma lipid profile, and exerted an antihypertensive effect. Exercise was more effective than dietary modification in improving plasma levels of thiobarbituric acid-reacting substance and in correcting the endothelium-dependent relaxation to acetylcholine and insulin. Furthermore, independent of the diet used, exercise increased Akt and eNOS phosphorylation. Metabolic syndrome induced by HFD is reversed by exercise and diet modification. It is demonstrated that exercise training induces these beneficial effects without the requirement for dietary modification, and these beneficial effects may be mediated by shear stress-induced Akt/eNOS pathway activation. Thus, exercise may be an effective strategy to reverse almost all the atherosclerotic risk factors linked to obesity, particularly in the vasculature.

  20. Physical activity, Cardio-Respiratory Fitness, and Metabolic Traits in Rural Mexican Tarahumara

    DEFF Research Database (Denmark)

    Christensen, Dirk Lund; Alcala-Sanchez, Imelda; Leal-Berumen, Irene

    2012-01-01

    Objectives: To study the association between physical activity energy expenditure (PAEE) and cardio-respiratory fitness (CRF) with key metabolic traits and anthropometric measures in the Tarahumara of Mexico. Methods: A cross-sectional study was carried out in five rural communities in Chihuahua...... suggests high levels of overweight and hypertension in the Tarahumara, and points to fitness and physical activity as potential intervention targets although findings should be confirmed in larger samples.......) to estimate CRF. Random blood glucose level and resting blood pressure (BP) were measured with standard anthropometrics. Results: Mean (SD) PAEE was 71.2 (30.3) kJ kg21 day21 and CRF was 36.6 (6.5) mlO2 min21 kg21. Mean (SD) glucose was 127.9 (32.4) mg/dl, with 3.3% having diabetes. Mean (SD) systolic...

  1. In vivo metabolic activity of hamster suprachiasmatic nuclei: use of anesthesia

    International Nuclear Information System (INIS)

    Schwartz, W.J.

    1987-01-01

    In vivo glucose utilization was measured in the suprachiasmatic nuclei (SCN) of Golden hamsters using the 14 C-labeled deoxyglucose technique. A circadian rhythm of SCN metabolic activity could be measured in this species, but only during pentobarbital sodium anesthesia when the surrounding background activity of adjacent hypothalamus was suppressed. Both the SCN's metabolic oscillation and its time-keeping ability are resistant to general anesthesia

  2. Effectiveness of physical activity intervention among government employees with metabolic syndrome

    OpenAIRE

    Chee Huei Phing; Hazizi Abu Saad; M.Y. Barakatun Nisak; M.T. Mohd Nasir

    2017-01-01

    Background/Objective: Our study aimed to assess the effects of physical activity interventions via standing banners (point-of-decision prompt) and aerobics classes to promote physical activity among individuals with metabolic syndrome. Methods: We conducted a cluster randomized controlled intervention trial (16-week intervention and 8-week follow-up). Malaysian government employees in Putrajaya, Malaysia, with metabolic syndrome were randomly assigned by cluster to a point-of-decision prom...

  3. Activity of carbohydrate metabolism enzymes of bone marrow cells of rats affected by radiation

    International Nuclear Information System (INIS)

    Sukhomlinov, B.F.; Grinyuk, Yu.S.; Sibirnaya, N.A.; Starikovich, L.S.; Khmil', M.V.

    1990-01-01

    The influence of ionizing radiation (154.8 mC/kg on activity of some carbohydrate metabolism dehydrogenases in cells of the whole and fractionated rat bone marrow has been investigated. Different glucose metabolism units differently responded to radiation, the highest radiation response being exhibited by pentosophosphate cycle processes. The pattern of changes in the enzyme activity of different myelocaryocyte populations was shown to depend directly on the functional specilization of cells and the energy exchange types predominated in them

  4. Effects of yam dioscorin interventions on improvements of the metabolic syndrome in high-fat diet-induced obese rats

    OpenAIRE

    Shih, Shen-Liang; Lin, Yin-Shiou; Lin, Shyr-Yi; Hou, Wen-Chi

    2015-01-01

    Background The metabolic syndrome (MS) is termed a cluster of multiple metabolic risk criteria which is positively correlated with cardiovascular disease and type 2 diabetes mellitus (DM). Yam dioscorins have been reported to exhibit biological activities, however, little is known their preventive effects on the MS. Therefore, a high-fat (HF) diet was used to induce Wistar rat obesity and then yam dioscorin (50?mg/kg, dio50) was intervened daily concurrent HF diet (HF diet?+?dio50) for five w...

  5. Metabolic rate and thermal conductance of lemmings from high-arctic Canada and Siberia

    NARCIS (Netherlands)

    Klaassen, M.R.J.; Agrell, J.; Lindström, A.

    2002-01-01

    The arctic climate places high demands on the energy metabolism of its inhabitants. We measured resting (RMR) and basal metabolic rates (BMR), body temperatures, and dry and wet thermal conductances in summer morphs of the lemmings Dicrostonyx groenlandicus and Lemmus trimucronatus in arctic Canada,

  6. Tissue-specific metabolic activation and mutagenicity of 3-nitrobenzanthrone in MutaMouse.

    Science.gov (United States)

    Chen, Guosheng; Gingerich, John; Soper, Lynda; Douglas, George R; White, Paul A

    2008-10-01

    3-Nitrobenzanthrone (3-NBA) is a mutagen and suspected human carcinogen detected in diesel exhaust, airborne particulate matter, and urban soil. We investigated the tissue specific mutagenicity of 3-NBA at the lacZ locus of transgenic MutaMouse following acute single dose or 28-day repeated-dose oral administration. In the acute high dose (50 mg/kg) exposure, increased lacZ mutant frequency was observed in bone marrow and colonic epithelium, but not in liver and bladder. In the repeated-dose study, a dose-dependent increase in lacZ mutant frequency was observed in bone marrow and liver (2- and 4-fold increase above control), but not in lung or intestinal epithelium. In addition, a concentration-dependent increase in mutant frequency (8.5-fold above control) was observed for MutaMouse FE1 lung epithelial cells exposed in vitro. 1-Nitropyrene reductase, 3-NBA reductase, and acetyltransferase activities were measured in a variety of MutaMouse specimens in an effort to link metabolic activation and mutagenicity. High 3-NBA nitroreductase activities were observed in lung, liver, colon and bladder, and detectable N-acetyltransferase activities were found in all tissues except bone marrow. The relatively high 3-NBA nitroreductase activity in MutaMouse tissues, as compared with those in Salmonella TA98 and TA100, suggests that 3-NBA is readily reduced and activated in vivo. High 3-NBA nitroreductase levels in liver and colon are consistent with the elevated lacZ mutant frequency values, and previously noted inductions of hepatic DNA adducts. Despite an absence of induced lacZ mutations, the highest 3-NBA reductase activity was detected in lung. Further studies are warranted, especially following inhalation or intratracheal exposures. Published 2008 Wiley-Liss, Inc.

  7. In Vitro Effects of Sports and Energy Drinks on Streptococcus mutans Biofilm Formation and Metabolic Activity.

    Science.gov (United States)

    Vinson, LaQuia A; Goodlett, Amy K; Huang, Ruijie; Eckert, George J; Gregory, Richard L

    2017-09-15

    Sports and energy drinks are being increasingly consumed and contain large amounts of sugars, which are known to increase Streptococcus mutans biofilm formation and metabolic activity. The purpose of this in vitro study was to investigate the effects of sports and energy drinks on S. mutans biofilm formation and metabolic activity. S. mutans UA159 was cultured with and without a dilution (1:3 ratio) of a variety of sports and energy drinks in bacterial media for 24 hours. The biofilm was washed, fixed, and stained. Biofilm growth was evaluated by reading absorbance of the crystal violet. Biofilm metabolic activity was measured by the biofilm-reducing XTT to a water-soluble orange compound. Gatorade Protein Recovery Shake and Starbucks Doubleshot Espresso Energy were found to significantly increase biofilm (30-fold and 22-fold, respectively) and metabolic activity (2-fold and 3-fold, respectively). However, most of the remaining drinks significantly inhibited biofilm growth and metabolic activity. Several sports and energy drinks, with sugars or sugar substitutes as their main ingredients inhibited S. mutans biofilm formation. Among the drinks evaluated, Gatorade Protein Recovery Chocolate Shake and Starbucks Doubleshot Energy appear to have cariogenic potential since they increased the biofilm formation and metabolic activity of S. mutans.

  8. Polyphenols from Bee Pollen: Structure, Absorption, Metabolism and Biological Activity

    Directory of Open Access Journals (Sweden)

    Anna Rzepecka-Stojko

    2015-12-01

    Full Text Available Bee pollen constitutes a natural source of antioxidants such as phenolic acids and flavonoids, which are responsible for its biological activity. Research has indicated the correlation between dietary polyphenols and cardioprotective, hepatoprotective, anti-inflammatory, antibacterial, anticancerogenic, immunostimulating, antianaemic effects, as well as their beneficial influence on osseous tissue. The beneficial effects of bee pollen on health result from the presence of phenolic acids and flavonoids which possess anti-inflammatory properties, phytosterol and linolenic acid which play an anticancerogenic role, and polysaccharides which stimulate immunological activity. Polyphenols are absorbed in the alimentary tract, metabolised by CYP450 enzymes, and excreted with urine and faeces. Flavonoids and phenolic acids are characterised by high antioxidative potential, which is closely related to their chemical structure. The high antioxidant potential of phenolic acids is due to the presence and location of hydroxyl groups, a carboxyl group in the immediate vicinity of ortho-diphenolic substituents, and the ethylene group between the phenyl ring and the carboxyl group. As regards flavonoids, essential structural elements are hydroxyl groups at the C5 and C7 positions in the A ring, and at the C3′ and C4′ positions in the B ring, and a hydroxyl group at the C3 position in the C ring. Furthermore, both, the double bond between C2 and C3, and a ketone group at the C4 position in the C ring enhance the antioxidative potential of these compounds. Polyphenols have an ideal chemical structure for scavenging free radicals and for creating chelates with metal ions, which makes them effective antioxidants in vivo.

  9. Metabolic activity is necessary for activation of T suppressor cells by B cells

    International Nuclear Information System (INIS)

    Elkins, K.L.; Stashak, P.W.; Baker, P.J.

    1990-01-01

    Ag-primed B cells must express cell-surface IgM, but not IgD or Ia Ag, and must remain metabolically active, in order to activate suppressor T cells (Ts) specific for type III pneumococcal polysaccharide. Ag-primed B cells that were gamma-irradiated with 1000r, or less, retained the ability to activate Ts; however, Ag-primed B cells exposed to UV light were not able to do so. gamma-Irradiated and UV-treated Ag-primed B cells both expressed comparable levels of cell-surface IgM, and both localized to the spleen after in vivo transfer; neither could proliferate in vitro in response to mitogens. By contrast, gamma-irradiated primed B cells were still able to synthesize proteins, whereas UV-treated primed B cells could not. These findings suggest that in order for Ag-primed B cells to activate Ts, they must (a) express cell-associated IgM (sIgM) antibody bearing the idiotypic determinants of antibody specific for type III pneumococcal polysaccharide, and (b) be able to synthesize protein for either the continued expression of sIgM after cell transfer, or for the elaboration of another protein molecule that is also required for the activation of Ts; this molecule does not appear to be Ia Ag

  10. Physical activity and risk of Metabolic Syndrome in an urban Mexican cohort

    Directory of Open Access Journals (Sweden)

    Huitrón Gerardo

    2009-07-01

    Full Text Available Abstract Background In the Mexican population metabolic syndrome (MS is highly prevalent. It is well documented that regular physical activity (PA prevents coronary diseases, type 2 diabetes and MS. Most studies of PA have focused on moderate-vigorous leisure-time activity, because it involves higher energy expenditures, increase physical fitness, and decrease the risk of MS. However, for most people it is difficult to get a significant amount of PA from only moderately-vigorous leisure activity, so workplace activity may be an option for working populations, because, although may not be as vigorous in terms of cardio-respiratory efforts, it comprises a considerable proportion of the total daily activity with important energy expenditure. Since studies have also documented that different types and intensity of daily PA, including low-intensity, seem to confer important health benefits such as prevent MS, we sought to assess the impact of different amounts of leisure-time and workplace activities, including low-intensity level on MS prevention, in a sample of urban Mexican adults. Methods The study population consisted of 5118 employees and their relatives, aged 20 to 70 years, who were enrolled in the baseline evaluation of a cohort study. MS was assessed according to the criteria of the National Cholesterol Education Program, ATP III and physical activity with a validated self-administered questionnaire. Associations between physical activity and MS risk were assessed with multivariate logistic regression models. Results The prevalence of the components of MS in the study population were: high glucose levels 14.2%, high triglycerides 40.9%, high blood pressure 20.4%, greater than healthful waist circumference 43.2% and low-high density lipoprotein 76.9%. The prevalence of MS was 24.4%; 25.3% in men and 21.8% in women. MS risk was reduced among men (OR 0.72; 95%CI 0.57–0.95 and women (OR 0.78; 95%CI 0.64–0.94 who reported an amount of ≥30

  11. The relationship between objectively measured physical activity, salivary cortisol, and the metabolic syndrome score in girls.

    Science.gov (United States)

    DuBose, Katrina D; McKune, Andrew J

    2014-08-01

    The relationship between physical activity levels, salivary cortisol, and the metabolic syndrome (MetSyn) score was examined. Twenty-three girls (8.4 ± 0.9 years) had a fasting blood draw, waist circumference and blood pressure measured, and wore an ActiGraph accelerometer for 5 days. Saliva samples were collected to measure cortisol levels. Previously established cut points estimated the minutes spent in moderate, vigorous, and moderate-to-vigorous physical activity. A continuous MetSyn score was created from blood pressure, waist circumference, high-density-lipoprotein (HDL), triglyceride, and glucose values. Correlation analyses examined associations between physical activity, cortisol, the MetSyn score, and its related components. Regression analysis examined the relationship between cortisol, the MetSyn score, and its related components adjusting for physical activity, percent body fat, and sexual maturity. Vigorous physical activity was positively related with 30 min post waking cortisol values. The MetSyn score was not related with cortisol values after controlling for confounders. In contrast, HDL was negatively related with 30 min post waking cortisol. Triglyceride was positively related with 30 min post waking cortisol and area under the curve. The MetSyn score and many of its components were not related to cortisol salivary levels even after adjusting for physical activity, body fat percentage, and sexual maturity.

  12. Relation between presence-absence of a visible nucleoid and metabolic activity in bacterioplankton cells

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Joon, W.; Sherr, E.B.; Sherr, B.F. [Oregon State Univ., Corvallis, OR (United States)

    1996-09-01

    We investigated the report of Zweifel and Hagstroem that only a portion of marine bacteria contain nucleoids--the DNA-containing regions of procaryotic cells-- and that such bacteria correspond to the active or viable fraction of bacterioplankton. In Oregon coastal waters, 21-64% of bacteria had visible nucleoids; number of nucleoid-visible (NV) bacteria were greater than numbers of metabolically active bacteria, based on cells with active electron transport systems (ETS) and intact cell membranes. During log growth of a marine isolate, proportions of NV and ETS-active cells approached 100%. In stationary growth phase, the fraction of ETS-active cells decreased rapidly, while that of NV cells remained high for 7 d. When starved cells of the isolate were resupplied with nutrient (50 mg liter{sup -1} peptone), total cell number did not increase during the initial 6 h, but the proportion of NV cells increased from 27 to 100%, and that of ETS-active cells from 6 to 75%. In an analogous experiment with a bacterioplankton assemblage, a similar trend was observed: the number of NV cells double during the initial 6 h prior to an increase in total cell counts. These results show that some bacteria without visible nucleoids are capable of becoming NV cells, and thus have DNa in a nucleoid region not detectable with the method used here. 18 refs., 4 figs., 1 tab.

  13. Mice lacking natural killer T cells are more susceptible to metabolic alterations following high fat diet feeding.

    Directory of Open Access Journals (Sweden)

    Brittany V Martin-Murphy

    Full Text Available Current estimates suggest that over one-third of the adult population has metabolic syndrome and three-fourths of the obese population has non-alcoholic fatty liver disease (NAFLD. Inflammation in metabolic tissues has emerged as a universal feature of obesity and its co-morbidities, including NAFLD. Natural Killer T (NKT cells are a subset of innate immune cells that abundantly reside within the liver and are readily activated by lipid antigens. There is general consensus that NKT cells are pivotal regulators of inflammation; however, disagreement exists as to whether NKT cells exert pathogenic or suppressive functions in obesity. Here we demonstrate that CD1d(-/- mice, which lack NKT cells, were more susceptible to weight gain and fatty liver following high fat diet (HFD feeding. Compared with their WT counterparts, CD1d(-/- mice displayed increased adiposity and greater induction of inflammatory genes in the liver suggestive of the precursors of NAFLD. Calorimetry studies revealed a significant increase in food intake and trends toward decreased metabolic rate and activity in CD1d(-/- mice compared with WT mice. Based on these findings, our results suggest that NKT cells play a regulatory role that helps to prevent diet-induced obesity and metabolic dysfunction and may play an important role in mechanisms governing cross-talk between metabolism and the immune system to regulate energy balance and liver health.

  14. High Phenolics Rutgers Scarlet Lettuce Improves Glucose Metabolism in High Fat Diet-Induced Obese Mice

    Science.gov (United States)

    Cheng, Diana M.; Roopchand, Diana E.; Poulev, Alexander; Kuhn, Peter; Armas, Isabel; Johnson, William D.; Oren, Andrew; Ribnicky, David; Zelzion, Ehud; Bhattacharya, Debashish; Raskin, Ilya

    2016-01-01

    Scope The ability of high phenolic Rutgers Scarlet Lettuce (RSL) to attenuate metabolic syndrome and gut dysbiosis was studied in very high fat diet (VHFD)-fed mice. Phenolic absorption was assessed in vivo and in a gastrointestinal tract model. Methods and results Mice were fed VHFD, VHFD supplemented with RSL (RSL-VHFD) or store-purchased green lettuce (GL-VHFD), or low-fat diet (LFD) for 13 weeks. Compared to VHFD or GL-VHFD-fed groups, RSL-VHFD group showed significantly improved oral glucose tolerance (p<0.05). Comparison of VHFD, RSL-VHFD, and GL-VHFD groups revealed no significant differences with respect to insulin tolerance, hepatic lipids, body weight gain, fat mass, plasma glucose, triglycerides, free fatty acid, and lipopolysaccharide levels, as well as relative abundances of major bacterial phyla from 16S rDNA amplicon data sequences (from fecal and cecal samples). However, RSL and GL-supplementation increased abundance of several taxa involved in plant polysaccharide degradation/fermentation. RSL phenolics chlorogenic acid, quercetin-3-glucoside, and quercetin-malonyl-glucoside were bioaccessible in the TIM-1 digestion model, but had relatively low recovery. Conclusions RSL phenolics contributed to attenuation of postprandial hyperglycemia. Changes in gut microbiota were likely due to microbiota accessible carbohydrates in RSL and GL rather than RSL phenolics, which may be metabolized, absorbed, or degraded before reaching the colon. PMID:27529448

  15. Association of physical activity with metabolic syndrome in a predominantly rural Nigerian population

    DEFF Research Database (Denmark)

    Oguoma, Victor M.; Nwose, Ezekiel U.; Nwose, Ezekiel U.

    2016-01-01

    Aims Physical activity is an essential determinant of health. However, there is dearth of evidence regarding prevalence of physical activity in developing countries, especially its association with metabolic syndrome risk factors. This study assessed the association of physical activity with meta...

  16. Investigations on the transport and metabolism of high density lipoprotein cholesteryl esters in African green monkeys

    International Nuclear Information System (INIS)

    Sorci-Thomas, M.G.

    1984-01-01

    The metabolic fate of circulating high density lipoprotein cholesteryl esters was studied in African green monkeys to determine the significance of the lipid transfer reaction on the catabolism of lipoprotein cholesteryl esters. A method of doubly labeling both moieties of lipoprotein cholesteryl esters with [ 3 He]cholesteryl oleate and cholesteryl [ 14 C]oleate was developed for the purpose of studying plasma cholesteryl ester metabolism in vivo. In these studies the total plasma [ 3 He]cholesterol turnover resulted in production rates, which ranged from 10-17 mg/kg day, similar to previously reported values in African green monkeys and in normal lipoproteinemic humans. In contrast to the production rates calculated from the decay of plasma 3 He-radioactivity, the production rates calculated from lipoproteins labeled with cholesteryl [ 14 C]oleate were approximately 2-3 times greater. In addition to these studies, a plasma cholesteryl ester transacylation activity was demonstrated in vitro when HDL containing doubly labeled cholesteryl esters were incubated with fresh plasma. These results demonstrated that high density lipoprotein cholesteryl esters undergo transacylation in vitro, resulting in release and reesterification of free [ 3 H]cholesterol

  17. The role of active brown adipose tissue in human metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Ozguven, Salih; Turoglu, H.T. [S.B. Marmara Universitesi Pendik Egitim ve Arastirma Hastanesi, Department of Nuclear Medicine, Istanbul (Turkey); Ones, Tunc [S.B. Marmara Universitesi Pendik Egitim ve Arastirma Hastanesi, Department of Nuclear Medicine, Istanbul (Turkey); Kozyatagi/Kadikoy, Istanbul (Turkey); Yilmaz, Yusuf; Imeryuz, Nese [S.B. Marmara Universitesi Pendik Egitim ve Arastirma Hastanesi, Department of Internal Medicine, Division of Gastroenterology, Istanbul (Turkey)

    2016-02-15

    The presence of activated brown adipose tissue (ABAT) has been associated with a reduced risk of obesity in adults. We aimed to investigate whether the presence of ABAT in patients undergoing {sup 18}F-FDG PET/CT examinations was related to blood lipid profiles, liver function, and the prevalence of non-alcoholic fatty liver disease (NAFLD). We retrospectively and prospectively analysed the {sup 18}F-FDG PET/CT scans from 5,907 consecutive patients who were referred to the Nuclear Medicine Department of the Marmara University School of Medicine from outpatient oncology clinics between July 2008 and June 2014 for a variety of diagnostic reasons. Attenuation coefficients for the liver and spleen were determined for at least five different areas. Blood samples were obtained before PET/CT to assess the blood lipid profiles and liver function. A total of 25 of the 5,907 screened individuals fulfilling the inclusion criteria for the study demonstrated brown fat tissue uptake [ABAT(+) subjects]. After adjustment for potential confounders, 75 individuals without evidence of ABAT on PET [ABAT(-) subjects] were enrolled for comparison purposes. The ABAT(+) group had lower total cholesterol, low-density lipoprotein cholesterol, alanine aminotransferase, and aspartate transaminase levels (p < 0.01), whereas we found no significant differences in the serum triglyceride and high-density lipoprotein cholesterol levels between the two groups. The prevalence of NAFLD was significantly lower in ABAT(+) than in ABAT(-) subjects (p < 0.01). Our study showed that the presence of ABAT in adults had a positive effect on their blood lipid profiles and liver function and was associated with reduced prevalence of NAFLD. Thus, our data suggest that activating brown adipose tissue may be a potential target for preventing and treating dyslipidaemia and NAFLD. (orig.)

  18. Metabolic and environmental aspects of fusion reactor activation products: niobium

    International Nuclear Information System (INIS)

    Easterly, C.E.; Shank, K.E.

    1977-11-01

    A summary of the metabolic and environmental aspects of niobium is presented. The toxicological symptoms from exposure to niobium are given, along with lethal concentration values for acute and chronic exposures. Existing human data are presented; animal uptake and retention data are analyzed for various routes of administration. Recommended metabolic values are also presented along with comments concerning their use and appropriateness. The natural distribution of niobium is given for freshwater, seawater, and the biosphere. Concentration factors and retention of 95 Nb in the environment are discussed with reference to: plant retention via leaf absorption; plant retention via root uptake; uptake in terrestrial animals from plants; uptake in freshwater organisms; uptake in marine organisms; and movement in soil. Conclusions are drawn regarding needs for future work in these areas. This review was undertaken because niobium is expected to be a key metal in the development of commercial fusion reactors. It is recognized that niobium will likely not be used in the first generation reactors as a structural material but will appear as an alloy in such materials as superconducting wire

  19. Metabolic and environmental aspects of fusion reactor activation products: niobium

    Energy Technology Data Exchange (ETDEWEB)

    Easterly, C.E.; Shank, K.E.

    1977-11-01

    A summary of the metabolic and environmental aspects of niobium is presented. The toxicological symptoms from exposure to niobium are given, along with lethal concentration values for acute and chronic exposures. Existing human data are presented; animal uptake and retention data are analyzed for various routes of administration. Recommended metabolic values are also presented along with comments concerning their use and appropriateness. The natural distribution of niobium is given for freshwater, seawater, and the biosphere. Concentration factors and retention of /sup 95/Nb in the environment are discussed with reference to: plant retention via leaf absorption; plant retention via root uptake; uptake in terrestrial animals from plants; uptake in freshwater organisms; uptake in marine organisms; and movement in soil. Conclusions are drawn regarding needs for future work in these areas. This review was undertaken because niobium is expected to be a key metal in the development of commercial fusion reactors. It is recognized that niobium will likely not be used in the first generation reactors as a structural material but will appear as an alloy in such materials as superconducting wire.

  20. Palmitoleic Acid Improves Metabolic Functions in Fatty Liver by PPARα-Dependent AMPK Activation.

    Science.gov (United States)

    de Souza, Camila O; Teixeira, Alexandre A S; Biondo, Luana A; Lima Junior, Edson A; Batatinha, Helena A P; Rosa Neto, Jose C

    2017-08-01

    Palmitoleic acid, since described as lipokine, increases glucose uptake by modulation of 5'AMP-activated protein kinase (AMPK), as well as increasing lipolysis by activation of peroxisome proliferator-activated receptor-α (PPARα), in adipose tissue. However, in liver, the effects of palmitoleic acid on glucose metabolism and the role of PPARα remain unknown. To investigate whether palmitoleic acid improved the hepatic insulin sensitivity of obese mice. C57BL6 and PPARα knockout (KO) mice were fed for 12 weeks with a standard diet (SD) or high-fat diet (HF), and in the last 2 weeks were treated with oleic or palmitoleic acid. Palmitoleic acid promoted a faster uptake of glucose in the body, associated with higher insulin concentration; however, even when stimulated with insulin, palmitoleic acid did not modulate the insulin pathway (AKT, IRS). Palmitoleic acid increased the phosphorylation of AMPK, upregulated glucokinase and downregulated SREBP-1. Regarding AMPK downstream, palmitoleic acid increased the production of FGF-21 and stimulated the expression of PPARα. Palmitoleic acid treatment did not increase AMPK phosphorylation, modulate glucokinase or increase FGF-21 in liver of PPARα KO mice. In mice fed with a high-fat diet, palmitoleic acid supplementation stimulated the uptake of glucose in liver through activation of AMPK and FGF-21, dependent on PPARα. J. Cell. Physiol. 232: 2168-2177, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. Plasma plasminogen activator inhibitor-1 levels and nonalcoholic fatty liver in individuals with features of metabolic syndrome.

    Science.gov (United States)

    de Larrañaga, Gabriela; Wingeyer, Silvia Perés; Graffigna, Mabel; Belli, Susana; Bendezú, Karla; Alvarez, Silvia; Levalle, Oscar; Fainboim, Hugo

    2008-07-01

    Fatty liver represents the liver component of metabolic syndrome and may be involved in plasminogen activator inhibitor-1 (PAI-1) synthesis. We studied plasma PAI-1 levels and relationships with risk factors for metabolic syndrome, including fatty liver, in 170 patients. Liver ultrasound scan was performed on all patients, and a liver biopsy was performed on those patients with chronically elevated transaminase levels. Plasma PAI-1 levels correlated significantly (P < .05) with body mass index, degree of steatosis, insulin resistance, insulin level, waist circumference, triglycerides, and high-density lipoprotein (HDL) -cholesterol. However, only body mass index (beta = .455) and HDL-cholesterol (beta = .293) remained predictors of PAI-1 levels. Liver biopsy revealed a significant correlation (P < .05) between insulin resistance (r = 0.381) or insulin level (r = 0.519) and liver fibrosis. In patients presenting features of metabolic syndrome, plasma PAI-1 levels were mainly conditioned by the whole-body fat content.

  2. Nonlinear Dielectric Spectroscopy as an Indirect Probe of Metabolic Activity in Thylakoid Membrane

    Directory of Open Access Journals (Sweden)

    John H. Miller

    2011-01-01

    Full Text Available Nonlinear dielectric spectroscopy (NDS is a non-invasive probe of cellular metabolic activity with potential application in the development of whole-cell biosensors. However, the mechanism of NDS interaction with metabolic membrane proteins is poorly understood, partly due to the inherent complexity of single cell organisms. Here we use the light-activated electron transport chain of spinach thylakoid membrane as a model system to study how NDS interacts with metabolic activity. We find protein modification, as opposed to membrane pump activity, to be the dominant source of NDS signal change in this system. Potential mechanisms for such protein modifications include reactive oxygen species generation and light-activated phosphorylation.

  3. Physical activity is associated with retained muscle metabolism in human myotubes challenged with palmitate

    DEFF Research Database (Denmark)

    Green, C J; Bunprajun, T; Pedersen, B K

    2013-01-01

    in satellite cells challenged with palmitate. Although the benefits of physical activity on whole body physiology have been well investigated, this paper presents novel findings that both diet and exercise impact satellite cells directly. Given the fact that satellite cells are important for muscle maintenance......  The aim of this study was to investigate whether physical activity is associated with preserved muscle metabolism in human myotubes challenged with saturated fatty acids. Human muscle satellite cells were isolated from sedentary or active individuals and differentiated into myocytes in culture...... and correlated positively to JNK phosphorylation. In conclusion, muscle satellite cells retain metabolic differences associated with physical activity. Physical activity partially protects myocytes from fatty acid-induced insulin resistance and inactivity is associated with dysregulation of metabolism...

  4. Effect of CAR activation on selected metabolic pathways in normal and hyperlipidemic mouse livers.

    Science.gov (United States)

    Rezen, Tadeja; Tamasi, Viola; Lövgren-Sandblom, Anita; Björkhem, Ingemar; Meyer, Urs A; Rozman, Damjana

    2009-08-19

    Detoxification in the liver involves activation of nuclear receptors, such as the constitutive androstane receptor (CAR), which regulate downstream genes of xenobiotic metabolism. Frequently, the metabolism of endobiotics is also modulated, resulting in potentially harmful effects. We therefore used 1,4-Bis [2-(3,5-dichloropyridyloxy)] benzene (TCPOBOP) to study the effect of CAR activation on mouse hepatic transcriptome and lipid metabolome under conditions of diet-induced hyperlipidemia. Using gene expression profiling with a dedicated microarray, we show that xenobiotic metabolism, PPARalpha and adipocytokine signaling, and steroid synthesis are the pathways most affected by TCPOBOP in normal and hyperlipidemic mice. TCPOBOP-induced CAR activation prevented the increased hepatic and serum cholesterol caused by feeding mice a diet containing 1% cholesterol. We show that this is due to increased bile acid metabolism and up-regulated removal of LDL, even though TCPOBOP increased cholesterol synthesis under conditions of hyperlipidemia. Up-regulation of cholesterol synthesis was not accompanied by an increase in mature SREBP2 protein. As determined by studies in CAR -/- mice, up-regulation of cholesterol synthesis is however CAR-dependent; and no obvious CAR binding sites were detected in promoters of cholesterogenic genes. TCPOBOP also affected serum glucose and triglyceride levels and other metabolic processes in the liver, irrespective of the diet. Our data show that CAR activation modulates hepatic metabolism by lowering cholesterol and glucose levels, through effects on PPARalpha and adiponectin signaling pathways, and by compromising liver adaptations to hyperlipidemia.

  5. The influence of physical activity on components of metabolic ...

    African Journals Online (AJOL)

    African Journal for Physical Activity and Health Sciences ... Inactivity causes obesity which is related to insulin resistance, hypertension, diabetes mellitus, ... of physical activity (PA) on the MS components and vascular function in children and ...

  6. Comparing Enchytraeus albidus populations from contrasting climatic environments suggest a link between cold tolerance and metabolic activity.

    Science.gov (United States)

    Žagar, Anamarija; Holmstrup, Martin; Simčič, Tatjana; Debeljak, Barabara; Slotsbo, Stine

    2018-06-06

    Basal metabolic activity and freezing of body fluids create reactive oxygen species (ROS) in freeze-tolerant organisms. These sources of ROS can have an additive negative effect via oxidative stress. In cells, antioxidant systems are responsible for removing ROS in order to avoid damage due to oxidative stress. Relatively little is known about the importance of metabolic rate for the survival of freezing, despite a good understanding of several cold tolerance related physiological mechanisms. We hypothesized that low basal metabolism would be selected for in freeze-tolerant organisms where winter survival is important for fitness for two reasons. First, avoidance of the additive effect of ROS production from metabolism and freezing, and second, as an energy-saving mechanism under extended periods of freezing where the animal is metabolically active, but unable to feed. We used the terrestrial oligochaete, Enchytraeus albidus, which is widely distributed from Spain to the high Arctic and compared eight populations originating across a broad geographical and climatic gradient after they had been cold acclimated at 5 °C in a common garden experiment. Cold tolerance (lower lethal temperature: LT50) and the potential metabolic activity (PMA, an estimator of the maximal enzymatic potential of the mitochondrial respiration chain) of eight populations were positively correlated amongst each other and correlated negatively with latitude and positively with average yearly temperature and the average temperature of the coldest month. These results indicate that low PMA in cold tolerant populations is important for survival in extremely cold environments. Copyright © 2018. Published by Elsevier Inc.

  7. Blocking hexose entry into glycolysis activates alternative metabolic conversion of these sugars and upregulates pentose metabolism in Aspergillus nidulans

    Energy Technology Data Exchange (ETDEWEB)

    Khosravi, Claire; Battaglia, Evy; Kun, Roland S.; Dalhuijsen, Sacha; Visser, Jaap; Aguilar-Pontes, Maria V.; Zhou, Miamiao; Heyman, Heino M.; Kim, Young-Mo; Baker, Scott E.; de Vries, Ronald P.

    2018-03-22

    Background: Plant biomass is the most abundant carbon source for many fungal species. In the biobased industry fungi are used to produce lignocellulolytic enzymes to degrade agricultural waste biomass. Here we evaluated if it would be possible to create an Aspergillus nidulans strain that releases but does not metabolize hexoses from plant biomass. For this purpose, metabolic mutants were generated that were impaired in glycolysis, by using hexokinase (hxkA) and glucokinase (glkA) negative strains. To prevent repression of enzyme production due to the hexose accumulation, strains were generated that combined these mutations with a deletion in creA, the repressor involved in regulating preferential use of different carbon catabolic pathways. Results: Phenotypic analysis revealed reduced growth for the hxkA1 glkA4 mutant on wheat bran. However, hexoses did not accumulate during growth of the mutants on wheat bran, suggesting that glucose metabolism is re-routed towards alternative carbon catabolic pathways. The creAΔ4 mutation in combination with preventing initial phosphorylation in glycolysis resulted in better growth than the hxkA/glkA mutant and an increased expression of pentose catabolic and pentose phosphate pathway genes. This indicates that the reduced ability to use hexoses as carbon sources created a shift towards the pentose fraction of wheat bran as a major carbon source to support growth. Conclusion: Blocking the direct entry of hexoses to glycolysis activates alternative metabolic conversion of these sugars in A. nidulans during growth on plant biomass, but also upregulates conversion of other sugars, such as pentoses.

  8. Metabolic Syndrome Remodels Electrical Activity of the Sinoatrial Node and Produces Arrhythmias in Rats

    Science.gov (United States)

    Albarado-Ibañez, Alondra; Avelino-Cruz, José Everardo; Velasco, Myrian; Torres-Jácome, Julián; Hiriart, Marcia

    2013-01-01

    In the last ten years, the incidences of metabolic syndrome and supraventricular arrhythmias have greatly increased. The metabolic syndrome is a cluster of alterations, which include obesity, hypertension, hypertriglyceridemia, glucose intolerance and insulin resistance, that increase the risk of developing, among others, atrial and nodal arrhythmias. The aim of this study is to demonstrate that metabolic syndrome induces electrical remodeling of the sinus node and produces arrhythmias. We induced metabolic syndrome in 2-month-old male Wistar rats by administering 20% sucrose in the drinking water. Eight weeks later, the rats were anesthetized and the electrocardiogram was recorded, revealing the presence of arrhythmias only in treated rats. Using conventional microelectrode and voltage clamp techniques, we analyzed the electrical activity of the sinoatrial node. We observed that in the sinoatrial node of “metabolic syndrome rats”, compared to controls, the spontaneous firing of all cells decreased, while the slope of the diastolic depolarization increased only in latent pacemaker cells. Accordingly, the pacemaker currents If and Ist increased. Furthermore, histological analysis showed a large amount of fat surrounding nodal cardiomyocytes and a rise in the sympathetic innervation. Finally, Poincaré plot denoted irregularity in the R-R and P-P ECG intervals, in agreement with the variability of nodal firing potential recorded in metabolic syndrome rats. We conclude that metabolic syndrome produces a dysfunction SA node by disrupting normal architecture and the electrical activity, which could explain the onset of arrhythmias in rats. PMID:24250786

  9. Total physical activity volume, physical activity intensity, and metabolic syndrome: 1999-2004 National Health and Nutrition Examination Survey.

    Science.gov (United States)

    Churilla, James R; Fitzhugh, Eugene C

    2012-02-01

    This study examined the association of total physical activity volume (TPAV) and physical activity (PA) from three domains [leisure-time physical activity (LTPA), domestic, transportation] with metabolic syndrome. We also investigated the relationship between LTPA intensity and metabolic syndrome risk. Sample included adults who participated in the 1999-2004 National Health and Nutrition Examination Survey. Physical activity measures were created for TPAV, LTPA, domestic PA, and transportational PA. For each, a six-level measure based upon no PA (level 1) and quintiles (levels 2-6) of metabolic equivalents (MET)·min·wk(-1) was created. A three-level variable associated with the current Department of Health and Human Services (DHHS) PA recommendation was also created. SAS and SUDAAN were used for the statistical analysis. Adults reporting the greatest volume of TPAV and LTPA were found to be 36% [odds ratio (OR) 0.64; 95% confidence interval (CI) 0.49-0.83] and 42% (OR 0.58; 95% CI 0.43-0.77), respectively, less likely to have metabolic syndrome. Domestic and transportational PA provided no specific level of protection from metabolic syndrome. Those reporting a TPAV that met the DHHS PA recommendation were found to be 33% (OR 0.67; 95%; CI 0.55-0.83) less likely to have metabolic syndrome compared to their sedentary counterparts. Adults reporting engaging in only vigorous-intensity LTPA were found to be 37% (OR 0.63; 95 CI 0.42-0.96) to 56% (OR 0.44; 95% CI 0.29-0.67) less likely to have metabolic syndrome. Volume, intensity, and domain of PA may all play important roles in reducing the prevalence and risk of metabolic syndrome.

  10. A Metabolic Biofuel Cell: Conversion of Human Leukocyte Metabolic Activity to Electrical Currents

    Directory of Open Access Journals (Sweden)

    Cui X Tracy

    2011-05-01

    Full Text Available Abstract An investigation of the electrochemical activity of human white blood cells (WBC for biofuel cell (BFC applications is described. WBCs isolated from whole human blood were suspended in PBS and introduced into the anode compartment of a proton exchange membrane (PEM fuel cell. The cathode compartment contained a 50 mM potassium ferricyanide solution. Average current densities between 0.9 and 1.6 μA cm-2 and open circuit potentials (Voc between 83 and 102 mV were obtained, which were both higher than control values. Cyclic voltammetry was used to investigate the electrochemical activity of the activated WBCs in an attempt to elucidate the mechanism of electron transfer between the cells and electrode. Voltammograms were obtained for the WBCs, including peripheral blood mononuclear cells (PBMCs - a lymphocyte-monocyte mixture isolated on a Ficoll gradient, a B lymphoblastoid cell line (BLCL, and two leukemia cell lines, namely K562 and Jurkat. An oxidation peak at about 363 mV vs. SCE for the PMA (phorbol ester activated primary cells, with a notable absence of a reduction peak was observed. Oxidation peaks were not observed for the BLCL, K562 or Jurkat cell lines. HPLC confirmed the release of serotonin (5-HT from the PMA activated primary cells. It is believed that serotonin, among other biochemical species released by the activated cells, contributes to the observed BFC currents.

  11. Association between physical activity and metabolic syndrome in older adults in Korea: analysis of data from the Korean National Health and Nutrition Examination Survey IV.

    Science.gov (United States)

    Choi, Mona; Yeom, Hye-A; Jung, Dukyoo

    2013-09-01

    The prevalence of metabolic syndrome is consistently increasing among Korean adults and is reported to be particularly high among older adults in Korea. This paper reports the prevalence of metabolic syndrome and identifies the association between metabolic syndrome and physical activity in Korean older adults. Subjects of this study were 3653 older adults who participated in the fourth Korean National Health and Nutrition Examination Survey during the years 2007-2009. The prevalence of metabolic syndrome in the study population was 46.84%. The prevalences of abdominal obesity, elevated fasting glucose, elevated triglycerides, reduced high-density lipoprotein cholesterol, and elevated blood pressure were 39.51, 45.53, 39.55, 48.24, and 69.14%, respectively, in the study population. Compared to subjects who reported low levels of physical activity, the odds ratios of metabolic syndrome for those who were moderately active and highly active were 0.93 and 0.63, respectively. Nurses should develop metabolic syndrome management programs that are tailored to the needs of the targeted group and that include individually adapted physical activity programs to promote health. © 2013 Wiley Publishing Asia Pty Ltd.

  12. Metabolic and oxidative stress markers in Wistar rats after 2?months on a high-fat diet

    OpenAIRE

    Auberval, Nathalie; Dal, St?phanie; Bietiger, William; Pinget, Michel; Jeandidier, Nathalie; Maillard-Pedracini, Elisa; Schini-Kerth, Val?rie; Sigrist, S?verine

    2014-01-01

    Background Metabolic syndrome is associated with an increased risk of cardiovascular and hepatic complications. Oxidative stress in metabolic tissues has emerged as a universal feature of metabolic syndrome and its co-morbidities. We aimed to develop a rapidly and easily induced model of metabolic syndrome in rats to evaluate its impact on plasma and tissue oxidative stress. Materials and methods Metabolic syndrome was induced in rats using a high-fat diet (HFD), and these rats were compared ...

  13. The influence of hydrologic connectivity on ecosystem metabolism and nitrate uptake in an active beaver meadow

    Science.gov (United States)

    Wegener, P.; Covino, T. P.; Wohl, E.; Kampf, S. K.; Lacy, S.

    2015-12-01

    Wetlands have been widely demonstrated to provide important watershed services, such as the sequestration of carbon (C) and removal of nitrate (NO3-) from through-flowing water. Hydrologic connectivity (degree of water and associated material exchange) between floodplain water bodies (e.g., side channels, ponds) and the main channel influence rates of C accumulation and NO3- uptake, and the degree to which wetlands contribute to enhanced water quality at the catchment scale. However, environmental engineers have largely ignored the role of hydrologic connectivity in providing essential ecosystem services, and constructed wetlands are commonly built using compacted clay and berms that result in less groundwater and surface water exchange than observed in natural wetlands. In a study of an active beaver meadow (multithreaded, riparian wetland) in Rocky Mountain National Park, CO, we show how shifts in hydrology (connectivity, residence times, flow paths) from late spring snowmelt (high connectivity) to autumn/winter baseflow (low connectivity) influence ecosystem metabolism metrics (e.g., gross primary production, ecosystem respiration, and net ecosystem productivity) and NO3- uptake rates. We use a combination of mixing analyses, tracer tests, and hydrometric methods to evaluate shifts in surface and subsurface hydrologic connections between floodplain water bodies from snowmelt to baseflow. In the main channel and three floodplain water bodies, we quantify metabolism metrics and NO3- uptake kinetics across shifting flow regimes. Results from our research indicate that NO3- uptake and metabolism dynamics respond to changing levels of hydrologic connectivity to the main channel, emphasizing the importance of incorporating connectivity in wetland mitigation practices that seek to enhance water quality at the catchment scale.

  14. Metabolic activity in dormant conidia of Aspergillus niger and developmental changes during conidial outgrowth

    OpenAIRE

    Novodvorska, Michaela; Stratford, Malcolm; Blythe, Martin J.; Wilson, Raymond; Beniston, Richard G.; Archer, David B.

    2016-01-01

    The early stages of development of Aspergillus niger conidia during outgrowth were explored by combining genome-wide gene expression analysis (RNAseq), proteomics, Warburg manometry and uptake studies. Resting conidia suspended in water were demonstrated for the first time to be metabolically active as low levels of oxygen uptake and the generation of carbon dioxide were detected, suggesting that low-level respiratory metabolism occurs in conidia for maintenance. Upon triggering of spore germ...

  15. Effects of pesticide chemicals on the activity of metabolic enzymes: focus on thiocarbamates.

    Science.gov (United States)

    Mathieu, Cécile; Duval, Romain; Xu, Ximing; Rodrigues-Lima, Fernando; Dupret, Jean-Marie

    2015-01-01

    Thiocarbamates are chemicals widely used as pesticides. Occupational exposure is associated with acute intoxication. Populations can be exposed through food and water. Moreover, certain thiocarbamates are used clinically. The widespread use of thiocarbamates raises many issues regarding their toxicological and pharmacological impact. Thiocarbamates and their metabolites can modify biological macromolecules functions, in particular enzymes, through modification of cysteine residues, chelation of metal ions or modulation of the oxidative stress. Loss of enzyme activity can lead to the disruption of metabolic pathways, and explain, at least in part, the effects of these pesticides. Additionally, their reactivity and ability to easily cross biological barrier confer them a great interest for development of clinical applications. Many advances in the study of thiocarbamates metabolism and reactivity have led to a better knowledge of biological effects of these compounds. However, more data are needed on the determination of targets and specificity. Only few data concerning the exposure to a cocktail of pesticides/chemicals are available, raising the need to evaluate the toxic side effects of representative pesticides mixtures. Moreover, the dithiocarbamate Disulfiram has shown great potential in therapeutic applications and leads to the development of pharmacological thiocarbamates derivatives, highly specific to their target and easily distributed.

  16. Microbial metaproteomics for characterizing the range of metabolic functions and activities of human gut microbiota.

    Science.gov (United States)

    Xiong, Weili; Abraham, Paul E; Li, Zhou; Pan, Chongle; Hettich, Robert L

    2015-10-01

    The human gastrointestinal tract is a complex, dynamic ecosystem that consists of a carefully tuned balance of human host and microbiota membership. The microbiome is not merely a collection of opportunistic parasites, but rather provides important functions to the host that are absolutely critical to many aspects of health, including nutrient transformation and absorption, drug metabolism, pathogen defense, and immune system development. Microbial metaproteomics provides the ability to characterize the human gut microbiota functions and metabolic activities at a remarkably deep level, revealing information about microbiome development and stability as well as their interactions with their human host. Generally, microbial and human proteins can be extracted and then measured by high performance MS-based proteomics technology. Here, we review the field of human gut microbiome metaproteomics, with a focus on the experimental and informatics considerations involved in characterizing systems ranging from low-complexity model gut microbiota in gnotobiotic mice, to the emerging gut microbiome in the GI tract of newborn human infants, and finally to an established gut microbiota in human adults. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Cardiac Autonomic Nervous System Activation and Metabolic Profile in Young Children: The ABCD Study.

    Directory of Open Access Journals (Sweden)

    Tanja G M Vrijkotte

    Full Text Available In adults, increased sympathetic and decreased parasympathetic nervous system activity are associated with a less favorable metabolic profile. Whether this is already determined at early age is unknown. Therefore, we aimed to assess the association between autonomic nervous system activation and metabolic profile and its components in children at age of 5-6 years.Cross-sectional data from an apparently healthy population (within the ABCD study were collected at age 5-6 years in 1540 children. Heart rate (HR, respiratory sinus arrhythmia (RSA; parasympathetic activity and pre-ejection period (PEP; sympathetic activity were assessed during rest. Metabolic components were waist-height ratio (WHtR, systolic blood pressure (SBP, fasting triglycerides, glucose and HDL-cholesterol. Individual components, as well as a cumulative metabolic score, were analyzed.In analysis adjusted for child's physical activity, sleep, anxiety score and other potential confounders, increased HR and decreased RSA were associated with higher WHtR (P< 0.01, higher SBP (p<0.001 and a higher cumulative metabolic score (HR: p < 0.001; RSA: p < 0.01. Lower PEP was only associated with higher SBP (p <0.05. Of all children, 5.6% had 3 or more (out of 5 adverse metabolic components; only higher HR was associated with this risk (per 10 bpm increase: OR = 1.56; p < 0.001.This study shows that decreased parasympathetic activity is associated with central adiposity and higher SBP, indicative of increased metabolic risk, already at age 5-6 years.

  18. Haematology and erythrocyte metabolism in man at high altitude: an Aymara-Quechua comparison.

    Science.gov (United States)

    Arnaud, J; Gutierrez, N; Tellez, W; Vergnes, H

    1985-07-01

    In the course of haematological and biological investigations among Aymara and Quechua populations in Bolivia, an anthropological study of the erythrocytary respiratory function was carried out on the two groups at two altitudes: 3,600 m and 450 m. A difference in the intensity of the biological variations of the two populations is observed at high altitude. In the Quechuas, as in any lowland native, the adaptative phenomena are totally and quickly reversible. In the Aymaras, we detected the existence of more marked haematological and biochemical characters: moderate polycythemia, hyperhaemoglobinemia, microcytosis, metabolical hyperactivity with accumulation of 2-3 di-phosphoglycerate and ATP, and methaemoglobinemia with a drop in the activity of the methaemoglobin reductases. The Aymaras preserve some of those characters (methaemoglobinemia excepted) when they settle in lowlands.

  19. Metabolic effects of the iodothyronine functional analogue TRC150094 on the liver and skeletal muscle of high-fat diet fed overweight rats: an integrated proteomic study.

    Science.gov (United States)

    Silvestri, Elena; Glinni, Daniela; Cioffi, Federica; Moreno, Maria; Lombardi, Assunta; de Lange, Pieter; Senese, Rosalba; Ceccarelli, Michele; Salzano, Anna Maria; Scaloni, Andrea; Lanni, Antonia; Goglia, Fernando

    2012-07-06

    A novel functional iodothyronine analogue, TRC150094, which has a much lower potency toward thyroid hormone receptor (α1/β1) activation than triiodothyronine, has been shown to be effective at reducing adiposity in rats simultaneously receiving a high-fat diet (HFD). Here, by combining metabolic, functional and proteomic analysis, we studied how the hepatic and skeletal muscle phenotypes might respond to TRC150094 treatment in HFD-fed overweight rats. Drug treatment increased both the liver and skeletal muscle mitochondrial oxidative capacities without altering mitochondrial efficiency. Coherently, in terms of individual respiratory in-gel activity, blue-native analysis revealed an increased activity of complex V in the liver and of complexes II and V in tibialis muscle in TCR150094-treated animals. Subsequently, the identification of differentially expressed proteins and the analysis of their interrelations gave an integrated view of the phenotypic/metabolic adaptations occurring in the liver and muscle proteomes during drug treatment. TRC150094 significantly altered the expression of several proteins involved in key liver metabolic pathways, including amino acid and nitrogen metabolism, and fructose and mannose metabolism. The canonical pathways most strongly influenced by TRC150094 in tibialis muscle included glycolysis and gluconeogenesis, amino acid, fructose and mannose metabolism, and cell signaling. The phenotypic/metabolic influence of TRC150094 on the liver and skeletal muscle of HFD-fed overweight rats suggests the potential clinical application of this iodothyronine analogue in ameliorating metabolic risk parameters altered by diet regimens.

  20. Harnessing the respiration machinery for high-yield production of chemicals in metabolically engineered Lactococcus lactis

    DEFF Research Database (Denmark)

    Liu, Jianming; Wang, Zhihao; Kandasamy, Vijayalakshmi

    2017-01-01

    on metabolically engineered Lactococcus lactis strains to optimize the production of acetoin and (R,R)−2,3-butanediol (R-BDO). In the absence of an external electron acceptor, a surplus of two NADH per acetoin molecule is produced. We found that a fully activated respiration was able to efficiently regenerate NAD......+, and a high titer of 371 mM (32 g/L) of acetoin was obtained with a yield of 82% of the theoretical maximum. Subsequently, we extended the metabolic pathway from acetoin to R-BDO by introducing the butanediol dehydrogenase gene from Bacillus subtilis. Since one mole of NADH is consumed when acetoin...... is converted into R-BDO per mole, only the excess of NADH needs to be oxidized via respiration. Either by fine-tuning the respiration capacity or by using a dual-phase fermentation approach involving a switch from fully respiratory to non-respiratory conditions, we obtained 361 mM (32 g/L) R-BDO with a yield...

  1. Effect of Carbon Monoxide on Active Oxygen Metabolism of Postharvest Jujube

    OpenAIRE

    Shaoying Zhang; Qin Li; Yulan Mao

    2014-01-01

    To prolong the shelf life postharvest jujube, the effect of carbon monoxide (CO) on senescence of postharvest jujube in relation to active oxygen metabolism was investigated. Jujubes were fumigated with CO gas at 5, 10, 20 or 40μmol/L for 1 h, and then stored for 30 days at room temperature. Changes in membrane permeability, malonaldehyde (MDA), H2O2, O2•− content, and activities of active oxygen metabolism associated enzymes including superoxide dismutase (SOD), catalase (CAT) and peroxidase...

  2. Differential CT Attenuation of Metabolically Active and Inactive Adipose Tissues — Preliminary Findings

    Science.gov (United States)

    Hu, Houchun H.; Chung, Sandra A.; Nayak, Krishna S.; Jackson, Hollie A.; Gilsanz, Vicente

    2010-01-01

    This study investigates differences in CT Hounsfield units (HUs) between metabolically active (brown fat) and inactive adipose tissues (white fat) due to variations in their densities. PET/CT data from 101 pediatric and adolescent patients were analyzed. Regions of metabolically active and inactive adipose tissues were identified and standard uptake values (SUVs) and HUs were measured. HUs of active brown fat were more positive (p<0.001) than inactive fat (−62.4±5.3 versus −86.7±7.0) and the difference was observed in both males and females. PMID:21245691

  3. Reversal of metabolic disorders by pharmacological activation of bile acid receptors TGR5 and FXR

    Directory of Open Access Journals (Sweden)

    Kavita Jadhav

    2018-03-01

    Full Text Available Objectives: Activation of the bile acid (BA receptors farnesoid X receptor (FXR or G protein-coupled bile acid receptor (GPBAR1; TGR5 improves metabolic homeostasis. In this study, we aim to determine the impact of pharmacological activation of bile acid receptors by INT-767 on reversal of diet-induced metabolic disorders, and the relative contribution of FXR vs. TGR5 to INT-767's effects on metabolic parameters. Methods: Wild-type (WT, Tgr5−/−, Fxr−/−, Apoe−/− and Shp−/− mice were used to investigate whether and how BA receptor activation by INT-767, a semisynthetic agonist for both FXR and TGR5, could reverse diet-induced metabolic disorders. Results: INT-767 reversed HFD-induced obesity dependent on activation of both TGR5 and FXR and also reversed the development of atherosclerosis and non-alcoholic fatty liver disease (NAFLD. Mechanistically, INT-767 improved hypercholesterolemia by activation of FXR and induced thermogenic genes via activation of TGR5 and/or FXR. Furthermore, INT-767 inhibited several lipogenic genes and de novo lipogenesis in the liver via activation of FXR. We identified peroxisome proliferation-activated receptor γ (PPARγ and CCAAT/enhancer-binding protein α (CEBPα as novel FXR-regulated genes. FXR inhibited PPARγ expression by inducing small heterodimer partner (SHP whereas the inhibition of CEBPα by FXR was SHP-independent. Conclusions: BA receptor activation can reverse obesity, NAFLD, and atherosclerosis by specific activation of FXR or TGR5. Our data suggest that, compared to activation of FXR or TGR5 only, dual activation of both FXR and TGR5 is a more attractive strategy for treatment of common metabolic disorders. Keywords: Farnesoid X receptor, TGR5, Atherosclerosis, Obesity, NAFLD

  4. High sucrose consumption induces memory impairment in rats associated with electrophysiological modifications but not with metabolic changes in the hippocampus.

    Science.gov (United States)

    Lemos, C; Rial, D; Gonçalves, F Q; Pires, J; Silva, H B; Matheus, F C; da Silva, A C; Marques, J M; Rodrigues, R J; Jarak, I; Prediger, R D; Reis, F; Carvalho, R A; Pereira, F C; Cunha, R A

    2016-02-19

    High sugar consumption is a risk factor for metabolic disturbances leading to memory impairment. Thus, rats subject to high sucrose intake (HSu) develop a metabolic syndrome and display memory deficits. We now investigated if these HSu-induced memory deficits were associated with metabolic and electrophysiological alterations in the hippocampus. Male Wistar rats were submitted for 9 weeks to a sucrose-rich diet (35% sucrose solution) and subsequently to a battery of behavioral tests; after sacrifice, their hippocampi were collected for ex vivo high-resolution magic angle spinning (HRMAS) metabolic characterization and electrophysiological extracellular recordings in slices. HSu rats displayed a decreased memory performance (object displacement and novel object recognition tasks) and helpless behavior (forced swimming test), without altered locomotion (open field). HRMAS analysis indicated a similar hippocampal metabolic profile of HSu and control rats. HSu rats also displayed no change of synaptic transmission and plasticity (long-term potentiation) in hippocampal Schaffer fibers-CA1 pyramid synapses, but had decreased amplitude of long-term depression in the temporoammonic (TA) pathway. Furthermore, HSu rats had an increased density of inhibitory adenosine A1 receptors (A1R), that translated into a greater potency of A1R in Schaffer fiber synapses, but not in the TA pathway, whereas the endogenous activation of A1R in HSu rats was preserved in the TA pathway but abolished in Schaffer fiber synapses. These results suggest that HSu triggers a hippocampal-dependent memory impairment that is not associated with altered hippocampal metabolism but is probably related to modified synaptic plasticity in hippocampal TA synapses. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  5. A High Phosphorus Diet Affects Lipid Metabolism in Rat Liver: A DNA Microarray Analysis

    Science.gov (United States)

    Chun, Sunwoo; Bamba, Takeshi; Suyama, Tatsuya; Ishijima, Tomoko; Fukusaki, Eiichiro; Abe, Keiko; Nakai, Yuji

    2016-01-01

    A high phosphorus (HP) diet causes disorders of renal function, bone metabolism, and vascular function. We previously demonstrated that DNA microarray analysis is an appropriate method to comprehensively evaluate the effects of a HP diet on kidney dysfunction such as calcification, fibrillization, and inflammation. We reported that type IIb sodium-dependent phosphate transporter is significantly up-regulated in this context. In the present study, we performed DNA microarray analysis to investigate the effects of a HP diet on the liver, which plays a pivotal role in energy metabolism. DNA microarray analysis was performed with total RNA isolated from the livers of rats fed a control diet (containing 0.3% phosphorus) or a HP diet (containing 1.2% phosphorus). Gene Ontology analysis of differentially expressed genes (DEGs) revealed that the HP diet induced down-regulation of genes involved in hepatic amino acid catabolism and lipogenesis, while genes related to fatty acid β-oxidation process were up-regulated. Although genes related to fatty acid biosynthesis were down-regulated in HP diet-fed rats, genes important for the elongation and desaturation reactions of omega-3 and -6 fatty acids were up-regulated. Concentrations of hepatic arachidonic acid and eicosapentaenoic acid were increased in HP diet-fed rats. These essential fatty acids activate peroxisome proliferator-activated receptor alpha (PPARα), a transcription factor for fatty acid β-oxidation. Evaluation of the upstream regulators of DEGs using Ingenuity Pathway Analysis indicated that PPARα was activated in the livers of HP diet-fed rats. Furthermore, the serum concentration of fibroblast growth factor 21, a hormone secreted from the liver that promotes fatty acid utilization in adipose tissue as a PPARα target gene, was higher (p = 0.054) in HP diet-fed rats than in control diet-fed rats. These data suggest that a HP diet enhances energy expenditure through the utilization of free fatty acids

  6. Metabolic profiling of five flavonoids from Dragon's Blood in human liver microsomes using high-performance liquid chromatography coupled with high resolution mass spectrometry.

    Science.gov (United States)

    Li, Yujuan; Zhang, Yushi; Wang, Rui; Wei, Lizhong; Deng, Yulin; Ren, Wei

    2017-05-01

    Although much is known about the pharmacological activities of Dragon's Blood (DB, a traditional Chinese herb), its metabolism in human liver microsomes (HLMs) and the cytochrome P450 (CYP) enzymes has not been studied. This study aims to identify the metabolic profile of five flavonoids (loureirin A, loureirin B, loureirin C, 7,4'-dihydroxyflavone and 5,7,4'-trihydroxyflavanone) from DB in HLMs as well as the CYP enzymes that are involved in the metabolism of them. High-resolution mass spectrometry was used to characterize the structures of their metabolites and 10 cDNA-expressed CYP enzymes (CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4 and CYP3A5) were used to verify which isozymes mediate in the metabolism of the metabolites. Totally, 29 metabolites including 10 metabolites of loureirin A, 10 metabolites of loureirin B, 4 metabolites of loureirin C, 2 metabolites of 7,4'-dihydroxyflavone and 3 metabolites of 5,7,4'-trihydroxyflavanone were elucidated and identified on the basis of the high-resolution MS n data. The metabolic profile of the five flavonoids in HLMs involved hydroxylation, oxidation and demethylation. Among them, hydroxylation was the predominant biotransformation of the five flavonoids in HLMs, occurring in combination with other metabolic reactions. Assay with recombinant P450s revealed that CYP2C9 and CYP2C19 played an important role in the hydroxylation of flavonoids in HLMs. To the best of our knowledge, this is the first in vitro evaluation of the metabolic profile of loureirin A, loureirin B, loureirin C, 7,4'-dihydroxyflavone and 5,7,4'-trihydroxyflavanone in HLMs. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Relationship between metabolism and ovarian activity in dairy cows with different dry period lengths

    NARCIS (Netherlands)

    Chen, J.C.; Soede, N.M.; Dorland, van H.A.; Remmelink, G.J.; Bruckmaier, R.M.; Kemp, B.; Knegsel, van A.T.M.

    2015-01-01

    The objectives of the present study were to evaluate the effects of dry period length on ovarian activity in cows fed a lipogenic or a glucogenic diet within 100 days in milk (DIM) and to determine relationships between ovarian activity and energy balance and metabolic status in early lactation.

  8. Protein carbonylation associated to high-fat, high-sucrose diet and its metabolic effects.

    Science.gov (United States)

    Méndez, Lucía; Pazos, Manuel; Molinar-Toribio, Eunice; Sánchez-Martos, Vanesa; Gallardo, José M; Rosa Nogués, M; Torres, Josep L; Medina, Isabel

    2014-12-01

    The present research draws a map of the characteristic carbonylation of proteins in rats fed high-caloric diets with the aim of providing a new insight of the pathogenesis of metabolic diseases derived from the high consumption of fat and refined carbohydrates. Protein carbonylation was analyzed in plasma, liver and skeletal muscle of Sprague-Dawley rats fed a high-fat, high-sucrose (HFHS) diet by a proteomics approach based on carbonyl-specific fluorescence-labeling, gel electrophoresis and mass spectrometry. Oxidized proteins along with specific sites of oxidative damage were identified and discussed to illustrate the consequences of protein oxidation. The results indicated that long-term HFHS consumption increased protein oxidation in plasma and liver; meanwhile, protein carbonyls from skeletal muscle did not change. The increment of carbonylation by HFHS diet was singularly selective on specific target proteins: albumin from plasma and liver, and hepatic proteins such as mitochondrial carbamoyl-phosphate synthase (ammonia), mitochondrial aldehyde dehydrogenase, argininosuccinate synthetase, regucalcin, mitochondrial adenosine triphosphate synthase subunit beta, actin cytoplasmic 1 and mitochondrial glutamate dehydrogenase 1. The possible consequences that these specific protein carbonylations have on the excessive weight gain, insulin resistance and nonalcoholic fatty liver disease resulting from HFHS diet consumption are discussed. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Pedometer assessed physical activity of people with metabolic syndrome in Poland.

    Directory of Open Access Journals (Sweden)

    Anna Owlasiuk

    2014-06-01

    Full Text Available introduction. Metabolic syndrome is a contemporary disease of civilization, an effect of lack of healthy behaviour, a consequence of lifestyle devoid of physical activity, eating poor quality food rich in calories and excessive stress. Apart from a proper diet, physical activity remains an important part of metabolic syndrome management. objective. The main objective of the work was to evaluate the physical activity of an adult population of patients with metabolic syndrome. materials and method. Adults aged 35–70 fulfilling the criteria of metabolic syndrome according to International Diabetes Federation (IDF were included. New Lifestyles NL-2000 pedometers were used to assess locomotive physical activity during an entire week. results. In the group of 100 subjects, as many as 61 people (61% represented low or sedentary activity, while nearly one fourth of the respondents – 23 (32% represented the negligible activity type. Average weekly physical activity of those in the study was 6,743 steps/day (in 100 individuals and ranged from 1,781–15,169. A great diversity was found in the study group, since the highest number of steps per day was 23,347 and the lowest – 409. No significant differences in the number of steps on weekdays and at weekends were observed (mean: 6,676/day and 6,913/day, espectively. A statistically significant negative correlation (r = -0.29 was observed between age and physical activity, between the average daily number of steps in the week and Waist Hip Ratio (WHR (r = 0.201, as well as between the average daily number of steps in the week and Body Mass Index (BMI (r = 0.226. conclusions. The majority of people with metabolic syndrome represent a low or sedentary activity type and decrease of physical activity corresponds to increasing age, BMI and WHR. No significant differences in physical activity are observed between working days and free days (weekends.

  10. Adiponectin gene therapy ameliorates high-fat, high-sucrose diet-induced metabolic perturbations in mice.

    Science.gov (United States)

    Kandasamy, A D; Sung, M M; Boisvenue, J J; Barr, A J; Dyck, J R B

    2012-09-10

    Adiponectin is an adipokine secreted primarily from adipose tissue that can influence circulating plasma glucose and lipid levels through multiple mechanisms involving a variety of organs. In humans, reduced plasma adiponectin levels induced by obesity are associated with insulin resistance and type 2 diabetes, suggesting that low adiponectin levels may contribute the pathogenesis of obesity-related insulin resistance. The objective of the present study was to investigate whether gene therapy designed to elevate circulating adiponectin levels is a viable strategy for ameliorating insulin resistance in mice fed a high-fat, high-sucrose (HFHS) diet. Electroporation-mediated gene transfer of mouse adiponectin plasmid DNA into gastrocnemius muscle resulted in elevated serum levels of globular and high-molecular weight adiponectin compared with control mice treated with empty plasmid. In comparison to HFHS-fed mice receiving empty plasmid, mice receiving adiponectin gene therapy displayed significantly decreased weight gain following 13 weeks of HFHS diet associated with reduced fat accumulation, and exhibited increased oxygen consumption and locomotor activity as measured by indirect calorimetry, suggesting increased energy expenditure in these mice. Consistent with improved whole-body metabolism, mice receiving adiponectin gene therapy also had lower blood glucose and insulin levels, improved glucose tolerance and reduced hepatic gluconeogenesis compared with control mice. Furthermore, immunoblot analysis of livers from mice receiving adiponectin gene therapy showed an increase in insulin-stimulated phosphorylation of insulin signaling proteins. Based on these data, we conclude that adiponectin gene therapy ameliorates the metabolic abnormalities caused by feeding mice a HFHS diet and may be a potential therapeutic strategy to improve obesity-mediated impairments in insulin sensitivity.

  11. Intermittent fasting promotes adipose thermogenesis and metabolic homeostasis via VEGF-mediated alternative activation of macrophage.

    Science.gov (United States)

    Kim, Kyoung-Han; Kim, Yun Hye; Son, Joe Eun; Lee, Ju Hee; Kim, Sarah; Choe, Min Seon; Moon, Joon Ho; Zhong, Jian; Fu, Kiya; Lenglin, Florine; Yoo, Jeong-Ah; Bilan, Philip J; Klip, Amira; Nagy, Andras; Kim, Jae-Ryong; Park, Jin Gyoon; Hussein, Samer Mi; Doh, Kyung-Oh; Hui, Chi-Chung; Sung, Hoon-Ki

    2017-11-01

    Intermittent fasting (IF), a periodic energy restriction, has been shown to provide health benefits equivalent to prolonged fasting or caloric restriction. However, our understanding of the underlying mechanisms of IF-mediated metabolic benefits is limited. Here we show that isocaloric IF improves metabolic homeostasis against diet-induced obesity and metabolic dysfunction primarily through adipose thermogenesis in mice. IF-induced metabolic benefits require fasting-mediated increases of vascular endothelial growth factor (VEGF) expression in white adipose tissue (WAT). Furthermore, periodic adipose-VEGF overexpression could recapitulate the metabolic improvement of IF in non-fasted animals. Importantly, fasting and adipose-VEGF induce alternative activation of adipose macrophage, which is critical for thermogenesis. Human adipose gene analysis further revealed a positive correlation of adipose VEGF-M2 macrophage-WAT browning axis. The present study uncovers the molecular mechanism of IF-mediated metabolic benefit and suggests that isocaloric IF can be a preventive and therapeutic approach against obesity and metabolic disorders.

  12. Intermittent fasting promotes adipose thermogenesis and metabolic homeostasis via VEGF-mediated alternative activation of macrophage

    Science.gov (United States)

    Kim, Kyoung-Han; Kim, Yun Hye; Son, Joe Eun; Lee, Ju Hee; Kim, Sarah; Choe, Min Seon; Moon, Joon Ho; Zhong, Jian; Fu, Kiya; Lenglin, Florine; Yoo, Jeong-Ah; Bilan, Philip J; Klip, Amira; Nagy, Andras; Kim, Jae-Ryong; Park, Jin Gyoon; Hussein, Samer MI; Doh, Kyung-Oh; Hui, Chi-chung; Sung, Hoon-Ki

    2017-01-01

    Intermittent fasting (IF), a periodic energy restriction, has been shown to provide health benefits equivalent to prolonged fasting or caloric restriction. However, our understanding of the underlying mechanisms of IF-mediated metabolic benefits is limited. Here we show that isocaloric IF improves metabolic homeostasis against diet-induced obesity and metabolic dysfunction primarily through adipose thermogenesis in mice. IF-induced metabolic benefits require fasting-mediated increases of vascular endothelial growth factor (VEGF) expression in white adipose tissue (WAT). Furthermore, periodic adipose-VEGF overexpression could recapitulate the metabolic improvement of IF in non-fasted animals. Importantly, fasting and adipose-VEGF induce alternative activation of adipose macrophage, which is critical for thermogenesis. Human adipose gene analysis further revealed a positive correlation of adipose VEGF-M2 macrophage-WAT browning axis. The present study uncovers the molecular mechanism of IF-mediated metabolic benefit and suggests that isocaloric IF can be a preventive and therapeutic approach against obesity and metabolic disorders. PMID:29039412

  13. Hemolymph Melanization in the Silkmoth Bombyx mori Involves Formation of a High Molecular Mass Complex That Metabolizes Tyrosine*

    Science.gov (United States)

    Clark, Kevin D.; Strand, Michael R.

    2013-01-01

    The phenoloxidase (PO) cascade regulates the melanization of blood (hemolymph) in insects and other arthropods. Most studies indicate that microbial elicitors activate the PO cascade, which results in processing of the zymogen PPO to PO. PO is then thought to oxidize tyrosine and o-diphenols to quinones, which leads to melanin. However, different lines of investigation raise questions as to whether these views are fully correct. Here we report that hemolymph from the silkmoth, Bombyx mori, rapidly melanizes after collection from a wound site. Prior studies indicated that in vitro activated PPO hydroxylates Tyr inefficiently. Measurement of in vivo substrate titers, however, suggested that Tyr was the only PO substrate initially present in B. mori plasma and that it is rapidly metabolized by PO. Fractionation of plasma by gel filtration chromatography followed by bioassays indicated that melanization activity was primarily associated with a high mass complex (∼670 kDa) that contained PO. The prophenoloxidase-activating protease inhibitor Egf1.0 blocked formation of this complex and Tyr metabolism, but the addition of phenylthiourea to plasma before fractionation enhanced complex formation and Tyr metabolism. Mass spectrometry analysis indicated that the complex contained PO plus other proteins. Taken together, our results indicate that wounding alone activates the PO cascade in B. mori. They also suggest that complex formation is required for efficient use of Tyr as a substrate. PMID:23553628

  14. Characterization of Carbohydrate Active Enzymes Involved in Arabinogalactan Protein Metabolism

    DEFF Research Database (Denmark)

    Knoch, Eva

    and tissues, their functions and synthesis are still poorly understood. The aim of the research presented in the thesis was to characterize carbohydrate active enzymes involved in AGP biosynthesis and modification to gain insights into the biosynthesis of the glycoproteins in plants. Candidate...... glycosyltransferases and glycoside hydrolases were selected based on co-expression profiles from a transcriptomics analysis. Reverse genetics approach on a novel glucuronosyltransferase involved in AGP biosynthesis has revealed that the enzyme activity is required for normal cell elongation in etiolated seedlings....... The enzymatic activity of a hydrolase from GH family 17 was investigated, without successful determination of the activity. Members of hydrolase family 43 appeared to be localized in the Golgi-apparatus, which is also the compartment for glycan biosynthesis. The localization of these glycoside hydrolases...

  15. High fructose corn syrup induces metabolic dysregulation and altered dopamine signaling in the absence of obesity

    OpenAIRE

    Meyers, Allison M.; Mourra, Devry; Beeler, Jeff A.

    2017-01-01

    The contribution of high fructose corn syrup (HFCS) to metabolic disorder and obesity, independent of high fat, energy-rich diets, is controversial. While high-fat diets are widely accepted as a rodent model of diet-induced obesity (DIO) and metabolic disorder, the value of HFCS alone as a rodent model of DIO is unclear. Impaired dopamine function is associated with obesity and high fat diet, but the effect of HFCS on the dopamine system has not been investigated. The objective of this study ...

  16. Inulin oligofructose attenuates metabolic syndrome in high-carbohydrate, high-fat diet-fed rats.

    Science.gov (United States)

    Kumar, Senthil A; Ward, Leigh C; Brown, Lindsay

    2016-11-01

    Prebiotics alter bacterial content in the colon, and therefore could be useful for obesity management. We investigated the changes following addition of inulin oligofructose (IO) in the food of rats fed either a corn starch (C) diet or a high-carbohydrate, high-fat (H) diet as a model of diet-induced metabolic syndrome. IO did not affect food intake, but reduced body weight gain by 5·3 and 12·3 % in corn starch+inulin oligofructose (CIO) and high-carbohydrate, high-fat with inulin oligofructose (HIO) rats, respectively. IO reduced plasma concentrations of free fatty acids by 26·2 % and TAG by 75·8 % in HIO rats. IO increased faecal output by 93·2 %, faecal lipid excretion by 37·9 % and weight of caecum by 23·4 % and colon by 41·5 % in HIO rats. IO improved ileal morphology by reducing inflammation and improving the density of crypt cells in HIO rats. IO attenuated H diet-induced increases in abdominal fat pads (C 275 (sem 19), CIO 264 (sem 40), H 688 (sem 55), HIO 419 (sem 32) mg/mm tibial length), fasting blood glucose concentrations (C 4·5 (sem 0·1), CIO 4·2 (sem 0·1), H 5·2 (sem 0·1), HIO 4·3 (sem 0·1) mmol/l), systolic blood pressure (C 124 (sem 2), CIO 118 (sem 2), H 152 (sem 2), HIO 123 (sem 3) mmHg), left ventricular diastolic stiffness (C 22·9 (sem 0·6), CIO 22·9 (sem 0·5), H 27·8 (sem 0·5), HIO 22·6 (sem 1·2)) and plasma alanine transaminase (C 29·6 (sem 2·8), CIO 32·1 (sem 3·0), H 43·9 (sem 2·6), HIO 33·6 (sem 2·0) U/l). IO attenuated H-induced increases in inflammatory cell infiltration in the heart and liver, lipid droplets in the liver and plasma lipids as well as impaired glucose and insulin tolerance. These results suggest that increasing soluble fibre intake with IO improves signs of the metabolic syndrome by decreasing gastrointestinal carbohydrate and lipid uptake.

  17. Physical Activity and Sedentary Time Associations with Metabolic Health Across Weight Statuses in Children and Adolescents

    DEFF Research Database (Denmark)

    Kuzik, Nicholas; Carson, Valerie; Andersen, Lars Bo

    2017-01-01

    classification compared with metabolically healthy (MH) classification for the NW group. More MVPA was associated with lower odds of MU classification than MH classification for NW and overweight groups. For multinomial logistic regressions, more MVPA was associated with lower odds of MH-obesity classification......, as well as MU-NW, -overweight, and -obesity classifications, compared with the MH-NW group. Furthermore, more sedentary time was associated with higher odds of MU-NW classification compared with the MH-NW group. CONCLUSIONS: More MVPA was beneficial for metabolic health and weight status, whereas lower......OBJECTIVE: The aim of this study was to examine the prevalence of metabolic health across weight statuses and the associations of physical activity and sedentary time within and across metabolic health-weight status groups. METHODS: Six studies (n = 4,581) from the International Children...

  18. Cross-sectional surveillance study to phenotype lorry drivers’ sedentary behaviours, physical activity and cardio-metabolic health

    Science.gov (United States)

    Varela-Mato, Veronica; O’Shea, Orlagh; King, James A; Yates, Thomas; Stensel, David J; Biddle, Stuart JH; Nimmo, Myra A; Clemes, Stacy A

    2017-01-01

    Objectives Elevated risk factors for a number of chronic diseases have been identified in lorry drivers. Unhealthy lifestyle behaviours such as a lack of physical activity (PA) and high levels of sedentary behaviour (sitting) likely contribute to this elevated risk. This study behaviourally phenotyped UK lorry drivers’ sedentary and non-sedentary behaviours during workdays and non-workdays and examined markers of drivers cardio-metabolic health. Setting A transport company from the East Midlands, UK. Participants A sample of 159 male heavy goods vehicle drivers (91% white European; (median (range)) age: 50 (24, 67) years) completed the health assessments. 87 (age: 50.0 (25.0, 65.0); body mass index (BMI): 27.7 (19.6, 43.4) kg/m2) provided objective information on sedentary and non-sedentary time. Outcomes Participants self-reported their sociodemographic information. Primary outcomes: sedentary behaviour and PA, assessed over 7 days using an activPAL3 inclinometer. Cardio-metabolic markers included: blood pressure (BP), heart rate, waist circumference (WC), hip circumference, body composition and fasted capillary blood glucose, triglycerides, high-density lipopreotein cholesterol, low-density lipoprotein cholesterol (LDL-C) and total cholesterol (TC) levels. These cardio-metabolic markers were treated as secondary outcomes. Results Lorry drivers presented an unhealthy cardio-metabolic health profile (median (IQR) systolic BP: 129 (108.5, 164) mm Hg; diastolic BP: 81 (63, 104) mm Hg; BMI: 29 (20, 47) kg/m2; WC: 102 (77.5, 146.5) cm; LDL-C: 3 (1, 6) mmol/L; TC: 4.9 (3, 7.5) mmol/L). 84% were overweight or obese, 43% had type 2 diabetes or prediabetes and 34% had the metabolic syndrome. The subsample of lorry drivers with objective postural data (n=87) accumulated 13 hours/day and 8 hours/day of sedentary behaviour on workdays and non-workdays (pdrivers accrued 12 min/day on workdays and 6 min/day on non-workdays of moderate-to-vigorous PA (MVPA). Conclusion

  19. Cross-sectional surveillance study to phenotype lorry drivers' sedentary behaviours, physical activity and cardio-metabolic health.

    Science.gov (United States)

    Varela-Mato, Veronica; O'Shea, Orlagh; King, James A; Yates, Thomas; Stensel, David J; Biddle, Stuart Jh; Nimmo, Myra A; Clemes, Stacy A

    2017-06-21

    Elevated risk factors for a number of chronic diseases have been identified in lorry drivers. Unhealthy lifestyle behaviours such as a lack of physical activity (PA) and high levels of sedentary behaviour (sitting) likely contribute to this elevated risk. This study behaviourally phenotyped UK lorry drivers' sedentary and non-sedentary behaviours during workdays and non-workdays and examined markers of drivers cardio-metabolic health. A transport company from the East Midlands, UK. A sample of 159 male heavy goods vehicle drivers (91% white European; (median (range)) age: 50 (24, 67) years) completed the health assessments. 87 (age: 50.0 (25.0, 65.0); body mass index (BMI): 27.7 (19.6, 43.4) kg/m 2 ) provided objective information on sedentary and non-sedentary time. Participants self-reported their sociodemographic information. Primary outcomes: sedentary behaviour and PA, assessed over 7 days using an activPAL3 inclinometer. Cardio-metabolic markers included: blood pressure (BP), heart rate, waist circumference (WC), hip circumference, body composition and fasted capillary blood glucose, triglycerides, high-density lipopreotein cholesterol, low-density lipoprotein cholesterol (LDL-C) and total cholesterol (TC) levels. These cardio-metabolic markers were treated as secondary outcomes. Lorry drivers presented an unhealthy cardio-metabolic health profile (median (IQR) systolic BP: 129 (108.5, 164) mm Hg; diastolic BP: 81 (63, 104) mm Hg; BMI: 29 (20, 47) kg/m 2 ; WC: 102 (77.5, 146.5) cm; LDL-C: 3 (1, 6) mmol/L; TC: 4.9 (3, 7.5) mmol/L). 84% were overweight or obese, 43% had type 2 diabetes or prediabetes and 34% had the metabolic syndrome. The subsample of lorry drivers with objective postural data (n=87) accumulated 13 hours/day and 8 hours/day of sedentary behaviour on workdays and non-workdays (pdrivers accrued 12 min/day on workdays and 6 min/day on non-workdays of moderate-to-vigorous PA (MVPA). Lorry drivers demonstrate a high-risk cardio-metabolic

  20. NDRG2 overexpression suppresses hepatoma cells survival during metabolic stress through disturbing the activation of fatty acid oxidation

    International Nuclear Information System (INIS)

    Pan, Tao; Zhang, Mei; Zhang, Fang; Yan, Guang; Ru, Yi; Wang, Qinhao; Zhang, Yao; Wei, Xuehui; Xu, Xinyuan; Shen, Lan; Zhang, Jian; Wu, Kaichun; Yao, Libo; Li, Xia

    2017-01-01

    Because of the high nutrient consumption and inadequate vascularization, solid tumor constantly undergoes metabolic stress during tumor development. Oncogenes and tumor suppressor genes participated in cancer cells' metabolic reprogramming. N-Myc downstream regulated gene 2 (NDRG2) is a recently identified tumor suppressor gene, but its function in cancer metabolism, particularly during metabolic stress, remains unclear. In this study, we found that NDRG2 overexpression significantly reduced hepatoma cell proliferation and enhanced cell apoptosis under glucose limitation. Moreover, NDRG2 overexpression aggravated energy imbalance and oxidative stress by decreasing the intracellular ATP and NADPH generation and increasing ROS levels. Strikingly, NDRG2 inhibited the activation of fatty acid oxidation (FAO), which preserves ATP and NADPH purveyance in the absence of glucose. Finally, mechanistic investigation showed that NDRG2 overexpression suppressed the glucose-deprivation induced AMPK/ACC pathway activation in hepatoma cells, whereas the expression of a constitutively active form of AMPK abrogated glucose-deprivation induced AMPK activation and cell apoptosis. Thus, as a negative regulator of AMPK, NDRG2 disturbs the induction of FAO genes by glucose limitation, leading to dysregulation of ATP and NADPH, and thus reduces the tolerance of hepatoma cells to glucose limitation. - Highlights: • NDRG2 overexpression reduces the tolerance of hepatoma cells to glucose limitation. • NDRG2 overexpression aggravates energy imbalance and oxidative stress under glucose deprivation. • NDRG2 overexpression disturbs the activation of FAO in hepatoma cells under glucose limitation. • NDRG2 overexpression inhibits the activation of AMPK/ACC pathway in hepatoma cells during glucose starvation.

  1. Metabolic activation of amygdala, lateral septum and accumbens circuits during food anticipatory behavior.

    Science.gov (United States)

    Olivo, Diana; Caba, Mario; Gonzalez-Lima, Francisco; Rodríguez-Landa, Juan F; Corona-Morales, Aleph A

    2017-01-01

    When food is restricted to a brief fixed period every day, animals show an increase in temperature, corticosterone concentration and locomotor activity for 2-3h before feeding time, termed food anticipatory activity. Mechanisms and neuroanatomical circuits responsible for food anticipatory activity remain unclear, and may involve both oscillators and networks related to temporal conditioning. Rabbit pups are nursed once-a-day so they represent a natural model of circadian food anticipatory activity. Food anticipatory behavior in pups may be associated with neural circuits that temporally anticipate feeding, while the nursing event may produce consummatory effects. Therefore, we used New Zealand white rabbit pups entrained to circadian feeding to investigate the hypothesis that structures related to reward expectation and conditioned emotional responses would show a metabolic rhythm anticipatory of the nursing event, different from that shown by structures related to reward delivery. Quantitative cytochrome oxidase histochemistry was used to measure regional brain metabolic activity at eight different times during the day. We found that neural metabolism peaked before nursing, during food anticipatory behavior, in nuclei of the extended amygdala (basolateral, medial and central nuclei, bed nucleus of the stria terminalis), lateral septum and accumbens core. After pups were fed, however, maximal metabolic activity was expressed in the accumbens shell, caudate, putamen and cortical amygdala. Neural and behavioral activation persisted when animals were fasted by two cycles, at the time of expected nursing. These findings suggest that metabolic activation of amygdala-septal-accumbens circuits involved in temporal conditioning may contribute to food anticipatory activity. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Pattern of γ-glutamyl transferase activity in cow milk throughout lactation and relationships with metabolic conditions and milk composition.

    Science.gov (United States)

    Calamari, L; Gobbi, L; Russo, F; Cappelli, F Piccioli

    2015-08-01

    The main objective of this experiment was to study the γ-glutamyl transferase (GGT) activity in milk during lactation and its relationship with metabolic status of dairy cows, milk yield, milk composition, and cheesemaking properties. The study was performed in a tied stall barn and involved 20 lactations from 12 healthy multiparous Italian Friesian dairy cows. During lactation starting at d 10, milk samples were collected weekly and analyzed for composition, somatic cells count, titratable acidity, and milk coagulation properties. The GGT activity was measured in defatted samples. Blood samples were collected weekly to assess biochemical indicators related to energy, protein, and mineral metabolism, markers of inflammation and some enzyme activities. The lactations of each cow were retrospectively categorized into 2 groups according to their milk GGT activity value through lactation. A median value of GGT activity in the milk of all lactations was calculated (3,045 U/L), and 10 lactations with lower GGT activity were classified as low while 10 lactations with greater GGT activity were classified as high. The average value of milk GGT activity during lactation was 3,863 and 3,024 U/L for high and low, respectively. The GGT activity decreased in early lactation and reached minimum values in the second month (3,289 and 2,355 U/L for high and low, respectively). Thereafter GGT activity increased progressively, reaching values in late lactation of 4,511 and 3,540 U/L in high and low, respectively. On average, milk yield was 40.81 and 42.76 kg/d in high and low, respectively, and a negative partial correlation with milk GGT activity was observed. A greater milk protein concentration was observed in high (3.39%) compared with low (3.18%), and a positive partial correlation with milk GGT activity was observed. Greater titratable acidity in high than that in low (3.75 vs. 3.45 degrees Soxhlet-Henkel/50 mL, respectively) was also observed. Plasma glucose was greater in

  3. Lactose metabolism in Streptococcus lactis: studies with a mutant lacking glucokinase and mannose-phosphotransferase activities

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, J.; Chassy, B.M.; Egan, W.

    1985-04-01

    A mutant of Streptococcus lactis 133 has been isolated that lacks both glucokinase and phosphoenolpyruvate-dependent mannose- phosphotransferase (mannose-PTS) activities. The double mutant S. lactis 133 mannose-PTSd GK- is unable to utilize either exogenously supplied or intracellularly generated glucose for growth. Fluorographic analyses of metabolites formed during the metabolism of (/sup 14/C)lactose labeled specifically in the glucose or galactosyl moiety established that the cells were unable to phosphorylate intracellular glucose. However, cells of S. lactis 133 mannose-PTSd GK- readily metabolized intracellular glucose 6-phosphate, and the growth rates and cell yield of the mutant and parental strains on sucrose were the same. During growth on lactose, S. lactis 133 mannose-PTSd GK- fermented only the galactose moiety of the disaccharide, and 1 mol of glucose was generated per mol of lactose consumed. For an equivalent concentration of lactose, the cell yield of the mutant was 50% that of the wild type. The specific rate of lactose utilization by growing cells of S. lactis 133 mannose-PTSd GK- was ca. 50% greater than that of the wild type, but the cell doubling times were 70 and 47 min, respectively. High-resolution /sup 31/P nuclear magnetic resonance studies of lactose transport by starved cells of S. lactis 133 and S. lactis 133 mannose-PTSd GK- showed that the latter cells contained elevated lactose-PTS activity. Throughout exponential growth on lactose, the mutant maintained an intracellular steady-state glucose concentration of 100 mM.

  4. Lactose metabolism in Streptococcus lactis: studies with a mutant lacking glucokinase and mannose-phosphotransferase activities

    International Nuclear Information System (INIS)

    Thompson, J.; Chassy, B.M.; Egan, W.

    1985-01-01

    A mutant of Streptococcus lactis 133 has been isolated that lacks both glucokinase and phosphoenolpyruvate-dependent mannose- phosphotransferase (mannose-PTS) activities. The double mutant S. lactis 133 mannose-PTSd GK- is unable to utilize either exogenously supplied or intracellularly generated glucose for growth. Fluorographic analyses of metabolites formed during the metabolism of [ 14 C]lactose labeled specifically in the glucose or galactosyl moiety established that the cells were unable to phosphorylate intracellular glucose. However, cells of S. lactis 133 mannose-PTSd GK- readily metabolized intracellular glucose 6-phosphate, and the growth rates and cell yield of the mutant and parental strains on sucrose were the same. During growth on lactose, S. lactis 133 mannose-PTSd GK- fermented only the galactose moiety of the disaccharide, and 1 mol of glucose was generated per mol of lactose consumed. For an equivalent concentration of lactose, the cell yield of the mutant was 50% that of the wild type. The specific rate of lactose utilization by growing cells of S. lactis 133 mannose-PTSd GK- was ca. 50% greater than that of the wild type, but the cell doubling times were 70 and 47 min, respectively. High-resolution 31 P nuclear magnetic resonance studies of lactose transport by starved cells of S. lactis 133 and S. lactis 133 mannose-PTSd GK- showed that the latter cells contained elevated lactose-PTS activity. Throughout exponential growth on lactose, the mutant maintained an intracellular steady-state glucose concentration of 100 mM

  5. Transplant experiments uncover Baltic Sea basin-specific responses in bacterioplankton community composition and metabolic activities.

    Science.gov (United States)

    Lindh, Markus V; Figueroa, Daniela; Sjöstedt, Johanna; Baltar, Federico; Lundin, Daniel; Andersson, Agneta; Legrand, Catherine; Pinhassi, Jarone

    2015-01-01

    Anthropogenically induced changes in precipitation are projected to generate increased river runoff to semi-enclosed seas, increasing loads of terrestrial dissolved organic matter and decreasing salinity. To determine how bacterial community structure and functioning adjust to such changes, we designed microcosm transplant experiments with Baltic Proper (salinity 7.2) and Bothnian Sea (salinity 3.6) water. Baltic Proper bacteria generally reached higher abundances than Bothnian Sea bacteria in both Baltic Proper and Bothnian Sea water, indicating higher adaptability. Moreover, Baltic Proper bacteria growing in Bothnian Sea water consistently showed highest bacterial production and beta-glucosidase activity. These metabolic responses were accompanied by basin-specific changes in bacterial community structure. For example, Baltic Proper Pseudomonas and Limnobacter populations increased markedly in relative abundance in Bothnian Sea water, indicating a replacement effect. In contrast, Roseobacter and Rheinheimera populations were stable or increased in abundance when challenged by either of the waters, indicating an adjustment effect. Transplants to Bothnian Sea water triggered the initial emergence of particular Burkholderiaceae populations, and transplants to Baltic Proper water triggered Alteromonadaceae populations. Notably, in the subsequent re-transplant experiment, a priming effect resulted in further increases to dominance of these populations. Correlated changes in community composition and metabolic activity were observed only in the transplant experiment and only at relatively high phylogenetic resolution. This suggested an importance of successional progression for interpreting relationships between bacterial community composition and functioning. We infer that priming effects on bacterial community structure by natural episodic events or climate change induced forcing could translate into long-term changes in bacterial ecosystem process rates.

  6. Transplant experiments uncover Baltic Sea basin-specific responses in bacterioplankton community composition and metabolic activities

    Directory of Open Access Journals (Sweden)

    Markus V Lindh

    2015-04-01

    Full Text Available Anthropogenically induced changes in precipitation are projected to generate increased river runoff to semi-enclosed seas, intensifying loads of terrestrial dissolved organic matter and decreasing salinity. To determine how bacterial community structure and functioning adjust to such changes, we designed microcosm transplant experiments with Baltic Proper (salinity 7.2 and Bothnian Sea (salinity 3.6 water. Baltic Proper bacteria generally reached higher abundance than Bothnian Sea bacteria in both Baltic Proper and Bothnian Sea water, indicating a higher adaptability. Moreover, Baltic Proper bacteria growing in Bothnian Sea water consistently showed highest bacterial production and beta-glucosidase activity. These metabolic responses were accompanied by basin-specific changes in bacterial community structure. For example, Baltic Proper Pseudomonas and Limnobacter populations increased markedly in relative abundance in Bothnian Sea water, indicating replacement. In contrast, Roseobacter and Rheinheimera populations were stable or increased in abundance when challenged by either of the waters, indicating adjustment. Transplants to Bothnian Sea water triggered the initial emergence of particular Burkholderiaceae populations, and transplants to Baltic Proper water triggered Alteromonadaceae populations. Notably, in the subsequent re-transplant experiment, the original triggering, or priming effect, resulted in further increases to dominance of these populations. Correlated changes in community composition and metabolic activity were observed only in the transplant experiment, and only at relatively high phylogenetic resolution. This suggested an importance of successional progression for interpreting relationships between bacterial community composition and functioning. We infer that priming effects on bacterial community structure by natural episodic events or climate change induced forcing could translate into long-term changes in bacterial

  7. Development of a metabolically active, non-replicating sporozoite vaccine to prevent Plasmodium falciparum malaria.

    Science.gov (United States)

    Hoffman, Stephen L; Billingsley, Peter F; James, Eric; Richman, Adam; Loyevsky, Mark; Li, Tao; Chakravarty, Sumana; Gunasekera, Anusha; Chattopadhyay, Rana; Li, Minglin; Stafford, Richard; Ahumada, Adriana; Epstein, Judith E; Sedegah, Martha; Reyes, Sharina; Richie, Thomas L; Lyke, Kirsten E; Edelman, Robert; Laurens, Matthew B; Plowe, Christopher V; Sim, B Kim Lee

    2010-01-01

    Immunization of volunteers by the bite of mosquitoes carrying radiation-attenuated Plasmodium falciparum sporozoites protects greater than 90% of such volunteers against malaria, if adequate numbers of immunizing biting sessions and sporozoite-infected mosquitoes are used. Nonetheless, until recently it was considered impossible to develop, license and commercialize a live, whole parasite P. falciparum sporozoite (PfSPZ) vaccine. In 2003 Sanaria scientists reappraised the potential impact of a metabolically active, non-replicating PfSPZ vaccine, and outlined the challenges to producing such a vaccine. Six years later, significant progress has been made in overcoming these challenges. This progress has enabled the manufacture and release of multiple clinical lots of a 1(st) generation metabolically active, non-replicating PfSPZ vaccine, the Sanaria PfSPZ Vaccine, submission of a successful Investigational New Drug application to the US Food and Drug Administration, and initiation of safety, immunogenicity and protective efficacy studies in volunteers in MD, US. Efforts are now focused on how best to achieve submission of a successful Biologics License Application and introduce the vaccine to the primary target population of African children in the shortest possible period of time. This will require implementation of a systematic, efficient clinical development plan. Short term challenges include optimizing the (1) efficiency and scale up of the manufacturing process and quality control assays, (2) dosage regimen and method of administration, (3) potency of the vaccine, and (4) logistics of delivering the vaccine to those who need it most, and finalizing the methods for vaccine stabilization and attenuation. A medium term goal is to design and build a facility for manufacturing highly potent and stable vaccine for pivotal Phase 3 studies and commercial launch.

  8. Saharan dust inputs and high UVR levels jointly alter the metabolic balance of marine oligotrophic ecosystems

    Science.gov (United States)

    Cabrerizo, Marco J.; Medina-Sánchez, Juan Manuel; González-Olalla, Juan Manuel; Villar-Argaiz, Manuel; Carrillo, Presentación

    2016-10-01

    The metabolic balance of the most extensive bioma on the Earth is a controversial topic of the global-change research. High ultraviolet radiation (UVR) levels by the shoaling of upper mixed layers and increasing atmospheric dust deposition from arid regions may unpredictably alter the metabolic state of marine oligotrophic ecosystems. We performed an observational study across the south-western (SW) Mediterranean Sea to assess the planktonic metabolic balance and a microcosm experiment in two contrasting areas, heterotrophic nearshore and autotrophic open sea, to test whether a combined UVR × dust impact could alter their metabolic balance at mid-term scales. We show that the metabolic state of oligotrophic areas geographically varies and that the joint impact of UVR and dust inputs prompted a strong change towards autotrophic metabolism. We propose that this metabolic response could be accentuated with the global change as remote-sensing evidence shows increasing intensities, frequencies and number of dust events together with variations in the surface UVR fluxes on SW Mediterranean Sea. Overall, these findings suggest that the enhancement of the net carbon budget under a combined UVR and dust inputs impact could contribute to boost the biological pump, reinforcing the role of the oligotrophic marine ecosystems as CO2 sinks.

  9. Keap1 knockdown increases markers of metabolic syndrome after long-term high fat diet feeding.

    Science.gov (United States)

    More, Vijay R; Xu, Jialin; Shimpi, Prajakta C; Belgrave, Clyde; Luyendyk, James P; Yamamoto, Masayuki; Slitt, Angela L

    2013-08-01

    The nuclear factor E2-related factor 2 (Nrf2)-Kelch-like ECH-associated protein 1 (Keap1) pathway upregulates antioxidant and biotransformation enzyme expression to counter cellular oxidative stress. The contributions of Nrf2 to other cellular functions, such as lipid homeostasis, are emerging. This study was conducted to determine how enhanced Nrf2 activity influences the progression of metabolic syndrome with long-term high-fat diet (HFD) feeding. C57BL/6 and Keap1-knockdown (Keap1-KD) mice, which exhibit enhanced Nrf2 activity, were fed a HFD for 24 weeks. Keap1-KD mice had higher body weight and white adipose tissue mass compared to C57BL/6 mice on HFD, along with increased inflammation and lipogenic gene expression. HFD feeding increased hepatic steatosis and inflammation to a greater extent in Keap1-KD mice compared to C57BL/6 mice, which was associated with increased liver Cd36, fatty acid-binding protein 4, and monocyte chemoattractant protein 1 mRNA expression, as well as increased acetyl-CoA carboxylase 1 and stearoyl-CoA desaturase-1 protein expression. The HFD altered short-term glucose homeostasis to a greater degree in Keap-KD mice compared to C57BL/6 mice, which was accompanied by downregulation of insulin receptor substrate 1 mRNA expression in skeletal muscle. Together, the results indicate that Keap1 knockdown, on treatment with HFD, increases certain markers of metabolic syndrome. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Radix Stellariae extract prevents high-fat-diet-induced obesity in C57BL/6 mice by accelerating energy metabolism

    Directory of Open Access Journals (Sweden)

    Yin Li

    2017-05-01

    Full Text Available Stellaria dichotoma L. is widely distributed in Ningxia and surrounding areas in northwestern China. Its root, Radix Stellariae (RS, has been used in herbal formulae for treating asthenic-fever, infection, malaria, dyspepsia in children and several other symptoms. This study investigated whether the RS extract (RSE alleviates metabolic disorders. The results indicated that RSE significantly inhibited body weight gain in high-fat (HF-diet-fed C57BL/6 mice, reduced fasting glucose levels, and improved insulin tolerance. Moreover, RSE increased the body temperature of the mice and the expression of uncoupling proteins and peroxisome proliferator-activated receptors in the white adipose tissue. Thus, RSE alleviated metabolic disorders in HF-diet-fed C57BL/6 mice by potentially activating UCP and PPAR signaling.

  11. Compensation in resting metabolism for experimentally increased activity

    NARCIS (Netherlands)

    Deerenberg, C; Overkamp, GJF; Visser, GH; Daan, S; Heldmaier, G.

    1998-01-01

    To study zebra finch allocation of energy to day and night at two different workloads, we assessed the daily energy turnover from: (1) metabolizable energy of the food, and (2) doubly-labeled water. In both experiments we imposed two levels of activity on captive zebra finches (Taeniopygia guttata),

  12. Understanding Fatty Acid Metabolism through an Active Learning Approach

    Science.gov (United States)

    Fardilha, M.; Schrader, M.; da Cruz e Silva, O. A. B.; da Cruz e Silva, E. F.

    2010-01-01

    A multi-method active learning approach (MALA) was implemented in the Medical Biochemistry teaching unit of the Biomedical Sciences degree at the University of Aveiro, using problem-based learning as the main learning approach. In this type of learning strategy, students are involved beyond the mere exercise of being taught by listening. Less…

  13. Cold resistance and metabolic activity of lichens below 0 degC

    Science.gov (United States)

    Kappen, L.; Schroeter, B.; Scheidegger, C.; Sommerkorn, M.; Hestmark, G.

    Laboratory measurements show that lichens are extremely tolerant of freezing stress and of low-temperature exposure. Metabolic activity recovered quickly after severe and extended cold treatment. Experimental results demonstrate also that CO_2 exchange is already active at around -20 degC. The psychrophilic character of polar lichen species is demonstrated by optimum temperatures for net photosynthesis between 0 and 15 degC. In situ measurements show that lichens begin photosynthesizing below 0 degC if the dry thalli receive fresh snow. The lowest temperature measured in active lichens was -17 degC at a continental Antarctic site. The fine structure and the hydration state of photobiont and mycobiont cells were studied by low-temperature scanning electron microscopy (LTSEM) of frozen hydrated specimens. Water potentials of the frozen system are in the range of or even higher than those allowing dry lichens to start photosynthesis by water vapor uptake at +10 degC. The great success of lichens in polar and high alpine regions gives evidence of their physiological adaptation to low temperatures. In general lichens are able to persist through glacial periods, but extended snow cover and glaciation are limiting factors.

  14. Plasminogen activator inhibitor-1 is elevated in patients with COPD independent of metabolic and cardiovascular function

    Science.gov (United States)

    Waschki, Benjamin; Watz, Henrik; Holz, Olaf; Magnussen, Helgo; Olejnicka, Beata; Welte, Tobias; Rabe, Klaus F; Janciauskiene, Sabina

    2017-01-01

    Introduction Plasminogen activator inhibitor-1 (PAI-1), a major inhibitor of fibrinolysis, is associated with thrombosis, obesity, insulin resistance, dyslipidemia, and premature aging, which all are coexisting conditions of chronic obstructive pulmonary disease (COPD). The role of PAI-1 in COPD with respect to metabolic and cardiovascular functions is unclear. Methods In this study, which was nested within a prospective cohort study, the serum levels of PAI-1 were cross-sectionally measured in 74 stable COPD patients (Global Initiative for Chronic Obstructive Lung Disease [GOLD] Stages I–IV) and 18 controls without lung disease. In addition, triglycerides, high-density lipoprotein cholesterol, fasting plasma glucose, waist circumference, blood pressure, smoking status, high-sensitive C-reactive protein (hs-CRP), adiponectin, ankle–brachial index, N-terminal pro-B-type natriuretic peptide, and history of comorbidities were also determined. Results The serum levels of PAI-1 were significantly higher in COPD patients than in controls, independent of a broad spectrum of possible confounders including metabolic and cardiovascular dysfunction. A multivariate regression analysis revealed triglyceride and hs-CRP levels to be the best predictors of PAI-1 within COPD. GOLD Stages II and III remained independently associated with higher PAI-1 levels in a final regression analysis. Conclusion The data from the present study showed that the serum levels of PAI-1 are higher in patients with COPD and that moderate-to-severe airflow limitation, hypertriglyceridemia, and systemic inflammation are independent predictors of an elevated PAI-1 level. PAI-1 may be a potential biomarker candidate for COPD-specific and extra-pulmonary manifestations. PMID:28356730

  15. Metabolic Control of Dendritic Cell Activation and Function: Recent Advances and Clinical Implications

    Directory of Open Access Journals (Sweden)

    Bart eEverts

    2014-05-01

    Full Text Available Dendritic cells (DCs are key regulators of both immunity and tolerance by controlling activation and polarization of effector T helper cell and regulatory T cell responses. Therefore, there is a major focus on developing approaches to manipulate DC function for immunotherapy. It is well known that changes in cellular activation are coupled to profound changes in cellular metabolism. Over the past decade there is a growing appreciation that these metabolic changes also underlie the capacity of immune cells to perform particular functions. This has led to the concept that the manipulation of cellular metabolism can be used to shape innate and adaptive immune responses. While most of our understanding in this area has been gained from studies with T cells and macrophages, evidence is emerging that the activation and function of DCs are also dictated by the type of metabolism these cells commit to. We here discuss these new insights and explore whether targeting of metabolic pathways in DCs could hold promise as a novel approach to manipulate the functional properties of DCs for clinical purposes.

  16. MIPHENO: Data normalization for high throughput metabolic analysis.

    Science.gov (United States)

    High throughput methodologies such as microarrays, mass spectrometry and plate-based small molecule screens are increasingly used to facilitate discoveries from gene function to drug candidate identification. These large-scale experiments are typically carried out over the course...

  17. Unchanged cerebral blood flow and oxidative metabolism after acclimatization to high altitude

    DEFF Research Database (Denmark)

    Møller, Kirsten; Paulson, Olaf B; Hornbein, Thomas F.

    2002-01-01

    The authors investigated the effect of acclimatization to high altitude on cerebral blood flow and oxidative metabolism at rest and during exercise. Nine healthy, native sea-level residents were studied 3 weeks after arrival at Chacaltaya, Bolivia (5,260 m) and after reacclimatization to sea level....... At high altitude at rest, arterial carbon dioxide tension, oxygen saturation, and oxygen tension were significantly reduced, and arterial oxygen content was increased because of an increase in hemoglobin concentration. Global cerebral blood flow was similar in the four conditions. Cerebral oxygen delivery...... and cerebral metabolic rates of oxygen and glucose also remained unchanged, whereas cerebral metabolic rates of lactate increased slightly but nonsignificantly at high altitude during exercise compared with high altitude at rest. Reaction time was unchanged. The data indicate that cerebral blood flow...

  18. Magnesium isoglycyrrhizinate blocks fructose-induced hepatic NF-κB/NLRP3 inflammasome activation and lipid metabolism disorder.

    Science.gov (United States)

    Zhao, Xiao-Juan; Yang, Yan-Zi; Zheng, Yan-Jing; Wang, Shan-Chun; Gu, Hong-Mei; Pan, Ying; Wang, Shui-Juan; Xu, Hong-Jiang; Kong, Ling-Dong

    2017-08-15

    Magnesium isoglycyrrhizinate as a hepatoprotective agent possesses immune modulation and anti-inflammation, and treats liver diseases. But its effects on immunological-inflammatory and metabolic profiles for metabolic syndrome with liver injury and underlying potential mechanisms are not fully understood. In this study, magnesium isoglycyrrhizinate alleviated liver inflammation and lipid accumulation in fructose-fed rats with metabolic syndrome. It also suppressed hepatic inflammatory signaling activation by reducing protein levels of phosphorylation of nuclear factor-kappa B p65 (p-NF-κB p65), inhibitor of nuclear factor kappa-B kinase α/β (p-IKKα/β) and inhibitor of NF-κB α (p-IκBα) as well as nucleotide-binding domain (NOD)-like receptor protein 3 (NLRP3), apoptosis-associated speck-like protein (ASC) and Caspase-1 in rats, being consistent with its reduction of interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α) and IL-6 levels. Furthermore, magnesium isoglycyrrhizinate modulated lipid metabolism-related genes characterized by up-regulating peroxisome proliferator-activated receptor-α (PPAR-α) and carnitine palmitoyl transferase-1 (CPT-1), and down-regulating sensor for fatty acids to control-1 (SREBP-1) and stearoyl-CoA desaturase 1 (SCD-1) in the liver of fructose-fed rats, resulting in the reduction of triglyceride and total cholesterol levels. These effective actions were further confirmed in fructose-exposed BRL-3A and HepG2 cells. The molecular mechanisms underpinning these observations suggest that magnesium isoglycyrrhizinate may inhibit NF-κB/NLRP3 inflammasome activation to reduce immunological-inflammatory response, which in turn may prevent liver lipid metabolic disorder and accumulation under high fructose condition. Thus, blockade of NF-κB/NLRP3 inflammasome activation and lipid metabolism disorder by magnesium isoglycyrrhizinate may be the potential therapeutic approach for improving fructose-induced liver injury with

  19. α-Amyrin attenuates high fructose diet-induced metabolic syndrome in rats.

    Science.gov (United States)

    Prabhakar, Pankaj; Reeta, K H; Maulik, Subir Kumar; Dinda, Amit Kumar; Gupta, Yogendra Kumar

    2017-01-01

    This study investigated the effect of α-amyrin (a pentacyclic triterpene) on high-fructose diet (HFD)-induced metabolic syndrome in rats. Male Wistar rats were randomly distributed into different groups. The control group was fed normal rat chow diet. The HFD group was fed HFD (60%; w/w) for 42 days. Pioglitazone (10 mg/kg, orally, once daily) was used as a standard drug. α-Amyrin was administered in 3 doses (50, 100, and 200 mg/kg, orally, once daily along with HFD). Plasma glucose, total cholesterol, triglycerides, and high-density lipoprotein cholesterol (HDL-C) were estimated. Changes in blood pressure, oral glucose tolerance, and insulin tolerance were measured. Hepatic oxidative stress as well as messenger RNA (mRNA) and protein levels of peroxisome proliferator-activated receptor alpha (PPAR-α) were analyzed. A significant increase in systolic blood pressure, plasma glucose, total cholesterol, and plasma triglycerides and a significant decrease in HDL-C were observed in HFD rats as compared with control rats. Glucose tolerance and insulin tolerance were also significantly impaired with HFD. α-Amyrin prevented these changes in a dose-dependent manner. Hepatic oxidative stress as well as micro- and macrovesicular fatty changes in hepatocytes caused by HFD were also attenuated by α-amyrin. α-Amyrin preserved the hepatic mRNA and protein levels of PPAR-α, which was reduced in HFD group. This study thus demonstrates that α-amyrin attenuates HFD-induced metabolic syndrome in rats.

  20. Solidification of highly active wastes

    International Nuclear Information System (INIS)

    Morris, J.B.

    1984-11-01

    Final reports are presented on work on the following topics: glass technology; enhancement of off-gas aerosol collection; formation and trapping of volatile ruthenium; volatilisation of caesium, technetium and tellurium in high-level waste vitrification; deposition of ruthenium; and calcination of high-level waste liquors. (author)

  1. Low Levels of Serum Paraoxonase Activities are Characteristic of Metabolic Syndrome and May Influence the Metabolic-Syndrome-Related Risk of Coronary Artery Disease

    Directory of Open Access Journals (Sweden)

    Nicola Martinelli

    2012-01-01

    Full Text Available Low concentrations of plasma high-density lipoprotein (HDLs are characteristic in metabolic syndrome (MS. The antioxidant ability of HDLs is, at least in part, attributable to pleiotropic serum paraoxonase (PON1. Different PON1 activities have been assessed in 293 subjects with (=88 or without MS (=205 and with (=195 or without (=98 angiographically proven coronary artery disease (CAD. MS subjects had low PON1 activities, with a progressively decreasing trend by increasing the number of MS abnormalities. The activity versus 7-O-diethyl phosphoryl,3-cyano,4-methyl,7-hydroxycoumarin (DEPCyMC, which is considered a surrogate marker of PON1 concentration, showed the most significant association with MS, independently of both HDL and apolipoprotein A-I levels. Subjects with MS and low DEPCyMCase activity had the highest CAD risk (OR 4.34 with 95% CI 1.44–13.10, while no significant increase of risk was found among those with MS but high DEPCyMCase activity (OR 1.45 with 95% CI 0.47–4.46. Our results suggest that low PON1 concentrations are typical in MS and may modulate the MS-related risk of CAD.

  2. Low levels of serum paraoxonase activities are characteristic of metabolic syndrome and may influence the metabolic-syndrome-related risk of coronary artery disease.

    Science.gov (United States)

    Martinelli, Nicola; Micaglio, Roberta; Consoli, Letizia; Guarini, Patrizia; Grison, Elisa; Pizzolo, Francesca; Friso, Simonetta; Trabetti, Elisabetta; Pignatti, Pier Franco; Corrocher, Roberto; Olivieri, Oliviero; Girelli, Domenico

    2012-01-01

    Low concentrations of plasma high-density lipoprotein (HDLs) are characteristic in metabolic syndrome (MS). The antioxidant ability of HDLs is, at least in part, attributable to pleiotropic serum paraoxonase (PON1). Different PON1 activities have been assessed in 293 subjects with (n = 88) or without MS (n = 205) and with (n = 195) or without (n = 98) angiographically proven coronary artery disease (CAD). MS subjects had low PON1 activities, with a progressively decreasing trend by increasing the number of MS abnormalities. The activity versus 7-O-diethyl phosphoryl,3-cyano,4-methyl,7-hydroxycoumarin (DEPCyMC), which is considered a surrogate marker of PON1 concentration, showed the most significant association with MS, independently of both HDL and apolipoprotein A-I levels. Subjects with MS and low DEPCyMCase activity had the highest CAD risk (OR 4.34 with 95% CI 1.44-13.10), while no significant increase of risk was found among those with MS but high DEPCyMCase activity (OR 1.45 with 95% CI 0.47-4.46). Our results suggest that low PON1 concentrations are typical in MS and may modulate the MS-related risk of CAD.

  3. Maternal high-fat diet intensifies the metabolic response to stress in male rat offspring

    OpenAIRE

    Karbaschi, Roxana; Zardooz, Homeira; Khodagholi, Fariba; Dargahi, Leila; Salimi, Mina; Rashidi, FatemehSadat

    2017-01-01

    Background The mother?s consumption of high-fat food can affect glucose metabolism and the hypothalamic?pituitary?adrenal axis responsiveness in the offspring and potentially affect the metabolic responses to stress as well. This study examines the effect of maternal high-fat diet on the expression of pancreatic glucose transporter 2 and the secretion of insulin in response to stress in offspring. Methods Female rats were randomly divided into normal and high-fat diet groups and were fed in a...

  4. A protocol for generating a high-quality genome-scale metabolic reconstruction.

    Science.gov (United States)

    Thiele, Ines; Palsson, Bernhard Ø

    2010-01-01

    Network reconstructions are a common denominator in systems biology. Bottom-up metabolic network reconstructions have been developed over the last 10 years. These reconstructions represent structured knowledge bases that abstract pertinent information on the biochemical transformations taking place within specific target organisms. The conversion of a reconstruction into a mathematical format facilitates a myriad of computational biological studies, including evaluation of network content, hypothesis testing and generation, analysis of phenotypic characteristics and metabolic engineering. To date, genome-scale metabolic reconstructions for more than 30 organisms have been published and this number is expected to increase rapidly. However, these reconstructions differ in quality and coverage that may minimize their predictive potential and use as knowledge bases. Here we present a comprehensive protocol describing each step necessary to build a high-quality genome-scale metabolic reconstruction, as well as the common trials and tribulations. Therefore, this protocol provides a helpful manual for all stages of the reconstruction process.

  5. High resolution NMR spectroscopy of physiological fluids: from metabolism to physiology

    International Nuclear Information System (INIS)

    Vion-Dury, J.; Nicoli, F.; Torri, G.; Torri, J.; Kriat, M.; Sciaky, M.; Davin, A.; Viout, P.; Confort-Gouny, S.; Cozzone, P.J.

    1992-01-01

    High resolution NMR spectroscopy of physiological fluids provides quantitative, qualitative and dynamic information on the metabolic status of the interstitial and plasma compartments under a variety of pathophysiological conditions. The simultaneous detection and quantitation by NMR spectroscopy of numerous compounds of the intermediary metabolism offers a new insight in the understanding of the 'milieu interieur'.NMR spectroscopy of physiological fluids offers a unique way to define and monitor the global metabolic homeostasis in humans. The development of this analytical approach is still limited by the scarcity of pluridisciplinary teams able to fully exploit the wealth of information present on the NMR spectrum of a fluid. While application in pharmacology and toxicology is already established, the main areas of current development are cancer, hereditary metabolic disorders, organ transplantation and neurological diseases

  6. Carbohydrate-Restriction with High-Intensity Interval Training: An Optimal Combination for Treating Metabolic Diseases?

    Directory of Open Access Journals (Sweden)

    Monique E. Francois

    2017-10-01

    Full Text Available Lifestyle interventions incorporating both diet and exercise strategies remain cornerstone therapies for treating metabolic disease. Carbohydrate-restriction and high-intensity interval training (HIIT have independently been shown to improve cardiovascular and metabolic health. Carbohydrate-restriction reduces postprandial hyperglycemia, thereby limiting potential deleterious metabolic and cardiovascular consequences of excessive glucose excursions. Additionally, carbohydrate-restriction has been shown to improve body composition and blood lipids. The benefits of exercise for improving insulin sensitivity are well known. In this regard, HIIT has been shown to rapidly improve glucose control, endothelial function, and cardiorespiratory fitness. Here, we report the available evidence for each strategy and speculate that the combination of carbohydrate-restriction and HIIT will synergistically maximize the benefits of both approaches. We hypothesize that this lifestyle strategy represents an optimal intervention to treat metabolic disease; however, further research is warranted in order to harness the potential benefits of carbohydrate-restriction and HIIT for improving cardiometabolic health.

  7. Carbohydrate-Restriction with High-Intensity Interval Training: An Optimal Combination for Treating Metabolic Diseases?

    Science.gov (United States)

    Francois, Monique E; Gillen, Jenna B; Little, Jonathan P

    2017-01-01

    Lifestyle interventions incorporating both diet and exercise strategies remain cornerstone therapies for treating metabolic disease. Carbohydrate-restriction and high-intensity interval training (HIIT) have independently been shown to improve cardiovascular and metabolic health. Carbohydrate-restriction reduces postprandial hyperglycemia, thereby limiting potential deleterious metabolic and cardiovascular consequences of excessive glucose excursions. Additionally, carbohydrate-restriction has been shown to improve body composition and blood lipids. The benefits of exercise for improving insulin sensitivity are well known. In this regard, HIIT has been shown to rapidly improve glucose control, endothelial function, and cardiorespiratory fitness. Here, we report the available evidence for each strategy and speculate that the combination of carbohydrate-restriction and HIIT will synergistically maximize the benefits of both approaches. We hypothesize that this lifestyle strategy represents an optimal intervention to treat metabolic disease; however, further research is warranted in order to harness the potential benefits of carbohydrate-restriction and HIIT for improving cardiometabolic health.

  8. High-fat diet induces significant metabolic disorders in a mouse model of polycystic ovary syndrome.

    Science.gov (United States)

    Lai, Hao; Jia, Xiao; Yu, Qiuxiao; Zhang, Chenglu; Qiao, Jie; Guan, Youfei; Kang, Jihong

    2014-11-01

    Polycystic ovary syndrome (PCOS) is the most common female endocrinopathy associated with both reproductive and metabolic disorders. Dehydroepiandrosterone (DHEA) is currently used to induce a PCOS mouse model. High-fat diet (HFD) has been shown to cause obesity and infertility in female mice. The possible effect of an HFD on the phenotype of DHEA-induced PCOS mice is unknown. The aim of the present study was to investigate both reproductive and metabolic features of DHEA-induced PCOS mice fed a normal chow or a 60% HFD. Prepubertal C57BL/6 mice (age 25 days) on the normal chow or an HFD were injected (s.c.) daily with the vehicle sesame oil or DHEA for 20 consecutive days. At the end of the experiment, both reproductive and metabolic characteristics were assessed. Our data show that an HFD did not affect the reproductive phenotype of DHEA-treated mice. The treatment of HFD, however, caused significant metabolic alterations in DHEA-treated mice, including obesity, glucose intolerance, dyslipidemia, and pronounced liver steatosis. These findings suggest that HFD induces distinct metabolic features in DHEA-induced PCOS mice. The combined DHEA and HFD treatment may thus serve as a means of studying the mechanisms involved in metabolic derangements of this syndrome, particularly in the high prevalence of hepatic steatosis in women with PCOS. © 2014 by the Society for the Study of Reproduction, Inc.

  9. Metabolic activity in striate and extrastriate cortex in the hooded rat: contralateral and ipsilateral eye input

    International Nuclear Information System (INIS)

    Thurlow, G.A.; Cooper, R.M.

    1988-01-01

    The extent of changes in glucose metabolism resulting from ipsilateral and contralateral eye activity in the posterior cortex of the hooded rat was demonstrated by means of the C-14 2-deoxyglucose autoradiographic technique. By stimulating one eye with square wave gratings and eliminating efferent activation from the other by means of enucleation or intraocular TTX injection, differences between ipsilaterally and contralaterally based visual activity in the two hemispheres were maximized. Carbon-14 levels in layer IV of autoradiographs of coronal sections were measured and combined across sections to form right and left matrices of posterior cortex metabolic activity. A difference matrix, formed by subtracting the metabolic activity matrix of cortex contralateral to the stimulated eye from the ipsilateral depressed matrix, emphasized those parts of the visual cortex that received monocular visual input. The demarcation of striate cortex by means of cholinesterase stain and the examination of autoradiographs from sections cut tangential to the cortical surface aided in the interpretation of the difference matrices. In striate cortex, differences were maximal in the medial monocular portion, and the lateral or binocular portion was shown to be divided metabolically into a far lateral contralaterally dominant strip along the cortical representation of the vertical meridian, and a more medial region of patches of more or less contralaterally dominant binocular input. Lateral peristriate differences were less than those of striate cortex, and regions of greater and lesser monocular input could be distinguished. We did not detect differences between the two hemispheres in either anterior or medial peristriate areas

  10. Fenofibrate suppresses cellular metabolic memory of high glucose in diabetic retinopathy via a sirtuin 1-dependent signalling pathway.

    Science.gov (United States)

    Zhao, Shuzhi; Li, Jun; Wang, Na; Zheng, Bingqing; Li, Tao; Gu, Qing; Xu, Xun; Zheng, Zhi

    2015-10-01

    Inflammation is a major contributing factor in the development of diabetic microvascular complications, regardless of whether improved glycaemic control is achieved. Studies have increasingly indicated that fenofibrate, a lipid‑lowering therapeutic agent in clinical use, exerts a potential anti‑inflammatory effect, which is mediated by sirtuin 1 (SIRT1; an NAD+‑dependent deacetylase) in endothelial cells. The aim of the present study was to investigate the inhibitory effect of fenofibrate on metabolic memory (via the regulation of SIRT1), and inflammatory responses in cell and animal models of diabetic retinopathy (DR). The data demonstrated that high glucose treatment in human retinal endothelial cells (HRECs) inhibited the expression and deacetylase activity of SIRT1. The reduction of SIRT1 expression and deacetylase activity persisted following a return to normal glucose levels. Furthermore, nuclear factor‑κB expression was observed to be negatively correlated with SIRT1 expression and activity in HRECs under high glucose levels and the subsequent return to normal glucose levels. Fenofibrate treatment abrogated these changes. Knockdown of SIRT1 attenuated the effect of fenofibrate on high glucose‑induced NF‑κB expression. In addition, fenofibrate upregulated SIRT1 expression through peroxisome proliferator‑activated receptor α in high glucose‑induced metabolic memory. These findings indicate that fenofibrate is important in anti‑inflammatory processes and suppresses the cellular metabolic memory of high glucose‑induced stress via the SIRT1‑dependent signalling pathway. Thus, treatment with fenofibrate may offer a promising therapeutic strategy for halting the development of DR and other complications of diabetes.

  11. Basal metabolic regulatory responses and rhythmic activity of ...

    African Journals Online (AJOL)

    hope&shola

    2006-03-01

    Mar 1, 2006 ... muslim population, kola nut are popular masticatory. (Russel, 1955). They are important in various social and religions customs and may also be used to counteract hunger and thirst. In Nigeria, for example, the rate consumption of kola nut especially by students is very high as the principal stimulant to keep ...

  12. Distribution, Community Composition, and Potential Metabolic Activity of Bacterioplankton in an Urbanized Mediterranean Sea Coastal Zone.

    Science.gov (United States)

    Richa, Kumari; Balestra, Cecilia; Piredda, Roberta; Benes, Vladimir; Borra, Marco; Passarelli, Augusto; Margiotta, Francesca; Saggiomo, Maria; Biffali, Elio; Sanges, Remo; Scanlan, David J; Casotti, Raffaella

    2017-09-01

    Bacterioplankton are fundamental components of marine ecosystems and influence the entire biosphere by contributing to the global biogeochemical cycles of key elements. Yet, there is a significant gap in knowledge about their diversity and specific activities, as well as environmental factors that shape their community composition and function. Here, the distribution and diversity of surface bacterioplankton along the coastline of the Gulf of Naples (GON; Italy) were investigated using flow cytometry coupled with high-throughput sequencing of the 16S rRNA gene. Heterotrophic bacteria numerically dominated the bacterioplankton and comprised mainly Alphaproteobacteria , Gammaproteobacteria , and Bacteroidetes Distinct communities occupied river-influenced, coastal, and offshore sites, as indicated by Bray-Curtis dissimilarity, distance metric (UniFrac), linear discriminant analysis effect size (LEfSe), and multivariate analyses. The heterogeneity in diversity and community composition was mainly due to salinity and changes in environmental conditions across sites, as defined by nutrient and chlorophyll a concentrations. Bacterioplankton communities were composed of a few dominant taxa and a large proportion (92%) of rare taxa (here defined as operational taxonomic units [OTUs] accounting for coastal zones is of critical importance, considering that these areas are highly productive and anthropogenically impacted. Their richness and evenness, as well as their potential activity, are very important to assess ecosystem health and functioning. Here, we investigated bacterial distribution, community composition, and potential metabolic activity in the GON, which is an ideal test site due to its heterogeneous environment characterized by a complex hydrodynamics and terrestrial inputs of varied quantities and quality. Our study demonstrates that bacterioplankton communities in this region are highly diverse and strongly regulated by a combination of different environmental

  13. Metabolic and Co-Metabolic Transformation of Diclofenac by Enterobacter hormaechei D15 Isolated from Activated Sludge.

    Science.gov (United States)

    Aissaoui, Salima; Ouled-Haddar, Houria; Sifour, Mohamed; Harrouche, Kamel; Sghaier, Haitham

    2017-03-01

    The presence of non-steroidal anti-inflammatory drugs, such as diclofenac (DCF), in the environment, is an emerging problem due to their harmful effects on non-target organisms, even at low concentrations. We studied the biodegradation of DCF by the strain D15 of Enterobacter hormaechei. The strain was isolated from an activated sludge, and identified as E. hormaechei based on its physiological characteristics and its 16 S RNA sequence. Using HPTLC and GC-MS methods, we demonstrated that this strain metabolized DCF at an elimination rate of 52.8%. In the presence of an external carbon source (glucose), the elimination rate increased to approximately 82%. GC-MS analysis detected and identified one metabolite as 1-(2,6-dichlorophenyl)-1,3-dihydro-2H-indol-2-one; it was produced as a consequence of dehydration and lactam formation reactions.

  14. Alterations in calcium metabolism during human monocyte activation

    International Nuclear Information System (INIS)

    Scully, S.P.

    1984-01-01

    Human peripheral blood monocytes have been prepared from plateletpheresis residues by counterflow centrifugal elutriation in sufficient quantities to enable quantitative studies of cell calcium. Kinetic analysis of 45 Ca exchange data in resting monocytes was compatible with a model of cellular calcium containing three exchangeable calcium pools. These pools are thought to represent a putative ectocellular pool, a putative cytoplasmic chelated pool, and a putative organelle sequestered pool. Exposure of monocytes to the plant lectin Con A at a concentration that maximally simulated superoxide production caused an increase in the size and a doubling in the exchange rate of the putative cytoplasmic pool without a change in the other cellular pools. The cytoplasmic ionized calcium, [Ca]/sub i/, measured with the fluorescent probe, Quin 2 rose from a resting level of 83 nM to 165 mN within 30 sec of exposure to Con A. This increase in cytoplasmic calcium preceded the release of superoxide radicals. Calcium transport and calcium ATPase activities were identified and characterized in plasma membrane vesicles prepared from monocytes. Both activities were strictly dependent on ATP and Mg, had a Km/sub Ca/ in the submicromolar range and were stimulated by calmodulin. Thus, it seems that monocyte calcium is in a dynamic steady state that is a balance between efflux and influx rates, and that the activation of these cells results in the transition to a new steady state. The alteration in [Ca]/sub i/ that accompany the new steady state are essential for superoxide production by human monocytes

  15. Taurine ameliorates cholesterol metabolism by stimulating bile acid production in high-cholesterol-fed rats.

    Science.gov (United States)

    Murakami, Shigeru; Fujita, Michiko; Nakamura, Masakazu; Sakono, Masanobu; Nishizono, Shoko; Sato, Masao; Imaizumi, Katsumi; Mori, Mari; Fukuda, Nobuhiro

    2016-03-01

    This study was designed to investigate the effects of dietary taurine on cholesterol metabolism in high-cholesterol-fed rats. Male Sprague-Dawley rats were randomly divided into two dietary groups (n = 6 in each group): a high-cholesterol diet containing 0.5% cholesterol and 0.15% sodium cholate, and a high-cholesterol diet with 5% (w/w) taurine. The experimental diets were given for 2 weeks. Taurine supplementation reduced the serum and hepatic cholesterol levels by 37% and 32%, respectively. Faecal excretion of bile acids was significantly increased in taurine-treated rats, compared with untreated rats. Biliary bile acid concentrations were also increased by taurine. Taurine supplementation increased taurine-conjugated bile acids by 61% and decreased glycine-conjugated bile acids by 53%, resulting in a significant decrease in the glycine/taurine (G/T) ratio. Among the taurine-conjugated bile acids, cholic acid and deoxycholic acid were significantly increased. In the liver, taurine supplementation increased the mRNA expression and enzymatic activity of hepatic cholesterol 7α-hydroxylase (CYP7A1), the rate-limiting enzyme for bile acid synthesis, by three- and two-fold, respectively. Taurine also decreased the enzymatic activity of acyl-CoA:cholesterol acyltransferase (ACAT) and microsomal triglyceride transfer protein (MTP). These observations suggest that taurine supplementation increases the synthesis and excretion of taurine-conjugated bile acids and stimulates the catabolism of cholesterol to bile acid by elevating the expression and activity of CYP7A1. This may reduce cholesterol esterification and lipoprotein assembly for very low density lipoprotein (VLDL) secretion, leading to reductions in the serum and hepatic cholesterol levels. © 2016 John Wiley & Sons Australia, Ltd.

  16. Awareness and prevalence of metabolic syndrome among high-risk ...

    African Journals Online (AJOL)

    MetS) in high-risk individuals attending 30 internal medicine clinics in Amman, Jordan, and also to evaluate the various factors associated with increased risk of MetS among them. Methods: This retrospective cross-sectional study was carried out ...

  17. High- and moderate-intensity aerobic exercise and excess post-exercise oxygen consumption in men with metabolic syndrome.

    Science.gov (United States)

    Larsen, I; Welde, B; Martins, C; Tjønna, A E

    2014-06-01

    Physical activity is central in prevention and treatment of metabolic syndrome. High-intensity aerobic exercise can induce larger energy expenditure per unit of time compared with moderate-intensity exercise. Furthermore, it may induce larger energy expenditure at post-exercise recovery. The aim of this study is to compare the excess post-exercise oxygen consumption (EPOC) in three different aerobic exercise sessions in men with metabolic syndrome. Seven men (age: 56.7 ± 10.8) with metabolic syndrome participated in this crossover study. The sessions consisted of one aerobic interval (1-AIT), four aerobic intervals (4-AIT), and 47-min continuous moderate exercise (CME) on separate days, with at least 48 h between each test day. Resting metabolic rate (RMR) was measured pre-exercise and used as baseline value. EPOC was measured until baseline metabolic rate was re-established. An increase in O2 uptake lasting for 70.4 ± 24.8 min (4-AIT), 35.9 ± 17.3 min (1-AIT), and 45.6 ± 17.3 min (CME) was observed. EPOC were 2.9 ± 1.7 L O2 (4-AIT), 1.3 ±  .1 L O2 (1-AIT), and 1.4 ± 1.1 L O2 (CME). There were significant differences (P exercise intensity has a significant positive effect on EPOC in men with metabolic syndrome. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Alginate Immobilization of Metabolic Enzymes (AIME) for High-Throughput Screening Assays (SOT)

    Science.gov (United States)

    Alginate Immobilization of Metabolic Enzymes (AIME) for High-Throughput Screening Assays DE DeGroot, RS Thomas, and SO SimmonsNational Center for Computational Toxicology, US EPA, Research Triangle Park, NC USAThe EPA’s ToxCast program utilizes a wide variety of high-throughput s...

  19. Genes associated to lactose metabolism illustrate the high diversity of Carnobacterium maltaromaticum

    DEFF Research Database (Denmark)

    Iskandar, Christelle F.; Cailliez-Grimal, Catherine; Rahman, Abdur

    2016-01-01

    The dairy population of Carnobacterium maltaromaticum is characterized by a high diversity suggesting a high diversity of the genetic traits linked to the dairy process. As lactose is the main carbon source in milk, the genetics of lactose metabolism was investigated in this LAB. Comparative...

  20. High Dose Ascorbate Causes Both Genotoxic and Metabolic Stress in Glioma Cells

    Science.gov (United States)

    Castro, Maria Leticia; Carson, Georgia M.; McConnell, Melanie J.; Herst, Patries M.

    2017-01-01

    We have previously shown that exposure to high dose ascorbate causes double stranded breaks (DSBs) and a build-up in S-phase in glioblastoma (GBM) cell lines. Here we investigated whether or not this was due to genotoxic stress as well as metabolic stress generated by exposure to high dose ascorbate, radiation, ascorbate plus radiation and H2O2 in established and primary GBM cell lines. Genotoxic stress was measured as phosphorylation of the variant histone protein, H2AX, 8-oxo-7,8-dihydroguanine (8OH-dG) positive cells and cells with comet tails. Metabolic stress was measured as a decrease in NADH flux, mitochondrial membrane potential (by CMXRos), ATP levels (by ATP luminescence) and mitochondrial superoxide production (by mitoSOX). High dose ascorbate, ascorbate plus radiation, and H2O2 treatments induced both genotoxic and metabolic stress. Exposure to high dose ascorbate blocked DNA synthesis in both DNA damaged and undamaged cell of ascorbate sensitive GBM cell lines. H2O2 treatment blocked DNA synthesis in all cell lines with and without DNA damage. DNA synthesis arrest in cells with damaged DNA is likely due to both genotoxic and metabolic stress. However, arrest in DNA synthesis in cells with undamaged DNA is likely due to oxidative damage to components of the mitochondrial energy metabolism pathway. PMID:28737676

  1. Bone metabolic activity in hyperostosis cranialis interna measured with {sup 18}F-fluoride PET

    Energy Technology Data Exchange (ETDEWEB)

    Waterval, Jerome J.; Dongen, Thijs M.A. van; Stokroos, Robert J.; Manni, Johannes J. [Maastricht University Medical Center, Department of Otorhinolaryngology and Head and Neck Surgery, Maastricht (Netherlands); Teule, Jaap G.J.; Kemerink, Gerrit J.; Brans, Boudewijn [Maastricht University Medical Center, Department of Nuclear Medicine, Maastricht (Netherlands); Nieman, Fred H.M. [Maastricht University Medical Center, Department of Clinical Epidemiology and Medical Technology Assessment, Maastricht (Netherlands)

    2011-05-15

    {sup 18}F-Fluoride PET/CT is a relatively undervalued diagnostic test to measure bone metabolism in bone diseases. Hyperostosis cranialis interna (HCI) is a (hereditary) bone disease characterised by endosteal hyperostosis and osteosclerosis of the skull and the skull base. Bone overgrowth causes entrapment and dysfunction of several cranial nerves. The aim of this study is to compare standardised uptake values (SUVs) at different sites in order to quantify bone metabolism in the affected anatomical regions in HCI patients. Nine affected family members, seven non-affected family members and nine non-HCI non-family members underwent {sup 18}F-fluoride PET/CT scans. SUVs were systematically measured in the different regions of interest: frontal bone, sphenoid bone, petrous bone and clivus. Moreover, the average {sup 18}F-fluoride uptake in the entire skull was measured by assessing the uptake in axial slides. Visual assessment of the PET scans of affected individuals was performed to discover the process of disturbed bone metabolism in HCI. {sup 18}F-Fluoride uptake is statistically significantly higher in the sphenoid bone and clivus regions of affected family members. Visual assessment of the scans of HCI patients is relevant in detecting disease severity and the pattern of disturbed bone metabolism throughout life. {sup 18}F-Fluoride PET/CT is useful in quantifying the metabolic activity in HCI and provides information about the process of disturbed bone metabolism in this specific disorder. Limitations are a narrow window between normal and pathological activity and the influence of age. This study emphasises that {sup 18}F-fluoride PET/CT may also be a promising diagnostic tool for other metabolic bone disorders, even those with an indolent course. (orig.)

  2. Bone metabolic activity in hyperostosis cranialis interna measured with 18F-fluoride PET

    International Nuclear Information System (INIS)

    Waterval, Jerome J.; Dongen, Thijs M.A. van; Stokroos, Robert J.; Manni, Johannes J.; Teule, Jaap G.J.; Kemerink, Gerrit J.; Brans, Boudewijn; Nieman, Fred H.M.

    2011-01-01

    18 F-Fluoride PET/CT is a relatively undervalued diagnostic test to measure bone metabolism in bone diseases. Hyperostosis cranialis interna (HCI) is a (hereditary) bone disease characterised by endosteal hyperostosis and osteosclerosis of the skull and the skull base. Bone overgrowth causes entrapment and dysfunction of several cranial nerves. The aim of this study is to compare standardised uptake values (SUVs) at different sites in order to quantify bone metabolism in the affected anatomical regions in HCI patients. Nine affected family members, seven non-affected family members and nine non-HCI non-family members underwent 18 F-fluoride PET/CT scans. SUVs were systematically measured in the different regions of interest: frontal bone, sphenoid bone, petrous bone and clivus. Moreover, the average 18 F-fluoride uptake in the entire skull was measured by assessing the uptake in axial slides. Visual assessment of the PET scans of affected individuals was performed to discover the process of disturbed bone metabolism in HCI. 18 F-Fluoride uptake is statistically significantly higher in the sphenoid bone and clivus regions of affected family members. Visual assessment of the scans of HCI patients is relevant in detecting disease severity and the pattern of disturbed bone metabolism throughout life. 18 F-Fluoride PET/CT is useful in quantifying the metabolic activity in HCI and provides information about the process of disturbed bone metabolism in this specific disorder. Limitations are a narrow window between normal and pathological activity and the influence of age. This study emphasises that 18 F-fluoride PET/CT may also be a promising diagnostic tool for other metabolic bone disorders, even those with an indolent course. (orig.)

  3. Plateau hypoxia attenuates the metabolic activity of intestinal flora to enhance the bioavailability of nifedipine.

    Science.gov (United States)

    Zhang, Juanhong; Chen, Yuyan; Sun, Yuemei; Wang, Rong; Zhang, Junmin; Jia, Zhengping

    2018-11-01

    Nifedipine is completely absorbed by the gastrointestinal tract and its pharmacokinetics and metabolism may be influenced by microorganisms. If gut microbes are involved in the metabolism of nifedipine, plateau hypoxia may regulate the bioavailability and the therapeutic effect of nifedipine by altering the metabolic activity of the gut microbiota. We herein demonstrated for the first time that gut flora is involved in the metabolism of nifedipine by in vitro experiments. In addition, based on the results of 16S rRNA analysis of feces in rats after acute plateau, we first confirmed that the plateau environment could cause changes in the number and composition of intestinal microbes. More importantly, these changes in flora could lead to a slower metabolic activity of nifedipine in the body after an acute plateau, resulting in increased bioavailability and therapeutic efficacy of nifedipine. Our research will provide basis and new ideas for changes in the fecal flora of human acutely entering the plateau, and contribute to rational drug use of nifedipine.

  4. Restriction on an energy-dense diet improves markers of metabolic health and cellular aging in mice through decreasing hepatic mTOR activity.

    Science.gov (United States)

    Schloesser, Anke; Campbell, Graeme; Glüer, Claus-Christian; Rimbach, Gerald; Huebbe, Patricia

    2015-02-01

    Dietary restriction (DR) on a normal low-fat diet improves metabolic health and may prolong life span. However, it is still uncertain whether restriction of an energy-dense, high-fat diet would also be beneficial and mitigate age-related processes. In the present study, we determined biomarkers of metabolic health, energy metabolism, and cellular aging in obesity-prone mice subjected to 30% DR on a high-fat diet for 6 months. Dietary-restricted mice had significantly lower body weights, less adipose tissue, lower energy expenditure, and altered substrate oxidation compared to their ad libitum-fed counterparts. Hepatic major urinary proteins (Mup) expression, which is linked to glucose and energy metabolism, and biomarkers of metabolic health, including insulin, glucose, cholesterol, and leptin/adiponectin ratio, were likewise reduced in high-fat, dietary-restricted mice. Hallmarks of cellular senescence such as Lamp2a and Hsc70 that mediate chaperone-mediated autophagy were induced and mechanistic target of rapamycin (mTOR) signaling mitigated upon high-fat DR. In contrast to DR applied in low-fat diets, anti-oxidant gene expression, proteasome activity, as well as 5'-adenosine monophosphate-activated protein kinase (AMPK) activation were not changed, suggesting that high-fat DR may attenuate some processes associated with cellular aging without the induction of cellular stress response or energy deprivation.

  5. Acetic acid activates the AMP-activated protein kinase signaling pathway to regulate lipid metabolism in bovine hepatocytes.

    Directory of Open Access Journals (Sweden)

    Xinwei Li

    Full Text Available The effect of acetic acid on hepatic lipid metabolism in ruminants differs significantly from that in monogastric animals. Therefore, the aim of this study was to investigate the regulation mechanism of acetic acid on the hepatic lipid metabolism in dairy cows. The AMP-activated protein kinase (AMPK signaling pathway plays a key role in regulating hepatic lipid metabolism. In vitro, bovine hepatocytes were cultured and treated with different concentrations of sodium acetate (neutralized acetic acid and BML-275 (an AMPKα inhibitor. Acetic acid consumed a large amount of ATP, resulting in an increase in AMPKα phosphorylation. The increase in AMPKα phosphorylation increased the expression and transcriptional activity of peroxisome proliferator-activated receptor α, which upregulated the expression of lipid oxidation genes, thereby increasing lipid oxidation in bovine hepatocytes. Furthermore, elevated AMPKα phosphorylation reduced the expression and transcriptional activity of the sterol regulatory element-binding protein 1c and the carbohydrate responsive element-binding protein, which reduced the expression of lipogenic genes, thereby decreasing lipid biosynthesis in bovine hepatocytes. In addition, activated AMPKα inhibited the activity of acetyl-CoA carboxylase. Consequently, the triglyceride content in the acetate-treated hepatocytes was significantly decreased. These results indicate that acetic acid activates the AMPKα signaling pathway to increase lipid oxidation and decrease lipid synthesis in bovine hepatocytes, thereby reducing liver fat accumulation in dairy cows.

  6. Metabolic disruptions induced by reduced ambulatory activity in free-living humans

    DEFF Research Database (Denmark)

    Thyfault, John P; Krogh-Madsen, Rikke

    2011-01-01

    Physical inactivity likely plays a role in the development of insulin resistance and obesity; however, direct evidence is minimal and mechanisms of action remain unknown. Studying metabolic outcomes that occur after transitioning from higher to lower levels of physical activity is the best tool t...

  7. Effect of tributyltin (TBT) in the metabolic activity of TBT-resistant and sensitive estuarine bacteria.

    Science.gov (United States)

    Cruz, Andreia; Oliveira, Vanessa; Baptista, Inês; Almeida, Adelaide; Cunha, Angela; Suzuki, Satoru; Mendo, Sónia

    2012-01-01

    The effect of tributyltin (TBT) on growth and metabolic activity of three estuarine bacteria with different TBT resistance profiles was investigated in an organic-rich culture medium (TSB) and in phosphate buffered saline (PBS) buffer. Exposure to TBT was assessed by determining its effect on growth (OD(600 nm) measurement), bacterial productivity (leucine incorporation), viability (CFU counts), aggregation and cell size (from Live/Dead analysis), ATP and NADH concentrations. TBT exposure resulted in decrease of bacterial density, cell size, and metabolic activity. In addition, cell aggregates were observed in the TBT-treated cultures. TBT strongly affected bacterial cell metabolism and seemed to exert an effect on its equilibrium, interfering with cell activity. Also, TBT toxicity was lower when cells were grown in TSB than in PBS, suggesting that a nutrient-rich growth medium can protect cells from TBT toxicity. This study contributes to our understanding of the TBT-resistant cell behavior reflected in its physiology and metabolic activity. This information is of utmost importance for further studies of TBT bioremediation. Copyright © 2010 Wiley Periodicals, Inc.

  8. Physical activity, metabolic syndrome, and coronary risk: the EPIC-Norfolk prospective population study

    NARCIS (Netherlands)

    Broekhuizen, Lysette N.; Boekholdt, S. Matthijs; Arsenault, Benoit J.; Despres, Jean-Pierre; Stroes, Erik S. G.; Kastelein, John J. P.; Khaw, Kay-Tee; Wareham, Nicholas J.

    2011-01-01

    Objective: We investigated the association between physical activity, metabolic syndrome (MS), and the risk of future coronary heart disease (CHD) and mortality due to CHD in middle-aged men and women. Design: Prospective cohort study. Subjects: A total of 10,134 men and women aged 45-79 years at

  9. Complete Sucrose Metabolism Requires Fructose Phosphotransferase Activity in Corynebacterium glutamicum To Ensure Phosphorylation of Liberated Fructose

    OpenAIRE

    Dominguez, H.; Lindley, N. D.

    1996-01-01

    Sucrose uptake by Corynebacterium glutamicum involves a phosphoenolpyruvate-dependent sucrose phosphotransferase (PTS), but in the absence of fructokinase, further metabolism of the liberated fructose requires efflux of the fructose and reassimilation via the fructose PTS. Mutant strains lacking detectable fructose-transporting PTS activity accumulated fructose extracellularly but consumed sucrose at rates comparable to those of the wild-type strain.

  10. Jasmonates: Biosynthesis, metabolism, and signaling by proteins activating and repressing transcription

    Czech Academy of Sciences Publication Activity Database

    Wasternack, Claus; Song, S.

    2017-01-01

    Roč. 68, č. 6 (2017), s. 1303-1321 ISSN 0022-0957 Institutional support: RVO:61389030 Keywords : Activators * Amino acid conjugates * Biosynthesis * Jasmonic acid * Metabolism * Perception * Repressors * SCFJAZ co-receptor complex COI1 * Signaling Subject RIV: EI - Biotechnology ; Bionics OBOR OECD: Plant sciences, botany Impact factor: 5.830, year: 2016

  11. Activities of xenobiotic metabolizing enzymes in rat placenta and liver in vitro

    NARCIS (Netherlands)

    Fabian, Eric; Wang, Xinyi; Engel, Franziska; Li, Hequn; Landsiedel, Robert; Ravenzwaay, van Bennard

    2016-01-01

    In order to assess whether the placental metabolism of xenobiotic compounds should be taken into consideration for physiologically-based toxicokinetic (PBTK) modelling, the activities of seven phase I and phase II enzymes have been quantified in the 18-day placenta of untreated Wistar rats. To

  12. Nootkatone, a characteristic constituent of grapefruit, stimulates energy metabolism and prevents diet-induced obesity by activating AMPK.

    Science.gov (United States)

    Murase, Takatoshi; Misawa, Koichi; Haramizu, Satoshi; Minegishi, Yoshihiko; Hase, Tadashi

    2010-08-01

    AMP-activated protein kinase (AMPK) is a serine/threonine kinase that is implicated in the control of energy metabolism and is considered to be a molecular target for the suppression of obesity and the treatment of metabolic syndrome. Here, we identified and characterized nootkatone, a constituent of grapefruit, as a naturally occurring AMPK activator. Nootkatone induced an increase in AMPKalpha1 and -alpha2 activity along with an increase in the AMP/ATP ratio and an increase the phosphorylation of AMPKalpha and the downstream target acetyl-CoA carboxylase (ACC), in C(2)C(12) cells. Nootkatone-induced activation of AMPK was possibly mediated both by LKB1 and Ca(2+)/calmodulin-dependent protein kinase kinase. Nootkatone also upregulated PPARgamma coactivator-1alpha in C(2)C(12) cells and C57BL/6J mouse muscle. In addition, administration of nootkatone (200 mg/kg body wt) significantly enhanced AMPK activity, accompanied by LKB1, AMPK, and ACC phosphorylation in the liver and muscle of mice. Whole body energy expenditure evaluated by indirect calorimetry was also increased by nootkatone administration. Long-term intake of diets containing 0.1% to 0.3% (wt/wt) nootkatone significantly reduced high-fat and high-sucrose diet-induced body weight gain, abdominal fat accumulation, and the development of hyperglycemia, hyperinsulinemia, and hyperleptinemia in C57BL/6J mice. Furthermore, endurance capacity, evaluated as swimming time to exhaustion in BALB/c mice, was 21% longer in mice fed 0.2% nootkatone than in control mice. These findings indicate that long-term intake of nootkatone is beneficial toward preventing obesity and improving physical performance and that these effects are due, at least in part, to enhanced energy metabolism through AMPK activation in skeletal muscle and liver.

  13. Basal levels of metabolic activity are elevated in Genetic Absence Epilepsy Rats from Strasbourg (GAERS): measurement of regional activity of cytochrome oxidase and lactate dehydrogenase by histochemistry.

    Science.gov (United States)

    Dufour, Franck; Koning, Estelle; Nehlig, Astrid

    2003-08-01

    The Genetic Absence Epilepsy Rats from Strasbourg (GAERS) are considered an isomorphic, predictive, and homologous model of human generalized absence epilepsy. It is characterized by the expression of spike-and-wave discharges in the thalamus and cortex. In this strain, basal regional rates of cerebral glucose utilization measured by the quantitative autoradiographic [(14)C]2-deoxyglucose technique display a widespread consistent increase compared to a selected strain of genetically nonepileptic rats (NE). In order to verify whether these high rates of glucose metabolism are paralleled by elevated activities of the enzymes of the glycolytic and tricarboxylic acid cycle pathways, we measured by histochemistry the regional activity of the two key enzymes of glucose metabolism, lactate dehydrogenase (LDH) for the anaerobic pathway and cytochrome oxidase (CO) for the aerobic pathway coupled to oxidative phosphorylation. CO and LDH activities were significantly higher in GAERS than in NE rats in 24 and 28 of the 30 brain regions studied, respectively. The differences in CO and LDH activity between both strains were widespread, affected all brain systems studied, and ranged from 12 to 63%. The data of the present study confirm the generalized increase in cerebral glucose metabolism in GAERS, occurring both at the glycolytic and at the oxidative step. However, they still do not allow us to understand why the ubiquitous mutation(s) generates spike-and-wave discharges only in the thalamocortical circuit.

  14. Chewing activity, metabolic profile and performance of high ...

    African Journals Online (AJOL)

    Ebrahim

    2017-04-26

    Apr 26, 2017 ... This method, however, reportedly results in contaminated wastewater ... have been devoted to using urea and ammonia (Khanal et al., 1999), .... DM, organic matter (OM), NDF, ADF, and CP was determined with the acid-insoluble ash ratio technique ..... Adjustment of pH and enzymatic treatment of barley.

  15. The effect of early-life stress and chronic high-sucrose diet on metabolic outcomes in female rats.

    Science.gov (United States)

    Maniam, Jayanthi; Antoniadis, Christopher P; Morris, Margaret J

    2015-01-01

    Early-life stress affects metabolic outcomes and choice of diet influences the development of metabolic disease. Here we tested the hypothesis that chronic sugar intake exacerbates metabolic deficits induced by early-life stress. Early-life stress was induced in Sprague-Dawley rats using limited nesting material in early lactation (LN, postnatal days 2-9), and siblings were given chow alone or with additional sucrose post weaning (n = 9-17 per group). Female control and LN siblings had unlimited access to either chow plus water, or chow and water plus 25% sucrose solution (Sucrose), from 3-15 weeks of age. Weekly body weight and food intake were measured. Glucose and insulin tolerance were tested at 13 and 14 weeks of age, respectively. Rats were killed at 15 weeks. Hepatic triglyceride and markers of lipid synthesis - fatty acid synthase, acetyl-CoA carboxylase alpha and oxidation - and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (Pgc-1α) were examined. Mediators of hepatic glucocorticoid metabolism, specifically 11-beta hydroxysteroid dehydrogenase-1 (11βHSD-1), 5-α reductase, and glucocorticoid and mineralocorticoid receptor mRNAs were also measured. Sucrose increased caloric intake in both groups, but overall energy intake was not altered by LN exposure. LN exposure had no further impact on sucrose-induced glucose intolerance and increased plasma and liver triglycerides. Hepatic markers of fat synthesis and oxidation were concomitantly activated and 11βHSD-1 mRNA expression was increased by 53% in LN-Sucrose versus Con-Sucrose rats. Adiposity was increased by 26% in LN-Sucrose versus Con-Sucrose rats. Thus, LN exposure had minimal adverse metabolic effects despite high-sugar diet postweaning.

  16. The Relationship between the Triglyceride to High-Density Lipoprotein Cholesterol Ratio and Metabolic Syndrome.

    Science.gov (United States)

    Shin, Hyun-Gyu; Kim, Young-Kwang; Kim, Yong-Hwan; Jung, Yo-Han; Kang, Hee-Cheol

    2017-11-01

    Metabolic syndrome is associated with cardiovascular diseases and is characterized by insulin resistance. Recent studies suggest that the triglyceride/high-density lipoprotein cholesterol (TG/HDLC) ratio predicts insulin resistance better than individual lipid levels, including TG, total cholesterol, low-density lipoprotein cholesterol (LDLC), or HDLC. We aimed to elucidate the relationship between the TG/HDLC ratio and metabolic syndrome in the general Korean population. We evaluated the data of adults ≥20 years old who were enrolled in the Korean National Health and Nutrition Examination Survey in 2013 and 2014. Subjects with angina pectoris, myocardial infarction, stroke, or cancer were excluded. Metabolic syndrome was defined by the harmonized definition. We examined the odds ratios (ORs) of metabolic syndrome according to TG/HDLC ratio quartiles using logistic regression analysis (SAS ver. 9.4; SAS Institute Inc., Cary, NC, USA). Weighted complex sample analysis was also conducted. We found a significant association between the TG/HDLC ratio and metabolic syndrome. The cutoff value of the TG/HDLC ratio for the fourth quartile was ≥3.52. After adjustment, the OR for metabolic syndrome in the fourth quartile compared with that of the first quartile was 29.65 in men and 20.60 in women (Pmetabolic syndrome.

  17. Fe biomineralization mirrors individual metabolic activity in a nitrate-dependent Fe(II-oxidizer

    Directory of Open Access Journals (Sweden)

    Jennyfer eMIOT

    2015-09-01

    Full Text Available Microbial biomineralization sometimes leads to periplasmic encrustation, which is predicted to enhance microorganism preservation in the fossil record. Mineral precipitation within the periplasm is however thought to induce death, as a result of permeability loss preventing nutrient and waste transit across the cell wall. This hypothesis had however never been investigated down to the single cell level. Here, we cultured the nitrate reducing Fe(II oxidizing bacteria Acidovorax sp. strain BoFeN1 that have been previously shown to promote the precipitation of a diversity of Fe minerals (lepidocrocite, goethite, Fe phosphate encrusting the periplasm. We investigated the connection of Fe biomineralization with carbon assimilation at the single cell level, using a combination of electron microscopy and Nano-Secondary Ion Mass Spectrometry (NanoSIMS. Our analyses revealed strong individual heterogeneities of Fe biomineralization. Noteworthy, a small proportion of cells remaining free of any precipitate persisted even at advanced stages of biomineralization. Using pulse chase experiments with 13C-acetate, we provide evidences of individual phenotypic heterogeneities of carbon assimilation, correlated with the level of Fe biomineralization. Whereas non- and moderately encrusted cells were able to assimilate acetate, higher levels of periplasm encrustation prevented any carbon incorporation. Carbon assimilation only depended on the level of Fe encrustation and not on the nature of Fe minerals precipitated in the cell wall. Carbon assimilation decreased exponentially with increasing cell-associated Fe content. Persistence of a small proportion of non-mineralized and metabolically active cells might constitute a strategy of survival in highly ferruginous environments. Eventually, our results suggest that periplasmic Fe biomineralization may provide a signature of individual metabolic status, which could be looked for in the fossil record and in modern

  18. Metabolic and cardiac changes in high cholesterol-fructose-fed rats

    DEFF Research Database (Denmark)

    Axelsen, Lene N; Pedersen, Henrik D; Petersen, Jørgen S

    2010-01-01

    Introduction: High cholesterol-fructose (HCF) fed rats have previously been described as an animal model of impaired cardiac insulin signaling and decreased contractile performance. In this study, we evaluated the metabolic and cardiac effects of a HCF diet in rats. Methods: Male Sprague-Dawley r......Introduction: High cholesterol-fructose (HCF) fed rats have previously been described as an animal model of impaired cardiac insulin signaling and decreased contractile performance. In this study, we evaluated the metabolic and cardiac effects of a HCF diet in rats. Methods: Male Sprague...

  19. Metabolic factors affecting enhanced phosphorus uptake by activated sludge.

    Science.gov (United States)

    Boughton, W H; Gottfried, R J; Sinclair, N A; Yall, I

    1971-10-01

    Activated sludges obtained from the Rilling Road plant located at San Antonio, Tex., and from the Hyperion treatment plant located at Los Angeles, Calif., have the ability to remove all of the orthophosphate normally present in Tucson sewage within 3 hr after being added to the waste water. Phosphorus removal was independent of externally supplied sources of energy and ions, since orthophosphate and (32)P radioactivity were readily removed from tap water, glass-distilled water, and deionized water. Phosphorus uptake by Rilling sludge in the laboratory appears to be wholly biological, as it has an optimum pH range (7.7 to 9.7) and an optimum temperature range (24 to 37 C). It was inhibited by HgCl(2), iodoacetic acid, p-chloromercuribenzoic acid, NaN(3), and 2, 4-dinitrophenol (compounds that affect bacterial membrane permeability, sulfhydryl enzymes, and adenosine triphosphate synthesis). Uptake was inhibited by 1% NaCl but was not affected by 10(-3)m ethylenediaminetetraacetic acid disodium salt (a chelating agent for many metallic ions).

  20. Monocrotophos induces the expression and activity of xenobiotic metabolizing enzymes in pre-sensitized cultured human brain cells.

    Directory of Open Access Journals (Sweden)

    Vinay K Tripathi

    Full Text Available The expression and metabolic profile of cytochrome P450s (CYPs is largely missing in human brain due to non-availability of brain tissue. We attempted to address the issue by using human brain neuronal (SH-SY5Y and glial (U373-MG cells. The expression and activity of CYP1A1, 2B6 and 2E1 were carried out in the cells exposed to CYP inducers viz., 3-methylcholanthrene (3-MC, cyclophosphamide (CPA, ethanol and known neurotoxicant- monocrotophos (MCP, a widely used organophosphorous pesticide. Both the cells show significant induction in the expression and CYP-specific activity against classical inducers and MCP. The induction level of CYPs was comparatively lower in MCP exposed cells than cells exposed to classical inducers. Pre-exposure (12 h of cells to classical inducers significantly added the MCP induced CYPs expression and activity. The findings were concurrent with protein ligand docking studies, which show a significant modulatory capacity of MCP by strong interaction with CYP regulators-CAR, PXR and AHR. Similarly, the known CYP inducers- 3-MC, CPA and ethanol have also shown significantly high docking scores with all the three studied CYP regulators. The expression of CYPs in neuronal and glial cells has suggested their possible association with the endogenous physiology of the brain. The findings also suggest the xenobiotic metabolizing capabilities of these cells against MCP, if received a pre-sensitization to trigger the xenobiotic metabolizing machinery. MCP induced CYP-specific activity in neuronal cells could help in explaining its effect on neurotransmission, as these CYPs are known to involve in the synthesis/transport of the neurotransmitters. The induction of CYPs in glial cells is also of significance as these cells are thought to be involved in protecting the neurons from environmental insults and safeguard them from toxicity. The data provide better understanding of the metabolizing capability of the human brain cells against

  1. Metabolism of clofibric acid in zebrafish embryos (Danio rerio) as determined by liquid chromatography-high resolution-mass spectrometry.

    Science.gov (United States)

    Brox, Stephan; Seiwert, Bettina; Haase, Nora; Küster, Eberhard; Reemtsma, Thorsten

    2016-01-01

    The zebrafish embryo (ZFE) is increasingly used in ecotoxicology research but detailed knowledge of its metabolic potential is still limited. This study focuses on the xenobiotic metabolism of ZFE at different life-stages using the pharmaceutical compound clofibric acid as study compound. Liquid chromatography with quadrupole-time-of-flight mass spectrometry (LC-QToF-MS) is used to detect and to identify the transformation products (TPs). In screening experiments, a total of 18 TPs was detected and structure proposals were elaborated for 17 TPs, formed by phase I and phase II metabolism. Biotransformation of clofibric acid by the ZFE involves conjugation with sulfate or glucuronic acid, and, reported here for the first time, with carnitine, taurine, and aminomethanesulfonic acid. Further yet unknown cyclization products were identified using non-target screening that may represent a new detoxification pathway. Sulfate containing TPs occurred already after 3h of exposure (7hpf), and from 48h of exposure (52hpf) onwards, all TPs were detected. The detection of these TPs indicates the activity of phase I and phase II enzymes already at early life-stages. Additionally, the excretion of one TP into the exposure medium was observed. The results of this study outline the high metabolic potential of the ZFE with respect to the transformation of xenobiotics. Similarities but also differences to other test systems were observed. Biotransformation of test chemicals in toxicity testing with ZFE may therefore need further consideration. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Efficient fermentation of xylose to ethanol at high formic acid concentrations by metabolically engineered Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Hasunuma, Tomohisa; Yoshimura, Kazuya; Matsuda, Fumio [Kobe Univ., Hyogo (Japan). Organization of Advanced Science and Technology; Sung, Kyung-mo; Sanda, Tomoya; Kondo, Akihiko [Kobe Univ., Hyogo (Japan). Dept. of Chemical Science and Engineering

    2011-05-15

    Recombinant yeast strains highly tolerant to formic acid during xylose fermentation were constructed. Microarray analysis of xylose-fermenting Saccharomyces cerevisiae strain overexpressing endogenous xylulokinase in addition to xylose reductase and xylitol dehydrogenase from Pichia stipitis revealed that upregulation of formate dehydrogenase genes (FDH1 and FDH2) was one of the most prominent transcriptional events against excess formic acid. The quantification of formic acid in medium indicated that the innate activity of FDH was too weak to detoxify formic acid. To reinforce the capability for formic acid breakdown, the FDH1 gene was additionally overexpressed in the xylose-metabolizing recombinant yeast. This modification allowed the yeast to rapidly decompose excess formic acid. The yield and final ethanol concentration in the presence of 20 mM formic acid is as essentially same as that of control. The fermentation profile also indicated that the production of xylitol and glycerol, major by-products in xylose fermentation, was not affected by the upregulation of FDH activity. (orig.)

  3. The secrets of highly active older adults.

    Science.gov (United States)

    Franke, Thea; Tong, Catherine; Ashe, Maureen C; McKay, Heather; Sims-Gould, Joanie

    2013-12-01

    Although physical activity is a recognized component in the management of many chronic diseases associated with aging, activity levels tend to progressively decline with increasing age (Manini & Pahor, 2009; Schutzer & Graves, 2004). In this article we examine the key factors that facilitate physical activity in highly active community-dwelling older adults. Using a strengths based approach, we examined the factors that facilitated physical activity in our sample of highly active older adults. Twenty-seven older adults participated in face-to face interviews. We extracted a sub-sample of 10 highly active older adults to be included in the analyses. Based on a framework analysis of our transcripts we identified three factors that facilitate physical activity in our sample, these include: 1) resourcefulness: engagement in self-help strategies such as self-efficacy, self-control and adaptability; 2) social connections: the presence of relationships (friend, neighborhood, institutions) and social activities that support or facilitate high levels of physical activity; and 3) the role of the built and natural environments: features of places and spaces that support and facilitate high levels of physical activity. Findings provide insight into, and factors that facilitate older adults' physical activity. We discuss implications for programs (e.g., accessible community centers, with appropriate programming throughout the lifecourse) and policies geared towards the promotion of physical activity (e.g., the development of spaces that facilitate both physical and social activities). © 2013.

  4. Metabolic activation and carcinogenicity of polycyclic hydrocarbons: A new quantum mechanical theory

    International Nuclear Information System (INIS)

    Mohammad, S.N.

    1986-01-01

    This investigation aims to describe a quantum mechanical theory of cancer, which, on the basis of certain electronic indices calculated for the parent compound, would give prediction of its P-450 mediated metabolic activation and would provide better representation of its relative carcinogenic potency when activated to its PUM. The author's theory is based on the assumption that electronic charge distribution of activated species resembles at least qualitatively the charge distribution of the parent compound, and a careful analysis of electronic characteristics of the parent compound would suffice to give reasonable estimation of the carcinogenic activities of the metabolic products. The details of the theoretical method is given and the results for some alternant and non-alternant PAHs are presented

  5. Relationship among physical activity, smoking, drinking and clustering of the metabolic syndrome diagnostic components.

    Science.gov (United States)

    Katano, Sayuri; Nakamura, Yasuyuki; Nakamura, Aki; Murakami, Yoshitaka; Tanaka, Taichiro; Nakagawa, Hideaki; Takebayashi, Toru; Yamato, Hiroshi; Okayama, Akira; Miura, Katsuyuki; Okamura, Tomonori; Ueshima, Hirotsugu

    2010-06-30

    To examine the relation between lifestyle and the number of metabolic syndrome (MetS) diagnostic components in a general population, and to find a means of preventing the development of MetS components. We examined baseline data from 3,365 participants (2,714 men and 651 women) aged 19 to 69 years who underwent a physical examination, lifestyle survey, and blood chemical examination. The physical activity of each participant was classified according to the International Physical Activity Questionnaire (IPAQ). We defined four components for MetS in this study as follows: 1) high BP: systolic BP > or = 130 mmHg or diastolic BP > or = 85 mmHg, or the use of antihypertensive drugs; 2) dyslipidemia: high-density lipoprotein-cholesterol concentration or = 150 mg/dL, or on medication for dyslipidemia; 3) Impaired glucose tolerance: fasting blood sugar level > or = 110 mg/d, or if less than 8 hours after meals > or = 140 mg/dL), or on medication for diabetes mellitus; 4) obesity: body mass index > or = 25 kg/m(2). Those who had 0 to 4 MetS diagnostic components accounted for 1,726, 949, 484, 190, and 16 participants, respectively, in the Poisson distribution. Poisson regression analysis revealed that independent factors contributing to the number of MetS diagnostic components were being male (regression coefficient b=0.600, p physical activity was inversely associated with the number of MetS diagnostic components, whereas smoking was not associated.

  6. Metabolic Myopathies.

    Science.gov (United States)

    Tarnopolsky, Mark A

    2016-12-01

    Metabolic myopathies are genetic disorders that impair intermediary metabolism in skeletal muscle. Impairments in glycolysis/glycogenolysis (glycogen-storage disease), fatty acid transport and oxidation (fatty acid oxidation defects), and the mitochondrial respiratory chain (mitochondrial myopathies) represent the majority of known defects. The purpose of this review is to develop a diagnostic and treatment algorithm for the metabolic myopathies. The metabolic myopathies can present in the neonatal and infant period as part of more systemic involvement with hypotonia, hypoglycemia, and encephalopathy; however, most cases present in childhood or in adulthood with exercise intolerance (often with rhabdomyolysis) and weakness. The glycogen-storage diseases present during brief bouts of high-intensity exercise, whereas fatty acid oxidation defects and mitochondrial myopathies present during a long-duration/low-intensity endurance-type activity or during fasting or another metabolically stressful event (eg, surgery, fever). The clinical examination is often normal between acute events, and evaluation involves exercise testing, blood testing (creatine kinase, acylcarnitine profile, lactate, amino acids), urine organic acids (ketones, dicarboxylic acids, 3-methylglutaconic acid), muscle biopsy (histology, ultrastructure, enzyme testing), MRI/spectroscopy, and targeted or untargeted genetic testing. Accurate and early identification of metabolic myopathies can lead to therapeutic interventions with lifestyle and nutritional modification, cofactor treatment, and rapid treatment of rhabdomyolysis.

  7. A high fat diet alters metabolic and bioenergetic function in the brain: A magnetic resonance spectroscopy study.

    Science.gov (United States)

    Raider, Kayla; Ma, Delin; Harris, Janna L; Fuentes, Isabella; Rogers, Robert S; Wheatley, Joshua L; Geiger, Paige C; Yeh, Hung-Wen; Choi, In-Young; Brooks, William M; Stanford, John A

    2016-07-01

    Diet-induced obesity and associated metabolic effects can lead to neurological dysfunction and increase the risk of developing Alzheimer's disease (AD) and Parkinson's disease (PD). Despite these risks, the effects of a high-fat diet on the central nervous system are not well understood. To better understand the mechanisms underlying the effects of high fat consumption on brain regions affected by AD and PD, we used proton magnetic resonance spectroscopy ((1)H-MRS) to measure neurochemicals in the hippocampus and striatum of rats fed a high fat diet vs. normal low fat chow. We detected lower concentrations of total creatine (tCr) and a lower glutamate-to-glutamine ratio in the hippocampus of high fat rats. Additional effects observed in the hippocampus of high fat rats included higher N-acetylaspartylglutamic acid (NAAG), and lower myo-inositol (mIns) and serine (Ser) concentrations. Post-mortem tissue analyses revealed lower phosphorylated AMP-activated protein kinase (pAMPK) in the striatum but not in the hippocampus of high fat rats. Hippocampal pAMPK levels correlated significantly with tCr, aspartate (Asp), phosphoethanolamine (PE), and taurine (Tau), indicating beneficial effects of AMPK activation on brain metabolic and energetic function, membrane turnover, and edema. A negative correlation between pAMPK and glucose (Glc) indicates a detrimental effect of brain Glc on cellular energy response. Overall, these changes indicate alterations in neurotransmission and in metabolic and bioenergetic function in the hippocampus and in the striatum of rats fed a high fat diet. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Effects of fetal exposure to high-fat diet or maternal hyperglycemia on L-arginine and nitric oxide metabolism in lung.

    Science.gov (United States)

    Grasemann, C; Herrmann, R; Starschinova, J; Gertsen, M; Palmert, M R; Grasemann, H

    2017-02-20

    Alterations in the L-arginine/nitric oxide (NO) metabolism contribute to diseases such as obesity, metabolic syndrome and airway dysfunction. The impact of early-life exposures on the L-arginine/NO metabolism in lung later in life is not well understood. The objective of this work was to study the effects of intrauterine exposures to maternal hyperglycemia and high-fat diet (HFD) on pulmonary L-arginine/NO metabolism in mice. We used two murine models of intrauterine exposures to maternal (a) hyperglycemia and (b) HFD to study the effects of these exposures on the L-arginine/NO metabolism in lung in normal chow-fed offspring. Both intrauterine exposures resulted in NO deficiency in the lung of the offspring at 6 weeks of age. However, each of the exposures leading to different metabolic phenotypes caused a distinct alteration in the L-arginine/NO metabolism. Maternal hyperglycemia leading to impaired glucose tolerance but no obesity in the offspring resulted in increased levels of asymmetric dimethylarginine and impairment of NO synthases. Although maternal HFD led to obesity without impairment in glucose tolerance in the offspring, it resulted in increased expression and activity of arginase in the lung of the normal chow-fed offspring. These data suggest that maternal hyperglycemia and HFD can cause alterations in the pulmonary L-arginine/NO metabolism in offspring.

  9. Alternate radiolabeled markers for detecting metabolic activity of Mycobacterium leprae residing in murine macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, H.K.; Hastings, R.C.

    1985-05-01

    This study demonstrated the utility of using 4% NaOH as a murine macrophage cell-solubilizing agent to discriminate between host macrophage metabolism and that of intracellular Mycobacterium leprae. A 4% concentration of NaOH had no deleterious effect on labeled mycobacteria. Thereby, alternate radiolabeled indicators of the metabolic activity of intracellular M. leprae could be experimented with. Significant incorporation of /sup 14/C-amino acid mixture, (/sup 14/C)leucine, (/sup 14/C)uridine, and carrier-free /sup 32/P was observed in cultures containing freshly extracted (''live'') strains of M. leprae as compared with control cultures containing autoclaved bacilli.

  10. Alternate radiolabeled markers for detecting metabolic activity of Mycobacterium leprae residing in murine macrophages

    International Nuclear Information System (INIS)

    Prasad, H.K.; Hastings, R.C.

    1985-01-01

    This study demonstrated the utility of using 4% NaOH as a murine macrophage cell-solubilizing agent to discriminate between host macrophage metabolism and that of intracellular Mycobacterium leprae. A 4% concentration of NaOH had no deleterious effect on labeled mycobacteria. Thereby, alternate radiolabeled indicators of the metabolic activity of intracellular M. leprae could be experimented with. Significant incorporation of 14 C-amino acid mixture, [ 14 C]leucine, [ 14 C]uridine, and carrier-free 32 P was observed in cultures containing freshly extracted (''live'') strains of M. leprae as compared with control cultures containing autoclaved bacilli

  11. Metabolic Risk Factors, Leisure Time Physical Activity, and Nutrition in German Children and Adolescents

    Science.gov (United States)

    Haas, Gerda-Maria; Liepold, Evelyn; Schwandt, Peter

    2012-01-01

    Purpose. We assessed the five components of the metabolic syndrome (MetS) as defined by the International Diabetes Federation (IDF) in 6040 (3158 males) youths aged 6–16 years who participated in the Präventions-Erziehungs-Programm (PEP Family Heart Study) in Nuernberg between 2000 and 2007. The purpose of this cross-sectional study was to examine associations with lifestyle habits. Results and Discussion. The prevalence of MetS was low in children (1.6%) and adolescents (2.3%). High waist circumference (WC) and low HDL-C were slightly higher in females (9.5% and 7.5%, resp.) than in males (8.8% and 5.7%, resp.). Low leisure time physical activity (LTPA) was significantly associated with low HDL-C (odds ratio [OR] 2.4; 95% CI 1.2–5.0) and inversely associated with hypertension (r = −0.146), hypertriglyceridemia (r = −0.141), and central adiposity (r = −0.258). The risk for low HDL-C (≤1.3 mmol/L) was 1.7-fold (CI 1.0–2.6) higher in youth with high (≥33%) saturated fat consumption. A low polyunsaturated/saturated fat ratio (P/S ratio) was significantly associated with fasting hyperglycemia (OR 1.4; 95% CI 1.0–1.2). PMID:22778928

  12. Electronic Nose Technology to Measure Soil Microbial Activity and Classify Soil Metabolic Status

    OpenAIRE

    Fabrizio De Cesare; Elena Di Mattia; Simone Pantalei; Emiliano Zampetti; Vittorio Vinciguerra; Antonella Macagnano

    2011-01-01

    The electronic nose (E-nose) is a sensing technology that has been widely used to monitor environments in the last decade. In the present study, the capability of an E-nose, in combination with biochemical and microbiological techniques, of both detecting the microbial activity and estimating the metabolic status of soil ecosystems, was tested by measuring on one side respiration, enzyme activities and growth of bacteria in natural but simplified soil ecosystems over 23 days of incubation thr...

  13. Metabolic characteristics and response to high altitude in Phrynocephalus erythrurus (Lacertilia: Agamidae, a lizard dwell at altitudes higher than any other living lizards in the world.

    Directory of Open Access Journals (Sweden)

    Xiaolong Tang

    Full Text Available Metabolic response to high altitude remains poorly explored in reptiles. In the present study, the metabolic characteristics of Phrynocephaluserythrurus (Lacertilia: Agamidae, which inhabits high altitudes (4500 m and Phrynocephalusprzewalskii (Lacertilia: Agamidae, which inhabits low altitudes, were analysed to explore the metabolic regulatory strategies for lizards living at high-altitude environments. The results indicated that the mitochondrial respiratory rates of P. erythrurus were significantly lower than those of P. przewalskii, and that proton leak accounts for 74~79% of state 4 and 7~8% of state3 in P. erythrurus vs. 43~48% of state 4 and 24~26% of state3 in P. przewalskii. Lactate dehydrogenase (LDH activity in P. erythrurus was lower than in P. przewalskii, indicating that at high altitude the former does not, relatively, have a greater reliance on anaerobic metabolism. A higher activity related to β-hydroxyacyl coenzyme A dehydrogenase (HOAD and the HOAD/citrate synthase (CS ratio suggested there was a possible higher utilization of fat in P. erythrurus. The lower expression of PGC-1α and PPAR-γ in P. erythrurus suggested their expression was not influenced by cold and low PO2 at high altitude. These distinct characteristics of P. erythrurus are considered to be necessary strategies in metabolic regulation for living at high altitude and may effectively compensate for the negative influence of cold and low PO2.

  14. Metabolic syndrome in family practice in Jordan: a study of high-risk groups.

    Science.gov (United States)

    Yasein, N; Masa'd, D

    2011-12-01

    This study assessed the prevalence of the metabolic syndrome, and its components, as defined by Adult Treatment Panel III criteria in Jordanian patients attending a family practice clinic for management of cardiovascular risk factors. The sample was 730 randomly selected patients aged > or = 25 years. The prevalence of metabolic syndrome was 37.4% (31.7% in men; 41.0% in women). The prevalence increased with age in the total sample and in both sexes. High waist circumference showed the highest prevalence in the total sample (61.6%). Among females it ranked as the first criterion (73.5%). High serum triglyceride level showed the highest prevalence in males (50.2%). Differences between the sexes were significant. Family practitioners should be alerted to the importance of multiple risk factors in the metabolic syndrome.

  15. Selective screening of 650 high risk Iranian patients for detection of inborn error of metabolism

    Directory of Open Access Journals (Sweden)

    Narges Pishva

    2015-02-01

    Full Text Available Objective: Although metabolic diseases individually are rare ,but overall have an incidence of 1/2000 and can cause devastating and irreversible effect if not diagnosed early and treated promptly. selective screening is an acceptable method for detection of these multi presentation diseases.Method: using panel neonatal screening for detection of metabolic diseases in 650 high risk Iranian patients in Fars province. The following clinical features were used as inclusion criteria for investigation of the patients.Lethargy, poor feeding ,persistent vomiting, cholestasis, intractable seizure ,decreased level of consciousness ,persistent hypoglycemia, unexplained acid base disturbance and unexplained neonatal death.Result: Organic acidemia with 40 cases (42% was the most frequent disorder diagnosed in our high risk populations, followed by disorder of galactose metabolism(30%, 15 patient had classic galactosemia(GALT

  16. Selective screening of 650 high risk Iranian patients for detection of inborn error of metabolism

    Directory of Open Access Journals (Sweden)

    Narges Pishva

    2015-02-01

    Full Text Available Objective: Although metabolic diseases individually are rare ,but overall have an incidence of 1/2000 and can cause devastating and irreversible effect if not diagnosed early and treated promptly. selective screening is an acceptable method for detection of these multi presentation diseases. Method: using panel neonatal screening for detection of metabolic diseases in 650 high risk Iranian patients in Fars province. The following clinical features were used as inclusion criteria for investigation of the patients. Lethargy, poor feeding ,persistent vomiting, cholestasis, intractable seizure ,decreased level of consciousness ,persistent hypoglycemia, unexplained acid base disturbance and unexplained neonatal death. Result: Organic acidemia with 40 cases (42% was the most frequent disorder diagnosed in our high risk populations, followed by disorder of galactose metabolism(30%, 15 patient had classic galactosemia(GALT

  17. Factors affecting high-sensitivity cardiac troponin T elevation in Japanese metabolic syndrome patients

    Directory of Open Access Journals (Sweden)

    Hitsumoto T

    2015-03-01

    Full Text Available Takashi Hitsumoto,1 Kohji Shirai2 1Hitsumoto Medical Clinic, Yamaguchi, Japan; 2Department of Vascular Function (donated, Sakura Hospital, Toho University School of Medicine, Chiba, Japan Purpose: The blood concentration of cardiac troponin T (ie, high-sensitivity cardiac troponin T [hs-cTnT], measured using a highly sensitive assay, represents a useful biomarker for evaluating the pathogenesis of heart failure or predicting cardiovascular events. However, little is known about the clinical significance of hs-cTnT in metabolic syndrome. The aim of this study was to examine the factors affecting hs-cTnT elevation in Japanese metabolic syndrome patients. Patients and methods: We enrolled 258 metabolic syndrome patients who were middle-aged males without a history of cardiovascular events. We examined relationships between hs-cTnT and various clinical parameters, including diagnostic parameters of metabolic syndrome. Results: There were no significant correlations between hs-cTnT and diagnostic parameters of metabolic syndrome. However, hs-cTnT was significantly correlated with age (P<0.01, blood concentrations of brain natriuretic peptide (P<0.01, reactive oxygen metabolites (markers of oxidative stress, P<0.001, and the cardio–ankle vascular index (marker of arterial function, P<0.01. Furthermore, multiple regression analysis revealed that these factors were independent variables for hs-cTnT as a subordinate factor. Conclusion: The findings of this study indicate that in vivo oxidative stress and abnormality of arterial function are closely associated with an increase in hs-cTnT concentrations in Japanese metabolic syndrome patients. Keywords: troponin, metabolic syndrome, risk factor, oxidative stress, cardio–ankle vascular index

  18. Do obese but metabolically normal women differ in intra-abdominal fat and physical activity levels from those with the expected metabolic abnormalities? A cross-sectional study

    Directory of Open Access Journals (Sweden)

    Walker Mark

    2010-11-01

    Full Text Available Abstract Background Obesity remains a major public health problem, associated with a cluster of metabolic abnormalities. However, individuals exist who are very obese but have normal metabolic parameters. The aim of this study was to determine to what extent differences in metabolic health in very obese women are explained by differences in body fat distribution, insulin resistance and level of physical activity. Methods This was a cross-sectional pilot study of 39 obese women (age: 28-64 yrs, BMI: 31-67 kg/m2 recruited from community settings. Women were defined as 'metabolically normal' on the basis of blood glucose, lipids and blood pressure. Magnetic Resonance Imaging was used to determine body fat distribution. Detailed lifestyle and metabolic profiles of participants were obtained. Results Women with a healthy metabolic profile had lower intra-abdominal fat volume (geometric mean 4.78 l [95% CIs 3.99-5.73] vs 6.96 l [5.82-8.32] and less insulin resistance (HOMA 3.41 [2.62-4.44] vs 6.67 [5.02-8.86] than those with an abnormality. The groups did not differ in abdominal subcutaneous fat volume (19.6 l [16.9-22.7] vs 20.6 [17.6-23.9]. A higher proportion of those with a healthy compared to a less healthy metabolic profile met current physical activity guidelines (70% [95% CIs 55.8-84.2] vs 25% [11.6-38.4]. Intra-abdominal fat, insulin resistance and physical activity make independent contributions to metabolic status in very obese women, but explain only around a third of the variance. Conclusion A sub-group of women exists who are metabolically normal despite being very obese. Differences in fat distribution, insulin resistance, and physical activity level are associated with metabolic differences in these women, but account only partially for these differences. Future work should focus on strategies to identify those obese individuals most at risk of the negative metabolic consequences of obesity and on identifying other factors that

  19. Adiponectin activates the AMPK signaling pathway to regulate lipid metabolism in bovine hepatocytes.

    Science.gov (United States)

    Chen, Hui; Zhang, Liang; Li, Xinwei; Li, Xiaobing; Sun, Guoquan; Yuan, Xue; Lei, Liancheng; Liu, Juxiong; Yin, Liheng; Deng, Qinghua; Wang, Jianguo; Liu, Zhaoxi; Yang, Wentao; Wang, Zhe; Zhang, Hui; Liu, Guowen

    2013-11-01

    Adiponectin (Ad) plays a crucial role in hepatic lipid metabolism. However, the regulating mechanism of hepatic lipid metabolism by Ad in dairy cows is unclear. Hepatocytes from a newborn female calf were cultured in vitro and treated with different concentrations of Ad and BML-275 (an AMPKα inhibitor). The results showed that Ad significantly increased the expression of two Ad receptors. Furthermore, the phosphorylation and activity of AMPKα, as well as the expression levels and transcriptional activity of peroxisome proliferator activated receptor-α (PPARα) and its target genes involved in lipid oxidation, showed a corresponding trend of upregulation. However, the expression levels and transcriptional activity of sterol regulatory element binding protein 1c (SREBP-1c) and carbohydrate-responsive element-binding protein (ChREBP) decreased in a similar manner. When BML-275 was added, the p-AMPKα level as well as the expression and activity of PPARα and its target genes were significantly decreased. However, the expression levels of SREBP-1c, ChREBP and their target genes showed a trend of upregulation. Furthermore, the triglyceride (TG) content was significantly decreased in the Ad-treated groups. These results indicate that Ad activates the AMPK signaling pathway and mediates lipid metabolism in bovine hepatocytes cultured in vitro by promoting lipid oxidation, suppressing lipid synthesis and reducing hepatic lipid accumulation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Spatial localization of the first and last enzymes effectively connects active metabolic pathways in bacteria.

    Science.gov (United States)

    Meyer, Pablo; Cecchi, Guillermo; Stolovitzky, Gustavo

    2014-12-14

    Although much is understood about the enzymatic cascades that underlie cellular biosynthesis, comparatively little is known about the rules that determine their cellular organization. We performed a detailed analysis of the localization of E.coli GFP-tagged enzymes for cells growing exponentially. We found that out of 857 globular enzymes, at least 219 have a discrete punctuate localization in the cytoplasm and catalyze the first or the last reaction in 60% of biosynthetic pathways. A graph-theoretic analysis of E.coli's metabolic network shows that localized enzymes, in contrast to non-localized ones, form a tree-like hierarchical structure, have a higher within-group connectivity, and are traversed by a higher number of feed-forward and feedback loops than their non-localized counterparts. A Gene Ontology analysis of these enzymes reveals an enrichment of terms related to essential metabolic functions in growing cells. Given that these findings suggest a distinct metabolic role for localization, we studied the dynamics of cellular localization of the cell wall synthesizing enzymes in B. subtilis and found that enzymes localize during exponential growth but not during stationary growth. We conclude that active biochemical pathways inside the cytoplasm are organized spatially following a rule where their first or their last enzymes localize to effectively connect the different active pathways and thus could reflect the activity state of the cell's metabolic network.

  1. Plasminogen activator inhibitor-1 is elevated in patients with COPD independent of metabolic and cardiovascular function

    Directory of Open Access Journals (Sweden)

    Waschki B

    2017-03-01

    Full Text Available Benjamin Waschki,1–3 Henrik Watz,2,3 Olaf Holz,4,5 Helgo Magnussen,2,3 Beata Olejnicka,6 Tobias Welte,5,7 Klaus F Rabe,1,3 Sabina Janciauskiene5,7 1Pneumology, LungenClinic Grosshansdorf, Grosshansdorf, Germany; 2Pulmonary Research Institute at LungenClinic Grosshansdorf, Grosshansdorf, Germany; 3Airway Research Center North (ARCN, German Center for Lung Research (DZL, Grosshansdorf, Germany; 4Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany; 5Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH, German Center for Lung Research (DZL, Hannover, Germany; 6Department of Medicine, Trelleborg Hospital, Trelleborg, Sweden; 7Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany Introduction: Plasminogen activator inhibitor-1 (PAI-1, a major inhibitor of fibrinolysis, is associated with thrombosis, obesity, insulin resistance, dyslipidemia, and premature aging, which all are coexisting conditions of chronic obstructive pulmonary disease (COPD. The role of PAI-1 in COPD with respect to metabolic and cardiovascular functions is unclear. Methods: In this study, which was nested within a prospective cohort study, the serum levels of PAI-1 were cross-sectionally measured in 74 stable COPD patients (Global Initiative for Chronic Obstructive Lung Disease [GOLD] Stages I–IV and 18 controls without lung disease. In addition, triglycerides, high-density lipoprotein cholesterol, fasting plasma glucose, waist circumference, blood pressure, smoking status, high-sensitive C-reactive protein (hs-CRP, adiponectin, ankle–brachial index, N-terminal pro-B-type natriuretic peptide, and history of comorbidities were also determined. Results: The serum levels of PAI-1 were significantly higher in COPD patients than in controls, independent of a broad spectrum of possible confounders including metabolic and cardiovascular dysfunction. A multivariate regression analysis revealed

  2. Lactoferrin dampens high-fructose corn syrup-induced hepatic manifestations of the metabolic syndrome in a murine model.

    Directory of Open Access Journals (Sweden)

    Yi-Chieh Li

    Full Text Available Hepatic manifestations of the metabolic syndrome are related obesity, type 2 diabetes/insulin resistance and non-alcoholic fatty liver disease. Here we investigated how the anti-inflammatory properties of lactoferrin can protect against the onset of hepatic manifestations of the metabolic syndrome by using a murine model administered with high-fructose corn syrup. Our results show that a high-fructose diet stimulates intestinal bacterial overgrowth and increases intestinal permeability, leading to the introduction of endotoxin into blood circulation and liver. Immunohistochemical staining of Toll-like receptor-4 and thymic stromal lymphopoietin indicated that lactoferrin can modulate lipopolysaccharide-mediated inflammatory cascade. The important regulatory roles are played by adipokines including interleukin-1β, interleukin-6, tumor necrosis factor-α, monocyte chemotactic protein-1, and adiponectin, ultimately reducing hepatitis and decreasing serum alanine aminotransferase release. These beneficial effects of lactoferrin related to the downregulation of the lipopolysaccharide-induced inflammatory cascade in the liver. Furthermore, lactoferrin reduced serum and hepatic triglycerides to prevent lipid accumulation in the liver, and reduced lipid peroxidation, resulting in 4-hydroxynonenal accumulation. Lactoferrin reduced oral glucose tolerance test and homeostasis model assessment-insulin resistance. Lactoferrin administration thus significantly lowered liver weight, resulting from a decrease in the triglyceride and cholesterol synthesis that activates hepatic steatosis. Taken together, these results suggest that lactoferrin protected against high-fructose corn syrup induced hepatic manifestations of the metabolic syndrome.

  3. Lactoferrin dampens high-fructose corn syrup-induced hepatic manifestations of the metabolic syndrome in a murine model.

    Science.gov (United States)

    Li, Yi-Chieh; Hsieh, Chang-Chi

    2014-01-01

    Hepatic manifestations of the metabolic syndrome are related obesity, type 2 diabetes/insulin resistance and non-alcoholic fatty liver disease. Here we investigated how the anti-inflammatory properties of lactoferrin can protect against the onset of hepatic manifestations of the metabolic syndrome by using a murine model administered with high-fructose corn syrup. Our results show that a high-fructose diet stimulates intestinal bacterial overgrowth and increases intestinal permeability, leading to the introduction of endotoxin into blood circulation and liver. Immunohistochemical staining of Toll-like receptor-4 and thymic stromal lymphopoietin indicated that lactoferrin can modulate lipopolysaccharide-mediated inflammatory cascade. The important regulatory roles are played by adipokines including interleukin-1β, interleukin-6, tumor necrosis factor-α, monocyte chemotactic protein-1, and adiponectin, ultimately reducing hepatitis and decreasing serum alanine aminotransferase release. These beneficial effects of lactoferrin related to the downregulation of the lipopolysaccharide-induced inflammatory cascade in the liver. Furthermore, lactoferrin reduced serum and hepatic triglycerides to prevent lipid accumulation in the liver, and reduced lipid peroxidation, resulting in 4-hydroxynonenal accumulation. Lactoferrin reduced oral glucose tolerance test and homeostasis model assessment-insulin resistance. Lactoferrin administration thus significantly lowered liver weight, resulting from a decrease in the triglyceride and cholesterol synthesis that activates hepatic steatosis. Taken together, these results suggest that lactoferrin protected against high-fructose corn syrup induced hepatic manifestations of the metabolic syndrome.

  4. Helicoverpa armigera (Lepidoptera: Noctuidae) larvae that survive sublethal doses of nucleopolyhedrovirus exhibit high metabolic rates.

    Science.gov (United States)

    Bouwer, Gustav; Nardini, Luisa; Duncan, Frances D

    2009-04-01

    To determine the effect of sublethal doses of Helicoverpa armigera single nucleocapsid nucleopolyhedrovirus (HearSNPV) on the metabolic rate of H. armigera, the respiration rates of third instar H. armigera larvae inoculated with sublethal doses of HearSNPV were evaluated. Respiration rates, measured as the rate of CO(2) production (VCO(2)), were recorded daily using closed-system respirometry. By 4 days post-inoculation (dpi), the metabolic rates of LD(25) or LD(75) survivors were significantly higher than that of uninoculated controls. When dose data were pooled, the VCO(2) values of larvae that survived inoculation (0.0288mlh(-1)), the uninoculated controls (0.0250mlh(-1)), and the larvae that did not survive inoculation (0.0199mlh(-1)) differed significantly from one another. At 4dpi, the VCO(2) of the uninoculated controls were significantly lower than the VCO(2) of inoculation survivors, but significantly higher than the VCO(2) of inoculation non-survivors. Inoculation survivors may have had high metabolic rates due to a combination of viral replication, organ damage, and an energy-intensive induced cellular immune response. The high 4dpi metabolic rate of inoculation survivors may reflect an effective immune response and may be seen as the metabolic signature of larvae that are in the process of surviving inoculation with HearSNPV.

  5. High Yolk Testosterone Transfer Is Associated with an Increased Female Metabolic Rate.

    Science.gov (United States)

    Tschirren, Barbara; Ziegler, Ann-Kathrin; Canale, Cindy I; Okuliarová, Monika; Zeman, Michal; Giraudeau, Mathieu

    2016-01-01

    Yolk androgens of maternal origin are important mediators of prenatal maternal effects. Although in many species short-term benefits of exposure to high yolk androgen concentrations for the offspring have been observed, females differ substantially in the amount of androgens they transfer to their eggs. It suggests that costs for the offspring or the mother constrain the evolution of maternal hormone transfer. However, to date, the nature of these costs remains poorly understood. Unlike most previous work that focused on potential costs for the offspring, we here investigated whether high yolk testosterone transfer is associated with metabolic costs (i.e., a higher metabolic rate) for the mother. We show that Japanese quail (Coturnix japonica) females that deposit higher testosterone concentrations into their eggs have a higher resting metabolic rate. Because a higher metabolic rate is often associated with a shorter life span, this relationship may explain the negative association between yolk testosterone transfer and female longevity observed in the wild. Our results suggest that metabolic costs for the mother can balance the short-term benefits of yolk testosterone exposure for the offspring, thereby contributing to the maintenance of variation in maternal yolk hormone transfer in natural populations.

  6. A High Phosphorus Diet Affects Lipid Metabolism in Rat Liver: A DNA Microarray Analysis.

    Directory of Open Access Journals (Sweden)

    Sunwoo Chun

    Full Text Available A high phosphorus (HP diet causes disorders of renal function, bone metabolism, and vascular function. We previously demonstrated that DNA microarray analysis is an appropriate method to comprehensively evaluate the effects of a HP diet on kidney dysfunction such as calcification, fibrillization, and inflammation. We reported that type IIb sodium-dependent phosphate transporter is significantly up-regulated in this context. In the present study, we performed DNA microarray analysis to investigate the effects of a HP diet on the liver, which plays a pivotal role in energy metabolism. DNA microarray analysis was performed with total RNA isolated from the livers of rats fed a control diet (containing 0.3% phosphorus or a HP diet (containing 1.2% phosphorus. Gene Ontology analysis of differentially expressed genes (DEGs revealed that the HP diet induced down-regulation of genes involved in hepatic amino acid catabolism and lipogenesis, while genes related to fatty acid β-oxidation process were up-regulated. Although genes related to fatty acid biosynthesis were down-regulated in HP diet-fed rats, genes important for the elongation and desaturation reactions of omega-3 and -6 fatty acids were up-regulated. Concentrations of hepatic arachidonic acid and eicosapentaenoic acid were increased in HP diet-fed rats. These essential fatty acids activate peroxisome proliferator-activated receptor alpha (PPARα, a transcription factor for fatty acid β-oxidation. Evaluation of the upstream regulators of DEGs using Ingenuity Pathway Analysis indicated that PPARα was activated in the livers of HP diet-fed rats. Furthermore, the serum concentration of fibroblast growth factor 21, a hormone secreted from the liver that promotes fatty acid utilization in adipose tissue as a PPARα target gene, was higher (p = 0.054 in HP diet-fed rats than in control diet-fed rats. These data suggest that a HP diet enhances energy expenditure through the utilization of free fatty

  7. Neurons have an active glycogen metabolism that contributes to tolerance to hypoxia

    Science.gov (United States)

    Saez, Isabel; Duran, Jordi; Sinadinos, Christopher; Beltran, Antoni; Yanes, Oscar; Tevy, María F; Martínez-Pons, Carlos; Milán, Marco; Guinovart, Joan J

    2014-01-01

    Glycogen is present in the brain, where it has been found mainly in glial cells but not in neurons. Therefore, all physiologic roles of brain glycogen have been attributed exclusively to astrocytic glycogen. Working with primary cultured neurons, as well as with genetically modified mice and flies, here we report that—against general belief—neurons contain a low but measurable amount of glycogen. Moreover, we also show that these cells express the brain isoform of glycogen phosphorylase, allowing glycogen to be fully metabolized. Most importantly, we show an active neuronal glycogen metabolism that protects cultured neurons from hypoxia-induced death and flies from hypoxia-induced stupor. Our findings change the current view of the role of glycogen in the brain and reveal that endogenous neuronal glycogen metabolism participates in the neuronal tolerance to hypoxic stress. PMID:24569689

  8. Neurons have an active glycogen metabolism that contributes to tolerance to hypoxia.

    Science.gov (United States)

    Saez, Isabel; Duran, Jordi; Sinadinos, Christopher; Beltran, Antoni; Yanes, Oscar; Tevy, María F; Martínez-Pons, Carlos; Milán, Marco; Guinovart, Joan J

    2014-06-01

    Glycogen is present in the brain, where it has been found mainly in glial cells but not in neurons. Therefore, all physiologic roles of brain glycogen have been attributed exclusively to astrocytic glycogen. Working with primary cultured neurons, as well as with genetically modified mice and flies, here we report that-against general belief-neurons contain a low but measurable amount of glycogen. Moreover, we also show that these cells express the brain isoform of glycogen phosphorylase, allowing glycogen to be fully metabolized. Most importantly, we show an active neuronal glycogen metabolism that protects cultured neurons from hypoxia-induced death and flies from hypoxia-induced stupor. Our findings change the current view of the role of glycogen in the brain and reveal that endogenous neuronal glycogen metabolism participates in the neuronal tolerance to hypoxic stress.

  9. Seaweed supplements normalise metabolic, cardiovascular and liver responses in high-carbohydrate, high-fat fed rats.

    Science.gov (United States)

    Kumar, Senthil Arun; Magnusson, Marie; Ward, Leigh C; Paul, Nicholas A; Brown, Lindsay

    2015-02-02

    Increased seaweed consumption may be linked to the lower incidence of metabolic syndrome in eastern Asia. This study investigated the responses to two tropical green seaweeds, Ulva ohnoi (UO) and Derbesia tenuissima (DT), in a rat model of human metabolic syndrome. Male Wistar rats (330-340 g) were fed either a corn starch-rich diet or a high-carbohydrate, high-fat diet with 25% fructose in drinking water, for 16 weeks. High-carbohydrate, high-fat diet-fed rats showed the signs of metabolic syndrome leading to abdominal obesity, cardiovascular remodelling and non-alcoholic fatty liver disease. Food was supplemented with 5% dried UO or DT for the final 8 weeks only. UO lowered total final body fat mass by 24%, systolic blood pressure by 29 mmHg, and improved glucose utilisation and insulin sensitivity. In contrast, DT did not change total body fat mass but decreased plasma triglycerides by 38% and total cholesterol by 17%. UO contained 18.1% soluble fibre as part of 40.9% total fibre, and increased magnesium, while DT contained 23.4% total fibre, essentially as insoluble fibre. UO was more effective in reducing metabolic syndrome than DT, possibly due to the increased intake of soluble fibre and magnesium.

  10. Seaweed Supplements Normalise Metabolic, Cardiovascular and Liver Responses in High-Carbohydrate, High-Fat Fed Rats

    Directory of Open Access Journals (Sweden)

    Senthil Arun Kumar

    2015-02-01

    Full Text Available Increased seaweed consumption may be linked to the lower incidence of metabolic syndrome in eastern Asia. This study investigated the responses to two tropical green seaweeds, Ulva ohnoi (UO and Derbesia tenuissima (DT, in a rat model of human metabolic syndrome. Male Wistar rats (330–340 g were fed either a corn starch-rich diet or a high-carbohydrate, high-fat diet with 25% fructose in drinking water, for 16 weeks. High-carbohydrate, high-fat diet-fed rats showed the signs of metabolic syndrome leading to abdominal obesity, cardiovascular remodelling and non-alcoholic fatty liver disease. Food was supplemented with 5% dried UO or DT for the final 8 weeks only. UO lowered total final body fat mass by 24%, systolic blood pressure by 29 mmHg, and improved glucose utilisation and insulin sensitivity. In contrast, DT did not change total body fat mass but decreased plasma triglycerides by 38% and total cholesterol by 17%. UO contained 18.1% soluble fibre as part of 40.9% total fibre, and increased magnesium, while DT contained 23.4% total fibre, essentially as insoluble fibre. UO was more effective in reducing metabolic syndrome than DT, possibly due to the increased intake of soluble fibre and magnesium.

  11. Seaweed Supplements Normalise Metabolic, Cardiovascular and Liver Responses in High-Carbohydrate, High-Fat Fed Rats

    Science.gov (United States)

    Kumar, Senthil Arun; Magnusson, Marie; Ward, Leigh C.; Paul, Nicholas A.; Brown, Lindsay

    2015-01-01

    Increased seaweed consumption may be linked to the lower incidence of metabolic syndrome in eastern Asia. This study investigated the responses to two tropical green seaweeds, Ulva ohnoi (UO) and Derbesia tenuissima (DT), in a rat model of human metabolic syndrome. Male Wistar rats (330–340 g) were fed either a corn starch-rich diet or a high-carbohydrate, high-fat diet with 25% fructose in drinking water, for 16 weeks. High-carbohydrate, high-fat diet-fed rats showed the signs of metabolic syndrome leading to abdominal obesity, cardiovascular remodelling and non-alcoholic fatty liver disease. Food was supplemented with 5% dried UO or DT for the final 8 weeks only. UO lowered total final body fat mass by 24%, systolic blood pressure by 29 mmHg, and improved glucose utilisation and insulin sensitivity. In contrast, DT did not change total body fat mass but decreased plasma triglycerides by 38% and total cholesterol by 17%. UO contained 18.1% soluble fibre as part of 40.9% total fibre, and increased magnesium, while DT contained 23.4% total fibre, essentially as insoluble fibre. UO was more effective in reducing metabolic syndrome than DT, possibly due to the increased intake of soluble fibre and magnesium. PMID:25648511

  12. Activation of nuclear receptor NR5A2 increases Glut4 expression and glucose metabolism in muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Bolado-Carrancio, A. [Department of Molecular Biology, University of Cantabria, IDIVAL, Santander (Spain); Riancho, J.A. [Department of Internal Medicine, Hospital U.M. Valdecilla-IDIVAL, University of Cantabria, RETICEF, Santander (Spain); Sainz, J. [Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), CSIC-University of Cantabria, Santander (Spain); Rodríguez-Rey, J.C., E-mail: rodriguj@unican.es [Department of Molecular Biology, University of Cantabria, IDIVAL, Santander (Spain)

    2014-04-04

    Highlights: • NR5A2 expression in C2C12 is associated with myotube differentiation. • DLPC induces an increase in GLUT4 levels and glucose uptake in C2C12 myotubes. • In high glucose conditions the activation of NR5A2 inhibits fatty acids oxidation. - Abstract: NR5A2 is a nuclear receptor which regulates the expression of genes involved in cholesterol metabolism, pluripotency maintenance and cell differentiation. It has been recently shown that DLPC, a NR5A2 ligand, prevents liver steatosis and improves insulin sensitivity in mouse models of insulin resistance, an effect that has been associated with changes in glucose and fatty acids metabolism in liver. Because skeletal muscle is a major tissue in clearing glucose from blood, we studied the effect of the activation of NR5A2 on muscle metabolism by using cultures of C2C12, a mouse-derived cell line widely used as a model of skeletal muscle. Treatment of C2C12 with DLPC resulted in increased levels of expression of GLUT4 and also of several genes related to glycolysis and glycogen metabolism. These changes were accompanied by an increased glucose uptake. In addition, the activation of NR5A2 produced a reduction in the oxidation of fatty acids, an effect which disappeared in low-glucose conditions. Our results suggest that NR5A2, mostly by enhancing glucose uptake, switches muscle cells into a state of glucose preference. The increased use of glucose by muscle might constitute another mechanism by which NR5A2 improves blood glucose levels and restores insulin sensitivity.

  13. Activation of nuclear receptor NR5A2 increases Glut4 expression and glucose metabolism in muscle cells

    International Nuclear Information System (INIS)

    Bolado-Carrancio, A.; Riancho, J.A.; Sainz, J.; Rodríguez-Rey, J.C.

    2014-01-01

    Highlights: • NR5A2 expression in C2C12 is associated with myotube differentiation. • DLPC induces an increase in GLUT4 levels and glucose uptake in C2C12 myotubes. • In high glucose conditions the activation of NR5A2 inhibits fatty acids oxidation. - Abstract: NR5A2 is a nuclear receptor which regulates the expression of genes involved in cholesterol metabolism, pluripotency maintenance and cell differentiation. It has been recently shown that DLPC, a NR5A2 ligand, prevents liver steatosis and improves insulin sensitivity in mouse models of insulin resistance, an effect that has been associated with changes in glucose and fatty acids metabolism in liver. Because skeletal muscle is a major tissue in clearing glucose from blood, we studied the effect of the activation of NR5A2 on muscle metabolism by using cultures of C2C12, a mouse-derived cell line widely used as a model of skeletal muscle. Treatment of C2C12 with DLPC resulted in increased levels of expression of GLUT4 and also of several genes related to glycolysis and glycogen metabolism. These changes were accompanied by an increased glucose uptake. In addition, the activation of NR5A2 produced a reduction in the oxidation of fatty acids, an effect which disappeared in low-glucose conditions. Our results suggest that NR5A2, mostly by enhancing glucose uptake, switches muscle cells into a state of glucose preference. The increased use of glucose by muscle might constitute another mechanism by which NR5A2 improves blood glucose levels and restores insulin sensitivity

  14. Acute Activation of Metabolic Syndrome Components in Pediatric Acute Lymphoblastic Leukemia Patients Treated with Dexamethasone

    NARCIS (Netherlands)

    Warris, Lidewij T.; van den Akker, Erica L. T.; Bierings, Marc B.; van den Bos, Cor; Zwaan, Christian M.; Sassen, Sebastiaan D. T.; Tissing, Wim J. E.; Veening, Margreet A.; Pieters, Rob; van den Heuvel-Eibrink, Marry M.

    2016-01-01

    Although dexamethasone is highly effective in the treatment of pediatric acute lymphoblastic leukemia (ALL), it can cause serious metabolic side effects. Because studies regarding the effects of dexamethasone are limited by their small scale, we prospectively studied the direct effects of treating

  15. Donation intensity and metabolic syndrome in active whole-blood donors

    NARCIS (Netherlands)

    Peffer, K.; Verbeek, A.L.M.; Swinkels, D.W.; Geurts-Moespot, A.J.; den Heijer, M.; Atsma, F.

    2015-01-01

    Background and Objectives: Increased iron and metabolic syndrome (MetS) go hand in hand. Frequent blood donation depletes iron stores. This study investigates whether high-intensity blood donation is associated with lower MetS prevalence compared with low-intensity blood donation, and whether iron

  16. Metabolic Effects of High Altitude Trekking in Patients With Type 2 Diabetes

    NARCIS (Netherlands)

    de Mol, Pieter; Fokkert, Marion J.; de Vries, Suzanna T.; de Koning, Eelco J. P.; Dikkeschei, Bert D.; Gans, Rijnold O. B.; Tack, Cees J.; Bilo, Henk J. G.

    2012-01-01

    OBJECTIVE-Limited information is available regarding the metabolic effects of high altitude trekking in patients with type 2 diabetes. RESEARCH DESIGN AND METHODS-Thirteen individuals with type 2 diabetes took part, in a 12-day expedition to the summit of Mount Toubkal (altitude, 4,167 m), Morocco,

  17. Metabolic effects of high altitude trekking in patients with type 2 diabetes

    NARCIS (Netherlands)

    Mol, P. de; Fokkert, M.J.; Vries, S.T. de; Koning, E.J. de; Dikkeschei, B.D.; Gans, R.O.; Tack, C.J.J.; Bilo, H.J.

    2012-01-01

    OBJECTIVE Limited information is available regarding the metabolic effects of high altitude trekking in patients with type 2 diabetes. RESEARCH DESIGN AND METHODS Thirteen individuals with type 2 diabetes took part in a 12-day expedition to the summit of Mount Toubkal (altitude, 4,167 m), Morocco,

  18. Retrofit Strategies for Incorporating Xenobiotic Metabolism into High Throughput Screening Assays (EMGS)

    Science.gov (United States)

    The US EPA’s ToxCast program is designed to assess chemical perturbations of molecular and cellular endpoints using a variety of high-throughput screening (HTS) assays. However, existing HTS assays have limited or no xenobiotic metabolism which could lead to a mischaracterization...

  19. High intensity aerobic interval training improves peak oxygen consumption in patients with metabolic syndrome: CAT

    Directory of Open Access Journals (Sweden)

    Alexis Espinoza Salinas

    2014-06-01

    Full Text Available Introduction A number of cardiovascular risk factors characterizes the metabolic syndrome: insulin resistance (IR, low HDL cholesterol and high triglycerides. The aforementioned risk factors lead to elevated levels of abdominal adipose tissue, resulting in oxygen consumption deficiency. Purpose To verify the validity and applicability of using high intensity interval training (HIIT in subjects with metabolic syndrome and to answer the following question: Can HIIT improve peak oxygen consumption? Method The systematic review "Effects of aerobic interval training on exercise capacity and metabolic risk factors in individuals with cardiometabolic disorders" was analyzed. Results Data suggests high intensity aerobic interval training increases peak oxygen consumption by a standardized mean difference of 3.60 mL/kg-1/min-1 (95% confidence interval, 0.28-4.91. Conclusion In spite of the methodological shortcomings of the primary studies included in the systematic review, we reasonably conclude that implementation of high intensity aerobic interval training in subjects with metabolic syndrome, leads to increases in peak oxygen consumption.

  20. Metabolic equivalents of task are confounded by adiposity, which disturbs objective measurement of physical activity

    Directory of Open Access Journals (Sweden)

    Tuomo T Tompuri

    2015-08-01

    Full Text Available Physical activity refers any bodily movements produced by skeletal muscles that expends energy. Hence the amount and the intensity of physical activity can be assessed by energy expenditure. Metabolic equivalents of task (MET are multiplies of the resting metabolism reflecting metabolic rate during exercise. The standard MET is defined as 3.5 ml/min/kg. However, the expression of energy expenditure by body weight to normalize the size differences between subjects causes analytical hazards: scaling by body weight does not have a physiological, mathematical, or physical rationale. This review demonstrates by examples that false methodology may cause paradoxical observations if physical activity would be assessed by body weight scaled values such as standard METs. While standard METs are confounded by adiposity, lean mass proportional measures of energy expenditure would enable a more truthful choice to assess physical activity. While physical activity as a behavior and cardiorespiratory fitness or adiposity as a state represents major determinants of public health, specific measurements of health determinants must be understood to enable a truthful evaluation of the interactions and their independent role as a health predictor.

  1. Hepatic mTORC1 controls locomotor activity, body temperature, and lipid metabolism through FGF21

    Science.gov (United States)

    Cornu, Marion; Oppliger, Wolfgang; Albert, Verena; Robitaille, Aaron M.; Trapani, Francesca; Quagliata, Luca; Fuhrer, Tobias; Sauer, Uwe; Terracciano, Luigi; Hall, Michael N.

    2014-01-01

    The liver is a key metabolic organ that controls whole-body physiology in response to nutrient availability. Mammalian target of rapamycin (mTOR) is a nutrient-activated kinase and central controller of growth and metabolism that is negatively regulated by the tumor suppressor tuberous sclerosis complex 1 (TSC1). To investigate the role of hepatic mTOR complex 1 (mTORC1) in whole-body physiology, we generated liver-specific Tsc1 (L-Tsc1 KO) knockout mice. L-Tsc1 KO mice displayed reduced locomotor activity, body temperature, and hepatic triglyceride content in a rapamycin-sensitive manner. Ectopic activation of mTORC1 also caused depletion of hepatic and plasma glutamine, leading to peroxisome proliferator–activated receptor γ coactivator-1α (PGC-1α)–dependent fibroblast growth factor 21 (FGF21) expression in the liver. Injection of glutamine or knockdown of PGC-1α or FGF21 in the liver suppressed the behavioral and metabolic defects due to mTORC1 activation. Thus, mTORC1 in the liver controls whole-body physiology through PGC-1α and FGF21. Finally, mTORC1 signaling correlated with FGF21 expression in human liver tumors, suggesting that treatment of glutamine-addicted cancers with mTOR inhibitors might have beneficial effects at both the tumor and whole-body level. PMID:25082895

  2. Metabolic adaptation to intermittent fasting is independent of peroxisome proliferator-activated receptor alpha.

    Science.gov (United States)

    Li, Guolin; Brocker, Chad N; Yan, Tingting; Xie, Cen; Krausz, Kristopher W; Xiang, Rong; Gonzalez, Frank J

    2018-01-01

    Peroxisome proliferator-activated receptor alpha (PPARA) is a major regulator of fatty acid oxidation and severe hepatic steatosis occurs during acute fasting in Ppara-null mice. Thus, PPARA is considered an important mediator of the fasting response; however, its role in other fasting regiments such as every-other-day fasting (EODF) has not been investigated. Mice were pre-conditioned using either a diet containing the potent PPARA agonist Wy-14643 or an EODF regimen prior to acute fasting. Ppara-null mice were used to assess the contribution of PPARA activation during the metabolic response to EODF. Livers were collected for histological, biochemical, qRT-PCR, and Western blot analysis. Acute fasting activated PPARA and led to steatosis, whereas EODF protected against fasting-induced hepatic steatosis without affecting PPARA signaling. In contrast, pretreatment with Wy-14,643 did activate PPARA signaling but did not ameliorate acute fasting-induced steatosis and unexpectedly promoted liver injury. Ppara ablation exacerbated acute fasting-induced hypoglycemia, hepatic steatosis, and liver injury in mice, whereas these detrimental effects were absent in response to EODF, which promoted PPARA-independent fatty acid metabolism and normalized serum lipids. These findings indicate that PPARA activation prior to acute fasting cannot ameliorate fasting-induced hepatic steatosis, whereas EODF induced metabolic adaptations to protect against fasting-induced steatosis without altering PPARA signaling. Therefore, PPARA activation does not mediate the metabolic adaptation to fasting, at least in preventing acute fasting-induced steatosis. Published by Elsevier GmbH.

  3. Metabolic adaptation to intermittent fasting is independent of peroxisome proliferator-activated receptor alpha

    Directory of Open Access Journals (Sweden)

    Guolin Li

    2018-01-01

    Full Text Available Background: Peroxisome proliferator-activated receptor alpha (PPARA is a major regulator of fatty acid oxidation and severe hepatic steatosis occurs during acute fasting in Ppara-null mice. Thus, PPARA is considered an important mediator of the fasting response; however, its role in other fasting regiments such as every-other-day fasting (EODF has not been investigated. Methods: Mice were pre-conditioned using either a diet containing the potent PPARA agonist Wy-14643 or an EODF regimen prior to acute fasting. Ppara-null mice were used to assess the contribution of PPARA activation during the metabolic response to EODF. Livers were collected for histological, biochemical, qRT-PCR, and Western blot analysis. Results: Acute fasting activated PPARA and led to steatosis, whereas EODF protected against fasting-induced hepatic steatosis without affecting PPARA signaling. In contrast, pretreatment with Wy-14,643 did activate PPARA signaling but did not ameliorate acute fasting-induced steatosis and unexpectedly promoted liver injury. Ppara ablation exacerbated acute fasting-induced hypoglycemia, hepatic steatosis, and liver injury in mice, whereas these detrimental effects were absent in response to EODF, which promoted PPARA-independent fatty acid metabolism and normalized serum lipids. Conclusions: These findings indicate that PPARA activation prior to acute fasting cannot ameliorate fasting-induced hepatic steatosis, whereas EODF induced metabolic adaptations to protect against fasting-induced steatosis without altering PPARA signaling. Therefore, PPARA activation does not mediate the metabolic adaptation to fasting, at least in preventing acute fasting-induced steatosis. Keywords: PPARA, PPARalpha, Intermittent fasting, Every-other-day fasting, Steatosis, Adaptive fasting response

  4. Metabolic activation of pyrrolizidine alkaloids: insights into the structural and enzymatic basis.

    Science.gov (United States)

    Ruan, Jianqing; Yang, Mengbi; Fu, Peter; Ye, Yang; Lin, Ge

    2014-06-16

    Pyrrolizidine alkaloids (PAs) are natural toxins widely distributed in plants. The toxic potencies of different PAs vary significantly. PAs are mono- or diesters of necine acids with a necine base. On the basis of the necine bases, PAs are classified into three types: retronecine-type, otonecine-type, and platynecine-type. Hepatotoxic PAs contain an unsaturated necine base. PAs exert hepatotoxicity through metabolic activation by hepatic cytochromes P450s (CYPs) to generate reactive intermediates which form pyrrole-protein adducts. These adducts provide a mechanism-based biomarker to assess PA toxicity. In the present study, metabolic activation of 12 PAs from three structural types was investigated first in mice to demonstrate significant variations in hepatic metabolic activation of different PAs. Subsequently, the structural and enzymatic factors affecting metabolic activation of these PAs were further investigated by using human liver microsomes and recombinant human CYPs. Pyrrole-protein adducts were detected in the liver and blood of mice and the in vitro systems treated with toxic retronecine-type and otonecine-type PAs having unsaturated necine bases but not with a platynecine-type PA containing a saturated necine base. Retronecine-type PAs produced more pyrrole-protein adducts than otonecine-type PAs with similar necine acids, demonstrating that the structure of necine base affected PA toxic potency. Among retronecine-type PAs, open-ring diesters generated the highest amount of pyrrole-protein adducts, followed by macrocyclic diesters, while monoesters produced the least. Only CYP3A4 and CYP3A5 activated otonecine-type PAs, while all 10 CYPs studied showed the ability to activate retronecine-type PAs. Moreover, the contribution of major CYPs involved also varied significantly among retronecine-type PAs. In conclusion, our findings provide a scientific basis for predicting the toxicities of individual PAs in biological systems based on PA structural

  5. Hijacking CRISPR-Cas for high-throughput bacterial metabolic engineering: advances and prospects

    DEFF Research Database (Denmark)

    Mougiakos, Ioannis; Bosma, Elleke F.; Ganguly, Joyshree

    2018-01-01

    High engineering efficiencies are required for industrial strain development. Due to its user-friendliness and its stringency, CRISPR-Cas-based technologies have strongly increased genome engineering efficiencies in bacteria. This has enabled more rapid metabolic engineering of both the model host...... the range of organisms in which it can be used to create novel production hosts. This review analyses the current status of prokaryotic metabolic engineering towards the production of biotechnologically relevant products, based on the exploitation of different CRISPR-related DNA/RNA endonuclease variants....

  6. Metabolic effects of feeding high doses of propanol and propylacetate to lactating Holstein cows

    DEFF Research Database (Denmark)

    Raun, Birgitte Marie Løvendahl; Kristensen, Niels Bastian

    2012-01-01

    Three lactating Holstein cows implanted with ruminal cannulas and permanent indwelling catheters in major splanchnic blood vessels were used to investigate alcohol metabolism and metabolic effects of feeding high doses of propanol and propylacetate. Cows were fed three diets control (basal ration......; C), propanol (C plus 50 g propanol/kg DM; P), and propylacetate (C plus 50 g propanol/kg DM and 15 g propylacetate/kg DM; PPA) in a 3 × 3 Latin square design with 14 d period. Daily rations were fed in three equally sized portions at 8 hour intervals and 8 hourly sets of ruminal fluid, arterial...

  7. Long-term follow-up of metabolic activity in human alveolar echinococcosis using FDG-PET

    International Nuclear Information System (INIS)

    Reuter, S.; Gruener, B.; Kern, P.; Buck, A.K.; Blumstein, N.; Reske, S.N.

    2008-01-01

    Aim: [ 18 F]fluoro-deoxyglucose positron-emission-tomography (FDG-PET) detects metabolic activity in alveolar echinococcosis (AE). The slow changes in metabolic and morphological characteristics require long-term follow-up of patients. This is the first study to evaluate metabolic activity over may years, hereby assessing the utility of FDG-PET for the evaluation of disease progression and response to treatment. Patients, methods: 15 patients received a follow-up FDG-PET combined with computed tomography (integrated PET/CT) with a median of 6.5 years after the first PET in 1999. Number and location of enhanced metabolic activity in the area of AE lesions was determined. Quantification of intensity of metabolic activity was assessed by calculation of mean standardized uptake values. Results: AE lesions in 11/15 patients had been metabolically inactive initially, but only two showed permanent inactivity over the course of 81 months. Interestingly, in two patients metabolic activity was newly detected after 80 and 82 months. Benzimidazole treatment was intermittently discontinued in seven cases. Persisting activity at FDG-PET demanded continued benzimidazole treatment in four patients. Neither treatment duration, lesional size, calcifications nor regressive changes correlated with metabolic activity. Conclusion: treatment responses are heterogeneous and vary from progressive disease despite treatment to long-term inactive disease with discontinued treatment. Lack of metabolic activity indicates suppressed parasite activity and is not equivalent to parasite death. However, metabolic activity may remain suppressed for years, allowing for temporary treatment discontinuation. Relapses are reliably detected with PET and restarting benzimidazole treatment prevents parasite expansion. (orig.)

  8. N-3 fatty acids, neuronal activity and energy metabolism in the brain

    Directory of Open Access Journals (Sweden)

    Harbeby Emilie

    2012-07-01

    Full Text Available The content of docosahexaenoic acid (DHA in brain membranes is of crucial importance for the optimum development of brain functions. A lack of DHA accretion in the brain is accompanied by deficits in learning behavior linked to impairments in neurotransmission processes, which might result from alteration of brain fuel supply and hence energy metabolism. Experimental data we published support the hypothesis that n-3 fatty acids may modulate brain glucose utilization and metabolism. Indeed rats made deficient in DHA by severe depletion of total n-3 fatty acid intake have 1 a lower brain glucose utilization, 2 a decrease of the glucose transporter protein content GLUT1 both in endothelial cells and in astrocytes, 3 a repression of GLUT1 gene expression in basal state as well as upon neuronal activation. This could be due to the specific action of DHA on the regulation of GLUT1 expression since rat brain endothelial cells cultured with physiological doses of DHA had an increased GLUT1 protein content and glucose transport when compared to non-supplemented cells. These experimental data highlight the impact of n-3 fatty acids on the use of brain glucose, thereby constituting a key factor in the control of synaptic activity. This emerging role suggests that dietary intake of n-3 fatty acids can help to reduce the cognitive deficits in the elderly and possibly symptomatic cerebral metabolic alterations in Alzheimer disease by promoting brain glucose metabolism.

  9. Activation of SAT1 engages polyamine metabolism with p53-mediated ferroptotic responses.

    Science.gov (United States)

    Ou, Yang; Wang, Shang-Jui; Li, Dawei; Chu, Bo; Gu, Wei

    2016-11-01

    Although p53-mediated cell-cycle arrest, senescence, and apoptosis remain critical barriers to cancer development, the emerging role of p53 in cell metabolism, oxidative responses, and ferroptotic cell death has been a topic of great interest. Nevertheless, it is unclear how p53 orchestrates its activities in multiple metabolic pathways into tumor suppressive effects. Here, we identified the SAT1 (spermidine/spermine N 1 -acetyltransferase 1) gene as a transcription target of p53. SAT1 is a rate-limiting enzyme in polyamine catabolism critically involved in the conversion of spermidine and spermine back to putrescine. Surprisingly, we found that activation of SAT1 expression induces lipid peroxidation and sensitizes cells to undergo ferroptosis upon reactive oxygen species (ROS)-induced stress, which also leads to suppression of tumor growth in xenograft tumor models. Notably, SAT1 expression is down-regulated in human tumors, and CRISPR-cas9-mediated knockout of SAT1 expression partially abrogates p53-mediated ferroptosis. Moreover, SAT1 induction is correlated with the expression levels of arachidonate 15-lipoxygenase (ALOX15), and SAT1-induced ferroptosis is significantly abrogated in the presence of PD146176, a specific inhibitor of ALOX15. Thus, our findings uncover a metabolic target of p53 involved in ferroptotic cell death and provide insight into the regulation of polyamine metabolism and ferroptosis-mediated tumor suppression.

  10. Regulation of the yeast metabolic cycle by transcription factors with periodic activities

    Directory of Open Access Journals (Sweden)

    Pellegrini Matteo

    2011-10-01

    Full Text Available Abstract Background When growing budding yeast under continuous, nutrient-limited conditions, over half of yeast genes exhibit periodic expression patterns. Periodicity can also be observed in respiration, in the timing of cell division, as well as in various metabolite levels. Knowing the transcription factors involved in the yeast metabolic cycle is helpful for determining the cascade of regulatory events that cause these patterns. Results Transcription factor activities were estimated by linear regression using time series and genome-wide transcription factor binding data. Time-translation matrices were estimated using least squares and were used to model the interactions between the most significant transcription factors. The top transcription factors have functions involving respiration, cell cycle events, amino acid metabolism and glycolysis. Key regulators of transitions between phases of the yeast metabolic cycle appear to be Hap1, Hap4, Gcn4, Msn4, Swi6 and Adr1. Conclusions Analysis of the phases at which transcription factor activities peak supports previous findings suggesting that the various cellular functions occur during specific phases of the yeast metabolic cycle.

  11. Dietary Omega-3 Fatty Acid Deficiency and High Fructose Intake in the Development of Metabolic Syndrome, Brain Metabolic Abnormalities, and Non-Alcoholic Fatty Liver Disease

    Directory of Open Access Journals (Sweden)

    Artemis P. Simopoulos

    2013-07-01

    Full Text Available Western diets are characterized by both dietary omega-3 fatty acid deficiency and increased fructose intake. The latter found in high amounts in added sugars such as sucrose and high fructose corn syrup (HFCS. Both a low intake of omega-3 fatty acids or a high fructose intake contribute to metabolic syndrome, liver steatosis or non-alcoholic fatty liver disease (NAFLD, promote brain insulin resistance, and increase the vulnerability to cognitive dysfunction. Insulin resistance is the core perturbation of metabolic syndrome. Multiple cognitive domains are affected by metabolic syndrome in adults and in obese adolescents, with volume losses in the hippocampus and frontal lobe, affecting executive function. Fish oil supplementation maintains proper insulin signaling in the brain, ameliorates NAFLD and decreases the risk to metabolic syndrome suggesting that adequate levels of omega-3 fatty acids in the diet can cope with the metabolic challenges imposed by high fructose intake in Western diets which is of major public health importance. This review presents the current status of the mechanisms involved in the development of the metabolic syndrome, brain insulin resistance, and NAFLD a most promising area of research in Nutrition for the prevention of these conditions, chronic diseases, and improvement of Public Health.

  12. An unusual cause of high anion gap metabolic acidosis: pyroglutamic acidemia. A case report.

    Science.gov (United States)

    Romero, Jorge E; Htyte, Nay

    2013-01-01

    Pyroglutamic acidemia is an uncommon metabolic disorder, which is usually diagnosed at early ages. The mechanism of action is thought to be glutathione depletion, and its clinical manifestations consist of hemolytic anemia, mental retardation, ataxia, and chronic metabolic acidosis. However, an acquired form has been described in adult patients, who usually present with confusion, respiratory distress, and high anion gap metabolic acidosis (HAGMA). It is also associated with many conditions, including chronic acetaminophen consumption. A 68-year-old white male, with chronic acetaminophen use presented to our service on multiple occasions with severe HAGMA. The patient was admitted to the intensive care unit and required mechanical ventilation and aggressive supportive measures. After ruling out the most frequent etiologies for his acid-base disorder and considering the long history of Tylenol ingestion, his 5-oxiproline (pyroglutamic acid) levels were sent to diagnose pyroglutamic acidemia. Clinicians need to be aware of this cause for metabolic acidosis since it might be a more common metabolic disturbance in compromised patients than would be expected. Subjects with HAGMA that cannot be explained by common causes should be tested for the presence of 5-oxoproline. Discontinuation of the offending drug is therapeutic.

  13. Chitin Oligosaccharide Modulates Gut Microbiota and Attenuates High-Fat-Diet-Induced Metabolic Syndrome in Mice

    Directory of Open Access Journals (Sweden)

    Junping Zheng

    2018-02-01

    Full Text Available Gut microbiota has been proved to be an indispensable link between nutrient excess and metabolic syndrome, and chitin oligosaccharide (NACOS has displayed therapeutic effects on multiple diseases such as cancer and gastritis. In this study, we aim to confirm whether NACOS can ameliorate high-fat diet (HFD-induced metabolic syndrome by rebuilding the structure of the gut microbiota community. Male C57BL/6J mice fed with HFD were treated with NACOS (1 mg/mL in drinking water for five months. The results indicate that NACOS improved glucose metabolic disorder in HFD-fed mice and suppressed mRNA expression of the protein regulators related to lipogenesis, gluconeogenesis, adipocyte differentiation, and inflammation in adipose tissues. Additionally, NACOS inhibited the destruction of the gut barrier in HFD-treated mice. Furthermore, 16S ribosome RNA sequencing of fecal samples demonstrates that NACOS promoted the growth of beneficial intestinal bacteria remarkably and decreased the abundance of inflammogenic taxa. In summary, NACOS partly rebuilt the microbial community and improved the metabolic syndrome of HFD-fed mice. These data confirm the preventive effects of NACOS on nutrient excess-related metabolic diseases.

  14. Metabolic organization and effects of feeding on enzyme activities of the dogfish shark (Squalus acanthias) rectal gland.

    Science.gov (United States)

    Walsh, Patrick J; Kajimura, Makiko; Mommsen, Thomas P; Wood, Chris M

    2006-08-01

    In order to investigate the metabolic poise of the elasmobranch rectal gland, we conducted two lines of experimentation. First, we examined the effects of feeding on plasma metabolites and enzyme activities from several metabolic pathways in several tissues of the dogfish shark, Squalus acanthias, after starvation and at 6, 20, 30 and 48 h post-feeding. We found a rapid and sustained ten-fold decrease in plasma beta-hydroxybutyrate at 6 h and beyond compared with starved dogfish, suggesting an upregulation in the use of this substrate, a decrease in production, or both. Plasma acetoacetate levels remain unchanged, whereas there was a slight and transient decrease in plasma glucose levels at 6 h. Several enzymes showed a large increase in activity post-feeding, including beta-hydroxybutyrate dehydrogenase in rectal gland and liver, and in rectal gland, isocitrate dehydrogenase, citrate synthase, lactate dehydrogenase, aspartate amino transferase, alanine amino transferase, glutamine synthetase and Na(+)/K(+) ATPase. Also notable in these enzyme measurements was the overall high level of activity in the rectal gland in general. For example, activity of the Krebs' TCA cycle enzyme citrate synthase (over 30 U g(-1)) was similar to activities in muscle from other species of highly active fish. Surprisingly, lactate dehydrogenase activity in the gland was also high (over 150 U g(-1)), suggesting either an ability to produce lactate anaerobically or use lactate as an aerobic fuel. Given these interesting observations, in the second aspect of the study we examined the ability of several metabolic substrates (alone and in combination) to support chloride secretion by the rectal gland. Among the substrates tested at physiological concentrations (glucose, beta-hydroxybutyrate, lactate, alanine, acetoacetate, and glutamate), only glucose could consistently maintain a viable preparation. Whereas beta-hydroxybutyrate could enhance gland activity when presented in combination

  15. BAD-dependent regulation of fuel metabolism and K(ATP) channel activity confers resistance to epileptic seizures.

    Science.gov (United States)

    Giménez-Cassina, Alfredo; Martínez-François, Juan Ramón; Fisher, Jill K; Szlyk, Benjamin; Polak, Klaudia; Wiwczar, Jessica; Tanner, Geoffrey R; Lutas, Andrew; Yellen, Gary; Danial, Nika N

    2012-05-24

    Neuronal excitation can be substantially modulated by alterations in metabolism, as evident from the anticonvulsant effect of diets that reduce glucose utilization and promote ketone body metabolism. We provide genetic evidence that BAD, a protein with dual functions in apoptosis and glucose metabolism, imparts reciprocal effects on metabolism of glucose and ketone bodies in brain cells. These effects involve phosphoregulation of BAD and are independent of its apoptotic function. BAD modifications that reduce glucose metabolism produce a marked increase in the activity of metabolically sensitive K(ATP) channels in neurons, as well as resistance to behavioral and electrographic seizures in vivo. Seizure resistance is reversed by genetic ablation of the K(ATP) channel, implicating the BAD-K(ATP) axis in metabolic control of neuronal excitation and seizure responses. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. High prevalence of the metabolic syndrome in HIV-infected patients : impact of different definitions of the metabolic syndrome

    NARCIS (Netherlands)

    Worm, Signe W; Friis-Møller, Nina; Bruyand, Mathias; D'Arminio Monforte, Antonella; Rickenbach, Martin; Reiss, Peter; El-Sadr, Wafaa; Phillips, Andrew; Lundgren, Jens; Sabin, Caroline; Schölvinck, Elisabeth H.

    2010-01-01

    INTRODUCTION: This study describes the characteristics of the metabolic syndrome in HIV-positive patients in the Data Collection on Adverse Events of Anti-HIV Drugs study and discusses the impact of different methodological approaches on estimates of the prevalence of metabolic syndrome over time.

  17. High prevalence of the metabolic syndrome in HIV-infected patients: impact of different definitions of the metabolic syndrome

    DEFF Research Database (Denmark)

    Worm, Signe H.Westring; Friis-Møller, Nina; Bruyand, Mathias

    2010-01-01

    This study describes the characteristics of the metabolic syndrome in HIV-positive patients in the Data Collection on Adverse Events of Anti-HIV Drugs study and discusses the impact of different methodological approaches on estimates of the prevalence of metabolic syndrome over time....

  18. High prevalence of the metabolic syndrome in HIV-infected patients: impact of different definitions of the metabolic syndrome

    NARCIS (Netherlands)

    Worm, Signe W.; Friis-Møller, Nina; Bruyand, Mathias; D'Arminio Monforte, Antonella; Rickenbach, Martin; Reiss, Peter; El-Sadr, Wafaa; Phillips, Andrew; Lundgren, Jens; Sabin, Caroline; de Wolf, F.; Zaheri, S.; Gras, L.; Bronsveld, W.; Hillebrand-Haverkort, M. E.; Prins, J. M.; Bos, J. C.; Eeftinck Schattenkerk, J. K. M.; Geerlings, S. E.; Godfried, M. H.; Lange, J. M. A.; van Leth, F. C.; Lowe, S. H.; van der Meer, J. T. M.; Nellen, F. J. B.; Pogány, K.; van der Poll, T.; Ruys, Th A.; Steingrover, R.; van Twillert, G.; van der Valk, M.; van Vonderen, M. G. A.; Vrouenraets, S. M. E.; van Vugt, M.; Wit, F. W. M. N.; van Eeden, A.; ten Veen, J. H.; van Dam, P. S.; Roos, J. C.; Brinkman, K.; Frissen, P. H. J.; Weigel, H. M.; Mulder, J. W.; van Gorp, E. C. M.; Meenhorst, P. L.; Mairuhu, A. T. A.; Veenstra, J.; Danner, S. A.; van Agtmael, M. A.; Claessen, F. A. P.

    2010-01-01

    INTRODUCTION: This study describes the characteristics of the metabolic syndrome in HIV-positive patients in the Data Collection on Adverse Events of Anti-HIV Drugs study and discusses the impact of different methodological approaches on estimates of the prevalence of metabolic syndrome over time.

  19. Celastrol ameliorates liver metabolic damage caused by a high-fat diet through Sirt1

    Directory of Open Access Journals (Sweden)

    Yinliang Zhang

    2017-01-01

    Full Text Available Objective: Celastrol was recently identified as a potential novel treatment for obesity. However, the effect of Celastrol on nonalcoholic fatty liver disease (NAFLD remains elusive. The aim of this study is to evaluate the role of Celastrol in NAFLD. Methods: Functional studies were performed using wild-type C57BL/6J (WT mice and liver specific Sirt1-deficient (LKO mice. The molecular mechanism was explored in primary mouse liver and primary hepatocytes. Results: When WT mice receiving a high-fat diet (HFD were treated with Celastrol, reductions in body weight, subcutaneous and visceral fat content, and liver lipid droplet formation were observed, along with reduced hepatic intracellular triglyceride and serum triglyceride, free fatty acid, and ALT concentrations. Furthermore, Celastrol decreased hepatic sterol regulatory element binding protein 1c (Srebp-1c expression, enhanced the phosphorylation of hepatic AMP-activated protein kinase α (AMPKα, and increased the expression of hepatic serine–threonine liver kinase B1 (LKB1. Additionally, Celastrol treatment improved glucose tolerance and insulin sensitivity in WT mice fed the HFD. Celastrol administration also improved the anti-inflammatory and anti-oxidative status by inhibiting nuclear factor kappa B (NFκB activity and the mRNA levels of proinflammatory cytokines and increasing mitochondrial DNA copy number and anti-oxidative stress genes expression in WT mice liver, in vivo and in vitro. Moreover, Celastrol induced hepatic Sirt1 expression in WT mice, in vivo and in vitro. These Celastrol-mediated protective effects in WT mice fed a HFD were abolished in LKO mice fed a HFD. It was more interesting that Celastrol aggravated HFD-induced liver damage in LKO mice fed a HFD by inhibiting the phosphorylation of AMPKα and boosting the translocation of NFκB into the nucleus, thereby resulting in the increase of Srebp-1c expression and the mRNA levels of liver proinflammatory cytokines

  20. Effect of high dietary copper on growth, antioxidant and lipid metabolism enzymes of juvenile larger yellow croaker Larimichthys croceus

    Directory of Open Access Journals (Sweden)

    Fanxing Meng

    2016-05-01

    Full Text Available A study was carried out to test the responses of juvenile larger yellow croaker Larimichthys croceus to high Cu intake. Experimental diets were formulated containing three levels of Cu: low Cu (3.67 mg/kg, middle Cu (13.65 mg/kg and high Cu (25.78 mg/kg, and each diet were fed to large yellow croaker in triplicate for 10 weeks. Final body weight, weight gain and feed intake were the lowest in high Cu group, but hepatosomatic index was the highest; Cu concentrations in the whole-body, muscle and liver of fish fed low Cu diet was the lowest; Liver superoxide dismutase, catalase and glutathione peroxidase activities in fish fed high Cu diet were lower than those in fish fed other diets; The higher content of liver thiobarbituric acid reactive substance content was found in high Cu group, followed by middle Cu group, and the lowest in low Cu group; Liver 6-phosphogluconate dehydrogenase, glucose-6-phosphate dehydrogenase, malic enzyme, isocitrate dehydrogenase and fatty acid synthase activities were the lowest in high Cu group, but lipoprotein lipase activity was the highest. This study indicated that high copper intake reduced growth of juvenile larger yellow croaker, inhibited activities of antioxidant enzymes and lipid synthetases, and led to energy mobilization. Keywords: Larger yellow croaker, Copper, Antioxidant enzyme, Lipid metabolism enzyme

  1. High basal metabolic rate does not elevate oxidative stress during reproduction in laboratory mice.

    Science.gov (United States)

    Brzęk, Paweł; Książek, Aneta; Ołdakowski, Łukasz; Konarzewski, Marek

    2014-05-01

    Increased oxidative stress (OS) has been suggested as a physiological cost of reproduction. However, previous studies reported ambiguous results, with some even showing a reduction of oxidative damage during reproduction. We tested whether the link between reproduction and OS is mediated by basal metabolic rate (BMR), which has been hypothesized to affect both the rate of radical oxygen species production and antioxidative capacity. We studied the effect of reproduction on OS in females of laboratory mice divergently selected for high (H-BMR) and low (L-BMR) BMR, previously shown to differ with respect to parental investment. Non-reproducing L-BMR females showed higher oxidative damage to lipids (quantified as the level of malondialdehyde in internal organ tissues) and DNA (quantified as the level of 8-oxodG in blood serum) than H-BMR females. Reproduction did not affect oxidative damage to lipids in either line; however, it reduced damage to DNA in L-BMR females. Reproduction increased catalase activity in liver (significantly stronger in L-BMR females) and decreased it in kidneys. We conclude that the effect of reproduction on OS depends on the initial variation in BMR and varies between studied internal organs and markers of OS.

  2. Motility, ATP levels and metabolic enzyme activity of sperm from bluegill (Lepomis macrochirus).

    Science.gov (United States)

    Burness, Gary; Moyes, Christopher D; Montgomerie, Robert

    2005-01-01

    Male bluegill displays one of two life history tactics. Some males (termed "parentals") delay reproduction until ca. 7 years of age, at which time they build nests and actively courts females. Others mature precociously (sneakers) and obtain fertilizations by cuckolding parental males. In the current study, we studied the relations among sperm motility, ATP levels, and metabolic enzyme activity in parental and sneaker bluegill. In both reproductive tactics, sperm swimming speed and ATP levels declined in parallel over the first 60 s of motility. Although sneaker sperm initially had higher ATP levels than parental sperm, by approximately 30 s postactivation, no differences existed between tactics. No differences were noted between tactics in swimming speed, percent motility, or the activities of key metabolic enzymes, although sperm from parentals had a higher ratio of creatine phosphokinase (CPK) to citrate synthase (CS). In both tactics, with increasing CPK and CS activity, sperm ATP levels increased at 20 s postactivation, suggesting that capacities for phosphocreatine hydrolysis and aerobic metabolism may influence interindividual variation in rates of ATP depletion. Nonetheless, there was no relation between sperm ATP levels and either swimming speed or percent of sperm that were motile. This suggests that interindividual variation in ATP levels may not be the primary determinant of variation in sperm swimming performance in bluegill.

  3. Reactive oxygen species in the paraventricular nucleus of the hypothalamus alter sympathetic activity during metabolic syndrome.

    Directory of Open Access Journals (Sweden)

    JOSIANE CAMPOS CRUZ

    2015-12-01

    Full Text Available The paraventricular nucleus of the hypothalamus (PVN contains heterogeneous populations of neurons involved in autonomic and neuroendocrine regulation. The PVN plays an important role in the sympathoexcitatory response to increasing circulating levels of angiotensin II (Ang-II, which activates AT1 receptors in the circumventricular organs (OCVs, mainly in the subfornical organ (SFO. Circulating Ang-II induces a de novo synthesis of Ang-II in SFO neurons projecting to pre-autonomic PVN neurons. Activation of AT1 receptors induces intracellular increases in reactive oxygen species (ROS, leading to increases in sympathetic nerve activity (SNA. Chronic sympathetic nerve activation promotes a series of metabolic disorders that characterizes the metabolic syndrome (MetS: dyslipidemia, hyperinsulinemia, glucose intolerance, hyperleptinemia and elevated plasma hormone levels, such as noradrenaline, glucocorticoids, leptin, insulin and Ang-II. This review will discuss the contribution of our laboratory and others regarding the sympathoexcitation caused by peripheral Ang-II-induced reactive oxygen species along the subfornical organ and paraventricular nucleus of the hypothalamus. We hypothesize that this mechanism could be involved in metabolic disorders underlying MetS.

  4. Fluvoxamine alters the activity of energy metabolism enzymes in the brain

    Directory of Open Access Journals (Sweden)

    Gabriela K. Ferreira

    2014-09-01

    Full Text Available Objective: Several studies support the hypothesis that metabolism impairment is involved in the pathophysiology of depression and that some antidepressants act by modulating brain energy metabolism. Thus, we evaluated the activity of Krebs cycle enzymes, the mitochondrial respiratory chain, and creatine kinase in the brain of rats subjected to prolonged administration of fluvoxamine. Methods: Wistar rats received daily administration of fluvoxamine in saline (10, 30, and 60 mg/kg for 14 days. Twelve hours after the last administration, rats were killed by decapitation and the prefrontal cortex, cerebral cortex, hippocampus, striatum, and cerebellum were rapidly isolated. Results: The activities of citrate synthase, malate dehydrogenase, and complexes I, II-III, and IV were decreased after prolonged administration of fluvoxamine in rats. However, the activities of complex II, succinate dehydrogenase, and creatine kinase were increased. Conclusions: Alterations in activity of energy metabolism enzymes were observed in most brain areas analyzed. Thus, we suggest that the decrease in citrate synthase, malate dehydrogenase, and complexes I, II-III, and IV can be related to adverse effects of pharmacotherapy, but long-term molecular adaptations cannot be ruled out. In addition, we demonstrated that these changes varied according to brain structure or biochemical analysis and were not dose-dependent.

  5. Photoperiodism and enzyme activity: towards a model for the control of circadian metabolic rhythms in the crassulacean Acid metabolism.

    Science.gov (United States)

    Queiroz, O; Morel, C

    1974-04-01

    Metabolic readjustments after a change from long days to short days appear, in Kalanchoe blossfeldiana, to be achieved through the operation of two main mechanisms: variation in enzyme capacity, and circadian rhythmicity. After a lag time, capacity in phosphoenolpyruvate carboxylase and capacity in aspartate aminotransferase increase exponentially and appear to be allometrically linked during 50 to 60 short days; then a sudden fall takes place in the activity of the former. Malic enzyme and alanine aminotransferase behave differently. Thus, the operation of the two sections of the pathway (before and after the malate step) give rise to a continuously changing functional compartmentation in the pathway. Circadian rhythmicity, on the other hand, produces time compartmentation through phase shifts and variation in amplitude, independently for each enzyme. These characteristics suggest that the operation of a so-called biological clock would be involved. We propose the hypothesis that feedback regulation would be more accurate and efficient when applied to an already oscillating, clock-controlled enzyme system.

  6. Quantitative imaging of brain energy metabolisms and neuroenergetics using in vivo X-nuclear 2H, 17O and 31P MRS at ultra-high field.

    Science.gov (United States)

    Zhu, Xiao-Hong; Lu, Ming; Chen, Wei

    2018-07-01

    Brain energy metabolism relies predominantly on glucose and oxygen utilization to generate biochemical energy in the form of adenosine triphosphate (ATP). ATP is essential for maintaining basal electrophysiological activities in a resting brain and supporting evoked neuronal activity under an activated state. Studying complex neuroenergetic processes in the brain requires sophisticated neuroimaging techniques enabling noninvasive and quantitative assessment of cerebral energy metabolisms and quantification of metabolic rates. Recent state-of-the-art in vivo X-nuclear MRS techniques, including 2 H, 17 O and 31 P MRS have shown promise, especially at ultra-high fields, in the quest for understanding neuroenergetics and brain function using preclinical models and in human subjects under healthy and diseased conditions. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Low Levels of Physical Activity Are Associated with Increased Metabolic Syndrome Risk Factors in Korean Adults

    Directory of Open Access Journals (Sweden)

    Dong Hoon Lee

    2013-04-01

    Full Text Available BackgroundLow levels of physical activity (PA are strongly associated with the development of metabolic syndrome (MetS and chronic diseases. However, few studies have examined this association in Koreans. The primary purpose of this study was to examine the associations between PA and MetS risks in Korean adults.MethodsA total of 1,016 Korean adults (494 males and 522 females participated in this study. PA levels were assessed using the International PA Questionnaire. MetS risk factors were determined using clinically established diagnostic criteria.ResultsCompared with the highest PA group, the group with the lowest level of PA was at greater risk of high triglyceride (TG in males (odds ratio [OR], 1.87; 95% confidence interval [CI], 1.07 to 3.24 and of hemoglobin A1c ≥5.5% in females (OR, 1.75; 95% CI, 1.00 to 3.04 after adjusting for age and body mass index. Compared with subjects who met the PA guidelines, those who did not meet the guidelines were more likely to have low high density lipoprotein cholesterol in both males (OR, 1.69; 95% CI, 1.11 to 2.58, and females (OR, 1.82; 95% CI, 1.20 to 2.77. Furthermore, those who did not meet the PA guidelines were at increased risk of high TG levels in males (OR, 1.69; 95% CI, 1.23 to 2.86 and abnormal fasting glucose (OR, 1.93; 95% CI, 1.17 to 3.20 and MetS (OR, 2.10; 95% CI, 1.15 to 3.84 in females.ConclusionIncreased levels of PA are significantly associated with a decreased risk of abnormal MetS components.

  8. High activity gamma irradiators developed in Hungary

    International Nuclear Information System (INIS)

    Stenger, V.

    1997-01-01

    The development of high activity Gamma irradiators began in Hungary already in the early years of 60s. The very first designs were serving research in irradiation chemistry, radiation physics, food and agricultural research, radiation sterilization, plastic radiation chemistry, radiobiology, cancer therapy, personal and high dose dosimetry, following the international trends. Domestic and new international demands forced us to design and construct High Activity Gamma Irradiators: Multipurpose Pilot, Portable and Large scale bulk, Multipurpose Industrial scale types

  9. Circulation, metabolism, and ventilation during prolonged exposure to carbon monoxide and to high altitude

    Energy Technology Data Exchange (ETDEWEB)

    Klausen, K.; Rasmussen, B; Gjellerod, H.; Madsen, H.; Petersen, E.

    1968-01-01

    Eight volunteers were exposed to CO (13% COHb) or high altitude (3454 m). There was no change in circulation, metabolism, or ventilation during CO exposure. With similar arterial O/sub 2/ concentration from high-altitude, V/sub e/ (BTPS) increased, Pa/sub CO/sub 2// decreased. Regulating mechanisms respond to a decrease in Pa/sub CO/sub 2// rather than a gereral lack in tissue O/sub 2/ per se.

  10. Dyslipidemia in HIV Infected Children Receiving Highly Active Antiretroviral Therapy.

    Science.gov (United States)

    Mandal, Anirban; Mukherjee, Aparna; Lakshmy, R; Kabra, Sushil K; Lodha, Rakesh

    2016-03-01

    To assess the prevalence of dyslipidemia and lipodystrophy in Indian children receiving non-nucleoside reverse transcriptase inhibitor (NNRTI) based highly active antiretroviral therapy (HAART) and to determine the associated risk factors for the same. The present cross-sectional study was conducted at a Pediatric Clinic of a tertiary care teaching center in India, from May 2011 through December 2012. HIV infected children aged 5-15 y were enrolled if they did not have any severe disease or hospital admission within last 3 mo or receive any medications known to affect the lipid profile. Eighty-one children were on highly active antiretroviral therapy (HAART) for at least 6 mo and 16 were receiving no antiretroviral therapy (ART). Participants' sociodemographic, nutritional, clinical, and laboratory data were recorded in addition to anthropometry and evidence of lipodystrophy. Fasting lipid profile, apolipoprotein A1 and B levels were done for all the children. Among the children on highly active antiretroviral therapy (HAART), 38.3 % had dyslipidemia and 80.2 % had lipodystrophy, while 25 % antiretroviral therapy (ART) naïve HIV infected children had dyslipidemia. No clinically significant risk factors could be identified that increased the risk of dyslipidemia or lipodystrophy in children on highly active antiretroviral therapy (HAART). There is a high prevalence of dyslipidemia and lipodystrophy in Indian children with HIV infection with an imminent need to establish facilities for testing and treatment of these children for metabolic abnormalities.

  11. Influence of high-altitude grazing on bone metabolism of growing sheep.

    Science.gov (United States)

    Liesegang, A; Hüttenmoser, D; Risteli, J; Leiber, F; Kreuzer, M; Wanner, M

    2013-02-01

    The objective of this study was to identify the effect of high alpine grazing, associated with varying pasture grass qualities and more pronounced exercise on typically steep slopes, on bone metabolism by improving bone density and enhancing bone turnover in growing sheep. Twenty-four 5-month-old sheep were randomly assigned to two groups. One group was kept at high altitude (HA; 2000-2200 m a.s.l.) for 3 months, and the other group (C; control) remained in the lowlands (400 m a.s.l.). Both groups were kept in grazing pastures with access to good-quality swards. Before the start of the experiment, blood samples were taken, the sheep were weighed, and the left metatarsus of each animal was analysed by quantitative computer tomography. After 1 month, blood samples were taken and body weight was measured, followed by biweekly sampling. Finally, the animals were slaughtered, and the bones were collected for analysis of various bone parameters. Body weight development did not differ between the groups. Concentrations of 25-OH-Vitamin D, carboxy-terminal telopeptide of type I collagen and activities of bone-specific alkaline phosphatase were always higher in the HA group than in the C group, except on the last two sampling dates. Bone mineral content and density increased in both groups during the experiment, but more intensively in the HA group. In addition, the cortical thickness of the HA group increased. The present study demonstrates an increase in bone turnover and mineral content of the bones of the growing sheep grazing in high alpine pastures. The factors associated with HA grazing, therefore, clearly seem to improve bone composition. © 2011 Blackwell Verlag GmbH.

  12. [L-arginine metabolism enzyme activities in rat liver subcellular fractions under condition of protein deprivation].

    Science.gov (United States)

    Kopyl'chuk, G P; Buchkovskaia, I M

    2014-01-01

    The features of arginase and NO-synthase pathways of arginine's metabolism have been studied in rat liver subcellular fractions under condition of protein deprivation. During the experimental period (28 days) albino male rats were kept on semi synthetic casein diet AIN-93. The protein deprivation conditions were designed as total absence of protein in the diet and consumption of the diet partially deprived with 1/2 of the casein amount compared to in the regular diet. Daily diet consumption was regulated according to the pair feeding approach. It has been shown that the changes of enzyme activities, involved in L-arginine metabolism, were characterized by 1.4-1.7 fold decrease in arginase activity, accompanied with unchanged NO-synthase activity in cytosol. In mitochondrial fraction the unchanged arginase activity was accompanied by 3-5 fold increase of NO-synthase activity. At the terminal stages of the experiment the monodirectional dynamics in the studied activities have been observed in the mitochondrial and cytosolfractions in both experimental groups. In the studied subcellular fractions arginase activity decreased (2.4-2.7 fold with no protein in the diet and 1.5 fold with partly supplied protein) and was accompanied by NO-synthase activity increase by 3.8 fold in cytosole fraction, by 7.2 fold in mitochondrial fraction in the group with no protein in the diet and by 2.2 and 3.5 fold in the group partialy supplied with protein respectively. The observed tendency is presumably caused by the switch of L-arginine metabolism from arginase into oxidizing NO-synthase parthway.

  13. Adapting capillary gel electrophoresis as a sensitive, high-throughput method to accelerate characterization of nucleic acid metabolic enzymes.

    Science.gov (United States)

    Greenough, Lucia; Schermerhorn, Kelly M; Mazzola, Laurie; Bybee, Joanna; Rivizzigno, Danielle; Cantin, Elizabeth; Slatko, Barton E; Gardner, Andrew F

    2016-01-29

    Detailed biochemical characterization of nucleic acid enzymes is fundamental to understanding nucleic acid metabolism, genome replication and repair. We report the development of a rapid, high-throughput fluorescence capillary gel electrophoresis method as an alternative to traditional polyacrylamide gel electrophoresis to characterize nucleic acid metabolic enzymes. The principles of assay design described here can be applied to nearly any enzyme system that acts on a fluorescently labeled oligonucleotide substrate. Herein, we describe several assays using this core capillary gel electrophoresis methodology to accelerate study of nucleic acid enzymes. First, assays were designed to examine DNA polymerase activities including nucleotide incorporation kinetics, strand displacement synthesis and 3'-5' exonuclease activity. Next, DNA repair activities of DNA ligase, flap endonuclease and RNase H2 were monitored. In addition, a multicolor assay that uses four different fluorescently labeled substrates in a single reaction was implemented to characterize GAN nuclease specificity. Finally, a dual-color fluorescence assay to monitor coupled enzyme reactions during Okazaki fragment maturation is described. These assays serve as a template to guide further technical development for enzyme characterization or nucleoside and non-nucleoside inhibitor screening in a high-throughput manner. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. Metabolism-Activated Multitargeting (MAMUT): An Innovative Multitargeting Approach to Drug Design and Development.

    Science.gov (United States)

    Mátyus, Péter; Chai, Christina L L

    2016-06-20

    Multitargeting is a valuable concept in drug design for the development of effective drugs for the treatment of multifactorial diseases. This concept has most frequently been realized by incorporating two or more pharmacophores into a single hybrid molecule. Many such hybrids, due to the increased molecular size, exhibit unfavorable physicochemical properties leading to adverse effects and/or an inappropriate ADME (absorption, distribution, metabolism, and excretion) profile. To avoid this limitation and achieve additional therapeutic benefits, here we describe a novel multitargeting strategy based on the synergistic effects of a parent drug and its active metabolite(s). The concept of metabolism-activated multitargeting (MAMUT) is illustrated using a number of examples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. BAT Exosomes: Metabolic Crosstalk with Other Organs and Biomarkers for BAT Activity.

    Science.gov (United States)

    Goody, Deborah; Pfeifer, Alexander

    2018-04-10

    In the last decade, exosomes have gained interest as a new type of intercellular communication between cells and tissues. Exosomes are circulating, cell-derived lipid vesicles smaller than 200 nm that contain proteins and nucleic acids, including microRNAs (miRNAs), and are able to modify cellular targets. Exosomal miRNAs function as signalling molecules that regulate the transcription of their target genes and can cause phenotypic transformation of recipient cells. Recent studies have shown that brown fat secretes exosomes as a form of communication with other metabolic organs such as the liver. Moreover, it has been shown that levels of miRNAs in BAT-derived exosomes change after BAT activation in vitro and in vivo. Thus, BAT-derived exosomes can be used as potential biomarkers of BAT activity. Here, we review the present knowledge about BAT-derived exosomes and their role in metabolism.

  16. Regulation of energy metabolism during social interactions in rainbow trout: a role for AMP-activated protein kinase.

    Science.gov (United States)

    Gilmour, K M; Craig, P M; Dhillon, R S; Lau, G Y; Richards, J G

    2017-11-01

    Rainbow trout ( Oncorhynchus mykiss ) confined in pairs form social hierarchies in which subordinate fish typically experience fasting and high circulating cortisol levels, resulting in low growth rates. The present study investigated the role of AMP-activated protein kinase (AMPK) in mediating metabolic adjustments associated with social status in rainbow trout. After 3 days of social interaction, liver AMPK activity was significantly higher in subordinate than dominant or sham (fish handled in the same fashion as paired fish but held individually) trout. Elevated liver AMPK activity in subordinate fish likely reflected a significantly higher ratio of phosphorylated AMPK (phospho-AMPK) to total AMPK protein, which was accompanied by significantly higher AMPKα 1 relative mRNA abundance. Liver ATP and creatine phosphate concentrations in subordinate fish also were elevated, perhaps as a result of AMPK activity. Sham fish that were fasted for 3 days exhibited effects parallel to those of subordinate fish, suggesting that low food intake was an important trigger of elevated AMPK activity in subordinate fish. Effects on white muscle appeared to be influenced by the physical activity associated with social interaction. Overall, muscle AMPK activity was significantly higher in dominant and subordinate than sham fish. The ratio of phospho-AMPK to total AMPK protein in muscle was highest in subordinate fish, while muscle AMPKα 1 relative mRNA abundance was elevated by social dominance. Muscle ATP and creatine phosphate concentrations were high in dominant and subordinate fish at 6 h of interaction and decreased significantly thereafter. Collectively, the findings of the present study support a role for AMPK in mediating liver and white muscle metabolic adjustments associated with social hierarchy formation in rainbow trout. Copyright © 2017 the American Physiological Society.

  17. Orbital fluid shear stress promotes osteoblast metabolism, proliferation and alkaline phosphates activity in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Aisha, M.D. [Institute of Medical Molecular Biotechnology and Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Selangor (Malaysia); Nor-Ashikin, M.N.K. [Institute of Medical Molecular Biotechnology and Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Selangor (Malaysia); DDH, Universiti Teknologi MARA, ShahAlam 40450, Selangor (Malaysia); Sharaniza, A.B.R. [DDH, Universiti Teknologi MARA, ShahAlam 40450, Selangor (Malaysia); Nawawi, H. [Center for Pathology Diagnostic and Research Laboratories, Clinical Training Center, Universiti Teknologi MARA, Sungai Buloh 47000, Selangor (Malaysia); I-PPerForM, Universiti Teknologi MARA, Selayang 47000 Selangor (Malaysia); Froemming, G.R.A., E-mail: gabriele@salam.uitm.edu.my [Institute of Medical Molecular Biotechnology and Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Selangor (Malaysia); I-PPerForM, Universiti Teknologi MARA, Selayang 47000 Selangor (Malaysia)

    2015-09-10

    Prolonged disuse of the musculoskeletal system is associated with reduced mechanical loading and lack of anabolic stimulus. As a form of mechanical signal, the multidirectional orbital fluid shear stress transmits anabolic signal to bone forming cells in promoting cell differentiation, metabolism and proliferation. Signals are channeled through the cytoskeleton framework, directly modifying gene and protein expression. For that reason, we aimed to study the organization of Normal Human Osteoblast (NHOst) cytoskeleton with regards to orbital fluid shear (OFS) stress. Of special interest were the consequences of cytoskeletal reorganization on NHOst metabolism, proliferation, and osteogenic functional markers. Cells stimulated at 250 RPM in a shaking incubator resulted in the rearrangement of actin and tubulin fibers after 72 h. Orbital shear stress increased NHOst mitochondrial metabolism and proliferation, simultaneously preventing apoptosis. The ratio of RANKL/OPG was reduced, suggesting that orbital shear stress has the potential to inhibit osteoclastogenesis and osteoclast activity. Increase in ALP activity and OCN protein production suggests that stimulation retained osteoblast function. Shear stress possibly generated through actin seemed to hold an anabolic response as osteoblast metabolism and functional markers were enhanced. We hypothesize that by applying orbital shear stress with suitable magnitude and duration as a non-drug anabolic treatment can help improve bone regeneration in prolonged disuse cases. - Highlights: • OFS stress transmits anabolic signals to osteoblasts. • Actin and tubulin fibers are rearranged under OFS stress. • OFS stress increases mitochondrial metabolism and proliferation. • Reduced RANKL/OPG ratio in response to OFS inhibits osteoclastogenesis. • OFS stress prevents apoptosis and stimulates ALP and OCN.

  18. Genetic analysis of central carbon metabolism unveils an amino acid substitution that alters maize NAD-dependent isocitrate dehydrogenase activity.

    Directory of Open Access Journals (Sweden)

    Nengyi Zhang

    2010-04-01

    Full Text Available Central carbon metabolism (CCM is a fundamental component of life. The participating genes and enzymes are thought to be structurally and functionally conserved across and within species. Association mapping utilizes a rich history of mutation and recombination to achieve high resolution mapping. Therefore, applying association mapping in maize (Zea mays ssp. mays, the most diverse model crop species, to study the genetics of CCM is a particularly attractive system.We used a maize diversity panel to test the CCM functional conservation. We found heritable variation in enzyme activity for every enzyme tested. One of these enzymes was the NAD-dependent isocitrate dehydrogenase (IDH, E.C. 1.1.1.41, in which we identified a novel amino-acid substitution in a phylogenetically conserved site. Using candidate gene association mapping, we identified that this non-synonymous polymorphism was associated with IDH activity variation. The proposed mechanism for the IDH activity variation includes additional components regulating protein level. With the comparison of sequences from maize and teosinte (Zea mays ssp. Parviglumis, the maize wild ancestor, we found that some CCM genes had also been targeted for selection during maize domestication.Our results demonstrate the efficacy of association mapping for dissecting natural variation in primary metabolic pathways. The considerable genetic diversity observed in maize CCM genes underlies heritable phenotypic variation in enzyme activities and can be useful to identify putative functional sites.

  19. Interference of aldehyde metabolizing enzyme with diamine oxidase/histaminase/activity as determined by /sup 14/C putrescine method

    Energy Technology Data Exchange (ETDEWEB)

    Fogel, W A [Polish Academy of Sciences, Cracow (Poland). Inst. of Pharmacology; Bieganski, T; Wozniak, J; Maslinski, C

    1978-01-01

    The ..delta../sup 1/ pyrroline formation, as an indicator of diamine oxidase activity according to Okuyama and Kobayashi /sup 14/C putrescine test (1961, Archs Biochem. Biophys., vol.95, 242), has been investigated in several tissue homogenates. When guinea pig liver homogenate was used as a source of enzyme in the presence of aldehyde dehydrogenase inhibitors chlorate hydrate and acetaldehyde the level of formation ..delta../sup 1/ pyrroline was strongly increased in a dose-dependent manner. Also inhibition of aldehyde reductase by phenobarbital enhanced ..delta../sup 1/ pyrroline formation, but to a lesser degree. In other tissues, with very high initial diamine oxidase activity (rat intestine, dog kidney) or with very low diamine oxidase activity (guinea pig skin, dog liver) the influence of these inhibitors was only slight. Pyrazole, an inhibitor of alcohol dehydrogenase exerted only a small effect on ..delta../sup 1/ pyrroline formation. All aldehyde-metabolizing enzymes inhibitors, except pyrazole, were without effect on purified pea seddling and hog kidney diamine oxidases. The use of aldehyde-metabolizing enzymes inhibitors may help to reveal the real values of diamine oxidase activity, when tissues homogenates are used as a source of enzyme.

  20. Interference of aldehyde metabolizing enzyme with diamine oxidase/histaminase/activity as determined by 14C putrescine method

    International Nuclear Information System (INIS)

    Fogel, W.A.; Bieganski, T.; Wozniak, J.; Maslinski, C.

    1978-01-01

    The Δ 1 pyrroline formation, as an indicator of diamine oxidase activity according to Okuyama and Kobayashi 14 C putrescine test (1961, Archs Biochem. Biophys., vol.95, 242), has been investigated in several tissue homogenates. When guinea pig liver homogenate was used as a source of enzyme in the presence of aldehyde dehydrogenase inhibitors chlorate hydrate and acetaldehyde the level of formation Δ 1 pyrroline was strongly increased in a dose-dependent manner. Also inhibition of aldehyde reductase by phenobarbital enhanced Δ 1 pyrroline formation, but to a lesser degree. In other tissues, with very high initial diamine oxidase activity (rat intestine, dog kidney) or with very low diamine oxidase activity (guinea pig skin, dog liver) the influence of these inhibitors was only slight. Pyrazole, an inhibitor of alcohol dehydrogenase exerted only a small effect on Δ 1 pyrroline formation. All aldehyde-metabolizing enzymes inhibitors, except pyrazole, were without effect on purified pea seddling and hog kidney diamine oxidases. The use of aldehyde-metabolizing enzymes inhibitors may help to reveal the real values of diamine oxidase activity, when tissues homogenates are used as a source of enzyme. (author)

  1. Metabolic mapping of functional activity in human subjects with the [18F]fluorodeoxyglucose technique

    International Nuclear Information System (INIS)

    Greenberg, J.H.; Reivich, M.; Alavi, A.

    1981-01-01

    The 2-[ 18 F]fluoro-2-deoxy-D-glucose technique was used to measure regional cerebral glucose utilization by human subjects during functional activation. Normal male volunteers subjected to one or more sensory stimuli exhibited focal increases in glucose metabolism in response to the stimulus. These results demonstrate that the technique is capable of providing functional maps in vivo related to both body region and submodality of sensory information in the human brain

  2. Radiometric detection of metabolic activity of Paracoccidiodes brasiliensis and its susceptibility to amphotericin B and Diethylstilbestrol

    International Nuclear Information System (INIS)

    Camargo, E.E.; Sato, M.K.; Del Negro, G.M.B.; Lacaz, C.S.

    1987-01-01

    A radiometric assay system has been applied to study the metabolic activity and the effect of drugs (amphotericin B and diethylstilbestrol) on the fungus Paracoccidiodes brasiliensis ''in vitro''. The Y form of the yeast, grown in liquid Sabouraud medium was inoculated into sterile reaction vials containing the 6B aerobic medium along with 2.0μCi of 14 C-substrates. (M.A.C.) [pt

  3. Octulosonic acid derivatives from Roman chamomile (Chamaemelum nobile) with activities against inflammation and metabolic disorder.

    Science.gov (United States)

    Zhao, Jianping; Khan, Shabana I; Wang, Mei; Vasquez, Yelkaira; Yang, Min Hye; Avula, Bharathi; Wang, Yan-Hong; Avonto, Cristina; Smillie, Troy J; Khan, Ikhlas A

    2014-03-28

    Six new octulosonic acid derivatives (1-6) were isolated from the flower heads of Roman chamomile (Chamaemelum nobile). Their structures were elucidated by means of spectroscopic interpretation. The biological activity of the isolated compounds was evaluated toward multiple targets related to inflammation and metabolic disorder such as NAG-1, NF-κB, iNOS, ROS, PPARα, PPARγ, and LXR. Similar to the action of NSAIDs, all the six compounds (1-6) increased NAG-1 activity 2-3-fold. They also decreased cellular oxidative stress by inhibiting ROS generation. Compounds 3, 5, and 6 activated PPARγ 1.6-2.1-fold, while PPARα was activated 1.4-fold by compounds 5 and 6 only. None of the compounds showed significant activity against iNOS or NF-κB. This is the first report of biological activity of octulosonic acid derivatives toward multiple pathways related to inflammation and metabolic disorder. The reported anti-inflammatory, hypoglycemic, antiedemic, and antioxidant activities of Roman chamomile could be partly explained as due to the presence of these constituents.

  4. Bace1 activity impairs neuronal glucose metabolism: rescue by beta-hydroxybutyrate and lipoic acid

    Directory of Open Access Journals (Sweden)

    John A Findlay

    2015-10-01

    Full Text Available Glucose hypometabolism and impaired mitochondrial function in neurons have been suggested to play early and perhaps causative roles in Alzheimer’s disease (AD pathogenesis. Activity of the aspartic acid protease, beta-site amyloid precursor protein (APP cleaving enzyme 1 (BACE1, responsible for beta amyloid peptide generation, has recently been demonstrated to modify glucose metabolism. We therefore examined, using a human neuroblastoma (SH-SY5Y cell line, whether increased BACE1 activity is responsible for a reduction in cellular glucose metabolism. Overexpression of active BACE1, but not a protease-dead mutant BACE1, protein in SH-SY5Y cells reduced glucose oxidation and the basal oxygen consumption rate, which was associated with a compensatory increase in glycolysis. Increased BACE1 activity had no effect on the mitochondrial electron transfer process but was found to diminish substrate delivery to the mitochondria by inhibition of key mitochondrial decarboxylation reaction enzymes. This BACE1 activity-dependent deficit in glucose oxidation was alleviated by the presence of beta hydroxybutyrate or α-lipoic acid. Consequently our data indicate that raised cellular BACE1 activity drives reduced glucose oxidation in a human neuronal cell line through impairments in the activity of specific tricarboxylic acid cycle enzymes. Because this bioenergetic deficit is recoverable by neutraceutical compounds we suggest that such agents, perhaps in conjunction with BACE1 inhibitors, may be an effective therapeutic strategy in the early-stage management or treatment of AD.

  5. [Interaction between CYP450 enzymes and metabolism of traditional Chinese medicine as well as enzyme activity assay].

    Science.gov (United States)

    Lu, Tu-lin; Su, Lian-lin; Ji, De; Gu, Wei; Mao, Chun-qin

    2015-09-01

    Drugs are exogenous compounds for human bodies, and will be metabolized by many enzymes after administration. CYP450 enzyme, as a major metabolic enzyme, is an important phase I drug metabolizing enzyme. In human bodies, about 75% of drug metabolism is conducted by CYP450 enzymes, and CYP450 enzymes is the key factor for drug interactions between traditional Chinese medicine( TCM) -TCM, TCM-medicine and other drug combination. In order to make clear the interaction between metabolic enzymes and TCM metabolism, we generally chose the enzymatic activity as an evaluation index. That is to say, the enhancement or reduction of CYP450 enzyme activity was used to infer the inducing or inhibitory effect of active ingredients and extracts of traditional Chinese medicine on enzymes. At present, the common method for measuring metabolic enzyme activity is Cocktail probe drugs, and it is the key to select the suitable probe substrates. This is of great significance for study drug's absorption, distribution, metabolism and excretion (ADME) process in organisms. The study focuses on the interaction between TCMs, active ingredients, herbal extracts, cocktail probe substrates as well as CYP450 enzymes, in order to guide future studies.

  6. The Metabolic Implications of Glucocorticoids in a High-Fat Diet Setting and the Counter-Effects of Exercise

    Directory of Open Access Journals (Sweden)

    Emily C. Dunford

    2016-12-01

    Full Text Available Glucocorticoids (GCs are steroid hormones, naturally produced by activation of the hypothalamic-pituitary-adrenal (HPA axis, that mediate the immune and metabolic systems. Synthetic GCs are used to treat a number of inflammatory conditions and diseases including lupus and rheumatoid arthritis. Generally, chronic or high dose GC administration is associated with side effects such as steroid-induced skeletal muscle loss, visceral adiposity, and diabetes development. Patients who are taking exogenous GCs could also be more susceptible to poor food choices, but the effect that increasing fat consumption in combination with elevated exogenous GCs has only recently been investigated. Overall, these studies show that the damaging metabolic effects initiated through exogenous GC treatment are significantly amplified when combined with a high fat diet (HFD. Rodent studies of a HFD and elevated GCs demonstrate more glucose intolerance, hyperinsulinemia, visceral adiposity, and skeletal muscle lipid deposition when compared to rodents subjected to either treatment on its own. Exercise has recently been shown to be a viable therapeutic option for GC-treated, high-fat fed rodents, with the potential mechanisms still being examined. Clinically, these mechanistic studies underscore the importance of a low fat diet and increased physical activity levels when individuals are given a course of GC treatment.

  7. Kefir Peptides Prevent Hyperlipidemia and Obesity in High-Fat-Diet-Induced Obese Rats via Lipid Metabolism Modulation.

    Science.gov (United States)

    Tung, Yu-Tang; Chen, Hsiao-Ling; Wu, Hsin-Shan; Ho, Mei-Hsuan; Chong, Kowit-Yu; Chen, Chuan-Mu

    2018-02-01

    Obesity has reached epidemic proportions worldwide. Obesity is a complex metabolic disorder that is linked to numerous serious health complications with high morbidity. The present study evaluated the effects of kefir peptides on high fat diet (HFD)-induced obesity in rats. Kefir peptides markedly improved obesity, including body weight gain, inflammatory reactions and the formation of adipose tissue fat deposits around the epididymis and kidney, and adipocyte size. Treating high fat diet (HFD)-induced obese rats with kefir peptides significantly reduced the fatty acid synthase protein and increased the p-acetyl-CoA carboxylase protein to block lipogenesis in the livers. Kefir peptides also increased fatty acid oxidation by increasing the protein expressions of phosphorylated AMP-activated protein kinase, peroxisome proliferator-activated receptor-α, and hepatic carnitine palmitoyltransferase-1 in the livers. In addition, administration of kefir peptides significantly decreased the inflammatory response (TNF-α, IL-1β, and TGF-β) to modulate oxidative damage. These results demonstrate that kefir peptides treatment improves obesity via inhibition of lipogenesis, modulation of oxidative damage, and stimulation of lipid oxidation. Therefore, kefir peptides may act as an anti-obesity agent to prevent body fat accumulation and obesity-related metabolic diseases. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Ethanol effect on metabolic activity of the ethalogenic fungus Fusarium oxysporum.

    Science.gov (United States)

    Paschos, Thomas; Xiros, Charilaos; Christakopoulos, Paul

    2015-03-12

    Fusarium oxysporum is a filamentous fungus which has attracted a lot of scientific interest not only due to its ability to produce a variety of lignocellulolytic enzymes, but also because it is able to ferment both hexoses and pentoses to ethanol. Although this fungus has been studied a lot as a cell factory, regarding applications for the production of bioethanol and other high added value products, no systematic study has been performed concerning its ethanol tolerance levels. In aerobic conditions it was shown that both the biomass production and the specific growth rate were affected by the presence of ethanol. The maximum allowable ethanol concentration, above which cells could not grow, was predicted to be 72 g/L. Under limited aeration conditions the ethanol-producing capability of the cells was completely inhibited at 50 g/L ethanol. The lignocellulolytic enzymatic activities were affected to a lesser extent by the presence of ethanol, while the ethanol inhibitory effect appears to be more severe at elevated temperatures. Moreover, when the produced ethanol was partially removed from the broth, it led to an increase in fermenting ability of the fungus up to 22.5%. The addition of F. oxysporum's system was shown to increase the fermentation of pretreated wheat straw by 11%, in co-fermentation with Saccharomyces cerevisiae. The assessment of ethanol tolerance levels of F. oxysporum on aerobic growth, on lignocellulolytic activities and on fermentative performance confirmed its biotechnological potential for the production of bioethanol. The cellulolytic and xylanolytic enzymes of this fungus could be exploited within the biorefinery concept as their ethanol resistance is similar to that of the commercial enzymes broadly used in large scale fermentations and therefore, may substantially contribute to a rational design of a bioconversion process involving F. oxysporum. The SSCF experiments on liquefied wheat straw rich in hemicellulose indicated that the

  9. High-protein-low-carbohydrate diet: deleterious metabolic and cardiovascular effects depend on age.

    Science.gov (United States)

    Bedarida, Tatiana; Baron, Stephanie; Vessieres, Emilie; Vibert, Francoise; Ayer, Audrey; Marchiol-Fournigault, Carmen; Henrion, Daniel; Paul, Jean-Louis; Noble, Florence; Golmard, Jean-Louis; Beaudeux, Jean-Louis; Cottart, Charles-Henry; Nivet-Antoine, Valerie

    2014-09-01

    High-protein-low-carbohydrate (HP-LC) diets have become widespread. Yet their deleterious consequences, especially on glucose metabolism and arteries, have already been underlined. Our previous study (2) has already shown glucose intolerance with major arterial dysfunction in very old mice subjected to an HP-LC diet. The hypothesis of this work was that this diet had an age-dependent deleterious metabolic and cardiovascular outcome. Two groups of mice, young and adult (3 and 6 mo old), were subjected for 12 wk to a standard or to an HP-LC diet. Glucose and lipid metabolism was studied. The cardiovascular system was explored from the functional stage with Doppler-echography to the molecular stage (arterial reactivity, mRNA, immunohistochemistry). Young mice did not exhibit any significant metabolic modification, whereas adult mice presented marked glucose intolerance associated with an increase in resistin and triglyceride levels. These metabolic disturbances were responsible for cardiovascular damages only in adult mice, with decreased aortic distensibility and left ventricle dysfunction. These seemed to be the consequence of arterial dysfunctions. Mesenteric arteries were the worst affected with a major oxidative stress, whereas aorta function seemed to be maintained with an appreciable role of cyclooxygenase-2 to preserve endothelial function. This study highlights for the first time the age-dependent deleterious effects of an HP-LC diet on metabolism, with glucose intolerance and lipid disorders and vascular (especially microvessels) and cardiac functions. This work shows that HP-LC lead to equivalent cardiovascular alterations, as observed in very old age, and underlines the danger of such diet. Copyright © 2014 the American Physiological Society.

  10. Mitochondrial Dysfunction Plus High-Sugar Diet Provokes a Metabolic Crisis That Inhibits Growth

    Science.gov (United States)

    Kemppainen, Esko; George, Jack; Garipler, Görkem; Tuomela, Tea; Kiviranta, Essi; Soga, Tomoyoshi; Dunn, Cory D.; Jacobs, Howard T.

    2016-01-01

    The Drosophila mutant tko25t exhibits a deficiency of mitochondrial protein synthesis, leading to a global insufficiency of respiration and oxidative phosphorylation. This entrains an organismal phenotype of developmental delay and sensitivity to seizures induced by mechanical stress. We found that the mutant phenotype is exacerbated in a dose-dependent fashion by high dietary sugar levels. tko25t larvae were found to exhibit severe metabolic abnormalities that were further accentuated by high-sugar diet. These include elevated pyruvate and lactate, decreased ATP and NADPH. Dietary pyruvate or lactate supplementation phenocopied the effects of high sugar. Based on tissue-specific rescue, the crucial tissue in which this metabolic crisis initiates is the gut. It is accompanied by down-regulation of the apparatus of cytosolic protein synthesis and secretion at both the RNA and post-translational levels, including a novel regulation of S6 kinase at the protein level. PMID:26812173

  11. Mitochondrial Dysfunction Plus High-Sugar Diet Provokes a Metabolic Crisis That Inhibits Growth.

    Science.gov (United States)

    Kemppainen, Esko; George, Jack; Garipler, Görkem; Tuomela, Tea; Kiviranta, Essi; Soga, Tomoyoshi; Dunn, Cory D; Jacobs, Howard T

    2016-01-01

    The Drosophila mutant tko25t exhibits a deficiency of mitochondrial protein synthesis, leading to a global insufficiency of respiration and oxidative phosphorylation. This entrains an organismal phenotype of developmental delay and sensitivity to seizures induced by mechanical stress. We found that the mutant phenotype is exacerbated in a dose-dependent fashion by high dietary sugar levels. tko25t larvae were found to exhibit severe metabolic abnormalities that were further accentuated by high-sugar diet. These include elevated pyruvate and lactate, decreased ATP and NADPH. Dietary pyruvate or lactate supplementation phenocopied the effects of high sugar. Based on tissue-specific rescue, the crucial tissue in which this metabolic crisis initiates is the gut. It is accompanied by down-regulation of the apparatus of cytosolic protein synthesis and secretion at both the RNA and post-translational levels, including a novel regulation of S6 kinase at the protein level.

  12. Mitochondrial Dysfunction Plus High-Sugar Diet Provokes a Metabolic Crisis That Inhibits Growth.

    Directory of Open Access Journals (Sweden)

    Esko Kemppainen

    Full Text Available The Drosophila mutant tko25t exhibits a deficiency of mitochondrial protein synthesis, leading to a global insufficiency of respiration and oxidative phosphorylation. This entrains an organismal phenotype of developmental delay and sensitivity to seizures induced by mechanical stress. We found that the mutant phenotype is exacerbated in a dose-dependent fashion by high dietary sugar levels. tko25t larvae were found to exhibit severe metabolic abnormalities that were further accentuated by high-sugar diet. These include elevated pyruvate and lactate, decreased ATP and NADPH. Dietary pyruvate or lactate supplementation phenocopied the effects of high sugar. Based on tissue-specific rescue, the crucial tissue in which this metabolic crisis initiates is the gut. It is accompanied by down-regulation of the apparatus of cytosolic protein synthesis and secretion at both the RNA and post-translational levels, including a novel regulation of S6 kinase at the protein level.

  13. Metabolic activation of polycyclic and heterocyclic aromatic hydrocarbons and DNA damage: A review

    International Nuclear Information System (INIS)

    Xue Weiling; Warshawsky, David

    2005-01-01

    Polycyclic aromatic hydrocarbons (PAHs) and heterocyclic aromatic compounds (HACs) constitute a major class of chemical carcinogens present in the environment. These compounds require activation to electrophilic metabolites to exert their mutagenic or carcinogenic effects. There are three principal pathways currently proposed for metabolic activation of PAH and HAC: the pathway via bay region dihydrodiol epoxide by cytochrome P450 enzymes (CYPs), the pathway via radical cation by one-electron oxidation, and the ortho-quinone pathway by dihydrodiol dehydrogenase (DD). In addition to these major pathways, a brief description of a minor metabolic activation pathway, sulfonation, for PAHs that contain a primary benzylic alcoholic group or secondary hydroxyl group(s) is included in this review. The DNA damages caused through the reactive metabolites of PAH/HAC are described involving the DNA covalent binding to form stable or depurinating adducts, the formation of apurinic sites, and the oxidative damage. The review emphasizes the chemical/biochemical reactions involved in the metabolic processes and the chemical structures of metabolites and DNA adducts

  14. Metabolic Genetic Screens Reveal Multidimensional Regulation of Virulence Gene Expression in Listeria monocytogenes and an Aminopeptidase That Is Critical for PrfA Protein Activation.

    Science.gov (United States)

    Friedman, Sivan; Linsky, Marika; Lobel, Lior; Rabinovich, Lev; Sigal, Nadejda; Herskovits, Anat A

    2017-06-01

    Listeria monocytogenes is an environmental saprophyte and intracellular bacterial pathogen. Upon invading mammalian cells, the bacterium senses abrupt changes in its metabolic environment, which are rapidly transduced to regulation of virulence gene expression. To explore the relationship between L. monocytogenes metabolism and virulence, we monitored virulence gene expression dynamics across a library of genetic mutants grown under two metabolic conditions known to activate the virulent state: charcoal-treated rich medium containing glucose-1-phosphate and minimal defined medium containing limiting concentrations of branched-chain amino acids (BCAAs). We identified over 100 distinct mutants that exhibit aberrant virulence gene expression profiles, the majority of which mapped to nonessential metabolic genes. Mutants displayed enhanced, decreased, and early and late virulence gene expression profiles, as well as persistent levels, demonstrating a high plasticity in virulence gene regulation. Among the mutants, one was noteworthy for its particularly low virulence gene expression level and mapped to an X-prolyl aminopeptidase (PepP). We show that this peptidase plays a role in posttranslational activation of the major virulence regulator, PrfA. Specifically, PepP mediates recruitment of PrfA to the cytoplasmic membrane, a step identified as critical for PrfA protein activation. This study establishes a novel step in the complex mechanism of PrfA activation and further highlights the cross regulation of metabolism and virulence. Copyright © 2017 American Society for Microbiology.

  15. Maternal high-fat diet induces metabolic stress response disorders in offspring hypothalamus.

    Science.gov (United States)

    Nguyen, Long The; Saad, Sonia; Tan, Yi; Pollock, Carol; Chen, Hui

    2017-07-01

    Maternal obesity has been shown to increase the risk of obesity and related disorders in the offspring, which has been partially attributed to changes of appetite regulators in the offspring hypothalamus. On the other hand, endoplasmic reticulum (ER) stress and autophagy have been implicated in hypothalamic neuropeptide dysregulation, thus may also play important roles in such transgenerational effect. In this study, we show that offspring born to high-fat diet-fed dams showed significantly increased body weight and glucose intolerance, adiposity and plasma triglyceride level at weaning. Hypothalamic mRNA level of the orexigenic neuropeptide Y (NPY) was increased, while the levels of the anorexigenic pro-opiomelanocortin (POMC), NPY1 receptor (NPY1R) and melanocortin-4 receptor (MC4R) were significantly downregulated. In association, the expression of unfolded protein response (UPR) markers including glucose-regulated protein (GRP)94 and endoplasmic reticulum DNA J domain-containing protein (Erdj)4 was reduced. By contrast, protein levels of autophagy-related genes Atg5 and Atg7, as well as mitophagy marker Parkin, were slightly increased. The administration of 4-phenyl butyrate (PBA), a chemical chaperone of protein folding and UPR activator, in the offspring from postnatal day 4 significantly reduced their body weight, fat deposition, which were in association with increased activating transcription factor (ATF)4, immunoglobulin-binding protein (BiP) and Erdj4 mRNA as well as reduced Parkin, PTEN-induced putative kinase (PINK)1 and dynamin-related protein (Drp)1 protein expression levels. These results suggest that hypothalamic ER stress and mitophagy are among the regulatory factors of offspring metabolic changes due to maternal obesity. © 2017 Society for Endocrinology.

  16. Metabolic activity in dormant conidia of Aspergillus niger and developmental changes during conidial outgrowth.

    Science.gov (United States)

    Novodvorska, Michaela; Stratford, Malcolm; Blythe, Martin J; Wilson, Raymond; Beniston, Richard G; Archer, David B

    2016-09-01

    The early stages of development of Aspergillus niger conidia during outgrowth were explored by combining genome-wide gene expression analysis (RNAseq), proteomics, Warburg manometry and uptake studies. Resting conidia suspended in water were demonstrated for the first time to be metabolically active as low levels of oxygen uptake and the generation of carbon dioxide were detected, suggesting that low-level respiratory metabolism occurs in conidia for maintenance. Upon triggering of spore germination, generation of CO2 increased dramatically. For a short period, which coincided with mobilisation of the intracellular polyol, trehalose, there was no increase in uptake of O2 indicating that trehalose was metabolised by fermentation. Data from genome-wide mRNA profiling showed the presence of transcripts associated with fermentative and respiratory metabolism in resting conidia. Following triggering of conidial outgrowth, there was a clear switch to respiration after 25min, confirmed by cyanide inhibition. No effect of SHAM, salicylhydroxamic acid, on respiration suggests electron flow via cytochrome c oxidase. Glucose entry into spores was not detectable before 1h after triggering germination. The impact of sorbic acid on germination was examined and we showed that it inhibits glucose uptake. O2 uptake was also inhibited, delaying the onset of respiration and extending the period of fermentation. In conclusion, we show that conidia suspended in water are not completely dormant and that conidial outgrowth involves fermentative metabolism that precedes respiration. Copyright © 2016. Published by Elsevier Inc.

  17. High fructose corn syrup induces metabolic dysregulation and altered dopamine signaling in the absence of obesity.

    Science.gov (United States)

    Meyers, Allison M; Mourra, Devry; Beeler, Jeff A

    2017-01-01

    The contribution of high fructose corn syrup (HFCS) to metabolic disorder and obesity, independent of high fat, energy-rich diets, is controversial. While high-fat diets are widely accepted as a rodent model of diet-induced obesity (DIO) and metabolic disorder, the value of HFCS alone as a rodent model of DIO is unclear. Impaired dopamine function is associated with obesity and high fat diet, but the effect of HFCS on the dopamine system has not been investigated. The objective of this study was to test the effect of HFCS on weight gain, glucose regulation, and evoked dopamine release using fast-scan cyclic voltammetry. Mice (C57BL/6) received either water or 10% HFCS solution in combination with ad libitum chow for 15 weeks. HFCS consumption with chow diet did not induce weight gain compared to water, chow-only controls but did induce glucose dysregulation and reduced evoked dopamine release in the dorsolateral striatum. These data show that HFCS can contribute to metabolic disorder and altered dopamine function independent of weight gain and high-fat diets.

  18. High fructose corn syrup induces metabolic dysregulation and altered dopamine signaling in the absence of obesity.

    Directory of Open Access Journals (Sweden)

    Allison M Meyers

    Full Text Available The contribution of high fructose corn syrup (HFCS to metabolic disorder and obesity, independent of high fat, energy-rich diets, is controversial. While high-fat diets are widely accepted as a rodent model of diet-induced obesity (DIO and metabolic disorder, the value of HFCS alone as a rodent model of DIO is unclear. Impaired dopamine function is associated with obesity and high fat diet, but the effect of HFCS on the dopamine system has not been investigated. The objective of this study was to test the effect of HFCS on weight gain, glucose regulation, and evoked dopamine release using fast-scan cyclic voltammetry. Mice (C57BL/6 received either water or 10% HFCS solution in combination with ad libitum chow for 15 weeks. HFCS consumption with chow diet did not induce weight gain compared to water, chow-only controls but did induce glucose dysregulation and reduced evoked dopamine release in the dorsolateral striatum. These data show that HFCS can contribute to metabolic disorder and altered dopamine function independent of weight gain and high-fat diets.

  19. Metabolic regulation analysis of an ethanologenic Escherichia coli strain based on RT-PCR and enzymatic activities

    Directory of Open Access Journals (Sweden)

    Martinez Alfredo

    2008-05-01

    Full Text Available Abstract Background A metabolic regulation study was performed, based upon measurements of enzymatic activities, fermentation performance, and RT-PCR analysis of pathways related to central carbon metabolism, in an ethanologenic Escherichia coli strain (CCE14 derived from lineage C. In comparison with previous engineered strains, this E coli derivative has a higher ethanol production rate in mineral medium, as a result of the elevated heterologous expression of the chromosomally integrated genes encoding PDCZm and ADHZm (pyruvate decarboxylase and alcohol dehydrogenase from Zymomonas mobilis. It is suggested that this behavior might be due to lineage differences between E. coli W and C. Results This study demonstrated that the glycolytic flux is controlled, in this case, by reactions outside glycolysis, i.e., the fermentative pathways. Changes in ethanol production rate in this ethanologenic strain result in low organic acid production rates, and high glycolytic and ethanologenic fluxes, that correlate with enhanced transcription and enzymatic activity levels of PDCZm and ADHZm. Furthermore, a higher ethanol yield (90% of the theoretical in glucose-mineral media was obtained with CCE14 in comparison with previous engineered E. coli strains, such as KO11, that produces a 70% yield under the same conditions. Conclusion Results suggest that a higher ethanol formation rate, caused by ahigher PDCZm and ADHZm activities induces a metabolic state that cells compensate through enhanced glucose transport, ATP synthesis, and NAD-NADH+H turnover rates. These results show that glycolytic enzymatic activities, present in E. coli W and C under fermentative conditions, are sufficient to contend with increases in glucose consumption and product formation rates.

  20. High fructose diet-induced metabolic syndrome: Pathophysiological mechanism and treatment by traditional Chinese medicine.

    Science.gov (United States)

    Pan, Ying; Kong, Ling-Dong

    2018-04-01

    Fructose is a natural monosaccharide broadly used in modern society. Over the past few decades, epidemiological studies have demonstrated that high fructose intake is an etiological factor of metabolic syndrome (MetS). This review highlights research advances on fructose-induced MetS, especially the underlying pathophysiological mechanism as well as pharmacotherapy by traditional Chinese medicine (TCM), using the PubMed, Web of science, China National Knowledge Infrastructure, China Science and Technology Journal and Wanfang Data. This review focuses on de novo lipogenesis (DNL) and uric acid (UA) production, two unique features of fructolysis different from glucose glycolysis. High level of DNL and UA production can result in insulin resistance, the key pathological event in developing MetS, mostly through oxidative stress and inflammation. Some other pathologies like the disturbance in brain and gut microbiota in the development of fructose-induced MetS in the past years, are also discussed. In management of MetS, TCM is an excellent representative in alternative and complementary medicine with a complete theory system and substantial herbal remedies. TCMs against MetS or MetS components, including Chinese patent medicines, TCM compound formulas, single TCM herbs and active compounds of TCM herbs, are reviewed on their effects and molecular mechanisms. TCMs with hypouricemic activity, which specially target fructose-induced MetS, are highlighted. And new technologies and strategies (such as high-throughput assay and systems biology) in this field are further discussed. In summary, fructose-induced MetS is a multifactorial disorder with the underlying complex mechanisms. Current clinical and pre-clinical evidence supports the potential of TCMs in management of MetS. Additionally, TCMs may show some advantages against complex MetS as their holistic feature through multiple target actions. However, further work is needed to confirm the effectivity and safety of TCMs

  1. Associations of occupational, transportation, household and leisure-time physical activity patterns with metabolic risk factors among middle-aged adults in a middle-income country.

    Science.gov (United States)

    Chu, Anne H Y; Moy, Foong Ming

    2013-01-01

    This study investigates physical activity in different domains and its association with metabolic risk factors among middle-aged adults. The study was performed in Kuala Lumpur, Malaysia from August 2010-August 2011. Body mass index (BMI), waist circumference, systolic/diastolic blood pressure, and fasting blood glucose/lipid profile were measured in 686 Malay participants (mean age 45.9 ± 6.5 years). Self-reported physical activity was obtained with the validated IPAQ (Malay version) and categorized into low-, moderate- and high-activity levels across occupational, transportation, household and leisure-time domains. Participants spent most of their time on household (567.5, 95% CI: 510-630 MET-minutes/week) and occupational activities (297, 95% CI: 245-330 MET-minutes/week). After adjusted for gender and smoking, participants with low-activity levels in occupational, transport and household domains were associated with significantly higher odds for metabolic syndrome (2.02, 95% CI: 1.33-3.05; 1.49, 95% CI: 1.01-2.21; 1.96, 95% CI: 1.33-2.91). Significantly higher odds for obesity and abdominal obesity were consistently reported among those with low-activity levels across all four domains. High-activity levels in occupational, transportation and household domains were each negatively associated with metabolic syndrome among our cohort. Increase participation of physical activity across all four domains (including leisure-time activity) should be encouraged. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Trace glucose and lipid metabolism in high androgen and high-fat diet induced polycystic ovary syndrome rats

    Directory of Open Access Journals (Sweden)

    Zhai Hua-Ling

    2012-01-01

    Full Text Available Abstract Background There is a high prevalence of diabetes mellitus (DM and dyslipidemia in women with polycystic ovary syndrome (PCOS. The purpose of this study was to investigate the role of different metabolic pathways in the development of diabetes mellitus in high-androgen female mice fed with a high-fat diet. Methods Female Sprague-Dawley rats were divided into 3 groups: the control group(C, n = 10; the andronate-treated group (Andronate, n = 10 (treated with andronate, 1 mg/100 g body weight/day for 8 weeks; and the andronate-treated and high-fat diet group (Andronate+HFD, n = 10. The rate of glucose appearance (Ra of glucose, gluconeogenesis (GNG, and the rate of glycerol appearance (Ra of glycerol were assessed with a stable isotope tracer. The serum sex hormone levels, insulin levels, glucose concentration, and the lipid profile were also measured. Results Compared with control group, both andronate-treated groups exhibited obesity with higher insulin concentrations (P P Conclusions Andronate with HFD rat model showed ovarian and metabolic features of PCOS, significant increase in glucose Ra, GNG, and lipid profiles, as well as normal blood glucose levels. Therefore, aberrant IR, increased glucose Ra, GNG, and lipid metabolism may represent the early-stage of glucose and lipid kinetics disorder, thereby might be used as potential early-stage treatment targets for PCOS.

  3. The relationship between microbial metabolic activity and biocorrosion of carbon steel.

    Science.gov (United States)

    Dzierzewicz, Z; Cwalina, B; Chodurek, E; Wilczok, T

    1997-12-01

    The effect of metabolic activity (expressed by generation time, rate of H2S production and the activity of hydrogenase and adenosine phosphosulphate (APS)-reductase enzymes) of the 8 wild strains of Desulfovibrio desulfuricans and of their resistance to metal ions (Hg2+, Cu2+, Mn2+, Zn2+, Ni2+, Cr3+) on the rate of corrosion of carbon steel was studied. The medium containing lactate as the carbon source and sulphate as the electron acceptor was used for bacterial metabolic activity examination and in corrosive assays. Bacterial growth inhibition by metal ions was investigated in the sulphate-free medium. The rate of H2S production was approximately directly proportional to the specific activities of the investigated enzymes. These activities were inversely proportional to the generation time. The rate of microbiologically induced corrosion (MIC) of carbon steel was directly proportional to bacterial resistance to metal ions (correlation coefficient r = 0.95). The correlation between the MIC rate and the activity of enzymes tested, although weaker, was also observed (r = 0.41 for APS-reductase; r = 0.69 for hydrogenase; critical value rc = 0.30, p = 0.05, n = 40).

  4. High energy diets-induced metabolic and prediabetic painful polyneuropathy in rats.

    Directory of Open Access Journals (Sweden)

    Fang Xie

    Full Text Available To establish the role of the metabolic state in the pathogenesis of polyneuropathy, an age- and sex-matched, longitudinal study in rats fed high-fat and high-sucrose diets (HFSD or high-fat, high-sucrose and high-salt diets (HFSSD relative to controls was performed. Time courses of body weight, systolic blood pressure, fasting plasma glucose (FPG, insulin, free fatty acids (FFA, homeostasis model assessment-insulin resistance index (HOMA-IR, thermal and mechanical sensitivity and motor coordination were measured in parallel. Finally, large and small myelinated fibers (LMF, SMF as well as unmyelinated fibers (UMF in the sciatic nerves and ascending fibers in the spinal dorsal column were quantitatively assessed under electron microscopy. The results showed that early metabolic syndrome (hyperinsulinemia, dyslipidemia, and hypertension and prediabetic conditions (impaired fasting glucose could be induced by high energy diet, and these animals later developed painful polyneuropathy characterized by myelin breakdown and LMF loss in both peripheral and central nervous system. In contrast SMF and UMF in the sciatic nerves were changed little, in the same animals. Therefore the phenomenon that high energy diets induce bilateral mechanical, but not thermal, pain hypersensitivity is reflected by severe damage to LMF, but mild damage to SMF and UMF. Moreover, dietary sodium (high-salt deteriorates the neuropathic pathological process induced by high energy diets, but paradoxically high salt consumption, may reduce, at least temporarily, chronic pain perception in these animals.

  5. High Energy Diets-Induced Metabolic and Prediabetic Painful Polyneuropathy in Rats

    Science.gov (United States)

    Hou, Jun-Feng; Jiao, Kai; Costigan, Michael; Chen, Jun

    2013-01-01

    To establish the role of the metabolic state in the pathogenesis of polyneuropathy, an age- and sex-matched, longitudinal study in rats fed high-fat and high-sucrose diets (HFSD) or high-fat, high-sucrose and high-salt diets (HFSSD) relative to controls was performed. Time courses of body weight, systolic blood pressure, fasting plasma glucose (FPG), insulin, free fatty acids (FFA), homeostasis model assessment-insulin resistance index (HOMA-IR), thermal and mechanical sensitivity and motor coordination were measured in parallel. Finally, large and small myelinated fibers (LMF, SMF) as well as unmyelinated fibers (UMF) in the sciatic nerves and ascending fibers in the spinal dorsal column were quantitatively assessed under electron microscopy. The results showed that early metabolic syndrome (hyperinsulinemia, dyslipidemia, and hypertension) and prediabetic conditions (impaired fasting glucose) could be induced by high energy diet, and these animals later developed painful polyneuropathy characterized by myelin breakdown and LMF loss in both peripheral and central nervous system. In contrast SMF and UMF in the sciatic nerves were changed little, in the same animals. Therefore the phenomenon that high energy diets induce bilateral mechanical, but not thermal, pain hypersensitivity is reflected by severe damage to LMF, but mild damage to SMF and UMF. Moreover, dietary sodium (high-salt) deteriorates the neuropathic pathological process induced by high energy diets, but paradoxically high salt consumption, may reduce, at least temporarily, chronic pain perception in these animals. PMID:23451227

  6. Kynurenine pathway metabolic balance influences microglia activity: Targeting kynurenine monooxygenase to dampen neuroinflammation.

    Science.gov (United States)

    Garrison, Allison M; Parrott, Jennifer M; Tuñon, Arnulfo; Delgado, Jennifer; Redus, Laney; O'Connor, Jason C

    2018-08-01

    Chronic stress or inflammation increases tryptophan metabolism along the kynurenine pathway (KP), and the generation of neuroactive kynurenine metabolites contributes to subsequent depressive-like behaviors. Microglia regulate KP balance by preferentially producing oxidative metabolites, including quinolinic acid. Research has focused on the interplay between cytokines and HPA axis-derived corticosteroids in regulating microglial activity and effects of KP metabolites directly on neurons; however, the potential role that KP metabolites have directly on microglial activity is unknown. Here, murine microglia were stimulated with lipopolysaccharide(LPS). After 6 h, mRNA expression of interleukin(IL)-1β, IL-6, tumor necrosis factor(TNF)-α and inducible nitric oxide synthase(iNOS) was dose-dependently increased along with the rate-limiting enzymes for oxidative KP metabolism, indoleamine-2,3-dioxygenase(IDO)-1 and kynurenine 3-monooxygenase(KMO). By 24 h post-LPS, kynurenine and quinolinic acid in the media was elevated. Inhibiting KMO with Ro 61-8048 during LPS challenge attenuated extracellular nitrite accumulation and expression of KMO and TNF-α in response to LPS. Similarly, primary microglia isolated from KMO -/- mice exhibited a significantly reduced pro-inflammatory response to LPS compared to WT controls. To determine whether the substrate (kynurenine) or end product (quinolinic acid) of KMO-dependent metabolism modulates the LPS response, microglia were treated with increasing concentrations of L-kynurenine or quinolinic acid in combination with LPS or saline. Interestingly, quinolinic acid did not impact the microglial LPS response. However, L-kynurenine had dose-dependent inhibitory effect on the LPS response. These data are the first to show an anti-inflammatory effect of KMO inhibition on microglia during immune challenge and suggest that KP metabolic balance may play a direct role in regulating microglia activity. Published by Elsevier Ltd.

  7. Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation

    NARCIS (Netherlands)

    Feige, Jérôme N.; Lagouge, Marie; Canto, Carles; Strehle, Axelle; Houten, Sander M.; Milne, Jill C.; Lambert, Philip D.; Mataki, Chikage; Elliott, Peter J.; Auwerx, Johan

    2008-01-01

    The NAD(+)-dependent deacetylase SIRT1 controls metabolic processes in response to low nutrient availability. We report the metabolic phenotype of mice treated with SRT1720, a specific and potent synthetic activator of SIRT1 that is devoid of direct action on AMPK. SRT1720 administration robustly

  8. Ultra high resolution SFC-MS as a high throughput platform for metabolic phenotyping: application to metabolic profiling of rat and dog bile.

    Science.gov (United States)

    Jones, Michael D; Rainville, Paul D; Isaac, Giorgis; Wilson, Ian D; Smith, Norman W; Plumb, Robert S

    2014-09-01

    Ultra high resolution SFC-MS (on sub-2μm particles) coupled to mass spectrometry has been evaluated for the metabolic profiling of rat and dog bile. The selectivity of the SFC separation differed from that seen in previous reversed-phase UPLC-MS studies on bile, with the order of elution for analytes such as e.g., the bile acids showing many differences. The chromatography system showed excellent stability, reproducibility and robustness with relative standard deviation of less than 1% for retention time obtained over the course of the analysis. SFC showed excellent chromatographic performance with chromatographic peak widths in the order of 3s at the base of the peak. The use of supercritical fluid carbon dioxide as a mobile phase solvent also reduced the overall consumption of organic solvent by a factor of 3 and also reduced the overall analysis time by a factor of 30% compared to reversed-phase gradient LC. SFC-MS appear complementary to RPLC for the metabolic profiling of complex samples such as bile. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Metabolic Response to NAD Depletion across Cell Lines Is Highly Variable.

    Science.gov (United States)

    Xiao, Yang; Kwong, Mandy; Daemen, Anneleen; Belvin, Marcia; Liang, Xiaorong; Hatzivassiliou, Georgia; O'Brien, Thomas

    2016-01-01

    Nicotinamide adenine dinucleotide (NAD) is a cofactor involved in a wide range of cellular metabolic processes and is a key metabolite required for tumor growth. NAMPT, nicotinamide phosphoribosyltransferase, which converts nicotinamide (NAM) to nicotinamide mononucleotide (NMN), the immediate precursor of NAD, is an attractive therapeutic target as inhibition of NAMPT reduces cellular NAD levels and inhibits tumor growth in vivo. However, there is limited understanding of the metabolic response to NAD depletion across cancer cell lines and whether all cell lines respond in a uniform manner. To explore this we selected two non-small cell lung carcinoma cell lines that are sensitive to the NAMPT inhibitor GNE-617 (A549, NCI-H1334), one that shows intermediate sensitivity (NCI-H441), and one that is insensitive (LC-KJ). Even though NAD was reduced in all cell lines there was surprising heterogeneity in their metabolic response. Both sensitive cell lines reduced glycolysis and levels of di- and tri-nucleotides and modestly increased oxidative phosphorylation, but they differed in their ability to combat oxidative stress. H1334 cells activated the stress kinase AMPK, whereas A549 cells were unable to activate AMPK as they contain a mutation in LKB1, which prevents activation of AMPK. However, A549 cells increased utilization of the Pentose Phosphate pathway (PPP) and had lower reactive oxygen species (ROS) levels than H1334 cells, indicating that A549 cells are better able to modulate an increase in oxidative stress. Inherent resistance of LC-KJ cells is associated with higher baseline levels of NADPH and a delayed reduction of NAD upon NAMPT inhibition. Our data reveals that cell lines show heterogeneous response to NAD depletion and that the underlying molecular and genetic framework in cells can influence the metabolic response to NAMPT inhibition.

  10. Metabolic Response to NAD Depletion across Cell Lines Is Highly Variable.

    Directory of Open Access Journals (Sweden)

    Yang Xiao

    Full Text Available Nicotinamide adenine dinucleotide (NAD is a cofactor involved in a wide range of cellular metabolic processes and is a key metabolite required for tumor growth. NAMPT, nicotinamide phosphoribosyltransferase, which converts nicotinamide (NAM to nicotinamide mononucleotide (NMN, the immediate precursor of NAD, is an attractive therapeutic target as inhibition of NAMPT reduces cellular NAD levels and inhibits tumor growth in vivo. However, there is limited understanding of the metabolic response to NAD depletion across cancer cell lines and whether all cell lines respond in a uniform manner. To explore this we selected two non-small cell lung carcinoma cell lines that are sensitive to the NAMPT inhibitor GNE-617 (A549, NCI-H1334, one that shows intermediate sensitivity (NCI-H441, and one that is insensitive (LC-KJ. Even though NAD was reduced in all cell lines there was surprising heterogeneity in their metabolic response. Both sensitive cell lines reduced glycolysis and levels of di- and tri-nucleotides and modestly increased oxidative phosphorylation, but they differed in their ability to combat oxidative stress. H1334 cells activated the stress kinase AMPK, whereas A549 cells were unable to activate AMPK as they contain a mutation in LKB1, which prevents activation of AMPK. However, A549 cells increased utilization of the Pentose Phosphate pathway (PPP and had lower reactive oxygen species (ROS levels than H1334 cells, indicating that A549 cells are better able to modulate an increase in oxidative stress. Inherent resistance of LC-KJ cells is associated with higher baseline levels of NADPH and a delayed reduction of NAD upon NAMPT inhibition. Our data reveals that cell lines show heterogeneous response to NAD depletion and that the underlying molecular and genetic framework in cells can influence the metabolic response to NAMPT inhibition.

  11. [Important application of intestinal transporters and metabolism enzymes on gastrointestinal disposal of active ingredients of Chinese materia medica].

    Science.gov (United States)

    Bi, Xiaolin; Du, Qiu; Di, Liuqing

    2010-02-01

    Oral drug bioavailability depends on gastrointestinal absorption, intestinal transporters and metabolism enzymes are the important factors in drug gastrointestinal absorption and they can also be induced or inhibited by the active ingredients of Chinese materia medica. This article presents important application of intestinal transporters and metabolism enzymes on gastrointestinal disposal of the active ingredients of Chinese materia medica, and points out the importance of research on transport and metabolism of the active ingredients of Chinese materia medica in Chinese extract and Chinese medicinal formulae.

  12. Metabolic parameters and blood leukocyte profiles in cows from herds with high or low mastitis incidence.

    Science.gov (United States)

    Holtenius, K; Persson Waller, K; Essén-Gustavsson, B; Holtenius, P; Hallén Sandgren, C

    2004-07-01

    The objective of this study was to determine whether there were differences in metabolic parameters and blood leukocyte profiles between cows in herds with high or low yearly mastitis incidence. In this study, 271 cows from 20 high yielding dairy herds were examined. According to the selection criteria, all herds had low somatic cell counts. Ten of the selected herds represented low mastitis treatment incidence (LMI) and ten herds had high mastitis treatment incidence (HMI). The farms were visited once and blood samples were taken from each cow that was in the interval from three weeks before to 15 weeks after parturition. The eosinophil count was significantly lower among cows from the HMI herds in the period from four weeks to 15 weeks after parturition. The plasma concentrations of beta-hydroxybutyrate, glucose, insulin and urea did not differ between groups, but the concentration of nonesterified fatty acids was significantly higher among HMI cows during the period three weeks after parturition. The concentration of the amino acid tryptophan in plasma was significantly lower among the HMI cows prior to parturition. Glutamine was significantly lower in cows from HMI herds during the first three weeks after parturition. Arginine was consistently lower in HMI cows, although the decrease was only significant during the period from four to fifteen weeks after parturition. The results suggest that there were differences in the metabolism and immune status between herds with high or low yearly mastitis treatment incidence indicating an increased metabolic stress in HMI cows.

  13. Are barriers to physical activity similar for adults with and without abnormal glucose metabolism?

    Science.gov (United States)

    Hume, Clare; Dunstan, David; Salmon, Jo; Healy, Genevieve; Andrianopoulos, Nick; Owen, Neville

    2010-01-01

    The purpose of this study was to examine perceived barriers to physical activity among adults with and without abnormal glucose metabolism (AGM), and whether barriers varied according to physical activity status. The 1999 to 2000 Australian Diabetes, Obesity, and Lifestyle Study (AusDiab) was a population-based cross-sectional study among adults aged > or =25 years. AGM was identified through an oral glucose tolerance test. The previous week's physical activity and individual, social, and environmental barriers to physical activity were self-reported. Logistic regression analyses examined differences in barriers to physical activity between those with and without AGM, and for those with and without AGM who did and did not meet the minimum recommendation of 150 minutes/week of moderate-to-vigorous intensity physical activity. Of the 7088 participants (47.5 +/- 12.7 years; 46% male), 18.5% had AGM. Approximately 47.5% of those with AGM met the physical activity recommendation, compared to 54.7% of those without AGM (P barriers to physical activity included lack of time, other priorities, and being tired. Following adjustment for sociodemographic and behavioral factors, there were few differences in barriers to physical activity between those with and without AGM, even after stratifying according to physical activity. Adults with AGM report similar barriers to physical activity, as do those without AGM. Programs for those with AGM can therefore focus on the known generic adult-reported barriers to physical activity.

  14. Glycoprotein Ib activation by thrombin stimulates the energy metabolism in human platelets

    Science.gov (United States)

    Corona de la Peña, Norma; Gutiérrez-Aguilar, Manuel; Hernández-Reséndiz, Ileana; Marín-Hernández, Álvaro

    2017-01-01

    Thrombin-induced platelet activation requires substantial amounts of ATP. However, the specific contribution of each ATP-generating pathway i.e., oxidative phosphorylation (OxPhos) versus glycolysis and the biochemical mechanisms involved in the thrombin-induced activation of energy metabolism remain unclear. Here we report an integral analysis on the role of both energy pathways in human platelets activated by several agonists, and the signal transducing mechanisms associated with such activation. We found that thrombin, Trap-6, arachidonic acid, collagen, A23187, epinephrine and ADP significantly increased glycolytic flux (3–38 times vs. non-activated platelets) whereas ristocetin was ineffective. OxPhos (33 times) and mitochondrial transmembrane potential (88%) were increased only by thrombin. OxPhos was the main source of ATP in thrombin-activated platelets, whereas in platelets activated by any of the other agonists, glycolysis was the principal ATP supplier. In order to establish the biochemical mechanisms involved in the thrombin-induced OxPhos activation in platelets, several signaling pathways associated with mitochondrial activation were analyzed. Wortmannin and LY294002 (PI3K/Akt pathway inhibitors), ristocetin and heparin (GPIb inhibitors) as well as resveratrol, ATP (calcium-release inhibitors) and PP1 (Tyr-phosphorylation inhibitor) prevented the thrombin-induced platelet activation. These results suggest that thrombin activates OxPhos and glycolysis through GPIb-dependent signaling involving PI3K and Akt activation, calcium mobilization and protein phosphorylation. PMID:28817667

  15. Testosterone affects hormone-sensitive lipase (HSL) activity and lipid metabolism in the left ventricle

    DEFF Research Database (Denmark)

    Langfort, Jozef; Jagsz, Slawomir; Dobrzyn, Pawel

    2010-01-01

    tissue suggests that testosterone regulates HSL activity. To test whether this is also true in the heart, we measured HSL activity in the left ventricle of sedentary male rats that had been treated with testosterone supplementation or orchidectomy with or without testosterone substitution. Left ventricle...... HSL activity against TG was significantly elevated in intact rats supplemented with testosterone. HSL activity against both TG and diacylglyceride was reduced by orchidectomy, whereas testosterone replacement fully reversed this effect. Moreover, testosterone increased left ventricle free fatty acid...... levels, caused an inhibitory effect on carbohydrate metabolism in the heart, and elevated left ventricular phosphocreatine and ATP levels as compared to control rats. These data indicate that testosterone is involved in cardiac HSL activity regulation which, in turn, may affect cardiac lipid...

  16. Influence of carbofuran on certain metabolic and symbiotic activities of a cowpea Rhizobium

    International Nuclear Information System (INIS)

    Palaniappan, S.; Balasubramanian, A.

    1983-01-01

    Using carbon 14 radioisotope an in-vitro study of the effect of insecticides, carbofuran, on the metabolic and symbiotic activities of Rhizobium sp. cowpea group, was carried out. The study indicated that at 10 ppm carbofuran inhibited the in-vitro growth of the bacterium, suppressed the oxidation of all the Trichloroacetic acid (TCA) cycle intermediates, significantly reduced glucose oxidation and translocation and affected the growth and symbiotic activities of the cowpea as reflected by a reduction in the dry matter production and total nitrogen content. The insecticide was itself degraded by the Rhizobium sp. within 30 days of incubation

  17. Metabolic syndrome indicators and target organ damage in urban active coping African and Caucasian men: the SABPA study.

    Science.gov (United States)

    de Kock, A; Malan, L; Potgieter, J C; Steenekamp, W; van der Merwe, M T

    2012-05-01

    Psychosocial stress relating to an urban environment or accultu