WorldWideScience

Sample records for high lateral resolution

  1. Customized MFM probes with high lateral resolution

    Directory of Open Access Journals (Sweden)

    Óscar Iglesias-Freire

    2016-07-01

    Full Text Available Magnetic force microscopy (MFM is a widely used technique for magnetic imaging. Besides its advantages such as the high spatial resolution and the easy use in the characterization of relevant applied materials, the main handicaps of the technique are the lack of control over the tip stray field and poor lateral resolution when working under standard conditions. In this work, we present a convenient route to prepare high-performance MFM probes with sub-10 nm (sub-25 nm topographic (magnetic lateral resolution by following an easy and quick low-cost approach. This allows one to not only customize the tip stray field, avoiding tip-induced changes in the sample magnetization, but also to optimize MFM imaging in vacuum (or liquid media by choosing tips mounted on hard (or soft cantilevers, a technology that is currently not available on the market.

  2. Mapping the layer count of few-layer hexagonal boron nitride at high lateral spatial resolutions

    Science.gov (United States)

    Mohsin, Ali; Cross, Nicholas G.; Liu, Lei; Watanabe, Kenji; Taniguchi, Takashi; Duscher, Gerd; Gu, Gong

    2018-01-01

    Layer count control and uniformity of two dimensional (2D) layered materials are critical to the investigation of their properties and to their electronic device applications, but methods to map 2D material layer count at nanometer-level lateral spatial resolutions have been lacking. Here, we demonstrate a method based on two complementary techniques widely available in transmission electron microscopes (TEMs) to map the layer count of multilayer hexagonal boron nitride (h-BN) films. The mass-thickness contrast in high-angle annular dark-field (HAADF) imaging in the scanning transmission electron microscope (STEM) mode allows for thickness determination in atomically clean regions with high spatial resolution (sub-nanometer), but is limited by surface contamination. To complement, another technique based on the boron K ionization edge in the electron energy loss spectroscopy spectrum (EELS) of h-BN is developed to quantify the layer count so that surface contamination does not cause an overestimate, albeit at a lower spatial resolution (nanometers). The two techniques agree remarkably well in atomically clean regions with discrepancies within  ±1 layer. For the first time, the layer count uniformity on the scale of nanometers is quantified for a 2D material. The methodology is applicable to layer count mapping of other 2D layered materials, paving the way toward the synthesis of multilayer 2D materials with homogeneous layer count.

  3. High-resolution, preparative purification of PEGylated protein using a laterally-fed membrane chromatography device.

    Science.gov (United States)

    Madadkar, Pedram; Nino, Sergio Luna; Ghosh, Raja

    2016-11-01

    We discuss the use of a laterally-fed membrane chromatography (or LFMC) device for single-step purification of mono-PEGylated lysozyme. Recent studies have shown such LFMC devices to be suitable for high-resolution, multi-component separation of proteins in the bind-and-elute mode. The device used in this study contained a stack of rectangular cation-exchange membranes having 9.25mL bed volume. PEGylation of lysozyme was carried out in batch mode using 5kDa methoxy-polyethyleneglycol propionaldehyde (or m-PEG propionaldehyde) in the presence of sodium cyanoborohydride as reducing agent. Membrane chromatographic separation was carried out at 1.62 membrane bed volumes per minute flow rate, in the bind-and-elute mode. When a salt gradient was applied, the higher PEGylated forms of lysozyme (i.e. the byproducts) eluted earlier than mono-PEGylated lysozyme (the target product), while lysozyme eluted last. Under elution conditions optimized for resolution and speed, the separation could be carried out in less than 15 membrane bed volumes. High purity and recovery of mono-PEGylated lysozyme was obtained. The resolution of separation of mono-PEGylated lysozyme obtained under the above condition was comparable to that reported in the literature for equivalent cation-exchange resin columns while the flow rate expressed in bed volumes/min was 21.7 times higher. Also, the number of theoretical plates per meter was significantly higher with the LFMC device. Therefore the LFMC based purification process discussed in this paper combined high-productivity with high-resolution. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Distinct laterality alterations distinguish mild cognitive impairment and Alzheimer's disease from healthy aging: statistical parametric mapping with high resolution MRI.

    Science.gov (United States)

    Long, Xiaojing; Zhang, Lijuan; Liao, Weiqi; Jiang, Chunxiang; Qiu, Bensheng

    2013-12-01

    Laterality of human brain varies under healthy aging and diseased conditions. The alterations in hemispheric asymmetry may embed distinct biomarkers linked to the disease dynamics. Statistical parametric mapping based on high-resolution magnetic resonance imaging (MRI) and image processing techniques have allowed automated characterization of morphological features across the entire brain. In this study, 149 subjects grouped in healthy young, healthy elderly, mild cognitive impairment (MCI), and Alzheimer's disease (AD) were investigated using multivariate analysis for regional cerebral laterality indexed by surface area, curvature index, cortical thickness, and subjacent white matter volume measured on high-resolution MR images. Asymmetry alteration of MCI and AD were characterized by marked region-specific reduction, while healthy elderly featured a distinct laterality shift in the limbic system in addition to regional asymmetry loss. Lack of the laterality shift in limbic system and early loss of asymmetry in entorhinal cortex may be biomarkers to identify preclinical AD among other dementia. Multivariate analysis of hemispheric asymmetry may provide information helpful for monitoring the disease progress and improving the management of MCI and AD. Copyright © 2012 Wiley Periodicals, Inc.

  5. Assimilating high-resolution winds from a Doppler lidar using an ensemble Kalman filter with lateral boundary adjustment

    Directory of Open Access Journals (Sweden)

    Masahiro Sawada

    2015-03-01

    Full Text Available Monitoring severe weather, including wind shear and clear air turbulence, is important for aviation safety. To provide accurate information for nowcasts and very short-range forecasts up to an hour, a rapid-update prediction system has been developed, with a particular focus on lateral boundary adjustment (LBA using the local ensemble transform Kalman filter (LETKF. Due to the small forecast domain, limited-area forecasts are dominated by the lateral boundary conditions from coarse-resolution global forecasts. To effectively extend the forecast lead time for the small domain, a new LBA scheme using the LETKF has been developed and assessed with three sea-breeze front cases. Observing system simulation experiments for high-resolution winds from a simulated Doppler lidar were performed with the Japan Meteorological Agency Nonhydrostatic Mesoscale Model at a horizontal resolution of 400 m and 15-minute update cycle. The results indicate that the LBA improved the forecast significantly. In particular, the 1-hour wind-speed forecast with the LBA is as accurate as the 15-minute forecast without the LBA. The assimilation of Doppler lidar high-resolution wind data with the LBA is a promising approach for very short-range forecasts up to an hour with a small domain, such as for aviation weather.

  6. Laterally Spreading Tumors of the Colon During High Resolution Colonoscopy with Narrow Band Imaging and Acetic Acid Chromoscopy

    Directory of Open Access Journals (Sweden)

    V.A. Yakovenko

    2015-03-01

    Materials and Methods. 1632 colonoscopy protocols were studied: 735 — by using video colonoscope Olympus CF-HQ190L and 897 — Olympus CF-150. Results and Discussion. In study group, adenoma detection rate was higher than in control one: 0.78 (571/735 vs. 0.47 (422/897, p < 0.00001; c2 = 157.9. Adenoma detection index was 3.6 times higher in study group than in control one: 2.9 (2,104/735 vs. 0.8 (708/897. Laterally spreading tumors were diagnosed 2.2 times more often in study group than in control one: 22 % (187/735 vs. 10 % (85/897, p < 0.00001; c2 = 53.6. Conclusions. High resolution colonoscopy with narrow band imaging and acetic acid chromoscopy has a high diagnostic value for detection of laterally spreading tumors of the colon.

  7. Ambiguity Resolution in Lateralized Arabic

    Science.gov (United States)

    Hayadre, Manar; Kurzon, Dennis; Peleg, Orna; Zohar, Eviatar

    2015-01-01

    We examined ambiguity resolution in reading in Arabic. Arabic is an abjad orthography and is morphologically similar to Hebrew. However, Arabic literacy occurs in a diglossic context, and its orthography is more visually complex than Hebrew. We therefore tested to see whether hemispheric differences will be similar or different from previous…

  8. Recollection, familiarity, and content-sensitivity in lateral parietal cortex: A high-resolution fMRI study

    Directory of Open Access Journals (Sweden)

    Jeffrey D. Johnson

    2013-05-01

    Full Text Available Numerous studies have identified brain regions where activity is consistently correlated with the retrieval (recollection of qualitative episodic information. This ‘core recollection network’ can be contrasted with regions where activity differs according to the contents of retrieval. The present study used high-resolution fMRI to investigate whether these putatively-distinct retrieval processes engage common versus dissociable regions. Subjects studied words with two encoding tasks and then performed a memory test in which they distinguished between recollection and different levels of recognition confidence. The fMRI data from study and test revealed several overlapping regions where activity differed according to encoding task, suggesting that content was selectively reinstated during retrieval. The majority of recollection-related regions, though, did not exhibit reinstatement effects, providing support for a core recollection network. Importantly, lateral parietal cortex demonstrated a clear dissociation, whereby recollection effects were localized to angular gyrus and confidence effects were restricted to intraparietal sulcus. Moreover, the latter region exhibited a non-monotonic pattern, consistent with a neural signal reflecting item familiarity rather than a generic form of memory strength. Together, the findings show that episodic retrieval relies on both content-sensitive and core recollective processes, and these can be differentiated from familiarity-based recognition memory.

  9. Laser-induced local activation of Mg-doped GaN with a high lateral resolution for high power vertical devices

    Directory of Open Access Journals (Sweden)

    Noriko Kurose

    2018-01-01

    Full Text Available A method for laser-induced local p-type activation of an as-grown Mg-doped GaN sample with a high lateral resolution is developed for realizing high power vertical devices for the first time. As-grown Mg-doped GaN is converted to p-type GaN in a confined local area. The transition from an insulating to a p-type area is realized to take place within about 1–2 μm fine resolution. The results show that the technique can be applied in fabricating the devices such as vertical field effect transistors, vertical bipolar transistors and vertical Schottkey diode so on with a current confinement region using a p-type carrier-blocking layer formed by this technique.

  10. Global lateral transfer and evasion of C in freshwater systems - a revised high-resolution budget analysis

    Science.gov (United States)

    Lauerwald, Ronny; Laruelle, Goulven; Hartmann, Jens; Ciais, Philippe; Regnier, Pierre

    2016-04-01

    The net CO2 evasion from rivers (FCO2) is an important component when quantifying the lateral displacement of biologically fixed carbon from terrestrial systems and wetlands through the river network. Here, we present global maps of FCO2 from stream orders 3 and higher at 0.5° resolution (Lauerwald et al., 2015 - GBC). This resolution is comparable to that of Earth System Model simulations of vegetation and soil C dynamics and is also compatible with GlobalNEWS simulations of fluvial DOC and POC exports to the sea (Mayorga et al., 2010 - Environmental Modeling and Software). A GIS based approach was used to derive an empirical pCO2 model trained on data from 1182 sampling locations. While only few sampling data are available for Asia and Africa, the sampling locations cover the full spectrum from high to low latitudes. The empirical model predicts pCO2 from terrestrial net primary production, population density, and slope gradient within the river catchment and mean air temperature at the sampling location (r² = 0.47). The predicted pCO2 map was combined with spatially explicit estimates of stream surface area and gas exchange velocity calculated from published empirical equations and data sets to derive the FCO2 map. We used Monte Carlo simulations to assess the uncertainties of our estimates. At the global scale, we estimate an average river pCO2 of 2400 (2019-2826) μatm and a FCO2 of 650 (483-846) Tg C yr-1 (5th and 95th percentiles of confidence interval). Our maps reveal strong latitudinal gradients in pCO2, stream surface area, and FCO2. The zone between 10°N and 10°S contributes about half of the global CO2 evasion. Combining riverine FCO2 with the estimated fluvial DOC and POC exports from GlobalNEWS and FCO2 from lakes (downscaled from Raymond et al. 2013 - Nature), the total lateral transfer of biologically fixed C on land and in wetlands adds up to 1.3 Pg C yr-1. This estimate is likely conservative because CO2 evasion from smaller streams is not

  11. Utilizing a Robotic Sprayer for High Lateral and Mass Resolution MALDI FT-ICR MSI of Microbial Cultures

    Energy Technology Data Exchange (ETDEWEB)

    Anderton, Christopher R.; Chu, Rosalie K.; Tolic, Nikola; Creissen, Alain V.; Pasa-Tolic, Ljiljana

    2016-01-07

    The ability to visualize biochemical interactions between microbial communities using MALDI MSI has provided tremendous insights into a variety of biological fields. Matrix application using a sieve proved to be incredibly useful, but it had many limitations that include uneven matrix coverage and limitation in the types of matrices one could employ in their studies. Recently, there has been a concerted effort to improve matrix application for studying agar plated microbial cultures, many of which utilized automated matrix sprayers. Here, we describe the usefulness of using a robotic sprayer for matrix application. The robotic sprayer has two-dimensional control over where matrix is applied and a heated capillary that allows for rapid drying of the applied matrix. This method provided a significant increase in MALDI sensitivity over the sieve method, as demonstrated by FT-ICR MS analysis, facilitating the ability to gain higher lateral resolution MS images of Bacillus Subtilis than previously reported. This method also allowed for the use of different matrices to be applied to the culture surfaces.

  12. Online monitoring of the distributed lateral displacement in large AC power generators using a high spatial resolution Brillouin optical fiber sensor

    Science.gov (United States)

    Dong, Yongkang; Bao, Xiaoyi; Chen, Liang

    2011-11-01

    We report for the first time, to the best of our knowledge, online monitoring of the distributed lateral displacement in large AC power generators using high spatial resolution differential pulse-width pair Brillouin optical time-domain analysis (DPP-BOTDA). To perform the measurement of distributed lateral displacements with periods of only a few cm in large AC power generators, a 2 cm spatial resolution strain measurement is realized using the differential pulse pair of 8/8.2 ns in DPP-BOTDA, and then the lateral displacements are reconstructed according to the strain-displacement relation with the assumption of a sine shape function. Using different fiberglass ripple springs, two types of lateral displacement with periods of 3 and 3.25 cm are demonstrated, obtaining a maximum displacement of 0.43 mm with a measurement accuracy of ~ 40 µm. This provides the information on the stator coil tightness through online monitoring of the distributed lateral displacement caused by the fiberglass ripple springs, and ensures safe operating conditions for large AC power generators. In addition, the large number of sensing points associated with distributed optical fiber sensors make it economically and technically practical to monitor large numbers of key components in a generator without any interference from the large magnetic and electrical fields.

  13. Site-specific sonoporation of human melanoma cells at the cellular level using high lateral-resolution ultrasonic micro-transducer arrays.

    Science.gov (United States)

    Thein, Myo; Cheng, An; Khanna, Payal; Zhang, Chunfeng; Park, Eun-Joo; Ahmed, Daniel; Goodrich, Christopher J; Asphahani, Fareid; Wu, Fengbing; Smith, Nadine B; Dong, Cheng; Jiang, Xiaoning; Zhang, Miqin; Xu, Jian

    2011-09-15

    We developed a new instrumental method by which human melanoma cells (LU1205) are sonoporated via radiation pressures exerted by highly-confined ultrasonic waves produced by high lateral-resolution ultrasonic micro-transducer arrays (UMTAs). The method enables cellular-level site-specific sonoporation within the cell monolayer due to UMTAs and can be applicable in the delivery of drugs and gene products in cellular assays. In this method, cells are seeded on the biochip that employs UMTAs for high spatial resolution and specificity. UMTAs are driven by 30-MHz sinusoidal signals and the resulting radiation pressures induce sonoporation in the targeted cells. The sonoporation degree and the effective lateral resolution of UMTAs are determined by performing fluorescent microscopy and analysis of carboxylic-acid-derivatized CdSe/ZnS quantum dots passively transported into the cells. Models representing the transducer-generated ultrasound radiation pressure, the ultrasound-inflicted cell membrane wound, and the transmembrane transport through the wound are developed to determine the ultrasound-pressure-dependent wound size and enhanced cellular uptake of nanoparticles. Model-based calculations show that the effective wound size and cellular uptake of nanoparticles increase linearly with increasing ultrasound pressure (i.e., at applied radiation pressures of 0.21, 0.29, and 0.40 MPa, the ultrasound-induced initial effective wound radii are 150, 460, and 650 nm, respectively, and the post-sonoporation intracellular quantum-dot concentrations are 7.8, 22.8, and 29.9 nM, respectively) and the threshold pressure required to induce sonoporation in LU1205 cells is ∼0.12 MPa. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. High Resolution Elevation Contours

    Data.gov (United States)

    Minnesota Department of Natural Resources — This dataset contains contours generated from high resolution data sources such as LiDAR. Generally speaking this data is 2 foot or less contour interval.

  15. Inkjet Printing of Conductive Inks with High Lateral Resolution on Omniphobic “R F Paper” for Paper-Based Electronics and MEMS

    OpenAIRE

    Lessing, Joshua; Glavan, Ana C.; Walker, S. Brett; Keplinger, Christoph; Lewis, Jennifer; Whitesides, George McClelland

    2014-01-01

    The use of omniphobic “fluoroalkylated paper” as a substrate for inkjet printing of aqueous inks that are the precursors of electrically conductive patterns is described. By controlling the surface chemistry of the paper, it is possible to print high resolution, conductive patterns that remain conductive after folding and exposure to common solvents.

  16. Ultra high resolution tomography

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, W.S.

    1994-11-15

    Recent work and results on ultra high resolution three dimensional imaging with soft x-rays will be presented. This work is aimed at determining microscopic three dimensional structure of biological and material specimens. Three dimensional reconstructed images of a microscopic test object will be presented; the reconstruction has a resolution on the order of 1000 A in all three dimensions. Preliminary work with biological samples will also be shown, and the experimental and numerical methods used will be discussed.

  17. Inkjet printing of conductive inks with high lateral resolution on omniphobic "R(F) paper" for paper-based electronics and MEMS.

    Science.gov (United States)

    Lessing, Joshua; Glavan, Ana C; Walker, S Brett; Keplinger, Christoph; Lewis, Jennifer A; Whitesides, George M

    2014-07-16

    The use of omniphobic "fluoroalkylated paper" as a substrate for inkjet printing of aqueous inks that are the precursors of electrically conductive patterns is described. By controlling the surface chemistry of the paper, it is possible to print high resolution, conductive patterns that remain conductive after folding and exposure to common solvents. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Definition and Paleoseismology of the Active, Left-Lateral Enriquillo-Plantain Garden Fault Zone Based on High-Resolution Chirp Profiles: Lakes Azuey and Mirogoane, Haiti

    Science.gov (United States)

    Wang, J.; Mann, P.; von Lignau, A. V.

    2014-12-01

    In July 2014, we obtained a total of 94 km of high-resolution Chirp profiles from the 129 km2, brackish Lake Azuey and 37 km of profiles from the 14 km2, fresh water Lake Mirogoane that both straddle the active trace of the Enriquillo-Plantain Garden fault zone (EPGFZ) of Haiti. 80% of the grid on Azuey and 85% on Mirogoane was dedicated to north-south profiles of the EPGFZ. In Azuey we defined the linear and east-west-striking fault trace in deformed Holocene sediments along with its landfalls west of Lake Azuey in Haiti and east of Lake Azuey in the Dominican Republic. All profiles showed the fault to be a sub-vertical flower structure whose active traces could be traced on Chirp data to a depth of 30 m below the lake floor. Previous workers have suggested that this fault ruptured during a large November, 1751, earthquake with a parallel and elongate felt zone. We hypothesize the most recent break of the fault several meters below the lake floor to have formed during the 1751 event but plan a coring program to precisely constrain the timing of historical and prehistorical events based on syn-faulting colluvial wedges observed on Chirp profiles. Our survey of Mirogoane confirmed its rhomboidal pull-apart structure with the basin center at a depth of 42-8 m making this basin the deepest lake in the Caribbean region. Deformational features include active folds at the lake bottom, large oblique-slip normal faults at an angle to the bounding east-west faults, and 30 m of recognizable stratigraphy. The 7 m of Holocene cored in the basin center in 1988 is observed to be highly deformed and locally folded and overlies with angular unconformity a well stratified and more folded lower basinal unit. Historical events are proposed to have ruptured on or near this segment of the EPGFZ in 1701 and 1770.

  19. High Time Resolution Astrophysics

    CERN Document Server

    Phelan, Don; Shearer, Andrew

    2008-01-01

    High Time Resolution Astrophysics (HTRA) is an important new window to the universe and a vital tool in understanding a range of phenomena from diverse objects and radiative processes. This importance is demonstrated in this volume with the description of a number of topics in astrophysics, including quantum optics, cataclysmic variables, pulsars, X-ray binaries and stellar pulsations to name a few. Underlining this science foundation, technological developments in both instrumentation and detectors are described. These instruments and detectors combined cover a wide range of timescales and can measure fluxes, spectra and polarisation. These advances make it possible for HTRA to make a big contribution to our understanding of the Universe in the next decade.

  20. Patterned thin metal film for the lateral resolution measurement of photoacoustic tomography

    Directory of Open Access Journals (Sweden)

    Kim Do-Hyun

    2012-07-01

    Full Text Available Abstract Background Image quality assessment method of photoacoustic tomography has not been completely standardized yet. Due to the combined nature of photonic signal generation and ultrasonic signal transmission in biological tissue, neither optical nor ultrasonic traditional methods can be used without modification. An optical resolution measurement technique was investigated for its feasibility for resolution measurement of photoacoustic tomography. Methods A patterned thin metal film deposited on silica glass provides high contrast in optical imaging due to high reflectivity from the metal film and high transmission from the glass. It provides high contrast when it is used for photoacoustic tomography because thin metal film can absorb pulsed laser energy. An US Air Force 1951 resolution target was used to generate patterned photoacoustic signal to measure the lateral resolution. Transducer with 2.25 MHz bandwidth and a sample submerged in water and gelatinous block were tested for lateral resolution measurement. Results Photoacoustic signal generated from a thin metal film deposited on a glass can propagate along the surface or through the surrounding medium. First, a series of experiments with tilted sample confirmed that the measured photoacoustic signal is what is propagating through the medium. Lateral resolution of the photoacoustic tomography system was successfully measured for water and gelatinous block as media: 0.33 mm and 0.35 mm in water and gelatinous material, respectively, when 2.25 MHz transducer was used. Chicken embryo was tested for biomedical applications. Conclusions A patterned thin metal film sample was tested for its feasibility of measuring lateral resolution of a photoacoustic tomography system. Lateral resolutions in water and gelatinous material were successfully measured using the proposed method. Measured resolutions agreed well with theoretical values.

  1. Hybrid averaging offers high-flow contrast by cost apportionment among imaging time, axial, and lateral resolution in optical coherence tomography angiography.

    Science.gov (United States)

    Li, Peng; Cheng, Yuxuan; Li, Pei; Zhou, Liping; Ding, Zhihua; Ni, Yang; Pan, Cong

    2016-09-01

    The current temporal, wavelength, angular, and spatial averaging approaches trade imaging time and resolution for multiple independent measurements that improve the flow contrast in optical coherence tomography angiography (OCTA). We find that these averaging approaches are equivalent in principle, offering almost the same flow contrast enhancement as the number of averages increases. Based on this finding, we propose a hybrid averaging strategy for contrast enhancement by cost apportionment. We demonstrate that, compared with any individual approach, the hybrid averaging is able to offer a desired flow contrast without severe degradation of imaging time and resolution. Making use of the extended range of a VCSEL-based swept-source OCT, an angular averaging approach by path length encoding is also demonstrated for flow contrast enhancement.

  2. High Def Resolution

    CERN Multimedia

    2008-01-01

    According to the report, the Times Square Ball in New York scheduled to drop later that night had spent much of 2007 being renovated and remodeled so that it could now proudly display over 16 million colors. At the time, I didn't think much of it, but later on, my thoughts turned not to sex, like so many of my peers (and certain fruit flies I could mention), but back to this magic colorful ball.

  3. High resolution signal processing

    Science.gov (United States)

    Tufts, Donald W.

    1993-08-01

    Motivated by the goal of efficient, effective, high-speed integrated-circuit realization, we have discovered an algorithm for high speed Fourier analysis called the Arithmetic Fourier Transform (AFT). It is based on the number-theoretic method of Mobius inversion, a method that is well suited for integrated-circuit realization. The computation of the AFT can be carried out in parallel, pipelined channels, and the individual operations are very simple to execute and control. Except for a single scaling in each channel, all the operations are additions or subtractions. Thus, it can reduce the required power, volume, and cost. Also, analog switched-capacitor realizations of the AFT have been studied. We have also analyzed the performance of a broad and useful class of data adaptive signal estimation algorithms. This in turn has led to our proposed improvements in the methods. We have used perturbation analysis of the rank-reduced data matrix to calculate its statistical properties. The improvements made have been demonstrated by computer simulation as well as by comparison with the Cramer-Rao Bound.

  4. Columbine High: Five Years Later

    Science.gov (United States)

    Hurst, Marianne D.

    2004-01-01

    A few weeks before the fifth anniversary of the Columbine High School shootings on April 20, 1999, Principal Frank DeAngelis reflects on how his school has changed over the past five years. Much like the September 11, 2001 terrorist attacks against the United States, "Columbine" carries a chilling meaning that resonates across the…

  5. Enhanced High Resolution RBS System

    Science.gov (United States)

    Pollock, Thomas J.; Hass, James A.; Klody, George M.

    2011-06-01

    Improvements in full spectrum resolution with the second NEC high resolution RBS system are summarized. Results for 50 Å TiN/HfO films on Si yielding energy resolution on the order of 1 keV are also presented. Detector enhancements include improved pulse processing electronics, upgraded shielding for the MCP/RAE detector, and reduced noise generated from pumping. Energy resolution measurements on spectra front edge coupled with calculations using 0.4mStr solid angle show that beam energy spread at 400 KeV from the Pelletron® accelerator is less than 100 eV. To improve user throughput, magnet control has been added to the automatic data collection. Depth profiles derived from experimental data are discussed. For the thin films profiled, depth resolutions were on the Angstrom level with the non-linear energy/channel conversions ranging from 100 to 200 eV.

  6. High Spatiotemporal Resolution Prostate MRI

    Science.gov (United States)

    2017-09-01

    AWARD NUMBER: W81XWH-15-1-0341 TITLE: High Spatiotemporal Resolution Prostate MRI PRINCIPAL INVESTIGATOR: Stephen J. Riederer, Ph.D...Resolution Prostate MRI 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-15-1-0341 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Stephen J. Riederer E-Mail...overall purpose of this project is to develop improved means using MRI for detecting prostate cancer with the potential for differentiating disease

  7. Requirements on high resolution detectors

    Energy Technology Data Exchange (ETDEWEB)

    Koch, A. [European Synchrotron Radiation Facility, Grenoble (France)

    1997-02-01

    For a number of microtomography applications X-ray detectors with a spatial resolution of 1 {mu}m are required. This high spatial resolution will influence and degrade other parameters of secondary importance like detective quantum efficiency (DQE), dynamic range, linearity and frame rate. This note summarizes the most important arguments, for and against those detector systems which could be considered. This article discusses the mutual dependencies between the various figures which characterize a detector, and tries to give some ideas on how to proceed in order to improve present technology.

  8. High resolution tomographic instrument development

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational.

  9. High resolution tomographic instrument development

    Energy Technology Data Exchange (ETDEWEB)

    1992-08-01

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational.

  10. Section on High Resolution Optical Imaging (HROI)

    Data.gov (United States)

    Federal Laboratory Consortium — The Section on High Resolution Optical Imaging (HROI) develops novel technologies for studying biological processes at unprecedented speed and resolution. Research...

  11. Resolution of lateral acoustic space assessed by electroencephalography and psychoacoustics

    Directory of Open Access Journals (Sweden)

    Jan eBennemann

    2013-06-01

    Full Text Available The encoding of auditory spatial acuity (measured as the precision to distinguish between two spatially distinct stimuli by neural circuits in both auditory cortices is a matter of ongoing research. Here, the event-related potential mismatch negativity (MMN, a sensitive indicator of preattentive auditory change detection, was used to tap into the underlying mechanism of cortical representation of auditory spatial information. We characterized the MMN response affected by the degree of spatial deviance in lateral acoustic space using a passive oddball paradigm. Two stimulation conditions specifically focusing on the investigation of the mid- and far-lateral acoustic spcace were considered: (i 65° left standard position with deviant positions at 70°, 75°, and 80°; and (ii 95° left standard position with deviant positions at 90°, 85°, and 80°. Additonally, behavioral data on the minimum audible angle (MAA were acquired for the respective standard positions (65°, 95° left to quantify spatial discrimination in separating disctinct sound sources. The two measurements disclosed the linkage between the (preattentive MMN response and the (attentive behavioral threshold. At 65° spatial deviations as small as 5° reliably elicited MMNs. Thereby, the MMN amplitudes monotonously increased as a function of spatial deviation. At 95°, spatial deviations of 15° were necessary to elicit a valid MMN. The behavioral data, however, yielded no difference in mean MAA thresholds for position 65° and 95°. The different effects of laterality on MMN responses and MAA thresholds suggest a role of spatial selective attention mechanisms particulary relevant in active discrimination of neighbouring sound sources, especially in the lateral acoustic space.

  12. Resolution of lateral acoustic space assessed by electroencephalography and psychoacoustics.

    Science.gov (United States)

    Bennemann, Jan; Freigang, Claudia; Schröger, Erich; Rübsamen, Rudolf; Richter, Nicole

    2013-01-01

    The encoding of auditory spatial acuity (measured as the precision to distinguish between two spatially distinct stimuli) by neural circuits in both auditory cortices is a matter of ongoing research. Here, the event-related potential (ERP) mismatch negativity (MMN), a sensitive indicator of preattentive auditory change detection, was used to tap into the underlying mechanism of cortical representation of auditory spatial information. We characterized the MMN response affected by the degree of spatial deviance in lateral acoustic space using a passive oddball paradigm. Two stimulation conditions (SCs)-specifically focusing on the investigation of the mid- and far-lateral acoustic space-were considered: (1) 65° left standard position with deviant positions at 70, 75, and 80°; and (2) 95° left standard position with deviant positions at 90, 85, and 80°. Additionally, behavioral data on the minimum audible angle (MAA) were acquired for the respective standard positions (65, 95° left) to quantify spatial discrimination in separating distinct sound sources. The two measurements disclosed the linkage between the (preattentive) MMN response and the (attentive) behavioral threshold. At 65° spatial deviations as small as 5° reliably elicited MMNs. Thereby, the MMN amplitudes monotonously increased as a function of spatial deviation. At 95°, spatial deviations of 15° were necessary to elicit a valid MMN. The behavioral data, however, yielded no difference in mean MAA thresholds for position 65 and 95°. The different effects of laterality on MMN responses and MAA thresholds suggest a role of spatial selective attention mechanisms particularly relevant in active discrimination of neighboring sound sources, especially in the lateral acoustic space.

  13. A novel Region of Interest (ROI) imaging technique for biplane imaging in interventional suites: high-resolution small field-of-view imaging in the frontal plane and dose-reduced, large field-of-view standard-resolution imaging in the lateral plane

    Science.gov (United States)

    Swetadri Vasan, Setlur Nagesh; Ionita, C.; Bednarek, D. R.; Rudin, Stephen

    2014-03-01

    Endovascular-Image-Guided-Interventional (EIGI) treatment of neuro-vascular conditions such as aneurysms, stenosed arteries, and vessel thrombosis make use of treatment devices such as stents, coils, and balloons which have very small feature sizes, 10's of microns to a few 100's of microns, and hence demand a high resolution imaging system. The current state-of-the-art flat panel detector (FPD) has about a 200-um pixel size with the Nyquist of 2.5 lp/mm. For higher-resolution imaging a charge-coupled device (CCD) based Micro-Angio - Fluoroscope (MAF-CCD) with a pixel size of 35um (Nyquist of 11 lp/mm) was developed and previously reported. Although the detector addresses the high resolution needs, the Field-Of-View (FOV) is limited to 3.5 cm x 3.5 cm, which is much smaller than current FPDs. During the use of the MAF-CCD for delicate parts of the intervention, it may be desirable to have real-time monitoring outside the MAF FOV with a low dose, and lower, but acceptable, quality image. To address this need, a novel imaging technique for biplane imaging systems has been developed, using an MAFCCD in the frontal plane and a dose-reduced standard large FOV imager in the lateral plane. The dose reduction is achieved by using a combination of ROI fluoroscopy and spatially different temporal filtering, a technique that has been previously presented. In order to evaluate this technique, a simulation using images acquired during an actual EIGI treatment on a patient, followed by an actual implementation on phantoms is presented.

  14. High-resolution multiphoton cryomicroscopy.

    Science.gov (United States)

    König, Karsten; Uchugonova, Aisada; Breunig, Hans Georg

    2014-03-15

    An ultracompact high-resolution multiphoton cryomicroscope with a femtosecond near infrared fiber laser has been utilized to study the cellular autofluorescence during freezing and thawing of cells. Cooling resulted in an increase of the intracellular fluorescence intensity followed by morphological modifications at temperatures below -10 °C, depending on the application of the cryoprotectant DMSO and the cooling rate. Furthermore, fluorescence lifetime imaging revealed an increase of the mean lifetime with a decrease in temperature. Non-destructive, label-free optical biopsies of biomaterial in ice can be obtained with sub-20 mW mean powers. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Solar corona at high resolution

    Science.gov (United States)

    Golub, L.; Rosner, R.; Zombeck, M. V. Z.; Vaiana, G. S.

    1982-01-01

    The earth's surface is shielded from solar X rays almost completely by the atmosphere. It is, therefore, necessary to place X-ray detectors on rockets or orbiting satellites. Solar rays were detected for the first time in the late 1940's, using V-2 rockets. In 1960, the first true X-ray images of the sun were obtained with the aid of a simple pinhole camera. The spatial resolution of the X-ray images could be considerably improved by making use of reflective optics, operating at grazing incidence. Aspects of X-ray mirror developments are discussed along with the results obtained in coronal studies utilizing the new devices for the observation of solar X-ray emission. It is pointed out that the major achievements of the Skylab missions were due primarily to the unique opportunity to obtain data over an extended period of time. Attention is given to normal incidence X-ray optics, achievements possible by making use of high spatial resolution optics, and details of improved mirror design.

  16. Numerical study of the lateral resolution in electrostatic force microscopy for dielectric samples

    Science.gov (United States)

    Riedel, C.; Alegría, A.; Schwartz, G. A.; Colmenero, J.; Sáenz, J. J.

    2011-07-01

    We present a study of the lateral resolution in electrostatic force microscopy for dielectric samples in both force and gradient modes. Whereas previous studies have reported expressions for metallic surfaces having potential heterogeneities (Kelvin probe force microscopy), in this work we take into account the presence of a dielectric medium. We introduce a definition of the lateral resolution based on the force due to a test particle being either a point charge or a polarizable particle on the dielectric surface. The behaviour has been studied over a wide range of typical experimental parameters: tip-sample distance (1-20) nm, sample thickness (0-5) µm and dielectric constant (1-20), using the numerical simulation of the equivalent charge method. For potential heterogeneities on metallic surfaces expressions are in agreement with the bibliography. The lateral resolution of samples having a dielectric constant of more than 10 tends to metallic behaviour. We found a characteristic thickness of 100 nm, above which the lateral resolution measured on the dielectric surface is close to that of an infinite medium. As previously reported, the lateral resolution is better in the gradient mode than in the force mode. Finally, we showed that for the same experimental conditions, the lateral resolution is better for a polarizable particle than for a charge, i.e. dielectric heterogeneities should always look 'sharper' (better resolved) than inhomogeneous charge distributions. This fact should be taken into account when interpreting images of heterogeneous samples.

  17. Evaluation of Advanced Bionics high resolution mode.

    Science.gov (United States)

    Buechner, Andreas; Frohne-Buechner, Carolin; Gaertner, Lutz; Lesinski-Schiedat, Anke; Battmer, Rolf-Dieter; Lenarz, Thomas

    2006-07-01

    The objective of this paper is to evaluate the advantages of the Advanced Bionic high resolution mode for speech perception, through a retrospective analysis. Forty-five adult subjects were selected who had a minimum experience of three months' standard mode (mean of 10 months) before switching to high resolution mode. Speech perception was tested in standard mode immediately before fitting with high resolution mode, and again after a maximum of six months high resolution mode usage (mean of two months). A significant improvement was found, between 11 and 17%, depending on the test material. The standard mode preference does not give any indication about the improvement when switching to high resolution. Users who are converted within any study achieve a higher performance improvement than those converted in the clinical routine. This analysis proves the significant benefits of high resolution mode for users, and also indicates the need for guidelines for individual optimization of parameter settings in a high resolution mode program.

  18. High-resolution infrared imaging

    Science.gov (United States)

    Falco, Charles M.

    2010-08-01

    The hands and mind of an artist are intimately involved in the creative process of image formation, intrinsically making paintings significantly more complex than photographs to analyze. In spite of this difficulty, several years ago the artist David Hockney and I identified optical evidence within a number of paintings that demonstrated artists began using optical projections as early as c1425 - nearly 175 years before Galileo - as aids for producing portions of their images. In the course of our work, Hockney and I developed insights that I have been applying to a new approach to computerized image analysis. Recently I developed and characterized a portable high resolution infrared for capturing additional information from paintings. Because many pigments are semi-transparent in the IR, in a number of cases IR photographs ("reflectograms") have revealed marks made by the artists that had been hidden under paint ever since they were made. I have used this IR camera to capture photographs ("reflectograms") of hundreds of paintings in over a dozen museums on three continents and, in some cases, these reflectograms have provided new insights into decisions the artists made in creating the final images that we see in the visible.

  19. VT Hydrography Dataset - High Resolution NHD

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The Vermont Hydrography Dataset (VHD) is compliant with the local resolution (also known as High Resolution) National Hydrography Dataset (NHD)...

  20. High Resolution, High Frame Rate Video Technology

    Science.gov (United States)

    1990-01-01

    Papers and working group summaries presented at the High Resolution, High Frame Rate Video (HHV) Workshop are compiled. HHV system is intended for future use on the Space Shuttle and Space Station Freedom. The Workshop was held for the dual purpose of: (1) allowing potential scientific users to assess the utility of the proposed system for monitoring microgravity science experiments; and (2) letting technical experts from industry recommend improvements to the proposed near-term HHV system. The following topics are covered: (1) State of the art in the video system performance; (2) Development plan for the HHV system; (3) Advanced technology for image gathering, coding, and processing; (4) Data compression applied to HHV; (5) Data transmission networks; and (6) Results of the users' requirements survey conducted by NASA.

  1. High-resolution neutron tomography

    Energy Technology Data Exchange (ETDEWEB)

    Mikerov, V.I. [P.N. Lebedev Physical Inst., RAN, Moscow (Russian Federation); Zhitnik, I.A. [P.N. Lebedev Physical Inst., RAN, Moscow (Russian Federation); Ignat`ev, A.P. [P.N. Lebedev Physical Inst., RAN, Moscow (Russian Federation); Isakov, A.I. [P.N. Lebedev Physical Inst., RAN, Moscow (Russian Federation); Korneev, V.V. [P.N. Lebedev Physical Inst., RAN, Moscow (Russian Federation); Krutov, V.V. [P.N. Lebedev Physical Inst., RAN, Moscow (Russian Federation); Kuzin, S.V. [P.N. Lebedev Physical Inst., RAN, Moscow (Russian Federation); Oparin, S.N. [P.N. Lebedev Physical Inst., RAN, Moscow (Russian Federation); Pertsov, A.A. [P.N. Lebedev Physical Inst., RAN, Moscow (Russian Federation); Podolyak, E.R. [P.N. Lebedev Physical Inst., RAN, Moscow (Russian Federation); Sobel`man, I.I. [P.N. Lebedev Physical Inst., RAN, Moscow (Russian Federation); Tindo, I.P. [P.N. Lebedev Physical Inst., RAN, Moscow (Russian Federation); Tukarev, B.A. [P.N. Lebedev Physical Inst., RAN, Moscow (Russian Federation)

    1995-12-31

    A neutron tomography technique with a coordinate resolution of several tens of micrometers has been developed. Our results indicate that the technique resolves details with dimensions less than 100 {mu}m and measures a linear attenuation of less than {approx} 0.1 cm{sup -1}. Tomograms can be reconstructed using incomplete data. Limits on the resolution of the restored pattern are analyzed, and ways to improve the sensitivity of the technique are discussed. (orig.).

  2. High resolution multimodal clinical ophthalmic imaging system.

    Science.gov (United States)

    Mujat, Mircea; Ferguson, R Daniel; Patel, Ankit H; Iftimia, Nicusor; Lue, Niyom; Hammer, Daniel X

    2010-05-24

    We developed a multimodal adaptive optics (AO) retinal imager which is the first to combine high performance AO-corrected scanning laser ophthalmoscopy (SLO) and swept source Fourier domain optical coherence tomography (SSOCT) imaging modes in a single compact clinical prototype platform. Such systems are becoming ever more essential to vision research and are expected to prove their clinical value for diagnosis of retinal diseases, including glaucoma, diabetic retinopathy (DR), age-related macular degeneration (AMD), and retinitis pigmentosa. The SSOCT channel operates at a wavelength of 1 microm for increased penetration and visualization of the choriocapillaris and choroid, sites of major disease activity for DR and wet AMD. This AO system is designed for use in clinical populations; a dual deformable mirror (DM) configuration allows simultaneous low- and high-order aberration correction over a large range of refractions and ocular media quality. The system also includes a wide field (33 deg.) line scanning ophthalmoscope (LSO) for initial screening, target identification, and global orientation, an integrated retinal tracker (RT) to stabilize the SLO, OCT, and LSO imaging fields in the presence of lateral eye motion, and a high-resolution LCD-based fixation target for presentation of visual cues. The system was tested in human subjects without retinal disease for performance optimization and validation. We were able to resolve and quantify cone photoreceptors across the macula to within approximately 0.5 deg (approximately 100-150 microm) of the fovea, image and delineate ten retinal layers, and penetrate to resolve features deep into the choroid. The prototype presented here is the first of a new class of powerful flexible imaging platforms that will provide clinicians and researchers with high-resolution, high performance adaptive optics imaging to help guide therapies, develop new drugs, and improve patient outcomes.

  3. Correction of a Depth-Dependent Lateral Distortion in 3D Super-Resolution Imaging.

    Directory of Open Access Journals (Sweden)

    Lina Carlini

    Full Text Available Three-dimensional (3D localization-based super-resolution microscopy (SR requires correction of aberrations to accurately represent 3D structure. Here we show how a depth-dependent lateral shift in the apparent position of a fluorescent point source, which we term `wobble`, results in warped 3D SR images and provide a software tool to correct this distortion. This system-specific, lateral shift is typically > 80 nm across an axial range of ~ 1 μm. A theoretical analysis based on phase retrieval data from our microscope suggests that the wobble is caused by non-rotationally symmetric phase and amplitude aberrations in the microscope's pupil function. We then apply our correction to the bacterial cytoskeletal protein FtsZ in live bacteria and demonstrate that the corrected data more accurately represent the true shape of this vertically-oriented ring-like structure. We also include this correction method in a registration procedure for dual-color, 3D SR data and show that it improves target registration error (TRE at the axial limits over an imaging depth of 1 μm, yielding TRE values of < 20 nm. This work highlights the importance of correcting aberrations in 3D SR to achieve high fidelity between the measurements and the sample.

  4. High-resolution electron microscopy

    CERN Document Server

    Spence, John C H

    2013-01-01

    This new fourth edition of the standard text on atomic-resolution transmission electron microscopy (TEM) retains previous material on the fundamentals of electron optics and aberration correction, linear imaging theory (including wave aberrations to fifth order) with partial coherence, and multiple-scattering theory. Also preserved are updated earlier sections on practical methods, with detailed step-by-step accounts of the procedures needed to obtain the highest quality images of atoms and molecules using a modern TEM or STEM electron microscope. Applications sections have been updated - these include the semiconductor industry, superconductor research, solid state chemistry and nanoscience, and metallurgy, mineralogy, condensed matter physics, materials science and material on cryo-electron microscopy for structural biology. New or expanded sections have been added on electron holography, aberration correction, field-emission guns, imaging filters, super-resolution methods, Ptychography, Ronchigrams, tomogr...

  5. High Resolution Imaging with AEOS

    Energy Technology Data Exchange (ETDEWEB)

    Patience, J; Macintosh, B A; Max, C E

    2001-08-27

    The U. S. Air Force Advanced Electro-Optical System (AEOS) which includes a 941 actuator adaptive optics system on a 3.7m telescope has recently been made available for astronomical programs. Operating at a wavelength of 750 nm, the diffraction-limited angular resolution of the system is 0.04 inches; currently, the magnitude limit is V {approx} 7 mag. At the distances of nearby open clusters, diffraction-limited images should resolve companions with separations as small as 4-6 AU--comparable to the Sun-Jupiter distance. The ability to study such close separations is critical, since most companions are expected to have separations in the few AU to tens of AU range. With the exceptional angular resolution of the current AEOS setup, but restricted target magnitude range, we are conducting a companion search of a large, well-defined sample of bright early-type stars in nearby open clusters and in the field. Our data set will both characterize this relatively new adaptive optics system and answer questions in binary star formation and stellar X-ray activity. We will discuss our experience using AEOS, the data analysis involved, and our initial results.

  6. High content analysis in amyotrophic lateral sclerosis.

    Science.gov (United States)

    Rinaldi, Federica; Motti, Dario; Ferraiuolo, Laura; Kaspar, Brian K

    2017-04-01

    Amyotrophic lateral sclerosis (ALS) is a devastating disease characterized by the progressive loss of motor neurons. Neurons, astrocytes, oligodendrocytes and microglial cells all undergo pathological modifications in the onset and progression of ALS. A number of genes involved in the etiopathology of the disease have been identified, but a complete understanding of the molecular mechanisms of ALS has yet to be determined. Currently, people affected by ALS have a life expectancy of only two to five years from diagnosis. The search for a treatment has been slow and mostly unsuccessful, leaving patients in desperate need of better therapies. Until recently, most pre-clinical studies utilized the available ALS animal models. In the past years, the development of new protocols for isolation of patient cells and differentiation into relevant cell types has provided new tools to model ALS, potentially more relevant to the disease itself as they directly come from patients. The use of stem cells is showing promise to facilitate ALS research by expanding our understanding of the disease and help to identify potential new therapeutic targets and therapies to help patients. Advancements in high content analysis (HCA) have the power to contribute to move ALS research forward by combining automated image acquisition along with digital image analysis. With modern HCA machines it is possible, in a period of just a few hours, to observe changes in morphology and survival of cells, under the stimulation of hundreds, if not thousands of drugs and compounds. In this article, we will summarize the major molecular and cellular hallmarks of ALS, describe the advancements provided by the in vitro models developed in the last few years, and review the studies that have applied HCA to the ALS field to date. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. High Resolution Silicon Deformable Mirrors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal describes a plan to build a prototype small stroke, high precision deformable mirror suitable for space-based operation in systems for high-resolution...

  8. Effect of frequency characteristic of excitation pulse on lateral spatial resolution in coded ultrasound imaging

    Science.gov (United States)

    Fujita, Hiroki; Hasegawa, Hideyuki

    2017-07-01

    Recently, portable ultrasonic diagnostic equipment has frequently been used in clinical situations. The use of portable ultrasonic diagnostic equipment expands various diagnosis areas, such as remote medical diagnosis, and emergent diagnosis at disaster. It is expected that portable ultrasonic diagnostic equipment will be used more frequently in the future. To make ultrasonic diagnostic equipment portable, the number of transducer elements in an ultrasonic probe should be reduced significantly. Therefore, the transmit-receive sensitivity of the ultrasonic probe is degraded. For the improvement of the signal-to-noise ratio (SNR) of the received ultrasonic echo, coded excitation was introduced in ultrasonic imaging. Owing to pulse compression applied to the received echo signal, its SNR significantly improved without the degradation of the range spatial resolution. However, the lateral spatial resolution in coded ultrasound imaging has not been investigated in previous studies. The present study showed that the lateral resolution in coded ultrasound imaging using a typical code, 5-bit Barker code, was worse than that using a conventional short pulse. Such degradation was discussed in terms of the frequency characteristics of the impulse response of the ultrasonic transducer and the excitation pulse. Also, the Gaussian phase coherence factor was introduced as one of the methods to overcome such degradation in lateral spatial resolution.

  9. High-Resolution Data for a Low-Resolution World

    Energy Technology Data Exchange (ETDEWEB)

    Brady, Brendan Williams [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-10

    In the past 15 years, the upper section of Cañon de Valle has been severely altered by wildfires and subsequent runoff events. Loss of root structures on high-angle slopes results in debris flow and sediment accumulation in the narrow canyon bottom. The original intent of the study described here was to better understand the changes occurring in watershed soil elevations over the course of several post-fire years. An elevation dataset from 5 years post-Cerro Grande fire was compared to high-resolution LiDAR data from 14 years post-Cerro Grande fire (also 3 years post-Las Conchas fire). The following analysis was motivated by a problematic comparison of these datasets of unlike resolution, and therefore focuses on what the data reveals of itself. The objective of this study is to highlight the effects vegetation can have on remote sensing data that intends to read ground surface elevation.

  10. Peak forces and lateral resolution in amplitude modulation force microscopy in liquid

    Directory of Open Access Journals (Sweden)

    Horacio V. Guzman

    2013-12-01

    Full Text Available The peak forces exerted on soft and rigid samples by a force microscope have been modeled by performing numerical simulations of the tip motion in liquid. The forces are obtained by using two contact mechanics models, Hertz and Tatara. We present a comparison between the numerical simulations and three analytical models for a wide variety of probe and operational parameters. In general, the forces derived from analytical expressions are not in good quantitative agreement with the simulations when the Young modulus and the set-point amplitude are varied. The only exception is the parametrized approximation that matches the results given by Hertz contact mechanics for soft materials and small free amplitudes. We also study the elastic deformation of the sample as a function of the imaging conditions for materials with a Young modulus between 25 MPa and 2 GPa. High lateral resolution images are predicted by using both small free amplitudes (less than 2 nm for soft materials and high set-point amplitudes.

  11. High Resolution Silicon Deformable Mirrors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this proposal we describe a plan to build a deformable mirror suitable for space-based operation in systems for high-resolution imaging. The prototype DM will be...

  12. Ultra-high resolution coded wavefront sensor

    KAUST Repository

    Wang, Congli

    2017-06-08

    Wavefront sensors and more general phase retrieval methods have recently attracted a lot of attention in a host of application domains, ranging from astronomy to scientific imaging and microscopy. In this paper, we introduce a new class of sensor, the Coded Wavefront Sensor, which provides high spatio-temporal resolution using a simple masked sensor under white light illumination. Specifically, we demonstrate megapixel spatial resolution and phase accuracy better than 0.1 wavelengths at reconstruction rates of 50 Hz or more, thus opening up many new applications from high-resolution adaptive optics to real-time phase retrieval in microscopy.

  13. Structure of high-resolution NMR spectra

    CERN Document Server

    Corio, PL

    2012-01-01

    Structure of High-Resolution NMR Spectra provides the principles, theories, and mathematical and physical concepts of high-resolution nuclear magnetic resonance spectra.The book presents the elementary theory of magnetic resonance; the quantum mechanical theory of angular momentum; the general theory of steady state spectra; and multiple quantum transitions, double resonance and spin echo experiments.Physicists, chemists, and researchers will find the book a valuable reference text.

  14. Radiation length imaging with high resolution telescopes

    OpenAIRE

    Stolzenberg, U.; Frey, A.; Schwenker, B; Wieduwilt, P.; Marinas, C; Lütticke, F.

    2016-01-01

    The construction of low mass vertex detectors with a high level of system integration is of great interest for next generation collider experiments. Radiation length images with a sufficient spatial resolution can be used to measure and disentangle complex radiation length $X$/$X_0$ profiles and contribute to the understanding of vertex detector systems. Test beam experiments with multi GeV particle beams and high-resolution tracking telescopes provide an opportunity to obtain precise 2D imag...

  15. ROV seafloor surveys combining 5-cm lateral resolution multibeam bathymetry with color stereo photographic imagery

    Science.gov (United States)

    Caress, D. W.; Hobson, B.; Thomas, H. J.; Henthorn, R.; Martin, E. J.; Bird, L.; Rock, S. M.; Risi, M.; Padial, J. A.

    2013-12-01

    at three sites in the deep Monterey Canyon axis. The surveys lines were spaced 1.5-m and were flown at speeds of 0.1-0.2-m/s while the sonars pinged at 3 Hz and the cameras operated at 0.5 Hz. All three low-altitude surveys are at ~2850 m depth and lie within the 1-m lateral resolution bathymetry of a 2009, 50-m altitude MBARI Mapping AUV survey. Site 1 has the greatest topography, being centered on a 15 m diameter, 7 m high flat boulder surrounded by an 80 m diameter, 6 m deep scour pit. Site 2 is located within a field of ~3-m high apparent sediment waves with ~80-m wavelengths. Site 0 is flat and includes chemosynthetic clam communities. At a 2 m altitude, the multibeam bathymetry swath is more than 7 m wide and the camera images are 4 m wide. Following navigation adjustment to match features in overlapping bathymetry swaths, we achieve 5-cm lateral resolution topography overlain with ~1-mm scale photographic imagery.

  16. High resolution quantum metrology via quantum interpolation

    Science.gov (United States)

    Ajoy, Ashok; Liu, Yixiang; Saha, Kasturi; Marseglia, Luca; Jaskula, Jean-Christophe; Cappellaro, Paola

    2016-05-01

    Nitrogen Vacancy (NV) centers in diamond are a promising platform for quantum metrology - in particular for nanoscale magnetic resonance imaging to determine high resolution structures of single molecules placed outside the diamond. The conventional technique for sensing of external nuclear spins involves monitoring the effects of the target nuclear spins on the NV center coherence under dynamical decoupling (the CPMG/XY8 pulse sequence). However, the nuclear spin affects the NV coherence only at precise free evolution times - and finite timing resolution set by hardware often severely limits the sensitivity and resolution of the method. In this work, we overcome this timing resolution barrier by developing a technique to supersample the metrology signal by effectively implementing a quantum interpolation of the spin system dynamics. This method will enable spin sensing at high magnetic fields and high repetition rate, allowing significant improvements in sensitivity and spectral resolution. We experimentally demonstrate a resolution boost by over a factor of 100 for spin sensing and AC magnetometry. The method is shown to be robust, versatile to sensing normal and spurious signal harmonics, and ultimately limited in resolution only by the number of pulses that can be applied.

  17. High resolution technology for FPD lithography tools

    Science.gov (United States)

    Yabu, Nobuhiko; Nagai, Yoshiyuki; Tomura, Satoshi; Yoshikawa, Tomohiro

    2013-06-01

    As the resolution of LCD panels adapted for Smartphone and Tablet PC rapidly becomes higher, the performance needed for lithography tools to produce them also becomes higher than ever. To respond to such needs, we have developed new lithography tools for mass production of high resolution LCD panels. We have executed various exposure tests to evaluate their performance. In this paper, we present the results of these tests. By employing higher NA projection optics, high resolution (2.0μm and under) has been achieved. We also present the effect of special illumination and the difference in profile between kinds of photoresist. Furthermore, we also refer what will be needed for masks and blanks in the next generation. To achieve even higher resolution, it is necessary for masks and blanks to have high flatness, low level of defects and small linewidth error.

  18. A novel method for enhancing the lateral resolution and image SNR in confocal microscopy

    Science.gov (United States)

    Chen, Youhua; Zhu, Dazhao; Fang, Yue; Kuang, Cuifang; Liu, Xu

    2017-12-01

    There is always a tradeoff between the resolution and the signal-to-noise ratio (SNR) in confocal microscopy. In particular, the pinhole size is very important for maintaining a balance between them. In this paper, we propose a method for improving the lateral resolution and image SNR in confocal microscopy without making any changes to the hardware. By using the fluorescence emission difference (FED) approach, we divide the images acquired by different pinhole sizes into one image acquired by the central pinhole and several images acquired by ring-shaped pinholes. Then, they are added together with the deconvolution method. Simulation and experimental results for fluorescent particles and cells show that our method can achieve a far better resolution than a large pinhole and a higher SNR than a small pinhole. Moreover, our method can improve the performance of classic confocal laser scanning microscopy (CLSM) to a certain extent, especially CLSM with a continuously variable pinhole.

  19. High time-resolution sprite observations

    Science.gov (United States)

    Stenbaek-Nielsen, H. C.; McHarg, G. G.

    2007-12-01

    Imaging sprites at 10,000 fps have revealed new details about their temporal development. TV observations show a highly structured central body with downward tendrils and upward branches. But rather than being leaders, as suggested by the long streaks in the TV recordings, tendrils and branches are actually formed by spatially compact streamer heads moving at velocities up to 0.3 c. In an individual sprite event the downward moving streamer heads start first forming the tendrils; later, and from a lower altitude and from existing luminous sprite structures, upward moving streamer heads may appear to form the branches. If there are no upward moving streamer heads the event would be classified as a C-sprite, otherwise it would be a carrot sprite. Following the streamer head activity we see afterglow in which little or no temporal and spatial activity is present. The streamer heads are very bright and they appear to be point sources, i.e. their spatial dimensions are less than our 100-200 m image resolution. Streamer head modeling indicates a scale size of ~25 m in which case the brightness would be in the range 1-100 GR. Other models predict volume emission rates leading to a streamer head spatial scale size in the 10 to 100 m range. Our observations conclusively show the downward and upward propagating streamer heads to be separated in time and space. This is in contrast to a number of models in which both down and up going streamer heads emanates from the origin of the process. We frequently see old sprites re-appear in response to new activity suggesting that sprite activity leaves some imprint on the background atmosphere. Given the very large brightness of the streamer heads it would not be surprising if sprite activity initiates chemical processes that could locally affect the composition of the atmosphere, but whether this affects the mesosphere on a larger scale remains uncertain.

  20. High-Resolution PET Detector. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Karp, Joel

    2014-03-26

    The objective of this project was to develop an understanding of the limits of performance for a high resolution PET detector using an approach based on continuous scintillation crystals rather than pixelated crystals. The overall goal was to design a high-resolution detector, which requires both high spatial resolution and high sensitivity for 511 keV gammas. Continuous scintillation detectors (Anger cameras) have been used extensively for both single-photon and PET scanners, however, these instruments were based on NaI(Tl) scintillators using relatively large, individual photo-multipliers. In this project we investigated the potential of this type of detector technology to achieve higher spatial resolution through the use of improved scintillator materials and photo-sensors, and modification of the detector surface to optimize the light response function.We achieved an average spatial resolution of 3-mm for a 25-mm thick, LYSO continuous detector using a maximum likelihood position algorithm and shallow slots cut into the entrance surface.

  1. Heterodyne high-spectral-resolution lidar.

    Science.gov (United States)

    Chouza, Fernando; Witschas, Benjamin; Reitebuch, Oliver

    2017-10-10

    In this work, a novel lidar technique to perform high-spectral-resolution measurements of the atmospheric backscatter is discussed and the first results are presented. The proposed method, which relies on a heterodyne detection receiver, allows us not only to separate the molecular and the aerosol component of the atmospheric backscatter, but also to investigate the spectral shape of the Rayleigh-Brillouin line. As in the case of the direct-detection high-spectral-resolution lidars, the separation of the different scattering processes would allow an independent system calibration and aerosol extinction measurements. The proposed retrieval technique was successfully tested on the Deutsches Zentrum für Luft- und Raumfahrt airborne Doppler wind lidar system with measurements conducted during different measurement campaigns and under different atmospheric conditions. In light of these results, further ideas for the implementation of a dedicated heterodyne high-spectral-resolution lidar are discussed.

  2. High-resolution axial MR imaging of tibial stress injuries

    Science.gov (United States)

    2012-01-01

    Purpose To evaluate the relative involvement of tibial stress injuries using high-resolution axial MR imaging and the correlation with MR and radiographic images. Methods A total of 33 patients with exercise-induced tibial pain were evaluated. All patients underwent radiograph and high-resolution axial MR imaging. Radiographs were taken at initial presentation and 4 weeks later. High-resolution MR axial images were obtained using a microscopy surface coil with 60 × 60 mm field of view on a 1.5T MR unit. All images were evaluated for abnormal signals of the periosteum, cortex and bone marrow. Results Nineteen patients showed no periosteal reaction at initial and follow-up radiographs. MR imaging showed abnormal signals in the periosteal tissue and partially abnormal signals in the bone marrow. In 7 patients, periosteal reaction was not seen at initial radiograph, but was detected at follow-up radiograph. MR imaging showed abnormal signals in the periosteal tissue and entire bone marrow. Abnormal signals in the cortex were found in 6 patients. The remaining 7 showed periosteal reactions at initial radiograph. MR imaging showed abnormal signals in the periosteal tissue in 6 patients. Abnormal signals were seen in the partial and entire bone marrow in 4 and 3 patients, respectively. Conclusions Bone marrow abnormalities in high-resolution axial MR imaging were related to periosteal reactions at follow-up radiograph. Bone marrow abnormalities might predict later periosteal reactions, suggesting shin splints or stress fractures. High-resolution axial MR imaging is useful in early discrimination of tibial stress injuries. PMID:22574840

  3. Lateral resolution in focused electron beam-induced deposition: scaling laws for pulsed and static exposure

    Energy Technology Data Exchange (ETDEWEB)

    Szkudlarek, Aleksandra [Empa, Laboratory for Mechanics of Materials and Nanostructures, Thun (Switzerland); AGH University of Science and Technology, Department of Solid State Physics, Faculty of Physics and Applied Computer Science, Krakow (Poland); Szmyt, Wojciech; Kapusta, Czeslaw [AGH University of Science and Technology, Department of Solid State Physics, Faculty of Physics and Applied Computer Science, Krakow (Poland); Utke, Ivo [Empa, Laboratory for Mechanics of Materials and Nanostructures, Thun (Switzerland)

    2014-12-15

    In this work, we review the single-adsorbate time-dependent continuum model for focused electron beam-induced deposition (FEBID). The differential equation for the adsorption rate will be expressed by dimensionless parameters describing the contributions of adsorption, desorption, dissociation, and the surface diffusion of the precursor adsorbates. The contributions are individually presented in order to elucidate their influence during variations in the electron beam exposure time. The findings are condensed into three new scaling laws for pulsed exposure FEBID (or FEB-induced etching) relating the lateral resolution of deposits or etch pits to surface diffusion and electron beam exposure dwell time for a given adsorbate depletion state. (orig.)

  4. csiLSFM combines light-sheet fluorescence microscopy and coherent structured illumination for a lateral resolution below 100 nm.

    Science.gov (United States)

    Chang, Bo-Jui; Perez Meza, Victor Didier; Stelzer, Ernst H K

    2017-05-09

    Light-sheet-based fluorescence microscopy (LSFM) features optical sectioning in the excitation process. It minimizes fluorophore bleaching as well as phototoxic effects and provides a true axial resolution. The detection path resembles properties of conventional fluorescence microscopy. Structured illumination microscopy (SIM) is attractive for superresolution because of its moderate excitation intensity, high acquisition speed, and compatibility with all fluorophores. We introduce SIM to LSFM because the combination pushes the lateral resolution to the physical limit of linear SIM. The instrument requires three objective lenses and relies on methods to control two counterpropagating coherent light sheets that generate excitation patterns in the focal plane of the detection lens. SIM patterns with the finest line spacing in the far field become available along multiple orientations. Flexible control of rotation, frequency, and phase shift of the perfectly modulated light sheet are demonstrated. Images of beads prove a near-isotropic lateral resolution of sub-100 nm. Images of yeast endoplasmic reticulum show that coherent structured illumination (csi) LSFM performs with physiologically relevant specimens.

  5. Qualitative interpretation of high resolution aeromagnetic (HRAM ...

    African Journals Online (AJOL)

    Qualitative interpretation of high resolution aeromagnetic (HRAM) data from some parts of offshore Niger delta, Nigeria. ... Open Access DOWNLOAD FULL TEXT ... The original raster map, obtained from the Nigeria Geological Survey Agency (NGSA) in half degree sheet, was subjected to qualitative data analysis using the ...

  6. A High-Resolution Stopwatch for Cents

    Science.gov (United States)

    Gingl, Z.; Kopasz, K.

    2011-01-01

    A very low-cost, easy-to-make stopwatch is presented to support various experiments in mechanics. The high-resolution stopwatch is based on two photodetectors connected directly to the microphone input of a sound card. Dedicated free open-source software has been developed and made available to download. The efficiency is demonstrated by a free…

  7. Compressive sensing for high resolution radar imaging

    NARCIS (Netherlands)

    Anitori, L.; Otten, M.P.G.; Hoogeboom, P.

    2010-01-01

    In this paper we present some preliminary results on the application of Compressive Sensing (CS) to high resolution radar imaging. CS is a recently developed theory which allows reconstruction of sparse signals with a number of measurements much lower than what is required by the Shannon sampling

  8. Compact high-resolution spectral phase shaper

    NARCIS (Netherlands)

    Postma, S.; van der Walle, P.; Offerhaus, Herman L.; van Hulst, N.F.

    2005-01-01

    The design and operation of a high-resolution spectral phase shaper with a footprint of only 7×10 cm2 is presented. The liquid-crystal modulator has 4096 elements. More than 600 independent degrees of freedom can be positioned with a relative accuracy of 1 pixel. The spectral shaping of pulses from

  9. High resolution analysis of interphase chromosome domains

    NARCIS (Netherlands)

    Visser, A. E.; Jaunin, F.; Fakan, S.; Aten, J. A.

    2000-01-01

    Chromosome territories need to be well defined at high resolution before functional aspects of chromosome organization in interphase can be explored. To visualize chromosomes by electron microscopy (EM), the DNA of Chinese hamster fibroblasts was labeled in vivo with thymidine analogue BrdU. Labeled

  10. A Portable, High Resolution, Surface Measurement Device

    Science.gov (United States)

    Ihlefeld, Curtis M.; Burns, Bradley M.; Youngquist, Robert C.

    2012-01-01

    A high resolution, portable, surface measurement device has been demonstrated to provide micron-resolution topographical plots. This device was specifically developed to allow in-situ measurements of defects on the Space Shuttle Orbiter windows, but is versatile enough to be used on a wide variety of surfaces. This paper discusses the choice of an optical sensor and then the decisions required to convert a lab bench optical measurement device into an ergonomic portable system. The necessary trade-offs between performance and portability are presented along with a description of the device developed to measure Orbiter window defects.

  11. High-Resolution, Two-Wavelength Pyrometer

    Science.gov (United States)

    Bickler, Donald B.; Henry, Paul K.; Logiurato, D. Daniel

    1989-01-01

    Modified two-color pyrometer measures temperatures of objects with high spatial resolution. Image focused on hole 0.002 in. (0.05 mm) in diameter in brass sheet near end of bundle, causing image to be distributed so fibers covered by defocused radiation from target. Pinhole ensures radiation from only small part of target scene reaches detector, thus providing required spatial resolution. By spreading radiation over bundle, pinhole ensures entire active area of detectors utilized. Produces signal as quiet as conventional instruments but with only 1/64 input radiation.

  12. High Resolution Regional Climate Simulations over Alaska

    Science.gov (United States)

    Monaghan, A. J.; Clark, M. P.; Arnold, J.; Newman, A. J.; Musselman, K. N.; Barlage, M. J.; Xue, L.; Liu, C.; Gutmann, E. D.; Rasmussen, R.

    2016-12-01

    In order to appropriately plan future projects to build and maintain infrastructure (e.g., dams, dikes, highways, airports), a number of U.S. federal agencies seek to better understand how hydrologic regimes may shift across the country due to climate change. Building on the successful completion of a series of high-resolution WRF simulations over the Colorado River Headwaters and contiguous USA, our team is now extending these simulations over the challenging U.S. States of Alaska and Hawaii. In this presentation we summarize results from a newly completed 4-km resolution WRF simulation over Alaska spanning 2002-2016 at 4-km spatial resolution. Our aim is to gain insight into the thermodynamics that drive key precipitation processes, particularly the extremes that are most damaging to infrastructure.

  13. Constructing a WISE High Resolution Galaxy Atlas

    Science.gov (United States)

    Jarrett, T. H.; Masci, F.; Tsai, C. W.; Petty, S.; Cluver, M.; Assef, Roberto J.; Benford, D.; Blain, A.; Bridge, C.; Donoso, E.; hide

    2012-01-01

    After eight months of continuous observations, the Wide-field Infrared Survey Explorer (WISE) mapped the entire sky at 3.4 micron, 4.6 micron, 12 micron, and 22 micron. We have begun a dedicated WISE High Resolution Galaxy Atlas project to fully characterize large, nearby galaxies and produce a legacy image atlas and source catalog. Here we summarize the deconvolution techniques used to significantly improve the spatial resolution of WISE imaging, specifically designed to study the internal anatomy of nearby galaxies. As a case study, we present results for the galaxy NGC 1566, comparing the WISE enhanced-resolution image processing to that of Spitzer, Galaxy Evolution Explorer, and ground-based imaging. This is the first paper in a two-part series; results for a larger sample of nearby galaxies are presented in the second paper.

  14. High-fat and ketogenic diets in amyotrophic lateral sclerosis.

    Science.gov (United States)

    Paganoni, Sabrina; Wills, Anne-Marie

    2013-08-01

    Amyotrophic lateral sclerosis is a fatal neurodegenerative disease. Epidemiologic data suggest that malnutrition is a common feature in amyotrophic lateral sclerosis and being overweight or obese confers a survival advantage in this patient population. In amyotrophic lateral sclerosis mouse models, a high-fat diet has been shown to lead to weight gain and prolonged survival. However, little research has been conducted to test whether nutritional interventions might ameliorate the disease course in humans. Here we review the currently available evidence supporting the potential role of dietary interventions as a therapeutic tool for amyotrophic lateral sclerosis. Ultimately, determining whether a high-fat or ketogenic diet could be beneficial in amyotrophic lateral sclerosis will require large randomized, placebo-controlled clinical trials.

  15. Superconducting High Resolution Fast-Neutron Spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Hau, Ionel Dragos [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    Superconducting high resolution fast-neutron calorimetric spectrometers based on 6LiF and TiB{sub 2} absorbers have been developed. These novel cryogenic spectrometers measure the temperature rise produced in exothermal (n, α) reactions with fast neutrons in 6Li and 10B-loaded materials with heat capacity C operating at temperatures T close to 0.1 K. Temperature variations on the order of 0.5 mK are measured with a Mo/Cu thin film multilayer operated in the transition region between its superconducting and its normal state. The advantage of calorimetry for high resolution spectroscopy is due to the small phonon excitation energies kBT on the order of μeV that serve as signal carriers, resulting in an energy resolution ΔE ~ (kBT2C)1/2, which can be well below 10 keV. An energy resolution of 5.5 keV has been obtained with a Mo/Cu superconducting sensor and a TiB2 absorber using thermal neutrons from a 252Cf neutron source. This resolution is sufficient to observe the effect of recoil nuclei broadening in neutron spectra, which has been related to the lifetime of the first excited state in 7Li. Fast-neutron spectra obtained with a 6Li-enriched LiF absorber show an energy resolution of 16 keV FWHM, and a response in agreement with the 6Li(n, α)3H reaction cross section and Monte Carlo simulations for energies up to several MeV. The energy resolution of order of a few keV makes this novel instrument applicable to fast-neutron transmission spectroscopy based on the unique elemental signature provided by the neutron absorption and scattering resonances. The optimization of the energy resolution based on analytical and numerical models of the detector response is discussed in the context of these applications.

  16. High-resolution flurescence spectroscopy in immunoanalysis

    Energy Technology Data Exchange (ETDEWEB)

    Grubor, Nenad M. [Iowa State Univ., Ames, IA (United States)

    2005-01-01

    The work presented in this dissertation combines highly sensitive and selective fluorescence line-narrowing spectroscopy (FLNS) detection with various modes of immunoanalytical techniques. It has been shown that FLNS is capable of directly probing molecules immunocomplexed with antibodies, eliminating analytical ambiguities that may arise from interferences that accompany traditional immunochemical techniques. Moreover, the utilization of highly cross-reactive antibodies for highly specific analyte determination has been demonstrated. Finally, they demonstrate the first example of the spectral resolution of diastereomeric analytes based on their interaction with a cross-reactive antibody.

  17. High-Resolution Broadband Spectral Interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Erskine, D J; Edelstein, J

    2002-08-09

    We demonstrate solar spectra from a novel interferometric method for compact broadband high-resolution spectroscopy. The spectral interferometer (SI) is a hybrid instrument that uses a spectrometer to externally disperse the output of a fixed-delay interferometer. It also has been called an externally dispersed interferometer (EDI). The interferometer can be used with linear spectrometers for imaging spectroscopy or with echelle spectrometers for very broad-band coverage. EDI's heterodyning technique enhances the spectrometer's response to high spectral-density features, increasing the effective resolution by factors of several while retaining its bandwidth. The method is extremely robust to instrumental insults such as focal spot size or displacement. The EDI uses no moving parts, such as purely interferometric FTS spectrometers, and can cover a much wider simultaneous bandpass than other internally dispersed interferometers (e.g. HHS or SHS).

  18. High Resolution Spectra of HE Detonations

    Science.gov (United States)

    1980-07-07

    region. We shall assume for present purposes that the emissivity of the detonation products of a 50 to 100 lb HE explosion is also in the viciity of... speed . Incorporated in the emulsion layers are dye forming coup- lers which react simultaneously during I , developmentto produce a separate dye S...Best Available Cop 1~EV~ AFTAC-TR-80-24 HIGH RESOLUTION SPECTRA OF HE DETONATIONS HSS Inc 2 Alfred Circle Bedford, MA 01730 7 JULY 1980 AUG 4 9D

  19. High resolution NMR theory and chemical applications

    CERN Document Server

    Becker, Edwin D

    1969-01-01

    High Resolution NMR: Theory and Chemical Applications focuses on the applications of nuclear magnetic resonance (NMR), as well as chemical shifts, lattices, and couplings. The book first offers information on the theory of NMR, including nuclear spin and magnetic moment, spin lattice relaxation, line widths, saturation, quantum mechanical description of NMR, and ringing. The text then ponders on instrumentation and techniques and chemical shifts. Discussions focus on the origin of chemical shifts, reference compounds, empirical correlations of chemical shifts, modulation and phase detection,

  20. High resolution measurement of the glycolytic rate

    Directory of Open Access Journals (Sweden)

    Carla X Bittner

    2010-09-01

    Full Text Available The glycolytic rate is sensitive to physiological activity, hormones, stress, aging and malignant transformation. Standard techniques to measure the glycolytic rate are based on radioactive isotopes, are not able to resolve single cells and have poor temporal resolution, limitations that hamper the study of energy metabolism in the brain and other organs. A new method is described in this article, which makes use of a recently-developed FRET glucose nanosensor to measure the rate of glycolysis in single cells with high temporal resolution. Used in cultured astrocytes, the method showed for the first time that glycolysis can be activated within seconds by a combination of glutamate and K+, supporting a role for astrocytes in neurometabolic and neurovascular coupling in the brain. It was also possible to make a direct comparison of metabolism in neurons and astrocytes lying in close proximity, paving the way to a high-resolution characterization of brain energy metabolism. Single-cell glycolytic rates were also measured in fibroblasts, adipocytes, myoblasts and tumor cells, showing higher rates for undifferentiated cells and significant metabolic heterogeneity within cell types. This method should facilitate the investigation of tissue metabolism at the single-cell level and is readily adaptable for high-throughput analysis.

  1. IMPROVING VERTICAL AND LATERAL RESOLUTION BY STRETCH-FREE, HORIZON-ORIENTED IMAGING

    Directory of Open Access Journals (Sweden)

    Pérez Gabriel

    2006-12-01

    Full Text Available The pre-stack Kirchhoff migration is implemented for delivering wavelet stretch-free imaged data, if the migration is (ideally limited to the wavelet corresponding to a target horizon. Avoiding wavelet stretch provides long-offset imaged data, far beyond what is reached in conventional migration and results in images from the target with improved vertical and lateral resolution and angular illumination. Increasing the range of imaged offsets also increases the sensitivity to event-crossing, velocity errors and anisotropy. These issues must be addressed to fully achieve the greatest potential of this technique. These ideas are further illustrated with a land survey seismic data application in Texas, U.S.

  2. High Resolution Bathymetry Estimation Improvement with Single Image Super-Resolution Algorithm Super-Resolution Forests

    Science.gov (United States)

    2017-01-26

    Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/5514--17-9692 High Resolution Bathymetry Estimation Improvement with Single Image Super...collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources...gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate

  3. Lateral spatial resolution of thermal lens microscopy during continuous scanning for nonstaining biofilm imaging

    Science.gov (United States)

    Rossteuscher, T. T. J.; Hibara, A.; Mawatari, K.; Kitamori, T.

    2009-05-01

    The possible application of continuous scanning thermal lens microscopy (TLM) as alternative online biofilm observation method is studied. As biofilm is a heterogeneous sample, the influence of spatially limited thermal flow at the sample heterogeneities and the biofilm-environment border has to be considered. The influence of the edges on the lateral resolution with respect to scanning velocity during continuous scanning TLM was therefore evaluated. Lateral scanning experiments on 100 nm thin gold stripes showed that the maximum scan speed can be predicted from a time constant of a lock-in amplifier and the beamwidth. Since three-dimensional mapping is needed to fully characterize the biofilm structure, depth scanning experiments with stained 4 μm thick polystyrene samples with the coaxial TLM setup were evaluated for signal width at full width at half maximum. Thus, a minimum step width for depth scanning of 10 μm for observation has been acquired. A three-dimensional image of unstained biofilm grown in a flow chamber was acquired using continuous scanning TLM.

  4. Realization of matching conditions for high-resolution spectrometers

    CERN Document Server

    Fujita, H; Berg, G P A; Bacher, A D; Foster, C C; Hara, K; Hatanaka, K; Kawabata, T; Noro, T; Sakaguchi, H; Shimbara, Y; Shinada, T; Stephenson, E J; Ueno, H; Yosoi, M

    2002-01-01

    For precise measurements of nuclear-reaction spectra using a beam from an accelerator, a high-resolution magnetic spectrometer is a powerful tool. The full capability of a magnetic spectrometer, however, can be achieved only if the characteristics of the beam coming from the accelerator are matched to those required by the spectrometer by properly adjusting the beam line conditions. The matching methods, lateral dispersion matching, focus matching and also the kinematic correction compensate the spectrum line-broadening effects caused by the beam momentum spread and reaction kinematics. In addition, angular dispersion matching should be performed if good resolution of the scattering angle is important. Diagnostic methods developed to realize these matching conditions for the spectrometers K600 at IUCF and Grand Raiden at RCNP are presented.

  5. Development of New High Resolution Neutron Detector

    Science.gov (United States)

    Mostella, L. D., III; Rajabali, M.; Loureiro, D. P.; Grzywacz, R.

    2017-09-01

    Beta-delayed neutron emission is a prevalent form of decay for neutron-rich nuclei. This occurs when an unstable nucleus undergoes beta decay, but produces a daughter nucleus in an excited state above the neutron separation energy. The daughter nucleus then de-excites by ejecting one or more neutrons. We wish to map the states from which these nuclei decay via neutron spectroscopy using NEXT, a new high resolution neutron detector. NEXT utilizes silicon photomultipliers and 6 mm thick pulse-shape discriminating plastic scintillators, allowing for smaller and more compact modular geometries in the NEXT array. Timing measurements for the detector were performed and a resolution of 893 ps (FWHM) has been achieved so far. Aspects of the detector that were investigated and will be presented here include scintillator geometry, wrapping materials, fitting functions for the digitized signals, and electronic components coupled to the silicon photomultipliers for signal shaping.

  6. High-Temporal-Resolution High-Spatial-Resolution Spaceborne SAR Based on Continuously Varying PRF.

    Science.gov (United States)

    Men, Zhirong; Wang, Pengbo; Li, Chunsheng; Chen, Jie; Liu, Wei; Fang, Yue

    2017-07-25

    Synthetic Aperture Radar (SAR) is a well-established and powerful imaging technique for acquiring high-spatial-resolution images of the Earth's surface. With the development of beam steering techniques, sliding spotlight and staring spotlight modes have been employed to support high-spatial-resolution applications. In addition to this strengthened high-spatial-resolution and wide-swath capability, high-temporal-resolution (short repeat-observation interval) represents a key capability for numerous applications. However, conventional SAR systems are limited in that the same patch can only be illuminated for several seconds within a single pass. This paper considers a novel high-squint-angle system intended to acquire high-spatial-resolution spaceborne SAR images with repeat-observation intervals varying from tens of seconds to several minutes within a single pass. However, an exponentially increased range cell migration would arise and lead to a conflict between the receive window and 'blind ranges'. An efficient data acquisition technique for high-temporal-resolution, high-spatial-resolution and high-squint-angle spaceborne SAR, in which the pulse repetition frequency (PRF) is continuously varied according to the changing slant range, is presented in this paper. This technique allows echo data to remain in the receive window instead of conflicting with the transmitted pulse or nadir echo. Considering the precision of hardware, a compromise and practical strategy is also proposed. Furthermore, a detailed performance analysis of range ambiguities is provided with respect to parameters of TerraSAR-X. For strong point-like targets, the range ambiguity of this technique would be better than that of uniform PRF technique. For this innovative technique, a resampling strategy and modified imaging algorithm have been developed to handle the non-uniformly sampled echo data. Simulations are performed to validate the efficiency of the proposed technique and the associated

  7. High-speed lateral polysilicon photodiode in standard CMOS

    NARCIS (Netherlands)

    Radovanovic, S.; Annema, Anne J.; Nauta, Bram

    2003-01-01

    A high-performance lateral polysilicon photodiode was designed in standard 0.18 /spl mu/m CMOS technology. The device has a frequency bandwidth far in the GHz range: the measured bandwidth of the poly photodiode was 6 GHz, which figure was limited by the measurement equipment. The high intrinsic

  8. High-speed lateral polysilicon photodiode in standard CMOS

    NARCIS (Netherlands)

    Radovanovic, S.; Annema, Anne J.; Nauta, Bram

    A high-performance lateral polysilicon photodiode was designed in standard 0.18 μm CMOS technology. The device has a frequency bandwidth far in the GHz range: the measured bandwidth of the poly photodiode was 6 GHz, which figure was limited by the measurement equipment. The high intrinsic (physical)

  9. Integrated High Resolution Monitoring of Mediterranean vegetation

    Science.gov (United States)

    Cesaraccio, Carla; Piga, Alessandra; Ventura, Andrea; Arca, Angelo; Duce, Pierpaolo; Mereu, Simone

    2017-04-01

    The study of the vegetation features in a complex and highly vulnerable ecosystems, such as Mediterranean maquis, leads to the need of using continuous monitoring systems at high spatial and temporal resolution, for a better interpretation of the mechanisms of phenological and eco-physiological processes. Near-surface remote sensing techniques are used to quantify, at high temporal resolution, and with a certain degree of spatial integration, the seasonal variations of the surface optical and radiometric properties. In recent decades, the design and implementation of global monitoring networks involved the use of non-destructive and/or cheaper approaches such as (i) continuous surface fluxes measurement stations, (ii) phenological observation networks, and (iii) measurement of temporal and spatial variations of the vegetation spectral properties. In this work preliminary results from the ECO-SCALE (Integrated High Resolution Monitoring of Mediterranean vegetation) project are reported. The project was manly aimed to develop an integrated system for environmental monitoring based on digital photography, hyperspectral radiometry , and micrometeorological techniques during three years of experimentation (2013-2016) in a Mediterranean site of Italy (Capo Caccia, Alghero). The main results concerned the analysis of chromatic coordinates indices from digital images, to characterized the phenological patterns for typical shrubland species, determining start and duration of the growing season, and the physiological status in relation to different environmental drought conditions; then the seasonal patterns of canopy phenology, was compared to NEE (Net Ecosystem Exchange) patterns, showing similarities. However, maximum values of NEE and ER (Ecosystem respiration), and short term variation, seemed mainly tuned by inter annual pattern of meteorological variables, in particular of temperature recorded in the months preceding the vegetation green-up. Finally, green signals

  10. High-resolution phylogenetic microbial community profiling

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Esther; Coleman-Derr, Devin; Bowman, Brett; Schwientek, Patrick; Clum, Alicia; Copeland, Alex; Ciobanu, Doina; Cheng, Jan-Fang; Gies, Esther; Hallam, Steve; Tringe, Susannah; Woyke, Tanja

    2014-03-17

    The representation of bacterial and archaeal genome sequences is strongly biased towards cultivated organisms, which belong to merely four phylogenetic groups. Functional information and inter-phylum level relationships are still largely underexplored for candidate phyla, which are often referred to as microbial dark matter. Furthermore, a large portion of the 16S rRNA gene records in the GenBank database are labeled as environmental samples and unclassified, which is in part due to low read accuracy, potential chimeric sequences produced during PCR amplifications and the low resolution of short amplicons. In order to improve the phylogenetic classification of novel species and advance our knowledge of the ecosystem function of uncultivated microorganisms, high-throughput full length 16S rRNA gene sequencing methodologies with reduced biases are needed. We evaluated the performance of PacBio single-molecule real-time (SMRT) sequencing in high-resolution phylogenetic microbial community profiling. For this purpose, we compared PacBio and Illumina metagenomic shotgun and 16S rRNA gene sequencing of a mock community as well as of an environmental sample from Sakinaw Lake, British Columbia. Sakinaw Lake is known to contain a large age of microbial species from candidate phyla. Sequencing results show that community structure based on PacBio shotgun and 16S rRNA gene sequences is highly similar in both the mock and the environmental communities. Resolution power and community representation accuracy from SMRT sequencing data appeared to be independent of GC content of microbial genomes and was higher when compared to Illumina-based metagenome shotgun and 16S rRNA gene (iTag) sequences, e.g. full-length sequencing resolved all 23 OTUs in the mock community, while iTags did not resolve closely related species. SMRT sequencing hence offers various potential benefits when characterizing uncharted microbial communities.

  11. Quantitative analysis of cholesteatoma using high resolution computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Shigeru; Yamasoba, Tatsuya (Kameda General Hospital, Chiba (Japan)); Iinuma, Toshitaka

    1992-05-01

    Seventy-three cases of adult cholesteatoma, including 52 cases of pars flaccida type cholesteatoma and 21 of pars tensa type cholesteatoma, were examined using high resolution computed tomography, in both axial (lateral semicircular canal plane) and coronal sections (cochlear, vestibular and antral plane). These cases were classified into two subtypes according to the presence of extension of cholesteatoma into the antrum. Sixty cases of chronic otitis media with central perforation (COM) were also examined as controls. Various locations of the middle ear cavity were measured in terms of size in comparison with pars flaccida type cholesteatoma, pars tensa type cholesteatoma and COM. The width of the attic was significantly larger in both pars flaccida type and pars tensa type cholesteatoma than in COM. With pars flaccida type cholesteatoma there was a significantly larger distance between the malleus and lateral wall of the attic than with COM. In contrast, the distance between the malleus and medial wall of the attic was significantly larger with pars tensa type cholesteatoma than with COM. With cholesteatoma extending into the antrum, regardless of the type of cholesteatoma, there were significantly larger distances than with COM at the following sites: the width and height of the aditus ad antrum, and the width, height and anterior-posterior diameter of the antrum. However, these distances were not significantly different between cholesteatoma without extension into the antrum and COM. The hitherto demonstrated qualitative impressions of bone destruction in cholesteatoma were quantitatively verified in detail using high resolution computed tomography. (author).

  12. High resolution extremity CT for biomechanics modeling

    Energy Technology Data Exchange (ETDEWEB)

    Ashby, A.E.; Brand, H.; Hollerbach, K.; Logan, C.M.; Martz, H.E.

    1995-09-23

    With the advent of ever more powerful computing and finite element analysis (FEA) capabilities, the bone and joint geometry detail available from either commercial surface definitions or from medical CT scans is inadequate. For dynamic FEA modeling of joints, precise articular contours are necessary to get appropriate contact definition. In this project, a fresh cadaver extremity was suspended in parafin in a lucite cylinder and then scanned with an industrial CT system to generate a high resolution data set for use in biomechanics modeling.

  13. Detailed mitochondrial phenotyping by high resolution metabolomics.

    Directory of Open Access Journals (Sweden)

    James R Roede

    Full Text Available Mitochondrial phenotype is complex and difficult to define at the level of individual cell types. Newer metabolic profiling methods provide information on dozens of metabolic pathways from a relatively small sample. This pilot study used "top-down" metabolic profiling to determine the spectrum of metabolites present in liver mitochondria. High resolution mass spectral analyses and multivariate statistical tests provided global metabolic information about mitochondria and showed that liver mitochondria possess a significant phenotype based on gender and genotype. The data also show that mitochondria contain a large number of unidentified chemicals.

  14. Novel high resolution tactile robotic fingertips

    DEFF Research Database (Denmark)

    Drimus, Alin; Jankovics, Vince; Gorsic, Matija

    2014-01-01

    This paper describes a novel robotic fingertip based on piezoresistive rubber that can sense pressure tactile stimuli with a high spatial resolution over curved surfaces. The working principle is based on a three-layer sandwich structure (conductive electrodes on top and bottom and piezoresistive...... rubber in the middle). For the conductive layers we use ring patterns of silver epoxy and flex PCB electrode arrays. The proposed sensorised fingertip has 60 sensitive regions (taxels) arranged in 5 rings and 12 columns that have a smooth pressure to resistance characteristic. Using the sensor...

  15. Development of a high resolution module for PET scanners

    Science.gov (United States)

    Stringhini, G.; Pizzichemi, M.; Ghezzi, A.; Stojkovic, A.; Tavernier, S.; Niknejad, T.; Varela, J.; Paganoni, M.; Auffray, E.

    2017-02-01

    Positron Emission Tomography (PET) scanners require high performances in term of spatial resolution and sensitivity to allow early detection of cancer masses. In small animal and organ dedicated PET scanners the Depth of Interaction (DOI) information has to be obtained to avoid parallax errors and to reconstruct high resolution images. In the whole body PET, the DOI information can be useful to correct for the time jitter of the optical photons along the main axis of the scintillator, improving the time performances. In this work we present the development of PET module designed to reach high performance as compared to the current scanners while keeping the complexity of the system reasonably low. The module presented is based on a 64 LYSO (Lutetium-yttrium oxyorthosilicate) crystals matrix and on a 4×4 MPPC (Multi Pixels Photon Counter) array as detector in a 4 to 1 coupling between the crystals and the detector and a single side readout. The lateral surfaces of the crystals are optically treated to be unpolished. The DOI and the energy resolution of the PET module are presented and a fast method to obtain the DOI calibration is discussed.

  16. High-resolution gamma imaging; Imagerie gamma haute resolution

    Energy Technology Data Exchange (ETDEWEB)

    Parmentier, M.; Pousse, A.; Tamba, N.; Chavanelle, J.; Bakkali, A.; Kastler, B. [Centre Hospitalier Universitaire, Lab. Imagerie et Ingenierie pour la Sante, Faculte de Medecine, 25 - Besancon (France)

    2004-01-01

    Gamma imaging involves two-dimensional images of the volume distribution of a radioactive tracer previously injected into the organ under functional exploration. Our Besancon laboratory developed a gamma imager with a spatial resolution three or four times higher than a classic device, which is very useful for functional explorations on small animal, as recently demonstrated by work on myocyte apoptosis and necrosis scintigraphy in the rat. We expect progress in this promising medical imaging technology to be driven by developments in scintillating crystals and position-sensitive photomultiplier tubes, and by medical demand in applications such as early detection of breast cancer. (authors)

  17. High Resolution Global View of Io

    Science.gov (United States)

    1997-01-01

    Io, the most volcanic body in the solar system is seen in the highest resolution obtained to date by NASA's Galileo spacecraft. The smallest features that can be discerned are 2.5 kilometers in size. There are rugged mountains several kilometers high, layered materials forming plateaus, and many irregular depressions called volcanic calderas. Several of the dark, flow-like features correspond to hot spots, and may be active lava flows. There are no landforms resembling impact craters, as the volcanism covers the surface with new deposits much more rapidly than the flux of comets and asteroids can create large impact craters. The picture is centered on the side of Io that always faces away from Jupiter; north is to the top.Color images acquired on September 7, 1996 have been merged with higher resolution images acquired on November 6, 1996 by the Solid State Imaging (CCD) system aboard NASA's Galileo spacecraft. The color is composed of data taken, at a range of 487,000 kilometers, in the near-infrared, green, and violet filters and has been enhanced to emphasize the extraordinary variations in color and brightness that characterize Io's face. The high resolution images were obtained at ranges which varied from 245,719 kilometers to 403,100 kilometers.Launched in October 1989, Galileo entered orbit around Jupiter on December 7, 1995. The spacecraft's mission is to conduct detailed studies of the giant planet, its largest moons and the Jovian magnetic environment. The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  18. Auditory Conflict Resolution Correlates with Medial–Lateral Frontal Theta/Alpha Phase Synchrony

    Science.gov (United States)

    Huang, Samantha; Rossi, Stephanie; Hämäläinen, Matti; Ahveninen, Jyrki

    2014-01-01

    When multiple persons speak simultaneously, it may be difficult for the listener to direct attention to correct sound objects among conflicting ones. This could occur, for example, in an emergency situation in which one hears conflicting instructions and the loudest, instead of the wisest, voice prevails. Here, we used cortically-constrained oscillatory MEG/EEG estimates to examine how different brain regions, including caudal anterior cingulate (cACC) and dorsolateral prefrontal cortices (DLPFC), work together to resolve these kinds of auditory conflicts. During an auditory flanker interference task, subjects were presented with sound patterns consisting of three different voices, from three different directions (45° left, straight ahead, 45° right), sounding out either the letters “A” or “O”. They were asked to discriminate which sound was presented centrally and ignore the flanking distracters that were phonetically either congruent (50%) or incongruent (50%) with the target. Our cortical MEG/EEG oscillatory estimates demonstrated a direct relationship between performance and brain activity, showing that efficient conflict resolution, as measured with reduced conflict-induced RT lags, is predicted by theta/alpha phase coupling between cACC and right lateral frontal cortex regions intersecting the right frontal eye fields (FEF) and DLPFC, as well as by increased pre-stimulus gamma (60–110 Hz) power in the left inferior fontal cortex. Notably, cACC connectivity patterns that correlated with behavioral conflict-resolution measures were found during both the pre-stimulus and the pre-response periods. Our data provide evidence that, instead of being only transiently activated upon conflict detection, cACC is involved in sustained engagement of attentional resources required for effective sound object selection performance. PMID:25343503

  19. Auditory conflict resolution correlates with medial-lateral frontal theta/alpha phase synchrony.

    Science.gov (United States)

    Huang, Samantha; Rossi, Stephanie; Hämäläinen, Matti; Ahveninen, Jyrki

    2014-01-01

    When multiple persons speak simultaneously, it may be difficult for the listener to direct attention to correct sound objects among conflicting ones. This could occur, for example, in an emergency situation in which one hears conflicting instructions and the loudest, instead of the wisest, voice prevails. Here, we used cortically-constrained oscillatory MEG/EEG estimates to examine how different brain regions, including caudal anterior cingulate (cACC) and dorsolateral prefrontal cortices (DLPFC), work together to resolve these kinds of auditory conflicts. During an auditory flanker interference task, subjects were presented with sound patterns consisting of three different voices, from three different directions (45° left, straight ahead, 45° right), sounding out either the letters "A" or "O". They were asked to discriminate which sound was presented centrally and ignore the flanking distracters that were phonetically either congruent (50%) or incongruent (50%) with the target. Our cortical MEG/EEG oscillatory estimates demonstrated a direct relationship between performance and brain activity, showing that efficient conflict resolution, as measured with reduced conflict-induced RT lags, is predicted by theta/alpha phase coupling between cACC and right lateral frontal cortex regions intersecting the right frontal eye fields (FEF) and DLPFC, as well as by increased pre-stimulus gamma (60-110 Hz) power in the left inferior fontal cortex. Notably, cACC connectivity patterns that correlated with behavioral conflict-resolution measures were found during both the pre-stimulus and the pre-response periods. Our data provide evidence that, instead of being only transiently activated upon conflict detection, cACC is involved in sustained engagement of attentional resources required for effective sound object selection performance.

  20. Principles of high resolution NMR in solids

    CERN Document Server

    Mehring, Michael

    1983-01-01

    The field of Nuclear Magnetic Resonance (NMR) has developed at a fascinating pace during the last decade. It always has been an extremely valuable tool to the organic chemist by supplying molecular "finger print" spectra at the atomic level. Unfortunately the high resolution achievable in liquid solutions could not be obtained in solids and physicists and physical chemists had to live with unresolved lines open to a wealth of curve fitting procedures and a vast amount of speculations. High resolution NMR in solids seemed to be a paradoxon. Broad structure­ less lines are usually encountered when dealing with NMR in solids. Only with the recent advent of mUltiple pulse, magic angle, cross-polarization, two-dimen­ sional and multiple-quantum spectroscopy and other techniques during the last decade it became possible to resolve finer details of nuclear spin interactions in solids. I have felt that graduate students, researchers and others beginning to get involved with these techniques needed a book which trea...

  1. Limiting liability via high resolution image processing

    Energy Technology Data Exchange (ETDEWEB)

    Greenwade, L.E.; Overlin, T.K.

    1996-12-31

    The utilization of high resolution image processing allows forensic analysts and visualization scientists to assist detectives by enhancing field photographs, and by providing the tools and training to increase the quality and usability of field photos. Through the use of digitized photographs and computerized enhancement software, field evidence can be obtained and processed as `evidence ready`, even in poor lighting and shadowed conditions or darkened rooms. These images, which are most often unusable when taken with standard camera equipment, can be shot in the worst of photographic condition and be processed as usable evidence. Visualization scientists have taken the use of digital photographic image processing and moved the process of crime scene photos into the technology age. The use of high resolution technology will assist law enforcement in making better use of crime scene photography and positive identification of prints. Valuable court room and investigation time can be saved and better served by this accurate, performance based process. Inconclusive evidence does not lead to convictions. Enhancement of the photographic capability helps solve one major problem with crime scene photos, that if taken with standard equipment and without the benefit of enhancement software would be inconclusive, thus allowing guilty parties to be set free due to lack of evidence.

  2. High-Resolution Scintimammography: A Pilot Study

    Energy Technology Data Exchange (ETDEWEB)

    Rachel F. Brem; Joelle M. Schoonjans; Douglas A. Kieper; Stan Majewski; Steven Goodman; Cahid Civelek

    2002-07-01

    This study evaluated a novel high-resolution breast-specific gamma camera (HRBGC) for the detection of suggestive breast lesions. Methods: Fifty patients (with 58 breast lesions) for whom a scintimammogram was clinically indicated were prospectively evaluated with a general-purpose gamma camera and a novel HRBGC prototype. The results of conventional and high-resolution nuclear studies were prospectively classified as negative (normal or benign) or positive (suggestive or malignant) by 2 radiologists who were unaware of the mammographic and histologic results. All of the included lesions were confirmed by pathology. Results: There were 30 benign and 28 malignant lesions. The sensitivity for detection of breast cancer was 64.3% (18/28) with the conventional camera and 78.6% (22/28) with the HRBGC. The specificity with both systems was 93.3% (28/30). For the 18 nonpalpable lesions, sensitivity was 55.5% (10/18) and 72.2% (13/18) with the general-purpose camera and the HRBGC, respectively. For lesions 1 cm, 7 of 15 were detected with the general-purpose camera and 10 of 15 with the HRBGC. Four lesions (median size, 8.5 mm) were detected only with the HRBGC and were missed by the conventional camera. Conclusion: Evaluation of indeterminate breast lesions with an HRBGC results in improved sensitivity for the detection of cancer, with greater improvement shown for nonpalpable and 1-cm lesions.

  3. In toto imaging of the migrating Zebrafish lateral line primordium at single cell resolution.

    Science.gov (United States)

    Nogare, Damian Dalle; Nikaido, Masataka; Somers, Katherine; Head, Jeffery; Piotrowski, Tatjana; Chitnis, Ajay B

    2017-02-01

    The zebrafish Posterior Lateral Line primordium (PLLp) has emerged as an important model system for studying many aspects of development, including cell migration, cell type specification and tissue morphogenesis. Despite this, basic aspects of PLLp biology remain incompletely understood. The PLLp is a group of approximately 140 cells which pioneers the formation of the Posterior Lateral Line (LL) system by migrating along the length of the embryo, periodically depositing clusters of epithelial cells, which will go on to form the mature sense organs of the lateral line, called neuromasts. The neuromasts are formed within the migrating PLLp as protoneuromasts: the first protoneuromast is formed close to the trailing end and additional protoneuromasts are formed sequentially, progressively closer to the leading edge of the migrating collective. We imaged the migration of PLL primordia and tracked every cell in the lateral line system over the course of migration. From this data set we unambiguously determined the lineage and fate of every cell deposited by the migrating PLLp. We show that, on average, proliferation across the entire PLLp is weakly patterned, with leading cells tending to divide more slowly than trailing cells. Neuromasts are formed sequentially by local expansion of existing cells along the length of the PLLp, not by self-renewing stem cell-like divisions of a restricted leading population that is highly proliferative. The fate of deposited cells, either within neuromasts or as interneuromast cells (in between deposited neuromasts) is not determined by any obvious stereotyped lineages. Instead, it is determined somewhat stochasitcailly, as a function of a cells distance from the center of a maturing protoneuromast. Together, our data provide a rigorous baseline for the behavior of the PLLp, which can be used to inform further study of this important model system. Published by Elsevier Inc.

  4. Concept for a new high resolution high intensity diffractometer

    Energy Technology Data Exchange (ETDEWEB)

    Stuhr, U. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    A concept of a new time-of-flight powder-diffractometer for a thermal neutral beam tube at SINQ is presented. The design of the instrument optimises the contradictory conditions of high intensity and high resolution. The high intensity is achieved by using many neutron pulses simultaneously. By analysing the time-angle-pattern of the detected neutrons an assignment of the neutrons to a single pulse is possible. (author) 3 figs., tab., refs.

  5. A high-resolution microchip optomechanical accelerometer

    Science.gov (United States)

    Krause, Alexander G.; Winger, Martin; Blasius, Tim D.; Lin, Qiang; Painter, Oskar

    2012-11-01

    The monitoring of acceleration is essential for a variety of applications ranging from inertial navigation to consumer electronics. Typical accelerometer operation involves the sensitive displacement measurement of a flexibly mounted test mass, which can be realized using capacitive, piezo-electric, tunnel-current or optical methods. Although optical detection provides superior displacement resolution, resilience to electromagnetic interference and long-range readout, current optical accelerometers either do not allow for chip-scale integration or utilize relatively bulky test mass sensors of low bandwidth. Here, we demonstrate an optomechanical accelerometer that makes use of ultrasensitive displacement readout using a photonic-crystal nanocavity monolithically integrated with a nanotethered test mass of high mechanical Q-factor. This device achieves an acceleration resolution of 10 µg Hz-1/2 with submilliwatt optical power, bandwidth greater than 20 kHz and a dynamic range of greater than 40 dB. Moreover, the nanogram test masses used here allow for strong optomechanical backaction, setting the stage for a new class of motional sensors.

  6. Fast diffusion imaging with high angular resolution.

    Science.gov (United States)

    Chao, Tzu-Cheng; Chiou, Jr-Yuan George; Maier, Stephan E; Madore, Bruno

    2017-02-01

    High angular resolution diffusion imaging (HARDI) is a well-established method to help reveal the architecture of nerve bundles, but long scan times and geometric distortions inherent to echo planar imaging (EPI) have limited its integration into clinical protocols. A fast imaging method is proposed here that combines accelerated multishot diffusion imaging (AMDI), multiplexed sensitivity encoding (MUSE), and crossing fiber angular resolution of intravoxel structure (CFARI) to reduce spatial distortions and reduce total scan time. A multishot EPI sequence was used to improve geometrical fidelity as compared to a single-shot EPI acquisition, and acceleration in both k-space and diffusion sampling enabled reductions in scan time. The method is regularized and self-navigated for motion correction. Seven volunteers were scanned in this study, including four with volumetric whole brain acquisitions. The average similarity of microstructural orientations between undersampled datasets and their fully sampled counterparts was above 85%, with scan times below 5 min for whole-brain acquisitions. Up to 2.7-fold scan time acceleration along with four-fold distortion reduction was achieved. The proposed imaging strategy can generate HARDI results with relatively good geometrical fidelity and low scan duration, which may help facilitate the transition of HARDI from a successful research tool to a practical clinical one. Magn Reson Med 77:696-706, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  7. Detection of proximal caries with high-resolution and standard resolution digital radiographic systems

    NARCIS (Netherlands)

    Berkhout, W.E.R.; Verheij, H.G.C.; Syriopoulos, K.; Li, G.; Sanderink, G.C.H.; van der Stelt, P.F.

    2007-01-01

    Aims: The aim of this study was to: (1) compare the diagnostic accuracy of the high-resolution and standard resolution settings of four digital imaging systems for caries diagnosis and (2) compare the effect on the diagnostic accuracy of reducing the high-resolution image sizes to the standard

  8. Classification of High Spatial Resolution, Hyperspectral ...

    Science.gov (United States)

    EPA announced the availability of the final report,Classification of High Spatial Resolution, Hyperspectral Remote Sensing Imagery of the Little Miami River Watershed in Southwest Ohio, USA . This report and associated land use/land cover (LULC) coverage is the result of a collaborative effort among an interdisciplinary team of scientists with the U.S. Environmental Protection Agency's (U.S. EPA's) Office of Research and Development in Cincinnati, Ohio. A primary goal of this project is to enhance the use of geography and spatial analytic tools in risk assessment, and to improve the scientific basis for risk management decisions affecting drinking water and water quality. The land use/land cover classification is derived from 82 flight lines of Compact Airborne Spectrographic Imager (CASI) hyperspectral imagery acquired from July 24 through August 9, 2002 via fixed-wing aircraft.

  9. High resolution imaging detectors and applications

    CERN Document Server

    Saha, Swapan K

    2015-01-01

    Interferometric observations need snapshots of very high time resolution of the order of (i) frame integration of about 100 Hz or (ii) photon-recording rates of several megahertz (MHz). Detectors play a key role in astronomical observations, and since the explanation of the photoelectric effect by Albert Einstein, the technology has evolved rather fast. The present-day technology has made it possible to develop large-format complementary metal oxide–semiconductor (CMOS) and charge-coupled device (CCD) array mosaics, orthogonal transfer CCDs, electron-multiplication CCDs, electron-avalanche photodiode arrays, and quantum-well infrared (IR) photon detectors. The requirements to develop artifact-free photon shot noise-limited images are higher sensitivity and quantum efficiency, reduced noise that includes dark current, read-out and amplifier noise, smaller point-spread functions, and higher spectral bandwidth. This book aims to address such systems, technologies and design, evaluation and calibration, control...

  10. Capillary detectors for high resolution tracking

    CERN Document Server

    Annis, P

    1997-01-01

    We present a new tracking device based on glass capillary bundles or layers filled with highly purified liquid scintillator and read out at one end by means of image intensifiers and CCD devices. A large-volume prototype consisting of 5 × 105 capillaries with a diameter of 20 μm and a length of 180 cm and read out by a megapixel CCD has been tested with muon and neutrino beams at CERN. With this prototype a two track resolution of 33 μm was achieved with passing through muons. Images of neutrino interactions in a capillary bundle have also been acquired and analysed. Read-out chains based on Electron Bombarded CCD (EBCCD) and image pipeline devices are also investigated. Preliminary results obtained with a capillary bundle read out by an EBCCD are presented.

  11. High resolution color band pyrometer ratioing

    Science.gov (United States)

    Bickler, Donald B. (Inventor); Henry, Paul K. (Inventor); LoGiurato, D. Daniel (Inventor)

    1989-01-01

    The sensing head of a two-color band ratioing pyrometer of a known type using a fiber optic cable to couple radiation to dual detector photodiodes is improved to have high spatial resolution by focusing the radiation received through an objective lens (i.e., by focusing the image of a target area) onto an opaque sheet spaced in front of the input end of the fiber optic cable. A two-mil hole in that sheet then passes radiation to the input end of the cable. The detector has two channels, one for each color band, with an electronic-chopper stabilized current amplifier as the input stage followed by an electronic-chopper stabilized voltage amplifier.

  12. High-Resolution Movement EEG Classification

    Directory of Open Access Journals (Sweden)

    Jakub Štastný

    2007-01-01

    Full Text Available The aim of the contribution is to analyze possibilities of high-resolution movement classification using human EEG. For this purpose, a database of the EEG recorded during right-thumb and little-finger fast flexion movements of the experimental subjects was created. The statistical analysis of the EEG was done on the subject's basis instead of the commonly used grand averaging. Statistically significant differences between the EEG accompanying movements of both fingers were found, extending the results of other so far published works. The classifier based on hidden Markov models was able to distinguish between movement and resting states (classification score of 94–100%, but it was unable to recognize the type of the movement. This is caused by the large fraction of other (nonmovement related EEG activities in the recorded signals. A classification method based on advanced EEG signal denoising is being currently developed to overcome this problem.

  13. Improved methods for high resolution electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, J.R.

    1987-04-01

    Existing methods of making support films for high resolution transmission electron microscopy are investigated and novel methods are developed. Existing methods of fabricating fenestrated, metal reinforced specimen supports (microgrids) are evaluated for their potential to reduce beam induced movement of monolamellar crystals of C/sub 44/H/sub 90/ paraffin supported on thin carbon films. Improved methods of producing hydrophobic carbon films by vacuum evaporation, and improved methods of depositing well ordered monolamellar paraffin crystals on carbon films are developed. A novel technique for vacuum evaporation of metals is described which is used to reinforce microgrids. A technique is also developed to bond thin carbon films to microgrids with a polymer bonding agent. Unique biochemical methods are described to accomplish site specific covalent modification of membrane proteins. Protocols are given which covalently convert the carboxy terminus of papain cleaved bacteriorhodopsin to a free thiol. 53 refs., 19 figs., 1 tab.

  14. High-resolution retinal imaging using adaptive optics and Fourier-domain optical coherence tomography

    Science.gov (United States)

    Olivier, Scot S.; Werner, John S.; Zawadzki, Robert J.; Laut, Sophie P.; Jones, Steven M.

    2010-09-07

    This invention permits retinal images to be acquired at high speed and with unprecedented resolution in three dimensions (4.times.4.times.6 .mu.m). The instrument achieves high lateral resolution by using adaptive optics to correct optical aberrations of the human eye in real time. High axial resolution and high speed are made possible by the use of Fourier-domain optical coherence tomography. Using this system, we have demonstrated the ability to image microscopic blood vessels and the cone photoreceptor mosaic.

  15. High-resolution transcriptome of human macrophages.

    Directory of Open Access Journals (Sweden)

    Marc Beyer

    Full Text Available Macrophages are dynamic cells integrating signals from their microenvironment to develop specific functional responses. Although, microarray-based transcriptional profiling has established transcriptional reprogramming as an important mechanism for signal integration and cell function of macrophages, current knowledge on transcriptional regulation of human macrophages is far from complete. To discover novel marker genes, an area of great need particularly in human macrophage biology but also to generate a much more thorough transcriptome of human M1- and M1-like macrophages, we performed RNA sequencing (RNA-seq of human macrophages. Using this approach we can now provide a high-resolution transcriptome profile of human macrophages under classical (M1-like and alternative (M2-like polarization conditions and demonstrate a dynamic range exceeding observations obtained by previous technologies, resulting in a more comprehensive understanding of the transcriptome of human macrophages. Using this approach, we identify important gene clusters so far not appreciated by standard microarray techniques. In addition, we were able to detect differential promoter usage, alternative transcription start sites, and different coding sequences for 57 gene loci in human macrophages. Moreover, this approach led to the identification of novel M1-associated (CD120b, TLR2, SLAMF7 as well as M2-associated (CD1a, CD1b, CD93, CD226 cell surface markers. Taken together, these data support that high-resolution transcriptome profiling of human macrophages by RNA-seq leads to a better understanding of macrophage function and will form the basis for a better characterization of macrophages in human health and disease.

  16. High-Resolution Transcriptome of Human Macrophages

    Science.gov (United States)

    Xue, Jia; Staratschek-Jox, Andrea; Vorholt, Daniela; Krebs, Wolfgang; Sommer, Daniel; Sander, Jil; Mertens, Christina; Nino-Castro, Andrea; Schmidt, Susanne V.; Schultze, Joachim L.

    2012-01-01

    Macrophages are dynamic cells integrating signals from their microenvironment to develop specific functional responses. Although, microarray-based transcriptional profiling has established transcriptional reprogramming as an important mechanism for signal integration and cell function of macrophages, current knowledge on transcriptional regulation of human macrophages is far from complete. To discover novel marker genes, an area of great need particularly in human macrophage biology but also to generate a much more thorough transcriptome of human M1- and M1-like macrophages, we performed RNA sequencing (RNA-seq) of human macrophages. Using this approach we can now provide a high-resolution transcriptome profile of human macrophages under classical (M1-like) and alternative (M2-like) polarization conditions and demonstrate a dynamic range exceeding observations obtained by previous technologies, resulting in a more comprehensive understanding of the transcriptome of human macrophages. Using this approach, we identify important gene clusters so far not appreciated by standard microarray techniques. In addition, we were able to detect differential promoter usage, alternative transcription start sites, and different coding sequences for 57 gene loci in human macrophages. Moreover, this approach led to the identification of novel M1-associated (CD120b, TLR2, SLAMF7) as well as M2-associated (CD1a, CD1b, CD93, CD226) cell surface markers. Taken together, these data support that high-resolution transcriptome profiling of human macrophages by RNA-seq leads to a better understanding of macrophage function and will form the basis for a better characterization of macrophages in human health and disease. PMID:23029029

  17. High-resolution downscaling for hydrological management

    Science.gov (United States)

    Ulbrich, Uwe; Rust, Henning; Meredith, Edmund; Kpogo-Nuwoklo, Komlan; Vagenas, Christos

    2017-04-01

    Hydrological modellers and water managers require high-resolution climate data to model regional hydrologies and how these may respond to future changes in the large-scale climate. The ability to successfully model such changes and, by extension, critical infrastructure planning is often impeded by a lack of suitable climate data. This typically takes the form of too-coarse data from climate models, which are not sufficiently detailed in either space or time to be able to support water management decisions and hydrological research. BINGO (Bringing INnovation in onGOing water management; ) aims to bridge the gap between the needs of hydrological modellers and planners, and the currently available range of climate data, with the overarching aim of providing adaptation strategies for climate change-related challenges. Producing the kilometre- and sub-daily-scale climate data needed by hydrologists through continuous simulations is generally computationally infeasible. To circumvent this hurdle, we adopt a two-pronged approach involving (1) selective dynamical downscaling and (2) conditional stochastic weather generators, with the former presented here. We take an event-based approach to downscaling in order to achieve the kilometre-scale input needed by hydrological modellers. Computational expenses are minimized by identifying extremal weather patterns for each BINGO research site in lower-resolution simulations and then only downscaling to the kilometre-scale (convection permitting) those events during which such patterns occur. Here we (1) outline the methodology behind the selection of the events, and (2) compare the modelled precipitation distribution and variability (preconditioned on the extremal weather patterns) with that found in observations.

  18. HIGH RESOLUTION AIRBORNE SHALLOW WATER MAPPING

    Directory of Open Access Journals (Sweden)

    F. Steinbacher

    2012-07-01

    Full Text Available In order to meet the requirements of the European Water Framework Directive (EU-WFD, authorities face the problem of repeatedly performing area-wide surveying of all kinds of inland waters. Especially for mid-sized or small rivers this is a considerable challenge imposing insurmountable logistical efforts and costs. It is therefore investigated if large-scale surveying of a river system on an operational basis is feasible by employing airborne hydrographic laser scanning. In cooperation with the Bavarian Water Authority (WWA Weilheim a pilot project was initiated by the Unit of Hydraulic Engineering at the University of Innsbruck and RIEGL Laser Measurement Systems exploiting the possibilities of a new LIDAR measurement system with high spatial resolution and high measurement rate to capture about 70 km of riverbed and foreland for the river Loisach in Bavaria/Germany and the estuary and parts of the shoreline (about 40km in length of lake Ammersee. The entire area surveyed was referenced to classic terrestrial cross-section surveys with the aim to derive products for the monitoring and managing needs of the inland water bodies forced by the EU-WFD. The survey was performed in July 2011 by helicopter and airplane and took 3 days in total. In addition, high resolution areal images were taken to provide an optical reference, offering a wide range of possibilities on further research, monitoring, and managing responsibilities. The operating altitude was about 500 m to maintain eye-safety, even for the aided eye, the airspeed was about 55 kts for the helicopter and 75 kts for the aircraft. The helicopter was used in the alpine regions while the fixed wing aircraft was used in the plains and the urban area, using appropriate scan rates to receive evenly distributed point clouds. The resulting point density ranged from 10 to 25 points per square meter. By carefully selecting days with optimum water quality, satisfactory penetration down to the river

  19. High Resolution Airborne Shallow Water Mapping

    Science.gov (United States)

    Steinbacher, F.; Pfennigbauer, M.; Aufleger, M.; Ullrich, A.

    2012-07-01

    In order to meet the requirements of the European Water Framework Directive (EU-WFD), authorities face the problem of repeatedly performing area-wide surveying of all kinds of inland waters. Especially for mid-sized or small rivers this is a considerable challenge imposing insurmountable logistical efforts and costs. It is therefore investigated if large-scale surveying of a river system on an operational basis is feasible by employing airborne hydrographic laser scanning. In cooperation with the Bavarian Water Authority (WWA Weilheim) a pilot project was initiated by the Unit of Hydraulic Engineering at the University of Innsbruck and RIEGL Laser Measurement Systems exploiting the possibilities of a new LIDAR measurement system with high spatial resolution and high measurement rate to capture about 70 km of riverbed and foreland for the river Loisach in Bavaria/Germany and the estuary and parts of the shoreline (about 40km in length) of lake Ammersee. The entire area surveyed was referenced to classic terrestrial cross-section surveys with the aim to derive products for the monitoring and managing needs of the inland water bodies forced by the EU-WFD. The survey was performed in July 2011 by helicopter and airplane and took 3 days in total. In addition, high resolution areal images were taken to provide an optical reference, offering a wide range of possibilities on further research, monitoring, and managing responsibilities. The operating altitude was about 500 m to maintain eye-safety, even for the aided eye, the airspeed was about 55 kts for the helicopter and 75 kts for the aircraft. The helicopter was used in the alpine regions while the fixed wing aircraft was used in the plains and the urban area, using appropriate scan rates to receive evenly distributed point clouds. The resulting point density ranged from 10 to 25 points per square meter. By carefully selecting days with optimum water quality, satisfactory penetration down to the river bed was achieved

  20. Resolution enhancement of low quality videos using a high-resolution frame

    NARCIS (Netherlands)

    Pham, T.Q.; Van Vliet, L.J.; Schutte, K.

    2006-01-01

    This paper proposes an example-based Super-Resolution (SR) algorithm of compressed videos in the Discrete Cosine Transform (DCT) domain. Input to the system is a Low-Resolution (LR) compressed video together with a High-Resolution (HR) still image of similar content. Using a training set of

  1. High resolution surface plasmon imaging of nanoparticles

    Science.gov (United States)

    Berguiga, Lotfi; Roland, Thibault; Fahys, Audrey; Elezgaray, Juan; Argoul, Françoise

    2010-05-01

    We report a technique of surface plasmon resonance imaging (SPRi) called SSPM (Scanning Surface Plasmon Microscopy) which pushes down the resolution limit to sub-micronic scales. To confirm the sensitivity and resolution of this non labeling microscopy we show images of gold and dielectric nanoparticules detected in air. The contrast mechanism is discussed versus the defocusing and versus the nature of the particules.

  2. The High Time Resolution Radio Sky

    Science.gov (United States)

    Thornton, D.

    2013-11-01

    Pulsars are laboratories for extreme physics unachievable on Earth. As individual sources and possible orbital companions can be used to study magnetospheric, emission, and superfluid physics, general relativistic effects, and stellar and binary evolution. As populations they exhibit a wide range of sub-types, with parameters varying by many orders of magnitude signifying fundamental differences in their evolutionary history and potential uses. There are currently around 2200 known pulsars in the Milky Way, the Magellanic clouds, and globular clusters, most of which have been discovered with radio survey observations. These observations, as well as being suitable for detecting the repeating signals from pulsars, are well suited for identifying other transient astronomical radio bursts that last just a few milliseconds that either singular in nature, or rarely repeating. Prior to the work of this thesis non-repeating radio transients at extragalactic distances had possibly been discovered, however with just one example status a real astronomical sources was in doubt. Finding more of these sources was a vital to proving they were real and to open up the universe for millisecond-duration radio astronomy. The High Time Resolution Universe survey uses the multibeam receiver on the 64-m Parkes radio telescope to search the whole visible sky for pulsars and transients. The temporal and spectral resolution of the receiver and the digital back-end enable the detection of relatively faint, and distant radio sources. From the Parkes telescope a large portion of the Galactic plane can be seen, a rich hunting ground for radio pulsars of all types, while previously poorly surveyed regions away from the Galactic plane are also covered. I have made a number of pulsar discoveries in the survey, including some rare systems. These include PSR J1226-6208, a possible double neutron star system in a remarkably circular orbit, PSR J1431-471 which is being eclipsed by its companion with

  3. High-lateral-tension abdominoplasty with superficial fascial system suspension.

    Science.gov (United States)

    Lockwood, T

    1995-09-01

    Modern abdominoplasty techniques were developed in the 1960s. The advent of liposuction has reduced the need for classic abdominoplasty and allowed more aesthetic sculpting of the entire trunk. However, the combination of significant truncal liposuction and classic abdominoplasty is not recommended due to the increased risk of complications. Although the surgical principles of classic abdominoplasty certainly have stood the test of time, they are based on two theoretical assumptions that may be proved to be inaccurate. The first assumption is that wide direct undermining to costal margins is essential for abdominal flap advancement. In fact, discontinuous undermining allows effective loosening of the abdominal flap while preserving vascular perforators. The second inaccurate assumption is that with aging and weight fluctuations (including pregnancy), abdominal skin relaxation occurs primarily in the vertical direction from the xiphoid to the pubis. This is true in the lower abdomen, but in most patients a strong superficial fascial system adherence to the linea alba in the epigastrium limits vertical descent. Epigastric laxity frequently results from a progressive horizontal loosening due to relaxation of the tissue along the lateral trunk. Experience with the lower-body lift procedure has shown that significant lateral truncal skin resection results in epigastric tightening. In these patients, the ideal abdominoplasty pattern would resect as much or more laterally than centrally, leading to more natural abdominal contours. Fifty patients who underwent high-lateral-tension abdominoplasty with and without significant truncal liposuction and other aesthetic procedures were followed for 4 to 16 months. The primary indication for surgery was moderate to severe laxity of abdominal skin and muscle with or without truncal fat deposits. Complication rates were equal to or less than those of historical controls and did not increase with significant adjunctive liposuction

  4. High Spectral Resolution Lidar (HSRL) Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Goldsmith, John [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2016-04-01

    High Spectral Resolution Lidar (HSRL) systems provide vertical profiles of optical depth, backscatter cross-section, depolarization, and backscatter phase function. All HSRL measurements are absolutely calibrated by reference to molecular scattering, which is measured at each point in the lidar profile. Like the Raman lidar but unlike simple backscatter lidars such as the micropulse lidar, the HSRL can measure backscatter cross-sections and optical depths without prior assumptions about the scattering properties of the atmosphere. The depolarization observations also allow robust discrimination between ice and water clouds. In addition, rigorous error estimates can be computed for all measurements. A very narrow, angular field of view reduces multiple scattering contributions. The small field of view, coupled with a narrow optical bandwidth, nearly eliminates noise due to scattered sunlight. There are two operational U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility HSRL systems, one at the Barrow North Slope of Alaska (NSA) site and the other in the second ARM Mobile Facility (AMF2) collection of instrumentation.

  5. AIRBORNE HIGH-RESOLUTION DIGITAL IMAGING SYSTEM

    Directory of Open Access Journals (Sweden)

    Prado-Molina, J.

    2006-04-01

    Full Text Available A low-cost airborne digital imaging system capable to perform aerial surveys with small-format cameras isintroduced. The equipment is intended to obtain high-resolution multispectral digital photographs constituting so aviable alternative to conventional aerial photography and satellite imagery. Monitoring software handles all theprocedures involved in image acquisition, including flight planning, real-time graphics for aircraft position updatingin a mobile map, and supervises the main variables engaged in the imaging process. This software also creates fileswith the geographical position of the central point of every image, and the flight path followed by the aircraftduring the entire survey. The cameras are mounted on a three-axis stabilized platform. A set of inertial sensorsdetermines platform's deviations independently from the aircraft and an automatic control system keeps thecameras at a continuous nadir pointing and heading, with a precision better than ± 1 arc-degree in three-axis. Thecontrol system is also in charge of saving the platform’s orientation angles when the monitoring software triggersthe camera. These external orientation parameters, together with a procedure for camera calibration give theessential elements for image orthocorrection. Orthomosaics are constructed using commercial GIS software.This system demonstrates the feasibility of large area coverage in a practical and economical way using smallformatcameras. Monitoring and automatization reduce the work while increasing the quality and the amount ofuseful images.

  6. High spatial resolution probes for neurobiology applications

    Science.gov (United States)

    Gunning, D. E.; Kenney, C. J.; Litke, A. M.; Mathieson, K.

    2009-06-01

    Position-sensitive biological neural networks, such as the brain and the retina, require position-sensitive detection methods to identify, map and study their behavior. Traditionally, planar microelectrodes have been employed to record the cell's electrical activity with device limitations arising from the electrode's 2-D nature. Described here is the development and characterization of an array of electrically conductive micro-needles aimed at addressing the limitations of planar electrodes. The capability of this array to penetrate neural tissue improves the electrode-cell electrical interface and allows more complicated 3-D networks of neurons, such as those found in brain slices, to be studied. State-of-the-art semiconductor fabrication techniques were used to etch and passivate conformally the metal coat and fill high aspect ratio holes in silicon. These are subsequently transformed into needles with conductive tips. This process has enabled the fabrication of arrays of unprecedented dimensions: 61 hexagonally close-packed electrodes, ˜200 μm tall with 60 μm spacing. Electroplating the tungsten tips with platinum ensure suitable impedance values (˜600 kΩ at 1 kHz) for the recording of neuronal signals. Without compromising spatial resolution of the neuronal recordings, this array adds a new and exciting dimension to the study of biological neural networks.

  7. Fundamental constants and high-resolution spectroscopy

    Science.gov (United States)

    Bonifacio, P.; Rahmani, H.; Whitmore, J. B.; Wendt, M.; Centurion, M.; Molaro, P.; Srianand, R.; Murphy, M. T.; Petitjean, P.; Agafonova, I. I.; D'Odorico, S.; Evans, T. M.; Levshakov, S. A.; Lopez, S.; Martins, C. J. A. P.; Reimers, D.; Vladilo, G.

    2014-01-01

    Absorption-line systems detected in high resolution quasar spectra can be used to compare the value of dimensionless fundamental constants such as the fine-structure constant, α, and the proton-to-electron mass ratio, μ = m_p/m_e, as measured in remote regions of the Universe to their value today on Earth. In recent years, some evidence has emerged of small temporal and also spatial variations in α on cosmological scales which may reach a fractional level of ≈ 10 ppm (parts per million). We are conducting a Large Programme of observations with the Very Large Telescope's Ultraviolet and Visual Echelle Spectrograph (UVES), and are obtaining high-resolution ({R ≈ 60 000}) and high signal-to-noise ratio (S/N ≈ 100) spectra calibrated specifically to study the variations of the fundamental constants. We here provide a general overview of the Large Programme and report on the first results for these two constants, discussed in detail in Molaro et al. (2013) and Rahmani et al. (2013). A stringent bound for Δα/α is obtained for the absorber at z_abs = 1.6919 towards HE 2217-2818. The absorption profile is complex with several very narrow features, and is modeled with 32 velocity components. The relative variation in α in this system is +1.3± 2.4_stat ± 1.0_sys ppm if Al II λ 1670 Å and three Fe II transitions are used, and +1.1 ± 2.6_stat ppm in a slightly different analysis with only Fe II transitions used. This is one of the tightest bounds on α-variation from an individual absorber and reveals no evidence for variation in α at the 3-ppm precision level (1σ confidence). The expectation at this sky position of the recently-reported dipolar variation of α is (3.2-5.4)±1.7 ppm depending on dipole model used and this constraint of Δα/α at face value is not supporting this expectation but not inconsistent with it at the 3σ level. For the proton-to-electron mass ratio the analysis of the H_2 absorption lines of the z_abs ≈ 2.4018 damped Lyα system

  8. Super-Resolution Reconstruction of High-Resolution Satellite ZY-3 TLC Images.

    Science.gov (United States)

    Li, Lin; Wang, Wei; Luo, Heng; Ying, Shen

    2017-05-07

    Super-resolution (SR) image reconstruction is a technique used to recover a high-resolution image using the cumulative information provided by several low-resolution images. With the help of SR techniques, satellite remotely sensed images can be combined to achieve a higher-resolution image, which is especially useful for a two- or three-line camera satellite, e.g., the ZY-3 high-resolution Three Line Camera (TLC) satellite. In this paper, we introduce the application of the SR reconstruction method, including motion estimation and the robust super-resolution technique, to ZY-3 TLC images. The results show that SR reconstruction can significantly improve both the resolution and image quality of ZY-3 TLC images.

  9. Single sensor processing to obtain high resolution color component signals

    Science.gov (United States)

    Glenn, William E. (Inventor)

    2010-01-01

    A method for generating color video signals representative of color images of a scene includes the following steps: focusing light from the scene on an electronic image sensor via a filter having a tri-color filter pattern; producing, from outputs of the sensor, first and second relatively low resolution luminance signals; producing, from outputs of the sensor, a relatively high resolution luminance signal; producing, from a ratio of the relatively high resolution luminance signal to the first relatively low resolution luminance signal, a high band luminance component signal; producing, from outputs of the sensor, relatively low resolution color component signals; and combining each of the relatively low resolution color component signals with the high band luminance component signal to obtain relatively high resolution color component signals.

  10. High resolution CT findings of pseudoalveolar sarcoidosis

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Ji Eun; Park, Jun Gyun; Choe, Kyu Ok; Kim, Sang Jin [Yonsei University College of Medicine, Seoul (Korea, Republic of); Ryu, Young Hoon; Im, Jung Gi [Seoul National University College of Medicine, Seoul (Korea, Republic of); Lee, Kyoung Soo [Sungkunkwan University College of Medicine, Seoul (Korea, Republic of); Song, Koun Sik [University of Ulsan College of Medicine, Seoul (Korea, Republic of); Kim, Hyae Young [National Cancer Centar, Seoul (Korea, Republic of)

    2002-08-01

    To determine the specific high-resolution CT features of sarcoidosis in which the observed pattern is predominantly pseudoalveolar. We retrospectively reviewed the HRCT findings in 15 cases in which chest radiography demonstrated pseudoalveolar consolidation. In all 15, sarcoidosis was pathologically proven. The distribution and characterization of the following CT features was meticulously scrutinized: distribution and characterization of pseudoalveolar lesions, air-bronchograms, micronodules, thickening of bronchovascular bundles and interlobular septa, lung distortion, ground-glass opacities and combined hilar and mediastinal lymphadenopathy. Follow-up CT scans were available in three cases after corticosteroid administration. Between one and 12 (mean, 5.6) pseudoalveolar lesions appeared as dense homogeneous or inhomogeneous opacities 1-4.5 cm in diameter and with an irregular margin located either at the lung periphery adjacent to the pleural surface or along the bronchovascular bundles, with mainly bilateral distribution (n=14, 93%). An air-bronchogram was observed in ten cases. Micronodules were observed at the periphery of the lesion or surrounding lung, which along with a thickened bronchovascular bundle was a consistent feature in all cases. Additional CT features included hilar and mediastinal lymphadenopathy (n=14, 93%), thickened interlobular septa (n=12, 80%), and ground-glass opacity (n=10, 67%). Lung distortion was noted in only one case (7%). After steroid administration pseudoalveolar lesions decreased in number and size in all three cases in which follow-up CT was available. The consistent HRCT features of pseudoalveolar sarcoidosis are bilateral multifocal dense homogenous or inhomogenous opacity and an irregular margin located either at the lung periphery adjacent to the pleural surface or along the bronchovascular bundles. Micronodules are present at the periphery of the lesion or surrounding lung. The features are reversible administration.

  11. High Resolution Pulse Compression Imaging Using Super Resolution FM-Chirp Correlation Method (SCM)

    Science.gov (United States)

    Fujiwara, M.; Okubo, K.; Tagawa, N.

    This study addresses the issue of the super-resolution pulse compression technique (PCT) for ultrasound imaging. Time resolution of multiple ultrasonic echoes using the FM-Chirp PCT is limited by the bandwidth of the sweep-frequency. That is, the resolution depends on the sharpness of auto-correlation function. We propose the Super resolution FM-Chirp correlation Method (SCM) and evaluate its performance. This method is based on the multiple signal classification (MUSIC) algorithm. Our simulations were made for the model assuming multiple signals reflected from some scatterers. We confirmed that SCM detects time delay of complicated reflected signals successfully with high resolution.

  12. MULTIPULSE - high resolution and high power in one TDEM system

    Science.gov (United States)

    Chen, Tianyou; Hodges, Greg; Miles, Philip

    2015-09-01

    An airborne time domain electromagnetic (TEM) system with high resolution and great depth of exploration is desired for geological mapping as well as for mineral exploration. The MULTIPULSE technology enables an airborne TEM system to transmit a high power pulse (a half-sine, for instance) and one or multiple low power pulse(s) (trapezoid or square) within a half-cycle. The high power pulse ensures good depth of exploration and the low power pulse allows a fast transmitter current turn off and earlier off-time measurement thus providing higher frequency signals, which allows higher near-surface resolution and better sensitivity to weak conductors. The power spectrum of the MULTIPULSE waveform comprising a half-sine and a trapezoid pulse clearly shows increased power in the higher frequency range (> ~2.3 kHz) compared to that of a single half-sine waveform. The addition of the low power trapezoid pulse extends the range of the sensitivity 10-fold towards the weak conductors, expanding the geological conductivity range of a system and increasing the scope of its applications. The MULTIPULSE technology can be applied to standard single-pulse airborne TEM systems on both helicopter and fixed-wing. We field tested the HELITEM MULTIPULSE system over a wire-loop in Iroquois Falls, demonstrating the different sensitivity of the high and low power pulses to the overburden and the wire-loop. We also tested both HELITEM and GEOTEM MULTIPULSE systems over a layered oil sand geologic setting in Fort McMurray, Alberta, Canada. The results show comparable shallow geologic resolution of the MULTIPULSE to that of the RESOLVE system while maintaining superior depth of exploration, confirming the increased geological conductivity range of a system employing MULTIPULSE compared to the standard single-pulse systems.

  13. High Resolution Sensor for Nuclear Waste Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Kanai; Higgins, William; Van Loef, Edgar V

    2006-01-23

    Gamma ray spectrometers are an important tool in the characterization of radioactive waste. Important requirements for gamma ray spectrometers used in this application include good energy resolution, high detection efficiency, compact size, light weight, portability, and low power requirements. None of the available spectrometers satisfy all of these requirements. The goal of the Phase I research was to investigate lanthanum halide and related scintillators for nuclear waste clean-up. LaBr3:Ce remains a very promising scintillator with high light yield and fast response. CeBr3 is attractive because it is very similar to LaBr3:Ce in terms of scintillation properties and also has the advantage of much lower self-radioactivity, which may be important in some applications. CeBr3 also shows slightly higher light yield at higher temperatures than LaBr3 and may be easier to produce with high uniformity in large volume since it does not require any dopants. Among the mixed lanthanum halides, the light yield of LaBrxI3-x:Ce is lower and the difference in crystal structure of the binaries (LaBr3 and LaI3) makes it difficult to grow high quality crystals of the ternary as the iodine concentration is increased. On the other hand, LaBrxCl3-x:Ce provides excellent performance. Its light output is high and it provides fast response. The crystal structures of the two binaries (LaBr3 and LaCl3) are very similar. Overall, its scintillation properties are very similar to those for LaBr3:Ce. While the gamma-ray stopping efficiency of LaBrxCl3-x:Ce is lower than that for LaBr3:Ce (primarily because the density of LaCl3 is lower than that of LaBr3), it may be easier to grow large crystals of LaBrxCl3-x:Ce than LaBr3:Ce since in some instances (for example, CdxZn1-xTe), the ternary compounds provide increased flexibility in the crystal lattice. Among the new dopants, Eu2+ and Pr3+, tried in LaBr3 host crystals, the Eu2+ doped samples exhibited low light output. This was mostly because a

  14. On the lateral resolution of focused ultrasonic fields from spherically curved transducers.

    Science.gov (United States)

    Beissner, K

    2013-11-01

    Focused ultrasonic fields produced by spherically curved transducers occur in many areas, as, for example, in medical ultrasonics. Recently, transducers with a central hole have increasingly appeared in practice. The present paper theoretically investigates the lateral field distribution in the geometric focal plane, based on an approach with the Rayleigh integral. Results for the lateral width of the focal maximum in that plane are presented. It turns out that the appearance of a central hole leads to a reduction in the lateral width of the focal maximum, contrary to the behavior of the longitudinal width of that maximum shown earlier.

  15. Torsional resonance mode magnetic force microscopy: enabling higher lateral resolution magnetic imaging without topography-related effects.

    Science.gov (United States)

    Kaidatzis, A; García-Martín, J M

    2013-04-26

    We present experimental work that reveals the benefits of performing magnetic force microscopy measurements employing the torsional resonance mode of cantilever oscillation. This approach provides two clear advantages: the ability of performing magnetic imaging without topography-related interference and the significant lateral resolution improvement (approximately 15%). We believe that this work demonstrates a significant improvement to a versatile magnetic imaging technique widely used in academia and in industry.

  16. Physics of high-resolution ultrasound--practical aspects.

    Science.gov (United States)

    Walter, J P

    1985-03-01

    The role of ultrasonography in the imaging of superficially located structures is enhanced by the appropriate application of basic physical principles. Emphasis is placed on the understanding of axial and lateral resolution, variable and dynamic focusing systems, and fluid-path scanners. Knowledge of these principles is useful in daily practice and in the evaluation of new equipment.

  17. Carbon Nanotube Tip Probes: Stability and Lateral Resolution in Scanning Probe Microscopy and Application to Surface Science to Semiconductors

    Science.gov (United States)

    Nguyen, Cattien V.; Chao, Kuo-Jen; Stevens, Ramsey M. D.; Delzeit, Lance; Cassell, Alan; Han, Jie; Meyyappan, M.; Arnold, James (Technical Monitor)

    2001-01-01

    In this paper we present results on the stability and lateral resolution capability of carbon nanotube (CNT) scanning probes as applied to atomic force microscopy (AFM). Surface topography images of ultra-thin films (2-5 nm thickness) obtained with AFM are used to illustrate the lateral resolution capability of single-walled carbon nanotube probes. Images of metal films prepared by ion beam sputtering exhibit grain sizes ranging from greater than 10 nm to as small as approximately 2 nm for gold and iridium respectively. In addition, imaging stability and lifetime of multi-walled carbon nanotube scanning probes are studied on a relatively hard surface of silicon nitride (Si3N4). AFM images Of Si3N4 surface collected after more than 15 hrs of continuous scanning show no detectable degradation in lateral resolution. These results indicate the general feasibility of CNT tips and scanning probe microscopy for examining nanometer-scale surface features of deposited metals as well as non-conductive thin films. AFM coupled with CNT tips offers a simple and nondestructive technique for probing a variety of surfaces, and has immense potential as a surface characterization tool in integrated circuit manufacturing.

  18. Quantum interpolation for high-resolution sensing.

    Science.gov (United States)

    Ajoy, Ashok; Liu, Yi-Xiang; Saha, Kasturi; Marseglia, Luca; Jaskula, Jean-Christophe; Bissbort, Ulf; Cappellaro, Paola

    2017-02-28

    Recent advances in engineering and control of nanoscale quantum sensors have opened new paradigms in precision metrology. Unfortunately, hardware restrictions often limit the sensor performance. In nanoscale magnetic resonance probes, for instance, finite sampling times greatly limit the achievable sensitivity and spectral resolution. Here we introduce a technique for coherent quantum interpolation that can overcome these problems. Using a quantum sensor associated with the nitrogen vacancy center in diamond, we experimentally demonstrate that quantum interpolation can achieve spectroscopy of classical magnetic fields and individual quantum spins with orders of magnitude finer frequency resolution than conventionally possible. Not only is quantum interpolation an enabling technique to extract structural and chemical information from single biomolecules, but it can be directly applied to other quantum systems for superresolution quantum spectroscopy.

  19. High resolution, high bandwidth global shutter CMOS area scan sensors

    Science.gov (United States)

    Faramarzpour, Naser; Sonder, Matthias; Li, Binqiao

    2013-10-01

    Global shuttering, sometimes also known as electronic shuttering, enables the use of CMOS sensors in a vast range of applications. Teledyne DALSA Global shutter sensors are able to integrate light synchronously across millions of pixels with microsecond accuracy. Teledyne DALSA offers 5 transistor global shutter pixels in variety of resolutions, pitches and noise and full-well combinations. One of the recent generations of these pixels is implemented in 12 mega pixel area scan device at 6 um pitch and that images up to 70 frames per second with 58 dB dynamic range. These square pixels include microlens and optional color filters. These sensors also offer exposure control, anti-blooming and high dynamic range operation by introduction of a drain and a PPD reset gate to the pixel. The state of the art sense node design of Teledyne DALSA's 5T pixel offers exceptional shutter rejection ratio. The architecture is consistent with the requirements to use stitching to achieve very large area scan devices. Parallel or serial digital output is provided on these sensors using on-chip, column-wise analog to digital converters. Flexible ADC bit depth combined with windowing (adjustable region of interest, ROI) allows these sensors to run with variety of resolution/bandwidth combinations. The low power, state of the art LVDS I/O technology allows for overall power consumptions of less than 2W at full performance conditions.

  20. High resolution IVEM tomography of biological specimens

    Energy Technology Data Exchange (ETDEWEB)

    Sedat, J.W.; Agard, D.A. [Univ. of California, San Francisco, CA (United States)

    1997-02-01

    Electron tomography is a powerful tool for elucidating the three-dimensional architecture of large biological complexes and subcellular organelles. The introduction of intermediate voltage electron microscopes further extended the technique by providing the means to examine very large and non-symmetrical subcellular organelles, at resolutions beyond what would be possible using light microscopy. Recent studies using electron tomography on a variety of cellular organelles and assemblies such as centrosomes, kinetochores, and chromatin have clearly demonstrated the power of this technique for obtaining 3D structural information on non-symmetric cell components. When combined with biochemical and molecular observations, these 3D reconstructions have provided significant new insights into biological function.

  1. High resolution X-ray diffraction studies on unirradiated and ...

    Indian Academy of Sciences (India)

    High-resolution X-ray diffraction technique, employing a three-crystal monochromator–collimator ... observed by high-resolution electron microscopy in both ..... 1988 Nucl. Instrum. Meth. B34 228. Kato N 1992 J. Acta Crystallogr. A48 834. Kaur B, Bhat M, Licci F, Kumar R, Kotru P N and Bamzai K K. 2004 Nucl. Instrum. Meth ...

  2. Scalable Algorithms for Large High-Resolution Terrain Data

    DEFF Research Database (Denmark)

    Mølhave, Thomas; Agarwal, Pankaj K.; Arge, Lars Allan

    2010-01-01

    In this paper we demonstrate that the technology required to perform typical GIS computations on very large high-resolution terrain models has matured enough to be ready for use by practitioners. We also demonstrate the impact that high-resolution data has on common problems. To our knowledge, so...

  3. Achieving sensitive, high-resolution laser spectroscopy at CRIS

    Energy Technology Data Exchange (ETDEWEB)

    Groote, R. P. de [Instituut voor Kern- en Stralingsfysica, KU Leuven (Belgium); Lynch, K. M., E-mail: kara.marie.lynch@cern.ch [EP Department, CERN, ISOLDE (Switzerland); Wilkins, S. G. [The University of Manchester, School of Physics and Astronomy (United Kingdom); Collaboration: the CRIS collaboration

    2017-11-15

    The Collinear Resonance Ionization Spectroscopy (CRIS) experiment, located at the ISOLDE facility, has recently performed high-resolution laser spectroscopy, with linewidths down to 20 MHz. In this article, we present the modifications to the beam line and the newly-installed laser systems that have made sensitive, high-resolution measurements possible. Highlights of recent experimental campaigns are presented.

  4. High-resolution X-ray diffraction studies of multilayers

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Hornstrup, Allan; Schnopper, H. W.

    1988-01-01

    High-resolution X-ray diffraction studies of the perfection of state-of-the-art multilayers are presented. Data were obtained using a triple-axis perfect-crystal X-ray diffractometer. Measurements reveal large-scale figure errors in the substrate. A high-resolution triple-axis set up is required...

  5. High resolution UV spectroscopy and laser-focused nanofabrication

    NARCIS (Netherlands)

    Myszkiewicz, G.

    2005-01-01

    This thesis combines two at first glance different techniques: High Resolution Laser Induced Fluorescence Spectroscopy (LIF) of small aromatic molecules and Laser Focusing of atoms for Nanofabrication. The thesis starts with the introduction to the high resolution LIF technique of small aromatic

  6. Achieving sensitive, high-resolution laser spectroscopy at CRIS

    Science.gov (United States)

    de Groote, R. P.; Lynch, K. M.; Wilkins, S. G.

    2017-11-01

    The Collinear Resonance Ionization Spectroscopy (CRIS) experiment, located at the ISOLDE facility, has recently performed high-resolution laser spectroscopy, with linewidths down to 20 MHz. In this article, we present the modifications to the beam line and the newly-installed laser systems that have made sensitive, high-resolution measurements possible. Highlights of recent experimental campaigns are presented.

  7. On the Design of High Resolution Imaging Systems

    Science.gov (United States)

    Eckardt, A.; Reulke, R.

    2017-05-01

    The design of high-resolution systems is always a consideration of many parameters. Technological parameter of the imaging system, e.g. diameter of the imaging system, mass and power, as well as storage and data transfer, have an direct impact on spacecraft size and design. The paper describes the essential design parameters for the description of high-resolution systems.

  8. Towards high resolution data assimilation and ensemble forecasting

    NARCIS (Netherlands)

    Stappers, R.J.J.

    2013-01-01

    Due the increase in computational power of supercomputers the grid resolution of high resolution numerical weather prediction models is now reaching the 1 km scale. As a result, mesoscale processes related to high impact weather (such as deep convection) can now explicitly be resolved by the models.

  9. EMODnet High Resolution Seabed Mapping - further developing a high resolution digital bathymetry for European seas

    Science.gov (United States)

    Schaap, Dick M. A.; Schmitt, Thierry

    2017-04-01

    Access to marine data is a key issue for the EU Marine Strategy Framework Directive and the EU Marine Knowledge 2020 agenda and includes the European Marine Observation and Data Network (EMODnet) initiative. EMODnet aims at assembling European marine data, data products and metadata from diverse sources in a uniform way. The EMODnet data infrastructure is developed through a stepwise approach in three major phases. Currently EMODnet is entering its 3rd phase with operational portals providing access to marine data for bathymetry, geology, physics, chemistry, biology, seabed habitats and human activities, complemented by checkpoint projects, analysing the fitness for purpose of data provision. The EMODnet Bathymetry project has developed Digital Terrain Models (DTM) for the European seas. These have been produced from survey and aggregated data sets that are indexed with metadata by adopting the SeaDataNet Catalogue services. SeaDataNet is a network of major oceanographic data centres around the European seas that manage, operate and further develop a pan-European infrastructure for marine and ocean data management. The latest EMODnet Bathymetry DTM release has a resolution of 1/8 arcminute * 1/8 arcminute and covers all European sea regions. Use has been made of circa 7800 gathered survey datasets and composite DTMs from 27 European data providers from 15 countries. For areas without coverage use has been made of the latest GEBCO DTM. The catalogue services and the generated EMODnet DTM have been published at the dedicated EMODnet Bathymetry portal which includes a versatile DTM viewing service that also supports downloading in various formats. End December 2016 the Bathymetry project has been succeeded by EMODnet High Resolution Seabed Mapping (HRSM) as part of the third phase of EMODnet. This new project will continue gathering of bathymetric in-situ data sets with extra efforts for near coastal waters and coastal zones. In addition Satellite Derived Bathymetry

  10. High-Resolution Sonars: What Resolution Do We Need for Target Recognition?

    Directory of Open Access Journals (Sweden)

    Pailhas Yan

    2010-01-01

    Full Text Available Target recognition in sonar imagery has long been an active research area in the maritime domain, especially in the mine-counter measure context. Recently it has received even more attention as new sensors with increased resolution have been developed; new threats to critical maritime assets and a new paradigm for target recognition based on autonomous platforms have emerged. With the recent introduction of Synthetic Aperture Sonar systems and high-frequency sonars, sonar resolution has dramatically increased and noise levels decreased. Sonar images are distance images but at high resolution they tend to appear visually as optical images. Traditionally algorithms have been developed specifically for imaging sonars because of their limited resolution and high noise levels. With high-resolution sonars, algorithms developed in the image processing field for natural images become applicable. However, the lack of large datasets has hampered the development of such algorithms. Here we present a fast and realistic sonar simulator enabling development and evaluation of such algorithms.We develop a classifier and then analyse its performances using our simulated synthetic sonar images. Finally, we discuss sensor resolution requirements to achieve effective classification of various targets and demonstrate that with high resolution sonars target highlight analysis is the key for target recognition.

  11. The high spectral resolution (scanning) lidar (HSRL)

    Energy Technology Data Exchange (ETDEWEB)

    Eloranta, E. [Univ. of Wisconsin, Madison, WI (United States)

    1995-09-01

    Lidars enable the spatial resolution of optical depth variation in clouds. The optical depth must be inverted from the backscatter signal, a process which is complicated by the fact that both molecular and aerosol backscatter signals are present. The HSRL has the advantage of allowing these two signals to be separated. It has a huge dynamic range, allowing optical depth retrieval for t = 0.01 to 3. Depolarization is used to determine the nature of hydrometeors present. Experiments show that water clouds must almost always be taken into account during cirrus observations. An exciting new development is the possibility of measuring effective radius via diffraction peak width and variable field-of-view measurements. 2 figs.

  12. A high-resolution vehicle emission inventory for China

    Science.gov (United States)

    Zheng, B.; Zhang, Q.; He, K.; Huo, H.; Yao, Z.; Wang, X.

    2012-12-01

    Developing high resolution emission inventory is an essential task for air quality modeling and management. However, current vehicle emission inventories in China are usually developed at provincial level and then allocated to grids based on various spatial surrogates, which is difficult to get high spatial resolution. In this work, we developed a new approach to construct a high-resolution vehicle emission inventory for China. First, vehicle population at county level were estimated by using the relationship between per-capita GDP and vehicle ownership. Then the Weather Research and Forecasting (WRF) model were used to drive the International Vehicle Emission (IVE) model to get monthly emission factors for each county. Finally, vehicle emissions by county were allocated to grids with 5-km horizon resolution by using high-resolution road network data. This work provides a better understanding of spatial representation of vehicle emissions in China and can benefit both air quality modeling and management with improved spatial accuracy.

  13. Lung findings on high resolution CT in early ankylosing spondylitis

    Energy Technology Data Exchange (ETDEWEB)

    Kiris, Adem E-mail: ademkiris@hotmail.com; Ozgocmen, Salih; Kocakoc, Ercan; Ardicoglu, Ozge; Ogur, Erkin

    2003-07-01

    Objective: Ankylosing spondylitis (AS) is a chronic inflammatory disease mainly affecting the axial skeleton and pulmonary involvement is a well known feature of the disease. The aim of this study was to investigate the pulmonary high resolution computed tomography (HRCT) findings of patients with early AS. The relationship between pulmonary function tests (PFT) and HRCT findings was also determined. Subjects and methods: Twenty-eight patients with AS (mean age 30.8{+-}7.4 and disease duration 7.0{+-}2.6) were included in the study. Patients with a disease duration of >10 years or had other pulmonary diseases were excluded. All patients underwent plain chest radiography (posteroanterior and lateral views), thoracic HRCT and PFT. Results: All chest radiographs were normal and HRCT revealed abnormalities in 18 patients. The most common abnormalities seen on HRCT were mosaic pattern (ten of 28), subpleural nodule (seven of 28) and parenchymal bands (five of 28). Seven of ten patients with mosaic pattern revealed air trapping areas on end expiratory scans. Twelve patients had abnormal PFT and all had restrictive type of involvement. Ten of these 12 patients had abnormal HRCT and the remaining two patients had normal HRCT. On the other hand, eight patients with normal PFT had abnormalities on HRCT. Conclusion: Patients with early AS frequently have abnormalities on HRCT, even though they have normal PFT and chest X-ray. Small airway involvement was found as frequent as interstitial lung disease in early AS.

  14. High-resolution interference with programmable classical incoherent light.

    Science.gov (United States)

    Zhang, Er-Feng; Liu, Wei-Tao; Chen, Ping-Xing

    2015-07-01

    A scheme of high-resolution interference with classical incoherent light is proposed. In this scheme, the classical incoherent light is programmable in the amplitude distribution and wavefront, and with the programmable classical incoherent light we improve the resolution of the interference pattern by a factor of 2 compared with the scheme by Erkmen [J. Opt. Soc. Am. A29, 782 (2012)JOAOD60740-323210.1364/JOSAA.29.000782]. Compared with other schemes for observing interference patterns, only single-pixel detection is needed in our proposal. Moreover, the high-resolution interference pattern can be inverted to obtain an image with better resolution compared with that of the scheme proposed by Erkmen. Furthermore, this scheme of high-resolution interference is verified in detail by theoretical analysis and numerical simulations.

  15. Achieving High Resolution Timer Events in Virtualized Environment.

    Science.gov (United States)

    Adamczyk, Blazej; Chydzinski, Andrzej

    2015-01-01

    Virtual Machine Monitors (VMM) have become popular in different application areas. Some applications may require to generate the timer events with high resolution and precision. This however may be challenging due to the complexity of VMMs. In this paper we focus on the timer functionality provided by five different VMMs-Xen, KVM, Qemu, VirtualBox and VMWare. Firstly, we evaluate resolutions and precisions of their timer events. Apparently, provided resolutions and precisions are far too low for some applications (e.g. networking applications with the quality of service). Then, using Xen virtualization we demonstrate the improved timer design that greatly enhances both the resolution and precision of achieved timer events.

  16. High-Resolution Stamp Fabrication by Edge Lithography

    NARCIS (Netherlands)

    Zhao, Yiping

    2010-01-01

    The aim of the project was to create high resolution stamps for thermal nanoimprint applications. The creation of nanoridges with sub-100 nm resolutions was explored by means of edge lithography via top-down routes, i.e. in combination with micromachining technology. Edge lithography is an add-on

  17. Impact of high resolution land surface initialization in Indian summer ...

    Indian Academy of Sciences (India)

    The direct impact of high resolution land surface initialization on the forecast bias in a regional climatemodel in recent years over Indian summer monsoon region is investigated. Two sets of regional climatemodel simulations are performed, one with a coarse resolution land surface initial conditions and secondone used a ...

  18. Reproducible high-resolution multispectral image acquisition in dermatology

    Science.gov (United States)

    Duliu, Alexandru; Gardiazabal, José; Lasser, Tobias; Navab, Nassir

    2015-07-01

    Multispectral image acquisitions are increasingly popular in dermatology, due to their improved spectral resolution which enables better tissue discrimination. Most applications however focus on restricted regions of interest, imaging only small lesions. In this work we present and discuss an imaging framework for high-resolution multispectral imaging on large regions of interest.

  19. Resolution analysis of high-resolution marine seismic data acquired off Yeosu, Korea

    Science.gov (United States)

    Lee, Ho-Young; Kim, Wonsik; Koo, Nam-Hyung; Park, Keun-Pil; Yoo, Dong-Geun; Kang, Dong-Hyo; Kim, Young-Gun; Seo, Gab-Seok; Hwang, Kyu-Duk

    2014-05-01

    High-resolution marine seismic surveys have been conducted for the mineral exploration and engineering purpose survey. To improve the quality of high-resolution seismic data, small-scaled multi-channel seismic techniques are used. In this study, we designed high-resolution marine seismic survey using a small airgun and an 8-channel streamer cable and analyzed the resolution of the seismic data related to acquisition and processing parameters. The field survey was conducted off Yeosu, Korea where the stratified thin sedimentary layers are deposited. We used a 30 in3 airgun and an 8-channel streamer cable with a 5 m group interval. We shoot the airgun with a 5 m shot interval and recorded digital data with a 0.1 ms sample interval and 1 s record length. The offset between the source and the first channel was 20 m. We processed the acquired data with simple procedure such as gain recovery, deconvolution, digital filtering, CMP sorting, NMO correction, static correction and stacking. To understand the effect of the acquisition parameters on the vertical and horizontal resolution, we resampled the acquired data using various sample intervals and CMP intervals and produced seismic sections. The analysis results show that the detailed subsurface structures can be imaged with good resolution and continuity using acquisition parameters with a sample interval shorter than 0.2 ms and a CMP interval shorter than 2.5 m. A high-resolution marine 8-channel airgun seismic survey using appropriate acquisition and processing parameters can be effective in imaging marine subsurface structure with a high resolution. This study is a part of a National Research Laboratory (NRL) project and a part of an Energy Technology Innovation (ETI) Project of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), funded by the Ministry of Trade, Industry and Energy (MOTIE). The authors thank the officers and crew of the R/V Tamhae II for their efforts in the field survey.

  20. Ultra-high resolution and high-brightness AMOLED

    Science.gov (United States)

    Wacyk, Ihor; Ghosh, Amal; Prache, Olivier; Draper, Russ; Fellowes, Dave

    2012-06-01

    As part of its continuing effort to improve both the resolution and optical performance of AMOLED microdisplays, eMagin has recently developed an SXGA (1280×3×1024) microdisplay under a US Army RDECOM CERDEC NVESD contract that combines the world's smallest OLED pixel pitch with an ultra-high brightness green OLED emitter. This development is aimed at next-generation HMD systems with "see-through" and daylight imaging requirements. The OLED pixel array is built on a 0.18-micron CMOS backplane and contains over 4 million individually addressable pixels with a pixel pitch of 2.7 × 8.1 microns, resulting in an active area of 0.52 inches diagonal. Using both spatial and temporal enhancement, the display can provide over 10-bits of gray-level control for high dynamic range applications. The new pixel design also enables the future implementation of a full-color QSXGA (2560 × RGB × 2048) microdisplay in an active area of only 1.05 inch diagonal. A low-power serialized low-voltage-differential-signaling (LVDS) interface is integrated into the display for use as a remote video link for tethered systems. The new SXGA backplane has been combined with the high-brightness green OLED device developed by eMagin under an NVESD contract. This OLED device has produced an output brightness of more than 8000fL with all pixels on; lifetime measurements are currently underway and will presented at the meeting. This paper will describe the operational features and first optical and electrical test results of the new SXGA demonstrator microdisplay.

  1. High spatial resolution distributed optical fiber dynamic strain sensor with enhanced frequency and strain resolution.

    Science.gov (United States)

    Masoudi, Ali; Newson, Trevor P

    2017-01-15

    A distributed optical fiber dynamic strain sensor with high spatial and frequency resolution is demonstrated. The sensor, which uses the ϕ-OTDR interrogation technique, exhibited a higher sensitivity thanks to an improved optical arrangement and a new signal processing procedure. The proposed sensing system is capable of fully quantifying multiple dynamic perturbations along a 5 km long sensing fiber with a frequency and spatial resolution of 5 Hz and 50 cm, respectively. The strain resolution of the sensor was measured to be 40 nε.

  2. Improving axial resolution in confocal microscopy with new high refractive index mounting media.

    Directory of Open Access Journals (Sweden)

    Coralie Fouquet

    Full Text Available Resolution, high signal intensity and elevated signal to noise ratio (SNR are key issues for biologists who aim at studying the localisation of biological structures at the cellular and subcellular levels using confocal microscopy. The resolution required to separate sub-cellular biological structures is often near to the resolving power of the microscope. When optimally used, confocal microscopes may reach resolutions of 180 nm laterally and 500 nm axially, however, axial resolution in depth is often impaired by spherical aberration that may occur due to refractive index mismatches. Spherical aberration results in broadening of the point-spread function (PSF, a decrease in peak signal intensity when imaging in depth and a focal shift that leads to the distortion of the image along the z-axis and thus in a scaling error. In this study, we use the novel mounting medium CFM3 (Citifluor Ltd., UK with a refractive index of 1.518 to minimize the effects of spherical aberration. This mounting medium is compatible with most common fluorochromes and fluorescent proteins. We compare its performance with established mounting media, harbouring refractive indices below 1.500, by estimating lateral and axial resolution with sub-resolution fluorescent beads. We show furthermore that the use of the high refractive index media renders the tissue transparent and improves considerably the axial resolution and imaging depth in immuno-labelled or fluorescent protein labelled fixed mouse brain tissue. We thus propose to use those novel high refractive index mounting media, whenever optimal axial resolution is required.

  3. Improving axial resolution in confocal microscopy with new high refractive index mounting media.

    Science.gov (United States)

    Fouquet, Coralie; Gilles, Jean-François; Heck, Nicolas; Dos Santos, Marc; Schwartzmann, Richard; Cannaya, Vidjeacoumary; Morel, Marie-Pierre; Davidson, Robert Stephen; Trembleau, Alain; Bolte, Susanne

    2015-01-01

    Resolution, high signal intensity and elevated signal to noise ratio (SNR) are key issues for biologists who aim at studying the localisation of biological structures at the cellular and subcellular levels using confocal microscopy. The resolution required to separate sub-cellular biological structures is often near to the resolving power of the microscope. When optimally used, confocal microscopes may reach resolutions of 180 nm laterally and 500 nm axially, however, axial resolution in depth is often impaired by spherical aberration that may occur due to refractive index mismatches. Spherical aberration results in broadening of the point-spread function (PSF), a decrease in peak signal intensity when imaging in depth and a focal shift that leads to the distortion of the image along the z-axis and thus in a scaling error. In this study, we use the novel mounting medium CFM3 (Citifluor Ltd., UK) with a refractive index of 1.518 to minimize the effects of spherical aberration. This mounting medium is compatible with most common fluorochromes and fluorescent proteins. We compare its performance with established mounting media, harbouring refractive indices below 1.500, by estimating lateral and axial resolution with sub-resolution fluorescent beads. We show furthermore that the use of the high refractive index media renders the tissue transparent and improves considerably the axial resolution and imaging depth in immuno-labelled or fluorescent protein labelled fixed mouse brain tissue. We thus propose to use those novel high refractive index mounting media, whenever optimal axial resolution is required.

  4. High Resolution, Range/Range-Rate Imager Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Visidyne proposes to develop a design for a small, lightweight, high resolution, in x, y, and z Doppler imager to assist in the guidance, navigation and control...

  5. Hurricane Satellite (HURSAT) from Advanced Very High Resolution Radiometer (AVHRR)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Huricane Satellite (HURSAT)-Advanced Very High Resolution Radiometer (AVHRR) is used to extend the HURSAT data set such that appling the Objective Dvorak technique...

  6. Methodology of high-resolution photography for mural condition database

    Science.gov (United States)

    Higuchi, R.; Suzuki, T.; Shibata, M.; Taniguchi, Y.

    2015-08-01

    Digital documentation is one of the most useful techniques to record the condition of cultural heritage. Recently, high-resolution images become increasingly useful because it is possible to show general views of mural paintings and also detailed mural conditions in a single image. As mural paintings are damaged by environmental stresses, it is necessary to record the details of painting condition on high-resolution base maps. Unfortunately, the cost of high-resolution photography and the difficulty of operating its instruments and software have commonly been an impediment for researchers and conservators. However, the recent development of graphic software makes its operation simpler and less expensive. In this paper, we suggest a new approach to make digital heritage inventories without special instruments, based on our recent our research project in Üzümlü church in Cappadocia, Turkey. This method enables us to achieve a high-resolution image database with low costs, short time, and limited human resources.

  7. A Forward-Looking High-Resolution GPR System

    National Research Council Canada - National Science Library

    Kositsky, Joel; Milanfar, Peyman

    1999-01-01

    A high-resolution ground penetrating radar (GPR) system was designed to help define the optimal radar parameters needed for the efficient standoff detection of buried and surface-laid antitank mines...

  8. High Resolution Orthoimagery = Orthorectified Metro Areas: 2000 - Present

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — High resolution orthorectified images combine the image characteristics of an aerial photograph with the geometric qualities of a map. An orthoimage is a...

  9. Topological Data Analysis of High-Resolution Temporal Rainfall

    Science.gov (United States)

    Carsteanu, Alin Andrei; Fernández Méndez, Félix; Vásquez Aguilar, Raciel

    2017-04-01

    This study applies topological data analysis (TDA) to the state space representations of high-resolution temporal rainfall intensity data from Iowa City (IIHR, U of Iowa). Using a sufficient embedding dimension, topological properties of the underlying manifold are depicted.

  10. NOAA High-Resolution Sea Surface Temperature (SST) Analysis Products

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archive covers two high resolution sea surface temperature (SST) analysis products developed using an optimum interpolation (OI) technique. The analyses have a...

  11. B stars seen at high resolution by XMM-Newton

    Science.gov (United States)

    Cazorla, Constantin; Nazé, Yaël

    2017-12-01

    We report on the properties of 11 early B stars observed with gratings on board XMM-Newton and Chandra, thereby doubling the number of B stars analysed at high resolution. The spectra typically appear soft, with temperatures of 0.2-0.6 keV, and moderately bright (log [LX/LBOL] -7) with lower values for later type stars. In line with previous studies, we also find an absence of circumstellar absorption, negligible line broadening, no line shift, and formation radii in the range 2-7 R⋆. From the X-ray brightnesses, we derived the hot mass-loss rate for each of our targets and compared these values to predictions or values derived in the optical domain: in some cases, the hot fraction of the wind can be non-negligible. The derived X-ray abundances were compared to values obtained from the optical data, with a fair agreement found between them. Finally, half of the sample presents temporal variations, either in the long-term, short-term, or both. In particular, HD 44743 is found to be the second example of an X-ray pulsator, and we detect a flare-like activity in the binary HD 79351, which also displays a high-energy tail and one of the brightest X-ray emissions in the sample. Based on observations collected with the ESA science mission XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA member states and the USA (NASA).

  12. High-resolution Imaging Techniques for the Assessment of Osteoporosis

    OpenAIRE

    Krug, Roland; Burghardt, Andrew J.; Majumdar, Sharmila; Link, Thomas M.

    2010-01-01

    The importance of assessing the bone’s microarchitectural make-up in addition to its mineral density in the context of osteoporosis has been emphasized in a number of publications. The high spatial resolution required to resolve the bone’s microstructure in a clinically feasible scan time is challenging. Currently, the best suited modalities meeting these requirements in vivo are high-resolution peripheral quantitative imaging (HR-pQCT) and magnetic resonance imaging (MRI). Whereas HR-pQCT is...

  13. Developing Visual Editors for High-Resolution Haptic Patterns

    DEFF Research Database (Denmark)

    Cuartielles, David; Göransson, Andreas; Olsson, Tony

    2012-01-01

    In this article we give an overview of our iterative work in developing visual editors for creating high resolution haptic patterns to be used in wearable, haptic feedback devices. During the past four years we have found the need to address the question of how to represent, construct and edit high...... resolution haptic patterns so that they translate naturally to the user’s haptic experience. To solve this question we have developed and tested several visual editors...

  14. Diagnostic value of high resolutional computed tomography of spine

    Energy Technology Data Exchange (ETDEWEB)

    Yang, S. M.; Im, S. K.; Sohn, M. H.; Lim, K. Y.; Kim, J. K.; Choi, K. C. [Jeonbug National University College of Medicine, Seoul (Korea, Republic of)

    1984-03-15

    Non-enhanced high resolution computed tomography provide clear visualization of soft tissue in the canal and bony details of spine, particularly of the lumbar spine. We observed 70 cases of spine CT using GE CT/T 8800 scanner during the period from Dec. 1982 to Sep. 1983 at Jeonbug National University Hospital. The results were as follows: 1. The sex distribution of cases were 55 males and 15 females : age was from 17 years to 67 years; sites were 11 cervical spine, 5 thoracic spine and 54 lumbosacral spine. 2. CT diagnosis showed 44 cases of lumbar disc herniation, 7 cases of degenerative disease, 3 cases of spine fracture and each 1 cases of cord tumor, metastatic tumor, spontaneous epidural hemorrhage, epidural abscess, spine tbc., meningocele with diastematomyelia. 3. Sites of herniated nucleus pulposus were 34 cases (59.6%) between L4-5 interspace and 20 cases (35.1%) between L5-S1 interspace. 13 cases (29.5%) of lumbar disc herniation disclosed multiple lesions. Location of herniation were central type in 28 cases(49.1%), right-central type in 12 cases(21.2%), left-central type in 11 cases (19.2%) and far lateral type in 6 cases(10.5%). 4. CT findings of herniated nucleus pulposus were as follows : focal protrusion of posterior disc margin and obliteration of anterior epidural fat in all cases, dural sac indentation in 26 cases(45.6%), soft tissue mass in epidural fat in 21 cases(36.8%), displacement or compression of nerve root sheath in 12 cases(21%). 5. Multiplanar reformatted images and Blink mode provide more effective evaluation about definite level and longitudinal dimension of lesion, such as obscure disc herniation, spine fracture, cord tumor and epidural abscess. 6. Non-enhanced and enhanced high resolutional computed tomography were effectively useful in demonstrating compression or displacement of spinal cord and nerve root, examing congenital anomaly such as meningocele and primary or metastatic spinal lesions.

  15. Dynamics of High-Resolution Networks

    DEFF Research Database (Denmark)

    Sekara, Vedran

    NETWORKS are everywhere. From the smallest confines of the cells within our bodies to the webs of social relations across the globe. Networks are not static, they constantly change, adapt, and evolve to suit new conditions. In order to understand the fundamental laws that govern networks we need...... the unprecedented amounts of information collected by mobile phones to gain detailed insight into the dynamics of social systems. This dissertation presents an unparalleled data collection campaign, collecting highly detailed traces for approximately 1000 people over the course of multiple years. The availability...

  16. Do high-resolution convection-permitting experiments on Europe need to be driven by high resolution global runs?

    Science.gov (United States)

    Berthou, Segolene; Chan, Steven; Kendon, Elizabeth; Roberts, Malcolm; Lee, Robert; Vanniere, Benoit

    2017-04-01

    Challenges of getting appropriate climate-change scenarios over Europe both come from having a good representation of the synoptic systems reaching Europe and having a good-enough representation of local and orographic processes in Europe. Therefore we perform both the evaluation of the driving global model and its dynamical downscaling with a 2.2km regional model on the present day period, in the perspective of using this configuration in a future climate scenario. 20-year long atmosphere-only simulations with the Unified Model of the Met Office were run at different global resolutions (130km, 60km and 25km) and the highest resolution was chosen to give the boundaries of a European-wide convection permitting simulation with a 2.2km resolution. The synoptic situation of the different global resolutions are comparable in terms of latitudinal distribution of the jets and weather regimes but there is consistent improvement in the frequency of storms reaching Europe at 25km resolution. High resolution global runs therefore mainly show added value in the high-frequency synoptic drivers. Compared to high resolution precipitation datasets, the 25km resolution is showing good representation of winter precipitation distribution, although with too many days of moderate precipitation in Western Europe. It shows a dry bias in summer, consistent with a mean jet too north.

  17. High-resolution simulations of turbidity currents

    Science.gov (United States)

    Biegert, Edward; Vowinckel, Bernhard; Ouillon, Raphael; Meiburg, Eckart

    2017-12-01

    We employ direct numerical simulations of the three-dimensional Navier-Stokes equations, based on a continuum formulation for the sediment concentration, to investigate the physics of turbidity currents in complex situations, such as when they interact with seafloor topography, submarine engineering infrastructure and stratified ambients. In order to obtain a more accurate representation of the dynamics of erosion and resuspension, we have furthermore developed a grain-resolving simulation approach for representing the flow in the high-concentration region near and within the sediment bed. In these simulations, the Navier-Stokes flow around each particle and within the pore spaces of the sediment bed is resolved by means of an immersed boundary method, with the particle-particle interactions being taken into account via a detailed collision model. [Figure not available: see fulltext.

  18. O-space with high resolution readouts outperforms radial imaging.

    Science.gov (United States)

    Wang, Haifeng; Tam, Leo; Kopanoglu, Emre; Peters, Dana C; Constable, R Todd; Galiana, Gigi

    2017-04-01

    While O-Space imaging is well known to accelerate image acquisition beyond traditional Cartesian sampling, its advantages compared to undersampled radial imaging, the linear trajectory most akin to O-Space imaging, have not been detailed. In addition, previous studies have focused on ultrafast imaging with very high acceleration factors and relatively low resolution. The purpose of this work is to directly compare O-Space and radial imaging in their potential to deliver highly undersampled images of high resolution and minimal artifacts, as needed for diagnostic applications. We report that the greatest advantages to O-Space imaging are observed with extended data acquisition readouts. A sampling strategy that uses high resolution readouts is presented and applied to compare the potential of radial and O-Space sequences to generate high resolution images at high undersampling factors. Simulations and phantom studies were performed to investigate whether use of extended readout windows in O-Space imaging would increase k-space sampling and improve image quality, compared to radial imaging. Experimental O-Space images acquired with high resolution readouts show fewer artifacts and greater sharpness than radial imaging with equivalent scan parameters. Radial images taken with longer readouts show stronger undersampling artifacts, which can cause small or subtle image features to disappear. These features are preserved in a comparable O-Space image. High resolution O-Space imaging yields highly undersampled images of high resolution and minimal artifacts. The additional nonlinear gradient field improves image quality beyond conventional radial imaging. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Ocean regional circulation model sensitizes to resolution of the lateral boundary conditions

    Science.gov (United States)

    Pham, Van Sy; Hwang, Jin Hwan

    2017-04-01

    Dynamical downscaling with nested regional oceanographic models is an effective approach for forecasting operationally coastal weather and projecting long term climate on the ocean. Nesting procedures deliver the unwanted in dynamic downscaling due to the differences of numerical grid sizes and updating steps. Therefore, such unavoidable errors restrict the application of the Ocean Regional Circulation Model (ORCMs) in both short-term forecasts and long-term projections. The current work identifies the effects of errors induced by computational limitations during nesting procedures on the downscaled results of the ORCMs. The errors are quantitatively evaluated for each error source and its characteristics by the Big-Brother Experiments (BBE). The BBE separates identified errors from each other and quantitatively assess the amount of uncertainties employing the same model to simulate for both nesting and nested model. Here, we focus on discussing errors resulting from two main matters associated with nesting procedures. They should be the spatial grids' differences and the temporal updating steps. After the diverse cases from separately running of the BBE, a Taylor diagram was adopted to analyze the results and suggest an optimization intern of grid size and updating period and domain sizes. Key words: lateral boundary condition, error, ocean regional circulation model, Big-Brother Experiment. Acknowledgement: This research was supported by grants from the Korean Ministry of Oceans and Fisheries entitled "Development of integrated estuarine management system" and a National Research Foundation of Korea (NRF) Grant (No. 2015R1A5A 7037372) funded by MSIP of Korea. The authors thank the Integrated Research Institute of Construction and Environmental Engineering of Seoul National University for administrative support.

  20. Compact and high-resolution optical orbital angular momentum sorter

    Directory of Open Access Journals (Sweden)

    Chenhao Wan

    2017-03-01

    Full Text Available A compact and high-resolution optical orbital angular momentum (OAM sorter is proposed and demonstrated. The sorter comprises a quadratic fan-out mapper and a dual-phase corrector positioned in the pupil plane and the Fourier plane, respectively. The optical system is greatly simplified compared to previous demonstrations of OAM sorting, and the performance in resolution and efficiency is maintained. A folded configuration is set up using a single reflective spatial light modulator (SLM to demonstrate the validity of the scheme. The two phase elements are implemented on the left and right halves of the SLM and connected by a right-angle prism. Experimental results demonstrate the high resolution of the compact OAM sorter, and the current limit in efficiency can be overcome by replacing with transmissive SLMs and removing the beam splitters. This novel scheme paves the way for the miniaturization and integration of high-resolution OAM sorters.

  1. Liquid Scintillation High Resolution Spectral Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Grau Carles, A.; Grau Malonda, A.

    2010-08-06

    The CIEMAT/NIST and the TDCR methods in liquid scintillation counting are based on the determination of the efficiency for total counting. This paper tries to expand these methods analysing the pulse-height spectrum of radionuclides. To reach this objective we have to generalize the equations used in the model and to analyse the influence of ionization and chemical quench in both spectra and counting efficiency. We present equations to study the influence of different photomultipliers response in systems with one, two or three photomultipliers. We study the effect of the electronic noise discriminator level in both spectra and counting efficiency. The described method permits one to study problems that up to now was not possible to approach, such as the high uncertainty in the standardization of pure beta-ray emitter with low energy when we apply the TDCR method, or the discrepancies in the standardization of some electron capture radionuclides, when the CIEMAT/NIST method is applied. (Author) 107 refs.

  2. High-resolution image reconstruction for GRIN rod lens probe (Conference Presentation)

    Science.gov (United States)

    Kim, Hyung-Jin; Park, Kwan Jun; Yang, Taeseok D.; Choi, Wonshik; Kim, Beop-Min; Choi, Youngwoon

    2017-02-01

    Graded-index (GRIN) lenses have been widely used for developing compact imaging devices due to the small dimensions and simple optics designs. GRIN lenses, however, have intrinsic aberration which causes a distortion of the image and thus are subject to limited resolution and blurred imaging quality. Here, we employ the high-precision wavefront measurement technique for compensation of the distortion of a GRIN lens to obtain a high-resolution and high-contrast image. In doing so, we demonstrate a high-resolution and ultra-thin endo-microscope using a GRIN. A reflection-type interferometric microscope through a GRIN lens was constructed using multiple lasers (473 nm, 532 nm, and 633 nm) as light sources. The characteristics of the aberration of the GRIN lens were measured using the digital holographic method. The distortion of the GRIN lens was removed by numerical image processing with the prior information from the pre-calibration. We apply this technique to a reflection image of biological tissues acquired by our custom-built GRIN lens probe. Consequently, a diffraction limited lateral resolution as well as improved axial resolution can be achieved. Our approach will facilitate the use of GRIN lenses for compact imaging devices without compromising optical resolution and image quality.

  3. A high efficiency lateral light emitting device on SOI

    NARCIS (Netherlands)

    Hoang, T.; Le Minh, P.; Holleman, J.; Zieren, V.; Goossens, M.J.; Schmitz, Jurriaan

    2005-01-01

    The infrared light emission of lateral p/sup +/-p-n/sup +/ diodes realized on SIMOX-SOI (separation by implantation of oxygen - silicon on insulator) substrates has been studied. The confinement of the free carriers in one dimension due to the buried oxide was suggested to be a key point to increase

  4. High-resolution spectroscopy of gases for industrial applications

    DEFF Research Database (Denmark)

    Fateev, Alexander; Clausen, Sønnik

    for analysis of complex experimental data and further development of the databases. High-temperature gas cell facilities available at DTU Chemical Engineering are presented and described. The gas cells and high-resolution spectrometers allow us to perform high-quality reference measurements of gases relevant...

  5. High-resolution neutron microtomography with noiseless neutron counting detector

    Science.gov (United States)

    Tremsin, A. S.; McPhate, J. B.; Vallerga, J. V.; Siegmund, O. H. W.; Feller, W. B.; Lehmann, E.; Butler, L. G.; Dawson, M.

    2011-10-01

    The improved collimation and intensity of thermal and cold neutron beamlines combined with recent advances in neutron imaging devices enable high-resolution neutron radiography and microtomography, which can provide information on the internal structure of objects not achievable with conventional X-ray imaging techniques. Neutron detection efficiency, spatial and temporal resolution (important for the studies of dynamic processes) and low background count rate are among the crucial parameters defining the quality of radiographic images and tomographic reconstructions. The unique capabilities of neutron counting detectors with neutron-sensitive microchannel plates (MCPs) and with Timepix CMOS readouts providing high neutron detection efficiency (˜70% for cold neutrons), spatial resolutions ranging from 15 to 55 μm and a temporal resolution of ˜1 μs—combined with the virtual absence of readout noise—make these devices very attractive for high-resolution microtomography. In this paper we demonstrate the capabilities of an MCP-Timepix detection system applied to microtomographic imaging, performed at the ICON cold neutron facility of the Paul Scherrer Institute. The high resolution and the absence of readout noise enable accurate reconstruction of texture in a relatively opaque wood sample, differentiation of internal tissues of a fly and imaging of individual ˜400 μm grains in an organic powder encapsulated in a ˜700 μm thick metal casing.

  6. Dual camera system for acquisition of high resolution images

    Science.gov (United States)

    Papon, Jeremie A.; Broussard, Randy P.; Ives, Robert W.

    2007-02-01

    Video surveillance is ubiquitous in modern society, but surveillance cameras are severely limited in utility by their low resolution. With this in mind, we have developed a system that can autonomously take high resolution still frame images of moving objects. In order to do this, we combine a low resolution video camera and a high resolution still frame camera mounted on a pan/tilt mount. In order to determine what should be photographed (objects of interest), we employ a hierarchical method which first separates foreground from background using a temporal-based median filtering technique. We then use a feed-forward neural network classifier on the foreground regions to determine whether the regions contain the objects of interest. This is done over several frames, and a motion vector is deduced for the object. The pan/tilt mount then focuses the high resolution camera on the next predicted location of the object, and an image is acquired. All components are controlled through a single MATLAB graphical user interface (GUI). The final system we present will be able to detect multiple moving objects simultaneously, track them, and acquire high resolution images of them. Results will demonstrate performance tracking and imaging varying numbers of objects moving at different speeds.

  7. A Procedure for High Resolution Satellite Imagery Quality Assessment

    Directory of Open Access Journals (Sweden)

    Mattia Crespi

    2009-05-01

    Full Text Available Data products generated from High Resolution Satellite Imagery (HRSI are routinely evaluated during the so-called in-orbit test period, in order to verify if their quality fits the desired features and, if necessary, to obtain the image correction parameters to be used at the ground processing center. Nevertheless, it is often useful to have tools to evaluate image quality also at the final user level. Image quality is defined by some parameters, such as the radiometric resolution and its accuracy, represented by the noise level, and the geometric resolution and sharpness, described by the Modulation Transfer Function (MTF. This paper proposes a procedure to evaluate these image quality parameters; the procedure was implemented in a suitable software and tested on high resolution imagery acquired by the QuickBird, WorldView-1 and Cartosat-1 satellites.

  8. Detection of proximal caries with high-resolution and standard resolution digital radiographic systems.

    Science.gov (United States)

    Berkhout, W E R; Verheij, J G C; Syriopoulos, K; Li, G; Sanderink, G C H; van der Stelt, P F

    2007-05-01

    The aim of this study was to: (1) compare the diagnostic accuracy of the high-resolution and standard resolution settings of four digital imaging systems for caries diagnosis and (2) compare the effect on the diagnostic accuracy of reducing the high-resolution image sizes to the standard resolution dimensions, and vice versa. 90 extracted human premolars were mounted in groups of 5 in plaster blocks, containing 4 test teeth and 1 non-test tooth. Two blocks at a time were placed in a jig to simulate a bitewing radiograph. Radiographs were taken using four digital systems (Planmeca Dixi 2; Gendex Visualix HDI; Dürr Vistascan; Digora Optime), each at two resolution settings. Next, the teeth were sectioned and a total of 65 surfaces were incorporated in the study. Additionally, the bicubic interpolation method was applied to reduce the high-resolution original images and to enlarge the standard resolution images. The original, reduced and enlarged images were randomly shown to five observers in two random sessions. The observers were asked to assess caries depth on a 4-point scale. The observers' scores were compared with the results from a histological examination. Data were analysed using the statistical theory for multivariate discrete data. Cohen's kappa was used to determine the agreement with the gold standard. None of the comparisons between the spatial resolution settings, or the comparisons between increased or reduced image size and the original image sizes, showed significant differences in the probability of caries detection (chi2=26.59, df=26, P approximately 0.50). The four digital systems used in this study differ significantly in the probability of caries detection (chi2=41.55, df=24, PCaries diagnosis does not improve when using high-resolution settings compared with the standard settings. The use of bicubic convolution interpolation for zooming has no detectable effect on caries diagnosis and therefore is recommended to use when enlarging or reducing

  9. High-resolution urban flood modelling - a joint probability approach

    Science.gov (United States)

    Hartnett, Michael; Olbert, Agnieszka; Nash, Stephen

    2017-04-01

    The hydrodynamic modelling of rapid flood events due to extreme climatic events in urban environment is both a complex and challenging task. The horizontal resolution necessary to resolve complexity of urban flood dynamics is a critical issue; the presence of obstacles of varying shapes and length scales, gaps between buildings and the complex geometry of the city such as slopes affect flow paths and flood levels magnitudes. These small scale processes require a high resolution grid to be modelled accurately (2m or less, Olbert et al., 2015; Hunter et al., 2008; Brown et al., 2007) and, therefore, altimetry data of at least the same resolution. Along with availability of high-resolution LiDAR data and computational capabilities, as well as state of the art nested modelling approaches, these problems can now be overcome. Flooding and drying, domain definition, frictional resistance and boundary descriptions are all important issues to be addressed when modelling urban flooding. In recent years, the number of urban flood models dramatically increased giving a good insight into various modelling problems and solutions (Mark et al., 2004; Mason et al., 2007; Fewtrell et al., 2008; Shubert et al., 2008). Despite extensive modelling work conducted for fluvial (e.g. Mignot et al., 2006; Hunter et al., 2008; Yu and Lane, 2006) and coastal mechanisms of flooding (e.g. Gallien et al., 2011; Yang et al., 2012), the amount of investigations into combined coastal-fluvial flooding is still very limited (e.g. Orton et al., 2012; Lian et al., 2013). This is surprising giving the extent of flood consequences when both mechanisms occur simultaneously, which usually happens when they are driven by one process such as a storm. The reason for that could be the fact that the likelihood of joint event is much smaller than those of any of the two contributors occurring individually, because for fast moving storms the rainfall-driven fluvial flood arrives usually later than the storm surge

  10. Ocular Imaging Combining Ultrahigh Resolution and High Speed OCT

    Science.gov (United States)

    Schmoll, Tilman; Leitgeb, Rainer A.

    The impact of ultrahigh-resolution and ultrahigh-speed OCT technique on corneal and retinal imaging is shown. The capabilities of advanced OCT system for imaging of the cornea and the thickness determination of the tear film, corneal epithelium, and Bowman's layer over a wide field of view are demonstrated. The high transverse and axial resolution of OCT system allowing one to image individual nerve fiber bundles, the parafoveal capillary network, and individual cone photoreceptors is described.

  11. Protected Plasmonic Nanostructures for High Resolution Chemical Imaging using Tip Enhanced Raman Spectroscopy

    Science.gov (United States)

    Butt, Rebecca; Barrios, Carlos; Malkovskiy, Andrey; Kisliuk, Alexander; Sokolov, Alexei; Foster, Mark

    2009-03-01

    Tip enhanced Raman spectroscopy (TERS), an emerging technique that combines optical microscopy and scanning probe microscopy, provides the sensitivity and selectivity necessary for high-resolution chemical imaging of polymer surfaces. An unprecedented 20 nm lateral resolution for the chemical imaging has been achieved. Unfortunately, the fragile plasmonic structures used to enhance the electric field are prone to mechanical, chemical, and thermal degradation. Developing robust noble metal nanostructures with stable plasmonic resonance is essential to reliable high resolution chemical imaging. Covering the metal layer with organic and inorganic ultrathin coatings is being investigated to extend the plasmonic activity of the engineered nanostructures. Addition of an ultrathin aluminum oxide (Al2O3) coating to a silver-coated scanning probe microscopy tip for TERS significantly improves plasmonic structure stability without sacrificing the initial TERS efficiency. This ultrathin coating provides wear resistance and stops chemical degradation responsible for the loss of signal enhancement.

  12. High frequency lateral flow affinity assay using superparamagnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Lago-Cachón, D., E-mail: dlagocachon@gmail.com [Dpto. de Física, Universidad de Oviedo, Edificio Departamental Este, Campus de Viesques, 33204 Gijón (Spain); Rivas, M., E-mail: rivas@uniovi.es [Dpto. de Física, Universidad de Oviedo, Edificio Departamental Este, Campus de Viesques, 33204 Gijón (Spain); Martínez-García, J.C., E-mail: jcmg@uniovi.es [Dpto. de Física, Universidad de Oviedo, Edificio Departamental Este, Campus de Viesques, 33204 Gijón (Spain); Oliveira-Rodríguez, M., E-mail: oliveiramyriam@uniovi.es [Dpto. de Química Física y Analítica, Universidad de Oviedo, C/Julián Clavería 8, 33006 Oviedo (Spain); Blanco-López, M.C., E-mail: cblanco@uniovi.es [Dpto. de Química Física y Analítica, Universidad de Oviedo, C/Julián Clavería 8, 33006 Oviedo (Spain); García, J.A., E-mail: joseagd@uniovi.es [Dpto. de Física, Universidad de Oviedo, Escuela de Marina, Campus de Viesques, 33204 Gijón (Spain)

    2017-02-01

    Lateral flow assay is one of the simplest and most extended techniques in medical diagnosis for point-of-care testing. Although it has been traditionally a positive/negative test, some work has been lately done to add quantitative abilities to lateral flow assay. One of the most successful strategies involves magnetic beads and magnetic sensors. Recently, a new technique of superparamagnetic nanoparticle detection has been reported, based on the increase of the impedance induced by the nanoparticles on a RF-current carrying copper conductor. This method requires no external magnetic field, which reduces the system complexity. In this work, nitrocellulose membranes have been installed on the sensor, and impedance measurements have been carried out during the sample diffusion by capillarity along the membrane. The impedance of the sensor changes because of the presence of magnetic nanoparticles. The results prove the potentiality of the method for point-of-care testing of biochemical substances and nanoparticle capillarity flow studies. - Highlights: • A method for quantification of Lateral Flow Assays is proposed. • MNP induce an increase of the impedance on a RF-current carrying copper sensor. • Magnetic nanoparticles (MNP) can be detected flowing over the sensing element.

  13. Automated data processing of high-resolution mass spectra

    DEFF Research Database (Denmark)

    Hansen, Michael Adsetts Edberg; Smedsgaard, Jørn

    infusion of crude extracts into the source taking advantage of the high sensitivity, high mass resolution and accuracy and the limited fragmentation. Unfortunately, there has not been a comparable development in the data processing techniques to fully exploit gain in high resolution and accuracy...... of the massive amounts of data. We present an automated data processing method to quantitatively compare large numbers of spectra from the analysis of complex mixtures, exploiting the full quality of high-resolution mass spectra. By projecting all detected ions - within defined intervals on both the time...... infusion analyses of crude extract to find the relationship between species from several species terverticillate Penicillium, and also that the ions responsible for the segregation can be identified. Furthermore the process can automate the process of detecting unique species and unique metabolites....

  14. Lynx: A High-Resolution Synthetic Aperture Radar

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, A.W.; Hensley, W.H.; Pace, F.; Stence, J.; Tsunoda, S.I.; Walker, B.C.; Woodring, M.

    1999-03-08

    Lynx is a high resolution, synthetic aperture radar (SAR) that has been designed and built by Sandia National Laboratories in collaboration with General Atomics (GA). Although Lynx may be operated on a wide variety of manned and unmanned platforms, it is primarily intended to be fielded on unmanned aerial vehicles. In particular, it may be operated on the Predator, I-GNAT, or Prowler II platforms manufactured by GA Aeronautical Systems, Inc. The Lynx production weight is less than 120 lb. and has a slant range of 30 km (in 4 mm/hr rain). It has operator selectable resolution and is capable of 0.1 m resolution in spotlight mode and 0.3 m resolution in stripmap mode. In ground moving target indicator mode, the minimum detectable velocity is 6 knots with a minimum target cross-section of 10 dBsm. In coherent change detection mode, Lynx makes registered, complex image comparisons either of 0.1 m resolution (minimum) spotlight images or of 0.3 m resolution (minimum) strip images. The Lynx user interface features a view manager that allows it to pan and zoom like a video camera. Lynx was developed under corporate finding from GA and will be manufactured by GA for both military and commercial applications. The Lynx system architecture will be presented and some of its unique features will be described. Imagery at the finest resolutions in both spotlight and strip modes have been obtained and will also be presented.

  15. Comparison of High Resolution Negative Electron Beam Resists

    DEFF Research Database (Denmark)

    Olsen, Brian Bilenberg; Schøler, Mikkel; Shi, Peixiong

    2006-01-01

    Four high resolution negative electron beam resists are compared: TEBN-1 from Tokuyama Corp. Japan, ma-N 2401XP and mr-L 6000AXP from microresist technology GmbH Germany, and SU-8 2000 series from MicroChem Corp., USA. Narrow linewidth high density patterns are defined by 100 kV electron beam...

  16. High-Resolution Broadband Spectroscopy Using an Externally Dispersed Interferometer

    Science.gov (United States)

    Erskine, David J.; Edelstein, Jerry; Feuerstein, W. Michael; Welsh, Barry

    2003-08-01

    An externally dispersed interferometer (EDI) is a series combination of a fixed delay interferometer and an external grating spectrograph. We describe how the EDI can boost the effective resolving power of an echelle or linear grating spectrograph by a factor of 2-3 or more over the spectrograph's full bandwidth. The interferometer produces spectral fringes over the entire spectrograph's bandwidth. The fringes heterodyne with spectral features to provide a low spatial frequency moiré pattern. The heterodyning is numerically reversed to recover highly detailed spectral information unattainable by the spectrograph alone. We demonstrate resolution boosting for stellar and solar measurements of two-dimensional echelle and linear grating spectra. An effective spectral resolution of ~100,000 has been obtained from the ~50,000 resolution Lick Observatory two-dimensional echelle spectrograph, and that of ~50,000 from an ~20,000 resolution linear grating spectrograph.

  17. High-resolution structure of viruses from random diffraction snapshots

    CERN Document Server

    Hosseinizadeh, A; Dashti, A; Fung, R; D'Souza, R M; Ourmazd, A

    2014-01-01

    The advent of the X-ray Free Electron Laser (XFEL) has made it possible to record diffraction snapshots of biological entities injected into the X-ray beam before the onset of radiation damage. Algorithmic means must then be used to determine the snapshot orientations and thence the three-dimensional structure of the object. Existing Bayesian approaches are limited in reconstruction resolution typically to 1/10 of the object diameter, with the computational expense increasing as the eighth power of the ratio of diameter to resolution. We present an approach capable of exploiting object symmetries to recover three-dimensional structure to high resolution, and thus reconstruct the structure of the satellite tobacco necrosis virus to atomic level. Our approach offers the highest reconstruction resolution for XFEL snapshots to date, and provides a potentially powerful alternative route for analysis of data from crystalline and nanocrystalline objects.

  18. Achieving High Resolution Timer Events in Virtualized Environment.

    Directory of Open Access Journals (Sweden)

    Blazej Adamczyk

    Full Text Available Virtual Machine Monitors (VMM have become popular in different application areas. Some applications may require to generate the timer events with high resolution and precision. This however may be challenging due to the complexity of VMMs. In this paper we focus on the timer functionality provided by five different VMMs-Xen, KVM, Qemu, VirtualBox and VMWare. Firstly, we evaluate resolutions and precisions of their timer events. Apparently, provided resolutions and precisions are far too low for some applications (e.g. networking applications with the quality of service. Then, using Xen virtualization we demonstrate the improved timer design that greatly enhances both the resolution and precision of achieved timer events.

  19. High resolution beam line for the Grand Raiden spectrometer

    CERN Document Server

    Wakasa, T; Fujita, Y; Berg, G P A; Fujimura, H; Fujita, H; Itoh, M; Kamiya, J; Kawabata, T; Nagayama, K; Noro, T; Sakaguchi, H; Shimbara, Y; Takeda, H; Tamura, K; Ueno, H; Uchida, M; Uraki, M; Yosoi, M

    2002-01-01

    We have designed and constructed a new beam line which can accomplish both lateral and angular dispersion matching with the Grand Raiden spectrometer. In dispersive mode, lateral and angular dispersions of the beam line are b sub 1 sub 6 =37.1 m and b sub 2 sub 6 =-20.0 rad, respectively, to satisfy matching conditions for Grand Raiden. In achromatic mode, the beam line satisfies the double achromatic condition of b sub 1 sub 6 =b sub 2 sub 6 =0. The magnifications of the beam line are (M sub x ,M sub y)=(-0.98,0.89) and (-1.00,-0.99) for dispersive and achromatic modes, respectively. In the commissioning experiments, we have succeeded to separate the first excited 2 sup + state of sup 1 sup 6 sup 8 Er with E sub x =79.8 keV clearly from the ground state in the (p,p') reaction. We achieved energy resolutions of DELTA E=13.0+-0.3 and 16.7+-0.3 keV in full width at half-maximum for 295 and 392 MeV protons, respectively. These energy resolutions agree with the resolving power of Grand Raiden for an object size o...

  20. Adaptive optics high resolution spectroscopy: present status and future direction

    Energy Technology Data Exchange (ETDEWEB)

    Alcock, C; Angel, R; Ciarlo, D; Fugate, R O; Ge, J; Kuzmenko, P; Lloyd-Hart, M; Macintosh, B; Najita, J; Woolf, N

    1999-07-27

    High resolution spectroscopy experiments with visible adaptive optics (AO) telescopes at Starfire Optical Range and Mt. Wilson have demonstrated that spectral resolution can be routinely improved by a factor of - 10 over the seeing-limited case with no extra light losses at visible wavelengths. With large CCDs now available, a very wide wavelength range can be covered in a single exposure. In the near future, most large ground-based telescopes will be equipped with powerful A0 systems. Most of these systems are aimed primarily at diffraction-limited operation in the near IR. An exciting new opportunity will thus open up for high resolution IR spectroscopy. Immersion echelle gratings with much coarser grooves being developed by us at LLNL will play a critical role in achieving high spectral resolution with a compact and low cost IR cryogenically cooled spectrograph and simultaneous large wavelength coverage on relatively small IR detectors. We have constructed a new A0 optimized spectrograph at Steward Observatory to provide R = 200,000 in the optical, which is being commissioned at the Starfire Optical Range 3.5m telescope. We have completed the optical design of the LLNL IR Immersion Spectrograph (LISPEC) to take advantage of improved silicon etching technology. Key words: adaptive optics, spectroscopy, high resolution, immersion gratings

  1. The theory and practice of high resolution scanning electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Joy, D.C. (Tennessee Univ., Knoxville, TN (USA) Oak Ridge National Lab., TN (USA))

    1990-01-01

    Recent advances in instrumentation have produced the first commercial examples of what can justifiably be called High Resolution Scanning Electron Microscopes. The key components of such instruments are a cold field emission gun, a small-gap immersion probe-forming lens, and a clean dry-pumped vacuum. The performance of these microscopes is characterized by several major features including a spatial resolution, in secondary electron mode on solid specimens, which can exceed 1nm on a routine basis; an incident probe current density of the order of 10{sup 6} amps/cm{sup 2}; and the ability to maintain these levels of performance over an accelerating voltage range of from 1 to 30keV. This combination of high resolution, high probe current, low contamination and flexible electron-optical conditions provides many new opportunitites for the application of the SEM to materials science, physics, and the life sciences. 27 refs., 14 figs.

  2. High spatial resolution diffusion tensor imaging and its applications

    CERN Document Server

    Wang, J J

    2002-01-01

    Introduction Magnetic Resonance Imaging is at present the only imaging technique available to measure diffusion of water and metabolites in humans. It provides vital insights to brain connectivity and has proved to be an important tool in diagnosis and therapy planning in many neurological diseases such as brain tumour, ischaemia and multiple sclerosis. This project focuses on the development of a high resolution diffusion tensor imaging technique. In this thesis, the basic theory of diffusion tensor MR Imaging is presented. The technical challenges encountered during development of these techniques will be discussed, with proposed solutions. New sequences with high spatial resolution have been developed and the results are compared with the standard technique more commonly used. Overview The project aims at the development of diffusion tensor imaging techniques with a high spatial resolution. Chapter 2 will describe the basic physics of MRI, the phenomenon of diffusion and the measurement of diffusion by MRI...

  3. High-resolution low-dose scanning transmission electron microscopy.

    Science.gov (United States)

    Buban, James P; Ramasse, Quentin; Gipson, Bryant; Browning, Nigel D; Stahlberg, Henning

    2010-01-01

    During the past two decades instrumentation in scanning transmission electron microscopy (STEM) has pushed toward higher intensity electron probes to increase the signal-to-noise ratio of recorded images. While this is suitable for robust specimens, biological specimens require a much reduced electron dose for high-resolution imaging. We describe here protocols for low-dose STEM image recording with a conventional field-emission gun STEM, while maintaining the high-resolution capability of the instrument. Our findings show that a combination of reduced pixel dwell time and reduced gun current can achieve radiation doses comparable to low-dose TEM.

  4. Theoretical Problems in High Resolution Solar Physics, 2

    Science.gov (United States)

    Athay, G. (Editor); Spicer, D. S. (Editor)

    1987-01-01

    The Science Working Group for the High Resolution Solar Observatory (HRSO) laid plans beginning in 1984 for a series of workshops designed to stimulate a broadbased input from the scientific community to the HRSO mission. These workshops have the dual objectives of encouraging an early start on the difficult theoretical problems in radiative transfer, magnetohydrodynamics, and plasma physics that will be posed by the HRSO data, and maintaining current discussions of results in high resolution solar studies. This workshop was the second in the series. The workshop format presented invited review papers during the formal sessions and contributed poster papers for discussions during open periods. Both are presented.

  5. High-Resolution Reciprocal Space Mapping for Characterizing Deformation Structures

    DEFF Research Database (Denmark)

    Pantleon, Wolfgang; Wejdemann, Christian; Jakobsen, Bo

    2014-01-01

    With high-angular resolution three-dimensional X-ray diffraction (3DXRD), quantitative information is gained about dislocation structures in individual grains in the bulk of a macroscopic specimen by acquiring reciprocal space maps. In high-resolution 3D reciprocal space maps of tensile...... dynamics is followed in situ during varying loading conditions by reciprocal space mapping: during uninterrupted tensile deformation, formation of subgrains is observed concurrently with broadening of Bragg reflections shortly after the onset of plastic deformation. When the traction is terminated, stress...

  6. A fast high-spatial-resolution Raman distributed temperature sensor

    Science.gov (United States)

    Chen, Y.; Hartog, A. H.; Marsh, R. J.; Hilton, I. M.; Hadley, M. R.; Ross, P. A.

    2014-05-01

    Conventional high-spatial-resolution Raman distributed temperature sensing (DTS) systems are based on photoncounting techniques, which result in slow measurements over short sensing fibers. We describe an alternative approach that uses a high-power, short-pulse-width laser and provides fast measurements over fibers longer than 1 km. We demonstrate measurements with 1-s update times over fiber lengths greater than 1 km with better than 0.4-m spatial resolution. We introduce a figure of merit for DTS and we show a substantial improvement (x 100) over earlier results.

  7. Progress in high-resolution x-ray holographic microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jacobsen, C.; Kirz, J.; Howells, M.; McQuaid, K.; Rothman, S.; Feder, R.; Sayre, D.

    1987-07-01

    Among the various types of x-ray microscopes that have been demonstrated, the holographic microscope has had the largest gap between promise and performance. The difficulties of fabricating x-ray optical elements have led some to view holography as the most attractive method for obtaining the ultimate in high resolution x-ray micrographs; however, we know of no investigations prior to 1987 that clearly demonstrated submicron resolution in reconstructed images. Previous efforts suffered from problems such as limited resolution and dynamic range in the recording media, low coherent x-ray flux, and aberrations and diffraction limits in visible light reconstruction. We have addressed the recording limitations through the use of an undulator x-ray source and high-resolution photoresist recording media. For improved results in the readout and reconstruction steps, we have employed metal shadowing and transmission electron microscopy, along with numerical reconstruction techniques. We believe that this approach will allow holography to emerge as a practical method of high-resolution x-ray microscopy. 30 refs., 4 figs.

  8. Sharpening high resolution information in single particle electron cryomicroscopy.

    Science.gov (United States)

    Fernández, J J; Luque, D; Castón, J R; Carrascosa, J L

    2008-10-01

    Advances in single particle electron cryomicroscopy have made possible to elucidate routinely the structure of biological specimens at subnanometer resolution. At this resolution, secondary structure elements are discernable by their signature. However, identification and interpretation of high resolution structural features are hindered by the contrast loss caused by experimental and computational factors. This contrast loss is traditionally modeled by a Gaussian decay of structure factors with a temperature factor, or B-factor. Standard restoration procedures usually sharpen the experimental maps either by applying a Gaussian function with an inverse ad hoc B-factor, or according to the amplitude decay of a reference structure. EM-BFACTOR is a program that has been designed to widely facilitate the use of the novel method for objective B-factor determination and contrast restoration introduced by Rosenthal and Henderson [Rosenthal, P.B., Henderson, R., 2003. Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. J. Mol. Biol. 333, 721-745]. The program has been developed to interact with the most common packages for single particle electron cryomicroscopy. This sharpening method has been further investigated via EM-BFACTOR, concluding that it helps to unravel the high resolution molecular features concealed in experimental density maps, thereby making them better suited for interpretation. Therefore, the method may facilitate the analysis of experimental data in high resolution single particle electron cryomicroscopy.

  9. Multi-resolution voxel phantom modeling: a high-resolution eye model for computational dosimetry

    Science.gov (United States)

    Caracappa, Peter F.; Rhodes, Ashley; Fiedler, Derek

    2014-09-01

    Voxel models of the human body are commonly used for simulating radiation dose with a Monte Carlo radiation transport code. Due to memory limitations, the voxel resolution of these computational phantoms is typically too large to accurately represent the dimensions of small features such as the eye. Recently reduced recommended dose limits to the lens of the eye, which is a radiosensitive tissue with a significant concern for cataract formation, has lent increased importance to understanding the dose to this tissue. A high-resolution eye model is constructed using physiological data for the dimensions of radiosensitive tissues, and combined with an existing set of whole-body models to form a multi-resolution voxel phantom, which is used with the MCNPX code to calculate radiation dose from various exposure types. This phantom provides an accurate representation of the radiation transport through the structures of the eye. Two alternate methods of including a high-resolution eye model within an existing whole-body model are developed. The accuracy and performance of each method is compared against existing computational phantoms.

  10. Structural information, resolution, and noise in high-resolution atomic force microscopy topographs.

    Science.gov (United States)

    Fechner, Peter; Boudier, Thomas; Mangenot, Stéphanie; Jaroslawski, Szymon; Sturgis, James N; Scheuring, Simon

    2009-05-06

    AFM has developed into a powerful tool in structural biology, providing topographs of proteins under close-to-native conditions and featuring an outstanding signal/noise ratio. However, the imaging mechanism exhibits particularities: fast and slow scan axis represent two independent image acquisition axes. Additionally, unknown tip geometry and tip-sample interaction render the contrast transfer function nondefinable. Hence, the interpretation of AFM topographs remained difficult. How can noise and distortions present in AFM images be quantified? How does the number of molecule topographs merged influence the structural information provided by averages? What is the resolution of topographs? Here, we find that in high-resolution AFM topographs, many molecule images are only slightly disturbed by noise, distortions, and tip-sample interactions. To identify these high-quality particles, we propose a selection criterion based on the internal symmetry of the imaged protein. We introduce a novel feature-based resolution analysis and show that AFM topographs of different proteins contain structural information beginning at different resolution thresholds: 10 A (AqpZ), 12 A (AQP0), 13 A (AQP2), and 20 A (light-harvesting-complex-2). Importantly, we highlight that the best single-molecule images are more accurate molecular representations than ensemble averages, because averaging downsizes the z-dimension and "blurs" structural details.

  11. Spectral domain optical coherence tomography - Ultra-high speed, ultra-high resolution ophthalmic imaging

    NARCIS (Netherlands)

    Chen, T.; Cense, B.; Pierce, M. C.; Nassif, N. A.; Park, B. H.; Yun, S. H.; White, B.; Bouma, B. E.; Tearney, G. J.; de Boer, J.F.

    2005-01-01

    Objective: To introduce a new ophthalmic optical coherence tomography technology that allows unprecedented simultaneous ultra-high speed and ultra-high resolution. Methods: Using a superluminescent diode source, a clinically viable ultra-high speed, ultra-high resolution spectral domain optical

  12. Generating High-Temporal and Spatial Resolution TIR Image Data

    Science.gov (United States)

    Herrero-Huerta, M.; Lagüela, S.; Alfieri, S. M.; Menenti, M.

    2017-09-01

    Remote sensing imagery to monitor global biophysical dynamics requires the availability of thermal infrared data at high temporal and spatial resolution because of the rapid development of crops during the growing season and the fragmentation of most agricultural landscapes. Conversely, no single sensor meets these combined requirements. Data fusion approaches offer an alternative to exploit observations from multiple sensors, providing data sets with better properties. A novel spatio-temporal data fusion model based on constrained algorithms denoted as multisensor multiresolution technique (MMT) was developed and applied to generate TIR synthetic image data at both temporal and spatial high resolution. Firstly, an adaptive radiance model is applied based on spectral unmixing analysis of . TIR radiance data at TOA (top of atmosphere) collected by MODIS daily 1-km and Landsat - TIRS 16-day sampled at 30-m resolution are used to generate synthetic daily radiance images at TOA at 30-m spatial resolution. The next step consists of unmixing the 30 m (now lower resolution) images using the information about their pixel land-cover composition from co-registered images at higher spatial resolution. In our case study, TIR synthesized data were unmixed to the Sentinel 2 MSI with 10 m resolution. The constrained unmixing preserves all the available radiometric information of the 30 m images and involves the optimization of the number of land-cover classes and the size of the moving window for spatial unmixing. Results are still being evaluated, with particular attention for the quality of the data streams required to apply our approach.

  13. GENERATING HIGH-TEMPORAL AND SPATIAL RESOLUTION TIR IMAGE DATA

    Directory of Open Access Journals (Sweden)

    M. Herrero-Huerta

    2017-09-01

    Full Text Available Remote sensing imagery to monitor global biophysical dynamics requires the availability of thermal infrared data at high temporal and spatial resolution because of the rapid development of crops during the growing season and the fragmentation of most agricultural landscapes. Conversely, no single sensor meets these combined requirements. Data fusion approaches offer an alternative to exploit observations from multiple sensors, providing data sets with better properties. A novel spatio-temporal data fusion model based on constrained algorithms denoted as multisensor multiresolution technique (MMT was developed and applied to generate TIR synthetic image data at both temporal and spatial high resolution. Firstly, an adaptive radiance model is applied based on spectral unmixing analysis of . TIR radiance data at TOA (top of atmosphere collected by MODIS daily 1-km and Landsat – TIRS 16-day sampled at 30-m resolution are used to generate synthetic daily radiance images at TOA at 30-m spatial resolution. The next step consists of unmixing the 30 m (now lower resolution images using the information about their pixel land-cover composition from co-registered images at higher spatial resolution. In our case study, TIR synthesized data were unmixed to the Sentinel 2 MSI with 10 m resolution. The constrained unmixing preserves all the available radiometric information of the 30 m images and involves the optimization of the number of land-cover classes and the size of the moving window for spatial unmixing. Results are still being evaluated, with particular attention for the quality of the data streams required to apply our approach.

  14. High resolution multiplexed functional imaging in live embryos (Conference Presentation)

    Science.gov (United States)

    Xu, Dongli; Zhou, Weibin; Peng, Leilei

    2017-02-01

    Fourier multiplexed fluorescence lifetime imaging (FmFLIM) scanning laser optical tomography (FmFLIM-SLOT) combines FmFLIM and Scanning laser optical tomography (SLOT) to perform multiplexed 3D FLIM imaging of live embryos. The system had demonstrate multiplexed functional imaging of zebrafish embryos genetically express Foster Resonant Energy Transfer (FRET) sensors. However, previous system has a 20 micron resolution because the focused Gaussian beam diverges quickly from the focused plane, makes it difficult to achieve high resolution imaging over a long projection depth. Here, we present a high-resolution FmFLIM-SLOT system with achromatic Bessel beam, which achieves 3 micron resolution in 3D deep tissue imaging. In Bessel-FmFLIM-SLOT, multiple laser excitation lines are firstly intensity modulated by a Michelson interferometer with a spinning polygon mirror optical delay line, which enables Fourier multiplexed multi-channel lifetime measurements. Then, a spatial light modulator and a prism are used to transform the modulated Gaussian laser beam to an achromatic Bessel beam. The achromatic Bessel beam scans across the whole specimen with equal angular intervals as sample rotated. After tomography reconstruction and the frequency domain lifetime analysis method, both the 3D intensity and lifetime image of multiple excitation-emission can be obtained. Using Bessel-FmFLIM-SLOT system, we performed cellular-resolution FLIM tomography imaging of live zebrafish embryo. Genetically expressed FRET sensors in these embryo will allow non-invasive observation of multiple biochemical processes in vivo.

  15. High-resolution flood modeling of urban areas using MSN_Flood

    Directory of Open Access Journals (Sweden)

    Michael Hartnett

    2017-07-01

    Full Text Available Although existing hydraulic models have been used to simulate and predict urban flooding, most of these models are inadequate due to the high spatial resolution required to simulate flows in urban floodplains. Nesting high-resolution subdomains within coarser-resolution models is an efficient solution for enabling simultaneous calculation of flooding due to tides, surges, and high river flows. MSN_Flood has been developed to incorporate moving boundaries around nested domains, permitting alternate flooding and drying along the boundary and in the interior of the domain. Ghost cells adjacent to open boundary cells convert open boundaries, in effect, into internal boundaries. The moving boundary may be multi-segmented and non-continuous, with recirculating flow across the boundary. When combined with a bespoke adaptive interpolation scheme, this approach facilitates a dynamic internal boundary. Based on an alternating-direction semi-implicit finite difference scheme, MSN_Flood was used to hindcast a major flood event in Cork City resulting from the combined pressures of fluvial, tidal, and storm surge processes. The results show that the model is computationally efficient, as the 2-m high-resolution nest is used only in the urban flooded region. Elsewhere, lower-resolution nests are used. The results also show that the model is highly accurate when compared with measured data. The model is capable of incorporating nested sub-domains when the nested boundary is multi-segmented and highly complex with lateral gradients of elevation and velocities. This is a major benefit when modelling urban floodplains at very high resolution.

  16. Generating high-temporal and spatial resolution tir image data

    NARCIS (Netherlands)

    Herrero Huerta, M.; Lagüela, S.; Alfieri, S.M.; Menenti, M.; Lichti, D.; Weng, Q

    2017-01-01

    Remote sensing imagery to monitor global biophysical dynamics requires the availability of thermal infrared data at high temporal and spatial resolution because of the rapid development of crops during the growing season and the fragmentation of most agricultural landscapes. Conversely, no single

  17. Remote parallel rendering for high-resolution tiled display walls

    KAUST Repository

    Nachbaur, Daniel

    2014-11-01

    © 2014 IEEE. We present a complete, robust and simple to use hardware and software stack delivering remote parallel rendering of complex geometrical and volumetric models to high resolution tiled display walls in a production environment. We describe the setup and configuration, present preliminary benchmarks showing interactive framerates, and describe our contributions for a seamless integration of all the software components.

  18. Input variable selection for interpolating high-resolution climate ...

    African Journals Online (AJOL)

    2010-10-20

    Oct 20, 2010 ... Accurate climate surfaces are vital for applications relating to groundwater recharge modelling, evapotranspiration estima- ... with distance to oceans and elevation to generate 8 sets of high-resolution (i.e. 3 arc second) climate surfaces of the Western .... ANUSPLIN, developed by the Australian National.

  19. High resolution numerical weather prediction over the Indian ...

    Indian Academy of Sciences (India)

    In this study, the Florida State University Global Spectral Model (FSUGSM), in association with a high-resolution nested regional spectral model (FSUNRSM), is used for short-range weather forecasts over the Indian domain. Three-day forecasts for each day of August 1998 were performed using different versions of the ...

  20. Track prediction of very severe cyclone 'Nargis' using high resolution ...

    Indian Academy of Sciences (India)

    In the present study, a detailed diagnostic analysis of the system 'Nargis' is carried out initially to investigate the features associated with this unusual movement and subsequently the real time forecast of VSCS 'Nargis' using high resolution advanced version weather research forecasting (WRF) model is presented.

  1. HIGH RESOLUTION RESISTIVITY LEAK DETECTION DATA PROCESSING & EVALUATION MEHTODS & REQUIREMENTS

    Energy Technology Data Exchange (ETDEWEB)

    SCHOFIELD JS

    2007-10-04

    This document has two purposes: {sm_bullet} Describe how data generated by High Resolution REsistivity (HRR) leak detection (LD) systems deployed during single-shell tank (SST) waste retrieval operations are processed and evaluated. {sm_bullet} Provide the basic review requirements for HRR data when Hrr is deployed as a leak detection method during SST waste retrievals.

  2. Workshop on high-resolution, large-acceptance spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Zeidman, B. (ed.)

    1981-01-01

    The purpose of the Workshop on High-Resolution, Large-Acceptance Spectrometers was to provide a means for exchange of information among those actively engaged in the design and construction of these new spectrometers. Thirty-seven papers were prepared for the data base.

  3. High-resolution seismic imaging of the Sohagpur Gondwana basin ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 122; Issue 6 ... In this study, we illustrate how Gondwana tectonics affected the Sohagpur Gondwana basin that occurs at the junction of the Mahanadi and Son–Narmada rift systems in the central India, through a high-resolution seismic reflection study along six ...

  4. Bombs at High Resolution. I. Morphological Evidence for Photospheric Reconnection

    NARCIS (Netherlands)

    Watanabe, H.; Vissers, G.; Kitai, R.; Rouppe van der Voort, L.H.M.; Rutten, R.J.|info:eu-repo/dai/nl/074143662

    2011-01-01

    High-resolution imaging-spectroscopy movies of solar active region NOAA 10998 obtained with the Crisp Imaging Spectropolarimeter at the Swedish 1-m Solar Telescope show very bright, rapidly flickering, flame-like features that appear intermittently in the wings of the Balmer Hα line in a region with

  5. Calibration of a High Resolution Airborne 3-D SAR

    DEFF Research Database (Denmark)

    Dall, Jørgen; Grinder-Pedersen, Jan; Madsen, S.N.

    1997-01-01

    The potential of across-track interferometric (XTI) synthetic aperture radar (SAR) for producing high resolution 3D imagery has been demonstrated by several airborne systems including EMISAR, the dual frequency, polarimetric, and interferometric SAR developed at the Dept. of Electromagnetic Systems...

  6. High energy resolution off-resonant X-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wojciech, Blachucki [Univ. of Fribourg (Switzerland). Dept. of Physics

    2015-10-16

    This work treats of the high energy resolution off-resonant X-ray spectroscopy (HEROS) method of determining the density of unoccupied electronic states in the vicinity of the absorption edge. HEROS is an alternative to the existing X-ray absorption spectroscopy (XAS) methods and opens the way for new studies not achievable before.

  7. High Resolution Digital Imaging of Paintings: The Vasari Project.

    Science.gov (United States)

    Martinez, Kirk

    1991-01-01

    Describes VASARI (the Visual Art System for Archiving and Retrieval of Images), a project funded by the European Community to show the feasibility of high resolution colormetric imaging directly from paintings. The hardware and software used in the system are explained, storage on optical disks is described, and initial results are reported. (five…

  8. Amplification of real-time high resolution melting analysis PCR ...

    African Journals Online (AJOL)

    In this study, we assessed the usefulness of eight common primers amplifying the respective genes in real-time high resolution melting analysis PCR (real-time HRMA PCR) in terms of time, cost and sensitivity with respect to PCR-SSCP method. We found that case sample can easily be differentiated from control sample by ...

  9. High resolution spectroscopy of the disk chromosphere. I - Observing procedures.

    Science.gov (United States)

    Beckers, J. M.; Mauter, H. A.; Mann, G. R.; Brown, D. R.

    1972-01-01

    Review of some of the main features of a high resolution spectroscopy program aimed at the precise photometric observation of chromospheric fine structures using the Sacramento Peak vacuum telescope. The observing procedures are described, and a sample of the first observational results is presented.

  10. High resolution STEM of quantum dots and quantum wires

    DEFF Research Database (Denmark)

    Kadkhodazadeh, Shima

    2013-01-01

    This article reviews the application of high resolution scanning transmission electron microscopy (STEM) to semiconductor quantum dots (QDs) and quantum wires (QWRs). Different imaging and analytical techniques in STEM are introduced and key examples of their application to QDs and QWRs...

  11. High resolution ultraviolet imaging spectrometer for latent image analysis.

    Science.gov (United States)

    Lyu, Hang; Liao, Ningfang; Li, Hongsong; Wu, Wenmin

    2016-03-21

    In this work, we present a close-range ultraviolet imaging spectrometer with high spatial resolution, and reasonably high spectral resolution. As the transmissive optical components cause chromatic aberration in the ultraviolet (UV) spectral range, an all-reflective imaging scheme is introduced to promote the image quality. The proposed instrument consists of an oscillating mirror, a Cassegrain objective, a Michelson structure, an Offner relay, and a UV enhanced CCD. The finished spectrometer has a spatial resolution of 29.30μm on the target plane; the spectral scope covers both near and middle UV band; and can obtain approximately 100 wavelength samples over the range of 240~370nm. The control computer coordinates all the components of the instrument and enables capturing a series of images, which can be reconstructed into an interferogram datacube. The datacube can be converted into a spectrum datacube, which contains spectral information of each pixel with many wavelength samples. A spectral calibration is carried out by using a high pressure mercury discharge lamp. A test run demonstrated that this interferometric configuration can obtain high resolution spectrum datacube. The pattern recognition algorithm is introduced to analyze the datacube and distinguish the latent traces from the base materials. This design is particularly good at identifying the latent traces in the application field of forensic imaging.

  12. High resolution EPR applications to metalloenzymes and metals in medicine

    CERN Document Server

    Berliner, Lawrence

    2009-01-01

    EPR spectroscopy has an important role in the geometric structural characterization of the redox cofactors in metalloproteins and their electronic structure, as this is crucial for their reactivity. This title covers high-resolution EPR methods, iron proteins, nickel and copper enzymes, and metals in medicine.

  13. A high resolution powder diffractometer using focusing optics

    Indian Academy of Sciences (India)

    Research Centre, Mumbai 400 085, India. *Corresponding author. E-mail: siruguri@csr.ernet.in. Abstract. In this paper, we describe the design, construction and performance of a new high resolution neutron powder diffractometer that has been installed at the Dhruva reactor, Trombay, India. The instrument employs novel ...

  14. High resolution reflection seismic mapping of shallow coal seams

    CSIR Research Space (South Africa)

    Mngadi, SB

    2013-10-01

    Full Text Available Subsidence and collapse of unmapped shallow coal mine workings poses a risk to the public and hampers the development of valuable property. A high-resolution reflection seismic survey was conducted to determine whether it is possible to map...

  15. High resolution X-ray diffraction studies on unirradiated and ...

    Indian Academy of Sciences (India)

    High-resolution X-ray diffraction technique, employing a three-crystal monochromator–collimator combination is used to study the irradiation induced defects in flux grown Sr-hexaferrite crystals irradiated with 50 MeV Li3+ ion beams at room temperature with a fluence value of 1 × 1014 ions/cm2. The diffraction curves of the ...

  16. High resolution mid-infrared spectroscopy based on frequency upconversion

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin; Hu, Qi; Tidemand-Lichtenberg, Peter

    2013-01-01

    We present high resolution upconversion of incoherent infrared radiation by means of sum-frequency mixing with a laser followed by simple CCD Si-camera detection. Noise associated with upconversion is, in strong contrast to room temperature direct mid-IR detection, extremely small, thus very faint...

  17. Interpretation of high resolution aeromagnetic data over southern ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 125; Issue 2 ... High resolution airborne magnetic data of parts of the southern Benue Trough were digitally processed and analyzed in order to estimate the depth of magnetic sources and to map the distribution and orientation of subsurface structural features.

  18. Application of high-resolution melting for variant scanning in ...

    African Journals Online (AJOL)

    High-resolution melting (HRM) analysis is a rapid and sensitive method for single nucleotide polymorphism (SNP) analysis. In this study, a novel HRM assay was carried out to detect SNPs in the chloroplast gene atpB which encodes the beta subunit of the ATP synthase and atpB upstream intergenic region.

  19. High resolution resist-free lithography in the SEM

    NARCIS (Netherlands)

    Hari, S.

    2017-01-01

    Focussed Electron Beam Induced Processing is a high resolution direct-write nanopatterning technique. Its ability to fabricate sub-10 nm structures together with its versatility and ease of use, in that it is resist-free and implementable inside a Scanning Electron Microscope, make it attractive for

  20. A high-resolution record of Greenland mass balance

    NARCIS (Netherlands)

    McMillan, Malcolm; Leeson, Amber; Shepherd, Andrew; Briggs, Kate; Armitage, Thomas; Hogg, Anna; Kuipers Munneke, P.|info:eu-repo/dai/nl/304831891; van den Broeke, M.R.|info:eu-repo/dai/nl/073765643; Noël, B.P.Y.|info:eu-repo/dai/nl/370612345; van de Berg, W.J.|info:eu-repo/dai/nl/304831611; Ligtenberg, S.R.M.|info:eu-repo/dai/nl/32821177X; Horwath, M.; Groh, Andreas; Muir, A.; Gilbert, Lin

    2016-01-01

    We map recent Greenland Ice Sheet elevation change at high spatial (5 km) and temporal (monthly) resolution using CryoSat-2 altimetry. After correcting for the impact of changing snowpack properties associated with unprecedented surface melting in 2012, we find good agreement (3 cm/yr bias) with

  1. Systematic high-resolution assessment of global hydropower potential

    NARCIS (Netherlands)

    Hoes, Olivier A C; Meijer, Lourens J J; Van Der Ent, Ruud J.; Van De Giesen, Nick C.

    2017-01-01

    Population growth, increasing energy demand and the depletion of fossil fuel reserves necessitate a search for sustainable alternatives for electricity generation. Hydropower could replace a large part of the contribution of gas and oil to the present energy mix. However, previous high-resolution

  2. Very high resolution satellite data: New challenges in image analysis

    Digital Repository Service at National Institute of Oceanography (India)

    Sathe, P.V.; Muraleedharan, P.M.

    Early years of coming century will see a large number of satellites with very high spatial resolution reaching beyond 1 m in the visible range of electromagnetic spectrum. Such images will come very close to giving a ground-based view of a terrain...

  3. pattern of interstitial lung disease as seen by high resolution

    African Journals Online (AJOL)

    2012-09-01

    Sep 1, 2012 ... Background: Diffuse lung diseases constitute a major cause of morbidity and mortality worldwide. High Resolution Computed Tomography (HRCT) is the recommended imaging technique in the diagnosis, assessment and followup of these diseases. Objectives: To describe the pattern of HRCT findings in ...

  4. FMC cameras, high resolution films and very large scale mapping

    Science.gov (United States)

    Tachibana, Kikuo; Hasegawa, Hiroyuki

    1988-06-01

    Very large scale mapping (1/250) was experimented on the basis of FMC camera, high resolution film and total station surveying. The future attractive combination of precision photogrammetry and personal computer assisted terrestrial surveying was investigated from the point of view of accuracy, time effectiveness and total procedures control.

  5. Signal Processing for High Resolution FMCW SAR and Moving Target

    NARCIS (Netherlands)

    Meta, A.; Hoogeboom, P.

    2005-01-01

    The combination of Frequency Modulated ContinuousWave (FMCW) technology and Synthetic Aperture Radar (SAR) leads to lightweight, cost-effective imaging sensors of high resolution. In FMCW SAR applications the conventional stop-and-go approximation used in pulse radar algorithms cannot be considered

  6. Plant respirometer enables high resolution of oxygen consumption rates

    Science.gov (United States)

    Foster, D. L.

    1966-01-01

    Plant respirometer permits high resolution of relatively small changes in the rate of oxygen consumed by plant organisms undergoing oxidative metabolism in a nonphotosynthetic state. The two stage supply and monitoring system operates by a differential pressure transducer and provides a calibrated output by digital or analog signals.

  7. Sparse deconvolution of high-density super-resolution images

    NARCIS (Netherlands)

    S. Hugelier (Siewert); J.J. de Rooi (Johan); R. Bernex (Romain); S. Duwé (Sam); O. Devos (Olivier); M. Sliwa (Michel); P. Dedecker (Peter); P.H.C. Eilers (Paul); C. Ruckebusch (Cyril)

    2016-01-01

    textabstractIn wide-field super-resolution microscopy, investigating the nanoscale structure of cellular processes, and resolving fast dynamics and morphological changes in cells requires algorithms capable of working with a high-density of emissive fluorophores. Current deconvolution algorithms

  8. Invited article: High resolution digital camera for infrared reflectography.

    Science.gov (United States)

    Falco, Charles M

    2009-07-01

    This paper describes the characteristics of a high resolution infrared (IR) imaging system operating over the wavelength range of 830-1100 nm, based on a modified 8 Mpixels commercial digital camera, with which nonspecialists can obtain IR reflectograms of works of art in situ in a museum environment. The relevant imaging properties of sensitivity, resolution, noise, and contrast are characterized and the capabilities of this system are illustrated with an example that has revealed important new information about the working practices of a 16th century artist.

  9. Topography improvements in MEMS DMs for high-contrast, high-resolution imaging Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will develop and demonstrate an innovative microfabrication process to substantially improve the surface quality achievable in high-resolution...

  10. Evaluation of a High-Resolution Regional Reanalysis for Europe

    Science.gov (United States)

    Ohlwein, C.; Wahl, S.; Keller, J. D.; Bollmeyer, C.

    2014-12-01

    Reanalyses gain more and more importance as a source of meteorological information for many purposes and applications. Several global reanalyses projects (e.g., ERA, MERRA, CSFR, JMA9) produce and verify these data sets to provide time series as long as possible combined with a high data quality. Due to a spatial resolution down to 50-70km and 3-hourly temporal output, they are not suitable for small scale problems (e.g., regional climate assessment, meso-scale NWP verification, input for subsequent models such as river runoff simulations). The implementation of regional reanalyses based on a limited area model along with a data assimilation scheme is able to generate reanalysis data sets with high spatio-temporal resolution. Within the Hans-Ertel-Centre for Weather Research (HErZ), the climate monitoring branch concentrates efforts on the assessment and analysis of regional climate in Germany and Europe. In joint cooperation with DWD (German Meteorological Service), a high-resolution reanalysis system based on the COSMO model has been developed. The regional reanalysis for Europe matches the domain of the CORDEX EURO-11 specifications, albeit at a higher spatial resolution, i.e., 0.055° (6km) instead of 0.11° (12km) and comprises the assimilation of observational data using the existing nudging scheme of COSMO complemented by a special soil moisture analysis with boundary conditions provided by ERA-Interim data. The reanalysis data set covers 6 years (2007-2012) and is currently extended to 16 years. Extensive evaluation of the reanalysis is performed using independent observations with special emphasis on precipitation and high-impact weather situations indicating a better representation of small scale variability. Further, the evaluation shows an added value of the regional reanalysis with respect to the forcing ERA Interim reanalysis and compared to a pure high-resolution dynamical downscaling approach without data assimilation.

  11. The high-resolution regional reanalysis COSMO-REA6

    Science.gov (United States)

    Ohlwein, C.

    2016-12-01

    Reanalyses gain more and more importance as a source of meteorological information for many purposes and applications. Several global reanalyses projects (e.g., ERA, MERRA, CSFR, JMA9) produce and verify these data sets to provide time series as long as possible combined with a high data quality. Due to a spatial resolution down to 50-70km and 3-hourly temporal output, they are not suitable for small scale problems (e.g., regional climate assessment, meso-scale NWP verification, input for subsequent models such as river runoff simulations). The implementation of regional reanalyses based on a limited area model along with a data assimilation scheme is able to generate reanalysis data sets with high spatio-temporal resolution. Within the Hans-Ertel-Centre for Weather Research (HErZ), the climate monitoring branch concentrates efforts on the assessment and analysis of regional climate in Germany and Europe. In joint cooperation with DWD (German Meteorological Service), a high-resolution reanalysis system based on the COSMO model has been developed. The regional reanalysis for Europe matches the domain of the CORDEX EURO-11 specifications, albeit at a higher spatial resolution, i.e., 0.055° (6km) instead of 0.11° (12km) and comprises the assimilation of observational data using the existing nudging scheme of COSMO complemented by a special soil moisture analysis with boundary conditions provided by ERA-Interim data. The reanalysis data set covers the past 20 years. Extensive evaluation of the reanalysis is performed using independent observations with special emphasis on precipitation and high-impact weather situations indicating a better representation of small scale variability. Further, the evaluation shows an added value of the regional reanalysis with respect to the forcing ERA Interim reanalysis and compared to a pure high-resolution dynamical downscaling approach without data assimilation.

  12. A High-resolution Reanalysis for the European CORDEX Region

    Science.gov (United States)

    Bentzien, Sabrina; Bollmeyer, Christoph; Crewell, Susanne; Friederichs, Petra; Hense, Andreas; Keller, Jan; Keune, Jessica; Kneifel, Stefan; Ohlwein, Christian; Pscheidt, Ieda; Redl, Stephanie; Steinke, Sandra

    2014-05-01

    A High-resolution Reanalysis for the European CORDEX Region Within the Hans-Ertel-Centre for Weather Research (HErZ), the climate monitoring branch concentrates efforts on the assessment and analysis of regional climate in Germany and Europe. In joint cooperation with DWD (German Meteorological Service), a high-resolution reanalysis system based on the COSMO model has been developed. Reanalyses gain more and more importance as a source of meteorological information for many purposes and applications. Several global reanalyses projects (e.g., ERA, MERRA, CSFR, JMA9) produce and verify these data sets to provide time series as long as possible combined with a high data quality. Due to a spatial resolution down to 50-70km and 3-hourly temporal output, they are not suitable for small scale problems (e.g., regional climate assessment, meso-scale NWP verification, input for subsequent models such as river runoff simulations). The implementation of regional reanalyses based on a limited area model along with a data assimilation scheme is able to generate reanalysis data sets with high spatio-temporal resolution. The work presented here focuses on the regional reanalysis for Europe with a domain matching the CORDEX-EURO-11 specifications, albeit at a higher spatial resolution, i.e., 0.055° (6km) instead of 0.11° (12km). The COSMO reanalysis system comprises the assimilation of observational data using the existing nudging scheme of COSMO and is complemented by a special soil moisture analysis and boundary conditions given by ERA-interim data. The reanalysis data set currently covers 6 years (2007-2012). The evaluation of the reanalyses is done using independent observations with special emphasis on precipitation and high-impact weather situations. The development and evaluation of the COSMO-based reanalysis for the CORDEX-Euro domain can be seen as a preparation for joint European activities on the development of an ensemble system of regional reanalyses for Europe.

  13. Scalable, flexible and high resolution patterning of CVD graphene.

    Science.gov (United States)

    Hofmann, Mario; Hsieh, Ya-Ping; Hsu, Allen L; Kong, Jing

    2014-01-07

    The unique properties of graphene make it a promising material for interconnects in flexible and transparent electronics. To increase the commercial impact of graphene in those applications, a scalable and economical method for producing graphene patterns is required. The direct synthesis of graphene from an area-selectively passivated catalyst substrate can generate patterned graphene of high quality. We here present a solution-based method for producing patterned passivation layers. Various deposition methods such as ink-jet deposition and microcontact printing were explored, that can satisfy application demands for low cost, high resolution and scalable production of patterned graphene. The demonstrated high quality and nanometer precision of grown graphene establishes the potential of this synthesis approach for future commercial applications of graphene. Finally, the ability to transfer high resolution graphene patterns onto complex three-dimensional surfaces affords the vision of graphene-based interconnects in novel electronics.

  14. 3D high-resolution two-photon crosslinked hydrogel structures for biological studies.

    Science.gov (United States)

    Brigo, Laura; Urciuolo, Anna; Giulitti, Stefano; Della Giustina, Gioia; Tromayer, Maximilian; Liska, Robert; Elvassore, Nicola; Brusatin, Giovanna

    2017-06-01

    Hydrogels are widely used as matrices for cell growth due to the their tuneable chemical and physical properties, which mimic the extracellular matrix of natural tissue. The microfabrication of hydrogels into arbitrarily complex 3D structures is becoming essential for numerous biological applications, and in particular for investigating the correlation between cell shape and cell function in a 3D environment. Micrometric and sub-micrometric resolution hydrogel scaffolds are required to deeply investigate molecular mechanisms behind cell-matrix interaction and downstream cellular processes. We report the design and development of high resolution 3D gelatin hydrogel woodpile structures by two-photon crosslinking. Hydrated structures of lateral linewidth down to 0.5µm, lateral and axial resolution down to a few µm are demonstrated. According to the processing parameters, different degrees of polymerization are obtained, resulting in hydrated scaffolds of variable swelling and deformation. The 3D hydrogels are biocompatible and promote cell adhesion and migration. Interestingly, according to the polymerization degree, 3D hydrogel woodpile structures show variable extent of cell adhesion and invasion. Human BJ cell lines show capability of deforming 3D micrometric resolved hydrogel structures. The design and development of high resolution 3D gelatin hydrogel woodpile structures by two-photon crosslinking is reported. Significantly, topological and mechanical conditions of polymerized gelatin structures were suitable for cell accommodation in the volume of the woodpiles, leading to a cell density per unit area comparable to the bare substrate. The fabricated structures, presenting micrometric features of high resolution, are actively deformed by cells, both in terms of cell invasion within rods and of cell attachment in-between contiguous woodpiles. Possible biological targets for this 3D approach are customized 3D tissue models, or studies of cell adhesion

  15. A high resolution ion microscope for cold atoms

    Science.gov (United States)

    Stecker, Markus; Schefzyk, Hannah; Fortágh, József; Günther, Andreas

    2017-04-01

    We report on an ion-optical system that serves as a microscope for ultracold ground state and Rydberg atoms. The system is designed to achieve a magnification of up to 1000 and a spatial resolution in the 100 nm range, thereby surpassing many standard imaging techniques for cold atoms. The microscope consists of four electrostatic lenses and a microchannel plate in conjunction with a delay line detector in order to achieve single particle sensitivity with high temporal and spatial resolution. We describe the design process of the microscope including ion-optical simulations of the imaging system and characterize aberrations and the resolution limit. Furthermore, we present the experimental realization of the microscope in a cold atom setup and investigate its performance by patterned ionization with a structure size down to 2.7 μm. The microscope meets the requirements for studying various many-body effects, ranging from correlations in cold quantum gases up to Rydberg molecule formation.

  16. Bendable X-ray Optics for High Resolution Imaging

    Science.gov (United States)

    Gubarev, M.; Ramsey, B.; Kilaru, K.; Atkins, C.; Broadway, D.

    2014-01-01

    Current state-of the-art for x-ray optics fabrication calls for either the polishing of massive substrates into high-angular-resolution mirrors or the replication of thin, lower-resolution, mirrors from perfectly figured mandrels. Future X-ray Missions will require a change in this optics fabrication paradigm in order to achieve sub-arcsecond resolution in light-weight optics. One possible approach to this is to start with perfectly flat, light-weight surface, bend it into a perfect cone, form the desired mirror figure by material deposition, and insert the resulting mirror into a telescope structure. Such an approach is currently being investigated at MSFC, and a status report will be presented detailing the results of finite element analyses, bending tests and differential deposition experiments.

  17. High Resolution Software Defined Radar System for Target Detection

    Directory of Open Access Journals (Sweden)

    S. Costanzo

    2013-01-01

    Full Text Available The Universal Software Radio Peripheral USRP NI2920, a software defined transceiver so far mainly used in Software Defined Radio applications, is adopted in this work to design a high resolution L-Band Software Defined Radar system. The enhanced available bandwidth, due to the Gigabit Ethernet interface, is exploited to obtain a higher slant-range resolution with respect to the existing Software Defined Radar implementations. A specific LabVIEW application, performing radar operations, is discussed, and successful validations are presented to demonstrate the accurate target detection capability of the proposed software radar architecture. In particular, outdoor and indoor test are performed by adopting a metal plate as reference structure located at different distances from the designed radar system, and results obtained from the measured echo are successfully processed to accurately reveal the correct target position, with the predicted slant-range resolution equal to 6 m.

  18. High-resolution Imaging Techniques for the Assessment of Osteoporosis

    Science.gov (United States)

    Krug, Roland; Burghardt, Andrew J.; Majumdar, Sharmila; Link, Thomas M.

    2010-01-01

    Synopsis The importance of assessing the bone’s microarchitectural make-up in addition to its mineral density in the context of osteoporosis has been emphasized in a number of publications. The high spatial resolution required to resolve the bone’s microstructure in a clinically feasible scan time is challenging. Currently, the best suited modalities meeting these requirements in vivo are high-resolution peripheral quantitative imaging (HR-pQCT) and magnetic resonance imaging (MRI). Whereas HR-pQCT is limited to peripheral skeleton regions like the wrist and ankle, MRI can also image other sites like the proximal femur but usually with lower spatial resolution. In addition Multidetector-CT has been used for high-resolution imaging of trabecular bone structure, however, the radiation dose is a limiting factor. This article provides an overview of the different modalities, technical requirements and recent developments in this emerging field. Details regarding imaging protocols as well as image post-processing methods for bone structure quantification are discussed. PMID:20609895

  19. Photoacoustic lymphatic imaging with high spatial-temporal resolution

    Science.gov (United States)

    Martel, Catherine; Yao, Junjie; Huang, Chih-Hsien; Zou, Jun; Randolph, Gwendalyn J.; Wang, Lihong V.

    2014-11-01

    Despite its critical function in coordinating the egress of inflammatory and immune cells out of tissues and maintaining fluid balance, the causative role of lymphatic network dysfunction in pathological settings is still understudied. Engineered-animal models and better noninvasive high spatial-temporal resolution imaging techniques in both preclinical and clinical studies will help to improve our understanding of different lymphatic-related pathologic disorders. Our aim was to take advantage of our newly optimized noninvasive wide-field fast-scanning photoacoustic (PA) microcopy system to coordinately image the lymphatic vasculature and its flow dynamics, while maintaining high resolution and detection sensitivity. Here, by combining the optical-resolution PA microscopy with a fast-scanning water-immersible microelectromechanical system scanning mirror, we have imaged the lymph dynamics over a large field-of-view, with high spatial resolution and advanced detection sensitivity. Depending on the application, lymphatic vessels (LV) were spectrally or temporally differentiated from blood vessels. Validation experiments were performed on phantoms and in vivo to identify the LV. Lymphatic flow dynamics in nonpathological and pathological conditions were also visualized. These results indicate that our newly developed PA microscopy is a promising tool for lymphatic-related biological research.

  20. A versatile high resolution scanning tunneling potentiometry implementation.

    Science.gov (United States)

    Druga, T; Wenderoth, M; Homoth, J; Schneider, M A; Ulbrich, R G

    2010-08-01

    We have developed a new scanning tunneling potentiometry technique which can-with only minor changes of the electronic setup-be easily added to any standard scanning tunneling microscope (STM). This extension can be combined with common STM techniques such as constant current imaging or scanning tunneling spectroscopy. It is capable of performing measurements of the electrochemical potential with microvolt resolution. Two examples demonstrate the versatile application. First of all, we have determined local variations of the electrochemical potential due to charge transport of biased samples down to angstrom length scales. Second, with tip and sample at different temperatures we investigated the locally varying thermovoltage occurring at the tunneling junction. Aside from its use in determining the chemical identity of substances at the sample surface our method provides a controlled way to eliminate the influence of laterally varying thermovoltages on low-bias constant current topographies.

  1. Validation of AIRS high-resolution stratospheric temperature retrievals

    Science.gov (United States)

    Meyer, Catrin I.; Hoffmann, Lars

    2014-10-01

    This paper focuses on stratospheric temperature observations by the Atmospheric InfraRed Sounder (AIRS) aboard NASA's Aqua satellite. We validate a nine-year record (2003 - 2011) of data retrieved with a scientific retrieval processor independent from the operational processor operated by NASA. The retrieval discussed here provides stratospheric temperature profiles for each individual AIRS footprint and has nine times better horizontal sampling than the operational data provided by NASA. The high-resolution temperature data are considered optimal for for gravity wave studies. For validation the high-resolution retrieval data are compared with results from the AIRS operational Level-2 data and the ERA-Interim meteorological reanalysis. Due to the large amount of data we performed statistical comparisons of monthly zonal mean cross-sections and time series. The comparisons show that the high-resolution temperature data are in good agreement with the validation data sets. The bias in the zonal averages is mostly within ±2K. The bias reaches a maximum of 7K to ERA-Interim and 4K to the AIRS operational data at the stratopause, it is related to the different resolutions of the data sets. Variability is nearly the same in all three data sets, having maximum standard deviations around the polar vortex in the mid and upper stratosphere. The validation presented here indicates that the high-resolution temperature retrievals are well-suited for scientific studies. In particular, we expect that they will become a valuable asset for future studies of stratospheric gravity waves.

  2. Sparse Recovery Analysis of High-Resolution Climate Data

    Science.gov (United States)

    Archibald, R.

    2013-12-01

    The field of compressed sensing is vast and currently very active, with new results, methods, and algorithms appearing almost daily. The first notions of compressed sensing began with Prony's method, which was designed by the French mathematician Gaspard Riche de Prony to extract signal information from a limited number of measurements. Since then, sparsity has been used empirically in a variety of applications, including geology and geophysics, spectroscopy, signal processing, radio astronomy, and medical ultrasound. High-resolution climate studies performed on large scale high performance computing have been producing large amounts of data that can benefit from unique mathematical methods for analysis. This work demonstrates how sparse recovery and L1 regularization can be used effectively on large datasets from high-resolution climate studies.

  3. Design of UAV high resolution image transmission system

    Science.gov (United States)

    Gao, Qiang; Ji, Ming; Pang, Lan; Jiang, Wen-tao; Fan, Pengcheng; Zhang, Xingcheng

    2017-02-01

    In order to solve the problem of the bandwidth limitation of the image transmission system on UAV, a scheme with image compression technology for mini UAV is proposed, based on the requirements of High-definition image transmission system of UAV. The video codec standard H.264 coding module and key technology was analyzed and studied for UAV area video communication. Based on the research of high-resolution image encoding and decoding technique and wireless transmit method, The high-resolution image transmission system was designed on architecture of Android and video codec chip; the constructed system was confirmed by experimentation in laboratory, the bit-rate could be controlled easily, QoS is stable, the low latency could meets most applied requirement not only for military use but also for industrial applications.

  4. High-resolution dynamical modelling of the Antarctic stratospheric vortex

    Science.gov (United States)

    Haynes, P. H.

    1988-01-01

    Progress is reported on the high-resolution three-dimensional numerical simulation of flows characteristic of the Antarctic wintertime stratosphere. The numerical model is a modified version of the Reading University sigma-coordinate used previously for tropospheric studies. Physical parameterizations are kept to a minimum in order to concentrate as much computing power as possible on simulating details of the dynamical processes. The major question addressed is whether the features observed in recent high-resolution two-dimensional simulations - namely: (1) the formation of a sharp edge to the vortex (seen in the potential vorticity field), (2) the survival of the polar vortex in a material entity, and (3) the formation of small-scale eddies rough the break-up of tongues of high potential vorticity drawn out from the polar vortex - are realized in three-dimensional simulations.

  5. Three-dimensional high-resolution ultrasonic imaging of the eye

    Science.gov (United States)

    Silverman, Ronald H.; Lizzi, Frederick L.; Kalisz, Andrew; Coleman, D. J.

    2000-04-01

    Very high frequency (50 MHz) ultrasound provides spatial resolution on the order of 30 microns axially by 60 microns laterally. Our aim was to reconstruct the three-dimensional anatomy of the eye in the full detail permitted by this fine- scale transducer resolution. We scanned the eyes of human subjects and anesthetized rabbits in a sequence of parallel planes 50 microns apart. Within each scan plane, vectors were also spaced 50 microns apart. Radio-frequency data were digitized at a rate of 250 MHz or higher. A series of spectrum analysis and segmentation algorithms was applied to data acquired in each plane; the outputs of these procedures were used to produce color-coded 3-D representations of the sclera, iris and ciliary processes to enhance 3-D volume rendered presentation. We visualized the radial pattern of individual ciliary processes in humans and rabbits and the geodetic web of supporting connections between the ciliary processes and iris that exist only in the rabbit. By acquiring data such that adjacent vectors and planes are separated by less than the transducer's lateral resolution, we were able to visualize structures, such as the ciliary web, that had not been seen before in-vivo. Our techniques offer the possibility of high- precision imaging and measurement of anterior segment structures. This would be relevant in monitoring of glaucoma, tumors, foreign bodies and other clinical conditions.

  6. High-resolution electron microscopy of advanced materials

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, T.E.; Kung, H.H.; Sickafus, K.E.; Gray, G.T. III; Field, R.D.; Smith, J.F. [Los Alamos National Lab., NM (United States). Materials Science and Technology Div.

    1997-11-01

    This final report chronicles a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The High-Resolution Electron Microscopy Facility has doubled in size and tripled in quality since the beginning of the three-year period. The facility now includes a field-emission scanning electron microscope, a 100 kV field-emission scanning transmission electron microscope (FE-STEM), a 300 kV field-emission high-resolution transmission electron microscope (FE-HRTEM), and a 300 kV analytical transmission electron microscope. A new orientation imaging microscope is being installed. X-ray energy dispersive spectrometers for chemical analysis are available on all four microscopes; parallel electron energy loss spectrometers are operational on the FE-STEM and FE-HRTEM. These systems enable evaluation of local atomic bonding, as well as chemical composition in nanometer-scale regions. The FE-HRTEM has a point-to-point resolution of 1.6 {angstrom}, but the resolution can be pushed to its information limit of 1 {angstrom} by computer reconstruction of a focal series of images. HRTEM has been used to image the atomic structure of defects such as dislocations, grain boundaries, and interfaces in a variety of materials from superconductors and ferroelectrics to structural ceramics and intermetallics.

  7. High-resolution digital imaging with storage phosphors.

    Science.gov (United States)

    Fuhrman, C R; Gur, D; Schaetzing, R

    1990-01-01

    This article describes the current status and potential applications of high-resolution storage phosphor for imaging of the chest. Digital imaging that uses storage phosphor technology is easily adaptable to existing x-ray--generating equipment and can also be used with mobile equipment. The wide latitude of the storage phosphor technique permits satisfactory imaging in situations in which exposure factors cannot be accurately estimated or easily controlled. Early experience with an experimental Kodak high-resolution (4K x 4K) storage phosphor system suggests that standard and portal chest images of excellent quality can be obtained. Many issues must be resolved, however, before digital radiology with a storage phosphor can be advocated as being preferable to conventional film-screen systems. These issues, which include display modalities (film or television monitor), resolution requirements, and the effects of image processing, can only be resolved by further large-scale accuracy studies. The change to a digital imaging system will involve major expenditures for equipment and computers. Cost will be related largely to the level of spatial resolution required for primary radiographic diagnosis.

  8. High resolution neutron diffractometer HRND at research reactor CMRR

    Science.gov (United States)

    Zhang, J.; Xia, Y.; Wang, Y.; Xie, C.; Sun, G.; Liu, L.; Pang, B.; Li, J.; Huang, C.; Liu, Y.; Gong, J.

    2018-01-01

    The high resolution neutron diffractometer HRND is located at the 20 MW China Mianyang Research Reactor (CMRR), which is a neutron powder diffractometer especially dedicated to crystal and magnetic structure studies for polycrystalline powder samples. A vertical focusing Ge (511) monochromator produce a monochromatic neutron beam with a wavelength of 1.885 Å at a fixed take-off angle of 120o. An array of 64 equidistant 3He filled proportional counters can acquire diffraction patterns with a large-scale diffraction angle range over 160o. As all the Soller slit collimators of HRND have a collimation angle of 10' and the monochromator has an average mosaicity of 0.359o, HRND obtains a best resolution of about 1.6\\textperthousand based on experiments, which makes the resolution of HRND can compete with the mainstream-level high resolution neutron powder diffractometers in the world. Equipped with a cryostat and a furnace, HRND allows structural characterization in an extremely broad temperature range. The details of the configuration and performance of the instrument are reported along with its specifications and performance assessments in the present paper.

  9. Accelerated high-resolution photoacoustic tomography via compressed sensing.

    Science.gov (United States)

    Arridge, Simon; Beard, Paul; Betcke, Marta; Cox, Ben; Huynh, Nam; Lucka, Felix; Ogunlade, Olumide; Zhang, Edward

    2016-12-21

    Current 3D photoacoustic tomography (PAT) systems offer either high image quality or high frame rates but are not able to deliver high spatial and temporal resolution simultaneously, which limits their ability to image dynamic processes in living tissue (4D PAT). A particular example is the planar Fabry-Pérot (FP) photoacoustic scanner, which yields high-resolution 3D images but takes several minutes to sequentially map the incident photoacoustic field on the 2D sensor plane, point-by-point. However, as the spatio-temporal complexity of many absorbing tissue structures is rather low, the data recorded in such a conventional, regularly sampled fashion is often highly redundant. We demonstrate that combining model-based, variational image reconstruction methods using spatial sparsity constraints with the development of novel PAT acquisition systems capable of sub-sampling the acoustic wave field can dramatically increase the acquisition speed while maintaining a good spatial resolution: first, we describe and model two general spatial sub-sampling schemes. Then, we discuss how to implement them using the FP interferometer and demonstrate the potential of these novel compressed sensing PAT devices through simulated data from a realistic numerical phantom and through measured data from a dynamic experimental phantom as well as from in vivo experiments. Our results show that images with good spatial resolution and contrast can be obtained from highly sub-sampled PAT data if variational image reconstruction techniques that describe the tissues structures with suitable sparsity-constraints are used. In particular, we examine the use of total variation (TV) regularization enhanced by Bregman iterations. These novel reconstruction strategies offer new opportunities to dramatically increase the acquisition speed of photoacoustic scanners that employ point-by-point sequential scanning as well as reducing the channel count of parallelized schemes that use detector arrays.

  10. Accelerated high-resolution photoacoustic tomography via compressed sensing

    Science.gov (United States)

    Arridge, Simon; Beard, Paul; Betcke, Marta; Cox, Ben; Huynh, Nam; Lucka, Felix; Ogunlade, Olumide; Zhang, Edward

    2016-12-01

    Current 3D photoacoustic tomography (PAT) systems offer either high image quality or high frame rates but are not able to deliver high spatial and temporal resolution simultaneously, which limits their ability to image dynamic processes in living tissue (4D PAT). A particular example is the planar Fabry-Pérot (FP) photoacoustic scanner, which yields high-resolution 3D images but takes several minutes to sequentially map the incident photoacoustic field on the 2D sensor plane, point-by-point. However, as the spatio-temporal complexity of many absorbing tissue structures is rather low, the data recorded in such a conventional, regularly sampled fashion is often highly redundant. We demonstrate that combining model-based, variational image reconstruction methods using spatial sparsity constraints with the development of novel PAT acquisition systems capable of sub-sampling the acoustic wave field can dramatically increase the acquisition speed while maintaining a good spatial resolution: first, we describe and model two general spatial sub-sampling schemes. Then, we discuss how to implement them using the FP interferometer and demonstrate the potential of these novel compressed sensing PAT devices through simulated data from a realistic numerical phantom and through measured data from a dynamic experimental phantom as well as from in vivo experiments. Our results show that images with good spatial resolution and contrast can be obtained from highly sub-sampled PAT data if variational image reconstruction techniques that describe the tissues structures with suitable sparsity-constraints are used. In particular, we examine the use of total variation (TV) regularization enhanced by Bregman iterations. These novel reconstruction strategies offer new opportunities to dramatically increase the acquisition speed of photoacoustic scanners that employ point-by-point sequential scanning as well as reducing the channel count of parallelized schemes that use detector arrays.

  11. High resolution microphotonic needle for endoscopic imaging (Conference Presentation)

    Science.gov (United States)

    Tadayon, Mohammad Amin; Mohanty, Aseema; Roberts, Samantha P.; Barbosa, Felippe; Lipson, Michal

    2017-02-01

    GRIN (Graded index) lens have revolutionized micro endoscopy enabling deep tissue imaging with high resolution. The challenges of traditional GRIN lenses are their large size (when compared with the field of view) and their limited resolution. This is because of the relatively weak NA in standard graded index lenses. Here we introduce a novel micro-needle platform for endoscopy with much higher resolution than traditional GRIN lenses and a FOV that corresponds to the whole cross section of the needle. The platform is based on polymeric (SU-8) waveguide integrated with a microlens micro fabricated on a silicon substrate using a unique molding process. Due to the high index of refraction of the material the NA of the needle is much higher than traditional GRIN lenses. We tested the probe in a fluorescent dye solution (19.6 µM Alexa Flour 647 solution) and measured a numerical aperture of 0.25, focal length of about 175 µm and minimal spot size of about 1.6 µm. We show that the platform can image a sample with the field of view corresponding to the cross sectional area of the waveguide (80x100 µm2). The waveguide size can in principle be modified to vary size of the imaging field of view. This demonstration, combined with our previous work demonstrating our ability to implant the high NA needle in a live animal, shows that the proposed system can be used for deep tissue imaging with very high resolution and high field of view.

  12. High Resolution Measurements and Electronic Structure Calculations of a Diazanaphthalene

    Science.gov (United States)

    Gruet, Sébastien; Goubet, Manuel; Pirali, Olivier

    2014-06-01

    Polycyclic Aromatic Hydrocarbons (PAHs) have long been suspected to be the carriers of so called Unidentified Infrared Bands (UIBs). Most of the results published in the literature report rotationally unresolved spectra of pure carbon as well as heteroatom-containing PAHs species. To date for this class of molecules, the principal source of rotational informations is ruled by microwave (MW) spectroscopy while high resolution measurements reporting rotational structure of the infrared (IR) vibrational bands are very scarce. Recently, some high resolution techniques provided interesting new results to rotationally resolve the IR and far-IR bands of these large carbonated molecules of astrophysical interest. One of them is to use the bright synchrotron radiation as IR continuum source of a high resolution Fourier transform (FTIR) spectrometer. We report the very complementary analysis of the [1,6] naphthyridine (a N-bearing PAH) for which we recorded the microwave spectrum at the PhLAM laboratory (Lille) and the high resolution far-infrared spectrum on the AILES beamline at synchrotron facility SOLEIL. MW spectroscopy provided highly accurate rotational constants in the ground state to perform Ground State Combinations Differences (GSCD) allowing the analysis of the two most intense FT-FIR bands in the 50-900 wn range. Moreover, during this presentation the negative value of the inertial defect in the GS of the molecule will be discussed. A. Leger, J. L. Puget, Astron. Astrophys. 137, L5-L8 (1984) L. J. Allamandola et al. Astrophys. J. 290, L25-L28 (1985). Z. Kisiel et al. J. Mol. Spectrosc. 217, 115 (2003) S. Thorwirth et al. Astrophys. J. 662, 1309 (2007) D. McNaughton et al. J. Chem. Phys. 124, 154305 (2011). S. Albert et al. Faraday Discuss. 150, 71-99 (2011) B. E. Brumfield et al. Phys. Chem. Lett. 3, 1985-1988 (2012) O. Pirali et al. Phys. Chem. Chem. Phys. 15, 10141 (2013).

  13. Adaptive optics with pupil tracking for high resolution retinal imaging.

    Science.gov (United States)

    Sahin, Betul; Lamory, Barbara; Levecq, Xavier; Harms, Fabrice; Dainty, Chris

    2012-02-01

    Adaptive optics, when integrated into retinal imaging systems, compensates for rapidly changing ocular aberrations in real time and results in improved high resolution images that reveal the photoreceptor mosaic. Imaging the retina at high resolution has numerous potential medical applications, and yet for the development of commercial products that can be used in the clinic, the complexity and high cost of the present research systems have to be addressed. We present a new method to control the deformable mirror in real time based on pupil tracking measurements which uses the default camera for the alignment of the eye in the retinal imaging system and requires no extra cost or hardware. We also present the first experiments done with a compact adaptive optics flood illumination fundus camera where it was possible to compensate for the higher order aberrations of a moving model eye and in vivo in real time based on pupil tracking measurements, without the real time contribution of a wavefront sensor. As an outcome of this research, we showed that pupil tracking can be effectively used as a low cost and practical adaptive optics tool for high resolution retinal imaging because eye movements constitute an important part of the ocular wavefront dynamics.

  14. Glacial lake mapping with very high resolution satellite SAR data

    Science.gov (United States)

    Strozzi, T.; Wiesmann, A.; Kääb, A.; Joshi, S.; Mool, P.

    2012-08-01

    Floods resulting from the outbursts of glacial lakes are among the most far-reaching disasters in high mountain regions. Glacial lakes are typically located in remote areas and space-borne remote sensing data are an important source of information about the occurrence and development of such lakes. Here we show that very high resolution satellite Synthetic Aperture Radar (SAR) data can be employed for reliably mapping glacial lakes. Results in the Alps, Pamir and Himalaya using TerraSAR-X and Radarsat-2 data are discussed in comparison to in-situ information, and high-resolution satellite optical and radar imagery. The performance of the satellite SAR data is best during the snow- and ice-free season. In the broader perspective of hazard management, the detection of glacial lakes and the monitoring of their changes from very high-resolution satellite SAR intensity images contributes to the initial assessment of hazards related to glacial lakes, but a more integrated, multi-level approach needs also to include other relevant information such as glacier outlines and outline changes or the identification of unstable slopes above the lake and the surrounding area, information types to which SAR analysis techniques can also contribute.

  15. Photoionization study of doubly-excited helium at ultra-high resolution

    Energy Technology Data Exchange (ETDEWEB)

    Kaindl, G.; Schulz, K.; Domke, M. [Freie Universitaet Berlin (Germany)] [and others

    1997-04-01

    Ever since the pioneering work of Madden & Codling and Cooper, Fano & Prats on doubly-excited helium in the early sixties, this system may be considered as prototypical for the study of electron-electron correlations. More detailed insight into these states could be reached only much later, when improved theoretical calculations of the optically-excited {sup 1}P{sup 0} double-excitation states became available and sufficiently high energy resolution ({delta}E=4.0 meV) was achieved. This allowed a systematic investigation of the double-excitation resonances of He up to excitation energies close to the double-ionization threshold, I{sub infinity}=79.003 eV, which stimulated renewed theoretical interest into these correlated electron states. The authors report here on striking progress in energy resolution in this grazing-incidence photon-energy range of grating monochromators and its application to hitherto unobservable states of doubly-excited He. By monitoring an extremely narrow double-excitation resonance of He, with a theoretical lifetime width of less than or equal to 5 {mu}eV, a resolution of {delta}E=1.0 meV (FWHM) at 64.1 eV could be achieved. This ultra-high spectral resolution, combined with high photon flux, allowed the investigation of new Rydberg resonances below the N=3 ionization threshold, I{sub 3}, as well as a detailed comparison with ab-initio calculations.

  16. Highly simplified lateral flow-based nucleic acid sample preparation and passive fluid flow control

    Science.gov (United States)

    Cary, Robert E.

    2015-12-08

    Highly simplified lateral flow chromatographic nucleic acid sample preparation methods, devices, and integrated systems are provided for the efficient concentration of trace samples and the removal of nucleic acid amplification inhibitors. Methods for capturing and reducing inhibitors of nucleic acid amplification reactions, such as humic acid, using polyvinylpyrrolidone treated elements of the lateral flow device are also provided. Further provided are passive fluid control methods and systems for use in lateral flow assays.

  17. Tests of a High Resolution Beam Profile Monitor

    Energy Technology Data Exchange (ETDEWEB)

    Norem, J.

    2004-10-28

    High energy linear colliders require very small beams at the interaction point to produce high luminosities, and these beams must be measured and monitored. We have developed and tested a technique where the profile can be obtained from an extension of pinhole camera optics using thick, single sided collimators and slits. Very high resolutions (a few nm) should be possible. Gamma beams can be obtained from bremsstrahlung, Compton or beamstrahlung radiation. We describe tests of the technique using bremsstrahlung from an 800 MeV electron beam at Bates/MIT, Compton scattered photons from 47 GeV Final Focus Test Beam (FFTB) at SLAC, and other applications, such as linear colliders.

  18. High resolution reservoir geological modelling using outcrop information

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Changmin; Lin Kexiang; Liu Huaibo [Jianghan Petroleum Institute, Hubei (China)] [and others

    1997-08-01

    This is China`s first case study of high resolution reservoir geological modelling using outcrop information. The key of the modelling process is to build a prototype model and using the model as a geological knowledge bank. Outcrop information used in geological modelling including seven aspects: (1) Determining the reservoir framework pattern by sedimentary depositional system and facies analysis; (2) Horizontal correlation based on the lower and higher stand duration of the paleo-lake level; (3) Determining the model`s direction based on the paleocurrent statistics; (4) Estimating the sandbody communication by photomosaic and profiles; (6) Estimating reservoir properties distribution within sandbody by lithofacies analysis; and (7) Building the reservoir model in sandbody scale by architectural element analysis and 3-D sampling. A high resolution reservoir geological model of Youshashan oil field has been built by using this method.

  19. Object-Based Building Extraction from High Resolution Satellite Imagery

    Directory of Open Access Journals (Sweden)

    R. Attarzadeh

    2012-07-01

    Full Text Available Automatic building extraction from high resolution satellite imagery is considered as an important field of research in remote sensing and machine vision. Many algorithms for extraction of buildings from satellite images have been presented so far. These algorithms mainly have considered radiometric, geometric, edge detection and shadow criteria approaches to perform the building extraction. In this paper, we propose a novel object based approach for automatic and robust detection and extraction of building in high spatial resolution images. To achieve this goal, we use stable and variable features together. Stable features are derived from inherent characteristics of building phenomenon and variable features are extracted using SEparability and THresholds analysis tool. The proposed method has been applied on a QuickBird imagery of an urban area in Isfahan city and visual validation demonstrates that the proposed method provides promising results.

  20. Fabricating High-Resolution X-Ray Collimators

    Science.gov (United States)

    Appleby, Michael; Atkinson, James E.; Fraser, Iain; Klinger, Jill

    2008-01-01

    A process and method for fabricating multi-grid, high-resolution rotating modulation collimators for arcsecond and sub-arcsecond x-ray and gamma-ray imaging involves photochemical machining and precision stack lamination. The special fixturing and etching techniques that have been developed are used for the fabrication of multiple high-resolution grids on a single array substrate. This technology has application in solar and astrophysics and in a number of medical imaging applications including mammography, computed tomography (CT), single photon emission computed tomography (SPECT), and gamma cameras used in nuclear medicine. This collimator improvement can also be used in non-destructive testing, hydrodynamic weapons testing, and microbeam radiation therapy.

  1. Localized corrosion information using high resolution measurement devices

    DEFF Research Database (Denmark)

    Ambat, Rajan

    2005-01-01

    High performance demand for several engineering alloys and components, and miniaturization of electronics and development of MEMS requires better understanding of local corrosion characteristics frequently down to µm scale. This is because in metallic materials corrosion is a sensitive function...... in conjunction with microstructural analysis, using advanced microscopic tools, becomes very important. Corrosion of microelectronics circuits and MEMs is also a recent problem, which demands measurement resolution down to few microns as the components are extremely small, and measurement needs to be carried out...... of the technique could be further enhanced by adding new features such as high resolution video visualization systems, fretting/tribo-corroson attachments, and also by integrating it with stress corrosion testing, corrosion investigation of concrete for a few to name with. The corrosion group in MPT, Technical...

  2. Automatic Matching of High Resolution Satellite Images Based on RFM

    Directory of Open Access Journals (Sweden)

    JI Shunping

    2016-02-01

    Full Text Available A matching method for high resolution satellite images based on RFM is presented.Firstly,the RFM parameters are used to predict the initial parallax of corresponding points and the prediction accuracy is analyzed.Secondly,the approximate epipolar equation is constructed based on projection tracking and its accuracy is analyzed.Thirdly,approximate 1D image matching is executed on pyramid images and least square matching on base images.At last RANSAC is imbedded to eliminate mis-matching points and matching results are obtained.Test results verified the method more robust and with higher matching rate,compared to 2D gray correlation method and the popular SIFT matching method,and the method preferably solved the question of high resolution satellite image matching with different stereo model,different time and large rotation images.

  3. High-Resolution Fluorescence Microscope Imaging of Erythroblast Structure.

    Science.gov (United States)

    Smith, Alyson S; Nowak, Roberta B; Fowler, Velia M

    2018-01-01

    During erythropoiesis, erythroblasts undergo dramatic morphological changes to produce mature erythrocytes. Many unanswered questions regarding the molecular mechanisms behind these changes can be addressed with high-resolution fluorescence imaging. Immunofluoresence staining enables localization of specific molecules, organelles, and membrane components in intact cells at different phases of erythropoiesis. Confocal laser scanning microscopy can provide high-resolution, three-dimensional images of stained structures, which can be used to dissect the molecular mechanisms driving erythropoiesis. The sample preparation, staining procedure, imaging parameters, and image analysis methods used directly affect the quality of the confocal images and the amount and accuracy of information that they can provide. Here, we describe methods to dissect erythropoietic tissues from mice, to perform immunofluorescence staining and confocal imaging of various molecules, organelles and structures of interest in erythroblasts, and to present and quantitatively analyze the data obtained in these fluorescence images.

  4. X-ray optics high-energy-resolution applications

    CERN Document Server

    Shvyd’ko, Yuri

    2004-01-01

    The generation of radiation with well-defined frequency and wavelength, and the ability to precisely determine these quantities, are of fundamental importance in physics and other natural sciences Monochromatic radiation enables both very accurate structure determinations and studies of the dynamics of living and non-living matter It is crucial for the realization of standards of time and length, for the determination of fundamental constants, and for many other aspects of basic research Bragg backscattering from perfect crystals is a tool for creating, manipulating, and analyzing x-rays with highest spectral purity It has the unique feature of selecting x-rays with narrow spectral bandwidth This book describes the theoretical foundations and principles of x-ray crystal optics with high spectral resolution Various experimental studies and applications are presented and the author also addresses the development of instrumentation, such as high-resolution x-ray monochromators, analyzers, wavelength meters, reso...

  5. Measuring large-scale social networks with high resolution.

    Science.gov (United States)

    Stopczynski, Arkadiusz; Sekara, Vedran; Sapiezynski, Piotr; Cuttone, Andrea; Madsen, Mette My; Larsen, Jakob Eg; Lehmann, Sune

    2014-01-01

    This paper describes the deployment of a large-scale study designed to measure human interactions across a variety of communication channels, with high temporal resolution and spanning multiple years-the Copenhagen Networks Study. Specifically, we collect data on face-to-face interactions, telecommunication, social networks, location, and background information (personality, demographics, health, politics) for a densely connected population of 1000 individuals, using state-of-the-art smartphones as social sensors. Here we provide an overview of the related work and describe the motivation and research agenda driving the study. Additionally, the paper details the data-types measured, and the technical infrastructure in terms of both backend and phone software, as well as an outline of the deployment procedures. We document the participant privacy procedures and their underlying principles. The paper is concluded with early results from data analysis, illustrating the importance of multi-channel high-resolution approach to data collection.

  6. Measuring large-scale social networks with high resolution.

    Directory of Open Access Journals (Sweden)

    Arkadiusz Stopczynski

    Full Text Available This paper describes the deployment of a large-scale study designed to measure human interactions across a variety of communication channels, with high temporal resolution and spanning multiple years-the Copenhagen Networks Study. Specifically, we collect data on face-to-face interactions, telecommunication, social networks, location, and background information (personality, demographics, health, politics for a densely connected population of 1000 individuals, using state-of-the-art smartphones as social sensors. Here we provide an overview of the related work and describe the motivation and research agenda driving the study. Additionally, the paper details the data-types measured, and the technical infrastructure in terms of both backend and phone software, as well as an outline of the deployment procedures. We document the participant privacy procedures and their underlying principles. The paper is concluded with early results from data analysis, illustrating the importance of multi-channel high-resolution approach to data collection.

  7. Space to Think: Large, High-Resolution Displays for Sensemaking

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, Christopher P.; Endert, Alexander; North, Chris

    2010-05-05

    Space supports human cognitive abilities in a myriad of ways. The note attached to the side of the monitor, the papers spread out on the desk, diagrams scrawled on a whiteboard, and even the keys left out on the counter are all examples of using space to recall, reveal relationships, and think. Technological advances have made it possible to construct large display environments in which space has real meaning. This paper examines how increased space affects the way displays are regarded and used within the context of the cognitively demanding task of sensemaking. A study was conducted observing analysts using a prototype large, high-resolution display to solve an analytic problem. This paper reports on the results of this study and suggests a number of potential design criteria for future sensemaking tools developed for large, high-resolution displays.

  8. Spatial Ensemble Postprocessing of Precipitation Forecasts Using High Resolution Analyses

    Science.gov (United States)

    Lang, Moritz N.; Schicker, Irene; Kann, Alexander; Wang, Yong

    2017-04-01

    Ensemble prediction systems are designed to account for errors or uncertainties in the initial and boundary conditions, imperfect parameterizations, etc. However, due to sampling errors and underestimation of the model errors, these ensemble forecasts tend to be underdispersive, and to lack both reliability and sharpness. To overcome such limitations, statistical postprocessing methods are commonly applied to these forecasts. In this study, a full-distributional spatial post-processing method is applied to short-range precipitation forecasts over Austria using Standardized Anomaly Model Output Statistics (SAMOS). Following Stauffer et al. (2016), observation and forecast fields are transformed into standardized anomalies by subtracting a site-specific climatological mean and dividing by the climatological standard deviation. Due to the need of fitting only a single regression model for the whole domain, the SAMOS framework provides a computationally inexpensive method to create operationally calibrated probabilistic forecasts for any arbitrary location or for all grid points in the domain simultaneously. Taking advantage of the INCA system (Integrated Nowcasting through Comprehensive Analysis), high resolution analyses are used for the computation of the observed climatology and for model training. The INCA system operationally combines station measurements and remote sensing data into real-time objective analysis fields at 1 km-horizontal resolution and 1 h-temporal resolution. The precipitation forecast used in this study is obtained from a limited area model ensemble prediction system also operated by ZAMG. The so called ALADIN-LAEF provides, by applying a multi-physics approach, a 17-member forecast at a horizontal resolution of 10.9 km and a temporal resolution of 1 hour. The performed SAMOS approach statistically combines the in-house developed high resolution analysis and ensemble prediction system. The station-based validation of 6 hour precipitation sums

  9. Regional High Resolution Reanalysis Covered European North East Shelf

    Science.gov (United States)

    Bourdalle-Badie, R.; Benkiran, M.; Chanut, J.; Drillet, Y.; Reffray, G.

    2011-12-01

    Mercator-Ocean has developed a regional forecasting system at 1/12° resolution over the North East Atlantic (IBI: Iberia, Biscay and Irish), taking advantage of the recent developments in NEMO. This regional forecasting system uses boundary conditions from the Mercator-Ocean global reanalysis (GLORYS: Global Ocean ReanalYses and Simulations). The assimilation component of the Mercator Ocean system, is based on a reduced-order Kalman filter (the SEEK or Singular Extended Evolutive Kalman filter). An IAU method (Incremental Analysis Updates) is used to apply the increments in the system. The error statistics are represented in a sub-space spanned by a small number of dominant 3D error directions. The data assimilation system allows to constrain the model in a multivariate way with Sea Surface Temperature (AVHRR + Multi-satellite High resolution), together with all available satellite Sea Level Anomalies, and with in situ observations from the CORA-03 data base, including ARGO floats temperature and salinity measurements. This reanalysis covers the period from January 2002 to December 2009. In this presentation, the results obtained with this reanalysis system (1/12°) are compared to the GLORYS ones. A special focus will be made on the gain thanks to the higher resolution of the model and higher resolution of the SST assimilated in this reanalysis.

  10. Astrophysical applications of high angular resolution array-telescopes

    Science.gov (United States)

    Linsley, J.

    1985-01-01

    The air shower array-telescopes which are currently being used to search for and study point sources of UHE gamma-rays have angular resolution similar to 1 deg, limited by either the small total area of particle detectors or poor timing resolution. As the signal to noise ratio depends sensitively on the angular resolution, it seems certain that this figure will quickly be surpassed when second generation instruments come into operation. Since the trajectories of galactic cosmic rays with E 100,000 GeV are practically straight lines on scales of 1 A.U. or less, these new instruments will be able to observe a shadow cast by the Moon (angular diameter 0.5 deg). Although the angular diameter of the Sun is practically the same, its shadow will be more complex because of its magnetic field. Thus, high angular resolution observations of the Sun afford a means of investigating the solar magnetic field, and also the charge composition of cosmic rays, including the ratio of antiprotons to protons.

  11. Very High Resolution SAR Tomography via Compressive Sensing

    Science.gov (United States)

    Zhu, Xiao Xiang; Bamler, Richard

    2010-03-01

    By using multi-pass SAR acquisitions, SAR tomography (TomoSAR) extends the synthetic aperture principle into the elevation direction for 3-D imaging. Since the orbits of modern space-borne SAR systems, like TerraSAR-X, are tightly controlled, the elevation resolution (depending on the elevation aperture size) is at least an order of magnitude lower than in range and azimuth. Hence, super- resolution algorithms are desired. The high anisotropic 3- D resolution element renders the signals sparse in elevation. This property suggests using compressive sensing (CS) methods. The paper presents the theory of 4- D (i.e. space-time) CS TomoSAR and compares it with classical tomographic methods. Super-resolution properties and point localization accuracies are demonstrated using simulations and real data. A CS reconstruction of a building complex from TerraSAR-X spotlight data is presented. In addition, the model based time warp method for differential tomographic non-linear motion monitoring is proposed and validated by reconstructing seasonal motion (caused by thermal expansion) of a building complex.

  12. Quantitative High-Resolution Transmission Electron Microscopy of Single Atoms

    OpenAIRE

    Gamm, B.; Popescu, R.; Blank, H.; Schneider, R; Beyer, A.; Gölzhäuser, A.; Gerthsen, D.

    2010-01-01

    Single atoms can be considered as basic objects for electron microscopy to test the microscope performance and basic concepts for modeling of image contrast. In this work high-resolution transmission electron microscopy was applied to image single platinum atoms in an aberration-corrected transmission electron microscope. The atoms are deposited on a self-assembled monolayer substrate which induces only negligible contrast. Single-atom contrast simulations were performed on the basis of Weick...

  13. A high resolution cavity BPM for the CLIC Test Facility

    CERN Document Server

    Chritin, N.; Soby, L.; Lunin, A.; Solyak, N.; Wendt, M.; Yakovlev, V.

    2012-01-01

    In frame of the development of a high resolution BPM system for the CLIC Main Linac we present the design of a cavity BPM prototype. It consists of a waveguide loaded dipole mode resonator and a monopole mode reference cavity, both operating at 15 GHz, to be compatible with the bunch frequencies at the CLIC Test Facility. Requirements, design concept, numerical analysis, and practical considerations are discussed.

  14. Automatic Matching of High Resolution Satellite Images Based on RFM

    OpenAIRE

    JI Shunping; YUAN Xiuxiao

    2016-01-01

    A matching method for high resolution satellite images based on RFM is presented.Firstly,the RFM parameters are used to predict the initial parallax of corresponding points and the prediction accuracy is analyzed.Secondly,the approximate epipolar equation is constructed based on projection tracking and its accuracy is analyzed.Thirdly,approximate 1D image matching is executed on pyramid images and least square matching on base images.At last RANSAC is imbedded to eliminate mis-matching points...

  15. Progress Toward A Very High Angular Resolution Imaging Spectrometer (VERIS)

    Science.gov (United States)

    Korendyke, Clarence M.; Vourlidas, A.; Landi, E.; Seely, J.; Klimchuck, J.

    2007-07-01

    Recent imaging at arcsecond (TRACE) and sub-arcsecond (VAULT) spatial resolution clearly show that structures with fine spatial scales play a key role in the physics of the upper solar atmosphere. Both theoretical and observational considerations point to the importance of small spatial scales, impulsive energy release, strong dynamics, and extreme plasma nonuniformity. Fundamental questions regarding the nature, structure, properties and dynamics of loops and filamentary structures in the upper atmosphere have been raised. To address these questions, we are developing a next generation, VEry high angular Resolution Imaging Spectrometer (VERIS) as a sounding rocket instrument. VERIS will obtain the necessary high spatial resolution, high fidelity measurements of plasma temperatures, densities and velocities. With broad simultaneous temperature coverage, the VERIS observations will directly address unresolved issues relating to interconnections of various temperature solar plasmas. VERIS will provide the first ever subarcsecond spectra of transition region and coronal structures. It will do so with a sufficient spectral resolution of to allow centroided Doppler velocity determinations to better than 3 km/s. VERIS uses a novel two element, normal incidence optical design with highly reflective EUV coatings to access a spectral range with broad temperature coverage (0.03-15 MK) and density-sensitive line ratios. Finally, in addition to the spectra, VERIS will simultaneously obtain spectrally pure slot images (10x150 arcsec) in the +/-1 grating orders, which can be combined to make instantaneous line-of-sight velocity maps with 8km/s accuracy over an unprecedented field of view. The VERIS program is beginning the second year of its three year development cycle. All design activities and reviews are complete. Fabrication of all major components has begun. Brassboard electronics cards have been fabricated, assembled and tested. The paper presents the essential scientific

  16. Tuberculous otitis media: findings on high-resolution CT

    Energy Technology Data Exchange (ETDEWEB)

    Lungenschmid, D. [Dept. of Radiodiagnostics, University Hospital Innsbruck (Austria)]|[Dept. of Magnetic Resonance and Spectroscopy, University Hospital of Innsbruck (Austria); Buchberger, W. [Dept. of Radiodiagnostics, University Hospital Innsbruck (Austria)]|[Dept. of Magnetic Resonance and Spectroscopy, University Hospital of Innsbruck (Austria); Schoen, G. [Dept. of Radiodiagnostics, University Hospital Innsbruck (Austria); Schoepf, R. [Radiologic Inst., Landeck (Austria); Mihatsch, T. [Dept. of Oto-Rhino-Laryngology, University Hospital of Innsbruck (Austria); Birbamer, G. [Dept. of Magnetic Resonance and Spectroscopy, University Hospital of Innsbruck (Austria); Wicke, K. [Inst. of Computed Tomography, University Hospital of Innsbruck (Austria)

    1993-12-01

    We describe two cases of tuberculous otitis media studied with high-resolution computed tomography (CT). Findings included extensive soft tissue densities with fluid levels in the tympanic cavity, the antrum, the mastoid and petrous air cells. Multifocal bony erosions and reactive bone sclerosis were seen as well. CT proved valuable for planning therapy by accurately displaying the involvement of the various structures of the middle and inner ear. However, the specific nature of the disease could only be presumed. (orig.)

  17. High-Resolution Wind Measurements for Offshore Wind Energy Development

    Science.gov (United States)

    Nghiem, Son V.; Neumann, Gregory

    2011-01-01

    A mathematical transform, called the Rosette Transform, together with a new method, called the Dense Sampling Method, have been developed. The Rosette Transform is invented to apply to both the mean part and the fluctuating part of a targeted radar signature using the Dense Sampling Method to construct the data in a high-resolution grid at 1-km posting for wind measurements over water surfaces such as oceans or lakes.

  18. Acute pulmonary injury: high-resolution CT and histopathological spectrum

    Science.gov (United States)

    Obadina, E T; Torrealba, J M

    2013-01-01

    Acute lung injury usually causes hypoxaemic respiratory failure and acute respiratory distress syndrome (ARDS). Although diffuse alveolar damage is the hallmark of ARDS, other histopathological patterns of injury, such as acute and fibrinoid organising pneumonia, can be associated with acute respiratory failure. Acute eosinophilic pneumonia can also cause acute hypoxaemic respiratory failure and mimic ARDS. This pictorial essay reviews the high-resolution CT findings of acute lung injury and the correlative histopathological findings. PMID:23659926

  19. High Resolution Analysis of Copy Number Mutation in Breast Cancer

    Science.gov (United States)

    2005-05-01

    Pon , in Polysaccharides in Medic- copy number at high resolution throughout the other diseases, we must distinguish abnormal inal Applications, S...was determined to in- leles . In all experiments, there were a total of silico from the human genome sequence as- volve an interchromosomal duplication...well (3), although we do not explore that approach here. PON ) = e -pb o#regular( - )#deviated [1] The negative log likelihood function satisfies an

  20. High Resolution Wavenumber Standards for the Infrared. (IUPAC Recommendations 1995)

    Science.gov (United States)

    Guelachvili, G.; Birk, M.; Bord, C.; Brault, J.; Brown, L.; Carli, B.; Cole, A.; Evenson, D.; Fayt, A.; Hausamann, D.; hide

    1995-01-01

    The calibration of high resolution infrared spectra is generally more precise than accurate even when they are recorded with Fourier interferometers. In order to improve the consistency of the spectral measurements, an IUPAC project has been undertaken. Its aim was to recommend a selection of spectral lines as wavenumber standards for absolute calibration in the infrared. This paper will report the final recommendations in the spectral range extending from about 4 to about 7000 cm(be).

  1. High-resolution x-ray photoemission spectra of silver

    DEFF Research Database (Denmark)

    Barrie, A.; Christensen, N. E.

    1976-01-01

    An electron spectrometer fitted with an x-ray monochromator for Al Kα1,2 radiation (1486.6 eV) has been used to record high-resolution x-ray photoelectron spectra for the 4d valence band as well as the 3d spin doublet in silver. The core-level spectrum has a line shape that can be described...

  2. High Time Resolution Photon Counting 3D Imaging Sensors

    Science.gov (United States)

    Siegmund, O.; Ertley, C.; Vallerga, J.

    2016-09-01

    Novel sealed tube microchannel plate (MCP) detectors using next generation cross strip (XS) anode readouts and high performance electronics have been developed to provide photon counting imaging sensors for Astronomy and high time resolution 3D remote sensing. 18 mm aperture sealed tubes with MCPs and high efficiency Super-GenII or GaAs photocathodes have been implemented to access the visible/NIR regimes for ground based research, astronomical and space sensing applications. The cross strip anode readouts in combination with PXS-II high speed event processing electronics can process high single photon counting event rates at >5 MHz ( 80 ns dead-time per event), and time stamp events to better than 25 ps. Furthermore, we are developing a high speed ASIC version of the electronics for low power/low mass spaceflight applications. For a GaAs tube the peak quantum efficiency has degraded from 30% (at 560 - 850 nm) to 25% over 4 years, but for Super-GenII tubes the peak quantum efficiency of 17% (peak at 550 nm) has remained unchanged for over 7 years. The Super-GenII tubes have a uniform spatial resolution of MCP gain photon counting operation also permits longer overall sensor lifetimes and high local counting rates. Using the high timing resolution, we have demonstrated 3D object imaging with laser pulse (630 nm 45 ps jitter Pilas laser) reflections in single photon counting mode with spatial and depth sensitivity of the order of a few millimeters. A 50 mm Planacon sealed tube was also constructed, using atomic layer deposited microchannel plates which potentially offer better overall sealed tube lifetime, quantum efficiency and gain stability. This tube achieves standard bialkali quantum efficiency levels, is stable, and has been coupled to the PXS-II electronics and used to detect and image fast laser pulse signals.

  3. High-resolution CT findings in Streptococcus milleri pulmonary infection.

    Science.gov (United States)

    Okada, F; Ono, A; Ando, Y; Nakayama, T; Ishii, H; Hiramatsu, K; Sato, H; Kira, A; Otabe, M; Mori, H

    2013-06-01

    To assess pulmonary high-resolution computed tomography (CT) findings in patients with acute Streptococcus milleri pulmonary infection. Sixty consecutive patients with acute S. milleri pneumonia who had undergone high-resolution CT chest examinations between January 2004 and March 2010 were retrospectively identified. Twenty-seven patients with concurrent infections were excluded. The final study group comprised 33 patients (25 men, 8 women; aged 20-88 years, mean 63.1 years) with S. milleri infection. The patients' clinical findings were assessed. Parenchymal abnormalities, enlarged lymph nodes, and pleural effusion were evaluated on high-resolution CT. Underlying conditions included malignancy (n = 15), a smoking habit (n = 11), and diabetes mellitus (n = 8). CT images of all patients showed abnormal findings, including ground-glass opacity (n = 24), bronchial wall thickening (n = 23), consolidation (n = 17), and cavities (n = 7). Pleural effusion was found in 18 patients, and complex pleural effusions were found in seven patients. Pulmonary infection caused by S. milleri was observed mostly in male patients with underlying conditions such as malignancy or a smoking habit. The CT findings in patients with S. milleri consisted mainly of ground-glass opacity, bronchial wall thickening, pleural effusions, and cavities. Copyright © 2013 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  4. Ultrathin high-resolution flexographic printing using nanoporous stamps.

    Science.gov (United States)

    Kim, Sanha; Sojoudi, Hossein; Zhao, Hangbo; Mariappan, Dhanushkodi; McKinley, Gareth H; Gleason, Karen K; Hart, A John

    2016-12-01

    Since its invention in ancient times, relief printing, commonly called flexography, has been used to mass-produce artifacts ranging from decorative graphics to printed media. Now, higher-resolution flexography is essential to manufacturing low-cost, large-area printed electronics. However, because of contact-mediated liquid instabilities and spreading, the resolution of flexographic printing using elastomeric stamps is limited to tens of micrometers. We introduce engineered nanoporous microstructures, comprising polymer-coated aligned carbon nanotubes (CNTs), as a next-generation stamp material. We design and engineer the highly porous microstructures to be wetted by colloidal inks and to transfer a thin layer to a target substrate upon brief contact. We demonstrate printing of diverse micrometer-scale patterns of a variety of functional nanoparticle inks, including Ag, ZnO, WO3, and CdSe/ZnS, onto both rigid and compliant substrates. The printed patterns have highly uniform nanoscale thickness (5 to 50 nm) and match the stamp features with high fidelity (edge roughness, ~0.2 μm). We derive conditions for uniform printing based on nanoscale contact mechanics, characterize printed Ag lines and transparent conductors, and achieve continuous printing at a speed of 0.2 m/s. The latter represents a combination of resolution and throughput that far surpasses industrial printing technologies.

  5. High Resolution Observations of Escaping Ions in the Martian Magnetotail

    Science.gov (United States)

    Halekas, J. S.; Raman, C.; Brain, D.; DiBraccio, G. A.; Harada, Y.; McFadden, J. P.; Mitchell, D. L.; Connerney, J. E. P.; Jakosky, B. M.

    2016-12-01

    Ions escape from the Martian upper atmosphere via a number of channels, including the central plasmasheet of the magnetotail. Mars Express observations show that the heavy ions O+ and O2+ escaping through the central tail often have approximately the same energy, suggesting acceleration in a quasi-static electric field, which has been interpreted as a Hall electric field. The Solar Wind Ion Analyzer (SWIA) on MAVEN was designed to measure the upstream solar wind. However, during orbit segments with appropriate spacecraft attitude, SWIA can also make high resolution measurements of escaping ions in the tail. During the prime mission, these observations were only returned sporadically, during periods of intense escaping fluxes that fortuitously triggered a mode switch. Now, in the extended mission, we return high resolution observations from SWIA routinely. Some of these high resolution measurements reveal slight differences in both the direction and energy of escaping O+ and O2+ ions, which may help determine the acceleration process(es). We investigate the location and solar wind conditions for which the escaping ions separate in energy and angle and the systematics of their energies and flow vectors, and discuss the implications for ion acceleration and the overall picture of Martian atmospheric escape.

  6. High resolution, MRI-based, segmented, computerized head phantom

    Energy Technology Data Exchange (ETDEWEB)

    Zubal, I.G.; Harrell, C.R.; Smith, E.O.; Smith, A.L.; Krischlunas, P. [Yale Univ., New Haven, CT (United States). Dept. of Diagnostic Radiology

    1999-01-01

    The authors have created a high-resolution software phantom of the human brain which is applicable to voxel-based radiation transport calculations yielding nuclear medicine simulated images and/or internal dose estimates. A software head phantom was created from 124 transverse MRI images of a healthy normal individual. The transverse T2 slices, recorded in a 256x256 matrix from a GE Signa 2 scanner, have isotropic voxel dimensions of 1.5 mm and were manually segmented by the clinical staff. Each voxel of the phantom contains one of 62 index numbers designating anatomical, neurological, and taxonomical structures. The result is stored as a 256x256x128 byte array. Internal volumes compare favorably to those described in the ICRP Reference Man. The computerized array represents a high resolution model of a typical human brain and serves as a voxel-based anthropomorphic head phantom suitable for computer-based modeling and simulation calculations. It offers an improved realism over previous mathematically described software brain phantoms, and creates a reference standard for comparing results of newly emerging voxel-based computations. Such voxel-based computations lead the way to developing diagnostic and dosimetry calculations which can utilize patient-specific diagnostic images. However, such individualized approaches lack fast, automatic segmentation schemes for routine use; therefore, the high resolution, typical head geometry gives the most realistic patient model currently available.

  7. Improved design for high resolution electrospray ionization ion mobility spectrometry.

    Science.gov (United States)

    Jafari, M T

    2009-03-15

    An improved design for high resolution electrospray ionization ion mobility spectrometry (ESI-IMS) was developed by making some salient modifications to the IMS cell and its performance was investigated. To enhance desolvation of electrospray droplets at high sample flow rates in this new design, volume of the desolvation region was decreased by reducing its diameter and the entrance position of the desolvation gas was shifted to the end of the desolvation region (near the ion gate). In addition, the ESI source (both needle and counter electrode) was positioned outside of the heating oven of the IMS. This modification made it possible to use the instrument at higher temperatures, and preventing needle clogging in the electrospray process. The ion mobility spectra of different chemical compounds were obtained. The resolving power and resolution of the instrument were increased by about 15-30% relative to previous design. In this work, the baseline separation of the two adjacent ion peaks of morphine and those of codeine was achieved for the first time with resolutions of 1.5 and 1.3, respectively. These four ion peaks were well separated from each other using carbon dioxide (CO(2)) rather than nitrogen as the drift gas. Finally, the analytical parameters obtained for ethion, metalaxyl, and tributylamine indicated the high performance of the instrument for quantitative analysis.

  8. Climatologies at high resolution for the earth's land surface areas

    Science.gov (United States)

    Karger, Dirk Nikolaus; Conrad, Olaf; Böhner, Jürgen; Kawohl, Tobias; Kreft, Holger; Soria-Auza, Rodrigo Wilber; Zimmermann, Niklaus E.; Linder, H. Peter; Kessler, Michael

    2017-09-01

    High-resolution information on climatic conditions is essential to many applications in environmental and ecological sciences. Here we present the CHELSA (Climatologies at high resolution for the earth's land surface areas) data of downscaled model output temperature and precipitation estimates of the ERA-Interim climatic reanalysis to a high resolution of 30 arc sec. The temperature algorithm is based on statistical downscaling of atmospheric temperatures. The precipitation algorithm incorporates orographic predictors including wind fields, valley exposition, and boundary layer height, with a subsequent bias correction. The resulting data consist of a monthly temperature and precipitation climatology for the years 1979-2013. We compare the data derived from the CHELSA algorithm with other standard gridded products and station data from the Global Historical Climate Network. We compare the performance of the new climatologies in species distribution modelling and show that we can increase the accuracy of species range predictions. We further show that CHELSA climatological data has a similar accuracy as other products for temperature, but that its predictions of precipitation patterns are better.

  9. A study with high resolution computed tomography of bone destruction in cholesteatoma

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Shigeru; Yamaso, Tatsuya; Higo, Ryusaburo (Kameda General Hospital, Kamogawa, Chiba (Japan)); Senba, Tetsuo; Iinuma, Yoshitaka

    1992-07-01

    The modes and incidences of bone destruction in the middle ear cholesteatoma were evaluated by high resolution computed tomography, comparing with chronic otitis media with central perforation (COM) as control. The head of the malleus, the body and long process of the incus were more markedly destroyed in cholesteatoma than in COM with statistical significance. With the further extension of cholesteatoma into the antrum, the tegmen of the aditus ad antrum, the lateral semicircular canal, the handle of the malleus and the Korner's septum were involved in bone destruction. (author).

  10. The Impact of Horizontal and Temporal Resolution on Convection and Precipitation with High-Resolution GEOS-5

    Science.gov (United States)

    Putman, William P.

    2012-01-01

    Using a high-resolution non-hydrostatic version of GEOS-5 with the cubed-sphere finite-volume dynamical core, the impact of spatial and temporal resolution on cloud properties will be evaluated. There are indications from examining convective cluster development in high resolution GEOS-5 forecasts that the temporal resolution within the model may playas significant a role as horizontal resolution. Comparing modeled convective cloud clusters versus satellite observations of brightness temperature, we have found that improved. temporal resolution in GEOS-S accounts for a significant portion of the improvements in the statistical distribution of convective cloud clusters. Using satellite simulators in GEOS-S we will compare the cloud optical properties of GEOS-S at various spatial and temporal resolutions with those observed from MODIS. The potential impact of these results on tropical cyclone formation and intensity will be examined as well.

  11. High Spectral Resolution, High Cadence, Imaging X-ray Microcalorimeters for Solar Physics - Phase 2 Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Microcalorimeter x-ray instruments are non-dispersive, high spectral resolution, broad-band, high cadence imaging spectrometers. We have been developing these...

  12. High resolution modeling of a small urban catchment

    Science.gov (United States)

    Skouri-Plakali, Ilektra; Ichiba, Abdellah; Gires, Auguste; Tchiguirinskaia, Ioulia; Schertzer, Daniel

    2016-04-01

    Flooding is one of the most complex issues that urban environments have to deal with. In France, flooding remains the first natural risk with 72% of decrees state of natural disaster issued between October 1982 and mid-November 2014. Flooding is a result of meteorological extremes that are usually aggravated by the hydrological behavior of urban catchments and human factors. The continuing urbanization process is indeed changing the whole urban water cycle by limiting the infiltration and promoting runoff. Urban environments are very complex systems due to their extreme variability, the interference between human activities and natural processes but also the effect of the ongoing urbanization process that changes the landscape and hardly influences their hydrologic behavior. Moreover, many recent works highlight the need to simulate all urban water processes at their specific temporal and spatial scales. However, considering urban catchments heterogeneity still challenging for urban hydrology, even after advances noticed in term of high-resolution data collection and computational resources. This issue is more to be related to the architecture of urban models being used and how far these models are ready to take into account the extreme variability of urban catchments. In this work, high spatio-temporal resolution modeling is performed for a small and well-equipped urban catchment. The aim of this work is to identify urban modeling needs in terms of spatial and temporal resolution especially for a very small urban area (3.7 ha urban catchment located in the Perreux-sur-Marne city at the southeast of Paris) MultiHydro model was selected to carry out this work, it is a physical based and fully distributed model that interacts four existing modules each of them representing a portion of the water cycle in urban environments. MultiHydro was implemented at 10m, 5m and 2m resolution. Simulations were performed at different spatio-temporal resolutions and analyzed with

  13. High resolution OCT image generation using super resolution via sparse representation

    Science.gov (United States)

    Asif, Muhammad; Akram, Muhammad Usman; Hassan, Taimur; Shaukat, Arslan; Waqar, Razi

    2017-02-01

    In this paper we propose a technique for obtaining a high resolution (HR) image from a single low resolution (LR) image -using joint learning dictionary - on the basis of image statistic research. It suggests that with an appropriate choice of an over-complete dictionary, image patches can be well represented as a sparse linear combination. Medical imaging for clinical analysis and medical intervention is being used for creating visual representations of the interior of a body, as well as visual representation of the function of some organs or tissues (physiology). A number of medical imaging techniques are in use like MRI, CT scan, X-rays and Optical Coherence Tomography (OCT). OCT is one of the new technologies in medical imaging and one of its uses is in ophthalmology where it is being used for analysis of the choroidal thickness in the eyes in healthy and disease states such as age-related macular degeneration, central serous chorioretinopathy, diabetic retinopathy and inherited retinal dystrophies. We have proposed a technique for enhancing the OCT images which can be used for clearly identifying and analyzing the particular diseases. Our method uses dictionary learning technique for generating a high resolution image from a single input LR image. We train two joint dictionaries, one with OCT images and the second with multiple different natural images, and compare the results with previous SR technique. Proposed method for both dictionaries produces HR images which are comparatively superior in quality with the other proposed method of SR. Proposed technique is very effective for noisy OCT images and produces up-sampled and enhanced OCT images.

  14. High School Bullying as a Risk for Later Depression and Suicidality

    Science.gov (United States)

    Klomek, Anat Brunstein; Kleinman, Marjorie; Altschuler, Elizabeth; Marrocco, Frank; Amakawa, Lia; Gould, Madelyn S.

    2011-01-01

    This is the first study to examine whether high school students experiencing frequent bullying behaviors are at risk for "later" depression and suicidality. A total of 236 students who reported frequent bullying behavior without depression or suicidality during a suicide screening were interviewed 4 years later to reassess depression, suicidal…

  15. Development of high-resolution detector module with depth of interaction identification for positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Niknejad, Tahereh, E-mail: tniknejad@lip.pt [Laboratory of Instrumentation and Experimental Particles Physics, Lisbon (Portugal); Pizzichemi, Marco [University of Milano-Bicocca (Italy); Stringhini, Gianluca [University of Milano-Bicocca (Italy); CERN, Geneve (Switzerland); Auffray, Etiennette [CERN, Geneve (Switzerland); Bugalho, Ricardo; Da Silva, Jose Carlos; Di Francesco, Agostino [Laboratory of Instrumentation and Experimental Particles Physics, Lisbon (Portugal); Ferramacho, Luis [PETsys Electronics, Oeiras (Portugal); Lecoq, Paul [CERN, Geneve (Switzerland); Leong, Carlos [PETsys Electronics, Oeiras (Portugal); Paganoni, Marco [University of Milano-Bicocca (Italy); Rolo, Manuel [Laboratory of Instrumentation and Experimental Particles Physics, Lisbon (Portugal); INFN, Turin (Italy); Silva, Rui [Laboratory of Instrumentation and Experimental Particles Physics, Lisbon (Portugal); Silveira, Miguel [PETsys Electronics, Oeiras (Portugal); Tavernier, Stefaan [PETsys Electronics, Oeiras (Portugal); Vrije Universiteit Brussel (Belgium); Varela, Joao [Laboratory of Instrumentation and Experimental Particles Physics, Lisbon (Portugal); CERN, Geneve (Switzerland); Zorraquino, Carlos [Biomedical Image Technologies Lab, Universidad Politécnica de Madrid (Spain); CIBER-BBN, Universidad Politécnica de Madrid (Spain)

    2017-02-11

    We have developed a Time-of-flight high resolution and commercially viable detector module for the application in small PET scanners. A new approach to depth of interaction (DOI) encoding with low complexity for a pixelated crystal array using a single side readout and 4-to-1 coupling between scintillators and photodetectors was investigated. In this method the DOI information is estimated using the light sharing technique. The detector module is a 1.53×1.53×15 mm{sup 3} matrix of 8×8 LYSO scintillator with lateral surfaces optically depolished separated by reflective foils. The crystal array is optically coupled to 4×4 silicon photomultipliers (SiPM) array and readout by a high performance front-end ASIC with TDC capability (50 ps time binning). The results show an excellent crystal identification for all the scintillators in the matrix, a timing resolution of 530 ps, an average DOI resolution of 5.17 mm FWHM and an average energy resolution of 18.29% FWHM. - Highlights: • A new method for DOI encoding for PET detectors based on light sharing is proposed. • A prototype module with LYSO scintillator matrix coupled to SiPMs array is produced. • The module has one side readout and 4-to-1 coupling between scintillators and SiPMs. • A compact TOF front-end ASIC is used. • Excellent performances are shown by the prototype module.

  16. High spatial resolution diffusion tensor imaging and its applications

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jiun-Jie

    2002-07-01

    Introduction Magnetic Resonance Imaging is at present the only imaging technique available to measure diffusion of water and metabolites in humans. It provides vital insights to brain connectivity and has proved to be an important tool in diagnosis and therapy planning in many neurological diseases such as brain tumour, ischaemia and multiple sclerosis. This project focuses on the development of a high resolution diffusion tensor imaging technique. In this thesis, the basic theory of diffusion tensor MR Imaging is presented. The technical challenges encountered during development of these techniques will be discussed, with proposed solutions. New sequences with high spatial resolution have been developed and the results are compared with the standard technique more commonly used. Overview The project aims at the development of diffusion tensor imaging techniques with a high spatial resolution. Chapter 2 will describe the basic physics of MRI, the phenomenon of diffusion and the measurement of diffusion by MRI. The basic parameters used all through the projects will be presented. In Chapter 3, a reproducibility study on DTI with the single shot EPI sequence will be conducted. The single shot DT-EPI was carried out on a stroke patient. In Chapter 4, current techniques on high spatial resolution DTI will be explored. Sequences of Interleaved EPI of two segments and EPI with Half Fourier acquisition will be developed. The sources of artefacts which contaminate most DT images will be discussed with solution proposed. Chapter 5 proposed a new selective averaging algorithm for the data acquired by the sequences of interleaved EPI. It does not require cardiac gating during data acquisition period and thus increase the speed of data collection. A new ghost free segmented EPI sequence will be presented in Chapter 6: Half-FOV EPI. The technique will be tested on a phantom in vitro as well as in two normal male volunteers in vivo. A comparison study on diffusion tensor imaging

  17. High-resolution multimodal clinical multiphoton tomography of skin

    Science.gov (United States)

    König, Karsten

    2011-03-01

    This review focuses on multimodal multiphoton tomography based on near infrared femtosecond lasers. Clinical multiphoton tomographs for 3D high-resolution in vivo imaging have been placed into the market several years ago. The second generation of this Prism-Award winning High-Tech skin imaging tool (MPTflex) was introduced in 2010. The same year, the world's first clinical CARS studies have been performed with a hybrid multimodal multiphoton tomograph. In particular, non-fluorescent lipids and water as well as mitochondrial fluorescent NAD(P)H, fluorescent elastin, keratin, and melanin as well as SHG-active collagen has been imaged with submicron resolution in patients suffering from psoriasis. Further multimodal approaches include the combination of multiphoton tomographs with low-resolution wide-field systems such as ultrasound, optoacoustical, OCT, and dermoscopy systems. Multiphoton tomographs are currently employed in Australia, Japan, the US, and in several European countries for early diagnosis of skin cancer, optimization of treatment strategies, and cosmetic research including long-term testing of sunscreen nanoparticles as well as anti-aging products.

  18. Radiation length imaging with high-resolution telescopes

    Science.gov (United States)

    Stolzenberg, U.; Frey, A.; Schwenker, B.; Wieduwilt, P.; Marinas, C.; Lütticke, F.

    2017-02-01

    The construction of low mass vertex detectors with a high level of system integration is of great interest for next generation collider experiments. Radiation length images with a sufficient spatial resolution can be used to measure and disentangle complex radiation length X/X0 profiles and contribute to the understanding of vertex detector systems. Test beam experiments with multi GeV particle beams and high-resolution tracking telescopes provide an opportunity to obtain precise 2D images of the radiation length of thin planar objects. At the heart of the X/X0 imaging is a spatially resolved measurement of the scattering angles of particles traversing the object under study. The main challenges are the alignment of the reference telescope and the calibration of its angular resolution. In order to demonstrate the capabilities of X/X0 imaging, a test beam experiment has been conducted. The devices under test were two mechanical prototype modules of the Belle II vertex detector. A data sample of 100 million tracks at 4 GeV has been collected, which is sufficient to resolve complex material profiles on the 30 μm scale.

  19. Hyperresolution: an hyperspectral and high resolution imager for Earth observation

    Science.gov (United States)

    De Vidi, R.; Chiarantini, L.; Bini, A.

    2017-11-01

    Hyperspectral space imagery is an emerging technology that supports many scientific, civil, security and defence operational applications. The main advantage of this remote sensing technique is that it allows the so-called Feature Extraction: in fact the spectral signature allows the recognition of the materials composing the scene. Hyperspectral Products and their applications have been investigated in the past years by Galileo Avionica to direct the instrument characteristics design. Sample products have been identified in the civil / environment monitoring fields (such as coastal monitoring, vegetation, hot spot and urban classification) and in defense / security applications: their performances have been verified by means of airborne flight campaigns. The Hyperspectral and High Resolution Imager is a space-borne instrument that implement a pushbroom technique to get strip spectral images over the Hyperspectral VNIR and SWIR bands, with a ground sample distance at nadir of 20m in a 20 km wide ground swath, with 200 spectral channels, realizing an average spectral resolution of 10nm. The High Resolution Panchromatic Channel insists in the same swath to allow for multiresolution data fusion of hyperspectral imagery.

  20. 3D detectors with high space and time resolution

    Science.gov (United States)

    Loi, A.

    2018-01-01

    For future high luminosity LHC experiments it will be important to develop new detector systems with increased space and time resolution and also better radiation hardness in order to operate in high luminosity environment. A possible technology which could give such performances is 3D silicon detectors. This work explores the possibility of a pixel geometry by designing and simulating different solutions, using Sentaurus Tecnology Computer Aided Design (TCAD) as design and simulation tool, and analysing their performances. A key factor during the selection was the generated electric field and the carrier velocity inside the active area of the pixel.

  1. High resolution study of magnetic ordering at absolute zero.

    Science.gov (United States)

    Lee, M; Husmann, A; Rosenbaum, T F; Aeppli, G

    2004-05-07

    High resolution pressure measurements in the zero-temperature limit provide a unique opportunity to study the behavior of strongly interacting, itinerant electrons with coupled spin and charge degrees of freedom. Approaching the precision that has become the hallmark of experiments on classical critical phenomena, we characterize the quantum critical behavior of the model, elemental antiferromagnet chromium, lightly doped with vanadium. We resolve the sharp doubling of the Hall coefficient at the quantum critical point and trace the dominating effects of quantum fluctuations up to surprisingly high temperatures.

  2. High Resolution-Resonance Ionization Spectroscopy on uranium

    Energy Technology Data Exchange (ETDEWEB)

    Hakimi, Amin, E-mail: hakimi@uni-mainz.de; Fischbach, Thomas [Johannes Gutenberg-Universitaet Mainz, Institut fuer Physik (Germany); Raeder, Sebastian [TRIUMF (Canada); Trautmann, Norbert [Johannes Gutenberg-Universitaet Mainz, Institut fuer Kernchemie (Germany); Wendt, Klaus [Johannes Gutenberg-Universitaet Mainz, Institut fuer Physik (Germany)

    2013-04-15

    High Resolution-Resonance Ionization Spectroscopy (HR-RIS) allows for sensitive probing of atomic structures and energy level schemes even for highly complex systems. This work explores the applicability of commercial diode lasers for isotope selective spectroscopy of uranium. Using narrow bandwidth continuous-wave (cw) diode lasers, multi step excitation processes were investigated involving levels which could be populated with the radiation of 405 nm BluRay{sup Copyright-Sign} laser diodes as a first step for ultra trace analysis of uranium.

  3. Real-time observation of Zn electro-deposition with high-resolution microradiology

    CERN Document Server

    Tsai, W L; Hwu, Y; Chen, C H; Chang, L W; Je, J H; Margaritondo, G

    2003-01-01

    We used phase contrast radiography to study the electro-deposition of Zn in real time and with high lateral resolution. Using unmonochromatic synchrotron X-rays and an optics-less imaging setup, we were able to obtain real-time radiographs of the electro-deposition in situ with mu m resolution. A detailed analysis of the microstructure evolution relates the different growth parameters - such as the electric current density, the voltage bias, the pH value and the ion concentration - to very different growth morphology, ranging from film, porous, whisker and dendrite deposition. This link is both global and local. Local variations of the metal ion concentration in the electrolyte were also successfully imaged and the density profile is used to compare with the standard theory to explain the phenomenon of metal ion depletion near the electrode. The potential application of this technique to study growth with micropatterned electrodes and pulsed electric current is evaluated.

  4. Resolved complex coastlines and land-sea contrasts in a high-resolution regional climate model

    DEFF Research Database (Denmark)

    Tian, Tian; Boberg, Fredrik; Christensen, Ole BøSsing

    2013-01-01

    system, and (2) examine different ocean responses in coarse and fine grids to atmospheric forcing. The experiments were performed covering the years 1990-2010, both using ERAI lateral boundary conditions. ERAI SSTs generally agree well with satellite SSTs in summer with differences within 1o......C, but the ERAI overestimates the ice extent by 72% in winter due to the coarse resolution in the Baltic Sea. The atmosphere in the Baltic land-sea transition was more sensitive to high-resolution modelled SSTs with a significant improvement in winter, but it also provided a cold bias in summer as a combination...... of errors from both atmospheric and ocean models. Overall, the coupled simulation without observational constraints showed only minor deviations in the air-sea interface in the Baltic coastal region compared to the prescribed simulation, with seasonal mean differences within 2oCin2m air temperatures and 1o...

  5. Microcalorimetry for High-Resolution X-Ray Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, Stephen [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-01-03

    Magnetic Microcalorimeters (MMCs) are gamma-ray detectors with an energy resolution 10x higher than high-purity germanium detectors. They can increase the accuracy of non-destructive analysis of nuclear materials, enable the detection of new isotopes (e.g. Pu-242 of U-236), and improve nuclear data in cases where Ge detectors are limited by line overlap. MMCs consist of a magnetic sensor operated at temperatures below 50 mK, and they infer gamma-ray energies from the change in magnetization due to the temperature increase after gamma-ray absorption. The goal of this project is to further increase the energy resolution and sensitivity of MMC gamma detectors.

  6. High-Resolution Characterization of UMo Alloy Microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Devaraj, Arun [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kovarik, Libor [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Joshi, Vineet V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jana, Saumyadeep [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Manandhar, Sandeep [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Arey, Bruce W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lavender, Curt A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-11-30

    This report highlights the capabilities and procedure for high-resolution characterization of UMo fuels in PNNL. Uranium-molybdenum (UMo) fuel processing steps, from casting to forming final fuel, directly affect the microstructure of the fuel, which in turn dictates the in-reactor performance of the fuel under irradiation. In order to understand the influence of processing on UMo microstructure, microstructure characterization techniques are necessary. Higher-resolution characterization techniques like transmission electron microscopy (TEM) and atom probe tomography (APT) are needed to interrogate the details of the microstructure. The findings from TEM and APT are also directly beneficial for developing predictive multiscale modeling tools that can predict the microstructure as a function of process parameters. This report provides background on focused-ion-beam–based TEM and APT sample preparation, TEM and APT analysis procedures, and the unique information achievable through such advanced characterization capabilities for UMo fuels, from a fuel fabrication capability viewpoint.

  7. High resolution capacitance detection circuit for rotor micro-gyroscope

    Directory of Open Access Journals (Sweden)

    Ming-Yuan Ren

    2014-03-01

    Full Text Available Conventional methods for rotor position detection of micro-gyroscopes include common exciting electrodes (single frequency and common sensing electrodes (frequency multiplex, but they have encountered some problems. So we present a high resolution and low noise pick-off circuit for micro-gyroscopes which utilizes the time multiplex method. The detecting circuit adopts a continuous-time current sensing circuit for capacitance measurement, and its noise analysis of the charge amplifier is introduced. The equivalent output noise power spectral density of phase-sensitive demodulation is 120 nV/Hz1/2. Tests revealed that the whole circuitry has a relative capacitance resolution of 1 × 10−8.

  8. DMD based digital speckle illumination for high resolution imaging

    Science.gov (United States)

    Shinde, Anant; Mishra, Ayush; Perinchery, Sandeep M.; Murukeshan, V. M.

    2017-06-01

    Spatially non-uniform illumination patterns have shown significant potential to improve the imaging. Recent developments in the patterned illumination microscopy have demonstrated that the use of an optical speckle as an illumination pattern significantly improves the imaging resolution at the same time reducing the computational overheads. We present a DMD based method for generation of digital speckle pattern. The generated digital speckle and uniform white light illumination are used as two illuminations to acquire images. The image reconstruction algorithm for blind structured illumination microscopy is used to get the high resolution image. Our approach does not require any calibration step or stringent control of the illumination, and dramatically simplifies the experimental set-up.

  9. High spatial resolution soft-x-ray microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Meyer-Ilse, W.; Medecki, H.; Brown, J.T. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    A new soft x-ray microscope (XM-1) with high spatial resolution has been constructed by the Center for X-ray Optics. It uses bending magnet radiation from beamline 6.1 at the Advanced Light Source, and is used in a variety of projects and applications in the life and physical sciences. Most of these projects are ongoing. The instrument uses zone plate lenses and achieves a resolution of 43 nm, measured over 10% to 90% intensity with a knife edge test sample. X-ray microscopy permits the imaging of relatively thick samples, up to 10 {mu}m thick, in water. XM-1 has an easy to use interface, that utilizes visible light microscopy to precisely position and focus the specimen. The authors describe applications of this device in the biological sciences, as well as in studying industrial applications including structured polymer samples.

  10. A compact high-resolution X-ray powder diffractometer.

    Science.gov (United States)

    Fewster, Paul F; Trout, David R D

    2013-12-01

    A new powder diffractometer operating in transmission mode is described. It can work as a rapid very compact instrument or as a high-resolution instrument, and the sample preparation is simplified. The incident beam optics create pure Cu K α 1 radiation, giving rise to peak widths of ∼0.1° in 2θ in compact form with a sample-to-detector minimum radius of 55 mm, reducing to peak widths of advantage of this geometry is that the resolution of the diffractometer can be calculated precisely and the instrumental artefacts can be analysed easily without a sample present. The performance is demonstrated with LaB 6 and paracetamol, and a critical appraisal of the uncertainties in the measurements is presented. The instantaneous data collection offers possibilities in dynamic experiments.

  11. High resolution ultrasound and photoacoustic imaging of single cells

    Directory of Open Access Journals (Sweden)

    Eric M. Strohm

    2016-03-01

    Full Text Available High resolution ultrasound and photoacoustic images of stained neutrophils, lymphocytes and monocytes from a blood smear were acquired using a combined acoustic/photoacoustic microscope. Photoacoustic images were created using a pulsed 532 nm laser that was coupled to a single mode fiber to produce output wavelengths from 532 nm to 620 nm via stimulated Raman scattering. The excitation wavelength was selected using optical filters and focused onto the sample using a 20× objective. A 1000 MHz transducer was co-aligned with the laser spot and used for ultrasound and photoacoustic images, enabling micrometer resolution with both modalities. The different cell types could be easily identified due to variations in contrast within the acoustic and photoacoustic images. This technique provides a new way of probing leukocyte structure with potential applications towards detecting cellular abnormalities and diseased cells at the single cell level.

  12. Enhanced beetle luciferase for high-resolution bioluminescence imaging.

    Directory of Open Access Journals (Sweden)

    Yoshihiro Nakajima

    Full Text Available We developed an enhanced green-emitting luciferase (ELuc to be used as a bioluminescence imaging (BLI probe. ELuc exhibits a light signal in mammalian cells that is over 10-fold stronger than that of the firefly luciferase (FLuc, which is the most widely used luciferase reporter gene. We showed that ELuc produces a strong light signal in primary cells and tissues and that it enables the visualization of gene expression with high temporal resolution at the single-cell level. Moreover, we successfully imaged the nucleocytoplasmic shuttling of importin alpha by fusing ELuc at the intracellular level. These results demonstrate that the use of ELuc allows a BLI spatiotemporal resolution far greater than that provided by FLuc.

  13. High-resolution mapping of motor vehicle carbon dioxide emissions

    Science.gov (United States)

    McDonald, Brian C.; McBride, Zoe C.; Martin, Elliot W.; Harley, Robert A.

    2014-05-01

    A fuel-based inventory for vehicle emissions is presented for carbon dioxide (CO2) and mapped at various spatial resolutions (10 km, 4 km, 1 km, and 500 m) using fuel sales and traffic count data. The mapping is done separately for gasoline-powered vehicles and heavy-duty diesel trucks. Emission estimates from this study are compared with the Emissions Database for Global Atmospheric Research (EDGAR) and VULCAN. All three inventories agree at the national level within 5%. EDGAR uses road density as a surrogate to apportion vehicle emissions, which leads to 20-80% overestimates of on-road CO2 emissions in the largest U.S. cities. High-resolution emission maps are presented for Los Angeles, New York City, San Francisco-San Jose, Houston, and Dallas-Fort Worth. Sharp emission gradients that exist near major highways are not apparent when emissions are mapped at 10 km resolution. High CO2 emission fluxes over highways become apparent at grid resolutions of 1 km and finer. Temporal variations in vehicle emissions are characterized using extensive day- and time-specific traffic count data and are described over diurnal, day of week, and seasonal time scales. Clear differences are observed when comparing light- and heavy-duty vehicle traffic patterns and comparing urban and rural areas. Decadal emission trends were analyzed from 2000 to 2007 when traffic volumes were increasing and a more recent period (2007-2010) when traffic volumes declined due to recession. We found large nonuniform changes in on-road CO2 emissions over a period of 5 years, highlighting the importance of timely updates to motor vehicle emission inventories.

  14. High Range Resolution Profile Construction Exploiting Modified Fractional Fourier Transformation

    Directory of Open Access Journals (Sweden)

    Feng Wang

    2015-01-01

    Full Text Available This paper addresses the discrimination of closely spaced high speed group targets with radar transmitting linear frequency modulation (LFM pulses. The high speed target motion leads to range migration and target dispersion and thereby the discriminating capability of the high range resolution profile (HRRP deteriorating significantly. An effective processing approach composed of stretch processing (SP, modified fractional Fourier transform (FrFT, and multiple signal classification (MUSIC algorithm is proposed to deal with this problem. Firstly, SP is adopted to transform the received LFM with Doppler distortions into narrow band LFM signals. Secondly, based on the two-dimensional range/velocity plane constructed by the modified FrFT, the velocity of the high speed group target is estimated and compensated with just one single pulse. After the compensation of range migration and target dispersion simultaneously, the resolution of the HRRP achieved by single pulse transmission improves significantly in the high speed group targets scenarios. Finally, MUSIC algorithm with superresolution capability is utilized to make a more explicit discrimination between the scatterers in comparison with the conventional SP method. Simulation results show the effectiveness of the proposed scheme.

  15. Lateralization of high frequency sounds as a function of interaural amplitude disparity.

    Science.gov (United States)

    Rule, S J; Nickolaychuk, B R

    1995-09-01

    Twenty-five subjects made graphic ratings of the perceived lateral position within the head of sounds presented through headphones. The stimuli were high frequency, pure tones and amplitude modulated sounds. For the amplitude modulated sounds, a 200 HZ modulation frequency was combined with carrier frequencies of 2200 HZ, 3200 HZ, 4200 HZ, and 5200 HZ, which were also the pure tone frequencies. Interaural level differences in the signals ranged from zero to 12 dB. The rate of lateralization was defined as the slope of the linear trend relating laterality ratings to interaural level differences. The rate of lateralization was found to be a decreasing function of frequency. The laterality ratings of amplitude modulated signals were nearly identical to those for pure tones. This result suggests that, for high frequency signals, conflicting temporal information that a source is centered is suppressed in favor of information from level differences that the source is off-center.

  16. Performance evaluation of a high resolution dedicated breast PET scanner

    Energy Technology Data Exchange (ETDEWEB)

    García Hernández, Trinitat, E-mail: mtrinitat@eresa.com; Vicedo González, Aurora; Brualla González, Luis; Granero Cabañero, Domingo [Department of Medical Physics, ERESA, Hospital General Universitario, Valencia 46014 (Spain); Ferrer Rebolleda, Jose; Sánchez Jurado, Raúl; Puig Cozar Santiago, Maria del [Department of Nuclear Medicine, ERESA, Hospital General Universitario, Valencia 46014 (Spain); Roselló Ferrando, Joan [Department of Medical Physics, ERESA, Hospital General Universitario, Valencia 46014 (Spain); Department of Physiology, University of Valencia, Valencia 46010 (Spain)

    2016-05-15

    Purpose: Early stage breast cancers may not be visible on a whole-body PET scan. To overcome whole-body PET limitations, several dedicated breast positron emission tomography (DbPET) systems have emerged nowadays aiming to improve spatial resolution. In this work the authors evaluate the performance of a high resolution dedicated breast PET scanner (Mammi-PET, Oncovision). Methods: Global status, uniformity, sensitivity, energy, and spatial resolution were measured. Spheres of different sizes (2.5, 4, 5, and 6 mm diameter) and various 18 fluorodeoxyglucose ({sup 18}F-FDG) activity concentrations were randomly inserted in a gelatine breast phantom developed at our institution. Several lesion-to-background ratios (LBR) were simulated, 5:1, 10:1, 20:1, 30:1, and 50:1. Images were reconstructed using different voxel sizes. The ability of experienced reporters to detect spheres was tested as a function of acquisition time, LBR, sphere size, and matrix reconstruction voxel size. For comparison, phantoms were scanned in the DbPET camera and in a whole body PET (WB-PET). Two patients who just underwent WB-PET/CT exams were imaged with the DbPET system and the images were compared. Results: The measured absolute peak sensitivity was 2.0%. The energy resolution was 24.0% ± 1%. The integral and differential uniformity were 10% and 6% in the total field of view (FOV) and 9% and 5% in the central FOV, respectively. The measured spatial resolution was 2.0, 1.9, and 1.7 mm in the radial, tangential, and axial directions. The system exhibited very good detectability for spheres ≥4 mm and LBR ≥10 with a sphere detection of 100% when acquisition time was set >3 min/bed. For LBR = 5 and acquisition time of 7 min the detectability was 100% for spheres of 6 mm and 75% for spheres of 5, 4, and 2.5 mm. Lesion WB-PET detectability was only comparable to the DbPET camera for lesion sizes ≥5 mm when acquisition time was >3 min and LBR > 10. Conclusions: The DbPET has a good

  17. Convex optimization of coincidence time resolution for a high-resolution PET system.

    Science.gov (United States)

    Reynolds, Paul D; Olcott, Peter D; Pratx, Guillem; Lau, Frances W Y; Levin, Craig S

    2011-02-01

    We are developing a dual panel breast-dedicated positron emission tomography (PET) system using LSO scintillators coupled to position sensitive avalanche photodiodes (PSAPD). The charge output is amplified and read using NOVA RENA-3 ASICs. This paper shows that the coincidence timing resolution of the RENA-3 ASIC can be improved using certain list-mode calibrations. We treat the calibration problem as a convex optimization problem and use the RENA-3's analog-based timing system to correct the measured data for time dispersion effects from correlated noise, PSAPD signal delays and varying signal amplitudes. The direct solution to the optimization problem involves a matrix inversion that grows order (n(3)) with the number of parameters. An iterative method using single-coordinate descent to approximate the inversion grows order (n). The inversion does not need to run to convergence, since any gains at high iteration number will be low compared to noise amplification. The system calibration method is demonstrated with measured pulser data as well as with two LSO-PSAPD detectors in electronic coincidence. After applying the algorithm, the 511 keV photopeak paired coincidence time resolution from the LSO-PSAPD detectors under study improved by 57%, from the raw value of 16.3 ±0.07 ns full-width at half-maximum (FWHM) to 6.92 ±0.02 ns FWHM ( 11.52 ±0.05 ns to 4.89 ±0.02 ns for unpaired photons).

  18. High-Resolution Mammography Detector Employing Optical Switching Readout

    Science.gov (United States)

    Irisawa, Kaku; Kaneko, Yasuhisa; Yamane, Katsutoshi; Sendai, Tomonari; Hosoi, Yuichi

    Conceiving a new detector structure, FUJIFILM Corporation has successfully put its invention of an X-ray detector employing "Optical Switching" into practical use. Since Optical Switching Technology allows an electrode structure to be easily designed, both high resolution of pixel pitch and low electrical noise readout have been achieved, which have consequently realized the world's smallest pixel size of 50×50 μm2 from a Direct-conversion FPD system as well as high DQE. The digital mammography system equipped with this detector enables to acquire high definition images while maintaining granularity. Its outstanding feature is to be able to acquire high-precision images of microcalcifications which is an important index in breast examination.

  19. Compact high-resolution VIS/NIR hyperspectral sensor

    Science.gov (United States)

    Hyvärinen, Timo; Herrala, Esko; Procino, Wes; Weatherbee, Oliver

    2011-06-01

    Current hyperspectral imagers are either bulky with good performance, or compact with only moderate performance. This paper presents a new hyperspectral technology which overcomes this drawback, and makes it possible to integrate extremely compact and high performance push-broom hyperspectral imagers for Unmanned Aerial Vehicles (UAV) and other demanding applications. Hyperspectral imagers in VIS/NIR, SWIR, MWIR and LWIR spectral ranges have been implemented. This paper presents the measured performance attributes for a VIS/NIR imager which covers 350 to 1000 nm with spectral resolution of 3 nm. The key innovation is a new imaging spectrograph design which employs both transmissive and reflective optics in order to achieve high light throughput and large spatial image size in an extremely compact format. High light throughput is created by numerical aperture of F/2.4 and high diffraction efficiency. Image distortions are negligible, keystone being gimbals. In addition to laboratory characterization, results from a flight test mission are presented.

  20. Multilayer Patterning of High Resolution Intrinsically Stretchable Electronics

    Science.gov (United States)

    Tybrandt, Klas; Stauffer, Flurin; Vörös, Janos

    2016-05-01

    Stretchable electronics can bridge the gap between hard planar electronic circuits and the curved, soft and elastic objects of nature. This has led to applications like conformal displays, electronic skin and soft neuroprosthetics. A remaining challenge, however, is to match the dimensions of the interfaced systems, as all require feature sizes well below 100 μm. Intrinsically stretchable nanocomposites are attractive in this context as the mechanical deformations occur on the nanoscale, although methods for patterning high performance materials have been lacking. Here we address these issues by reporting on a multilayer additive patterning approach for high resolution fabrication of stretchable electronic devices. The method yields highly conductive 30 μm tracks with similar performance to their macroscopic counterparts. Further, we demonstrate a three layer micropatterned stretchable electroluminescent display with pixel sizes down to 70 μm. These presented findings pave the way towards future developments of high definition displays, electronic skins and dense multielectrode arrays.

  1. High-resolution analysis of the mechanical behavior of tissue

    Science.gov (United States)

    Hudnut, Alexa W.; Armani, Andrea M.

    2017-06-01

    The mechanical behavior and properties of biomaterials, such as tissue, have been directly and indirectly connected to numerous malignant physiological states. For example, an increase in the Young's Modulus of tissue can be indicative of cancer. Due to the heterogeneity of biomaterials, it is extremely important to perform these measurements using whole or unprocessed tissue because the tissue matrix contains important information about the intercellular interactions and the structure. Thus, developing high-resolution approaches that can accurately measure the elasticity of unprocessed tissue samples is of great interest. Unfortunately, conventional elastography methods such as atomic force microscopy, compression testing, and ultrasound elastography either require sample processing or have poor resolution. In the present work, we demonstrate the characterization of unprocessed salmon muscle using an optical polarimetric elastography system. We compare the results of compression testing within different samples of salmon skeletal muscle with different numbers of collagen membranes to characterize differences in heterogeneity. Using the intrinsic collagen membranes as markers, we determine the resolution of the system when testing biomaterials. The device reproducibly measures the stiffness of the tissues at variable strains. By analyzing the amount of energy lost by the sample during compression, collagen membranes that are 500 μm in size are detected.

  2. A high resolution, low background fast neutron spectrometer

    CERN Document Server

    Abdurashitov, J N; Kalikhov, A V; Matushko, V L; Shikhin, A A; Yants, V E; Zaborskaia, O S; Adams, J M; Nico, J S; Thompson, A K

    2002-01-01

    We discuss the possibility to create a spectrometer of full absorption based on liquid scintillator doped with enriched sup 6 Li. Of specific interest, the spectrometer will have energy resolution estimated to lie in the range 5-10% for 14 MeV neutrons. It will be sensitive to fluxes from 10 sup - sup 4 to 10 sup 6 cm sup - sup 2 s sup - sup 1 above a threshold of 1 MeV in a gamma-background of up to 10 sup 4 s sup - sup 1. The detector's efficiency will be determined by the volume of the scintillator only (approx 3 l) and is estimated to be 0.2-10%. The main reason for the poor resolution of an organic scintillator based spectrometer of full absorption is a non-linear light-yield of the scintillator for recoil protons. The neutron energy is occasionally distributed among recoil protons, and due to non-linear light-yield the total amount of light from all recoil protons ambiguously determines the initial neutron energy. The high-energy resolution will be achieved by compensation of the non-linear light-yield ...

  3. Extraction and labeling high-resolution images from PDF documents

    Science.gov (United States)

    Chachra, Suchet K.; Xue, Zhiyun; Antani, Sameer; Demner-Fushman, Dina; Thoma, George R.

    2013-12-01

    Accuracy of content-based image retrieval is affected by image resolution among other factors. Higher resolution images enable extraction of image features that more accurately represent the image content. In order to improve the relevance of search results for our biomedical image search engine, Open-I, we have developed techniques to extract and label high-resolution versions of figures from biomedical articles supplied in the PDF format. Open-I uses the open-access subset of biomedical articles from the PubMed Central repository hosted by the National Library of Medicine. Articles are available in XML and in publisher supplied PDF formats. As these PDF documents contain little or no meta-data to identify the embedded images, the task includes labeling images according to their figure number in the article after they have been successfully extracted. For this purpose we use the labeled small size images provided with the XML web version of the article. This paper describes the image extraction process and two alternative approaches to perform image labeling that measure the similarity between two images based upon the image intensity projection on the coordinate axes and similarity based upon the normalized cross-correlation between the intensities of two images. Using image identification based on image intensity projection, we were able to achieve a precision of 92.84% and a recall of 82.18% in labeling of the extracted images.

  4. High-Resolution Infrared Imaging of Young Outflow-Sources

    Science.gov (United States)

    Preibisch, Thomas; Schertl, Dieter; Weigelt, Gerd

    For a better understanding of the mechanisms by which jets and outflows from young stellar objects are generated accelerated and collimated it is essential to look as close as possible to their launching point at the disk/star boundary. High-spatial resolution is therefore of crucial importance for further progress in this field. In this contribution we present recent results from our near-infrared bispectrum speckle interferometry studies of several outflow sources. With a spatial resolution of up to 0.055'' our images have the highest spatial resolution achieved so far for these objects and exhibit previously unseen complex structures. Our results include the identification of two distinct bipolar outflow systems originating simultaneously from the protostar S140 IRS1 the detection of an episodic precessing jet from S140 IRS3 and the discovery of a micro-jet from one of the embedded sources in Mon R2 IRS3. We will also discuss the relation of the observed circumstellar structures to the jets and outflows from the young stellar objects

  5. High energy resolution with transparent ceramic garnet scintillators

    Science.gov (United States)

    Cherepy, N. J.; Seeley, Z. M.; Payne, S. A.; Beck, P. R.; Swanberg, E. L.; Hunter, S.; Ahle, L.; Fisher, S. E.; Melcher, C.; Wei, H.; Stefanik, T.; Chung, Y.-S.; Kindem, J.

    2014-09-01

    Breakthrough energy resolution, R(662keV) Gadolinium Yttrium Gallium Aluminum Garnet, or GYGAG(Ce). Transparent ceramic GYGAG(Ce), has a peak emission wavelength of 550 nm that is better matched to Silicon photodetectors than to standard PMTs. We are therefore developing a spectrometer based on pixelated GYGAG(Ce) on a Silicon photodiode array that can provide R(662 keV) = 3.6%. In comparison, with large 1-2 in3 size GYGAG(Ce) ceramics we obtain R(662 keV) = 4.6% with PMT readout. We find that ceramic GYGAG(Ce) of a given stoichiometric chemical composition can exhibit very different scintillation properties, depending on sintering conditions and post-anneal treatments. Among the characteristics of transparent ceramic garnet scintillators that can be controlled by fabrication conditions are: scintillation decay components and their amplitudes, intensity and duration of afterglow, thermoluminescence glow curve peak positions and amplitudes, integrated light yield, light yield non-proportionality - as measured in the Scintillator Light Yield Non-Proportionality Characterization Instrument (SLYNCI), and energy resolution for gamma spectroscopy. Garnet samples exhibiting a significant fraction of Cerium dopant in the tetravalent valence also exhibit: faster overall scintillation decay, very low afterglow, high light yield, but poor light yield proportionality and degraded energy resolution.

  6. CSpace high-resolution volumetric 3D display

    Science.gov (United States)

    Refai, Hakki H.; Melnik, George; Willner, Mark

    2013-05-01

    We are currently in the process of developing a static-volume 3D display, CSpace® display, that has the capability to produce images of much larger size than any other static-volume display currently under development, with up to nearly 800 million voxel resolution. A key component in achieving the size and resolution of the display is the optical system that transfers the pixel data from a standard DMD projection unit to the voxel size required by the display with high contrast and minimal distortion. The current optical system is capable of such performance for only small image sizes, and thus new designs of the optical system must be developed. We report here on the design and testing of a new optical projection system with the intent of achieving performance close to that of a telecentric lens. Theoretical analysis with Zemax allowed selection of appropriate lens size, spacing, and focal length, and identified the need for tilting the assembly to produce the desired beam properties. Experimental analysis using the CSpace® prototype showed that the improved beam parameters allowed for higher resolution and brighter images than those previously achieved, though their remains room for further improvement of the design. Heating of the DMD and its housing components were also addressed to minimize heating effects on the optical system. A combination of a thermo-electric cooler and a small fan produced sufficient cooling to stabilize the temperature of the system to acceptable levels.

  7. The Suzaku High Resolution X-Ray Spectrometer

    Science.gov (United States)

    Kelley, Richard L.; Mitsuda, Kazuhisa; Allen, Christine A.; Arsenovic, Petar; Audley, Michael D.; Bialas, Thomas G.; Boyce, Kevin R.; Boyle, Robert F.; Breon, Susan R.; Brown, Gregory V.; Cottam, Jean; Dipirro, Michael J.; Fujimoto, Ryuichi; Furusho, Tae; Gendreau, Keith C.; Gochar, Gene G.; Gonzalez, Oscar; Hirabayashi, Masayuki; Holt, Stephen S.; Inoue, Hajime; Ishida, Manabu; Ishisaki, Yoshitaka; Jones, Carol S.; Keski-Kuha, Ritva; Kilbourne, Caroline A.; McCammon, Dan; Morita, Umeyo; Moseley, S. Harvey; Mott, Brent; Narasaki, Katsuhiro; Ogawara, Yoshiaki; Ohashi, Takaya; Ota, Naomi; Panek, John S.; Porter, F. Scott; Serlemitsos, Aristides; Shirron, Peter J.; Sneiderman, Gary A.; Szymkowiak, Andrew E.; Takei, Yoh; Tveekrem, June L.; Volz, Stephen M.; Yamamoto, Mikio; Yamasaki, Noriko Y.

    2007-01-01

    The X-Ray Spectrometer (XRS) has been designed to provide the Suzaku Observatory with non-dispersive, high-resolution X-ray spectroscopy. As designed, the instrument covers the energy range 0.3 to 12keV, which encompasses the most diagnostically rich part of the X-ray band. The sensor consists of a 32-channel array of X-ray microcalorimeters, each with an energy resolution of about 6eV. The very low temperature required for operation of the array (60mK) is provided by a four-stage cooling system containing a single-stage adiabatic demagnetization refrigerator, a superfluid-helium cryostat, a solid-neon dewar, and a single-stage, Stirling-cycle cooler. The Suzaku/XRS is the first orbiting X-ray microcalorimeter spectrometer and was designed to last more than three years in orbit. The early verification phase of the mission demonstrated that the instrument worked properly and that the cryogen consumption rate was low enough to ensure a mission lifetime exceeding 3 years. However, the liquid-He cryogen was completely vaporized two weeks after opening the dewar guard vacuum vent. The problem has been traced to inadequate venting of the dewar He and Ne gases out of the spacecraft and into space. In this paper we present the design and ground testing of the XRS instrument, and then describe the in-flight performance. An energy resolution of 6eV was achieved during pre-launch tests and a resolution of 7eV was obtained in orbit. The slight degradation is due to the effects of cosmic rays.

  8. High resolution solar observations from first principles to applications

    Science.gov (United States)

    Verdoni, Angelo P.

    2009-10-01

    The expression "high-resolution observations" in Solar Physics refers to the spatial, temporal and spectral domains in their entirety. High-resolution observations of solar fine structure are a necessity to answer many of the intriguing questions related to solar activity. However, a researcher building instruments for high-resolution observations has to cope with the fact that these three domains often have diametrically opposed boundary conditions. Many factors have to be considered in the design of a successful instrument. Modern post-focus instruments are more closely linked with the solar telescopes that they serve than in past. In principle, the quest for high-resolution observations already starts with the selection of the observatory site. The site survey of the Advanced Technology Solar Telescope (ATST) under the stewardship of the National Solar Observatory (NSO) has identified Big Bear Solar Observatory (BBSO) as one of the best sites for solar observations. In a first step, the seeing characteristics at BBSO based on the data collected for the ATST site survey are described. The analysis will aid in the scheduling of high-resolution observations at BBSO as well as provide useful information concerning the design and implementation of a thermal control system for the New Solar Telescope (NST). NST is an off-axis open-structure Gregorian-style telescope with a 1.6 m aperture. NST will be housed in a newly constructed 5/8-sphere ventilated dome. With optics exposed to the surrounding air, NST's open-structure design makes it particularly vulnerable to the effects of enclosure-related seeing. In an effort to mitigate these effects, the initial design of a thermal control system for the NST dome is presented. The goal is to remediate thermal related seeing effects present within the dome interior. The THermal Control System (THCS) is an essential component for the open-telescope design of NST to work. Following these tasks, a calibration routine for the

  9. Mapping Global Atmospheric CO2 Concentration at High Spatiotemporal Resolution

    Directory of Open Access Journals (Sweden)

    Yingying Jing

    2014-11-01

    Full Text Available Satellite measurements of the spatiotemporal distributions of atmospheric CO2 concentrations are a key component for better understanding global carbon cycle characteristics. Currently, several satellite instruments such as the Greenhouse gases Observing SATellite (GOSAT, SCanning Imaging Absorption Spectrometer for Atmospheric CHartographY (SCIAMACHY, and Orbiting Carbon Observatory-2 can be used to measure CO2 column-averaged dry air mole fractions. However, because of cloud effects, a single satellite can only provide limited CO2 data, resulting in significant uncertainty in the characterization of the spatiotemporal distribution of atmospheric CO2 concentrations. In this study, a new physical data fusion technique is proposed to combine the GOSAT and SCIAMACHY measurements. On the basis of the fused dataset, a gap-filling method developed by modeling the spatial correlation structures of CO2 concentrations is presented with the goal of generating global land CO2 distribution maps with high spatiotemporal resolution. The results show that, compared with the single satellite dataset (i.e., GOSAT or SCIAMACHY, the global spatial coverage of the fused dataset is significantly increased (reaching up to approximately 20%, and the temporal resolution is improved by two or three times. The spatial coverage and monthly variations of the generated global CO2 distributions are also investigated. Comparisons with ground-based Total Carbon Column Observing Network (TCCON measurements reveal that CO2 distributions based on the gap-filling method show good agreement with TCCON records despite some biases. These results demonstrate that the fused dataset as well as the gap-filling method are rather effective to generate global CO2 distribution with high accuracies and high spatiotemporal resolution.

  10. Proceedings of the workshop on high resolution computed microtomography (CMT)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    The purpose of the workshop was to determine the status of the field, to define instrumental and computational requirements, and to establish minimum specifications required by possible users. The most important message sent by implementers was the remainder that CMT is a tool. It solves a wide spectrum of scientific problems and is complementary to other microscopy techniques, with certain important advantages that the other methods do not have. High-resolution CMT can be used non-invasively and non-destructively to study a variety of hierarchical three-dimensional microstructures, which in turn control body function. X-ray computed microtomography can also be used at the frontiers of physics, in the study of granular systems, for example. With high-resolution CMT, for example, three-dimensional pore geometries and topologies of soils and rocks can be obtained readily and implemented directly in transport models. In turn, these geometries can be used to calculate fundamental physical properties, such as permeability and electrical conductivity, from first principles. Clearly, use of the high-resolution CMT technique will contribute tremendously to the advancement of current R and D technologies in the production, transport, storage, and utilization of oil and natural gas. It can also be applied to problems related to environmental pollution, particularly to spilling and seepage of hazardous chemicals into the Earth's subsurface. Applications to energy and environmental problems will be far-ranging and may soon extend to disciplines such as materials science--where the method can be used in the manufacture of porous ceramics, filament-resin composites, and microelectronics components--and to biomedicine, where it could be used to design biocompatible materials such as artificial bones, contact lenses, or medication-releasing implants. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  11. First results of high-resolution modeling of Cenozoic subduction orogeny in Andes

    Science.gov (United States)

    Liu, S.; Sobolev, S. V.; Babeyko, A. Y.; Krueger, F.; Quinteros, J.; Popov, A.

    2016-12-01

    The Andean Orogeny is the result of the upper-plate crustal shortening during the Cenozoic Nazca plate subduction beneath South America plate. With up to 300 km shortening, the Earth's second highest Altiplano-Puna Plateau was formed with a pronounced N-S oriented deformation diversity. Furthermore, the tectonic shortening in the Southern Andes was much less intensive and started much later. The mechanism of the shortening and the nature of N-S variation of its magnitude remain controversial. The previous studies of the Central Andes suggested that they might be related to the N-S variation in the strength of the lithosphere, friction coupling at slab interface, and are probably influenced by the interaction of the climate and tectonic systems. However, the exact nature of the strength variation was not explored due to the lack of high numerical resolution and 3D numerical models at that time. Here we will employ large-scale subduction models with a high resolution to reveal and quantify the factors controlling the strength of lithospheric structures and their effect on the magnitude of tectonic shortening in the South America plate between 18°-35°S. These high-resolution models are performed by using the highly scalable parallel 3D code LaMEM (Lithosphere and Mantle Evolution Model). This code is based on finite difference staggered grid approach and employs massive linear and non-linear solvers within the PETSc library to complete high-performance MPI-based parallelization in geodynamic modeling. Currently, in addition to benchmark-models we are developing high-resolution (Paleozoic-Cenozoic sediments above the uppermost crust in the Subandean Ranges. Future work will be focused on the origin of different styles of deformation and topography evolution in Altiplano-Puna Plateau and Central-Southern Andes through 3D modeling of large-scale interaction of subducting and overriding plates.

  12. Integrated High Resolution Digital Color Light Sensor in 130 nm CMOS Technology.

    Science.gov (United States)

    Strle, Drago; Nahtigal, Uroš; Batistell, Graciele; Zhang, Vincent Chi; Ofner, Erwin; Fant, Andrea; Sturm, Johannes

    2015-07-22

    This article presents a color light detection system integrated in 130 nm CMOS technology. The sensors and corresponding electronics detect light in a CIE XYZ color luminosity space using on-chip integrated sensors without any additional process steps, high-resolution analog-to-digital converter, and dedicated DSP algorithm. The sensor consists of a set of laterally arranged integrated photodiodes that are partly covered by metal, where color separation between the photodiodes is achieved by lateral carrier diffusion together with wavelength-dependent absorption. A high resolution, hybrid, ∑∆ ADC converts each photo diode's current into a 22-bit digital result, canceling the dark current of the photo diodes. The digital results are further processed by the DSP, which calculates normalized XYZ or RGB color and intensity parameters using linear transformations of the three photo diode responses by multiplication of the data with a transformation matrix, where the coefficients are extracted by training in combination with a pseudo-inverse operation and the least-mean square approximation. The sensor system detects the color light parameters with 22-bit accuracy, consumes less than 60 μA on average at 10 readings per second, and occupies approx. 0.8 mm(2) of silicon area (including three photodiodes and the analog part of the ADC). The DSP is currently implemented on FPGA.

  13. Integrated High Resolution Digital Color Light Sensor in 130 nm CMOS Technology

    Directory of Open Access Journals (Sweden)

    Drago Strle

    2015-07-01

    Full Text Available This article presents a color light detection system integrated in 130 nm CMOS technology. The sensors and corresponding electronics detect light in a CIE XYZ color luminosity space using on-chip integrated sensors without any additional process steps, high-resolution analog-to-digital converter, and dedicated DSP algorithm. The sensor consists of a set of laterally arranged integrated photodiodes that are partly covered by metal, where color separation between the photodiodes is achieved by lateral carrier diffusion together with wavelength-dependent absorption. A high resolution, hybrid, ∑∆ ADC converts each photo diode’s current into a 22-bit digital result, canceling the dark current of the photo diodes. The digital results are further processed by the DSP, which calculates normalized XYZ or RGB color and intensity parameters using linear transformations of the three photo diode responses by multiplication of the data with a transformation matrix, where the coefficients are extracted by training in combination with a pseudo-inverse operation and the least-mean square approximation. The sensor system detects the color light parameters with 22-bit accuracy, consumes less than 60 μA on average at 10 readings per second, and occupies approx. 0.8 mm2 of silicon area (including three photodiodes and the analog part of the ADC. The DSP is currently implemented on FPGA.

  14. High-resolution and large-area nanoparticle arrays using EUV interference lithography.

    Science.gov (United States)

    Karim, Waiz; Tschupp, Simon Andreas; Oezaslan, Mehtap; Schmidt, Thomas J; Gobrecht, Jens; van Bokhoven, Jeroen A; Ekinci, Yasin

    2015-04-28

    Well-defined model systems are needed for better understanding of the relationship between optical, electronic, magnetic, and catalytic properties of nanoparticles and their structure. Chemical synthesis of metal nanoparticles results in large size and shape dispersion and lack of lateral order. In contrast, conventional top-down lithography techniques provide control over the lateral order and dimensions. However, they are either limited in resolution or have low throughput and therefore do not enable the large patterning area needed to obtain good signal-to-noise ratio in common analytical and characterization techniques. Extreme ultraviolet (EUV) lithography has the throughput and simplicity advantages of photolithography as well as high resolution due to its wavelength. Using EUV achromatic Talbot lithography, we have obtained 15 nm particle arrays with a periodicity of about 100 nm over an area of several square centimeters with high-throughput enabling the use of nanotechnology for fabrication of model systems to study large ensembles of well-defined identical nanoparticles with a density of 10(10) particles cm(-2).

  15. Measuring Large-Scale Social Networks with High Resolution

    DEFF Research Database (Denmark)

    Stopczynski, Arkadiusz; Sekara, Vedran; Sapiezynski, Piotr

    2014-01-01

    , telecommunication, social networks, location, and background information (personality, demographics, health, politics) for a densely connected population of 1 000 individuals, using state-of-the-art smartphones as social sensors. Here we provide an overview of the related work and describe the motivation...... and research agenda driving the study. Additionally, the paper details the data-types measured, and the technical infrastructure in terms of both backend and phone software, as well as an outline of the deployment procedures. We document the participant privacy procedures and their underlying principles....... The paper is concluded with early results from data analysis, illustrating the importance of multi-channel high-resolution approach to data collection....

  16. High resolution wind turbine wake measurements with a scanning lidar

    DEFF Research Database (Denmark)

    Herges, T. G.; Maniaci, D. C.; Naughton, B. T.

    2017-01-01

    High-resolution lidar wake measurements are part of an ongoing field campaign being conducted at the Scaled Wind Farm Technology facility by Sandia National Laboratories and the National Renewable Energy Laboratory using a customized scanning lidar from the Technical University of Denmark. One...... of the primary objectives is to collect experimental data to improve the predictive capability of wind plant computational models to represent the response of the turbine wake to varying inflow conditions and turbine operating states. The present work summarizes the experimental setup and illustrates several...

  17. High-resolution AMLCD for the electronic library system

    Science.gov (United States)

    Martin, Russel A.; Middo, Kathy; Turner, William D.; Lewis, Alan; Thompson, Malcolm J.; Silverstein, Louis D.

    1994-06-01

    The Electronic Library System (ELS), is a proposed data resource for the cockpit which can provide the aircrew with a vast array of technical information on their aircraft and flight plan. This information includes, but is not limited to, approach plates, Jeppeson Charts, and aircraft technical manuals. Most of these data are appropriate for digitization at high resolution (300 spi). Xerox Corporation has developed a flat panel active matrix liquid crystal display, AMLCD, that is an excellent match to the ELS, due to its innovative and aggressive design.

  18. High resolution X-ray spectroscopy in light antiprotonic atoms

    CERN Document Server

    Borchert, G L; Augsburger, M A; Castelli, C M; Chatellard, D; Egger, J P; El-Khoury, P; Elble, M; Gorke, H; Gotta, D; Hauser, P R; Indelicato, P J; Kirch, K; Lenz, S; Nelms, N; Rashid, K; Schult, O W B; Siems, T; Simons, L M

    2000-01-01

    At the LEAR facility, CERN, antiprotonic L alpha transitions in light elements have been investigated with a focussing crystal spectrometer. The high resolution of the experiment allowed for the first time to resolve in pH/pH the 2/sup 3/P/sub 0/ state from the close-lying states 2/sup 3/P/sub 2/, 2/sup 1/P/sub 1/, and 2/sup 3/P /sub 1/. In pD the corresponding transitions were found to be more than an order of magnitude broader. To a large extent the results for pH support the meson exchange model. (15 refs).

  19. Laser ablated hydantoin: A high resolution rotational study

    Science.gov (United States)

    Alonso, Elena R.; Kolesniková, Lucie; Alonso, José L.

    2017-09-01

    Laser ablation techniques coupled with broadband and narrowband Fourier transform microwave spectroscopies have allowed the high resolution rotational study of solid hydantoin, an important target in astrochemistry as a possible precursor of glycine. The complicated hyperfine structure arising from the presence of two 14N nuclei in non-equivalent positions has been resolved and interpreted in terms of the nuclear quadrupole coupling interactions. The results reported in this work provide a solid base for the interstellar searches of hydantoin in the astrophysical surveys. The values of the nuclear quadrupole coupling constants have been also discussed in terms of the electronic environment around the respective nitrogen atom.

  20. Geomorphology of Impact Features on Tethys Using High Resolution Mosaics

    Science.gov (United States)

    2017-03-01

    GEOMORPHOLOGY OF IMPACT FEATURES ON TETHYS USING HIGH NIA RESOLUTION MOSAICS. 5b. GRANT NUMBER NIA 5c. PROGRAM ELEMENT NUMBER NIA 6. AUTHOR(S) 5d...PROJECT NUMBER A.R. Rhoden, M. Nayak, E. Asphaug NIA 5e. TASK NUMBER NIA 5f. WORK UNIT NUMBER NIA T. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES...Space Exploration, Arizona State University, Tempe, AZ 85282 NIA 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM

  1. High-resolution ultrasound of the extrinsic carpal ligaments☆

    Science.gov (United States)

    Orlandi, D.; Fabbro, E.; Ferrero, G.; Martini, C.; Lacelli, F.; Serafini, G.; Silvestri, E.; Sconfienza, L.M.

    2012-01-01

    Thanks to its intrinsic high spatial resolution, ultrasound is an ideal imaging modality for examining very thin, superficial structures, and this makes it very helpful in the evaluation of extrinsic carpal ligaments. These structures, which arise from the radius and ulna and insert on the carpal bones, are extremely important for wrist stability. Previous studies have assessed the use of ultrasound to study the extrinsic carpal ligaments in cadavers, healthy asymptomatic subjects, and patients with rheumatoid arthritis. In the present report, we review the normal anatomy, biomechanics, and ultrasound appearance of these ligaments. PMID:23730393

  2. High resolution projection micro stereolithography system and method

    Energy Technology Data Exchange (ETDEWEB)

    Spadaccini, Christopher M.; Farquar, George; Weisgraber, Todd; Gemberling, Steven; Fang, Nicholas; Xu, Jun; Alonso, Matthew; Lee, Howon

    2016-11-15

    A high-resolution P.mu.SL system and method incorporating one or more of the following features with a standard P.mu.SL system using a SLM projected digital image to form components in a stereolithographic bath: a far-field superlens for producing sub-diffraction-limited features, multiple spatial light modulators (SLM) to generate spatially-controlled three-dimensional interference holograms with nanoscale features, and the integration of microfluidic components into the resin bath of a P.mu.SL system to fabricate microstructures of different materials.

  3. Clickstream data yields high-resolution maps of science

    Energy Technology Data Exchange (ETDEWEB)

    Bollen, Johan [Los Alamos National Laboratory; Van De Sompel, Herbert [Los Alamos National Laboratory; Hagberg, Aric [Los Alamos National Laboratory; Bettencourt, Luis [Los Alamos National Laboratory; Chute, Ryan [Los Alamos National Laboratory; Rodriguez, Marko A [Los Alamos National Laboratory; Balakireva, Lyudmila [Los Alamos National Laboratory

    2009-01-01

    Intricate maps of science have been created from citation data to visualize the structure of scientific activity. However, most scientific publications are now accessed online. Scholarly web portals record detailed log data at a scale that exceeds the number of all existing citations combined. Such log data is recorded immediately upon publication and keeps track of the sequences of user requests (clickstreams) that are issued by a variety of users across many different domains. Given these advantagees of log datasets over citation data, we investigate whether they can produce high-resolution, more current maps of science.

  4. High-resolution seismic wave propagation using local time stepping

    KAUST Repository

    Peter, Daniel

    2017-03-13

    High-resolution seismic wave simulations often require local refinements in numerical meshes to accurately capture e.g. steep topography or complex fault geometry. Together with explicit time schemes, this dramatically reduces the global time step size for ground-motion simulations due to numerical stability conditions. To alleviate this problem, local time stepping (LTS) algorithms allow an explicit time stepping scheme to adapt the time step to the element size, allowing nearoptimal time steps everywhere in the mesh. This can potentially lead to significantly faster simulation runtimes.

  5. High-resolution overtone spectra of molecular complexes

    Science.gov (United States)

    Didriche, K.; Földes, T.

    2013-02-01

    A high-resolution spectrum of the acetylene-water complex has been recorded in the overtone range. Two bands of C2H2-D2O were analysed, corresponding to the overtone excitations of either the acetylene or the water units. The vibrational shifts and the upper states rotational constants were retrieved, demonstrating that the geometry of the complex is only slightly modified by the excitation. A larger linewidth was observed for the 2CH band than for the 2OD + DOD band, probably due to the direct coupling of the 2CH excitation with the dissociation coordinate.

  6. High resolution skin colorimetry, strain mapping and mechanobiology.

    Science.gov (United States)

    Devillers, C; Piérard-Franchimont, C; Schreder, A; Docquier, V; Piérard, G E

    2010-08-01

    Skin colours are notoriously different between individuals. They are governed by ethnicities and phototypes, and further influenced by a variety of factors including photoexposures and sustained mechanical stress. Indeed, mechanobiology is a feature affecting the epidermal melanization. High-resolution epiluminescence colorimetry helps in deciphering the effects of forces generated by Langer's lines or relaxed skin tension lines on the melanocyte activity. The same procedure shows a prominent laddering pattern of melanization in striae distensae contrasting with the regular honeycomb pattern in the surrounding skin.

  7. Differentiation of Staphylococcus spp. by high-resolution melting analysis.

    Science.gov (United States)

    Slany, Michal; Vanerkova, Martina; Nemcova, Eva; Zaloudikova, Barbora; Ruzicka, Filip; Freiberger, Tomas

    2010-12-01

    High-resolution melting analysis (HRMA) is a fast (post-PCR) high-throughput method to scan for sequence variations in a target gene. The aim of this study was to test the potential of HRMA to distinguish particular bacterial species of the Staphylococcus genus even when using a broad-range PCR within the 16S rRNA gene where sequence differences are minimal. Genomic DNA samples isolated from 12 reference staphylococcal strains (Staphylococcus aureus, Staphylococcus capitis, Staphylococcus caprae, Staphylococcus epidermidis, Staphylococcus haemolyticus, Staphylococcus hominis, Staphylococcus intermedius, Staphylococcus saprophyticus, Staphylococcus sciuri, Staphylococcus simulans, Staphylococcus warneri, and Staphylococcus xylosus) were subjected to a real-time PCR amplification of the 16S rRNA gene in the presence of fluorescent dye EvaGreen™, followed by HRMA. Melting profiles were used as molecular fingerprints for bacterial species differentiation. HRMA of S. saprophyticus and S. xylosus resulted in undistinguishable profiles because of their identical sequences in the analyzed 16S rRNA region. The remaining reference strains were fully differentiated either directly or via high-resolution plots obtained by heteroduplex formation between coamplified PCR products of the tested staphylococcal strain and phylogenetically unrelated strain.

  8. A System for High-Resolution Topology Optimization.

    Science.gov (United States)

    Wu, Jun; Dick, Christian; Westermann, Rudiger

    2016-03-01

    A key requirement in 3D fabrication is to generate objects with individual exterior shapes and their interior being optimized to application-specific force constraints and low material consumption. Accomplishing this task is challenging on desktop computers, due to the extreme model resolutions that are required to accurately predict the physical shape properties, requiring memory and computational capacities going beyond what is currently available. Moreover, fabrication-specific constraints need to be considered to enable printability. To address these challenges, we present a scalable system for generating 3D objects using topology optimization, which allows to efficiently evolve the topology of high-resolution solids towards printable and light-weight-high-resistance structures. To achieve this, the system is equipped with a high-performance GPU solver which can efficiently handle models comprising several millions of elements. A minimum thickness constraint is built into the optimization process to automatically enforce printability of the resulting shapes. We further shed light on the question how to incorporate geometric shape constraints, such as symmetry and pattern repetition, in the optimization process. We analyze the performance of the system and demonstrate its potential by a variety of different shapes such as interior structures within closed surfaces, exposed support structures, and surface models.

  9. Providing Internet Access to High-Resolution Mars Images

    Science.gov (United States)

    Plesea, Lucian

    2008-01-01

    The OnMars server is a computer program that provides Internet access to high-resolution Mars images, maps, and elevation data, all suitable for use in geographical information system (GIS) software for generating images, maps, and computational models of Mars. The OnMars server is an implementation of the Open Geospatial Consortium (OGC) Web Map Service (WMS) server. Unlike other Mars Internet map servers that provide Martian data using an Earth coordinate system, the OnMars WMS server supports encoding of data in Mars-specific coordinate systems. The OnMars server offers access to most of the available high-resolution Martian image and elevation data, including an 8-meter-per-pixel uncontrolled mosaic of most of the Mars Global Surveyor (MGS) Mars Observer Camera Narrow Angle (MOCNA) image collection, which is not available elsewhere. This server can generate image and map files in the tagged image file format (TIFF), Joint Photographic Experts Group (JPEG), 8- or 16-bit Portable Network Graphics (PNG), or Keyhole Markup Language (KML) format. Image control is provided by use of the OGC Style Layer Descriptor (SLD) protocol. The OnMars server also implements tiled WMS protocol and super-overlay KML for high-performance client application programs.

  10. Providing Internet Access to High-Resolution Lunar Images

    Science.gov (United States)

    Plesea, Lucian

    2008-01-01

    The OnMoon server is a computer program that provides Internet access to high-resolution Lunar images, maps, and elevation data, all suitable for use in geographical information system (GIS) software for generating images, maps, and computational models of the Moon. The OnMoon server implements the Open Geospatial Consortium (OGC) Web Map Service (WMS) server protocol and supports Moon-specific extensions. Unlike other Internet map servers that provide Lunar data using an Earth coordinate system, the OnMoon server supports encoding of data in Moon-specific coordinate systems. The OnMoon server offers access to most of the available high-resolution Lunar image and elevation data. This server can generate image and map files in the tagged image file format (TIFF) or the Joint Photographic Experts Group (JPEG), 8- or 16-bit Portable Network Graphics (PNG), or Keyhole Markup Language (KML) format. Image control is provided by use of the OGC Style Layer Descriptor (SLD) protocol. Full-precision spectral arithmetic processing is also available, by use of a custom SLD extension. This server can dynamically add shaded relief based on the Lunar elevation to any image layer. This server also implements tiled WMS protocol and super-overlay KML for high-performance client application programs.

  11. High resolution micro-pattern gas detectors for particle physics

    Science.gov (United States)

    Shekhtman, L.; Aulchenko, V.; Bobrovnikov, V.; Bondar, A.; Fedotovich, G.; Kudryavtsev, V.; Maltsev, T.; Nikolenko, D.; Rachek, I.; Zhilich, V.; Zhulanov, V.

    2017-07-01

    Micro-pattern gaseous detectors (MPGDs) allow operation at very high background particle flux with high efficiency and spatial resolution. This combination of parameters determines the main application of these detectors in particle physics experiments: precise tracking in the areas close to the beam and in the end-cap regions of general-purpose detectors. MPGDs of different configurations have been developed and are under development for several experiments in the Budker INP. The system of eight two-coordinate detectors based on a cascade of Gas Electron Multipliers (GEM) is working in the KEDR experiment at the VEPP-4M collider in the tagging system that detects electrons and positrons that lost their energy in two-photon interactions and left the equilibrium orbit due to a dedicated magnetic system. Another set of cascaded GEM detectors is developed for the almost-real Photon Tagging System (PTS) of the DEUTRON facility at the VEPP-3 storage ring. The PTS contains three very light detectors with very high spatial resolution (below 50 μm). Dedicated detectors based on cascaded GEMs are developed for the extracted electron beam facility at the VEPP-4M collider. These devices will allow precise particle tracking with minimal multiple scattering due to very low material content. An upgrade of the coordinate system of the CMD-3 detector at the VEPP-2000 collider is proposed on the basis of the resistive micro-WELL (μ-rWELL). A research activity on this subject has just started.

  12. Montecarlo simulation for a new high resolution elemental analysis methodology

    Energy Technology Data Exchange (ETDEWEB)

    Figueroa S, Rodolfo; Brusa, Daniel; Riveros, Alberto [Universidad de La Frontera, Temuco (Chile). Facultad de Ingenieria y Administracion

    1996-12-31

    Full text. Spectra generated by binary, ternary and multielement matrixes when irradiated by a variable energy photon beam are simulated by means of a Monte Carlo code. Significative jumps in the counting rate are shown when the photon energy is just over the edge associated to each element, because of the emission of characteristic X rays. For a given associated energy, the net height of these jumps depends mainly on the concentration and of the sample absorption coefficient. The spectra were obtained by a monochromatic energy scan considering all the emitted radiation by the sample in a 2{pi} solid angle, associating a single multichannel spectrometer channel to each incident energy (Multichannel Scaling (MCS) mode). The simulated spectra were made with Monte Carlo simulation software adaptation of the package called PENELOPE (Penetration and Energy Loss of Positrons and Electrons in matter). The results show that it is possible to implement a new high resolution spectroscopy methodology, where a synchrotron would be an ideal source, due to the high intensity and ability to control the energy of the incident beam. The high energy resolution would be determined by the monochromating system and not by the detection system and not by the detection system, which would basicalbe a photon counter. (author)

  13. MR-Venography Using High Resolution True-FISP

    Energy Technology Data Exchange (ETDEWEB)

    Spuentrup, E. [Technische Hochschule Aachen (Germany). Klinik fuer Radiologische Diagnostik; Beth Israel Deaconess Medical Center, Boston, MA (United States). Dept. of Medicine; Harvard Medical School, Boston, MA (United States); Buecker, A.; Guenther, R.W. [Technische Hochschule Aachen (Germany). Klinik fuer Radiologische Diagnostik; Stuber, M. [Beth Israel Deaconess Medical Center, Boston, MA (United States). Dept. of Medicine; Harvard Medical School, Boston, MA (United States); Philips Med. Syst., Best (Netherlands)

    2001-08-01

    A new fast MR-venography approach using a high resolution True-FISP imaging sequence was investigated in 20 patients suffering from 23 deep vein thromboses. Diagnosis was proven by X-ray venography, CT or ultrasound examination. The presented technique allowed for clear thrombus visualization with a high contrast to the surrounding blood pool even in calf veins. Acquisition time was less than 10 minutes for imaging the pelvis and the legs. No contrast media was needed. The presented high resolution True-FISP MR-veography is a promising non-invasive, fast MR-venography approach for detection of deep venous thrombosis. (orig.) [German] Eine neue schnelle, oertlich hochaufgeloeste MR-Phlebographietechnik mit einer axialen True-FISP Bildgebungssequenz wurde an 20 Patienten mit 23 nach-gewiesenen tiefen Beinvenenthrombosen untersucht. Die Befunde wurden mit einer konventionellen Roentgenphlebographie, einer CT oder einer Sonographie gesichert. Die vorgestellte Technik erlaubte in allen Faellen eine Thrombusdarstellung mit hohem Kontrast zum umgebenden venoesen Blut, wobei aufgrund der hohen Ortsaufloesung auch die Unterschenkelvenen beurteilt werden konnten. Die Datenaufnahmezeit zur Untersuchung des Beckens und der Beine betrug weniger als 10 Minuten. Kontrastmittel wurde nicht benoetigt. Die vorgestellte MR-Phlebographietechnik unter Verwendung einer oertlich hochauf-geloesten True-FISP Sequenz ist eine neue, vielversprechende, nicht-invasive Technik zur Diagnostik der tiefen Bein- und Beckenvenenthrombose. (orig.)

  14. Diagnosis of ocular surface lesions using ultra-high-resolution optical coherence tomography.

    Science.gov (United States)

    Shousha, Mohamed Abou; Karp, Carol L; Canto, Ana Paula; Hodson, Kelly; Oellers, Patrick; Kao, Andrew A; Bielory, Brett; Matthews, Jared; Dubovy, Sander R; Perez, Victor L; Wang, Jianhua

    2013-05-01

    To assess the use of ultra-high-resolution (UHR) optical coherence tomography (OCT) in the diagnosis of ocular surface lesions. Prospective, noncomparative, interventional case series. Fifty-four eyes of 53 consecutive patients with biopsy-proven ocular surface lesions: 8 primary acquired melanosis lesions, 5 amelanotic melanoma lesions, 2 nevi, 19 ocular surface squamous neoplasia lesions, 1 histiocytosis lesion, 6 conjunctival lymphoma lesions, 2 conjunctival amyloidosis lesions, and 11 pterygia lesions. Ultra-high-resolution OCT imaging of the ocular surface lesions. Clinical course and photographs, UHR OCT image, and histopathologic findings. Ultra-high-resolution OCT images of all examined ocular surface lesions showed close correlation with the obtained histopathologic specimens. When clinical differential diagnosis of ocular surface lesions was broad, UHR OCT images provided optical signs indicating a more specific diagnosis and management. In cases of amelanotic melanoma, conjunctival amyloidosis, and primary histiocytosis and in 1 case of ocular surface squamous neoplasia, UHR OCT was instrumental in guiding the diagnosis. In those cases, UHR OCT suggested that the presumed clinical diagnosis was incorrect and favored a diagnosis that later was confirmed by histopathologic examination. Correlations between UHR OCT and histopathologic findings confirm that UHR OCT is an adjunctive diagnostic method that can provide a noninvasive means to help guide diagnosis and management of ocular surface lesions. The author(s) have no proprietary or commercial interest in any materials discussed in this article. Copyright © 2013 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  15. High-resolution MR imaging of the asymptomatic Achilles tendon: new observations.

    Science.gov (United States)

    Soila, K; Karjalainen, P T; Aronen, H J; Pihlajamäki, H K; Tirman, P J

    1999-08-01

    Our aim was to describe the normal appearance of the Achilles tendon and peritendinous tissues in asymptomatic active volunteers using high-resolution MR imaging. One hundred clinically asymptomatic Achilles tendons were imaged at 1.5 T with axial high-resolution T1-weighted gradient-echo (fast low-angle shot [FLASH]) and short inversion time inversion recovery (STIR) sequences. The tendons, peritendinous tissues, tendon insertions, and musculotendinous junctions were separately evaluated by two observers. The average anteroposterior diameter (+/-SD) of the asymptomatic Achilles tendons was 5.2+/-0.73 mm. The anterior margin was flat or concave in all, except for 10 tendons that showed mild convexity. A wave-like bulge, which shifted from lateral to medial in the craniocaudal direction, was detected in the anterior margin of 56 tendons. The signal intensity was heterogeneous in 45 tendons. In these tendons, distal stripes or punctate foci were seen. A small (3 mm) intermediate intensity intratendinous region thought to represent tendon degeneration was detected in four cases on FLASH images. The retrocalcaneal bursae contained a prominent fluid collection in 15 cases. The paratenon was visualized in all cases on both FLASH and STIR images. High-resolution MR imaging depicts the Achilles tendon and peritendinous soft tissues in great detail. The normal anatomy of the asymptomatic Achilles tendon is variable. We postulate that the variability may be a potential source of diagnostic misinterpretation.

  16. Preliminary clinical evaluation of a high-resolution telemammography system.

    Science.gov (United States)

    Maitz, G S; Chang, T S; Sumkin, J H; Wintz, P W; Johns, C M; Ganott, M; Holbert, B L; Hakim, C M; Harris, K M; Gur, D; Herron, J M

    1997-04-01

    The authors designed, assembled, tested, and clinically evaluated a high-quality, fast, and relatively inexpensive telemammography system. The authors designed a telemammography system that uses a high-resolution film digitizer and high data compression (> or = 40:1) to send images over regular telephone lines to a high-resolution laser printer that produces images with the look and feel of the original image and can operate in a hub and spokes mode. The authors then evaluated the system's performance. In a preliminary clinical study, interpretations of the laser-printed system's output of 119 cases were compared with the original interpretations, followed by a review of any clinically significant differences. With the exception of the laser printer, which is a modified off-the-shelf product, all hardware components of the system are commercially available products. The system digitizes (50 microns pixel size), compresses, transmits, receives, decompresses, and prints a 30 MB mammography file in less than 4 minutes. In the clinical study, there were 13 differences (in 13 cases) in the level of concern or recommendations. Seven were found to be clinically insignificant by a third-party review. The remaining six were reviewed by the original interpreter, and three were determined to be significant enough for further action. All were found to result from intra-reader variability rather than differences in visualization of possible abnormalities. Almost real-time, high-quality telemammography without geographic boundaries is possible with the use of high-level data compression. Telemammography with laser-printed film as the display may make it possible to offer mammographic services in remote locations while using commercially available technology.

  17. High resolution remote sensing of water surface patterns

    Science.gov (United States)

    Woodget, A.; Visser, F.; Maddock, I.; Carbonneau, P.

    2012-12-01

    The assessment of in-stream habitat availability within fluvial environments in the UK traditionally includes the mapping of patterns which appear on the surface of the water, known as 'surface flow types' (SFTs). The UK's River Habitat Survey identifies ten key SFTs, including categories such as rippled flow, upwelling, broken standing waves and smooth flow. SFTs result from the interaction between the underlying channel morphology, water depth and velocity and reflect the local flow hydraulics. It has been shown that SFTs can be both biologically and hydraulically distinct. SFT mapping is usually conducted from the river banks where estimates of spatial coverage are made by eye. This approach is affected by user subjectivity and inaccuracies in the spatial extent of mapped units. Remote sensing and specifically the recent developments in unmanned aerial systems (UAS) may now offer an alternative approach for SFT mapping, with the capability for rapid and repeatable collection of very high resolution imagery from low altitudes, under bespoke flight conditions. This PhD research is aimed at investigating the mapping of SFTs using high resolution optical imagery (less than 10cm) collected from a helicopter-based UAS flown at low altitudes (less than 100m). This paper presents the initial findings from a series of structured experiments on the River Arrow, a small lowland river in Warwickshire, UK. These experiments investigate the potential for mapping SFTs from still and video imagery of different spatial resolutions collected at different flying altitudes and from different viewing angles (i.e. vertical and oblique). Imagery is processed using 3D mosaicking software to create orthophotos and digital elevation models (DEM). The types of image analysis which are tested include a simple, manual visual assessment undertaken in a GIS environment, based on the high resolution optical imagery. In addition, an object-based image analysis approach which makes use of the

  18. Synthesis of rainfall time series in a high temporal resolution

    Science.gov (United States)

    Callau Poduje, Ana Claudia; Haberlandt, Uwe

    2014-05-01

    In order to optimize the design and operation of urban drainage systems, long and continuous rain series in a high temporal resolution are essential. As the length of the rainfall records is often short, particularly the data available with the temporal and regional resolutions required for urban hydrology, it is necessary to find some numerical representation of the precipitation phenomenon to generate long synthetic rainfall series. An Alternating Renewal Model (ARM) is applied for this purpose, which consists of two structures: external and internal. The former is the sequence of wet and dry spells, described by their durations which are simulated stochastically. The internal structure is characterized by the amount of rain corresponding to each wet spell and its distribution within the spell. A multivariate frequency analysis is applied to analyze the internal structure of the wet spells and to generate synthetic events. The stochastic time series must reproduce the statistical characteristics of observed high resolution precipitation measurements used to generate them. The spatio-temporal interdependencies between stations are addressed by resampling the continuous synthetic series based on the Simulated Annealing (SA) procedure. The state of Lower-Saxony and surrounding areas, located in the north-west of Germany is used to develop the ARM. A total of 26 rainfall stations with high temporal resolution records, i.e. rainfall data every 5 minutes, are used to define the events, find the most suitable probability distributions, calibrate the corresponding parameters, simulate long synthetic series and evaluate the results. The length of the available data ranges from 10 to 20 years. The rainfall series involved in the different steps of calculation are compared using a rainfall-runoff model to simulate the runoff behavior in urban areas. The EPA Storm Water Management Model (SWMM) is applied for this evaluation. The results show a good representation of the

  19. High Resolution X-ray Views of Solar System Objects

    Science.gov (United States)

    Branduardi-Raymont, Graziella

    2011-05-01

    Over the last decade Chandra, and XMM-Newton, have revealed the beauty and multiplicity of X-ray emissions in our solar system: high resolution data, in both spectral and spatial domains, have been crucial in disentangling the physical processes at work. The talk will review the main findings in this area at the boundary between astrophysics and planetary science, and will show how the solar system offers `next door’ examples of widespread astrophysical phenomena. Jupiter shows bright X-ray aurorae, arising from the interactions of local and/or solar wind ions, and electrons, with its powerful magnetic environment: the ions undergo charge exchange with atmospheric neutrals and generate soft X-ray line emission, and the electrons give rise to bremsstrahlung X-rays. Chandra's unparalleled spatial resolution has shown how the X-ray footprints of the electrons in the aurorae coincide with the bright FUV auroral oval, indicating that the same electron population is likely to be at the origin of both emissions. Moreover, Jupiter's disk scatters solar X-rays, displaying a spectrum that closely resembles that of solar flares. Saturn has not revealed X-ray aurorae (yet), but its disk X-ray brightness, like Jupiter's, is strictly correlated with the Sun's X-ray output. A bright X-ray spot has also been resolved by Chandra on the eastern ansa of Saturn's rings, and its spectrum suggests an origin in the fluorescent scattering of solar X-rays on the rings icy particles. Both Mars and Venus have X-ray emitting disks and exospheres, which can be clearly resolved at high spectral and spatial resolution. And the Earth has bright X-ray aurorae that have been targets of Chandra observations. Finally, comets, with their extended neutral comae and extremely line-rich X-ray spectra, are spectacular X-ray sources, and ideal probes of the conditions of the solar wind in the Sun's proximity.

  20. Metallic magnetic calorimeters for high resolution X-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Krantz, M.; Hengstler, D.; Geist, J.; Schoetz, C.; Hassel, K.; Hendricks, S.; Keller, M.; Kempf, S.; Gastaldo, L.; Fleischmann, A.; Enss, C. [Heidelberg Univ. (Germany). KIP

    2015-07-01

    We develop microfabricated, energy dispersive particle detector arrays based on metallic magnetic calorimeters (MMCs) for high resolution X-ray spectroscopy to challenge bound-state QED calculations. Our MMCs are operated at about T=30 mK and use a paramagnetic temperature sensor, read-out by a SQUID, to measure the energy deposited by single X-ray photons. We discuss the physics of MMCs, the detector performance and the cryogenic setups for two different detector arrays. We present their microfabrication layouts with focus on challenges like the heatsinking of each pixel of the detector and the overhanging absorbers. The maXs-20 detector is a linear 1x8-pixel array with excellent linearity in its designated energy range up to 20 keV and unsurpassed energy resolution of 1.6 eV for 6 keV x-rays. MaXs-20 operated in a highly portable pulse tube cooled ADR setup has already been used at the EBIT facilities of the MPI-K for new reference measurements of V-like and Ti-like tungsten. The maXs-30 detector currently in development is a 8x8-pixel 2d-array with an active detection area of 16 mm{sup 2} and is designed to detect X-rays up to 50 keV with a designated energy resolution below 5 eV. MaXs-30 will be operated in a cryogen free 3He/4He-dilution refrigerator at the tip of a 40 cm long cold finger at T=20 mK.

  1. High resolution 3D imaging of synchrotron generated microbeams

    Energy Technology Data Exchange (ETDEWEB)

    Gagliardi, Frank M., E-mail: frank.gagliardi@wbrc.org.au [Alfred Health Radiation Oncology, The Alfred, Melbourne, Victoria 3004, Australia and School of Medical Sciences, RMIT University, Bundoora, Victoria 3083 (Australia); Cornelius, Iwan [Imaging and Medical Beamline, Australian Synchrotron, Clayton, Victoria 3168, Australia and Centre for Medical Radiation Physics, University of Wollongong, Wollongong, New South Wales 2500 (Australia); Blencowe, Anton [Division of Health Sciences, School of Pharmacy and Medical Sciences, The University of South Australia, Adelaide, South Australia 5000, Australia and Division of Information Technology, Engineering and the Environment, Mawson Institute, University of South Australia, Mawson Lakes, South Australia 5095 (Australia); Franich, Rick D. [School of Applied Sciences and Health Innovations Research Institute, RMIT University, Melbourne, Victoria 3000 (Australia); Geso, Moshi [School of Medical Sciences, RMIT University, Bundoora, Victoria 3083 (Australia)

    2015-12-15

    Purpose: Microbeam radiation therapy (MRT) techniques are under investigation at synchrotrons worldwide. Favourable outcomes from animal and cell culture studies have proven the efficacy of MRT. The aim of MRT researchers currently is to progress to human clinical trials in the near future. The purpose of this study was to demonstrate the high resolution and 3D imaging of synchrotron generated microbeams in PRESAGE® dosimeters using laser fluorescence confocal microscopy. Methods: Water equivalent PRESAGE® dosimeters were fabricated and irradiated with microbeams on the Imaging and Medical Beamline at the Australian Synchrotron. Microbeam arrays comprised of microbeams 25–50 μm wide with 200 or 400 μm peak-to-peak spacing were delivered as single, cross-fire, multidirectional, and interspersed arrays. Imaging of the dosimeters was performed using a NIKON A1 laser fluorescence confocal microscope. Results: The spatial fractionation of the MRT beams was clearly visible in 2D and up to 9 mm in depth. Individual microbeams were easily resolved with the full width at half maximum of microbeams measured on images with resolutions of as low as 0.09 μm/pixel. Profiles obtained demonstrated the change of the peak-to-valley dose ratio for interspersed MRT microbeam arrays and subtle variations in the sample positioning by the sample stage goniometer were measured. Conclusions: Laser fluorescence confocal microscopy of MRT irradiated PRESAGE® dosimeters has been validated in this study as a high resolution imaging tool for the independent spatial and geometrical verification of MRT beam delivery.

  2. High Resolution/High Fidelity Seismic Imaging and Parameter Estimation for Geological Structure and Material Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Ru-Shan Wu; Xiao-Bi Xie

    2008-06-08

    Our proposed work on high resolution/high fidelity seismic imaging focused on three general areas: (1) development of new, more efficient, wave-equation-based propagators and imaging conditions, (2) developments towards amplitude-preserving imaging in the local angle domain, in particular, imaging methods that allow us to estimate the reflection as a function of angle at a layer boundary, and (3) studies of wave inversion for local parameter estimation. In this report we summarize the results and progress we made during the project period. The report is divided into three parts, totaling 10 chapters. The first part is on resolution analysis and its relation to directional illumination analysis. The second part, which is composed of 6 chapters, is on the main theme of our work, the true-reflection imaging. True-reflection imaging is an advanced imaging technology which aims at keeping the image amplitude proportional to the reflection strength of the local reflectors or to obtain the reflection coefficient as function of reflection-angle. There are many factors which may influence the image amplitude, such as geometrical spreading, transmission loss, path absorption, acquisition aperture effect, etc. However, we can group these into two categories: one is the propagator effect (geometric spreading, path losses); the other is the acquisition-aperture effect. We have made significant progress in both categories. We studied the effects of different terms in the true-amplitude one-way propagators, especially the terms including lateral velocity variation of the medium. We also demonstrate the improvements by optimizing the expansion coefficients in different terms. Our research also includes directional illumination analysis for both the one-way propagators and full-wave propagators. We developed the fast acquisition-aperture correction method in the local angle-domain, which is an important element in the true-reflection imaging. Other developments include the super

  3. Improving the lateral resolution of quartz tuning fork-based sensors in liquid by integrating commercial AFM tips into the fiber end.

    Science.gov (United States)

    Gonzalez, Laura; Martínez-Martín, David; Otero, Jorge; de Pablo, Pedro José; Puig-Vidal, Manel; Gómez-Herrero, Julio

    2015-01-14

    The use of quartz tuning fork sensors as probes for scanning probe microscopy is growing in popularity. Working in shear mode, some methods achieve a lateral resolution comparable with that obtained with standard cantilevered probes, but only in experiments conducted in air or vacuum. Here, we report a method to produce and use commercial AFM tips in electrically driven quartz tuning fork sensors operating in shear mode in a liquid environment. The process is based on attaching a standard AFM tip to the end of a fiber probe which has previously been sharpened. Only the end of the probe is immersed in the buffer solution during imaging. The lateral resolution achieved is about 6 times higher than that of the etched microfiber on its own.

  4. High-Resolution EUV Spectroscopy of White Dwarfs

    Science.gov (United States)

    Kowalski, Michael P.; Wood, K. S.; Barstow, M. A.

    2014-01-01

    We compare results of high-resolution EUV spectroscopic measurements of the isolated white dwarf G191-B2B and the binary system Feige 24 obtained with the J-PEX (Joint Plasmadynamic Experiment), which was sponsored jointly by the U.S. Naval Research Laboratory and NASA. J-PEX delivers the world's highest resolution in EUV and does so at high effective area (e.g., more effective area in a sounding rocket than is available with Chandra at adjacent energies, but in a waveband Chandra cannot reach). The capability J-PEX represents is applicable to the astrophysics of hot plasmas in stellar coronae, white dwarfs and the ISM. G191-B2B and Feige 24 are quite distinct hot white dwarf systems having in common that they are bright in the portion of the EUV where He emission features and edges occur, hence they can be exploited to probe both the stellar atmosphere and the ISM, separating those components by model-fitting that sums over all relevant (He) spectral features in the band. There is evidence from these fits that atmospheric He is being detected but the result is more conservatively cast as a pair of upper limits. We discuss how longer duration satellite observations with the same instrumentation could increase exposure to detect atmospheric He in these and other nearby hot white dwarfs.

  5. High Resolution Spectral Analysis for Irregularly Sampled Helioseismic Data

    Science.gov (United States)

    Seghouani, N.

    2006-11-01

    Astronomical ground based data are very often irregularly sampled due to many factors such as: diurnal effect, weather conditions, etc. The analysis of such data cannot be performed with classical tools (such as periodigram) and new adapted methods are required. After presenting some of these techniques, we will focus on a regularized approach of the spectral analysis problem, which gives very good results in the case of band limited and narrow peaks spectrum. We will also show that with this approach we can achieve high-resolution spectra. Indeed, in classical Fourier analysis, spectral resolution is inversely proportional to the observation time T. Considering the spectral analysis problem as an inverse problem and introducing the “a priori” knowledge of band limited and narrow peak spectrum, this limit (1/T) can be exceeded and thus we can achieve highly resolved spectra, even with irregularly sampled data. This technique will be first applied to relevant simulated data, then to helioseismic data. Additional talk: “Brief description of solar projects in Algiers Observatory” A brief description of all projects developed in our department and that are related to the sun: helioseismology, solar data analysis (pipelines description), solar activity, VLF project, solar astrolabe (for solar diameter measurement), site testing for day-time observations, and the project of solar observatory in the Tamanrasset area.

  6. Bright Semiconductor Scintillator for High Resolution X-Ray Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Nagarkar, Vivek V.; Gaysinskiy, Valeriy; Ovechkina, Olena E.; Miller, Stuart; Singh, Bipin; Guo, Liang; Irving, Thomas (IIT); (Rad. Monitoring)

    2011-08-16

    We report on a novel approach to produce oxygen-doped zinc telluride (ZnTe:O), a remarkable group II-VI semiconductor scintillator, fabricated in the columnar-structured or polycrystalline forms needed to fulfill the needs of many demanding X-ray and {gamma}-ray imaging applications. ZnTe:O has one of the highest conversion efficiencies among known scintillators, emission around 680 nm (which is ideally suited for CCD sensors), high density of 6.4 g/cm{sup 3}, fast decay time of {approx}1 {micro}s with negligible afterglow, and orders of magnitude higher radiation resistance compared to commonly used scintillators. These properties allow the use of ZnTe:O in numerous applications, including X-ray imaging, nuclear medicine (particularly SPECT), room temperature radioisotope identification, and homeland security. Additionally, ZnTe:O offers distinct advantages for synchrotron-based high resolution imaging due to the absence of atomic absorption edges in the low energy range, which otherwise reduce resolution due to secondary X-ray formations. We have fabricated films of ZnTe:O using a vapor deposition technique that allows large-area structured scintillator fabrication in a time- and cost-efficient manner, and evaluated its performance for small-angle X-ray scattering (SAXS) at an Argonne National Laboratory synchrotron beamline. Details of the fabrication and characterization of the optical, scintillation and imaging properties of the ZnTe:O films are presented in this paper.

  7. High-resolution diffraction grating interferometric transducer of linear displacements

    Science.gov (United States)

    Shang, Ping; Xia, Haojie; Fei, Yetai

    2016-01-01

    A high-resolution transducer of linear displacements is presented. The system is based on semiconductor laser illumination and a diffraction grating applied as a length master. The theory of the optical method is formulated using Doppler description. The relationship model among the interference strips, measurement errors, grating deflection around the X, Y and Z axes and translation along the Z axis is built. The grating interference strips' direction and space is not changed with movement along the X (direction of grating movement), Y (direction of grating line), Z axis, and the direction and space has a great effect when rotating around the X axis. Moreover the space is little affected by deflection around the Z axis however the direction is changed dramatically. In addition, the strips' position shifted rightward or downwards respectively for deflection around the X or Y axis. Because the emitted beams are separated on the grating plane, the tilt around the X axis error of the stage during motion will lead to the optical path difference of the two beams resulting in phase shift. This study investigates the influence of the tilt around the X axis error. Experiments show that after yaw error compensation, the high-resolution diffraction grating interferometric transducer readings can be significantly improved. The error can be reduced from +/-80 nm to +/-30 nm in maximum.

  8. A New, Adaptable, Optical High-Resolution 3-Axis Sensor

    Directory of Open Access Journals (Sweden)

    Niels Buchhold

    2017-01-01

    Full Text Available This article presents a new optical, multi-functional, high-resolution 3-axis sensor which serves to navigate and can, for example, replace standard joysticks in medical devices such as electric wheelchairs, surgical robots or medical diagnosis devices. A light source, e.g., a laser diode, is affixed to a movable axis and projects a random geometric shape on an image sensor (CMOS or CCD. The downstream microcontroller’s software identifies the geometric shape’s center, distortion and size, and then calculates x, y, and z coordinates, which can be processed in attached devices. Depending on the image sensor in use (e.g., 6.41 megapixels, the 3-axis sensor features a resolution of 1544 digits from right to left and 1038 digits up and down. Through interpolation, these values rise by a factor of 100. A unique feature is the exact reproducibility (deflection to coordinates and its precise ability to return to its neutral position. Moreover, optical signal processing provides a high level of protection against electromagnetic and radio frequency interference. The sensor is adaptive and adjustable to fit a user’s range of motion (stroke and force. This recommendation aims to optimize sensor systems such as joysticks in medical devices in terms of safety, ease of use, and adaptability.

  9. Optimized generation of high resolution breast anthropomorphic software phantoms

    Science.gov (United States)

    Pokrajac, David D.; Maidment, Andrew D. A.; Bakic, Predrag R.

    2012-01-01

    Purpose: The authors present an efficient method for generating anthropomorphic software breast phantoms with high spatial resolution. Employing the same region growing principles as in their previous algorithm for breast anatomy simulation, the present method has been optimized for computational complexity to allow for fast generation of the large number of phantoms required in virtual clinical trials of breast imaging. Methods: The new breast anatomy simulation method performs a direct calculation of the Cooper’s ligaments (i.e., the borders between simulated adipose compartments). The calculation corresponds to quadratic decision boundaries of a maximum a posteriori classifier. The method is multiscale due to the use of octree-based recursive partitioning of the phantom volume. The method also provides user-control of the thickness of the simulated Cooper’s ligaments and skin. Results: Using the proposed method, the authors have generated phantoms with voxel size in the range of (25–1000 μm)3/voxel. The power regression of the simulation time as a function of the reciprocal voxel size yielded a log-log slope of 1.95 (compared to a slope of 4.53 of our previous region growing algorithm). Conclusions: A new algorithm for computer simulation of breast anatomy has been proposed that allows for fast generation of high resolution anthropomorphic software phantoms. PMID:22482649

  10. CHIRON – A new high resolution spectrometer for CTIO

    Directory of Open Access Journals (Sweden)

    Marcy G.W.

    2011-07-01

    Full Text Available Small telescopes can play an important role in the search for exoplanets because they offer an opportunity for high cadence observations that are not possible with large aperture telescopes. However, there is a shortage of high resolution spectrometers for precision Doppler planet searches. We report on an innovative design for CHIRON, an inexpensive spectrometer that we are building for the 1.5-m telescope at CTIO in Chile. The resolution will be R >80.000, the spectral format spanning 410 to 880 nm. The total throughput of the telescope and spectrometer will be better than 12%, comparable with the efficiency of state-of-the-art spectrometers. The design is driven by the requirements for precision Doppler searches for exoplanets using an iodine cell. The optical layout is a classical echelle with 140 mm beam size. The bench-mounted spectrometer will be fibre-fed followed by an image slicer. An apochromatic refractor is used as the camera. Image quality and throughput of the design are excellent over the full spectral range. Extensive use of commercially available components and avoidance of complicated custom optics are key for quick and resource-efficient implementation.

  11. High-Resolution Mars Camera Test Image of Moon (Infrared)

    Science.gov (United States)

    2005-01-01

    This crescent view of Earth's Moon in infrared wavelengths comes from a camera test by NASA's Mars Reconnaissance Orbiter spacecraft on its way to Mars. The mission's High Resolution Imaging Science Experiment camera took the image on Sept. 8, 2005, while at a distance of about 10 million kilometers (6 million miles) from the Moon. The dark feature on the right is Mare Crisium. From that distance, the Moon would appear as a star-like point of light to the unaided eye. The test verified the camera's focusing capability and provided an opportunity for calibration. The spacecraft's Context Camera and Optical Navigation Camera also performed as expected during the test. The Mars Reconnaissance Orbiter, launched on Aug. 12, 2005, is on course to reach Mars on March 10, 2006. After gradually adjusting the shape of its orbit for half a year, it will begin its primary science phase in November 2006. From the mission's planned science orbit about 300 kilometers (186 miles) above the surface of Mars, the high resolution camera will be able to discern features as small as one meter or yard across.

  12. High-Resolution Displacement Sensor Using a SQUID Array Amplifier

    Science.gov (United States)

    Chui, Talso; Penanen, Konstantin; Barmatz, M.; Paik, Ho Jung

    2004-01-01

    Improvement in the measurement of displacement has profound implications for both exploration technologies and fundamental physics. For planetary exploration, the new SQUID-based capacitive displacement sensor will enable a more sensitive gravity gradiometer for mapping the interior of planets and moons. A new concept of a superfluid clock to be reported by Penanen and Chui at this workshop is also based on a high-resolution displacement sensor. Examples of high-impact physics projects that can benefit from a better displacement sensor are: detection of gravitational waves, test of the equivalence principle, search for the postulated "axion" particle, and test of the inverse square law of gravity. We describe the concept of a new displacement sensor that makes use of a recent development in the Superconducting Quantum Interference Device (SQUID) technology. The SQUID array amplifier, invented by Welty and Martinis (IEEE Trans. Appl. Superconductivity 3, 2605, 1993), has about the same noise as a conventional SQUID; however, it can work at a much higher frequency of up to 5 MHz. We explain how the higher bandwidth can be translated into higher resolution using a bridge-balancing scheme that can simultaneously balance out both the carrier signal at the bridge output and the electrostatic force acting on the test mass.

  13. High temporal resolution functional MRI using parallel echo volumar imaging

    Energy Technology Data Exchange (ETDEWEB)

    Rabrait, C.; Ciuciu, P.; Ribes, A.; Poupon, C.; Dehaine-Lambertz, G.; LeBihan, D.; Lethimonnier, F. [CEA Saclay, DSV, I2BM, Neurospin, F-91191 Gif Sur Yvette (France); Le Roux, P. [GEHC, Buc (France); Dehaine-Lambertz, G. [Unite INSERM 562, Gif Sur Yvette (France)

    2008-07-01

    Purpose: To combine parallel imaging with 3D single-shot acquisition (echo volumar imaging, EVI) in order to acquire high temporal resolution volumar functional MRI (fMRI) data. Materials and Methods: An improved EVI sequence was associated with parallel acquisition and field of view reduction in order to acquire a large brain volume in 200 msec. Temporal stability and functional sensitivity were increased through optimization of all imaging parameters and Tikhonov regularization of parallel reconstruction. Two human volunteers were scanned with parallel EVI in a 1.5 T whole-body MR system, while submitted to a slow event-related auditory paradigm. Results: Thanks to parallel acquisition, the EVI volumes display a low level of geometric distortions and signal losses. After removal of low-frequency drifts and physiological artifacts,activations were detected in the temporal lobes of both volunteers and voxel-wise hemodynamic response functions (HRF) could be computed. On these HRF different habituation behaviors in response to sentence repetition could be identified. Conclusion: This work demonstrates the feasibility of high temporal resolution 3D fMRI with parallel EVI. Combined with advanced estimation tools,this acquisition method should prove useful to measure neural activity timing differences or study the nonlinearities and non-stationarities of the BOLD response. (authors)

  14. Characterization of ceramic archaeological by high resolution X ray microtomography

    Energy Technology Data Exchange (ETDEWEB)

    Machado, Alessandra C.; Freitas, Renato; Calza, Cristiane F.; Lopes, Ricardo T.; Lima, Inaya, E-mail: alecastro@lin.ufrj.br [Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Lab. de Instrumentacao Nuclear; Carvalho, Daniele D.; Gaspar, Maria D. [Museu Nacional (MN/UFRJ), RJ (Brazil). Centro de Tecnologia

    2013-07-01

    Characterization of ceramic fragments is a very important area of research in art and archeometry area because it enables a greater understanding of how ancient civilizations behave and what were their traditions and customs. Petrography and chemical analyses are commonly used, but these techniques are destructive, which is not interesting for this type of sample. Through the exchange of multidisciplinary scientific knowledge and new partnerships, high resolution X-ray microtomography has been introduced in archaeological area as a great possibility of 3D inspection in a non-destructive way. The goal of this work is to investigate the internal microstructures of four samples of archeological ceramic, from the Archaeological Site of Macacu - RJ. The X-ray microtomography were performed in a high resolution setup, and can be used to infer the nature of organic temper even with all plant remains completely burnt out during the firing process and also to ensure the homogeneity of samples envisaged for geochemical analyses, especially with respect to the distribution of chemically diverse fabric compounds. In this way this study intends to contribute to our understanding of the archaeological and historical formations of this region. (author)

  15. Segmentation of Striatal Brain Structures from High Resolution PET Images

    Directory of Open Access Journals (Sweden)

    Ricardo J. P. C. Farinha

    2009-01-01

    Full Text Available We propose and evaluate an automatic segmentation method for extracting striatal brain structures (caudate, putamen, and ventral striatum from parametric C11-raclopride positron emission tomography (PET brain images. We focus on the images acquired using a novel brain dedicated high-resolution (HRRT PET scanner. The segmentation method first extracts the striatum using a deformable surface model and then divides the striatum into its substructures based on a graph partitioning algorithm. The weighted kernel k-means algorithm is used to partition the graph describing the voxel affinities within the striatum into the desired number of clusters. The method was experimentally validated with synthetic and real image data. The experiments showed that our method was able to automatically extract caudate, ventral striatum, and putamen from the images. Moreover, the putamen could be subdivided into anterior and posterior parts. An automatic method for the extraction of striatal structures from high-resolution PET images allows for inexpensive and reproducible extraction of the quantitative information from these images necessary in brain research and drug development.

  16. Coded aperture subreflector array for high resolution radar imaging

    Science.gov (United States)

    Lynch, Jonathan J.; Herrault, Florian; Kona, Keerti; Virbila, Gabriel; McGuire, Chuck; Wetzel, Mike; Fung, Helen; Prophet, Eric

    2017-05-01

    HRL Laboratories has been developing a new approach for high resolution radar imaging on stationary platforms. High angular resolution is achieved by operating at 235 GHz and using a scalable tile phased array architecture that has the potential to realize thousands of elements at an affordable cost. HRL utilizes aperture coding techniques to minimize the size and complexity of the RF electronics needed for beamforming, and wafer level fabrication and integration allow tiles containing 1024 elements to be manufactured with reasonable costs. This paper describes the results of an initial feasibility study for HRL's Coded Aperture Subreflector Array (CASA) approach for a 1024 element micromachined antenna array with integrated single-bit phase shifters. Two candidate electronic device technologies were evaluated over the 170 - 260 GHz range, GaN HEMT transistors and GaAs Schottky diodes. Array structures utilizing silicon micromachining and die bonding were evaluated for etch and alignment accuracy. Finally, the overall array efficiency was estimated to be about 37% (not including spillover losses) using full wave array simulations and measured device performance, which is a reasonable value at 235 GHz. Based on the measured data we selected GaN HEMT devices operated passively with 0V drain bias due to their extremely low DC power dissipation.

  17. Photometric correction of VIR high space resolution data of Ceres

    Science.gov (United States)

    Longobardo, Andrea; Palomba, Ernesto; De Sanctis, Maria Cristina; Ciarniello, Mauro; Tosi, Federico; Giacomo Carrozzo, Filippo; Capria, Maria Teresa; Zambon, Francesca; Raponi, Andrea; Ammannito, Eleonora; Zinzi, Angelo; Raymond, Carol; Russell, Christopher T.; VIR-Dawn Team

    2016-10-01

    NASA's Dawn spacecraft [1] has been orbiting Ceres since early 2015. The mission is divided into five stages, characterized by different spacecraft altitudes corresponding to different space resolutions, i.e. Approach (CSA), Rotational Characterization (CSR), Survey (CSS), High Altitude Mapping Orbit (HAMO), and Low Altitude Mapping Orbit (LAMO).Ceres is a dark body (i.e. average albedo at 1.2 um is 0.08 [2]), hence photometric correction is much more important than for brighter asteroids (e.g. S-type and achondritric). Indeed, the negligible role of multiple scattering increases the reflectance dependence on phase angle.A photometric correction of VIR data at low spatial resolution (i.e. CSA, CSR, CSS) has already been applied with different methodologies (e.g. [2], [3]), These techniques highlight a reflectance and band depths dependency on the phase angle which is homogeneous on the entire surface in agreement with C-type taxonomy.However, with increasing spatial resolution (i.e. HAMO and LAMO data), the retrieval of a unique set of parameters for the photometric correction is no longer sufficient to obtain reliable albedo/band depth maps. In this work, a new photometric correction is obtained and applied to all the high resolution VIR data of Ceres, taking into account the reflectance variations observed at small scales. The developed algorithm will be implemented on the MATISSE tool [4] in order to be visualized on the Ceres shape model.Finally, an interpretation of the obtained phase functions is given in terms of optical and physical properties of the Ceres regolith.AcknowledgementsVIR was funded and coordinated by the Italian Space Agency, and built by SELEX ES, with the scientific leadership of IAPS-INAF, Rome, Italy, and is operated by IAPS-INAF, Rome, Italy. Support of the Dawn Science, Instrument, and Operation Teams is gratefully acknowledged.References[1] Russell, C. T. et al., 2012, Science 336, 686[2] Longobardo A., et al., 2016, LPSC, 2239

  18. Impacts of high resolution model downscaling in coastal regions

    Science.gov (United States)

    Bricheno, Lucy; Wolf, Judith

    2013-04-01

    With model development and cheaper computational resources ocean forecasts are becoming readily available, high resolution coastal forecasting is now a reality. This can only be achieved, however, by downscaling global or basin-scale products such as the MyOcean reanalyses and forecasts. These model products have resolution ranging from 1/16th - 1/4 degree, which are often insufficient for coastal scales, but can provide initialisation and boundary data. We present applications of downscaling the MyOcean products for use in shelf-seas and the nearshore. We will address the question 'Do coastal predictions improve with higher resolution modelling?' with a few focused examples, while also discussing what is meant by an improved result. Increasing resolution appears to be an obvious route for getting more accurate forecasts in operational coastal models. However, when models resolve finer scales, this may lead to the introduction of high-frequency variability which is not necessarily deterministic. Thus a flow may appear more realistic by generating eddies but the simple statistics like rms error and correlation may become less good because the model variability is not exactly in phase with the observations (Hoffman et al., 1995). By deciding on a specific process to simulate (rather than concentrating on reducing rms error) we can better assess the improvements gained by downscaling. In this work we will select two processes which are dominant in our case-study site: Liverpool Bay. Firstly we consider the magnitude and timing of a peak in tide-surge elevations, by separating out the event into timing (or displacement) and intensity (or amplitude) errors. The model can thus be evaluated on how well it predicts the timing and magnitude of the surge. The second important characteristic of Liverpool Bay is the position of the freshwater front. To evaluate model performance in this case, the location, sharpness, and temperature difference across the front will be

  19. High-Resolution Transmission Electron Microscopy - and Associated Techniques

    Science.gov (United States)

    Buseck, Peter; Cowley, John; Eyring, Leroy

    1989-02-01

    This book provides an introduction to the fundamental concepts, techniques, and methods used for electron microscopy at high resolution in space, energy, and even in time. It delineates the theory of elastic scattering, which is most useful for spectroscopic and chemical analyses. There are also discussions of the theory and practice of image calculations, and applications of HRTEM to the study of solid surfaces, highly disordered materials, solid state chemistry, mineralogy, semiconductors and metals. Contributors include J. Cowley, J. Spence, P. Buseck, P. Self, and M.A. O'Keefe. Compiled by experts in the fields of geology, physics and chemistry, this comprehensive text will be the standard reference for years to come.

  20. Sparse Representation Denoising for Radar High Resolution Range Profiling

    Directory of Open Access Journals (Sweden)

    Min Li

    2014-01-01

    Full Text Available Radar high resolution range profile has attracted considerable attention in radar automatic target recognition. In practice, radar return is usually contaminated by noise, which results in profile distortion and recognition performance degradation. To deal with this problem, in this paper, a novel denoising method based on sparse representation is proposed to remove the Gaussian white additive noise. The return is sparsely described in the Fourier redundant dictionary and the denoising problem is described as a sparse representation model. Noise level of the return, which is crucial to the denoising performance but often unknown, is estimated by performing subspace method on the sliding subsequence correlation matrix. Sliding window process enables noise level estimation using only one observation sequence, not only guaranteeing estimation efficiency but also avoiding the influence of profile time-shift sensitivity. Experimental results show that the proposed method can effectively improve the signal-to-noise ratio of the return, leading to a high-quality profile.

  1. High resolution image reconstruction with constrained, total-variation minimization

    CERN Document Server

    Sidky, Emil Y; Duchin, Yuval; Ullberg, Christer; Pan, Xiaochuan

    2011-01-01

    This work is concerned with applying iterative image reconstruction, based on constrained total-variation minimization, to low-intensity X-ray CT systems that have a high sampling rate. Such systems pose a challenge for iterative image reconstruction, because a very fine image grid is needed to realize the resolution inherent in such scanners. These image arrays lead to under-determined imaging models whose inversion is unstable and can result in undesirable artifacts and noise patterns. There are many possibilities to stabilize the imaging model, and this work proposes a method which may have an advantage in terms of algorithm efficiency. The proposed method introduces additional constraints in the optimization problem; these constraints set to zero high spatial frequency components which are beyond the sensing capability of the detector. The method is demonstrated with an actual CT data set and compared with another method based on projection up-sampling.

  2. Software-defined microwave photonic filter with high reconfigurable resolution.

    Science.gov (United States)

    Wei, Wei; Yi, Lilin; Jaouën, Yves; Hu, Weisheng

    2016-10-19

    Microwave photonic filters (MPFs) are of great interest in radio frequency systems since they provide prominent flexibility on microwave signal processing. Although filter reconfigurability and tunability have been demonstrated repeatedly, it is still difficult to control the filter shape with very high precision. Thus the MPF application is basically limited to signal selection. Here we present a polarization-insensitive single-passband arbitrary-shaped MPF with ~GHz bandwidth based on stimulated Brillouin scattering (SBS) in optical fibre. For the first time the filter shape, bandwidth and central frequency can all be precisely defined by software with ~MHz resolution. The unprecedented multi-dimensional filter flexibility offers new possibilities to process microwave signals directly in optical domain with high precision thus enhancing the MPF functionality. Nanosecond pulse shaping by implementing precisely defined filters is demonstrated to prove the filter superiority and practicability.

  3. High-resolution 3-T MR neurography of peroneal neuropathy

    Energy Technology Data Exchange (ETDEWEB)

    Chhabra, Avneesh; Faridian-Aragh, Neda; Chalian, Majid; Soldatos, Theodoros; Thawait, Shrey K. [Johns Hopkins Hospital, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD (United States); Williams, Eric H. [Johns Hopkins Hospital, Department of Plastic Surgery, Baltimore, MD (United States); Dellon Institute for Peripheral Nerve Surgery, Baltimore, MD (United States); Andreisek, Gustav [University Hospital Zurich, Institute for Diagnostic Radiology, Department of Medical Radiology, Zurich (Switzerland)

    2012-03-15

    The common peroneal nerve (CPN), a major terminal branch of the sciatic nerve, can be subject to a variety of pathologies, which may affect the nerve at any level from the lumbar plexus to its distal branches. Although the diagnosis of peripheral neuropathy is traditionally based on a patient's clinical findings and electrodiagnostic tests, magnetic resonance neurography (MRN) is gaining an increasing role in the definition of the type, site, and extent of peripheral nerve disorders. Current high-field MR scanners enable high-resolution and excellent soft-tissue contrast imaging of peripheral nerves. In the lower extremities, MR neurography has been employed in the demonstration of the anatomy and pathology of the CPN, as well as in the detection of associated secondary muscle denervation changes. This article reviews the normal appearance of the CPN as well as typical pathologies and abnormal findings at 3.0-T MR neurography of the lower extremity. (orig.)

  4. Controllable printing droplets for high-resolution patterns.

    Science.gov (United States)

    Kuang, Minxuan; Wang, Libin; Song, Yanlin

    2014-10-29

    Inkjet printing has attracted wide attention due to the important applications in fabricating biological, optical, and electrical devices. During the inkjet printing process, the solutes prefer to deposit along the droplet periphery and form an inhomogeneous morphology, known as the coffee-ring effect. Besides, the feature size of printed dots or lines of conventional inkjet printing is usually limited to tens or even hundreds of micrometers. The above two issues greatly restrict the extensive application of printed patterns in high-performance devices. This paper reviews the recent advances in precisely controlling the printing droplets for high-resolution patterns and three-dimensional structures, with a focus on the development to suppress the coffee-ring effect and minimize the feature size of printed dots or lines. A perspective on the remaining challenges of the research is also proposed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. High-resolution eye tracking using V1 neuron activity

    Science.gov (United States)

    McFarland, James M.; Bondy, Adrian G.; Cumming, Bruce G.; Butts, Daniel A.

    2014-01-01

    Studies of high-acuity visual cortical processing have been limited by the inability to track eye position with sufficient accuracy to precisely reconstruct the visual stimulus on the retina. As a result, studies on primary visual cortex (V1) have been performed almost entirely on neurons outside the high-resolution central portion of the visual field (the fovea). Here we describe a procedure for inferring eye position using multi-electrode array recordings from V1 coupled with nonlinear stimulus processing models. We show that this method can be used to infer eye position with one arc-minute accuracy – significantly better than conventional techniques. This allows for analysis of foveal stimulus processing, and provides a means to correct for eye-movement induced biases present even outside the fovea. This method could thus reveal critical insights into the role of eye movements in cortical coding, as well as their contribution to measures of cortical variability. PMID:25197783

  6. THE HIGH-RESOLUTION INFRARED SPECTRUM OF HCl{sup +}

    Energy Technology Data Exchange (ETDEWEB)

    Doménech, J. L.; Herrero, V. J.; Tanarro, I. [Molecular Physics Department, Instituto de Estructura de la Materia (IEM-CSIC), Serrano 123, E-28006 Madrid (Spain); Drouin, B. J. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109-8099 (United States); Cernicharo, J., E-mail: jl.domenech@csic.es [Molecular Astrophysics Group, Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Sor Juana Inés de la Cruz 3, Cantoblanco, E-28049 Madrid (Spain)

    2016-12-20

    The chloroniumyl cation, HCl{sup +}, has been recently identified in space from Herschel 's spectra. A joint analysis of extensive vis-UV spectroscopy emission data together with a few high-resolution and high-accuracy millimeter-wave data provided the necessary rest frequencies to support the astronomical identification. Nevertheless, the analysis did not include any infrared (IR) vibration–rotation data. Furthermore, with the end of the Herschel mission, IR observations from the ground may be one of the few available means to further study this ion in space. In this work, we provide a set of accurate rovibrational transition wavenumbers, as well as a new and improved global fit of vis-UV, IR, and millimeter-wave spectroscopy laboratory data, that will aid in future studies of this molecule.

  7. High-resolution ZTE imaging of human teeth.

    Science.gov (United States)

    Weiger, Markus; Pruessmann, Klaas P; Bracher, Anna-Katinka; Köhler, Sascha; Lehmann, Volker; Wolfram, Uwe; Hennel, Franciszek; Rasche, Volker

    2012-10-01

    MRI with zero echo time (ZTE) is achieved by 3D radial centre-out encoding and hard-pulse RF excitation while the projection gradient is already on. Targeting short-T(2) samples, the efficient, robust and silent ZTE approach was implemented for high-bandwidth high-resolution imaging requiring particularly rapid transmit-receive switching and algebraic image reconstruction. The ZTE technique was applied to image extracted human teeth at 11.7T field strength, yielding detailed depictions with very good delineation of the mineralised dentine and enamel layers. ZTE results are compared with UTE (ultra-short echo time) MRI and micro-computed tomography (μCT), revealing significant differences in SNR and CNR yields. Compared to μCT, ZTE MRI appears to be less susceptible to artefacts caused by dental fillings and to offer superior sensitivity for the detection of early demineralisation and caries lesions. Copyright © 2012 John Wiley & Sons, Ltd.

  8. High resolution X-ray CT for advanced electronics packaging

    Science.gov (United States)

    Oppermann, M.; Zerna, T.

    2017-02-01

    Advanced electronics packaging is a challenge for non-destructive Testing (NDT). More, smaller and mostly hidden interconnects dominate modern electronics components and systems. To solve the demands of customers to get products with a high functionality by low volume, weight and price (e.g. mobile phones, personal medical monitoring systems) often the designers use System-in-Package solutions (SiP). The non-destructive testing of such devices is a big challenge. So our paper will impart fundamentals and applications for non-destructive evaluation of inner structures of electronics packaging for quality assurance and reliability investigations with a focus on X-ray methods, especially on high resolution X-ray computed tomography (CT).

  9. High-magnification super-resolution FINCH microscopy using birefringent crystal lens interferometers

    Science.gov (United States)

    Siegel, Nisan; Lupashin, Vladimir; Storrie, Brian; Brooker, Gary

    2016-12-01

    Fresnel incoherent correlation holography (FINCH) microscopy is a promising approach for high-resolution biological imaging but has so far been limited to use with low-magnification, low-numerical-aperture configurations. We report the use of in-line incoherent interferometers made from uniaxial birefringent α-barium borate (α-BBO) or calcite crystals that overcome the aberrations and distortions present with previous implementations that employed spatial light modulators or gradient refractive index lenses. FINCH microscopy incorporating these birefringent elements and high-numerical-aperture oil immersion objectives could outperform standard wide-field fluorescence microscopy, with, for example, a 149 nm lateral point spread function at a wavelength of 590 nm. Enhanced resolution was confirmed with sub-resolution fluorescent beads. Taking the Golgi apparatus as a biological example, three different proteins labelled with GFP and two other fluorescent dyes in HeLa cells were resolved with an image quality that is comparable to similar samples captured by structured illumination microscopy.

  10. High Resolution ITRAX Analysis of Les Echets (France) Sedimentary Sequence: Linking Geochemical, Biological and Physical Proxies

    Science.gov (United States)

    Wohlfarth, B.; Kylander, M. E.; Ampel, L.; Veres, D.

    2008-12-01

    We present a 30 m long, high-resolution, independently-dated multi-proxy lake sediment record from Les Echets in south-central France which covers the later part of Marine Isotope Stage (MIS) 3 and MIS 2 (40 and 16 ka BP). The sediments in the lower part of the studied sequence are composed of alternating organic rich and minerogenic layers, while the upper part consists predominantly of silt and clay. Organic geochemical, geophysical and biological environmental indicators (grain size, mineral magnetic parameters, TOC, TN, LOI, stable carbon isotopes, rock eval, biogenic silica, and diatom assemblages) show alternating phases of higher and low lake organic productivity which are interpreted as a response to DO climate variability. XRF is a well-established analytical tool that has recently taken a new direction with the introduction of core scanning systems. The ITRAX XRF core scanning system is non-destructive, acquires continuous data for a broad range of elements in situ as well as generates radiographic images. The Les Echets sequence was analysed using the ITRAX at 1 mm resolution. The radiographic images show significant changes that were not revealed by lithostratigraphic descriptions. Distinct, dense layers are associated with changes in elemental intensities which would have been missed using traditional sub-sampling techniques. The high resolution elemental profiles show associations between certain elements (Rb, Si, Ti and K; Sr and Ca) which can be linked to lake productivity and catchment erosion and by extension, paleoclimatic changes.

  11. Lateral resolution of nanoscaled images delivered by surface-analytical instruments: application of the BAM-L200 certified reference material and related ISO standards.

    Science.gov (United States)

    Senoner, M; Maassdorf, A; Rooch, H; Österle, W; Malcher, M; Schmidt, M; Kollmer, F; Paul, D; Hodoroaba, V-D; Rades, S; Unger, W E S

    2015-04-01

    The certified reference material BAM-L200, a nanoscale stripe pattern for length calibration and specification of lateral resolution, is described. BAM-L200 is prepared from a cross-sectioned epitaxially grown layer stack of AlxGa1-xAs and InxGa1-xAs on a GaAs substrate. The surface of BAM-L200 provides a flat pattern with stripe widths ranging down to 1 nm. Calibration distances, grating periods and stripe widths have been certified by TEM with traceability to the length unit. The combination of gratings, isolated narrow stripes and sharp edges of wide stripes offers plenty of options for the determination of lateral resolution, sharpness and calibration of length scale at selected settings of imaging surface-analytical instruments. The feasibility of the reference material for an analysis of the lateral resolution is demonstrated in detail by evaluation of ToF-SIMS, AES and EDX images. Other applications developed in the community are summarized, too. BAM-L200 fully supports the implementation of the revised International Standard ISO 18516 (in preparation) which is based on knowledge outlined in the Technical Report ISO/TR 19319:2013.

  12. Particle-Tracking within an Ultra-High-Resolution Urban Domain Integrated with Best Management Practices

    Science.gov (United States)

    Lopez, S. R.; Maxwell, R. M.

    2014-12-01

    Best management practices (BMPs) are used to offset the impacts of urban developments known to decrease aquifer recharge, alter drainage networks, change feedbacks to the atmosphere and enhance contaminant transport. To evaluate the effectiveness of BMPs (i.e. engineered wetlands, grass swales, permeable pavements, etc.), a high-resolution study of these processes can be performed in the field using timely monitored instruments, or conceptually-based hydrologic models. However, this approach requires advancing stormwater modeling techniques using high performance computing. The goal of this work is to develop a novel approach to evaluate BMP implementation using an ultra-high-resolution domain and ParFlow, a physically-based hydrologic model that simulates surface and subsurface water interactions. This study domain is located in Aurora, CO, an area that experienced over 200% urban growth over the last 30 years. The ultra-high-resolution domain was constructed using LIDAR imagery and consisted of 1m x 1m horizontal resolution over a ~7.7 km by 2.1 km lateral extent up to 2 m in the subsurface, with a domain totaling more than 3x106unknowns. Three storm events (wet, dry and normal) were simulated with two pavement types, permeable (K=0.18 mhr-1,Φ=0.1) and impermeable (K=0.0018 mhr-1, Φ=0.06), amounting to 6 simulation scenarios. We investigated changes to stormwater routing and infiltration with and without BMP implementation. Contaminant transport was performed using SLIM-FAST, a Lagrangian, particle tracking approach that allows for complex, contaminant-loading scenarios common in the urban environment. Preliminary results show delayed particle movement within impermeable pavement scenarios and particle trapping along the gutters and rooftop locations. This approach is useful for evaluating the effectiveness of BMPs in trapping and reducing concentrations of emerging contaminants of concern within urban environments.

  13. Seismic investigations for high resolution exploration ahead and around boreholes

    Science.gov (United States)

    Jaksch, Katrin; Giese, Ruediger; Kopf, Matthias

    2013-04-01

    Deep reservoirs usually will be explored with a surface seismic survey often in combination with borehole seismic measurements like VSP or SWD which can improve the velocity model of the underground. Reservoirs especially in geothermal fields are often characterized by small-scale structures. Additionally, with depth the need for exploration methods with a high resolution increases because standard methods like borehole seismic measurements cannot improve their resolution with depth. To localize structures with more accuracy methods with higher resolution in the range of meters are necessary. Within the project SPWD - Seismic Prediction While Drilling a new exploration method will be developed. With an implementation of seismic sources and receivers in one device an exploration method ahead and around the borehole will be enabled. Also, a high resolution independent from the depth will be achieved. Therefore active and powerful seismic sources are necessary to reach an acceptable penetration depth. Step by step seismic borehole devices were developed, which can be used under different conditions. Every borehole device contains four seismic sources and several three-component geophones. A small distance between actuators and geophones allows detecting also the high frequency content of the wave field reflected at geological structures. Also, exploration with a high resolution is possible. A first borehole device was developed for basic conditions in horizontal boreholes without special terms to temperature or pressure. In a mine first methodical measurements for the initiated wave field were performed. Therefor an existing seismic test area at the research and education mine of the TU Bergakademie Freiberg was extended with boreholes. In the seismic test area, consisting of a dense geophone array with three-component geophone anchors, two horizontal and one vertical borehole was drilled. To achieve a radiation pattern in predefined directions by constructive

  14. High resolution multi-scalar drought indices for Iberia

    Science.gov (United States)

    Russo, Ana; Gouveia, Célia; Trigo, Ricardo; Jerez, Sonia

    2014-05-01

    The Iberian Peninsula has been recurrently affected by drought episodes and by adverse associated effects (Gouveia et al., 2009), ranging from severe water shortages to losses of hydroelectricity production, increasing risk of forest fires, forest decline and triggering processes of land degradation and desertification. Moreover, Iberia corresponds to one of the most sensitive areas to current and future climate change and is nowadays considered a hot spot of climate change with high probability for the increase of extreme events (Giorgi and Lionello, 2008). The spatial and temporal behavior of climatic droughts at different time scales was analyzed using spatially distributed time series of multi-scalar drought indicators, such as the Standardized Precipitation Evapotranspiration Index (SPEI) (Vicente-Serrano et al., 2010). This new climatic drought index is based on the simultaneous use of precipitation and temperature fields with the advantage of combining a multi-scalar character with the capacity to include the effects of temperature variability on drought assessment. Moreover, reanalysis data and the higher resolution hindcasted databases obtained from them are valuable surrogates of the sparse observations and widely used for in-depth characterizations of the present-day climate. Accordingly, this work aims to enhance the knowledge on high resolution drought patterns in Iberian Peninsula, taking advantage of high-resolution (10km) regional MM5 simulations of the recent past (1959-2007) over Iberia. It should be stressed that these high resolution meteorological fields (e.g. temperature, precipitation) have been validated for various purposes (Jerez et al., 2013). A detailed characterization of droughts since the 1960s using the 10 km resolution hidncasted simulation was performed with the aim to explore the conditions favoring drought onset, duration and ending, as well as the subsequent short, medium and long-term impacts affecting the environment and the

  15. Impact of High Resolution SST Data on Regional Weather Forecasts

    Science.gov (United States)

    Jedlovec, Gary J.; Case, Jonathon; LaFontaine, Frank; Vazquez, Jorge; Mattocks, Craig

    2010-01-01

    Past studies have shown that the use of coarse resolution SST products such as from the real-time global (RTG) SST analysis[1] or other coarse resolution once-a-day products do not properly portray the diurnal variability of fluxes of heat and moisture from the ocean that drive the formation of low level clouds and precipitation over the ocean. For example, the use of high resolution MODIS SST composite [2] to initialize the Advanced Research Weather Research and Forecast (WRF) (ARW) [3] has been shown to improve the prediction of sensible weather parameters in coastal regions [4][5}. In an extend study, [6] compared the MODIS SST composite product to the RTG SST analysis and evaluated forecast differences for a 6 month period from March through August 2007 over the Florida coastal regions. In a comparison to buoy data, they found that that the MODIS SST composites reduced the bias and standard deviation over that of the RTG data. These improvements led to significant changes in the initial and forecasted heat fluxes and the resulting surface temperature fields, wind patterns, and cloud distributions. They also showed that the MODIS composite SST product, produced for the Terra and Aqua satellite overpass times, captured a component of the diurnal cycle in SSTs not represented in the RTG or other one-a-day SST analyses. Failure to properly incorporate these effects in the WRF initialization cycle led to temperature biases in the resulting short term forecasts. The forecast impact was limited in some situations however, due to composite product inaccuracies brought about by data latency during periods of long-term cloud cover. This paper focuses on the forecast impact of an enhanced MODIS/AMSR-E composite SST product designed to reduce inaccuracies due data latency in the MODIS only composite product.

  16. High resolution functional photoacoustic tomography of breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaoqi; Yao, Lei; Xi, Lei; Jiang, Huabei, E-mail: hjiang@bme.ufl.edu [Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611 (United States); Heldermon, Coy D. [Department of Medicine, University of Florida, Gainesville, Florida 32611 (United States)

    2015-09-15

    Purpose: To evaluate the feasibility of functional photoacoustic tomography (fPAT) for high resolution detection and characterization of breast cancer and to demonstrate for the first time quantitative hemoglobin concentration and oxygen saturation images of breasts that were formed with model-based reconstruction of tomographic photoacoustic data. Methods: The study was HIPAA compliant and was approved by the university institutional review board. Written informed consents were obtained from all the participants. Ten cases, including six cancer and four healthy (mean age = 50 yr; age range = 41–66 yr), were examined. Functional images of breast tissue including absolute total hemoglobin concentration (Hb{sub T}) and oxygen saturation (StO{sub 2}%) were obtained by fPAT and cross validated with magnetic resonance imaging (MRI) readings and/or histopathology. Results: Hb{sub T} and StO{sub 2}% maps from all six pathology-confirmed cancer cases (60%) show clear detection of tumor, while MR images indicate clear detection of tumor for five of six cancer cases; one small tumor was read as near-complete-resolution by MRI. The average Hb{sub T} and StO{sub 2}% value of suspicious lesion area for the cancer cases was 61.6 ± 18.9 μM/l and 67.5% ± 5.2% compared to 25.6 ± 7.4 μM/l and 65.2% ± 3.8% for background normal tissue. Conclusions: fPAT has the potential to be a significant add-on in breast cancer detection and characterization as it provides submillimeter resolution functional images of breast lesions.

  17. Analysis of the impact of spatial resolution on land/water classifications using high-resolution aerial imagery

    Science.gov (United States)

    Enwright, Nicholas M.; Jones, William R.; Garber, Adrienne L.; Keller, Matthew J.

    2014-01-01

    Long-term monitoring efforts often use remote sensing to track trends in habitat or landscape conditions over time. To most appropriately compare observations over time, long-term monitoring efforts strive for consistency in methods. Thus, advances and changes in technology over time can present a challenge. For instance, modern camera technology has led to an increasing availability of very high-resolution imagery (i.e. submetre and metre) and a shift from analogue to digital photography. While numerous studies have shown that image resolution can impact the accuracy of classifications, most of these studies have focused on the impacts of comparing spatial resolution changes greater than 2 m. Thus, a knowledge gap exists on the impacts of minor changes in spatial resolution (i.e. submetre to about 1.5 m) in very high-resolution aerial imagery (i.e. 2 m resolution or less). This study compared the impact of spatial resolution on land/water classifications of an area dominated by coastal marsh vegetation in Louisiana, USA, using 1:12,000 scale colour-infrared analogue aerial photography (AAP) scanned at four different dot-per-inch resolutions simulating ground sample distances (GSDs) of 0.33, 0.54, 1, and 2 m. Analysis of the impact of spatial resolution on land/water classifications was conducted by exploring various spatial aspects of the classifications including density of waterbodies and frequency distributions in waterbody sizes. This study found that a small-magnitude change (1–1.5 m) in spatial resolution had little to no impact on the amount of water classified (i.e. percentage mapped was less than 1.5%), but had a significant impact on the mapping of very small waterbodies (i.e. waterbodies ≤ 250 m2). These findings should interest those using temporal image classifications derived from very high-resolution aerial photography as a component of long-term monitoring programs.

  18. Super-resolution T1 estimation: Quantitative high resolution T1 mapping from a set of low resolution T1 -weighted images with different slice orientations.

    Science.gov (United States)

    Van Steenkiste, Gwendolyn; Poot, Dirk H J; Jeurissen, Ben; den Dekker, Arnold J; Vanhevel, Floris; Parizel, Paul M; Sijbers, Jan

    2017-05-01

    Quantitative T1 mapping is a magnetic resonance imaging technique that estimates the spin-lattice relaxation time of tissues. Even though T1 mapping has a broad range of potential applications, it is not routinely used in clinical practice as accurate and precise high resolution T1 mapping requires infeasibly long acquisition times. To improve the trade-off between the acquisition time, signal-to-noise ratio and spatial resolution, we acquire a set of low resolution T1 -weighted images and directly estimate a high resolution T1 map by means of super-resolution reconstruction. Simulation and in vivo experiments show an increased spatial resolution of the T1 map, while preserving a high signal-to-noise ratio and short scan time. Moreover, the proposed method outperforms conventional estimation in terms of root-mean-square error. Super resolution T1 estimation enables resolution enhancement in T1 mapping with the use of standard (inversion recovery) T1 acquisition sequences. Magn Reson Med 77:1818-1830, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  19. High resolution infrared acquisitions droning over the LUSI mud eruption.

    Science.gov (United States)

    Di Felice, Fabio; Romeo, Giovanni; Di Stefano, Giuseppe; Mazzini, Adriano

    2016-04-01

    The use of low-cost hand-held infrared (IR) thermal cameras based on uncooled micro-bolometer detector arrays became more widespread during the recent years. Thermal cameras have the ability to estimate temperature values without contact and therefore can be used in circumstances where objects are difficult or dangerous to reach such as volcanic eruptions. Since May 2006 the Indonesian LUSI mud eruption continues to spew boiling mud, water, aqueous vapor, CO2, CH4 and covers a surface of nearly 7 km2. At this locality we performed surveys over the unreachable erupting crater. In the framework of the LUSI Lab project (ERC grant n° 308126), in 2014 and 2015, we acquired high resolution infrared images using a specifically equipped remote-controlled drone flying at an altitude of m 100. The drone is equipped with GPS and an autopilot system that allows pre-programming the flying path or designing grids. The mounted thermal camera has peak spectral sensitivity in LW wavelength (μm 10) that is characterized by low water vapor and CO2 absorption. The low distance (high resolution) acquisitions have a temperature detail every cm 40, therefore it is possible to detect and observe physical phenomena such as thermodynamic behavior, hot mud and fluids emissions locations and their time shifts. Despite the harsh logistics and the continuously varying gas concentrations we managed to collect thermal images to estimate the crater zone spatial thermal variations. We applied atmosphere corrections to calculate infrared absorption by high concentration of water vapor. Thousands of images have been stitched together to obtain a mosaic of the crater zone. Regular monitoring with heat variation measurements collected, e.g. every six months, could give important information about the volcano activity estimating its evolution. A future data base of infrared high resolution and visible images stored in a web server could be a useful monitoring tool. An interesting development will be

  20. Optical Histology: High-Resolution Visualization of Tissue Microvasculature

    Science.gov (United States)

    Moy, Austin Jing-Ming

    Mammalian tissue requires the delivery of nutrients, growth factors, and the exchange of oxygen and carbon dioxide gases to maintain normal function. These elements are delivered by the blood, which travels through the connected network of blood vessels, known as the vascular system. The vascular system consists of large feeder blood vessels (arteries and veins) that are connected to the small blood vessels (arterioles and venules), which in turn are connected to the capillaries that are directly connected to the tissue and facilitate gas exchange and nutrient delivery. These small blood vessels and capillaries make up an intricate but organized network of blood vessels that exist in all mammalian tissues known as the microvasculature and are very important in maintaining the health and proper function of mammalian tissue. Due to the importance of the microvasculature in tissue survival, disruption of the microvasculature typically leads to tissue dysfunction and tissue death. The most prevalent method to study the microvasculature is visualization. Immunohistochemistry (IHC) is the gold-standard method to visualize tissue microvasculature. IHC is very well-suited for highly detailed interrogation of the tissue microvasculature at the cellular level but is unwieldy and impractical for wide-field visualization of the tissue microvasculature. The objective my dissertation research was to develop a method to enable wide-field visualization of the microvasculature, while still retaining the high-resolution afforded by optical microscopy. My efforts led to the development of a technique dubbed "optical histology" that combines chemical and optical methods to enable high-resolution visualization of the microvasculature. The development of the technique first involved preliminary studies to quantify optical property changes in optically cleared tissues, followed by development and demonstration of the methodology. Using optical histology, I successfully obtained high

  1. High resolution modelling of extreme precipitation events in urban areas

    Science.gov (United States)

    Siemerink, Martijn; Volp, Nicolette; Schuurmans, Wytze; Deckers, Dave

    2015-04-01

    The present day society needs to adjust to the effects of climate change. More extreme weather conditions are expected, which can lead to longer periods of drought, but also to more extreme precipitation events. Urban water systems are not designed for such extreme events. Most sewer systems are not able to drain the excessive storm water, causing urban flooding. This leads to high economic damage. In order to take appropriate measures against extreme urban storms, detailed knowledge about the behaviour of the urban water system above and below the streets is required. To investigate the behaviour of urban water systems during extreme precipitation events new assessment tools are necessary. These tools should provide a detailed and integral description of the flow in the full domain of overland runoff, sewer flow, surface water flow and groundwater flow. We developed a new assessment tool, called 3Di, which provides detailed insight in the urban water system. This tool is based on a new numerical methodology that can accurately deal with the interaction between overland runoff, sewer flow and surface water flow. A one-dimensional model for the sewer system and open channel flow is fully coupled to a two-dimensional depth-averaged model that simulates the overland flow. The tool uses a subgrid-based approach in order to take high resolution information of the sewer system and of the terrain into account [1, 2]. The combination of using the high resolution information and the subgrid based approach results in an accurate and efficient modelling tool. It is now possible to simulate entire urban water systems using extreme high resolution (0.5m x 0.5m) terrain data in combination with a detailed sewer and surface water network representation. The new tool has been tested in several Dutch cities, such as Rotterdam, Amsterdam and The Hague. We will present the results of an extreme precipitation event in the city of Schiedam (The Netherlands). This city deals with

  2. The high resolution mapping of the Venice Lagoon tidal network

    Science.gov (United States)

    Madricardo, Fantina; Foglini, Federica; Kruss, Aleksandra; Bellafiore, Debora; Trincardi, Fabio

    2017-04-01

    One of the biggest challenges of the direct observation of the ocean is to achieve a high resolution mapping of its seafloor morphology and benthic habitats. So far, sonars have mapped just 0.05% of the ocean floor with less than ten-meter resolution. The recent efforts of the scientific community have been devoted towards the mapping of both Deep Ocean and very shallow coastal areas. Coastal and transitional environments in particular undergo strong morphological changes due to natural and anthropogenic pressure. Nowadays, only about 5% of the seafloor of these environments † have been mapped: the shallowness of these environments has prevented the use of underwater acoustics to reveal their morphological features. The recent technological development of multibeam echosounder systems, however, enables these instruments to achieve very high performances also in such shallow environments. In this work, we present results and case studies of an extensive multibeam survey carried out in the Lagoon of Venice in 2013. The Lagoon of Venice is the biggest lagoon in the Mediterranean Sea with a surface of about 550 km2 and with an average depth of about 1 m. In the last century, the morphological and ecological properties of the lagoon changed dramatically: the surface of the salt marshes was reduced by 60% and some parts of the lagoon are deepening with a net sediment flux exiting from the inlets. Moreover, major engineering interventions are currently ongoing at the inlets (MOSE project). These changes at the inlets could affect substantially the lagoon environment. To understand and monitor the future evolution of the Lagoon of Venice, ISMAR within the project RITMARE (a National Research Programme funded by the Italian Ministry of University and Research) carried out an extensive survey, involving a team of more than 25 scientists, to collect high resolution (0.5 m) bathymetry of key study areas such as the tidal inlets and channels. Following a broad

  3. Surface anatomy of the pulmonary fissures determined by high-resolution computed tomography.

    Science.gov (United States)

    Heřmanová, Zuzana; Ctvrtlík, Filip; Heřman, Miroslav

    2012-10-01

    The aim of our study was to describe the surface anatomy of the interlobar fissures using volumetric thin-section high-resolution computed tomography (HRCT). Retrospective assessment of HRCT examinations of 250 patients was performed. The localization of the oblique fissures was marked at three sites: posteriorly at its most superior medial limit, laterally in the midaxillary line, and inferiorly at the junction of the middle and lateral thirds of the hemithorax; posteriorly and laterally, this was to the nearest rib whilst inferiorly the position was described in relation to the diaphragm or chest wall. The localization of the horizontal fissure was marked anteriorly in relation to the nearest rib (or costal cartilage) and posteriorly where it intersected with the oblique fissure (superior, middle, or inferior third). Shapes of the fissures and differences between inspiration and expiration were also documented. Descriptive statistics were used to report the most frequent positions. The most frequent localization of the oblique fissure on the left side was posteriorly at the fourth rib (45%), laterally at the sixth rib (52%), and inferiorly in the anterior third of the hemidiaphragm (60%). The right oblique fissure was located posteriorly at the fifth rib (50%), laterally at the sixth rib (50%), and inferiorly in the anterior third of the hemidiaphragm (71%). The horizontal fissure most commonly originated in the middle third of the oblique fissure (61%) and met the anterior thoracic wall at the level of the fourth rib (51%). The most frequent shape of the left oblique fissure was linear (78%), whereas S-shaped and linear configurations (28% each) were most frequent on the right. No difference was found in the surface markings of the fissures between inspiration and expiration in 90% of cases. The considerable individual variation in the position and shape of the interlobar fissures helps to explain the variable descriptions of their surface anatomy in the

  4. Linearized inversion frameworks toward high-resolution seismic imaging

    KAUST Repository

    Aldawood, Ali

    2016-09-01

    Seismic exploration utilizes controlled sources, which emit seismic waves that propagate through the earth subsurface and get reflected off subsurface interfaces and scatterers. The reflected and scattered waves are recorded by recording stations installed along the earth surface or down boreholes. Seismic imaging is a powerful tool to map these reflected and scattered energy back to their subsurface scattering or reflection points. Seismic imaging is conventionally based on the single-scattering assumption, where only energy that bounces once off a subsurface scatterer and recorded by a receiver is projected back to its subsurface position. The internally multiply scattered seismic energy is considered as unwanted noise and is usually suppressed or removed from the recorded data. Conventional seismic imaging techniques yield subsurface images that suffer from low spatial resolution, migration artifacts, and acquisition fingerprint due to the limited acquisition aperture, number of sources and receivers, and bandwidth of the source wavelet. Hydrocarbon traps are becoming more challenging and considerable reserves are trapped in stratigraphic and pinch-out traps, which require highly resolved seismic images to delineate them. This thesis focuses on developing and implementing new advanced cost-effective seismic imaging techniques aiming at enhancing the resolution of the migrated images by exploiting the sparseness of the subsurface reflectivity distribution and utilizing the multiples that are usually neglected when imaging seismic data. I first formulate the seismic imaging problem as a Basis pursuit denoise problem, which I solve using an L1-minimization algorithm to obtain the sparsest migrated image corresponding to the recorded data. Imaging multiples may illuminate subsurface zones, which are not easily illuminated by conventional seismic imaging using primary reflections only. I then develop an L2-norm (i.e. least-squares) inversion technique to image

  5. Trace metal imaging with high spatial resolution: applications in biomedicine.

    Science.gov (United States)

    Qin, Zhenyu; Caruso, Joseph A; Lai, Barry; Matusch, Andreas; Becker, J Sabine

    2011-01-01

    New generations of analytical techniques for imaging of metals are pushing hitherto boundaries of spatial resolution and quantitative analysis in biology. Because of this, the application of these imaging techniques described herein to the study of the organization and dynamics of metal cations and metal-containing biomolecules in biological cell and tissue is becoming an important issue in biomedical research. In the current review, three common metal imaging techniques in biomedical research are introduced, including synchrotron X-ray fluorescence (SXRF) microscopy, secondary ion mass spectrometry (SIMS), and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). These are exemplified by a demonstration of the dopamine-Fe complexes, by assessment of boron distribution in a boron neutron capture therapy cell model, by mapping Cu and Zn in human brain cancer and a rat brain tumor model, and by the analysis of metal topography within neuromelanin. These studies have provided solid evidence that demonstrates that the sensitivity, spatial resolution, specificity, and quantification ability of metal imaging techniques is suitable and highly desirable for biomedical research. Moreover, these novel studies on the nanometre scale (e.g., of individual single cells or cell organelles) will lead to a better understanding of metal processes in cells and tissues.

  6. A Unitary Anesthetic Binding Site at High Resolution

    Energy Technology Data Exchange (ETDEWEB)

    L Vedula; G Brannigan; N Economou; J Xi; M Hall; R Liu; M Rossi; W Dailey; K Grasty; et. al.

    2011-12-31

    Propofol is the most widely used injectable general anesthetic. Its targets include ligand-gated ion channels such as the GABA{sub A} receptor, but such receptor-channel complexes remain challenging to study at atomic resolution. Until structural biology methods advance to the point of being able to deal with systems such as the GABA{sub A} receptor, it will be necessary to use more tractable surrogates to probe the molecular details of anesthetic recognition. We have previously shown that recognition of inhalational general anesthetics by the model protein apoferritin closely mirrors recognition by more complex and clinically relevant protein targets; here we show that apoferritin also binds propofol and related GABAergic anesthetics, and that the same binding site mediates recognition of both inhalational and injectable anesthetics. Apoferritin binding affinities for a series of propofol analogs were found to be strongly correlated with the ability to potentiate GABA responses at GABA{sub A} receptors, validating this model system for injectable anesthetics. High resolution x-ray crystal structures reveal that, despite the presence of hydrogen bond donors and acceptors, anesthetic recognition is mediated largely by van der Waals forces and the hydrophobic effect. Molecular dynamics simulations indicate that the ligands undergo considerable fluctuations about their equilibrium positions. Finally, apoferritin displays both structural and dynamic responses to anesthetic binding, which may mimic changes elicited by anesthetics in physiologic targets like ion channels.

  7. A Unitary Anesthetic Binding Site at High Resolution

    Energy Technology Data Exchange (ETDEWEB)

    Vedula, L. Sangeetha; Brannigan, Grace; Economou, Nicoleta J.; Xi, Jin; Hall, Michael A.; Liu, Renyu; Rossi, Matthew J.; Dailey, William P.; Grasty, Kimberly C.; Klein, Michael L.; Eckenhoff, Roderic G.; Loll, Patrick J.; (Drexel-MED); (UPENN)

    2009-10-21

    Propofol is the most widely used injectable general anesthetic. Its targets include ligand-gated ion channels such as the GABA{sub A} receptor, but such receptor-channel complexes remain challenging to study at atomic resolution. Until structural biology methods advance to the point of being able to deal with systems such as the GABA{sub A} receptor, it will be necessary to use more tractable surrogates to probe the molecular details of anesthetic recognition. We have previously shown that recognition of inhalational general anesthetics by the model protein apoferritin closely mirrors recognition by more complex and clinically relevant protein targets; here we show that apoferritin also binds propofol and related GABAergic anesthetics, and that the same binding site mediates recognition of both inhalational and injectable anesthetics. Apoferritin binding affinities for a series of propofol analogs were found to be strongly correlated with the ability to potentiate GABA responses at GABA{sub A} receptors, validating this model system for injectable anesthetics. High resolution x-ray crystal structures reveal that, despite the presence of hydrogen bond donors and acceptors, anesthetic recognition is mediated largely by van der Waals forces and the hydrophobic effect. Molecular dynamics simulations indicate that the ligands undergo considerable fluctuations about their equilibrium positions. Finally, apoferritin displays both structural and dynamic responses to anesthetic binding, which may mimic changes elicited by anesthetics in physiologic targets like ion channels.

  8. Quantitative stratigraphy of snow resolved by high-resolution penetrometry

    Science.gov (United States)

    Proksch, Martin; Reuter, Benjamin; Schneebeli, Martin; Löwe, Henning

    2014-05-01

    Precise measurements of snow structural parameters are essential to understand and model snow physical processes. Snow metamorphism, mass and energy balance of snow, radiative properties or the snowpack stability with respect to avalanche formation, all these processes depend on the snow structural parameters and the stratigraphy of the snowpack. However, most snow measurements are limited in spatial and temporal resolution and by extensive measurement times. For this reason, we developed a statistical model to derive three major snow structural parameters, density, correlation length and specific surface area (SSA) solely from a portable, high-resolution penetrometer. We demonstrate the potential of the method by a transect through Alpine snow in the Wannengrat study site, Davos, Switzerland. The two-dimensional plot of the transect reveals the depositional and metamorphic events. The results for the density are compared to independent density measurements from snow profiles. Based on these data, we are able to give a more complete interpretation of the snow stratigraphy and the underlying physical processes.

  9. Understanding reconstructed Dante spectra using high resolution spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    May, M. J., E-mail: may13@llnl.gov; Widmann, K.; Kemp, G. E.; Thorn, D.; Colvin, J. D.; Schneider, M. B.; Moore, A.; Blue, B. E. [L-170 Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, California 94551 (United States); Weaver, J. [Naval Research Laboratory, 4555 Overlook Ave. SW, Washington, DC 20375 (United States)

    2016-11-15

    The Dante is an 18 channel filtered diode array used at the National Ignition Facility (NIF) to measure the spectrally and temporally resolved radiation flux between 50 eV and 20 keV from various targets. The absolute flux is determined from the radiometric calibration of the x-ray diodes, filters, and mirrors and a reconstruction algorithm applied to the recorded voltages from each channel. The reconstructed spectra are very low resolution with features consistent with the instrument response and are not necessarily consistent with the spectral emission features from the plasma. Errors may exist between the reconstructed spectra and the actual emission features due to assumptions in the algorithm. Recently, a high resolution convex crystal spectrometer, VIRGIL, has been installed at NIF with the same line of sight as the Dante. Spectra from L-shell Ag and Xe have been recorded by both VIRGIL and Dante. Comparisons of these two spectroscopic measurements yield insights into the accuracy of the Dante reconstructions.

  10. High Resolution Imaging Spectrometer (HIRIS): Science and Instrument

    Science.gov (United States)

    Goetz, Alexander F. H.; Davis, Curtiss O.

    1991-01-01

    The High Resolution Imaging Spectrometer (HIRIS) is a facility instrument slated for flight on the second of the EOS-A series of platforms. HIRIS is designed to acquire 24-km wide, 30-m pixel images in 192 spectral bands simultaneously in the 0.4-2.45-micrometer wavelength region. With pointing mirrors it can sample any place on Earth, except the poles, every two days. HIRIS operates at the intermediate scale between the human and the global and therefore links studies of Earth surface processes to global monitoring carried out by lower-resolution instruments. So far, over 50 science data products from HIRIS images have been identified in the fields of atmospheric gases, clouds, snow and ice, water, vegetation, and rocks and soils. The key attribute of imaging spectrometry that makes it possible to derive quantitative information from the data is the large number of contiguous spectral bands. Therefore spectrum matching techniques can be applied. Such techniques are not possible with present-day, multispectral scanner data.

  11. Understanding reconstructed Dante spectra using high resolution spectroscopy

    Science.gov (United States)

    May, M. J.; Weaver, J.; Widmann, K.; Kemp, G. E.; Thorn, D.; Colvin, J. D.; Schneider, M. B.; Moore, A.; Blue, B. E.

    2016-11-01

    The Dante is an 18 channel filtered diode array used at the National Ignition Facility (NIF) to measure the spectrally and temporally resolved radiation flux between 50 eV and 20 keV from various targets. The absolute flux is determined from the radiometric calibration of the x-ray diodes, filters, and mirrors and a reconstruction algorithm applied to the recorded voltages from each channel. The reconstructed spectra are very low resolution with features consistent with the instrument response and are not necessarily consistent with the spectral emission features from the plasma. Errors may exist between the reconstructed spectra and the actual emission features due to assumptions in the algorithm. Recently, a high resolution convex crystal spectrometer, VIRGIL, has been installed at NIF with the same line of sight as the Dante. Spectra from L-shell Ag and Xe have been recorded by both VIRGIL and Dante. Comparisons of these two spectroscopic measurements yield insights into the accuracy of the Dante reconstructions.

  12. Towards a High-Resolution Global Inundation Delineation Dataset

    Science.gov (United States)

    Fluet-Chouinard, E.; Lehner, B.

    2011-12-01

    Although their importance for biodiversity, flow regulation and ecosystem service provision is widely recognized, wetlands and temporarily inundated landscapes remain poorly mapped globally because of their inherent elusive nature. Inventorying of wetland resources has been identified in international agreements as an essential component of appropriate conservation efforts and management initiatives of these threatened ecosystems. However, despite recent advances in remote sensing surface water monitoring, current inventories of surface water variations remain incomplete at the regional-to-global scale due to methodological limitations restricting truly global application. Remote sensing wetland applications such as SAR L-band are particularly constrained by image availability and heterogeneity of acquisition dates, while coarse resolution passive microwave and multi-sensor methods cannot discriminate distinct surface water bodies. As a result, the most popular global wetland dataset remains to this day the Global Lake & Wetland Database (Lehner and Doll, 2004) a spatially inconsistent database assembled from various existing data sources. The approach taken in this project circumvents the limitations of current global wetland monitoring methods by combining globally available topographic and hydrographic data to downscale coarse resolution global inundation data (Prigent et al., 2007) and thus create a superior inundation delineation map product. The developed procedure downscales inundation data from the coarse resolution (~27km) of current passive microwave sensors to the finer spatial resolution (~500m) of the topographic and hydrographic layers of HydroSHEDS' data suite (Lehner et al., 2006), while retaining the high temporal resolution of the multi-sensor inundation dataset. From the downscaling process emerges new information on the specific location of inundation, but also on its frequency and duration. The downscaling algorithm employs a decision tree

  13. The Singapore high resolution single cell imaging facility

    Science.gov (United States)

    Watt, Frank; Chen, Xiao; Vera, Armin Baysic De; Udalagama, Chammika N. B.; Ren, M.; Kan, Jeroen A. van; Bettiol, Andrew A.

    2011-10-01

    The Centre for Ion Beam Applications, National University of Singapore has recently expanded from three state-of-the-art beam lines to five. Two new beam lines have been constructed: A second generation proton beam writing line, and a high resolution single cell imaging facility. Both systems feature high demagnification lens systems based on compact Oxford Microbeams OM52 lenses, coupled with reduced lens/image distances. The single cell imaging facility is designed around OM52 compact lenses capable of operating in a variety of high demagnification configurations including the spaced Oxford triplet and the double crossover Russian quadruplet. The new facility has design specifications aimed at spatial resolutions below 50 nm, with a variety of techniques including STIM, secondary electron and fluorescence imaging, and an in-built optical and fluorescence microscope for sample imaging, identification and positioning. Preliminary tests using the single space Oxford triplet configuration have indicated a beam spot size of 31 × 39 nm in the horizontal and vertical directions respectively, at beam currents of ∼10,000 protons per second. However, a weakness in the specifications of the electrostatic scanning system has been identified, and a more stable scanning system needs to be implemented before we can fully realize the optimum performance. A single whole fibroblast cell has been scanned using 1.5 MeV protons, and a median fit to the proton transmission energy loss data has shown that proton STIM gives excellent details of the cell structure despite the relatively poor contrast of proton STIM compared with alpha STIM.

  14. The Singapore high resolution single cell imaging facility

    Energy Technology Data Exchange (ETDEWEB)

    Watt, Frank, E-mail: phywattf@nus.edu.sg [Centre for Ion Beam Applications, Dept. of Physics, National University of Singapore, Science Drive 3, Singapore 117542 (Singapore); Chen, Xiao; Vera, Armin Baysic De; Udalagama, Chammika N.B.; Ren, M.; Kan, Jeroen A van; Bettiol, Andrew A [Centre for Ion Beam Applications, Dept. of Physics, National University of Singapore, Science Drive 3, Singapore 117542 (Singapore)

    2011-10-15

    The Centre for Ion Beam Applications, National University of Singapore has recently expanded from three state-of-the-art beam lines to five. Two new beam lines have been constructed: A second generation proton beam writing line, and a high resolution single cell imaging facility. Both systems feature high demagnification lens systems based on compact Oxford Microbeams OM52 lenses, coupled with reduced lens/image distances. The single cell imaging facility is designed around OM52 compact lenses capable of operating in a variety of high demagnification configurations including the spaced Oxford triplet and the double crossover Russian quadruplet. The new facility has design specifications aimed at spatial resolutions below 50 nm, with a variety of techniques including STIM, secondary electron and fluorescence imaging, and an in-built optical and fluorescence microscope for sample imaging, identification and positioning. Preliminary tests using the single space Oxford triplet configuration have indicated a beam spot size of 31 x 39 nm in the horizontal and vertical directions respectively, at beam currents of {approx}10,000 protons per second. However, a weakness in the specifications of the electrostatic scanning system has been identified, and a more stable scanning system needs to be implemented before we can fully realize the optimum performance. A single whole fibroblast cell has been scanned using 1.5 MeV protons, and a median fit to the proton transmission energy loss data has shown that proton STIM gives excellent details of the cell structure despite the relatively poor contrast of proton STIM compared with alpha STIM.

  15. A PICTORIAL PRESENTATION OF ESOPHAGEAL HIGH RESOLUTION MANOMETRY CURRENT PARAMETERS.

    Science.gov (United States)

    Lafraia, Fernanda M; Herbella, Fernando A M; Kalluf, Julia R; Patti, Marco G

    2017-01-01

    High resolution manometry is the current technology used to the study of esophageal motility and is replacing conventional manometry in important centers for esophageal motility with parameters used on esophageal motility, following the Chicago Classification. This classification unifies high resolution manometry interpretation and classifies esophageal disorders. This review shows, in a pictorial presentation, the new parameters established by the Chicago Classification, version 3.0, aimed to allow an easy comprehension and interpretation of high resolution manometry. Esophageal manometries performed by the authors were reviewed to select illustrative tracings representing Chicago Classification parameters. The parameters are: Esophagogastric Morphology, that classifies this junction according to its physiology and anatomy; Integrated Relaxation Pressure, that measures the lower esophageal sphincter relaxation; Distal Contractile Integral, that evaluates the contraction vigor of each wave; and, Distal Latency, that measures the peristalsis velocity from the beginning of the swallow to the epiphrenic ampulla. Clinical applications of these new concepts is still under evaluation. Mostrar, de forma pictórica, os novos parâmetros compilados na versão 3.0 da Classificação de Chicago, buscando facilitar a compreensão e interpretação da manometria de alta resolução. Foram revistas as manometrias da casuística dos autores e selecionados os traçados representativos dos parâmetros da Classificação de Chicago. Entre os parâmetros apresentados foram considerados a Morfologia da Transição Gastroesofágica, que classifica o segmento de acordo com sua fisiologia e anatomia; a Integral da Pressão de Relaxamento, que mede o relaxamento do esfíncter esofagiano inferior; a Integral Contrátil Distal, que avalia o vigor contrátil da onda peristáltica; e, a Latência Distal, que mede o tempo da peristalse, desde o início da deglutição até a ampola epifr

  16. Development of high speed integrated circuit for very high resolution timing measurements

    Energy Technology Data Exchange (ETDEWEB)

    Mester, Christian

    2009-10-15

    A multi-channel high-precision low-power time-to-digital converter application specific integrated circuit for high energy physics applications has been designed and implemented in a 130 nm CMOS process. To reach a target resolution of 24.4 ps, a novel delay element has been conceived. This nominal resolution has been experimentally verified with a prototype, with a minimum resolution of 19 ps. To further improve the resolution, a new interpolation scheme has been described. The ASIC has been designed to use a reference clock with the LHC bunch crossing frequency of 40 MHz and generate all required timing signals internally, to ease to use within the framework of an LHC upgrade. Special care has been taken to minimise the power consumption. (orig.)

  17. Ribbon scanning confocal for high-speed high-resolution volume imaging of brain.

    Directory of Open Access Journals (Sweden)

    Alan M Watson

    Full Text Available Whole-brain imaging is becoming a fundamental means of experimental insight; however, achieving subcellular resolution imagery in a reasonable time window has not been possible. We describe the first application of multicolor ribbon scanning confocal methods to collect high-resolution volume images of chemically cleared brains. We demonstrate that ribbon scanning collects images over ten times faster than conventional high speed confocal systems but with equivalent spectral and spatial resolution. Further, using this technology, we reconstruct large volumes of mouse brain infected with encephalitic alphaviruses and demonstrate that regions of the brain with abundant viral replication were inaccessible to vascular perfusion. This reveals that the destruction or collapse of large regions of brain micro vasculature may contribute to the severe disease caused by Venezuelan equine encephalitis virus. Visualization of this fundamental impact of infection would not be possible without sampling at subcellular resolution within large brain volumes.

  18. A new high-resolution electromagnetic method for subsurface imaging

    Science.gov (United States)

    Feng, Wanjie

    For most electromagnetic (EM) geophysical systems, the contamination of primary fields on secondary fields ultimately limits the capability of the controlled-source EM methods. Null coupling techniques were proposed to solve this problem. However, the small orientation errors in the null coupling systems greatly restrict the applications of these systems. Another problem encountered by most EM systems is the surface interference and geologic noise, which sometimes make the geophysical survey impossible to carry out. In order to solve these problems, the alternating target antenna coupling (ATAC) method was introduced, which greatly removed the influence of the primary field and reduced the surface interference. But this system has limitations on the maximum transmitter moment that can be used. The differential target antenna coupling (DTAC) method was proposed to allow much larger transmitter moments and at the same time maintain the advantages of the ATAC method. In this dissertation, first, the theoretical DTAC calculations were derived mathematically using Born and Wolf's complex magnetic vector. 1D layered and 2D blocked earth models were used to demonstrate that the DTAC method has no responses for 1D and 2D structures. Analytical studies of the plate model influenced by conductive and resistive backgrounds were presented to explain the physical phenomenology behind the DTAC method, which is the magnetic fields of the subsurface targets are required to be frequency dependent. Then, the advantages of the DTAC method, e.g., high-resolution, reducing the geologic noise and insensitive to surface interference, were analyzed using surface and subsurface numerical examples in the EMGIMA software. Next, the theoretical advantages, such as high resolution and insensitive to surface interference, were verified by designing and developing a low-power (moment of 50 Am 2) vertical-array DTAC system and testing it on controlled targets and scaled target coils. At last, a

  19. High-Resolution Acoustic-Radiation-Force-Impulse Imaging for Assessing Corneal Sclerosis

    Science.gov (United States)

    Shih, Cho-Chiang; Zhou, Qifa; Shung, K. Kirk

    2013-01-01

    In ophthalmology, detecting the biomechanical properties of the cornea can provide valuable information about various corneal pathologies, including keratoconus and the phototoxic effects of ultraviolet radiation on the cornea. Also, the mechanical properties of the cornea can be used to evaluate the recovery from corneal refractive surgeries. Therefore, noninvasive and high-resolution estimation of the stiffness distribution in the cornea is important in ophthalmic diagnosis. The present study established a method for high-resolution acoustic-radiation-force-impulse (ARFI) imaging based on a dual-frequency confocal transducer in order to obtain a relative stiffness map, which was used to assess corneal sclerosis. An 11-MHz pushing element was used to induce localized displacements of tissue, which were monitored by a 48-MHz imaging element. Since the tissue displacements are directly correlated with the tissue elastic properties, the stiffness distribution in a tiny region of the cornea can be found by a mechanical B/D scan. The experimental system was verified using tissue-mimicking phantoms that included different geometric structures. Ex vivo cornea experiments were carried out using fresh porcine eyeballs. Corneas with localized sclerosis were created artificially by the injection of a formalin solution. The phantom experiments showed that the distributions of stiffness within different phantoms can be recognized clearly using ARFI imaging, and the measured lateral and axial resolutions of this imaging system were 177 and 153 μm, respectively. The ex vivo experimental results from ARFI imaging showed that a tiny region of localized sclerosis in the cornea could be distinguished. All of the obtained results demonstrate that high-resolution ARFI imaging has considerable potential for the clinical diagnosis of corneal sclerosis. PMID:23584258

  20. High-resolution acoustic-radiation-force-impulse imaging for assessing corneal sclerosis.

    Science.gov (United States)

    Shih, Cho-Chiang; Huang, Chih-Chung; Zhou, Qifa; Shung, K Kirk

    2013-07-01

    In ophthalmology, detecting the biomechanical properties of the cornea can provide valuable information about various corneal pathologies, including keratoconus and the phototoxic effects of ultraviolet radiation on the cornea. Also, the mechanical properties of the cornea can be used to evaluate the recovery from corneal refractive surgeries. Therefore, noninvasive and high-resolution estimation of the stiffness distribution in the cornea is important in ophthalmic diagnosis. The present study established a method for high-resolution acoustic-radiation-force-impulse (ARFI) imaging based on a dual-frequency confocal transducer in order to obtain a relative stiffness map, which was used to assess corneal sclerosis. An 11-MHz pushing element was used to induce localized displacements of tissue, which were monitored by a 48-MHz imaging element. Since the tissue displacements are directly correlated with the tissue elastic properties, the stiffness distribution in a tiny region of the cornea can be found by a mechanical B/D scan. The experimental system was verified using tissue-mimicking phantoms that included different geometric structures. Ex vivo cornea experiments were carried out using fresh porcine eyeballs. Corneas with localized sclerosis were created artificially by the injection of a formalin solution. The phantom experiments showed that the distributions of stiffness within different phantoms can be recognized clearly using ARFI imaging, and the measured lateral and axial resolutions of this imaging system were 177 and 153 μ m, respectively. The ex vivo experimental results from ARFI imaging showed that a tiny region of localized sclerosis in the cornea could be distinguished. All of the obtained results demonstrate that high-resolution ARFI imaging has considerable potential for the clinical diagnosis of corneal sclerosis.

  1. High resolution CT study of the chorda tympani nerve and normal anatomical variation.

    Science.gov (United States)

    Singh, Dalveer; Hsu, Charlie Chia-Tsong; Kwan, Gigi Nga Chi; Bhuta, Sandeep; Skalski, Matt; Jones, Rhondda

    2015-05-01

    The aim of this study was to define the normal anatomical variation of the course of the CTN through the mastoid temporal bone on high resolution CT (HRCT). Retrospective review of 27 consecutive normal HRCT bilateral temporal bones (n = 54, 14 males and 13 females, mean age 41 years) reconstructed at 0.4-mm slice thickness specifically measuring (1) origin of CTN from the posterior genu of the facial nerve (CNVII) and (2) the lateral-most position of the CTN from the mastoid segment of CNVII. The mean distance of the CTN origin from the mastoid segment of CNVII was 11.5 mm (standard deviation, SD = 3.2, 95% CI 10.7-12.3) with no statistically significant difference between the left and right side observed (p = 0.08). The most lateral distance of the CTN from CNVII was a mean of 1.3 mm (SD = 0.6, 95% CI 1.2-1.7), range 0-2.5 mm and again no statistical significance between contralateral sides was observed (p = 0.11). These measurements demonstrated an excellent level of agreement between observers as assessed by intraclass correlation calculation. Reproducible measurements demonstrate variability of the CTN in both its origin from the mastoid segment of CNVII and its lateral-most course. Precise description of the course of the CTN with HRCT may be useful for planning of otologic surgery and limiting inadvertent nerve injury.

  2. High resolution magnetic resonance imaging of the patellar retinaculum: normal anatomy, common injury patterns, and pathologies

    Energy Technology Data Exchange (ETDEWEB)

    Thawait, Shrey K. [Yale University - Bridgeport Hospital, Bridgeport, CT (United States); Soldatos, Theodoros; Thawait, Gaurav K.; Cosgarea, Andrew J.; Carrino, John A. [Johns Hopkins Hospital, Baltimore, MD (United States); Chhabra, Avneesh [Johns Hopkins Hospital, Baltimore, MD (United States); Johns Hopkins Hospital, Department of Radiology and Radiological Science, Baltimore, MD (United States)

    2012-02-15

    The medial patellar retinaculum (MPR) and the lateral patellar retinaculum (LPR) are vital structures for the stability of the patella. Failure to identify or treat injury to the patellar retinaculum is associated with recurrent patellar instability and contributes to significant morbidity. High-resolution magnetic resonance imaging (MRI) readily depicts the detailed anatomy of various components (layers) of the retinacula. In this review article, we discuss normal anatomy, important landmarks, common injury patterns, and other pathologies encountered in patellar retinacula. High field strength MRI is an excellent noninvasive tool for evaluation of patellar retinaculum anatomy and pathology. This article will help the reader become familiar with normal imaging findings and the most commonly occurring injuries/pathologies in MPR and LPR. (orig.)

  3. High-resolution seismic stratigraphy of an Holocene lacustrine delta in western Lake Geneva (Switzerland)

    Science.gov (United States)

    Baster, I.; Girardclos, S.; Pugin, A.; Wildi, W.

    2003-01-01

    A high-resolution seismic survey was conducted in western Lake Geneva on a small delta formed by the Promenthouse, the Asse and the Boiron rivers. This dataset provides information on changes in the geometry and sedimentation patterns of this delta from Late-glacial to Present. The geometry of the deposits of the lacustrine delta has been mapped using 300-m spaced grid lines acquired with a 12 kHz Echosounder subbottom profiler. A complete three dimensional image of the sediment architecture was reconstructed through seismic stratigraphic analysis. Six different delta lobes have been recognized in the prodelta area. Depositional centers and lateral extension of the delta have changed through time, indicating migration and fluctuation of river input as well as changes in lake currents and wind regime from the time of glacier retreat to the Present. The delta slope is characterized by a high instability causing stumps developing and by the accumulation of biogenic gas that prevents seismic penetration.

  4. Quantitative high-resolution transmission electron microscopy of single atoms.

    Science.gov (United States)

    Gamm, Björn; Blank, Holger; Popescu, Radian; Schneider, Reinhard; Beyer, André; Gölzhäuser, Armin; Gerthsen, Dagmar

    2012-02-01

    Single atoms can be considered as the most basic objects for electron microscopy to test the microscope performance and basic concepts for modeling image contrast. In this work high-resolution transmission electron microscopy was applied to image single platinum, molybdenum, and titanium atoms in an aberration-corrected transmission electron microscope. The atoms are deposited on a self-assembled monolayer substrate that induces only negligible contrast. Single-atom contrast simulations were performed on the basis of Weickenmeier-Kohl and Doyle-Turner form factors. Experimental and simulated image intensities are in quantitative agreement on an absolute intensity scale, which is provided by the vacuum image intensity. This demonstrates that direct testing of basic properties such as form factors becomes feasible.

  5. High-resolution imaging methods in array signal processing

    DEFF Research Database (Denmark)

    Xenaki, Angeliki

    The purpose of this study is to develop methods in array signal processing which achieve accurate signal reconstruction from limited observations resulting in high-resolution imaging. The focus is on underwater acoustic applications and sonar signal processing both in active (transmit and receive...... in active sonar signal processing for detection and imaging of submerged oil contamination in sea water from a deep-water oil leak. The submerged oil _eld is modeled as a uid medium exhibiting spatial perturbations in the acoustic parameters from their mean ambient values which cause weak scattering......-of-arrival (DOA) of the associated wavefronts from a limited number of observations. Usually, there are only a few sources generating the acoustic wavefield such that DOA estimation is essentially a sparse signal reconstruction problem. Conventional methods for DOA estimation (i.e., beamforming) suffer from...

  6. High-Resolution Single-Grain Diffraction of Polycrystalline Materials

    DEFF Research Database (Denmark)

    Lienert, Ulrich; Ribárik, Gábor; Ungar, Tamas

    2017-01-01

    . The microstructure usually influences the materials properties critically. It has been demonstrated that, by using high-energy synchrotron radiation, diffraction peaks off individual grains can be recorded in-situ during processing. Important information such as the orientation, average strain, and size...... of individual grains can be obtained, even if the peak shapes are commonly not analyzed. However, it is also well-known that the shape of diffraction peaks, if observed with sufficient resolution, contains significant information about the microstructure. While the intensity distribution in reciprocal space......). Conventional radial profile (line shape) analysis techniques average over many grains with possibly significantly different microstructure. Under conditions of single-grain diffraction, these limitations are overcome and the intensity distributions along all three directions of reciprocal space are accessible....

  7. Study of CME Properties Using High Resolution Data

    Science.gov (United States)

    Egorov, Ya. I.; Fainshtein, V. G.

    The joint use of high-resolution data from SDO and PROBA2 satellites and LASCO/SOHO coronographs enabled us to examine early stages of initiation and propagation of six limb CMEs registered in June 2010 - June 2011. For five events under consideration, the CME initiation is marked by filament (prominence) eruption or by a loop-like structure having another nature. Subsequently, several loop-like structures having higher brightness and following each other at different velocities appear in the region of the CME initiation. The CME frontal structure is formed by these loop-like structures. The CME kinematics and such CME characteristics as angular size and longitudinal to latitudinal size ratio was found for considered all events. We have drawn a conclusion about the possible existence of two CME types dependent on the velocity profile.

  8. Optical diffraction tomography for high resolution live cell imaging

    Science.gov (United States)

    Sung, Yongjin; Choi, Wonshik; Fang-Yen, Christopher; Badizadegan, Kamran; Dasari, Ramachandra R.; Feld, Michael S.

    2009-01-01

    We report the experimental implementation of optical diffraction tomography for quantitative 3D mapping of refractive index in live biological cells. Using a heterodyne Mach-Zehnder interferometer, we record complex field images of light transmitted through a sample with varying directions of illumination. To quantitatively reconstruct the 3D map of complex refractive index in live cells, we apply optical diffraction tomography based on the Rytov approximation. In this way, the effect of diffraction is taken into account in the reconstruction process and diffraction-free high resolution 3D images are obtained throughout the entire sample volume. The quantitative refractive index map can potentially serve as an intrinsic assay to provide the molecular concentrations without the addition of exogenous agents and also to provide a method for studying the light scattering properties of single cells. PMID:19129896

  9. High-resolution, single-molecule measurements of biomolecular motion.

    Science.gov (United States)

    Greenleaf, William J; Woodside, Michael T; Block, Steven M

    2007-01-01

    Many biologically important macromolecules undergo motions that are essential to their function. Biophysical techniques can now resolve the motions of single molecules down to the nanometer scale or even below, providing new insights into the mechanisms that drive molecular movements. This review outlines the principal approaches that have been used for high-resolution measurements of single-molecule motion, including centroid tracking, fluorescence resonance energy transfer, magnetic tweezers, atomic force microscopy, and optical traps. For each technique, the principles of operation are outlined, the capabilities and typical applications are examined, and various practical issues for implementation are considered. Extensions to these methods are also discussed, with an eye toward future application to outstanding biological problems.

  10. Compact and mobile high resolution PET brain imager

    Science.gov (United States)

    Majewski, Stanislaw [Yorktown, VA; Proffitt, James [Newport News, VA

    2011-02-08

    A brain imager includes a compact ring-like static PET imager mounted in a helmet-like structure. When attached to a patient's head, the helmet-like brain imager maintains the relative head-to-imager geometry fixed through the whole imaging procedure. The brain imaging helmet contains radiation sensors and minimal front-end electronics. A flexible mechanical suspension/harness system supports the weight of the helmet thereby allowing for patient to have limited movements of the head during imaging scans. The compact ring-like PET imager enables very high resolution imaging of neurological brain functions, cancer, and effects of trauma using a rather simple mobile scanner with limited space needs for use and storage.

  11. High resolution imaging of tunnels by magnetic resonance neurography

    Energy Technology Data Exchange (ETDEWEB)

    Subhawong, Ty K.; Thawait, Shrey K.; Machado, Antonio J.; Carrino, John A.; Chhabra, Avneesh [Johns Hopkins Hospital, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD (United States); Wang, Kenneth C. [Baltimore VA Medical Center, Department of Radiology, Baltimore, MD (United States); Williams, Eric H. [Dellon Institute for Peripheral Nerve Surgery, Towson, MD (United States); Hashemi, Shahreyar Shar [Johns Hopkins Hospital, Division of Plastic and Reconstructive Surgery, Baltimore, MD (United States)

    2012-01-15

    Peripheral nerves often traverse confined fibro-osseous and fibro-muscular tunnels in the extremities, where they are particularly vulnerable to entrapment and compressive neuropathy. This gives rise to various tunnel syndromes, characterized by distinct patterns of muscular weakness and sensory deficits. This article focuses on several upper and lower extremity tunnels, in which direct visualization of the normal and abnormal nerve in question is possible with high resolution 3T MR neurography (MRN). MRN can also serve as a useful adjunct to clinical and electrophysiologic exams by discriminating adhesive lesions (perineural scar) from compressive lesions (such as tumor, ganglion, hypertrophic callous, or anomalous muscles) responsible for symptoms, thereby guiding appropriate treatment. (orig.)

  12. High-resolution mapping of bifurcations in nonlinear biochemical circuits

    Science.gov (United States)

    Genot, A. J.; Baccouche, A.; Sieskind, R.; Aubert-Kato, N.; Bredeche, N.; Bartolo, J. F.; Taly, V.; Fujii, T.; Rondelez, Y.

    2016-08-01

    Analog molecular circuits can exploit the nonlinear nature of biochemical reaction networks to compute low-precision outputs with fewer resources than digital circuits. This analog computation is similar to that employed by gene-regulation networks. Although digital systems have a tractable link between structure and function, the nonlinear and continuous nature of analog circuits yields an intricate functional landscape, which makes their design counter-intuitive, their characterization laborious and their analysis delicate. Here, using droplet-based microfluidics, we map with high resolution and dimensionality the bifurcation diagrams of two synthetic, out-of-equilibrium and nonlinear programs: a bistable DNA switch and a predator-prey DNA oscillator. The diagrams delineate where function is optimal, dynamics bifurcates and models fail. Inverse problem solving on these large-scale data sets indicates interference from enzymatic coupling. Additionally, data mining exposes the presence of rare, stochastically bursting oscillators near deterministic bifurcations.

  13. High Resolution Mass Spectrometry of Polyfluorinated Polyether-Based Formulation

    DEFF Research Database (Denmark)

    Dimzon, Ian Ken; Trier, Xenia; Frömel, Tobias

    2016-01-01

    High resolution mass spectrometry (HRMS) was successfully applied to elucidate the structure of a polyfluorinated polyether (PFPE)-based formulation. The mass spectrum generated from direct injection into the MS was examined by identifying the different repeating units manually and with the aid...... per molecule. The three major repeating units were -C2H4O-, -C2F4O-, and -CF2O-. Tandem MS was used to identify the end groups that appeared to be phosphates, as well as the possible distribution of the repeating units. Reversed-phase HPLC separated of the polymer molecules on the basis of number......-fluorinated polymers. The information from MS is essential in studying the physico-chemical properties of PFPEs and can help in assessing the risks they pose to the environment and to human health. Graphical Abstract ᅟ....

  14. Folding of a large protein at high structural resolution.

    Science.gov (United States)

    Walters, Benjamin T; Mayne, Leland; Hinshaw, James R; Sosnick, Tobin R; Englander, S Walter

    2013-11-19

    Kinetic folding of the large two-domain maltose binding protein (MBP; 370 residues) was studied at high structural resolution by an advanced hydrogen-exchange pulse-labeling mass-spectrometry method (HX MS). Dilution into folding conditions initiates a fast molecular collapse into a polyglobular conformation (rest of the folding process. It contains the sites of three previously reported destabilizing mutations that greatly slow folding. These results indicate that the intermediate is an obligatory step on the MBP folding pathway. MBP then folds to the native state on a longer time scale (~100 s), suggestively in more than one step, the first of which forms structure adjacent to the 7-s intermediate. These results add a large protein to the list of proteins known to fold through distinct native-like intermediates in distinct pathways.

  15. High resolution wind turbine wake measurements with a scanning lidar

    Science.gov (United States)

    Herges, T. G.; Maniaci, D. C.; Naughton, B. T.; Mikkelsen, T.; Sjöholm, M.

    2017-05-01

    High-resolution lidar wake measurements are part of an ongoing field campaign being conducted at the Scaled Wind Farm Technology facility by Sandia National Laboratories and the National Renewable Energy Laboratory using a customized scanning lidar from the Technical University of Denmark. One of the primary objectives is to collect experimental data to improve the predictive capability of wind plant computational models to represent the response of the turbine wake to varying inflow conditions and turbine operating states. The present work summarizes the experimental setup and illustrates several wake measurement example cases. The cases focus on demonstrating the impact of the atmospheric conditions on the wake shape and position, and exhibit a sample of the data that has been made public through the Department of Energy Atmosphere to Electrons Data Archive and Portal.

  16. Arrays of microscopic organic LEDs for high-resolution optogenetics.

    Science.gov (United States)

    Steude, Anja; Witts, Emily C; Miles, Gareth B; Gather, Malte C

    2016-05-01

    Optogenetics is a paradigm-changing new method to study and manipulate the behavior of cells with light. Following major advances of the used genetic constructs over the last decade, the light sources required for optogenetic control are now receiving increased attention. We report a novel optogenetic illumination platform based on high-density arrays of microscopic organic light-emitting diodes (OLEDs). Because of the small dimensions of each array element (6 × 9 μm(2)) and the use of ultrathin device encapsulation, these arrays enable illumination of cells with unprecedented spatiotemporal resolution. We show that adherent eukaryotic cells readily proliferate on these arrays, and we demonstrate specific light-induced control of the ionic current across the membrane of individual live cells expressing different optogenetic constructs. Our work paves the way for the use of OLEDs for cell-specific optogenetic control in cultured neuronal networks and for acute brain slices, or as implants in vivo.

  17. Gravity Currents with Convective Mixing: High-resolution Numerical Simulations

    Science.gov (United States)

    Voskov, D.; Elenius, M. T.; Tchelepi, H.

    2014-12-01

    Due to challenges in performing direct numerical simulations for gravity currents with convective mixing, different attempts have been made to simplify the problem. In this work, the full problem is investigated with direct numerical simulations. Our simulations employ a recently developed capability in our General Purpose Research Simulator (AD-GPRS). The compositional approach is based on K-values and a linear density model. A shared-memory parallel implementation allows for high resolution simulations in a reasonable time frame. Our results indicate that it is important to consider the reduction in the dissolution rate after the fingers begin to interact with the bottom of the aquifer. Another important observation suggests considering a reduction in the dissolution rate where the plume thickness increases in time. In addition to the large-scale simulations, we performed convective-mixing simulations in relatively small domains to support the analysis of large-scale plume migration and CO2 trapping.

  18. Precision cosmology with time delay lenses: High resolution imaging requirements

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Xiao -Lei [Beijing Normal Univ., Beijing (China); Univ. of California, Santa Barbara, CA (United States); Treu, Tommaso [Univ. of California, Santa Barbara, CA (United States); Univ. of California, Los Angeles, CA (United States); Agnello, Adriano [Univ. of California, Santa Barbara, CA (United States); Univ. of California, Los Angeles, CA (United States); Auger, Matthew W. [Univ. of Cambridge, Cambridge (United Kingdom); Liao, Kai [Beijing Normal Univ., Beijing (China); Univ. of California, Santa Barbara, CA (United States); Univ. of California, Los Angeles, CA (United States); Marshall, Philip J. [Stanford Univ., Stanford, CA (United States)

    2015-09-28

    Lens time delays are a powerful probe of cosmology, provided that the gravitational potential of the main deflector can be modeled with sufficient precision. Recent work has shown that this can be achieved by detailed modeling of the host galaxies of lensed quasars, which appear as ``Einstein Rings'' in high resolution images. The distortion of these arcs and counter-arcs, as measured over a large number of pixels, provides tight constraints on the difference between the gravitational potential between the quasar image positions, and thus on cosmology in combination with the measured time delay. We carry out a systematic exploration of the high resolution imaging required to exploit the thousands of lensed quasars that will be discovered by current and upcoming surveys with the next decade. Specifically, we simulate realistic lens systems as imaged by the Hubble Space Telescope (HST), James Webb Space Telescope (JWST), and ground based adaptive optics images taken with Keck or the Thirty Meter Telescope (TMT). We compare the performance of these pointed observations with that of images taken by the Euclid (VIS), Wide-Field Infrared Survey Telescope (WFIRST) and Large Synoptic Survey Telescope (LSST) surveys. We use as our metric the precision with which the slope γ' of the total mass density profile ρtot∝ r–γ' for the main deflector can be measured. Ideally, we require that the statistical error on γ' be less than 0.02, such that it is subdominant to other sources of random and systematic uncertainties. We find that survey data will likely have sufficient depth and resolution to meet the target only for the brighter gravitational lens systems, comparable to those discovered by the SDSS survey. For fainter systems, that will be discovered by current and future surveys, targeted follow-up will be required. Furthermore, the exposure time required with upcoming facilitites such as JWST, the Keck Next Generation Adaptive

  19. A new high-resolution climatology for the Nordic Seas

    Science.gov (United States)

    Korablev, A.; Johannessen, O. M.; Pnyushkov, A.; Smirnov, A.

    2009-04-01

    Constantly growing interests in high-resolution oceanographic fields stimulate compilation of comprehensive initial datasets and advanced methodology of the objective analysis. Observed level database for the Nordic Seas and the North Atlantic compiled from large amount of initial sources was recently considerably updated by adding historical and modern measurements. Improved database allows evaluating ocean climate variability in the area for 1900-2007. Applied quality control algorithms on observed data were specifically designed to preserve regional variability and to produce the oceanographic fields with enhanced spatial resolution. Objectively analyzed (OA) temperature, salinity and dissolved oxygen monthly fields at the standard levels for the 1900-2007 on 0.25 x 0.5 gr. latitude-longitude grid were computed by means of block variant of ordinary kriging system. The OA monthly fields comprise climatology and can be used for studying of temporal and spatial parameters variation. A number of stable regimes and periods with abrupt changes of the water masses thermohaline properties were identified and will be discussed. Monthly mean fields were compared with available high-resolution (better then 0.5 gr.) climatology fields, including Generalized Digital Environmental Model (GDEM) version 3.0 and NODC/NOAA products based on data from World Ocean Databases 2001 and 2005. Results show considerable discrepancies originated from differences in initial datasets, quality control algorithms and methods of objective analysis. Allocation of the collected oceanographic stations for more than one century and derived climatological fields over the Nordic Seas reveals a disproportion in data coverage. Repeated standard stations, sections and polygons are most important for uniform long-term time series compositing and ocean climate variation study. Luck of observations over the west and northern parts of the region do not allows reliable climatology fields compilation

  20. Comparative Assessment of Very High Resolution Satellite and Aerial Orthoimagery

    Science.gov (United States)

    Agrafiotis, P.; Georgopoulos, A.

    2015-03-01

    This paper aims to assess the accuracy and radiometric quality of orthorectified high resolution satellite imagery from Pleiades-1B satellites through a comparative evaluation of their quantitative and qualitative properties. A Pleiades-B1 stereopair of high resolution images taken in 2013, two adjacent GeoEye-1 stereopairs from 2011 and aerial orthomosaic (LSO) provided by NCMA S.A (Hellenic Cadastre) from 2007 have been used for the comparison tests. As control dataset orthomosaic from aerial imagery provided also by NCMA S.A (0.25m GSD) from 2012 was selected. The process for DSM and orthoimage production was performed using commercial digital photogrammetric workstations. The two resulting orthoimages and the aerial orthomosaic (LSO) were relatively and absolutely evaluated for their quantitative and qualitative properties. Test measurements were performed using the same check points in order to establish their accuracy both as far as the single point coordinates as well as their distances are concerned. Check points were distributed according to JRC Guidelines for Best Practice and Quality Checking of Ortho Imagery and NSSDA standards while areas with different terrain relief and land cover were also included. The tests performed were based also on JRC and NSSDA accuracy standards. Finally, tests were carried out in order to assess the radiometric quality of the orthoimagery. The results are presented with a statistical analysis and they are evaluated in order to present the merits and demerits of the imaging sensors involved for orthoimage production. The results also serve for a critical approach for the usability and cost efficiency of satellite imagery for the production of Large Scale Orthophotos.

  1. Leaf Area Index Retrieval Using High Resolution Remote Sensing Data

    Directory of Open Access Journals (Sweden)

    Michele Rinaldi

    2010-06-01

    Full Text Available Vegetation indices obtained from remote sensed data can be used to characterize crop canopy on a large scale using a non-destructive method. With the recent launch of the IKONOS satellite, very high spatial resolution (1 meter images are available for the detailed monitoring of ecosystems as well as for precision agriculture. The aim of this study is to evaluate the accuracy of leaf area index (LAI retrieval over agricultural area that can be obtained by empirical relationships between different spectral vegetation indices (VI and LAI measured on three different dates over the spring-summer period of 2008, in the Capitanata plain (Southern Italy. All the VIs used (NDVI, RDVI, WDVI, MSAVI and GEMI were related to the LAI through exponential regression functions, either global or crop-dependent. In the first case, LAI was estimated with comparable accuracies for all VIs employed, with a slightly higher accuracy for GEMI, which determination coefficient achieved the value of 0.697. Whereas the LAI regression functions were calculated separately for each crop, the WDVI, GEMI and RDVI vegetation indices provided the highest determination coefficients with values close to 0.90 for wheat and sugar beet, and with values close to 0.70 for tomatoes. A validation of the models was carried out with a selection of independent sampling data. The validation confirmed that WDVI and GEMI were the VIs that provided the highest LAI retrieval accuracies, with RMSE values of about to 1.1 m2 m-2. The exponential functions, calibrated and validated to calculate LAI from GEMI, were used to derive LAI maps from IKONOS high-resolution remote sensing images with good accuracy. These maps can be used as input variables for crop growth models, obtaining relevant information that can be useful in agricultural management strategies (in particular irrigation and fertilization, as well as in the application of precision farming.

  2. A high-resolution multimode digital microscope system.

    Science.gov (United States)

    Salmon, Edward D; Shaw, Sidney L; Waters, Jennifer C; Waterman-Storer, Clare M; Maddox, Paul S; Yeh, Elaine; Bloom, Kerry

    2013-01-01

    This chapter describes the development of a high-resolution, multimode digital imaging system based on a wide-field epifluorescent and transmitted light microscope, and a cooled charge-coupled device (CCD) camera. The three main parts of this imaging system are Nikon FXA microscope, Hamamatsu C4880 cooled CCD camera, and MetaMorph digital imaging system. This chapter presents various design criteria for the instrument and describes the major features of the microscope components-the cooled CCD camera and the MetaMorph digital imaging system. The Nikon FXA upright microscope can produce high resolution images for both epifluorescent and transmitted light illumination without switching the objective or moving the specimen. The functional aspects of the microscope set-up can be considered in terms of the imaging optics, the epi-illumination optics, the transillumination optics, the focus control, and the vibration isolation table. This instrument is somewhat specialized for microtubule and mitosis studies, and it is also applicable to a variety of problems in cellular imaging, including tracking proteins fused to the green fluorescent protein in live cells. The instrument is also valuable for correlating the assembly dynamics of individual cytoplasmic microtubules (labeled by conjugating X-rhodamine to tubulin) with the dynamics of membranes of the endoplasmic reticulum (labeled with DiOC6) and the dynamics of the cell cortex (by differential interference contrast) in migrating vertebrate epithelial cells. This imaging system also plays an important role in the analysis of mitotic mutants in the powerful yeast genetic system Saccharomyces cerevisiae. Copyright © 1998 Elsevier Inc. All rights reserved.

  3. High Resolution Helium Ion Scanning Microscopy of the Rat Kidney

    Science.gov (United States)

    Rice, William L.; Van Hoek, Alfred N.; Păunescu, Teodor G.; Huynh, Chuong; Goetze, Bernhard; Singh, Bipin; Scipioni, Larry; Stern, Lewis A.; Brown, Dennis

    2013-01-01

    Helium ion scanning microscopy is a novel imaging technology with the potential to provide sub-nanometer resolution images of uncoated biological tissues. So far, however, it has been used mainly in materials science applications. Here, we took advantage of helium ion microscopy to explore the epithelium of the rat kidney with unsurpassed image quality and detail. In addition, we evaluated different tissue preparation methods for their ability to preserve tissue architecture. We found that high contrast, high resolution imaging of the renal tubule surface is possible with a relatively simple processing procedure that consists of transcardial perfusion with aldehyde fixatives, vibratome tissue sectioning, tissue dehydration with graded methanol solutions and careful critical point drying. Coupled with the helium ion system, fine details such as membrane texture and membranous nanoprojections on the glomerular podocytes were visualized, and pores within the filtration slit diaphragm could be seen in much greater detail than in previous scanning EM studies. In the collecting duct, the extensive and striking apical microplicae of the intercalated cells were imaged without the shrunken or distorted appearance that is typical with conventional sample processing and scanning electron microscopy. Membrane depressions visible on principal cells suggest possible endo- or exocytotic events, and central cilia on these cells were imaged with remarkable preservation and clarity. We also demonstrate the use of colloidal gold probes for highlighting specific cell-surface proteins and find that 15 nm gold labels are practical and easily distinguishable, indicating that external labels of various sizes can be used to detect multiple targets in the same tissue. We conclude that this technology represents a technical breakthrough in imaging the topographical ultrastructure of animal tissues. Its use in future studies should allow the study of fine cellular details and provide

  4. Exploring for subtle traps with high-resolution paleogeographic maps

    Energy Technology Data Exchange (ETDEWEB)

    Bulling, T.B.; Breyer, J.A.

    1988-01-01

    High-resolution paleogeographic maps depicting the depositional history of the Reklaw 1 interval provide a basis for prospecting for subtle traps in the updip Reklaw trend in south Texas. The Reklaw 1 interval began with sand being carried southwest by longshore currents to form the barrier bar that forms the reservoir in Atkinson field. The hydrocarbons are trapped by the updip pinch-out of barrier-bar sand into lagoonal mud. Stratigraphic traps similar to Atkinson field could be present along depositional strike if the sand in the field were part of a more extensive-bar system. After the barrier bar formed, distributary-mouth bars prograded seaward depositing the bar-finger sands that are the reservoirs in Hysaw and Flax fields. Subtle structural traps could be present where small down-to-the-north faults associated with the Sample fault system cut the bar-finger sands downdip from the established production. Farther down paleoslope, the distributary channels began to bifurcate and the distributary-mouth bar coalesced to form a broad delt-front sheet sand. Burnell, Hondo Creek, and Runge West fields produce from this sheet sand near the unstable shelf margin. A rapid rise in relative sea level terminated deposition of the Reklaw 1 interval. Many of the oil and gas fields remaining to be discovered in the United States are in mature petroleum provinces where much of the remaining oil and gas probably resides in subtle traps. High-resolution paleogeographic maps may be a key to finding these subtle traps.

  5. Accelerated High Spatial Resolution Diffusion-Weighted Imaging.

    Science.gov (United States)

    Scherrer, Benoit; Afacan, Onur; Taquet, Maxime; Prabhu, Sanjay P; Gholipour, Ali; Warfield, Simon K

    2015-01-01

    Acquisition of a series of anisotropically oversampled acquisitions (so-called anisotropic "snapshots") and reconstruction in the image space has recently been proposed to increase the spatial resolution in diffusion weighted imaging (DWI), providing a theoretical 8x acceleration at equal signal-to-noise ratio (SNR) compared to conventional dense k-space sampling. However, in most works, each DW image is reconstructed separately and the fact that the DW images constitute different views of the same anatomy is ignored. In addition, current approaches are limited by their inability to reconstruct a high resolution (HR) acquisition from snapshots with different subsets of diffusion gradients: an isotropic HR gradient image cannot be reconstructed if one .of its anisotropic snapshots is missing, for example due to intra-scan motion, even if other snapshots for this gradient were successfully acquired. In this work, we propose a novel multi-snapshot DWI reconstruction technique that simultaneously achieves HR reconstruction and local tissue model estimation while enabling reconstruction from snapshots containing different subsets of diffusion gradients, providing increased robustness to patient motion and potential for acceleration. Our approach is formalized as a joint probabilistic model with missing observations, from which interactions between missing snapshots, HR reconstruction and a generic tissue model naturally emerge. We evaluate our approach with synthetic simulations, simulated multi-snapshot scenario and in vivo multi-snapshot imaging. We show that (1) our combined approach ultimately provides both better HR reconstruction and better tissue model estimation and (2) the error in the case of missing snapshots can be quantified. Our novel multi-snapshot technique will enable improved high spatial characterization of the brain connectivity and microstructure in vivo.

  6. High resolution helium ion scanning microscopy of the rat kidney.

    Science.gov (United States)

    Rice, William L; Van Hoek, Alfred N; Păunescu, Teodor G; Huynh, Chuong; Goetze, Bernhard; Singh, Bipin; Scipioni, Larry; Stern, Lewis A; Brown, Dennis

    2013-01-01

    Helium ion scanning microscopy is a novel imaging technology with the potential to provide sub-nanometer resolution images of uncoated biological tissues. So far, however, it has been used mainly in materials science applications. Here, we took advantage of helium ion microscopy to explore the epithelium of the rat kidney with unsurpassed image quality and detail. In addition, we evaluated different tissue preparation methods for their ability to preserve tissue architecture. We found that high contrast, high resolution imaging of the renal tubule surface is possible with a relatively simple processing procedure that consists of transcardial perfusion with aldehyde fixatives, vibratome tissue sectioning, tissue dehydration with graded methanol solutions and careful critical point drying. Coupled with the helium ion system, fine details such as membrane texture and membranous nanoprojections on the glomerular podocytes were visualized, and pores within the filtration slit diaphragm could be seen in much greater detail than in previous scanning EM studies. In the collecting duct, the extensive and striking apical microplicae of the intercalated cells were imaged without the shrunken or distorted appearance that is typical with conventional sample processing and scanning electron microscopy. Membrane depressions visible on principal cells suggest possible endo- or exocytotic events, and central cilia on these cells were imaged with remarkable preservation and clarity. We also demonstrate the use of colloidal gold probes for highlighting specific cell-surface proteins and find that 15 nm gold labels are practical and easily distinguishable, indicating that external labels of various sizes can be used to detect multiple targets in the same tissue. We conclude that this technology represents a technical breakthrough in imaging the topographical ultrastructure of animal tissues. Its use in future studies should allow the study of fine cellular details and provide

  7. High resolution helium ion scanning microscopy of the rat kidney.

    Directory of Open Access Journals (Sweden)

    William L Rice

    Full Text Available Helium ion scanning microscopy is a novel imaging technology with the potential to provide sub-nanometer resolution images of uncoated biological tissues. So far, however, it has been used mainly in materials science applications. Here, we took advantage of helium ion microscopy to explore the epithelium of the rat kidney with unsurpassed image quality and detail. In addition, we evaluated different tissue preparation methods for their ability to preserve tissue architecture. We found that high contrast, high resolution imaging of the renal tubule surface is possible with a relatively simple processing procedure that consists of transcardial perfusion with aldehyde fixatives, vibratome tissue sectioning, tissue dehydration with graded methanol solutions and careful critical point drying. Coupled with the helium ion system, fine details such as membrane texture and membranous nanoprojections on the glomerular podocytes were visualized, and pores within the filtration slit diaphragm could be seen in much greater detail than in previous scanning EM studies. In the collecting duct, the extensive and striking apical microplicae of the intercalated cells were imaged without the shrunken or distorted appearance that is typical with conventional sample processing and scanning electron microscopy. Membrane depressions visible on principal cells suggest possible endo- or exocytotic events, and central cilia on these cells were imaged with remarkable preservation and clarity. We also demonstrate the use of colloidal gold probes for highlighting specific cell-surface proteins and find that 15 nm gold labels are practical and easily distinguishable, indicating that external labels of various sizes can be used to detect multiple targets in the same tissue. We conclude that this technology represents a technical breakthrough in imaging the topographical ultrastructure of animal tissues. Its use in future studies should allow the study of fine cellular details

  8. Special issue on high-resolution optical imaging

    Science.gov (United States)

    Smith, Peter J. S.; Davis, Ilan; Galbraith, Catherine G.; Stemmer, Andreas

    2013-09-01

    The pace of development in the field of advanced microscopy is truly breath-taking, and is leading to major breakthroughs in our understanding of molecular machines and cell function. This special issue of Journal of Optics draws attention to a number of interesting approaches, ranging from fluorescence and imaging of unlabelled cells, to computational methods, all of which are describing the ever increasing detail of the dynamic behaviour of molecules in the living cell. This is a field which traditionally, and currently, demonstrates a marvellous interplay between the disciplines of physics, chemistry and biology, where apparent boundaries to resolution dissolve and living cells are viewed in ever more clarity. It is fertile ground for those interested in optics and non-conventional imaging to contribute high-impact outputs in the fields of cell biology and biomedicine. The series of articles presented here has been selected to demonstrate this interdisciplinarity and to encourage all those with a background in the physical sciences to 'dip their toes' into the exciting and dynamic discoveries surrounding cell function. Although single molecule super-resolution microscopy is commercially available, specimen preparation and interpretation of single molecule data remain a major challenge for scientists wanting to adopt the techniques. The paper by Allen and Davidson [1] provides a much needed detailed introduction to the practical aspects of stochastic optical reconstruction microscopy, including sample preparation, image acquisition and image analysis, as well as a brief description of the different variants of single molecule localization microscopy. Since super-resolution microscopy is no longer restricted to three-dimensional imaging of fixed samples, the review by Fiolka [2] is a timely introduction to techniques that have been successfully applied to four-dimensional live cell super-resolution microscopy. The combination of multiple high-resolution techniques

  9. High resolution x-ray lensless imaging by differential holographic encoding

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, D.; Guizar-Sicairos, M.; Wu, B.; Scherz, A.; Acremann, Y.; Tylisczcak, T.; Fischer, P.; Friedenberger, N.; Ollefs, K.; Farle, M.; Fienup, J. R.; Stohr, J.

    2009-11-02

    X-ray free electron lasers (X-FEL{sub s}) will soon offer femtosecond pulses of laterally coherent x-rays with sufficient intensity to record single-shot coherent scattering patterns for nanoscale imaging. Pulse trains created by splitand-delay techniques even open the door for cinematography on unprecedented nanometer length and femtosecond time scales. A key to real space ultrafast motion pictures is fast and reliable inversion of the recorded reciprocal space scattering patterns. Here we for the first time demonstrate in the x-ray regime the power of a novel technique for lensless high resolution imaging, previously suggested by Guizar-Sicairos and Fienup termed holography with extended reference by autocorrelation linear differential operation, HERALD0. We have achieved superior resolution over conventional x-ray Fourier transform holography (FTH) without sacrifices in SNR or significant increase in algorithmic complexity. By combining images obtained from individual sharp features on an extended reference, we further show that the resolution can be even extended beyond the reference fabrication limits. Direct comparison to iterative phase retrieval image reconstruction and images recorded with stateof- the-art zone plate microscopes is presented. Our results demonstrate the power of HERALDO as a favorable candidate for robust inversion of single-shot coherent scattering patterns.

  10. High-Resolution X-Ray Lensless Imaging by Differential Holographic Encoding

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Diling [Stanford Univ., CA (United States). Dept. of Applied Physics; SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Inst. for Material and Energy Science; Guizar-Sicairos, Manuel [Univ. of Rochester, NY (United States). Inst. of Optics; Wu, Benny [Stanford Univ., CA (United States). Dept. of Applied Physics; SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Inst. for Material and Energy Science; Scherz, Andreas [SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Inst. for Material and Energy Science; Acremann, Yves [SLAC National Accelerator Lab., Menlo Park, CA (United States). Photon Ultrafast Laser Science and Engineering Inst. (PULSE); Tyliszczak, Tolek [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS); Fischer, Peter [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Center for X-ray Optics; Friedenberger, Nina [Universitat Duisburg-Essen (Germany). Dept. of Physics and Center for Nanointegration Duisburg-Essen (CeNIDE); Ollefs, Katharina [Universitat Duisburg-Essen (Germany). Dept. of Physics and Center for Nanointegration Duisburg-Essen (CeNIDE); Farle, Michael [Universitat Duisburg-Essen (Germany). Dept. of Physics and Center for Nanointegration Duisburg-Essen (CeNIDE); Fienup, James R. [Univ. of Rochester, NY (United States). Inst. of Optics; Stöhr, Joachim [SLAC National Accelerator Lab., Menlo Park, CA (United States). Linac Coherent Light Source (LCLS)

    2010-07-01

    X-ray free electron lasers (X-FELs) will soon offer femtosecond pulses of laterally coherent x-rays with sufficient intensity to record single-shot coherent scattering patterns for nanoscale imaging. Pulse trains created by split and- delay techniques even open the door for cinematography on unprecedented nanometer length and femtosecond time scales. A key to real space ultrafast motion pictures is fast and reliable inversion of the recorded reciprocal space scattering patterns. Here we for the first time demonstrate in the x-ray regime the power of a novel technique for lensless high resolution imaging, previously suggested by Guizar-Sicairos and Fienup termed holography with extended reference by autocorrelation linear differential operation, HERALD0. We have achieved superior resolution over conventional x-ray Fourier transform holography (FTH) without sacrifices in SNR or significant increase in algorithmic complexity. By combining images obtained from individual sharp features on an extended reference, we further show that the resolution can be even extended beyond the reference fabrication limits. Direct comparison to iterative phase retrieval image reconstruction and images recorded with state of-the-art zone plate microscopes is presented. Our results demonstrate the power of HERALDO as a favorable candidate for robust inversion of single-shot coherent scattering patterns.

  11. Ultra-high aspect ratio high-resolution nanofabrication for hard X-ray diffractive optics

    Science.gov (United States)

    Chang, Chieh; Sakdinawat, Anne

    2014-06-01

    Although diffractive optics have played a major role in nanoscale soft X-ray imaging, high-resolution and high-efficiency diffractive optics have largely been unavailable for hard X-rays where many scientific, technological and biomedical applications exist. This is owing to the long-standing challenge of fabricating ultra-high aspect ratio high-resolution dense nanostructures. Here we report significant progress in ultra-high aspect ratio nanofabrication of high-resolution, dense silicon nanostructures using vertical directionality controlled metal-assisted chemical etching. The resulting structures have very smooth sidewalls and can be used to pattern arbitrary features, not limited to linear or circular. We focus on the application of X-ray zone plate fabrication for high-efficiency, high-resolution diffractive optics, and demonstrate the process with linear, circular, and spiral zone plates. X-ray measurements demonstrate high efficiency in the critical outer layers. This method has broad applications including patterning for thermoelectric materials, battery anodes and sensors among others.

  12. Mapping trees in high resolution imagery across large areas using locally variable thresholds guided by medium resolution tree maps

    Science.gov (United States)

    Fisher, Adrian; Danaher, Tim; Gill, Tony

    2017-06-01

    Large area tree maps, important for environmental monitoring and natural resource management, are often based on medium resolution satellite imagery. These data have difficulty in detecting trees in fragmented woodlands, and have significant omission errors in modified agricultural areas. High resolution imagery can better detect these trees, however, as most high resolution imagery is not normalised it is difficult to automate a tree classification method over large areas. The method developed here used an existing medium resolution map derived from either Landsat or SPOT5 satellite imagery to guide the classification of the high resolution imagery. It selected a spatially-variable threshold on the green band, calculated based on the spatially-variable percentage of trees in the existing map of tree cover. The green band proved more consistent at classifying trees across different images than several common band combinations. The method was tested on 0.5 m resolution imagery from airborne digital sensor (ADS) imagery across New South Wales (NSW), Australia using both Landsat and SPOT5 derived tree maps to guide the threshold selection. Accuracy was assessed across 6 large image mosaics revealing a more accurate result when the more accurate tree map from SPOT5 imagery was used. The resulting maps achieved an overall accuracy with 95% confidence intervals of 93% (90-95%), while the overall accuracy of the previous SPOT5 tree map was 87% (86-89%). The method reduced omission errors by mapping more scattered trees, although it did increase commission errors caused by dark pixels from water, building shadows, topographic shadows, and some soils and crops. The method allows trees to be automatically mapped at 5 m resolution from high resolution imagery, provided a medium resolution tree map already exists.

  13. A high resolution PVDF (peizoelectric) film respiration sensor

    Science.gov (United States)

    Nakano, Katsuya; Fujita, Kento; Misaki, Shinya; Fujii, Hiroyuki; Johnston, Robert; Misaki, Yukinori

    2017-07-01

    Sensors used today for contact measurement of a subject's breathing work by measuring the inductance change in some film, piezoelectric or pyro-electric, used in the sensor. However, their use can increase stress and burden for patients because of the close proximity to the body that the sensors must be to operate. They must be applied directly to the patient's body by tape or adhesive paste. To address this problem and reduce subject stress and burden, it was decided to research development of a high resolution breathing sensor that could still function even while placed over the patient's clothes. This was achieved by developing a new PVDF piezoelectric film based sensor with an innovative configuration. Through the use of some simple amplification circuitry and processing the output signal, the high sensitivity breathing sensor developed was determined to be able to accurately measure a person's breathing. Also, due to the high sensitivity of the sensor, heart rate was also detectable revealing the possibility for simultaneous measurement of both breathing and heart rate.

  14. A new high resolution tidal model in the arctic ocean

    DEFF Research Database (Denmark)

    Cancet, M.; Andersen, Ole Baltazar; Lyard, F.

    The Arctic Ocean is a challenging region for tidal modeling, because of its complex and not well-documented bathymetry, together combined with the intermittent presence of sea ice and the fact that the in situ tidal observations are rather scarce at such high latitudes. As a consequence, the accu...... for assimilation and validation. This paper presents the performances of this new regional tidal model in the Arctic Ocean, compared to the existing global tidal models.......The Arctic Ocean is a challenging region for tidal modeling, because of its complex and not well-documented bathymetry, together combined with the intermittent presence of sea ice and the fact that the in situ tidal observations are rather scarce at such high latitudes. As a consequence......-growing maritime and industrial activities in this region. NOVELTIS and DTU Space have developed a regional, high-resolution tidal atlas in the Arctic Ocean, in the framework of the CryoSat Plus for Ocean (CP4O) ESA project. In particular, this atlas benefits from the assimilation of the most complete satellite...

  15. High resolution fluorescence bio-imaging upconversion nanoparticles in insects.

    Science.gov (United States)

    Alkahtani, Masfer; Chen, Yunyun; Pedraza, Julie J; González, Jorge M; Parkinson, Dilworth Y; Hemmer, Philip R; Liang, Hong

    2017-01-23

    Imaging fluorescent markers with brightness, photostability, and continuous emission with auto fluorescence background suppression in biological samples has always been challenging due to limitations of available and economical techniques. Here we report a new approach, to achieve high contrast imaging inside small and difficult biological systems with special geometry such as fire ants, an important agricultural pest, using a homemade cost-effective optical system. Unlike the commonly used rare-earth doped fluoride nanoparticles, we utilized nanoparticles with a high upconversion efficiency in water. Specifically Y2O3:Er+3,Yb+3 nanoparticles (40-50 nm diameter) were fed to fire ants as food and then a simple illuminating experiment was conducted at 980 nm wavelength at relatively low pump intensity8 kW.cm-2. The locations were further confirmed by X-ray tomography, where most particles aggregated inside the ant's mouth. High resolution, fast, and economical optical imaging system opens the door for studying more complex biological systems.

  16. Apparent diffusion profile estimation from high angular resolution diffusion images

    Science.gov (United States)

    Descoteaux, Maxime; Angelino, Elaine; Fitzgibbons, Shaun; Deriche, Rachid

    2006-03-01

    High angular resolution diffusion imaging (HARDI) has recently been of great interest to characterize non-Gaussian diffusion process. In the white matter of the brain, this occurs when fiber bundles cross, kiss or diverge within the same voxel. One of the important goal is to better describe the apparent diffusion process in these multiple fiber regions, thus overcoming the limitations of classical diffusion tensor imaging (DTI). In this paper, we design the appropriate mathematical tools to describe noisy HARDI data. Using a meaningful modified spherical harmonics basis to capture the physical constraints of the problem, we propose a new regularization algorithm to estimate a smoother and closer diffusivity profile to the true diffusivities without noise. We exploit properties of the spherical harmonics to define a smoothing term based on the Laplace-Beltrami for functions defined on the unit sphere. An additional contribution of the paper is the derivation of the general transformation taking the spherical harmonics coefficients to the high order tensor independent elements. This allows the careful study of the state of the art high order anisotropy measures computed from either spherical harmonics or tensor coefficients. We analyze their ability to characterize the underlying diffusion process. We are able to recover voxels with isotropic, single fiber anisotropic and multiple fiber anisotropic diffusion. We test and validate the approach on diffusion profiles from synthetic data and from a biological rat phantom.

  17. A parallel solution for high resolution histological image analysis.

    Science.gov (United States)

    Bueno, G; González, R; Déniz, O; García-Rojo, M; González-García, J; Fernández-Carrobles, M M; Vállez, N; Salido, J

    2012-10-01

    This paper describes a general methodology for developing parallel image processing algorithms based on message passing for high resolution images (on the order of several Gigabytes). These algorithms have been applied to histological images and must be executed on massively parallel processing architectures. Advances in new technologies for complete slide digitalization in pathology have been combined with developments in biomedical informatics. However, the efficient use of these digital slide systems is still a challenge. The image processing that these slides are subject to is still limited both in terms of data processed and processing methods. The work presented here focuses on the need to design and develop parallel image processing tools capable of obtaining and analyzing the entire gamut of information included in digital slides. Tools have been developed to assist pathologists in image analysis and diagnosis, and they cover low and high-level image processing methods applied to histological images. Code portability, reusability and scalability have been tested by using the following parallel computing architectures: distributed memory with massive parallel processors and two networks, INFINIBAND and Myrinet, composed of 17 and 1024 nodes respectively. The parallel framework proposed is flexible, high performance solution and it shows that the efficient processing of digital microscopic images is possible and may offer important benefits to pathology laboratories. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  18. Structure recognition from high resolution images of ceramic composites

    Energy Technology Data Exchange (ETDEWEB)

    Ushizima, Daniela; Perciano, Talita; Krishnan, Harinarayan; Loring, Burlen; Bale, Hrishikesh; Parkinson, Dilworth; Sethian, James

    2015-01-05

    Fibers provide exceptional strength-to-weight ratio capabilities when woven into ceramic composites, transforming them into materials with exceptional resistance to high temperature, and high strength combined with improved fracture toughness. Microcracks are inevitable when the material is under strain, which can be imaged using synchrotron X-ray computed micro-tomography (mu-CT) for assessment of material mechanical toughness variation. An important part of this analysis is to recognize fibrillar features. This paper presents algorithms for detecting and quantifying composite cracks and fiber breaks from high-resolution image stacks. First, we propose recognition algorithms to identify the different structures of the composite, including matrix cracks and fibers breaks. Second, we introduce our package F3D for fast filtering of large 3D imagery, implemented in OpenCL to take advantage of graphic cards. Results show that our algorithms automatically identify micro-damage and that the GPU-based implementation introduced here takes minutes, being 17x faster than similar tools on a typical image file.

  19. Visualizing sediment dynamics through repeated high-resolution multibeam mapping

    Science.gov (United States)

    de Vries, J. J.; Greinert, J.; Maierhofer, T.

    2013-12-01

    Multibeam mapping has become a common method for mapping the seafloor in shallow and great water depths with different spatial resolutions depending on the system platform (ship-based, AUV- or ROV-based), the beam angle of the system itself, the survey speed, and the distance to the seafloor. Significant advances in system accuracy, processing power and new software make multibeam mapping a powerful tool for studying sediment dynamics in 4D through repeated surveys that are ideally linked to additional studies on currents and sediment load in the water column. The Texelstroom channel, which is part of the Marsdiep between the city of Den Helder and the island of Texel (North Holland, the Netherlands), has been investigated in such a way for many years using water depth estimates from an ADCP installed on a ferry shuttling 24 times a day between the mainland and the island. Since 2009, repeated multibeam surveys have been undertaken up to three times per year as part of a student course, revealing sediment dynamics in much more detail than could be previously seen with the water depth estimates from the ferry-based ADCP. In the Texelstroom channel, the water depth ranges from a few meters to 45 meters. In the highly variable bathymetry, a series of large, bended sand waves exist mainly perpendicular to the direction of the main current. The shape of the sand waves changes from asymmetrical to symmetrical depending on the time of year, with more symmetrical shapes in spring and summer. Perpendicular to the large sand waves, smaller ripples develop during autumn. In addition to these changes in sand wave characteristics, sand wave crests sometimes migrate more than 30m in two months with an average movement of half a meter per day. The migration direction changes during the year resulting in a non-constant back-and-forth movement of the large sand waves. These intra-annual variations are characterized by changes in the slope of the sand waves, variations in the

  20. Compressed sensing for high frame rate, high resolution and high contrast ultrasound imaging.

    Science.gov (United States)

    Jing Liu; Qiong He; Jianwen Luo

    2015-08-01

    Compressed sensing (CS) or compressive sampling allows much lower sampling frequency than the Nyquist sampling frequency. In this paper, we propose a novel technique, named compressed sensing based synthetic transmit aperture (CS-STA), to speed up the acquisition of ultrasound imaging. Ultrasound transducer transmits plane wave with random apodizations for several times and receives the corresponding echoes. The full dataset of STA is then recovered from the recorded echoes using a CS reconstruction algorithm. Finally, a standard STA beamforming is performed on the dataset to form a B-mode image. When the number of CS-STA firings is smaller than the number of STA firings, higher frame rate is achieved. In addition, CS-STA maintains the high resolution of STA because of the CS recovered full dataset of STA, and improves the contrast due to plane wave firings. Computer simulations and phantom experiments are carried out to investigate the feasibility and performance of the proposed CS-STA method. The CS-STA method is proven to be capable of obtaining simultaneously high frame rate, high solution and high contrast ultrasound imaging.

  1. Individual tree detection based on densities of high points of high resolution airborne lidar

    NARCIS (Netherlands)

    Abd Rahman, M.Z.; Gorte, B.G.H.

    2008-01-01

    The retrieval of individual tree location from Airborne LiDAR has focused largely on utilizing canopy height. However, high resolution Airborne LiDAR offers another source of information for tree detection. This paper presents a new method for tree detection based on high points’ densities from a

  2. High-resolution x-ray studies of an AXAF high-energy transmission grating

    DEFF Research Database (Denmark)

    Abdali, S.; Christensen, Finn Erland; Schnopper, H. W.

    1993-01-01

    A triple axis X-ray diffractometer, designed and built at the Danish Space Research Institute, was used to make a high resolution study of the performance of a 2000 angstroms period, high energy X-ray transmission grating developed at MIT for one of the grating spectrometers on the Advanced X-ray...

  3. Tree crown delineation from high resolution airborne LiDAR based on densities of high points

    NARCIS (Netherlands)

    Rahman, M.Z.A.; Gorte, B.G.H.

    2009-01-01

    Tree detection and tree crown delineation from Airborne LiDAR has been focusing mostly on utilizing the canopy height model (CHM). This paper presents a method for individual tree crown delineation based on densities of high points (DHP) from the high resolution Airborne LiDAR. The DHP method relies

  4. High-resolution field shaping utilizing a masked multileaf collimator.

    Science.gov (United States)

    Williams, P C; Cooper, P

    2000-08-01

    Multileaf collimators (MLCs) have become an important tool in the modern radiotherapy department. However, the current limit of resolution (1 cm at isocentre) can be too coarse for acceptable shielding of all fields. A number of mini- and micro-MLCs have been developed, with thinner leaves to achieve approved resolution. Currently however, such devices are limited to modest field sizes and stereotactic applications. This paper proposes a new method of high-resolution beam collimation by use of a tertiary grid collimator situated below the conventional MLC. The width of each slit in the grid is a submultiple of the MLC width. A composite shaped field is thus built up from a series of subfields, with the main MLC defining the length of each strip within each subfield. Presented here are initial findings using a prototype device. The beam uniformity achievable with such a device was examined by measuring transmission profiles through the grid using a diode. Profiles thus measured were then copied and superposed to generate composite beams, from which the uniformity achievable could be assessed. With the average dose across the profile normalized to 100%, hot spots up to 5.0% and troughs of 3% were identified for a composite beam of 2 x 5.0 mm grids, as measured at Dmax for a 6 MV beam. For a beam composed from 4 x 2.5 mm grids, the maximum across the profile was 3.0% above the average, and the minimum 2.5% below. Actual composite profiles were also formed using the integrating properties of film, with the subfield indexing performed using an engineering positioning stage. The beam uniformity for these fields compared well with that achieved in theory using the diode measurements. Finally sine wave patterns were generated to demonstrate the potential improvements in field shaping and conformity using this device as opposed to the conventional MLC alone. The scalloping effect on the field edge commonly seen on MLC fields was appreciably reduced by use of 2 x 5.0 mm

  5. Developing a high-resolution regional atmospheric reanalysis for Australia

    Science.gov (United States)

    White, Christopher; Fox-Hughes, Paul; Su, Chun-Hsu; Jakob, Dörte; Kociuba, Greg; Eisenberg, Nathan; Steinle, Peter; Harris, Rebecca; Corney, Stuart; Love, Peter; Remenyi, Tomas; Chladil, Mark; Bally, John; Bindoff, Nathan

    2017-04-01

    A dynamically consistent, long-term atmospheric reanalysis can be used to support high-quality assessments of environmental risk and likelihood of extreme events. Most reanalyses are presently based on coarse-scale global systems that are not suitable for regional assessments in fire risk, water and natural resources, amongst others. The Australian Bureau of Meteorology is currently working to close this gap by producing a high-resolution reanalysis over the Australian and New Zealand region to construct a sequence of atmospheric conditions at sub-hourly intervals over the past 25 years from 1990. The Australia reanalysis consists of a convective-scale analysis nested within a 12 km regional-scale reanalysis, which is bounded by a coarse-scale ERA-Interim reanalysis that provides the required boundary and initial conditions. We use an unchanging atmospheric modelling suite based on the UERRA system used at the UK Met Office and the more recent version of the Bureau of Meteorology's operational numerical prediction model used in ACCESS-R (Australian Community Climate and Earth-System Simulator-Regional system). An advanced (4-dimensional variational) data assimilation scheme is used to optimally combine model physics with multiple observations from aircrafts, sondes, surface observations and satellites to create a best estimate of state of the atmosphere over a 6-hour moving window. This analysis is in turn used to drive a higher-resolution (1.5 km) downscaling model over selected subdomains within Australia, currently eastern New South Wales and Tasmania, with the capability to support this anywhere in the Australia-New Zealand domain. The temporal resolution of the gridded analysis fields for both the regional and higher-resolution subdomains are generally one hour, with many fields such as 10 m winds and 2 m temperatures available every 10 minutes. The reanalysis also produces many other variables that include wind, temperature, moisture, pressure, cloud cover

  6. Global anthropogenic heat flux database with high spatial resolution

    Science.gov (United States)

    Dong, Y.; Varquez, A. C. G.; Kanda, M.

    2017-02-01

    This study developed a top-down method for estimating global anthropogenic heat emission (AHE), with a high spatial resolution of 30 arc-seconds and temporal resolution of 1 h. Annual average AHE was derived from human metabolic heating and primary energy consumption, which was further divided into three components based on consumer sector. The first and second components were heat loss and heat emissions from industrial sectors equally distributed throughout the country and populated areas, respectively. The third component comprised the sum of emissions from commercial, residential, and transportation sectors (CRT). Bulk AHE from the CRT was proportionally distributed using a global population dataset, with a radiance-calibrated nighttime lights adjustment. An empirical function to estimate monthly fluctuations of AHE based on gridded monthly temperatures was derived from various Japanese and American city measurements. Finally, an AHE database with a global coverage was constructed for the year 2013. Comparisons between our proposed AHE and other existing datasets revealed that the problem of overestimation of AHE intensity in previous top-down models was mitigated by the separation of energy consumption sectors; furthermore, the problem of AHE underestimation at central urban areas was solved by the nighttime lights adjustment. A strong agreement in the monthly profiles of AHE between our database and other bottom-up datasets further proved the validity of the current methodology. Investigations of AHE for the 29 largest urban agglomerations globally highlighted that the share of heat emissions from CRT sectors to the total AHE at the city level was 40-95%; whereas that of metabolic heating varied with the city's level of development by a range of 2-60%. A negative correlation between gross domestic product (GDP) and the share of metabolic heating to a city's total AHE was found. Globally, peak AHE values were found to occur between December and February, while

  7. A high-resolution global flood hazard model

    Science.gov (United States)

    Sampson, Christopher C.; Smith, Andrew M.; Bates, Paul B.; Neal, Jeffrey C.; Alfieri, Lorenzo; Freer, Jim E.

    2015-09-01

    Floods are a natural hazard that affect communities worldwide, but to date the vast majority of flood hazard research and mapping has been undertaken by wealthy developed nations. As populations and economies have grown across the developing world, so too has demand from governments, businesses, and NGOs for modeled flood hazard data in these data-scarce regions. We identify six key challenges faced when developing a flood hazard model that can be applied globally and present a framework methodology that leverages recent cross-disciplinary advances to tackle each challenge. The model produces return period flood hazard maps at ˜90 m resolution for the whole terrestrial land surface between 56°S and 60°N, and results are validated against high-resolution government flood hazard data sets from the UK and Canada. The global model is shown to capture between two thirds and three quarters of the area determined to be at risk in the benchmark data without generating excessive false positive predictions. When aggregated to ˜1 km, mean absolute error in flooded fraction falls to ˜5%. The full complexity global model contains an automatically parameterized subgrid channel network, and comparison to both a simplified 2-D only variant and an independently developed pan-European model shows the explicit inclusion of channels to be a critical contributor to improved model performance. While careful processing of existing global terrain data sets enables reasonable model performance in urban areas, adoption of forthcoming next-generation global terrain data sets will offer the best prospect for a step-change improvement in model performance.

  8. High-resolution dynamical downscaling of the future Alpine climate

    Science.gov (United States)

    Bozhinova, Denica; José Gómez-Navarro, Juan; Raible, Christoph

    2017-04-01

    The Alpine region and Switzerland is a challenging area for simulating and analysing Global Climate Model (GCM) results. This is mostly due to the combination of a very complex topography and the still rather coarse horizontal resolution of current GCMs, in which not all of the many-scale processes that drive the local weather and climate can be resolved. In our study, the Weather Research and Forecasting (WRF) model is used to dynamically downscale a GCM simulation to a resolution as high as 2 km x 2 km. WRF is driven by initial and boundary conditions produced with the Community Earth System Model (CESM) for the recent past (control run) and until 2100 using the RCP8.5 climate scenario (future run). The control run downscaled with WRF covers the period 1976-2005, while the future run investigates a 20-year-slice simulated for the 2080-2099. We compare the control WRF-CESM simulations to an observational product provided by MeteoSwiss and an additional WRF simulation driven by the ERA-Interim reanalysis, to estimate the bias that is introduced by the extra modelling step of our framework. Several bias-correction methods are evaluated, including a quantile mapping technique, to ameliorate the bias in the control WRF-CESM simulation. In the next step of our study these corrections are applied to our future WRF-CESM run. The resulting downscaled and bias-corrected data is analysed for the properties of precipitation and wind speed in the future climate. Our special interest focuses on the absolute quantities simulated for these meteorological variables as these are used to identify extreme events, such as wind storms and situations that can lead to floods.

  9. High resolution remanent magnetization scanner for long cores

    Science.gov (United States)

    Demory, François; Quesnel, Yoann; Uehara, Minoru; Rochette, Pierre; Zylberman, William; Romey, Carole; Pignol, Laure; Andrieu-Ponel, Valérie

    2017-04-01

    Superconducting rock magnetometer reaches saturation when measuring magnetic moments higher than 5 10-5 Am2. Due to the distance of the sensor from the measurement zone, the spatial resolution is low for continuous measurements led on U channel or cores. To solve these problems, we designed a core logger dedicated to the measurement of remanent magnetizations. Based on a fluxgate sensor located very close to the sample, the spatial resolution of the core logger is infra-centimetric. The fluxgate sensor is also able to detect magnetic fields of few nT produced by magnetic moments of the order of few 10-8 Am2. As the equipment does not reach saturation, we measured isothermal remanent magnetization of highly magnetic samples. This magnetization was acquired perpendicularly to the long axis of U-channels from Cassis paleo-lake (Romey et al., 2015) and of cores from Haughton impact structure (Zylberman et al., submitted) using Halbach cylinders (Rochette et al., 2001). To interpret local magnetic fields in terms of magnetic moments, we performed an inter-calibration with the superconducting rock magnetometer and signal inversion. This development led to the filing of a patent (FR.16/53142) and is funded by the ECCOREV project MESENVIMAG. References: Rochette, P., Vadeboin, F., Clochard, L., 2001. Rock magnetic applications of Halbach cylinders. Physics of the Earth and Planetary Interiors 126, 109-117. Romey, C., Vella, C., Rochette, P., Andrieu-Ponel, V., Magnin, F., Veron, A., Talon, B., Landure, C., D'Ovidio, A.M., Delanghe, D., Ghilardi, M., Angeletti, B., 2015. Environmental imprints of landscape evolution and human activities during the Holocene in a small catchment of the Calanques Massif (Cassis, southern France). Holocene 25 (9), 1454-1469. Zylberman W., Quesnel Y., Rochette P., Osinski G. R., Marion C., Gattacceca J. (submitted to MAPS) Hydrothermally-enhanced magnetization at the center of the Haughton impact structure? (Nunavut, Canada).

  10. A high-resolution global flood hazard model.

    Science.gov (United States)

    Sampson, Christopher C; Smith, Andrew M; Bates, Paul D; Neal, Jeffrey C; Alfieri, Lorenzo; Freer, Jim E

    2015-09-01

    Floods are a natural hazard that affect communities worldwide, but to date the vast majority of flood hazard research and mapping has been undertaken by wealthy developed nations. As populations and economies have grown across the developing world, so too has demand from governments, businesses, and NGOs for modeled flood hazard data in these data-scarce regions. We identify six key challenges faced when developing a flood hazard model that can be applied globally and present a framework methodology that leverages recent cross-disciplinary advances to tackle each challenge. The model produces return period flood hazard maps at ∼90 m resolution for the whole terrestrial land surface between 56°S and 60°N, and results are validated against high-resolution government flood hazard data sets from the UK and Canada. The global model is shown to capture between two thirds and three quarters of the area determined to be at risk in the benchmark data without generating excessive false positive predictions. When aggregated to ∼1 km, mean absolute error in flooded fraction falls to ∼5%. The full complexity global model contains an automatically parameterized subgrid channel network, and comparison to both a simplified 2-D only variant and an independently developed pan-European model shows the explicit inclusion of channels to be a critical contributor to improved model performance. While careful processing of existing global terrain data sets enables reasonable model performance in urban areas, adoption of forthcoming next-generation global terrain data sets will offer the best prospect for a step-change improvement in model performance.

  11. Decadal prediction skill using a high-resolution climate model

    Science.gov (United States)

    Monerie, Paul-Arthur; Coquart, Laure; Maisonnave, Éric; Moine, Marie-Pierre; Terray, Laurent; Valcke, Sophie

    2017-11-01

    The ability of a high-resolution coupled atmosphere-ocean general circulation model (with a horizontal resolution of a quarter of a degree in the ocean and of about 0.5° in the atmosphere) to predict the annual means of temperature, precipitation, sea-ice volume and extent is assessed based on initialized hindcasts over the 1993-2009 period. Significant skill in predicting sea surface temperatures is obtained, especially over the North Atlantic, the tropical Atlantic and the Indian Ocean. The Sea Ice Extent and volume are also reasonably predicted in winter (March) and summer (September). The model skill is mainly due to the external forcing associated with well-mixed greenhouse gases. A decrease in the global warming rate associated with a negative phase of the Pacific Decadal Oscillation is simulated by the model over a suite of 10-year periods when initialized from starting dates between 1999 and 2003. The model ability to predict regional change is investigated by focusing on the mid-90's Atlantic Ocean subpolar gyre warming. The model simulates the North Atlantic warming associated with a meridional heat transport increase, a strengthening of the North Atlantic current and a deepening of the mixed layer over the Labrador Sea. The atmosphere plays a role in the warming through a modulation of the North Atlantic Oscillation: a negative sea level pressure anomaly, located south of the subpolar gyre is associated with a wind speed decrease over the subpolar gyre. This leads to a reduced oceanic heat-loss and favors a northward displacement of anomalously warm and salty subtropical water that both concur to the subpolar gyre warming. We finally conclude that the subpolar gyre warming is mainly triggered by ocean dynamics with a possible contribution of atmospheric circulation favoring its persistence.

  12. A high resolution hand-held focused beam profiler

    Science.gov (United States)

    Zapata-Farfan, J.; Garduño-Mejía, J.; Rosete-Aguilar, M.; Ascanio, G.; Román-Moreno, C. J.

    2017-05-01

    The shape of a beam is important in any laser application and depending on the final implementation, there exists a preferred one which is defined by the irradiance distribution.1 The energy distribution (or laser beam profile) is an important parameter in a focused beam, for instance, in laser cut industry, where the beam shape determines the quality of the cut. In terms of alignment and focusing, the energy distribution also plays an important role since the system must be configured in order to reduce the aberration effects and achieve the highest intensity. Nowadays a beam profiler is used in both industry and research laboratories with the aim to characterize laser beams used in free-space communications, focusing and welding, among other systems. The purpose of the profile analyzers is to know the main parameters of the beam, to control its characteristics as uniformity, shape and beam size as a guide to align the focusing system. In this work is presented a high resolution hand-held and compact design of a beam profiler capable to measure at the focal plane, with covered range from 400 nm to 1000 nm. The detection is reached with a CMOS sensor sized in 3673.6 μm x 2738.4 μm which acquire a snap shot of the previously attenuated focused beam to avoid the sensor damage, the result is an image of beam intensity distribution, which is digitally processed with a RaspberryTMmodule gathering significant parameters such as beam waist, centroid, uniformity and also some aberrations. The profiler resolution is 1.4 μm and was probed and validated in three different focusing systems. The spot sizes measurements were compared with the Foucault knife-edge test.

  13. High-resolution transmission measurements of CO2 at high temperatures for industrial applications

    DEFF Research Database (Denmark)

    Evseev, Vadim; Fateev, Alexander; Clausen, Sønnik

    2012-01-01

    High-resolution transmission spectra of CO2 in the 2.7,4.3 and 15 μm regions at temperatures up to 1773 K and at approximately atmospheric pressure (1.00 ± 0.01atm) are measured and compared with line-by-line calculations based on the HITEMP-1995, HITEMP-2010, CDSD-HITEMP and CDSD-4000 databases....... The spectra have been recorded in a high-temperature flow gas cell and using a Fourier transform infrared (FTIR) spectrometer at a nominal resolution of 0.125 cm-1. The volume fractions of CO2 in the measurements were 1,10 and 100%. The measurements have been validated by comparison with medium......-resolution data obtained by Bharadwaj and Modest [6]. The deviations between the experimental spectra and the calculations at 1773 K and the vibrational energy exchange and thermal dissociation of CO2 at high temperatures are discussed....

  14. POLLUX: A UV High-Resolution Spectropolatimeter for LUVOIR

    Science.gov (United States)

    Bouret, Jean-Claude; Neiner, Coralie; Lopez Ariste, Arturo; Vivès, Sébastien; Muslimov, Eduard; Lopes, Louise; Costeraste, Josiane; Brachet, Frank; POLLUX Consortium

    2018-01-01

    The Large Ultraviolet/Optical/Infrared Surveyor (LUVOIR) is one of four large mission concept studies led by NASA for the 2020 Decadal Survey. A versatile suite of instruments is envisioned for LUVOIR, to advance our understanding of the origin and evolution of galaxies, stars and planets that make up our Universe, and the life within it. We present POLLUX, a high-resolution spectropolarimeter, operating at UV wavelengths, designed for the 15-meter primary mirror option of LUVOIR. POLLUX study is supported by the French Space Agency (CNES) and developed by a European consortium of scientists.POLLUX will operate over a broad spectral range (98 to 390 nm), at high spectral resolution (R = 120,000). This will permit to resolve narrow UV emission and absorption lines, thus to follow the baryon cycle over cosmic time, from galaxies forming stars out of interstellar gas and grains, and stars forming planets, to the various forms of feedback into the interstellar and intergalactic medium (ISM and IGM), and active galactic nuclei (AGN).The most innovative characteristic of POLLUX is its unique spectropolarimetric capability, that will enable detection of the polarized light reflected from Earth-like exoplanets or from their circumplanetary material, and moons, and characterization of the magnetospheres of stars and planets, and their interactions. The magnetospheric properties of planets in the solar system will be accessible to exquisite level of details, while the influence of magnetic fields at the galactic scale and in the IGM will be measured. UV circular and linear polarisation will provide a full picture of magnetic field properties and impact for a variety of media and objects, from AGN outflows to all types of stars. It will probe the physics of accretion disks around young stars and white dwarfs, or supermassive black holes in AGNs, and constrain the properties, especially sphericity, of stellar ejecta and explosions. Since the parameter space opened by POLLUX is

  15. Managing the explosion of high resolution topography in the geosciences

    Science.gov (United States)

    Crosby, Christopher; Nandigam, Viswanath; Arrowsmith, Ramon; Phan, Minh; Gross, Benjamin

    2017-04-01

    Centimeter to decimeter-scale 2.5 to 3D sampling of the Earth surface topography coupled with the potential for photorealistic coloring of point clouds and texture mapping of meshes enables a wide range of science applications. Not only is the configuration and state of the surface as imaged valuable, but repeat surveys enable quantification of topographic change (erosion, deposition, and displacement) caused by various geologic processes. We are in an era of ubiquitous point clouds that come from both active sources such as laser scanners and radar as well as passive scene reconstruction via structure from motion (SfM) photogrammetry. With the decreasing costs of high-resolution topography (HRT) data collection, via methods such as SfM and UAS-based laser scanning, the number of researchers collecting these data is increasing. These "long-tail" topographic data are of modest size but great value, and challenges exist to making them widely discoverable, shared, annotated, cited, managed and archived. Presently, there are no central repositories or services to support storage and curation of these datasets. The U.S. National Science Foundation funded OpenTopography (OT) Facility employs cyberinfrastructure including large-scale data management, high-performance computing, and service-oriented architectures, to provide efficient online access to large HRT (mostly lidar) datasets, metadata, and processing tools. With over 225 datasets and 15,000 registered users, OT is well positioned to provide curation for community collected high-resolution topographic data. OT has developed a "Community DataSpace", a service built on a low cost storage cloud (e.g. AWS S3) to make it easy for researchers to upload, curate, annotate and distribute their datasets. The system's ingestion workflow will extract metadata from data uploaded; validate it; assign a digital object identifier (DOI); and create a searchable catalog entry, before publishing via the OT portal. The OT Community

  16. High-resolution measurements of humidity and temperature with lidar

    Science.gov (United States)

    Behrendt, Andreas; Wulfmeyer, Volker; Spaeth, Florian; Hammann, Eva; Muppa, Shravan Kumar; Metzendorf, Simon; Riede, Andrea

    2015-04-01

    3-dimensional thermodynamic fields of temperature and moisture including their turbulent fluctuations have been observed with the two scanning lidar systems of University of Hohenheim in three field campaigns in 2013 and 2014. In this contribution, we will introduce these two self-developed instruments and illustrate their performance with measurement examples. Finally, an outlook to envisioned future research activities with the new data sets of the instruments is given. Our temperature lidar is based on the rotational Raman technique. The scanning rotational Raman lidar (RRL) uses a seeded frequency-doubled Nd:YAG laser at a wavelength of 355 nm. A two-mirror scanner with a 40-cm telescope collects the atmospheric backscatter signals. Humidity measurements are made with a scanning water vapor differential absorption lidar (DIAL) which uses a titanium sapphire laser at 820 nm as transmitter. This laser is pumped with a frequency-doubled Nd:YAG laser and injection-seeded for switching between the online and offline wavelengths. The DIAL receiver consists of a scanning 80-cm telescope. The measured temperature and humidity profiles of both instruments have typical resolutions of only a few seconds and 100 m in the atmospheric boundary layer both in day- and night-time. Recent field experiments with the RRL and the DIAL of University of Hohenheim were (1) the HD(CP)2 Prototype Experiment (HOPE) in spring 2013 in western Germany - this activity is embedded in the project HD(CP)2 (High-definition clouds and precipitation for advancing climate prediction); (2) a measurement campaign in Hohenheim in autumn 2013; (3) the campaign SABLE (Surface Atmospheric Boundary Layer Exchange) in south-western Germany in summer 2014. The collected moisture and temperature data will serve as initial thermodynamic fields for forecast experiments related to the formation of clouds and precipitation. Due to their high resolution and high precision, the systems are capable of resolving

  17. COSMIC: somatic cancer genetics at high-resolution.

    Science.gov (United States)

    Forbes, Simon A; Beare, David; Boutselakis, Harry; Bamford, Sally; Bindal, Nidhi; Tate, John; Cole, Charlotte G; Ward, Sari; Dawson, Elisabeth; Ponting, Laura; Stefancsik, Raymund; Harsha, Bhavana; Kok, Chai Yin; Jia, Mingming; Jubb, Harry; Sondka, Zbyslaw; Thompson, Sam; De, Tisham; Campbell, Peter J

    2017-01-04

    COSMIC, the Catalogue of Somatic Mutations in Cancer (http://cancer.sanger.ac.uk) is a high-resolution resource for exploring targets and trends in the genetics of human cancer. Currently the broadest database of mutations in cancer, the information in COSMIC is curated by expert scientists, primarily by scrutinizing large numbers of scientific publications. Over 4 million coding mutations are described in v78 (September 2016), combining genome-wide sequencing results from 28 366 tumours with complete manual curation of 23 489 individual publications focused on 186 key genes and 286 key fusion pairs across all cancers. Molecular profiling of large tumour numbers has also allowed the annotation of more than 13 million non-coding mutations, 18 029 gene fusions, 187 429 genome rearrangements, 1 271 436 abnormal copy number segments, 9 175 462 abnormal expression variants and 7 879 142 differentially methylated CpG dinucleotides. COSMIC now details the genetics of drug resistance, novel somatic gene mutations which allow a tumour to evade therapeutic cancer drugs. Focusing initially on highly characterized drugs and genes, COSMIC v78 contains wide resistance mutation profiles across 20 drugs, detailing the recurrence of 301 unique resistance alleles across 1934 drug-resistant tumours. All information from the COSMIC database is available freely on the COSMIC website. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. High Resolution Brackett α and γ Spectroscopy of Arp 299

    Science.gov (United States)

    Lewis, John, III; Turner, J.; Beck, S. C.; Crosthwaite, L. P.; Meier, D. S.

    2013-01-01

    Extreme star forming regions seen in nearby galaxies often consist of young super star clusters (SSCs) that may be the precursors to globular clusters. The method of formation of large clusters such as globular clusters is not well understood since our Galaxy does not currently have massive clusters that are sufficiently young to reflect their birth conditions. How do these young clusters form, evolve, and interact with their gaseous surroundings? Presented here is high spectral resolution Brackett line spectroscopy of the luminous HII regions in the nearby LIRG Arp 299, which is composed of the interacting galaxies NGC 3690 and IC 694. Echelle spectra data were collected using the NIRSPEC (Near Infrared Spectrograph) instrument on the Keck Telescope for the hydrogen recombination lines, Brackett α and γ at λ = 4.05 μm, 2.17 μm respectively. Using custom IDL (Interactive Data Language) procedures, Gaussian profiles are fit to the spectra to determine the velocity dispersion and thus the bulk motions of the hot, ionized gas surrounding these young clusters. The high spectral ( 24000) and spatial (regions; based on its optical appearance we infer that the star formation is likely to occur in the twin gas peaks near the nucleus that are typical of a barred spiral galaxy. In NGC 3690, which is more irregular in appearance, we also do not see strong evidence for an AGN in the line profiles. At all positions the infrared K band extinctions are sizable, ~ 1 magnitude.

  19. INTRIGOSS: A new Library of High Resolution Synthetic Spectra

    Science.gov (United States)

    Franchini, Mariagrazia; Morossi, Carlo; Di Marcancantonio, Paolo; Chavez, Miguel; GES-Builders

    2018-01-01

    INTRIGOSS (INaf Trieste Grid Of Synthetic Spectra) is a new High Resolution (HiRes) synthetic spectral library designed for studying F, G, and K stars. The library is based on atmosphere models computed with specified individual element abundances via ATLAS12 code. Normalized SPectra (NSP) and surface Flux SPectra (FSP), in the 4800-5400 Å wavelength range, were computed by means of the SPECTRUM code. The synthetic spectra are computed with an atomic and bi-atomic molecular line list including "bona fide" Predicted Lines (PLs) built by tuning loggf to reproduce very high SNR Solar spectrum and the UVES-U580 spectra of five cool giants extracted from the Gaia-ESO survey (GES). The astrophysical gf-values were then assessed by using more than 2000 stars with homogenous and accurate atmosphere parameters and detailed chemical composition from GES. The validity and greater accuracy of INTRIGOSS NSPs and FSPs with respect to other available spectral libraries is discussed. INTRIGOSS will be available on the web and will be a valuable tool for both stellar atmospheric parameters and stellar population studies.

  20. High-Resolution Rotational Spectroscopy of a Molecular Rotary Motor

    Science.gov (United States)

    Domingos, Sergio R.; Cnossen, Arjen; Perez, Cristobal; Buma, Wybren Jan; Browne, Wesley R.; Feringa, Ben L.; Schnell, Melanie

    2017-06-01

    To develop synthetic molecular motors and machinery that can mimic their biological counterparts has become a stimulating quest in modern synthetic chemistry. Gas phase studies of these simpler synthetic model systems provide the necessary isolated conditions that facilitate the elucidation of their structural intricacies. We report the first high-resolution rotational study of a synthetic molecular rotary motor based on chiral overcrowded alkenes using chirp-pulsed Fourier transform microwave spectroscopy. Rotational constants and quartic centrifugal distortion constants were determined based on a fit using more than two hundred rotational transitions spanning 5≤J≤21 in the 2-4 GHz frequency range. Despite the lack of polar groups, the rotor's asymmetry produces strong a- and b-type rotational transitions arising from a single predominant conformer. Evidence for fragmentation of the rotor allows for unambiguous identification of the isolated rotor components. The experimental spectroscopic parameters of the rotor are compared and discussed against current high-level ab initio and density functional theory methods. Vicario et al. Chem. Commun., 5910-5912 (2005) Brown et al. Rev. Sci. Instrum., 79, 053103 (2008)