WorldWideScience

Sample records for high intensity direct

  1. Directional enhancement of selected high-order-harmonics from intense laser irradiated blazed grating targets.

    Science.gov (United States)

    Zhang, Guobo; Chen, Min; Liu, Feng; Yuan, Xiaohui; Weng, Suming; Zheng, Jun; Ma, Yanyun; Shao, Fuqiu; Sheng, Zhengming; Zhang, Jie

    2017-10-02

    Relativistically intense laser solid target interaction has been proved to be a promising way to generate high-order harmonics, which can be used to diagnose ultrafast phenomena. However, their emission direction and spectra still lack tunability. Based upon two-dimensional particle-in-cell simulations, we show that directional enhancement of selected high-order-harmonics can be realized using blazed grating targets. Such targets can select harmonics with frequencies being integer times of the grating frequency. Meanwhile, the radiation intensity and emission area of the harmonics are increased. The emission direction is controlled by tailoring the local blazed structure. Theoretical and electron dynamics analysis for harmonics generation, selection and directional enhancement from the interaction between multi-cycle laser and grating target are carried out. These studies will benefit the generation and application of laser plasma-based high order harmonics.

  2. Optical intensity modulation direct detection versus heterodyne detection: A high-SNR capacity comparison

    KAUST Repository

    Chaaban, Anas

    2016-09-15

    An optical wireless communications system which employs either intensity-modulation and direct-detection (IM-DD) or heterodyne detection (HD) is considered. IM-DD has lower complexity and cost than HD, but on the other hand, has lower capacity. It is therefore interesting to investigate the capacity gap between the two systems. The main focus of this paper is to investigate this gap at high SNR. Bounds on this gap are established for two cases: between IM-DD and HD, and between IM-DD and an HD-PAM which is an HD system employing pulse-amplitude modulation (PAM). While the gap between IM-DD and HD increases as the signal-to-noise ratio (SNR) increases, the gap between IM-DD and an HD-PAM is upper bounded by a constant at high SNR. © 2015 IEEE.

  3. Optical intensity modulation direct detection versus heterodyne detection: A high-SNR capacity comparison

    KAUST Repository

    Chaaban, Anas; Alouini, Mohamed-Slim

    2016-01-01

    An optical wireless communications system which employs either intensity-modulation and direct-detection (IM-DD) or heterodyne detection (HD) is considered. IM-DD has lower complexity and cost than HD, but on the other hand, has lower capacity. It is therefore interesting to investigate the capacity gap between the two systems. The main focus of this paper is to investigate this gap at high SNR. Bounds on this gap are established for two cases: between IM-DD and HD, and between IM-DD and an HD-PAM which is an HD system employing pulse-amplitude modulation (PAM). While the gap between IM-DD and HD increases as the signal-to-noise ratio (SNR) increases, the gap between IM-DD and an HD-PAM is upper bounded by a constant at high SNR. © 2015 IEEE.

  4. Directional Change Mediates the Physiological Response to High-Intensity Shuttle Running in Professional Soccer Players

    Directory of Open Access Journals (Sweden)

    Remy Tang

    2018-04-01

    Full Text Available The purpose of this study was to investigate the influence that different frequencies of deceleration and acceleration actions had on the physiological demands in professional soccer players. Thirteen players were monitored via microelectromechanical devices during shuttle running protocols which involved one, three, or seven 180 degree directional changes. Heart rate exertion (HRE (1.1 ± 0.7 and rating of perceived exertion (RPE (5 ± 1 were significantly higher for the protocol which included seven directional changes when compared to the protocols which included one (HRE 0.5 ± 0.3, ES = 1.1, RPE 3 ± 0, ES = 2.7 or three (HRE 0.5 ± 0.2, ES = 1.1, RPE 3 ± 1, ES = 1.9 directional changes (p < 0.05. The gravitational force (g-force as measured through accelerometry (ACC also showed a similar trend when comparing the seven (8628.2 ± 1630.4 g to the one (5888.6 ± 1159.1 g, ES = 1.9 or three (6526.9 ± 1257.6 g, ES = 1.4 directional change protocols (p < 0.05. The results of this study suggest that increasing the frequency of decelerations and accelerations at a high intensity running (HIR speed alters the movement demands and elevates the physiological responses in professional players. This data has implications for the monitoring of physical performance and implementation of training drills.

  5. Intensity, Duration, and Location of High-Definition Transcranial Direct Current Stimulation for Tinnitus Relief.

    Science.gov (United States)

    Shekhawat, Giriraj Singh; Sundram, Frederick; Bikson, Marom; Truong, Dennis; De Ridder, Dirk; Stinear, Cathy M; Welch, David; Searchfield, Grant D

    2016-05-01

    Tinnitus is the perception of a phantom sound. The aim of this study was to compare current intensity (center anode 1 mA and 2 mA), duration (10 minutes and 20 minutes), and location (left temporoparietal area [LTA] and dorsolateral prefrontal cortex [DLPFC]) using 4 × 1 high-definition transcranial direct current stimulation (HD-tDCS) for tinnitus reduction. Twenty-seven participants with chronic tinnitus (>2 years) and mean age of 53.5 years underwent 2 sessions of HD-tDCS of the LTA and DLPFC in a randomized order with a 1 week gap between site of stimulation. During each session, a combination of 4 different settings were used in increasing dose (1 mA, 10 minutes; 1 mA, 20 minutes; 2 mA, 10 minutes; and 2 mA, 20 minutes). The impact of different settings on tinnitus loudness and annoyance was documented. Twenty-one participants (77.78%) reported a minimum of 1 point reduction on tinnitus loudness or annoyance scales. There were significant changes in loudness and annoyance for duration of stimulation,F(1, 26) = 10.08,Ptinnitus relief. The stimulation of the LTA and DLPFC were equally effective for suppressing tinnitus loudness and annoyance. © The Author(s) 2015.

  6. Rate adaptive multilevel coded modulation with high coding gain in intensity modulation direct detection optical communication

    Science.gov (United States)

    Xiao, Fei; Liu, Bo; Zhang, Lijia; Xin, Xiangjun; Zhang, Qi; Tian, Qinghua; Tian, Feng; Wang, Yongjun; Rao, Lan; Ullah, Rahat; Zhao, Feng; Li, Deng'ao

    2018-02-01

    A rate-adaptive multilevel coded modulation (RA-MLC) scheme based on fixed code length and a corresponding decoding scheme is proposed. RA-MLC scheme combines the multilevel coded and modulation technology with the binary linear block code at the transmitter. Bits division, coding, optional interleaving, and modulation are carried out by the preset rule, then transmitted through standard single mode fiber span equal to 100 km. The receiver improves the accuracy of decoding by means of soft information passing through different layers, which enhances the performance. Simulations are carried out in an intensity modulation-direct detection optical communication system using MATLAB®. Results show that the RA-MLC scheme can achieve bit error rate of 1E-5 when optical signal-to-noise ratio is 20.7 dB. It also reduced the number of decoders by 72% and realized 22 rate adaptation without significantly increasing the computing time. The coding gain is increased by 7.3 dB at BER=1E-3.

  7. Using high-intensity laser-generated energetic protons to radiograph directly driven implosions

    Science.gov (United States)

    Zylstra, A. B.; Li, C. K.; Rinderknecht, H. G.; Séguin, F. H.; Petrasso, R. D.; Stoeckl, C.; Meyerhofer, D. D.; Nilson, P.; Sangster, T. C.; Le Pape, S.; Mackinnon, A.; Patel, P.

    2012-01-01

    The recent development of petawatt-class lasers with kilojoule-picosecond pulses, such as OMEGA EP [L. Waxer et al., Opt. Photonics News 16, 30 (2005), 10.1364/OPN.16.7.000030], provides a new diagnostic capability to study inertial-confinement-fusion (ICF) and high-energy-density (HED) plasmas. Specifically, petawatt OMEGA EP pulses have been used to backlight OMEGA implosions with energetic proton beams generated through the target normal sheath acceleration (TNSA) mechanism. This allows time-resolved studies of the mass distribution and electromagnetic field structures in ICF and HED plasmas. This principle has been previously demonstrated using Vulcan to backlight six-beam implosions [A. J. Mackinnon et al., Phys. Rev. Lett. 97, 045001 (2006), 10.1103/PhysRevLett.97.045001]. The TNSA proton backlighter offers better spatial and temporal resolution but poorer spatial uniformity and energy resolution than previous D3He fusion-based techniques [C. Li et al., Rev. Sci. Instrum. 77, 10E725 (2006), 10.1063/1.2228252]. A target and the experimental design technique to mitigate potential problems in using TNSA backlighting to study full-energy implosions is discussed. The first proton radiographs of 60-beam spherical OMEGA implosions using the techniques discussed in this paper are presented. Sample radiographs and suggestions for troubleshooting failed radiography shots using TNSA backlighting are given, and future applications of this technique at OMEGA and the NIF are discussed.

  8. Using high-intensity laser-generated energetic protons to radiograph directly driven implosions

    International Nuclear Information System (INIS)

    Zylstra, A. B.; Li, C. K.; Rinderknecht, H. G.; Seguin, F. H.; Petrasso, R. D.; Stoeckl, C.; Meyerhofer, D. D.; Nilson, P.; Sangster, T. C.; Le Pape, S.; Mackinnon, A.; Patel, P.

    2012-01-01

    The recent development of petawatt-class lasers with kilojoule-picosecond pulses, such as OMEGA EP [L. Waxer et al., Opt. Photonics News 16, 30 (2005)], provides a new diagnostic capability to study inertial-confinement-fusion (ICF) and high-energy-density (HED) plasmas. Specifically, petawatt OMEGA EP pulses have been used to backlight OMEGA implosions with energetic proton beams generated through the target normal sheath acceleration (TNSA) mechanism. This allows time-resolved studies of the mass distribution and electromagnetic field structures in ICF and HED plasmas. This principle has been previously demonstrated using Vulcan to backlight six-beam implosions [A. J. Mackinnon et al., Phys. Rev. Lett. 97, 045001 (2006)]. The TNSA proton backlighter offers better spatial and temporal resolution but poorer spatial uniformity and energy resolution than previous D 3 He fusion-based techniques [C. Li et al., Rev. Sci. Instrum. 77, 10E725 (2006)]. A target and the experimental design technique to mitigate potential problems in using TNSA backlighting to study full-energy implosions is discussed. The first proton radiographs of 60-beam spherical OMEGA implosions using the techniques discussed in this paper are presented. Sample radiographs and suggestions for troubleshooting failed radiography shots using TNSA backlighting are given, and future applications of this technique at OMEGA and the NIF are discussed.

  9. Evidence of direct cardiac damage following high-intensity exercise in chronic energy restriction: A case report and literature review.

    Science.gov (United States)

    Baird, Marianne F; Grace, Fergal; Sculthorpe, Nicholas; Graham, Scott M; Fleming, Audrey; Baker, Julien S

    2017-07-01

    Following prolonged endurance events such as marathons, elevated levels of cardiospecific biomarkers are commonly reported. Although transiently raised levels are generally not considered to indicate clinical myocardial damage, comprehension of this phenomenon remains incomplete. The popularity of high-intensity interval training highlights a paucity of research measuring cardiac biomarker response to this type of exercise. This a posteriori case report discusses the elevation of cardiac troponins (cTn) associated with short interval, high-intensity exercise. In this case report, an apparently healthy 29-year-old recreationally active female presented clinically raised cardiac troponin I (cTnI) levels (>0.04 ng/mL), after performing high-intensity cycle ergometer sprints. As creatine kinase (CK) is expressed by multiple organs (e.g., skeletal muscle, brain, and myocardium), cTnI assays were performed to determine any changes in total serum CK levels not originating from skeletal muscle damage. A posteriori the individual's daily energy expenditure indicated chronically low-energy availability. Psychometric testing suggested that the individual scored positive for disordered eating, highly for fatigue levels, and low in mental health components. The current case report provides novel evidence of elevated cTnI occurring as a result of performing short duration, high intensity, cycle ergometer exercise in an individual with self-reported chronically depleted energy balance. A schematic to identify potentially "at risk" individuals is presented. Considering this as a case report, results cannot be generalized; however, the main findings suggest that individuals who habitually restrict their calorie intake below their bodies' daily energy requirements, may have elevated biomarkers of exercise induced myocardial stress from performing high-intensity exercise.

  10. High intensity hadron accelerators

    International Nuclear Information System (INIS)

    Teng, L.C.

    1989-05-01

    This rapporteur report consists mainly of two parts. Part I is an abridged review of the status of all High Intensity Hadron Accelerator projects in the world in semi-tabulated form for quick reference and comparison. Part II is a brief discussion of the salient features of the different technologies involved. The discussion is based mainly on my personal experiences and opinions, tempered, I hope, by the discussions I participated in in the various parallel sessions of the workshop. In addition, appended at the end is my evaluation and expression of the merits of high intensity hadron accelerators as research facilities for nuclear and particle physics

  11. High intensity signal of the posterior pituitary. A study with horizontal direction of frequency-encoding and fat suppression MR techniques

    International Nuclear Information System (INIS)

    Arslan, A.

    1999-01-01

    Purpose: To evaluate the consistency of fat in the high intensity signals of the normal neurohypophysis and to differentiate the high signal of posterior pituitary from that of dorsum sella. Sagittal SE T1-weighted images with frequency encoding in the horizontal direction were used in order to differentiate the high signal of posterior pituitary and dorsum sella by the vertically-oriented chemical shift artifact. Material and methods: The sellae of 46 normal volunteers were imaged with a commercially available fat suppression technique and SE sequences with frequency encoding in vertical (25 cases) and horizontal (21 cases) axes. Results: The high signal intensity was absent in 9% of the normal volunteers with no predilection to any specific age group. None of the cases with posterior pituitary high intensity signals showed suppression of the signal with fat suppression technique. A fat suppression technique was helpful in documenting the hyperintensity in 7% of normal volunteers. Nineteen of the 21 (90%) cases with high signal intensity were detected by routine SE T1-weighted images, whereas 18 of the 19 (95%) cases were detected by imaging with frequency encoding in the horizontal direction. Conclusion: The high signal does not indicate the presence of fat. Fat suppression technique and a horizontal direction of frequency encoding help in differentiating the high signal of the neurohypophysis from that of dorsum sella. (orig.)

  12. Volumetric MR-Guided High-Intensity Focused Ultrasound with Direct Skin Cooling for the Treatment of Symptomatic Uterine Fibroids : Proof-of-Concept Study

    NARCIS (Netherlands)

    Ikink, Marlijne E; van Breugel, Johanna M M; Schubert, Gerald; Nijenhuis, Robbert J; Bartels, LW; Moonen, Chrit T W; van den Bosch, Maurice A A J

    2015-01-01

    Objective. To prospectively assess the safety and technical feasibility of volumetric magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) ablation with direct skin cooling (DISC) during treatment of uterine fibroids. Methods. In this proof-of-concept study, eight patients were

  13. Compton scattering at high intensities

    Energy Technology Data Exchange (ETDEWEB)

    Heinzl, Thomas, E-mail: thomas.heinzl@plymouth.ac.u [University of Plymouth, School of Mathematics and Statistics, Drake Circus, Plymouth PL4 8AA (United Kingdom)

    2009-12-01

    High-intensity Compton scattering takes place when an electron beam is brought into collision with a high power laser. We briefly review the main intensity signatures using the formalism of strong-field quantum electrodynamics.

  14. High intensity circular proton accelerators

    International Nuclear Information System (INIS)

    Craddock, M.K.

    1987-12-01

    Circular machines suitable for the acceleration of high intensity proton beams include cyclotrons, FFAG accelerators, and strong-focusing synchrotrons. This paper discusses considerations affecting the design of such machines for high intensity, especially space charge effects and the role of beam brightness in multistage accelerators. Current plans for building a new generation of high intensity 'kaon factories' are reviewed. 47 refs

  15. Intensity and directionality of bat echolocation signals

    DEFF Research Database (Denmark)

    Jakobsen, Lasse; Brinkløv, Signe; Surlykke, Annemarie

    2013-01-01

    will increase signal directionality in the field along with intensity thus increasing sonar range. During the last phase of prey pursuit, vespertilionid bats broaden their echolocation beam considerably, probably to counter evasive maneuvers of eared prey. We highlight how multiple call parameters (frequency......The paper reviews current knowledge of intensity and directionality of bat echolocation signals. Recent studies have revealed that echolocating bats can be much louder than previously believed. Bats previously dubbed "whispering" can emit calls with source levels up to 110 dB SPL at 10 cm......, duration, intensity, and directionality of echolocation signals) in unison define the search volume probed by bats and in turn how bats perceive their surroundings. Small changes to individual parameters can, in combination, drastically change the bat's perception, facilitating successful navigation...

  16. The direct injection of intense ion beams from a high field electron cyclotron resonance ion source into a radio frequency quadrupole.

    Science.gov (United States)

    Rodrigues, G; Becker, R; Hamm, R W; Baskaran, R; Kanjilal, D; Roy, A

    2014-02-01

    The ion current achievable from high intensity ECR sources for highly charged ions is limited by the high space charge. This makes classical extraction systems for the transport and subsequent matching to a radio frequency quadrupole (RFQ) accelerator less efficient. The direct plasma injection (DPI) method developed originally for the laser ion source avoids these problems and uses the combined focusing of the gap between the ion source and the RFQ vanes (or rods) and the focusing of the rf fields from the RFQ penetrating into this gap. For high performance ECR sources that use superconducting solenoids, the stray magnetic field of the source in addition to the DPI scheme provides focusing against the space charge blow-up of the beam. A combined extraction/matching system has been designed for a high performance ECR ion source injecting into an RFQ, allowing a total beam current of 10 mA from the ion source for the production of highly charged (238)U(40+) (1.33 mA) to be injected at an ion source voltage of 60 kV. In this design, the features of IGUN have been used to take into account the rf-focusing of an RFQ channel (without modulation), the electrostatic field between ion source extraction and the RFQ vanes, the magnetic stray field of the ECR superconducting solenoid, and the defocusing space charge of an ion beam. The stray magnetic field is shown to be critical in the case of a matched beam.

  17. The direct injection of intense ion beams from a high field electron cyclotron resonance ion source into a radio frequency quadrupole

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, G., E-mail: gerosro@gmail.com; Kanjilal, D.; Roy, A. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi (India); Becker, R. [Institut fur Angewandte Physik der Universitaet, D-60054 Frankfurt/M (Germany); Hamm, R. W. [R and M Technical Enterprises, Inc., 4725 Arlene Place, Pleasanton, California 94566 (United States); Baskaran, R. [Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamilnadu (India)

    2014-02-15

    The ion current achievable from high intensity ECR sources for highly charged ions is limited by the high space charge. This makes classical extraction systems for the transport and subsequent matching to a radio frequency quadrupole (RFQ) accelerator less efficient. The direct plasma injection (DPI) method developed originally for the laser ion source avoids these problems and uses the combined focusing of the gap between the ion source and the RFQ vanes (or rods) and the focusing of the rf fields from the RFQ penetrating into this gap. For high performance ECR sources that use superconducting solenoids, the stray magnetic field of the source in addition to the DPI scheme provides focusing against the space charge blow-up of the beam. A combined extraction/matching system has been designed for a high performance ECR ion source injecting into an RFQ, allowing a total beam current of 10 mA from the ion source for the production of highly charged {sup 238}U{sup 40+} (1.33 mA) to be injected at an ion source voltage of 60 kV. In this design, the features of IGUN have been used to take into account the rf-focusing of an RFQ channel (without modulation), the electrostatic field between ion source extraction and the RFQ vanes, the magnetic stray field of the ECR superconducting solenoid, and the defocusing space charge of an ion beam. The stray magnetic field is shown to be critical in the case of a matched beam.

  18. The direct injection of intense ion beams from a high field electron cyclotron resonance ion source into a radio frequency quadrupole

    Science.gov (United States)

    Rodrigues, G.; Becker, R.; Hamm, R. W.; Baskaran, R.; Kanjilal, D.; Roy, A.

    2014-02-01

    The ion current achievable from high intensity ECR sources for highly charged ions is limited by the high space charge. This makes classical extraction systems for the transport and subsequent matching to a radio frequency quadrupole (RFQ) accelerator less efficient. The direct plasma injection (DPI) method developed originally for the laser ion source avoids these problems and uses the combined focusing of the gap between the ion source and the RFQ vanes (or rods) and the focusing of the rf fields from the RFQ penetrating into this gap. For high performance ECR sources that use superconducting solenoids, the stray magnetic field of the source in addition to the DPI scheme provides focusing against the space charge blow-up of the beam. A combined extraction/matching system has been designed for a high performance ECR ion source injecting into an RFQ, allowing a total beam current of 10 mA from the ion source for the production of highly charged 238U40+ (1.33 mA) to be injected at an ion source voltage of 60 kV. In this design, the features of IGUN have been used to take into account the rf-focusing of an RFQ channel (without modulation), the electrostatic field between ion source extraction and the RFQ vanes, the magnetic stray field of the ECR superconducting solenoid, and the defocusing space charge of an ion beam. The stray magnetic field is shown to be critical in the case of a matched beam.

  19. A high-resolution paleosecular variation record from Black Sea sediments indicating fast directional changes associated with low field intensities during marine isotope stage (MIS) 4

    Science.gov (United States)

    Nowaczyk, Norbert R.; Jiabo, Liu; Frank, Ute; Arz, Helge W.

    2018-02-01

    A total of nine sediment cores recovered from the Archangelsky Ridge in the SE Black Sea were systematically subjected to intense paleo- and mineral magnetic analyses. Besides 16 accelerator mass spectrometry (AMS) 14C ages available for another core from this area, dating was accomplished by correlation of short-term warming events during the last glacial monitored by high-resolution X-ray fluorescence (XRF) scanning as maxima in both Ca/Ti and K/Ti ratios in Black Sea sediments to the so-called 'Dansgaard-Oeschger events' recognized from Greenland ice cores. Thus, several hiatuses could be identified in the various cores during the last glacial/interglacial cycle. Finally, core sections documenting marine isotope stage (MIS) 4 at high resolution back to 69 ka were selected for detailed analyses. At 64.5 ka, according to obtained results from Black Sea sediments, the second deepest minimum in relative paleointensity during the past 69 ka occurred, with the Laschamp geomagnetic excursion at 41 ka being associated with the lowest field intensities. The field minimum during MIS 4 is associated with large declination swings beginning about 3 ka before the minimum. While a swing to 50°E is associated with steep inclinations (50-60°) according to the coring site at 42°N, the subsequent declination swing to 30°W is associated with shallow inclinations of down to 40°. Nevertheless, these large deviations from the direction of a geocentric axial dipole field (I = 61 °, D = 0 °) still can not yet be termed as 'excursional', since latitudes of corresponding virtual geomagnetic poles (VGP) only reach down to 51.5°N (120°E) and 61.5°N (75°W), respectively. However, these VGP positions at opposite sides of the globe are linked with VGP drift rates of up to 0.2° per year in between. These extreme secular variations might be the mid-latitude expression of a geomagnetic excursion with partly reversed inclinations found at several sites much further North in Arctic

  20. High-intensity laser physics

    International Nuclear Information System (INIS)

    Mohideen, U.

    1993-01-01

    This thesis is a study of the effect of high intensity lasers on atoms, free electrons and the generation of X-rays from solid density plasmas. The laser produced 50 milli Joule 180 femto sec pulses at 5 Hz. This translates to a maximum intensity of 5 x 10 18 W/cm 2 . At such high fields the AC stark shifts of atoms placed at the focus is much greater than the ionization energy. The characteristics of multiphoton ionization of atoms in intense laser fields was studied by angle resolved photoelectron spectroscopy. Free electrons placed in high intensity laser fields lead to harmonic generation. This phenomenon of Nonlinear Compton Scattering was theoretically investigated. Also, when these high intensity pulses are focused on solids a hot plasma is created. This plasma is a bright source of a short X-ray pulse. The pulse-width of X-rays from these solid density plasmas was measured by time-resolved X-ray spectroscopy

  1. Volumetric MR-Guided High-Intensity Focused Ultrasound with Direct Skin Cooling for the Treatment of Symptomatic Uterine Fibroids: Proof-of-Concept Study

    Directory of Open Access Journals (Sweden)

    Marlijne E. Ikink

    2015-01-01

    Full Text Available Objective. To prospectively assess the safety and technical feasibility of volumetric magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU ablation with direct skin cooling (DISC during treatment of uterine fibroids. Methods. In this proof-of-concept study, eight patients were consecutively selected for clinical MR-HIFU ablation of uterine fibroids with the use of an additional DISC device to maintain a constant temperature (T≈20°C at the interface between the HIFU table top and the skin. Technical feasibility was verified by successful completion of MR-HIFU ablation. Contrast-enhanced T1-weighted MRI was used to measure the treatment effect (nonperfused volume (NPV ratio. Safety was evaluated by recording of adverse events (AEs within 30 days’ follow-up. Results. All MR-HIFU treatments were successfully completed in an outpatient setting. The median NPV ratio was 0.56 (IQR [0.27–0.72]. Immediately after treatment, two patients experienced coldness related discomfort which resolved at the same day. No serious (device-related AEs were reported. Specifically, no skin burns, cold injuries, or subcutaneous edema were observed. Conclusion. This study showed that it is safe and technically feasible to complete a volumetric MR-HIFU ablation with DISC. This technique may reduce the risk of thermal injury to the abdominal wall during MR-HIFU ablation of uterine fibroids. This trial is registered with NTR4189.

  2. High Intensity Source Laboratory (HISL)

    International Nuclear Information System (INIS)

    1992-01-01

    The High Intensity Source Laboratory (HISL) is a laboratory facility operated for the US Department of Energy (DOE) by EG ampersand G, Energy Measurements (EG ampersand G/EM). This document is intended as an overview -- primarily for external users -- of the general purposes and capabilities of HISL; numerous technical details are beyond its scope. Moreover, systems at HISL are added, deleted, and modified to suit current needs, and upgraded with continuing development. Consequently, interested parties are invited to contact the HISL manager for detailed, current, technical, and administrative information. The HISL develops and operates pulsed radiation sources with energies, intensities, and pulse widths appropriate for several applications. Principal among these are development, characterization, and calibration of various high-bandwidth radiation detectors and diagnostic systems. Hardness/vulnerability of electronic or other sensitive components to radiation is also tested. In this connection, source development generally focuses on attending (1) the highest possible intensities with (2) reasonably short pulse widths and (3) comprehensive output characterization

  3. LHC Report: reaching high intensity

    CERN Multimedia

    Jan Uythoven

    2015-01-01

    After both beams having been ramped to their full energy of 6.5 TeV, the last two weeks saw the beam commissioning process advancing on many fronts. An important milestone was achieved when operators succeeded in circulating a nominal-intensity bunch. During the operation, some sudden beam losses resulted in beam dumps at top energy, a problem that needed to be understood and resolved.   In 2015 the LHC will be circulating around 2800 bunches in each beam and each bunch will contain just over 1 x 1011 protons. Until a few days ago commissioning was taking place with single bunches of 5 x 109 protons. The first nominal bunch with an intensity of 1 x 1011 protons was injected on Tuesday, 21 April. In order to circulate such a high-intensity bunch safely, the whole protection system must be working correctly: collimators, which protect the aperture, are set at preliminary values known as coarse settings; all kicker magnets for injecting and extracting the beams are commissioned with beam an...

  4. Directional Wave Spectra Observed During Intense Tropical Cyclones

    Science.gov (United States)

    Collins, C. O.; Potter, H.; Lund, B.; Tamura, H.; Graber, H. C.

    2018-02-01

    Two deep-sea moorings were deployed 780 km off the coast of southern Taiwan for 4-5 months during the 2010 typhoon season. Directional wave spectra, wind speed and direction, and momentum fluxes were recorded on two Extreme Air-Sea Interaction buoys during the close passage of Severe Tropical Storm Dianmu and three tropical cyclones (TCs): Typhoon Fanapi, Super Typhoon Megi, and Typhoon Chaba. Conditions sampled include significant wave heights up to 11 m and wind speeds up to 26 m s-1. Details varied for large-scale spectral structure in frequency and direction but were mostly bimodal. The modes were generally composed of a swell system emanating from the most intense storm region and local wind-seas. The peak systems were consistently young, meaning actively forced by winds, when the storms were close. During the peaks of the most intense passages—Chaba at the northern mooring and Megi at the southern—the bimodal seas coalesced. During Chaba, the swell and wind-sea coupling directed the high frequency waves and the wind stress away from the wind direction. A spectral wave model was able reproduce many of the macrofeatures of the directional spectra.

  5. High-frequency, high-intensity photoionization

    Science.gov (United States)

    Reiss, H. R.

    1996-02-01

    Two analytical methods for computing ionization by high-frequency fields are compared. Predicted ionization rates compare well, but energy predictions for the onset of ionization differ radically. The difference is shown to arise from the use of a transformation in one of the methods that alters the zero from which energy is measured. This alteration leads to an apparent energy threshold for ionization that can, especially in the stabilization regime, differ strongly from the laboratory measurement. It is concluded that channel closings in intense-field ionization can occur at high as well as low frequencies. It is also found that the stabilization phenomenon at high frequencies, very prominent for hydrogen, is absent in a short-range potential.

  6. FOREIGN DIRECT INVESTMENT INTENSITY EFFECTS ON TFP INTENSITY OF ASEAN 5 PLUS 2

    OpenAIRE

    Elsadig Musa Ahmed

    2008-01-01

    This study aims to investigate the role of foreign direct investment (FDI) intensity through decomposition of labour productivity growth into contributions of capital deepening, increased usage of foreign direct investment (FDI) intensity, and the simultaneous contribution of the quality of these factors. This has expressed as the contribution of total factor productivity (TFP) intensity growth in achieving productivity driven growth in ASEAN 5 (Malaysia, Indonesia, Philippines, Singapore and...

  7. Direct formulation of the supersonic acoustic intensity in space domain

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren; Jacobsen, Finn; Leclre, Quentin

    2012-01-01

    into the far field. To date, its calculation has been formulated in the wave number domain, filtering out the evanescent waves outside the radiation circle and reconstructing the acoustic field with only the propagating waves. In this study, the supersonic intensity is calculated directly in space domain......This paper proposes and examines a direct formulation in space domain of the so-called supersonic acoustic intensity. This quantity differs from the usual (active) intensity by excluding the circulating energy in the near-field of the source, providing a map of the acoustic energy that is radiated...... by means of a two-dimensional convolution between the acoustic field and a spatial filter mask that corresponds to the space domain representation of the radiation circle. Therefore, the acoustic field that propagates effectively to the far field is calculated via direct filtering in space domain...

  8. High intensity radiation imaging system

    International Nuclear Information System (INIS)

    Barrett, H.H.

    1976-01-01

    A nuclear imaging system is described for mapping a spatially distributed source of high energy nuclear particles from a living organ which has selectively absorbed a radioactive compound in which the nuclear energy is spatially coded by a zone plate positioned between the source and a spatial detector, and a half tone screen is positioned between the source and the zone plate to increase the definition of the image

  9. High Intensity Exercise in Multiple Sclerosis

    DEFF Research Database (Denmark)

    Wens, Inez; Dalgas, Ulrik; Vandenabeele, Frank

    2015-01-01

    Introduction Low-to-moderate intensity exercise improves muscle contractile properties and endurance capacity in multiple sclerosis (MS). The impact of high intensity exercise remains unknown. Methods Thirty-four MS patients were randomized into a sedentary control group (SED, n = 11) and 2...... exercise groups that performed 12 weeks of a high intensity interval (HITR, n = 12) or high intensity continuous cardiovascular training (HCTR, n = 11), both in combination with resistance training. M.vastus lateralis fiber cross sectional area (CSA) and proportion, knee-flexor/extensor strength, body...... composition, maximal endurance capacity and self-reported physical activity levels were assessed before and after 12 weeks. Results Compared to SED, 12 weeks of high intensity exercise increased mean fiber CSA (HITR: +21±7%, HCTR: +23±5%). Furthermore, fiber type I CSA increased in HCTR (+29±6%), whereas type...

  10. High intensity proton accelerator program

    International Nuclear Information System (INIS)

    Kaneko, Yoshihiko; Mizumoto, Motoharu; Nishida, Takahiko

    1991-06-01

    Industrial applications of proton accelerators to the incineration of the long-lived nuclides contained in the spent fuels have long been investigated. Department of Reactor Engineering of Japan Atomic Energy Research Institute (JAERI) has formulated the Accelerator Program through the investigations on the required performances of the accelerator and its development strategies and also the research plan using the accelerator. Outline of the Program is described in the present report. The target of the Program is the construction of the Engineering Test Accelerators (ETA) of the type of a linear accelerator with the energy 1.5 GeV and the proton current ∼10 mA. It is decided that the construction of the Basic Technology Accelerator (BTA) is necessary as an intermediate step, aiming at obtaining the required technical basis and human resources. The Basic Technology Accelerator with the energy of 10 MeV and with the current of ∼10 mA is composed of the ion source, RFQ and DTL, of which system forms the mock-up of the injector of ETA. Development of the high-β structure which constitutes the main acceleration part of ETA is also scheduled. This report covers the basic parameters of the Basic Technology Accelerator (BTA), development steps of the element and system technologies of the high current accelerators and rough sketch of ETA which can be prospected at present. (J.P.N.)

  11. High Intensity Polarized Electron Sources

    International Nuclear Information System (INIS)

    Poelker, Benard; Adderley, Philip; Brittian, Joshua; Clark, J.; Grames, Joseph; Hansknecht, John; McCarter, James; Stutzman, Marcy; Suleiman, Riad; Surles-law, Kenneth

    2008-01-01

    During the 1990s, at numerous facilities world wide, extensive RandD devoted to constructing reliable GaAs photoguns helped ensure successful accelerator-based nuclear and high-energy physics programs using spin polarized electron beams. Today, polarized electron source technology is considered mature, with most GaAs photoguns meeting accelerator and experiment beam specifications in a relatively trouble-free manner. Proposals for new collider facilities however, require electron beams with parameters beyond today's state-of-the-art and serve to renew interest in conducting polarized electron source RandD. And at CEBAF/Jefferson Lab, there is an immediate pressing need to prepare for new experiments that require considerably more beam current than before. One experiment in particular?Q-weak, a parity violation experiment that will look for physics beyond the Standard Model?requires 180 uA average current at polarization >80% for a duration of one year, with run-averaged helicity correlate

  12. High Intensity Organic Light-emitting Diodes

    Science.gov (United States)

    Qi, Xiangfei

    This thesis is dedicated to the fabrication, modeling, and characterization to achieve high efficiency organic light-emitting diodes (OLEDs) for illumination applications. Compared to conventional lighting sources, OLEDs enabled the direct conversion of electrical energy into light emission and have intrigued the world's lighting designers with the long-lasting, highly efficient illumination. We begin with a brief overview of organic technology, from basic organic semiconductor physics, to its application in optoelectronics, i.e. light-emitting diodes, photovoltaics, photodetectors and thin-film transistors. Due to the importance of phosphorescent materials, we will focus on the photophysics of metal complexes that is central to high efficiency OLED technology, followed by a transient study to examine the radiative decay dynamics in a series of phosphorescent platinum binuclear complexes. The major theme of this thesis is the design and optimization of a novel architecture where individual red, green and blue phosphorescent OLEDs are vertically stacked and electrically interconnected by the compound charge generation layers. We modeled carrier generation from the metal-oxide/doped organic interface based on a thermally assisted tunneling mechanism. The model provides insights to the optimization of a stacked OLED from both electrical and optical point of view. To realize the high intensity white lighting source, the efficient removal of heat is of a particular concern, especially in large-area devices. A fundamental transfer matrix analysis is introduced to predict the thermal properties in the devices. The analysis employs Laplace transforms to determine the response of the system to the combined effects of conduction, convection, and radiation. This perspective of constructing transmission matrices greatly facilitates the calculation of transient coupled heat transfer in a general multi-layer composite. It converts differential equations to algebraic forms, and

  13. Photoproduction at high energy and high intensity

    CERN Multimedia

    2002-01-01

    The photon beam used for this programme is tagged and provides a large flux up to very high energies (150-200 GeV). It is also hadron-free, since it is obtained by a two-step conversion method. A spectrometer is designed to exploit this beam and to perform a programme of photoproduction with a high level of sensitivity (5-50 events/picobarn).\\\\ \\\\ Priority will be given to the study of processes exhibiting the point-like behaviour of the photon, especially deep inelastic Compton scattering. The spectrometer has two magnets. Charged tracks are measured by MWPC's located only in field-free regions. Three calorimeters provide a large coverage for identifying and measuring electrons and photons. An iron filter downstream identifies muons. Most of the equipment is existing and recuperated from previous experiments.

  14. Directional anxiety responses in elite and sub-elite young athletes: intensity of anxiety symptoms matters.

    Science.gov (United States)

    Lundqvist, C; Kenttä, G; Raglin, J S

    2011-12-01

    The objective was to examine the differences in anxiety ratings of elite and sub-elite athletes when the relationship between intensity and direction scores of anxiety ratings is considered in analyses. Participants were 31 junior elite (Mean age: 17.7, SD=1.1) and 53 sub-elite (Mean age: 17.5, SD=1.1) cross country skiers and swimmers who completed the direction modified CSAI-2R before important competitions. Results showed that elite athletes rated a higher percent of items as facilitative to their performance whereas sub-elite athletes rated a higher percent of items as debilitative. No significant differences between the elite and sub-elite samples were displayed regarding rated direction scores of cognitive or somatic anxiety at moderate to high-intensity levels. A significant difference in facilitative anxiety ratings was displayed at a low anxiety intensity level (Z=-2.20, Pperformance data showed no consistent congruence with athletes' anxiety direction ratings. The findings suggest that facilitative direction scores are a consequence of low anxiety intensity, possibly combined with high self-confidence levels. Directional anxiety researchers analyzing separate total scores of intensity and direction respectively, which is the traditional approach, may draw incorrect conclusions about the importance of facilitative ratings of anxiety symptoms. © 2010 John Wiley & Sons A/S.

  15. Stimulated Raman backscattering at high laser intensities

    Energy Technology Data Exchange (ETDEWEB)

    Skoric, M M [Vinca Inst. of Nuclear Sciences, Belgrade (Yugoslavia); Tajima, Toshiki; Sasaki, Akira; Maluckov, A; Jovanovic, M

    1998-03-01

    Signatures of Stimulated Raman backscattering of a short-pulse high-intensity laser interacting with an underdense plasma are discussed. We introduce a nonlinear three-wave interaction model that accounts for laser pump depletion and relativistic detuning. A mechanism is revealed based on a generic route to chaos, that predicts a progressive increase of the backscatter complexity with a growing laser intensity. Importance of kinetic effects is outlined and demonstrated in fluid-hybrid and particle simulations. As an application, we show that spectral anomalies of the backscatter, predicted by the above model, are consistent with recent sub-picosecond, high-intensity laser gas-target measurements at Livermore and elsewhere. Finally, a recently proposed scheme for generation of ultra-short, low-prepulse laser pulses by Raman backscattering in a thin foil target, is shown. (author)

  16. Cryogenic semiconductor high-intensity radiation monitors

    International Nuclear Information System (INIS)

    Palmieri, V.G.; Bell, W.H.; Borer, K.; Casagrande, L.; Da Via, C.; Devine, S.R.H.; Dezillie, B.; Esposito, A.; Granata, V.; Hauler, F.; Jungermann, L.; Li, Z.; Lourenco, C.; Niinikoski, T.O.; Shea, V. O'; Ruggiero, G.; Sonderegger, P.

    2003-01-01

    This paper describes a novel technique to monitor high-intensity particle beams by means of a semiconductor detector. It consists of cooling a semiconductor detector down to cryogenic temperature to suppress the thermally generated leakage current and to precisely measure the integrated ionization signal. It will be shown that such a device provides very good linearity and a dynamic range wider than is possible with existing techniques. Moreover, thanks to the Lazarus effect, extreme radiation hardness can be achieved providing in turn absolute intensity measurements against precise calibration of the device at low beam flux

  17. Advance Directives and Powers of Attorney in Intensive Care Patients.

    Science.gov (United States)

    de Heer, Geraldine; Saugel, Bernd; Sensen, Barbara; Rübsteck, Charlotte; Pinnschmidt, Hans O; Kluge, Stefan

    2017-06-05

    Advance directives and powers of attorney are increasingly common, yet data on their use in clinical situations remain sparse. In this single center cross-sectional study, we collected data by questionnaire from 1004 intensive care patients in a university hospital. The frequencies of advance directives and powers of attorney were determined, and the factors affecting them were studied with multivariate logistic regression analysis. Usable data were obtained from 998 patients. 51.3% stated that they had prepared a document of at least one of these two kinds. Among them, 39.6% stated that they had given the relevant document(s) to the hospital, yet such documents were present in the patient's hospital record for only 23%. 508 patients stated their reasons for preparing an advance directive or a power of attorney: the most common reason (48%) was the fear of being at other people's mercy, of the lack of self-determination, or of medical overtreatment. The most important factors associated with a patient's statement that he/she had prepared such a document were advanced age (advance directive: 1.022 [1.009; 1.036], p = 0.001; power of attorney: 1.027 [1.014; 1.040], padvance directive: 1.622 [1.138; 2.311], padvance directives and 44.1% of the powers of attorney that were present in the hospital records were poorly interpretable because of the incomplete filling-out of preprinted forms. Half of the patients who did not have such a document had already thought of preparing one, but had not yet done so. For patients hospitalized in intensive care units, there should be early discussion about the presence or absence of documents of these kinds and early evaluation of the patient's concrete wishes in critical situations. Future studies are needed to determine how best to assure that these documents will be correctly prepared and then given over to hospital staff so that they can take their place in the patient's record.

  18. Very high intensity reaction chamber design

    International Nuclear Information System (INIS)

    Devaney, J.J.

    1975-09-01

    The problem of achieving very high intensity irradiation by light in minimal regions was studied. Three types of irradiation chamber are suggested: the common laser-reaction chamber, the folded concentric or near-concentric resonator, and the asymmetric confocal resonator. In all designs the ratio of high-intensity illuminated volume to other volume is highly dependent (to the 3 / 2 power) on the power and fluence tolerances of optical elements, primarily mirrors. Optimization of energy coupling is discussed for the common cavity. For the concentric cavities, optimization for both coherent and incoherent beams is treated. Formulae and numerical examples give the size of chambers, aspect ratios, maximum pass number, image sizes, fluences, and the like. Similarly for the asymmetric confocal chamber, formulae and numerical examples for fluences, dimensions, losses, and totally contained pass numbers are given

  19. Development of high intensity proton accelerator

    International Nuclear Information System (INIS)

    Mizumoto, M.; Kusano, J.; Hasegawa, K.; Ouchi, N.; Oguri, H.; Kinsho, M.; Touchi, Y.; Honda, Y.; Mukugi, K.; Ino, H.; Noda, F.; Akaoka, N.; Kaneko, H.; Chishiro, E.; Fechner, B.

    1997-01-01

    The high-intensity proton linear accelerator with an energy of 1.5 GeV and an average current of 5.33mA has been proposed for the Neutron Science Project (NSP) at JAERI. the NSP is aiming at exploring nuclear technologies for nuclear waste transmutation based on a proton induced spallation neutrons. The proposed accelerators facilities will be also used in the various basic research fields such as condensed matter physics in combination with a high intensity proton storage ring. The R and D work has been carried out for the components of the front-end of the proton accelerator. For the high energy portion above 100 MeV, superconducting (SC) accelerator linac has been designed and developed as a major option. (Author) 7 refs

  20. Shielding for high energy, high intensity electron accelerator installation

    International Nuclear Information System (INIS)

    Warawas, C.; Chongkum, S.

    1997-03-01

    The utilization of electron accelerators (eBA) is gradually increased in Thailand. For instance, a 30-40 MeV eBA are used for tumor and cancer therapy in the hospitals, and a high current eBA in for gemstone colonization. In the near future, an application of eBA in industries will be grown up in a few directions, e.g., flue gases treatment from the coal fire-power plants, plastic processing, rubber vulcanization and food preservation. It is the major roles of Office of Atomic Energy for Peace (OAEP) to promote the peaceful uses of nuclear energy and to regulate the public safety and protection of the environment. By taking into account of radiation safety aspect, high energy electrons are not only harmful to human bodies, but the radioactive nuclides can be occurred. This report presents a literature review by following the National Committee on Radiation Protection and Measurements (NCRP) report No.31. This reviews for parametric calculation and shielding design of the high energy (up to 100 MeV), high intensity electron accelerator installation

  1. Concept for a new high resolution high intensity diffractometer

    Energy Technology Data Exchange (ETDEWEB)

    Stuhr, U [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    A concept of a new time-of-flight powder-diffractometer for a thermal neutral beam tube at SINQ is presented. The design of the instrument optimises the contradictory conditions of high intensity and high resolution. The high intensity is achieved by using many neutron pulses simultaneously. By analysing the time-angle-pattern of the detected neutrons an assignment of the neutrons to a single pulse is possible. (author) 3 figs., tab., refs.

  2. Development of a high intensity proton accelerator

    International Nuclear Information System (INIS)

    Mizumoto, Motoharu; Kusano, Joichi; Hasegawa, Kazuo; Ito, Nobuo; Oguri, Hidetomo; Touchi, Yutaka; Mukugi, Ken; Ino, Hiroshi

    1997-01-01

    The high-intensity proton linear accelerator with a beam power of 15 MW has been proposed for various engineering tests for the nuclear waste transmutation system as one of the research plans in the Neutron Science Research Program (NSRP) in JAERI. High intensity proton beam and secondary particle beams such as neutron, pion, muon and unstable radio isotope (RI) beam generated from the proton spallation reaction will be utilized at these facilities in each research field. The R and D work has been carried out for the components of the front-end part of the proton accelerator; ion source, RFQ, DTL and RF source. In the beam test, the current of 70 mA with a duty factor of 7% has been accelerated from the RFQ at the energy of 2 MeV. A hot test model of the DTL for the high power and high duty operation was fabricated and tested. For the high energy portion above 100 MeV, superconducting accelerating cavity is studied as a main option. The superconducting linac is expected to have several favourable characteristics for high intensity accelerator such as short accelerator length, large bore radius resulting in low beam losses and cost effectiveness for construction and operation. A test stand with equipment of cryogenics system, vacuum system, RF system and cavity processing and cleaning is prepared to test the physics issues and fabrication process. The proposed plan for accelerator design and construction will compose of two consecutive stages. The first stage will be completed in about 7 years with the beam power of 1.5 MW. As the second stage gradual upgrading of the beam power will be made up to 15 MW. 7 refs., 3 figs., 4 tabs

  3. Photon-photon scattering at the high-intensity frontier

    Science.gov (United States)

    Gies, Holger; Karbstein, Felix; Kohlfürst, Christian; Seegert, Nico

    2018-04-01

    The tremendous progress in high-intensity laser technology and the establishment of dedicated high-field laboratories in recent years have paved the way towards a first observation of quantum vacuum nonlinearities at the high-intensity frontier. We advocate a particularly prospective scenario, where three synchronized high-intensity laser pulses are brought into collision, giving rise to signal photons, whose frequency and propagation direction differ from the driving laser pulses, thus providing various means to achieve an excellent signal to background separation. Based on the theoretical concept of vacuum emission, we employ an efficient numerical algorithm which allows us to model the collision of focused high-intensity laser pulses in unprecedented detail. We provide accurate predictions for the numbers of signal photons accessible in experiment. Our study is the first to predict the precise angular spread of the signal photons, and paves the way for a first verification of quantum vacuum nonlinearity in a well-controlled laboratory experiment at one of the many high-intensity laser facilities currently coming online.

  4. The utilization of high-intensity lasers

    International Nuclear Information System (INIS)

    Fabre, E.

    1988-01-01

    The 1988 progress report of the laboratory for the Utilization of High-Intensity Lasers (Polytechnic School, France), is presented. The research program is focused on the laser-plasma physics, on the generation of high pressures by means of laser shock heating, on the laser spectroscopy and on the laser implosions. Numerical simulation codes are developed. Concerning the atomic physics, the investigations on dense plasmas and the x-laser research developments are carried out. The research activities of the laboratory teams, the published papers, the national and international cooperations, are given [fr

  5. Beam halo in high-intensity beams

    International Nuclear Information System (INIS)

    Wangler, T.P.

    1993-01-01

    In space-charge dominated beams the nonlinear space-charge forces produce a filamentation pattern, which in projection to the 2-D phase spaces results in a 2-component beam consisting of an inner core and a diffuse outer halo. The beam-halo is of concern for a next generation of cw, high-power proton linacs that could be applied to intense neutron generators for nuclear materials processing. The author describes what has been learned about beam halo and the evolution of space-charge dominated beams using numerical simulations of initial laminar beams in uniform linear focusing channels. Initial results are presented from a study of beam entropy for an intense space-charge dominated beam

  6. Moderate and high intensity pulsed electric fields

    OpenAIRE

    Timmermans, Rian Adriana Hendrika

    2018-01-01

    Pulsed Electric Field (PEF) processing has gained a lot of interest the last decades as mild processing technology as alternative to thermal pasteurisation, and is suitable for preservation of liquid food products such as fruit juices. PEF conditions typically applied at industrial scale for pasteurisation are high intensity pulsed electric fields aiming for minimal heat load, with an electric field strength (E) in the range of 15 − 20 kV/cm and pulse width (τ) between 2 − 20 μs. Alternativel...

  7. Physics of high intensity nanosecond electron source

    International Nuclear Information System (INIS)

    Herrera-Gomez, A.; Spicer, W.E.

    1993-08-01

    A new high-intensity, short-time electron source is now being used at the Stanford Linear Accelerator Center (SLAC). Using a GaAs negative affinity semiconductor in the construction of the cathode, it is possible to fulfill operation requirements such as peak currents of tens of amperes, peak widths of the order of nanoseconds, hundreds of hours of operation stability, and electron spin polarization. The cathode is illuminated with high intensity laser pulses, and photoemitted electrons constitute the yield. Because of the high currents, some nonlinear effects are present. Very noticeable is the so-called Charge Limit (CL) effect, which consists of a limit on the total charge in each pulse-that is, the total bunch charge stops increasing as the light pulse total energy increases. In this paper, we explain the mechanism of the CL and how it is caused by the photovoltaic effect. Our treatment is based on the Three-Step model of photoemission. We relate the CL to the characteristics of the surface and bulk of the semiconductor, such as doping, band bending, surface vacuum level, and density of surface states. We also discuss possible ways to prevent the Char's Level effect

  8. Direct radiative effects during intense Mediterranean desert dust outbreaks

    Directory of Open Access Journals (Sweden)

    A. Gkikas

    2018-06-01

    Full Text Available The direct radiative effect (DRE during 20 intense and widespread dust outbreaks, which affected the broader Mediterranean basin over the period March 2000–February 2013, has been calculated with the NMMB-MONARCH model at regional (Sahara and European continent and short-term temporal (84 h scales. According to model simulations, the maximum dust aerosol optical depths (AODs range from  ∼  2.5 to  ∼  5.5 among the identified cases. At midday, dust outbreaks locally induce a NET (shortwave plus longwave strong atmospheric warming (DREATM values up to 285 W m−2; Niger–Chad; dust AODs up to  ∼  5.5 and a strong surface cooling (DRENETSURF values down to −337 W m−2, whereas they strongly reduce the downward radiation at the ground level (DRESURF values down to −589 W m−2 over the Eastern Mediterranean, for extremely high dust AODs, 4.5–5. During night-time, reverse effects of smaller magnitude are found. At the top of the atmosphere (TOA, positive (planetary warming DREs up to 85 W m−2 are found over highly reflective surfaces (Niger–Chad; dust AODs up to  ∼  5.5 while negative (planetary cooling DREs down to −184 W m−2 (Eastern Mediterranean; dust AODs 4.5–5 are computed over dark surfaces at noon. Dust outbreaks significantly affect the mean regional radiation budget, with NET DREs ranging from −8.5 to 0.5 W m−2, from −31.6 to 2.1 W m−2, from −22.2 to 2.2 W m−2 and from −1.7 to 20.4 W m−2 for TOA, SURF, NETSURF and ATM, respectively. Although the shortwave DREs are larger than the longwave ones, the latter are comparable or even larger at TOA, particularly over the Sahara at midday. As a response to the strong surface day-time cooling, dust outbreaks cause a reduction in the regional sensible and latent heat fluxes by up to 45 and 4 W m−2, respectively, averaged over land areas of the simulation domain. Dust outbreaks reduce the

  9. High intensity discharge device containing oxytrihalides

    Science.gov (United States)

    Lapatovich, W.P.; Keeffe, W.M.; Liebermann, R.W.; Maya, J.

    1987-06-09

    A fill composition for a high intensity discharge device including mercury, niobium oxytrihalide, and a molecular stabilization agent is provided. The molar ratio of niobium oxytrihalide to the molecular stabilization agent in the fill is in the range of from about 5:1 to about 7.5:1. Niobium oxytrihalide is present in the fill in sufficient amount to produce, by dissociation in the discharge, atomic niobium, niobium oxide, NbO, and niobium dioxide, NbO[sub 2], with the molar ratio of niobium-containing vapor species to mercury in the fill being in the range of from about 0.01:1 to about 0.50:1; and mercury pressure of about 1 to about 50 atmospheres at lamp operating temperature. There is also provided a high intensity discharge device comprising a sealed light-transmissive arc tube; the arc tube including the above-described fill; and an energizing means for producing an electric discharge within the arc tube. 7 figs.

  10. High-Power, High-Intensity Laser Propagation and Interactions

    Science.gov (United States)

    2014-03-10

    intensity as the weighting function. The full refractive index associated with the laser plasma interaction having a parabolic density variation ...radiation in turn enhances the electron density wave further amplifying the radiation. Considering spatial variations in the z direction only the FEL...effL/ at the entrance to the wiggler where effL is the effective interaction length. This requirement can be expressed by the following inequality

  11. High-intensity deuteron linear accelerator (FMIT)

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1979-01-01

    For fusion reactors to become operational, one of the many problems to be solved is to find materials able to withstand the intense bombardment of 14-MeV neutrons released by the fusion process. The development of alloys less likely to become damaged by this neutron bombardment will require years of work, making it desirable to begin studies in parallel with other aspects of fusion power generators. The Fusion Materials Irradiation Test (FMIT) Facility, to be built at the Hanford Engineering Development Laboratory (HEDL), Richland, Washington, will provide a high neutron flux and a neutron energy spectrum representative of fusion reactor conditions in volumes adequate to screen and qualify samples of candidate fusion reactor materials. FMIT's design goal is to provide an irradiation test volume of 10 cm 3 at a neutron flux of 10 15 n/cm 2 -s, and 500 cm 3 at a flux of 10 14 n/cm 2 -s. This will not allow testing of actual components, but samples in the most intense flux region can be subjected to accelerated life testing, accumulating in one year the total number of neutrons seen by a fusion reactor in 10 to 20 years of operation

  12. Production of high intensity radioactive beams

    International Nuclear Information System (INIS)

    Nitschke, J.M.

    1990-04-01

    The production of radioactive nuclear beams world-wide is reviewed. The projectile fragmentation and the ISOL approaches are discussed in detail, and the luminosity parameter is used throughout to compare different production methods. In the ISOL approach a thin and a thick target option are distinguished. The role of storage rings in radioactive beam research is evaluated. It is concluded that radioactive beams produced by the projectile fragmentation and the ISOL methods have complementary characteristics and can serve to answer different scientific questions. The decision which kind of facility to build has to depend on the significance and breadth of these questions. Finally a facility for producing a high intensity radioactive beams near the Coulomb barrier is proposed, with an expected luminosity of ∼10 39 cm -2 s -1 , which would yield radioactive beams in excess of 10 11 s -1 . 9 refs., 3 figs., 7 tabs

  13. A High Intensity Hadron Facility, AGS II

    International Nuclear Information System (INIS)

    Lee, Y.Y.; Lowenstein, D.I.

    1988-01-01

    We have present one of several possibilities for the evolution of the AGS complex into a high intensity hadron facility. One could consider other alternatives, such as using the AGS as the Collector and constructing a new 9-30 GeV machine. We believe the most responsible scenario must minimize the cost and downtime to the ongoing physics program. With a stepwise approach, starting with the Booster, the physics program can evolve without a single major commitment in funds. At each step an evaluation of the funds versus physics merit can be made. As a final aside, each upgrade at the AGS and Booster is presently being implemented to support an interleaved operation of both protons and ions. 1 fig., 6 tabs

  14. High intensity proton accelerator controls network upgrade

    International Nuclear Information System (INIS)

    Krempaska, R.; Bertrand, A.; Lendzian, F.; Lutz, H.

    2012-01-01

    The High Intensity Proton Accelerator (HIPA) control system network is spread through a vast area in PSI and it was grown historically in an unorganized way. The miscellaneous network hardware infrastructure and the lack of the documentation and components overview could no longer guarantee the reliability of the control system and the facility operation. Therefore, a new network, based on modern network topology, PSI standard hardware with monitoring and detailed documentation and overview was needed. The number of active components has been reduced from 25 to 9 Cisco Catalyst 24- or 48-port switches. They are the same type as other PSI switches, thus a replacement emergency stock is not an issue anymore. We would like to present how we successfully achieved this goal and the advantages of the clean and well documented network infrastructure. (authors)

  15. High Intensity High Charge State ECR Ion Sources

    CERN Document Server

    Leitner, Daniela

    2005-01-01

    The next-generation heavy ion beam accelerators such as the proposed Rare Isotope Accelerator (RIA), the Radioactive Ion Beam Factory at RIKEN, the GSI upgrade project, the LHC-upgrade, and IMP in Lanzhou require a great variety of high charge state ion beams with a magnitude higher beam intensity than currently achievable. High performance Electron Cyclotron Resonance (ECR) ion sources can provide the flexibility since they can routinely produce beams from hydrogen to uranium. Over the last three decades, ECR ion sources have continued improving the available ion beam intensities by increasing the magnetic fields and ECR heating frequencies to enhance the confinement and the plasma density. With advances in superconducting magnet technology, a new generation of high field superconducting sources is now emerging, designed to meet the requirements of these next generation accelerator projects. The talk will briefly review the field of high performance ECR ion sources and the latest developments for high intens...

  16. Applications of High Intensity Proton Accelerators

    Science.gov (United States)

    Raja, Rajendran; Mishra, Shekhar

    2010-06-01

    Superconducting radiofrequency linac development at Fermilab / S. D. Holmes -- Rare muon decay experiments / Y. Kuno -- Rare kaon decays / D. Bryman -- Muon collider / R. B. Palmer -- Neutrino factories / S. Geer -- ADS and its potential / J.-P. Revol -- ADS history in the USA / R. L. Sheffield and E. J. Pitcher -- Accelerator driven transmutation of waste: high power accelerator for the European ADS demonstrator / J. L. Biarrotte and T. Junquera -- Myrrha, technology development for the realisation of ADS in EU: current status & prospects for realisation / R. Fernandez ... [et al.] -- High intensity proton beam production with cyclotrons / J. Grillenberger and M. Seidel -- FFAG for high intensity proton accelerator / Y. Mori -- Kaon yields for 2 to 8 GeV proton beams / K. K. Gudima, N. V. Mokhov and S. I. Striganov -- Pion yield studies for proton driver beams of 2-8 GeV kinetic energy for stopped muon and low-energy muon decay experiments / S. I. Striganov -- J-Parc accelerator status and future plans / H. Kobayashi -- Simulation and verification of DPA in materials / N. V. Mokhov, I. L. Rakhno and S. I. Striganov -- Performance and operational experience of the CNGS facility / E. Gschwendtner -- Particle physics enabled with super-conducting RF technology - summary of working group 1 / D. Jaffe and R. Tschirhart -- Proton beam requirements for a neutrino factory and muon collider / M. S. Zisman -- Proton bunching options / R. B. Palmer -- CW SRF H linac as a proton driver for muon colliders and neutrino factories / M. Popovic, C. M. Ankenbrandt and R. P. Johnson -- Rapid cycling synchrotron option for Project X / W. Chou -- Linac-based proton driver for a neutrino factory / R. Garoby ... [et al.] -- Pion production for neutrino factories and muon colliders / N. V. Mokhov ... [et al.] -- Proton bunch compression strategies / V. Lebedev -- Accelerator test facility for muon collider and neutrino factory R&D / V. Shiltsev -- The superconducting RF linac for muon

  17. ''High intensity per bunch'' working group

    International Nuclear Information System (INIS)

    2001-01-01

    Third Generation Light Sources are supposed to store high intensity beams not only in many tightly spaced bunches (multibunch operation), but also in few bunch or even single lunch modes of operation, required for example for time structure experiments. Single bunch instabilities, driven by short-range wake fields, however spoil the beam quality, both longitudinally and transversely. Straightforward ways of handling them, by pushing up the chromaticity (ζ = ΔQ/(Δp/p)) for example, enabled to raise the charge per bunch, but to the detriment of beam lifetime. In addition, since the impedance of the vacuum chamber deteriorates with the installation of new insertion devices, the current thresholds tend to dope down continuously. The goal of this Working Group was then to review these limitations in the existing storage rings, where a large number of beam measurements have been performed to characterise them, and to discuss different strategies which are used against them. About 15 different laboratories reported on the present performance of storage rings, experiences gained in high charge per bunch, and on simulation results and theoretical studies. More than 25 presentations addressed the critical issues and stimulated the discussion. Four main topics came out: - Observation and experimental data; - Impedance studies and tracking codes; - Theoretical investigations; - Cures and feedback. (author)

  18. High intensity neutrino oscillation facilities in Europe

    CERN Document Server

    Edgecock, T.R.; Davenne, T.; Densham, C.; Fitton, M.; Kelliher, D.; Loveridge, P.; Machida, S.; Prior, C.; Rogers, C.; Rooney, M.; Thomason, J.; Wilcox, D.; Wildner, E.; Efthymiopoulos, I.; Garoby, R.; Gilardoni, S.; Hansen, C.; Benedetto, E.; Jensen, E.; Kosmicki, A.; Martini, M.; Osborne, J.; Prior, G.; Stora, T.; Melo-Mendonca, T.; Vlachoudis, V.; Waaijer, C.; Cupial, P.; Chancé, A.; Longhin, A.; Payet, J.; Zito, M.; Baussan, E.; Bobeth, C.; Bouquerel, E.; Dracos, M.; Gaudiot, G.; Lepers, B.; Osswald, F.; Poussot, P.; Vassilopoulos, N.; Wurtz, J.; Zeter, V.; Bielski, J.; Kozien, M.; Lacny, L.; Skoczen, B.; Szybinski, B.; Ustrzycka, A.; Wroblewski, A.; Marie-Jeanne, M.; Balint, P.; Fourel, C.; Giraud, J.; Jacob, J.; Lamy, T.; Latrasse, L.; Sortais, P.; Thuillier, T.; Mitrofanov, S.; Loiselet, M.; Keutgen, Th.; Delbar, Th.; Debray, F.; Trophine, C.; Veys, S.; Daversin, C.; Zorin, V.; Izotov, I.; Skalyga, V.; Burt, G.; Dexter, A.C.; Kravchuk, V.L.; Marchi, T.; Cinausero, M.; Gramegna, F.; De Angelis, G.; Prete, G.; Collazuol, G.; Laveder, M.; Mazzocco, M.; Mezzetto, M.; Signorini, C.; Vardaci, E.; Di Nitto, A.; Brondi, A.; La Rana, G.; Migliozzi, P.; Moro, R.; Palladino, V.; Gelli, N.; Berkovits, D.; Hass, M.; Hirsh, T.Y.; Schaumann, M.; Stahl, A.; Wehner, J.; Bross, A.; Kopp, J.; Neuffer, D.; Wands, R.; Bayes, R.; Laing, A.; Soler, P.; Agarwalla, S.K.; Cervera Villanueva, A.; Donini, A.; Ghosh, T.; Gómez Cadenas, J.J.; Hernández, P.; Martín-Albo, J.; Mena, O.; Burguet-Castell, J.; Agostino, L.; Buizza-Avanzini, M.; Marafini, M.; Patzak, T.; Tonazzo, A.; Duchesneau, D.; Mosca, L.; Bogomilov, M.; Karadzhov, Y.; Matev, R.; Tsenov, R.; Akhmedov, E.; Blennow, M.; Lindner, M.; Schwetz, T.; Fernández Martinez, E.; Maltoni, M.; Menéndez, J.; Giunti, C.; González García, M. C.; Salvado, J.; Coloma, P.; Huber, P.; Li, T.; López-Pavón, J.; Orme, C.; Pascoli, S.; Meloni, D.; Tang, J.; Winter, W.; Ohlsson, T.; Zhang, H.; Scotto-Lavina, L.; Terranova, F.; Bonesini, M.; Tortora, L.; Alekou, A.; Aslaninejad, M.; Bontoiu, C.; Kurup, A.; Jenner, L.J.; Long, K.; Pasternak, J.; Pozimski, J.; Back, J.J.; Harrison, P.; Beard, K.; Bogacz, A.; Berg, J.S.; Stratakis, D.; Witte, H.; Snopok, P.; Bliss, N.; Cordwell, M.; Moss, A.; Pattalwar, S.; Apollonio, M.

    2013-02-20

    The EUROnu project has studied three possible options for future, high intensity neutrino oscillation facilities in Europe. The first is a Super Beam, in which the neutrinos come from the decay of pions created by bombarding targets with a 4 MW proton beam from the CERN High Power Superconducting Proton Linac. The far detector for this facility is the 500 kt MEMPHYS water Cherenkov, located in the Fr\\'ejus tunnel. The second facility is the Neutrino Factory, in which the neutrinos come from the decay of {\\mu}+ and {\\mu}- beams in a storage ring. The far detector in this case is a 100 kt Magnetised Iron Neutrino Detector at a baseline of 2000 km. The third option is a Beta Beam, in which the neutrinos come from the decay of beta emitting isotopes, in particular 6He and 18Ne, also stored in a ring. The far detector is also the MEMPHYS detector in the Fr\\'ejus tunnel. EUROnu has undertaken conceptual designs of these facilities and studied the performance of the detectors. Based on this, it has determined the ph...

  19. High repetition rate intense ion beam source

    International Nuclear Information System (INIS)

    Hammer, D.A.; Glidden, S.C.; Noonan, B.

    1992-01-01

    This final report describes a ≤ 150kV, 40kA, 100ns high repetition rate pulsed power system and intense ion beam source which is now in operation at Cornell University. Operation of the Magnetically-controlled Anode Plasma (MAP) ion diode at > 100Hz (burst mode for up to 10 pulse bursts) provides an initial look at repetition rate limitations of both the ion diode and beam diagnostics. The pulsed power systems are capable of ≥ 1kHz operation (up to 10 pulse bursts), but ion diode operation was limited to ∼100Hz because of diagnostic limitations. By varying MAP diode operating parameters, ion beams can be extracted at a few 10s of keV or at up to 150keV, the corresponding accelerating gap impedance ranging from about 1Ω to about 10Ω. The ability to make hundreds of test pulses per day at an average repetition rate of about 2 pulses per minute permits statistical analysis of diode operation as a function of various parameters. Most diode components have now survived more than 10 4 pulses, and the design and construction of the various pulsed power components of the MAP diode which have enabled us to reach this point are discussed. A high speed data acquisition system and companion analysis software capable of acquiring pulse data at 1ms intervals (in bursts of up to 10 pulses) and processing it in ≤ min is described

  20. 'J-KAREN' - high intensity, high contrast laser

    International Nuclear Information System (INIS)

    Kiriyama, Hiromitsu; Mori, Michiaki; Nakai, Yoshiki; Okada, Hajime; Sasao, Hajime; Sagisaka, Akito; Ochi, Yoshihiro; Tanaka, Momoko; Kondo, Kiminori; Tateno, Ryo; Sugiyama, Akira; Daido, Hiroyuki; Koike, Masato; Kawanishi, Syunichi; Shimomura, Takuya; Tanoue, Manabu; Wakai, Daisuke; Kondo, Shuji; Kanazawa, Shuhei

    2010-01-01

    We report on the high intensity, high contrast double chirped-pulse amplification (CPA) Ti:sapphire laser system (named J-KAREN). By use of an optical parametric chirped-pulse amplification (OPCPA) preamplifier that is seeded by a cleaned high-energy pulse, a background amplified spontaneous emission (ASE) level of 10 -10 relative to the peak main femtosecond pulse on the picosecond timescales demonstrated with an output energy of 1.7 J and a pulse duration of 30 fs, corresponding to a peak power of 60TW at a 10 Hz repetition rate. This system which uses a cryogenically-cooled Ti:sapphire final amplifier generates focused peak intensity in excess of 10 20 W/cm 2 at a 10 Hz repetition rate. (author)

  1. High-intensity laser application in Orthodontics

    Directory of Open Access Journals (Sweden)

    Eduardo Franzotti Sant’Anna

    Full Text Available ABSTRACT Introduction: In dental practice, low-level laser therapy (LLLT and high-intensity laser therapy (HILT are mainly used for dental surgery and biostimulation therapy. Within the Orthodontic specialty, while LLLT has been widely used to treat pain associated with orthodontic movement, accelerate bone regeneration after rapid maxillary expansion, and enhance orthodontic tooth movement, HILT, in turn, has been seen as an alternative for addressing soft tissue complications associated to orthodontic treatment. Objective: The aim of this study is to discuss HILT applications in orthodontic treatment. Methods: This study describes the use of HILT in surgical treatments such as gingivectomy, ulotomy, ulectomy, fiberotomy, labial and lingual frenectomies, as well as hard tissue and other dental restorative materials applications. Conclusion: Despite the many applications for lasers in Orthodontics, they are still underused by Brazilian practitioners. However, it is quite likely that this demand will increase over the next years - following the trend in the USA, where laser therapies are more widely used.

  2. Microstructural Evolution in Intensively Melt Sheared Direct Chill Cast Al-Alloys

    Science.gov (United States)

    Jones, S.; Rao, A. K. Prasada; Patel, J. B.; Scamans, G. M.; Fan, Z.

    The work presented here introduces the novel melt conditioned direct chill casting (MC-DC) technology, where intensive melt shearing is applied to the conventional direct-chill casting process. MC-DC casting can successfully produce high quality Al-alloy billets. The results obtained from 80 mm diameter billets cast at speed of 200 mm/min show that MC-DC casting of Al-alloys, substantially refines the microstructure and reduces macro-segregation. In this paper, we present the preliminary results and discuss microstructural evolution during MC-DC casting of Al-alloys.

  3. Physics of intense, high energy radiation effects.

    Energy Technology Data Exchange (ETDEWEB)

    Hjalmarson, Harold Paul; Hartman, E. Frederick; Magyar, Rudolph J.; Crozier, Paul Stewart

    2011-02-01

    This document summarizes the work done in our three-year LDRD project titled 'Physics of Intense, High Energy Radiation Effects.' This LDRD is focused on electrical effects of ionizing radiation at high dose-rates. One major thrust throughout the project has been the radiation-induced conductivity (RIC) produced by the ionizing radiation. Another important consideration has been the electrical effect of dose-enhanced radiation. This transient effect can produce an electromagnetic pulse (EMP). The unifying theme of the project has been the dielectric function. This quantity contains much of the physics covered in this project. For example, the work on transient electrical effects in radiation-induced conductivity (RIC) has been a key focus for the work on the EMP effects. This physics in contained in the dielectric function, which can also be expressed as a conductivity. The transient defects created during a radiation event are also contained, in principle. The energy loss lead the hot electrons and holes is given by the stopping power of ionizing radiation. This information is given by the inverse dielectric function. Finally, the short time atomistic phenomena caused by ionizing radiation can also be considered to be contained within the dielectric function. During the LDRD, meetings about the work were held every week. These discussions involved theorists, experimentalists and engineers. These discussions branched out into the work done in other projects. For example, the work on EMP effects had influence on another project focused on such phenomena in gases. Furthermore, the physics of radiation detectors and radiation dosimeters was often discussed, and these discussions had impact on related projects. Some LDRD-related documents are now stored on a sharepoint site (https://sharepoint.sandia.gov/sites/LDRD-REMS/default.aspx). In the remainder of this document the work is described in catergories but there is much overlap between the atomistic

  4. Physics of intense, high energy radiation effects

    International Nuclear Information System (INIS)

    Hjalmarson, Harold Paul; Hartman, E. Frederick; Magyar, Rudolph J.; Crozier, Paul Stewart

    2011-01-01

    This document summarizes the work done in our three-year LDRD project titled 'Physics of Intense, High Energy Radiation Effects.' This LDRD is focused on electrical effects of ionizing radiation at high dose-rates. One major thrust throughout the project has been the radiation-induced conductivity (RIC) produced by the ionizing radiation. Another important consideration has been the electrical effect of dose-enhanced radiation. This transient effect can produce an electromagnetic pulse (EMP). The unifying theme of the project has been the dielectric function. This quantity contains much of the physics covered in this project. For example, the work on transient electrical effects in radiation-induced conductivity (RIC) has been a key focus for the work on the EMP effects. This physics in contained in the dielectric function, which can also be expressed as a conductivity. The transient defects created during a radiation event are also contained, in principle. The energy loss lead the hot electrons and holes is given by the stopping power of ionizing radiation. This information is given by the inverse dielectric function. Finally, the short time atomistic phenomena caused by ionizing radiation can also be considered to be contained within the dielectric function. During the LDRD, meetings about the work were held every week. These discussions involved theorists, experimentalists and engineers. These discussions branched out into the work done in other projects. For example, the work on EMP effects had influence on another project focused on such phenomena in gases. Furthermore, the physics of radiation detectors and radiation dosimeters was often discussed, and these discussions had impact on related projects. Some LDRD-related documents are now stored on a sharepoint site (https://sharepoint.sandia.gov/sites/LDRD-REMS/default.aspx). In the remainder of this document the work is described in catergories but there is much overlap between the atomistic calculations, the

  5. High intensity neutrino oscillation facilities in Europe

    Directory of Open Access Journals (Sweden)

    T. R. Edgecock

    2013-02-01

    Full Text Available The EUROnu project has studied three possible options for future, high intensity neutrino oscillation facilities in Europe. The first is a Super Beam, in which the neutrinos come from the decay of pions created by bombarding targets with a 4 MW proton beam from the CERN High Power Superconducting Proton Linac. The far detector for this facility is the 500 kt MEMPHYS water Cherenkov, located in the Fréjus tunnel. The second facility is the Neutrino Factory, in which the neutrinos come from the decay of μ^{+} and μ^{-} beams in a storage ring. The far detector in this case is a 100 kt magnetized iron neutrino detector at a baseline of 2000 km. The third option is a Beta Beam, in which the neutrinos come from the decay of beta emitting isotopes, in particular ^{6}He and ^{18}Ne, also stored in a ring. The far detector is also the MEMPHYS detector in the Fréjus tunnel. EUROnu has undertaken conceptual designs of these facilities and studied the performance of the detectors. Based on this, it has determined the physics reach of each facility, in particular for the measurement of CP violation in the lepton sector, and estimated the cost of construction. These have demonstrated that the best facility to build is the Neutrino Factory. However, if a powerful proton driver is constructed for another purpose or if the MEMPHYS detector is built for astroparticle physics, the Super Beam also becomes very attractive.

  6. Enhancing Plasma Surface Modification using high Intensity and high Power Ultrasonic Acoustic Waves

    DEFF Research Database (Denmark)

    2010-01-01

    high intensity and high power acoustic waves (102) by at least one ultrasonic high intensity and high power acoustic wave generator (101 ), wherein the ultrasonic acoustic waves are directed to propagate towards said surface (314) of the object (100) so that a laminar boundary layer (313) of a gas...... or a mixture of gases (500) flow in contact with said solid object (100) is thinned or destructed for at least a part of said surface (314). In this way, the plasma can more efficiently access and influence the surface of the solid object to be treated by the plasma, which speeds the process time up...

  7. Gaussian representation of high-intensity focused ultrasound beams.

    Science.gov (United States)

    Soneson, Joshua E; Myers, Matthew R

    2007-11-01

    A method for fast numerical simulation of high-intensity focused ultrasound beams is derived. The method is based on the frequency-domain representation of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation, and assumes for each harmonic a Gaussian transverse pressure distribution at all distances from the transducer face. The beamwidths of the harmonics are constrained to vary inversely with the square root of the harmonic number, and as such this method may be viewed as an extension of a quasilinear approximation. The technique is capable of determining pressure or intensity fields of moderately nonlinear high-intensity focused ultrasound beams in water or biological tissue, usually requiring less than a minute of computer time on a modern workstation. Moreover, this method is particularly well suited to high-gain simulations since, unlike traditional finite-difference methods, it is not subject to resolution limitations in the transverse direction. Results are shown to be in reasonable agreement with numerical solutions of the full KZK equation in both tissue and water for moderately nonlinear beams.

  8. Wet high-intensity magnetic separation

    International Nuclear Information System (INIS)

    Levin, J.; Shanks, R.I.

    1980-01-01

    Miscellaneous laboratory tests (most of them on cyanide residues) were undertaken to supplement on-site pilot-plant work on wet high intensity magnetic separation (WHIMS). Initially, the main concern was with blockage of the matrix, and consideration was given to the use of a reverse-flushing system. The laboratory tests on this system were encouraging, but they were not of sufficiently long duration to be conclusive. The velocity of the pulp through the matrix is important, because it determines the capacity of the separator and the recovery obtainable. Of almost equal importance is the magnetic load, which affects the velocity of the pulp and the recovery. Typically, a recovery of 51 per cent of the uranium was reduced to one of 40 per cent as the magnetic load was increased from 25 to 100 g/l, while the pulp velocity decreased from 62 to 36 mm/s. There was some indication that, for the same pulp velocity, lower recoveries are obtained when free-fall feeding is used. Some benefit was observed in the application of WHIMS to coarsely ground ore; from a Blyvooruitzicht rod-mill product, 25 per cent of the total uranium was recovered when only 29 per cent of the rod-mill product (the finest portion) was treated. A similar recovery was made from 43 per cent of the rod-mill product from Stilfontein; a second stage of treatment after regrinding raised the overall recovery of uranium to 76,4 per cent. Recoveries of 55 and 42 per cent of the uranium were obtained in tests on two flotation tailings from Free State Geduld. In a determination of the mass magnetic susceptibilities of the constituents in a typical concentrate obtained by WHIMS, it was found that some 20 per cent of the magnetic product had a susceptibility of less than 5,4 X 10 -6 e.m.u. but contained 38 per cent of the uranium recovered by WHIMS. A few tests were conducted on different types of matrix. A matrix of spaced horizontal rods is recommended for possible future consideration [af

  9. Performances of BNL high-intensity synchrotrons

    International Nuclear Information System (INIS)

    Weng, W.T.

    1998-03-01

    The AGS proton synchrotron was completed in 1960 with initial intensity in the 10 to the 10th power proton per pulse (ppp) range. Over the years, through many upgrades and improvements, the AGS now reached an intensity record of 6.3 x 10 13 ppp, the highest world intensity record for a proton synchrotron on a single pulse basis. At the same time, the Booster reached 2.2 x 10 13 ppp surpassing the design goal of 1.5 x 10 13 ppp due to the introduction of second harmonic cavity during injection. The intensity limitation caused by space charge tune spread and its relationship to injection energy at 50 MeV, 200 MeV, and 1,500 MeV will be presented as well as many critical accelerator manipulations. BNL currently participates in the design of an accumulator ring for the SNS project at Oak Ridge. The status on the issues of halo formation, beam losses and collimation are also presented

  10. High intensity hadron facility, AGS II

    International Nuclear Information System (INIS)

    Lee, Y.Y.; Lowenstein, D.I.

    1989-01-01

    There is a large and growing community of particle and nuclear physicists around the world who are actively lobbying for the construction of an accelerator that could provide 1-2 orders of magnitude increase in proton intensity above that of the present AGS. There have been a series of proposals from Canada, Europe, Japan, and the USA. They can all be characterized as machines varying in energy from 12-60 GeV and intensities of 30-100 μA. The community of physicists using the AGS are in a unique position however. The AGS is the only machine available that can provide the beams to execute the physics program that this large international community is interested in. The BNL approach to the communities interests involves a stepwise intensity upgrade program. At present the AGS slow extracted beam current is 1 μA. With the completion of the Booster in 1990 and the associated AGS modifications, the current will rise to 4-5 μA. With the subsequent addition of the Stretcher which is under design, the current will rise to 8-10 μA and approximately 100% duty factor. The possibility of a further enhancement to a current level of 40-50 μA CW is now being examined. 2 figures, 6 tables

  11. Exploring high-intensity QED at ELI

    Energy Technology Data Exchange (ETDEWEB)

    Heinzl, T. [Plymouth Univ., School of Mathematics and Statistics, Drake Circus, PL4 8AA (United Kingdom); Ilderton, A. [School of Mathematics, Hamilton Building, Trinity College, Dublin (Ireland)

    2009-11-15

    We give a non-technical overview of quantum electrodynamics (QED) effects arising in the presence of ultra-strong electromagnetic fields highlighting the new prospects provided by a realisation of the ELI laser facility. Vacuum polarization is a genuine QED process describing the probability amplitude of a propagating photon fluctuating into a virtual electron-positron pair. It has measurable effects such as the Lamb shift and charge screening at short distances. Nonlinear Compton scattering that consists of processes of the type: e + ngamma{sub L} -> e' + gamma (where n counting the number of laser photons involved) is an intensity dependent effect that is accessible to experimental observation

  12. High-intensity-laser-electron scattering

    International Nuclear Information System (INIS)

    Meyerhofer, D.D.

    1997-01-01

    In the field of an intense laser, photon-electron scattering becomes nonlinear when the oscillatory energy of the electron approaches its rest mass. The electron wave function is dressed by the field with a concomitant increase in the effective electron mass. When the photon energy in the electron rest frame is comparable to the electron rest mass, multiphoton Compton scattering occurs. When the photon energy is significantly lower than the electron rest mass, the electron acquires momentum from the photon field and emits harmonics. This paper reviews nonlinear photon-electron scattering processes and results from two recent experiments where they have been observed

  13. Development of high intensity beam handling system, 4

    International Nuclear Information System (INIS)

    Yamanoi, Yutaka; Tanaka, Kazuhiro; Minakawa, Michifumi

    1992-01-01

    We have constructed the new counter experimental hall at the KEK 12 GeV Proton Synchrotron (KEK-PS) in order to handle high intensity primary proton beams of up to 1x10 3 pps (protons per second), which is one order of magnitude greater than the present beam intensity of the KEK-PS, 1x10 12 pps. New technologies for handling high-intensity beams have, then, been developed and employed in the construction of the new hall. A part of our R/D work on handling high intensity beams will be reported. (author)

  14. High-intensity sources for light ions

    International Nuclear Information System (INIS)

    Leung, K.N.

    1995-10-01

    The use of the multicusp plasma generator as a source of light ions is described. By employing radio-frequency induction discharge, the performance of the multicusp source is greatly improved, both in lifetime and in high brightness H + and H - beam production. A new technique for generating multiply-charged ions in this type of ion source is also presented

  15. Direct UV written Michelson interferometer for RZ signal generation using phase-to-intensity modulation conversion

    DEFF Research Database (Denmark)

    Peucheret, Christophe; Geng, Yan; Zsigri, Beata

    2005-01-01

    An integrated Michelson delay interferometer structure making use of waveguide gratings as reflective elements is proposed and fabricated by direct ultraviolet writing. Successful return-to-zero alternate-mark-inversion signal generation using phase-to-intensity modulation conversion...

  16. High intensity positron program at LLNL

    International Nuclear Information System (INIS)

    Asoka-Kumar, P.; Howell, R.; Stoeffl, W.; Carter, D.

    1999-01-01

    Lawrence Livermore National Laboratory (LLNL) is the home of the world's highest current beam of keV positrons. The potential for establishing a national center for materials analysis using positron annihilation techniques around this capability is being actively pursued. The high LLNL beam current will enable investigations in several new areas. We are developing a positron microprobe that will produce a pulsed, focused positron beam for 3-dimensional scans of defect size and concentration with submicron resolution. Below we summarize the important design features of this microprobe. Several experimental end stations will be available that can utilize the high current beam with a time distribution determined by the electron linac pulse structure, quasi-continuous, or bunched at 20 MHz, and can operate in an electrostatic or (and) magnetostatic environment. Some of the planned early experiments are: two-dimensional angular correlation of annihilation radiation of thin films and buried interfaces, positron diffraction holography, positron induced desorption, and positron induced Auger spectroscopy

  17. High intensity positron program at LLNL

    International Nuclear Information System (INIS)

    Asoka-Kumar, P.; Howell, R.H.; Stoeffl, W.

    1998-01-01

    Lawrence Livermore National Laboratory (LLNL) is the home of the world's highest current beam of keV positrons. The potential for establishing a national center for materials analysis using positron annihilation techniques around this capability is being actively pursued. The high LLNL beam current will enable investigations in several new areas. We are developing a positron microprobe that will produce a pulsed, focused positron beam for 3-dimensional scans of defect size and concentration with submicron resolution. Below we summarize the important design features of this microprobe. Several experimental end stations will be available that can utilize the high current beam with a time distribution determined by the electron linac pulse structure, quasi-continuous, or bunched at 20 MHz, and can operate in an electrostatic or (and) magnetostatic environment. Some of the planned early experiments are: two-dimensional angular correlation of annihilation radiation of thin films and buried interfaces, positron diffraction holography, positron induced desorption, and positron induced Auger spectra

  18. Echolocation call intensity and directionality in flying short-tailed fruit bats, Carollia perspicillata (Phyllostomidae)

    DEFF Research Database (Denmark)

    Brinkløv, Signe; Jakobsen, Lasse; Ratcliffe, John M

    2011-01-01

    The directionality of bat echolocation calls defines the width of bats' sonar "view," while call intensity directly influences detection range since adequate sound energy must impinge upon objects to return audible echoes. Both are thus crucial parameters for understanding biosonar signal design....... a longer and narrower sonar range than previously thought. C. perspicillata orient and forage in the forest interior and the narrow beam might be adaptive in clutter, by reducing the number and intensity of off-axis echoes....

  19. High intensity TOF spectrometer for cold neutrons

    International Nuclear Information System (INIS)

    Maayouf, R.M.; Abd El-Kawy, A.; Habib, N.; Adib, M.; Hamouda, I.

    1984-01-01

    This work presents a neutron time-of-flight (TOF) spectrometer developed specially for total neutron cross-section measurements at neutron energies below 5 MeV and sample's temperature varying from the liquid nitrogen one and up to 500 0 K. The spectrometer is equipped by remote control unit, designed especially, in order to move the sample in and out of the beam during the experimental measurements. The spectrometer has proved to be useful for transmission measurements at neutron energies below 5 MeV. It has a reasonable energy resolution (4.4%) and high effect to background ratio (11.1) at 5 MeV

  20. High intensity positron program at LLNL

    International Nuclear Information System (INIS)

    Asoka-Kumar, P.; Howell, R.; Stoeffl, W.; Carter, D.

    1999-01-01

    Lawrence Livermore National Laboratory (LLNL) is the home of the world close-quote s highest current beam of keV positrons. The potential for establishing a national center for materials analysis using positron annihilation techniques around this capability is being actively pursued. The high LLNL beam current will enable investigations in several new areas. We are developing a positron microprobe that will produce a pulsed, focused positron beam for 3-dimensional scans of defect size and concentration with submicron resolution. Below we summarize the important design features of this microprobe. Several experimental end stations will be available that can utilize the high current beam with a time distribution determined by the electron linac pulse structure, quasi-continuous, or bunched at 20 MHz, and can operate in an electrostatic or (and) magnetostatic environment. Some of the planned early experiments are: two-dimensional angular correlation of annihilation radiation of thin films and buried interfaces, positron diffraction holography, positron induced desorption, and positron induced Auger spectroscopy. copyright 1999 American Institute of Physics

  1. High-Intensity Events in International Women's Team Handball Matches.

    Science.gov (United States)

    Luteberget, Live S; Spencer, Matt

    2017-01-01

    International women's team handball is a physically demanding sport and is intermittent in nature. The aim of the study was to profile high-intensity events (HIEs) in international women's team handball matches with regard to playing positions. Twenty female national-team handball players were equipped with inertial movement units (OptimEye S5, Catapult Sports, Australia) in 9 official international matches. Players were categorized in 4 different playing positions: backs, wings, pivots, and goalkeepers (GKs). PlayerLoad™, accelerations (Acc), changes of direction (CoD), decelerations (Dec), and the sum of the latter 3, HIEs, were extracted from raw-data files using the manufacturer's software. All Acc, Dec, CoD, and HIEs >2.5 m/s were included. Data were log-transformed and differences were standardized for interpretation of magnitudes and reported with effect-size statistics. Mean numbers of events were 0.7 ± 0.4 Acc/min, 2.3 ± 0.9 Dec/min, and 1.0 ± 0.4 CoD/min. Substantial differences between playing positions, ranging from small to very large, were found in the 3 parameters. Backs showed a most likely greater frequency for HIE/min (5.0 ± 1.1 HIE/min) than all other playing positions. Differences between playing positions were also apparent in PlayerLoad/min. HIEs in international women's team handball are position specific, and the overall intensity depends on the positional role within a team. Specific HIE and intensity profiles from match play provide useful information for a better understanding of the overall game demands and for each playing position.

  2. SALIVARY CORTISOL RESPONSES AND PERCEIVED EXERTION DURING HIGH INTENSITY AND LOW INTENSITY BOUTS OF RESISTANCE EXERCISE

    Directory of Open Access Journals (Sweden)

    Alison D. Egan

    2004-03-01

    Full Text Available The purpose of this study was to measure the salivary cortisol response to different intensities of resistance exercise. In addition, we wanted to determine the reliability of the session rating of perceived exertion (RPE scale to monitor resistance exercise intensity. Subjects (8 men, 9 women completed 2 trials of acute resistance training bouts in a counterbalanced design. The high intensity resistance exercise protocol consisted of six, ten-repetition sets using 75% of one repetition maximum (RM on a Smith machine squat and bench press exercise (12 sets total. The low intensity resistance exercise protocol consisted of three, ten-repetition sets at 30% of 1RM of the same exercises as the high intensity protocol. Both exercise bouts were performed with 2 minutes of rest between each exercise and sessions were repeated to test reliability of the measures. The order of the exercise bouts was randomized with least 72 hours between each session. Saliva samples were obtained immediately before, immediately after and 30 mins following each resistance exercise bout. RPE measures were obtained using Borg's CR-10 scale following each set. Also, the session RPE for the entire exercise session was obtained 30 minutes following completion of the session. There was a significant 97% increase in the level of salivary cortisol immediately following the high intensity exercise session (P<0.05. There was also a significant difference in salivary cortisol of 145% between the low intensity and high intensity exercise session immediately post-exercise (P<0.05. The low intensity exercise did not result in any significant changes in cortisol levels. There was also a significant difference between the session RPE values for the different intensity levels (high intensity 7.1 vs. low intensity 1.9 (P<0.05. The intraclass correlation coefficient for the session RPE measure was 0.95. It was concluded that the session RPE method is a valid and reliable method of

  3. ELECTRON CLOUD EFFECTS IN HIGH INTENSITY PROTON ACCELERATORS

    International Nuclear Information System (INIS)

    Wei, J.; Macek, R.J.

    2002-01-01

    One of the primary concerns in the design and operation of high-intensity proton synchrotrons and accumulators is the electron cloud and associated beam loss and instabilities. Electron-cloud effects are observed at high-intensity proton machines like the Los Alamos National Laboratory's PSR and CERN's SPS, and investigated experimentally and theoretically. In the design of next-generation high-intensity proton accelerators like the Spallation Neutron Source ring, emphasis is made in minimizing electron production and in enhancing Landau damping. This paper reviews the present understanding of the electron-cloud effects and presents mitigation measures

  4. ELECTRON CLOUD EFFECTS IN HIGH INTENSITY PROTON ACCELERATORS.

    Energy Technology Data Exchange (ETDEWEB)

    WEI,J.; MACEK,R.J.

    2002-04-14

    One of the primary concerns in the design and operation of high-intensity proton synchrotrons and accumulators is the electron cloud and associated beam loss and instabilities. Electron-cloud effects are observed at high-intensity proton machines like the Los Alamos National Laboratory's PSR and CERN's SPS, and investigated experimentally and theoretically. In the design of next-generation high-intensity proton accelerators like the Spallation Neutron Source ring, emphasis is made in minimizing electron production and in enhancing Landau damping. This paper reviews the present understanding of the electron-cloud effects and presents mitigation measures.

  5. Apparatus for controlled mixing in a high intensity mixer

    International Nuclear Information System (INIS)

    Crocker, Z.; Gupta, V.P.

    1982-01-01

    An apparatus and a process is disclosed for controlled mixing of a mixable material in a high intensity mixer. The system enables instantaneous, precise and continual monitoring of a batch in a high intensity mixer which heretofore could not be achieved. The process comprises the steps of feeding a batch of material into a high intensity mixer, agitating the batch in the mixer, monitoring batch temperature separately from mixer temperature and discharging the batch from the mixer when the batch temperature reaches a final predetermined level. The apparatus includes means for monitoring batch temperature in a high intensity mixer separately from mixer temperature, and means responsive to the batch temperature to discharge the batch when the batch temperature reaches a final predetermined level

  6. Feasibility of high-intensity training in asthma

    DEFF Research Database (Denmark)

    Tønnesen, Louise Lindhardt; Sørensen, E D; Hostrup, Morten

    2018-01-01

    Background: High-intensity interval training is an effective and popular training regime but its feasibility in untrained adults with asthma is insufficiently described. Objective: The randomized controlled trial 'EFFORT Asthma' explored the effects of behavioural interventions including high......-intensity interval training on clinical outcomes in nonobese sedentary adults with asthma. In this article we present a sub analysis of data aiming to evaluate if patients' pre-intervention levels of asthma control, FEV1, airway inflammation and airway hyperresponsiveness (AHR) predicted their training response...... to the high-intensity interval training program, measured as increase in maximal oxygen consumption (VO2max). Design: We used data from the EFFORT Asthma Study. Of the 36 patients randomized to the 8-week exercise intervention consisting of high-intensity training three times per week, 29 patients (45...

  7. High intensive short laser pulse interaction with submicron clusters media

    International Nuclear Information System (INIS)

    Faenov, A. Ya

    2008-01-01

    The interaction of short intense laser pulses with structured targets, such as clusters, exhibits unique features, stemming from the enhanced absorption of the incident laser light compared to solid targets. Due to the increased absorption, these targets are heated significantly, leading to enhanced emission of x rays in the keV range and generation of electrons and multiple charged ions with kinetic energies from tens of keV to tens of MeV. Possible applications of these targets can be an electron/ion source for a table top accelerator, a neutron source for a material damage study, or an x ray source for microscopy or lithography. The overview of recent results, obtained by the high intensive short laser pulse interaction with different submicron clusters media will be presented. High resolution K and L shell spectra of plasma generated by superintense laser irradiation of micron sized Ar, Kr and Xe clusters have been measured with intensity 10"17"-10"19"W/cm"2"and a pulse duration of 30-1000fs. It is found that hot electrons produced by high contrast laser pulses allow the isochoric heating of clusters and shift the ion balance toward the higher charge states, which enhances both the X ray line yield and the ion kinetic energy. Irradiation of clusters, produced from such gas mixture, by a fs Ti:Sa laser pulses allows to enhance the soft X ray radiation of Heβ(665.7eV)and Lyα(653.7eV)of Oxygen in 2-8 times compare with the case of using as targets pure CO"2"or N"2"O clusters and reach values 2.8x10"10"(∼3μJ)and 2.7x10"10"(∼2.9μJ)ph/(sr·pulse), respectively. Nanostructure conventional soft X ray images of 100nm thick Mo and Zr foils in a wide field of view (cm"2"scale)with high spatial resolution (700nm)are obtained using the LiF crystals as soft X ray imaging detectors. When the target used for the ion acceleration studies consists of solid density clusters embedded into the background gas, its irradiation by high intensity laser light makes the target

  8. High-intensity interval training evokes larger serum BDNF levels compared with intense continuous exercise.

    Science.gov (United States)

    Saucedo Marquez, Cinthia Maria; Vanaudenaerde, Bart; Troosters, Thierry; Wenderoth, Nicole

    2015-12-15

    Exercise can have a positive effect on the brain by activating brain-derived neurotrophic factor (BDNF)-related processes. In healthy humans there appears to be a linear relationship between exercise intensity and the positive short-term effect of acute exercise on BDNF levels (i.e., the highest BDNF levels are reported after high-intensity exercise protocols). Here we performed two experiments to test the effectiveness of two high-intensity exercise protocols, both known to improve cardiovascular health, to determine whether they have a similar efficacy in affecting BDNF levels. Participants performed a continuous exercise (CON) protocol at 70% of maximal work rate and a high-intensity interval-training (HIT) protocol at 90% of maximal work rate for periods of 1 min alternating with 1 min of rest (both protocols lasted 20 min). We observed similar BDNF kinetics in both protocols, with maximal BDNF concentrations being reached toward the end of training (experiment 1). We then showed that both exercise protocols significantly increase BDNF levels compared with a rest condition (CON P = 0.04; HIT P exercise are slightly more effective than continuous high-intensity exercise for elevating serum BDNF. Additionally, 73% of the participants preferred the HIT protocol (P = 0.02). Therefore, we suggest that the HIT protocol might represent an effective and preferred intervention for elevating BDNF levels and potentially promoting brain health. Copyright © 2015 the American Physiological Society.

  9. Information content of sky intensity and polarization measurements at right angles to the solar direction

    Science.gov (United States)

    Holland, A. C.; Thomas, R. W. L.; Pearce, W. A.

    1978-01-01

    The paper presents the results of a Monte Carlo simulation study of the brightness and polarization at right angles to the solar direction both for ground-based observations (looking up) and for satellite-based systems (looking down). Calculations have been made for a solar zenith angle whose cosine was 0.6 and wavelengths ranging from 3500 A to 9500 A. A sensitivity of signatures to total aerosol loading, aerosol particle size distribution and refractive index, and the surface reflectance albedo has been demonstrated. For Lambertian-type surface reflection the albedo effects enter solely through the intensity sensitivity, and very high correlations have been found between the polarization term signatures for the ground-based and satellite-based systems. Potential applications of these results for local albedo predictions and satellite imaging systems recalibrations are discussed.

  10. Case Study on Justification: High Intensity Discharge Lamps. Annex II

    International Nuclear Information System (INIS)

    2016-01-01

    High intensity discharge lamps produce bright white light of a high intensity in an energy efficient manner. These lamps are typically used in large numbers in public and professional settings such as shops, warehouses, hotels and offices. They are also used in outdoor applications to illuminate streets, buildings, statues, flags and gardens and further as architectural lighting. They also have applications associated with film projection in cinemas, manufacture of semiconductors, fluorescence endoscopy and microscopy, schlieren photography, hologram projection, ultraviolet curing, sky beamers and car headlights. Some types of high intensity discharge lamp, as well as certain other consumer products for lighting, contain radioactive substances for functional reasons. The radionuclides that are typically incorporated into high intensity discharge lamps are 85 Kr and 232 Th. Given the wide range of uses, specific decisions on justification may be required for different applications. A small number of safety assessments for high intensity discharge lamps have been carried out and published. No published decisions at the national level specifically addressing the justification of the use of high intensity discharge lamps have been identified

  11. Generation of intense high-order vortex harmonics.

    Science.gov (United States)

    Zhang, Xiaomei; Shen, Baifei; Shi, Yin; Wang, Xiaofeng; Zhang, Lingang; Wang, Wenpeng; Xu, Jiancai; Yi, Longqiong; Xu, Zhizhan

    2015-05-01

    This Letter presents for the first time a scheme to generate intense high-order optical vortices that carry orbital angular momentum in the extreme ultraviolet region based on relativistic harmonics from the surface of a solid target. In the three-dimensional particle-in-cell simulation, the high-order harmonics of the high-order vortex mode is generated in both reflected and transmitted light beams when a linearly polarized Laguerre-Gaussian laser pulse impinges on a solid foil. The azimuthal mode of the harmonics scales with its order. The intensity of the high-order vortex harmonics is close to the relativistic region, with the pulse duration down to attosecond scale. The obtained intense vortex beam possesses the combined properties of fine transversal structure due to the high-order mode and the fine longitudinal structure due to the short wavelength of the high-order harmonics. In addition to the application in high-resolution detection in both spatial and temporal scales, it also presents new opportunities in the intense vortex required fields, such as the inner shell ionization process and high energy twisted photons generation by Thomson scattering of such an intense vortex beam off relativistic electrons.

  12. On the Capacity Region of the Intensity-Modulation Direct-Detection Optical Broadcast Channel

    KAUST Repository

    Chaaban, Anas

    2015-08-11

    The capacity of the intensity-modulation direct-detection free-space optical broadcast channel (OBC) is investigated. The Gaussian model with input-independent Gaussian noise is used, with both average and peak intensity constraints. An outer bound on the capacity region is derived by adapting Bergmans\\' approach to the OBC. Inner bounds are derived by using superposition coding with either truncated-Gaussian distributions or discrete distributions. While the discrete input distribution achieves higher rates than the truncated-Gaussian distribution, the latter allows expressing the achievable rate region in a closed form. At high signal-to-noise ratio (SNR), it is shown that the truncated-Gaussian distribution is nearly optimal. It achieves the symmetric-capacity within a constant gap (independent of SNR), which approaches half a bit as the number of users grows large. It also achieves the capacity region within a constant gap, which depends on the number of users. At low SNR, it is shown that on-off keying with time-division multiple-access (TDMA) is optimal, as it achieves any point on the boundary of the developed outer bound. This is interesting in practice since both OOK and TDMA have low complexity. At moderate SNR (typically [0,8] dB), a discrete distribution with a small alphabet size achieves a fairly good performance in terms of symmetric rate.

  13. Exotic behavior of molecules in intense laser light fields. New research directions

    Energy Technology Data Exchange (ETDEWEB)

    Yamanouchi, Kaoru [Tokyo Univ., Department of Chemistry, Tokyo (Japan)

    2002-08-01

    The recent investigation of the dynamical behavior of molecules and clusters in intense laser fields has afforded us invaluable opportunities to understand fundamentals of the interaction between molecular species and light fields as well as to manipulate molecules and their dynamical pathways by taking advantage of characteristics of coherent ultrashort laser light fields. In the present report, new directions of this rapidly growing interdisciplinary research fields called molecular science in intense laser fields are discussed by referring to our recent studies. (author)

  14. Pulsed system for obtaining microdosimetric data with high intensity beams

    International Nuclear Information System (INIS)

    Zaider, M.; Dicello, J.F.; Hiebert, R.D.

    1977-01-01

    The use of heavy particle accelerators for radiation therapy requires high intensity beams in order to produce useful dose rates. The 800-MeV proton beam at LAMPF passes through different production targets to generate secondary pion beams. Conventional microdosimetric techniques are not applicable under these conditions because exceedingly high count rates result in detector damage, gas breakdown, and saturation effects in the electronics. We describe a new microdosimetric system developed at the Pion Biomedical Channel of LAMPF. The accelerator provides a variable low intensity pulse once every ten high intensity macropulses. The voltage on the detector is pulsed in coincidence with the low intensity pulse so that we were able to operate the detector under optimum data-taking conditions. A low noise two-stage preamplifier was built in connection with the pulsed mode operation. A comparison is made between data obtained in pulsed (high intensity beam) and unpulsed (low intensity beam) modes. The spectra obtained by the two methods agree within the experimental uncertainties

  15. Light-intensity and high-intensity interval training improve cardiometabolic health in rats.

    Science.gov (United States)

    Batacan, Romeo B; Duncan, Mitch J; Dalbo, Vincent J; Connolly, Kylie J; Fenning, Andrew S

    2016-09-01

    Physical activity has the potential to reduce cardiometabolic risk factors but evaluation of different intensities of physical activity and the mechanisms behind their health effects still need to be fully established. This study examined the effects of sedentary behaviour, light-intensity training, and high-intensity interval training on biometric indices, glucose and lipid metabolism, inflammatory and oxidative stress markers, and vascular and cardiac function in adult rats. Rats (12 weeks old) were randomly assigned to 1 of 4 groups: control (CTL; no exercise), sedentary (SED; no exercise and housed in small cages to reduce activity), light-intensity trained (LIT; four 30-min exercise bouts/day at 8 m/min separated by 2-h rest period, 5 days/week), and high-intensity interval trained (HIIT, four 2.5-min work bouts/day at 50 m/min separated by 3-min rest periods, 5 days/week). After 12 weeks of intervention, SED had greater visceral fat accumulation (p HIIT demonstrated beneficial changes in body weight, visceral and epididymal fat weight, glucose regulation, low-density lipoprotein cholesterol, total cholesterol, and mesenteric vessel contractile response compared with the CTL group (p HIIT had significant improvements in systolic blood pressure and endothelium-independent vasodilation to aorta and mesenteric artery compared with the CTL group (p HIIT induce health benefits by improving traditional cardiometabolic risk factors. LIT improves cardiac health while HIIT promotes improvements in vascular health.

  16. P-West High Intensity Secondary Beam Area Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Cox, A.; Currier, R.; Eartly, D.; Guthke, A.; Johnson, G.; Lee, D.; Dram, R.; Villegas, E.; Rest, J.; Tilles, E.; Vander Arend, P.

    1977-03-01

    This report gives the initial design parameters of a 1000 GeV High Intensity Superconducting Secondary Beam Laboratory to be situated in the Proton Area downstream of the existing Proton West experimental station. The area will provide Fermilab with a major capability for experimentation with pion and antiproton beams of intensities and of energies available at no other laboratory and with an electron beam with excellent spot size, intensity, and purity at energies far above that available at electron machines. Detailed beam design, area layouts, and cost estimates are presented, along with the design considerations.

  17. Ultra-High Intensity Proton Accelerators and their Applications

    International Nuclear Information System (INIS)

    Weng, W. T.

    1997-01-01

    The science and technology of proton accelerators have progressed considerably in the past three decades. Three to four orders of magnitude increase in both peak intensity and average flux have made it possible to construct high intensity proton accelerators for modern applications, such as: spallation neutron sources, kaon factory, accelerator production of tritium, energy amplifier and muon collider drivers. The accelerator design focus switched over from intensity for synchrotrons, to brightness for colliders to halos for spallation sources. An overview of this tremendous progress in both accelerator science and technology is presented, with special emphasis on the new challenges of accelerator physics issues such as: H(-) injection, halo formation and reduction of losses

  18. Measurements of acoustic pressure at high amplitudes and intensities

    International Nuclear Information System (INIS)

    Crum, L A; Bailey, M R; Kaczkowski, P; McAteer, J A; Pishchalnikov, Y A; Sapozhnikov, O A

    2004-01-01

    In our research group, we desire measurements of the large pressure amplitudes generated by the shock waves used in shock wave lithotripsy (SWL) and the large acoustic intensities used in High Intensity Focused Ultrasound (HIFU). Conventional piezoelectric or PVDF hydrophones can not be used for such measurements as they are damaged either by cavitation, in SWL applications, or heat, in HIFU applications. In order to circumvent these difficulties, we have utilized optical fiber hydrophones in SWL that do not cavitate, and small glass probes and a scattering technique for measurements of large HIFU intensities. Descriptions of these techniques will be given as well as some typical data

  19. Volumetric intensity dependence on the formation of molecular and atomic ions within a high intensity laser focus.

    Science.gov (United States)

    Robson, Lynne; Ledingham, Kenneth W D; McKenna, Paul; McCanny, Thomas; Shimizu, Seiji; Yang, Jiamin M; Wahlström, Claes-Göran; Lopez-Martens, Rodrigo; Varju, Katalin; Johnsson, Per; Mauritsson, Johan

    2005-01-01

    The mechanism of atomic and molecular ionization in intense, ultra-short laser fields is a subject which continues to receive considerable attention. An inherent difficulty with techniques involving the tight focus of a laser beam is the continuous distribution of intensities contained within the focus, which can vary over several orders of magnitude. The present study adopts time of flight mass spectrometry coupled with a high intensity (8 x 10(15) Wcm(-2)), ultra-short (20 fs) pulse laser in order to investigate the ionization and dissociation of the aromatic molecule benzene-d1 (C(6)H(5)D) as a function of intensity within a focused laser beam, by scanning the laser focus in the direction of propagation, while detecting ions produced only in a "thin" slice (400 and 800 microm) of the focus. The resultant TOF mass spectra varies significantly, highlighting the dependence on the range of specific intensities accessed and their volumetric weightings on the ionization/dissociation pathways accessed.

  20. Fractal and topological sustainable methods of overcoming expected uncertainty in the radiolocation of low-contrast targets and in the processing of weak multi-dimensional signals on the background of high-intensity noise: A new direction in the statistical decision theory

    Science.gov (United States)

    Potapov, A. A.

    2017-11-01

    The main purpose of this work is to interpret the main directions of radio physics, radio engineering and radio location in “fractal” language that makes new ways and generalizations on future promising radio systems. We introduce a new kind and approach of up-to-date radiolocation: fractal-scaling or scale-invariant radiolocation. The new topologic signs and methods of detecting the low-contrast objects against the high-intensity noise background are presented. It leads to basic changes in the theoretical radiolocation structure itself and also in its mathematical apparatus. The fractal radio systems conception, sampling topology, global fractal-scaling approach and the fractal paradigm underlie the scientific direction established by the author in Russia and all over the world for the first time ever.

  1. Benefits of High-Intensity Intensive Care Unit Physician Staffing under the Affordable Care Act

    Directory of Open Access Journals (Sweden)

    Sachin Logani

    2011-01-01

    Full Text Available The Affordable Care Act signed into law by President Obama, with its value-based purchasing program, is designed to link payment to quality processes and outcomes. Treatment of critically ill patients represents nearly 1% of the gross domestic product and 25% of a typical hospital budget. Data suggest that high-intensity staffing patterns in the intensive care unit (ICU are associated with cost savings and improved outcomes. We evaluate the literature investigating the cost-effectiveness and clinical outcomes of high-intensity ICU physician staffing as recommended by The Leapfrog Group (a consortium of companies that purchase health care for their employees and identify ways to overcome barriers to nationwide implementation of these standards. Hospitals that have implemented the Leapfrog initiative have demonstrated reductions in mortality and length of stay and increased cost savings. High-intensity staffing models appear to be an immediate cost-effective way for hospitals to meet the challenges of health care reform.

  2. Measurement of high-power microwave pulse under intense ...

    Indian Academy of Sciences (India)

    Abstract. KALI-1000 pulse power system has been used to generate single pulse nanosecond duration high-power microwaves (HPM) from a virtual cathode oscillator. (VIRCATOR) device. HPM power measurements were carried out using a transmitting– receiving system in the presence of intense high frequency (a few ...

  3. Simulation study of the high intensity S-Band photoinjector

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiongwei; Nakajima, Kazuhisa [High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan)

    2001-10-01

    In this paper, we report the results of simulation study of the high intensity S-Band photoinjector. The aim of the simulation study is to transport high bunch charge with low emittance evolution. The simulation result shows that 7nC bunch with rms emittance 22.3 {pi} mm mrad can be outputted at the exit of photoinjector. (author)

  4. Simulation study of the high intensity S-Band photoinjector

    International Nuclear Information System (INIS)

    Zhu, Xiongwei; Nakajima, Kazuhisa

    2001-01-01

    In this paper, we report the results of simulation study of the high intensity S-Band photoinjector. The aim of the simulation study is to transport high bunch charge with low emittance evolution. The simulation result shows that 7nC bunch with rms emittance 22.3 π mm mrad can be outputted at the exit of photoinjector. (author)

  5. Topics in high-intensity laser plasma interaction

    International Nuclear Information System (INIS)

    Leemans, W.P.

    1991-01-01

    The interaction of high intensity laser pulses with pre-formed and laser-produced plasmas is studied. Through experiments and simulations we have investigated stimulated Compton scattering in preformed plasmas and the plasma physics aspects of tunnel-ionized gases. A theoretical study is presented on the nonlinear dynamics of relativistic plasma waves driven by colinear optical mixing. The electron density-fluctuation spectra induced by stimulated Compton scattering have been directly observed for the first time. A CO2 laser was focused into pre-formed plasmas with densities n(e) varied from 0.4-6 x 10(exp 16) cu cm. The fluctuations corresponding to backscatter were probed using Thomson scattering. At low n(e), the scattered spectra peak at a frequency shift Delta omega is approximately kv e and appears to be in a linear regime. At the highest n(e), a nonlinear saturation of the SCS instability is observed due to a self-induced perturbation of the electron distribution function. Tunnel-ionized plasmas have been studied through experiments and particle simulations. Experimentally, qualitative evidence for plasma temperature control by varying the laser polarization was obtained by the measurement of stimulated Compton scattering fluctuation spectra and x-ray emission from such plasmas. A higher parallel temperature than expected from the single-particle tunneling model was observed. Simulations indicate that stochastic heating and the Weibel instability play an important role in plasma heating in all directions and isotropization. The non-linear dynamics associated with beatwave (Delta omega, Delta k) excited long wavelength plasma waves in the presence of strong, short wavelength density ripple have been examined, using the relativistic Lagrangian oscillator model. This model shows period doubling that roughly follows Feigenbaum scaling, and a transition to chaos

  6. Direct measurement of the signal intensity of diffusion-weighted magnetic resonance imaging for preoperative grading and treatment guidance for brain gliomas

    Directory of Open Access Journals (Sweden)

    Chih-Chun Wu

    2012-11-01

    Conclusion: The proposed method – direct measuring of tumor signal intensity of DWI on PACS monitors – is feasible for grading gliomas in clinical neuro-oncology imaging services and has a high level of reliability and reproducibility.

  7. High Intensity Interval Training for Maximizing Health Outcomes.

    Science.gov (United States)

    Karlsen, Trine; Aamot, Inger-Lise; Haykowsky, Mark; Rognmo, Øivind

    Regular physical activity and exercise training are important actions to improve cardiorespiratory fitness and maintain health throughout life. There is solid evidence that exercise is an effective preventative strategy against at least 25 medical conditions, including cardiovascular disease, stroke, hypertension, colon and breast cancer, and type 2 diabetes. Traditionally, endurance exercise training (ET) to improve health related outcomes has consisted of low- to moderate ET intensity. However, a growing body of evidence suggests that higher exercise intensities may be superior to moderate intensity for maximizing health outcomes. The primary objective of this review is to discuss how aerobic high-intensity interval training (HIIT) as compared to moderate continuous training may maximize outcomes, and to provide practical advices for successful clinical and home-based HIIT. Copyright © 2017. Published by Elsevier Inc.

  8. Laser-matter interaction at high intensity and high temporal contrast

    International Nuclear Information System (INIS)

    Doumy, G.

    2006-01-01

    The continuous progress in the development of laser installations has already lead to ultra-short pulses capable of achieving very high focalized intensities (I > 10 18 W/cm 2 ). At these intensities, matter presents new non-linear behaviours, due to the fact that the electrons are accelerated to relativistic speeds. The experimental access to this interaction regime on solid targets has long been forbidden because of the presence, alongside the femtosecond pulse, of a pedestal (mainly due to the amplified spontaneous emission (ASE) which occurs in the laser chain) intense enough to modify the state of the target. In this thesis, we first characterized, both experimentally and theoretically, a device which allows an improvement of the temporal contrast of the pulse: the Plasma Mirror. It consists in adjusting the focusing of the pulse on a dielectric target, so that the pedestal is mainly transmitted, while the main pulse is reflected by the overcritical plasma that it forms at the surface. The implementation of such a device on the UHI 10 laser facility (CEA Saclay - 10 TW - 60 fs) then allowed us to study the interaction between ultra-intense, high contrast pulses with solid targets. In a first part, we managed to generate and characterize dense plasmas resulting directly from the interaction between the main pulse and very thin foils (100 nm). This characterization was realized by using an XUV source obtained by high order harmonics generation in a rare gas jet. In a second part, we studied experimentally the phenomenon of high order harmonics generation on solid targets, which is still badly understood, but could potentially lead to a new kind of energetic ultra-short XUV sources. (author)

  9. Ion source and injection line for high intensity medical cyclotron

    Science.gov (United States)

    Jia, XianLu; Guan, Fengping; Yao, Hongjuan; Zhang, TianJue; Yang, Jianjun; Song, Guofang; Ge, Tao; Qin, Jiuchang

    2014-02-01

    A 14 MeV high intensity compact cyclotron, CYCIAE-14, was built at China Institute of Atomic Energy (CIAE). An injection system based on the external H- ion source was used on CYCIAE-14 so as to provide high intensity beam, while most positron emission tomography cyclotrons adopt internal ion source. A beam intensity of 100 μA/14 MeV was extracted from the cyclotron with a small multi-cusp H- ion source (CIAE-CH-I type) and a short injection line, which the H- ion source of 3 mA/25 keV H- beam with emittance of 0.3π mm mrad and the injection line of with only 1.2 m from the extraction of ion source to the medial plane of the cyclotron. To increase the extracted beam intensity of the cyclotron, a new ion source (CIAE-CH-II type) of 9.1 mA was used, with maximum of 500 μA was achieved from the cyclotron. The design and test results of the ion source and injection line optimized for high intensity acceleration will be given in this paper.

  10. Inelastic scattering in condensed matter with high intensity Moessbauer radiation

    International Nuclear Information System (INIS)

    Yelon, W.B.; Schupp, G.

    1990-10-01

    We give a progress report for the work which has been carried out in the last three years with DOE support. A facility for high-intensity Moessbauer scattering is now fully operational at the University of Missouri Research Reactor (MURR) as well as facility at Purdue, using special isotopes produced at MURR. High precision, fundamental Moessbauer effect studies have been carried out using scattering to filter the unwanted radiation. These have led to a new Fourier transform method for describing Moessbauer effect (ME) lineshape and a direct method of fitting ME data to the convolution integral. These methods allow complete correction for source resonance self absorption (SRSA) and the accurate representation of interference effects that add an asymmetric component to the ME lines. We have begun applying these techniques to attenuated ME sources whose central peak has been attenuated by stationary resonant absorbers, to more precisely determine interference parameters and line-shape behavior in the resonance asymptotic region. This analysis is important to both the fundamental ME studies and to scattering studies for which a deconvolution is essential for extracting the correct recoilless fractions and interference parameters. A number of scattering studies have been successfully carried out including a study of the thermal diffuse scattering in Si, which led to an analysis of the resolution function for gamma-ray scattering. Also studied was the anharmonic motion in Na and the satellite reflection Debye-Waller factor in TaS 2 , which indicate phason rather than phonon behavior. We have begun quasielastic diffusion studies in viscous liquids and current results are summarized. These advances, coupled to our improvements in MIcrofoil Conversion Electron spectroscopy lay the foundation for the proposed research outlined in this request for a three-year renewal of DOE support

  11. Gamma scattering in condensed matter with high intensity Moessbauer radiation

    International Nuclear Information System (INIS)

    1990-01-01

    We give a progress report for the work which has been carried out in the last three years with DOE support. A facility for high-intensity Moessbauer scattering is now fully operational at the University of Missouri Research Reactor (MURR) as well as a facility at Purdue, using special isotopes produced at MURR. High precision, fundamental Moessbauer effect studies have been carried out using scattering to filter the unwanted radiation. These have led to a new Fourier transform method for describing Moessbauer effect (ME) lineshape and a direct method of fitting ME data to the convolution integral. These methods allow complete correction for source resonance self absorption (SRSA) and the accurate representation of interference effects that add an asymmetric component to the ME lines. We have begun applying these techniques to attenuated ME sources whose central peak has been attenuated by stationary resonant absorbers, to more precisely determine interference parameters and line-shape behavior in the resonance asymptotic region. This analysis is important to both the fundamental ME studies and to scattering studies for which a deconvolution is essential for extracting the correct recoilless fractions and interference parameters. A number of scattering studies have been successfully carried out including a study of the thermal diffuse scattering in Si, which led to an analysis of the resolution function for gamma-ray scattering. Also studied was the anharmonic motion in Na and the satellite reflection Debye-Waller factor in TaS 2 , which indicate phason rather than phonon behavior. We have begun quasielastic diffusion studies in viscous liquids and current results are summarized. These advances, coupled to our improvements in MIcrofoil Conversion Electron spectroscopy lay the foundation for the proposed research outlined in this request for a three-year renewal of DOE support

  12. Inelastic scattering in condensed matter with high intensity moessbauer radiation

    International Nuclear Information System (INIS)

    Yelon, W.B.; Schupp, G.

    1991-05-01

    We give a progress report for the work which has been carried out in the last three years with DOE support. A facility for high-intensity Moessbauer scattering is not fully operational at the University of Missouri Research Reactor (MURR) as well as a facility at Purdue, using special isotopes produced at MURR. High precision, fundamental Moessbauer effect studies have been carried out using Bragg scattering filters to suppress unwanted radiation. These have led to a Fourier transform method for describing Moessbauer effect (ME) lineshape and a direct method of fitting ME data to the convolution integral. These methods allow complete correction for source resonance self absorption and the accurate representation of interference effects that add an asymmetric component to the ME lines. We have begun applying these techniques to attenuated ME sources whose central peak has been attenuated by stationary resonant absorbers, to make a novel independent determination of interference parameters and line-shape behavior in the resonance asymptotic region. This analysis is important to both fundamental ME studies and to scattering studies for which a deconvolution is essential for extracting the correct recoilless fractions and interference parameters. A number of scattering studies have been successfully carried out including a study of the thermal diffuse scattering in Si, which led to an analysis of the resolution function for gamma-ray scattering. Also studied was the anharmonic motion in Na metal and the charge density wave satellite reflection Debye-Waller factor in TaS 2 , which indicate phason rather than phonon behavior. Using a specially constructed sample cell which enables us to vary temperatures from -10 C to 110 C, we have begun quasielastic diffusion studies in viscous liquids and current results are summarized. Included are the temperature and Q dependence of the scattering in pentadecane and diffusion in glycerol

  13. Half-integer resonance crossing in high-intensity rings

    Directory of Open Access Journals (Sweden)

    A. V. Fedotov

    2002-02-01

    Full Text Available A detailed study of the influence of space charge on the crossing of second-order resonances is presented and associated with the space-charge limit of high-intensity rings. Two-dimensional simulation studies are compared with envelope models, which agree in the finding of an increased intensity limit due to the coherent frequency shift. This result is also found for realistic bunched beams with multiturn injection painting. Characteristic features such as the influence of tune splitting, structure resonances, and the role of envelope instabilities are discussed in detail. The theoretical limits are found to be in good agreement with the performance of high-intensity proton machines.

  14. High signal intensity of fat on fast spin echo imaging

    International Nuclear Information System (INIS)

    Ogura, Akio; Yamazaki, Masaru; Hongoh, Takaharu; Inoue, Hiroshi; Ishikuro, Akihiro

    2000-01-01

    The fast spin echo (FSE) technique of producing T 2 -weighted images in greatly reduced imaging times has recently been used for routine clinical study. FSE images show contrast that is very similar in most tissues to that of conventional SE images. However, fat shows a high signal intensity that is influenced by j-coupling and the magnetization transfer effect. The purpose of this study was to assess whether the higher signal intensity of fat is different among MRI systems and to examine the effects of j-coupling and magnetization transfer on the high signal intensity of fat on FSE. The contrast in signal intensity between fat and water was measured for various echo train lengths (ETL) with and without multislicing on FSE using a contrast phantom. Measurements were obtained with four different MRI systems. In addition, the effective T 2 values of fat were calculated for the above conditions. Results indicated that contrast for fat and water was reduced with increased ETL and by using multislicing and was different among the four MRI systems. The effective T 2 values of fat were extended for increased ETL and were not dependent on multislicing. They also differed among the four MRI systems. The extent of effective T 2 values was affected by j-coupling. In this study, it was indicated that the degree of the high signal intensity of fat on FSE differed for different MRI systems. In addition, the reasons for the high signal intensity of fat on FSE were related to the effects of j-coupling and magnetization transfer. (author)

  15. Response variability of different anodal transcranial direct current stimulation intensities across multiple sessions.

    Science.gov (United States)

    Ammann, Claudia; Lindquist, Martin A; Celnik, Pablo A

    It is well known that transcranial direct current stimulation (tDCS) is capable of modulating corticomotor excitability. However, a source of growing concern has been the observed inter- and intra-individual variability of tDCS-responses. Recent studies have assessed whether individuals respond in a predictable manner across repeated sessions of anodal tDCS (atDCS). The findings of these investigations have been inconsistent, and their methods have some limitations (i.e. lack of sham condition or testing only one tDCS intensity). To study inter- and intra-individual variability of atDCS effects at two different intensities on primary motor cortex (M1) excitability. Twelve subjects participated in a crossover study testing 7-min atDCS over M1 in three separate conditions (2 mA, 1 mA, sham) each repeated three times separated by 48 h. Motor evoked potentials were recorded before and after stimulation (up to 30min). Time of testing was maintained consistent within participants. To estimate the reliability of tDCS effects across sessions, we calculated the Intra-class Correlation Coefficient (ICC). AtDCS at 2 mA, but not 1 mA, significantly increased cortical excitability at the group level in all sessions. The overall ICC revealed fair to high reliability of tDCS effects for multiple sessions. Given that the distribution of responses showed important variability in the sham condition, we established a Sham Variability-Based Threshold to classify responses and to track individual changes across sessions. Using this threshold an intra-individual consistent response pattern was then observed only for the 2 mA condition. 2 mA anodal tDCS results in consistent intra- and inter-individual increases of M1 excitability. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Production of High-Intensity, Highly Charged Ions

    CERN Document Server

    Gammino, S.

    2013-12-16

    In the past three decades, the development of nuclear physics facilities for fundamental and applied science purposes has required an increasing current of multicharged ion beams. Multiple ionization implies the formation of dense and energetic plasmas, which, in turn, requires specific plasma trapping configurations. Two types of ion source have been able to produce very high charge states in a reliable and reproducible way: electron beam ion sources (EBIS) and electron cyclotron resonance ion sources (ECRIS). Multiple ionization is also obtained in laser-generated plasmas (laser ion sources (LIS)), where the high-energy electrons and the extremely high electron density allow step-by-step ionization, but the reproducibility is poor. This chapter discusses the atomic physics background at the basis of the production of highly charged ions and describes the scientific and technological features of the most advanced ion sources. Particular attention is paid to ECRIS and the latest developments, since they now r...

  17. Nonlinear behavior in high-intensity discharge lamps

    Science.gov (United States)

    Baumann, Bernd; Schwieger, Joerg; Wolff, Marcus; Manders, Freddy; Suijker, Jos

    2016-06-01

    The light flicker problem of high intensity discharge lamps is studied numerically and experimentally. It is shown that in some respects the systems behave very similar to the forced Duffing oscillator with a softening spring. In particular, the jump phenomenon and hysteresis are observed in the simulations and in the experiments.

  18. Influence of high intensity ultrasound with different probe diameter ...

    African Journals Online (AJOL)

    The main goal of this research is to analyze the influence of ultrasonic probe diameters (7 and 10 mm) of high-intensity ultrasound with constant frequency (30 kHz) on the degree of homogenization (variance) of cow milk. Influence of different probe diameters on the physical properties of cow milk was also tested. Changes ...

  19. Intense neutron source: high-voltage power supply specifications

    International Nuclear Information System (INIS)

    Riedel, A.A.

    1980-08-01

    This report explains the need for and sets forth the electrical, mechanical and safety specifications for a high-voltage power supply to be used with the intense neutron source. It contains sufficient information for a supplier to bid on such a power supply

  20. Evidence based exercise - clinical benefits of high intensity interval training.

    Science.gov (United States)

    Shiraev, Tim; Barclay, Gabriella

    2012-12-01

    Aerobic exercise has a marked impact on cardiovascular disease risk. Benefits include improved serum lipid profiles, blood pressure and inflammatory markers as well as reduced risk of stroke, acute coronary syndrome and overall cardiovascular mortality. Most exercise programs prescribed for fat reduction involve continuous, moderate aerobic exercise, as per Australian Heart Foundation clinical guidelines. This article describes the benefits of exercise for patients with cardiovascular and metabolic disease and details the numerous benefits of high intensity interval training (HIIT) in particular. Aerobic exercise has numerous benefits for high-risk populations and such benefits, especially weight loss, are amplified with HIIT. High intensity interval training involves repeatedly exercising at a high intensity for 30 seconds to several minutes, separated by 1-5 minutes of recovery (either no or low intensity exercise). HIT is associated with increased patient compliance and improved cardiovascular and metabolic outcomes and is suitable for implementation in both healthy and 'at risk' populations. Importantly, as some types of exercise are contraindicated in certain patient populations and HIIT is a complex concept for those unfamiliar to exercise, some patients may require specific assessment or instruction before commencing a HIIT program.

  1. Reuse Recycler: High Intensity Proton Stacking at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, P. [Fermilab

    2016-07-17

    After a successful career as an antiproton storage and cooling ring, Recycler has been converted to a high intensity proton stacker for the Main Injector. We discuss the commissioning and operation of the Recycler in this new role, and the progress towards the 700 kW design goal.

  2. The high intensity approximation applied to multiphoton ionization

    International Nuclear Information System (INIS)

    Brandi, H.S.; Davidovich, L.; Zagury, N.

    1980-08-01

    It is shown that the most commonly used high intensity approximations as applied to ionization by strong electromagnetic fields are related. The applicability of the steepest descent method in these approximations, and the relation between them and first-order perturbation theory, are also discussed. (Author) [pt

  3. Drift tube suspension for high intensity linear accelerators

    International Nuclear Information System (INIS)

    Clark, D.C.; Frank, J.A.; Liska, D.J.; Potter, R.C.; Schamaun, R.G.

    1982-01-01

    The disclosure relates to a drift tube suspension for high intensity linear accelerators. The system comprises a series of box-sections girders independently adjustably mounted on a linear accelerator. A plurality of drift tube holding stems are individually adjustably mounted on each girder

  4. Annotated bibliography on high-intensity linear accelerators

    International Nuclear Information System (INIS)

    Jameson, R.A.; Roybal, E.U.

    1978-01-01

    A technical bibliography covering subjects important to the design of high-intensity beam transport systems and linear accelerators is presented. Space charge and emittance growth are stressed. Subject and author concordances provide cross-reference to detailed citations, which include an abstract and notes on the material. The bibliography resides in a computer database that can be searched for key words and phrases

  5. High-intensity exercise and recovery during short-term ...

    African Journals Online (AJOL)

    to power athletes and other individuals wishing to improve performance in ... effect of creatine supplementation on physical performance. It has been reported that ... high-intensity work performance.1,2,5,16,31,36 Such activities as resistance ...

  6. High-Intensity Interval Training for Improving Postprandial Hyperglycemia

    Science.gov (United States)

    Little, Jonathan P.; Francois, Monique E.

    2014-01-01

    High-intensity interval training (HIIT) has garnered attention in recent years as a time-efficient exercise option for improving cardiovascular and metabolic health. New research demonstrates that HIIT may be particularly effective for improving postprandial hyperglycemia in individuals with, or at risk for, type 2 diabetes (T2D). These findings…

  7. Annotated bibliography on high-intensity linear accelerators. [240 citations

    Energy Technology Data Exchange (ETDEWEB)

    Jameson, R.A.; Roybal, E.U.

    1978-01-01

    A technical bibliography covering subjects important to the design of high-intensity beam transport systems and linear accelerators is presented. Space charge and emittance growth are stressed. Subject and author concordances provide cross-reference to detailed citations, which include an abstract and notes on the material. The bibliography resides in a computer database that can be searched for key words and phrases.

  8. Nonlinear behavior in high-intensity discharge lamps

    NARCIS (Netherlands)

    Baumann, Bernd; Schwieger, Joerg; Wolff, Marcus; Manders, Freddy; Suijker, Jos

    2016-01-01

    The light flicker problem of high intensity discharge lamps is studied numerically and experimentally. It is shown that in some respects the systems behave very similar to the forced Duffing oscillator with a softening spring. In particular, the jump phenomenon and hysteresis are observed in the

  9. Tolerable Beam Loss at High-Intensity Machines

    International Nuclear Information System (INIS)

    Krivosheev, Oleg E.; Mokhov, Nikolai V.

    2000-01-01

    Tolerable beam losses are estimated for high-intensity ring accelerators with proton energy of 3 to 16 GeV. Dependence on beam energy, lattice and magnet geometry is studied via full Monte Carlo MARS14 simulations in lattice elements, shielding, tunnel and surrounding dirt with realistic geometry, materials and magnetic fields

  10. Drift tube suspension for high intensity linear accelerators

    Science.gov (United States)

    Liska, Donald J.; Schamaun, Roger G.; Clark, Donald C.; Potter, R. Christopher; Frank, Joseph A.

    1982-01-01

    The disclosure relates to a drift tube suspension for high intensity linear accelerators. The system comprises a series of box-sections girders independently adjustably mounted on a linear accelerator. A plurality of drift tube holding stems are individually adjustably mounted on each girder.

  11. High-intensity exercise and recovery during short-term ...

    African Journals Online (AJOL)

    Objective. To determine the effect of short-term creatine supplementation plus a protein-carbohydrate formula on high-intensity exercise performance and recovery. Design. A repeated-measures, experimental study, employing a randomised, double-blind, placebo-controlled, group comparison design was used.

  12. Intensity and direction of competitive state anxiety as interpreted by rugby players and rifle shooters.

    Science.gov (United States)

    Hanton, S; Jones, G; Mullen, R

    2000-04-01

    This study reports the findings of part of an ongoing research program examining sports performers' interpretations of competitive anxiety prior to competition. The notion of 'directional perceptions' has questioned the limited utility of examining only the intensity of competitive anxiety responses as has Jones. The purpose of this study was to examine intensity and direction, i.e., interpretation of intensity as facilitative or debilitative, of anxiety symptoms as a function of two types of sport. The types of sport were explosive (rugby league) versus fine motor skills (target rifle shooting). The sample comprised 50 male rugby league participants and 50 target rifle shooters who completed a modified version of the Competitive State Anxiety Inventory-2 prior to competition. Contingency analysis yielded a significant difference in the number of rugby players who reported somatic anxiety as facilitative and the number of rifle shooters who reported somatic states as debilitative. No such differences were evident for cognitive anxiety. Analysis of variance indicated no differences between the two groups on the intensity of cognitive and somatic anxiety, but the performers competing in rugby league interpreted both states as being more facilitative to performance; the rugby league players also had higher scores on self-confidence than the shooters. These findings provide continuing support for the measurement of directional perceptions of competitive anxiety and highlight the importance of examining individual sports.

  13. Arthritis patients show long-term benefits from 3 weeks intensive exercise training directly following hospital discharge

    NARCIS (Netherlands)

    Bulthuis, Y.; Drossaers-Bakker, K.W.; Drossaers-Bakker, K.W.; Taal, Erik; Rasker, Johannes J.; Oostveen, J.; van 't Pad Bosch, P.; Oosterveld, F.; van de Laar, Mart A F J

    2007-01-01

    Objective: To examine the efficacy of short-term intensive exercise training (IET) directly following hospital discharge. - Methods: In the Disabled Arthritis Patients Post-hospitalization Intensive Exercise Rehabilitation (DAPPER) study, patients with rheumatoid arthritis or osteoarthritis were

  14. X-ray absorption intensity at high-energy region

    International Nuclear Information System (INIS)

    Fujikawa, Takashi; Kaneko, Katsumi

    2012-01-01

    We theoretically discuss X-ray absorption intensity in high-energy region far from the deepest core threshold to explain the morphology-dependent mass attenuation coefficient of some carbon systems, carbon nanotubes (CNTs), highly oriented pyrolytic graphite (HOPG) and fullerenes (C 60 ). The present theoretical approach is based on the many-body X-ray absorption theory including the intrinsic losses (shake-up losses). In the high-energy region the absorption coefficient has correction term dependent on the solid state effects given in terms of the polarization part of the screened Coulomb interaction W p . We also discuss the tail of the valence band X-ray absorption intensity. In the carbon systems C 2s contribution has some influence on the attenuation coefficient even in the high energy region at 20 keV.

  15. Nuclear diagnostics of high intensity laser plasma interactions

    International Nuclear Information System (INIS)

    Krushelnick, K.; Santala, M.I.K.; Beg, F.N.; Clark, E.L.; Dangor, A.E.; Tatarakis, M.; Watts, I.; Wei, M.S.; Zepf, M.; Ledingham, K.W.D.; McCanny, T.; Spencer, I.; Clarke, R.J.; Norreys, P.A.

    2002-01-01

    Nuclear activation has been observed in materials exposed to energetic protons and heavy ions generated from high intensity laser-solid interactions (at focused intensities up to 5x10 19 W/cm 2 ). The energy spectrum of the protons is determined through the use of these nuclear activation techniques and is found to be consistent with other ion diagnostics. Heavy ion fusion reactions and large neutron fluxes from the (p, n) reactions were also observed. The reduction of proton emission and increase in heavy ion energy using heated targets was also observed

  16. High intensity proton operation at the Brookhaven AGS accelerator complex

    International Nuclear Information System (INIS)

    Ahrens, L.A.; Blaskiewicz, M.; Bleser, E.; Brennan, J.M.; Gardner, C.; Glenn, J.W.; Onillon, E.; Reece, R.K.; Roser, T.; Soukas, A.

    1994-01-01

    With the completion of the AGS rf upgrade, and the implementation of a transition open-quotes jumpclose quotes, all of accelerator systems were in place in 1994 to allow acceleration of the proton intensity available from the AGS Booster injector to AGS extraction energy and delivery to the high energy users. Beam commissioning results with these new systems are presented. Progress in identifying and overcoming other obstacles to higher intensity are given. These include a careful exploration of the stopband strengths present on the AGS injection magnetic porch, and implementation of the AGS single bunch transverse dampers throughout the acceleration cycle

  17. Applications of super - high intensity lasers in nuclear engineering

    International Nuclear Information System (INIS)

    Salomaa, R.; Hakola, A.; Santala, M.

    2007-01-01

    Laser-plasma interactions arising when a super intense ultrashort laser pulse impinges a solid target creates intense partly collimated and energy resolved photons, high energy electron and protons and neutrons. In addition the plasma plume can generate huge magnetic and electric fields. Also ultra short X-ray pulses are created. We have participated in some of such experiments at Rutherford and Max-Planck Institute and assessed the applications of such kind as laser-driven accelerators. This paper discusses applications in nuclear engineering (neutron sources, isotope separation, fast ignition and transmutation, etc). In particular the potential for extreme time resolution and to partial energy resolution are assessed

  18. Amide proton transfer imaging of high intensity focused ultrasound-treated tumor tissue

    NARCIS (Netherlands)

    Hectors, S.J.C.G.; Jacobs, I.; Strijkers, G.J.; Nicolay, K.

    2014-01-01

    Purpose: In this study, the suitability of amide proton transfer (APT) imaging as a biomarker for the characterization of high intensity focused ultrasound (HIFU)-treated tumor tissue was assessed. Methods: APT imaging was performed on tumor-bearing mice before (n=15), directly after (n=15) and at 3

  19. Amide Proton Transfer Imaging of High Intensity Focused Ultrasound-Treated Tumor Tissue

    NARCIS (Netherlands)

    Hectors, Stefanie J. C. G.; Jacobs, Igor; Strijkers, Gustav J.; Nicolay, Klaas

    2014-01-01

    PurposeIn this study, the suitability of amide proton transfer (APT) imaging as a biomarker for the characterization of high intensity focused ultrasound (HIFU)-treated tumor tissue was assessed. MethodsAPT imaging was performed on tumor-bearing mice before (n=15), directly after (n=15) and at 3

  20. T1 ρ mapping for the evaluation of high intensity focused ultrasound tumor treatment

    NARCIS (Netherlands)

    Hectors, Stefanie J. C. G.; Moonen, Rik P. M.; Strijkers, Gustav J.; Nicolay, Klaas

    2015-01-01

    This study was aimed to assess the effects of High Intensity Focused Ultrasound (HIFU) thermal ablation on tumor T1ρ . In vivo T1ρ measurements of murine tumors at various spin-lock amplitudes (B1 = 0-2000 Hz) were performed before (n = 13), directly after (n = 13) and 3 days (n = 7) after HIFU

  1. rf coaxial couplers for high-intensity linear accelerators

    International Nuclear Information System (INIS)

    Manca, J.J.; Knapp, E.A.

    1980-02-01

    Two rf coaxial couplers that are particularly suitable for intertank connection of the disk-and-washer accelerating structure for use in high-intensity linear accelerators have been developed. These devices have very high coupling to the accelerating structure and very low rf power loss at the operating frequency, and they can be designed for any relative particle velocity β > 0.4. Focusing and monitoring devices can be located inside these couplers

  2. High intensity proton linear accelerator development for nuclear waste transmutation

    International Nuclear Information System (INIS)

    Mizumoto, M.; Hasegawa, K.; Oguri, H.; Ito, N.; Kusano, J.; Okumura, Y.; Murata, H.; Sakogawa, K.

    1997-01-01

    A high-intensity proton linear accelerator with an energy of 1.5 GeV and an average current of 10 mA has been proposed for various engineering tests for the transmutation system of nuclear waste by JAERI. The conceptual and optimization studies for this accelerator performed for a proper choice of operating frequency, high b structure, mechanical engineering considerations and RF source aspects are briefly described

  3. CW high intensity non-scaling FFAG proton drivers

    OpenAIRE

    Johnstone, C.; Berz, M.; Makino, K.; Snopok, P.

    2012-01-01

    Accelerators are playing increasingly important roles in basic science, technology, and medicine including nuclear power, industrial irradiation, material science, and neutrino production. Proton and light-ion accelerators in particular have many research, energy and medical applications, providing one of the most effective treatments for many types of cancer. Ultra high-intensity and high-energy (GeV) proton drivers are a critical technology for accelerator-driven sub-critical reactors (ADS)...

  4. High intensity surface plasma waves, theory and PIC simulations

    Science.gov (United States)

    Raynaud, M.; Héron, A.; Adam, J.-C.

    2018-01-01

    With the development of intense (>1019 W cm-2) short pulses (≤25 fs) laser with very high contrast, surface plasma wave (SPW) can be explored in the relativistic regime. As the SPW propagates with a phase velocity close to the speed of light it may results in a strong acceleration of electron bunches along the surface permitting them to reach relativistic energies. This may be important e.g. for applications in the field of plasma-based accelerators. We investigate in this work the excitation of SPWs on grating preformed over-dense plasmas for laser intensities ranging from 1019 up to 1021 W cm-2. We discuss the nature of the interaction with respect to the solid case in which surface plasmon can be resonantly excited with weak laser intensity. In particular, we show the importance of the pulse duration and focalization of the laser beam on the amplitude of the SPW.

  5. Layered ACO-OFDM for intensity-modulated direct-detection optical wireless transmission.

    Science.gov (United States)

    Wang, Qi; Qian, Chen; Guo, Xuhan; Wang, Zhaocheng; Cunningham, David G; White, Ian H

    2015-05-04

    Layered asymmetrically clipped optical orthogonal frequency division multiplexing (ACO-OFDM) with high spectral efficiency is proposed in this paper for optical wireless transmission employing intensity modulation with direct detection. In contrast to the conventional ACO-OFDM, which only utilizes odd subcarriers for modulation, leading to an obvious spectral efficiency loss, in layered ACO-OFDM, the subcarriers are divided into different layers and modulated by different kinds of ACO-OFDM, which are combined for simultaneous transmission. In this way, more subcarriers are used for data transmission and the spectral efficiency is improved. An iterative receiver is also proposed for layered ACO-OFDM, where the negative clipping distortion of each layer is subtracted once it is detected so that the signals from different layers can be recovered. Theoretical analysis shows that the proposed scheme can improve the spectral efficiency by up to 2 times compared with conventional ACO-OFDM approaches with the same modulation order. Meanwhile, simulation results confirm a considerable signal-to-noise ratio gain over ACO-OFDM at the same spectral efficiency.

  6. A method of simulating intensity modulation-direct detection WDM systems

    Institute of Scientific and Technical Information of China (English)

    HUANG Jing; YAO Jian-quan; LI En-bang

    2005-01-01

    In the simulation of Intensity Modulation-Direct Detection WDM Systems,when the dispersion and nonlinear effects play equally important roles,the intensity fluctuation caused by cross-phase modulation may be overestimated as a result of the improper step size.Therefore,the step size in numerical simulation should be selected to suppress false XPM intensity modulation (keep it much less than signal power).According to this criterion,the step size is variable along the fiber.For a WDM system,the step size depends on the channel separation.Different type of transmission fiber has different step size.In the split-step Fourier method,this criterion can reduce simulation time,and when the step size is bigger than 100 meters,the simulation accuracy can also be improved.

  7. High energy high intensity coherent photon beam for the SSC

    International Nuclear Information System (INIS)

    Tannenbaum, M.J.

    1984-01-01

    What is proposed for the 20 TeV protons hitting a fixed target is to make a tertiary electron beam similar to that which is the basis of the tagged photon beam at Fermilab. Briefly, a zero degree neutral beam is formed by sweeping out the primary proton beam and any secondary charged particles. Then the photons, from the decay of π 0 in the neutral beam, are converted to e + e - pairs in a lead converter and a high quality electron beam is formed. This beam is brought to the target area where it is converted to a photon beam by Bremsstrahlung in a radiator

  8. Radiation control in the intensive care unit for high intensity iridium-192 brain implants

    International Nuclear Information System (INIS)

    Sewchand, W.; Drzymala, R.E.; Amin, P.P.; Salcman, M.; Salazar, O.M.

    1987-01-01

    A bedside lead cubicle was designed to minimize the radiation exposure of intensive care unit staff during routine interstitial brain irradiation by removable, high intensity iridium-192. The cubicle shields the patient without restricting intensive care routines. The design specifications were confirmed by exposure measurements around the shield with an implanted anthropomorphic phantom simulating the patient situation. The cubicle reduces the exposure rate around an implant patient by as much as 90%, with the exposure level not exceeding 0.1 mR/hour/mg of radium-equivalent 192 Ir. Evaluation of data accumulated for the past 3 years has shown that the exposure levels of individual attending nurses are 0.12 to 0.36 mR/mg of radium-equivalent 192 Ir per 12-hour shift. The corresponding range for entire nursing teams varies between 0.18 and 0.26. A radiation control index (exposure per mg of radium-equivalent 192 Ir per nurse-hour) is thus defined for individual nurses and nursing teams; this index is a significant guide to the planning of nurse rotations for brain implant patients with various 192 Ir loads. The bedside shield reduces exposure from 192 Ir implants by a factor of about 20, as expected, and the exposure from the lower energy radioisotope iodine-125 is barely detectable

  9. Future directions for high-spin studies

    International Nuclear Information System (INIS)

    Stephens, F.S.

    1982-11-01

    Some future directions for experimental high-spin studies are discussed, concentrating mainly on the region above I -- 30h, where the γ-ray spectra are currently unresolvable. The 4π NaI balls offer a means to exploit the temperature effects recently shown to exist in such spectra. Large arrays of Compton-suppressed Ge detectors, on the other and, lead to higher effective resolution as it becomes possible to study triple and quadruple coincident events

  10. A transparent vacuum window for high-intensity pulsed beams

    CERN Document Server

    Monteil, M; Veness, R

    2011-01-01

    The HiRadMat (High-Radiation to Materials) facility Ill will allow testing of accelerator components, in particular those of the Large Hadron Collider (LHC) at CERN, under the impact of high-intensity pulsed beams. To reach this intensity range, the beam will be focused on a focal point where the target to be tested is located. A 60 mm aperture vacuum window will separate the vacuum of the beam line which is kept under high vacuum 10(-8) mbar, from the test area which is at atmospheric pressure. This window has to resist collapse due to beam passage. The high-intensity of the beam means that typical materials used for standard vacuum windows (such as stainless steel, aluminium and titanium alloy) cannot endure the energy deposition induced by the beam passage. Therefore, a vacuum window has been designed to maintain the differential pressure whilst resisting collapse due to the beam impact on the window. In this paper, we will present calculations of the energy transfer from beam to window, the design of the ...

  11. Generation of Ultra-high Intensity Laser Pulses

    International Nuclear Information System (INIS)

    Fisch, N.J.; Malkin, V.M.

    2003-01-01

    Mainly due to the method of chirped pulse amplification, laser intensities have grown remarkably during recent years. However, the attaining of very much higher powers is limited by the material properties of gratings. These limitations might be overcome through the use of plasma, which is an ideal medium for processing very high power and very high total energy. A plasma can be irradiated by a long pump laser pulse, carrying significant energy, which is then quickly depleted in the plasma by a short counterpropagating pulse. This counterpropagating wave effect has already been employed in Raman amplifiers using gases or plasmas at low laser power. Of particular interest here are the new effects which enter in high power regimes. These new effects can be employed so that one high-energy optical system can be used like a flashlamp in what amounts to pumping the plasma, and a second low-power optical system can be used to extract quickly the energy from the plasma and focus it precisely. The combined system can be very compact. Thus, focused intensities more than 10 25 W/cm 2 can be contemplated using existing optical elements. These intensities are several orders of magnitude higher than what is currently available through chirped pump amplifiers

  12. Ultra-high temperature direct propulsion

    International Nuclear Information System (INIS)

    Araj, K.J.; Slovik, G.; Powell, J.R.; Ludewig, H.

    1987-01-01

    Potential advantages of ultra-high exhaust temperature (3000 K - 4000 K) direct propulsion nuclear rockets are explored. Modifications to the Particle Bed Reactor (PBR) to achieve these temperatures are described. Benefits of ultra-high temperature propulsion are discussed for two missions - orbit transfer (ΔV = 5546 m/s) and interplanetary exploration (ΔV = 20000 m/s). For such missions ultra-high temperatures appear to be worth the additional complexity. Thrust levels are reduced substantially for a given power level, due to the higher enthalpy caused by partial disassociation of the hydrogen propellant. Though technically challenging, it appears potentially feasible to achieve such ultra high temperatures using the PBR

  13. Proton and Ion Sources for High Intensity Accelerators

    CERN Multimedia

    Scrivens, R

    2004-01-01

    Future high intensity ion accelerators, including the Spallation Neutron Source (SNS), the European Spallation Source (ESS), the Superconducting Proton Linac (SPL) etc, will require high current and high duty factor sources for protons and negative hydrogen ions. In order to achieve these goals, a comparison of the Electron Cyclotron Resonance, radio-frequency and Penning ion sources, among others, will be made. For each of these source types, the present operational sources will be compared to the state-of-the-art research devices with special attention given to reliability and availability. Finally, the future research and development aims will be discussed.

  14. High intensity proton linac activities at Los Alamos

    International Nuclear Information System (INIS)

    Rusnak, B.; Chan, K.C.; Campbell, B.

    1998-01-01

    High-current proton linear accelerators offer an attractive alternative for generating the intense neutron fluxes needed for transmutations technologies, tritium production and neutron science. To achieve the fluxes required for tritium production, a 100-mA, 1700-MeV cw proton accelerator is being designed that uses superconducting cavities for the high-energy portion of the linac, from 211 to 1,700 MeV. The development work supporting the linac design effort is focused on three areas: superconducting cavity performance for medium-beta cavities at 700 MHz, high power rf coupler development, and cryomodule design. An overview of the progress in these three areas is presented

  15. A high intensity positron beam at the Brookhaven reactor

    International Nuclear Information System (INIS)

    Weber, M.; Lynn, K.G.; Roellig, L.O.; Mills, A.P. Jr.; Moodenbaugh, A.R.

    1987-01-01

    We describe a high intensity, low energy positron beam utilizing high specific activity /sup 64/Cu sources (870 Ci/g) produced in a reactor with high thermal neutron flux. Fast-to-slow moderation can be performed in a self moderation mode or with a transmission moderator. Slow positron rates up to 1.6 x 10/sup 8/ e/sup +//s with a half life of 12.8 h are calculated. Up to 1.0 x 10/sup 8/ e/sup +//s have been observed. New developments including a Ne moderator and an on-line isotope separation process are discussed. 21 refs., 9 figs

  16. HELIOS: A high intensity chopper spectrometer at LANSCE

    International Nuclear Information System (INIS)

    Mason, T.E.; Broholm, C.; Fultz, B.

    1998-01-01

    A proposal to construct a high intensity chopper spectrometer at LANSCE as part of the SPSS upgrade project is discussed. HELIOS will be optimized for science requiring high sensitivity neutron spectroscopy. This includes studies of phonon density of states in small polycrystalline samples, magnetic excitations in quantum magnets and highly correlated electron systems, as well as parametric studies (as a function of pressure, temperature, or magnetic field) of S(Q,ω). By employing a compact design together with the use of supermirror guide in the incident flight path the neutron flux at HELIOS will be significantly higher than any other comparable instrument now operating

  17. HELIOS: A high intensity chopper spectrometer at LANSCE

    Energy Technology Data Exchange (ETDEWEB)

    Mason, T.E. [Oak Ridge National Lab., TN (United States); Broholm, C. [Johns Hopkins Univ., Baltimore, MD (United States). Dept. of Physics and Astronomy; Fultz, B. [California Inst. of Tech., Pasadena, CA (United States). Dept. of Materials Science] [and others

    1998-12-31

    A proposal to construct a high intensity chopper spectrometer at LANSCE as part of the SPSS upgrade project is discussed. HELIOS will be optimized for science requiring high sensitivity neutron spectroscopy. This includes studies of phonon density of states in small polycrystalline samples, magnetic excitations in quantum magnets and highly correlated electron systems, as well as parametric studies (as a function of pressure, temperature, or magnetic field) of S(Q,{omega}). By employing a compact design together with the use of supermirror guide in the incident flight path the neutron flux at HELIOS will be significantly higher than any other comparable instrument now operating.

  18. Fluorescent and high intensity discharge lamp use in chambers and greenhouses

    Science.gov (United States)

    Langhans, Robert W.

    1994-01-01

    Fluorescent and High Intensity Discharge lamps have opened up great opportunities for researchers to study plant growth under controlled environment conditions and for commercial growers to increase plant production during low/light periods. Specific technical qualities of fluorescent and HID lamps have been critically reviewed. I will direct my remarks to fluorescent and high intensity discharge (HID) lamps in growth chambers, growth rooms, and greenhouses. I will discuss the advantages and disadvantages of using each lamp in growth chambers, growth rooms and greenhouses.

  19. High Intensity Beam Issues in the CERN Proton Synchrotron

    CERN Document Server

    Aumon, Sandra; Rivkin, Leonid

    This PhD work is about limitations of high intensity proton beams observed in the CERN Proton Synchrotron (PS) and, in particular, about issues at injection and transition energies. With its 53 years, the CERN PS would have to operate beyond the limit of its performance to match the future requirements. Beam instabilities driven by transverse impedance and aperture restrictions are important issues for the operation and for the High-Luminosity LHC upgrade which foresees an intensity increase delivered by the injectors. The main subject of the thesis concerns the study of a fast transverse instability occurring at transition energy. The proton beams crossing this energy range are particularly sensitive to wake forces because of the slow synchrotron motion. This instability can cause a strong vertical emittance blow-up and severe losses in less than a synchrotron period. Experimental observations show that the particles at the peak density of the beam longitudinal distribution oscillate in the vertical plane du...

  20. Chrome tannage using high-intensity ultrasonic field.

    Science.gov (United States)

    Mäntysalo, E; Marjoniemi, M; Kilpeläinen, M

    1997-04-01

    The process time in chrome tannage in leather making, using an elastic compression cycle followed by irradiation by high-intensity ultrasound, is quite short lasting only a few minutes, compared with a process time of several hours in modern chrome tannage. After ultrasonic irradiation, samples were basified in 17 h in chrome liquor at a pH of 4.0 and the shrinkage temperature was measured. The determination of the efficiency for the chrome liquor penetrating into the hides can be based on the steepness of the shrinkage temperature-processing time curve. An approximate value of 20 degrees C min(-1) can be evaluated for the initial slope of the curve when elastic compression and high-intensity ultrasonic irradiation is used, and a processing time of 2 min is required in chrome liquor (plus 17 h basification and 24 h storage time) to obtain leather stable to boiling. Usually, hides are kept in chrome liquor for 2 h.

  1. Entrepreneurship in high-tech and knowledge-intensive sectors

    DEFF Research Database (Denmark)

    Christensen, Patrizia V.; Madsen, Henning; Neergaard, Helle

    development of new enterprises in high-tech and knowledge-intensive sectors are analysed in relation to the educational and professional background of the entrepreneur/entrepreneurial team, as well as the personal and professional social networks of the entrepreneurs. The analysis is based on a theoretical...... framework combining theories of human and social capital. Secondary aspects addressed in the research project are questions of male vs. female entrepreneurship, internationalisation-globalisation, and business success/failure.......The paper investigates key factors influencing the establishment and early growth of high-tech and knowledge-intensive new firms in Denmark. Particular attention is paid to the human and social variables affecting the creation, survival, and growth of such firms. The establishment and subsequent...

  2. High-intensity, subkilovolt x-ray calibration facility

    International Nuclear Information System (INIS)

    Kuckuck, R.W.; Gaines, J.L.; Ernst, R.D.

    1976-01-01

    A high-intensity subkilovolt x-ray calibration source utilizing proton-induced inner-shell atomic fluorescence of low-Z elements is described. The high photon yields and low bremsstrahlung background associated with this phenomenon are ideally suited to provide intense, nearly monoenergetic x-ray beams. The proton accelerator is a 3 mA, 300 kV Cockroft-Walton using a conventional rf hydrogen ion source. Seven remotely-selectable targets capable of heat dissipation of 5 kW/cm 2 are used to provide characteristic x-rays with energies between 100 and 1000 eV. Source strengths are of the order of 10 13 to 10 14 photons/sec. Methods of reducing spectral contamination due to hydrocarbon build-up on the target are discussed. Typical x-ray spectra (Cu-L, C-K and B-K) are shown

  3. Light and Light Sources High-Intensity Discharge Lamps

    CERN Document Server

    Flesch, Peter G

    2006-01-01

    Light and Light Sources gives an introduction to the working principles of high-intensity discharge (HID) lamps and points out challenges and problems associated with the development and operation of HID lamps. The state-of-the-art in electrode and plasma diagnostics as well as numerical methods used for the understanding of HID lamps are described. This volume addresses students as well as scientists and researchers at universities and in industry.

  4. Silicone rubber curing by high intensity infrared radiation

    International Nuclear Information System (INIS)

    Huang, T.; Tsai, J.; Cherng, C.; Chen, J.

    1994-01-01

    A high-intensity (12 kW) and compact (80 cm) infrared heating oven for fast curing (12 seconds) of tube-like silicone rubber curing studies is reported. Quality inspection by DSC and DMA and results from pilot-scale curing oven all suggest that infrared heating provides a better way of vulcanization regarding to curing time, quality, cost, and spacing over conventional hot air heating. copyright 1995 American Institute of Physics

  5. NUMERICAL METHODS FOR THE SIMULATION OF HIGH INTENSITY HADRON SYNCHROTRONS.

    Energy Technology Data Exchange (ETDEWEB)

    LUCCIO, A.; D' IMPERIO, N.; MALITSKY, N.

    2005-09-12

    Numerical algorithms for PIC simulation of beam dynamics in a high intensity synchrotron on a parallel computer are presented. We introduce numerical solvers of the Laplace-Poisson equation in the presence of walls, and algorithms to compute tunes and twiss functions in the presence of space charge forces. The working code for the simulation here presented is SIMBAD, that can be run as stand alone or as part of the UAL (Unified Accelerator Libraries) package.

  6. Pulsed Power Applications in High Intensity Proton Rings

    CERN Document Server

    Zhang, Wu; Ducimetière, Laurent; Fowler, Tony; Kawakubo, Tadamichi; Mertens, Volker; Sandberg, Jon; Shirakabe, Yoshihisa

    2005-01-01

    The pulsed power technology has been applied in particle accelerators and storage rings for over four decades. It is most commonly used in injection, extraction, beam manipulation, source, and focusing systems. These systems belong to the class of repetitive pulsed power. In this presentation, we review and discuss the history, present status, and future challenge of pulsed power applications in high intensity proton accelerators and storage rings.

  7. Proton induction linacs as high-intensity neutron sources

    International Nuclear Information System (INIS)

    Keefe, D.; Hoyer, E.

    1981-01-01

    Proton induction linacs are explored as high intensity neutron sources. The induction linac - concept, properties, experience with electrons, and possibilities - and its limitations for accelerating ions are reviewed. A number of proton induction linac designs are examined with the LIACEP program and general conclusions are given. Results suggest that a proton induction accelerator of the lowest voltage, consistent with good neutron flux, is preferred and could well be cost competitive with the usual rf linac/storage ring designs. (orig.)

  8. Direct aperture optimization as a means of reducing the complexity of intensity modulated radiation therapy plans

    International Nuclear Information System (INIS)

    Broderick, Maria; Leech, Michelle; Coffey, Mary

    2009-01-01

    Intensity Modulated Radiation Therapy (IMRT) is a means of delivering radiation therapy where the intensity of the beam is varied within the treatment field. This is done by dividing a large beam into many small beamlets. Dose constraints are assigned to both the target and sensitive structures and computerised inverse optimization is performed to find the individual weights of this large number of beamlets. The computer adjusts the intensities of these beamlets according to the required planning dose objectives. The optimized intensity patterns are then decomposed into a series of deliverable multi leaf collimator (MLC) shapes in the sequencing step. One of the main problems of IMRT, which becomes even more apparent as the complexity of the IMRT plan increases, is the dramatic increase in the number of Monitor Units (MU) required to deliver a fractionated treatment. The difficulty with this increase in MU is its association with increased treatment times and a greater leakage of radiation from the MLCs increasing the total body dose and the risk of secondary cancers in patients. Therefore one attempts to find ways of reducing these MU without compromising plan quality. The design of inverse planning systems where the beam is divided into small beamlets to produce the required intensity map automatically introduces complexity into IMRT treatment planning. Plan complexity is associated with many negative factors such as dosimetric uncertainty and delivery issues A large search space is required necessitating much computing power. However, the limitations of the delivery technology are not taken into consideration when designing the ideal intensity map therefore a further step termed the sequencing step is required to convert the ideal intensity map into a deliverable one. Many approaches have been taken to reduce the complexity. These include setting intensity limits, putting penalties on the cost function and using smoothing filters Direct Aperture optimization

  9. Direct aperture optimization as a means of reducing the complexity of intensity modulated radiation therapy plans

    Directory of Open Access Journals (Sweden)

    Coffey Mary

    2009-02-01

    Full Text Available Abstract Intensity Modulated Radiation Therapy (IMRT is a means of delivering radiation therapy where the intensity of the beam is varied within the treatment field. This is done by dividing a large beam into many small beamlets. Dose constraints are assigned to both the target and sensitive structures and computerised inverse optimization is performed to find the individual weights of this large number of beamlets. The computer adjusts the intensities of these beamlets according to the required planning dose objectives. The optimized intensity patterns are then decomposed into a series of deliverable multi leaf collimator (MLC shapes in the sequencing step. One of the main problems of IMRT, which becomes even more apparent as the complexity of the IMRT plan increases, is the dramatic increase in the number of Monitor Units (MU required to deliver a fractionated treatment. The difficulty with this increase in MU is its association with increased treatment times and a greater leakage of radiation from the MLCs increasing the total body dose and the risk of secondary cancers in patients. Therefore one attempts to find ways of reducing these MU without compromising plan quality. The design of inverse planning systems where the beam is divided into small beamlets to produce the required intensity map automatically introduces complexity into IMRT treatment planning. Plan complexity is associated with many negative factors such as dosimetric uncertainty and delivery issues A large search space is required necessitating much computing power. However, the limitations of the delivery technology are not taken into consideration when designing the ideal intensity map therefore a further step termed the sequencing step is required to convert the ideal intensity map into a deliverable one. Many approaches have been taken to reduce the complexity. These include setting intensity limits, putting penalties on the cost function and using smoothing filters Direct

  10. Direct aperture optimization as a means of reducing the complexity of intensity modulated radiation therapy plans

    Energy Technology Data Exchange (ETDEWEB)

    Broderick, Maria; Leech, Michelle; Coffey, Mary [Division of Radiation Therapy, School of Medicine, Trinity College Dublin, Dublin, Ireland (United Kingdom)

    2009-02-16

    Intensity Modulated Radiation Therapy (IMRT) is a means of delivering radiation therapy where the intensity of the beam is varied within the treatment field. This is done by dividing a large beam into many small beamlets. Dose constraints are assigned to both the target and sensitive structures and computerised inverse optimization is performed to find the individual weights of this large number of beamlets. The computer adjusts the intensities of these beamlets according to the required planning dose objectives. The optimized intensity patterns are then decomposed into a series of deliverable multi leaf collimator (MLC) shapes in the sequencing step. One of the main problems of IMRT, which becomes even more apparent as the complexity of the IMRT plan increases, is the dramatic increase in the number of Monitor Units (MU) required to deliver a fractionated treatment. The difficulty with this increase in MU is its association with increased treatment times and a greater leakage of radiation from the MLCs increasing the total body dose and the risk of secondary cancers in patients. Therefore one attempts to find ways of reducing these MU without compromising plan quality. The design of inverse planning systems where the beam is divided into small beamlets to produce the required intensity map automatically introduces complexity into IMRT treatment planning. Plan complexity is associated with many negative factors such as dosimetric uncertainty and delivery issues A large search space is required necessitating much computing power. However, the limitations of the delivery technology are not taken into consideration when designing the ideal intensity map therefore a further step termed the sequencing step is required to convert the ideal intensity map into a deliverable one. Many approaches have been taken to reduce the complexity. These include setting intensity limits, putting penalties on the cost function and using smoothing filters Direct Aperture optimization

  11. Compton spectra of atoms at high x-ray intensity

    Science.gov (United States)

    Son, Sang-Kil; Geffert, Otfried; Santra, Robin

    2017-03-01

    Compton scattering is the nonresonant inelastic scattering of an x-ray photon by an electron and has been used to probe the electron momentum distribution in gas-phase and condensed-matter samples. In the low x-ray intensity regime, Compton scattering from atoms dominantly comes from bound electrons in neutral atoms, neglecting contributions from bound electrons in ions and free (ionized) electrons. In contrast, in the high x-ray intensity regime, the sample experiences severe ionization via x-ray multiphoton multiple ionization dynamics. Thus, it becomes necessary to take into account all the contributions to the Compton scattering signal when atoms are exposed to high-intensity x-ray pulses provided by x-ray free-electron lasers (XFELs). In this paper, we investigate the Compton spectra of atoms at high x-ray intensity, using an extension of the integrated x-ray atomic physics toolkit, xatom. As the x-ray fluence increases, there is a significant contribution from ionized electrons to the Compton spectra, which gives rise to strong deviations from the Compton spectra of neutral atoms. The present study provides not only understanding of the fundamental XFEL-matter interaction but also crucial information for single-particle imaging experiments, where Compton scattering is no longer negligible. , which features invited work from the best early-career researchers working within the scope of J. Phys. B. This project is part of the Journal of Physics series’ 50th anniversary celebrations in 2017. Sang-Kil Son was selected by the Editorial Board of J. Phys. B as an Emerging Leader.

  12. The Anatomy of Directed Motivational Currents: Exploring Intense and Enduring Periods of L2 Motivation

    Science.gov (United States)

    Henry, Alastair; Dornyei, Zoltan; Davydenko, Sofia

    2015-01-01

    In a series of articles Dörnyei and his colleagues (Dörnyei, Ibrahim, & Muir, 2015; Dörnyei, Muir, & Ibrahim, 2014; Muir & Dörnyei, 2013) describe the phenomenon of a period of intense and enduring motivation in pursuit of a highly desired personal goal or vision. These surges of motivational energy, which they call "Directed…

  13. Beam halo in high-intensity hadron linacs

    Energy Technology Data Exchange (ETDEWEB)

    Gerigk, F

    2006-12-21

    This document aims to cover the most relevant mechanisms for the development of beam halo in high-intensity hadron linacs. The introduction outlines the various applications of high-intensity linacs and it will explain why, in the case of the CERN Superconducting Proton Linac (SPL) study a linac was chosen to provide a high-power beam, rather than a different kind of accelerator. The basic equations, needed for the understanding of halo development are derived and employed to study the effects of initial and distributed mismatch on high-current beams. The basic concepts of the particle-core model, envelope modes, parametric resonances, the free-energy approach, and the idea of core-core resonances are introduced and extended to study beams in realistic linac lattices. The approach taken is to study the behavior of beams not only in simplified theoretical focusing structures but to highlight the beam dynamics in realistic accelerators. All effects which are described and derived with simplified analytic models, are tested in realistic lattices and are thus related to observable effects in linear accelerators. This approach involves the use of high-performance particle tracking codes, which are needed to simulate the behavior of the outermost particles in distributions of up to 100 million macro particles. In the end a set of design rules are established and their impact on the design of a typical high-intensity machine, the CERN SPL, is shown. The examples given in this document refer to two different design evolutions of the SPL study: the first conceptual design report (SPL I) and the second conceptual design report (SPL II). (orig.)

  14. The joint project for high-intensity proton accelerators

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-08-01

    Japan Atomic Energy Research Institute (JAERI) and the High Energy Accelerator Research Organization (KEK) agreed to promote the joint project integrating both the Neutron Science Project (NSP) of JAERI and the Japan Hadron Facility Project (JHF) of KEK for comprehensive studies on basic science and technology using high-intensity proton accelerator. This document describes the joint proposal prepared by the Joint Project Team of JAERI and KEK to construct accelerators and research facilities necessary both for the NSP and the JHF at the site of JAERI Tokai Establishment. (author)

  15. High intensity Discharge lighting; Alumbrado de alta intensidad de descarga

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza E, Ernesto J [Manufacturera de Reactores, S. A., Mexico, D. F. (Mexico)

    1994-12-31

    This paper gets into contact with some fundamentals in the operation of high discharge intensity lamps. There are useful definitions, as well as the study of the operation of high pressure sodium lamps and of metallic additives operating at less than nominal power. [Espanol] Este trabajo pone al lector en contacto con algunos fundamentos de la operacion de las lamparas de alta intensidad de descarga (HID). Se encuentra con definiciones utiles, asi como el estudio de la operacion de las lamparas de sodio en alta presion y de aditivos metalicos operando a una potencia menor que la nominal.

  16. JAERI-KEK joint project on high intensity proton accelerators

    International Nuclear Information System (INIS)

    Nagamiya, Shoji

    2000-01-01

    Japan Atomic Energy Research Institute (JAERI) and the High Energy Accelerator Organization (KEK) are promoting the joint project integrating both the Neutron Science Project (NSP) of JAERI and the Japan Hadron Facility Project (JHF) of KEK for comprehensive studies on basic science and technology using high-intensity proton accelerator. This paper describes the joint project prepared by the Joint Project Team of JAERI and KEK to construct accelerators and research facilities necessary both for the NSP and the JHF at the site of JAERI Tokai Establishment. (author)

  17. Performance of GEM detectors in high intensity particle beams

    CERN Document Server

    Bachmann, S; Ketzer, B; Deutel, M; Ropelewski, Leszek; Sauli, Fabio; Bondar, A E; Buzulutskov, A F; Shekhtman, L I; Sokolov, A; Tatarinov, A A; Vasilev, A; Kappler, S; Schulte, E C

    2001-01-01

    We describe extensive tests of Double GEM and Triple GEM detectors, including full size prototypes for the COMPASS experiment, exposed to high intensity muon, proton and pion beams at the Paul~Scherrer Institute and at CERN. The measurements aim at detecting problems possible under these operation conditions, the main concern being the occurrence of discharges induced by beam particles. Results on the dependence of the probability for induced discharges on the experimental environment are presented and discussed. Implications for the application of GEM~detectors in experiments at high luminosity colliders are illustrated.

  18. High intensity line source for x-ray spectrometer calibration

    International Nuclear Information System (INIS)

    Thoe, R.S.

    1986-06-01

    A high intensity electron-impact x-ray source using a one-dimensional Pierce lens has been built for the purpose of calibrating a bent crystal x-ray spectrometer. This source focuses up to 100 mA of 20-keV electrons to a line on a liquid-cooled anode. The line (which can serve as a virtual slit for the spectrometer) measures approximately 800 μ x 2 cm. The source is portable and therefore adaptable to numerous types of spectrometer applications. One particular application, the calibration of a high resolution (r = 10 4 ) time-resolved cyrstal spectrometer, will be discussed in detail

  19. High intensity Discharge lighting; Alumbrado de alta intensidad de descarga

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza E, Ernesto J. [Manufacturera de Reactores, S. A., Mexico, D. F. (Mexico)

    1993-12-31

    This paper gets into contact with some fundamentals in the operation of high discharge intensity lamps. There are useful definitions, as well as the study of the operation of high pressure sodium lamps and of metallic additives operating at less than nominal power. [Espanol] Este trabajo pone al lector en contacto con algunos fundamentos de la operacion de las lamparas de alta intensidad de descarga (HID). Se encuentra con definiciones utiles, asi como el estudio de la operacion de las lamparas de sodio en alta presion y de aditivos metalicos operando a una potencia menor que la nominal.

  20. The Intensity, Directionality, and Statistics of Underwater Noise From Melting Icebergs

    Science.gov (United States)

    Glowacki, Oskar; Deane, Grant B.; Moskalik, Mateusz

    2018-05-01

    Freshwater fluxes from melting icebergs and glaciers are important contributors to both sea level rise and anomalies of seawater salinity in polar regions. However, the hazards encountered close to icebergs and glaciers make it difficult to quantify their melt rates directly, motivating the development of cryoacoustics as a remote sensing technique. Recent studies have shown a qualitative link between ice melting and the accompanying underwater noise, but the properties of this signal remain poorly understood. Here we examine the intensity, directionality, and temporal statistics of the underwater noise radiated by melting icebergs in Hornsund Fjord, Svalbard, using a three-element acoustic array. We present the first estimate of noise energy per unit area associated with iceberg melt and demonstrate its qualitative dependence on exposure to surface current. Finally, we show that the analysis of noise directionality and statistics makes it possible to distinguish iceberg melt from the glacier terminus melt.

  1. Removing Known SPS Intensity Limitations for High Luminosity LHC Goals

    CERN Document Server

    Shaposhnikova, Elena; Bohl, Thomas; Cruikshank, Paul; Goddard, Brennan; Kaltenbacher, Thomas; Lasheen, Alexandre; Perez Espinos, Jaime; Repond, Joël; Salvant, Benoit; Vollinger, Christine

    2016-01-01

    In preparation of the SPS as an LHC injector its impedance was significantly reduced in 1999 - 2000. A new SPS impedance reduction campaign is planned now for the High Luminosity (HL)-LHC project, which requires bunch intensities twice as high as the nominal one. One of the known intensity limitations is a longitudinal multi-bunch instability with a threshold 3 times below this operational intensity. The instability is presently cured using the 4th harmonic RF system and controlled emittance blow-up, but reaching the HL-LHC parameters cannot be assured without improving the machine impedance. Recently the impedance sources responsible for this instability were identified and implementation of their shielding and damping is foreseen during the next long shutdown (2019 - 2020) in synergy with two other important upgrades: amorphous carbon coating of (part of) the vacuum chamber against the e-cloud effect and rearrangement of the 200 MHz RF system. In this paper the strategy of impedance reduction is presented t...

  2. Long-term trends in direct and indirect household energy intensities: a factor in dematerialisation?

    International Nuclear Information System (INIS)

    Vringer, K.; Blok, K.

    2000-01-01

    Dematerialisation is assumed to contribute significantly to the alleviation of environmental problems. One of the possible causes of dematerialisation is a change in the consumption patterns of households. The aim of this article is to analyse changes in consumption patterns of Dutch households in the period between 1948 to 1996 in order to discover whether these changes have influenced the energy intensity of society. Due to the rise in consumption, the total household energy requirement per capita grew on average by 2.4 per cent per year over a period of 48 years (this figure ignores efficiency changes in the supplying sectors). In the same period the total energy intensity of households fluctuated but on average changed from 5.6 to 6.3 MJ/NLG, an increase of 0.25 per cent per year. If we exclude the direct energy consumption we find a slight decline in the indirect energy intensity, namely from 3.8 to 3.6 MJ/NLG ( - 0.14 per cent per year). No significant trends to a lower energy intensity are found and there is no indication of dematerialisation of the consumption patterns. If governments pursue a policy of sustainable development they have to take into account the fact that dematerialisation of the consumption pattern does not seem to be an autonomous process. (author)

  3. Competitive state anxiety and self-confidence: intensity and direction as relative predictors of performance on a golf putting task.

    Science.gov (United States)

    Chamberlain, Sean T; Hale, Bruce D

    2007-06-01

    This study considered relationships between the intensity and directional aspects of competitive state anxiety as measured by the modified Competitive Sport Anxiety Inventory-2(D) (Jones & Swain, 1992) in a sample of 12 experienced male golfers. Anxiety and performance scores from identical putting tasks performed under three different anxiety-manipulated competitive conditions were used to assess both the predictions of Multidimensional Anxiety Theory (MAT; Martens et al., 1990) and the relative value of intensity and direction in explaining performance variance. A within-subjects regression analysis of the intra-individual data showed partial support for the three MAT hypotheses. Cognitive anxiety intensity demonstrated a negative linear relationship with performance, somatic anxiety intensity showed a curvilinear relationship with performance, and self-confidence intensity revealed a positive linear relation. Cognitive directional anxiety illustrated a positive linear relationship with putting performance. Multiple regression analyses indicated that direction (42% of variance) was a better predictor of performance than intensity (22%).

  4. High intensity accelerator for a wide range of applications

    International Nuclear Information System (INIS)

    Conard, E.M.

    1994-01-01

    When looking at commercial applications of accelerators from a market point of view, it appears that a common accelerator design could meet different users' needs. This would benefit both the manufacturer and the user by multiplying the number of machines sold, thus lowering their cost and improving their quality. These applications include: radioisotope production for medical imaging (positron emission tomography), industrial imaging and non-destructive testing (e.g. neutron radiography, explosive and drug detection in luggage or freight). This paper investigates the needs of the various applications and defines their common denominator to establish suitable specifications (type of particles, energy, intensity). Different accelerator types (cyclotrons, linear accelerators and electrostatic machines) are reviewed and compared on performance and estimated costs. A high intensity tandem accelerator design is studied in more detail as it seems the most appropriate candidate. ((orig.))

  5. The different effects of high intensity interval training and moderate intensity interval training for weightlessness countermeasures

    Science.gov (United States)

    Wang, Lin-Jie; Cheng, Tan; Zhi-Li, Li; Hui-juan, Wang; Wen-juan, Chen; Jianfeng, Zhang; Desheng, Wang; Dongbin, Niu; Qi, Zhao; Chengjia, Yang; Yanqing, Wang

    High intensity interval training (HIIT) has been demonstrated to improve performance in a relatively short training period. But the difference between high intensity interval training and moderate intensity interval training (MIIT) in simulated weightlessness still has not been well studied. This study sought to characterize the difference between 6 weeks high intensity interval training and moderate intensity interval training under reduced weight (RW) gait training device and zero-gravity locomotion system (ZLS). Twenty-three subjects (14M/4F, 32.5±4.5 years) volunteered to participate. They were divided into three groups, that were MITT (alternating 2 min at 40% VO _{2} peak and 2 min at 60% VO _{2} peak for 30min, five days per week) RW group (n=8), HITT (alternating 2 min at 40% VO _{2} peak and 2 min at 90% VO _{2} peak for 30min, three days per week) RW group (n=8) and HITT ZLS group (n=7). The Z-axis load used in RW group was 80% body weight (BW) and in ZLS was 100% BW. Cardiopulmonary function was measured before, after 4-week training and after 6-week training. Isokinetic knee extension-flexion test at 60(°) deg/s and 180(°) deg/s were performed before and after the 6-week training, and isometric knee extension-flexion test at 180(°) deg/s was also examined at the same time. It was found that the VO _{2} peaks, metabolic equivalent (MET), Speedmax and respiratory exchange ratio (RER) were significantly increased after 4 and 6-week training in all three groups and no significant group difference were detected. The peak torque at 60(°) deg/s for right knee flexion were significantly increased after 6 week-training in all three groups, and only in HITT RW group the total power at 60(°) deg/s for right knee flexion enhanced. The total power and average power at 60(°) deg/s for right knee extension decreased significantly after 6-week training in all three groups. The peak torque at 60(°) deg/s for right knee extension in MIIT RW group was

  6. High intensity region segmentation in MR imaging of multiple sclerosis

    International Nuclear Information System (INIS)

    Rodrigo, F; Filipuzzi, M; Graffigna, J P; Isoardi, R; Noceti, M

    2013-01-01

    Numerous pathologies are often manifest in Magnetic Resonance Imaging (MRI) as hyperintense or bright regions as compared to normal tissue. It is of particular interest to develop an algorithm to detect, identify and define those Regions of Interest (ROI) when analyzing MRI studies, particularly for lesions of Multiple Sclerosis (MS). The objective of this study is to analyze those parameters which optimize segmentation of the areas of interest. To establish which areas should be considered as hyperintense regions, we developed a database (DB), with studies of patients diagnosed with MS. This disease causes axonal demyelination and it is expressed as bright regions in PD, T2 and FLAIR MRI sequences. Thus, with more than 4300 hyperintense regions validated by an expert physician, an algorithm was developed to detect such spots, approximating the results the expert obtained. Alongside these hyperintense lesion regions, it also detected bone regions with high intensity levels, similar to the intensity of the lesions, but with other features that allow a good differentiation.The algorithm will then detect ROIs with similar intensity levels and performs classification through data mining techniques

  7. High intensity interval exercise training in overweight young women.

    Science.gov (United States)

    Sijie, T; Hainai, Y; Fengying, Y; Jianxiong, W

    2012-06-01

    The purpose of this study was intended to evaluate the effects of a high intensity interval training (HIIT) program on the body composition, cardiac function and aerobic capacity in overweight young women. Sixty female university students (aged 19-20, BMI≥25kg/m2 and percentage body fat ≥ 30%) were chosen and then randomly assigned to each of the HIIT group, the moderate intensity continuous training (MICT) group and the non-training control group. The subjects in both the HIIT and MICT groups underwent exercise training five times per week for 12 weeks. In each of the training sessions, the HIIT group performed interval exercises at the individualized heart rate (HR) of 85% of VO2max and separated by brief periods of low intensity activity (HR at 50% of VO2max), while the MICT group did continuous walking and/or jogging at the individualized HR of 50% of VO2max. Both of these exercise training programs produced significant improvements in the subjects' body composition, left ventricular ejection fraction, heart rate at rest, maximal oxygen uptake and ventilatory threshold. However, the HIIT group achieved better results than those in the MICT group, as it was evaluated by the amount of the effect size. The control group did not achieve any change in all of the measured variables. The tangible results achieved by our relatively large groups of homogeneous subjects have demonstrated that the HIIT program is an effective measure for the treatment of young women who are overweight.

  8. Summary for the WG4: physics with high intensity lasers

    International Nuclear Information System (INIS)

    Takahashi, T.

    2006-01-01

    There are many physics opportunities in laser-beam interactions and innovations in the laser- and the beam technologies expand them or even open new window in the field. Therefore, physics with high intense lasers is an attractive application of nanobeam technologies. The topics in the working group 4 covers fundamental physics based on technique related with nanobeam development aiming to encourage communication between physics and accelerator communities. Due to the limited time for the preparation, we did not try comprehensive coverage of the field but invited topics which are planed near future or can be studied at the ILC test facilities. (author)

  9. KEK/JAERI joint project on high intensity proton accelerators

    International Nuclear Information System (INIS)

    Nagamiya, Shoji

    2002-01-01

    From JFY01, which started on April 1, 2001, a new accelerator project to provide high-intensity proton beams proceeded into a construction phase. This project is conducted under a cooperation of two institutions, KEK and JAERI. The accelerator complex will provide 1 MW proton beams at 3 GeV and 0.75 MW beams at 50 GeV. The project will be completed within six years. In this article I will describe a) the project itself, b) sciences to be pursued at this new accelerator complex and c) the present status and future plans of the project. (author)

  10. Multi-energy ion implantation from high-intensity laser

    Czech Academy of Sciences Publication Activity Database

    Cutroneo, Mariapompea; Torrisi, L.; Ullschmied, Jiří; Dudžák, Roman

    2016-01-01

    Roč. 61, č. 2 (2016), s. 109-113 ISSN 0029-5922. [PLASMA 2015 : International Conference on Research and Applications of Plasmas. Warsaw, 07.09.2015-11.09.2015] R&D Projects: GA MŠk(CZ) LM2011019; GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:61389021 ; RVO:61389005 Keywords : high-intensity laser * implantation * material modification Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders; BL - Plasma and Gas Discharge Physics (UFP-V) Impact factor: 0.760, year: 2016

  11. Overview of high intensity proton accelerator facility, J-PARC

    International Nuclear Information System (INIS)

    Ikeda, Y.

    2010-01-01

    The J-PARC project of high intensity proton accelerator research complex, conducted jointly by JAERI and KEK, has been completed with demonstration of all beam productions in 2009 as the facility construction phase, and the operation started to offer the secondary beams of neutron, muon, kaon, and neutrino, to the advanced scientific experimental research aiming at making breakthroughs in materials and life science, nuclear and elementary physics, etc. This text describes the overview of the J-PARC present status with emphasis of a performance toward to 1MW power as user facilities. (author)

  12. Early High-Intensity Versus Low-Intensity Rehabilitation After Total Knee Arthroplasty (TKA) by Bade et al

    DEFF Research Database (Denmark)

    Mechlenburg, Inger; Skoffer, Birgit; Dalgas, Ulrik

    2017-01-01

    Recently, a paper entitled "Early High-Intensity Versus Low-Intensity Rehabilitation After Total Knee Arthroplasty: A Randomized Controlled Trial" was published in Arthritis Care Res by Bade et al. (1). We have read the paper with great interest and noted that the study shows essentially no diffe......Recently, a paper entitled "Early High-Intensity Versus Low-Intensity Rehabilitation After Total Knee Arthroplasty: A Randomized Controlled Trial" was published in Arthritis Care Res by Bade et al. (1). We have read the paper with great interest and noted that the study shows essentially...

  13. High-Intensity Interval Training Elicits Higher Enjoyment than Moderate Intensity Continuous Exercise

    Science.gov (United States)

    Thum, Jacob S.; Parsons, Gregory; Whittle, Taylor

    2017-01-01

    Exercise adherence is affected by factors including perceptions of enjoyment, time availability, and intrinsic motivation. Approximately 50% of individuals withdraw from an exercise program within the first 6 mo of initiation, citing lack of time as a main influence. Time efficient exercise such as high intensity interval training (HIIT) may provide an alternative to moderate intensity continuous exercise (MICT) to elicit substantial health benefits. This study examined differences in enjoyment, affect, and perceived exertion between MICT and HIIT. Twelve recreationally active men and women (age = 29.5 ± 10.7 yr, VO2max = 41.4 ± 4.1 mL/kg/min, BMI = 23.1 ± 2.1 kg/m2) initially performed a VO2max test on a cycle ergometer to determine appropriate workloads for subsequent exercise bouts. Each subject returned for two additional exercise trials, performing either HIIT (eight 1 min bouts of cycling at 85% maximal workload (Wmax) with 1 min of active recovery between bouts) or MICT (20 min of cycling at 45% Wmax) in randomized order. During exercise, rating of perceived exertion (RPE), affect, and blood lactate concentration (BLa) were measured. Additionally, the Physical Activity Enjoyment Scale (PACES) was completed after exercise. Results showed higher enjoyment (p = 0.013) in response to HIIT (103.8 ± 9.4) versus MICT (84.2 ± 19.1). Eleven of 12 participants (92%) preferred HIIT to MICT. However, affect was lower (pHIIT versus MICT. Although HIIT is more physically demanding than MICT, individuals report greater enjoyment due to its time efficiency and constantly changing stimulus. Trial Registration: NCT:02981667. PMID:28076352

  14. High-Intensity Interval Training Elicits Higher Enjoyment than Moderate Intensity Continuous Exercise.

    Directory of Open Access Journals (Sweden)

    Jacob S Thum

    Full Text Available Exercise adherence is affected by factors including perceptions of enjoyment, time availability, and intrinsic motivation. Approximately 50% of individuals withdraw from an exercise program within the first 6 mo of initiation, citing lack of time as a main influence. Time efficient exercise such as high intensity interval training (HIIT may provide an alternative to moderate intensity continuous exercise (MICT to elicit substantial health benefits. This study examined differences in enjoyment, affect, and perceived exertion between MICT and HIIT. Twelve recreationally active men and women (age = 29.5 ± 10.7 yr, VO2max = 41.4 ± 4.1 mL/kg/min, BMI = 23.1 ± 2.1 kg/m2 initially performed a VO2max test on a cycle ergometer to determine appropriate workloads for subsequent exercise bouts. Each subject returned for two additional exercise trials, performing either HIIT (eight 1 min bouts of cycling at 85% maximal workload (Wmax with 1 min of active recovery between bouts or MICT (20 min of cycling at 45% Wmax in randomized order. During exercise, rating of perceived exertion (RPE, affect, and blood lactate concentration (BLa were measured. Additionally, the Physical Activity Enjoyment Scale (PACES was completed after exercise. Results showed higher enjoyment (p = 0.013 in response to HIIT (103.8 ± 9.4 versus MICT (84.2 ± 19.1. Eleven of 12 participants (92% preferred HIIT to MICT. However, affect was lower (p<0.05 and HR, RPE, and BLa were higher (p<0.05 in HIIT versus MICT. Although HIIT is more physically demanding than MICT, individuals report greater enjoyment due to its time efficiency and constantly changing stimulus.NCT:02981667.

  15. Multifunctional pulse generator for high-intensity focused ultrasound system

    Science.gov (United States)

    Tamano, Satoshi; Yoshizawa, Shin; Umemura, Shin-Ichiro

    2017-07-01

    High-intensity focused ultrasound (HIFU) can achieve high spatial resolution for the treatment of diseases. A major technical challenge in implementing a HIFU therapeutic system is to generate high-voltage high-current signals for effectively exciting a multichannel HIFU transducer at high efficiencies. In this paper, we present the development of a multifunctional multichannel generator/driver. The generator can produce a long burst as well as an extremely high-voltage short pulse of pseudosinusoidal waves (trigger HIFU) and second-harmonic superimposed waves for HIFU transmission. The transmission timing, waveform, and frequency can be controlled using a field-programmable gate array (FPGA) via a universal serial bus (USB) microcontroller. The hardware is implemented in a compact printed circuit board. The test results of trigger HIFU reveal that the power consumption and the temperature rise of metal-oxide semiconductor field-effect transistors were reduced by 19.9% and 38.2 °C, respectively, from the previous design. The highly flexible performance of the novel generator/driver is demonstrated in the generation of second-harmonic superimposed waves, which is useful for cavitation-enhanced HIFU treatment, although the previous design exhibited difficulty in generating it.

  16. Cancer and Exercise: Warburg Hypothesis, Tumour Metabolism and High-Intensity Anaerobic Exercise.

    Science.gov (United States)

    Hofmann, Peter

    2018-01-31

    There is ample evidence that regular moderate to vigorous aerobic physical activity is related to a reduced risk for various forms of cancer to suggest a causal relationship. Exercise is associated with positive changes in fitness, body composition, and physical functioning as well as in patient-reported outcomes such as fatigue, sleep quality, or health-related quality of life. Emerging evidence indicates that exercise may also be directly linked to the control of tumour biology through direct effects on tumour-intrinsic factors. Beside a multitude of effects of exercise on the human body, one underscored effect of exercise training is to target the specific metabolism of tumour cells, namely the Warburg-type highly glycolytic metabolism. Tumour metabolism as well as the tumour⁻host interaction may be selectively influenced by single bouts as well as regularly applied exercise, dependent on exercise intensity, duration, frequency and mode. High-intensity anaerobic exercise was shown to inhibit glycolysis and some studies in animals showed that effects on tumour growth might be stronger compared with moderate-intensity aerobic exercise. High-intensity exercise was shown to be safe in patients; however, it has to be applied carefully with an individualized prescription of exercise.

  17. Longitudinal tracking studies for a high intensity proton synchrotron

    International Nuclear Information System (INIS)

    Lessner, E.; Cho, Y.; Harkay, K.; Symon, K.

    1995-01-01

    Results from longitudinal tracking studies for a high intensity proton synchrotron designed for a 1-MW spallation source are presented. The machine delivers a proton beam of 0.5 mA time-averaged current at a repetition rate of 30 Hz. The accelerator is designed to have radiation levels that allow hands-on-maintenance. However, the high beam intensity causes strong space charge fields whose effects may lead to particle loss and longitudinal instabilities. The space charge fields modify the particle distribution, distort the stable bucket area and reduce the rf linear restoring force. Tracking simulations were conducted to analyze the space charge effects on the dynamics of the injection and acceleration processes and means to circumvent them. The tracking studies led to the establishment of the injected beam parameters and rf voltage program that minimized beam loss and longitudinal instabilities. Similar studies for a 10-GeV synchrotron that uses the 2-GeV synchrotron as its injector are also discussed

  18. Formation of a high intensity low energy positron string

    Science.gov (United States)

    Donets, E. D.; Donets, E. E.; Syresin, E. M.; Itahashi, T.; Dubinov, A. E.

    2004-05-01

    The possibility of a high intensity low energy positron beam production is discussed. The proposed Positron String Trap (PST) is based on the principles and technology of the Electron String Ion Source (ESIS) developed in JINR during the last decade. A linear version of ESIS has been used successfully for the production of intense highly charged ion beams of various elements. Now the Tubular Electron String Ion Source (TESIS) concept is under study and this opens really new promising possibilities in physics and technology. In this report, we discuss the application of the tubular-type trap for the storage of positrons cooled to the cryogenic temperatures of 0.05 meV. It is intended that the positron flux at the energy of 1-5 eV, produced by the external source, is injected into the Tubular Positron Trap which has a similar construction as the TESIS. Then the low energy positrons are captured in the PST Penning trap and are cooled down because of their synchrotron radiation in the strong (5-10 T) applied magnetic field. It is expected that the proposed PST should permit storing and cooling to cryogenic temperature of up to 5×109 positrons. The accumulated cooled positrons can be used further for various physics applications, for example, antihydrogen production.

  19. Formation of a high intensity low energy positron string

    International Nuclear Information System (INIS)

    Donets, E.D.; Donets, E.E.; Syresin, E.M.; Itahashi, T.; Dubinov, A.E.

    2004-01-01

    The possibility of a high intensity low energy positron beam production is discussed. The proposed Positron String Trap (PST) is based on the principles and technology of the Electron String Ion Source (ESIS) developed in JINR during the last decade. A linear version of ESIS has been used successfully for the production of intense highly charged ion beams of various elements. Now the Tubular Electron String Ion Source (TESIS) concept is under study and this opens really new promising possibilities in physics and technology. In this report, we discuss the application of the tubular-type trap for the storage of positrons cooled to the cryogenic temperatures of 0.05 meV. It is intended that the positron flux at the energy of 1-5 eV, produced by the external source, is injected into the Tubular Positron Trap which has a similar construction as the TESIS. Then the low energy positrons are captured in the PST Penning trap and are cooled down because of their synchrotron radiation in the strong (5-10 T) applied magnetic field. It is expected that the proposed PST should permit storing and cooling to cryogenic temperature of up to 5x10 9 positrons. The accumulated cooled positrons can be used further for various physics applications, for example, antihydrogen production

  20. ORBIT : BEAM DYNAMICS CALCULATIONS FOR HIGH - INTENSITY RINGS

    International Nuclear Information System (INIS)

    HOLMES, J.A.; DANILOV, V.; GALAMBOS, J.; SHISHLO, A.; COUSINEAU, S.; CHOU, W.; MICHELOTTI, L.; OSTIGUY, F.; WEI, J.

    2002-01-01

    We are developing a computer code, ORBIT, specifically for beam dynamics calculations in high-intensity rings. Our approach allows detailed simulation of realistic accelerator problems. ORBIT is a particle-in-cell tracking code that transports bunches of interacting particles through a series of nodes representing elements, effects, or diagnostics that occur in the accelerator lattice. At present, ORBIT contains detailed models for strip-foil injection including painting and foil scattering; rf focusing and acceleration; transport through various magnetic elements; longitudinal and transverse impedances; longitudinal, transverse, and three-dimensional space charge forces; collimation and limiting apertures; and the calculation of many useful diagnostic quantities. ORBIT is an object-oriented code, written in C++ and utilizing a scripting interface for the convenience of the user. Ongoing improvements include the addition of a library of accelerator maps, BEAMLINE/MXYZPTLK the introduction of a treatment magnet errors and fringe fields; the conversion of the scripting interface to the standard scripting language, Python; and the parallelization of the computations using MPI. The ORBIT code is an open source, powerful, and convenient tool for studying beam dynamics in high-intensity rings

  1. Injection and capture simulations for a high intensity proton synchrotron

    International Nuclear Information System (INIS)

    Cho, Y.; Lessner, E.; Symon, K.; Univ. of Wisconsin, Madison, WI

    1994-01-01

    The injection and capture processes in a high intensity, rapid cycling, proton synchrotron are simulated by numerical integration. The equations of motion suitable for rapid numerical simulation are derived so as to maintain symplecticity and second-order accuracy. By careful bookkeeping, the authors can, for each particle that is lost, determine its initial phase space coordinates. They use this information as a guide for different injection schemes and rf voltage programming, so that a minimum of particle losses and dilution are attained. A fairly accurate estimate of the space charge fields is required, as they influence considerably the particle distribution and reduce the capture efficiency. Since the beam is represented by a relatively coarse ensemble of macro particles, the authors study several methods of reducing the statistical fluctuations while retaining the fine structure (high intensity modulations) of the beam distribution. A pre-smoothing of the data is accomplished by the cloud-in-cell method. The program is checked by making sure that it gives correct answers in the absence of space charge, and that it reproduces the negative mass instability properly. Results of simulations for stationary distributions are compared to their analytical predictions. The capture efficiency for the rapid-cycling synchrotron is analyzed with respect to variations in the injected beam energy spread, bunch length, and rf programming

  2. Direct-aperture optimization applied to selection of beam orientations in intensity-modulated radiation therapy

    International Nuclear Information System (INIS)

    Bedford, J L; Webb, S

    2007-01-01

    Direct-aperture optimization (DAO) was applied to iterative beam-orientation selection in intensity-modulated radiation therapy (IMRT), so as to ensure a realistic segmental treatment plan at each iteration. Nested optimization engines dealt separately with gantry angles, couch angles, collimator angles, segment shapes, segment weights and wedge angles. Each optimization engine performed a random search with successively narrowing step sizes. For optimization of segment shapes, the filtered backprojection (FBP) method was first used to determine desired fluence, the fluence map was segmented, and then constrained direct-aperture optimization was used thereafter. Segment shapes were fully optimized when a beam angle was perturbed, and minimally re-optimized otherwise. The algorithm was compared with a previously reported method using FBP alone at each orientation iteration. An example case consisting of a cylindrical phantom with a hemi-annular planning target volume (PTV) showed that for three-field plans, the method performed better than when using FBP alone, but for five or more fields, neither method provided much benefit over equally spaced beams. For a prostate case, improved bladder sparing was achieved through the use of the new algorithm. A plan for partial scalp treatment showed slightly improved PTV coverage and lower irradiated volume of brain with the new method compared to FBP alone. It is concluded that, although the method is computationally intensive and not suitable for searching large unconstrained regions of beam space, it can be used effectively in conjunction with prior class solutions to provide individually optimized IMRT treatment plans

  3. Analysis of technology and seminar on economic trends about High-intensity LED

    International Nuclear Information System (INIS)

    2003-09-01

    This is divided into two parts. Contents of this report in the first part are technical trends on high-intensity LED which reports introduction of LED as compound semiconductor, white LED? patent issues, review on technology of High-intensity LED and Reliability of High-intensity LED. The second part deals with economic tends about High-intensity LED. This seminar was held to report analysis and economical trends about High-intensity LED by Korea Industrial Education Institute in 2003.

  4. Are Participants Aware of the Type and Intensity of Transcranial Direct Current Stimulation?

    Directory of Open Access Journals (Sweden)

    Matthew F Tang

    Full Text Available Transcranial direct current stimulation (tDCS is commonly used to alter cortical excitability but no experimental study has yet determined whether human participants are able to distinguish between the different types (anodal, cathodal, and sham of stimulation. If they can then they are not blind to experimental conditions. We determined whether participants could identify different types of stimulation (anodal, cathodal, and sham and current strengths after experiencing the sensations of stimulation during current onset and offset (which are associated with the most intense sensations in Experiment 1 and also with a prolonged period of stimulation in Experiment 2. We first familiarized participants with anodal, cathodal, and sham stimulation at both 1 and 2 mA over either primary motor or visual cortex while their sensitivity to small changes in visual stimuli was assessed. The different stimulation types were then applied for a short (Experiment 1 or extended (Experiment 2 period with participants indicating the type and strength of the stimulation on the basis of the evoked sensations. Participants were able to identify the intensity of stimulation with shorter, but not longer periods, of stimulation at better than chance levels but identification of the different stimulation types was at chance levels. This result suggests that even after exposing participants to stimulation, and ensuring they are fully aware of the existence of a sham condition, they are unable to identify the type of stimulation from transient changes in stimulation intensity or from more prolonged stimulation. Thus participants are able to identify intensity of stimulation but not the type of stimulation.

  5. Nurse- vs nomogram-directed glucose control in a cardiovascular intensive care unit.

    Science.gov (United States)

    Chant, Clarence; Mustard, Mary; Thorpe, Kevin E; Friedrich, Jan O

    2012-07-01

    Paper-based nomograms are reasonably effective for achieving glycemic control but have low adherence and are less adaptive than nurses' judgment. To compare efficacy (glucose control) and safety (hypoglycemia) achieved by use of a paper nomogram versus nurses' judgment. Prospective, randomized, open-label, crossover trial in an intensive care unit in postoperative patients with glucose concentrations greater than 8 mmol/L. Consenting nurses with at least 1 year of experience were randomized to use either their judgment or a validated paper-based nomogram for glucose control. After completion of 2 study shifts, the nurses used the alternative method for the next 2 study shifts. Glucose target level and safety and efficacy boundaries were the same for both methods. The primary end point was area under glucose time curve per hour. Thirty-four nurses contributed 95 shifts of data (44 nomogram-directed, 51 nurse-directed). Adherence to the nomogram was higher in the nomogram group than hypothetical adherence in the nurse-directed group for correct adjustments in insulin infusion (70% vs 37%; P unit where nurses generally accepted the need for tight glucose control, nurse-directed control was as effective and as safe as nomogram-based control.

  6. Overview of High Intensity Linac Programs in Europe

    CERN Document Server

    Garoby, R

    2004-01-01

    Recent years have seen a boost in the support by the European Union (EU) of accelerator research in Europe. Provided they coordinate their efforts and define common goals and strategies, laboratories and institutions from the member states can receive a financial support reaching 50% of the total project cost. In the field of High Intensity Linacs, the EU has already supported the EURISOL initiative for nuclear physics, which this year is applying for funding of a Design Study, and the development of linacs for Waste Transmutation. More recently, an initiative for high-energy physics has been approved, which includes a programme for the development of pulsed linac technologies. The coordination and synergy imposed by the EU rules increase the benefit of the allocated resources. Combined with the ongoing internal projects in the partner laboratories, these European initiatives represent a strong effort focussed towards the development of linac technologies. This paper summarises the requests from the various E...

  7. High-Intensity Focused Ultrasound Treatment for Advanced Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Yufeng Zhou

    2014-01-01

    Full Text Available Pancreatic cancer is under high mortality but has few effective treatment modalities. High-intensity focused ultrasound (HIFU is becoming an emerging approach of noninvasively ablating solid tumor in clinics. A variety of solid tumors have been tried on thousands of patients in the last fifteen years with great success. The principle, mechanism, and clinical outcome of HIFU were introduced first. All 3022 clinical cases of HIFU treatment for the advanced pancreatic cancer alone or in combination with chemotherapy or radiotherapy in 241 published papers were reviewed and summarized for its efficacy, pain relief, clinical benefit rate, survival, Karnofsky performance scale (KPS score, changes in tumor size, occurrence of echogenicity, serum level, diagnostic assessment of outcome, and associated complications. Immune response induced by HIFU ablation may become an effective way of cancer treatment. Comments for a better outcome and current challenges of HIFU technology are also covered.

  8. Optical Fiber High Temperature Sensor Instrumentation for Energy Intensive Industries

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Kristie L.; Wang, Anbo; Pickrell, Gary R.

    2006-11-14

    This report summarizes technical progress during the program “Optical Fiber High Temperature Sensor Instrumentation for Energy Intensive Industries”, performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The objective of this program was to use technology recently invented at Virginia Tech to develop and demonstrate the application of self-calibrating optical fiber temperature and pressure sensors to several key energy-intensive industries where conventional, commercially available sensors exhibit greatly abbreviated lifetimes due primarily to environmental degradation. A number of significant technologies were developed under this program, including • a laser bonded silica high temperature fiber sensor with a high temperature capability up to 700°C and a frequency response up to 150 kHz, • the world’s smallest fiber Fabry-Perot high temperature pressure sensor (125 x 20 μm) with 700°C capability, • UV-induced intrinsic Fabry-Perot interferometric sensors for distributed measurement, • a single crystal sapphire fiber-based sensor with a temperature capability up to 1600°C. These technologies have been well demonstrated and laboratory tested. Our work plan included conducting major field tests of these technologies at EPRI, Corning, Pratt & Whitney, and Global Energy; field validation of the technology is critical to ensuring its usefulness to U.S. industries. Unfortunately, due to budget cuts, DOE was unable to follow through with its funding commitment to support Energy Efficiency Science Initiative projects and this final phase was eliminated.

  9. Relativistic electron mirrors from high intensity laser nanofoil interactions

    International Nuclear Information System (INIS)

    Kiefer, Daniel

    2012-01-01

    The reflection of a laser pulse from a mirror moving close to the speed of light could in principle create an X-ray pulse with unprecedented high brightness owing to the increase in photon energy and accompanying temporal compression by a factor of 4γ 2 , where γ is the Lorentz factor of the mirror. While this scheme is theoretically intriguingly simple and was first discussed by A. Einstein more than a century ago, the generation of a relativistic structure which acts as a mirror is demanding in many different aspects. Recently, the interaction of a high intensity laser pulse with a nanometer thin foil has raised great interest as it promises the creation of a dense, attosecond short, relativistic electron bunch capable of forming a mirror structure that scatters counter-propagating light coherently and shifts its frequency to higher photon energies. However, so far, this novel concept has been discussed only in theoretical studies using highly idealized interaction parameters. This thesis investigates the generation of a relativistic electron mirror from a nanometer foil with current state-of-the-art high intensity laser pulses and demonstrates for the first time the reflection from those structures in an experiment. To achieve this result, the electron acceleration from high intensity laser nanometer foil interactions was studied in a series of experiments using three inherently different high power laser systems and free-standing foils as thin as 3nm. A drastic increase in the electron energies was observed when reducing the target thickness from the micrometer to the nanometer scale. Quasi-monoenergetic electron beams were measured for the first time from ultrathin (≤5nm) foils, reaching energies up to ∝35MeV. The acceleration process was studied in simulations well-adapted to the experiments, indicating the transition from plasma to free electron dynamics as the target thickness is reduced to the few nanometer range. The experience gained from those

  10. Relativistic electron mirrors from high intensity laser nanofoil interactions

    Energy Technology Data Exchange (ETDEWEB)

    Kiefer, Daniel

    2012-12-21

    The reflection of a laser pulse from a mirror moving close to the speed of light could in principle create an X-ray pulse with unprecedented high brightness owing to the increase in photon energy and accompanying temporal compression by a factor of 4γ{sup 2}, where γ is the Lorentz factor of the mirror. While this scheme is theoretically intriguingly simple and was first discussed by A. Einstein more than a century ago, the generation of a relativistic structure which acts as a mirror is demanding in many different aspects. Recently, the interaction of a high intensity laser pulse with a nanometer thin foil has raised great interest as it promises the creation of a dense, attosecond short, relativistic electron bunch capable of forming a mirror structure that scatters counter-propagating light coherently and shifts its frequency to higher photon energies. However, so far, this novel concept has been discussed only in theoretical studies using highly idealized interaction parameters. This thesis investigates the generation of a relativistic electron mirror from a nanometer foil with current state-of-the-art high intensity laser pulses and demonstrates for the first time the reflection from those structures in an experiment. To achieve this result, the electron acceleration from high intensity laser nanometer foil interactions was studied in a series of experiments using three inherently different high power laser systems and free-standing foils as thin as 3nm. A drastic increase in the electron energies was observed when reducing the target thickness from the micrometer to the nanometer scale. Quasi-monoenergetic electron beams were measured for the first time from ultrathin (≤5nm) foils, reaching energies up to ∝35MeV. The acceleration process was studied in simulations well-adapted to the experiments, indicating the transition from plasma to free electron dynamics as the target thickness is reduced to the few nanometer range. The experience gained from those

  11. Outcomes of exertional rhabdomyolysis following high-intensity resistance training.

    Science.gov (United States)

    Huynh, A; Leong, K; Jones, N; Crump, N; Russell, D; Anderson, M; Steinfort, D; Johnson, D F

    2016-05-01

    High-intensity resistance training (HIRT) programmes are increasingly popular amongst personal trainers and those attending gymnasiums. We report the experience of exertional rhabdomyolysis (ER) at two tertiary hospitals in Melbourne, Australia. To compare the clinical outcomes of ER with other causes of rhabdomyolysis. Retrospective cross-sectional study of patients presenting with a serum creatine kinase (CK) of greater than 25 000 units/L from 1 September 2013 to 31 August 2014 at two tertiary referral hospitals in Melbourne, Australia. Records were examined to identify care measures implemented during hospital stay, clinical outcomes during admission and on subsequent follow up. Thirty four cases of rhabdomyolysis with a CK of greater than 25 000 units/L (normal range: 20-180 units/L) were identified during the 12-month study period. Twelve of the 34 cases (35%) had ER with 10 of 12 related to HIRT. No acute kidney injury, intensive care admission or death were seen among those with ER. All cases were managed conservatively, with 11 admitted and 9 receiving intravenous fluids only. In contrast, patients with rhabdomyolysis from other causes experienced significantly higher rates of intensive care admission (64%, P = 0.0002), acute kidney injury (82%, P = 0.0001) and death (27%, P = 0.069). ER resulting from HIRT appears to have a benign course compared with rhabdomyolysis of other aetiologies in patients with a serum CK greater than 25 000 units/L. Conservative management of ER appears to be adequate, although this requires confirmation in future prospective studies. © 2016 Royal Australasian College of Physicians.

  12. Neurovascular Saturation Thresholds Under High Intensity Auditory Stimulation During Wake

    Science.gov (United States)

    Schei, Jennifer L.; Van Nortwick, Amy S.; Meighan, Peter C.; Rector, David M.

    2012-01-01

    Coupling between neural activity and hemodynamic responses is important in understanding brain function, interpreting brain imaging signals, and assessing pathological conditions. Tissue state is a major factor in neurovascular coupling and may alter the relationship between neural and hemodynamic activity. However, most neurovascular coupling studies are performed under anesthetized or sedated states which may have severe consequences on coupling mechanisms. Our previous studies showed that following prolonged periods of sleep deprivation, evoked hemodynamic responses were muted despite consistent electrical responses, suggesting that sustained neural activity may decrease vascular compliance and limit blood perfusion. To investigate potential perfusion limitations during natural waking conditions, we simultaneously measured evoked response potentials (ERPs) and evoked hemodynamic responses using optical imaging techniques to increasing intensity auditory stimulation. The relationship between evoked hemodynamic responses and integrated ERPs followed a sigmoid relationship where the hemodynamic response approached saturation at lower stimulus intensities than the ERP. If limits in blood perfusion are caused by stretching of the vessel wall, then these results suggest there may be decreased vascular compliance due to sustained neural activity during wake, which could limit vascular responsiveness and local blood perfusion. Conditions that stress cerebral vasculature, such as sleep deprivation and some pathologies (e.g., epilepsy), may further decrease vascular compliance, limit metabolic delivery, and cause tissue trauma. While ERPs and evoked hemodynamic responses provide an indication of the correlated neural activity and metabolic demand, the relationship between these two responses is complex and the different measurement techniques are not directly correlated. Future studies are required to verify these findings and further explore neurovascular coupling during

  13. High Intensity Training (HIT) en High Intensity Interval Training (HIIT) bij patiënten met chronische non-specifieke lage rugpijn: effecten op fysieke parameters en subjectieve pijnbeleving

    OpenAIRE

    Nuyttens, Jelle; Vuylsteke, Michiel

    2016-01-01

    Niet-specifieke chronische lage rugpijn (NSCLRP) zorgt via directe en indirecte kosten voor een enorme economische last in onze huidige maatschappij. Tot op heden wordt een grote variëteit aan trainingsprogramma's aangewend in de behandeling van lage rugpijn, maar er bestaat weinig consensus omtrent de ideale trainingsintensiteit. In deze pilotstudie werd de bruikbaarheid en het effect van de combinatie 'High-Intensity Interval Training (HIIT)' en 'High-Intensity Training (HIT)' op pijn, acti...

  14. Proceedings of the third ICFA mini-workshop on high intensity, high brightness hadron accelerators

    International Nuclear Information System (INIS)

    Roser, T.

    1997-01-01

    The third mini-workshop on high intensity, high brightness hadron accelerators was held at Brookhaven National Laboratory on May 7-9, 1997 and had about 30 participants. The workshop focussed on rf and longitudinal dynamics issues relevant to intense and/or bright hadron synchrotrons. A plenary session was followed by four sessions on particular topics. This document contains copies of the viewgraphs used as well as summaries written by the session chairs

  15. High Intensity Effects in the SNS Accumulator Ring

    International Nuclear Information System (INIS)

    Holmes, Jeffrey A.; Cousineau, Sarah M.; Danilov, Viatcheslav; Plum, Michael A.; Shishlo, Andrei P.

    2008-01-01

    Currently operating at 0.5 MW beam power on target, the Spallation Neutron Source (SNS) is already the world's most powerful pulsed neutron source. However, we are only one third of the way to full power. As we ramp toward full power, the control of the beam and beam loss in the ring will be critical. In addition to practical considerations, such as choice of operating point, painting scheme, RF bunching, and beam scattering, it may be necessary to understand and mitigate collective effects due to space charge, impedances, and electron clouds. At each stage of the power ramp-up, we use all available resources to understand and to minimize beam losses. From the standpoint of beam dynamics, the losses observed so far under normal operating conditions have not involved collective phenomena. We are now entering the intensity regime in which this may change. In dedicated high intensity beam studies, we have already observed resistive wall, extraction kicker impedance-driven, and electron cloud activities. The analysis and simulation of this data are important ongoing activities at SNS. This paper discusses the status of this work, as well as other considerations necessary to the successful full power operation of SNS.

  16. Muscular soreness following prolonged intermittent high-intensity shuttle running.

    Science.gov (United States)

    Thompson, D; Nicholas, C W; Williams, C

    1999-05-01

    The aim of this study was to examine the impact of prolonged intermittent high-intensity shuttle running on soreness and markers of muscle damage. Sixteen males took part in the study, half of whom were assigned to a running group and half to a resting control group. The exercise protocol involved 90 min of intermittent shuttle running and walking (Loughborough Intermittent Shuttle Test: LIST), reflecting the activity pattern found in multiple-sprint sports such as soccer. Immediately after exercise, there was a significant increase (P < 0.05) in serum activities of creatine kinase and aspartate aminotransferase, and values remained above baseline for 48 h (P < 0.05). Median peak activities of creatine kinase and aspartate aminotransferase occurred 24 h post-exercise and were 774 and 43 U x l(-1), respectively. The intensity of general muscle soreness, and in the specific muscles investigated, was greater than baseline for 72 h after the shuttle test (P < 0.05), peaking 24-48 h post-exercise (P < 0.05). Muscle soreness was not correlated with either creatine kinase or aspartate aminotransferase activity. Soreness was most frequently reported in the hamstrings. Neither soreness nor serum enzyme activity changed in the controls over the 4 day observation period. It appears that unaccustomed performance of prolonged intermittent shuttle running produces a significant increase in both soreness and markers of muscle damage.

  17. High-intensity lower limb endurance training in chronic respiratory disease

    OpenAIRE

    Tanaka, Takako; Arizono, Shinichi; Hanada, Masatoshi; Senjyu, Hideaki

    2015-01-01

    High-intensity endurance training is mainly undertaken during pulmonary rehabilitation for patients with chronic respiratory disease. High-intensity endurance training is recommended in many clinical management guidelines. High-intensity endurance training involves training generally at an intensity of at 60-80% of the patient’s peak work capacity or higher. The effects of high-intensity lower limb endurance training have mostly been investigated in chronic obstructive pulmonary disease (COPD...

  18. High intensity laser interactions with sub-micron droplets

    International Nuclear Information System (INIS)

    Mountford, L.C.

    1999-01-01

    A high-density source of liquid ethanol droplets has been developed, characterised and used in laser interaction studies for the first time. Mie Scattering and attenuation measurements show that droplets with a radius of (0.5 ± 0.1) μm and atomic densities of 10 19 atoms/cm 3 can be produced, bridging the gap between clusters and macroscopic solids. Lower density (10 16 cm -3 ) sprays can also be produced and these are electrostatically split into smaller droplets with a radius of (0.3 ± 0.1) μm. This work has been accepted for publication in Review of Scientific Instruments. A range of high intensity interaction experiments have been carried out with this unique sub-micron source. The absolute yield of keV x-rays, generated using 527 nm, 2 ps pulses focused to ∼10 17 W/cm 2 , was measured for the first time. ∼7 μJ of x-rays with photon energies above 1 keV were produced, comparable to yields obtained from much higher Z Xenon clusters. At intensities ≤10 16 W/cm 2 the yield from droplets exceeds that from solid targets of similar Z. The droplet medium is debris free and self-renewing, providing a suitable x-ray source for lithographic techniques. Due to the spacing between the droplets, it was expected that the droplet plasma temperature would exceed that of a solid target plasma, which is typically limited by rapid heat conduction to <1 keV. Analysis of the x-ray data shows this to be true with a mean droplet plasma temperature of (2 ± 0.8) keV, and a number of measurements exceeding 5 keV (to appear in Applied Physics Letters). The absorption of high intensity laser pulses in the dense spray has been measured for the first time and this was found to be wavelength and polarisation independent and in excess of 60%. These first interaction measurements clearly indicate that there are significant differences between the laser heating of droplet, solid and cluster targets. (author)

  19. High-Intensity Intermittent Exercise and Fat Loss

    Directory of Open Access Journals (Sweden)

    Stephen H. Boutcher

    2011-01-01

    Full Text Available The effect of regular aerobic exercise on body fat is negligible; however, other forms of exercise may have a greater impact on body composition. For example, emerging research examining high-intensity intermittent exercise (HIIE indicates that it may be more effective at reducing subcutaneous and abdominal body fat than other types of exercise. The mechanisms underlying the fat reduction induced by HIIE, however, are undetermined. Regular HIIE has been shown to significantly increase both aerobic and anaerobic fitness. HIIE also significantly lowers insulin resistance and results in a number of skeletal muscle adaptations that result in enhanced skeletal muscle fat oxidation and improved glucose tolerance. This review summarizes the results of HIIE studies on fat loss, fitness, insulin resistance, and skeletal muscle. Possible mechanisms underlying HIIE-induced fat loss and implications for the use of HIIE in the treatment and prevention of obesity are also discussed.

  20. High intensity neutrino source superconducting solenoid cyrostat design

    Energy Technology Data Exchange (ETDEWEB)

    Page, T.M.; Nicol, T.H.; Feher, S.; Terechkine, I.; Tompkins, J.; /Fermilab

    2006-06-01

    Fermi National Accelerator Laboratory (FNAL) is involved in the development of a 100 MeV superconducting linac. This linac is part of the High Intensity Neutrino Source (HINS) R&D Program. The initial beam acceleration in the front end section of the linac is achieved using room temperature spoke cavities, each of which is combined with a superconducting focusing solenoid. These solenoid magnets are cooled with liquid helium at 4.5K, operate at 250 A and have a maximum magnetic field strength of 7.5 T. The solenoid cryostat will house the helium vessel, suspension system, thermal shield, multilayer insulation, power leads, instrumentation, a vacuum vessel and cryogenic distribution lines. This paper discusses the requirements and detailed design of these superconducting solenoid cryostats.

  1. An outline of research facilities of high intensity proton accelerator

    International Nuclear Information System (INIS)

    Tanaka, Shun-ichi

    1995-01-01

    A plan called PROTON ENGINEERING CENTER has been proposed in JAERI. The center is a complex composed of research facilities and a beam shape and storage ring based on a proton linac with an energy of 1.5 GeV and an average current of 10 mA. The research facilities planned are OMEGA·Nuclear Energy Development Facility, Neutron Facility for Material Irradiation, Nuclear Data Experiment Facility, Neutron Factory, Meson Factory, spallation Radioisotope Beam Facility, and Medium Energy Experiment Facility, where high intensity proton beam and secondary particle beams such as neutrons, π-mesons, muons, and unstable isotopes originated from the protons are available for promoting the innovative research of nuclear energy and basic science and technology. (author)

  2. High intensity proton accelerator and its application (Proton Engineering Center)

    International Nuclear Information System (INIS)

    Tanaka, Shun-ichi

    1995-01-01

    A plan called PROTON ENGINEERING CENTER has been proposed in JAERI. The center is a complex composed of research facilities and a beam shape and storage ring based on a proton linac with an energy of 1.5 GeV and an average current of 10 mA. The research facilities planned are OMEGA·Nuclear Energy Development Facility, Neutron Facility for Material Irradiation, Nuclear Data Experiment Facility, Neutron Factory, Meson Factory, Spallation Radioisotope Beam Facility, and Medium Energy Experiment Facility, where high intensity proton beam and secondary particle beams such as neutrons, π-mesons, muons, and unstable isotopes originated from the protons are available for promoting the innovative research of nuclear energy and basic science and technology. (author)

  3. Simplified shielding calculation system for high-intensity proton accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Masumura, Tomomi; Nakashima, Hiroshi; Nakane, Yoshihiro; Sasamoto, Nobuo [Center for Neutron Science, Tokai Research Establishment, Japan Atomic Energy Research Institute, Tokai, Ibaraki (Japan)

    2000-06-01

    A simplified shielding calculation system is developed for applying conceptual shielding design of facilities in the joint project for high-intensity proton accelerators. The system is composed of neutron transmission calculation part for bulk shielding using simplified formulas: Moyer model and Tesch's formula, and neutron skyshine calculation part using an empirical formula: Stapleton's formula. The system is made with the Microsoft Excel software for user's convenience. This report provides a manual for the system as well as calculation conditions used in the calculation such as Moyer model's parameters. In this report preliminary results based on data at December 8, 1999, are also shown as an example. (author)

  4. Calculated intensity of high-energy neutron beams

    International Nuclear Information System (INIS)

    Mustapha, B.; Nolen, J.A.; Back, B.B.

    2004-01-01

    The flux, energy and angular distributions of high-energy neutrons produced by in-flight spallation and fission of a 400 MeV/A 238 U beam and by the break-up of a 400 MeV/A deuteron beam are calculated. In both cases very intense secondary neutron beams are produced, peaking at zero degrees, with a relatively narrow energy spread. Such secondary neutron beams can be produced with the primary beams from the proposed rare isotope accelerator driver linac. The break-up of a 400 kW deuteron beam on a liquid-lithium target can produce a neutron flux of >10 10 neutrons/cm 2 /s at a distance of 10 m from the target

  5. Pedalling rate affects endurance performance during high-intensity cycling

    DEFF Research Database (Denmark)

    Nielsen, Jens Steen; Hansen, Ernst Albin; Sjøgaard, Gisela

    2004-01-01

    The purpose of this study into high-intensity cycling was to: (1) test the hypothesis that endurance time is longest at a freely chosen pedalling rate (FCPR), compared to pedalling rates 25% lower (FCPR-25) and higher (FCPR+25) than FCPR, and (2) investigate how physiological variables......, and endurance time at W90 with FCPR-25, FCPR, and FCPR+25. Power reserve was calculated as the difference between applied power output at a given pedalling rate and peak crank power at this same pedalling rate. W90 was 325 (47) W. FCPR at W90 was 78 (11) rpm, resulting in FCPR-25 being 59 (8) rpm and FCPR+25...... time was negatively related to VO(2max), W90 and % MHC I, while positively related to power reserve. In conclusion, at group level, endurance time was longer at FCPR and at a pedalling rate 25% lower compared to a pedalling rate 25% higher than FCPR. Further, inter-individual physiological variables...

  6. Fast damping in mismatched high intensity beam transportation

    Directory of Open Access Journals (Sweden)

    V. Variale

    2001-08-01

    Full Text Available A very fast damping of beam envelope oscillation amplitudes was recently observed in simulations of high intensity beam transport, through periodic FODO cells, in mismatched conditions [V. Variale, Nuovo Cimento Soc. Ital. Fis. 112A, 1571–1582 (1999 and T. Clauser et al., in Proceedings of the Particle Accelerator Conference, New York, 1999 (IEEE, Piscataway, NJ, 1999, p. 1779]. A Landau damping mechanism was proposed at the origin of observed effect. In this paper, to further investigate the source of this fast damping, extensive simulations have been carried out. The results presented here support the interpretation of the mechanism at the origin of the fast damping as a Landau damping effect.

  7. High Intensity, Pulsed, D-D Neutron Generator

    International Nuclear Information System (INIS)

    Williams, D.L.; Vainionpaa, J.H.; Jones, G.; Piestrup, M.A.; Gary, C.K.; Harris, J.L.; Fuller, M.J.; Cremer, J.T.; Ludewigt, Bernhard A.; Kwan, J.W.; Reijonen, J.; Leung, K.-N.; Gough, R.A.

    2008-01-01

    Single ion-beam RF-plasma neutron generators are presented as a laboratory source of intense neutrons. The continuous and pulsed operations of such a neutron generator using the deuterium-deuterium fusion reaction are reported. The neutron beam can be pulsed by switching the RF plasma and/or a gate electrode. These generators are actively vacuum pumped so that a continuous supply of deuterium gas is present for the production of ions and neutrons. This contributes to the generator's long life. These single-beam generators are capable of producing up to 1E10 n/s. Previously, Adelphi and LBNL have demonstrated these generators applications in fast neutron radiography, Prompt Gamma Neutron Activation Analysis (PGNAA) and Neutron Activation Analysis (NAA). Together with an inexpensive compact moderator, these high-output neutron generators extend useful applications to home laboratory operations.

  8. What IAPT CBT High-Intensity Trainees Do After Training.

    Science.gov (United States)

    Liness, Sheena; Lea, Susan; Nestler, Steffen; Parker, Hannah; Clark, David M

    2017-01-01

    The UK Department of Health Improving Access to Psychological Therapies (IAPT) initiative set out to train a large number of therapists in cognitive behaviour therapies (CBT) for depression and anxiety disorders. Little is currently known about the retention of IAPT CBT trainees, or the use of CBT skills acquired on the course in the workplace after training has finished. This study set out to conduct a follow-up survey of past CBT trainees on the IAPT High Intensity CBT Course at the Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London (KCL), one of the largest IAPT High Intensity courses in the UK. Past trainees (n = 212) across 6 cohorts (2008-2014 intakes) were contacted and invited to participate in a follow-up survey. A response rate of 92.5% (n = 196) was achieved. The vast majority of IAPT trainees continue to work in IAPT services posttraining (79%) and to practise CBT as their main therapy modality (94%); 61% have become CBT supervisors. A minority (23%) have progressed to other senior roles in the services. Shortcomings are reported in the use of out-of-office CBT interventions, the use of disorder-specific outcome measures and therapy recordings to inform therapy and supervision. Past trainees stay working in IAPT services and continue to use CBT methods taught on the course. Some NICE recommended treatment procedures that are likely to facilitate patients' recovery are not being routinely implemented across IAPT services. The results have implications for the continued roll out of the IAPT programme, and other future large scale training initiatives.

  9. Material studies for pulsed high-intensity proton beam targets

    International Nuclear Information System (INIS)

    Simos, N.; Kirk, H.; Ludewig, H.; Thieberger, P.; Weng, W-T.; McDonald, K.; Yoshimura, K.

    2004-01-01

    Intense beams for muon colliders and neutrino facilities require high-performance target stations of 1-4 MW proton beams. The physics requirements for such a system push the envelope of our current knowledge as to how materials behave under high-power beams for both short and long exposure. The success of an adopted scheme that generates, captures and guides secondary particles depends on the useful life expectancy of this critical system. This paper presents an overview of what has been achieved during the various phases of the experimental effort including a tentative plan to continue the effort by expanding the material matrix. The first phase of the project was to study the changes after irradiation in mechanical properties and specially in thermal expansion coefficient of various materials. During phase-I the study attention was primarily focused on Super-invar and in a lesser degree on Inconel-718. Invar is a metal alloy which predominantly consists of 62% Fe, 32% Ni and 5% Co. It is showed that this metal, whose non-irradiated properties held such promise, can only be considered a serious target candidate for an intense proton beam only if one can anneal the atomic displacements followed by the appropriate heat treatment to restore its favorable expansion coefficient. New materials that have been developed for various industrial needs by optimizing key properties, might be of value for the accelerator community. These materials like carbon-carbon composites, titanium alloys, the Toyota 'gum metal', the Vascomax material and the AlBeMet alloy will be explored and tested in the second phase of the project. (A.C.)

  10. Frequency conversion of high-intensity, femtosecond laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Banks, P S

    1997-06-01

    Almost since the invention of the laser, frequency conversion of optical pulses via non- linear processes has been an area of active interest. However, third harmonic generation using ~(~1 (THG) in solids is an area that has not received much attention because of ma- terial damage limits. Recently, the short, high-intensity pulses possible with chirped-pulse amplification (CPA) laser systems allow the use of intensities on the order of 1 TW/cm2 in thin solids without damage. As a light source to examine single-crystal THG in solids and other high field inter- actions, the design and construction of a Ti:sapphire-based CPA laser system capable of ultimately producing peak powers of 100 TW is presented. Of special interest is a novel, all-reflective pulse stretcher design which can stretch a pulse temporally by a factor of 20,000. The stretcher design can also compensate for the added material dispersion due to propagation through the amplifier chain and produce transform-limited 45 fs pulses upon compression. A series of laser-pumped amplifiers brings the peak power up to the terawatt level at 10 Hz, and the design calls for additional amplifiers to bring the power level to the 100 TW level for single shot operation. The theory for frequency conversion of these short pulses is presented, focusing on conversion to the third harmonic in single crystals of BBO, KD*P, and d-LAP (deuterated I-arginine phosphate). Conversion efficiencies of up to 6% are obtained with 500 fs pulses at 1053 nm in a 3 mm thick BBO crystal at 200 GW/cm 2. Contributions to this process by unphasematched, cascaded second harmonic generation and sum frequency generation are shown to be very significant. The angular relationship between the two orders is used to measure the tensor elements of C = xt3)/4 with Crs = -1.8 x 1O-23 m2/V2 and .15Cri + .54Crs = 4.0 x 1O-23 m2/V2. Conversion efficiency in d-LAP is about 20% that in BBO and conversion efficiency in KD*P is 1% that of BBO. It is calculated

  11. Laser Noise and its Impact on the Performance of Intensity-Modulation with Direct-Detection Analog Photonic Links

    National Research Council Canada - National Science Library

    Urick, Vincent J; Devgan, Preetpaul S; McKinney, Jason D; Dexter, James L

    2007-01-01

    The equations for radio-frequency gain, radio-frequency noise figure, compression dynamic range and spurious-free dynamic range are derived for an analog photonic link employing intensity modulation and direct detection...

  12. Application of high power modulated intense relativistic electron beams for development of Wake Field Accelerator

    International Nuclear Information System (INIS)

    Friedman, M.

    1989-01-01

    This final Progress Report addresses DOE-sponsored research on the development of future high-gradient particle accelerators. The experimental and the theoretical research, which lasted three years, investigated the Two Beam Accelerator (TBA). This high-voltage-gradient accelerator was powered by a modulated intense relativistic electron beam (MIREB) of power >10 10 watts. This research was conceived after a series of successful experiments performed at NRL generating and using MIREBs. This work showed that an RF structure could be built which was directly powered by a modulated intense relativistic electron beam. This structure was then used to accelerate a second electron beam. At the end of the three year project the proof-of-principle accelerator demonstrated the generation of a high current beam of electrons with energy >60 MeV. Scaling laws needed to design practical devices for future applications were also derived

  13. High Intensity Laser Power Beaming Architecture for Space and Terrestrial Missions

    Science.gov (United States)

    Nayfeh, Taysir; Fast, Brian; Raible, Daniel; Dinca, Dragos; Tollis, Nick; Jalics, Andrew

    2011-01-01

    High Intensity Laser Power Beaming (HILPB) has been developed as a technique to achieve Wireless Power Transmission (WPT) for both space and terrestrial applications. In this paper, the system architecture and hardware results for a terrestrial application of HILPB are presented. These results demonstrate continuous conversion of high intensity optical energy at near-IR wavelengths directly to electrical energy at output power levels as high as 6.24 W from the single cell 0.8 cm2 aperture receiver. These results are scalable, and may be realized by implementing receiver arraying and utilizing higher power source lasers. This type of system would enable long range optical refueling of electric platforms, such as MUAV s, airships, robotic exploration missions and provide power to spacecraft platforms which may utilize it to drive electric means of propulsion.

  14. Early goal-directed nutrition versus standard of care in adult intensive care patients

    DEFF Research Database (Denmark)

    Allingstrup, Matilde Jo; Kondrup, Jens; Wiis, Jørgen

    2017-01-01

    Purpose: We assessed the effects of early goal-directed nutrition (EGDN) vs. standard nutritional care in adult intensive care unit (ICU) patients. Methods: We randomised acutely admitted, mechanically ventilated ICU patients expected to stay longer than 3 days in the ICU. In the EGDN group we...... estimated nutritional requirements by indirect calorimetry and 24-h urinary urea aiming at covering 100% of requirements from the first full trial day using enteral and parenteral nutrition. In the standard of care group we aimed at providing 25 kcal/kg/day by enteral nutrition. If this was not met by day 7......, patients were supplemented with parenteral nutrition. The primary outcome was physical component summary (PCS) score of SF-36 at 6 months. We performed multiple imputation for data of the non-responders. Results: We randomised 203 patients and included 199 in the intention-to-treat analyses; baseline...

  15. DROPOUT OF DIRECTIONAL ELECTRON INTENSITIES IN LARGE SOLAR ENERGETIC PARTICLE EVENTS

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Lun C. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Reames, Donald V., E-mail: ltan@umd.edu [Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742 (United States)

    2016-01-10

    In the “gradual” solar energetic particle (SEP) event during solar cycle 23 we have observed the dispersionless modulation (“dropout”) in directional intensities of nonrelativistic electrons. The average duration of dropout periods is ∼0.8 hr, which is consistent with the correlation scale of solar wind turbulence. During the dropout period electrons could display scatter-free transport in an intermittent way. Also, we have observed a decrease in the anisotropic index of incident electrons with increasing electron energy (E{sub e}), while the index of scattered/reflected electrons is nearly independent of E{sub e}. We hence perform an observational examination of the correlation between the anisotropic index of low-energy scattered/reflected electrons and the signature of the locally measured solar wind turbulence in the dissipation range, which is responsible for resonant scattering of nonrelativistic electrons. Since during the dropout period the slab turbulence fraction is dominant (0.8 ± 0.1), we pay close attention to the effect of slab fraction on the correlation examined. Our observation is consistent with the simulation result that in the dominance of the slab turbulence component there should exist a dispatched structure of magnetic flux tubes, along which electrons could be transported in a scatter-free manner. Since a similar phenomenon is exhibited in the “impulsive” SEP event, electron dropout should be a transport effect. Therefore, being different from most ion dropout events, which are due to a compact flare source, the dropout of directional electron intensities should be caused by the change of turbulence status in the solar wind.

  16. DROPOUT OF DIRECTIONAL ELECTRON INTENSITIES IN LARGE SOLAR ENERGETIC PARTICLE EVENTS

    International Nuclear Information System (INIS)

    Tan, Lun C.; Reames, Donald V.

    2016-01-01

    In the “gradual” solar energetic particle (SEP) event during solar cycle 23 we have observed the dispersionless modulation (“dropout”) in directional intensities of nonrelativistic electrons. The average duration of dropout periods is ∼0.8 hr, which is consistent with the correlation scale of solar wind turbulence. During the dropout period electrons could display scatter-free transport in an intermittent way. Also, we have observed a decrease in the anisotropic index of incident electrons with increasing electron energy (E e ), while the index of scattered/reflected electrons is nearly independent of E e . We hence perform an observational examination of the correlation between the anisotropic index of low-energy scattered/reflected electrons and the signature of the locally measured solar wind turbulence in the dissipation range, which is responsible for resonant scattering of nonrelativistic electrons. Since during the dropout period the slab turbulence fraction is dominant (0.8 ± 0.1), we pay close attention to the effect of slab fraction on the correlation examined. Our observation is consistent with the simulation result that in the dominance of the slab turbulence component there should exist a dispatched structure of magnetic flux tubes, along which electrons could be transported in a scatter-free manner. Since a similar phenomenon is exhibited in the “impulsive” SEP event, electron dropout should be a transport effect. Therefore, being different from most ion dropout events, which are due to a compact flare source, the dropout of directional electron intensities should be caused by the change of turbulence status in the solar wind

  17. High intensity proton linear accelerator for Neutron Science Project

    International Nuclear Information System (INIS)

    Mizumoto, Motoharu

    1999-01-01

    JAERI has been proposing the Neutron Science Project (NSP) which will be composed of a high intensity proton accelerator and various research facilities. With an energy of 1.5 GeV and a beam power of 8 MW, the accelerator is required for basic research fields and nuclear waste transmutation studies. The R and D work has been carried out for the components of the accelerator. In the low energy accelerator part, a beam test with an ion source and an RFQ has been performed with a current of 80 mA and a duty factor of 10% at an energy of 2 MeV. A 1 m long high power test model of DTL has been fabricated and tested with a duty factor of 20%. In the high energy accelerator part, a superconducting (SC) linac has been selected as a main option from 100 MeV to 1.5 GeV. A test stand for SC linac cavity with equipment of cryogenics, vacuum, RF source and cavity processing and cleaning system has been prepared to test the fabrication process and physics issues. The vertical tests of β = 0.5 (145 MeV) and β = 0.89 (1.1 GeV) single cell SC cavities have been made resulting in a maximum electric field strength of 44 MV/m and 47 MV/m at 2 K, respectively. (author)

  18. High precision studies of directional correlations

    International Nuclear Information System (INIS)

    El-khosht, M.

    1980-01-01

    Two applications of the method of directional correlations are described. The first part deals with gamma-gamma directional correlations measurements. A total of 27 cascades have been studied in 97 Tc, 206 Pb and 206 Bi. Information is obtained on the angular momenta of levels, multipolarities of electromagnetic transitions and further, reduced transition probabilities. The later part of this thesis describes a determination of anisotropic directional correlation between gamma-rays and LX-rays in 160 Dy. To the authors' knowledge this is the first observation of an anisotropic correlation between gamma rays and X-rays following internal conversion. (Auth.)

  19. Investigations on transport and storage of high ion beam intensities

    International Nuclear Information System (INIS)

    Joshi, Ninad Shrikrishna

    2009-01-01

    In the framework of this thesis the intense low energy ion beam transport was investigated. Especially, the beam transport in toroidal magnetic field configurations was discussed, as it may allow the accumulation of high intensive beams in the future. One of the specific tasks is to design an injection system that can be used for the proposed low energy accumulator ring. A simulation code (TBT) was written to describe the particle motion in curved segments. Particle in Cell techniques were utilized to simulate a multi particle dynamics. A possibility of reading an external data file was made available so that a measured distribution can be used to compare simulation results with measured ones. A second order cloud in cell method was used to calculate charge density and in turn to solve Poisson's equation. Further simulations were performed to study the self field effects on beam transport. Experiments were performed to compare the simulation results and gain practical experience. The preparatory experiments consisted of building and characterization of the ion source in a first step. Along with the momentum spectrometer and emittance scanner the beam properties were studied. Low mass ion beams He + and mixed p, H 2+ , H 3+ beams were analyzed. In the second stage, beams were transported through a solenoid and the phase space distribution was measured as a function of the magnetic field for different beam energies. The phase-space as distributions measured in a first stage were simulated backward and then again forward transported through the solenoid. The simulated results were then compared with the measured distribution. The LINTRA transport program was used. The phase-space distribution was further simulated for transport experiments in a toroidal magnetic field. The transport program that was used to simulate the beam in the toroid was also used to design the injection system. The injection system with its special field configurations was designed to perform

  20. Investigations on transport and storage of high ion beam intensities

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Ninad Shrikrishna

    2009-08-25

    In the framework of this thesis the intense low energy ion beam transport was investigated. Especially, the beam transport in toroidal magnetic field configurations was discussed, as it may allow the accumulation of high intensive beams in the future. One of the specific tasks is to design an injection system that can be used for the proposed low energy accumulator ring. A simulation code (TBT) was written to describe the particle motion in curved segments. Particle in Cell techniques were utilized to simulate a multi particle dynamics. A possibility of reading an external data file was made available so that a measured distribution can be used to compare simulation results with measured ones. A second order cloud in cell method was used to calculate charge density and in turn to solve Poisson's equation. Further simulations were performed to study the self field effects on beam transport. Experiments were performed to compare the simulation results and gain practical experience. The preparatory experiments consisted of building and characterization of the ion source in a first step. Along with the momentum spectrometer and emittance scanner the beam properties were studied. Low mass ion beams He{sup +} and mixed p, H{sup 2+}, H{sup 3+} beams were analyzed. In the second stage, beams were transported through a solenoid and the phase space distribution was measured as a function of the magnetic field for different beam energies. The phase-space as distributions measured in a first stage were simulated backward and then again forward transported through the solenoid. The simulated results were then compared with the measured distribution. The LINTRA transport program was used. The phase-space distribution was further simulated for transport experiments in a toroidal magnetic field. The transport program that was used to simulate the beam in the toroid was also used to design the injection system. The injection system with its special field configurations was

  1. Inelastic scattering in condensed matter with high intensity Moessbauer radiation

    International Nuclear Information System (INIS)

    Yelon, W.B.; Schupp, G.

    1993-02-01

    The QUEGS facility at MURR has produced a number of new results and demonstrated the range of potential applications of high resolution, high intensity Moessbauer scattering. This work has been carried out by both MU and Purdue researchers and includes published results on Na, W, pentadecane, polydimethylsiloxane and other systems, manuscripts submitted on alkali halides (Phys. Rev. B) and accurate Moessbauer lineshape measurements (Phys. Rev. C), and manuscripts in preparation on glycerol, NiAl and Moessbauer spectra obtained by modulating a scattering crystal. Recently, new collaborations have been initiated which will substantially enhance our efforts. These are with W. Steiner (Vienna), G. Coddens (Saclay), and R. D. Taylor (Los Alamos). Steiner is experienced with Fe-57 Moessbauer scattering, while Coddens specializes in quasielastic neutron scattering; both of these areas naturally complement our work. R. D. Taylor has pioneered Moessbauer spectroscopy from the time of its discovery and has already made important contributions to our study of lattice dynamics and superconductivity for lead alloyed with small quantities of tin. At the same time, a significant instrument upgrade is underway, funded in part by the DOE-URIP program

  2. Interaction of High Intensity Electromagnetic Waves with Plasmas: Final Report

    International Nuclear Information System (INIS)

    Shvets, G.

    2008-01-01

    The focus of our work during the duration of this grant was on the following areas: (a) the fundamental plasma physics of intense laser-plasma interactions, including the nonlinear excitation of plasma waves for accelerator applications, as well as the recently discovered by us phenomenon of the relativistic bi-stability of relativistic plasma waves driven by a laser beatwave; (b) interaction of high power microwave beams with magnetized plasma, including some of the recently discovered by us phenomena such as the Undulator Induced Transparency (UIT) as well as the new approaches to dynamic manipulation of microwave pulses; (c) investigations of the multi-color laser pulse interactions in the plasma, including the recently discovered by us phenomenon of Electromagnetic Cascading (EC) and the effect of the EC of three-dimensional dynamics of laser pulses (enhanced/suppressed selffocusing etc.); (d) interaction of high-current electron beams with the ambient plasma in the context of Fast Ignitor (FI) physics, with the emphasis on the nonlinear dynamics of the Weibel instability and beam filamentation.

  3. Pulmonary Vein Isolation by High Intensity Focused Ultrasound

    Directory of Open Access Journals (Sweden)

    Matthias Antz

    2007-04-01

    Full Text Available Pulmonary vein isolation (PVI using radiofrequency current (RFC ablation is a potentially curative treatment option for patients with atrial fibrillation (AF. The shortcomings of the RFC technology (technically challenging, long procedure times, complications steadily kindle the interest in new energy sources and catheter designs. High intensity focused ultrasound (HIFU has the ability to precisely focus ultrasound waves in a defined area with a high energy density. HIFU balloon catheters (BC positioned at the PV ostia appear to be an ideal tool to transmit the ablation energy in a circumferential manner to the PV ostia and may therefore bear substantial advantage over conventional ablation catheters in PVI procedures. In clinical trials the HIFU BC has shown promising success rates similar to RFC catheter ablation for PVI in patients with AF. However, procedure times are still long and serious complications have been observed. Therefore, it may be a valuable alternative to the conventional techniques in selected patients but further clinical trials have to be initiated.

  4. Production and Studies of Photocathodes for High Intensity Electron Beams

    CERN Document Server

    Chevallay, E; Legros, P; Suberlucq, Guy; Trautner, H

    2000-01-01

    For short, high-intensity electron bunches, alkali-tellurides have proved to be a reliable photo-cathode material. Measurements of lifetimes in an rf gun of the CLIC Test Facility II at field strengths greater than 100 MV/m are presented. Before and after using them in this gun, the spectral response of the CS-Te and Rb-Te cathodes were determined with the help of an optical parametric oscillator. The behaviour of both materials can be described by Spicer's 3-step model. Whereas during the use the threshold for photo-emission in Cs-Te was shifted to higher proton energies, that of Rb-Te did not change. Our latest investigations on the stoichiometric ratio of the components are shown. The preparation of the photo-cathodes was monitored with 320 nm wavelength light , with the aim of improving the measurement sensitivity. The latest results on the protection of Cs-Te cathode surfaces with CsBr against pollution are summarized. New investigations on high mean current production are presented.,

  5. High-intensity focused ultrasound ablation around the tubing.

    Science.gov (United States)

    Siu, Jun Yang; Liu, Chenhui; Zhou, Yufeng

    2017-01-01

    High-intensity focused ultrasound (HIFU) has been emerging as an effective and noninvasive modality in cancer treatment with very promising clinical results. However, a small vessel in the focal region could be ruptured, which is an important concern for the safety of HIFU ablation. In this study, lesion formation in the polyacrylamide gel phantom embedded with different tubing (inner diameters of 0.76 mm and 3 mm) at varied flow speeds (17-339 cm/s) by HIFU ablation was photographically recorded. Produced lesions have decreased length (~30%) but slightly increased width (~6%) in comparison to that without the embedded tubing. Meanwhile, bubble activities during the exposures were measured by passive cavitation detection (PCD) at the varied pulse repetition frequency (PRF, 10-30 Hz) and duty cycle (DC, 10%-20%) of the HIFU bursts. High DC and low flow speed were found to produce stronger bubble cavitation whereas no significant influence of the PRF. In addition, high-speed photography illustrated that the rupture of tubing was produced consistently after the first HIFU burst within 20 ms and then multiple bubbles would penetrate into the intraluminal space of tubing through the rupture site by the acoustic radiation force. Alignment of HIFU focus to the anterior surface, middle, and posterior surface of tubing led to different characteristics of vessel rupture and bubble introduction. In summary, HIFU-induced vessel rupture is possible as shown in this phantom study; produced lesion sizes and shapes are dependent on the focus alignment to the tubing, flow speed, and tubing properties; and bubble cavitation and the formation liquid jet may be one of the major mechanisms of tubing rupture as shown in the high-speed photography.

  6. Blood Pressure Directed Booster Trainings Improve Intensive Care Unit Provider Retention of Excellent Cardiopulmonary Resuscitation Skills.

    Science.gov (United States)

    Wolfe, Heather; Maltese, Matthew R; Niles, Dana E; Fischman, Elizabeth; Legkobitova, Veronika; Leffelman, Jessica; Berg, Robert A; Nadkarni, Vinay M; Sutton, Robert M

    2015-11-01

    Brief, intermittent cardiopulmonary resuscitation (CPR) training sessions, "Booster Trainings," improve CPR skill acquisition and short-term retention. The objective of this study was to incorporate arterial blood pressure (ABP) tracings into Booster Trainings to improve CPR skill retention. We hypothesized that ABP-directed CPR "Booster Trainings" would improve intensive care unit (ICU) provider 3-month retention of excellent CPR skills without need for interval retraining. A CPR manikin creating a realistic relationship between chest compression depth and ABP was used for training/testing. Thirty-six ICU providers were randomized to brief, bedside ABP-directed CPR manikin skill retrainings: (1) Booster Plus (ABP visible during training and testing) versus (2) Booster Alone (ABP visible only during training, not testing) versus (3) control (testing, no intervention). Subjects completed skill tests pretraining (baseline), immediately after training (acquisition), and then retention was assessed at 12 hours, 3 and 6 months. The primary outcome was retention of excellent CPR skills at 3 months. Excellent CPR was defined as systolic blood pressure of 100 mm Hg or higher and compression rate 100 to 120 per minute. Overall, 14 of 24 (58%) participants acquired excellent CPR skills after their initial training (Booster Plus 75% vs 50% Booster Alone, P = 0.21). Adjusted for age, ABP-trained providers were 5.2× more likely to perform excellent CPR after the initial training (95% confidence interval [95% CI], 1.3-21.2; P = 0.02), and to retain these skills at 12 hours (adjusted odds ratio, 4.4; 95% CI, 1.3-14.9; P = 0.018) and 3 months (adjusted odds ratio, 4.1; 95% CI, 1.2-13.9; P = 0.023) when compared to baseline performance. The ABP-directed CPR booster trainings improved ICU provider 3-month retention of excellent CPR skills without the need for interval retraining.

  7. Benchmark of Space Charge Simulations and Comparison with Experimental Results for High Intensity, Low Energy Accelerators

    CERN Document Server

    Cousineau, Sarah M

    2005-01-01

    Space charge effects are a major contributor to beam halo and emittance growth leading to beam loss in high intensity, low energy accelerators. As future accelerators strive towards unprecedented levels of beam intensity and beam loss control, a more comprehensive understanding of space charge effects is required. A wealth of simulation tools have been developed for modeling beams in linacs and rings, and with the growing availability of high-speed computing systems, computationally expensive problems that were inconceivable a decade ago are now being handled with relative ease. This has opened the field for realistic simulations of space charge effects, including detailed benchmarks with experimental data. A great deal of effort is being focused in this direction, and several recent benchmark studies have produced remarkably successful results. This paper reviews the achievements in space charge benchmarking in the last few years, and discusses the challenges that remain.

  8. The role of advance directives in end-of-life decisions in Austria: survey of intensive care physicians.

    Science.gov (United States)

    Schaden, Eva; Herczeg, Petra; Hacker, Stefan; Schopper, Andrea; Krenn, Claus G

    2010-10-21

    Currently, intensive care medicine strives to define a generally accepted way of dealing with end-of-life decisions, therapy limitation and therapy discontinuation.In 2006 a new advance directive legislation was enacted in Austria. Patients may now document their personal views regarding extension of treatment. The aim of this survey was to explore Austrian intensive care physicians' experiences with and their acceptance of the new advance directive legislation two years after enactment (2008). Under the aegis of the OEGARI (Austrian Society of Anaesthesiology, Resuscitation and Intensive Care) an anonymised questionnaire was sent to the medical directors of all intensive care units in Austria. The questions focused on the physicians' experiences regarding advance directives and their level of knowledge about the underlying legislation. There were 241 questionnaires sent and 139 were turned, which was a response rate of 58%. About one third of the responders reported having had no experience with advance directives and only 9 directors of intensive care units had dealt with more than 10 advance directives in the previous two years. Life-supporting measures, resuscitation, and mechanical ventilation were the predominantly refused therapies, wishes were mainly expressed concerning pain therapy. A response rate of almost 60% proves the great interest of intensive care professionals in making patient-oriented end-of-life decisions. However, as long as patients do not make use of their right of co-determination, the enactment of the new law can be considered only a first important step forward.

  9. Rainfall intensity characteristics at coastal and high altitude stations ...

    Indian Academy of Sciences (India)

    a given amount of rain occurs is important because heavier rainfall leads to greater runoff, greater soil erosion and less infiltration into the water table. A knowledge of rainfall intensity therefore becomes. Keywords. Rainfall intensity; Kerala; cumulative distribution. J. Earth Syst. Sci. 116, No. 5, October 2007, pp. 451–463.

  10. Energy compensation after sprint- and high-intensity interval training.

    Science.gov (United States)

    Schubert, Matthew M; Palumbo, Elyse; Seay, Rebekah F; Spain, Katie K; Clarke, Holly E

    2017-01-01

    Many individuals lose less weight than expected in response to exercise interventions when considering the increased energy expenditure of exercise (ExEE). This is due to energy compensation in response to ExEE, which may include increases in energy intake (EI) and decreases in non-exercise physical activity (NEPA). We examined the degree of energy compensation in healthy young men and women in response to interval training. Data were examined from a prior study in which 24 participants (mean age, BMI, & VO2max = 28 yrs, 27.7 kg•m-2, and 32 mL∙kg-1∙min-1) completed either 4 weeks of sprint-interval training or high-intensity interval training. Energy compensation was calculated from changes in body composition (air displacement plethysmography) and exercise energy expenditure was calculated from mean heart rate based on the heart rate-VO2 relationship. Differences between high (≥ 100%) and low (high levels of energy compensation gained fat mass, lost fat-free mass, and had lower change scores for VO2max and NEPA. Linear regression results indicated that lower levels of energy compensation were associated with increases in ΔVO2max (p interval training. In agreement with prior work, increases in ΔVO2max and ΔNEPA were associated with lower energy compensation. Future studies should focus on identifying if a dose-response relationship for energy compensation exists in response to interval training, and what underlying mechanisms and participant traits contribute to the large variation between individuals.

  11. Age-Related Changes in Associations Between Reasons for Alcohol Use and High-Intensity Drinking Across Young Adulthood.

    Science.gov (United States)

    Patrick, Megan E; Evans-Polce, Rebecca; Kloska, Deborah D; Maggs, Jennifer L; Lanza, Stephanie T

    2017-07-01

    Analyses focus on whether self-reported reasons for drinking alcohol change in their associations with high-intensity drinking across the transition to adulthood. Self-report data on high-intensity drinking (10+ drinks) collected from the national Monitoring the Future study in 2005 to 2014 from those ages 18-26 were used (N = 2,664 [60% women] for all drinkers and 1,377 for heavy episodic [5+] drinkers; up to 6,541 person-waves). Time-varying effect modeling examined changes in the direction and magnitude of associations between eight reasons for drinking and high-intensity alcohol use across continuous age. Four reasons to drink showed quite stable associations with high-intensity drinking across age: drinking to get away from problems, to get high, to relax, and to sleep. Associations between two reasons and high-intensity drinking decreased with age: anger/frustration and to have a good time. The association between drinking because of boredom and high-intensity drinking increased with age. Drinking because it tastes good had a weak association with high-intensity drinking. Among heavy episodic drinkers, reasons for use also differentiated high-intensity drinking, with two exceptions: drinking to have a good time and to relax did not distinguish drinking 10+ drinks from drinking 5-9 drinks. Reasons for drinking are differentially associated with high-intensity drinking, compared with any other drinking and compared with lower intensity heavy drinking, across age during the transition to adulthood. Intervention programs seeking to mitigate alcohol-related harms should focus on reasons for use when they are the most developmentally salient.

  12. Creatine kinase response to high-intensity aerobic exercise in adult-onset muscular dystrophy

    DEFF Research Database (Denmark)

    Andersen, Søren P; Sveen, Marie-Louise; Hansen, Regitze S

    2013-01-01

    We investigated the effect of high-intensity exercise on plasma creatine kinase (CK) in patients with muscular dystrophies.......We investigated the effect of high-intensity exercise on plasma creatine kinase (CK) in patients with muscular dystrophies....

  13. The WARP Code: Modeling High Intensity Ion Beams

    International Nuclear Information System (INIS)

    Grote, David P.; Friedman, Alex; Vay, Jean-Luc; Haber, Irving

    2005-01-01

    The Warp code, developed for heavy-ion driven inertial fusion energy studies, is used to model high intensity ion (and electron) beams. Significant capability has been incorporated in Warp, allowing nearly all sections of an accelerator to be modeled, beginning with the source. Warp has as its core an explicit, three-dimensional, particle-in-cell model. Alongside this is a rich set of tools for describing the applied fields of the accelerator lattice, and embedded conducting surfaces (which are captured at sub-grid resolution). Also incorporated are models with reduced dimensionality: an axisymmetric model and a transverse ''slice'' model. The code takes advantage of modern programming techniques, including object orientation, parallelism, and scripting (via Python). It is at the forefront in the use of the computational technique of adaptive mesh refinement, which has been particularly successful in the area of diode and injector modeling, both steady-state and time-dependent. In the presentation, some of the major aspects of Warp will be overviewed, especially those that could be useful in modeling ECR sources. Warp has been benchmarked against both theory and experiment. Recent results will be presented showing good agreement of Warp with experimental results from the STS500 injector test stand

  14. High-intensity interval training improves obstructive sleep apnoea.

    Science.gov (United States)

    Karlsen, Trine; Nes, Bjarne Martens; Tjønna, Arnt Erik; Engstrøm, Morten; Støylen, Asbjørn; Steinshamn, Sigurd

    2016-01-01

    Three hours per week of vigorous physical activity is found to be associated with reduced odds of sleep-disordered breathing. To investigate whether 12 weeks of high-intensity interval training (HIIT) reduced the apnoea-hypopnea index (AHI) in obese subjects with moderate-to-severe obstructive sleep apnoea. In a prospective randomised controlled exercise study, 30 (body mass index 37±6 kg/m 2 , age 51±9 years) patients with sleep apnoea (AHI 41.5±25.3 events/hour) were randomised 1:1 to control or 12 weeks of supervised HIIT (4×4 min of treadmill running or walking at 90%-95% of maximal heart rate two times per week). In the HIIT group, the AHI was reduced by 7.5±11.6 events/hour (within-group pHIIT improved the AHI and self-reported daytime sleepiness in subjects with obese sleep apnoea without any change in the desaturation index and body weight.

  15. The WARP Code: Modeling High Intensity Ion Beams

    International Nuclear Information System (INIS)

    Grote, D P; Friedman, A; Vay, J L; Haber, I

    2004-01-01

    The Warp code, developed for heavy-ion driven inertial fusion energy studies, is used to model high intensity ion (and electron) beams. Significant capability has been incorporated in Warp, allowing nearly all sections of an accelerator to be modeled, beginning with the source. Warp has as its core an explicit, three-dimensional, particle-in-cell model. Alongside this is a rich set of tools for describing the applied fields of the accelerator lattice, and embedded conducting surfaces (which are captured at sub-grid resolution). Also incorporated are models with reduced dimensionality: an axisymmetric model and a transverse ''slice'' model. The code takes advantage of modern programming techniques, including object orientation, parallelism, and scripting (via Python). It is at the forefront in the use of the computational technique of adaptive mesh refinement, which has been particularly successful in the area of diode and injector modeling, both steady-state and time-dependent. In the presentation, some of the major aspects of Warp will be overviewed, especially those that could be useful in modeling ECR sources. Warp has been benchmarked against both theory and experiment. Recent results will be presented showing good agreement of Warp with experimental results from the STS500 injector test stand. Additional information can be found on the web page http://hif.lbl.gov/theory/WARP( ) summary.html

  16. A modified space charge routine for high intensity bunched beams

    International Nuclear Information System (INIS)

    Lapostolle, P.; Garnett, R.W.; Wangler, T.P.

    1996-01-01

    In 1991 a space charge calculation for bunched beam with a three-dimensional ellipsoid was proposed, replacing the usual SCHEFF routines. It removes the cylindrical symmetry required in SCHEFF and avoids the point to point interaction computation, whose number of simulation points is limited. This routine has now been improved with the introduction of two or three ellipsoids giving a good representation of the complex non-symmetrical form of the bunch (unlike the 3-d ellipsoidal assumption). The ellipsoidal density distributions are computed with a new method, avoiding the difficulty encountered near the centre (the axis in 2-d problems) by the previous method. It also provides a check of the ellipsoidal symmetry for each part of the distribution. Finally, the Fourier analysis reported in 1991 has been replaced by a very convenient Hermite expansion, which gives a simple but accurate representation of practical distributions. Comparisons with other space charge routines have been made, particularly with the ones applying other techniques such as SCHEFF. Introduced in the versatile beam dynamics code DYNAC, it should provide a good tool for the study of the various parameters responsible for the halo formation in high intensity linacs. (orig.)

  17. A review of adolescent high-intensity interval training.

    Science.gov (United States)

    Logan, Greig R M; Harris, Nigel; Duncan, Scott; Schofield, Grant

    2014-08-01

    Despite the promising evidence supporting positive effects of high-intensity interval training (HIIT) on the metabolic profile in adults, there is limited research targeting adolescents. Given the rising burden of chronic disease, it is essential to implement strategies to improve the cardiometabolic health in adolescence, as this is a key stage in the development of healthy lifestyle behaviours. This narrative review summarises evidence of the relative efficacy of HIIT regarding the metabolic health of adolescents. Methodological inconsistencies confound our ability to draw conclusions; however, there is meaningful evidence supporting HIIT as a potentially efficacious exercise modality for use in the adolescent cohort. Future research must examine the effects of various HIIT protocols to determine the optimum strategy to deliver cardiometabolic health benefits. Researchers should explicitly show between-group differences for HIIT intervention and steady-state exercise or control groups, as the magnitude of difference between HIIT and other exercise modalities is of key interest to public health. There is scope for research to examine the palatability of HIIT as an exercise modality for adolescents through investigating perceived enjoyment during and after HIIT, and consequent long-term exercise adherence.

  18. Robotic Assisted Laparoscopic Prostatectomy after High Intensity Focused Ultrasound Failure

    Directory of Open Access Journals (Sweden)

    Leon Telis

    2017-01-01

    Full Text Available Background. Prostate cancer is the most common cancer diagnosed in men. As new focal therapies become more popular in treatment of prostate cancer, failure cases requiring salvage therapy with either surgical or other techniques are being reported. Objective. To report the options in treatment of prostate cancer after recurrence or failure of the primary treatment modality. Methods. We report a salvage robotic assisted laparoscopic radical prostatectomy (RALP for prostate cancer recurrence following high intensity focused ultrasound treatment (HIFU in the United States. Results. A 67-year-old man who underwent HIFU treatment for prostate adenocarcinoma 2 years prior was presented with a rising prostate specific antigen of 6.1 ng/mL to our clinic. A biopsy proven recurrent disease in the area of previous treatment documented the failure of treatment. The patient elected to undergo a salvage RALP. The operation time was 159 minutes. The patient was discharged from the hospital on postoperative day 1 with no complications. The catheter was removed on post-op day 10. The patient reserved sexual function and urinary continence. The PSA levels on 6 months’ follow-up are undetectable. Conclusions. Salvage RALP is an effective and safe treatment choice for recurrent prostate adenocarcinoma following failed HIFU treatment if operated by an experienced surgeon.

  19. Temporal variance reverses the impact of high mean intensity of stress in climate change experiments.

    Science.gov (United States)

    Benedetti-Cecchi, Lisandro; Bertocci, Iacopo; Vaselli, Stefano; Maggi, Elena

    2006-10-01

    Extreme climate events produce simultaneous changes to the mean and to the variance of climatic variables over ecological time scales. While several studies have investigated how ecological systems respond to changes in mean values of climate variables, the combined effects of mean and variance are poorly understood. We examined the response of low-shore assemblages of algae and invertebrates of rocky seashores in the northwest Mediterranean to factorial manipulations of mean intensity and temporal variance of aerial exposure, a type of disturbance whose intensity and temporal patterning of occurrence are predicted to change with changing climate conditions. Effects of variance were often in the opposite direction of those elicited by changes in the mean. Increasing aerial exposure at regular intervals had negative effects both on diversity of assemblages and on percent cover of filamentous and coarsely branched algae, but greater temporal variance drastically reduced these effects. The opposite was observed for the abundance of barnacles and encrusting coralline algae, where high temporal variance of aerial exposure either reversed a positive effect of mean intensity (barnacles) or caused a negative effect that did not occur under low temporal variance (encrusting algae). These results provide the first experimental evidence that changes in mean intensity and temporal variance of climatic variables affect natural assemblages of species interactively, suggesting that high temporal variance may mitigate the ecological impacts of ongoing and predicted climate changes.

  20. On the Capacity of the Intensity-Modulation Direct-Detection Optical Broadcast Channel

    KAUST Repository

    Chaaban, Anas; Rezki, Zouheir; Alouini, Mohamed-Slim

    2016-01-01

    The capacity of the intensity-modulation directdetection optical broadcast channel (OBC) is investigated, under both average and peak intensity constraints. An outer bound on the capacity region is derived by adapting Bergmans’ approach to the OBC. Inner bounds are derived by using superposition coding with either truncated-Gaussian (TG) distributions or discrete distributions. While the discrete distribution achieves higher rates, the TG distribution leads to a simpler representation of the achievable rate region. At high signal-to-noise ratio (SNR), it is shown that the TG distribution is nearly optimal. It achieves the symmetric-capacity within a constant gap (independent of SNR), which approaches half a bit as the number of users grows. It also achieves the capacity region within a constant gap. At low SNR, it is shown that on-off keying (OOK) with time-division multipleaccess (TDMA) is optimal. This is interesting in practice since both OOK and TDMA have low complexity. At moderate SNR (typically [0,8] dB), a discrete distribution with a small alphabet size achieves fairly good performance.

  1. On the Capacity of the Intensity-Modulation Direct-Detection Optical Broadcast Channel

    KAUST Repository

    Chaaban, Anas

    2016-01-12

    The capacity of the intensity-modulation directdetection optical broadcast channel (OBC) is investigated, under both average and peak intensity constraints. An outer bound on the capacity region is derived by adapting Bergmans’ approach to the OBC. Inner bounds are derived by using superposition coding with either truncated-Gaussian (TG) distributions or discrete distributions. While the discrete distribution achieves higher rates, the TG distribution leads to a simpler representation of the achievable rate region. At high signal-to-noise ratio (SNR), it is shown that the TG distribution is nearly optimal. It achieves the symmetric-capacity within a constant gap (independent of SNR), which approaches half a bit as the number of users grows. It also achieves the capacity region within a constant gap. At low SNR, it is shown that on-off keying (OOK) with time-division multipleaccess (TDMA) is optimal. This is interesting in practice since both OOK and TDMA have low complexity. At moderate SNR (typically [0,8] dB), a discrete distribution with a small alphabet size achieves fairly good performance.

  2. Lipid emulsions in parenteral nutrition of intensive care patients: current thinking and future directions

    Science.gov (United States)

    Jensen, Gordon L.; Koletzko, Berthold V.; Singer, Pierre; Wanten, Geert J. A.

    2010-01-01

    Background Energy deficit is a common and serious problem in intensive care units and is associated with increased rates of complications, length of stay, and mortality. Parenteral nutrition (PN), either alone or in combination with enteral nutrition, can improve nutrient delivery to critically ill patients. Lipids provide a key source of calories within PN formulations, preventing or correcting energy deficits and improving outcomes. Discussion In this article, we review the role of parenteral lipid emulsions (LEs) in the management of critically ill patients and highlight important biologic activities associated with lipids. Soybean-oil-based LEs with high contents of polyunsaturated fatty acids (PUFA) were the first widely used formulations in the intensive care setting. However, they may be associated with increased rates of infection and lipid peroxidation, which can exacerbate oxidative stress. More recently developed parenteral LEs employ partial substitution of soybean oil with oils providing medium-chain triglycerides, ω-9 monounsaturated fatty acids or ω-3 PUFA. Many of these LEs have demonstrated reduced effects on oxidative stress, immune responses, and inflammation. However, the effects of these LEs on clinical outcomes have not been extensively evaluated. Conclusions Ongoing research using adequately designed and well-controlled studies that characterize the biologic properties of LEs should assist clinicians in selecting LEs within the critical care setting. Prescription of PN containing LEs should be based on available clinical data, while considering the individual patient’s physiologic profile and therapeutic requirements. PMID:20072779

  3. High-intensity interval training vs. moderate-intensity continuous training in the prevention/management of cardiovascular disease

    OpenAIRE

    Hussain, S; Macaluso, A; Pearson, S

    2016-01-01

    Moderate-intensity continuous training (MICT) has long been considered the most effective exercise treatment modality for the prevention and management of cardiovascular disease, but more recently high-intensity interval training (HIIT) has emerged into the clinical environment has been viewed as a potential alternative to MICT in accruing such benefits. HIIT was initially found to induce significant improvements in numerous physiological and health-related indices, to a similar if not superi...

  4. HIGH ENERGY DENSITY PHYSICS EXPERIMENTS WITH INTENSE HEAVY ION BEAMS

    International Nuclear Information System (INIS)

    Bieniosek, F.M.; Henestroza, E.; Leitner, M.; Logan, B.G.; More, R.M.; Roy, P.K.; Ni, P.; Seidl, P.A.; Waldron, W.L.; Barnard, J.J.

    2008-01-01

    The US heavy ion fusion science program has developed techniques for heating ion-beam-driven warm dense matter (WDM) targets. The WDM conditions are to be achieved by combined longitudinal and transverse space-charge neutralized drift compression of the ion beam to provide a hot spot on the target with a beam spot size of about 1 mm, and pulse length about 1-2 ns. As a technique for heating volumetric samples of matter to high energy density, intense beams of heavy ions are capable of delivering precise and uniform beam energy deposition dE/dx, in a relatively large sample size, and the ability to heat any solid-phase target material. Initial experiments use a 0.3 MeV K+ beam (below the Bragg peak) from the NDCX-I accelerator. Future plans include target experiments using the NDCX-II accelerator, which is designed to heat targets at the Bragg peak using a 3-6 MeV lithium ion beam. The range of the beams in solid matter targets is about 1 micron, which can be lengthened by using porous targets at reduced density. We have completed the fabrication of a new experimental target chamber facility for WDM experiments, and implemented initial target diagnostics to be used for the first target experiments in NDCX-1. The target chamber has been installed on the NDCX-I beamline. The target diagnostics include a fast multi-channel optical pyrometer, optical streak camera, VISAR, and high-speed gated cameras. Initial WDM experiments will heat targets by compressed NDCX-I beams and will explore measurement of temperature and other target parameters. Experiments are planned in areas such as dense electronegative targets, porous target homogenization and two-phase equation of state

  5. Report of the Snowmass M6 Working Group on high intensity proton sources

    Energy Technology Data Exchange (ETDEWEB)

    Weiren Chou and J. Wei

    2002-08-20

    The U.S. high-energy physics program needs an intense proton source, a 1-4 MW Proton Driver (PD), by the end of this decade. This machine will serve as a stand-alone facility that will provide neutrino superbeams and other high intensity secondary beams such as kaons, muons, neutrons, and anti-protons (cf. E1 and E5 group reports) and also serve as the first stage of a neutrino factory (cf. M1 group report). It can also be a high brightness source for a VLHC. Based on present accelerator technology and project construction experience, it is both feasible and cost-effective to construct a 1-4 MW Proton Driver. Two recent PD design studies have been made, one at FNAL and the other at the BNL. Both designed PD's for 1 MW proton beams at a cost of about U.S. $200M (excluding contingency and overhead) and both designs were upgradeable to 4 MW. An international collaboration between FNAL, BNL and KEK on high intensity proton facilities is addressing a number of key design issues. The superconducting (sc) RF cavities, cryogenics, and RF controls developed for the SNS can be directly adopted to save R&D efforts, cost, and schedule. PD studies are also actively being pursued at Europe and Japan.

  6. Threshold stress intensity factor for delayed hydride cracking of a recrystallized N18 alloy plate along the rolling direction

    Energy Technology Data Exchange (ETDEWEB)

    Sun Chao, E-mail: sunchaonpic@yahoo.com.c [National Key Laboratory for Nuclear Fuel and Materials, Nuclear Power Institute of China, P.O. Box 436, Chengdu 610041 (China); Tan Jun; Ying Shihao; Peng Qian [National Key Laboratory for Nuclear Fuel and Materials, Nuclear Power Institute of China, P.O. Box 436, Chengdu 610041 (China); Li Cong [Department of R and D, State Nuclear Power Technology Corporation Limited, Beijing (China)

    2010-11-15

    The objective of this study is to obtain the threshold stress intensity factor, K{sub IH}, for an initiation of delayed hydride cracking in a recrystallized N18 (Zr-Sn-Nb-Fe-Cr) alloy plate which was manufactured in China, gaseously charged with 60 ppm of hydrogen by weight. By using both the load increasing method and load drop method, the K{sub IH}'s along the rolling direction were investigated over a temperature range of 150-255 {sup o}C. The results showed that K{sub IH} along the rolling direction was found to be higher in the load increasing method than that in the load drop method. In the load increasing method, K{sub IH}'s of the N18 alloy plate appeared to be in the range of 31-32.5MPa{radical}(m), and K{sub IH} in the load drop method appeared to be in the range of 27.5-28.6MPa{radical}(m). This means that the N18 alloy plate has high tolerance for DHC initiation along the rolling direction. The texture of a N18 alloy plate was investigated using an X-ray diffraction and the K{sub IH} was discussed based on texture and analytically as a function of the tilting angle of hydride habit planes to the cracking plane.

  7. Threshold stress intensity factor for delayed hydride cracking of a recrystallized N18 alloy plate along the rolling direction

    International Nuclear Information System (INIS)

    Sun Chao; Tan Jun; Ying Shihao; Peng Qian; Li Cong

    2010-01-01

    The objective of this study is to obtain the threshold stress intensity factor, K IH , for an initiation of delayed hydride cracking in a recrystallized N18 (Zr-Sn-Nb-Fe-Cr) alloy plate which was manufactured in China, gaseously charged with 60 ppm of hydrogen by weight. By using both the load increasing method and load drop method, the K IH 's along the rolling direction were investigated over a temperature range of 150-255 o C. The results showed that K IH along the rolling direction was found to be higher in the load increasing method than that in the load drop method. In the load increasing method, K IH 's of the N18 alloy plate appeared to be in the range of 31-32.5MPa√(m), and K IH in the load drop method appeared to be in the range of 27.5-28.6MPa√(m). This means that the N18 alloy plate has high tolerance for DHC initiation along the rolling direction. The texture of a N18 alloy plate was investigated using an X-ray diffraction and the K IH was discussed based on texture and analytically as a function of the tilting angle of hydride habit planes to the cracking plane.

  8. Assessing the effect of wind speed/direction changes on urban heat island intensity of Istanbul.

    Science.gov (United States)

    Perim Temizoz, Huriye; Unal, Yurdanur S.

    2017-04-01

    Assessing the effect of wind speed/direction changes on urban heat island intensity of Istanbul. Perim Temizöz, Deniz H. Diren, Cemre Yürük and Yurdanur S. Ünal Istanbul Technical University, Department of Meteorological Engineering, Maslak, Istanbul, Turkey City or metropolitan areas are significantly warmer than the outlying rural areas since the urban fabrics and artificial surfaces which have different radiative, thermal and aerodynamic features alter the surface energy balance, interact with the regional circulation and introduce anthropogenic sensible heat and moisture into the atmosphere. The temperature contrast between urban and rural areas is most prominent during nighttime since heat is absorbed by day and emitted by night. The intensity of the urban heat island (UHI) vary considerably depending on the prevailent meteorological conditions and the characteristics of the region. Even though urban areas cover a small fraction of Earth, their climate has greater impact on the world's population. Over half of the world population lives in the cities and it is expected to rise within the coming decades. Today almost one fifth of the Turkey's population resides in Istanbul with the percentage expected to increase due to the greater job opportunities compared to the other cities. Its population has been increased from 2 millions to 14 millions since 1960s. Eventually, the city has been expanded tremendously within the last half century, shifting the landscape from vegetation to built up areas. The observations of the last fifty years over Istanbul show that the UHI is most pronounced during summer season. The seasonal temperature differences between urban and suburban sites reach up to 3 K and roughly haft degree increase in UHI intensity is observed after 2000. In this study, we explore the possible range of heat load and distribution over Istanbul for different prevailing wind conditions by using the non-hydrostatic MUKLIMO3 model developed by DWD

  9. Direct intensity calibration of X-ray grazing-incidence microscopes with home-lab source

    Science.gov (United States)

    Li, Yaran; Xie, Qing; Chen, Zhiqiang; Xin, Qiuqi; Wang, Xin; Mu, Baozhong; Wang, Zhanshan; Liu, Shenye; Ding, Yongkun

    2018-01-01

    Direct intensity calibration of X-ray grazing-incidence microscopes is urgently needed in quantitative studies of X-ray emission from laser plasma sources in inertial confinement fusion. The existing calibration methods for single reflecting mirrors, crystals, gratings, filters, and X-ray detectors are not applicable for such X-ray microscopes due to the specific optical structure and the restrictions of object-image relation. This article presents a reliable and efficient method that can be performed using a divergent X-ray source and an energy dispersive Si-PIN (silicon positive-intrinsic-negative) detector in an ordinary X-ray laboratory. The transmission theory of X-ray flux in imaging diagnostics is introduced, and the quantities to be measured are defined. The calibration method is verified by a W/Si multilayer-coated Kirkpatrick-Baez microscope with a field of view of ˜95 μm at 17.48 keV. The mirror reflectance curve in the 1D coordinate is drawn with a peak value of 20.9% and an uncertainty of ˜6.0%.

  10. Automation of the solution type of intensity modulated radiation therapy with direct planning neoplastic breast lesions

    International Nuclear Information System (INIS)

    Fuente Rosales, Liset De La; Larrinaga Cortina, Eduardo Francisco

    2009-01-01

    Breast cancer ranks first among the lesions malignancies involving the Cuban women and the second in mortality only surpassed by lung injury. The breast-conserving surgery is becoming less appeal, with an increase in the choice of radiotherapy to the breast operated, and the surgical bed. Intensity Modulated Radiation Therapy, IMRT has demonstrated better results in the dose distribution for irradiation dimensional treatment breast shaping, 3DCRT. We developed a MATLAB application to obtain the solution type to direct planning IMRT for breast neoplasm. The technique was implemented in the Planning System Treatment Plus Theraplan v3.8 and Precise1 ELEKTA linear accelerator. Static segments are constructed for each portal of incidence and Excel files are exported as the positions of the blades. The technique was validated with a patient, which he performed a radiographic study of computerized axial tomography planning purposes. The standard solution built is consistent with those reported internationally and consists of a segment type and at least two segments of type B. The assignment of the relative weights of the segments is done manually by trial and error procedure, with the general rule of 90% by weight assigned to segment A and the remaining 10% divided equally between B-type segments IMRT breast obtained in a dose 17% homogeneity better than 3DCRT and reduced the average dose in the lung ipsilateral 15%. (author)

  11. Energy compensation after sprint- and high-intensity interval training.

    Directory of Open Access Journals (Sweden)

    Matthew M Schubert

    Full Text Available Many individuals lose less weight than expected in response to exercise interventions when considering the increased energy expenditure of exercise (ExEE. This is due to energy compensation in response to ExEE, which may include increases in energy intake (EI and decreases in non-exercise physical activity (NEPA. We examined the degree of energy compensation in healthy young men and women in response to interval training.Data were examined from a prior study in which 24 participants (mean age, BMI, & VO2max = 28 yrs, 27.7 kg•m-2, and 32 mL∙kg-1∙min-1 completed either 4 weeks of sprint-interval training or high-intensity interval training. Energy compensation was calculated from changes in body composition (air displacement plethysmography and exercise energy expenditure was calculated from mean heart rate based on the heart rate-VO2 relationship. Differences between high (≥ 100% and low (< 100% levels of energy compensation were assessed. Linear regressions were utilized to determine associations between energy compensation and ΔVO2max, ΔEI, ΔNEPA, and Δresting metabolic rate.Very large individual differences in energy compensation were noted. In comparison to individuals with low levels of compensation, individuals with high levels of energy compensation gained fat mass, lost fat-free mass, and had lower change scores for VO2max and NEPA. Linear regression results indicated that lower levels of energy compensation were associated with increases in ΔVO2max (p < 0.001 and ΔNEPA (p < 0.001.Considerable variation exists in response to short-term, low dose interval training. In agreement with prior work, increases in ΔVO2max and ΔNEPA were associated with lower energy compensation. Future studies should focus on identifying if a dose-response relationship for energy compensation exists in response to interval training, and what underlying mechanisms and participant traits contribute to the large variation between individuals.

  12. Development of a High Intensity Focused Ultrasound (HIFU) Hydrophone System

    International Nuclear Information System (INIS)

    Schafer, Mark E.; Gessert, James

    2009-01-01

    The growing clinical use of High Intensity Focused Ultrasound (HIFU) has driven a need for reliable, reproducible measurements of HIFU acoustic fields. We have previously presented data on a reflective scatterer approach, incorporating several novel features for improved bandwidth, reliability, and reproducibility [Proc. 2005 IEEE Ultrasonics Symposium, 1739-1742]. We now report on several design improvements which have increase the signal to noise ratio of the system, and potentially reduced the cost of implementation. For the scattering element, we now use an artificial sapphire material to provide a more uniform radiating surface. The receiver is a segmented, truncated spherical structure with a 10 cm radius; the scattering element is positioned at the center of the sphere. The receiver is made from 25 micron thick, biaxially stretched PVDF, with a Pt-Au electrode on the front surface. In the new design, a specialized backing material provides the stiffness required to maintain structural stability, while at the same time providing both electrical shielding and ultrasonic absorption. Compared with the previous version, the new receiver design has improved the noise performance by 8-12 dB; the new scattering sphere has reduced the scattering loss by another 14 dB, producing an effective sensitivity of -298 dB re 1 microVolt/Pa. The design trade-off still involves receiver sensitivity with effective spot size, and signal distortion from the scatter structure. However, the reduced cost and improved repeatability of the new scatter approach makes the overall design more robust for routine waveform measurements of HIFU systems.

  13. On the Possibility of Using Nonlinear Elements for Landau Damping in High-Intensity Beams

    Energy Technology Data Exchange (ETDEWEB)

    Alexahin, Y. [Fermilab; Gianfelice-Wendt, E. [Fermilab; Lebedev, V. [Fermilab; Valishev, A. [Fermilab

    2016-09-30

    Direct space-charge force shifts incoherent tunes downwards from the coherent ones breaking the Landau mechanism of coherent oscillations damping at high beam intensity. To restore it nonlinear elements can be employed which move back tunes of large amplitude particles. In the present report we consider the possibility of creating a “nonlinear integrable optics” insertion in the Fermilab Recycler to host either octupoles or hollow electron lens for this purpose. For comparison we also consider the classic scheme with distributed octupole families. It is shown that for the Proton Improvement Plan II (PIP II) parameters the required nonlinear tune shift can be created without destroying the dynamic aperture.

  14. The Safety of Using High Frequency, Low Intensity Ultrasound to Enhance Thrombolysis

    International Nuclear Information System (INIS)

    Soltani, Azita

    2006-01-01

    The EKOS Ultrasound Infusion Systems (EKOS Corporation, Bothell, WA) use high frequency, low intensity ultrasound to accelerate thrombolysis by enhancing clot permeability and lytic drug penetration into thrombus. These systems are designed to provide efficacious catheter-directed treatment for the management of stroke, peripheral arterial occlusion and deep vein thrombosis. The in vitro and in vivo results of investigating the stability of therapeutic and diagnostic compounds used in combination with EKOS devices, the potential for adverse biological effects and the clot fragmentation confirmed the safety of EKOS ultrasound infusion systems in thrombolysis treatment

  15. Determination of crystal structures with large known fragments directly from measured X-ray powder diffraction intensities

    International Nuclear Information System (INIS)

    Rius, J.; Miravitlles, C.

    1988-01-01

    A strategy for the determination of crystal structures with large known fragments directly from measured X-ray powder diffraction intensities is presented. It is based on the automated full-symmetry Patterson search method described by Rius and Miravitlles where the Fourier coefficients of the observed Patterson function are modified to allow the use of powder diffraction intensity data. Its application to two structures, one with simulated and one with experimental data, is shown. (orig.)

  16. Advanced approaches to high intensity laser-driven ion acceleration

    International Nuclear Information System (INIS)

    Henig, Andreas

    2010-01-01

    Since the pioneering work that was carried out 10 years ago, the generation of highly energetic ion beams from laser-plasma interactions has been investigated in much detail in the regime of target normal sheath acceleration (TNSA). Creation of ion beams with small longitudinal and transverse emittance and energies extending up to tens of MeV fueled visions of compact, laser-driven ion sources for applications such as ion beam therapy of tumors or fast ignition inertial con finement fusion. However, new pathways are of crucial importance to push the current limits of laser-generated ion beams further towards parameters necessary for those applications. The presented PhD work was intended to develop and explore advanced approaches to high intensity laser-driven ion acceleration that reach beyond TNSA. In this spirit, ion acceleration from two novel target systems was investigated, namely mass-limited microspheres and nm-thin, free-standing diamond-like carbon (DLC) foils. Using such ultrathin foils, a new regime of ion acceleration was found where the laser transfers energy to all electrons located within the focal volume. While for TNSA the accelerating electric field is stationary and ion acceleration is spatially separated from laser absorption into electrons, now a localized longitudinal field enhancement is present that co-propagates with the ions as the accompanying laser pulse pushes the electrons forward. Unprecedented maximum ion energies were obtained, reaching beyond 0.5 GeV for carbon C 6+ and thus exceeding previous TNSA results by about one order of magnitude. When changing the laser polarization to circular, electron heating and expansion were shown to be efficiently suppressed, resulting for the first time in a phase-stable acceleration that is dominated by the laser radiation pressure which led to the observation of a peaked C 6+ spectrum. Compared to quasi-monoenergetic ion beam generation within the TNSA regime, a more than 40 times increase in

  17. Advanced approaches to high intensity laser-driven ion acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Henig, Andreas

    2010-04-26

    Since the pioneering work that was carried out 10 years ago, the generation of highly energetic ion beams from laser-plasma interactions has been investigated in much detail in the regime of target normal sheath acceleration (TNSA). Creation of ion beams with small longitudinal and transverse emittance and energies extending up to tens of MeV fueled visions of compact, laser-driven ion sources for applications such as ion beam therapy of tumors or fast ignition inertial con finement fusion. However, new pathways are of crucial importance to push the current limits of laser-generated ion beams further towards parameters necessary for those applications. The presented PhD work was intended to develop and explore advanced approaches to high intensity laser-driven ion acceleration that reach beyond TNSA. In this spirit, ion acceleration from two novel target systems was investigated, namely mass-limited microspheres and nm-thin, free-standing diamond-like carbon (DLC) foils. Using such ultrathin foils, a new regime of ion acceleration was found where the laser transfers energy to all electrons located within the focal volume. While for TNSA the accelerating electric field is stationary and ion acceleration is spatially separated from laser absorption into electrons, now a localized longitudinal field enhancement is present that co-propagates with the ions as the accompanying laser pulse pushes the electrons forward. Unprecedented maximum ion energies were obtained, reaching beyond 0.5 GeV for carbon C{sup 6+} and thus exceeding previous TNSA results by about one order of magnitude. When changing the laser polarization to circular, electron heating and expansion were shown to be efficiently suppressed, resulting for the first time in a phase-stable acceleration that is dominated by the laser radiation pressure which led to the observation of a peaked C{sup 6+} spectrum. Compared to quasi-monoenergetic ion beam generation within the TNSA regime, a more than 40 times

  18. Intensity dependent effects of transcranial direct current stimulation on corticospinal excitability in chronic spinal cord injury.

    Science.gov (United States)

    Murray, Lynda M; Edwards, Dylan J; Ruffini, Giulio; Labar, Douglas; Stampas, Argyrios; Pascual-Leone, Alvaro; Cortes, Mar

    2015-04-01

    To investigate the effects of anodal transcranial direct current stimulation (a-tDCS) intensity on corticospinal excitability and affected muscle activation in individuals with chronic spinal cord injury (SCI). Single-blind, randomized, sham-controlled, crossover study. Medical research institute and rehabilitation hospital. Volunteers (N = 9) with chronic SCI and motor dysfunction in wrist extensor muscles. Three single session exposures to 20 minutes of a-tDCS (anode over the extensor carpi radialis [ECR] muscle representation on the left primary motor cortex, cathode over the right supraorbital area) using 1 mA, 2 mA, or sham stimulation, delivered at rest, with at least 1 week between sessions. Corticospinal excitability was assessed with motor-evoked potentials (MEPs) from the ECR muscle using surface electromyography after transcranial magnetic stimulation. Changes in spinal excitability, sensory threshold, and muscle strength were also investigated. Mean MEP amplitude significantly increased by approximately 40% immediately after 2mA a-tDCS (pre: 0.36 ± 0.1 mV; post: 0.47 ± 0.11 mV; P = .001), but not with 1 mA or sham. Maximal voluntary contraction measures remained unaltered across all conditions. Sensory threshold significantly decreased over time after 1mA (P = .002) and 2mA (P = .039) a-tDCS and did not change with sham. F-wave persistence showed a nonsignificant trend for increase (pre: 32% ± 12%; post: 41% ± 10%; follow-up: 46% ± 12%) after 2 mA stimulation. No adverse effects were reported with any of the experimental conditions. The a-tDCS can transiently raise corticospinal excitability to affected muscles in patients with chronic SCI after 2 mA stimulation. Sensory perception can improve with both 1 and 2 mA stimulation. This study gives support to the safe and effective use of a-tDCS using small electrodes in patients with SCI and highlights the importance of stimulation intensity. Copyright © 2015 American Congress of Rehabilitation

  19. Effect of high-intensity irradiation from dental photopolymerization on the isolated and superfused vertebrate retina.

    Science.gov (United States)

    Rassaei, Mohammad; Thelen, Martin; Abumuaileq, Ramzi; Hescheler, Jürgen; Lüke, Matthias; Schneider, Toni

    2013-03-01

    Light or electromagnetic radiation may damage the neurosensory retina during irradiation of photopolymerizing resinous materials. Direct and indirect effects of irradiation emitted from polymerisation curing light may represent a severe risk factor for the eyes and the skin of the lamp operators, as well as for the patient's oral mucosa. Bovine superfused retinas were used to record their light-evoked electroretinogram (ERG) as ex vivo ERGs. Both the a- and the b-waves were used as indicators for retinal damage on the functional level. The isolated retinas were routinely superfused with a standard nutrient solution under normoglycemic conditions (5 mM D-glucose). The change in the a- and b-wave amplitude and implicit time, caused by low and high intensity irradiation, was calculated and followed over time. From the results, it can be deduced that the irradiation from LED high-power lamps affects severely the normal physiological function of the bovine retina. Irradiations of 1,200 lx irreversibly damaged the physiological response. In part, this may be reversible at lower intensities, but curing without using the appropriate filter will bleach the retinal rhodopsin to a large extent within 20 to 40 s of standard application times. Constant exposure to intense ambient irradiation affects phototransduction (a-wave) as well as transretinal signalling. The proper use of the UV- and blue-light filtering device is highly recommended, and may prevent acute and long lasting damage of the neurosensory retina.

  20. High-Intensity Interval Training in Heart Transplant Recipients: A Systematic Review with Meta-Analysis

    Directory of Open Access Journals (Sweden)

    Raphael José Perrier-Melo

    2018-02-01

    Full Text Available Abstract Heart transplantation (HTx is considered an efficient and gold-standard procedure for patients with end-stage heart failure. After surgery, patients have lower aerobic power (VO2max and compensatory hemodynamic responses. The aim of the present study was to assess through a systematic review with meta-analysis whether high-intensity interval training (HIIT can provide benefits for those parameters. This is a systematic review with meta-analysis, which searched the databases and data portals PubMed, Web of Science, Scopus, Science Direct and Wiley until December 2016 (pairs. The following terms and descriptors were used: “heart recipient” OR “heart transplant recipient” OR ”heart transplant” OR “cardiac transplant” OR “heart graft”. Descriptors via DeCS and Mesh were: “heart transplantation’’ OR “cardiac transplantation”. The words used in combination (AND were: “exercise training” OR “interval training” OR “high intensity interval training” OR “high intensity training” OR “anaerobic training” OR “intermittent training” OR “sprint training”. The initial search identified 1064 studies. Then, only those studies assessing the influence of HIIT on the post-HTx period were added, resulting in three studies analyzed. The significance level adopted was 0.05. Heart transplant recipients showed significant improvement in VO2peak, heart rate and peak blood pressure in 8 to 12 weeks of intervention.

  1. Design features and performance of the LAMPF high-intensity beam area

    International Nuclear Information System (INIS)

    Agnew, L.; Grisham, D.; Macek, R.J.; Sommer, W.F.; Werbeck, R.D.

    1983-01-01

    LAMPF is a multi-purpose high-intensity meson factory capable of producing a 1 mA beam of 800-MeV protons. The three target cells and the beam stop facilities in the high intensity area have many special design features that are required for operation in the presence of high heat loads and intense radiation fields where accessibility is extremely limited. Reliable targets, beam windows, beam stops, beam transport and diagnostic components, vacuum enclosures, and auxiliary systems have been developed. Sophisticated remote-handling systems are employed for maintenance. Complex protection systems have been developed to guard against damage caused by errant beam. Beam availability approaching 90% has been achieved at currents of 600 to 700 μA. A new facility for direct proton and neutron radiation effects studies will be installed in 1985. The new facility will provide an integrated spallation neutron flux of up to 5 x 10 17 m -2 s -1 and will anable proton irradiation studies in the primary beam

  2. The High Luminosity Challenge: potential and limitations of High Intensity High Brightness in the LHC and its injectors

    CERN Document Server

    De Maria, R; Banfi, D; Barranco, J; Bartosik, H; Benedetto, E; Bruce, R; Brüning, O; Calaga, R; Cerutti, F; Damerau, H; Esposito, L; Fartoukh, S; Fitterer, M; Garoby, R; Gilardoni, S; Giovannozzi, M; Goddard, B; Gorini, B; Hanke, K; Iadarola, G; Lamont, M; Meddahi, M; Métral, E; Mikulec, B; Mounet, N; Papaphilippou, Y; Pieloni, T; Redaelli, S; Rossi, L; Rumolo, G; Shaposhnikova, E; Sterbini, G; Todesco, E; Tomás, R; Zimmermann, F; Valishev, A

    2014-01-01

    High-intensity and high-brightness beams are key ingredients to maximize the LHC integrated luminosity and to exploit its full potential. This contribution describes the optimization of beam and machine parameters to maximize the integrated luminosity as seen by the LHC experiments, by taking into account the expected intensity and brightness reach of LHC itself and its injector chain as well as the capabilities of the detectors for next run and foreseen upgrade scenarios.

  3. High-Intensity Femtosecond Laser Interaction with Rare Gas Clusters

    Institute of Scientific and Technical Information of China (English)

    林亚风; 钟钦; 曾淳; 陈哲

    2001-01-01

    With a 45 fs multiterawatt 790 nm laser system and jets of argon and krypton atomic clusters, a study of the interaction of fs intense laser pulses with large size rare gas dusters was conducted. The maximum laser intensity of about 7 × 1016 W/cm2 and dusters composed of thousands of atoms which were determined through Rayleigh scattering measurements were involved inthe experiments. On the one hand, the results indicate that the interaction is strongly cluster size dependent. The stronger the interaction, the larger the clusters are. On the other hand, a saturation followed by a drop of the energy of ions ejected from the interaction will occur when the laser intensity exceeds a definite value for clusters of a certain size.

  4. High-intensity intermittent swimming improves cardiovascular health status for women with mild hypertension

    DEFF Research Database (Denmark)

    Mohr, Magni; Nordsborg, Nikolai Baastrup; Lindenskov, Annika

    2014-01-01

    To test the hypothesis that high-intensity swim training improves cardiovascular health status in sedentary premenopausal women with mild hypertension, sixty-two women were randomized into high-intensity (n = 21; HIT), moderate-intensity (n = 21; MOD), and control groups (n = 20; CON). HIT perfor...

  5. Direct radiative effects induced by intense desert dust outbreaks over the broader Mediterranean basin

    Science.gov (United States)

    Gkikas, Antonis; Obiso, Vincenzo; Vendrell, Lluis; Basart, Sara; Jorba, Oriol; Pérez Garcia-Pando, Carlos; Hatzianastassiou, Nikos; Gassó, Santiago; Baldasano, Jose Maria

    2016-04-01

    Throughout the year, under favorable conditions, massive loads of mineral particles originating in the northern African and Middle East deserts are transported over the Mediterranean basin. Due to their composition and size, dust aerosols perturb the Earth-Atmosphere system's energy budget interacting directly with the shortwave (SW) and longwave (LW) radiation. The present study aims to compute the Mediterranean dust outbreaks' direct radiative effects (DREs) as well as to assess the effect of including dust DREs in numerical simulations of a regional model. To this aim, 20 intense dust outbreaks have been selected based on their spatial coverage and intensity. Their identification, over the period 2000-2013, has been achieved through an objective and dynamic algorithm which utilizes as inputs daily satellite retrievals derived by the MODIS-Terra, EP-TOMS and OMI-Aura sensors. For each outbreak, two simulations of the NMMB/BSC-Dust model were made for a forecast period of 84 hours, with the model initialized at 00 UTC of the day when the dust outbreak was ignited, activating (RADON) and deactivating (RADOFF) dust-radiation interactions. The simulation domain covers the northern Africa, the Middle East and Europe at 0.25° x 0.25° horizontal resolution, for 40 hybrid sigma pressure levels up to 50 hPa. The instantaneous and regional DREs have been calculated at the top of the atmosphere (TOA), into the atmosphere (ATMAB), and at surface, for the downwelling (SURF) and the absorbed (NETSURF) radiation, for the SW, LW and NET (SW+LW) radiation. The interaction between dust aerosols and NET radiation, locally leads to an atmospheric warming (DREATMAB) by up to 150 Wm-2, a surface cooling (DRENETSURF) by up to 250 Wm-2 and a reduction of the downwelling radiation at the surface (DRESURF) by up to 300 Wm-2. At TOA, DREs are mainly negative (down to -150 Wm-2) indicating a cooling of the Earth-Atmosphere system, although positive values (up to 50 Wm-2) are encountered

  6. H- Ion Sources for High Intensity Proton Drivers

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Rolland Paul [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dudnikov, Vadim [Muons, Inc., Batavia, IL (United States)

    2015-02-20

    Existing RF Surface Plasma Sources (SPS) for accelerators have specific efficiencies for H+ and H- ion generation around 3 to 5 mA/cm2 per kW, where about 50 kW of RF power is typically needed for 50 mA beam current production. The Saddle Antenna (SA) SPS described here was developed to improve H- ion production efficiency, reliability and availability for pulsed operation as used in the ORNL Spallation Neutron Source . At low RF power, the efficiency of positive ion generation in the plasma has been improved to 200 mA/cm2 per kW of RF power at 13.56 MHz. Initial cesiation of the SPS was performed by heating cesium chromate cartridges by discharge as was done in the very first versions of the SPS. A small oven to decompose cesium compounds and alloys was developed and tested. After cesiation, the current of negative ions to the collector was increased from 1 mA to 10 mA with RF power 1.5 kW in the plasma (6 mm diameter emission aperture) and up to 30 mA with 4 kW RF power in the plasma and 250 Gauss longitudinal magnetic field. The ratio of electron current to negative ion current was improved from 30 to 2. Stable generation of H- beam without intensity degradation was demonstrated in the aluminum nitride (AlN) discharge chamber for 32 days at high discharge power in an RF SPS with an external antenna. Some modifications were made to improve the cooling and cesiation stability. The extracted collector current can be increased significantly by optimizing the longitudinal magnetic field in the discharge chamber. While this project demonstrated the advantages of the pulsed version of the SA RF SPS as an upgrade to the ORNL Spallation Neutron Source, it led to a possibility for upgrades to CW machines like the many cyclotrons used for commercial applications. Four appendices contain important details of the work carried out under this grant.

  7. Experimental Research at the Intensity Frontier in High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Marshak, Marvin L. [Univ. of Minnesota, Minneapolis, MN (United States)

    2014-06-30

    This Final Report describes DOE-supported Intensity Frontier research by the University of Minnesota during the interval April 1, 2011 to March 31, 2014. Primary activities included the MINOS, NOvA and LBNE Experiments and Heavy Quark studies at BES III.

  8. High energy bremsstrahlung in an intense laser field

    International Nuclear Information System (INIS)

    Schlessinger, L.; Wright, J.A.

    1980-02-01

    The cross section for bremsstrahlung emission and absorption by electrons in an intense laser field has been calculated in the Born approximation for the electron-ion potential. Typical numerical results are presented as a function of the ratio of the electron guiver energy to its energy and the ratio of the bremsstrahlung energy to the electron energy. The intense field correction factor for the rate of bremsstrahlung emission and absorption for electrons with a Boltzmann distribution of energies has been calculated. Numerical results for the correction factor are presented for the Boltzmann case as a function of the ratio of the electron quiver energy to its thermal energy and the ratio of the bremsstrahlung energy to the thermal energy. For typical laser fusion parameters, this correction factor which is the ratio of the thermal bremsstrahlung emission rate in the intense laser field to the rate at zero field can be quite significant. For a laser of wavelength 1.06 μm at an intensity of 3 x 10 15 w/cm 2 and an electron temperature of 1 keV, the correction factor varies from 0.98 at a bremsstrahlung energy of 100 V to greater than 5 at a bremsstrahlung energy of 10 keV

  9. Underutilization of high-intensity statin therapy after hospitalization for coronary heart disease.

    Science.gov (United States)

    Rosenson, Robert S; Kent, Shia T; Brown, Todd M; Farkouh, Michael E; Levitan, Emily B; Yun, Huifeng; Sharma, Pradeep; Safford, Monika M; Kilgore, Meredith; Muntner, Paul; Bittner, Vera

    2015-01-27

    National guidelines recommend use of high-intensity statins after hospitalization for coronary heart disease (CHD) events. This study sought to estimate the proportion of Medicare beneficiaries filling prescriptions for high-intensity statins after hospital discharge for a CHD event and to analyze whether statin intensity before hospitalization is associated with statin intensity after discharge. We conducted a retrospective cohort study using a 5% random sample of Medicare beneficiaries between 65 and 74 years old. Beneficiaries were included in the analysis if they filled a statin prescription after a CHD event (myocardial infarction or coronary revascularization) in 2007, 2008, or 2009. High-intensity statins included atorvastatin 40 to 80 mg, rosuvastatin 20 to 40 mg, and simvastatin 80 mg. Among 8,762 Medicare beneficiaries filling a statin prescription after a CHD event, 27% of first post-discharge fills were for a high-intensity statin. The percent filling a high-intensity statin post-discharge was 23.1%, 9.4%, and 80.7%, for beneficiaries not taking statins pre-hospitalization, taking low/moderate-intensity statins, and taking high-intensity statins before their CHD event, respectively. Compared with beneficiaries not on statin therapy pre-hospitalization, multivariable adjusted risk ratios for filling a high-intensity statin were 4.01 (3.58-4.49) and 0.45 (0.40-0.52) for participants taking high-intensity and low/moderate-intensity statins before their CHD event, respectively. Only 11.5% of beneficiaries whose first post-discharge statin fill was for a low/moderate-intensity statin filled a high-intensity statin within 365 days of discharge. The majority of Medicare beneficiaries do not fill high-intensity statins after hospitalization for CHD. Copyright © 2015 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  10. Capacity Bounds and High-SNR Capacity of MIMO Intensity-Modulation Optical Channels

    KAUST Repository

    Chaaban, Anas

    2018-02-19

    The capacity of the intensity modulation direct detection multiple-input multiple-output channel is studied. Therein, the nonnegativity constraint of the transmit signal limits the applicability of classical schemes, including precoding. Thus, new ways are required for deriving capacity bounds for this channel. To this end, capacity lower bounds are developed in this paper by deriving the achievable rates of two precodingfree schemes: Channel inversion and QR decomposition. The achievable rate of a DC-offset SVD-based scheme is also derived as a benchmark. Then, capacity upper bounds are derived and compared against the lower bounds. As a result, the capacity at high signal-to-noise ratio (SNR) is characterized for the case where the number of transmit apertures is not larger than the number of receive apertures, and is shown to be achievable by the QR decomposition scheme. This is shown for a channel with average intensity or peak intensity constraints. Under both constraints, the high-SNR capacity is approximated within a small gap. Extensions to a channel with more transmit apertures than receive apertures are discussed, and capacity bounds for this case are derived.

  11. Capacity Bounds and High-SNR Capacity of MIMO Intensity-Modulation Optical Channels

    KAUST Repository

    Chaaban, Anas; Rezki, Zouheir; Alouini, Mohamed-Slim

    2018-01-01

    The capacity of the intensity modulation direct detection multiple-input multiple-output channel is studied. Therein, the nonnegativity constraint of the transmit signal limits the applicability of classical schemes, including precoding. Thus, new ways are required for deriving capacity bounds for this channel. To this end, capacity lower bounds are developed in this paper by deriving the achievable rates of two precodingfree schemes: Channel inversion and QR decomposition. The achievable rate of a DC-offset SVD-based scheme is also derived as a benchmark. Then, capacity upper bounds are derived and compared against the lower bounds. As a result, the capacity at high signal-to-noise ratio (SNR) is characterized for the case where the number of transmit apertures is not larger than the number of receive apertures, and is shown to be achievable by the QR decomposition scheme. This is shown for a channel with average intensity or peak intensity constraints. Under both constraints, the high-SNR capacity is approximated within a small gap. Extensions to a channel with more transmit apertures than receive apertures are discussed, and capacity bounds for this case are derived.

  12. An ex vivo feasibility experimental study on targeted cell surgery by high intensity focused ultrasound

    Science.gov (United States)

    Wang, Zhi Biao; Wu, Junru; Fang, Liao Qiong; Wang, Hua; Li, Fa Qi; Tian, Yun Bo; Gong, Xiao Bo; Zhang, Hong; Zhang, Lian; Feng, Ruo

    2012-10-01

    High intensity focused ultrasound (HIFU) has become a new noninvasive surgical modality in medicine. A portion of tissue seated inside a patient's body may experience coagulative necrosis after a few seconds of insonification by high intensity focused ultrasound (US) generated by an extracorporeal focusing US transducer. The region of tissue affected by coagulative necrosis (CN) usually has an ellipsoidal shape when the thermal effect due to US absorption plays the dominant role. Its long and short axes are parallel and perpendicular to the US propagation direction respectively. It was shown by ex vivo experiments that the dimension of the short and long axes of the tissue which experiences CN can be as small as 50 μm and 250 μm respectively after one second exposure of US pulse (the spatial and pulse average acoustic power is on the order of tens of Watts and the local acoustic spatial and temporal pulse averaged intensity is on the order of 3 × 104 W/cm2) generated by a 1.6 MHz HIFU transducer of 12 cm diameter and 11 cm geometric focal length (f-number = 0.92). The numbers of cells which suffered CN were estimated to be on the order of 40. This result suggests that HIFU is able to interact with tens of cells at/near its focal zone while keeping the neighboring cells minimally affected, and thus the targeted cell surgery may be achievable.

  13. A Method of Estimating Pressure and Intensity Distributions of Multielement Phased Array High Intensity Focused Ultrasonic Field at Full Power Using a Needle Hydrophone

    International Nuclear Information System (INIS)

    Yu Ying; Shen Guofeng; Bai Jingfeng; Chen Yazhu

    2011-01-01

    The pressure and intensity distribution of high intensity focused ultrasound (HIFU) fields at full power are critical for predicting heating patterns and ensuring safety of the therapy. With the limitations of maximum pressure at the hydrophone and damage from cavitation or thermal effects, it is hard to measure pressure and intensity directly when HIFU is at full power. HIFU-phased arrays are usually composed of large numbers of small elements and the sound power radiated from some of them at full power is measureable using a hydrophone, we grouped them based on the limitation of maximum permissible pressure at the hydrophone and the characteristics of the element arrangement in the array. Then sound field measurement of the group was carried out at full power level. Using the acoustic coherence principle, the pressure and intensity distribution of the array at full power level can be calculated from corresponding values from the groups. With this method, computer simulations and sound field measurement of a 65-element concentric distributed phased array was carried out. The simulation results demonstrate theoretically the feasibility of this method. Measurements on the 65-element phased array also verify the effectiveness of this method for estimating the pressure and intensity distribution of phased array at full power level using a needle hydrophone.

  14. The role of advance directives in end-of-life decisions in Austria: survey of intensive care physicians

    Directory of Open Access Journals (Sweden)

    Schopper Andrea

    2010-10-01

    Full Text Available Abstract Background Currently, intensive care medicine strives to define a generally accepted way of dealing with end-of-life decisions, therapy limitation and therapy discontinuation. In 2006 a new advance directive legislation was enacted in Austria. Patients may now document their personal views regarding extension of treatment. The aim of this survey was to explore Austrian intensive care physicians' experiences with and their acceptance of the new advance directive legislation two years after enactment (2008. Methods Under the aegis of the OEGARI (Austrian Society of Anaesthesiology, Resuscitation and Intensive Care an anonymised questionnaire was sent to the medical directors of all intensive care units in Austria. The questions focused on the physicians' experiences regarding advance directives and their level of knowledge about the underlying legislation. Results There were 241 questionnaires sent and 139 were turned, which was a response rate of 58%. About one third of the responders reported having had no experience with advance directives and only 9 directors of intensive care units had dealt with more than 10 advance directives in the previous two years. Life-supporting measures, resuscitation, and mechanical ventilation were the predominantly refused therapies, wishes were mainly expressed concerning pain therapy. Conclusion A response rate of almost 60% proves the great interest of intensive care professionals in making patient-oriented end-of-life decisions. However, as long as patients do not make use of their right of co-determination, the enactment of the new law can be considered only a first important step forward.

  15. The most intense current sheets in the high-speed solar wind near 1 AU

    Science.gov (United States)

    Podesta, John J.

    2017-03-01

    Electric currents in the solar wind plasma are investigated using 92 ms fluxgate magnetometer data acquired in a high-speed stream near 1 AU. The minimum resolvable scale is roughly 0.18 s in the spacecraft frame or, using Taylor's "frozen turbulence" approximation, one proton inertial length di in the plasma frame. A new way of identifying current sheets is developed that utilizes a proxy for the current density J obtained from the derivatives of the three orthogonal components of the observed magnetic field B. The most intense currents are identified as 5σ events, where σ is the standard deviation of the current density. The observed 5σ events are characterized by an average scale size of approximately 3di along the flow direction of the solar wind, a median separation of around 50di or 100di along the flow direction of the solar wind, and a peak current density on the order of 0.5 pA/cm2. The associated current-carrying structures are consistent with current sheets; however, the planar geometry of these structures cannot be confirmed using single-point, single-spacecraft measurements. If Taylor's hypothesis continues to hold for the energetically dominant fluctuations at kinetic scales 1intense current-carrying structures in high-speed wind occur at electron scales, although the peak current densities at kinetic and electron scales are predicted to be nearly the same as those found in this study.

  16. High-intensity laser-accelerated ion beam produced from cryogenic micro-jet target

    Energy Technology Data Exchange (ETDEWEB)

    Gauthier, M., E-mail: maxence.gauthier@stanford.edu; Kim, J. B.; Curry, C. B.; Gamboa, E. J.; Göde, S.; Propp, A.; Glenzer, S. H. [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Aurand, B.; Willi, O. [Heinrich-Heine-University Düsseldorf, Düsseldorf (Germany); Goyon, C.; Hazi, A.; Pak, A.; Ruby, J.; Williams, G. J. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Kerr, S. [University of Alberta, Edmonton, Alberta T6G 1R1 (Canada); Ramakrishna, B. [Indian Institute of Technology, Hyderabad (India); Rödel, C. [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Friedrich-Schiller-University Jena, Jena (Germany)

    2016-11-15

    We report on the successful operation of a newly developed cryogenic jet target at high intensity laser-irradiation. Using the frequency-doubled Titan short pulse laser system at Jupiter Laser Facility, Lawrence Livermore National Laboratory, we demonstrate the generation of a pure proton beam a with maximum energy of 2 MeV. Furthermore, we record a quasi-monoenergetic peak at 1.1 MeV in the proton spectrum emitted in the laser forward direction suggesting an alternative acceleration mechanism. Using a solid-density mixed hydrogen-deuterium target, we are also able to produce pure proton-deuteron ion beams. With its high purity, limited size, near-critical density, and high-repetition rate capability, this target is promising for future applications.

  17. Gamma beams generation with high intensity lasers for two photon Breit-Wheeler pair production

    Science.gov (United States)

    D'Humieres, Emmanuel; Ribeyre, Xavier; Jansen, Oliver; Esnault, Leo; Jequier, Sophie; Dubois, Jean-Luc; Hulin, Sebastien; Tikhonchuk, Vladimir; Arefiev, Alex; Toncian, Toma; Sentoku, Yasuhiko

    2017-10-01

    Linear Breit-Wheeler pair creation is the lowest threshold process in photon-photon interaction, controlling the energy release in Gamma Ray Bursts and Active Galactic Nuclei, but it has never been directly observed in the laboratory. Using numerical simulations, we demonstrate the possibility to produce collimated gamma beams with high energy conversion efficiency using high intensity lasers and innovative targets. When two of these beams collide at particular angles, our analytical calculations demonstrate a beaming effect easing the detection of the pairs in the laboratory. This effect has been confirmed in photon collision simulations using a recently developed innovative algorithm. An alternative scheme using Bremsstrahlung radiation produced by next generation high repetition rate laser systems is also being explored and the results of first optimization campaigns in this regime will be presented.

  18. Status of the new high intensity H- injector at LAMPF

    International Nuclear Information System (INIS)

    Stevens, R.R. Jr.; York, R.L.; McConnell, J.R.; Kandarian, R.

    1984-04-01

    The requirement for higher intensity H - ion beams for the proton storage ring now being constructed at LAMPF necessitated the development of a new H - ion source and the rebuilding of the original H - injector and its associated beam transport lines. The goal of the ion source development program was to produce an H - beam with a peak intensity of 20 mA at 10% duty factor and with a beam emittance of less than 0.08 cm-mrad normalized at 95% beam fraction. The ion source concept which was best suited to our requirements was the multicusp, surface-production source developed for neutral beam injectors at Berkeley by Ehlers and Leung. An accelerator version of this source has been subsequently developed at Los Alamos to meet these storage ring requirements. The use of these higher intensity H - beams, together with the more stringent chopping and bunching requirements entailed in the operation of the storage ring, now requires rebuilding the entire H - injector at LAMPF. This construction is in progress. It is anticipated that the new injector will be fully operational by the end of 1984 and that the required H - beams will be available for the operation of the storage ring in early 1985

  19. Development of a cryogenic hydrogen microjet for high-intensity, high-repetition rate experiments

    Science.gov (United States)

    Kim, J. B.; Göde, S.; Glenzer, S. H.

    2016-11-01

    The advent of high-intensity, high-repetition-rate lasers has led to the need for replenishing targets of interest for high energy density sciences. We describe the design and characterization of a cryogenic microjet source, which can deliver a continuous stream of liquid hydrogen with a diameter of a few microns. The jet has been imaged at 1 μm resolution by shadowgraphy with a short pulse laser. The pointing stability has been measured at well below a mrad, for a stable free-standing filament of solid-density hydrogen.

  20. Echolocating bats emit a highly directional sonar sound beam in the field

    DEFF Research Database (Denmark)

    Surlykke, Annemarie; Boel Pedersen, Simon; Jakobsen, Lasse

    2009-01-01

    Bats use echolocation or biosonar to navigate and find prey at night. They emit short ultrasonic calls and listen for reflected echoes. The beam width of the calls is central to the function of the sonar, but directionality of echolocation calls has never been measured from bats flying in the wild....... We used a microphone array to record sounds and determine horizontal directionality for echolocation calls of the trawling Daubenton's bat, Myotis daubentonii, flying over a pond in its natural habitat. Myotis daubentonii emitted highly directional calls in the field. Directionality increased...... and directionality can be explained by the simple piston model. The model also suggests that the increase in the emitted intensity in the field is caused by the increased directionality, focusing sound energy in the forward direction. The bat may increase directionality by opening the mouth wider to emit a louder...

  1. Effectiveness of direct-current cardioversion for treatment of supraventricular tachyarrhythmias, in particular atrial fibrillation, in surgical intensive care patients.

    Science.gov (United States)

    Mayr, Andreas; Ritsch, Nicole; Knotzer, Hans; Dünser, Martin; Schobersberger, Wolfgang; Ulmer, Hanno; Mutz, Norbert; Hasibeder, Walter

    2003-02-01

    To evaluate primary success rate and effectiveness of direct-current cardioversion in postoperative critically ill patients with new-onset supraventricular tachyarrhythmias. Prospective intervention study. Twelve-bed surgical intensive care unit in a university teaching hospital. Thirty-seven consecutive, adult surgical intensive care unit patients with new-onset supraventricular tachyarrhythmias without previous history of tachyarrhythmias. Direct-current cardioversion using a monophasic, damped sinus-wave defibrillator. Energy levels used were 50, 100, 200, and 300 J for regular supraventricular tachyarrhythmias (n = 6) and 100, 200, and 360 J for irregular supraventricular tachyarrhythmias (n = 31). None of the patients was hypoxic, hypokalemic, or hypomagnesemic at onset of supraventricular tachyarrhythmia. Direct-current cardioversion restored sinus rhythm in 13 of 37 patients (35% primary responders). Most patients responded to the first or second direct-current cardioversion shock. Only one of 25 patients requiring more than two direct-current cardioversion shocks converted into sinus rhythm. Primary responders were significantly younger and demonstrated significant differences in arterial Po2 values at onset of supraventricular tachyarrhythmias compared with nonresponders. At 24 and 48 hrs, only six (16%) and five (13.5%) patients remained in sinus rhythm, respectively. In contrast to recent literature, direct-current cardioversion proved to be an ineffective method for treatment of new-onset supraventricular tachyarrhythmias and, in particular, atrial fibrillation with a rapid ventricular response in surgical intensive care unit patients.

  2. Beam dynamics of mixed high intensity highly charged ion Beams in the Q/A selector

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X.H., E-mail: zhangxiaohu@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Yuan, Y.J.; Yin, X.J.; Qian, C.; Sun, L.T. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Du, H.; Li, Z.S.; Qiao, J.; Wang, K.D. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhao, H.W.; Xia, J.W. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2017-06-11

    Electron cyclotron resonance (ECR) ion sources are widely used in heavy ion accelerators for their advantages in producing high quality intense beams of highly charged ions. However, it exists challenges in the design of the Q/A selection systems for mixed high intensity ion beams to reach sufficient Q/A resolution while controlling the beam emittance growth. Moreover, as the emittance of beam from ECR ion sources is coupled, the matching of phase space to post accelerator, for a wide range of ion beam species with different intensities, should be carefully studied. In this paper, the simulation and experimental results of the Q/A selection system at the LECR4 platform are shown. The formation of hollow cross section heavy ion beam at the end of the Q/A selector is revealed. A reasonable interpretation has been proposed, a modified design of the Q/A selection system has been committed for HIRFL-SSC linac injector. The features of the new design including beam simulations and experiment results are also presented.

  3. Application of the Speed-Duration Relationship to Normalize the Intensity of High-Intensity Interval Training

    Science.gov (United States)

    Ferguson, Carrie; Wilson, John; Birch, Karen M.; Kemi, Ole J.

    2013-01-01

    The tolerable duration of continuous high-intensity exercise is determined by the hyperbolic Speed-tolerable duration (S-tLIM) relationship. However, application of the S-tLIM relationship to normalize the intensity of High-Intensity Interval Training (HIIT) has yet to be considered, with this the aim of present study. Subjects completed a ramp-incremental test, and series of 4 constant-speed tests to determine the S-tLIM relationship. A sub-group of subjects (n = 8) then repeated 4 min bouts of exercise at the speeds predicted to induce intolerance at 4 min (WR4), 6 min (WR6) and 8 min (WR8), interspersed with bouts of 4 min recovery, to the point of exercise intolerance (fixed WR HIIT) on different days, with the aim of establishing the work rate that could be sustained for 960 s (i.e. 4×4 min). A sub-group of subjects (n = 6) also completed 4 bouts of exercise interspersed with 4 min recovery, with each bout continued to the point of exercise intolerance (maximal HIIT) to determine the appropriate protocol for maximizing the amount of high-intensity work that can be completed during 4×4 min HIIT. For fixed WR HIIT tLIM of HIIT sessions was 399±81 s for WR4, 892±181 s for WR6 and 1517±346 s for WR8, with total exercise durations all significantly different from each other (PHIIT, there was no difference in tLIM of each of the 4 bouts (Bout 1: 229±27 s; Bout 2: 262±37 s; Bout 3: 235±49 s; Bout 4: 235±53 s; P>0.050). However, there was significantly less high-intensity work completed during bouts 2 (153.5±40. 9 m), 3 (136.9±38.9 m), and 4 (136.7±39.3 m), compared with bout 1 (264.9±58.7 m; P>0.050). These data establish that WR6 provides the appropriate work rate to normalize the intensity of HIIT between subjects. Maximal HIIT provides a protocol which allows the relative contribution of the work rate profile to physiological adaptations to be considered during alternative intensity-matched HIIT protocols. PMID:24244266

  4. ARRONAX, a high-energy and high-intensity cyclotron for nuclear medicine

    International Nuclear Information System (INIS)

    Haddad, Ferid; Guertin, Arnaud; Michel, Nathalie; Ferrer, Ludovic; Carlier, Thomas; Barbet, Jacques; Chatal, Jean-Francois

    2008-01-01

    This study was aimed at establishing a list of radionuclides of interest for nuclear medicine that can be produced in a high-intensity and high-energy cyclotron. We have considered both therapeutic and positron emission tomography radionuclides that can be produced using a high-energy and a high-intensity cyclotron such as ARRONAX, which will be operating in Nantes (France) by the end of 2008. Novel radionuclides or radionuclides of current limited availability have been selected according to the following criteria: emission of positrons, low-energy beta or alpha particles, stable or short half-life daughters, half-life between 3 h and 10 days or generator-produced, favourable dosimetry, production from stable isotopes with reasonable cross sections. Three radionuclides appear well suited to targeted radionuclide therapy using beta ( 67 Cu, 47 Sc) or alpha ( 211 At) particles. Positron emitters allowing dosimetry studies prior to radionuclide therapy ( 64 Cu, 124 I, 44 Sc), or that can be generator-produced ( 82 Rb, 68 Ga) or providing the opportunity of a new imaging modality ( 44 Sc) are considered to have a great interest at short term whereas 86 Y, 52 Fe, 55 Co, 76 Br or 89 Zr are considered to have a potential interest at middle term. Several radionuclides not currently used in routine nuclear medicine or not available in sufficient amount for clinical research have been selected for future production. High-energy, high-intensity cyclotrons are necessary to produce some of the selected radionuclides and make possible future clinical developments in nuclear medicine. Associated with appropriate carriers, these radionuclides will respond to a maximum of unmet clinical needs. (orig.) 5

  5. Final Report for 'Modeling Electron Cloud Diagnostics for High-Intensity Proton Accelerators'

    International Nuclear Information System (INIS)

    Veitzer, Seth A.

    2009-01-01

    Electron clouds in accelerators such as the ILC degrade beam quality and limit operating efficiency. The need to mitigate electron clouds has a direct impact on the design and operation of these accelerators, translating into increased cost and reduced performance. Diagnostic techniques for measuring electron clouds in accelerating cavities are needed to provide an assessment of electron cloud evolution and mitigation. Accurate numerical modeling of these diagnostics is needed to validate the experimental techniques. In this Phase I, we developed detailed numerical models of microwave propagation through electron clouds in accelerating cavities with geometries relevant to existing and future high-intensity proton accelerators such as Project X and the ILC. Our numerical techniques and simulation results from the Phase I showed that there was a high probability of success in measuring both the evolution of electron clouds and the effects of non-uniform electron density distributions in Phase II.

  6. High-intensity focused ultrasound in the treatment of breast tumours.

    Science.gov (United States)

    Peek, Mirjam C L; Wu, Feng

    2018-01-01

    High-intensity focused ultrasound (HIFU) is a minimally invasive technique that has been used for the treatment of both benign and malignant tumours. With HIFU, an ultrasound (US) beam propagates through soft tissue as a high-frequency pressure wave. The US beam is focused at a small target volume, and due to the energy building up at this site, the temperature rises, causing coagulative necrosis and protein denaturation within a few seconds. HIFU is capable of providing a completely non-invasive treatment without causing damage to the directly adjacent tissues. HIFU can be either guided by US or magnetic resonance imaging (MRI). Guided imaging is used to plan the treatment, detect any movement during the treatment and monitor response in real-time. This review describes the history of HIFU, the HIFU technique, available devices and gives an overview of the published literature in the treatment of benign and malignant breast tumours with HIFU.

  7. High intensity negative proton beams from a SNICS ion source

    International Nuclear Information System (INIS)

    Evans, C.R.; Hollander, M.G.

    1991-01-01

    For the past year we have been involved in a project to develop an intense (> 100μA) negative proton beam from a SNICS (Source of Negative Ions by Cesium Sputtering) ion source. This report will cover how we accomplished and exceeded this goal by more than 40%. Included in these observations will be the following: A description of an effective method for making titanium hydride cathodes. How to overcome the limitations of the titanium hydride cathode. The modification of the SNICS source to improve output; including the installation of the conical ionizer and the gas cathode. A discussion of problems including: poisoning the proton beam with oxygen, alternative gas cathode materials, the clogging of the gas inlet, long burn-in times, and limited cathode life times. Finally, how to optimize source performance when using a gas cathode, and what is the mechanism by which a gas cathode operates; facts, fantasies, or myth

  8. Towards phasing using high X-ray intensity

    Directory of Open Access Journals (Sweden)

    Lorenzo Galli

    2015-11-01

    Full Text Available X-ray free-electron lasers (XFELs show great promise for macromolecular structure determination from sub-micrometre-sized crystals, using the emerging method of serial femtosecond crystallography. The extreme brightness of the XFEL radiation can multiply ionize most, if not all, atoms in a protein, causing their scattering factors to change during the pulse, with a preferential `bleaching' of heavy atoms. This paper investigates the effects of electronic damage on experimental data collected from a Gd derivative of lysozyme microcrystals at different X-ray intensities, and the degree of ionization of Gd atoms is quantified from phased difference Fourier maps. A pattern sorting scheme is proposed to maximize the ionization contrast and the way in which the local electronic damage can be used for a new experimental phasing method is discussed.

  9. A deuteron linac for a high-intensity neutron source

    International Nuclear Information System (INIS)

    Staples, J.; Clark, D.; Grunder, H.; Lancaster, H.; Main, R.; Selph, F.; Smith, L.; Voelker, F.; Yourd, R.

    1976-01-01

    The preliminary design of an accelerator suitable to meet the flux and neutron energy requirements of a CTR materials test facility is presented. The specifications of such a facility call for a neutron flux of 10 14 n/cm 2 -sec distributed over an area of about 10 2 cm 2 with a neutron spectrum similar to that anticipated from a fusion reactor. A 30 MeV deuteron linac producing a CW beam of 125 mA, upgradable to 40 MeV at 250 mA at a later date, would produce the relatively broad spectrum of neutrons at the required intensity. Attention to the low-energy beam intercept on the drift tubes and diffusive losses producing neutrons and attendant activation problems are discussed

  10. High intensity proton acceleration at the Brookhaven AGS -- An update

    International Nuclear Information System (INIS)

    Ahrens, L.; Alessi, J.; Blaskiewicz, M.

    1997-01-01

    The AGS accelerator complex is into its third year of 60+ x 10 12 (teraproton = Tp) per cycle operation. The hardware making up the complex as configured in 1997 is briefly mentioned. The present level of accelerator performance is discussed. This includes beam transfer efficiencies at each step in the acceleration process, i.e. losses; which are a serious issue at this intensity level. Progress made in understanding beam behavior at the Linac-to-Booster (LtB) injection, at the Booster-to-AGS (BtA) transfer as well as across the 450 ms AGS accumulation porch is presented. The state of transition crossing, with the gamma-tr jump is described. Coherent effects including those driven by space charge are important at all of these steps

  11. Transverse feedback: high intensity operation, AGC, IGC, lessons for 2012

    CERN Document Server

    Höfle, W

    2012-01-01

    The transverse damper system (ADT) plays an important role in the preservation of the beam transverse emittance and for damping of oscillations driven by the coupled bunch instability. An overview of the ADT system will be presented with an emphasis on the important feedback loop parameters as they change from injection through the ramp into collision. The dedicated setting - up procedure required for the different bunch intensities and bunch spacings will be explained. During the 2011 run the injection and abort gap cleaning became operational at injection energy. Preparations for cleaning at 3.5 TeV as well as batch selective transverse blow - up were completed and preliminarily tested. Plans for 2012 include study and potential improvement of the system impulse response to improve the 'selectivity' of the cleaning and blow - up facility. The ADT also provides bunch - by - bunch observation, which was extensively used during the run and MDs, and will be further upgraded during the next year.

  12. Two-dimensional computer simulation of high intensity proton beams

    CERN Document Server

    Lapostolle, Pierre M

    1972-01-01

    A computer program has been developed which simulates the two- dimensional transverse behaviour of a proton beam in a focusing channel. The model is represented by an assembly of a few thousand 'superparticles' acted upon by their own self-consistent electric field and an external focusing force. The evolution of the system is computed stepwise in time by successively solving Poisson's equation and Newton's law of motion. Fast Fourier transform techniques are used for speed in the solution of Poisson's equation, while extensive area weighting is utilized for the accurate evaluation of electric field components. A computer experiment has been performed on the CERN CDC 6600 computer to study the nonlinear behaviour of an intense beam in phase space, showing under certain circumstances a filamentation due to space charge and an apparent emittance growth. (14 refs).

  13. Towards phasing using high X-ray intensity

    International Nuclear Information System (INIS)

    Galli, Lorenzo; Son, Sang-Kil; Barends, Thomas R. M.; White, Thomas A.; Barty, Anton; Botha, Sabine; Boutet, Sebastien; Caleman, Carl; Doak, R. Bruce; Nanao, Max H.; Nass, Karol; Shoeman, Robert L.; Timneanu, Nicusor; Santra, Robin; Schlichting, Ilme; Chapman, Henry N.

    2015-01-01

    X-ray free-electron lasers (XFELs) show great promise for macromolecular structure determination from sub-micrometre-sized crystals, using the emerging method of serial femtosecond crystallography. The extreme brightness of the XFEL radiation can multiply ionize most, if not all, atoms in a protein, causing their scattering factors to change during the pulse, with a preferential 'bleaching' of heavy atoms. This paper investigates the effects of electronic damage on experimental data collected from a Gd derivative of lysozyme microcrystals at different X-ray intensities, and the degree of ionization of Gd atoms is quantified from phased difference Fourier maps. In conclusion, a pattern sorting scheme is proposed to maximize the ionization contrast and the way in which the local electronic damage can be used for a new experimental phasing method is discussed

  14. Low- Versus High-Intensity Plyometric Exercise During Rehabilitation After Anterior Cruciate Ligament Reconstruction.

    Science.gov (United States)

    Chmielewski, Terese L; George, Steven Z; Tillman, Susan M; Moser, Michael W; Lentz, Trevor A; Indelicato, Peter A; Trumble, Troy N; Shuster, Jonathan J; Cicuttini, Flavia M; Leeuwenburgh, Christiaan

    2016-03-01

    combined. The groups did not significantly differ in the change of any primary or secondary outcome measure. Of interest, sCPII concentrations tended to change in opposite directions (mean ± SD: low-intensity group, 28.7 ± 185.5 ng/mL; high-intensity group, -200.6 ± 255.0 ng/mL; P = .097; Cohen d = 1.03). Across groups, significant changes after the intervention were increased the IKDC score, vertical jump height, normalized quadriceps strength, quadriceps symmetry index, and knee activity self-efficacy and decreased average knee pain intensity. No significant differences were detected between the low- and high-intensity plyometric exercise groups. Across both groups, plyometric exercise induced positive changes in knee function, knee impairments, and psychosocial status that would support the return to sports participation after ACL reconstruction. The effect of plyometric exercise intensity on articular cartilage requires further evaluation. Clinicaltrials.gov NCT01851655. © 2016 The Author(s).

  15. Development and application of high power and high intensity ion beam sources at NPI, Tomsk, Russia

    International Nuclear Information System (INIS)

    Ryabchikov, A.I.

    2007-01-01

    High - current ion beams have become a powerful tool for improving the surface properties of different materials. The prospects of wide commercial use of such beams for material treatment is not only due to the possibility of improving their properties, but, also for economic expediency. To achieve a high throughput and reduce the cost on ion beam material treatment, ion beams of high average and pulsed power are necessary. This paper gives an overview of work on generation of pulsed and repetitively pulsed beams of ion beams with currents ranging from fractions of an ampere to several tens of kA and with pulse duration from several tens of nanoseconds to several hundreds of microseconds. A number of different methods of materials surface properties modification using high power and intense ion beam and plasma are considered. (author)

  16. Relative Match Intensities at High Altitude in Highly-Trained Young Soccer Players (ISA3600).

    Science.gov (United States)

    Buchheit, Martin; Hammond, Kristal; Bourdon, Pitre C; Simpson, Ben M; Garvican-Lewis, Laura A; Schmidt, Walter F; Gore, Christopher J; Aughey, Robert J

    2015-03-01

    To compare relative match intensities of sea-level versus high-altitude native soccer players during a 2-week camp at 3600 m, data from 7 sea-level (Australian U17 National team, AUS) and 6 high-altitude (a Bolivian U18 team, BOL) native soccer players were analysed. Two matches were played at sea-level and three at 3600 m on Days 1, 6 and 13. The Yo-Yo Intermittent recovery test (vYo-YoIR1) was performed at sea-level, and on Days 3 and 10. Match activity profiles were measured via 10-Hz GPS. Distance covered >14.4 km.h(-1) (D>14.4 km·h(-1)) and >80% of vYo-YoIR1 (D>80%vYo-YoIR1) were examined. Upon arrival at altitude, there was a greater decrement in vYo-YoIR1 (Cohen's d +1.0, 90%CL ± 0.8) and D>14.4 km·h(-1) (+0.5 ± 0.8) in AUS. D>14.4 km.h(-1) was similarly reduced relative to vYo-YoIR1 in both groups, so that D>80%vYo-YoIR1 remained similarly unchanged (-0.1 ± 0.8). Throughout the altitude sojourn, vYo-YoIR1 and D>14.4 km·h(-1) increased in parallel in AUS, so that D>80%vYo-YoIR1 remained stable in AUS (+6.0%/match, 90%CL ± 6.7); conversely D>80%vYo-YoIR1 decreased largely in BOL (-12.2%/match ± 6.2). In sea-level natives competing at high-altitude, changes in match running performance likely follow those in high-intensity running performance. Bolivian data confirm that increases in 'fitness' do not necessarily translate into greater match running performance, but rather in reduced relative exercise intensity. Key pointsWhen playing at high-altitude, players may alter their activities during matches in relation to their transient maximal physical capacities, possibly to maintain a 'tolerable' relative exercise intensity.While there is no doubt that running performance per se in not the main determinant of match outcomes (Carling, 2013), fitness levels influence relative match intensity (Buchheit et al., 2012, Mendez-Villanueva et al., 2013), which in-turn may impact on decision making and skill performance (Rampinini et al., 2008).In the context of

  17. High intensity beam dump for the Tevatron beam abort system

    International Nuclear Information System (INIS)

    Kidd, J.; Mokhov, N.; Murphy, T.; Palmer, M.; Toohig, T.; Turkot, F.; VanGinneken, A.

    1981-01-01

    The beam abort system proposed for the Fermilab Tevatron Accelerator will extract the proton beam from the ring in a single turn (approximately 20/mu/s) and direct it to an external beam dump. It is the function of the beam dump to absorb the unwanted beam and limit the escaping radiation to levels that are acceptable to the surrounding populace and apparatus. A beam dump that is expected to meet these requirements has been designed and constructed. Detailed design of the dump, including considerations leading to the choice of materials, are given. 6 refs

  18. Metabolic responses to high protein diet in Korean elite bodybuilders with high-intensity resistance exercise

    Directory of Open Access Journals (Sweden)

    Choue Ryowon

    2011-07-01

    Full Text Available Abstract Background High protein diet has been known to cause metabolic acidosis, which is manifested by increased urinary excretion of nitrogen and calcium. Bodybuilders habitually consumed excessive dietary protein over the amounts recommended for them to promote muscle mass accretion. This study investigated the metabolic response to high protein consumption in the elite bodybuilders. Methods Eight elite Korean bodybuilders within the age from 18 to 25, mean age 21.5 ± 2.6. For data collection, anthropometry, blood and urinary analysis, and dietary assessment were conducted. Results They consumed large amounts of protein (4.3 ± 1.2 g/kg BW/day and calories (5,621.7 ± 1,354.7 kcal/day, as well as more than the recommended amounts of vitamins and minerals, including potassium and calcium. Serum creatinine (1.3 ± 0.1 mg/dl and potassium (5.9 ± 0.8 mmol/L, and urinary urea nitrogen (24.7 ± 9.5 mg/dl and creatinine (2.3 ± 0.7 mg/dl were observed to be higher than the normal reference ranges. Urinary calcium (0.3 ± 0.1 mg/dl, and phosphorus (1.3 ± 0.4 mg/dl were on the border of upper limit of the reference range and the urine pH was in normal range. Conclusions Increased urinary excretion of urea nitrogen and creatinine might be due to the high rates of protein metabolism that follow high protein intake and muscle turnover. The obvious evidence of metabolic acidosis in response to high protein diet in the subjects with high potassium intake and intensive resistance exercise were not shown in this study results. However, this study implied that resistance exercise with adequate mineral supplementation, such as potassium and calcium, could reduce or offset the negative effects of protein-generated metabolic changes. This study provides preliminary information of metabolic response to high protein intake in bodybuilders who engaged in high-intensity resistance exercise. Further studies will be needed to determine the effects of the intensity

  19. What influences acceptability and engagement with a high intensity exercise programme for people with stroke? A qualitative descriptive study.

    Science.gov (United States)

    Signal, Nada; McPherson, Kathryn; Lewis, Gwyn; Kayes, Nicola; Saywell, Nicola; Mudge, Suzie; Taylor, Denise

    2016-10-14

    Intensity refers to the amount of effort or rate of work undertaken during exercise. People receiving rehabilitation after stroke frequently do not reach the moderate to high intensity exercise recommended to maximise gains. To explore the factors that influence the acceptability of, and engagement with, a high intensity group-based exercise programme for people with stroke. This qualitative descriptive study included 14 people with stroke who had completed a 12-week, high intensity group-based exercise rehabilitation programme. Semi-structured interviews were used to explore the acceptability of high intensity exercise and the barriers and facilitators to engagement. Interviews were recorded, transcribed and analysed using qualitative content analysis. The participants found high intensity exercise rehabilitation acceptable despite describing the exercise intensity as hard and reporting post-exercise fatigue. Participants accepted the fatigue as a normal response to exercise, and it did not appear to negatively influence engagement. The ease with which an individual engaged in high intensity exercise rehabilitation appeared to be mediated by inter-related factors, including: seeing progress, sourcing motivation, working hard, the people involved and the fit with the person and their life. Participants directly related the intensity of their effort to the gains that they made. In this study, people with stroke viewed training at higher intensities as a facilitator, not a barrier, to engagement in exercise rehabilitation. The findings may challenge assumptions about the influence of exercise intensity on engagement.

  20. High-intensity interval training prevents oxidant-mediated diaphragm muscle weakness in hypertensive mice.

    Science.gov (United States)

    Bowen, T Scott; Eisenkolb, Sophia; Drobner, Juliane; Fischer, Tina; Werner, Sarah; Linke, Axel; Mangner, Norman; Schuler, Gerhard; Adams, Volker

    2017-01-01

    Hypertension is a key risk factor for heart failure, with the latter characterized by diaphragm muscle weakness that is mediated in part by increased oxidative stress. In the present study, we used a deoxycorticosterone acetate (DOCA)-salt mouse model to determine whether hypertension could independently induce diaphragm dysfunction and further investigated the effects of high-intensity interval training (HIIT). Sham-treated (n = 11), DOCA-salt-treated (n = 11), and DOCA-salt+HIIT-treated (n = 15) mice were studied over 4 wk. Diaphragm contractile function, protein expression, enzyme activity, and fiber cross-sectional area and type were subsequently determined. Elevated blood pressure confirmed hypertension in DOCA-salt mice independent of HIIT (P HIIT. Myosin heavy chain (MyHC) protein expression tended to decrease (∼30%; P = 0.06) in DOCA-salt vs. sham- and DOCA-salt+HIIT mice, whereas oxidative stress increased (P HIIT further prevented direct oxidant-mediated diaphragm contractile dysfunction (P hypertension induces diaphragm contractile dysfunction via an oxidant-mediated mechanism that is prevented by HIIT.-Bowen, T. S., Eisenkolb, S., Drobner, J., Fischer, T., Werner, S., Linke, A., Mangner, N., Schuler, G., Adams, V. High-intensity interval training prevents oxidant-mediated diaphragm muscle weakness in hypertensive mice. © FASEB.

  1. Probing the positron moderation process using high-intensity, highly polarized slow-positron beams

    Science.gov (United States)

    Van House, J.; Zitzewitz, P. W.

    1984-01-01

    A highly polarized (P = 0.48 + or - 0.02) intense (500,000/sec) beam of 'slow' (Delta E = about 2 eV) positrons (e+) is generated, and it is shown that it is possible to achieve polarization as high as P = 0.69 + or - 0.04 with reduced intensity. The measured polarization of the slow e+ emitted by five different positron moderators showed no dependence on the moderator atomic number (Z). It is concluded that only source positrons with final kinetic energy below 17 keV contribute to the slow-e+ beam, in disagreement with recent yield functions derived from low-energy measurements. Measurements of polarization and yield with absorbers of different Z between the source and moderator show the effects of the energy and angular distributions of the source positrons on P. The depolarization of fast e+ transmitted through high-Z absorbers has been measured. Applications of polarized slow-e+ beams are discussed.

  2. The study towards high intensity high charge state laser ion sources.

    Science.gov (United States)

    Zhao, H Y; Jin, Q Y; Sha, S; Zhang, J J; Li, Z M; Liu, W; Sun, L T; Zhang, X Z; Zhao, H W

    2014-02-01

    As one of the candidate ion sources for a planned project, the High Intensity heavy-ion Accelerator Facility, a laser ion source has been being intensively studied at the Institute of Modern Physics in the past two years. The charge state distributions of ions produced by irradiating a pulsed 3 J/8 ns Nd:YAG laser on solid targets of a wide range of elements (C, Al, Ti, Ni, Ag, Ta, and Pb) were measured with an electrostatic ion analyzer spectrometer, which indicates that highly charged ions could be generated from low-to-medium mass elements with the present laser system, while the charge state distributions for high mass elements were relatively low. The shot-to-shot stability of ion pulses was monitored with a Faraday cup for carbon target. The fluctuations within ±2.5% for the peak current and total charge and ±6% for pulse duration were demonstrated with the present setup of the laser ion source, the suppression of which is still possible.

  3. Liquid lithium target as a high intensity, high energy neutron source

    Science.gov (United States)

    Parkin, Don M.; Dudey, Norman D.

    1976-01-01

    This invention provides a target jet for charged particles. In one embodiment the charged particles are high energy deuterons that bombard the target jet to produce high intensity, high energy neutrons. To this end, deuterons in a vacuum container bombard an endlessly circulating, free-falling, sheet-shaped, copiously flowing, liquid lithium jet that gushes by gravity from a rectangular cross-section vent on the inside of the container means to form a moving web in contact with the inside wall of the vacuum container. The neutrons are produced via break-up of the beam in the target by stripping, spallation and compound nuclear reactions in which the projectiles (deuterons) interact with the target (Li) to produce excited nuclei, which then "boil off" or evaporate a neutron.

  4. Liquid lithium target as a high intensity, high energy neutron source

    International Nuclear Information System (INIS)

    Parkin, D.M.; Dudey, N.D.

    1976-01-01

    The invention described provides a target jet for charged particles. In one embodiment the charged particles are high energy deuterons that bombard the target jet to produce high intensity, high energy neutrons. To this end, deuterons in a vacuum container bombard an endlessly circulating, free-falling, sheet-shaped, copiously flowing, liquid lithium jet that gushes by gravity from a rectangular cross-section vent on the inside of the container means to form a moving web in contact with the inside wall of the vacuum container. The neutrons are produced via break-up of the beam in the target by stripping, spallation and compound nuclear reactions in which the projectiles (deuterons) interact with the target (Li) to produce excited nuclei, which then ''boil off'' or evaporate a neutron

  5. Direct measurement of the energy spectrum of an intense proton beam

    International Nuclear Information System (INIS)

    Leeper, R.J.; Lee, J.R.; Kissel, L.; Johnson, D.J.; Stygar, W.A.; Hebron, D.E.; Roose, L.D.

    1983-01-01

    A time-resolved magnetic spectrometer has been used to measure the energy spectrum of an intense (0.5 TW/cm 2 ) proton beam. A thin (2400 A) gold foil placed at the focus of an ion diode Rutherford scattered protons by 90 0 into the spectrometer, reducing the beam intensity to a level suitable for magnetic analysis. The scattered beam was collimated by two 1 mm diameter apertures separated by 12.3 cm. The collimated protons were deflected in a 12.7 cm diameter, 6.65 Kg samarium-cobalt permanent magnet. The deflected protons were recorded simultaneously on CR-39 and eight 1 mm 2 by 35 μm thick PIN diodes. A Monte Carlo computer code was used to calculate the sensitivity and resolution of the spectrometer. Data taken on Proto-I show a 150 keV to 250 keV wide proton energy spectrum at each instant in time

  6. The assessment of the intensive poultry rearing farms within the context of the IPPC Directive (B)

    OpenAIRE

    MIHĂIESCU Tania; R. MIHĂIESCU

    2008-01-01

    Poultry production in intensive farms has been steadily increasing since the 1970s. This has occurredthrough a number of factors including increased feed supply through greater use of nitrogen (N) fertilizer andincreased use of supplementary forage feeds. Potentially, the integration of low-protein forage (e.g. maize), toreduce dietary-N concentration, or management practices (e.g. deep layer, cage tier), to reduce excreta to waste,water and soil, can mitigate environmental N emissions and in...

  7. 76 FR 44613 - Designation of Eight Counties as High Intensity Drug Trafficking Areas

    Science.gov (United States)

    2011-07-26

    ... OFFICE OF NATIONAL DRUG CONTROL POLICY Designation of Eight Counties as High Intensity Drug Trafficking Areas AGENCY: Office of National Drug Control Policy. ACTION: Notice. SUMMARY: The Director of the Office of National Drug Control Policy has designated eight additional counties as High Intensity Drug...

  8. Cosmic ray intensity distribution in the vertical direction to solar equator plane

    International Nuclear Information System (INIS)

    Nosaka, Toru; Mori, Satoru; Sagisaka, Shuji.

    1983-01-01

    The data of the annual variation of cosmic ray intensity measured by neutron detectors were used to study the distribution of cosmic ray intensity vertical to the solar equator plane and its long term variation. The data used were obtained at Deep River, Kiel, Kerguelen Island, McMurdo, Ottawa, and Mt. Washington. All data showed annual variation. The patterns and degree of variation obtained in northern and southern hemisphere were similar. The summation dial representation of the annual variation and semi-annual variation of cosmic ray was obtained. The inversion of annual variation in 1958 - 1959 and 1968 - 1969 corresponded to the inversion of polarity of solar pole magnetic field. The semi-annual variation showed a complex behavior. The helio-latitudial distribution of cosmic ray intensity was obtained. The asymmetric distribution in relation to the solar equator was observed in the annual variation. The northward gradient of density in 1955 - 1958 and southward gradient in 1959 - 1968 were seen. (Kato, T.)

  9. Electron Acceleration and the Propagation of Ultrashort High-Intensity Laser Pulses in Plasmas

    International Nuclear Information System (INIS)

    Wang, Xiaofang; Krishnan, Mohan; Saleh, Ned; Wang, Haiwen; Umstadter, Donald

    2000-01-01

    Reported are interactions of high-intensity laser pulses (λ=810 nm and I≤3x10 18 W /cm 2 ) with plasmas in a new parameter regime, in which the pulse duration (τ=29 fs ) corresponds to 0.6-2.6 plasma periods. Relativistic filamentation is observed to cause laser-beam breakup and scattering of the beam out of the vacuum propagation angle. A beam of megaelectronvolt electrons with divergence angle as small as 1 degree sign is generated in the forward direction, which is correlated to the growth of the relativistic filamentation. Raman scattering, however, is found to be much less than previous long-pulse results. (c) 2000 The American Physical Society

  10. Ignition of mercury-free high intensity discharge lamps

    International Nuclear Information System (INIS)

    Czichy, M; Mentel, J; Awakowicz, P; Hartmann, T

    2008-01-01

    To achieve a better understanding of the ignition behaviour of D4 lamps for automotive headlights the ignition of mercury-free metal iodide test lamps characterized by a high xenon pressure, a small electrode distance and small electrode-wall distances is investigated. The ignition of these lamps is dominated by a high voltage requirement. Nevertheless lamps are found that show a surprisingly low ignition voltage. Electrical measurements and simultaneous optical observations of the ultra-fast streamer processes show that the breakdown takes place in two different modes. One of the ignition modes which requires a high ignition voltage is characterized by a breakdown in the volume between the electrode tips. The other mode is characterized by streamer discharges along the wall. In this case the cathode, its base and the wall around is involved in the ignition process and the lamp breaks down at low voltages

  11. COLLIMATORS AND MATERIALS FOR HIGH INTENSITY HEAVY ION SYNCHROTRONS

    CERN Document Server

    Stadlmann, J; Kollmus, H; Spiller, P; Strasik, I; Tahir, N A; Tomut, M; Trautmann, C

    2012-01-01

    The operation of high power high brightness accelerators requires huge efforts for beam cleaning and machine protection. Within the WP 8 (ColMat) of the EU research framework EuCARD[1] we investigate new materials and methods for beam collimation and machine protection. We present an overview of these activities at the GSI Helmholtzzentrum f¨ur Schwerionenforschung, Darmstadt. Simulations of accidental beam losses in LHC and SIS100 have been performed. Scenarios for halo collimation of heavy ions and protons in SIS100 routine operation have been investigated. A prototype of a cryogenic collimator for charge exchange losses during intermediate charge state heavy ion operation in SIS100 has been build and tested with beam. Several candidates of advanced composite materials for collimation system upgrades of present and future high power accelerators have been irradiated and their properties are being characterized. Most deliverables and milestones of the R&D programme were already reached before the end of...

  12. Direct integration of intensity-level data from Affymetrix and Illumina microarrays improves statistical power for robust reanalysis

    Directory of Open Access Journals (Sweden)

    Turnbull Arran K

    2012-08-01

    Full Text Available Abstract Background Affymetrix GeneChips and Illumina BeadArrays are the most widely used commercial single channel gene expression microarrays. Public data repositories are an extremely valuable resource, providing array-derived gene expression measurements from many thousands of experiments. Unfortunately many of these studies are underpowered and it is desirable to improve power by combining data from more than one study; we sought to determine whether platform-specific bias precludes direct integration of probe intensity signals for combined reanalysis. Results Using Affymetrix and Illumina data from the microarray quality control project, from our own clinical samples, and from additional publicly available datasets we evaluated several approaches to directly integrate intensity level expression data from the two platforms. After mapping probe sequences to Ensembl genes we demonstrate that, ComBat and cross platform normalisation (XPN, significantly outperform mean-centering and distance-weighted discrimination (DWD in terms of minimising inter-platform variance. In particular we observed that DWD, a popular method used in a number of previous studies, removed systematic bias at the expense of genuine biological variability, potentially reducing legitimate biological differences from integrated datasets. Conclusion Normalised and batch-corrected intensity-level data from Affymetrix and Illumina microarrays can be directly combined to generate biologically meaningful results with improved statistical power for robust, integrated reanalysis.

  13. Real-time bilinear rotation decoupling in absorptive mode J-spectroscopy: Detecting low-intensity metabolite peak close to high-intensity metabolite peak with convenience

    Science.gov (United States)

    Verma, Ajay; Baishya, Bikash

    2016-05-01

    ;Pure shift; NMR spectra display singlet peak per chemical site. Thus, high resolution is offered at the cost of valuable J-coupling information. In the present work, real-time BIRD (BIlinear Rotation Decoupling) is applied to the absorptive-mode 2D J-spectroscopy to provide pure shift spectrum in the direct dimension and J-coupling information in the indirect dimension. Quite often in metabolomics, proton NMR spectra from complex bio-fluids display tremendous signal overlap. Although conventional J-spectroscopy in principle overcomes this problem by separating the multiplet information from chemical shift information, however, only magnitude mode of the experiment is practical, sacrificing much of the potential high resolution that could be achieved. Few J-spectroscopy methods have been reported so far that produce high-resolution pure shift spectrum along with J-coupling information for crowded spectral regions. In the present work, high-quality J-resolved spectrum from important metabolomic mixture such as tissue extract from rat cortex is demonstrated. Many low-intensity metabolite peaks which are obscured by the broad dispersive tails from high-intensity metabolite peaks in regular magnitude mode J-spectrum can be clearly identified in real-time BIRD J-resolved spectrum. The general practice of removing such spectral overlap is tedious and time-consuming as it involves repeated sample preparation to change the pH of the tissue extract sample and subsequent spectra recording.

  14. High harmonic generation in H and HD by intense femtosecond ...

    Indian Academy of Sciences (India)

    2013-04-24

    Apr 24, 2013 ... We have argued that for these conditions the harmonic generation due to the transitions in the electronic ... (XUV) or soft X-ray range and generation of very high-energy attosecond (as) pulses have been widely ..... [3] Y Liang, S Augst, S L Chin, Y Beaudoin and M Chaker, J. Phys. B 27, 5119 (1994).

  15. Impedance-match experiments using high intensity lasers

    International Nuclear Information System (INIS)

    Holmes, N.C.; Trainor, R.J.; Anderson, R.A.; Veeser, L.R.; Reeves, G.A.

    1981-01-01

    The results of a series of impedance-match experiments using copper-aluminum targets irradiated using the Janus Laser Facility are discussed. The results are compared to extrapolations of data obtained at lower pressures using impact techniques. The sources of errors are described and evaluated. The potential of lasers for high accuracy equation of state investigations are discussed

  16. The Energy Efficiency of High Intensity Proton Driver Concepts

    Energy Technology Data Exchange (ETDEWEB)

    Yakovlev, Vyacheslav [Fermilab; Grillenberger, Joachim [PSI, Villigen; Kim, Sang-Ho [ORNL, Oak Ridge (main); Seidel, Mike [PSI, Villigen; Yoshii, Masahito [JAEA, Ibaraki

    2017-05-01

    For MW class proton driver accelerators the energy efficiency is an important aspect; the talk reviews the efficiency of different accelerator concepts including s.c./n.c. linac, rapid cycling synchrotron, cyclotron; the potential of these concepts for very high beam power is discussed.

  17. [Gamma scattering in condensed matter with high intensity Moessbauer radiation

    International Nuclear Information System (INIS)

    1992-01-01

    This report discusses: quasielastic scattering studies on glycerol; gamma-ray scattering from alkali halides; lattice dynamics in metals; Moessbauer neutron scattering, x-ray diffraction, and macroscopic studies of high T c superconductors containing tungsten; NiAl scattering studies; and atomic interference factors and nuclear Casimir effect

  18. STATUS REPORT ON DEVELOPMENT OF A HIGH-SPEED HIGH-INTENSITY MOLECULAR BEAM

    Energy Technology Data Exchange (ETDEWEB)

    Knuth, Eldon L.

    1963-07-15

    Status of a high-speed high-intensity molecular beam under development is described. Bases for designs of the several components are presented. Using an arc-heated source and a hypersonic jet, molecular energies exceeding 1 ev and beam intensities of the order of 10/sup 16/ molecules/ cm/sup 2/ sec are anticipated. A two-disk beam chopper and speed selector provides a means for analyzing the speed distribution in the generated beam, for chopping the beam into bursts of nearly monoenergetic molecules suitable for scattering studies using the time-of-flight technique, and for modulating the beam in order to facilitate detection. A through-flow ionization detector possesses the versatility required for scattering studies using the time-of-flight technique. A sorption pump and a turbo pump serve as central components of alternative pumping systems for the collimating chamber. Using the arc-heated source, the converging nozzle, the conduction-radiation-cooled skimmer, the turbo pump (turning at 3400 rpm), the chopperselector (acting only as a chopper), and the detector, an arc-heated beam is generated and detected. (auth)

  19. High-Intensity High-order Harmonics Generated from Low-Density Plasma

    International Nuclear Information System (INIS)

    Ozaki, T.; Bom, L. B. Elouga; Abdul-Hadi, J.; Ganeev, R. A.; Haessler, S.; Salieres, P.

    2009-01-01

    We study the generation of high-order harmonics from lowly ionized plasma, using the 10 TW, 10 Hz laser of the Advanced Laser Light Source (ALLS). We perform detailed studies on the enhancement of a single order of the high-order harmonic spectrum generated in plasma using the fundamental and second harmonic of the ALLS beam line. We observe quasi-monochromatic harmonics for various targets, including Mn, Cr, Sn, and In. We identify most of the ionic/neutral transitions responsible for the enhancement, which all have strong oscillator strengths. We demonstrate intensity enhancements of the 13th, 17th, 29th, and 33rd harmonics from these targets using the 800 nm pump laser and varying its chirp. We also characterized the attosecond nature of such plasma harmonics, measuring attosecond pulse trains with 360 as duration for chromium plasma, using the technique of ''Reconstruction of Attosecond Beating by Interference of Two-photon Transitions''(RABBIT). These results show that plasma harmonics are intense source of ultrashort coherent soft x-rays.

  20. Intensity-Duration-Frequency curves from remote sensing datasets: direct comparison of weather radar and CMORPH over the Eastern Mediterranean

    Science.gov (United States)

    Morin, Efrat; Marra, Francesco; Peleg, Nadav; Mei, Yiwen; Anagnostou, Emmanouil N.

    2017-04-01

    Rainfall frequency analysis is used to quantify the probability of occurrence of extreme rainfall and is traditionally based on rain gauge records. The limited spatial coverage of rain gauges is insufficient to sample the spatiotemporal variability of extreme rainfall and to provide the areal information required by management and design applications. Conversely, remote sensing instruments, even if quantitative uncertain, offer coverage and spatiotemporal detail that allow overcoming these issues. In recent years, remote sensing datasets began to be used for frequency analyses, taking advantage of increased record lengths and quantitative adjustments of the data. However, the studies so far made use of concepts and techniques developed for rain gauge (i.e. point or multiple-point) data and have been validated by comparison with gauge-derived analyses. These procedures add further sources of uncertainty and prevent from isolating between data and methodological uncertainties and from fully exploiting the available information. In this study, we step out of the gauge-centered concept presenting a direct comparison between at-site Intensity-Duration-Frequency (IDF) curves derived from different remote sensing datasets on corresponding spatial scales, temporal resolutions and records. We analyzed 16 years of homogeneously corrected and gauge-adjusted C-Band weather radar estimates, high-resolution CMORPH and gauge-adjusted high-resolution CMORPH over the Eastern Mediterranean. Results of this study include: (a) good spatial correlation between radar and satellite IDFs ( 0.7 for 2-5 years return period); (b) consistent correlation and dispersion in the raw and gauge adjusted CMORPH; (c) bias is almost uniform with return period for 12-24 h durations; (d) radar identifies thicker tail distributions than CMORPH and the tail of the distributions depends on the spatial and temporal scales. These results demonstrate the potential of remote sensing datasets for rainfall

  1. System for monitoring the position, intensity, uniformity, and directivity of a beam of ionizing radiation

    International Nuclear Information System (INIS)

    Boux, R.

    1976-01-01

    A monitoring device transparent to ionizing radiation, designed to measure the orientation, intensity and uniformity of an incident beam, comprises a cylindrical housing forming at least one ionization chamber with one or more ion-collecting electrodes transverse to the housing axis, each electrode being subdivided into a plurality of mutually insulated conductive elements connected to respective amplifiers. The elements of at least one electrode include one or more outer elements surrounding or bracketing one or more inner elements to measure the radiation in a central zone and a peripheral zone. The outputs of the respective amplifiers are additively and subtractively combined in an evaluation circuit

  2. High-Intensity Laser Diagnostics for OMEGA EP

    International Nuclear Information System (INIS)

    Bromage, J.; Zuegel, J.D.; Bahk, S.-W.; Vickery, D.S.; Waxer, L.J.; Irwin, D.; Bagnoud, V.; Boni, R.; Moore, M.D.; Junquist, R.; Stoeckl, C.

    2006-01-01

    OMEGA EP is a new high-energy petawatt laser system under construction at the University of Rochester's Laboratory for Laser Energetics. This paper describes our designs for two diagnostics critical to OMEGA EP's mission. The focal-spot diagnostic (FSD) is responsible for characterizing the focal spot of OMEGA EP's off-axis parabolic mirror at full energy. The ultrafast temporal diagnostic (UTD) is responsible for characterizing pulse shapes of full-energy target shots ranging in width from <1 to 100 ps as well as setting the desired pulse width before the shot. These diagnostics will enable, for the first time, complete spatial and temporal characterization of the focus of a high-energy petawatt laser at full energy

  3. High-intensity laser diagnostics for OMEGA EP

    Energy Technology Data Exchange (ETDEWEB)

    Bromage, J.; Zuegel, J.D.; Bahk, S.W.; Vickery, D.S.; Waxer, L.J.; Irwin, D.; Bagnoud, V.; Boni, R.; Moore, M.D.; Jungquist, R.; Stoeckl, C. [Rochester Univ., Lab. for Laser Energetics, NY (United States)

    2006-06-15

    OMEGA EP (Extended Performance) is a new high-energy peta-watt laser system under construction at the University of Rochester's Laboratory for Laser Energetics. This paper describes our designs for two diagnostics critical to OMEGA EP's mission. The focal-spot diagnostic (FSD) is responsible for characterizing the focal spot of OMEGA EP's off-axis parabolic mirror at full energy. The ultrafast temporal diagnostic (UTD) is responsible for characterizing pulse shapes of full-energy target shots ranging in width from < 1 to 100 ps as well as setting the desired pulse width before the shot. These diagnostics will enable, for the first time, complete spatial and temporal characterization of the focus of a high-energy peta-watt laser at full energy. (authors)

  4. High-intensity laser diagnostics for OMEGA EP

    International Nuclear Information System (INIS)

    Bromage, J.; Zuegel, J.D.; Bahk, S.W.; Vickery, D.S.; Waxer, L.J.; Irwin, D.; Bagnoud, V.; Boni, R.; Moore, M.D.; Jungquist, R.; Stoeckl, C.

    2006-01-01

    OMEGA EP (Extended Performance) is a new high-energy peta-watt laser system under construction at the University of Rochester's Laboratory for Laser Energetics. This paper describes our designs for two diagnostics critical to OMEGA EP's mission. The focal-spot diagnostic (FSD) is responsible for characterizing the focal spot of OMEGA EP's off-axis parabolic mirror at full energy. The ultrafast temporal diagnostic (UTD) is responsible for characterizing pulse shapes of full-energy target shots ranging in width from < 1 to 100 ps as well as setting the desired pulse width before the shot. These diagnostics will enable, for the first time, complete spatial and temporal characterization of the focus of a high-energy peta-watt laser at full energy. (authors)

  5. High-intensity pulsed beam source with tunable operation mode

    Science.gov (United States)

    Nashilevskiy, A. V.; Kanaev, G. G.; Ezhov, V. V.; Shamanin, V. I.

    2017-05-01

    The report presents the design of an electron and an ion pulsed accelerator. The powerful high-voltage pulse generator of the accelerator and the vacuum bushing insulator is able to change the polarity of the output voltage. The low-inductance matching transformer provides an increase in the DFL output impedance by 4 times. The generator based on a high voltage pulse transformer and a pseudo spark switch is applied for DFL charging. The high-impedance magnetically insulated focusing diode with Br magnetic field and the “passive” anode was used to realize the ion beam generation mode. The plasma is formed on the surface of the anode caused by an electrical breakdown at the voltage edge pulse; as a result, the carbon ion and proton beam is generated. This beam has the following parameters: the current density is about 400 A/cm2 (in focus): the applied voltage is up to 450 kV. The accelerator is designed for the research on the interaction of the charged particle pulsed beams with materials and for the development of technological processes of a material modification.

  6. High-order harmonics from bow wave caustics driven by a high-intensity laser

    International Nuclear Information System (INIS)

    Pirozhkov, A.S.; Kando, M.; Esirkepov, T.Zh.

    2012-01-01

    We propose a new mechanism of high-order harmonic generation during an interaction of a high-intensity laser pulse with underdense plasma. A tightly focused laser pulse creates a cavity in plasma pushing electrons aside and exciting the wake wave and the bow wave. At the joint of the cavity wall and the bow wave boundary, an annular spike of electron density is formed. This spike surrounds the cavity and moves together with the laser pulse. Collective motion of electrons in the spike driven by the laser field generates high-order harmonics. A strong localization of the electron spike, its robustness to oscillations imposed by the laser field and, consequently, its ability to produce high-order harmonics is explained by catastrophe theory. The proposed mechanism explains the experimental observations of high-order harmonics with the 9 TW J-KAREN laser (JAEA, Japan) and the 120 TW Astra Gemini laser (CLF RAL, UK) [A. S. Pirozhkov, et al., arXiv:1004.4514 (2010); A. S. Pirozhkov et al, AIP Proceedings, this volume]. The theory is corroborated by high-resolution two-and three-dimensional particle-in-cell simulations.

  7. High Torque, Direct Drive Electric Motor, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Bear Engineering proposes to advance the development of an innovative high torque, low speed, direct drive motor in order to meet NASA's requirements for such...

  8. High Torque, Direct Drive Electric Motor, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Bear Engineering proposes to develop an innovative high torque, low speed, direct drive motor in order to meet NASA's requirements for such devices. Fundamentally,...

  9. High-intensity interval training and athletic performance in Taekwondo athletes.

    Science.gov (United States)

    Monks, Lynne; Seo, Myong-Won; Kim, Hyun-Bae; Jung, Hyun C; Song, Jong K

    2017-10-01

    The purpose of this study was to determine the effects of high-intensity interval training (HIIT) on athletic performance in Taekwondo athletes. Thirty-three male and female collegiate Taekwondo athletes were randomly divided into a HIIT group (N.=16) or a high-intensity continuous running (HICR) group (N.=17). The HIIT group undertook training of high-intensity sprints interspersed with active rest periods whilst the HICR group participated in high-intensity running for a continuous period. Both groups completed 11 sessions over 4 weeks. Physique, body composition, Wingate anaerobic test and VO2max test were measured. The vertical jump test, agility T-test and sit-ups were used to assess physical fitness. Repeated measures ANCOVAs with sex as a covariate were applied and significant level was set at 0.05. Following 11 sessions of training, significant improvements in anaerobic peak power (Ptraining, specifically the influence of training intensity on anaerobic capacity.

  10. High-intensity laser synchrotron x-ray source

    International Nuclear Information System (INIS)

    Pogorelsky, I.V.

    1995-10-01

    A laser interacting with a relativistic electron beam behaves like a virtual wiggler of an extremely short period equal to half of the laser wavelength. This approach opens a route to relatively compact, high-brightness x-ray sources alternative or complementary to conventional synchrotron light sources. Although not new, the Laser Synchrotron Light Source (LSLS) concept is still waiting for a convincing demonstration. Available at the BNL's Accelerator Test Facility (ATF), a high-brightness electron beam and the high-power C0 2 laser may be used as prototype LSLS brick stones. In a feasible demonstration experiment, 10-GW, 100-ps C0 2 laser beam will be brought to a head-on collision with a 10-ps, 0.5-nC, 70 MeV electron bunch. Flashes of well-collimated, up to 9.36-keV (∼ Angstrom) x-rays of 10-ps pulse duration, with a flux of ∼10 19 photons/sec will be produced via linear Compton backscattering. The x-ray spectrum is tunable proportionally to a variable e-beam energy. A natural short-term extension of the proposed experiment would be further enhancement of the x-ray flux to a 10 21 -10 22 photons/sec level, after the ongoing ATF CO 2 laser upgrade to 1 TW peak power and electron bunch shortening to 3 ps. The ATF LSLS x-ray beamline, exceeding by orders of magnitude the peak fluxes attained at the National Synchrotron Light Source (NSLS) x-ray storage ring, may become attractive for certain users, e.g., for biological x-ray microscopy. In addition, a terawatt CO 2 laser will enable harmonic multiplication of the x-ray spectrum via nonlinear Compton scattering

  11. Future of high intensity accelerators in nuclear energy

    International Nuclear Information System (INIS)

    Schriber, S.O.; Fraser, J.S.; Tunnicliffe, P.R.

    1977-08-01

    A possible application for a high mean current, intermediate-energy proton linear accelerator is the ''electrical breeding'' of fuel for nuclear electrical power stations. The possible role of the spallation breeder in the context of a Canadian nuclear power economy and its relationship to nuclear fuel resources are discussed. The production of fissile material using the spallation process in a target containing actinide elements appears desirable and feasible from engineering and economic considerations. Current development work in Canada and some of the outstanding problems are discussed. (author)

  12. Highly charged ions generated with intense laser beams

    Czech Academy of Sciences Publication Activity Database

    Krása, Josef; Jungwirth, Karel; Králiková, Božena; Láska, Leoš; Pfeifer, Miroslav; Rohlena, Karel; Skála, Jiří; Ullschmied, Jiří; Hnatowicz, Vladimír; Peřina, Vratislav; Badziak, J.; Parys, P.; Wolowski, J.; Woryna, E.; Szydlowski, A.

    2003-01-01

    Roč. 205, - (2003), s. 355-359 ISSN 0168-583X. [International Symposium on Swift Heavy Ions in Matter /5./. Taormina-Giardini Naxos, 22.05.2002-25.05.2002] R&D Projects: GA MŠk LN00A100 Grant - others:HPRI(XE) CT-1999-00053; IAEA(XE) 11535/RO Institutional research plan: CEZ:AV0Z2043910; CEZ:AV0Z1010921 Keywords : laser-produced plasma * highly charged ions * ion implantation * windowless electron multiplier Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.041, year: 2003

  13. A Highly intense DC muon source, MuSIC and muon CLFV search

    Energy Technology Data Exchange (ETDEWEB)

    Hino, Y.; Kuno, Y.; Sato, A. [Department of Physics, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 (Japan); Sakamoto, H. [Department of Physics, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 (Japan); Research Center of Nuclear Physics, 10-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Matsumoto, Y.; Tran, N.H.; Hashim, I.H. [Department of Physics, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 (Japan); Fukuda, M.; Hayashida, Y. [Research Center of Nuclear Physics, 10-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Ogitsu, T.; Yamamoto, A.; Yoshida, M. [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan)

    2014-08-15

    MuSIC is a new muon facility, which provides the world's highest intense muon beam with continuous time structure at Research Center of Nuclear Physics (RCNP), Osaka University. It's intensity is designed to be 10{sup 8} muons per second with only 0.4 kW proton beam. Such a high intense muon beam is very important for searches of rare decay processes, for example search for the muon to electron conversion.

  14. A Highly intense DC muon source, MuSIC and muon CLFV search

    International Nuclear Information System (INIS)

    Hino, Y.; Kuno, Y.; Sato, A.; Sakamoto, H.; Matsumoto, Y.; Tran, N.H.; Hashim, I.H.; Fukuda, M.; Hayashida, Y.; Ogitsu, T.; Yamamoto, A.; Yoshida, M.

    2014-01-01

    MuSIC is a new muon facility, which provides the world's highest intense muon beam with continuous time structure at Research Center of Nuclear Physics (RCNP), Osaka University. It's intensity is designed to be 10 8 muons per second with only 0.4 kW proton beam. Such a high intense muon beam is very important for searches of rare decay processes, for example search for the muon to electron conversion

  15. Negative beliefs about low back pain are associated with persistent high intensity low back pain.

    Science.gov (United States)

    Ng, Sin Ki; Cicuttini, Flavia M; Wang, Yuanyuan; Wluka, Anita E; Fitzgibbon, Bernadette; Urquhart, Donna M

    2017-08-01

    While previous cross-sectional studies have found that negative beliefs about low back pain are associated with pain intensity, the relationship between back beliefs and persistent low back pain is not well understood. This cohort study aimed to examine the role of back beliefs in persistent low back pain in community-based individuals. A hundred and ninety-two participants from a previous musculoskeletal health study were invited to take part in a two-year follow-up study. Beliefs about back pain were assessed by the Back Beliefs Questionnaire (BBQ) at baseline and low back pain intensity was measured by the Chronic Pain Grade Questionnaire at baseline and follow-up. Of the 150 respondents (78.1%), 16 (10.7%) reported persistent high intensity low back pain, 12 (8.0%) developed high intensity low back pain, in 16 (10.7%) their high intensity low back pain resolved and 106 (70.7%) experienced no high intensity low back pain. While participants were generally positive about low back pain (BBQ mean (SD) = 30.2 (6.4)), those with persistent high intensity pain reported greater negativity (BBQ mean (SD) = 22.6 (4.9)). Negative beliefs about back pain were associated with persistent high intensity low back pain after adjusting for confounders (M (SE) = 23.5 (1.6) vs. >30.1 (1.7), p back beliefs were associated with persistent high intensity low back pain over 2 years in community-based individuals. While further longitudinal studies are required, these findings suggest that targeting beliefs in programs designed to treat and prevent persistent high intensity low back pain may be important.

  16. Energetics of high-intensity exercise (soccer) with particular reference to fatigue.

    Science.gov (United States)

    Reilly, T

    1997-06-01

    Soccer entails intermittent exercise with bouts of short, intense activity punctuating longer periods of low-level, moderate-intensity exercise. High levels of blood lactate may sometimes be observed during a match but the active recovery periods at submaximal exercise levels allow for its removal on a continual basis. While anaerobic efforts are evident in activity with the ball and shadowing fast-moving opponents, the largest strain is placed on aerobic metabolism. On average, competitive soccer corresponds to an energy expenditure of about 75% maximal aerobic power. The energy expenditure varies with playing position, being highest among midfield players. Muscle glycogen levels can be reduced towards the end of a game, the level of reduction being reflected in a decrease in work rate. Blood glucose levels are generally well-maintained, although body temperature may rise by 2 degrees C even in temperate conditions. The distance covered by players tends to under-reflect the energy expended. Unorthodox modes of motion-running backwards and sideways, accelerating, decelerating and changing direction-accentuate the metabolic loading. These are compounded by the extra requirements for energy associated with dribbling the ball and contesting possession. The overall energy expended is extreme when players are required to play extra-time in tournaments. Training, nutritional and tactical strategies may be used to reduce the effects of fatigue that may occur late in the game.

  17. High intensity focused ultrasound technology, its scope and applications in therapy and drug delivery.

    Science.gov (United States)

    Phenix, Christopher Peter; Togtema, Melissa; Pichardo, Samuel; Zehbe, Ingeborg; Curiel, Laura

    2014-01-01

    Ultrasonography is a safe, inexpensive and wide-spread diagnostic tool capable of producing real-time non-invasive images without significant biological effects. However, the propagation of higher energy, intensity and frequency ultrasound waves through living tissues can induce thermal, mechanical and chemical effects useful for a variety of therapeutic applications. With the recent development of clinically approved High Intensity Focused Ultrasound (HIFU) systems, therapeutic ultrasound is now a medical reality. Indeed, HIFU has been used for the thermal ablation of pathological lesions; localized, minimally invasive ultrasound-mediated drug delivery through the transient formation of pores on cell membranes; the temporary disruption of skin and the blood brain barrier; the ultrasound induced break-down of blood clots; and the targeted release of drugs using ultrasound and temperature sensitive drug carriers. This review seeks to engage the pharmaceutical research community by providing an overview on the biological effects of ultrasound as well as highlighting important therapeutic applications, current deficiencies and future directions.

  18. Physics design of a 70 MeV high intensity cyclotron, CYCIAE-70

    International Nuclear Information System (INIS)

    Zhang Tianjue; An Shizhong; Wang Chuan; Yin Zhiguo; Wei Sumin; Li Ming; Yang Jianjun; Ji Bin; Jia Xianlu; Zhong Junqing; Yang Fang

    2011-01-01

    This paper introduces the physics design of a 70 MeV high intensity cyclotron at China Institute of Atomic Energy (CIAE), which is aimed for multiple uses including radioactive ion-beam (RIB) production. The machine adopts a compact structure of four straight sectors, capable of accelerating two kinds of beams, i.e. H − and D − . The proton and deuteron beam will be extracted in dual opposite directions by charge exchange stripping devices. The energy of the extracted proton beam is in the range 35–70 MeV with an intensity up to 700 μA. The corresponding values for the deuteron beam are 18–33 MeV and 40 μA. This paper will present the main characteristics and parameters in the design of the 70 MeV cyclotron, the results of the basic beam dynamics study, as well as the physics in the design of the different systems, including the main magnet, RF, injection and extraction systems, etc.

  19. Exact perturbation theory of multiphoton processes at high intensities. [Schroedinger equation, perturbation theory, matrix

    Energy Technology Data Exchange (ETDEWEB)

    Faisal, F H.M. [Bielefeld Univ. (Germany, F.R.). Fakultaet fuer Physik

    1976-06-11

    In this work the perturbation theory for multiphoton processes at high intensities is investigated and it is described an analytical method of summing the perturbation series to extract the contribution from all terms that give rise to the absorption of N photons by an atomic system. The method is first applied to the solution of a simple model problem and the result is confirmed by direct integration of the model Schroedinger equation. The usual lowest (nonvanishing)-order perturbation-theoretical calculation is also carried out for this model to demonstrate explicitly that the full result correctly reproduces that of the lowest-order theory in the limit of low intensity. The method is then extended to the case of an atomic system with well-developed spectrum (e.g. H atom) and the N-photon T-matrix is derived in terms of a ''photon matrix'' asub(N), for which a three-term recurrence relation is established. Next, from the vantage point of the general result obtained here, A probe is made into the nature of several approximate nonperturbative solutions that have appeared in the literature in the past. It is shown here that their applicability is severely restricted by the requirement of the essential spectral degeneracy of the atomic system. Finally, appendix A outlines a prescription of computing the photon matrix asub(N), which (as in the usual lowest-order perturbation-theoretical calculation)requires a knowledge of the eigenfunctions and eigenvalues of the atomic Hamiltonian only.

  20. Data intensive high energy physics analysis in a distributed cloud

    Science.gov (United States)

    Charbonneau, A.; Agarwal, A.; Anderson, M.; Armstrong, P.; Fransham, K.; Gable, I.; Harris, D.; Impey, R.; Leavett-Brown, C.; Paterson, M.; Podaima, W.; Sobie, R. J.; Vliet, M.

    2012-02-01

    We show that distributed Infrastructure-as-a-Service (IaaS) compute clouds can be effectively used for the analysis of high energy physics data. We have designed a distributed cloud system that works with any application using large input data sets requiring a high throughput computing environment. The system uses IaaS-enabled science and commercial clusters in Canada and the United States. We describe the process in which a user prepares an analysis virtual machine (VM) and submits batch jobs to a central scheduler. The system boots the user-specific VM on one of the IaaS clouds, runs the jobs and returns the output to the user. The user application accesses a central database for calibration data during the execution of the application. Similarly, the data is located in a central location and streamed by the running application. The system can easily run one hundred simultaneous jobs in an efficient manner and should scale to many hundreds and possibly thousands of user jobs.

  1. High efficiency inductive output tubes with intense annular electron beams

    Science.gov (United States)

    Appanam Karakkad, J.; Matthew, D.; Ray, R.; Beaudoin, B. L.; Narayan, A.; Nusinovich, G. S.; Ting, A.; Antonsen, T. M.

    2017-10-01

    For mobile ionospheric heaters, it is necessary to develop highly efficient RF sources capable of delivering radiation in the frequency range from 3 to 10 MHz with an average power at a megawatt level. A promising source, which is capable of offering these parameters, is a grid-less version of the inductive output tube (IOT), also known as a klystrode. In this paper, studies analyzing the efficiency of grid-less IOTs are described. The basic trade-offs needed to reach high efficiency are investigated. In particular, the trade-off between the peak current and the duration of the current micro-pulse is analyzed. A particle in the cell code is used to self-consistently calculate the distribution in axial and transverse momentum and in total electron energy from the cathode to the collector. The efficiency of IOTs with collectors of various configurations is examined. It is shown that the efficiency of IOTs can be in the 90% range even without using depressed collectors.

  2. Data intensive high energy physics analysis in a distributed cloud

    International Nuclear Information System (INIS)

    Charbonneau, A; Impey, R; Podaima, W; Agarwal, A; Anderson, M; Armstrong, P; Fransham, K; Gable, I; Harris, D; Leavett-Brown, C; Paterson, M; Sobie, R J; Vliet, M

    2012-01-01

    We show that distributed Infrastructure-as-a-Service (IaaS) compute clouds can be effectively used for the analysis of high energy physics data. We have designed a distributed cloud system that works with any application using large input data sets requiring a high throughput computing environment. The system uses IaaS-enabled science and commercial clusters in Canada and the United States. We describe the process in which a user prepares an analysis virtual machine (VM) and submits batch jobs to a central scheduler. The system boots the user-specific VM on one of the IaaS clouds, runs the jobs and returns the output to the user. The user application accesses a central database for calibration data during the execution of the application. Similarly, the data is located in a central location and streamed by the running application. The system can easily run one hundred simultaneous jobs in an efficient manner and should scale to many hundreds and possibly thousands of user jobs.

  3. EFFECT OF HIGH & LOW INTENSITIES OF AEROBIC EXERCISE ON PHYSICAL FITNESS INDEX

    Directory of Open Access Journals (Sweden)

    Madhusudhan

    2015-06-01

    Full Text Available BACKGROUND: Aerobic exercise reduces body fat and improves weight control, increases HDL&Vo2 max. Also improves PFI (physical fitness index which is defined as ability to carry out daily tasks with vigour and alertness without undue fatigue. Though aerobic exercise is found to improve physical fitness, the relative merits of different intensities of aerobi c exercise in improving physical fitness is still uncertain. AIM: The present study was conducted to know the Effect of High & low intensity aerobic training on physical fitness index. MATERIALS & METHODS : 80 sedentary men (18 - 40 years were randomized in to 2 equal groups (High Intensity & low intensity group . The High [80% HR max] & Low intensity [50 % HR max] groups underwent aerobic exercise training using Bicycle ergo meter (COSCO at 900kpm & 540kpm, for 15mins/day & 30mins/day respectively, 5days a week, for a period of 14weeks. Physical fitness index of each subject was recorded by Modified Harvard step test before & after intervention. RESULTS : After 14 weeks of aerobic training both the exercise groups had improvement in PFI, but high intensity gr oup had a significant (p<0.05 improvement in PFI (97.18 - 101.14 than low intensity group (98.12 - 100.6. CONCLUSION : High intensity aerobic exercise is effective in improving physical fitness.

  4. Experimental study of a high intensity radio-frequency cooler

    Directory of Open Access Journals (Sweden)

    Ramzi Boussaid

    2015-07-01

    Full Text Available Within the framework of the DESIR/SPIRAL-2 project, a radio-frequency quadrupole cooler named SHIRaC has been studied. SHIRaC is a key device of SPIRAL-2, designed to enhance the beam quality required by DESIR. The preliminary study and development of this device has been carried out at Laboratoire de Physique Corpusculaire de CAEN (LPC Caen, France. The goal of this paper is to present the experimental studies conducted on a SHIRaC prototype. The main peculiarity of this cooler is its efficient handling and cooling of ion beams with currents going up as high as 1  μA which has never before been achieved in any of the previous coolers. Much effort has been made lately into these studies for development of appropriate optics, vacuum and rf systems which allow cooling of beams of large emittance (∼80π  mm mrad and high current. The dependencies of SHIRaC’s transmission and the cooled beam parameters in terms of geometrical transverse emittance and the longitudinal energy spread have also been discussed. Investigation of beam purity at optimum cooling condition has also been done. Results from the experiments indicate that an emittance reduction of less than 2.5π  mm mrad and a longitudinal energy spread reduction of less than 4 eV are obtained with more than 70% of ion transmission. The emittance is at expected values whereas the energy spread is not.

  5. The most intense electric currents in turbulent high speed solar wind

    Science.gov (United States)

    Podesta, J. J.

    2017-12-01

    Theory and simulations suggest that dissipation of turbulent energy in collisionless astrophysical plasmas occurs most rapidly in spatial regions where the current density is most intense. To advance understanding of plasma heating by turbulent dissipation in the solar corona and solar wind, it is of interest to characterize the properties of plasma regions where the current density takes exceptionally large values and to identify the operative dissipation processes. In the solar wind, the curl of the magnetic field cannot be measured using data from a single spacecraft, however, a suitable proxy for this quantity can be constructed from the spatial derivative of the magnetic field along the flow direction of the plasma. This new approach is used to study the properties of the most intense current carrying structures in a high speed solar wind stream near 1 AU. In this study, based on 11 Hz magnetometer data from the WIND spacecraft, the spatial resolution of the proxy technique is approximately equal to the proton inertial length. Intense current sheets or current carrying structures were identified as events where the magnitude of the current density exceeds μ+5σ, where μ and σ are the mean and standard deviation of the magnitude of the current density (or its proxy), respectively. Statistical studies show (1) the average size of these 5σ events is close to the smallest resolvable scale in the data set, the proton inertial length; (2) the linear distance between neighboring events follows a power law distribution; and (3) the average peak current density of 5σ events is around 1 pA/cm2. The analysis techniques used in these studies have been validated using simulated spacecraft data from three dimensional hybrid simulations which show that results based on the analysis of the proxy are qualitatively and quantitatively similar to results based on the analysis of the true current density.

  6. Enhancing gas-phase reaction in a plasma using high intensity and high power ultrasonic acoustic waves

    DEFF Research Database (Denmark)

    2010-01-01

    is absorbed into said plasma (104), and where a sound pressure level of said generated ultrasonic high intensity and high power acoustic waves (102) is at least substantially 140 dB and where an acoustic power of said generated ultrasonic high intensity and high power acoustic waves (102); is at least...... substantially 100 W. In this way, a high sound intensity and power are obtained that efficiently enhances a gas-phase reaction in the plasma, which enhances the plasma process, e.g. enabling more efficient ozone or hydrogen generation using plasma in relation to reaction speed and/or obtained concentration......This invention relates to enhancing a gas-phase reaction in a plasma comprising: creating plasma (104) by at least one plasma source (106), and wherein that the method further comprises: generating ultrasonic high intensity and high power acoustic waves (102) having a predetermined amount...

  7. Direct drive digital servo press with high parallel control

    Science.gov (United States)

    Murata, Chikara; Yabe, Jun; Endou, Junichi; Hasegawa, Kiyoshi

    2013-12-01

    Direct drive digital servo press has been developed as the university-industry joint research and development since 1998. On the basis of this result, 4-axes direct drive digital servo press has been developed and in the market on April of 2002. This servo press is composed of 1 slide supported by 4 ball screws and each axis has linearscale measuring the position of each axis with high accuracy less than μm order level. Each axis is controlled independently by servo motor and feedback system. This system can keep high level parallelism and high accuracy even with high eccentric load. Furthermore the 'full stroke full power' is obtained by using ball screws. Using these features, new various types of press forming and stamping have been obtained by development and production. The new stamping and forming methods are introduced and 'manufacturing' need strategy of press forming with high added value and also the future direction of press forming are also introduced.

  8. High-intensity light-ion beam research at NRL

    International Nuclear Information System (INIS)

    Cooperstein, G.; Colombant, D.G.; Barker, R.J.

    1982-01-01

    High-brightness proton beams (.4 MA, 1 MV) have recently been extracted from 20 cm 2 axial pinch-reflex diodes (PRDs) mounted on the NRL Gamble II generator. A source power brightness of GT 10 TW/cm 2 rad 2 was achieved in these experiments. A new barrel-shaped equitorial PRD that can be coupled to PBFA-II has also been operated on Gamble II and has demonstrated 50% proton efficiency with predominately azimuthally-symmetric charged-particle flow. In other experiments the stopping power of deuterons in hot plasmas was measured using a PRD on Gamble II. Results show about 40% enhancement in stopping power over that in cold targets when the beam was focused to about .25 MA/cm 2 . Research is also being performed on transporting ion beams in large-diameter channels (>= 2.5 cm) and on a post-transport, plasma-filled, magnetic-focusing section to bring the beam to pellet dimensions. (author)

  9. High-energy acceleration of an intense negative ion beam

    International Nuclear Information System (INIS)

    Takeiri, Y.; Ando, A.; Kaneko, O.

    1995-02-01

    A high-current H - ion beam has been accelerated with the two-stage acceleration. A large negative hydrogen ion source with an external magnetic filter produces more than 10 A of the H - ions from the grid area of 25cm x 50cm with the arc efficiency of 0.1 A/kW by seeding a small amount of cesium. The H - ion current increases according to the 3/2-power of the total beam energy. A 13.6 A of H - ion beam has been accelerated to 125 keV at the operational gas pressure of 3.4 mTorr. The optimum beam acceleration is achieved with nearly the same electric fields in the first and the second acceleration gaps on condition that the ratio of the first acceleration to the extraction electric fields is adjusted for an aspect ratio of the extraction gap. The ratio of the acceleration drain current to the H - ion current is more than 1.7. That is mainly due to the secondary electron generated by the incident H - ions on the extraction grid and the electron suppression grid. The neutralization efficiency was measured and agrees with the theoretical calculation result. (author)

  10. A 3 GHz photoelectron gun for high beam intensity

    CERN Document Server

    Bossart, Rudolf; Dehler, M; Godot, J C

    1996-01-01

    For the Compact Linear Collider Test Facility (CTF) at CERN a new rf gun with a laser driven photocathode is under construction. The new rf gun will replace the present 11/2 cell gun and will consist of 21/2 cells accelerating the beam to a momentum of 7.0 MeV/c with an electric field strength of 100 MV/m. The strong space-charge forces at low beam energy caused by the high charge density of the electron bunches are contained by radial and longitudinal rf focusing in the gun. The rf gun under construction has been optimized by MAFIA beam simulations for an injector assembly comprising a second accelerating rf structure and an intermediate solenoid magnet correcting the beam divergence of the 21/2 cell gun. The beam loading of the rf gun, by a train of 48 bunches with 21 nC charge each, causes a strong energy decay accompanied by an increase of the flight time for the bunches with lower energy. These effects can be corrected by slightly shifting the acceleration frequency of the gun. The experimental results...

  11. High Performance Data Transfer for Distributed Data Intensive Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Chin [Zettar Inc., Mountain View, CA (United States); Cottrell, R ' Les' A. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Hanushevsky, Andrew B. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Kroeger, Wilko [SLAC National Accelerator Lab., Menlo Park, CA (United States); Yang, Wei [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2017-03-06

    We report on the development of ZX software providing high performance data transfer and encryption. The design scales in: computation power, network interfaces, and IOPS while carefully balancing the available resources. Two U.S. patent-pending algorithms help tackle data sets containing lots of small files and very large files, and provide insensitivity to network latency. It has a cluster-oriented architecture, using peer-to-peer technologies to ease deployment, operation, usage, and resource discovery. Its unique optimizations enable effective use of flash memory. Using a pair of existing data transfer nodes at SLAC and NERSC, we compared its performance to that of bbcp and GridFTP and determined that they were comparable. With a proof of concept created using two four-node clusters with multiple distributed multi-core CPUs, network interfaces and flash memory, we achieved 155Gbps memory-to-memory over a 2x100Gbps link aggregated channel and 70Gbps file-to-file with encryption over a 5000 mile 100Gbps link.

  12. Computational aspects in high intensity ultrasonic surgery planning.

    Science.gov (United States)

    Pulkkinen, A; Hynynen, K

    2010-01-01

    Therapeutic ultrasound treatment planning is discussed and computational aspects regarding it are reviewed. Nonlinear ultrasound simulations were solved with a combined frequency domain Rayleigh and KZK model. Ultrasonic simulations were combined with thermal simulations and were used to compute heating of muscle tissue in vivo for four different focused ultrasound transducers. The simulations were compared with measurements and good agreement was found for large F-number transducers. However, at F# 1.9 the simulated rate of temperature rise was approximately a factor of 2 higher than the measured ones. The power levels used with the F# 1 transducer were too low to show any nonlinearity. The simulations were used to investigate the importance of nonlinarities generated in the coupling water, and also the importance of including skin in the simulations. Ignoring either of these in the model would lead to larger errors. Most notably, the nonlinearities generated in the water can enhance the focal temperature by more than 100%. The simulations also demonstrated that pulsed high power sonications may provide an opportunity to significantly (up to a factor of 3) reduce the treatment time. In conclusion, nonlinear propagation can play an important role in shaping the energy distribution during a focused ultrasound treatment and it should not be ignored in planning. However, the current simulation methods are accurate only with relatively large F-numbers and better models need to be developed for sharply focused transducers. Copyright 2009 Elsevier Ltd. All rights reserved.

  13. Arbitrary Control of Polarization and Intensity Profiles of Diffraction-Attenuation-Resistant Beams along the Propagation Direction

    Science.gov (United States)

    Corato-Zanarella, Mateus; Dorrah, Ahmed H.; Zamboni-Rached, Michel; Mojahedi, Mo

    2018-02-01

    We report on the theory and experimental generation of a class of diffraction-attenuation-resistant beams with state of polarization (SOP) and intensity that can be controlled on demand along the propagation direction. This control is achieved by a suitable superposition of Bessel beams, whose parameters are systematically chosen based on closed-form analytic expressions provided by the frozen waves method. Using an amplitude-only spatial light modulator, we experimentally demonstrate three scenarios. In the first, the SOP of a horizontally polarized beam evolves to radial polarization and is then changed to vertical polarization, with the beam intensity held constant. In the second, we simultaneously control the SOP and the longitudinal intensity profile, which is chosen such that the beam's central ring can be switched off over predefined space regions, thus generating multiple foci with different SOPs and at different intensity levels along the propagation. Finally, the ability to control the SOP while overcoming attenuation inside lossy fluids is shown experimentally. We envision our proposed method to be of great interest for many applications, such as optical tweezers, atom guiding, material processing, microscopy, and optical communications.

  14. Dynamics of Cavitation Clouds within a High-Intensity Focused Ultrasonic Beam

    Science.gov (United States)

    2012-03-01

    the cloud size. I. INTRODUCTION High-intensity focused ultrasound (HIFU), along with the associated cavitation , is used in a variety of fields. The...Article 3. DATES COVERED (From - To) March 2012- May 2012 4. TITLE AND SUBTITLE Dynamics of Cavitation Clouds within a High-Intensity Focused...in initially quiescent water. The resulting pressure field and behavior of the cavitation bubbles are measured using high-speed digital in-line

  15. Remote Sensing Tertiary Education Meets High Intensity Interval Training

    Science.gov (United States)

    Joyce, K. E.; White, B.

    2015-04-01

    Enduring a traditional lecture is the tertiary education equivalent of a long, slow, jog. There are certainly some educational benefits if the student is able to maintain concentration, but they are just as likely to get caught napping and fall off the back end of the treadmill. Alternatively, a pre-choreographed interactive workshop style class requires students to continually engage with the materials. Appropriately timed breaks or intervals allow students to recover briefly before being increasingly challenged throughout the class. Using an introductory remote sensing class at Charles Darwin University, this case study presents a transition from the traditional stand and deliver style lecture to an active student-led learning experience. The class is taught at undergraduate and postgraduate levels, with both on-campus as well as online distance learning students. Based on the concept that active engagement in learning materials promotes 'stickiness' of subject matter, the remote sensing class was re-designed to encourage an active style of learning. Critically, class content was reviewed to identify the key learning outcomes for the students. This resulted in a necessary sacrifice of topic range for depth of understanding. Graduates of the class reported high levels of enthusiasm for the materials, and the style in which the class was taught. This paper details a number of techniques that were used to engage students in active and problem based learning throughout the semester. It suggests a number of freely available tools that academics in remote sensing and related fields can readily incorporate into their teaching portfolios. Moreover, it shows how simple it can be to provide a far more enjoyable and effective learning experience for students than the one dimensional lecture.

  16. Ultra-broadband and planar sound diffuser with high uniformity of reflected intensity

    Science.gov (United States)

    Fan, Xu-Dong; Zhu, Yi-Fan; Liang, Bin; Yang, Jing; Yang, Jun; Cheng, Jian-Chun

    2017-09-01

    Schroeder diffusers, as a classical design of acoustic diffusers proposed over 40 years ago, play key roles in many practical scenarios ranging from architectural acoustics to noise control to particle manipulation. Despite the great success of conventional acoustic diffusers, it is still worth pursuing ideal acoustic diffusers that are essentially expected to produce perfect sound diffuse reflection within the unlimited bandwidth. Here, we propose a different mechanism for designing acoustic diffusers to overcome the basic limits in intensity uniformity and working bandwidth in the previous designs and demonstrate a practical implementation by acoustic metamaterials with dispersionless phase-steering capability. In stark contrast to the existing production of diffuse fields relying on random scattering of sound energy by using a specific mathematical number sequence of periodically distributed unit cells, we directly mold the reflected wavefront into the desired shape by precisely manipulating the local phases of individual subwavelength metastructures. We also benchmark our design via numerical simulation with a commercially available Schroeder diffuser, and the results verify that our proposed diffuser scatters incident acoustic energy into all directions more uniformly within an ultra-broad band regardless of the incident angle. Furthermore, our design enables further improvement of the working bandwidth just by simply downscaling each individual element. With ultra-broadband functionality and high uniformity of reflected intensity, our metamaterial-based production of the diffusive field opens a route to the design and application of acoustic diffusers and may have a significant impact on various fields such as architectural acoustics and medical ultrasound imaging/treatment.

  17. Optimisation of intense X-ray sources of Z-pinch type connected to the high intensity current generator SPHINX

    International Nuclear Information System (INIS)

    Calamy, H.; Lassalle, F.; Grunenwald, J.; Zucchini, F.

    2010-01-01

    A new source of intense X-rays in the spectral range of the keV has been designed in the CEA facilities at Gramat (France). This Z-pinch source is based on the implosion of a cylinder of matter that has been ionized by the Lorentz force generated by the injection in the cylinder of an intense current pulse delivered by a HPP (High Pulsed Powers) generator named SPHINX. The cylinder of matter is made up of a few hundreds of thin metal wires (tungsten or aluminium) whose diameter is less than a few tenths of μm. The SPHINX generator is based on the LTD (Linear Transformer Driver) technology. SPHINX stores an energy of 2.2 MJ and delivers a current of 8 MA over a time of 1 μs. SPHINX does not use any technology of time compression, it is a robust, compact machine with reduced maintenance but the price to pay for this simplification is to maintain a high axial homogeneity of the implosion during the initiation phase, it means the pulse time of 1μs. The preliminary experiments that have been performed give the following results: -) for a tungsten cylinder (X ray 1 keV): 28 kJ, 0.6 TW and 25 ns

  18. Warm-up strategy and high-intensity endurance performance in trained cyclists

    DEFF Research Database (Denmark)

    Christensen, Peter Møller; Bangsbo, Jens

    2015-01-01

    ; means±SD) performed three warm-up strategies lasting 20 min before a 4-min maximal performance test (PT). Strategies consisted of moderate intensity exercise (50%iPPO) followed by 6 min of recovery (MOD6) or progressive-high intensity exercise (10-100%iPPO and 2x20-s sprints) followed by recovery for 6...

  19. Bremsstrahlung production with high-intensity laser matter interactions and applications

    NARCIS (Netherlands)

    Galy, J.; Maucec, M.; Hamilton, D. J.; Edwards, R.; Magill, J.

    2007-01-01

    In the last decade an evolution of experimental relativistic laser-plasma physics has led to highly sophisticated lasers, which are now able to generate ultra short pulses and can be focused to intensities in excess of 10(21) W cm(-2), with more than 500 J on target. In the intense electric field of

  20. High-intensity interval exercise and cerebrovascular health: curiosity, cause, and consequence

    OpenAIRE

    Lucas, Samuel J E; Cotter, James D; Brassard, Patrice; Bailey, Damian M

    2015-01-01

    Exercise is a uniquely effective and pluripotent medicine against several noncommunicable diseases of westernised lifestyles, including protection against neurodegenerative disorders. High-intensity interval exercise training (HIT) is emerging as an effective alternative to current health-related exercise guidelines. Compared with traditional moderate-intensity continuous exercise training, HIT confers equivalent if not indeed superior metabolic, cardiac, and systemic vascular adaptation. Con...

  1. High or low intensity aerobic fitness training in fibromyalgia: does it matter?

    NARCIS (Netherlands)

    van Santen, Marijke; Bolwijn, Paulien; Landewé, Robert; Verstappen, Frans; Bakker, Carla; Hidding, Alita; van der Kemp, Désirée; Houben, Harry; van der Linden, Sjef

    2002-01-01

    To determine the efficacy of training in fibromyalgia (FM), we compared the effects of high intensity fitness training (HIF) and low intensity fitness training (LIF). Thirty-seven female patients with FM were randomly allocated to either a HIF group (n = 19) or a LIF group (n = 18). Four patients (1

  2. Direct reconstruction of the source intensity distribution of a clinical linear accelerator using a maximum likelihood expectation maximization algorithm.

    Science.gov (United States)

    Papaconstadopoulos, P; Levesque, I R; Maglieri, R; Seuntjens, J

    2016-02-07

    Direct determination of the source intensity distribution of clinical linear accelerators is still a challenging problem for small field beam modeling. Current techniques most often involve special equipment and are difficult to implement in the clinic. In this work we present a maximum-likelihood expectation-maximization (MLEM) approach to the source reconstruction problem utilizing small fields and a simple experimental set-up. The MLEM algorithm iteratively ray-traces photons from the source plane to the exit plane and extracts corrections based on photon fluence profile measurements. The photon fluence profiles were determined by dose profile film measurements in air using a high density thin foil as build-up material and an appropriate point spread function (PSF). The effect of other beam parameters and scatter sources was minimized by using the smallest field size ([Formula: see text] cm(2)). The source occlusion effect was reproduced by estimating the position of the collimating jaws during this process. The method was first benchmarked against simulations for a range of typical accelerator source sizes. The sources were reconstructed with an accuracy better than 0.12 mm in the full width at half maximum (FWHM) to the respective electron sources incident on the target. The estimated jaw positions agreed within 0.2 mm with the expected values. The reconstruction technique was also tested against measurements on a Varian Novalis Tx linear accelerator and compared to a previously commissioned Monte Carlo model. The reconstructed FWHM of the source agreed within 0.03 mm and 0.11 mm to the commissioned electron source in the crossplane and inplane orientations respectively. The impact of the jaw positioning, experimental and PSF uncertainties on the reconstructed source distribution was evaluated with the former presenting the dominant effect.

  3. Effects of high-intensity training on cardiovascular risk factors in pre- and postmenopausal women

    DEFF Research Database (Denmark)

    Mandrup Jensen, Camilla Maria; Egelund, Jon; Nyberg, Michael Permin

    2017-01-01

    and cardiovascular disease in late pre- and early postmenopausal women, matched by age and body composition, and investigate the effect of high-intensity training. METHODS: A 3-month high-intensity aerobic training intervention, involving healthy, non-obese, late pre- (n=40) and early postmenopausal (n=39) women....... A three month intervention of high-intensity aerobic training reduces risk factors for type 2 diabetes and cardiovascular disease to a similar extent in late pre- and early postmenopausal women....... the postmenopausal women had higher total cholesterol (ptraining intervention reduced body weight (p

  4. The high intensity solar cell: Key to low cost photovoltaic power

    Science.gov (United States)

    Sater, B. L.; Goradia, C.

    1975-01-01

    The design considerations and performance characteristics of the 'high intensity' (HI) solar cell are presented. A high intensity solar system was analyzed to determine its cost effectiveness and to assess the benefits of further improving HI cell efficiency. It is shown that residential sized systems can be produced at less than $1000/kW peak electric power. Due to their superior high intensity performance characteristics compared to the conventional and VMJ cells, HI cells and light concentrators may be the key to low cost photovoltaic power.

  5. Vital Signs Directed Therapy: Improving Care in an Intensive Care Unit in a Low-Income Country.

    Directory of Open Access Journals (Sweden)

    Tim Baker

    Full Text Available Global Critical Care is attracting increasing attention. At several million deaths per year, the worldwide burden of critical illness is greater than generally appreciated. Low income countries (LICs have a disproportionally greater share of critical illness, and yet critical care facilities are scarce in such settings. Routines utilizing abnormal vital signs to identify critical illness and trigger medical interventions have become common in high-income countries but have not been investigated in LICs. The aim of the study was to assess whether the introduction of a vital signs directed therapy protocol improved acute care and reduced mortality in an Intensive Care Unit (ICU in Tanzania.Prospective, before-and-after interventional study in the ICU of a university hospital in Tanzania. A context-appropriate protocol that defined danger levels of severely abnormal vital signs and stipulated acute treatment responses was implemented in a four week period using sensitisation, training, job aids, supervision and feedback. Acute treatment of danger signs at admission and during care in the ICU and in-hospital mortality were compared pre and post-implementation using regression models. Danger signs from 447 patients were included: 269 pre-implementation and 178 post-implementation. Acute treatment of danger signs was higher post-implementation (at admission: 72.9% vs 23.1%, p<0.001; in ICU: 16.6% vs 2.9%, p<0.001. A danger sign was five times more likely to be treated post-implementation (Prevalence Ratio (PR 4.9 (2.9-8.3. Intravenous fluids were given in response to 35.0% of hypotensive episodes post-implementation, as compared to 4.1% pre-implementation (PR 6.4 (2.5-16.2. In patients admitted with hypotension, mortality was lower post-implementation (69.2% vs 92.3% p = 0.02 giving a numbers-needed-to-treat of 4.3. Overall in-hospital mortality rates were unchanged (49.4% vs 49.8%, p = 0.94.The introduction of a vital signs directed therapy protocol

  6. Recognition of Emotion from Facial Expressions with Direct or Averted Eye Gaze and Varying Expression Intensities in Children with Autism Disorder and Typically Developing Children

    Directory of Open Access Journals (Sweden)

    Dina Tell

    2014-01-01

    Full Text Available Eye gaze direction and expression intensity effects on emotion recognition in children with autism disorder and typically developing children were investigated. Children with autism disorder and typically developing children identified happy and angry expressions equally well. Children with autism disorder, however, were less accurate in identifying fear expressions across intensities and eye gaze directions. Children with autism disorder rated expressions with direct eyes, and 50% expressions, as more intense than typically developing children. A trend was also found for sad expressions, as children with autism disorder were less accurate in recognizing sadness at 100% intensity with direct eyes than typically developing children. Although the present research showed that children with autism disorder are sensitive to eye gaze direction, impairments in the recognition of fear, and possibly sadness, exist. Furthermore, children with autism disorder and typically developing children perceive the intensity of emotional expressions differently.

  7. Evolution of High Intensity Beams in the CERN PS Booster after H⁻ Injection and Phase Space Painting

    CERN Document Server

    Cieslak-Kowalska, Magdalena; Benedetto, Elena; Bracco, Chiara

    2016-01-01

    With the LHC Injector Upgrade (LIU) project, the injection energy of PS Booster (PSB) ' first circular accelerator in the LHC injector chain ' will be raised from 50 MeV to 160 MeV and the present multiturn injection will be upgraded to H⁻ injection with transverse and longitudinal painting. In the scope of this project, it is planned to double the beam intensities, profiting from the fact that the βγ2 factor will be two times larger (0.35 at 50 MeV and 0.71 at 160 MeV), so the resulting tune spread driven by a direct space charge should remain similar. This paper describes the feasibility to double the intensity of high intensity and large emittance beams, looking into the evolution under space charge and taking into account losses constrains in the ring and in the extraction lines.

  8. Impact of cavitation on lesion formation induced by high intensity focused ultrasound

    International Nuclear Information System (INIS)

    Fan Pengfei; Jie Yu; Yang Xin; Tu Juan; Guo Xiasheng; Zhang Dong; Huang Pintong

    2017-01-01

    High intensity focused ultrasound (HIFU) has shown a great promise in noninvasive cancer therapy. The impact of acoustic cavitation on the lesion formation induced by HIFU is investigated both experimentally and theoretically in transparent protein-containing gel and ex vivo liver tissue samples. A numerical model that accounts for nonlinear acoustic propagation and heat transfer is used to simulate the lesion formation induced by the thermal effect. The results showed that lesions could be induced in the samples exposed to HIFU with various acoustic pressures and pulse lengths. The measured areas of lesions formed in the lateral direction were comparable to the simulated results, while much larger discrepancy was observed between the experimental and simulated data for the areas of longitudinal lesion cross-section. Meanwhile, a series of stripe-wiped-off B-mode pictures were obtained by using a special imaging processing method so that HIFU-induced cavitation bubble activities could be monitored in real-time and quantitatively analyzed as the functions of acoustic pressure and pulse length. The results indicated that, unlike the lateral area of HIFU-induced lesion that was less affected by the cavitation activity, the longitudinal cross-section of HIFU-induced lesion was significantly influenced by the generation of cavitation bubbles through the temperature elevation resulting from HIFU exposures. Therefore, considering the clinical safety in HIFU treatments, more attention should be paid on the lesion formation in the longitudinal direction to avoid uncontrollable variation resulting from HIFU-induced cavitation activity. (paper)

  9. Inter- and Intra-individual Variability in Response to Transcranial Direct Current Stimulation (tDCS) at Varying Current Intensities.

    Science.gov (United States)

    Chew, Taariq; Ho, Kerrie-Anne; Loo, Colleen K

    2015-01-01

    Translation of transcranial direct current stimulation (tDCS) from research to clinical practice is hindered by a lack of consensus on optimal stimulation parameters, significant inter-individual variability in response, and in sufficient intra-individual reliability data. Inter-individual differences in response to anodal tDCS at a range of current intensities were explored. Intra-individual reliability in response to anodal tDCS across two identical sessions was also investigated. Twenty-nine subjects participated in a crossover study. Anodal-tDCS using four different current intensities (0.2, 0.5, 1 and 2 mA), with an anode size of 16 cm2, was tested. The 0.5 mA condition was repeated to assess intra-individual variability. TMS was used to elicit 40 motor-evoked potentials (MEPs) before 10 min of tDCS, and 20 MEPs at four time-points over 30 min following tDCS. ANOVA revealed no main effect of TIME for all conditions except the first 0.5 mA condition, and no differences in response between the four current intensities. Cluster analysis identified two clusters for the 0.2 and 2 mA conditions only. Frequency distributions based on individual subject responses (excitatory, inhibitory or no response) to each condition indicate possible differential responses between individuals to different current intensities. Test-retest reliability was negligible (ICC(2,1) = -0.50). Significant inter-individual variability in response to tDCS across a range of current intensities was found. 2 mA and 0.2 mA tDCS were most effective at inducing a distinct response. Significant intra-individual variability in response to tDCS was also found. This has implications for interpreting results of single-session tDCS experiments. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  10. Prediction of SEP Peak Proton Intensity Based on CME Speed, Direction and Observations of Associated Solar Phenomena

    Science.gov (United States)

    Richardson, I. G.; Mays, M. L.; Thompson, B. J.; Kwon, R.; Frechette, B. P.

    2017-12-01

    We assess whether a formula obtained by Richardson et al. (Solar Phys., 289, 3059, 2014; DOI 10.1007/s11207-014-0524-8) relating the intensity of 14-24 MeV protons in a solar energetic particle event at 1 AU to the solar event location and the speed of the associated coronal mass ejection (CME), may be used to "predict" the intensity of a solar energetic particle event. Starting with a subset of several hundred CMEs in the CCMC/SWRC DONKI real-time database (http://kauai.ccmc.gsfc.nasa.gov/DONKI/) selected without consideration of whether they were associated with SEP events, we first use the CME speed and direction to predict the proton intensity at Earth or the STEREO spacecraft using this formula. Since most of these CMEs were not in fact associated with SEP events, many "false alarms" result. We then examine whether considering other phenomena which may accompany the CMEs, such as the X-ray flare intensity and the properties of type II and type III radio emissions, may help to reduce the false alarm rate. We also use CME parameters calculated from an ellipsoidal shell fit to multi-spacecraft CME shock observations for a smaller number of events to predict the SEP intensity. We calculate skill scores for each case and assess whether the Richardson et al. (2014) formula, using additional observations to reduce the false alarm rate, has any potential as a SEP prediction tool, assuming that the required observations could be acquired sufficiently rapidly following the onset of the related solar event/CME.

  11. In vivo photoacoustics and high frequency ultrasound imaging of mechanical high intensity focused ultrasound (HIFU) ablation.

    Science.gov (United States)

    Daoudi, Khalid; Hoogenboom, Martijn; den Brok, Martijn; Eikelenboom, Dylan; Adema, Gosse J; Fütterer, Jürgen J; de Korte, Chris L

    2017-04-01

    The thermal effect of high intensity focused ultrasound (HIFU) has been clinically exploited over a decade, while the mechanical HIFU is still largely confined to laboratory investigations. This is in part due to the lack of adequate imaging techniques to better understand the in-vivo pathological and immunological effects caused by the mechanical treatment. In this work, we explore the use of high frequency ultrasound (US) and photoacoustics (PA) as a potential tool to evaluate the effect of mechanical ablation in-vivo , e.g. boiling histotripsy. Two mice bearing a neuroblastoma tumor in the right leg were ablated using an MRI-HIFU system conceived for small animals and monitored using MRI thermometry. High frequency US and PA imaging were performed before and after the HIFU treatment. Afterwards, the tumor was resected for further assessment and evaluation of the ablated region using histopathology. High frequency US imaging revealed the presence of liquefied regions in the treated area together with fragmentized tissue which appeared with different reflecting proprieties compared to the surrounding tissue. Photoacoustic imaging on the other hand revealed the presence of deoxygenated blood within the tumor after the ablation due to the destruction of blood vessel network while color Doppler imaging confirmed the blood vessel network destruction within the tumor. The treated area and the presence of red blood cells detected by photoacoustics were further confirmed by the histopathology. This feasibility study demonstrates the potential of high frequency US and PA approach for assessing in-vivo the effect of mechanical HIFU tumor ablation.

  12. High-Intensity Interval Training Versus Moderate-Intensity Continuous Training in the Prevention/Management of Cardiovascular Disease.

    Science.gov (United States)

    Hussain, Syed R; Macaluso, Andrea; Pearson, Stephen J

    Moderate-intensity continuous training (MICT) has long been considered the most effective exercise treatment modality for the prevention and management of cardiovascular disease (CVD), but more recently high-intensity interval training (HIIT) has been viewed as a potential alternative to MICT in accruing such benefits. HIIT was initially found to induce significant improvements in numerous physiological and health-related indices, to a similar if not superior extent to MICT. Since then, many studies have attempted to explore the potential clinical utility of HIIT, relative to MICT, with respect to treating numerous cardiovascular conditions, such as coronary artery disease, heart failure, stroke, and hypertension. Despite this, however, the efficacy of HIIT in reversing the specific symptoms and risk factors of these cardiovascular pathologies is not well understood. HIIT is often perceived as very strenuous, which could render it unsafe for those at risk of or afflicted with CVD, but these issues are also yet to be reviewed. Furthermore, the optimal HIIT protocol for each of the CVD cohorts has not been established. Thus, the purpose of this review article is to (1) evaluate the efficacy of HIIT relative to MICT in the prevention and management of cardiovascular conditions, and (2) explore any potential safety issues surrounding the suitability and/or tolerability of HIIT for patients with CVD, and the potential optimal prescriptive variables of HIIT for application in the clinical environment.

  13. Improved high-intensity microwave discharge lamp for atomic resonance absorption and fluorescence spectrometry

    International Nuclear Information System (INIS)

    Lifshitz, A.; Skinner, G.B.; Wood, D.R.

    1978-01-01

    An unusually good combination of high intensity and narrow line has been achieved in a microwave discharge lamp by placing the optical window in the center of the microwave cavity. Construction details and performance characteristics are described

  14. Improved high-intensity microwave discharge lamp for atomic resonance absorption and fluorescence spectrometry.

    Science.gov (United States)

    Lifshitz, A; Skinner, G B; Wood, D R

    1978-09-01

    An unusually good combination of high intensity and narrow line has been achieved in a microwave discharge lamp by placing the optical window in the center of the microwave cavity. Construction details and performance characteristics are described.

  15. Photocathode fatigue of L-24 PM head due to high intensity light pulses

    International Nuclear Information System (INIS)

    Bailey, K.F.

    1980-01-01

    The sensitivity of radiation detectors which utilizes photomultipliers was determined after exposing the multiplier phototubes to high intensity light pulses. Test results found that generally less than a 5% change was found

  16. Analog measurement of delayed antiproton annihilation time spectra in a high intensity pulsed antiproton beam

    International Nuclear Information System (INIS)

    Niestroj, A.; Hayano, R.S.; Ishikawa, T.; Tamura, H.; Torii, H.A.; Morita, N.; Yamazaki, T.; Sugai, I.; Nakayoshi, K.; Horvath, D.; Eades, J.; Widmann, E.

    1996-01-01

    An analog detection system has been developed to measure delayed antiproton annihilation time spectra for laser resonance spectroscopy of metastable antiprotonic helium atoms using the high-intensity pulsed beam of antiprotons from LEAR at CERN. (orig.)

  17. Short-term effects of implemented high intensity shoulder elevation during computer work

    DEFF Research Database (Denmark)

    Larsen, Mette K.; Samani, Afshin; Madeleine, Pascal

    2009-01-01

    computer work to prevent neck-shoulder pain may be possible without affecting the working routines. However, the unexpected reduction in clavicular trapezius rest during a pause with preceding high intensity contraction requires further investigation before high intensity shoulder elevations can......BACKGROUND: Work-site strength training sessions are shown effective to prevent and reduce neck-shoulder pain in computer workers, but difficult to integrate in normal working routines. A solution for avoiding neck-shoulder pain during computer work may be to implement high intensity voluntary...... contractions during the computer work. However, it is unknown how this may influence productivity, rate of perceived exertion (RPE) as well as activity and rest of neck-shoulder muscles during computer work. The aim of this study was to investigate short-term effects of a high intensity contraction...

  18. Enhancement of High-Intensity Focused Ultrasound Heating by Short-Pulse Generated Cavitation

    Directory of Open Access Journals (Sweden)

    Shin Yoshizawa

    2017-03-01

    Full Text Available A target tissue can be thermally coagulated in high-intensity focused ultrasound (HIFU treatment noninvasively. HIFU thermal treatments have been clinically applied to various solid tumors. One of the problems in HIFU treatments is a long treatment time. Acoustically driven microbubbles can accelerate the ultrasonic heating, resulting in the significant reduction of the treatment time. In this paper, a method named “trigger HIFU exposure” which employs cavitation microbubbles is introduced and its results are reviewed. A trigger HIFU sequence consists of high-intensity short pulses followed by moderate-intensity long bursts. Cavitation bubbles induced in a multiple focal regions by rapidly scanning the focus of high-intensity pulses enhanced the temperature increase significantly and produced a large coagulation region with high efficiency.

  19. A high intensity beam handling system at the KEK-PS new experimental hall

    International Nuclear Information System (INIS)

    Tanaka, K.H.; Minakawa, M.; Yamanoi, Y.

    1991-01-01

    We would like to summarize newly developed technology for handling high-intensity beams. This was practically employed in the beam-handling system of primary protons at the KEK-PS new experimental hall. (author)

  20. Influence of mature men way of life on highly intensive physical activity

    Directory of Open Access Journals (Sweden)

    O.B. Pryshva

    2017-04-01

    Full Text Available Highly intensive physical activity is the most effective for men’s health protection. In modern life conditions its level is insufficient. It requires organism’s appropriate physical activity, which is determined by way of life. Especially important it is before trainings. Purpose: to study special aspects of different intensity’s physical activity; of eating special food and sleeping regime of mature men before their highly intensive physical trainings. Material: in experiment men (n=26, age - 35-53years, who practice healthy life style and independent physical activity of high intensity, participated. We used bio-register Basis B1. Every day we registered: Peak - physical activity of different intensity; duration and quality of sleep; relative weight of consumed food. Besides, we calculated body mass index and physical condition. The study was conducted during 30 days in winter period. The following results were compared: indicators before not planned physical activity and average-monthly indicators. Results: Before arbitrary physical functioning we found in men: confident weakening of average intensity (by 9-11% and low intensity (by 10% physical activity; confident increase of consumed food’s relative weight (by 6.82%, vegetarian food (by 10.64% and raw food (by 7.61%; confident reduction of animal origin food (by 8.7%. No changes were found in duration and quality of sleep before highly intensive physical functioning. Conclusions: specific features of mature men’s way of life before their not planned highly intensive physical functioning are as follows: reduction of general physical activity; increase of consumed food. These factors facilitate energy accumulation in organism for its realization in highly intensive physical functioning the next day.

  1. Effects of anabolic steroids and high-intensity aerobic exercise on skeletal muscle of transgenic mice.

    Directory of Open Access Journals (Sweden)

    Karina Fontana

    Full Text Available In an attempt to shorten recovery time and improve performance, strength and endurance athletes occasionally turn to the illicit use of anabolic-androgenic steroids (AAS. This study evaluated the effects of AAS treatment on the muscle mass and phenotypic characteristics of transgenic mice subjected to a high-intensity, aerobic training program (5d/wk for 6 weeks. The transgenic mice (CETP(+/-LDLr(-/+ were engineered to exhibit a lipid profile closer to humans. Animals were divided into groups of sedentary (Sed and/or training (Ex mice (each treated orally with AAS or gum arabic/vehicle: Sed-C, Sed-M, ex-C, ex-M. The effects of AAS (mesterolone: M on specific phenotypic adaptations (muscle wet weight, cross-sectional area, and fiber type composition in three hindlimb muscles (soleus:SOL, tibialis anterior:TA and gastrocnemius:GAS were assessed. In order to detect subtle changes in fiber type profile, the entire range of fiber types (I, IC, IIAC, IIA, IIAD, IID, IIDB, IIB was delineated using mATPase histochemistry. Body weight gain occurred throughout the study for all groups. However, the body weight gain was significantly minimized with exercise. This effect was blunted with mesterolone treatment. Both AAS treatment (Sed-M and high-intensity, aerobic training (ex-C increased the wet weights of all three muscles and induced differential hypertrophy of pure and hybrid fibers. Combination of AAS and training (ex-M resulted in enhanced hypertrophy. In the SOL, mesterolone treatment (Sed-M and ex-M caused dramatic increases in the percentages of fiber types IC, IIAC, IIAD, IID, with concomitant decrease in IIA, but had minimal impact on fiber type percentages in the predominantly fast muscles. Overall, the AAS-induced differential adaptive changes amounted to significant fiber type transformations in the fast-to-slow direction in SOL. AAS treatment had a significant effect on muscle weights and fiber type composition in SOL, TA and GAS which was

  2. Experimental study of proton acceleration with ultra-high intensity, high contrast laser beam

    International Nuclear Information System (INIS)

    Flacco, A.

    2008-07-01

    This thesis reports experimental work in the domain of laser-matter interaction to study the production of energetic proton beams. The ion beams accelerated by laser have been increasing in quality, in energy and in repeatability as laser technology keeps improving. The presence of the pedestal before the high peak laser pulse introduces many unknowns in the accelerating conditions that are created on the front and on the rear surface of the target. The first part of the experimental activities is focused to a better comprehension and the experimental validation of the interaction of a 'pedestal-like', moderate intensity, laser pulse on Aluminum targets. The developed interferometric technique proved to be reliable and produced a complete set of maps of the early stages of the plasma expansion. The reflectometry experiment stresses the importance of the quality of the metallic targets and underlines some obscure points on the behaviour of the rear surface of the illuminated foil. For instance the reflectometry measurements on the thicker targets are significantly different from what is foreseen by the simulations about the timescale of the shock break out. In the second part, the XPW laser pulse is used in ion acceleration from thin metal foils. The laser and target parameters are varied to put in evidence the dependence of the ion beam to the experimental condition. In conclusion I can say that first, during the variation of the target thickness, an optimum is put in evidence. Secondly, the correlation between the laser pulse duration and the proton cutoff energy is qualitatively different between thicker (15 μm) and thinner (1.5 μm, 3 μm) targets. For the first, an optimal pulse duration exists while for the seconds, no variation is found - in the searched space - from the monotonic decreasing of the cutoff energy with the peak intensity. The experimental results put however in evidence some points that are not completely understood. (A.C.)

  3. The Effects of Electrostimulation and Core Exercises on Recovery After High-Intensity Exercise

    OpenAIRE

    Ahmet Mor; Gökhan İpekoğlu; Cansel Arslanoglu; Kursat Acar; Erkal Arslanoglu

    2017-01-01

    Introduction and objectives: The purpose of this study was to determine the effects of electrostimulation and core exercises on recovery after high-intensity exercise. Methods: The participants of this study consists of 12 male bodybuilders who regularly train and between the ages 18-30. Tabata high intensity interval training (HIIT) was applied with different recovery methods to the athletes on three different days and the recovery levels of athletes were analysed. Heart rate and blood lacta...

  4. High Intensity Laser Therapy (HILT) versus TENS and NSAIDs in low back pain: clinical study

    Science.gov (United States)

    Zati, Allesandro; Fortuna, Damiano; Valent, A.; Filippi, M. V.; Bilotta, Teresa W.

    2004-09-01

    Low back pain, caused by lumbar disc herniation, is prevalently treated with a conservative approach. In this study we valued the efficacy of High Intensity Laser Therapy (HILT), compared with accepted therapies such as TENS and NSAIDs. Laser therapy obtained similar results in the short term, but better clinical effect over time than TENS and NSAIDs. In conclusion high intensity laser therapy appears to be a interesting new treatment, worthy of further research.

  5. Impact of a high intensity training program on glucose tolerance in people with multiple sclerosis

    OpenAIRE

    Patyn, Cédric

    2014-01-01

    Abstract Background: Recent research reported a higher prevalence of impaired glucose tolerance (IGT) in MS patients than in healthy people. The influence of high intensity exercise on IGT in MS was never investigated before. Objective: To investigate the effect of high intensity aerobic interval (HIIT) or continuous endurance (CT) training, both in combination with resistance training, on glucose tolerance muscle strength and body composition. Methods: 34 subjects were randomly as...

  6. High Intensity Interval Training Leads to Greater Improvements in Acute Heart Rate Recovery and Anaerobic Power as High Volume Low Intensity Training

    Science.gov (United States)

    Stöggl, Thomas L.; Björklund, Glenn

    2017-01-01

    The purpose of the current study was to explore if training regimes utilizing diverse training intensity distributions result in different responses on neuromuscular status, anaerobic capacity/power and acute heart rate recovery (HRR) in well-trained endurance athletes. Methods: Thirty-six male (n = 33) and female (n = 3) runners, cyclists, triathletes and cross-country skiers [peak oxygen uptake: (VO2peak): 61.9 ± 8.0 mL·kg−1·min−1] were randomly assigned to one of three groups (blocked high intensity interval training HIIT; polarized training POL; high volume low intensity oriented control group CG/HVLIT applying no HIIT). A maximal anaerobic running/cycling test (MART/MACT) was performed prior to and following a 9-week training period. Results: Only the HIIT group achieved improvements in peak power/velocity (+6.4%, P 0.05). Acute HRR was improved in HIIT (11.2%, P = 0.002) and POL (7.9%, P = 0.023) with no change in the HVLIT oriented control group. Conclusion: Only a training regime that includes a significant amount of HIIT improves the neuromuscular status, anaerobic power and the acute HRR in well-trained endurance athletes. A training regime that followed more a low and moderate intensity oriented model (CG/HVLIT) had no effect on any performance or HRR outcomes. PMID:28824457

  7. The first observations of laser satellites from plasma created by high intense laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Skobelev, I.Yu.; Faenov, A.Ya.; Magunov, A.I. [Multicharged Ions Spectra Data Center of VNIIFTRI, Mendeleevo (Russian Federation); Osterheld, A.; Young, B.; Dunn, J.; Stewart, R.E. [Lawrence Livermore National Lab., CA (United States)

    1997-12-31

    Laser satellites, i.e. spectral lines caused by non-linear interaction of strong laser radiation with multicharged ions, are observed for the first time. Their identification are carried out by comparison of both experimental wavelengths and intensities with theoretical ones. It is shown that observation of laser satellites allows to measure directly the energies of ionic metastable states. (orig.). 3 refs.

  8. Development of high temperature fasteners using directionally solidified eutectic alloys

    Science.gov (United States)

    George, F. D.

    1972-01-01

    The suitability of the eutectics for high temperature fasteners was investigated. Material properties were determined as a function of temperature, and included shear parallel and perpendicular to the growth direction and torsion parallel to it. Techniques for fabricating typical fastener shapes included grinding, creep forming, and direct casting. Both lamellar Ni3Al-Ni3Nb and fibrous (Co,Cr,Al)-(Cr,Co)7C3 alloys showed promise as candidate materials for high temperature fastener applications. A brief evaluation of the performance of the best fabricated fastener design was made.

  9. The influence of high intensity exercise and the Val66Met polymorphism on circulating BDNF and locomotor learning.

    Science.gov (United States)

    Helm, Erin E; Matt, Kathleen S; Kirschner, Kenneth F; Pohlig, Ryan T; Kohl, Dave; Reisman, Darcy S

    2017-10-01

    Brain-derived neurotrophic factor (BDNF) has been directly related to exercise-enhanced motor performance in the neurologically injured animal model; however literature concerning the role of BDNF in the enhancement of motor learning in the human population is limited. Previous studies in healthy subjects have examined the relationship between intensity of an acute bout of exercise, increases in peripheral BDNF and motor learning of a simple isometric upper extremity task. The current study examined the role of high intensity exercise on upregulation of peripheral BDNF levels as well as the role of high intensity exercise in mediation of motor learning and retention of a novel locomotor task in neurologically intact adults. In addition, the impact of a single nucleotide polymorphism in the BDNF gene (Val66Met) in moderating the relationship between exercise and motor learning was explored. It was hypothesized that participation in high intensity exercise prior to practicing a novel walking task (split-belt treadmill walking) would elicit increases in peripheral BDNF as well as promote an increased rate and magnitude of within session learning and retention on a second day of exposure to the walking task. Within session learning and retention would be moderated by the presence or absence of Val66Met polymorphism. Fifty-four neurologically intact participants participated in two sessions of split-belt treadmill walking. Step length and limb phase were measured to assess learning of spatial and temporal parameters of walking. Serum BDNF was collected prior to and immediately following either high intensity exercise or 5min of quiet rest. The results demonstrated that high intensity exercise provides limited additional benefit to learning of a novel locomotor pattern in neurologically intact adults, despite increases in circulating BDNF. In addition, presence of a single nucleotide polymorphism on the BDNF gene did not moderate the magnitude of serum BDNF increases

  10. EFFECT OF HIGH INTENSITY INTERVAL TRAINING ON ENDOTHELIAL FUNCTION IN POSTMENOPAUSAL HYPERTENSIVE PATIENTS RANDOMIZED CONTROLLED TRIAL

    Directory of Open Access Journals (Sweden)

    Mona Mohamed Taha

    2016-02-01

    Full Text Available Background: Postmenopausal hypertension is the most common risk factor of cardiovascular morbidity and mortality. As the exercises training conveys benefits of the setting of secondary prevention of hypertension. High intensity interval training (HIIT emerged as a new form of physical training and presents as therapeutic alternative to patients and health care professionals. This study aimed to investigate the effect of high intensity interval training on endothelial function in postmenopausal hypertension. Methods: Forty six mildly hypertensive postmenopausal women, their ages ranged from (45-55 years old, were randomly allocated to two groups: HIIT group (group-I; n=23 performed a high intensity interval training 3 times a week for 10 weeks at an intensity of (80-85% HR max for 40 minutes and control group (group-II; n=23 remains sedentary during this period. Serum nitric oxide (NO, vascular endothelial growth factor levels (VEGF and blood pressures were measured before and after intervention. Results: A significant reduction in both systolic and diastolic blood pressure values by 9.5% and 7 % respectively, was seen after high intensity interval training which was accompanied by increase in NO and VEGF levels by 43.3% and 15.2 % respectively, while no significant change observed in the control group. Conclusion: High intensity interval training had obvious benefits in improving plasma No, VEGF concentrations and controlling hypertension in postmenopausal women.

  11. High-intensity erotic visual stimuli de-activate the primary visual cortex in women.

    Science.gov (United States)

    Huynh, Hieu K; Beers, Caroline; Willemsen, Antoon; Lont, Erna; Laan, Ellen; Dierckx, Rudi; Jansen, Monique; Sand, Michael; Weijmar Schultz, Willibrord; Holstege, Gert

    2012-06-01

    The primary visual cortex, Brodmann's area (BA 17), plays a vital role in basic survival mechanisms in humans. In most neuro-imaging studies in which the volunteers have to watch pictures or movies, the primary visual cortex is similarly activated independent of the content of the pictures or movies. However, in case the volunteers perform demanding non-visual tasks, the primary visual cortex becomes de-activated, although the amount of incoming visual sensory information is the same. Do low- and high-intensity erotic movies, compared to neutral movies, produce similar de-activation of the primary visual cortex? Brain activation/de-activation was studied by Positron Emission Tomography scanning of the brains of 12 healthy heterosexual premenopausal women, aged 18-47, who watched neutral, low- and high-intensity erotic film segments. We measured differences in regional cerebral blood flow (rCBF) in the primary visual cortex during watching neutral, low-intensity erotic, and high-intensity erotic film segments. Watching high-intensity erotic, but not low-intensity erotic movies, compared to neutral movies resulted in strong de-activation of the primary (BA 17) and adjoining parts of the secondary visual cortex. The strong de-activation during watching high-intensity erotic film might represent compensation for the increased blood supply in the brain regions involved in sexual arousal, also because high-intensity erotic movies do not require precise scanning of the visual field, because the impact is clear to the observer. © 2012 International Society for Sexual Medicine.

  12. High Temperature 300°C Directional Drilling System

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Kamalesh [Baker Hughes Oilfield Operations, Houston, TX (United States); Aaron, Dick [Baker Hughes Oilfield Operations, Houston, TX (United States); Macpherson, John [Baker Hughes Oilfield Operations, Houston, TX (United States)

    2015-07-31

    Many countries around the world, including the USA, have untapped geothermal energy potential. Enhanced Geothermal Systems (EGS) technology is needed to economically utilize this resource. Temperatures in some EGS reservoirs can exceed 300°C. To effectively utilize EGS resources, an array of injector and production wells must be accurately placed in the formation fracture network. This requires a high temperature directional drilling system. Most commercial services for directional drilling systems are rated for 175°C while geothermal wells require operation at much higher temperatures. Two U.S. Department of Energy (DOE) Geothermal Technologies Program (GTP) projects have been initiated to develop a 300°C capable directional drilling system, the first developing a drill bit, directional motor, and drilling fluid, and the second adding navigation and telemetry systems. This report is for the first project, “High Temperature 300°C Directional Drilling System, including drill bit, directional motor and drilling fluid, for enhanced geothermal systems,” award number DE-EE0002782. The drilling system consists of a drill bit, a directional motor, and drilling fluid. The DOE deliverables are three prototype drilling systems. We have developed three drilling motors; we have developed four roller-cone and five Kymera® bits; and finally, we have developed a 300°C stable drilling fluid, along with a lubricant additive for the metal-to-metal motor. Metal-to-metal directional motors require coatings to the rotor and stator for wear and corrosion resistance, and this coating research has been a significant part of the project. The drill bits performed well in the drill bit simulator test, and the complete drilling system has been tested drilling granite at Baker Hughes’ Experimental Test Facility in Oklahoma. The metal-to-metal motor was additionally subjected to a flow loop test in Baker Hughes’ Celle Technology Center in Germany, where it ran for more than 100

  13. Impacts of EU carbon emission trade directive on energy-intensive industries. Indicative micro-economic analyses

    International Nuclear Information System (INIS)

    Lund, Peter

    2007-01-01

    The cost impacts from the European emission trading system (ETS) on energy-intensive manufacturing industries have been investigated. The effects consist of direct costs associated to the CO 2 reduction requirements stated in the EU Directive, and of indirect costs of comparable magnitude that originate from a higher electricity price triggered by the ETS in the power sector. The total cost impacts remain below 2% of the production value for most industries within the ETS in the Kyoto period. In the post-Kyoto phase assuming a 30% CO 2 reduction, the total cost impact may raise up to 8% of production value in the heaviest industry sectors. In steel and cement industries the cost impacts are 3-4 fold compared to the least affected pulp and paper and oil refining. Electricity-intensive industries outside the ETS will also be affected, for example in aluminum and chlorine production the indirect cost impacts from ETS could come up to 10% of production value already in the Kyoto period. As industry sectors are affected differently by the ETS some correcting mechanisms may be worthwhile to consider in securing the operation of the most electricity-intensive sectors, e.g. balancing taxation schemes that may include as income source a levy on the wind-fall profits of the power sector due to ETS. A future improvement in ETS for industries within the scheme could be scaling of the emission reduction requirement so that the relative total emission reduction costs are at about the same level. (author)

  14. High-intensity fibre laser design for micro-machining applications

    Science.gov (United States)

    Ortiz-Neria, D. I.; Martinez-Piñón, F.; Hernandez-Escamilla, H.; Alvarez-Chavez, J. A.

    2010-11-01

    This work is focused on the design of a 250W high-intensity continuous-wave fibre optic laser with a 15μm spot size beam and a beam parameter product (BPP) of 1.8 for its use on Laser-assisted Cold Spray process (LCS) in the micro-machining areas. The metal-powder deposition process LCS, is a novel method based on Cold Spray technique (CS) assisted by laser technology. The LCS accelerates metal powders by the use of a high-pressure gas in order to achieve flash welding of particles over substrate. In LCS, the critical velocity of impact is lower with respect with CS while the powder particle is heated before the deposition by a laser beam. Furthermore, LCS does not heat the powder to achieve high temperatures as it happens in plasma processes. This property puts aside cooling problems which normally happen in sintered processes with high oxygen/nitrogen concentration levels. LCS will be used not only in deposition of thin layers. After careful design, proof of concept, experimental data, and prototype development, it should be feasible to perform micro-machining precise work with the use of the highintensity fibre laser presented in this work, and selective deposition of particles, in a similar way to the well-known Direct Metal Laser Sintering process (DMLS). The fibre laser consists on a large-mode area, Yb3+-doped, semi-diffraction limited, 25-m fibre laser cavity, operating in continuous wave regime. The fibre shows an arguably high slope-efficiency with no signs of roll-over. The measured M2 value is 1.8 and doping concentration of 15000ppm. It was made with a slight modification of the traditional MCVD technique. A full optical characterization will be presented.

  15. Direct Electroplating on Highly Doped Patterned Silicon Wafers

    NARCIS (Netherlands)

    Vargas Llona, Laura Dolores; Jansen, Henricus V.; Elwenspoek, Michael Curt

    Nickel thin films have been electrodeposited directly on highly doped silicon wafers after removal of the native oxide layer. These substrates conduct sufficiently well to allow deposition using a periferical electrical contact on the wafer. Films 2 μm thick were deposited using a nickel sulfamate

  16. Direct unavailability computation of a maintained highly reliable system

    Czech Academy of Sciences Publication Activity Database

    Briš, R.; Byczanski, Petr

    2010-01-01

    Roč. 224, č. 3 (2010), s. 159-170 ISSN 1748-0078 Grant - others:GA Mšk(CZ) MSM6198910007 Institutional research plan: CEZ:AV0Z30860518 Keywords : high reliability * availability * directed acyclic graph Subject RIV: BA - General Mathematics http:// journals .pepublishing.com/content/rtp3178l17923m46/

  17. Data acquisition for a patient-directed intervention protocol in the dynamic intensive care unit setting.

    Science.gov (United States)

    Chlan, Linda; Patterson, Robert P; Heiderscheit, Annie

    2011-07-01

    Methods to easily, accurately, and efficiently obtain data in an ICU-based clinical trial can be challenging in this high-tech setting. Patient medical status and the dynamic nature of this clinical setting further complicate data collection. The purpose of this paper is to describe the modifications of commercially available headphones and the application of a data logging device to capture frequency and length of protocol use (music listening or headphones only for noise cancellation) without burdening participants or busy ICU nurses. With the automatic capture of protocol use by research participants, there have been no instances of lost data for this clinical trial. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. High contrast high intensity petawatt J-KAREN-P laser facility at QST

    Science.gov (United States)

    Nishiuchi, Mamiko; Kiriyama, Hiromitsu; Sakaki, Hironao; Dover, Nicholas P.; Kondo, Kotaro; Pirozhkov, Alexander S.; Sagisaka, Akito; Fukuda, Yuji; Nishitani, Keita; Miyahara, Takumi; Ogura, Koichi; Alkhimova, Mariya A.; Pikuz, Tatiana A.; Faenov, Anatoly Y.; Watanabe, Yukinobu; Koga, James; Bulanov, Sergei V.; Kando, Masaki; Kondo, Kiminori

    2017-05-01

    We report on the J-KAREN-P laser facility at QST, which can provide PW peak power at 0.1 Hz on target. The system can deliver short pulses with an energy of 30 J and pulse duration of 30 fs after compression with a contrast level of better than 1012. Such performance in high field science will give rise to the birth of new applications and breakthroughs, which include relativistic particle acceleration, bright x-ray source generation, and nuclear activation. The current achieved laser intensity on target is up to > 9x1021 Wcm-2 with an energy of 9 J on target. The interaction with a 3 to 5- μm stainless steel tape target provides us electrons with a typical temperature of more than 10 MeV and energetic proton beams with typical maximum energies of > 40 MeV with good reproducibility. The protons are accelerated in the Target Normal Sheath Acceleration regime, which is suitable for many applications including as an injector into a beamline for medical use, which is one of our objectives.

  19. High-Intensity Interval Training as an Efficacious Alternative to Moderate-Intensity Continuous Training for Adults with Prediabetes

    Directory of Open Access Journals (Sweden)

    Mary E. Jung

    2015-01-01

    Full Text Available Aims. High-intensity interval training (HIIT leads to improvements in various markers of cardiometabolic health but adherence to HIIT following a supervised laboratory intervention has yet to be tested. We compared self-report and objective measures of physical activity after one month of independent exercise in individuals with prediabetes who were randomized to HIIT (n=15 or traditional moderate-intensity continuous training (MICT, n=17. Method. After completing 10 sessions of supervised training participants were asked to perform HIIT or MICT three times per week for four weeks. Results. Individuals in HIIT (89 ± 11% adhered to their prescribed protocol to a greater extent than individuals in MICT (71 ± 31% as determined by training logs completed over one-month follow-up (P = 0.05, Cohen’s d = 0.75. Minutes spent in vigorous physical activity per week measured by accelerometer were higher in HIIT (24 ± 18 as compared to MICT (11 ± 10 at one-month follow-up (P = 0.049, Cohen’s d = 0.92. Cardiorespiratory fitness and systolic blood pressure assessed at one-month follow-up were equally improved (P’s < 0.05. Conclusions. This study provides preliminary evidence that individuals with prediabetes can adhere to HIIT over the short-term and do so at a level that is greater than MICT.

  20. Effects of High Intensity Interval Training on Increasing Explosive Power, Speed, and Agility

    Science.gov (United States)

    Fajrin, F.; Kusnanik, N. W.; Wijono

    2018-01-01

    High Intensity Interval Training (HIIT) is a type of exercise that combines high-intensity exercise and low intensity exercise in a certain time interval. This type of training is very effective and efficient to improve the physical components. The process of improving athletes achievement related to how the process of improving the physical components, so the selection of a good practice method will be very helpful. This study aims to analyze how is the effects of HIIT on increasing explosive power, speed, and agility. This type of research is quantitative with quasi-experimental methods. The design of this study used the Matching-Only Design, with data analysis using the t-test (paired sample t-test). After being given the treatment for six weeks, the results showed there are significant increasing in explosive power, speed, and agility. HIIT in this study used a form of exercise plyometric as high-intensity exercise and jogging as mild or moderate intensity exercise. Increase was due to the improvement of neuromuscular characteristics that affect the increase in muscle strength and performance. From the data analysis, researchers concluded that, Exercises of High Intensity Interval Training significantly effect on the increase in Power Limbs, speed, and agility.

  1. Effects of strength training on muscle fiber types and size; consequences for athletes training for high-intensity sport

    DEFF Research Database (Denmark)

    Andersen, J L; Aagaard, P

    2010-01-01

    Training toward improving performance in sports involving high intense exercise can and is done in many different ways based on a mixture of tradition in the specific sport, coaches' experience and scientific recommendations. Strength training is a form of training that now-a-days have found its...... way into almost all sports in which high intense work is conducted. In this review we will focus on a few selected aspects and consequences of strength training; namely what effects do strength training have of muscle fiber type composition, and how may these effects change the contractile properties...... functional training advises can be made. Thus, more than a review in the traditional context this review should be viewed upon as an attempt to bring sports-physiologists and coaches or others working directly with the athletes together for a mutual discussion on how recently acquired physiological knowledge...

  2. Effects of strength training on muscle fiber types and size; consequences for athletes training for high-intensity sport

    DEFF Research Database (Denmark)

    Andersen, J L; Aagaard, P

    2010-01-01

    way into almost all sports in which high intense work is conducted. In this review we will focus on a few selected aspects and consequences of strength training; namely what effects do strength training have of muscle fiber type composition, and how may these effects change the contractile properties......Training toward improving performance in sports involving high intense exercise can and is done in many different ways based on a mixture of tradition in the specific sport, coaches' experience and scientific recommendations. Strength training is a form of training that now-a-days have found its...... functional training advises can be made. Thus, more than a review in the traditional context this review should be viewed upon as an attempt to bring sports-physiologists and coaches or others working directly with the athletes together for a mutual discussion on how recently acquired physiological knowledge...

  3. Effect of moderate- and high-intensity acute exercise on appetite in obese individuals

    DEFF Research Database (Denmark)

    Martins, Catia; Stensvold, Dorthe; Finlayson, Graham

    2015-01-01

    PURPOSE: The effect of acute exercise, and exercise intensity, on appetite control in obese individuals requires further study. The aim of this study was to compare the effects of acute isocaloric bouts (250 kcal) of high-intensity intermittent cycling (HIIC) and moderate-intensity continuous....../obese volunteers. Participants were assigned to the control, MICC, HIIC, and S-HIIC conditions, 1 wk apart, in a counterbalanced order. Exercise was performed 1 h after a standard breakfast. An ad libitum test lunch was served 3 h after breakfast. Fasting/postprandial plasma samples of insulin, acylated ghrelin...

  4. Generation of high intensity rf pulses in the ionosphere by means of in situ compression

    International Nuclear Information System (INIS)

    Cowley, S.C.; Perkins, F.W.; Valeo, E.J.

    1993-04-01

    We demonstrate, using a simple model, that high intensity pulses can be generated from a frequency-chirped modifier of much lower intensity by making use of the dispersive properties of the ionosphere. We show that a frequency-chirped pulse can be constructed so that its various components overtake each other at a prescribed height, resulting in large (up to one hundred times) transient intensity enhancements as compared to those achievable from a steady modifier operating at the same power. We examine briefly one possible application: the enhancement of plasma wave amplitudes which occurs as a result of the interaction of such a compressed pulse with pre-generated turbulence

  5. Producing High Intense Attosecond Pulse Train by Interaction of Three-Color Pulse and Overdense Plasma

    Science.gov (United States)

    Salehi, M.; Mirzanejad, S.

    2017-05-01

    Amplifying the attosecond pulse by the chirp pulse amplification method is impossible. Furthermore, the intensity of attosecond pulse is low in the interaction of laser pulse and underdense plasma. This motivates us to propose using a multi-color pulse to produce the high intense attosecond pulse. In the present study, the relativistic interaction of a three-color linearly-polarized laser-pulse with highly overdense plasma is studied. We show that the combination of {{ω }}1, {{ω }}2 and {{ω }}3 frequencies decreases the instance full width at half maximum reflected attosecond pulse train from the overdense plasma surface. Moreover, we show that the three-color pulse increases the intensity of generated harmonics, which is explained by the relativistic oscillating mirror model. The obtained results demonstrate that if the three-color laser pulse interacts with overdense plasma, it will enhance two orders of magnitude of intensity of ultra short attosecond pulses in comparison with monochromatic pulse.

  6. Dependence of high order harmonics intensity on laser focal spot position in preformed plasma plumes

    International Nuclear Information System (INIS)

    Singhal, H.; Ganeev, R.; Naik, P. A.; Arora, V.; Chakravarty, U.; Gupta, P. D.

    2008-01-01

    The dependence of the high-order harmonic intensity on the laser focal spot position in laser produced plasma plumes is experimentally studied. High order harmonics up to the 59th order (λ∼13.5 nm) were generated by focusing 48 fs laser pulses from a Ti:sapphire laser system in silver plasma plume produced using 300 ps uncompressed laser radiation as the prepulse. The intensity of harmonics nearly vanished when the best focus was located in the plume center, whereas it peaked on either side with unequal intensity. The focal spot position corresponding to the peak harmonic intensity moved away from the plume center for higher order harmonics. The results are explained in terms of the variation of phase mismatch between the driving laser beam and harmonics radiation produced, relativistic drift of electrons, and defocusing effect due to radial ionization gradient in the plasma for different focal spot positions

  7. Cu ion ink for a flexible substrate and highly conductive patterning by intensive pulsed light sintering.

    Science.gov (United States)

    Wang, Byung-Yong; Yoo, Tae-Hee; Song, Yong-Won; Lim, Dae-Soon; Oh, Young-Jei

    2013-05-22

    Direct printing techniques that utilize nanoparticles to mitigate environmental pollution and reduce the processing time of the routing and formation of electrodes have received much attention lately. In particular, copper (Cu) nanoink using Cu nanoparticles offers high conductivity and can be prepared at low cost. However, it is difficult to produce homogeneous nanoparticles and ensure good dispersion within the ink. Moreover, Cu particles require a sintering process over an extended time at a high temperature due to high melting temperature of Cu. During this process, the nanoparticles oxidize quickly in air. To address these problems, the authors developed a Cu ion ink that is free of Cu particles or any other impurities. It consequently does not require separate dispersion stability. In addition, the developed ink is environmentally friendly and can be sintered even at low temperatures. The Cu ion ink was sintered on a flexible substrate using intense pulsed light (IPL), which facilitates large-area, high-speed calcination at room temperature and at atmospheric pressures. As the applied light energy increases, the Cu2O phase diminishes, leaving only the Cu phase. This is attributed to the influence of formic acid (HCOOH) on the Cu ion ink. Only the Cu phase was observed above 40 J cm(-2). The Cu-patterned film after sintering showed outstanding electrical resistivity in a range of 3.21-5.27 μΩ·cm at an IPL energy of 40-60 J cm(-2). A spiral-type micropattern with a line width of 160 μm on a PI substrate was formed without line bulges or coffee ring effects. The electrical resistivity was 5.27 μΩ·cm at an energy level of 40.6 J cm(-2).

  8. Effects of experience on the dimensions of intensity, direction and frequency of the competitive anxiety and self-confidence: A study in athletes of individual and team sports

    Directory of Open Access Journals (Sweden)

    Marcos Gimenes Fernandes

    2014-06-01

    Full Text Available The present study had the following objectives: i to examine the inter-scale correlations between the three dimensions of responses (intensity, direction and frequency of the CSAI-2R and its relationship with competitive experience, and ii evaluate the effect of competitive experience anxiety (cognitive and somatic and self-confidence in the total sample and for different types of modalities (individual vs. team. The sample consisted of 267 athletes (196 male and 71 female, of different sports, aged between 18 and 40 years (M = 24.30, SD = 5.62. Athletes completed the Brazilian version of the CSAI-2, which included the addition of the dimensions of direction and frequency response. Spearman test and Manova were used for the data analysis. Overall, it was found that the competitive experience has a high multivariate and significant effect on the dimensions of competitive anxiety. Both individual and team athletes with low competitive experience showed a trend to report lower levels of self-confidence intensity, compared to counterparts with high competitive experience. These results were discussed in view of the theoretic framework and practical implications planning Sport Psychology intervention programs in local athletes with different backgrounds.

  9. High-intensity interval training (HIIT) for patients with chronic diseases

    OpenAIRE

    Ross, Leanna M.; Porter, Ryan R.; Durstine, J. Larry

    2016-01-01

    Exercise training provides physiological benefits for both improving athletic performance and maintaining good health. Different exercise training modalities and strategies exist. Two common exercise strategies are high-intensity interval training (HIIT) and moderate-intensity continuous exercise training (MCT). HIIT was first used early in the 20th century and popularized later that century for improving performance of Olympic athletes. The primary premise underlying HIIT is that, compared t...

  10. Partially non-linear stimulation intensity-dependent effects of direct current stimulation on motor cortex excitability in humans.

    Science.gov (United States)

    Batsikadze, G; Moliadze, V; Paulus, W; Kuo, M-F; Nitsche, M A

    2013-04-01

    Transcranial direct current stimulation (tDCS) of the human motor cortex at an intensity of 1 mA with an electrode size of 35 cm(2) has been shown to induce shifts of cortical excitability during and after stimulation. These shifts are polarity-specific with cathodal tDCS resulting in a decrease and anodal stimulation in an increase of cortical excitability. In clinical and cognitive studies, stronger stimulation intensities are used frequently, but their physiological effects on cortical excitability have not yet been explored. Therefore, here we aimed to explore the effects of 2 mA tDCS on cortical excitability. We applied 2 mA anodal or cathodal tDCS for 20 min on the left primary motor cortex of 14 healthy subjects. Cathodal tDCS at 1 mA and sham tDCS for 20 min was administered as control session in nine and eight healthy subjects, respectively. Motor cortical excitability was monitored by transcranial magnetic stimulation (TMS)-elicited motor-evoked potentials (MEPs) from the right first dorsal interosseous muscle. Global corticospinal excitability was explored via single TMS pulse-elicited MEP amplitudes, and motor thresholds. Intracortical effects of stimulation were obtained by cortical silent period (CSP), short latency intracortical inhibition (SICI) and facilitation (ICF), and I wave facilitation. The above-mentioned protocols were recorded both before and immediately after tDCS in randomized order. Additionally, single-pulse MEPs, motor thresholds, SICI and ICF were recorded every 30 min up to 2 h after stimulation end, evening of the same day, next morning, next noon and next evening. Anodal as well as cathodal tDCS at 2 mA resulted in a significant increase of MEP amplitudes, whereas 1 mA cathodal tDCS decreased corticospinal excitability. A significant shift of SICI and ICF towards excitability enhancement after both 2 mA cathodal and anodal tDCS was observed. At 1 mA, cathodal tDCS reduced single-pulse TMS-elicited MEP amplitudes and shifted SICI

  11. High Intensity Femtosecond XUV Pulse Interactions with Atomic Clusters: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Ditmire, Todd [Univ. of Texas, Austin, TX (United States). Center for High Energy Density Science

    2016-10-12

    We propose to expand our recent studies on the interactions of intense extreme ultraviolet (XUV) femtosecond pulses with atomic and molecular clusters. The work described follows directly from work performed under BES support for the past grant period. During this period we upgraded the THOR laser at UT Austin by replacing the regenerative amplifier with optical parametric amplification (OPA) using BBO crystals. This increased the contrast of the laser, the total laser energy to ~1.2 J , and decreased the pulse width to below 30 fs. We built a new all reflective XUV harmonic beam line into expanded lab space. This enabled an increase influence by a factor of 25 and an increase in the intensity by a factor of 50. The goal of the program proposed in this renewal is to extend this class of experiments to available higher XUV intensity and a greater range of wavelengths. In particular we plan to perform experiments to confirm our hypothesis about the origin of the high charge states in these exploding clusters, an effect which we ascribe to plasma continuum lowering (ionization potential depression) in a cluster nano-­plasma. To do this we will perform experiments in which XUV pulses of carefully chosen wavelength irradiate clusters composed of only low-Z atoms and clusters with a mixture of this low-­Z atom with higher Z atoms. The latter clusters will exhibit higher electron densities and will serve to lower the ionization potential further than in the clusters composed only of low Z atoms. This should have a significant effect on the charge states produced in the exploding cluster. We will also explore the transition of explosions in these XUV irradiated clusters from hydrodynamic expansion to Coulomb explosion. The work proposed here will explore clusters of a wider range of constituents, including clusters from solids. Experiments on clusters from solids will be enabled by development we performed during the past grant period in which we constructed and

  12. Effect of cavitation in high-pressure direct injection

    Science.gov (United States)

    Aboulhasanzadeh, Bahman; Johnsen, Eric

    2015-11-01

    As we move toward higher pressures for Gasoline Direct Injection and Diesel Direct Injection, cavitation has become an important issue. To better understand the effect of cavitation on the nozzle flow and primary atomization, we use a high-order accurate Discontinuous Galerkin approach using multi-GPU parallelism to simulate the compressible flow inside and outside the nozzle. Phase change is included using the six-equations model. We investigate the effect of nozzle geometry on cavitation inside the injector and on primary atomization outside the nozzle.

  13. A Direct DME High Temperature PEM Fuel Cell

    DEFF Research Database (Denmark)

    Vassiliev, Anton; Jensen, Jens Oluf; Li, Qingfeng

    2012-01-01

    Dimethyl ether (DME) has been identified as an alternative to methanol for use in direct fuel cells. It combines the advantages of hydrogen in terms of pumpless fuel delivery and high energy density like methanol, but without the toxicity of the latter. The performance of a direct dimethyl ether...... fuel cell suffers greatly from the very low DME-water miscibility. To cope with the problem polybenzimidazole (PBI) based membrane electrode assemblies (MEAs) have been made and tested in a vapor fed system. PtRu on carbon has been used as anode catalyst and air at ambient pressure was used as oxidant...

  14. Effect of Eight Weeks High Intensity Interval Training and Medium Intensity Interval Training and Aloe vera Intake on Serum Vaspin and Insulin Resistance in Diabetic Male Rats

    Directory of Open Access Journals (Sweden)

    Darya Asgari Hazaveh

    2018-02-01

    Full Text Available Abstract Background: The use of herbal supplements and exercise training for the treatment of diabetic has increased.The purpose of this study was to investigate the effect of eight weeks high intensity interval training and moderate intensity interval training and Aloe vera intake on serum vaspin and insulin resistance in diabetic male rats. Materials and Methods: During this experimental study, 32 diabetic rats with STZ Wistar were randomly divided into four groups including the control, high intensity interval training +supplement, moderate intensity interval training + supplement and supplement. Training program was planned for 8 weeks and 3 sessions per week. Each session consisted of 6 to 12 periods of 2-minute activity with the intensity of 90% and 60% with one minute rest (speed: 10m/min. In the supplement groups, 300milligrams Aloe vera solution per kilogram of body weight Gavage was given 5 sessions per week for 8 weeks. The data were analyzed using one-way analysis of variance (ANOVA. Results: The results showed that high and moderate intensity interval training with supplement has no significant effect on the of serum vaspin (p=0.112. High intensity interval training with supplement had significant effects on insulin in diabetic male rats (0.000. Conclusion: .Based on the findings of this study, it seems that supplementation of Aloe vera with high intensity interval training can have better effects on serum insulin in diabetic rats.

  15. Enhanced high harmonic generation driven by high-intensity laser in argon gas-filled hollow core waveguide

    International Nuclear Information System (INIS)

    Cassou, Kevin; Daboussi, Sameh; Hort, Ondrej; Descamps, Dominique; Petit, Stephane; Mevel, Eric; Constant, Eric; Guilbaud, Oilvier; Kazamias, Sophie

    2014-01-01

    We show that a significant enhancement of the photon flux produced by high harmonic generation can be obtained through guided configuration at high laser intensity largely above the saturation intensity. We identify two regimes. At low pressure, we observe an intense second plateau in the high harmonic spectrum in argon. At relatively high pressure, complex interplay between strongly time-dependent ionization processes and propagation effects leads to important spectral broadening without loss of spectral brightness. We show that the relevant parameter for this physical process is the product of laser peak power by gas pressure. We compare source performances with high harmonic generation using a gas jet in loose focusing geometry and conclude that the source developed is a good candidate for injection devices such as seeded soft x-ray lasers or free electron lasers in the soft x-ray range. (authors)

  16. High-intensity discharge lamp and Duffing oscillator—Similarities and differences

    Science.gov (United States)

    Baumann, Bernd; Schwieger, Joerg; Stein, Ulrich; Hallerberg, Sarah; Wolff, Marcus

    2017-12-01

    The processes inside the arc tube of high-intensity discharge lamps are investigated using finite element simulations. The behavior of the gas mixture inside the arc tube is governed by differential equations describing mass, energy, and charge conservation, as well as the Helmholtz equation for the acoustic pressure and the Reynolds equations for the flow driven by buoyancy and Reynolds stresses. The model is highly nonlinear and requires a recursion procedure to account for the impact of acoustic streaming on the temperature and other fields. The investigations reveal the presence of a hysteresis and the corresponding jump phenomenon, quite similar to a Duffing oscillator. The similarities and, in particular, the differences of the nonlinear behavior of the high-intensity discharge lamp to that of a Duffing oscillator are discussed. For large amplitudes, the high-intensity discharge lamp exhibits a stiffening effect in contrast to the Duffing oscillator. It is speculated on how the stiffening might affect hysteresis suppression.

  17. The high intensity {gamma}-ray source (HI{gamma}S) and recent results

    Energy Technology Data Exchange (ETDEWEB)

    Tonchev, A.P. [Duke University and TUNL, Triangle University Nuclear Laboratory, P.O. Box 90308, Durham, NC 27708 0308 (United States)]. E-mail: tonchev@tunl.duke.edu; Boswell, M. [University of North Carolina at Chapel Hill and TUNL, Chapel Hill, NC 27599 (United States); Howell, C.R. [Duke University and TUNL, Triangle University Nuclear Laboratory, P.O. Box 90308, Durham, NC 27708 0308 (United States); Karwowski, H.J. [University of North Carolina at Chapel Hill and TUNL, Chapel Hill, NC 27599 (United States); Kelley, J.H. [North Carolina State University and TUNL, Raleigh, NC 27695 (United States); Tornow, W. [Duke University and TUNL, Triangle University Nuclear Laboratory, P.O. Box 90308, Durham, NC 27708 0308 (United States); Wu, Y.K. [Duke University and Duke Free Electron Laser Laboratory, Durham, NC 27708-0319 (United States)

    2005-12-15

    The high intensity {gamma}-ray source (HI{gamma}S) utilizes intra-cavity backscattering of free electron laser photons from the Duke electron storage ring to produce a unique monoenergetic beam of high-flux {gamma}-rays with high polarization and selectable energy resolution. At present, {gamma}-ray beams with energies from 2 to 58 MeV are available with intensities as high as 10{sup 5}-5 x 10{sup 6} {gamma}/s, energy spreads of 3% or better, and nearly 100% linear polarization. The quality and intensity of the {gamma}-ray beams at HI{gamma}S are responsible for the unprecedented performance of this facility in a broad range of research programs in nuclear structure, nuclear astrophysics and nuclear applications. Recent results from excitation of isomeric states in ({gamma}, n) reactions and parity assignments of dipole states determined via the ({gamma}, {gamma}') reaction are presented.

  18. Vacuum ultraviolet Ar2*laser pumped by a high-intensity laser

    International Nuclear Information System (INIS)

    Kubodera, Shoichi; Kaku, Masanori; Higashiguchi, Takeshi

    2004-01-01

    We observed a small-signal gain of Ar 2 * emission at 126 nm by use of an Ar-filled hollow fiber to guide the ultrashort-pulse high-intensity laser propagation. The small signal gain coefficient was measured to be 0.05 cm -1 at 126 nm. Kinetic analysis revealed that the electrons produced by the high-intensity laser through an optical-field ionization process initiated the Ar 2 * production process. This laser scheme could be combined with high harmonic radiation of the pump laser in the vacuum ultraviolet (VUV), leading to the production of amplified ultrashort VUV pulses. (author)

  19. Comparison of Two Intensities of Aerobic Training (low intensity and High Intensity on Expression of Perlipin 2 Skeletal Muscle, Serum Glucose and Insulin levels in Streptozotocin-Diabetic Rats

    Directory of Open Access Journals (Sweden)

    M Ghafari

    2017-06-01

    Full Text Available Abstract   Background & aim: Lipid metabolism disorder plays an important role in insulin resistance in skeletal muscle and lipid drop proteins such as perlipine 2 (PLIN2 are effective in regulating intracellular fat metabolism. One of the suggested pathways for the effects of endurance activity in metabolic diseases is the effect of physical activity on intramuscular. Therefore, the purpose of this study was compare the intensity of aerobic exercise intensity (low intensity and high intensity on expression of PLIN2 skeletal muscle, serum glucose and insulin levels in streptozotocin-diabetic rats.   Methods: In this experimental study, 24 male Wistar rats were randomly divided into three groups of 8, including two intervention groups (low intensity endurance training group and high intensity continuous exercise group and one control group. After induction of diabetic rats by injection streptozotocin (55 mg / kg body weight, Intraperitoneally, endurance training was applied for eight weeks, three sessions per week in diabetic rats. Exercise intensity in the low-intensity group was equal to 5-8 m / min (equivalent to 50-60% Vo2max, the intensity of training in a high intensity training group was equivalent to a speed of 22-25 m / min (equivalent to 80% Vo2max and the control group did not receive intervene in this time. Relative protein expression of PLIN2 was performed using western blot technique. Data were analyzed by one-way ANOVA and Tukey's post hoc test.   Results: The results of the intergroup comparison revealed a significant difference among three groups in the PLIN2 variables (p = 0.037. The results of post hoc test showed a significant increase in PLIN2 in high intensity training diabetic group compared to the control group (p = 0.033 However, there was no significant difference in PLIN2 level in the low exercise group compared to the control group (p = 0.18. Also, there was no significant difference between the low intensity and

  20. Direct cost analysis of intensive care unit stay in four European countries: applying a standardized costing methodology.

    Science.gov (United States)

    Tan, Siok Swan; Bakker, Jan; Hoogendoorn, Marga E; Kapila, Atul; Martin, Joerg; Pezzi, Angelo; Pittoni, Giovanni; Spronk, Peter E; Welte, Robert; Hakkaart-van Roijen, Leona

    2012-01-01

    The objective of the present study was to measure and compare the direct costs of intensive care unit (ICU) days at seven ICU departments in Germany, Italy, the Netherlands, and the United Kingdom by means of a standardized costing methodology. A retrospective cost analysis of ICU patients was performed from the hospital's perspective. The standardized costing methodology was developed on the basis of the availability of data at the seven ICU departments. It entailed the application of the bottom-up approach for "hotel and nutrition" and the top-down approach for "diagnostics," "consumables," and "labor." Direct costs per ICU day ranged from €1168 to €2025. Even though the distribution of costs varied by cost component, labor was the most important cost driver at all departments. The costs for "labor" amounted to €1629 at department G but were fairly similar at the other departments (€711 ± 115). Direct costs of ICU days vary widely between the seven departments. Our standardized costing methodology could serve as a valuable instrument to compare actual cost differences, such as those resulting from differences in patient case-mix. Copyright © 2012 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  1. High signal intensity of the septum pellucidum at MR imaging; Significance in hydrocephalus

    International Nuclear Information System (INIS)

    Yoon, Jeong Hee; Kim, Eun Ha; Chung, Chun Phil; Kim, Chang Soo

    1994-01-01

    To evaluate the significance of high signal intensity of the septum pellucidum in hydrocephalus on proton density-weighted brain MR images. Authors reviewed the MR images of 418 cases of patients with normal (175 case), hydrocephalic(35 cases), atrophic(58 cases), and other groups(150 cases) retrospectively. We analyzed the signal intensity of the septum pellucidum in the normal group and the incidences of high signal intensities of periventricular area of frontal horn of lateral ventricle(area 1), periventricular area except area 1 (area 2), callososeptal area(area 3), and septum pellucidum(area 4) in the normal and abnormal groups. In the normal group, the septum pellucidum was isointense to the head of caudate nucleus on proton density-weighted image. High signal intensity of the septum pellucidum was seen in 31 cases (22 cases of hydrocephalus, 5 cases of brain atrophy, and 4 cases of others), and showed high specificity(91.4%) for hydrocephalus in spite of low sensitivity(62.9%), as compared with periventricular hyperintensities of other areas. High signal intensity of the septum pellucidum on proton density- weighted image may be caused by transependymal CSF migration in the patients with hydrocephalus, and considered as an additional finding of hydrocephalus in the cases of ventriculomegaly

  2. Characterization of the fast electrons distribution produced in a high intensity laser target interaction

    Energy Technology Data Exchange (ETDEWEB)

    Westover, B. [Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California 92093 (United States); Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Chen, C. D.; Patel, P. K.; McLean, H. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Beg, F. N., E-mail: fbeg@ucsd.edu [Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California 92093 (United States)

    2014-03-15

    Experiments on the Titan laser (∼150 J, 0.7 ps, 2 × 10{sup 20} W cm{sup −2}) at the Lawrence Livermore National Laboratory were carried out in order to study the properties of fast electrons produced by high-intensity, short pulse laser interacting with matter under conditions relevant to Fast Ignition. Bremsstrahlung x-rays produced by these fast electrons were measured by a set of compact filter-stack based x-ray detectors placed at three angles with respect to the target. The measured bremsstrahlung signal allows a characterization of the fast electron beam spectrum, conversion efficiency of laser energy into fast electron kinetic energy and angular distribution. A Monte Carlo code Integrated Tiger Series was used to model the bremsstrahlung signal and infer a laser to fast electron conversion efficiency of 30%, an electron slope temperature of about 2.2 MeV, and a mean divergence angle of 39°. Simulations were also performed with the hybrid transport code ZUMA which includes fields in the target. In this case, a conversion efficiency of laser energy to fast electron energy of 34% and a slope temperature between 1.5 MeV and 4 MeV depending on the angle between the target normal direction and the measuring spectrometer are found. The observed temperature of the bremsstrahlung spectrum, and therefore the inferred electron spectrum are found to be angle dependent.

  3. Application of high intensity ultrasound treatment on Enterobacteriae count in milk

    Directory of Open Access Journals (Sweden)

    Anet Režek Jambrak

    2011-06-01

    Full Text Available Ultrasonication is a non-thermal method of food preservation that has the advantage of inactivating microbes in food without causing the common side-effects associated with conventional heat treatments, such as nutrient and flavour loss. In this work high intensity ultrasound was used to investigate inactivation Enterobacteriae count in raw milk. Raw milk with 4% of milk fat was treated with ultrasonic probe that was 12 mm in diameter and with 20 kHz frequency immerged in milk directly. For ultrasounds treatment, three parameters varied according to the statistical experimental design. Centre composite design was used to optimize and design experimental parameters: temperature (20, 40 and 60 °C, amplitude (120, 90 and 60 μm and time (6, 9 and 12 minutes. All analyses were performed immediately after sonication and after 3 and 5 days of storage in refrigeration at 4 °C. The facts that substantially affect the inactivation of microorganisms using ultrasound are the amplitude of the ultrasonic waves, the exposure/contact time with the microorganisms, and the temperatureof treatment. The achieved results indicate significant inactivation of microorganisms under longer period of treatments with ultrasonic probe particularly in combination with higher temperature andamplitude. Output optimal value of Enterobacteriae count has been defined by Statgraphics where lowest Enterobacteriae count (1.06151 log CFU mL-1 was as follows for specific ultrasound parameters: amplitude of 120 μm, treatment time for 12 min and temperature of 60 °C.

  4. High-intensity Fitness Training Among a National Sample of Male Career Firefighters

    Directory of Open Access Journals (Sweden)

    Sara A. Jahnke

    2015-03-01

    Full Text Available Obesity and fitness have been identified as key health concerns among USA firefighters yet little is known about the current habits related to exercise and diet. In particular, high-intensity training (HIT has gained increasing popularity among this population but limited quantitative data are available about how often it is used and the relationship between HIT and other outcomes. Using survey methodology, the current study evaluated self-reported HIT and diet practice among 625 male firefighters. Almost one-third (32.3% of participants reported engaging in HIT. Body composition, as measured by waist circumference and percentage body fat, was significantly related to HIT training, with HIT participants being approximately half as likely to be classified as obese using body fat [odds ratio (OR = 0.52, 95% confidence interval (CI = 0.34–0.78] or waist circumference (OR = 0.61, 95% CI = 0.37–0.98. Those who engaged in HIT were more than twice as likely as those who did not (OR = 2.24, 95% CI = 1.42–3.55 to meet fitness recommendations. Findings highlight directions for future prevention and intervention efforts.

  5. Using passive cavitation images to classify high-intensity focused ultrasound lesions.

    Science.gov (United States)

    Haworth, Kevin J; Salgaonkar, Vasant A; Corregan, Nicholas M; Holland, Christy K; Mast, T Douglas

    2015-09-01

    Passive cavitation imaging provides spatially resolved monitoring of cavitation emissions. However, the diffraction limit of a linear imaging array results in relatively poor range resolution. Poor range resolution has limited prior analyses of the spatial specificity and sensitivity of passive cavitation imaging in predicting thermal lesion formation. In this study, this limitation is overcome by orienting a linear array orthogonal to the high-intensity focused ultrasound propagation direction and performing passive imaging. Fourteen lesions were formed in ex vivo bovine liver samples as a result of 1.1-MHz continuous-wave ultrasound exposure. The lesions were classified as focal, "tadpole" or pre-focal based on their shape and location. Passive cavitation images were beamformed from emissions at the fundamental, harmonic, ultraharmonic and inharmonic frequencies with an established algorithm. Using the area under a receiver operating characteristic curve (AUROC), fundamental, harmonic and ultraharmonic emissions were found to be significant predictors of lesion formation for all lesion types. For both harmonic and ultraharmonic emissions, pre-focal lesions were classified most successfully (AUROC values of 0.87 and 0.88, respectively), followed by tadpole lesions (AUROC values of 0.77 and 0.64, respectively) and focal lesions (AUROC values of 0.65 and 0.60, respectively). Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  6. [The effect of 24 weeks of moderate-to-high intensity strength training on the elderly].

    Science.gov (United States)

    Solà Serrabou, Marta; López del Amo, José Luis; Valero, Oliver

    2014-01-01

    Strength programs have been seen to be useful in minimizing the effects of sarcopenia, although intervention protocols may vary in their content and characteristics. The aim of this study was to demonstrate the influence of a particular strength protocol for the elderly. A total of 35 individuals took part in the study, with 18 in the exercise group (4 men and 14 women), and 17 in the control group (4 men and 13 women). The average age was 73. The exercise group carried out a strength training program at moderate to high intensity over 24 weeks. Strength was evaluated using the chair stand test, 2-minute step and 2 vertical jumps-squat jump (SJ), and countermovement jump (CMJ). Falls in both groups were also compared before and after the intervention, as well as their relationship with the chair stand variable. A tendency towards improvement was observed in all tests, with the exception of CMJ; while the control group showed a tendency in the opposite direction. Contrast between the two groups at the end of the intervention was notable in all the tests. An inverse relationship between the chair stand strength variable and the number of falls was evident. According to the results achieved, the training was perceived to exercise a positive influence on both the strength of the elderly people and a reduction of the number of falls. The gap between the two groups widened towards the end of the intervention. Copyright © 2013 SEGG. Published by Elsevier Espana. All rights reserved.

  7. High Intensity Interval Training Leads to Greater Improvements in Acute Heart Rate Recovery and Anaerobic Power as High Volume Low Intensity Training

    Directory of Open Access Journals (Sweden)

    Thomas L. Stöggl

    2017-08-01

    Full Text Available The purpose of the current study was to explore if training regimes utilizing diverse training intensity distributions result in different responses on neuromuscular status, anaerobic capacity/power and acute heart rate recovery (HRR in well-trained endurance athletes.Methods: Thirty-six male (n = 33 and female (n = 3 runners, cyclists, triathletes and cross-country skiers [peak oxygen uptake: (VO2peak: 61.9 ± 8.0 mL·kg−1·min−1] were randomly assigned to one of three groups (blocked high intensity interval training HIIT; polarized training POL; high volume low intensity oriented control group CG/HVLIT applying no HIIT. A maximal anaerobic running/cycling test (MART/MACT was performed prior to and following a 9-week training period.Results: Only the HIIT group achieved improvements in peak power/velocity (+6.4%, P < 0.001 and peak lactate (P = 0.001 during the MART/MACT, while, unexpectedly, in none of the groups the performance at the established lactate concentrations (4, 6, 10 mmol·L−1 was changed (P > 0.05. Acute HRR was improved in HIIT (11.2%, P = 0.002 and POL (7.9%, P = 0.023 with no change in the HVLIT oriented control group.Conclusion: Only a training regime that includes a significant amount of HIIT improves the neuromuscular status, anaerobic power and the acute HRR in well-trained endurance athletes. A training regime that followed more a low and moderate intensity oriented model (CG/HVLIT had no effect on any performance or HRR outcomes.

  8. Characterization of a proton beam driven by a high-intensity laser

    International Nuclear Information System (INIS)

    Sagisaka, Akito; Daido, Hiroyuki; Ogura, Koichi; Orimo, Satoshi; Hayashi, Yukio; Mori, Michiaki; Nishiuchi, Mamiko; Yogo, Akifumi; Kado, Masataka; Fukumi, Atsushi; Li, Zhong; Pirozhkov, Alexander S.; Nakamura, Shu

    2007-01-01

    High-energy protons are observed with a 3 μm thick tantalum target irradiated with a high intensity laser. The maximum proton energy is ∼900 keV. The half angle of the generated proton beam (>500 keV) is about 10deg. Characterization of the proton beam will significantly contribute to the proton applications. (author)

  9. 75 FR 52780 - Designation of Nine Counties as High Intensity Drug Trafficking Areas

    Science.gov (United States)

    2010-08-27

    ... EXECUTIVE OFFICE OF THE PRESIDENT Office of National Drug Control Policy Designation of Nine Counties as High Intensity Drug Trafficking Areas ACTION: Notice. SUMMARY: The Director of the Office of National Drug Control Policy designated nine additional counties as High Drug Trafficking Areas pursuant to...

  10. 75 FR 21368 - Designation of Five Counties as High Intensity Drug Trafficking Areas

    Science.gov (United States)

    2010-04-23

    ... EXECUTIVE OFFICE OF THE PRESIDENT Office of National Drug Control Policy Designation of Five Counties as High Intensity Drug Trafficking Areas ACTION: Notice. SUMMARY: The Director of the Office of National Drug Control Policy designated five additional counties as High Drug Trafficking Areas pursuant to...

  11. Axial segregation in high intensity discharge lamps measured by laser absorption spectroscopy

    NARCIS (Netherlands)

    Flikweert, A.J.; Nimalasuriya, T.; Groothuis, C.H.J.M.; Kroesen, G.M.W.; Stoffels, W.W.

    2005-01-01

    High intensity discharge lamps have a high efficiency. These lamps contain rare-earth additives (in our case dysprosium iodide) which radiate very efficiently. A problem is color separation in the lamp because of axial segregation of the rare-earth additives, caused by diffusion and convection. Here

  12. The Effects of High-Intensity versus Low-Intensity Resistance Training on Leg Extensor Power and Recovery of Knee Function after ACL-Reconstruction

    DEFF Research Database (Denmark)

    Bieler, Theresa; Sobol, Nanna Aue; Andersen, Lars L

    2014-01-01

    OBJECTIVE: Persistent weakness is a common problem after anterior cruciate ligament- (ACL-) reconstruction. This study investigated the effects of high-intensity (HRT) versus low-intensity (LRT) resistance training on leg extensor power and recovery of knee function after ACL-reconstruction. METH...

  13. Properties of Laser-Produced Highly Charged Heavy Ions for Direct Injection Scheme

    CERN Document Server

    Sakakibara, Kazuhiko; Hayashizaki, Noriyosu; Ito, Taku; Kashiwagi, Hirotsugu; Okamura, Masahiro

    2005-01-01

    To accelerate highly charged intense ion beam, we have developed the Direct Plasma Injection Scheme (DPIS) with laser ion source. In this scheme an ion beam from a laser ion source is injected directly to a RFQ linac without a low energy beam transport (LEBT) and the beam loss in the LEBT can be avoided. We achieved high current acceleration of carbon ions (60mA) by DPIS with the high current optimized RFQ. As the next setp we will use heavier elements like Ag, Pb, Al and Cu as target in LIS (using CO2, Nd-YAG or other laser) for DPIS and will examine properties of laser-produced plasma (the relationship of between charge state and laser power density, the current dependence of the distance from the target, etc).

  14. Experimental investigation of a directionally enhanced DHX concept for high temperature Direct Reactor Auxiliary Cooling Systems

    International Nuclear Information System (INIS)

    Hughes, Joel T.; Blandford, Edward D.

    2016-01-01

    Highlights: • A novel directional heat exchanger design has been developed. • Hydrodynamic tests have been performed on the proposed design. • Heat transfer performance is inferred by hydrodynamic results. • Results are discussed and future work is suggested. - Abstract: The use of Direct Reactor Auxiliary Cooling Systems (DRACSs) as a safety-related decay heat removal system for advanced reactors has developed historically through the Sodium Fast Reactor (SFR) community. Beginning with the EBR-II, DRACSs have been utilized in a large number of past and current SFR designs. More recently, the DRACS has been adopted for Fluoride Salt-Cooled High-Temperature Reactors (FHRs) for similar decay heat removal functions. In this paper we introduce a novel directionally enhanced DRACS Heat Exchanger (DHX) concept. We present design options for optimizing such a heat exchanger so that shell-side heat transfer is enhanced in one primary coolant flow direction and degraded in the opposite coolant flow direction. A reduced-scale experiment investigating the hydrodynamics of a directionally enhanced DHX was built and the data collected is presented. The concept of thermal diodicity is expanded to heat exchanger technologies and used as performance criteria for evaluating design options. A heat exchanger that can perform as such would be advantageous for use in advanced reactor concepts where primary coolant flow reversal is expected during Loss-of-Forced-Circulation (LOFC) accidents where the ability to circulate coolant is compromised. The design could also find potential use in certain advanced Sodium Fast Reactor (SFR) designs utilizing fluidic diode concepts.

  15. Experimental investigation of a directionally enhanced DHX concept for high temperature Direct Reactor Auxiliary Cooling Systems

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Joel T.; Blandford, Edward D., E-mail: edb@unm.edu

    2016-07-15

    Highlights: • A novel directional heat exchanger design has been developed. • Hydrodynamic tests have been performed on the proposed design. • Heat transfer performance is inferred by hydrodynamic results. • Results are discussed and future work is suggested. - Abstract: The use of Direct Reactor Auxiliary Cooling Systems (DRACSs) as a safety-related decay heat removal system for advanced reactors has developed historically through the Sodium Fast Reactor (SFR) community. Beginning with the EBR-II, DRACSs have been utilized in a large number of past and current SFR designs. More recently, the DRACS has been adopted for Fluoride Salt-Cooled High-Temperature Reactors (FHRs) for similar decay heat removal functions. In this paper we introduce a novel directionally enhanced DRACS Heat Exchanger (DHX) concept. We present design options for optimizing such a heat exchanger so that shell-side heat transfer is enhanced in one primary coolant flow direction and degraded in the opposite coolant flow direction. A reduced-scale experiment investigating the hydrodynamics of a directionally enhanced DHX was built and the data collected is presented. The concept of thermal diodicity is expanded to heat exchanger technologies and used as performance criteria for evaluating design options. A heat exchanger that can perform as such would be advantageous for use in advanced reactor concepts where primary coolant flow reversal is expected during Loss-of-Forced-Circulation (LOFC) accidents where the ability to circulate coolant is compromised. The design could also find potential use in certain advanced Sodium Fast Reactor (SFR) designs utilizing fluidic diode concepts.

  16. Interaction of ultra-high intensity laser pulse with a mass limited targets

    International Nuclear Information System (INIS)

    Andreev, A.A.; Platonov, K.Yu.; Limpouch, J.; Psikal, J.; Kawata, S.

    2006-01-01

    and ions. When MLT is irradiated by ultra-high power laser pulse, the resulting plasma is strongly accelerated forward by the laser-induced ponderomotive force and its front side significantly compressed into a high density shock layer. The electrons in the shock layer are heated, and the plasma bunch then expands as a rocket. Thus, the forward acceleration of the high density region continues even after the laser pulse. The ion kinetic energy in this region can exceed tens of MeV at approximately solid density. For laser intensities above Coulomb threshold the efficiency of laser energy conversion into ion energy increases and the regime of direct plasma acceleration by light pressure may be reached. Since the plasma bunch is moving forward during the reflection, red-shift of the reflected light is observed. Twice higher maximum fast ion energy was found for droplet target compared to the standard thin foil target. In simulations of MLT including two different ion sorts, the observed maximum in the light ion distribution is caused by their additional acceleration in the electrostatic field of heavy ions. Parameters of this pike are determined by laser intensity and by the ion concentration ratio.

  17. High performance direct methanol fuel cell with thin electrolyte membrane

    Science.gov (United States)

    Wan, Nianfang

    2017-06-01

    A high performance direct methanol fuel cell is achieved with thin electrolyte membrane. 320 mW cm-2 of peak power density and over 260 mW cm-2 at 0.4 V are obtained when working at 90 °C with normal pressure air supply. It is revealed that the increased anode half-cell performance with temperature contributes primarily to the enhanced performance at elevated temperature. From the comparison of iR-compensated cathode potential of methanol/air with that of H2/air fuel cell, the impact of methanol crossover on cathode performance decreases with current density and becomes negligible at high current density. Current density is found to influence fuel efficiency and methanol crossover significantly from the measurement of fuel efficiency at different current density. At high current density, high fuel efficiency can be achieved even at high temperature, indicating decreased methanol crossover.

  18. High power density reactors based on direct cooled particle beds

    Science.gov (United States)

    Powell, J. R.; Horn, F. L.

    Reactors based on direct cooled High Temperature Gas Cooled Reactor (HTGR) type particle fuel are described. The small diameter particle fuel is packed between concentric porous cylinders to make annular fuel elements, with the inlet coolant gas flowing inwards. Hot exit gas flows out along the central channel of each element. Because of the very large heat transfer area in the packed beds, power densities in particle bed reactors (PBRs) are extremely high resulting in compact, lightweight systems. Coolant exit temperatures are high, because of the ceramic fuel temperature capabilities, and the reactors can be ramped to full power and temperature very rapidly. PBR systems can generate very high burst power levels using open cycle hydrogen coolant, or high continuous powers using closed cycle helium coolant. PBR technology is described and development requirements assessed.

  19. Intensity and direction of competitive anxiety as a function of goal attainment expectation and competition goal generation.

    Science.gov (United States)

    O'Brien, M; Hanton, S; Mellalieu, S D

    2005-12-01

    Jones's control model was adopted to investigate differences in the labelling of symptoms associated with pre-competition anxiety and self-confidence as a function of goal attainment expectation and competition goal generation. Team sport performers (N = 96) were divided into outcome, performance and process goal groups. Anxiety intensity and direction, and self-confidence were then examined as a function of goal expectancy (positive or negative) and perceived input into goal production (input or no input). MANOVA and follow-up ANOVA supported the study predictions. Specifically, participants who reported positive expectations of goal achievement and indicated some input into the goal generation process experienced the most facilitative interpretations of cognitive symptoms and greater self-confidence. The results highlight the need to consider how goals are generated when attempting to foster a sense of control and help athletes cope with the psychological demands of competition.

  20. Rewriting the rules governing high intensity interactions of light with matter

    Science.gov (United States)

    Borisov, Alex B.; McCorkindale, John C.; Poopalasingam, Sankar; Longworth, James W.; Simon, Peter; Szatmári, Sándor; Rhodes, Charles K.

    2016-04-01

    The trajectory of discovery associated with the study of high-intensity nonlinear radiative interactions with matter and corresponding nonlinear modes of electromagnetic propagation through material that have been conducted over the last 50 years can be presented as a landscape in the intensity/quantum energy [I-ħω] plane. Based on an extensive series of experimental and theoretical findings, a universal zone of anomalous enhanced electromagnetic coupling, designated as the fundamental nonlinear domain, can be defined. Since the lower boundaries of this region for all atomic matter correspond to ħω ~ 103 eV and I  ≈  1016 W cm-2, it heralds a future dominated by x-ray and γ-ray studies of all phases of matter including nuclear states. The augmented strength of the interaction with materials can be generally expressed as an increase in the basic electromagnetic coupling constant in which the fine structure constant α  →  Z 2 α, where Z denotes the number of electrons participating in an ordered response to the driving field. Since radiative conditions strongly favoring the development of this enhanced electromagnetic coupling are readily produced in self-trapped plasma channels, the processes associated with the generation of nonlinear interactions with materials stand in natural alliance with the nonlinear mechanisms that induce confined propagation. An experimental example involving the Xe (4d105s25p6) supershell for which Z  ≅  18 that falls in the specified anomalous nonlinear domain is described. This yields an effective coupling constant of Z 2 α  ≅  2.4  >  1, a magnitude comparable to the strong interaction and a value rendering as useless conventional perturbative analyses founded on an expansion in powers of α. This enhancement can be quantitatively understood as a direct consequence of the dominant role played by coherently driven multiply-excited states in the dynamics of the coupling. It is also

  1. Is Moderate Intensity Exercise Training Combined with High Intensity Interval Training More Effective at Improving Cardiorespiratory Fitness than Moderate Intensity Exercise Training Alone?

    Directory of Open Access Journals (Sweden)

    Brendon H. Roxburgh, Paul B. Nolan, Ryan M. Weatherwax, Lance C. Dalleck

    2014-09-01

    Full Text Available The purpose of this study was to compare the effectiveness of either continuous moderate intensity exercise training (CMIET alone vs. CMIET combined with a single weekly bout of high intensity interval training (HIIT on cardiorespiratory fitness. Twenty nine sedentary participants (36.3 ± 6.9 yrs at moderate risk of cardiovascular disease were recruited for 12 weeks of exercise training on a treadmill and cycle ergometer. Participants were randomised into three groups: CMIET + HIIT (n = 7; 8-12 x 60 sec at 100% VO2max, 150 sec active recovery, CMIET (n = 6; 30 min at 45-60% oxygen consumption reserve (VO2R and a sedentary control group (n = 7. Participants in the CMIET + HIIT group performed a single weekly bout of HIIT and four weekly sessions of CMIET, whilst the CMIET group performed five weekly CMIET sessions. Probabilistic magnitude-based inferences were determined to assess the likelihood that the true value of the effect represents substantial change. Relative VO2max increased by 10.1% (benefit possible relative to control in in the CMIET + HIIT group (32.7 ± 9.2 to 36.0 ± 11.5 mL·kg-1·min-1 and 3.9% (benefit possible relative to control in the CMIET group (33.2 ± 4.0 to 34.5 ± 6.1 mL·kg-1·min-1, whilst there was a 5.7% decrease in the control group (30.0 ± 4.6 to 28.3 ± 6.5 mL·kg-1·min-1. It was ‘unclear’ if a clinically significant difference existed between the effect of CMIET + HIIT and CMIET on the change in VO2max. Both exercising groups showed clinically meaningful improvements in VO2max. Nevertheless, it remains ‘unclear’ whether one type of exercise training regimen elicits a superior improvement in cardiorespiratory fitness relative to its counterpart.

  2. Improvement in surface fatigue life of hardened gears by high-intensity shot peening

    Science.gov (United States)

    Townsend, Dennis P.

    1992-04-01

    Two groups of carburized, hardened, and ground spur gears that were manufactured from the same heat vacuum induction melted vacuum arc melted (VIM VAR) AISI 9310 steel were endurance tested for surface fatigue. Both groups were manufactured with a standard ground 16 rms surface finish. One group was subjected to a shot peening (SP) intensity of 7 to 9A, and the second group was subjected to a SP intensity of 15 to 17A. All gears were honed after SP to a surface finish of 16 rms. The gear pitch diameter was 8.89 cm. Test conditions were a maximum Hertz stress of 1.71 GPa, a gear temperature of 350 K, and a speed of 10000 rpm. The lubricant used for the tests was a synthetic paraffinic oil with an additive package. The following results were obtained: The 10 pct. surface fatigue (pitting) life of the high intensity (15 to 17A) SPed gears was 2.15 times that of the medium intensity (7 to 9A) SPed gears, the same as that calculated from measured residual stress at a depth of 127 microns. The measured residual stress for the high intensity SPed gears was 57 pct. higher than that for the medium intensity SPed gears at a depth of 127 microns and 540 pct. higher at a depth of 51 microns.

  3. High Intensity Interval- vs Moderate Intensity- Training for Improving Cardiometabolic Health in Overweight or Obese Males: A Randomized Controlled Trial.

    Directory of Open Access Journals (Sweden)

    Gordon Fisher

    Full Text Available To compare the effects of six weeks of high intensity interval training (HIIT vs continuous moderate intensity training (MIT for improving body composition, insulin sensitivity (SI, blood pressure, blood lipids, and cardiovascular fitness in a cohort of sedentary overweight or obese young men. We hypothesized that HIIT would result in similar improvements in body composition, cardiovascular fitness, blood lipids, and SI as compared to the MIT group, despite requiring only one hour of activity per week compared to five hours per week for the MIT group.28 sedentary overweight or obese men (age, 20 ± 1.5 years, body mass index 29.5 ± 3.3 kg/m2 participated in a six week exercise treatment. Participants were randomly assigned to HIIT or MIT and evaluated at baseline and post-training. DXA was used to assess body composition, graded treadmill exercise test to measure cardiovascular fitness, oral glucose tolerance to measure SI, nuclear magnetic resonance spectroscopy to assess lipoprotein particles, and automatic auscultation to measure blood pressure.A greater improvement in VO2peak was observed in MIT compared to HIIT (11.1% vs 2.83%, P = 0.0185 in the complete-case analysis. No differences were seen in the intention to treat analysis, and no other group differences were observed. Both exercise conditions were associated with temporal improvements in % body fat, total cholesterol, medium VLDL, medium HDL, triglycerides, SI, and VO2peak (P < 0.05.Participation in HIIT or MIT exercise training displayed: 1 improved SI, 2 reduced blood lipids, 3 decreased % body fat, and 4 improved cardiovascular fitness. While both exercise groups led to similar improvements for most cardiometabolic risk factors assessed, MIT led to a greater improvement in overall cardiovascular fitness. Overall, these observations suggest that a relatively short duration of either HIIT or MIT training may improve cardiometabolic risk factors in previously sedentary overweight or

  4. High Intensity Interval- vs Moderate Intensity- Training for Improving Cardiometabolic Health in Overweight or Obese Males: A Randomized Controlled Trial.

    Science.gov (United States)

    Fisher, Gordon; Brown, Andrew W; Bohan Brown, Michelle M; Alcorn, Amy; Noles, Corey; Winwood, Leah; Resuehr, Holly; George, Brandon; Jeansonne, Madeline M; Allison, David B

    2015-01-01

    To compare the effects of six weeks of high intensity interval training (HIIT) vs continuous moderate intensity training (MIT) for improving body composition, insulin sensitivity (SI), blood pressure, blood lipids, and cardiovascular fitness in a cohort of sedentary overweight or obese young men. We hypothesized that HIIT would result in similar improvements in body composition, cardiovascular fitness, blood lipids, and SI as compared to the MIT group, despite requiring only one hour of activity per week compared to five hours per week for the MIT group. 28 sedentary overweight or obese men (age, 20 ± 1.5 years, body mass index 29.5 ± 3.3 kg/m2) participated in a six week exercise treatment. Participants were randomly assigned to HIIT or MIT and evaluated at baseline and post-training. DXA was used to assess body composition, graded treadmill exercise test to measure cardiovascular fitness, oral glucose tolerance to measure SI, nuclear magnetic resonance spectroscopy to assess lipoprotein particles, and automatic auscultation to measure blood pressure. A greater improvement in VO2peak was observed in MIT compared to HIIT (11.1% vs 2.83%, P = 0.0185) in the complete-case analysis. No differences were seen in the intention to treat analysis, and no other group differences were observed. Both exercise conditions were associated with temporal improvements in % body fat, total cholesterol, medium VLDL, medium HDL, triglycerides, SI, and VO2peak (P training displayed: 1) improved SI, 2) reduced blood lipids, 3) decreased % body fat, and 4) improved cardiovascular fitness. While both exercise groups led to similar improvements for most cardiometabolic risk factors assessed, MIT led to a greater improvement in overall cardiovascular fitness. Overall, these observations suggest that a relatively short duration of either HIIT or MIT training may improve cardiometabolic risk factors in previously sedentary overweight or obese young men, with no clear advantage between these

  5. Low-intensity red and infrared laser effects at high fluences on Escherichia coli cultures

    Energy Technology Data Exchange (ETDEWEB)

    Barboza, L.L.; Campos, V.M.A.; Magalhaes, L.A.G. [Instituto de Biologia Roberto Alcantara Gomes, Rio de Janeiro, RJ (Brazil). Departamento de Biofisica e Biometria; Paoli, F. [Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora, MG (Brazil). Departamento de Morfologia; Fonseca, A.S., E-mail: adnfonseca@ig.com.br [Universidade Federal do Estado do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Departamento de Ciencias Fisiologicas

    2015-10-15

    Semiconductor laser devices are readily available and practical radiation sources providing wavelength tenability and high monochromaticity. Low-intensity red and near-infrared lasers are considered safe for use in clinical applications. However, adverse effects can occur via free radical generation, and the biological effects of these lasers from unusually high fluences or high doses have not yet been evaluated. Here, we evaluated the survival, filamentation induction and morphology of Escherichia coli cells deficient in repair of oxidative DNA lesions when exposed to low-intensity red and infrared lasers at unusually high fluences. Cultures of wild-type (AB1157), endonuclease III-deficient (JW1625-1), and endonuclease IV-deficient (JW2146-1) E. coli, in exponential and stationary growth phases, were exposed to red and infrared lasers (0, 250, 500, and 1000 J/cm{sup 2}) to evaluate their survival rates, filamentation phenotype induction and cell morphologies. The results showed that low-intensity red and infrared lasers at high fluences are lethal, induce a filamentation phenotype, and alter the morphology of the E. coli cells. Low-intensity red and infrared lasers have potential to induce adverse effects on cells, whether used at unusually high fluences, or at high doses. Hence, there is a need to reinforce the importance of accurate dosimetry in therapeutic protocols. (author)

  6. Effects of high-intensity physical training on muscle fiber characteristics in poststroke patients

    DEFF Research Database (Denmark)

    Andersen, Jesper Løvind; Jørgensen, Jørgen R.; Zeeman, Peter

    2017-01-01

    INTRODUCTION: Stroke is a leading cause of disability worldwide. High-intensity physical training can improve muscle strength and gait speed, but adaptive mechanisms at the muscle cellular level are largely unknown. METHODS: Outpatients with poststroke hemiparesis participated in a 3-month...... rehabilitation program combining high-intensity strength and body-weight supported treadmill-training. Biopsies sampled bilaterally from vastus lateralis muscles, before, after, and at 1-year follow-up after intervention, were analyzed for fiber size, type, and capillarization. RESULTS: At baseline, paretic...... lower limbs had smaller muscle fiber size and lower type I and IIA and higher type IIX percentages than nonparetic lower limbs. Paretic lower limbs had increased type IIA fibers after training. At follow-up, no difference between the lower limbs remained. CONCLUSIONS: Although high-intensity training...

  7. The high intensity solar cell - Key to low cost photovoltaic power

    Science.gov (United States)

    Sater, B. L.; Goradia, C.

    1975-01-01

    This paper discusses the problems associated with conventional solar cells at high intensities and presents the design considerations and performance characteristics of the 'high intensity' (HI) solar cell which appears to eliminate the major problems. Test data obtained at greater than 250 AM1 suns gave a peak output power density of 2 W per sq cm at an efficiency exceeding 6% with an unoptimized cell operating at over 100 C. It appears that operation at 1000 AM1 suns at efficiencies greater than 10% is possible. At 1000 AM1 suns and 10% efficiency, the HI cell manufacturing cost is estimated to be $0.25/watt, with multi-megawatt annual production capability already existing within the industrial sector. A high intensity solar system was also analyzed to determine its cost effectiveness and to assess the benefits of further improving HI cell efficiency.

  8. Automated system for the determination of patterns of high-intensity LEDs

    International Nuclear Information System (INIS)

    Baly, L.; Bolaño, L.; Arteche, R.; Broco, Y.; Quesada, I.; Rodríguez, E.

    2008-01-01

    Determination of high-intensity LEDs lighting patterns is an important step for the simulation and planning of arrays of these devices configurations. Currently there are systems based on CCD cameras able to efficiently solve this problem, however the high cost of these is a limiting factor for use. Another limitation of CCD cameras, is that they are designed for light levels much lower than those produced by a high-intensity LED. In this paper we present an automated system for the determination of the intensity of LEDs based on the scan point to point patterns. The results of the analysis of a type of LED based on arrays of bars with built-in optical system is presented.

  9. The clinical study on high intensity zone of magnetic resonance imaging using Scolopendrid Aquacupuncture.

    Directory of Open Access Journals (Sweden)

    Jeong-a Lim

    2006-12-01

    Full Text Available Objective : This study was designed to find out the effect of scolopendrid aquacupuncture on low back pain with or without sciatica showing high intensity zone of magnetic resonance imaging. Methods : The 30 patients who had a diagnosis of high intensity zone by lumbar-MRI and admitted to Gwangju oriental medical hospital in wonkwang university from January 2005 to August 2004 were observed. The symptom of inpatients is low back pain with or without sciatica. We treated 30 patients by scolopendrid aquacupuncture besides the general conservative treatment of oriental medicine. Results and Conclusion : The scolopendrid aquacupuncture treatment led to improvement in the pain and symptom of disability as determined by all efficacy measures. After scolopendrid aquacupuncture treatment, there was improvement in VAS, ROM and SLRT. This results suggest that scolopendrid aquacupuncture is good method for treatment of low back pain with or without sciatica showing high intensity zone of magnetic resonance imaging.

  10. Directly patternable high refractive index ferroelectric sol–gel resist

    Energy Technology Data Exchange (ETDEWEB)

    Garoli, D., E-mail: denis.garoli@iit.it [Istituto Italiano di Tecnologia, Via Morego 16, 16136 Genova (Italy); Della Giustina, G. [Industrial Engineering Department, University of Padova and INSTM, Via Marzolo 9, 35131 Padova (Italy)

    2015-08-15

    The development of a ferroelectric negative tone sol–gel resist for Ultraviolet (UV) and Electron Beam (EB) lithography is presented. A new system based on Lead Zirconate Titanate (PZT, with formula PbZr{sub 0.52}Ti{sub 0.48}O{sub 3}) was synthesized by sol–gel method. The lithographic performances were investigated and several structures spanning from the micron range down to less than 50 nm have been achieved by UV and EB lithography. The system interaction with UV light and Electron beam was thoroughly characterized by FT-IT spectroscopy. The exposed PZT was annealed at high temperatures in order to study the crystalline phase evolution, the optical constants values and stability of patterned structures. After exposure and annealing, the refractive index of the material can vary from 1.68 up to 2.33 (@400 nm), while the ferroelectric behaviour seems to be maintained after high temperature annealing. These results suggest a possible application of PZT resist not only as ferroelectric but also as nanopatternable high refractive index material. Moreover, direct nanopatterning by means of Focused Ion Beam (FIB) lithography was verified and the potentiality for the preparation of high aspect ratio hollow nanostructures will be presented. - Highlights: • A new formula directly patternable PZT high refractive index resist is presented. • The gel is sensitive to both UV and electron beam exposure. • The refractive index can vary from 1.68 up to 2.33 (@400 nm). • Direct nanopatterning by means of Focused Ion Beam (FIB) lithography was verified. • High aspect ratio hollow nanostructures will be presented.

  11. High-intensity interval running is perceived to be more enjoyable than moderate-intensity continuous exercise: implications for exercise adherence.

    Science.gov (United States)

    Bartlett, Jonathan D; Close, Graeme L; MacLaren, Don P M; Gregson, Warren; Drust, Barry; Morton, James P

    2011-03-01

    The aim of this study was to objectively quantify ratings of perceived enjoyment using the Physical Activity Enjoyment Scale following high-intensity interval running versus moderate-intensity continuous running. Eight recreationally active men performed two running protocols consisting of high-intensity interval running (6 × 3 min at 90% VO(2max) interspersed with 6 × 3 min active recovery at 50% VO(2max) with a 7-min warm-up and cool down at 70% VO(2max)) or 50 min moderate-intensity continuous running at 70% VO(2max). Ratings of perceived enjoyment after exercise were higher (P running compared with continuous running (88 ± 6 vs. 61 ± 12) despite higher (P running may be relevant for improving exercise adherence, since running is a low-cost exercise intervention requiring no exercise equipment and similar relative exercise intensities have previously induced health benefits in patient populations.

  12. The Benefits of High Intensity Functional Training (HIFT) Fitness Programs for Military Personnel

    Science.gov (United States)

    Haddock, Christopher K.; Poston, Walker S.C.; Heinrich, Katie M.; Jahnke, Sara A.; Jitnarin, Nattinee

    2016-01-01

    High intensity functional training (HIFT) programs are designed to address multiple fitness domains, potentially providing improved physical and mental readiness in a changing operational environment. Programs consistent with HIFT principals such as CrossFit, SEALFIT and the US Marine Corps’ High Intensity Tactical Training (HITT) program are increasingly popular among military personnel. This article reviews the practical, health, body composition, and military fitness implications of HIFT exercise programs. We conclude that, given the unique benefits of HIFT, the military should consider evaluating whether these programs should be the standard for military fitness training. PMID:27849484

  13. US evaluation of volume brain lesions produced by high-intensity focused US

    International Nuclear Information System (INIS)

    Chua, R.V.; Chua, G.T.; Fry, F.J.; Franklin, T.D.; Wills, E.R.; Hastings, J.S.; Sanghui, N.T.

    1987-01-01

    Eighteen volume brain lesions produced by high-intensity focused US in the right cerebral hemispheres of research canines were evaluated by diagnostic US from immediately after ablation up to 62 days later. Animals were killed and perfused for whole-brain recovery. US evaluation of whole-brain specimens was performed. Histologic analysis of brain sections verified lesion placement, size, and tissue response to US. These sections were compared with US studies for correlation data. Correlation data suggest that US visualization may aid in accurate placement of volume brain lesions and in evaluation of effects of high-intensity focuses US in normal brain

  14. The effect of high intensity laser propagation instabilities on channel formation in underdense plasmas

    International Nuclear Information System (INIS)

    Najmudin, Z.; Krushelnick, K.; Tatarakis, M.; Clark, E.L.; Danson, C.N.; Malka, V.; Neely, D.; Santala, M.I.K.; Dangor, A.E.

    2003-01-01

    Experiments have been performed using high power laser pulses (up to 50 TW) focused into underdense helium plasmas (n e ≤5x10 19 cm -3 ). Using shadowgraphy, it is observed that the laser pulse can produce irregular density channels, which exhibit features such as long wavelength hosing and 'sausage-like' self-focusing instabilities. This phenomenon is a high intensity effect and the characteristic period of oscillation of these instabilities is typically found to correspond to the time required for ions to move radially out of the region of highest intensity

  15. Design concept of radiation control system for the high intensity proton accelerator facility

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, Yukihiro; Ikeno, Koichi; Akiyama, Shigenori; Harada, Yasunori [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-11-01

    Description is given for the characteristic radiation environment for the High Intensity Proton Accelerator Facility and the design concept of the radiation control system of it. The facility is a large scale accelerator complex consisting of high energy proton accelerators carrying the highest beam intensity in the world and the related experimental facilities and therefore provides various issues relevant to the radiation environment. The present report describes the specifications for the radiation control system for the facility, determined in consideration of these characteristics. (author)

  16. A high-intensity He-jet production source for radioactive beams

    International Nuclear Information System (INIS)

    Vieira, D.J.; Kimberly, H.J.; Grisham, D.L.; Talbert, W.L.; Wouters, J.M.; Rosenauer, D.; Bai, Y.

    1993-01-01

    The use of a thin-target, He-jet transport system operating with high primary beam intensities is explored as a high-intensity production source for radioactive beams. This method is expected to work well for short-lived, non-volatile species. As such the thin-target, He-jet approach represents a natural complement to the thick-target ISOL method in which such species are not, in general, rapidly released. Highlighted here is a thin-target, He-jet system that is being prepared for a 500 + μA, 800-MeV proton demonstration experiment at LAMPF this summer

  17. High power density reactors based on direct cooled particle beds

    International Nuclear Information System (INIS)

    Powell, J.R.; Horn, F.L.

    1985-01-01

    Reactors based on direct cooled HTGR type particle fuel are described. The small diameter particle fuel is packed between concentric porous cylinders to make annular fuel elements, with the inlet coolant gas flowing inwards. Hot exit gas flows out long the central channel of each element. Because of the very large heat transfer area in the packed beds, power densities in particle bed reactors (PBR's) are extremely high resulting in compact, lightweight systems. Coolant exit temperatures are high, because of the ceramic fuel temperature capabilities, and the reactors can be ramped to full power and temperature very rapidly. PBR systems can generate very high burst power levels using open cycle hydrogen coolant, or high continuous powers using closed cycle helium coolant. PBR technology is described and development requirements assessed. 12 figs

  18. Monte Carlo simulation of photon scattering in x-ray absorption imaging of high-intensity discharge lamps

    Energy Technology Data Exchange (ETDEWEB)

    Curry, J J, E-mail: jjcurry@nist.go [National Institute of Standards and Technology, Gaithersburg, MD 20899-8422 (United States)

    2010-06-16

    Coherent and incoherent scattering of x-rays during x-ray absorption imaging of high-intensity discharge lamps have been studied with Monte Carlo simulations developed specifically for this purpose. The Monte Carlo code is described and some initial results are discussed. Coherent scattering, because of its angular concentration in the forward direction, is found to be the most significant scattering mechanism. Incoherent scattering, although comparably strong, is not as significant because it results primarily in photons being scattered in the rearward direction and therefore out of the detector. Coherent scattering interferes with the detected absorption signal because the path of a scattered photon through the object to be imaged is unknown. Although scattering is usually a small effect, it can be significant in regions of high contrast. At the discharge/wall interface, as many as 50% of the detected photons are scattered photons. The effect of scattering on analysis of Hg distributions has not yet been quantified.

  19. Basic design of shield blocks for a spallation neutron source under the high-intensity proton accelerator project

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Katsuhiko; Maekawa, Fujio; Takada, Hiroshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    Under the JAERI-KEK High-Intensity Proton Accelerator Project (J-PARC), a spallation neutron source driven by a 3 GeV-1 MW proton beam is planed to be constructed as a main part of the Materials and Life Science Facility. Overall dimensions of a biological shield of the neutron source had been determined by evaluation of shielding performance by Monte Carlo calculations. This report describes results of design studies on an optimum dividing scheme in terms of cost and treatment and mechanical strength of shield blocks for the biological shield. As for mechanical strength, it was studied whether the shield blocks would be stable, fall down or move to a horizontal direction in case of an earthquake of seismic intensity of 5.5 (250 Gal) as an abnormal load. For ceiling shielding blocks being supported by both ends of the long blocks, maximum bending moment and an amount of maximum deflection of their center were evaluated. (author)

  20. Basic design of shield blocks for a spallation neutron source under the high-intensity proton accelerator project

    CERN Document Server

    Yoshida, K; Takada, H

    2003-01-01

    Under the JAERI-KEK High-Intensity Proton Accelerator Project (J-PARC), a spallation neutron source driven by a 3 GeV-1 MW proton beam is planed to be constructed as a main part of the Materials and Life Science Facility. Overall dimensions of a biological shield of the neutron source had been determined by evaluation of shielding performance by Monte Carlo calculations. This report describes results of design studies on an optimum dividing scheme in terms of cost and treatment and mechanical strength of shield blocks for the biological shield. As for mechanical strength, it was studied whether the shield blocks would be stable, fall down or move to a horizontal direction in case of an earthquake of seismic intensity of 5.5 (250 Gal) as an abnormal load. For ceiling shielding blocks being supported by both ends of the long blocks, maximum bending moment and an amount of maximum deflection of their center were evaluated.

  1. Approach to a very high intensity beam at J-PARC

    International Nuclear Information System (INIS)

    Yamazaki, Y.

    2007-01-01

    The high-intensity, high-energy proton accelerator project, J-PARC, comprises the 400-MeV proton linac, the 3-GeV, 1-MW Rapid-Cycling Synchrotron (RCS) and the 50-GeV Marin Ring (MR) Synchrotron. The secondary particles such as neutrons, muons, Kaons, neutrinos and so forth will be fully made use of for materials science, life science, nuclear physics, and particle physics. Even the industrial use of the neutrons and the nuclear energy application are incorporated in the project. The rationale for choosing the accelerator schemes are presented together with the present status of the project and research and development for the high-intensity, high-energy proton accelerators J-PARC. The development of the high-field gradient RF cavity system making use of the magnetic alloy (MA), which is really necessary for the future development of the high-power proton accelerators, is reported in detail. (author)

  2. High Intensity Interval Training Leads to Greater Improvements in Acute Heart Rate Recovery and Anaerobic Power as High Volume Low Intensity Training

    OpenAIRE

    Thomas L. Stöggl; Glenn Björklund; Glenn Björklund

    2017-01-01

    The purpose of the current study was to explore if training regimes utilizing diverse training intensity distributions result in different responses on neuromuscular status, anaerobic capacity/power and acute heart rate recovery (HRR) in well-trained endurance athletes.Methods: Thirty-six male (n = 33) and female (n = 3) runners, cyclists, triathletes and cross-country skiers [peak oxygen uptake: (VO2peak): 61.9 ± 8.0 mL·kg−1·min−1] were randomly assigned to one of three groups (blocked high ...

  3. Potential Universal Application of High-intensity Interval Training from Athletes and Sports Lovers to Patients.

    Science.gov (United States)

    Azuma, Koichiro; Matsumoto, Hideo

    2017-06-25

    Recently, high-intensity interval training (HIIT) has received much attention as a promising exercise option not only to improve aerobic fitness, but also to prevent and improve lifestyle-related diseases. Epidemiological studies have shown that the exercise volume, as determined by the product of exercise intensity, duration, and frequency, has been shown to be important for improvements in muscle mitochondrial activity and subsequent improvements in aerobic fitness, insulin sensitivity, and metabolic variables. Therefore, continuous moderate-intensity training has been widely recommended. On the other hand, the main contributor of HIIT to improvements in aerobic fitness and metabolic variables is its high-intensity nature, and many recent studies have shown results favoring HIIT when compared with conventional continuous training, despite its shorter exercise duration and smaller exercise volume. In this review, we aim to show the possible universal application of HIIT in a hospital setting, where athletes, sports lovers, and patients have sought medical advice and have the opportunity to undergo detailed evaluations, including an exercise stress test. For athletes, HIIT is mandatory to achieve further improvements in aerobic fitness. For patients, though higher levels of motivation and careful evaluation are required, the time constraints of HIIT are smaller and both aerobic and resistance training can be expected to yield favorable results because of the high-intensity nature of HIIT.

  4. Factors Associated With the Increasing Rates of Discharges Directly Home From Intensive Care Units-A Direct From ICU Sent Home Study.

    Science.gov (United States)

    Lau, Vincent I; Priestap, Fran A; Lam, Joyce N H; Ball, Ian M

    2018-02-01

    To evaluate the relationship between rates of discharge directly to home (DDH) from the intensive care unit (ICU) and bed availability (ward and ICU). Also to identify patient characteristics that make them candidates for safe DDH and describe transfer delay impact on length of stay (LOS). Retrospective cohort study of all adult patients who survived their stay in our medical-surgical-trauma ICU between April 2003 and March 2015. Median age was 49 years (interquartile range [IQR]: 33.5-60.4), and the majority of the patients were males (54.8%). Median number of preexisting comorbidities was 5 (IQR: 2-7) diagnoses. Discharge directly to home increased from 28 (3.1% of all survivors) patients in 2003 to 120 (12.5%) patients in 2014. The mean annual rate of DDH was between 11% and 12% over the last 6 years. Approximately 62% (n = 397) of patients waited longer than 4 hours for a ward bed, with a median delay of 2.0 days (IQR: 0.5-4.7) before being DDH. There was an inverse correlation between ICU occupancy and DDH rates ( r P = -.55, P < .0001, 95% confidence interval [CI] = -0.36 to -0.69, R 2 = .29). There was no correlation with ward occupancy and DDH rates ( r s = -.055, P = .64, 95% CI = -0.25 to 0.21). The DDH rates have been increasing over time at our institution and were inversely correlated with ICU bed occupancy but were not associated with ward occupancy. The DDH patients are young, have few comorbidities on admission, and few discharge diagnoses, which are usually reversible single system problems with low disease burden. Transfers to the ward are delayed in a majority of cases, leading to increased ICU LOS and likely increased overall hospital LOS as well.

  5. Similar Anti-Inflammatory Acute Responses from Moderate-Intensity Continuous and High-Intensity Intermittent Exercise

    Directory of Open Access Journals (Sweden)

    Carolina Cabral-Santos, José Gerosa-Neto, Daniela Sayuri Inoue, Valéria Leme Gonçalves Panissa, Luís Alberto Gobbo, Alessandro Moura Zagatto, Eduardo Zapaterra Campos, Fábio Santos Lira

    2015-12-01

    Full Text Available The purpose of this study was to compare the effect of high-intensity intermittent exercise (HIIE versus volume matched steady state exercise (SSE on inflammatory and metabolic responses. Eight physically active male subjects completed two experimental sessions, a 5-km run on a treadmill either continuously (70% vVO2max or intermittently (1:1 min at vVO2max. Blood samples were collected at rest, immediately, 30 and 60 minutes after the exercise session. Blood was analyzed for glucose, non-ester fatty acid (NEFA, uric acid, lactate, cortisol, and cytokines (IL-6, IL-10 and TNF-α levels. The lactate levels exhibited higher values immediately post-exercise than at rest (HIIE 1.34 ± 0.24 to 7.11 ± 2.85, and SSE 1.35 ± 0.14 to 4.06±1.60 mmol·L-1, p 0.05. Cortisol, IL-6, IL-10 and TNF-α levels showed time-dependent changes under the different conditions (p < 0.05, however, the area under the curve of TNF-α in the SSE were higher than HIIE (p < 0.05, and the area under the curve of IL-6 in the HIIE showed higher values than SSE (p < 0.05. In addition, both exercise conditions promote increased IL-10 levels and IL-10/TNF-α ratio (p < 0.05. In conclusion, our results demonstrated that both exercise protocols, when volume is matched, promote similar inflammatory responses, leading to an anti-inflammatory status; however, the metabolic responses are different.

  6. Photolysis of phosphodiester bonds in plasmid DNA by high intensity UV laser irradiation

    International Nuclear Information System (INIS)

    Croke, D.T.; Blau, Werner; OhUigin, Colm; Kelly, J.M.; McConnell, D.J.

    1988-01-01

    The cleavage of phosphodiester bonds in DNA exposed to high intensity UV laser pulses in aerated aqueous solution has been investigated using a krypton fluoride excimer laser (248 nm) and bacterial plasmid DNA. The dependence of strand breakage on fluence and intensity has been studied in detail and shows that the process is non-linear with respect to intensity. The relationship between the quantum yield for strand breakage and intensity shows that the strand breakage reaction involves two-photon excitation of DNA bases. The quantum yield rises with intensity from a lower value of 7 x 10 -5 until a maximum value of 4.5 x 10 -4 is attained at intensities of 10 11 W m -2 and above. This value is approximately fifty-fold higher than the quantum yield for strand breakage induced by exposure to low density UV irradiation (254 nm, 12 W m -2 ). DNA sequencing experiments have shown that strand breakage occurs by the specific cleavage of the phosphodiester bond which lies immediately 3' to guanine residues in the DNA, leaving some alkali-labile remnant attached to the terminal phosphate. A mechanism for DNA strand breakage which involves the generation of guanine radical cations is proposed. (author)

  7. Validation of the Amsterdam Dynamic Facial Expression Set--Bath Intensity Variations (ADFES-BIV: A Set of Videos Expressing Low, Intermediate, and High Intensity Emotions.

    Directory of Open Access Journals (Sweden)

    Tanja S H Wingenbach

    Full Text Available Most of the existing sets of facial expressions of emotion contain static photographs. While increasing demand for stimuli with enhanced ecological validity in facial emotion recognition research has led to the development of video stimuli, these typically involve full-blown (apex expressions. However, variations of intensity in emotional facial expressions occur in real life social interactions, with low intensity expressions of emotions frequently occurring. The current study therefore developed and validated a set of video stimuli portraying three levels of intensity of emotional expressions, from low to high intensity. The videos were adapted from the Amsterdam Dynamic Facial Expression Set (ADFES and termed the Bath Intensity Variations (ADFES-BIV. A healthy sample of 92 people recruited from the University of Bath community (41 male, 51 female completed a facial emotion recognition task including expressions of 6 basic emotions (anger, happiness, disgust, fear, surprise, sadness and 3 complex emotions (contempt, embarrassment, pride that were expressed at three different intensities of expression and neutral. Accuracy scores (raw and unbiased (Hu hit rates were calculated, as well as response times. Accuracy rates above chance level of responding were found for all emotion categories, producing an overall raw hit rate of 69% for the ADFES-BIV. The three intensity levels were validated as distinct categories, with higher accuracies and faster responses to high intensity expressions than intermediate intensity expressions, which had higher accuracies and faster responses than low intensity expressions. To further validate the intensities, a second study with standardised display times was conducted replicating this pattern. The ADFES-BIV has greater ecological validity than many other emotion stimulus sets and allows for versatile applications in emotion research. It can be retrieved free of charge for research purposes from the

  8. Validation of the Amsterdam Dynamic Facial Expression Set--Bath Intensity Variations (ADFES-BIV): A Set of Videos Expressing Low, Intermediate, and High Intensity Emotions.

    Science.gov (United States)

    Wingenbach, Tanja S H; Ashwin, Chris; Brosnan, Mark

    2016-01-01

    Most of the existing sets of facial expressions of emotion contain static photographs. While increasing demand for stimuli with enhanced ecological validity in facial emotion recognition research has led to the development of video stimuli, these typically involve full-blown (apex) expressions. However, variations of intensity in emotional facial expressions occur in real life social interactions, with low intensity expressions of emotions frequently occurring. The current study therefore developed and validated a set of video stimuli portraying three levels of intensity of emotional expressions, from low to high intensity. The videos were adapted from the Amsterdam Dynamic Facial Expression Set (ADFES) and termed the Bath Intensity Variations (ADFES-BIV). A healthy sample of 92 people recruited from the University of Bath community (41 male, 51 female) completed a facial emotion recognition task including expressions of 6 basic emotions (anger, happiness, disgust, fear, surprise, sadness) and 3 complex emotions (contempt, embarrassment, pride) that were expressed at three different intensities of expression and neutral. Accuracy scores (raw and unbiased (Hu) hit rates) were calculated, as well as response times. Accuracy rates above chance level of responding were found for all emotion categories, producing an overall raw hit rate of 69% for the ADFES-BIV. The three intensity levels were validated as distinct categories, with higher accuracies and faster responses to high intensity expressions than intermediate intensity expressions, which had higher accuracies and faster responses than low intensity expressions. To further validate the intensities, a second study with standardised display times was conducted replicating this pattern. The ADFES-BIV has greater ecological validity than many other emotion stimulus sets and allows for versatile applications in emotion research. It can be retrieved free of charge for research purposes from the corresponding author.

  9. Validation of the Amsterdam Dynamic Facial Expression Set – Bath Intensity Variations (ADFES-BIV): A Set of Videos Expressing Low, Intermediate, and High Intensity Emotions

    Science.gov (United States)

    Wingenbach, Tanja S. H.

    2016-01-01

    Most of the existing sets of facial expressions of emotion contain static photographs. While increasing demand for stimuli with enhanced ecological validity in facial emotion recognition research has led to the development of video stimuli, these typically involve full-blown (apex) expressions. However, variations of intensity in emotional facial expressions occur in real life social interactions, with low intensity expressions of emotions frequently occurring. The current study therefore developed and validated a set of video stimuli portraying three levels of intensity of emotional expressions, from low to high intensity. The videos were adapted from the Amsterdam Dynamic Facial Expression Set (ADFES) and termed the Bath Intensity Variations (ADFES-BIV). A healthy sample of 92 people recruited from the University of Bath community (41 male, 51 female) completed a facial emotion recognition task including expressions of 6 basic emotions (anger, happiness, disgust, fear, surprise, sadness) and 3 complex emotions (contempt, embarrassment, pride) that were expressed at three different intensities of expression and neutral. Accuracy scores (raw and unbiased (Hu) hit rates) were calculated, as well as response times. Accuracy rates above chance level of responding were found for all emotion categories, producing an overall raw hit rate of 69% for the ADFES-BIV. The three intensity levels were validated as distinct categories, with higher accuracies and faster responses to high intensity expressions than intermediate intensity expressions, which had higher accuracies and faster responses than low intensity expressions. To further validate the intensities, a second study with standardised display times was conducted replicating this pattern. The ADFES-BIV has greater ecological validity than many other emotion stimulus sets and allows for versatile applications in emotion research. It can be retrieved free of charge for research purposes from the corresponding author

  10. Effect of a High-intensity Interval Training method on maximum oxygen consumption in Chilean schoolchildren

    Directory of Open Access Journals (Sweden)

    Sergio Galdames-Maliqueo

    2017-12-01

    Full Text Available Introduction: The low levels of maximum oxygen consumption (VO2max evaluated in Chilean schoolchildren suggest the startup of trainings that improve the aerobic capacity. Objective: To analyze the effect of a High-intensity Interval Training method on maximum oxygen consumption in Chilean schoolchildren. Materials and methods: Thirty-two high school students from the eighth grade, who were divided into two groups, were part of the study (experimental group = 16 students and control group = 16 students. The main analyzed variable was the maximum oxygen consumption through the Course Navette Test. A High-intensity Interval training method was applied based on the maximum aerobic speed obtained through the Test. A mixed ANOVA was used for statistical analysis. Results: The experimental group showed a significant increase in the Maximum Oxygen Consumption between the pretest and posttest when compared with the control group (p < 0.0001. Conclusion: The results of the study showed a positive effect of the High-intensity Interval Training on the maximum consumption of oxygen. At the end of the study, it is concluded that High-intensity Interval Training is a good stimulation methodology for Chilean schoolchildren.

  11. High intensity metallic ion beam from an ecr ion source using the Mivoc method

    International Nuclear Information System (INIS)

    Barue, C.; Canet, C.; Dupuis, M.; Flambard, J.L.; Leherissier, P.; Lemagnen, F.; Jaffres, P.A.

    2000-01-01

    The MIVOC method has been successfully used at GANIL to produce a high intensity nickel beam with the ECR4 ion source: 20 μA 58 Ni 11+ at 24 kV extraction voltage. This beam has been maintained for 8 days and accelerated up to 74.5 MeV/u by our cyclotrons with a mean intensity of 0.13 pμA on target. This high intensity, required for experiment, led to the discovery of the doubly magic 48 Ni isotope. Experimental setup, handling and off-line preparation using a residual gas analyzer are described in this report. The ion source behavior, performances and limitations are presented in the case of nickel and iron. The ionization efficiencies have been measured and compared to the oven method usually used at GANIL. (author)

  12. Dose rate laser simulation tests adequacy: Shadowing and high intensity effects analysis

    International Nuclear Information System (INIS)

    Nikiforov, A.Y.; Skorobogatov, P.K.

    1996-01-01

    The adequacy of laser based simulation of the flash X-ray effects in microcircuits may be corrupted mainly due to laser radiation shadowing by the metallization and the non-linear absorption in a high intensity range. The numerical joint solution of the optical equations and the fundamental system of equations in a two-dimensional approximation were performed to adjust the application range of laser simulation. As a result the equivalent dose rate to laser intensity correspondence was established taking into account the shadowing as well as the high intensity effects. The simulation adequacy was verified in the range up to 4·10 11 rad(Si)/s with the comparative laser test of a specially designed test structure

  13. Comparison of affective responses during and after low volume high-intensity interval exercise, continuous moderate- and continuous high-intensity exercise in active, untrained, healthy males.

    Science.gov (United States)

    Niven, Ailsa; Thow, Jacqueline; Holroyd, Jack; Turner, Anthony P; Phillips, Shaun M

    2018-09-01

    This study compared affective responses to low volume high-intensity interval exercise (HIIE), moderate-intensity continuous exercise (MICE) and high-intensity continuous exercise (HICE). Twelve untrained males ([Formula: see text] 48.2 ± 6.7 ml·kg -1 ·min -1 ) completed MICE (30 min cycle at 85% of ventilatory threshold (VT)), HICE (cycle at 105% of VT matched with MICE for total work), and HIIE (10 x 6 s cycle sprints with 60 s recovery). Affective valence and perceived activation were measured before exercise, post warm-up, every 20% of exercise time, and 1, 5, 10, and 15 min post-exercise. Affective valence during exercise declined by 1.75 ± 2.42, 1.17 ± 1.99, and 0.42 ± 1.38 units in HICE, HIIE, and MICE, respectively, but was not statistically influenced by trial (P = 0.35), time (P = 0.06), or interaction effect (P = 0.08). Affective valence during HICE and HIIE was consistently less positive than MICE. Affective valence post-exercise was not statistically influenced by trial (P = 0.10) and at 5 min post-exercise exceeded end-exercise values (P = 0.048). Circumplex profiles showed no negative affect in any trial. Affective responses to low volume HIIE are similar to HICE but remain positive and rebound rapidly, suggesting it may be a potential alternative exercise prescription.

  14. Fluids with highly directional attractive forces. III. Multiple attraction sites

    International Nuclear Information System (INIS)

    Wertheim, M.S.

    1986-01-01

    The authors derive a reformulation of statistical thermodynamics for fluids of molecules which interact by highly directional attraction. The molecular model consists of a repulsive core and several sites of very short-ranged attraction. The authors explore the relationship between graph cancellation in the fugacity expansion and three types of steric incompatibility between repulsive and attractive interactions involving several molecules. The steric effects are used to best advantage in a limited regrouping of bonds. This controls the density parameters which appear when articulation points are eliminated in the graphical representation. Each density parameter is a singlet density for a species consisting of molecules with a specified set of sites bonded. The densities satisfy subsidiary conditions of internal consistency. These conditions are equivalent to a minimization of the Helmholtz free energy A. Graphical expressions for A and for the pressure are derived. Analogs of the s-particle direct correlation functions and of the Ornstein-Zernike equation are found

  15. Direct dimethyl ether high temperature polymer electrolyte membrane fuel cells

    DEFF Research Database (Denmark)

    Vassiliev, Anton; Jensen, Jens Oluf; Li, Qingfeng

    and suffers from low DME solubility in water. When the DME - water mixture is fed as vapour miscibility is no longer a problem. The increased temperature is more beneficial for the kinetics of the direct oxidation of DME than of methanol. The Open Circuit Voltage (OCV) with DME operation was 50 to 100 m......A high temperature polybenzimidazole (PBI) polymer fuel cell was fed with dimethyl ether (DME) and water vapour mixture on the anode at ambient pressure with air as oxidant. A peak power density of 79 mW/cm2 was achieved at 200°C. A conventional polymer based direct DME fuel cell is liquid fed......V higher than that of methanol, indicating less fuel crossover....

  16. Effects of music and video on perceived exertion during high-intensity exercise

    Institute of Scientific and Technical Information of China (English)

    Enoch C.Chow; Jennifer L.Etnier

    2017-01-01

    Background:Dissociative attentional stimuli (e.g.,music,video) are effective in decreasing ratings of perceived exertion (RPE) during low-to-moderate intensity exercise,but have inconsistent results during exercise at higher intensity.The purpose of this study was to assess attentional focus and RPE during high-intensity exercise as a function of being exposed to music,video,both (music and video),or a no-treatment control condition.Methods:During the first session,healthy men (n =15) completed a maximal fitness test to determine the workload necessary for high-intensity exercise (operationalized as 125% ventilatory threshold) to be performed during subsequent sessions.On 4 subsequent days,they completed 20 min of high-intensity exercise in a no-treatment control condition or while listening to music,watching a video,or both.Attentional focus,RPE,heart rate,and distance covered were measured every 4 min during the exercise.Results:Music and video in combination resulted in significantly lower RPE across time (partial η2 =0.36) and the size of the effect increased over time (partial η2 =0.14).Additionally,music and video in combination resulted in a significantly more dissociative focus than the other conditions (partial η2 =0.29).Conclusion:Music and video in combination may result in lower perceived exertion during high-intensity exercise when compared to music or video in isolation.Future research will be necessary to test if reductions in perceived exertion in response to dissociative attentional stimuli have implications for exercise adherence.

  17. High-Intensity Interval Training After Stroke: An Opportunity to Promote Functional Recovery, Cardiovascular Health, and Neuroplasticity.

    Science.gov (United States)

    Crozier, Jennifer; Roig, Marc; Eng, Janice J; MacKay-Lyons, Marilyn; Fung, Joyce; Ploughman, Michelle; Bailey, Damian M; Sweet, Shane N; Giacomantonio, Nicholas; Thiel, Alexander; Trivino, Michael; Tang, Ada

    2018-04-01

    Stroke is the leading cause of adult disability. Individuals poststroke possess less than half of the cardiorespiratory fitness (CRF) as their nonstroke counterparts, leading to inactivity, deconditioning, and an increased risk of cardiovascular events. Preserving cardiovascular health is critical to lower stroke risk; however, stroke rehabilitation typically provides limited opportunity for cardiovascular exercise. Optimal cardiovascular training parameters to maximize recovery in stroke survivors also remains unknown. While stroke rehabilitation recommendations suggest the use of moderate-intensity continuous exercise (MICE) to improve CRF, neither is it routinely implemented in clinical practice, nor is the intensity always sufficient to elicit a training effect. High-intensity interval training (HIIT) has emerged as a potentially effective alternative that encompasses brief high-intensity bursts of exercise interspersed with bouts of recovery, aiming to maximize cardiovascular exercise intensity in a time-efficient manner. HIIT may provide an alternative exercise intervention and invoke more pronounced benefits poststroke. To provide an updated review of HIIT poststroke through ( a) synthesizing current evidence; ( b) proposing preliminary considerations of HIIT parameters to optimize benefit; ( c) discussing potential mechanisms underlying changes in function, cardiovascular health, and neuroplasticity following HIIT; and ( d) discussing clinical implications and directions for future research. Preliminary evidence from 10 studies report HIIT-associated improvements in functional, cardiovascular, and neuroplastic outcomes poststroke; however, optimal HIIT parameters remain unknown. Larger randomized controlled trials are necessary to establish ( a) effectiveness, safety, and optimal training parameters within more heterogeneous poststroke populations; (b) potential mechanisms of HIIT-associated improvements; and ( c) adherence and psychosocial outcomes.

  18. Whole-Body High-Intensity Interval Training Induce Similar Cardiorespiratory Adaptations Compared With Traditional High-Intensity Interval Training and Moderate-Intensity Continuous Training in Healthy Men.

    Science.gov (United States)

    Schaun, Gustavo Z; Pinto, Stephanie S; Silva, Mariana R; Dolinski, Davi B; Alberton, Cristine L

    2018-05-07

    Schaun, GZ, Pinto, SS, Silva, MR, Dolinski, DB, and Alberton, CL. Sixteen weeks of whole-body high-intensity interval training induce similar cardiorespiratory responses compared with traditional high-intensity interval training and moderate-intensity continuous training in healthy men. J Strength Cond Res XX(X): 000-000, 2018-Low-volume high-intensity interval training (HIIT) protocols that use the body weight as resistance could be an interesting and inexpensive alternative to traditional ergometer-based high-intensity interval training (HIIT-T) and moderate-intensity continuous training (MICT). Therefore, our aim was to compare the effects of 16 weeks of whole-body HIIT (HIIT-WB), HIIT-T, and MICT on maximal oxygen uptake (V[Combining Dot Above]O2max), second ventilatory threshold (VT2), and running economy (RE) outcomes. Fifty-five healthy men (23.7 ± 0.7 years, 1.79 ± 0.01 m, 78.5 ± 1.7 kg) were randomized into 3 training groups (HIIT-T = 17; HIIT-WB = 19; MICT = 19) for 16 weeks (3× per week). The HIIT-T group performed eight 20-second bouts at 130% of the velocity associated to V[Combining Dot Above]O2max (vV[Combining Dot Above]O2max) interspersed by 10-second passive recovery on a treadmill, whereas HIIT-WB group performed the same protocol but used calisthenics exercises at an all-out intensity instead of treadmill running. Finally, MICT group exercised for 30 minutes at 90-95% of the heart rate (HR) associated to VT2. After the intervention, all groups improved V[Combining Dot Above]O2max, vV[Combining Dot Above]O2max, time to exhaustion (Tmax), VT2, velocity associated with VT2 (vVT2), and time to reach VT2 (tVT2) significantly (p HIIT-T compared with HIIT-WB (p HIIT-WB can be as effective as traditional HIIT while also being time-efficient compared with MICT to improve health-related outcomes after 16 weeks of training. However, HIIT-T and MICT seem preferable to enhance performance-related outcomes compared with HIIT-WB.

  19. Effects of high-intensity interval versus mild-intensity endurance training on metabolic phenotype and corticosterone response in rats fed a high-fat or control diet.

    Science.gov (United States)

    Shen, Youqing; Huang, Guoyuan; McCormick, Bryan P; Song, Tao; Xu, Xiangfeng

    2017-01-01

    The aim of the present study was to compare the effects of high-intensity interval training (HI) to mild-intensity endurance training (ME), combined with a high-fat diet (HFD) or control diet (CD) on metabolic phenotype and corticosterone levels in rats. Fifty-three rats were randomized to 6 groups according to diet and training regimen as follows: CD and sedentary (CS, n = 11), CD and ME (CME, n = 8), CD and HI (CHI, n = 8), HFD and sedentary (HS, n = 10), HFD and ME (HME, n = 8), and HFD and HI (HHI, n = 8). All exercise groups were trained for 10 weeks and had matched running distances. Dietary intake, body composition, blood metabolites, and corticosterone levels were measured. Histological lipid droplets were observed in the livers. The HFD led to hyperglycemia, hyperlipidemia and higher body fat (all, P 0.06), as well as higher corticosterone levels (P training improved fat weight, glucose, and lipid profiles, and reduced corticosterone levels (P body and fat weight, serum glucose and triglycerides, lipid content in the liver, and corticosterone levels (P training compared to ME training. Reductions in HFD-induced body weight gain, blood glucose and lipid profiles, and corticosterone levels, as well as improvements in QUICKI were better with HHI compared to HME. Correlation analyses revealed that corticosterone levels were significantly associated with phenotype variables (P training, HI training contributes to greater improvements in metabolic and corticosterone responses, leading to a greater reduction in susceptibility to HFD-induced disorders.

  20. High-intensity interval training (HIIT for patients with chronic diseases

    Directory of Open Access Journals (Sweden)

    Leanna M. Ross

    2016-06-01

    Full Text Available Exercise training provides physiological benefits for both improving athletic performance and maintaining good health. Different exercise training modalities and strategies exist. Two common exercise strategies are high-intensity interval training (HIIT and moderate-intensity continuous exercise training (MCT. HIIT was first used early in the 20th century and popularized later that century for improving performance of Olympic athletes. The primary premise underlying HIIT is that, compared to energy expenditure-matched MCT, a greater amount of work is performed at a higher intensity during a single exercise session which is achieved by alternating high-intensity exercise intervals with low-intensity exercise or rest intervals. Emerging research suggests that this same training method can provide beneficial effects for patients with a chronic disease and should be included in the comprehensive medical management plan. Accordingly, a major consideration in developing an individual exercise prescription for a patient with a chronic disease is the selection of an appropriate exercise strategy. In order to maximize exercise training benefits, this strategy should be tailored to the individual's need. The focus of this paper is to provide a brief summary of the current literature regarding the use of HIIT to enhance the functional capacity of individuals with cardiovascular, pulmonary, and diabetes diseases.