WorldWideScience

Sample records for high glucose non-responsive

  1. Phenotypic and gene expression changes between low (glucose-responsive) and High (glucose non-responsive) MIN-6 beta cells

    DEFF Research Database (Denmark)

    O´Driscoll, L.; Gammell, p.; McKierman, E.

    2006-01-01

    The long-term potential to routinely use replacement beta cells/islets as cell therapy for type 1 diabetes relies on our ability to culture such cells/islets, in vitro, while maintaining their functional status. Previous beta cell studies, by ourselves and other researchers, have indicated...... that the glucose-stimulated insulin secretion (GSIS) phenotype is relatively unstable, in long-term culture. This study aimed to investigate phenotypic and gene expression changes associated with this loss of GSIS, using the MIN-6 cell line as model. Phenotypic differences between MIN-6(L, low passage) and MIN-6(H......, high passage) were determined by ELISA (assessing GSIS and cellular (pro)insulin content), proliferation assays, phase contrast light microscopy and analysis of alkaline phosphatase expression. Differential mRNA expression was investigated using microarray, bioinformatics and real-time PCR technologies...

  2. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Español Hyperglycemia (High Blood Glucose) Hyperglycemia is the technical term for high blood glucose (blood sugar). High ... We Are Research Leaders We Support Your Doctor Student Resources Patient Access to Research Research Resources Practice ...

  3. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... symptoms include the following: High blood glucose High levels of sugar in the urine Frequent urination Increased ... you should check and what your blood glucose levels should be. Checking your blood and then treating ...

  4. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Your Carbs Count Glycemic Index Low-Calorie Sweeteners Sugar and Desserts Fitness Exercise & Type 1 Diabetes Get ... the technical term for high blood glucose (blood sugar). High blood glucose happens when the body has ...

  5. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... blood glucose High levels of sugar in the urine Frequent urination Increased thirst Part of managing your ... glucose is above 240 mg/dl, check your urine for ketones. If you have ketones, do not ...

  6. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Blood Pressure Physical Activity High Blood Glucose My Health Advisor Tools To Know Your Risk Alert Day ... DKA (Ketoacidosis) & Ketones Kidney Disease (Nephropathy) Gastroparesis Mental Health Step On Up Treatment & Care Blood Glucose Testing ...

  7. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Carbohydrate Counting Make Your Carbs Count Glycemic Index Low-Calorie Sweeteners Sugar and Desserts Fitness Exercise & Type ... Checking Your Blood Glucose A1C and eAG Hypoglycemia (Low blood glucose) Hyperglycemia (High blood glucose) Dawn Phenomenon ...

  8. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... and Learning About Prediabetes Type 2 Diabetes Risk Test Lower Your Risk Healthy Eating Overweight Smoking High Blood Pressure Physical Activity High Blood Glucose My Health Advisor Tools ...

  9. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Overweight Smoking High Blood Pressure Physical Activity High Blood Glucose My Health Advisor Tools To Know Your Risk Alert Day Diabetes Basics Home Symptoms Diagnosis America's Diabetes Challenge Type 1 Type 2 Facts About Type 2 Enroll ...

  10. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Risk Test Lower Your Risk Healthy Eating Overweight Smoking High Blood Pressure Physical Activity High Blood Glucose ... Clinical Practice Guidelines Patient Education Materials Scientific Sessions Journals for Professionals Professional Books Patient Access to Research ...

  11. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Risk Test Lower Your Risk Healthy Eating Overweight Smoking High Blood Pressure Physical Activity High Blood Glucose ... Diabetes Meal Plans Create Your Plate Gluten Free Diets Meal Planning for Vegetarian Diets Cook with Heart- ...

  12. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Risk Test Lower Your Risk Healthy Eating Overweight Smoking High Blood Pressure Physical Activity High Blood Glucose ... Index Low-Calorie Sweeteners Sugar and Desserts Fitness Exercise & Type 1 Diabetes Get Started Safely Get And ...

  13. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Test Lower Your Risk Healthy Eating Overweight Smoking High Blood Pressure Physical Activity High Blood Glucose My Health Advisor Tools To Know Your Risk Alert Day Diabetes Basics Home Symptoms Diagnosis America's Diabetes Challenge Type ...

  14. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Know Your Rights Employment Discrimination Health Care Professionals Law Enforcement Driver's License For Lawyers Food & Fitness Home ... symptoms include the following: High blood glucose High levels of sugar in the urine Frequent urination Increased ...

  15. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Risk Test Lower Your Risk Healthy Eating Overweight Smoking High Blood Pressure Physical Activity High Blood Glucose ... Day in the Life of Diabetes Famous People Working to Stop Diabetes Common Terms Diabetes Statistics Infographics ...

  16. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... and Learning About Prediabetes Type 2 Diabetes Risk Test Lower Your Risk Healthy Eating Overweight Smoking High Blood Pressure Physical Activity High Blood Glucose My Health ...

  17. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Diagnosing Diabetes and Learning About Prediabetes Type 2 Diabetes Risk Test Lower Your Risk Healthy Eating Overweight Smoking High Blood Pressure Physical Activity High Blood Glucose My Health Advisor ...

  18. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Risk Healthy Eating Overweight Smoking High Blood Pressure Physical Activity High Blood Glucose My Health Advisor Tools To ... Email: Sign Up Thank you for signing up ' + ' '); $('.survey-form').show(); }, success: function (data) { $('#survey-errors').remove(); $('. ...

  19. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... breast cancer and AIDS combined. Your gift today will help us get closer to curing diabetes and ... blood and then treating high blood glucose early will help you avoid problems associated with hyperglycemia. How ...

  20. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... for Association Events Messaging Tools Recruiting Advocates Local Market Planning Training Webinars News & Events Advocacy News Call ... Care > Blood Glucose Testing Share: Print Page Text Size: A A A Listen En Español Hyperglycemia (High ...

  1. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... your blood and then treating high blood glucose early will help you avoid problems associated with hyperglycemia. ... to detect hyperglycemia so you can treat it early — before it gets worse. If you're new ...

  2. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... around 4:00 a.m. to 5:00 a.m.). What are the Symptoms of Hyperglycemia? The signs and symptoms include the following: High blood glucose High levels of sugar in the urine Frequent urination Increased ...

  3. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... A A A Listen En Español Hyperglycemia (High Blood Glucose) Hyperglycemia is the technical term for high ... function (data) { $('#survey-errors').remove(); $('.survey-form .form-group .survey-alert-wrap').remove(); if (data.submitSurveyResponse.success == ' ...

  4. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Test Lower Your Risk Healthy Eating Overweight Smoking High Blood Pressure Physical Activity High Blood Glucose My Health Advisor ... Chat Closed engagement en -- Have Type 2 Diabetes? - 2017-03-lwt2d-en.html Have Type 2 Diabetes? ...

  5. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Research & Practice Ways to Give Close Are You at Risk? Home Prevention Diagnosing Diabetes and Learning About Prediabetes Type 2 Diabetes Risk Test Lower Your Risk Healthy Eating Overweight Smoking High Blood Pressure Physical Activity High Blood Glucose ...

  6. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... You at Risk? Home Prevention Diagnosing Diabetes and Learning About Prediabetes Type 2 Diabetes Risk Test Lower Your Risk Healthy Eating Overweight Smoking High Blood Pressure Physical Activity High Blood Glucose My Health Advisor Tools To Know Your Risk Alert Day Diabetes Basics ...

  7. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Risk Healthy Eating Overweight Smoking High Blood Pressure Physical Activity High Blood Glucose My Health Advisor Tools ... Complications DKA (Ketoacidosis) & Ketones Kidney Disease ... than planned or exercised less than planned. You have stress from an illness, such as a cold or flu. You have ...

  8. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... In Memory In Honor Become a Member En Español Type 1 Type 2 About Us Online Community ... Page Text Size: A A A Listen En Español Hyperglycemia (High Blood Glucose) Hyperglycemia is the technical ...

  9. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Text Size: A A A Listen En Español Hyperglycemia (High Blood Glucose) Hyperglycemia is the technical term ... body can't use insulin properly. What Causes Hyperglycemia? A number of things can cause hyperglycemia: If ...

  10. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... can often lower your blood glucose level by exercising. However, if your blood glucose is above 240 ... ketones. If you have ketones, do not exercise. Exercising when ketones are present may make your blood ...

  11. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Complications DKA (Ketoacidosis) & Ketones Kidney Disease (Nephropathy) Gastroparesis Mental Health Step On Up Treatment & Care Blood Glucose ... glucose) Dawn Phenomenon Checking for Ketones Tight Diabetes Control donate en -- A Future Without Diabetes - a-future- ...

  12. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... how often you should check and what your blood glucose levels should be. Checking your blood and then treating ... I Treat Hyperglycemia? You can often lower your blood glucose level by exercising. However, if your blood glucose is ...

  13. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Complications Neuropathy Foot Complications DKA (Ketoacidosis) & Ketones Kidney Disease (Nephropathy) Gastroparesis Mental Health Step On Up Treatment & Care Blood Glucose Testing Medication Doctors, Nurses & More ...

  14. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... by Mail Close www.diabetes.org > Living With Diabetes > Treatment and Care > Blood Glucose Testing Share: Print Page ... and-how-tos, . In this section Living With Diabetes Treatment and Care Blood Glucose Testing Checking Your Blood ...

  15. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... On Up Treatment & Care Blood Glucose Testing Medication Doctors, Nurses & More Oral Health & Hygiene Women A1C Insulin Pregnancy 8 Tips for ... is checking your blood glucose often. Ask your doctor how often you should ... associated with hyperglycemia. How Do I Treat Hyperglycemia? ...

  16. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... to Give Close Are You at Risk? Home Prevention Diagnosing Diabetes and Learning About Prediabetes Type 2 ... Disease (Nephropathy) Gastroparesis Mental Health Step On Up Treatment & Care Blood Glucose Testing Medication Doctors, Nurses & More ...

  17. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Ketoacidosis) & Ketones Kidney Disease (Nephropathy) Gastroparesis Mental Health Step On Up Treatment & Care Blood Glucose Testing Medication ... Learning at Camp Find a Camp Fundraising Events Step Out Walk to Stop Diabetes Tour de Cure ...

  18. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... EXPO Volunteer Opportunities Sponsorship and Exhibit Opportunities Camp ... when ketones are present may make your blood glucose level go even higher. You'll need to work with your doctor ...

  19. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Disease (Nephropathy) Gastroparesis Mental Health Step On Up Treatment & Care Blood Glucose Testing Medication Doctors, Nurses & More ... us get closer to curing diabetes and better treatments for those living with diabetes. Other Ways to ...

  20. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... for energy. When your body breaks down fats, waste products called ketones are produced. Your body cannot ... glucose) Dawn Phenomenon Checking for Ketones Tight Diabetes Control donate en -- A Future Without Diabetes - a-future- ...

  1. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Glucose Testing Medication Doctors, Nurses & More Oral Health & Hygiene Women A1C Insulin Pregnancy 8 Tips for Caregivers ... updated, this is the "take-you-by-the-hand" guide that will become a trusted friend and ...

  2. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Superfoods Non-starchy Vegetables Grains and Starchy Vegetables Fats Alcohol What Can I Drink? Fruit Dairy Food ... glucose for fuel, so your body breaks down fats to use for energy. When your body breaks ...

  3. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Care Blood Glucose Testing Medication Doctors, Nurses & More Oral ... someone new is diagnosed. Diabetes causes more deaths a year than breast cancer and AIDS combined. Your gift today will help ...

  4. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... and Care > Blood Glucose Testing Share: Print Page Text Size: A A A Listen En Español Hyperglycemia ( ... compact USB drives that can carry a person's full medical record for use in an emergency. How ...

  5. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Nephropathy) Gastroparesis Mental Health Step On Up Treatment & Care Blood Glucose Testing Medication Doctors, Nurses & More Oral ... 2 Diabetes Know Your Rights Employment Discrimination Health Care Professionals Law Enforcement Driver's License For Lawyers Food & ...

  6. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Complications DKA (Ketoacidosis) & Ketones Kidney Disease (Nephropathy) Gastroparesis Mental Health Step On Up Treatment & Care Blood Glucose Testing Medication Doctors, Nurses & More Oral Health & Hygiene Women A1C Insulin Pregnancy 8 Tips for Caregivers Health ...

  7. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... blood glucose level go even higher. You'll need to work with your doctor to find the ... lead to ketoacidosis. Ketoacidosis is life-threatening and needs immediate treatment. Symptoms include: Shortness of breath Breath ...

  8. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Complications DKA (Ketoacidosis) & Ketones Kidney Disease (Nephropathy) Gastroparesis Mental Health Step On Up Treatment & Care Blood Glucose Testing ... Living With Diabetes Recently Diagnosed Treatment & Care Complications Health ... EXPOs Awareness Programs Wellness Lives Here Become a Member American ...

  9. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Your best bet is to practice good diabetes management and learn to detect hyperglycemia so you can ... glucose) Dawn Phenomenon Checking for Ketones Tight Diabetes Control donate en -- A Future Without Diabetes - a-future- ...

  10. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Complications DKA (Ketoacidosis) & Ketones Kidney Disease (Nephropathy) Gastroparesis Mental Health Step On Up Treatment & Care Blood Glucose Testing ... Pinterest Youtube Instagram Diabetes Stops Here Blog Online Community Site ... Day Prediabetes My Health Advisor Tools to Know Your Risk Diabetes Basics ...

  11. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Up Treatment & Care Blood Glucose Testing Medication Doctors, Nurses & More Oral Health & Hygiene Women A1C Insulin Pregnancy ... de Cure Women's Series Do-It-Yourself Fundraising Become a Volunteer American Diabetes Month® American Diabetes Association ...

  12. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... You At Risk? Diabetes Basics Living with Diabetes Food & Fitness In My Community Advocacy Research & Practice Ways to Give Close Are You at Risk? Home ... work with your doctor to find the safest way for you to lower your blood glucose ... down on the amount of food you eat might also help. Work with your ...

  13. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Diabetes Risk Test Lower Your Risk Healthy Eating Overweight Smoking High Blood Pressure Physical Activity High Blood ... For Parents & Kids Safe at School Everyday Life Children and Type 2 Diabetes Know Your Rights Employment ...

  14. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... 2 Diabetes Risk Test Lower Your Risk Healthy Eating Overweight Smoking High Blood Pressure Physical Activity High ... What Can I Drink? Fruit Dairy Food Tips Eating Out Quick Meal Ideas Snacks Nutrient Content Claims ...

  15. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Type 2 Diabetes Risk Test Lower Your Risk Healthy Eating Overweight Smoking High Blood Pressure Physical Activity High ... Holiday Meal Planning What Can I Eat? Making Healthy Food Choices Diabetes ... Tips Eating Out Quick Meal Ideas Snacks Nutrient Content Claims ...

  16. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... and Learning About Prediabetes Type 2 Diabetes Risk Test Lower Your Risk Healthy Eating Overweight Smoking High ... excused. 86 million Americans have prediabetes. Take the test. Know where you stand. sticky en -- Chef Ronaldo's ...

  17. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... and Learning About Prediabetes Type 2 Diabetes Risk Test Lower Your Risk Healthy Eating Overweight Smoking High ... You at Risk? Diagnosis Lower Your Risk Risk Test Alert Day Prediabetes My Health Advisor Tools to ...

  18. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... You At Risk? Diabetes Basics Living with Diabetes Food & Fitness In My Community Advocacy Research & Practice Ways to Give Close Are You at Risk? Home Prevention Diagnosing Diabetes and Learning About Prediabetes Type 2 Diabetes Risk Test Lower Your Risk Healthy Eating Overweight Smoking High ...

  19. Conditions With High Intracellular Glucose Inhibit Sensing Through Glucose Sensor Snf3 in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Karhumaa, Kaisa; Wu, B.Q.; Kielland-Brandt, Morten

    2010-01-01

    as for amino acids. An alternating-access model of the function of transporter-like sensors has been previously suggested based on amino acid sensing, where intracellular ligand inhibits binding of extracellular ligand. Here we studied the effect of intracellular glucose on sensing of extracellular glucose...... through the transporter-like sensor Snf3 in yeast. Sensing through Snf3 was determined by measuring degradation of Mth1 protein. High intracellular glucose concentrations were achieved by using yeast strains lacking monohexose transporters which were grown on maltose. The apparent affinity...... of extracellular glucose to Snf3 was measured for cells grown in non-fermentative medium or on maltose. The apparent affinity for glucose was lowest when the intracellular glucose concentration was high. The results conform to an alternating-access model for transporter-like sensors. J. Cell. Biochem. 110: 920...

  20. Designing a highly active soluble PQQ-glucose dehydrogenase for efficient glucose biosensors and biofuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Durand, Fabien [Universite de Bordeaux, Centre de Recherche Paul Pascal (CRPP), UPR 8641, Avenue Albert Schweitzer, 33600 Pessac (France); Stines-Chaumeil, Claire [Universite de Bordeaux, CNRS, Institut de Biochimie et de Genetique Cellulaires, 1 rue Camille Saint Saens, 33077 Bordeaux Cedex (France); Flexer, Victoria [Universite de Bordeaux, Centre de Recherche Paul Pascal (CRPP), UPR 8641, Avenue Albert Schweitzer, 33600 Pessac (France); Andre, Isabelle [Universite de Toulouse, INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse (France); CNRS, UMR5504, F-31400 Toulouse (France); INRA, UMR 792 Ingenierie des Systemes Biologiques et des Procedes, F-31400 Toulouse (France); Mano, Nicolas, E-mail: mano@crpp-bordeaux.cnrs.fr [Universite de Bordeaux, Centre de Recherche Paul Pascal (CRPP), UPR 8641, Avenue Albert Schweitzer, 33600 Pessac (France)

    2010-11-26

    Research highlights: {yields} A new mutant of PQQ-GDH designed for glucose biosensors application. {yields} First mutant of PQQ-GDH with higher activity for D-glucose than the Wild type. {yields} Position N428 is a key point to increase the enzyme activity. {yields} Molecular modeling shows that the N428 C mutant displays a better interaction for PQQ than the WT. -- Abstract: We report for the first time a soluble PQQ-glucose dehydrogenase that is twice more active than the wild type for glucose oxidation and was obtained by combining site directed mutagenesis, modelling and steady-state kinetics. The observed enhancement is attributed to a better interaction between the cofactor and the enzyme leading to a better electron transfer. Electrochemical experiments also demonstrate the superiority of the new mutant for glucose oxidation and make it a promising enzyme for the development of high-performance glucose biosensors and biofuel cells.

  1. High glucose impairs superoxide production from isolated blood neutrophils

    DEFF Research Database (Denmark)

    Perner, A; Nielsen, S E; Rask-Madsen, J

    2003-01-01

    Superoxide (O(2)(-)), a key antimicrobial agent in phagocytes, is produced by the activity of NADPH oxidase. High glucose concentrations may, however, impair the production of O(2)(-) through inhibition of glucose-6-phosphate dehydrogenase (G6PD), which catalyzes the formation of NADPH. This study...... measured the acute effects of high glucose or the G6PD inhibitor dehydroepiandrosterone (DHEA) on the production of O(2)(-) from isolated human neutrophils....

  2. Accuracy of Handheld Blood Glucose Meters at High Altitude

    NARCIS (Netherlands)

    de Mol, Pieter; Krabbe, Hans G.; de Vries, Suzanna T.; Fokkert, Marion J.; Dikkeschei, Bert D.; Rienks, Rienk; Bilo, Karin M.; Bilo, Henk J. G.

    2010-01-01

    Background: Due to increasing numbers of people with diabetes taking part in extreme sports (e. g., high-altitude trekking), reliable handheld blood glucose meters (BGMs) are necessary. Accurate blood glucose measurement under extreme conditions is paramount for safe recreation at altitude. Prior

  3. A highly sensitive electrochemical glucose sensor structuring with nickel hydroxide and enzyme glucose oxidase

    International Nuclear Information System (INIS)

    Mathew, Manjusha; Sandhyarani, N.

    2013-01-01

    Graphical abstract: A combination of Ni 2+ /Ni 3+ redox couple and glucose oxidase has successfully been exploited for the realization of a highly sensitive glucose sensor for the first time. -- Highlights: • A multilayered glucose biosensor with enhanced sensitivity was fabricated. • Combination of Ni 2+ /Ni 3+ redox couple and glucose oxidase has been exploited for the first time. • Exhibits a lower detection limit of 100 nM with a high sensitivity of 16,840 μA mM −1 cm −2 . • The surface shows a low Michaelis–Menten constant value of 2.4 μM. • Detailed mechanism of sensing was proposed and justified. -- Abstract: A multilayered glucose biosensor with enhanced electron transport was fabricated via the sequential electrodeposition of chitosan gold nanocomposite (CGNC) and nickel hydroxide (Ni(OH) 2 ) on a bare gold electrode and subsequent immobilization of glucose oxidase. A thin film of Ni(OH) 2 deposited on CGNC modified gold electrode serves as an electrochemical redox probe as well as a matrix for the immobilization of glucose oxidase retaining its activity. Electron transport property of CGNC has been exploited to enhance the electron transport between the analyte and electrode. Electrochemical characteristics of the biosensor were studied by cyclic voltammetry and chronoamperometry. Under optimal conditions the biosensor exhibits a linear range from 1 μM to 100 μM with a limit of detection (lod) down to 100 nM. The sensor shows a low Michaelis-Menten constant value of 2.4 μM indicates the high affinity of enzyme to the analyte points to the retained activity of enzyme after immobilization. The present glucose sensor with the high selectivity, sensitivity and stability is promising for practical clinical applications

  4. Non-response to (statin) therapy

    DEFF Research Database (Denmark)

    Trompet, S; Postmus, I; Slagboom, P E

    2016-01-01

    PURPOSE: In pharmacogenetic research, genetic variation in non-responders and high responders is compared with the aim to identify the genetic loci responsible for this variation in response. However, an important question is whether the non-responders are truly biologically non-responsive......-responders from the analysis. RESULTS: Non-responders to statin therapy were younger (p = 0.001), more often smoked (p levels (p ... that non-adherence is investigated instead of non-responsiveness....

  5. Optimization of Glucose oxidase towards oxygen independency and high mediator activity for amperometric glucose determination in diabetes analytics

    OpenAIRE

    Arango Gutierrez, Erik Uwe

    2015-01-01

    Glucose oxidase is an oxidoreductase exhibiting a high β-D-glucose specificity and high stability which renders glucose oxidase well-suited for applications in diabetes care. Nevertheless, GOx activity is highly oxygen dependent which can lead to inaccuracies in amperometric β-D-glucose determinations. Therefore a directed evolution campaign with two rounds of random mutagenesis (SeSaM followed by epPCR), site saturation mutagenesis studies, and one simultaneous site saturation library (OmniC...

  6. Underestimation of glucose turnover corrected with high-performance liquid chromatography purification of [6-3H]glucose

    International Nuclear Information System (INIS)

    Schwenk, W.F.; Butler, P.C.; Haymond, M.W.; Rizza, R.A.

    1990-01-01

    We have recently reported that during infusion of commercially available [6-3H]glucose, a radioactive nonglucose contaminant may accumulate in plasma causing errors in the measurement of glucose turnover. To determine whether purification of this tracer by HPLC (high-performance liquid chromatography) before infusion would eliminate the contaminant in plasma and remove the underestimation of glucose turnover reported during hyperinsulinemia, four normal subjects each underwent two 5-h euglycemic clamps during infusion of insulin (1 mU.kg-1.min-1). Glucose turnover was measured with either commercially available [6-3H]glucose or with HPLC-purified [6-3H]glucose. HPLC analysis of samples from the clamps done with commercially available [6-3H]glucose showed that 9.7% of the infused tracer and 26% of the plasma glucose 3H radioactivity were contaminants. In contrast, no contaminant was observed in the plasma during infusion of HPLC-purified [6-3H]glucose. During the last hour of the clamp, mean glucose turnover using commercially available [6-3H]glucose was less (P less than 0.01) than the mean glucose infusion rate (7.6 +/- 0.3 vs. 10.5 +/- 0.3 mg.kg-1.min-1) yielding apparent negative (P less than 0.001) hepatic glucose release. In contrast, when HPLC-purified [6-3H]glucose was employed, glucose turnover equaled the glucose infusion rate (10.4 +/- 0.9 vs. 10.2 +/- 0.9 mg.kg-1.min-1) and hepatic glucose release was no longer negative. We conclude that removal of a tritiated nonglucose contaminant in [6-3H]glucose by HPLC yields correct estimations of glucose turnover at steady state

  7. A high-throughput colorimetric assay for glucose detection based on glucose oxidase-catalyzed enlargement of gold nanoparticles

    Science.gov (United States)

    Xiong, Yanmei; Zhang, Yuyan; Rong, Pengfei; Yang, Jie; Wang, Wei; Liu, Dingbin

    2015-09-01

    We developed a simple high-throughput colorimetric assay to detect glucose based on the glucose oxidase (GOx)-catalysed enlargement of gold nanoparticles (AuNPs). Compared with the currently available glucose kit method, the AuNP-based assay provides higher clinical sensitivity at lower cost, indicating its great potential to be a powerful tool for clinical screening of glucose.We developed a simple high-throughput colorimetric assay to detect glucose based on the glucose oxidase (GOx)-catalysed enlargement of gold nanoparticles (AuNPs). Compared with the currently available glucose kit method, the AuNP-based assay provides higher clinical sensitivity at lower cost, indicating its great potential to be a powerful tool for clinical screening of glucose. Electronic supplementary information (ESI) available: Experimental section and additional figures. See DOI: 10.1039/c5nr03758a

  8. High glucose-mediated oxidative stress impairs cell migration.

    Directory of Open Access Journals (Sweden)

    Marcelo L Lamers

    Full Text Available Deficient wound healing in diabetic patients is very frequent, but the cellular and molecular causes are poorly defined. In this study, we evaluate the hypothesis that high glucose concentrations inhibit cell migration. Using CHO.K1 cells, NIH-3T3 fibroblasts, mouse embryonic fibroblasts and primary skin fibroblasts from control and diabetic rats cultured in 5 mM D-glucose (low glucose, LG, 25 mM D-glucose (high glucose, HG or 25 mM L-glucose medium (osmotic control--OC, we analyzed the migration speed, protrusion stability, cell polarity, adhesion maturation and the activity of the small Rho GTPase Rac1. We also analyzed the effects of reactive oxygen species by incubating cells with the antioxidant N-Acetyl-Cysteine (NAC. We observed that HG conditions inhibited cell migration when compared to LG or OC. This inhibition resulted from impaired cell polarity, protrusion destabilization and inhibition of adhesion maturation. Conversely, Rac1 activity, which promotes protrusion and blocks adhesion maturation, was increased in HG conditions, thus providing a mechanistic basis for the HG phenotype. Most of the HG effects were partially or completely rescued by treatment with NAC. These findings demonstrate that HG impairs cell migration due to an increase in oxidative stress that causes polarity loss, deficient adhesion and protrusion. These alterations arise, in large part, from increased Rac1 activity and may contribute to the poor wound healing observed in diabetic patients.

  9. High Glucose Promotes Aβ Production by Inhibiting APP Degradation

    Science.gov (United States)

    Zhang, Shuting; Song, Weihong

    2013-01-01

    Abnormal deposition of neuriticplaques is the uniqueneuropathological hallmark of Alzheimer’s disease (AD).Amyloid β protein (Aβ), the major component of plaques, is generated from sequential cleavage of amyloidβ precursor protein (APP) by β-secretase and γ-secretase complex. Patients with diabetes mellitus (DM), characterized by chronic hyperglycemia,have increased risk of AD development.However, the role of high blood glucose in APP processing and Aβ generation remains elusive. In this study, we investigated the effect of high glucose on APP metabolism and Aβ generation in cultured human cells. We found that high glucose treatment significantly increased APP protein level in both neuronal-like and non-neuronal cells, and promoted Aβ generation. Furthermore, we found that high glucose-induced increase of APP level was not due to enhancement of APP gene transcription but resulted from inhibition of APP protein degradation. Taken together, our data indicated that hyperglycemia could promote AD pathogenesis by inhibiting APP degradation and enhancing Aβ production. More importantly, the elevation of APP level and Aβ generation by high glucose was caused by reduction of APP turnover rate.Thus,our study provides a molecular mechanism of increased risk of developing AD in patients withDMand suggests thatglycemic control might be potentially beneficial for reducing the incidence of AD in diabetic patients and delaying the AD progression. PMID:23894546

  10. High pressure HC1 conversion of cellulose to glucose

    Energy Technology Data Exchange (ETDEWEB)

    Antonoplis, Robert Alexander [Univ. of California, Berkeley, CA (United States); Blanch, Harvey W. [Univ. of California, Berkeley, CA (United States); Wilke, Charles R. [Univ. of California, Berkeley, CA (United States)

    1981-08-01

    The production of ethanol from glucose by means of fermentation represents a potential long-range alternative to oil for use as a transportation fuel. Today's rising oil prices and the dwindling world supply of oil have made other fuels, such as ethanol, attractive alternatives. It has been shown that automobiles can operate, with minor alterations, on a 10% ethanol-gasoline mixture popularly known as gasohol. Wood has long been known as a potential source of glucose. Glucose may be obtained from wood following acid hydrolysis. In this research, it was found that saturating wood particles with HCl gas under pressure was an effective pretreatment before subjecting the wood to dilute acid hydrolysis. The pretreatment is necessary because of the tight lattice structure of cellulose, which inhibits dilute acid hydrolysis. HCl gas makes the cellulose more susceptible to hydrolysis and the glucose yield is doubled when dilute acid hydrolysis is preceded by HCl saturation at high pressure. The saturation was most effectively performed in a fluidized bed reactor, with pure HCl gas fluidizing equal volumes of ground wood and inert particles. The fluidized bed effectively dissipated the large amount of heat released upon HCl absorption into the wood. Batch reaction times of one hour at 314.7 p.s.i.a. gave glucose yields of 80% and xylose yields of 95% after dilute acid hydrolysis. A non-catalytic gas-solid reaction model, with gas diffusing through the solid limiting the reaction rate, was found to describe the HCl-wood reaction in the fluidized bed. HCl was found to form a stable adduct with the lignin residue in the wood, in a ratio of 3.33 moles per mole of lignin monomer. This resulted in a loss of 0.1453 lb. of HCl per pound of wood. The adduct was broken upon the addition of water. A process design and economic evaluation for a plant to produce 214 tons per day of glucose from air-dried ground Populus tristi gave an estimated glucose cost of 15.14 cents per pound

  11. Nanomolar Caffeic Acid Decreases Glucose Uptake and the Effects of High Glucose in Endothelial Cells.

    Directory of Open Access Journals (Sweden)

    Lucia Natarelli

    Full Text Available Epidemiological studies suggest that moderate and prolonged consumption of coffee is associated with a reduced risk of developing type 2 diabetes but the molecular mechanisms underlying this effect are not known. In this study, we report the effects of physiological concentrations of caffeic acid, easily achievable by normal dietary habits, in endothelial cells cultured in 25 mM of glucose (high glucose, HG. In HG, the presence of 10 nM caffeic acid was associated with a decrease of glucose uptake but not to changes of GLUT-1 membrane localization or mRNA levels. Moreover, caffeic acid countered HG-induced loss of barrier integrity, reducing actin rearrangement and FITC-dextran passage. The decreased flux of glucose associated to caffeic acid affected HG induced apoptosis by down-regulating the expression of initiator (caspase 8 and 9 and effector caspases (caspase 7 and 3 and by increasing the levels of phosphorylated Bcl-2. We also observed that caffeic acid in HG condition was associated to a reduction of p65 subunit nuclear levels with respect to HG alone. NF-κB activation has been shown to lead to apoptosis in HG treated cells and the analysis of the expression of a panel of about 90 genes related to NF-κB signaling pathway revealed that caffeic acid significantly influenced gene expression changes induced by HG. In conclusion, our results suggest that caffeic acid, decreasing the metabolic stress induced by HG, allows the activation of survival mechanisms mediated by a different modulation of NF-κB-related signaling pathways and to the activation of anti-apoptotic proteins.

  12. Regulation of intracellular glucose and polyol pathway by thiamine and benfotiamine in vascular cells cultured in high glucose.

    Science.gov (United States)

    Berrone, Elena; Beltramo, Elena; Solimine, Carmela; Ape, Alessandro Ubertalli; Porta, Massimo

    2006-04-07

    Hyperglycemia is a causal factor in the development of the vascular complications of diabetes. One of the biochemical mechanisms activated by excess glucose is the polyol pathway, the key enzyme of which, aldose reductase, transforms d-glucose into d-sorbitol, leading to imbalances of intracellular homeostasis. We aimed at verifying the effects of thiamine and benfotiamine on the polyol pathway, transketolase activity, and intracellular glucose in endothelial cells and pericytes under high ambient glucose. Human umbilical vein endothelial cells and bovine retinal pericytes were cultured in normal (5.6 mmol/liter) or high (28 mmol/liter) glucose, with or without thiamine or benfotiamine 50 or 100 mumol/liter. Transketolase and aldose reductase mRNA expression was determined by reverse transcription-PCR, and their activity was measured spectrophotometrically; sorbitol concentrations were quantified by gas chromatography-mass spectrometry and intracellular glucose concentrations by fluorescent enzyme-linked immunosorbent assay method. Thiamine and benfotiamine reduce aldose reductase mRNA expression, activity, sorbitol concentrations, and intracellular glucose while increasing the expression and activity of transketolase, for which it is a coenzyme, in human endothelial cells and bovine retinal pericytes cultured in high glucose. Thiamine and benfotiamine correct polyol pathway activation induced by high glucose in vascular cells. Activation of transketolase may shift excess glycolytic metabolites into the pentose phosphate cycle, accelerate the glycolytic flux, and reduce intracellular free glucose, thereby preventing its conversion to sorbitol. This effect on the polyol pathway, together with other beneficial effects reported for thiamine in high glucose, could justify testing thiamine as a potential approach to the prevention and/or treatment of diabetic complications.

  13. High volumetric power density, non-enzymatic, glucose fuel cells.

    Science.gov (United States)

    Oncescu, Vlad; Erickson, David

    2013-01-01

    The development of new implantable medical devices has been limited in the past by slow advances in lithium battery technology. Non-enzymatic glucose fuel cells are promising replacement candidates for lithium batteries because of good long-term stability and adequate power density. The devices developed to date however use an "oxygen depletion design" whereby the electrodes are stacked on top of each other leading to low volumetric power density and complicated fabrication protocols. Here we have developed a novel single-layer fuel cell with good performance (2 μW cm⁻²) and stability that can be integrated directly as a coating layer on large implantable devices, or stacked to obtain a high volumetric power density (over 16 μW cm⁻³). This represents the first demonstration of a low volume non-enzymatic fuel cell stack with high power density, greatly increasing the range of applications for non-enzymatic glucose fuel cells.

  14. High Glucose Inhibits Neural Stem Cell Differentiation Through Oxidative Stress and Endoplasmic Reticulum Stress.

    Science.gov (United States)

    Chen, Xi; Shen, Wei-Bin; Yang, Penghua; Dong, Daoyin; Sun, Winny; Yang, Peixin

    2018-06-01

    Maternal diabetes induces neural tube defects by suppressing neurogenesis in the developing neuroepithelium. Our recent study further revealed that high glucose inhibited embryonic stem cell differentiation into neural lineage cells. However, the mechanism whereby high glucose suppresses neural differentiation is unclear. To investigate whether high glucose-induced oxidative stress and endoplasmic reticulum (ER) stress lead to the inhibition of neural differentiation, the effect of high glucose on neural stem cell (the C17.2 cell line) differentiation was examined. Neural stem cells were cultured in normal glucose (5 mM) or high glucose (25 mM) differentiation medium for 3, 5, and 7 days. High glucose suppressed neural stem cell differentiation by significantly decreasing the expression of the neuron marker Tuj1 and the glial cell marker GFAP and the numbers of Tuj1 + and GFAP + cells. The antioxidant enzyme superoxide dismutase mimetic Tempol reversed high glucose-decreased Tuj1 and GFAP expression and restored the numbers of neurons and glial cells differentiated from neural stem cells. Hydrogen peroxide treatment imitated the inhibitory effect of high glucose on neural stem cell differentiation. Both high glucose and hydrogen peroxide triggered ER stress, whereas Tempol blocked high glucose-induced ER stress. The ER stress inhibitor, 4-phenylbutyrate, abolished the inhibition of high glucose or hydrogen peroxide on neural stem cell differentiation. Thus, oxidative stress and its resultant ER stress mediate the inhibitory effect of high glucose on neural stem cell differentiation.

  15. Effects of 6-Weeks High-Intensity Interval Training in Schoolchildren with Insulin Resistance: Influence of Biological Maturation on Metabolic, Body Composition, Cardiovascular and Performance Non-responses

    Science.gov (United States)

    Alvarez, Cristian; Ramírez-Campillo, Rodrigo; Ramírez-Vélez, Robinson; Izquierdo, Mikel

    2017-01-01

    Background: Previous studies have observed significant heterogeneity in the magnitude of change in measures of metabolic response to exercise training. There are a lack of studies examining the prevalence of non-responders (NRs) in children while considering other potential environmental factors involved such as biological maturation. Aim: To compare the effects and prevalence of NRs to improve the insulin resistance level (by HOMA-IR), as well as to other anthropometric, cardiovascular, and performance co-variables, between early (EM) and normal maturation (NM) in insulin-resistance schoolchildren after 6-weeks of HIIT. Methods: Sedentary children (age 11.4 ± 1.7 years) were randomized to either HIIT-EM group (n = 12) or HIIT-NM group (n = 17). Fasting glucose (FGL), fasting insulin (FINS) and homeostasis model assessment of insulin resistant (HOMA-IR) were assessed as the main outcomes, as well as the body composition [body mass, body mass index (BMI), waist circumference (WC), and tricipital (TSF), suprailiac (SSF) and abdominal skinfold (AbdSF)], cardiovascular systolic (SBP) and diastolic blood pressure (DBP), and muscular performance [one-repetition maximum strength leg-extension (1RMLE) and upper row (1RMUR) tests] co-variables were assessed before and after intervention. Responders or NRs to training were defined as a change in the typical error method from baseline to follow-up for the main outcomes and co-variables. Results: There were no significant differences between groups in the prevalence of NRs based on FGL, FINS, and HOMA-IR. There were significant differences in NRs prevalence to decrease co-variables body mass (HIIT-EM 66.6% vs. HIIT-NM 35.2%) and SBP (HIIT-EM 41.6% vs. HIIT-NM 70.5%). A high risk [based on odds ratios (OR)] of NRs cases was detected for FGL, OR = 3.2 (0.2 to 5.6), and HOMA-IR, OR = 3.2 (0.2 to 6.0). Additionally, both HIIT-EM and HIIT-NM groups showed significant decreases (P cardiovascular parameters can be playing a role in

  16. Glucose uptake and growth of glucose-limited chemostat cultures of Aspergillus niger and a disruptant lacking MstA, a high-affinity glucose transporter

    DEFF Research Database (Denmark)

    Jørgensen, Thomas R; vanKuyk, Patricia A; Poulsen, Bjarne R

    2007-01-01

    This is a study of high-affinity glucose uptake in Aspergillus niger and the effect of disruption of a high-affinity monosaccharide-transporter gene, mstA. The substrate saturation constant (K(s)) of a reference strain was about 15 microM in glucose-limited chemostat culture. Disruption of mst......-affinity uptake system of A. niger. The mstA disruptant and a reference strain were cultivated in glucose-limited chemostat cultures at low, intermediate and high dilution rate (D=0.07 h(-1), 0.14 h(-1) and 0.20 h(-1)). Mycelium harvested from steady-state cultures was subjected to glucose uptake assays...

  17. Oxidative stress plays a role in high glucose-induced activation of pancreatic stellate cells

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Gyeong Ryul; Lee, Esder; Chun, Hyun-Ji; Yoon, Kun-Ho; Ko, Seung-Hyun; Ahn, Yu-Bae; Song, Ki-Ho, E-mail: kihos@catholic.ac.kr

    2013-09-20

    Highlights: •High glucose increased production of reactive oxygen species in cultured pancreatic stellate cells. •High glucose facilitated the activation of these cells. •Antioxidant treatment attenuated high glucose-induced activation of these cells. -- Abstract: The activation of pancreatic stellate cells (PSCs) is thought to be a potential mechanism underlying islet fibrosis, which may contribute to progressive β-cell failure in type 2 diabetes. Recently, we demonstrated that antioxidants reduced islet fibrosis in an animal model of type 2 diabetes. However, there is no in vitro study demonstrating that high glucose itself can induce oxidative stress in PSCs. Thus, PSCs were isolated and cultured from Sprague Dawley rats, and treated with high glucose for 72 h. High glucose increased the production of reactive oxygen species. When treated with high glucose, freshly isolated PSCs exhibited myofibroblastic transformation. During early culture (passage 1), PSCs treated with high glucose contained an increased number of α-smooth muscle actin-positive cells. During late culture (passages 2–5), PSCs treated with high glucose exhibited increases in cell proliferation, the expression of fibronectin and connective tissue growth factor, release of interleukin-6, transforming growth factor-β and collagen, and cell migration. Finally, the treatment of PSCs with high glucose and antioxidants attenuated these changes. In conclusion, we demonstrated that high glucose increased oxidative stress in primary rat PSCs, thereby facilitating the activation of these cells, while antioxidant treatment attenuated high glucose-induced PSC activation.

  18. Oxidative stress plays a role in high glucose-induced activation of pancreatic stellate cells

    International Nuclear Information System (INIS)

    Ryu, Gyeong Ryul; Lee, Esder; Chun, Hyun-Ji; Yoon, Kun-Ho; Ko, Seung-Hyun; Ahn, Yu-Bae; Song, Ki-Ho

    2013-01-01

    Highlights: •High glucose increased production of reactive oxygen species in cultured pancreatic stellate cells. •High glucose facilitated the activation of these cells. •Antioxidant treatment attenuated high glucose-induced activation of these cells. -- Abstract: The activation of pancreatic stellate cells (PSCs) is thought to be a potential mechanism underlying islet fibrosis, which may contribute to progressive β-cell failure in type 2 diabetes. Recently, we demonstrated that antioxidants reduced islet fibrosis in an animal model of type 2 diabetes. However, there is no in vitro study demonstrating that high glucose itself can induce oxidative stress in PSCs. Thus, PSCs were isolated and cultured from Sprague Dawley rats, and treated with high glucose for 72 h. High glucose increased the production of reactive oxygen species. When treated with high glucose, freshly isolated PSCs exhibited myofibroblastic transformation. During early culture (passage 1), PSCs treated with high glucose contained an increased number of α-smooth muscle actin-positive cells. During late culture (passages 2–5), PSCs treated with high glucose exhibited increases in cell proliferation, the expression of fibronectin and connective tissue growth factor, release of interleukin-6, transforming growth factor-β and collagen, and cell migration. Finally, the treatment of PSCs with high glucose and antioxidants attenuated these changes. In conclusion, we demonstrated that high glucose increased oxidative stress in primary rat PSCs, thereby facilitating the activation of these cells, while antioxidant treatment attenuated high glucose-induced PSC activation

  19. Effects of 6-Weeks High-Intensity Interval Training in Schoolchildren with Insulin Resistance: Influence of Biological Maturation on Metabolic, Body Composition, Cardiovascular and Performance Non-responses.

    Science.gov (United States)

    Alvarez, Cristian; Ramírez-Campillo, Rodrigo; Ramírez-Vélez, Robinson; Izquierdo, Mikel

    2017-01-01

    Background: Previous studies have observed significant heterogeneity in the magnitude of change in measures of metabolic response to exercise training. There are a lack of studies examining the prevalence of non-responders (NRs) in children while considering other potential environmental factors involved such as biological maturation. Aim: To compare the effects and prevalence of NRs to improve the insulin resistance level (by HOMA-IR), as well as to other anthropometric, cardiovascular, and performance co-variables, between early (EM) and normal maturation (NM) in insulin-resistance schoolchildren after 6-weeks of HIIT. Methods: Sedentary children (age 11.4 ± 1.7 years) were randomized to either HIIT-EM group ( n = 12) or HIIT-NM group ( n = 17). Fasting glucose (FGL), fasting insulin (FINS) and homeostasis model assessment of insulin resistant (HOMA-IR) were assessed as the main outcomes, as well as the body composition [body mass, body mass index (BMI), waist circumference (WC), and tricipital (TSF), suprailiac (SSF) and abdominal skinfold (AbdSF)], cardiovascular systolic (SBP) and diastolic blood pressure (DBP), and muscular performance [one-repetition maximum strength leg-extension (1RM LE ) and upper row (1RM UR ) tests] co-variables were assessed before and after intervention. Responders or NRs to training were defined as a change in the typical error method from baseline to follow-up for the main outcomes and co-variables. Results: There were no significant differences between groups in the prevalence of NRs based on FGL, FINS, and HOMA-IR. There were significant differences in NRs prevalence to decrease co-variables body mass (HIIT-EM 66.6% vs. HIIT-NM 35.2%) and SBP (HIIT-EM 41.6% vs. HIIT-NM 70.5%). A high risk [based on odds ratios (OR)] of NRs cases was detected for FGL, OR = 3.2 (0.2 to 5.6), and HOMA-IR, OR = 3.2 (0.2 to 6.0). Additionally, both HIIT-EM and HIIT-NM groups showed significant decreases ( P HIIT-EM group showed significant decreases

  20. Effects of 6-Weeks High-Intensity Interval Training in Schoolchildren with Insulin Resistance: Influence of Biological Maturation on Metabolic, Body Composition, Cardiovascular and Performance Non-responses

    Directory of Open Access Journals (Sweden)

    Cristian Alvarez

    2017-06-01

    Full Text Available Background: Previous studies have observed significant heterogeneity in the magnitude of change in measures of metabolic response to exercise training. There are a lack of studies examining the prevalence of non-responders (NRs in children while considering other potential environmental factors involved such as biological maturation.Aim: To compare the effects and prevalence of NRs to improve the insulin resistance level (by HOMA-IR, as well as to other anthropometric, cardiovascular, and performance co-variables, between early (EM and normal maturation (NM in insulin-resistance schoolchildren after 6-weeks of HIIT.Methods: Sedentary children (age 11.4 ± 1.7 years were randomized to either HIIT-EM group (n = 12 or HIIT-NM group (n = 17. Fasting glucose (FGL, fasting insulin (FINS and homeostasis model assessment of insulin resistant (HOMA-IR were assessed as the main outcomes, as well as the body composition [body mass, body mass index (BMI, waist circumference (WC, and tricipital (TSF, suprailiac (SSF and abdominal skinfold (AbdSF], cardiovascular systolic (SBP and diastolic blood pressure (DBP, and muscular performance [one-repetition maximum strength leg-extension (1RMLE and upper row (1RMUR tests] co-variables were assessed before and after intervention. Responders or NRs to training were defined as a change in the typical error method from baseline to follow-up for the main outcomes and co-variables.Results: There were no significant differences between groups in the prevalence of NRs based on FGL, FINS, and HOMA-IR. There were significant differences in NRs prevalence to decrease co-variables body mass (HIIT-EM 66.6% vs. HIIT-NM 35.2% and SBP (HIIT-EM 41.6% vs. HIIT-NM 70.5%. A high risk [based on odds ratios (OR] of NRs cases was detected for FGL, OR = 3.2 (0.2 to 5.6, and HOMA-IR, OR = 3.2 (0.2 to 6.0. Additionally, both HIIT-EM and HIIT-NM groups showed significant decreases (P < 0.05 in TSF, SSF, and AbdSF skinfold, and similar

  1. A free-choice high-fat high-sugar diet induces glucose intolerance and insulin unresponsiveness to a glucose load not explained by obesity

    NARCIS (Netherlands)

    La Fleur, S. E.; Luijendijk, M. C. M.; van Rozen, A. J.; Kalsbeek, A.; Adan, R. A. H.

    2011-01-01

    Objectives: In diet-induced obesity, it is not clear whether impaired glucose metabolism is caused directly by the diet, or indirectly via obesity. This study examined the effects of different free-choice, high-caloric, obesity-inducing diets on glucose metabolism. In these free-choice diets,

  2. [Investigation the Inhibitory Effects of Kaempferol on Rat Renalmesangial Cells Proliferation under High Glucose Condition].

    Science.gov (United States)

    Chen, Ni; Han, Peng-Ding; Chen, Wen; Deng, Yan

    2017-07-01

    To investigate the protective effects of kaempferol on rat renal mesangial cells under high glucose condition and explore its mechanism. The HBZY-1 cells were divided into normal glucose group (5.5 mmol/L), high glucose group (25 mmol/L), 10 μmol/L kaempferol+high glucose group, and 30 μmol/L kaempferol+high glucose group. Cell proliferative ability was measured by MTT; cell cycle was analyzed by flow cytometry; mRNA and protein levels were determined by Real-time PCR and Western blot, respectively. Kaempferol had no effect on the proliferative ability of rat renal mesangial cells under normal glucose (5.5 mmol/L) condition. High glucose (25 mmol/L) enhanced the cell proliferative ability, and this effect was antagonized by kaempferol (10-30 μmol/L) treatment. High glucose reduced the cell population at G 0 /G 1 phase with an associated increase in S phase, and had no effect on G₂/M phase; and kaempferol treatment restored high glucose-induced changes in cell cycle. Kaempferol also prevented high glucose-induced increase in fibronectin and connective tissue growth factor mRNA and protein expression levels. Kaempferol also prevented high glucose-induced increase in fibronectin and connective tissue growth factor mRNA and protein expression levels. Further, high glucose caused an increase in protein level of phosphorylated p38 mitogen-activated protein kinases (p38 MAPK), which was antagonized by kaempferol treatment. Our results suggest that kaempferol exerts its protective effect on rat renal mesangial cells under high glucose condition via p38 MAPK signaling pathway.

  3. Highly Selective and Sensitive Self-Powered Glucose Sensor Based on Capacitor Circuit.

    Science.gov (United States)

    Slaughter, Gymama; Kulkarni, Tanmay

    2017-05-03

    Enzymatic glucose biosensors are being developed to incorporate nanoscale materials with the biological recognition elements to assist in the rapid and sensitive detection of glucose. Here we present a highly sensitive and selective glucose sensor based on capacitor circuit that is capable of selectively sensing glucose while simultaneously powering a small microelectronic device. Multi-walled carbon nanotubes (MWCNTs) is chemically modified with pyrroloquinoline quinone glucose dehydrogenase (PQQ-GDH) and bilirubin oxidase (BOD) at anode and cathode, respectively, in the biofuel cell arrangement. The input voltage (as low as 0.25 V) from the biofuel cell is converted to a stepped-up power and charged to the capacitor to the voltage of 1.8 V. The frequency of the charge/discharge cycle of the capacitor corresponded to the oxidation of glucose. The biofuel cell structure-based glucose sensor synergizes the advantages of both the glucose biosensor and biofuel cell. In addition, this glucose sensor favored a very high selectivity towards glucose in the presence of competing and non-competing analytes. It exhibited unprecedented sensitivity of 37.66 Hz/mM.cm 2 and a linear range of 1 to 20 mM. This innovative self-powered glucose sensor opens new doors for implementation of biofuel cells and capacitor circuits for medical diagnosis and powering therapeutic devices.

  4. The negative influence of high-glucose ambience on neurogenesis in developing quail embryos.

    Directory of Open Access Journals (Sweden)

    Yao Chen

    Full Text Available Gestational diabetes is defined as glucose intolerance during pregnancy and it is presented as high blood glucose levels during the onset pregnancy. This condition has an adverse impact on fetal development but the mechanism involved is still not fully understood. In this study, we investigated the effects of high glucose on the developing quail embryo, especially its impact on the development of the nervous system. We established that high glucose altered the central nervous system mophologically, such that neural tube defects (NTDs developed. In addition, we found that high glucose impaired nerve differentiation at dorsal root ganglia and in the developing limb buds, as revealed by neurofilament (NF immunofluorescent staining. The dorsal root ganglia are normally derived from neural crest cells (NCCs, so we examine the delamination of NCCs from dorsal side of the neural tube. We established that high glucose was detrimental to the NCCs, in vivo and in vitro. High glucose also negatively affected neural differentiation by reducing the number and length of neurites emanating from neurons in culture. We established that high glucose exposure caused an increase in reactive oxidative species (ROS generation by primary cultured neurons. We hypothesized that excess ROS was the factor responsible for impairing neuron development and differentiation. We provided evidence for our hypothesis by showing that the addition of vitamin C (a powerful antioxidant could rescue the damaging effects of high glucose on cultured neurons.

  5. Integration of a highly ordered gold nanowires array with glucose oxidase for ultra-sensitive glucose detection

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Jiewu [NanoScience and Sensor Technology Research Group, School of Applied Sciences and Engineering, Monash University, Gippsland Campus, Churchill 3842, VIC Australia (Australia); Laboratory of Functional Nanomaterials and Devices, School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, Anhui (China); Adeloju, Samuel B., E-mail: sam.adeloju@monash.edu [NanoScience and Sensor Technology Research Group, School of Applied Sciences and Engineering, Monash University, Gippsland Campus, Churchill 3842, VIC Australia (Australia); Wu, Yucheng, E-mail: ycwu@hfut.edu.cn [Laboratory of Functional Nanomaterials and Devices, School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, Anhui (China)

    2014-01-27

    Graphical abstract: -- Highlights: •Successfully synthesised highly-ordered gold nanowires array with an AAO template. •Fabricated an ultra-sensitive glucose nanobiosensor with the gold nanowires array. •Achieved sensitivity as high as 379.0 μA cm{sup −2} mM{sup −1} and detection limit as low as 50 nM. •Achieved excellent anti-interference with aid of Nafion membrane towards UA and AA. •Enabled successful detection and quantification of glucose in human blood serum. -- Abstract: A highly sensitive amperometric nanobiosensor has been developed by integration of glucose oxidase (GO{sub x}) with a gold nanowires array (AuNWA) by cross-linking with a mixture of glutaraldehyde (GLA) and bovine serum albumin (BSA). An initial investigation of the morphology of the synthesized AuNWA by field emission scanning electron microscopy (FESEM) and field emission transmission electron microscopy (FETEM) revealed that the nanowires array was highly ordered with rough surface, and the electrochemical features of the AuNWA with/without modification were also investigated. The integrated AuNWA–BSA–GLA–GO{sub x} nanobiosensor with Nafion membrane gave a very high sensitivity of 298.2 μA cm{sup −2} mM{sup −1} for amperometric detection of glucose, while also achieving a low detection limit of 0.1 μM, and a wide linear range of 5–6000 μM. Furthermore, the nanobiosensor exhibited excellent anti-interference ability towards uric acid (UA) and ascorbic acid (AA) with the aid of Nafion membrane, and the results obtained for the analysis of human blood serum indicated that the device is capable of glucose detection in real samples.

  6. [Valsartan inhibits angiotensin II-Notch signaling of mesangial cells induced by high glucose].

    Science.gov (United States)

    Yuan, Qin; Lyu, Chuan; Wu, Can; Lei, Sha; Shao, Ying; Wang, Qiuyue

    2016-01-01

    To explore the role of angiotensin II (Ang II)-Notch signaling in high glucose-induced secretion of extracellular matrix of rat mesangial cells (RMCs) and to further investigate the protective effect of valsartan (one of Ang II receptor blockers) on kidney. Subcultured RMCs were divided into groups as follows: normal glucose group (5.5 mmol/L glucose); high glucose group (30 mmol/L glucose); high concentration of mannitol as osmotic control group (5.5 mmol/L glucose and 24.5 mmol/L mannitol); normal glucose plus 1 μmol/L N-[N-(3, 5-difluorophenacetyl)-L-alanyl ]-S-phenylglycine t-butyl ester (DAPT) group; normal glucose plus (1, 5, 10) μmol/L valsartan group; high glucose plus 1 μmol/L DAPT group; high glucose plus (1, 5, 10) μmol/L valsartan group. Cells and supernatants were harvested after 12, 24 and 48 hours. Notch1 expression was examined by Western blotting. Secretion of transforming growth factor (TGF-β) and fibronectin (FN) were detected by ELISA. Compared to the normal glucose group, Notch1 expression was elevated in the high glucose group after 12 hours, and peaked at 24 hours. Besides, secretion of TGF-β and FN were much higher in the high glucose group than in the normal glucose group in a time-dependent manner. Compared to the untreated group, Notch1 expression decreased in a dose-dependent manner in the valsartan or DAPT treated group under high glucose after 24 hours. After pre-treatment by either valsartan or DAPT in the high glucose group, secretion of TGF-β and FN obviously decreased as compared to the untreated group. Hyperglycemia could stimulate activation of Notch signaling in cultured RMCs, which may increase secretion of downstream fibrotic factors such as TGF-β and FN. Valsartan may decrease the secretion of downstream FN in a dose-dependent manner via inhibiting AngII-Notch signaling.

  7. Inhibitory Effects of Ecklonia cava Extract on High Glucose-Induced Hepatic Stellate Cell Activation

    Directory of Open Access Journals (Sweden)

    Akiko Kojima-Yuasa

    2011-12-01

    Full Text Available Nonalcoholic steatohepatitis (NASH is a disease closely associated with obesity and diabetes. A prevalence of type 2 diabetes and a high body mass index in cryptogenic cirrhosis may imply that obesity leads to cirrhosis. Here, we examined the effects of an extract of Ecklonia cava, a brown algae, on the activation of high glucose-induced hepatic stellate cells (HSCs, key players in hepatic fibrosis. Isolated HSCs were incubated with or without a high glucose concentration. Ecklonia cava extract (ECE was added to the culture simultaneously with the high glucose. Treatment with high glucose stimulated expression of type I collagen and α-smooth muscle actin, which are markers of activation in HSCs, in a dose-dependent manner. The activation of high glucose-treated HSCs was suppressed by the ECE. An increase in the formation of intracellular reactive oxygen species (ROS and a decrease in intracellular glutathione levels were observed soon after treatment with high glucose, and these changes were suppressed by the simultaneous addition of ECE. High glucose levels stimulated the secretion of bioactive transforming growth factor-β (TGF-β from the cells, and the stimulation was also suppressed by treating the HSCs with ECE. These results suggest that the suppression of high glucose-induced HSC activation by ECE is mediated through the inhibition of ROS and/or GSH and the downregulation of TGF-β secretion. ECE is useful for preventing the development of diabetic liver fibrosis.

  8. High glucose, glucose fluctuation and carbonyl stress enhance brain microvascular endothelial barrier dysfunction: Implications for diabetic cerebral microvasculature.

    Science.gov (United States)

    Li, Wei; Maloney, Ronald E; Aw, Tak Yee

    2015-08-01

    We previously demonstrated that in normal glucose (5mM), methylglyoxal (MG, a model of carbonyl stress) induced brain microvascular endothelial cell (IHEC) dysfunction that was associated with occludin glycation and prevented by N-acetylcysteine (NAC). Herein, we investigated the impact of high glucose and low GSH, conditions that mimicked the diabetic state, on MG-induced IHEC dysfunction. MG-induced loss of transendothelial electrical resistance (TEER) was potentiated in IHECs cultured for 7 or 12 days in 25 mM glucose (hyperglycemia); moreover, barrier function remained disrupted 6h after cell transfer to normal glucose media (acute glycemic fluctuation). Notably, basal occludin glycation was elevated under these glycemic states. TEER loss was exaggerated by inhibition of glutathione (GSH) synthesis and abrogated by NAC, which corresponded to GSH decreases and increases, respectively. Significantly, glyoxalase II activity was attenuated in hyperglycemic cells. Moreover, hyperglycemia and GSH inhibition increased MG accumulation, consistent with a compromised capacity for MG elimination. α-Oxoaldehydes (MG plus glyoxal) levels were elevated in streptozotocin-induced diabetic rat plasma. Immunohistochemistry revealed a prevalence of MG-positive, but fewer occludin-positive microvessels in the diabetic brain in vivo, and Western analysis confirmed an increase in MG-occludin adducts. These results provide the first evidence that hyperglycemia and acute glucose fluctuation promote MG-occludin formation and exacerbate brain microvascular endothelial dysfunction. Low occludin expression and high glycated-occludin contents in diabetic brain in vivo are factors that would contribute to the dysfunction of the cerebral microvasculature during diabetes. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  9. High glucose, glucose fluctuation and carbonyl stress enhance brain microvascular endothelial barrier dysfunction: Implications for diabetic cerebral microvasculature

    Directory of Open Access Journals (Sweden)

    Wei Li

    2015-08-01

    Full Text Available We previously demonstrated that in normal glucose (5 mM, methylglyoxal (MG, a model of carbonyl stress induced brain microvascular endothelial cell (IHEC dysfunction that was associated with occludin glycation and prevented by N-acetylcysteine (NAC. Herein, we investigated the impact of high glucose and low GSH, conditions that mimicked the diabetic state, on MG-induced IHEC dysfunction. MG-induced loss of transendothelial electrical resistance (TEER was potentiated in IHECs cultured for 7 or 12 days in 25 mM glucose (hyperglycemia; moreover, barrier function remained disrupted 6 h after cell transfer to normal glucose media (acute glycemic fluctuation. Notably, basal occludin glycation was elevated under these glycemic states. TEER loss was exaggerated by inhibition of glutathione (GSH synthesis and abrogated by NAC, which corresponded to GSH decreases and increases, respectively. Significantly, glyoxalase II activity was attenuated in hyperglycemic cells. Moreover, hyperglycemia and GSH inhibition increased MG accumulation, consistent with a compromised capacity for MG elimination. α-Oxoaldehydes (MG plus glyoxal levels were elevated in streptozotocin-induced diabetic rat plasma. Immunohistochemistry revealed a prevalence of MG-positive, but fewer occludin-positive microvessels in the diabetic brain in vivo, and Western analysis confirmed an increase in MG–occludin adducts. These results provide the first evidence that hyperglycemia and acute glucose fluctuation promote MG–occludin formation and exacerbate brain microvascular endothelial dysfunction. Low occludin expression and high glycated-occludin contents in diabetic brain in vivo are factors that would contribute to the dysfunction of the cerebral microvasculature during diabetes.

  10. Benfotiamine is similar to thiamine in correcting endothelial cell defects induced by high glucose.

    Science.gov (United States)

    Pomero, F; Molinar Min, A; La Selva, M; Allione, A; Molinatti, G M; Porta, M

    2001-01-01

    We investigated the hypothesis that benfotiamine, a lipophilic derivative of thiamine, affects replication delay and generation of advanced glycosylation end-products (AGE) in human umbilical vein endothelial cells cultured in the presence of high glucose. Cells were grown in physiological (5.6 mM) and high (28.0 mM) concentrations of D-glucose, with and without 150 microM thiamine or benfotiamine. Cell proliferation was measured by mitochondrial dehydrogenase activity. AGE generation after 20 days was assessed fluorimetrically. Cell replication was impaired by high glucose (72.3%+/-5.1% of that in physiological glucose, p=0.001). This was corrected by the addition of either thiamine (80.6%+/-2.4%, p=0.005) or benfotiamine (87.5%+/-8.9%, p=0.006), although it not was completely normalized (p=0.001 and p=0.008, respectively) to that in physiological glucose. Increased AGE production in high glucose (159.7%+/-38.9% of fluorescence in physiological glucose, p=0.003) was reduced by thiamine (113.2%+/-16.3%, p=0.008 vs. high glucose alone) or benfotiamine (135.6%+/-49.8%, p=0.03 vs. high glucose alone) to levels similar to those observed in physiological glucose. Benfotiamine, a derivative of thiamine with better bioavailability, corrects defective replication and increased AGE generation in endothelial cells cultured in high glucose, to a similar extent as thiamine. These effects may result from normalization of accelerated glycolysis and the consequent decrease in metabolites that are extremely active in generating nonenzymatic protein glycation. The potential role of thiamine administration in the prevention or treatment of vascular complications of diabetes deserves further investigation.

  11. High passage MIN6 cells have impaired insulin secretion with impaired glucose and lipid oxidation.

    Directory of Open Access Journals (Sweden)

    Kim Cheng

    Full Text Available Type 2 diabetes is a metabolic disorder characterized by the inability of beta-cells to secrete enough insulin to maintain glucose homeostasis. MIN6 cells secrete insulin in response to glucose and other secretagogues, but high passage (HP MIN6 cells lose their ability to secrete insulin in response to glucose. We hypothesized that metabolism of glucose and lipids were defective in HP MIN6 cells causing impaired glucose stimulated insulin secretion (GSIS. HP MIN6 cells had no first phase and impaired second phase GSIS indicative of global functional impairment. This was coupled with a markedly reduced ATP content at basal and glucose stimulated states. Glucose uptake and oxidation were higher at basal glucose but ATP content failed to increase with glucose. HP MIN6 cells had decreased basal lipid oxidation. This was accompanied by reduced expressions of Glut1, Gck, Pfk, Srebp1c, Ucp2, Sirt3, Nampt. MIN6 cells represent an important model of beta cells which, as passage numbers increased lost first phase but retained partial second phase GSIS, similar to patients early in type 2 diabetes onset. We believe a number of gene expression changes occurred to produce this defect, with emphasis on Sirt3 and Nampt, two genes that have been implicated in maintenance of glucose homeostasis.

  12. Osteocalcin protects pancreatic beta cell function and survival under high glucose conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kover, Karen, E-mail: kkover@cmh.edu [Division of Endocrine/Diabetes, Children' s Mercy Hospital & Clinics, Kansas City, MO 64108 (United States); University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108 (United States); Yan, Yun; Tong, Pei Ying; Watkins, Dara; Li, Xiaoyu [Division of Endocrine/Diabetes, Children' s Mercy Hospital & Clinics, Kansas City, MO 64108 (United States); University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108 (United States); Tasch, James; Hager, Melissa [Kansas City University Medical Biosciences, Kansas City, MO (United States); Clements, Mark; Moore, Wayne V. [Division of Endocrine/Diabetes, Children' s Mercy Hospital & Clinics, Kansas City, MO 64108 (United States); University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108 (United States)

    2015-06-19

    Diabetes is characterized by progressive beta cell dysfunction and loss due in part to oxidative stress that occurs from gluco/lipotoxicity. Treatments that directly protect beta cell function and survival in the diabetic milieu are of particular interest. A growing body of evidence suggests that osteocalcin, an abundant non-collagenous protein of bone, supports beta cell function and proliferation. Based on previous gene expression data by microarray, we hypothesized that osteocalcin protects beta cells from glucose-induced oxidative stress. To test our hypothesis we cultured isolated rat islets and INS-1E cells in the presence of normal, high, or high glucose ± osteocalcin for up to 72 h. Oxidative stress and viability/mitochondrial function were measured by H{sub 2}O{sub 2} assay and Alamar Blue assay, respectively. Caspase 3/7 activity was also measured as a marker of apoptosis. A functional test, glucose stimulated insulin release, was conducted and expression of genes/protein was measured by qRT-PCR/western blot/ELISA. Osteocalcin treatment significantly reduced high glucose-induced H{sub 2}O{sub 2} levels while maintaining viability/mitochondrial function. Osteocalcin also significantly improved glucose stimulated insulin secretion and insulin content in rat islets after 48 h of high glucose exposure compared to untreated islets. As expected sustained high glucose down-regulated gene/protein expression of INS1 and BCL2 while increasing TXNIP expression. Interestingly, osteocalcin treatment reversed the effects of high glucose on gene/protein expression. We conclude that osteocalcin can protect beta cells from the negative effects of glucose-induced oxidative stress, in part, by reducing TXNIP expression, thereby preserving beta cell function and survival. - Highlights: • Osteocalcin reduces glucose-induced oxidative stress in beta cells. • Osteocalcin preserves beta cell function and survival under stress conditions. • Osteocalcin reduces glucose

  13. Osteocalcin protects pancreatic beta cell function and survival under high glucose conditions

    International Nuclear Information System (INIS)

    Kover, Karen; Yan, Yun; Tong, Pei Ying; Watkins, Dara; Li, Xiaoyu; Tasch, James; Hager, Melissa; Clements, Mark; Moore, Wayne V.

    2015-01-01

    Diabetes is characterized by progressive beta cell dysfunction and loss due in part to oxidative stress that occurs from gluco/lipotoxicity. Treatments that directly protect beta cell function and survival in the diabetic milieu are of particular interest. A growing body of evidence suggests that osteocalcin, an abundant non-collagenous protein of bone, supports beta cell function and proliferation. Based on previous gene expression data by microarray, we hypothesized that osteocalcin protects beta cells from glucose-induced oxidative stress. To test our hypothesis we cultured isolated rat islets and INS-1E cells in the presence of normal, high, or high glucose ± osteocalcin for up to 72 h. Oxidative stress and viability/mitochondrial function were measured by H 2 O 2 assay and Alamar Blue assay, respectively. Caspase 3/7 activity was also measured as a marker of apoptosis. A functional test, glucose stimulated insulin release, was conducted and expression of genes/protein was measured by qRT-PCR/western blot/ELISA. Osteocalcin treatment significantly reduced high glucose-induced H 2 O 2 levels while maintaining viability/mitochondrial function. Osteocalcin also significantly improved glucose stimulated insulin secretion and insulin content in rat islets after 48 h of high glucose exposure compared to untreated islets. As expected sustained high glucose down-regulated gene/protein expression of INS1 and BCL2 while increasing TXNIP expression. Interestingly, osteocalcin treatment reversed the effects of high glucose on gene/protein expression. We conclude that osteocalcin can protect beta cells from the negative effects of glucose-induced oxidative stress, in part, by reducing TXNIP expression, thereby preserving beta cell function and survival. - Highlights: • Osteocalcin reduces glucose-induced oxidative stress in beta cells. • Osteocalcin preserves beta cell function and survival under stress conditions. • Osteocalcin reduces glucose-induced TXNIP

  14. Effects of exposure to high glucose on primary cultured hippocampal neurons: involvement of intracellular ROS accumulation.

    Science.gov (United States)

    Liu, Di; Zhang, Hong; Gu, Wenjuan; Zhang, Mengren

    2014-06-01

    Recent studies showed that hyperglycemia is the main trigger of diabetic cognitive impairment and can cause hippocampus abnormalities. The goal of this study is to explore the effects of different concentrations of high glucose for different exposure time on cell viability as well as intracellular reactive oxygen species (ROS) generation of primary cultured hippocampal neurons. Hippocampal neurons were exposed to different concentrations of high glucose (50, 75, 100, 125, and 150 mM) for 24, 48, 72 and 96 h. Cell viability and nuclear morphology were evaluated by MTT and Hoechst assays, respectively. Intracellular ROS were monitored using the fluorescent probe DCFH-DA. The results showed that, compared with control group, the cell viability of all high glucose-treated groups decreased significantly after 72 h and there also was a significant increase of apoptotic nuclei in high glucose-treated groups from 72 to 96 h. Furthermore, 50 mM glucose induced a peak rise in ROS generation at 24 h and the intracellular ROS levels of 50 mM glucose group were significantly higher than the corresponding control group from 6 to 72 h. These results suggest that hippocampal neurons could be injured by high glucose exposure and the neuronal injury induced by high glucose is potentially mediated through intracellular ROS accumulation.

  15. Integration of a highly ordered gold nanowires array with glucose oxidase for ultra-sensitive glucose detection.

    Science.gov (United States)

    Cui, Jiewu; Adeloju, Samuel B; Wu, Yucheng

    2014-01-27

    A highly sensitive amperometric nanobiosensor has been developed by integration of glucose oxidase (GO(x)) with a gold nanowires array (AuNWA) by cross-linking with a mixture of glutaraldehyde (GLA) and bovine serum albumin (BSA). An initial investigation of the morphology of the synthesized AuNWA by field emission scanning electron microscopy (FESEM) and field emission transmission electron microscopy (FETEM) revealed that the nanowires array was highly ordered with rough surface, and the electrochemical features of the AuNWA with/without modification were also investigated. The integrated AuNWA-BSA-GLA-GO(x) nanobiosensor with Nafion membrane gave a very high sensitivity of 298.2 μA cm(-2) mM(-1) for amperometric detection of glucose, while also achieving a low detection limit of 0.1 μM, and a wide linear range of 5-6000 μM. Furthermore, the nanobiosensor exhibited excellent anti-interference ability towards uric acid (UA) and ascorbic acid (AA) with the aid of Nafion membrane, and the results obtained for the analysis of human blood serum indicated that the device is capable of glucose detection in real samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Negative Effects of High Glucose Exposure in Human Gonadotropin-Releasing Hormone Neurons

    Directory of Open Access Journals (Sweden)

    Annamaria Morelli

    2013-01-01

    Full Text Available Metabolic disorders are often associated with male hypogonadotropic hypogonadism, suggesting that hypothalamic defects involving GnRH neurons may impair the reproductive function. Among metabolic factors hyperglycemia has been implicated in the control of the reproductive axis at central level, both in humans and in animal models. To date, little is known about the direct effects of pathological high glucose concentrations on human GnRH neurons. In this study, we investigated the high glucose effects in the human GnRH-secreting FNC-B4 cells. Gene expression profiling by qRT-PCR, confirmed that FNC-B4 cells express GnRH and several genes relevant for GnRH neuron function (KISS1R, KISS1, sex steroid and leptin receptors, FGFR1, neuropilin 2, and semaphorins, along with glucose transporters (GLUT1, GLUT3, and GLUT4. High glucose exposure (22 mM; 40 mM significantly reduced gene and protein expression of GnRH, KISS1R, KISS1, and leptin receptor, as compared to normal glucose (5 mM. Consistent with previous studies, leptin treatment significantly induced GnRH mRNA expression at 5 mM glucose, but not in the presence of high glucose concentrations. In conclusion, our findings demonstrate a deleterious direct contribution of high glucose on human GnRH neurons, thus providing new insights into pathogenic mechanisms linking metabolic disorders to reproductive dysfunctions.

  17. Navy Organizational Commitment and Non-response

    National Research Council Canada - National Science Library

    Uriell, Zannette A; Schultz, Rosemary A

    2008-01-01

    ...) Customer Assessment Survey. Because of the new administration mode, a non-response follow-up was administered after the field closed to determine if there were differences between those who responded and those who...

  18. Platinum decorated carbon nanotubes for highly sensitive amperometric glucose sensing

    International Nuclear Information System (INIS)

    Xie Jining; Wang Shouyan; Aryasomayajula, L; Varadan, V K

    2007-01-01

    Fine platinum nanoparticles (1-5 nm in diameter) were deposited on functionalized multi-walled carbon nanotubes (MWNTs) through a decoration technique. A novel type of enzymatic Pt/MWNTs paste-based mediated glucose sensor was fabricated. Electrochemical measurements revealed a significantly improved sensitivity (around 52.7 μA mM -1 cm -2 ) for glucose sensing without using any picoampere booster or Faraday cage. In addition, the calibration curve exhibited a good linearity in the range of 1-28 mM of glucose concentration. Transmission electron microscopy (TEM) and x-ray photoelectron spectroscopy (XPS) were performed to investigate the nanoscale structure and the chemical bonding information of the Pt/MWNTs paste-based sensing material, respectively. The improved sensitivity of this novel glucose sensor could be ascribed to its higher electroactive surface area, enhanced electron transfer, efficient enzyme immobilization, unique interaction in nanoscale and a synergistic effect on the current signal from possible multi-redox reactions

  19. High performance separation of xylose and glucose by enzyme assisted nanofiltration

    DEFF Research Database (Denmark)

    Morthensen, Sofie Thage; Luo, Jianquan; Meyer, Anne S.

    2015-01-01

    of the integrated system. Full conversion of glucose to gluconic acid assisted by glucose oxidase (GOD) could be achieved by coupling a parallel reaction catalyzed by catalase (CAT), where H2O2 (GOD-inhibitor formed in the first reaction) was decomposed to water and oxygen. GOD has a high oxygen...

  20. The Effects of High Glucose on Adipogenic and Osteogenic Differentiation of Gestational Tissue-Derived MSCs

    Directory of Open Access Journals (Sweden)

    Weerawan Hankamolsiri

    2016-01-01

    Full Text Available Most type 2 diabetic patients are obese who have increased number of visceral adipocytes. Those visceral adipocytes release several factors that enhance insulin resistance making diabetic treatment ineffective. It is known that significant percentages of visceral adipocytes are derived from mesenchymal stem cells and high glucose enhances adipogenic differentiation of mouse bone marrow-derived MSCs (BM-MSCs. However, the effect of high glucose on adipogenic differentiation of human bone marrow and gestational tissue-derived MSCs is still poorly characterized. This study aims to investigate the effects of high glucose on proliferation as well as adipogenic and osteogenic differentiation of human MSCs derived from bone marrow and several gestational tissues including chorion, placenta, and umbilical cord. We found that high glucose reduced proliferation but enhanced adipogenic differentiation of all MSCs examined. The expression levels of some adipogenic genes were also upregulated when MSCs were cultured in high glucose. Although high glucose transiently downregulated the expression levels of some osteogenic genes examined, its effect on the osteogenic differentiation levels of the MSCs is not clearly demonstrated. The knowledge gained from this study will increase our understanding about the effect of high glucose on adipogenic differentiation of MSCs and might lead to an improvement in the diabetic treatment in the future.

  1. A highly performing electrochemiluminescent biosensor for glucose based on a polyelectrolyte-chitosan modified electrode

    International Nuclear Information System (INIS)

    Dai Hong; Wu Xiaoping; Xu Huifeng; Wang Youmei; Chi Yuwu; Chen Guonan

    2009-01-01

    A highly performing ECL glucose biosensor was developed by immobilizing glucose oxidase (GOD) onto a membrane modified glassy carbon electrode, which was prepared by using poly(diallyldimethylammonium chloride) (PDDA) doped with chitosan. In order to obtain the optimal performance of the ECL biosensor, the composition of modified membranes and a series of measurement conditions were investigated. Under the optimal conditions, this ECL biosensor was able to detect glucose in the range of 0.5-4.0 x 10 4 nM with a detection limit of 0.1 nM (defined as the concentration that could be detected at the signal-to-noise ratio of 3). The relative standard deviation was 0.99% for 5 x 10 -8 mol/L glucose in repetitive measurements in the primary 12 potential cycles. This ECL biosensor offered the effectively improved stability of the electron transfer mediator and exhibited excellent properties for the ultrasensitive and selective determination of glucose with good reproducibility and stability. The present biosensor has also been used to determine the glucose concentrations in real serum samples. The recovery value for the assay of glucose ranged from 96.2 to 107% in the serum samples. The present biosensor displayed both specificity for glucose and retention of signal response even in a complex environment. Therefore, it provided an approach to the sensitive determination of glucose.

  2. A Highly Sensitive Electrochemical Glucose Sensor By Nickel-Epoxy Electrode With Non-Enzymatic Sensor

    Directory of Open Access Journals (Sweden)

    Riyanto Riyanto

    2016-03-01

    Full Text Available The preparation of new sensor for glucose was based on the fact that glucose can be determined by non-enzymatic glucose oxidase. The Ni metals (99.98% purity, 0.5 mm thick, Aldrich Chemical Company was used to prepare Ni-Epoxy electrode. The Ni-epoxy electrodes were prepared in square cut of 1 cm and 1 mm by length and wide respectively. The Ni metal electrodes were connected to silver wire with silver conducting paint prior covered with epoxy gum. The prepared of nickel-epoxy modified electrode showed outstanding electro catalytic activity toward the oxidation of glucose in alkaline solution. The result from this research are correlation of determination using Nickel-Epoxyelectrode for electroanalysis of glucose in NaOH was R2 = 0.9984. LOQ, LOD and recovery of the Nickel-Epoxy electrode towards glucose were found to be 4.4 μM, 1.48 μM and 98.19%, respectively. The Nickel-Epoxy wire based electrochemical glucose sensor demonstrates good sensitivity, wide linear range, outstanding detection limit, attractive selectivity, good reproducibility, high stability as well as prominent feasibility use of non-enzymatic sensor for monitoring glucose in human urine owing to its advantages of low cost, simple preparation and excellent properties for glucose detection.

  3. Hyperuricemia Is a Risk Factor for the Onset of Impaired Fasting Glucose in Men with a High Plasma Glucose Level: A Community-Based Study

    Science.gov (United States)

    Miyake, Teruki; Kumagi, Teru; Furukawa, Shinya; Hirooka, Masashi; Kawasaki, Keitarou; Koizumi, Mitsuhito; Todo, Yasuhiko; Yamamoto, Shin; Abe, Masanori; Kitai, Kohichiro; Matsuura, Bunzo; Hiasa, Yoichi

    2014-01-01

    Background It is not clear whether elevated uric acid is a risk factor for the onset of impaired fasting glucose after stratifying by baseline fasting plasma glucose levels. We conducted a community-based retrospective longitudinal cohort study to clarify the relationship between uric acid levels and the onset of impaired fasting glucose, according to baseline fasting plasma glucose levels. Methods We enrolled 6,403 persons (3,194 men and 3,209 women), each of whom was 18–80 years old and had >2 annual check-ups during 2003–2010. After excluding persons who had fasting plasma glucose levels ≥6.11 mM and/or were currently taking anti-diabetic agents, the remaining 5,924 subjects were classified into quartiles according to baseline fasting plasma glucose levels. The onset of impaired fasting glucose was defined as fasting plasma glucose ≥6.11 mM during the observation period. Results In the quartile groups, 0.9%, 2.1%, 3.4%, and 20.2% of the men developed impaired fasting glucose, respectively, and 0.1%, 0.3%, 0.5%, and 5.6% of the women developed impaired fasting glucose, respectively (P trend fasting glucose in men with highest-quartile fasting plasma glucose levels (adjusted hazard ratio, 1.003; 95% confidence interval, 1.0001–1.005, P = 0.041). Conclusions Among men with high fasting plasma glucose, hyperuricemia may be independently associated with an elevated risk of developing impaired fasting glucose. PMID:25237894

  4. Astroglial Pentose Phosphate Pathway Rates in Response to High-Glucose Environments

    Directory of Open Access Journals (Sweden)

    Shinichi Takahashi

    2012-02-01

    Full Text Available ROS (reactive oxygen species play an essential role in the pathophysiology of diabetes, stroke and neurodegenerative disorders. Hyperglycaemia associated with diabetes enhances ROS production and causes oxidative stress in vascular endothelial cells, but adverse effects of either acute or chronic high-glucose environments on brain parenchymal cells remain unclear. The PPP (pentose phosphate pathway and GSH participate in a major defence mechanism against ROS in brain, and we explored the role and regulation of the astroglial PPP in response to acute and chronic high-glucose environments. PPP activity was measured in cultured neurons and astroglia by determining the difference in rate of 14CO2 production from [1-14C]glucose and [6-14C]glucose. ROS production, mainly H2O2, and GSH were also assessed. Acutely elevated glucose concentrations in the culture media increased PPP activity and GSH level in astroglia, decreasing ROS production. Chronically elevated glucose environments also induced PPP activation. Immunohistochemical analyses revealed that chronic high-glucose environments induced ER (endoplasmic reticulum stress (presumably through increased hexosamine biosynthetic pathway flux. Nuclear translocation of Nrf2 (nuclear factor-erythroid 2 p45 subunit-related factor 2, which regulates G6PDH (glyceraldehyde-6-phosphate dehydrogenase by enhancing transcription, was also observed in association with BiP (immunoglobulin heavy-chain-binding protein expression. Acute and chronic high-glucose environments activated the PPP in astroglia, preventing ROS elevation. Therefore a rapid decrease in glucose level seems to enhance ROS toxicity, perhaps contributing to neural damage when insulin levels given to diabetic patients are not properly calibrated and plasma glucose levels are not adequately maintained. These findings may also explain the lack of evidence for clinical benefits from strict glycaemic control during the acute phase of stroke.

  5. Astroglial pentose phosphate pathway rates in response to high-glucose environments

    Science.gov (United States)

    Takahashi, Shinichi; Izawa, Yoshikane; Suzuki, Norihiro

    2012-01-01

    ROS (reactive oxygen species) play an essential role in the pathophysiology of diabetes, stroke and neurodegenerative disorders. Hyperglycaemia associated with diabetes enhances ROS production and causes oxidative stress in vascular endothelial cells, but adverse effects of either acute or chronic high-glucose environments on brain parenchymal cells remain unclear. The PPP (pentose phosphate pathway) and GSH participate in a major defence mechanism against ROS in brain, and we explored the role and regulation of the astroglial PPP in response to acute and chronic high-glucose environments. PPP activity was measured in cultured neurons and astroglia by determining the difference in rate of 14CO2 production from [1-14C]glucose and [6-14C]glucose. ROS production, mainly H2O2, and GSH were also assessed. Acutely elevated glucose concentrations in the culture media increased PPP activity and GSH level in astroglia, decreasing ROS production. Chronically elevated glucose environments also induced PPP activation. Immunohistochemical analyses revealed that chronic high-glucose environments induced ER (endoplasmic reticulum) stress (presumably through increased hexosamine biosynthetic pathway flux). Nuclear translocation of Nrf2 (nuclear factor-erythroid 2 p45 subunit-related factor 2), which regulates G6PDH (glyceraldehyde-6-phosphate dehydrogenase) by enhancing transcription, was also observed in association with BiP (immunoglobulin heavy-chain-binding protein) expression. Acute and chronic high-glucose environments activated the PPP in astroglia, preventing ROS elevation. Therefore a rapid decrease in glucose level seems to enhance ROS toxicity, perhaps contributing to neural damage when insulin levels given to diabetic patients are not properly calibrated and plasma glucose levels are not adequately maintained. These findings may also explain the lack of evidence for clinical benefits from strict glycaemic control during the acute phase of stroke. PMID:22300409

  6. Effect of High Fat and High Sugar Diet on Glucose Tolerance, Insulin Response to Glucose Load and Insulin Sensitivity in Rats

    OpenAIRE

    岡﨑, 悟

    1987-01-01

    To investigate the precipitating effects of the westernized diet on diabetes mellitus, glucose tolerance and insulin response to oral glucose load (1.5g/kg body weight) and insulin sensitivity to exogenous insulin (0.2U/kg) were studied in rats fed an experimental diet for 8 weeks. Four experimental diets were used : low fat-no sugar diet (energy ratio of 10% fat, 70% starch, a model of the traditional Japanese diet), high fat-high sugar diet (40% fat, 20% starch, 20% sugar, a model of the we...

  7. High activity enables life on a high-sugar diet : blood glucose regulation in nectar-feeding bats

    NARCIS (Netherlands)

    Kelm, Detlev H; Simon, Ralph; Kuhlow, Doreen; Voigt, Christian C; Ristow, Michael

    2011-01-01

    High blood glucose levels caused by excessive sugar consumption are detrimental to mammalian health and life expectancy. Despite consuming vast quantities of sugar-rich floral nectar, nectar-feeding bats are long-lived, provoking the question of how they regulate blood glucose. We investigated blood

  8. A flexible and highly sensitive nonenzymatic glucose sensor based on DVD-laser scribed graphene substrate.

    Science.gov (United States)

    Lin, Songyue; Feng, Wendou; Miao, Xiaofei; Zhang, Xiangxin; Chen, Sujing; Chen, Yuanqiang; Wang, Wei; Zhang, Yining

    2018-07-01

    Flexible and implantable glucose biosensors are emerging technologies for continuous monitoring of blood-glucose of diabetes. Developing a flexible conductive substrates with high active surface area is critical for advancing the technology. Here, we successfully fabricate a flexible and highly sensitive nonenzymatic glucose by using DVD-laser scribed graphene (LSG) as a flexible conductively substrate. Copper nanoparticles (Cu-NPs) are electrodeposited as the catalyst. The LSG/Cu-NPs sensor demonstrates excellent catalytic activity toward glucose oxidation and exhibits a linear glucose detection range from 1 μM to 4.54 mM with high sensitivity (1.518 mA mM -1 cm -2 ) and low limit of detection (0.35 μM). Moreover, the LSG/Cu-NPs sensor shows excellent reproducibility and long-term stability. It is also highly selective toward glucose oxidation under the presence of various interfering species. Excellent flexing stability is also demonstrated by the LSG/Cu-NPs sensor, which is capable of maintaining 83.9% of its initial current after being bent against a 4-mm diameter rod for 180 times. The LSG/Cu-NPs sensor shows great potential for practical application as a nonenzymatic glucose biosensor. Meanwhile, the LSG conductive substrate provides a platform for the developing next-generation flexible and potentially implantable bioelectronics and biosensors. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Hummingbirds rely on both paracellular and carrier-mediated intestinal glucose absorption to fuel high metabolism

    Science.gov (United States)

    McWhorter, Todd J; Bakken, Bradley Hartman; Karasov, William H; del Rio, Carlos Martínez

    2005-01-01

    Twenty years ago, the highest active glucose transport rate and lowest passive glucose permeability in vertebrates were reported in Rufous and Anna's hummingbirds (Selasphorus rufus, Calypte anna). These first measurements of intestinal nutrient absorption in nectarivores provided an unprecedented physiological foundation for understanding their foraging ecology. They showed that physiological processes are determinants of feeding behaviour. The conclusion that active, mediated transport accounts for essentially all glucose absorption in hummingbirds influenced two decades of subsequent research on the digestive physiology and nutritional ecology of nectarivores. Here, we report new findings demonstrating that the passive permeability of hummingbird intestines to glucose is much higher than previously reported, suggesting that not all sugar uptake is mediated. Even while possessing the highest active glucose transport rates measured in vertebrates, hummingbirds must rely partially on passive non-mediated intestinal nutrient absorption to meet their high mass-specific metabolic demands. PMID:17148346

  10. Tin-containing zeolites are highly active catalysts for the isomerization of glucose in water

    OpenAIRE

    Moliner, Manuel; Román-Leshkov, Yuriy; Davis, Mark E.

    2010-01-01

    The isomerization of glucose into fructose is a large-scale reaction for the production of high-fructose corn syrup (HFCS; reaction performed by enzyme catalysts) and recently is being considered as an intermediate step in the possible route of biomass to fuels and chemicals. Here, it is shown that a large-pore zeolite that contains tin (Sn-Beta) is able to isomerize glucose to fructose in aqueous media with high activity and selectivity. Specifically, a 10% (wt/wt) glucose solution containin...

  11. Impact of a high intensity training program on glucose tolerance in people with multiple sclerosis

    OpenAIRE

    Patyn, Cédric

    2014-01-01

    Abstract Background: Recent research reported a higher prevalence of impaired glucose tolerance (IGT) in MS patients than in healthy people. The influence of high intensity exercise on IGT in MS was never investigated before. Objective: To investigate the effect of high intensity aerobic interval (HIIT) or continuous endurance (CT) training, both in combination with resistance training, on glucose tolerance muscle strength and body composition. Methods: 34 subjects were randomly as...

  12. Negative Effects of High Glucose Exposure in Human Gonadotropin-Releasing Hormone Neurons

    OpenAIRE

    Morelli, Annamaria; Comeglio, Paolo; Sarchielli, Erica; Cellai, Ilaria; Vignozzi, Linda; Vannelli, Gabriella B.; Maggi, Mario

    2013-01-01

    Metabolic disorders are often associated with male hypogonadotropic hypogonadism, suggesting that hypothalamic defects involving GnRH neurons may impair the reproductive function. Among metabolic factors hyperglycemia has been implicated in the control of the reproductive axis at central level, both in humans and in animal models. To date, little is known about the direct effects of pathological high glucose concentrations on human GnRH neurons. In this study, we investigated the high glucose...

  13. High glucose suppresses embryonic stem cell differentiation into neural lineage cells

    OpenAIRE

    Yang, Penghua; Shen, Wei-bin; Reece, E. Albert; Chen, Xi; Yang, Peixin

    2016-01-01

    Abnormal neurogenesis occurs during embryonic development in human diabetic pregnancies and in animal models of diabetic embryopathy. Our previous studies in a mouse model of diabetic embryopathy have implicated that high glucose of maternal diabetes delays neurogenesis in the developing neuroepithelium leading to neural tube defects. However, the underlying process in high glucose-impaired neurogenesis is uncharacterized. Neurogenesis from embryonic stem (ES) cells provides a valuable model ...

  14. Buddleja officinalis inhibits high glucose-induced matrix metalloproteinase activity in human umbilical vein endothelial cells.

    Science.gov (United States)

    Lee, Yun Jung; Kang, Dae Gill; Kim, Jin Sook; Lee, Ho Sub

    2008-12-01

    The aim of the present investigation was to investigate whether an aqueous extract of Buddleja officinalis (ABO), a traditional Korean herbal medicine, suppresses the endothelial extracellular matrix degradation under high glucose condition. The incubation with high concentration of glucose (25 mM) increased significantly matrix metalloproteinase (MMP)-2/-9 expressions and activities in primary cultured human umbilical vein endothelial cells (HUVEC). Pretreatment with ABO decreased high glucose-induced increase of MMP-2/-9 activities in a dose-dependent manner. Real time qRT-PCR revealed that high glucose-induced MMP-2/-9 mRNA expression levels were attenuated by pretreatment with ABO. High glucose-induced MCP-1 and IL-8 mRNA expression levels also decreased by ABO. ABO decreased high glucose-induced hydrogen peroxide production, oxidative stress marker. These results provide new insights into the pathophysiological mechanisms for anti-inflammatory properties of ABO in vascular diseases associated with diabetes mellitus. (c) 2008 John Wiley & Sons, Ltd.

  15. High glucose alters retinal astrocytes phenotype through increased production of inflammatory cytokines and oxidative stress.

    Directory of Open Access Journals (Sweden)

    Eui Seok Shin

    Full Text Available Astrocytes are macroglial cells that have a crucial role in development of the retinal vasculature and maintenance of the blood-retina-barrier (BRB. Diabetes affects the physiology and function of retinal vascular cells including astrocytes (AC leading to breakdown of BRB. However, the detailed cellular mechanisms leading to retinal AC dysfunction under high glucose conditions remain unclear. Here we show that high glucose conditions did not induce the apoptosis of retinal AC, but instead increased their rate of DNA synthesis and adhesion to extracellular matrix proteins. These alterations were associated with changes in intracellular signaling pathways involved in cell survival, migration and proliferation. High glucose conditions also affected the expression of inflammatory cytokines in retinal AC, activated NF-κB, and prevented their network formation on Matrigel. In addition, we showed that the attenuation of retinal AC migration under high glucose conditions, and capillary morphogenesis of retinal endothelial cells on Matrigel, was mediated through increased oxidative stress. Antioxidant proteins including heme oxygenase-1 and peroxiredoxin-2 levels were also increased in retinal AC under high glucose conditions through nuclear localization of transcription factor nuclear factor-erythroid 2-related factor-2. Together our results demonstrated that high glucose conditions alter the function of retinal AC by increased production of inflammatory cytokines and oxidative stress with significant impact on their proliferation, adhesion, and migration.

  16. Thiamine and benfotiamine prevent increased apoptosis in endothelial cells and pericytes cultured in high glucose.

    Science.gov (United States)

    Beltramo, E; Berrone, E; Buttiglieri, S; Porta, M

    2004-01-01

    High glucose induces pathological alterations in small and large vessels, possibly through increased formation of AGE, activation of aldose reductase and protein kinase C, and increased flux through the hexosamine pathway. We showed previously that thiamine and benfotiamine correct delayed replication and increase lactate production in endothelial cells subjected to high glucose. We now aim at verifying the effects of thiamine and benfotiamine on cell cycle, apoptosis, and expression of adhesion molecules in endothelial cells and pericytes, under high ambient glucose. Human umbilical vein endothelial cells and bovine retinal pericytes were cultured in normal (5.6 mmol/L) or high (28 mmol/L) glucose, with or without thiamine or benfotiamine, 50 or 100 micro mol/L. Apoptosis was determined by two separate ELISA methods, measuring DNA fragmentation and caspase-3 activity, respectively. Cell cycle and integrin subunits alpha3, alpha5, and beta1 concentration were measured by flow cytometry. Apoptosis was increased in high glucose after 3 days of culture, both in endothelium and pericytes. Thiamine and benfotiamine reversed such effects. Neither cell cycle traversal nor integrin concentrations were modified in these experimental conditions. Thiamine and benfotiamine correct increased apoptosis due to high glucose in cultured vascular cells. Further elucidations of the mechanisms through which they work could help set the basis for clinical use of this vitamin in the prevention and/or treatment of diabetic microangiopathy. Copyright 2004 John Wiley & Sons, Ltd.

  17. High glycemic variability assessed by continuous glucose monitoring after surgical treatment of obesity by gastric bypass.

    Science.gov (United States)

    Hanaire, Helene; Bertrand, Monelle; Guerci, Bruno; Anduze, Yves; Guillaume, Eric; Ritz, Patrick

    2011-06-01

    Obesity surgery elicits complex changes in glucose metabolism that are difficult to observe with discontinuous glucose measurements. We aimed to evaluate glucose variability after gastric bypass by continuous glucose monitoring (CGM) in a real-life setting. CGM was performed for 4.2 ± 1.3 days in three groups of 10 subjects each: patients who had undergone gastric bypass and who were referred for postprandial symptoms compatible with mild hypoglycemia, nonoperated diabetes controls, and healthy controls. The maximum interstitial glucose (IG), SD of IG values, and mean amplitude of glucose excursions (MAGE) were significantly higher in operated patients and in diabetes controls than in healthy controls. The time to the postprandial peak IG was significantly shorter in operated patients (42.8 ± 6.0 min) than in diabetes controls (82.2 ± 11.1 min, P = 0.0002), as were the rates of glucose increase to the peak (2.4 ± 1.6 vs. 1.2 ± 0.3 mg/mL/min; P = 0.041). True hypoglycemia (glucose fasting state and 2 h postmeal. Glucose variability is exaggerated after gastric bypass, combining unusually high and early hyperglycemic peaks and rapid IG decreases. This might account for postprandial symptoms mimicking hypoglycemia but often seen without true hypoglycemia. Early postprandial hyperglycemia might be underestimated if glucose measurements are done 2 h postmeal.

  18. Temporal metabolomic responses of cultured HepG2 liver cells to high fructose and high glucose exposures.

    Science.gov (United States)

    Meissen, John K; Hirahatake, Kristin M; Adams, Sean H; Fiehn, Oliver

    2015-06-01

    High fructose consumption has been implicated with deleterious effects on human health, including hyperlipidemia elicited through de novo lipogenesis. However, more global effects of fructose on cellular metabolism have not been elucidated. In order to explore the metabolic impact of fructose-containing nutrients, we applied both GC-TOF and HILIC-QTOF mass spectrometry metabolomic strategies using extracts from cultured HepG2 cells exposed to fructose, glucose, or fructose + glucose. Cellular responses were analyzed in a time-dependent manner, incubated in media containing 5.5 mM glucose + 5.0 mM fructose in comparison to controls incubated in media containing either 5.5 mM glucose or 10.5 mM glucose. Mass spectrometry identified 156 unique known metabolites and a large number of unknown compounds, which revealed metabolite changes due to both utilization of fructose and high-carbohydrate loads independent of hexose structure. Fructose was shown to be partially converted to sorbitol, and generated higher levels of fructose-1-phosphate as a precursor for glycolytic intermediates. Differentially regulated ratios of 3-phosphoglycerate to serine pathway intermediates in high fructose media indicated a diversion of carbon backbones away from energy metabolism. Additionally, high fructose conditions changed levels of complex lipids toward phosphatidylethanolamines. Patterns of acylcarnitines in response to high hexose exposure (10.5 mM glucose or glucose/fructose combination) suggested a reduction in mitochondrial beta-oxidation.

  19. Vasopressin activates Akt/mTOR pathway in smooth muscle cells cultured in high glucose concentration

    Energy Technology Data Exchange (ETDEWEB)

    Montes, Daniela K.; Brenet, Marianne; Muñoz, Vanessa C.; Burgos, Patricia V.; Villanueva, Carolina I. [Department of Physiology, Universidad Austral de Chile, Valdivia 509-9200 (Chile); Figueroa, Carlos D. [Department of Anatomy, Histology and Pathology, Universidad Austral de Chile, Valdivia 509-9200 (Chile); González, Carlos B., E-mail: cbgonzal@uach.cl [Department of Physiology, Universidad Austral de Chile, Valdivia 509-9200 (Chile); Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555 (United States)

    2013-11-29

    Highlights: •AVP induces mTOR phosphorylation in A-10 cells cultured in high glucose concentration. •The mTOR phosphorylation is mediated by the PI3K/Akt pathway activation. •The AVP-induced mTOR phosphorylation inhibited autophagy and stimulated cell proliferation. -- Abstract: Mammalian target of rapamycin (mTOR) complex is a key regulator of autophagy, cell growth and proliferation. Here, we studied the effects of arginine vasopressin (AVP) on mTOR activation in vascular smooth muscle cells cultured in high glucose concentration. AVP induced the mTOR phosphorylation in A-10 cells grown in high glucose, in contrast to cells cultured in normal glucose; wherein, only basal phosphorylation was observed. The AVP-induced mTOR phosphorylation was inhibited by a PI3K inhibitor. Moreover, the AVP-induced mTOR activation inhibited autophagy and increased thymidine incorporation in cells grown in high glucose. This increase was abolished by rapamycin which inhibits the mTORC1 complex formation. Our results suggest that AVP stimulates mTOR phosphorylation by activating the PI3K/Akt signaling pathway and, subsequently, inhibits autophagy and raises cell proliferation in A-10 cells maintained in high glucose concentration.

  20. Frequency of diabetes, impaired fasting glucose, and glucose intolerance in high-risk groups identified by a FINDRISC survey in Puebla City, Mexico

    Directory of Open Access Journals (Sweden)

    Hirales-Tamez O

    2012-11-01

    Full Text Available Hector García-Alcalá, Christelle Nathalie Genestier-Tamborero, Omara Hirales-Tamez, Jorge Salinas-Palma, Elena Soto-VegaFaculty of Medicine, Universidad Popular Autónoma del Estado de Puebla, Puebla Pue, MexicoBackground: As a first step in the prevention of diabetes, the International Diabetes Federation recommends identification of persons at risk using the Finnish type 2 Diabetes Risk Assessment (FINDRISC survey. The frequency of diabetes mellitus, impaired fasting glucose, and glucose intolerance in high-risk groups identified by FINDRISC is unknown in our country. The aim of this study was to determine the frequency of diabetes mellitus, impaired fasting glucose, and glucose intolerance in higher-risk groups using a FINDRISC survey in an urban population.Methods: We used a television program to invite interested adults to fill out a survey at a television station. An oral glucose tolerance test was performed in all persons with a FINDRISC score ≥ 15 points (high-risk and very high-risk groups. Patients were classified as normal (fasting glucose < 100 mg/dL and 2-hour glucose < 140 mg/dL, or having impaired fasting glucose (fasting glucose 100–125 mg/dL and 2-hour glucose < 140 mg/dL, glucose intolerance (fasting glucose < 126 mg/dL and 2-hour glucose 140–199 mg/dL, and diabetes mellitus (fasting glucose ≥ 126 mg/dL or 2-hour glucose ≥ 200 mg/dL. We describe the frequency of each diagnostic category in this selected population according to gender and age.Results: A total of 186 patients had a score ≥ 15. The frequencies of diabetes mellitus, impaired fasting glucose, glucose intolerance, and normal glucose levels were 28.6%, 25.9%, 29.2%, and 16.2%, respectively. We found a higher frequency of diabetes mellitus and impaired fasting glucose in men than in women (33% versus 27% and 40% versus 21%, respectively and more glucose intolerance in women than in men (34% versus 16%, P < 0.05. Patients with diabetes mellitus (52.55 ± 9

  1. Trace glucose and lipid metabolism in high androgen and high-fat diet induced polycystic ovary syndrome rats

    Directory of Open Access Journals (Sweden)

    Zhai Hua-Ling

    2012-01-01

    Full Text Available Abstract Background There is a high prevalence of diabetes mellitus (DM and dyslipidemia in women with polycystic ovary syndrome (PCOS. The purpose of this study was to investigate the role of different metabolic pathways in the development of diabetes mellitus in high-androgen female mice fed with a high-fat diet. Methods Female Sprague-Dawley rats were divided into 3 groups: the control group(C, n = 10; the andronate-treated group (Andronate, n = 10 (treated with andronate, 1 mg/100 g body weight/day for 8 weeks; and the andronate-treated and high-fat diet group (Andronate+HFD, n = 10. The rate of glucose appearance (Ra of glucose, gluconeogenesis (GNG, and the rate of glycerol appearance (Ra of glycerol were assessed with a stable isotope tracer. The serum sex hormone levels, insulin levels, glucose concentration, and the lipid profile were also measured. Results Compared with control group, both andronate-treated groups exhibited obesity with higher insulin concentrations (P P Conclusions Andronate with HFD rat model showed ovarian and metabolic features of PCOS, significant increase in glucose Ra, GNG, and lipid profiles, as well as normal blood glucose levels. Therefore, aberrant IR, increased glucose Ra, GNG, and lipid metabolism may represent the early-stage of glucose and lipid kinetics disorder, thereby might be used as potential early-stage treatment targets for PCOS.

  2. High Phenolics Rutgers Scarlet Lettuce Improves Glucose Metabolism in High Fat Diet-Induced Obese Mice

    Science.gov (United States)

    Cheng, Diana M.; Roopchand, Diana E.; Poulev, Alexander; Kuhn, Peter; Armas, Isabel; Johnson, William D.; Oren, Andrew; Ribnicky, David; Zelzion, Ehud; Bhattacharya, Debashish; Raskin, Ilya

    2016-01-01

    Scope The ability of high phenolic Rutgers Scarlet Lettuce (RSL) to attenuate metabolic syndrome and gut dysbiosis was studied in very high fat diet (VHFD)-fed mice. Phenolic absorption was assessed in vivo and in a gastrointestinal tract model. Methods and results Mice were fed VHFD, VHFD supplemented with RSL (RSL-VHFD) or store-purchased green lettuce (GL-VHFD), or low-fat diet (LFD) for 13 weeks. Compared to VHFD or GL-VHFD-fed groups, RSL-VHFD group showed significantly improved oral glucose tolerance (p<0.05). Comparison of VHFD, RSL-VHFD, and GL-VHFD groups revealed no significant differences with respect to insulin tolerance, hepatic lipids, body weight gain, fat mass, plasma glucose, triglycerides, free fatty acid, and lipopolysaccharide levels, as well as relative abundances of major bacterial phyla from 16S rDNA amplicon data sequences (from fecal and cecal samples). However, RSL and GL-supplementation increased abundance of several taxa involved in plant polysaccharide degradation/fermentation. RSL phenolics chlorogenic acid, quercetin-3-glucoside, and quercetin-malonyl-glucoside were bioaccessible in the TIM-1 digestion model, but had relatively low recovery. Conclusions RSL phenolics contributed to attenuation of postprandial hyperglycemia. Changes in gut microbiota were likely due to microbiota accessible carbohydrates in RSL and GL rather than RSL phenolics, which may be metabolized, absorbed, or degraded before reaching the colon. PMID:27529448

  3. Continuous glucose monitoring system and new era of early diagnosis of diabetes in high risk groups

    Directory of Open Access Journals (Sweden)

    Ashraf Soliman

    2014-01-01

    Full Text Available Continuous glucose monitoring (CGM systems are an emerging technology that allows frequent glucose measurements to monitor glucose trends in real time. Their use as a diagnostic tool is still developing and appears to be promising. Combining intermittent glucose self-monitoring (SGM and CGM combines the benefits of both. Significant improvement in the treatment modalities that may prevent the progress of prediabetes to diabetes have been achieved recently and dictates screening of high risk patients for early diagnosis and management of glycemic abnormalities. The use of CGMS in the diagnosis of early dysglycemia (prediabetes especially in high risk patients appears to be an attractive approach. In this review we searched the literature to investigate the value of using CGMS as a diagnostic tool compared to other known tools, namely oral glucose tolerance test (OGTT and measurement of glycated hemoglobin (HbA1C in high risk groups. Those categories of patients include adolescents and adults with obesity especially those with family history of type 2 diabetes mellitus, polycystic ovary syndrome (PCO, gestational diabetes, cystic fibrosis, thalassemia major, acute coronary syndrome (ACS, and after renal transplantation. It appears that the ability of the CGMS for frequently monitoring (every 5 min glucose changes during real-life settings for 3 to 5 days stretches the chance to detect more glycemic abnormalities during basal and postprandial conditions compared to other short-timed methods.

  4. E2f1 mediates high glucose-induced neuronal death in cultured mouse retinal explants.

    Science.gov (United States)

    Wang, Yujiao; Zhou, Yi; Xiao, Lirong; Zheng, Shijie; Yan, Naihong; Chen, Danian

    2017-10-02

    Diabetic retinopathy (DR) is the most common complication of diabetes and remains one of the major causes of blindness in the world; infants born to diabetic mothers have higher risk of developing retinopathy of prematurity (ROP). While hyperglycemia is a major risk factor, the molecular and cellular mechanisms underlying DR and diabetic ROP are poorly understood. To explore the consequences of retinal cells under high glucose, we cultured wild type or E2f1 -/- mouse retinal explants from postnatal day 8 with normal glucose, high osmotic or high glucose media. Explants were also incubated with cobalt chloride (CoCl 2 ) to mimic the hypoxic condition. We showed that, at 7 days post exposure to high glucose, retinal explants displayed elevated cell death, ectopic cell division and intact retinal vascular plexus. Cell death mainly occurred in excitatory neurons, such as ganglion and bipolar cells, which were also ectopically dividing. Many Müller glial cells reentered the cell cycle; some had irregular morphology or migrated to other layers. High glucose inhibited the hyperoxia-induced blood vessel regression of retinal explants. Moreover, inactivation of E2f1 rescued high glucose-induced ectopic division and cell death of retinal neurons, but not ectopic cell division of Müller glial cells and vascular phenotypes. This suggests that high glucose has direct but distinct effects on retinal neurons, glial cells and blood vessels, and that E2f1 mediates its effects on retinal neurons. These findings shed new light onto mechanisms of DR and the fetal retinal abnormalities associated with maternal diabetes, and suggest possible new therapeutic strategies.

  5. High Sensitivity and High Detection Specificity of Gold-Nanoparticle-Grafted Nanostructured Silicon Mass Spectrometry for Glucose Analysis.

    Science.gov (United States)

    Tsao, Chia-Wen; Yang, Zhi-Jie

    2015-10-14

    Desorption/ionization on silicon (DIOS) is a high-performance matrix-free mass spectrometry (MS) analysis method that involves using silicon nanostructures as a matrix for MS desorption/ionization. In this study, gold nanoparticles grafted onto a nanostructured silicon (AuNPs-nSi) surface were demonstrated as a DIOS-MS analysis approach with high sensitivity and high detection specificity for glucose detection. A glucose sample deposited on the AuNPs-nSi surface was directly catalyzed to negatively charged gluconic acid molecules on a single AuNPs-nSi chip for MS analysis. The AuNPs-nSi surface was fabricated using two electroless deposition steps and one electroless etching step. The effects of the electroless fabrication parameters on the glucose detection efficiency were evaluated. Practical application of AuNPs-nSi MS glucose analysis in urine samples was also demonstrated in this study.

  6. Aldolase B knockdown prevents high glucose-induced methylglyoxal overproduction and cellular dysfunction in endothelial cells.

    Directory of Open Access Journals (Sweden)

    Jianghai Liu

    Full Text Available We used cultured endothelial cells as a model to examine whether up-regulation of aldolase B and enhanced methylglyoxal (MG formation play an important role in high glucose-induced overproduction of advanced glycosylation endproducts (AGEs, oxidative stress and cellular dysfunction. High glucose (25 mM incubation up-regulated mRNA levels of aldose reductase (an enzyme converting glucose to fructose and aldolase B (a key enzyme that catalyzes MG formation from fructose and enhanced MG formation in human umbilical vein endothelial cells (HUVECs and HUVEC-derived EA. hy926 cells. High glucose-increased MG production in EA. hy926 cells was completely prevented by siRNA knockdown of aldolase B, but unaffected by siRNA knockdown of aldolase A, an enzyme responsible for MG formation during glycolysis. In addition, inhibition of cytochrome P450 2E1 or semicarbazide-sensitive amine oxidase which produces MG during the metabolism of lipid and proteins, respectively, did not alter MG production. Both high glucose (25 mM and MG (30, 100 µM increased the formation of N(ε-carboxyethyl-lysine (CEL, a MG-induced AGE, oxidative stress (determined by the generation of oxidized DCF, H(2O(2, protein carbonyls and 8-oxo-dG, O-GlcNAc modification (product of the hexosamine pathway, membrane protein kinase C activity and nuclear translocation of NF-κB in EA. hy926 cells. However, the above metabolic and signaling alterations induced by high glucose were completely prevented by knockdown of aldolase B and partially by application of aminoguanidine (a MG scavenger or alagebrium (an AGEs breaker. In conclusion, efficient inhibition of aldolase B can prevent high glucose-induced overproduction of MG and related cellular dysfunction in endothelial cells.

  7. N-Methyl-D aspartate receptor-mediated effect on glucose transporter-3 levels of high glucose exposed-SH-SY5Y dopaminergic neurons.

    Science.gov (United States)

    Engin, Ayse Basak; Engin, Evren Doruk; Karakus, Resul; Aral, Arzu; Gulbahar, Ozlem; Engin, Atilla

    2017-11-01

    High glucose and insulin lead to neuronal insulin resistance. Glucose transport into the neurons is achieved by regulatory induction of surface glucose transporter-3 (GLUT3) instead of the insulin. N-methyl-D aspartate (NMDA) receptor activity increases GLUT3 expression. This study explored whether an endogenous NMDA receptor antagonist, kynurenic acid (KynA) affects the neuronal cell viability at high glucose concentrations. SH-SY5Y neuroblastoma cells were exposed to 150-250 mg/dL glucose and 40 μU/mL insulin. In KynA and N-nitro-l-arginine methyl ester (L-NAME) supplemented cultures, oxidative stress, mitochondrial metabolic activity (MTT), nitric oxide as nitrite+nitrate (NOx) and GLUT3 were determined at the end of 24 and 48-h incubation periods. Viable cells were counted by trypan blue dye. High glucose-exposed SH-SY5Y cells showed two-times more GLUT3 expression at second 24-h period. While GLUT3-stimulated glucose transport and oxidative stress was increased, total mitochondrial metabolic activity was significantly reduced. Insulin supplementation to high glucose decreased NOx synthesis and GLUT3 levels, in contrast oxidative stress increased three-fold. KynA significantly reduced oxidative stress, and increased MTT by regulating NOx production and GLUT3 expression. KynA is a noteworthy compound, as an endogenous, specific NMDA receptor antagonist; it significantly reduces oxidative stress, while increasing cell viability at high glucose and insulin concentrations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Heritable transmission of stress resistance by high dietary glucose in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Arnaud Tauffenberger

    2014-05-01

    Full Text Available Glucose is a major energy source and is a key regulator of metabolism but excessive dietary glucose is linked to several disorders including type 2 diabetes, obesity and cardiac dysfunction. Dietary intake greatly influences organismal survival but whether the effects of nutritional status are transmitted to the offspring is an unresolved question. Here we show that exposing Caenorhabditis elegans to high glucose concentrations in the parental generation leads to opposing negative effects on fecundity, while having protective effects against cellular stress in the descendent progeny. The transgenerational inheritance of glucose-mediated phenotypes is dependent on the insulin/IGF-like signalling pathway and components of the histone H3 lysine 4 trimethylase complex are essential for transmission of inherited phenotypes. Thus dietary over-consumption phenotypes are heritable with profound effects on the health and survival of descendants.

  9. High reproducibility and sensitivity of bifacial copper nanowire array for detection of glucose

    Directory of Open Access Journals (Sweden)

    Hanqing Zhang

    2017-06-01

    Full Text Available The ordered bifacial copper nanowire array (Cu BNWA was synthesized by a template assisted electrochemical deposition method. The morphology and structure of the as-prepared samples were investigated by field emission scanning electron microscope (FESEM and X-ray diffraction (XRD. The results show that the ordered Cu nanowire array with uniform geometrical dimensions covered both side of the Cu substrate. When used as the electrode for glucose detection, the minimum detectable concentration of glucose can be reached as low as 0.2 mM. Impressively, the sample still showed high sensitivity and stability for glucose detection after two months placement in ambient environment. These excellent performances of the Cu BNWA make it a promising non-enzyme glucose detection sensor for various applications.

  10. SNF3 as high affinity glucose sensor and its function in supporting the viability of Candida glabrata under glucose-limited environment

    Directory of Open Access Journals (Sweden)

    Tzu Shan eNg

    2015-12-01

    Full Text Available Candida glabrata is an emerging human fungal pathogen that has efficacious nutrient sensing and responsiveness ability. It can be seen through its ability to thrive in diverse range of nutrient limited-human anatomical sites. Therefore, nutrient sensing particularly glucose sensing is thought to be crucial in contributing to the development and fitness of the pathogen. This study aimed to elucidate the role of SNF3 (Sucrose Non Fermenting 3 as a glucose sensor and its possible role in contributing to the fitness and survivability of C. glabrata in glucose-limited environment. The SNF3 knockout strain was constructed and subjected to different glucose concentrations to evaluate its growth, biofilm formation, amphotericin B susceptibility, ex vivo survivability and effects on the transcriptional profiling of the sugar receptor repressor (SRR pathway-related genes. The SNF3Δ strain showed a retarded growth in low glucose environments (0.01% and 0.1% in both fermentation and respiration-preferred conditions but grew well in high glucose concentration environments (1% and 2%. It was also found to be more susceptible to amphotericin B in low glucose environment (0.1% and macrophage engulfment but showed no difference in the biofilm formation capability. The deletion of SNF3 also resulted in the down-regulation of about half of hexose transporters genes (4 out of 9. Overall, the deletion of SNF3 causes significant reduction in the ability of C. glabrata to sense limited surrounding glucose and consequently disrupts its competency to transport and perform the uptake of this critical nutrient. This study highlighted the role of SNF3 as a high affinity glucose sensor and its role in aiding the survivability of C. glabrata particularly in glucose limited environment.

  11. The effect of extremely high glucose concentrations on 21 routine chemistry and thyroid Abbott assays: interference study

    OpenAIRE

    ?uhadar, Serap; K?seo?lu, Mehmet; ?inpolat, Yasemin; Bu?dayc?, G?ler; Usta, Murat; Semerci, Tuna

    2016-01-01

    Abstract Introduction: Extremely high glucose concentrations have been shown to interfere with creatinine assays especially with Jaffe method in peritoneal dialysate. Because diabetes is the fastest growing chronic disease in the world, laboratories study with varying glucose concentrations. We investigated whether different levels of glucose spiked in serum interfere with 21 routine chemistry and thyroid assays at glucose concentrations between 17-51 mmol/L. Materials and methods: Base...

  12. Protective effects of antioxidants on high Glucose-induced malfunctions in human glomerular mesangial cells

    Directory of Open Access Journals (Sweden)

    Hosseini R

    2000-08-01

    Full Text Available Altered functions of mesangial cells induced by high glucose concentrations are thought to play an important role in the pathogenesis of diabetic nephropathy. We therefore investigated the effect of high glucose (39.2 mM alone and in combination with taurine (500 µM or vitamin E (100 µM in serum free medium (RPMI 1640 on the proliferative growth response and turnover of type IV collagen by human glomerular mesangial cells (GMC. The results showed that the high glucose level decreases the proliferation of the GMC which is reversed by taurine and vitamin E. In order to control the osmotic effects of high glucose, the GMC were also cultured in the presence of manitol. Manitol had no effect on the proliferation of GMC. Furthermore, the results showed that addition of vitamin E or taurine to media containing high glucose could reverse and normalize the collagen turn-over by the cultured mesangial cells. These results suggest that taurie and vitamin E may function as endogenous agents in the kidney to limit the development of glomerulosclerosis in diabetic renal disease.

  13. Glucose Oxidase Directly Immobilized onto Highly Porous Gold Electrodes for Sensing and Fuel Cell applications

    International Nuclear Information System (INIS)

    Toit, Hendrik du; Di Lorenzo, Mirella

    2014-01-01

    Highlights: • Electrochemical adsorption of glucose oxidase (GOx) on highly porous gold (hPG); • Rapid one-step immobilisation protocol with no use of expensive and/or harsh reagents; • Linear response to glucose in the range 50 μM -10 mM; • Lower detection limit, stable over 5 days: 25 μM. • The use of the GOx-hPG in a fuel cell lead to the peak power density of 6 μW cm −2 . - Abstract: The successful implementation of redox-enzyme electrodes in biosensors and enzymatic biofuel cells has been the subject of extensive research. For high sensitivity and high energy-conversion efficiency, the effective electron transfer at the protein-electrode interface has a key role. This is difficult to achieve in the case of glucose oxidase, due to the fact that for this enzyme the redox centre is buried inside the structure, far from any feasible electrode binding sites. This study reports, a simple and rapid methodology for the direct immobilisation of glucose oxidase into highly porous gold electrodes. When the resulting electrode was tested as glucose sensor, a Michaelis-Menten kinetic trend was observed, with a detection limit of 25 μM. The bioelectrode sensitivity, calculated against the superficial surface area of the bioelectrode, was of 22.7 ± 0.1 μA mM −1 cm −2 . This glucose oxidase electrode was also tested as an anode in a glucose/O 2 enzymatic biofuel cell, leading to a peak power density of 6 μW cm −2 at a potential of 0.2 V

  14. Proanthocyanidins Prevent High Glucose-Induced Eye Malformation by Restoring Pax6 Expression in Chick Embryo

    Directory of Open Access Journals (Sweden)

    Rui-Rong Tan

    2015-08-01

    Full Text Available Gestational diabetes mellitus (GDM is one of the leading causes of offspring malformations, in which eye malformation is an important disease. It has raised demand for therapy to improve fetal outcomes. In this study, we used chick embryo to establish a GDM model to study the protective effects of proanthocyanidins on eye development. Chick embryos were exposed to high glucose (0.2 mmol/egg on embryo development day (EDD 1. Proanthocyanidins (1 and 10 nmol/egg were injected into the air sac on EDD 0. Results showed that both dosages of proanthocyanidins could prevent the eye malformation and rescue the high glucose-induced oxidative stress significantly, which the similar effects were showed in edaravone. However, proanthocyanidins could not decrease the glucose concentration of embryo eye. Moreover, the key genes regulating eye development, Pax6, was down-regulated by high glucose. Proanthocyanidins could restore the suppressed expression of Pax6. These results indicated proanthocyanidins might be a promising natural agent to prevent high glucose-induced eye malformation by restoring Pax6 expression.

  15. Fabrication of CuO nanoplatelets for highly sensitive enzyme-free determination of glucose

    Energy Technology Data Exchange (ETDEWEB)

    Wang Juan [School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640 (China); Zhang Weide, E-mail: zhangwd@scut.edu.cn [School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640 (China)

    2011-09-01

    Highlights: > Adhered growth of CuO nanoplatelets on Cu foils. > Enzyme-free glucose sensor with very high sensitivity. > Excellent stability and good anti-interference ability. - Abstract: CuO nanoplatelets were grown on Cu foils by a one step, template free process. The structure and morphology of the CuO nanoplatelets were characterized by X-ray diffraction, scanning and transmission electron microscopy. The CuO nanoplatelets grown on Cu foil were integrated to be an electrode for glucose sensing. The electrocatalytic activity of the CuO nanoplatelets electrode for glucose in alkaline media was investigated by cyclic voltammetry and chronoamperometry. The electrode exhibits a sensitivity of 3490.7 {mu}A mM{sup -1} cm{sup -2} to glucose which is much higher than that of most reported enzyme-free glucose sensors and the linear range was obtained over a concentration up to 0.80 mM with a detection limit of 0.50 {mu}M (signal/noise = 3). Exhilaratingly, the electrode based on the CuO nanoplatelets is resistant against poisoning by chloride ion, and the interference from the oxidation of common interfering species, such as uric acid, ascorbic acid, dopamine and carbonhydrate compounds, can also be effectively avoided. Finally, the electrode was applied to analyze glucose concentration in human serum samples.

  16. Tin-containing zeolites are highly active catalysts for the isomerization of glucose in water.

    Science.gov (United States)

    Moliner, Manuel; Román-Leshkov, Yuriy; Davis, Mark E

    2010-04-06

    The isomerization of glucose into fructose is a large-scale reaction for the production of high-fructose corn syrup (HFCS; reaction performed by enzyme catalysts) and recently is being considered as an intermediate step in the possible route of biomass to fuels and chemicals. Here, it is shown that a large-pore zeolite that contains tin (Sn-Beta) is able to isomerize glucose to fructose in aqueous media with high activity and selectivity. Specifically, a 10% (wt/wt) glucose solution containing a catalytic amount of Sn-Beta (150 Sn:glucose molar ratio) gives product yields of approximately 46% (wt/wt) glucose, 31% (wt/wt) fructose, and 9% (wt/wt) mannose after 30 min and 12 min of reaction at 383 K and 413 K, respectively. This reactivity is achieved also when a 45 wt% glucose solution is used. The properties of the large-pore zeolite greatly influence the reaction behavior because the reaction does not proceed with a medium-pore zeolite, and the isomerization activity is considerably lower when the metal centers are incorporated in ordered mesoporous silica (MCM-41). The Sn-Beta catalyst can be used for multiple cycles, and the reaction stops when the solid is removed, clearly indicating that the catalysis is occurring heterogeneously. Most importantly, the Sn-Beta catalyst is able to perform the isomerization reaction in highly acidic, aqueous environments with equivalent activity and product distribution as in media without added acid. This enables Sn-Beta to couple isomerizations with other acid-catalyzed reactions, including hydrolysis/isomerization or isomerization/dehydration reaction sequences [starch to fructose and glucose to 5-hydroxymethylfurfural (HMF) demonstrated here].

  17. High environmental temperature increases glucose requirement in the developing chicken embryo.

    Directory of Open Access Journals (Sweden)

    Roos Molenaar

    Full Text Available Environmental conditions during the perinatal period influence metabolic and developmental processes in mammals and avian species, which could impact pre- and postnatal survival and development. The current study investigated the effect of eggshell temperature (EST on glucose metabolism in broiler chicken embryos. Broiler eggs were incubated at a high (38.9°C or normal (37.8°C EST from day 10.5 of incubation onward and were injected with a bolus of [U-(13C]glucose in the chorio-allantoic fluid at day 17.5 of incubation. After [U-(13C]glucose administration, (13C enrichment was determined in intermediate pools and end-products of glucose metabolism. Oxidation of labeled glucose occurred for approximately 3 days after injection. Glucose oxidation was higher in the high than in the normal EST treatment from day 17.6 until 17.8 of incubation. The overall recovery of (13CO2 tended to be 4.7% higher in the high than in the normal EST treatment. An increase in EST (38.9°C vs 37.8°C increased (13C enrichment in plasma lactate at day 17.8 of incubation and (13C in hepatic glycogen at day 18.8 of incubation. Furthermore, high compared to normal EST resulted in a lower yolk-free body mass at day 20.9 (-2.74 g and 21.7 (-3.81 g of incubation, a lower hepatic glycogen concentration at day 18.2 (-4.37 mg/g and 18.8 (-4.59 mg/g of incubation, and a higher plasma uric acid concentration (+2.8 mg/mL/+43% at day 21.6 of incubation. These results indicate that the glucose oxidation pattern is relatively slow, but the intensity increased consistently with an increase in developmental stage of the embryo. High environmental temperatures in the perinatal period of chicken embryos increased glucose oxidation and decreased hepatic glycogen prior to the hatching process. This may limit glucose availability for successful hatching and could impact body development, probably by increased gluconeogenesis from glucogenic amino acids to allow anaerobic glycolysis.

  18. Rapid Induction of Aldosterone Synthesis in Cultured Neonatal Rat Cardiomyocytes under High Glucose Conditions

    Directory of Open Access Journals (Sweden)

    Masami Fujisaki

    2013-01-01

    Full Text Available In addition to classical adrenal cortical biosynthetic pathway, there is increasing evidence that aldosterone is produced in extra-adrenal tissues. Although we previously reported aldosterone production in the heart, the concept of cardiac aldosterone synthesis remains controversial. This is partly due to lack of established experimental models representing aldosterone synthase (CYP11B2 expression in robustly reproducible fashion. We herein investigated suitable conditions in neonatal rat cardiomyocytes (NRCMs culture system producing CYP11B2 with considerable efficacy. NRCMs were cultured with various glucose doses for 2–24 hours. CYP11B2 mRNA expression and aldosterone concentrations secreted from NRCMs were determined using real-time PCR and enzyme immunoassay, respectively. We found that suitable conditions for CYP11B2 induction included four-hour incubation with high glucose conditions. Under these particular conditions, CYP11B2 expression, in accordance with aldosterone secretion, was significantly increased compared to those observed in the cells cultured under standard-glucose condition. Angiotensin II receptor blocker partially inhibited this CYP11B2 induction, suggesting that there is local renin-angiotensin-aldosterone system activation under high glucose conditions. The suitable conditions for CYP11B2 induction in NRCMs culture system are now clarified: high-glucose conditions with relatively brief period of culture promote CYP11B2 expression in cardiomyocytes. The current system will help to accelerate further progress in research on cardiac tissue aldosterone synthesis.

  19. The salivary microbiome is altered in the presence of a high salivary glucose concentration.

    Directory of Open Access Journals (Sweden)

    J Max Goodson

    Full Text Available Type II diabetes (T2D has been associated with changes in oral bacterial diversity and frequency. It is not known whether these changes are part of the etiology of T2D, or one of its effects.We measured the glucose concentration, bacterial counts, and relative frequencies of 42 bacterial species in whole saliva samples from 8,173 Kuwaiti adolescents (mean age 10.00 ± 0.67 years using DNA probe analysis. In addition, clinical data related to obesity, dental caries, and gingivitis were collected. Data were compared between adolescents with high salivary glucose (HSG; glucose concentration ≥ 1.0 mg/d, n = 175 and those with low salivary glucose (LSG, glucose concentration < 0.1 mg/dL n = 2,537.HSG was associated with dental caries and gingivitis in the study population. The overall salivary bacterial load in saliva decreased with increasing salivary glucose concentration. Under HSG conditions, the bacterial count for 35 (83% of 42 species was significantly reduced, and relative bacterial frequencies in 27 species (64% were altered, as compared with LSG conditions. These alterations were stronger predictors of high salivary glucose than measures of oral disease, obesity, sleep or fitness.HSG was associated with a reduction in overall bacterial load and alterations to many relative bacterial frequencies in saliva when compared with LSG in samples from adolescents. We propose that hyperglycemia due to obesity and/or T2D results in HSG and subsequent acidification of the oral environment, leading to a generalized perturbation in the oral microbiome. This suggests a basis for the observation that hyperglycemia is associated with an increased risk of dental erosion, dental caries, and gingivitis. We conclude that HSG in adolescents may be predicted from salivary microbial diversity or frequency, and that the changes in the oral microbial composition seen in adolescents with developing metabolic disease may the consequence of hyperglycemia.

  20. Benfotiamine prevents increased β-amyloid production in HEK cells induced by high glucose.

    Science.gov (United States)

    Sun, Xiao-Jing; Zhao, Lei; Zhao, Na; Pan, Xiao-Li; Fei, Guo-Qiang; Jin, Li-Rong; Zhong, Chun-Jiu

    2012-10-01

    To determine whether high glucose enhances β-amyloid (Aβ) production in HEK293 Swedish mutant (APPsw) cells with Aβ precursor protein (APP) overexpression, and whether under this condition benfotiamine reduces the increased Aβ production. HEK293 APPsw cells were cultured with different concentrations of glucose for different times. The Aβ content in the supernatant was determined by ELISA. To investigate the mechanism by which benfotiamine reduced Aβ production, glycogen synthase kinase-3 (GSK-3) activity and expression were measured after the cells were cultured with 5.5 g/L glucose for 12 h. With 1.0, 3.0, 4.5, 5.5, 6.5, 7.5, 8.5, or 10.5 g/L glucose, Aβ production by HEK293 APPsw cells was highest in the presence of 5.5 g/L glucose for 6 and 12 h. The difference in Aβ content between 5.5 and 1.0 g/L was most marked after incubation for 12 h. Benfotiamine at 20 and 40 μg/mL significantly reduced Aβ production in cells incubated with 5.5 g/L glucose for 12 h. Moreover, 40 μg/mL benfotiamine significantly enhanced the ratio of phosphorylated GSK-3 to total GSK-3, together with consistent down-regulation of GSK-3 activity. High glucose increases Aβ production by HEK293 APPsw cells while benfotiamine prevents this increase. This is correlated with the modulation of GSK-3 activity.

  1. High Glucose Represses hERG K+ Channel Expression through Trafficking Inhibition

    Directory of Open Access Journals (Sweden)

    Yuan-Qi Shi

    2015-08-01

    Full Text Available Background/Aims: Abnormal QT prolongation is the most prominent cardiac electrical disturbance in patients with diabetes mellitus (DM. It is well known that the human ether-ago-go-related gene (hERG controls the rapid delayed rectifier K+ current (IKr in cardiac cells. The expression of the hERG channel is severely down-regulated in diabetic hearts, and this down-regulation is a critical contributor to the slowing of repolarization and QT prolongation. However, the intracellular mechanisms underlying the diabetes-induced hERG deficiency remain unknown. Methods: The expression of the hERG channel was assessed via western blot analysis, and the hERG current was detected with a patch-clamp technique. Results: The results of our study revealed that the expression of the hERG protein and the hERG current were substantially decreased in high-glucose-treated hERG-HEK cells. Moreover, we demonstrated that the high-glucose-mediated damage to the hERG channel depended on the down-regulation of protein levels but not the alteration of channel kinetics. These discoveries indicated that high glucose likely disrupted hERG channel trafficking. From the western blot and immunoprecipitation analyses, we found that high glucose induced trafficking inhibition through an effect on the expression of Hsp90 and its interaction with hERG. Furthermore, the high-glucose-induced inhibition of hERG channel trafficking could activate the unfolded protein response (UPR by up-regulating the expression levels of activating transcription factor-6 (ATF-6 and the ER chaperone protein calnexin. In addition, we demonstrated that 100 nM insulin up-regulated the expression of the hERG channel and rescued the hERG channel repression caused by high glucose. Conclusion: The results of our study provide the first evidence of a high-glucose-induced hERG channel deficiency resulting from the inhibition of channel trafficking. Furthermore, insulin promotes the expression of the hERG channel

  2. On-chip highly sensitive saliva glucose sensing using multilayer films composed of single-walled carbon nanotubes, gold nanoparticles, and glucose oxidase

    Directory of Open Access Journals (Sweden)

    Wenjun Zhang

    2015-06-01

    Full Text Available It is very important for human health to rapidly and accurately detect glucose levels in biological environments, especially for diabetes mellitus. We proposed a simple, highly sensitive, accurate, convenient, low-cost, and disposable glucose biosensor on a single chip. A working (sensor electrode, a counter electrode, and a reference electrode are integrated on a single chip through micro-fabrication. The working electrode is functionalized through a layer-by-layer (LBL assembly of single-walled carbon nanotubes (SWNTs and multilayer films composed of chitosan (CS, gold nanoparticles (GNp, and glucose oxidase (GOx to obtain high sensitivity and accuracy. The glucose sensor has following features: (1 direct electron transfer between GOx and the electrode surface; (2 on-a-chip; (3 glucose detection down to 0.1 mg/dL (5.6 μM; (4 good sensing linearity over 0.017–0.81 mM; (5 high sensitivity (61.4 μA/mM-cm2 with a small reactive area (8 mm2; (6 fast response; (7 high reproducibility and repeatability; (8 reliable and accurate saliva glucose detection. Thus, this disposable biosensor will be an alternative for real time tracking of glucose levels from body fluids, e.g. saliva, in a noninvasive, pain-free, accurate, and continuous way. In addition to being used as a disposable glucose biosensor, it also provides a suitable platform for on-chip electrochemical sensing for other chemical agents and biomolecules.

  3. New approach to modulate retinal cellular toxic effects of high glucose using marine epa and dha

    Directory of Open Access Journals (Sweden)

    Fagon Roxane

    2011-06-01

    Full Text Available Abstract Background Protective effects of omega-3 fatty acids against cellular damages of high glucose were studied on retinal pigmented epithelial (RPE cells. Methods Retinal epithelial cells were incubated with omega-3 marine oils rich in EPA and DHA and then with high glucose (25 mM for 48 hours. Cellular responses were compared to normal glucose (5 mM: intracellular redox status, reactive oxygen species (ROS, mitochondrial succinate deshydrogenase activity, inflammatory cytokines release and caveolin-1 expression were evaluated using microplate cytometry, ELISA and flow cytometry techniques. Fatty acids incorporation in retinal cell membranes was analysed using chromatography. Results Preincubation of the cells with fish oil decreased ROS overproduction, mitochondrial alterations and TNFα release. These protective effects could be attributed to an increase in caveolin-1 expression induced by marine oil. Conclusion Marine formulations rich in omega-3 fatty acids represent a promising therapeutic approach for diabetic retinopathy.

  4. The Cytotoxic Role of Intermittent High Glucose on Apoptosis and Cell Viability in Pancreatic Beta Cells

    Directory of Open Access Journals (Sweden)

    Zhen Zhang

    2014-01-01

    Full Text Available Objectives. Glucose fluctuations are both strong predictor of diabetic complications and crucial factor for beta cell damages. Here we investigated the effect of intermittent high glucose (IHG on both cell apoptosis and proliferation activity in INS-1 cells and the potential mechanisms. Methods. Cells were treated with normal glucose (5.5 mmol/L, constant high glucose (CHG (25 mmol/L, and IHG (rotation per 24 h in 11.1 or 25 mmol/L for 7 days. Reactive oxygen species (ROS, xanthine oxidase (XOD level, apoptosis, cell viability, cell cycle, and expression of cyclinD1, p21, p27, and Skp2 were determined. Results. We found that IHG induced more significant apoptosis than CHG and normal glucose; intracellular ROS and XOD levels were more markedly increased in cells exposed to IHG. Cells treated with IHG showed significant decreased cell viability and increased cell proportion in G0/G1 phase. Cell cycle related proteins such as cyclinD1 and Skp2 were decreased significantly, but expressions of p27 and p21 were increased markedly. Conclusions. This study suggested that IHG plays a more toxic effect including both apoptosis-inducing and antiproliferative effects on INS-1 cells. Excessive activation of cellular stress and regulation of cyclins might be potential mechanism of impairment in INS-1 cells induced by IHG.

  5. Nrf2 deficiency improves glucose tolerance in mice fed a high-fat diet

    International Nuclear Information System (INIS)

    Zhang, Yu-Kun Jennifer; Wu, Kai Connie; Liu, Jie; Klaassen, Curtis D.

    2012-01-01

    Nrf2, a master regulator of intracellular redox homeostasis, is indicated to participate in fatty acid metabolism in liver. However, its role in diet-induced obesity remains controversial. In the current study, genetically engineered Nrf2-null, wild-type (WT), and Nrf2-activated, Keap1-knockdown (K1-KD) mice were fed either a control or a high-fat Western diet (HFD) for 12 weeks. The results indicate that the absence or enhancement of Nrf2 activity did not prevent diet-induced obesity, had limited effects on lipid metabolism, but affected blood glucose homeostasis. Whereas the Nrf2-null mice were resistant to HFD-induced glucose intolerance, the Nrf2-activated K1-KD mice exhibited prolonged elevation of circulating glucose during a glucose tolerance test even on the control diet. Feeding a HFD did not activate the Nrf2 signaling pathway in mouse livers. Fibroblast growth factor 21 (Fgf21) is a liver-derived anti-diabetic hormone that exerts glucose- and lipid-lowering effects. Fgf21 mRNA and protein were both elevated in livers of Nrf2-null mice, and Fgf21 protein was lower in K1-KD mice than WT mice. The inverse correlation between Nrf2 activity and hepatic expression of Fgf21 might explain the improved glucose tolerance in Nrf2-null mice. Furthermore, a more oxidative cellular environment in Nrf2-null mice could affect insulin signaling in liver. For example, mRNA of insulin-like growth factor binding protein 1, a gene repressed by insulin in hepatocytes, was markedly elevated in livers of Nrf2-null mice. In conclusion, genetic alteration of Nrf2 does not prevent diet-induced obesity in mice, but deficiency of Nrf2 improves glucose homeostasis, possibly through its effects on Fgf21 and/or insulin signaling. -- Highlights: ► Nrf2 deficiency improves glucose tolerance in mice fed a high-fat diet. ► The anti-diabetic hormone, Fgf21, is highly expressed in livers of Nrf2-null mice. ► The absence of Nrf2 increases the insulin-regulated Igfbp-1 mRNA in liver.

  6. Nrf2 deficiency improves glucose tolerance in mice fed a high-fat diet

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yu-Kun Jennifer; Wu, Kai Connie; Liu, Jie; Klaassen, Curtis D., E-mail: cklaasse@kumc.edu

    2012-11-01

    Nrf2, a master regulator of intracellular redox homeostasis, is indicated to participate in fatty acid metabolism in liver. However, its role in diet-induced obesity remains controversial. In the current study, genetically engineered Nrf2-null, wild-type (WT), and Nrf2-activated, Keap1-knockdown (K1-KD) mice were fed either a control or a high-fat Western diet (HFD) for 12 weeks. The results indicate that the absence or enhancement of Nrf2 activity did not prevent diet-induced obesity, had limited effects on lipid metabolism, but affected blood glucose homeostasis. Whereas the Nrf2-null mice were resistant to HFD-induced glucose intolerance, the Nrf2-activated K1-KD mice exhibited prolonged elevation of circulating glucose during a glucose tolerance test even on the control diet. Feeding a HFD did not activate the Nrf2 signaling pathway in mouse livers. Fibroblast growth factor 21 (Fgf21) is a liver-derived anti-diabetic hormone that exerts glucose- and lipid-lowering effects. Fgf21 mRNA and protein were both elevated in livers of Nrf2-null mice, and Fgf21 protein was lower in K1-KD mice than WT mice. The inverse correlation between Nrf2 activity and hepatic expression of Fgf21 might explain the improved glucose tolerance in Nrf2-null mice. Furthermore, a more oxidative cellular environment in Nrf2-null mice could affect insulin signaling in liver. For example, mRNA of insulin-like growth factor binding protein 1, a gene repressed by insulin in hepatocytes, was markedly elevated in livers of Nrf2-null mice. In conclusion, genetic alteration of Nrf2 does not prevent diet-induced obesity in mice, but deficiency of Nrf2 improves glucose homeostasis, possibly through its effects on Fgf21 and/or insulin signaling. -- Highlights: ► Nrf2 deficiency improves glucose tolerance in mice fed a high-fat diet. ► The anti-diabetic hormone, Fgf21, is highly expressed in livers of Nrf2-null mice. ► The absence of Nrf2 increases the insulin-regulated Igfbp-1 mRNA in liver.

  7. Importance of mitochondrial calcium uniporter in high glucose-induced endothelial cell dysfunction.

    Science.gov (United States)

    Chen, Wei; Yang, Jie; Chen, Shuhua; Xiang, Hong; Liu, Hengdao; Lin, Dan; Zhao, Shaoli; Peng, Hui; Chen, Pan; Chen, Alex F; Lu, Hongwei

    2017-11-01

    Mitochondrial Ca 2+ overload is implicated in hyperglycaemia-induced endothelial cell dysfunction, but the key molecular events responsible remain unclear. We examined the involvement of mitochondrial calcium uniporter, which mediates mitochondrial Ca 2+ uptake, in endothelial cell dysfunction resulting from high-glucose treatment. Human umbilical vein endothelial cells were exposed to various glucose concentrations and to high glucose (30 mM) following mitochondrial calcium uniporter inhibition or activation with ruthenium red and spermine, respectively. Subsequently, mitochondrial calcium uniporter and mitochondrial calcium uniporter regulator 1 messenger RNA and protein expression was measured by real-time polymerase chain reaction and western blotting. Ca 2+ concentrations were analysed by laser confocal microscopy, and cytoplasmic and mitochondrial oxidative stress was detected using 2',7'-dichlorofluorescein diacetate and MitoSOX Red, respectively. Apoptosis was assessed by annexin V-fluorescein isothiocyanate/propidium iodide staining, and a wound-healing assay was performed using an in vitro model. High glucose markedly upregulated mitochondrial calcium uniporter and mitochondrial calcium uniporter regulator 1 messenger RNA expression, as well as protein production, in a dose- and time-dependent manner with a maximum effect demonstrated at 72 h and 30 mM glucose concentration. Moreover, high-glucose treatment significantly raised both mitochondrial and cytoplasmic Ca 2+ and reactive oxygen species levels, increased apoptosis and compromised wound healing (all p calcium uniporter, respectively. Mitochondrial calcium uniporter plays an important role in hyperglycaemia-induced endothelial cell dysfunction and may constitute a therapeutic target to reduce vascular complications in diabetes.

  8. Comparison of sugar molecule decomposition through glucose and fructose: a high-level quantum chemical study.

    Energy Technology Data Exchange (ETDEWEB)

    Assary, R. S.; Curtiss, L. A. (Center for Nanoscale Materials); ( MSD); (Northwestern Univ.)

    2012-02-01

    Efficient chemical conversion of biomass is essential to produce sustainable energy and industrial chemicals. Industrial level conversion of glucose to useful chemicals, such as furfural, hydroxymethylfurfural, and levulinic acid, is a major step in the biomass conversion but is difficult because of the formation of undesired products and side reactions. To understand the molecular level reaction mechanisms involved in the decomposition of glucose and fructose, we have carried out high-level quantum chemical calculations [Gaussian-4 (G4) theory]. Selective 1,2-dehydration, keto-enol tautomerization, isomerization, retro-aldol condensation, and hydride shifts of glucose and fructose molecules were investigated. Detailed kinetic and thermodynamic analyses indicate that, for acyclic glucose and fructose molecules, the dehydration and isomerization require larger activation barriers compared to the retro-aldol reaction at 298 K in neutral medium. The retro-aldol reaction results in the formation of C2 and C4 species from glucose and C3 species from fructose. The formation of the most stable C3 species, dihydroxyacetone from fructose, is thermodynamically downhill. The 1,3-hydride shift leads to the cleavage of the C-C bond in the acyclic species; however, the enthalpy of activation is significantly higher (50-55 kcal/mol) than that of the retro-aldol reaction (38 kcal/mol) mainly because of the sterically hindered distorted four-membered transition state compared to the hexa-membered transition state in the retro-aldol reaction. Both tautomerization and dehydration are catalyzed by a water molecule in aqueous medium; however, water has little effect on the retro-aldol reaction. Isomerization of glucose to fructose and glyceraldehyde to dihydroxyacetone proceeds through hydride shifts that require an activation enthalpy of about 40 kcal/mol at 298 K in water medium. This investigation maps out accurate energetics of the decomposition of glucose and fructose molecules

  9. Glucose detection in a highly scattering medium with diffuse photon-pair density wave

    Directory of Open Access Journals (Sweden)

    Li-Ping Yu

    2017-01-01

    Full Text Available We propose a novel optical method for glucose measurement based on diffuse photon-pair density wave (DPPDW in a multiple scattering medium (MSM where the light scattering of photon-pair is induced by refractive index mismatch between scatters and phantom solution. Experimentally, the DPPDW propagates in MSM via a two-frequency laser (TFL beam wherein highly correlated pairs of linear polarized photons are generated. The reduced scattering coefficient μ2s′ and absorption coefficient μ2a of DPPDW are measured simultaneously in terms of the amplitude and phase measurements of the detected heterodyne signal under arrangement at different distances between the source and detection fibers in MSM. The results show that the sensitivity of glucose detection via glucose-induced change of reduced scattering coefficient (δμ2s′ is 0.049%mM−1 in a 1% intralipid solution. In addition, the linear range of δμ2s′ vs glucose concentration implies that this DPPDW method can be used to monitor glucose concentration continuously and noninvasively subcutaneously.

  10. Immobilization of Recombinant Glucose Isomerase for Efficient Production of High Fructose Corn Syrup.

    Science.gov (United States)

    Jin, Li-Qun; Xu, Qi; Liu, Zhi-Qiang; Jia, Dong-Xu; Liao, Cheng-Jun; Chen, De-Shui; Zheng, Yu-Guo

    2017-09-01

    Glucose isomerase is the important enzyme for the production of high fructose corn syrup (HFCS). One-step production of HFCS containing more than 55% fructose (HFCS-55) is receiving much attention for its industrial applications. In this work, the Escherichia coli harboring glucose isomerase mutant TEGI-W139F/V186T was immobilized for efficient production of HFCS-55. The immobilization conditions were optimized, and the maximum enzyme activity recovery of 92% was obtained. The immobilized glucose isomerase showed higher pH, temperature, and operational stabilities with a K m value of 272 mM and maximum reaction rate of 23.8 mM min -1 . The fructose concentration still retained above 55% after the immobilized glucose isomerase was reused for 10 cycles, and more than 85% of its initial activity was reserved even after 15 recycles of usage at temperature of 90 °C. The results highlighted the immobilized glucose isomerase as a potential biocatalyst for HFCS-55 production.

  11. Effects of High Fat Diet and Physical Exercise on Glucose Tolelance and Insulin Sensitivity in Rats

    OpenAIRE

    福田,哲也

    1987-01-01

    To investigate the interrelationships between the westernized diet and physical exercise as they affect the development of non-insulin-dependent diabetes mellitus (NIDDM), adiposity, glucose tolerance and insulin response to an intraperitoneal glucose load (1.5g/kg bw) and insulin sensitivity to exogenous insulin (0.2U/kg bw) were studied in spontaneously exercised and sedentary rats fed either a high fat diet (40% fat, modern western type) or a low fat diet (10% fat, traditional Japanese typ...

  12. High-density lipoprotein modulates glucose metabolism in patients with type 2 diabetes mellitus

    DEFF Research Database (Denmark)

    Drew, Brian G; Duffy, Stephen J; Formosa, Melissa F

    2009-01-01

    BACKGROUND: Low plasma high-density lipoprotein (HDL) is associated with elevated cardiovascular risk and aspects of the metabolic syndrome. We hypothesized that HDL modulates glucose metabolism via elevation of plasma insulin and through activation of the key metabolic regulatory enzyme, AMP...

  13. Effects of high glucose on mesenchymal stem cell proliferation and differentiation

    DEFF Research Database (Denmark)

    Li, Yu-Ming; Schilling, Tatjana; Benisch, Peggy

    2007-01-01

    High glucose (HG) concentrations impair cellular functions and induce apoptosis. Exposition of mesenchymal stem cells (MSC) to HG was reported to reduce colony forming activity and induce premature senescence. We characterized the effects of HG on human MSC in vitro using telomerase-immortalized...

  14. High Glucose and Lipopolysaccharide Prime NLRP3 Inflammasome via ROS/TXNIP Pathway in Mesangial Cells

    Directory of Open Access Journals (Sweden)

    Hong Feng

    2016-01-01

    Full Text Available While inflammation is considered a central component in the development in diabetic nephropathy, the mechanism remains unclear. The NLRP3 inflammasome acts as both a sensor and a regulator of the inflammatory response. The NLRP3 inflammasome responds to exogenous and endogenous danger signals, resulting in cleavage of procaspase-1 and activation of cytokines IL-1β, IL-18, and IL-33, ultimately triggering an inflammatory cascade reaction. This study observed the expression of NLRP3 inflammasome signaling stimulated by high glucose, lipopolysaccharide, and reactive oxygen species (ROS inhibitor N-acetyl-L-cysteine in glomerular mesangial cells, aiming to elucidate the mechanism by which the NLRP3 inflammasome signaling pathway may contribute to diabetic nephropathy. We found that the expression of thioredoxin-interacting protein (TXNIP, NLRP3, and IL-1β was observed by immunohistochemistry in vivo. Simultaneously, the mRNA and protein levels of TXNIP, NLRP3, procaspase-1, and IL-1β were significantly induced by high glucose concentration and lipopolysaccharide in a dose-dependent and time-dependent manner in vitro. This induction by both high glucose and lipopolysaccharide was significantly inhibited by N-acetyl-L-cysteine. Our results firstly reveal that high glucose and lipopolysaccharide activate ROS/TXNIP/ NLRP3/IL-1β inflammasome signaling in glomerular mesangial cells, suggesting a mechanism by which inflammation may contribute to the development of diabetic nephropathy.

  15. RAGE mediates the inactivation of nAChRs in sympathetic neurons under high glucose conditions.

    Science.gov (United States)

    Chandna, Andrew R; Nair, Manoj; Chang, Christine; Pennington, Paul R; Yamamoto, Yasuhiko; Mousseau, Darrell D; Campanucci, Verónica A

    2015-02-01

    Autonomic dysfunction is a serious complication of diabetes and can lead to cardiovascular abnormalities and premature death. It was recently proposed that autonomic dysfunction is triggered by oxidation-mediated inactivation of neuronal nicotinic acetylcholine receptors (nAChRs), impairing synaptic transmission in sympathetic ganglia and resulting in autonomic failure. We investigated whether the receptor for advanced glycation end products (RAGE) and its role in the generation of reactive oxygen species (ROS) could be contributing to the events that initiate sympathetic malfunction under high glucose conditions. Using biochemical, live imaging and electrophysiological tools we demonstrated that exposure of sympathetic neurons to high glucose increases RAGE expression and oxidative markers, and that incubation with RAGE ligands (e.g. AGEs, S100 and HMGB1) mimics both ROS elevation and nAChR inactivation. In contrast, co-treatment with either antioxidants or an anti-RAGE IgG prevented the inactivation of nAChRs. Lastly, a role for RAGE in this context was corroborated by the lack of sensitivity of sympathetic neurons from RAGE knock-out mice to high glucose. These data define a pivotal role for RAGE in initiating the events associated with exposure of sympathetic neurons to high glucose, and strongly support RAGE signaling as a potential therapeutic target in the autonomic complications associated with diabetes. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  16. Hydrogen Sulphide modulating mitochondrial morphology to promote mitophagy in endothelial cells under high-glucose and high-palmitate.

    Science.gov (United States)

    Liu, Ning; Wu, Jichao; Zhang, Linxue; Gao, Zhaopeng; Sun, Yu; Yu, Miao; Zhao, Yajun; Dong, Shiyun; Lu, Fanghao; Zhang, Weihua

    2017-12-01

    Endothelial cell dysfunction is one of the main reasons for type II diabetes vascular complications. Hydrogen sulphide (H 2 S) has antioxidative effect, but its regulation on mitochondrial dynamics and mitophagy in aortic endothelial cells under hyperglycaemia and hyperlipidaemia is unclear. Rat aortic endothelial cells (RAECs) were treated with 40 mM glucose and 200 μM palmitate to imitate endothelium under hyperglycaemia and hyperlipidaemia, and 100 μM NaHS was used as an exogenous H 2 S donor. Firstly, we demonstrated that high glucose and palmitate decreased H 2 S production and CSE expression in RAECs. Then, the antioxidative effect of H 2 S was proved in RAECs under high glucose and palmitate to reduce mitochondrial ROS level. We also showed that exogenous H 2 S inhibited mitochondrial apoptosis in RAECs under high glucose and palmitate. Using Mito Tracker and transmission electron microscopy assay, we revealed that exogenous H 2 S decreased mitochondrial fragments and significantly reduced the expression of p-Drp-1/Drp-1 and Fis1 compared to high-glucose and high-palmitate group, whereas it increased mitophagy by transmission electron microscopy assay. We demonstrated that exogenous H 2 S facilitated Parkin recruited by PINK1 by immunoprecipitation and immunostaining assays and then ubiquitylated mitofusin 2 (Mfn2), which illuminated the mechanism of exogenous H 2 S on mitophagy. Parkin siRNA suppressed the expression of Mfn2, Nix and LC3B, which revealed that it eliminated mitophagy. In summary, exogenous H 2 S could protect RAECs against apoptosis under high glucose and palmitate by suppressing oxidative stress, decreasing mitochondrial fragments and promoting mitophagy. Based on these results, we proposed a new mechanism of H 2 S on protecting endothelium, which might provide a new strategy for type II diabetes vascular complication. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for

  17. Effects of high glucose and thiamine on the balance between matrix metalloproteinases and their tissue inhibitors in vascular cells.

    Science.gov (United States)

    Tarallo, Sonia; Beltramo, Elena; Berrone, Elena; Dentelli, Patrizia; Porta, Massimo

    2010-06-01

    Pericyte survival in diabetic retinopathy depends also on interactions with extracellular matrix (ECM) proteins, which are degraded by matrix metalloproteinases (MMP). Elevated glucose influences ECM turnover, through expression of MMP and their tissue inhibitors, TIMP. We reported on reduced pericyte adhesion to high glucose-conditioned ECM and correction by thiamine. We aimed at verifying the effects of thiamine and benfotiamine on MMP-2, MMP-9 and TIMP expression and activity in human vascular cells with high glucose. In HRP, MMP-2 activity, though not expression, increased with high glucose and decreased with thiamine and benfotiamine; TIMP-1 expression increased with high glucose plus thiamine and benfotiamine; MMP-9 was not expressed. In EC, MMP-9 and MMP-2 expression and activity increased with high glucose, but thiamine and benfotiamine had no effects; TIMP-1 expression was unchanged. Neither glucose nor thiamine modified TIMP-2 and TIMP-3 expression. TIMP-1 concentrations did not change in either HRP or EC. High glucose imbalances MMP/TIMP regulation, leading to increased ECM turnover. Thiamine and benfotiamine correct the increase in MMP-2 activity due to high glucose in HRP, while increasing TIMP-1.

  18. A Highly Sensitive Nonenzymatic Glucose Biosensor Based on the Regulatory Effect of Glucose on Electrochemical Behaviors of Colloidal Silver Nanoparticles on MoS₂†.

    Science.gov (United States)

    Anderson, Kash; Poulter, Benjamin; Dudgeon, John; Li, Shu-En; Ma, Xiang

    2017-08-05

    A novel and highly sensitive nonenzymatic glucose biosensor was developed by nucleating colloidal silver nanoparticles (AgNPs) on MoS₂. The facile fabrication method, high reproducibility (97.5%) and stability indicates a promising capability for large-scale manufacturing. Additionally, the excellent sensitivity (9044.6 μA mM -1 cm -2 ), low detection limit (0.03 μM), appropriate linear range of 0.1-1000 μM, and high selectivity suggests that this biosensor has a great potential to be applied for noninvasive glucose detection in human body fluids, such as sweat and saliva.

  19. High glucose modifies transient receptor potential canonical type 6 channels via increased oxidative stress and syndecan-4 in human podocytes

    DEFF Research Database (Denmark)

    Thilo, Florian; Lee, Marlene; Xia, Shengqiang

    2014-01-01

    oxidative stress and syndecan-4 (SDC-4) in human podocytes. Human podocytes were exposed to control conditions (5.6 mmol/L D-glucose), high glucose (30 mmol/L D-glucose or L-glucose), 100 μmol/L peroxynitrite, or high glucose and the superoxide dismutase mimetic tempol (100 μmol/L). TRPC6 and SDC-4...... transcripts and protein expression were measured using RT-PCR and in-cell Western assay. Intracellular reactive oxygen species (ROS) and cytosolic calcium were measured using fluorescent dye techniques. High D-glucose increased TRPC6 transcripts to 8.66±4.08 (p....44±0.07 (poxidative stress using peroxynitrite significantly increased TRPC6 transcripts to 4.29±1.26 (p

  20. ALDH2 Inhibition Potentiates High Glucose Stress-Induced Injury in Cultured Cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Guodong Pan

    2016-01-01

    Full Text Available Aldehyde dehydrogenase (ALDH gene superfamily consists of 19 isozymes. They are present in various organs and involved in metabolizing aldehydes that are biologically generated. For instance, ALDH2, a cardiac mitochondrial ALDH isozyme, is known to detoxify 4-hydroxy-2-nonenal, a reactive aldehyde produced upon lipid peroxidation in diabetic conditions. We hypothesized that inhibition of ALDH leads to the accumulation of unmetabolized 4HNE and consequently exacerbates injury in cells subjected to high glucose stress. H9C2 cardiomyocyte cell lines were pretreated with 10 μM disulfiram (DSF, an inhibitor of ALDH2 or vehicle (DMSO for 2 hours, and then subjected to high glucose stress {33 mM D-glucose (HG or 33 mM D-mannitol as an osmotic control (Ctrl} for 24 hrs. The decrease in ALDH2 activity with DSF pretreatment was higher in HG group when compared to Ctrl group. Increased 4HNE adduct formation with DSF pretreatment was higher in HG group compared to Ctrl group. Pretreatment with DSF leads to potentiated HG-induced cell death in cultured H9C2 cardiomyocytes by lowering mitochondrial membrane potential. Our results indicate that ALDH2 activity is important in preventing high glucose induced cellular dysfunction.

  1. Glucose Homeostasis During Short-term and Prolonged Exposure to High Altitudes

    Science.gov (United States)

    Ader, Marilyn; Bergman, Richard N.

    2015-01-01

    Most of the literature related to high altitude medicine is devoted to the short-term effects of high-altitude exposure on human physiology. However, long-term effects of living at high altitudes may be more important in relation to human disease because more than 400 million people worldwide reside above 1500 m. Interestingly, individuals living at higher altitudes have a lower fasting glycemia and better glucose tolerance compared with those who live near sea level. There is also emerging evidence of the lower prevalence of both obesity and diabetes at higher altitudes. The mechanisms underlying improved glucose control at higher altitudes remain unclear. In this review, we present the most current evidence about glucose homeostasis in residents living above 1500 m and discuss possible mechanisms that could explain the lower fasting glycemia and lower prevalence of obesity and diabetes in this population. Understanding the mechanisms that regulate and maintain the lower fasting glycemia in individuals who live at higher altitudes could lead to new therapeutics for impaired glucose homeostasis. PMID:25675133

  2. Influence of Acute High Glucose on Protein Abundance Changes in Murine Glomerular Mesangial Cells

    Directory of Open Access Journals (Sweden)

    Michelle T. Barati

    2016-01-01

    Full Text Available The effects of acute exposure to high glucose levels as experienced by glomerular mesangial cells in postprandial conditions and states such as in prediabetes were investigated using proteomic methods. Two-dimensional gel electrophoresis and matrix assisted laser desorption ionization time of flight mass spectrometry methods were used to identify protein expression patterns in immortalized rat mesangial cells altered by 2 h high glucose (HG growth conditions as compared to isoosmotic/normal glucose control (NG⁎ conditions. Unique protein expression changes at 2 h HG treatment were measured for 51 protein spots. These proteins could be broadly grouped into two categories: (1 proteins involved in cell survival/cell signaling and (2 proteins involved in stress response. Immunoblot experiments for a protein belonging to both categories, prohibitin (PHB, supported a trend for increased total expression as well as significant increases in an acidic PHB isoform. Additional studies confirmed the regulation of proteasomal subunit alpha-type 2 and the endoplasmic reticulum chaperone and oxidoreductase PDI (protein disulfide isomerase, suggesting altered ER protein folding capacity and proteasomal function in response to acute HG. We conclude that short term high glucose induces subtle changes in protein abundances suggesting posttranslational modifications and regulation of pathways involved in proteostasis.

  3. Butter improves glucose tolerance compared with at highly polyunsaturated diet in the rat

    DEFF Research Database (Denmark)

    Hellgren, Lars

    in epidemiological studies, where the typical fatty acid composition of milk-fat, i.e. a high level of saturated fatty acids (SFA) and low concentration of polyunsaturated fatty acids (PUFAs), has been correlated to increased insulin-resistance. It is therefore essential to characterize the impact of milk......-fat on glucose-tolerance in intervention studies. Methods: 16 rats were divided into two groups and fed a semisynthetic diet containing 31 E-% fat, either as butter or highly polyunsaturated grapeseed oil. After 12 weeks on the diets, glucose-tolerance was assayed with the oral-glucose tolerance test (OGTT......). Results and Discussion: The OGTT revealed that the rats on the butter-containing diet, had a substantially higher glucose tolerance than the rats, which were fed grapeseed oil (area under the curve =195  31 mM*min-2 vs. 310  13 mM*min-2, n= 8, p=0.004). There were no differences in serum triacylglycerol...

  4. Highly sensitive glucose sensor based on monodisperse palladium nickel/activated carbon nanocomposites.

    Science.gov (United States)

    Koskun, Yağmur; Şavk, Aysun; Şen, Betül; Şen, Fatih

    2018-06-20

    Glucose enzyme biosensors have been used for a variety of applications such as medical diagnosis, bioprocess engineering, beverage industry and environmental scanning etc. and there is still a growing interest in glucose sensors. For this purpose, addressed herein, as a novel glucose sensor, highly sensitive activated carbon (AC) decorated monodisperse nickel and palladium alloy nanocomposites modified glassy carbon electrode (Ni-Pd@AC/GCE NCs) have been synthesized by in-situ reduction technique. Raman Spectroscopy (RS), X-ray Photoelectron Spectroscopy (XPS), X-ray Diffraction (XRD), Transmission Electron Microscopy (TEM), cyclic voltammetry (CV) and chronoamperometry (CA) were used for the characterization of the prepared non-enzymatic glucose sensor. The characteristic sensor properties of the Ni-Pd@AC/GCE electrode were compared with Ni-Pd NCs/GCE, Ni@AC/GCE and Pd@AC/GCE and the results demonstrate that the AC is very effective in the enhancement of the electrocatalytic properties of sensor. In addition, the Ni-Pd@AC/GCE nanocomposites showed a very low detection limit of 0.014 μM, a wide linear range of 0.01 mM-1 mM and a very high sensitivity of 90 mA mM -1  cm -2 . Furthermore, the recommended sensor offer the various advantageous such as facile preparation, fast response time, high selectivity and sensitivity. Lastly, monodisperse Ni-Pd@AC/GCE was utilized to detect glucose in real sample species. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Effects of sleep disruption and high fat intake on glucose metabolism in mice.

    Science.gov (United States)

    Ho, Jacqueline M; Barf, R Paulien; Opp, Mark R

    2016-06-01

    Poor sleep quality or quantity impairs glycemic control and increases risk of disease under chronic conditions. Recovery sleep may offset adverse metabolic outcomes of accumulated sleep debt, but the extent to which this occurs is unclear. We examined whether recovery sleep improves glucose metabolism in mice subjected to prolonged sleep disruption, and whether high fat intake during sleep disruption exacerbates glycemic control. Adult male C57BL/6J mice were subjected to 18-h sleep fragmentation daily for 9 days, followed by 1 day of recovery. During sleep disruption, one group of mice was fed a high-fat diet (HFD) while another group was fed standard laboratory chow. Insulin sensitivity and glucose tolerance were assessed by insulin and glucose tolerance testing at baseline, after 3 and 7 days of sleep disruption, and at the end of the protocol after 24h of undisturbed sleep opportunity (recovery). To characterize changes in sleep architecture that are associated with sleep debt and recovery, we quantified electroencephalogram (EEG) recordings during sleep fragmentation and recovery periods from an additional group of mice. We now report that 9 days of 18-h daily sleep fragmentation significantly reduces rapid eye movement sleep (REMS) and non-rapid eye movement sleep (NREMS). Mice respond with increases in REMS, but not NREMS, during the daily 6-h undisturbed sleep opportunity. However, both REMS and NREMS increase significantly during the 24-h recovery period. Although sleep disruption alone has no effect in this protocol, high fat feeding in combination with sleep disruption impairs glucose tolerance, effects that are reversed by recovery sleep. Insulin sensitivity modestly improves after 3 days of sleep fragmentation and after 24h of recovery, with significantly greater improvements in mice exposed to HFD during sleep disruption. Improvements in both glucose tolerance and insulin sensitivity are associated with NREMS rebound, raising the possibility that this

  6. High Glucose-Induced Oxidative Stress Increases the Copy Number of Mitochondrial DNA in Human Mesangial Cells

    Directory of Open Access Journals (Sweden)

    Ghada Al-Kafaji

    2013-01-01

    Full Text Available Oxidative damage to mitochondrial DNA (mtDNA has been linked to the pathogenicity of diabetic nephropathy. We tested the hypothesis that mtDNA copy number may be increased in human mesangial cells in response to high glucose-induced reactive oxygen species (ROS to compensate for damaged mtDNA. The effect of manganese superoxide dismutase mimetic (MnTBAP on glucose-induced mtDNA copy number was also examined. The copy number of mtDNA was determined by real-time PCR in human mesangial cells cultured in 5 mM glucose, 25 mM glucose, and mannitol (osmotic control, as well as in cells cultured in 25 mM glucose in the presence and absence of 200 μM MnTBAP. Intracellular ROS was assessed by confocal microscopy and flow cytometry in human mesangial cells. The copy number of mtDNA was significantly increased when human mesangial cells were incubated with 25 mM glucose compared to 5 mM glucose and mannitol. In addition, 25 mM glucose rapidly generated ROS in the cells, which was not detected in 5 mM glucose. Furthermore, mtDNA copy number was significantly decreased and maintained to normal following treatment of cells with 25 mM glucose and MnTBAP compared to 25 mM glucose alone. Inclusion of MnTBAP during 25 mM glucose incubation inhibited mitochondrial superoxide in human mesangial cells. Increased mtDNA copy number in human mesangial cells by high glucose could contribute to increased mitochondrial superoxide, and prevention of mtDNA copy number could have potential in retarding the development of diabetic nephropathy.

  7. Non-response weighting adjustment approach in survey sampling ...

    African Journals Online (AJOL)

    Hence the discussion is illustrated with real examples from surveys (in particular 2003 KDHS) conducted by Central Bureau of Statistics (CBS) - Kenya. Some suggestions are made for improving the quality of non-response weighting. Keywords: Survey non-response; non-response adjustment factors; weighting; sampling ...

  8. Archetypal sandwich-structured CuO for high performance non-enzymatic sensing of glucose

    Science.gov (United States)

    Meher, Sumanta Kumar; Rao, G. Ranga

    2013-02-01

    In the quest to enhance the selectivity and sensitivity of novel structured metal oxides for electrochemical non-enzymatic sensing of glucose, we report here a green synthesis of unique sandwich-structured CuO on a large scale under microwave mediated homogeneous precipitation conditions. The physicochemical studies carried out by XRD and BET methods show that the monoclinic CuO formed via thermal decomposition of Cu2(OH)2CO3 possesses monomodal channel-type pores with largely improved surface area (~43 m2 g-1) and pore volume (0.163 cm3 g-1). The fascinating surface morphology and pore structure of CuO is formulated due to homogeneous crystallization and microwave induced self assembly during synthesis. The cyclic voltammetry and chronoamperometry studies show diffusion controlled glucose oxidation at ~0.6 V (vs. Ag/AgCl) with extremely high sensitivity of 5342.8 μA mM-1 cm-2 and respective detection limit and response time of ~1 μM and ~0.7 s, under a wide dynamic concentration range of glucose. The chronoamperometry measurements demonstrate that the sensitivity of CuO to glucose is unaffected by the absence of dissolved oxygen and presence of poisoning chloride ions in the reaction medium, which essentially implies high poison resistance activity of the sandwich-structured CuO. The sandwich-structured CuO also shows insignificant interference/significant selectivity to glucose, even in the presence of high concentrations of other sugars as well as reducing species. In addition, the sandwich-structured CuO shows excellent reproducibility (relative standard deviation of ~2.4% over ten identically fabricated electrodes) and outstanding long term stability (only ~1.3% loss in sensitivity over a period of one month) during non-enzymatic electrochemical sensing of glucose. The unique microstructure and suitable channel-type pore architecture provide structural stability and maximum accessible electroactive surface for unimpeded mobility of glucose as well as the

  9. Higher Fasting Plasma Glucose Levels, within the Normal Range, are Associated with Decreased Processing Speed in High Functioning Young Elderly

    OpenAIRE

    Raizes, Meytal; Elkana, Odelia; Franko, Motty; Springer, Ramit Ravona; Segev, Shlomo; Beeri, Michal Schnaider

    2016-01-01

    We explored the association of plasma glucose levels within the normal range with processing speed in high functioning young elderly, free of type 2 diabetes mellitus (T2DM). A sample of 41 participants (mean age = 64.7, SD = 10; glucose 94.5 mg/dL, SD = 9.3), were examined with a computerized cognitive battery. Hierarchical linear regression analysis showed that higher plasma glucose levels, albeit within the normal range (

  10. Production of water-soluble yellow pigments via high glucose stress fermentation of Monascus ruber CGMCC 10910.

    Science.gov (United States)

    Wang, Meihua; Huang, Tao; Chen, Gong; Wu, Zhenqiang

    2017-04-01

    Monascus pigments are secondary metabolites of Monascus species and are mainly composed of yellow pigments, orange pigments and red pigments. In this study, a larger proportion of Monascus yellow pigments could be obtained through the selection of the carbon source. Hydrophilic yellow pigments can be largely produced extracellularly by Monascus ruber CGMCC 10910 under conditions of high glucose fermentation with low oxidoreduction potential (ORP). However, keeping high glucose levels later in the culture causes translation or a reduction of yellow pigment. We presume that the mechanism behind this phenomenon may be attributed to the redox level of the culture broth and the high glucose stress reaction of M. ruber CGMCC 10910 during high glucose fermentation. These yellow pigments were produced via high glucose bio-fermentation without citrinin. Therefore, these pigments can act as natural pigments for applications as food additives.

  11. Imeglimin lowers glucose primarily by amplifying glucose-stimulated insulin secretion in high-fat-fed rodents

    DEFF Research Database (Denmark)

    Perry, Rachel J; Cardone, Rebecca L; Petersen, Max C

    2016-01-01

    Imeglimin is a promising new oral antihyperglycemic agent that has been studied in clinical trials as a possible monotherapy or add-on therapy to lower fasting plasma glucose and improve hemoglobin A1c (1-3, 9). Imeglimin was shown to improve both fasting and postprandial glycemia and to increase...

  12. Glucose intolerance associated with hypoxia in people living at high altitudes in the Tibetan highland.

    Science.gov (United States)

    Okumiya, Kiyohito; Sakamoto, Ryota; Ishimoto, Yasuko; Kimura, Yumi; Fukutomi, Eriko; Ishikawa, Motonao; Suwa, Kuniaki; Imai, Hissei; Chen, Wenling; Kato, Emiko; Nakatsuka, Masahiro; Kasahara, Yoriko; Fujisawa, Michiko; Wada, Taizo; Wang, Hongxin; Dai, Qingxiang; Xu, Huining; Qiao, Haisheng; Ge, Ri-Li; Norboo, Tsering; Tsering, Norboo; Kosaka, Yasuyuki; Nose, Mitsuhiro; Yamaguchi, Takayoshi; Tsukihara, Toshihiro; Ando, Kazuo; Inamura, Tetsuya; Takeda, Shinya; Ishine, Masayuki; Otsuka, Kuniaki; Matsubayashi, Kozo

    2016-02-23

    To clarify the association between glucose intolerance and high altitudes (2900-4800 m) in a hypoxic environment in Tibetan highlanders and to verify the hypothesis that high altitude dwelling increases vulnerability to diabetes mellitus (DM) accelerated by lifestyle change or ageing. Cross-sectional epidemiological study on Tibetan highlanders. We enrolled 1258 participants aged 40-87 years. The rural population comprised farmers in Domkhar (altitude 2900-3800 m) and nomads in Haiyan (3000-3100 m), Ryuho (4400 m) and Changthang (4300-4800 m). Urban area participants were from Leh (3300 m) and Jiegu (3700 m). Participants were classified into six glucose tolerance-based groups: DM, intermediate hyperglycaemia (IHG), normoglycaemia (NG), fasting DM, fasting IHG and fasting NG. Prevalence of glucose intolerance was compared in farmers, nomads and urban dwellers. Effects of dwelling at high altitude or hypoxia on glucose intolerance were analysed with the confounding factors of age, sex, obesity, lipids, haemoglobin, hypertension and lifestyle, using multiple logistic regression. The prevalence of DM (fasting DM)/IHG (fasting IHG) was 8.9% (6.5%)/25.1% (12.7%), respectively, in all participants. This prevalence was higher in urban dwellers (9.5% (7.1%)/28.5% (11.7%)) and in farmers (8.5% (6.1%)/28.5% (18.3%)) compared with nomads (8.2% (5.7%)/15.7% (9.7%)) (p=0.0140/0.0001). Dwelling at high altitude was significantly associated with fasting IHG+fasting DM/fasting DM (ORs for >4500 and 3500-4499 m were 3.59/4.36 and 2.07/1.76 vs intolerance. Socioeconomic factors, hypoxaemia and the effects of altitudes >3500 m play a major role in the high prevalence of glucose intolerance in highlanders. Tibetan highlanders may be vulnerable to glucose intolerance, with polycythaemia as a sign of poor hypoxic adaptation, accelerated by lifestyle change and ageing. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please

  13. Frequency of impaired oral glucose tolerance test in high risk pregnancies for gestational diabetes mellitus

    International Nuclear Information System (INIS)

    Naheed, F.; Narijo, S.; Kammeruddin, K.

    2008-01-01

    To determine the frequency of impaired oral glucose tolerance test in high risk pregnancies for Gestational Diabetes Mellitus (GDM). A total of 50 high risk pregnancies for gestational diabetes mellitus were selected through outpatient department of obstetrics. Data was collected according to certain obstetric and non-obstetric risk factors for GDM as inclusion criteria through a designed proforma i.e. family history of diabetes, macrosomia (i.e, wt > 3.5 kg), abortions, grand multiparity, a sudden increase in weight (>1 kg/wk) during pregnancy, age > 35 years, early neonatal deaths/sudden IUDS, polyhydramnios, urogenital infections (vulvo-vaginal candidiasis and UTI), previous history of GDM, congenital abnormalities (with or without polyhydramnios) and multiple pregnancy. Oral glucose tolerance test was performed and analyzed according to American Diabetic Association criteria, 2004. The most frequent risk factors were family history of diabetes mellitus in 1st degree relative and large for dates babies in 18 patients. Similarly, high risk factors such as history of abortions and grand multiparity were present in 16 and 14 pregnant women respectively. Least common factors, which contributed for GDM, were polyhydramnios in 4 cases and perinatal mortality (due to congenital anomalies of foetus, intrauterine deaths or neonatal deaths) seen only in 5 cases. Overall impaired oral glucose tolerance test was found in 24%. Most patients had one (17%) or two risk factors commonly (23%). Only 2% had shown five or more risk factors. Oral glucose tolerance test is a useful diagnostic tool to detect GDM in high risk pregnancies, depending upon the high frequency of number of risk factors in each individual. (author)

  14. High Glucose Increases Metallothionein Expression in Renal Proximal Tubular Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Daisuke Ogawa

    2011-01-01

    Full Text Available Metallothionein (MT is an intracellular metal-binding, cysteine-rich protein, and is a potent antioxidant that protects cells and tissues from oxidative stress. Although the major isoforms MT-1 and -2 (MT-1/-2 are highly inducible in many tissues, the distribution and role of MT-1/-2 in diabetic nephropathy are poorly understood. In this study, diabetes was induced in adult male rats by streptozotocin, and renal tissues were stained with antibodies for MT-1/-2. MT-1/-2 expression was also evaluated in mProx24 cells, a mouse renal proximal tubular epithelial cell line, stimulated with high glucose medium and pretreated with the antioxidant vitamin E. MT-1/-2 expression was gradually and dramatically increased, mainly in the proximal tubular epithelial cells and to a lesser extent in the podocytes in diabetic rats, but was hardly observed in control rats. MT-1/-2 expression was also increased by high glucose stimulation in mProx24 cells. Because the induction of MT was suppressed by pretreatment with vitamin E, the expression of MT-1/-2 is induced, at least in part, by high glucose-induced oxidative stress. These observations suggest that MT-1/-2 is induced in renal proximal tubular epithelial cells as an antioxidant to protect the kidney from oxidative stress, and may offer a novel therapeutic target against diabetic nephropathy.

  15. High Glucose Aggravates the Detrimental Effects of Pancreatic Stellate Cells on Beta-Cell Function

    Directory of Open Access Journals (Sweden)

    Min Zha

    2014-01-01

    Full Text Available Background and Aims. We here assess the effects of PSCs on β-cell function and apoptosis in vivo and in vitro. Materials and Methods. PSCs were transplanted into Wistar and Goto-Kakizaki (GK rats. Sixteen weeks after transplantation, β-cell function, apoptosis, and islet fibrosis were assessed. In vitro the effects of PSCs conditioned medium (PSCs-CM and/or high concentration of glucose on INS-1 cell function was assessed by measuring insulin secretion, INS-1 cell survival, apoptosis, and endoplasmic reticulum stress (ER stress associated CHOP expression. Results. PSCs transplantation exacerbated the impaired β-cell function in GK rats, but had no significant effects in Wistar rats. In vitro, PSCs-CM caused impaired INS-1 cell viability and insulin secretion and increased apoptosis, which were more pronounced in the presence of high glucose. Conclusion. Our study demonstrates that PSCs induce β-cell failure in vitro and in vivo.

  16. Vochysia rufa Stem Bark Extract Protects Endothelial Cells against High Glucose Damage

    Directory of Open Access Journals (Sweden)

    Neire Moura de Gouveia

    2017-02-01

    Full Text Available Background: Increased oxidative stress by persistent hyperglycemia is a widely accepted factor in vascular damage responsible for type 2 diabetes complications. The plant Vochysia rufa (Vr has been used in folk medicine in Brazil for the treatment of diabetes. Thus; the protective effect of a Vr stem bark extract against a challenge by a high glucose concentration on EA.hy926 (EA endothelial cells is evaluated. Methods: Vegetal material is extracted with distilled water by maceration and evaporated until dryness under vacuum. Then; it is isolated by capillary electrophoresis–tandem mass spectrometry. Cell viability is evaluated on EA cells treated with 0.5–100 µg/mL of the Vr extract for 24 h. The extract is diluted at concentrations of 5, 10 and 25 µg/mL and maintained for 24 h along with 30 mM of glucose to evaluate its protective effect on reduced glutathione (GSH; glutathione peroxidase (GPx and reductase (GR and protein carbonyl groups. Results: V. rufa stem bark is composed mainly of sugars; such as inositol; galactose; glucose; mannose; sacarose; arabinose and ribose. Treatment with Vr up to 100 µg/mL for 24 h did not affect cell viability. Treatment of EA cells with 30 mM of glucose for 24 h significantly increased the cell damage. EA cells treated with 30 mM of glucose showed a decrease of GSH concentration and increased Radical Oxygen Species (ROS and activity of antioxidant enzymes and protein carbonyl levels; compared to control. Co-treatment of EA with 30 mM glucose plus 1–10 μg/mL Vr significantly reduced cell damage while 5–25 μg/mL Vr evoked a significant protection against the glucose insult; recovering ROS; GSH; antioxidant enzymes and carbonyls to baseline levels. Conclusion: V. rufa extract protects endothelial cells against oxidative damage by modulating ROS; GSH concentration; antioxidant enzyme activity and protein carbonyl levels.

  17. Long-term feeding of red algae (Gelidium amansii ameliorates glucose and lipid metabolism in a high fructose diet-impaired glucose tolerance rat model

    Directory of Open Access Journals (Sweden)

    Hshuan-Chen Liu

    2017-07-01

    Full Text Available This study was designed to investigate the effect of Gelidium amansii (GA on carbohydrate and lipid metabolism in rats with high fructose (HF diet (57.1% w/w. Five-week-old male Sprague-Dawley rats were fed a HF diet to induce glucose intolerance and hyperlipidemia. The experiment was divided into three groups: (1 control diet group (Con; (2 HF diet group (HF; and (3 HF with GA diet group (HF + 5% GA. The rats were fed the experimental diets and drinking water ad libitum for 23 weeks. The results showed that GA significantly decreased retroperitoneal fat mass weight of HF diet-fed rats. Supplementation of GA caused a decrease in plasma glucose, insulin, tumor necrosis factor-α, and leptin. HF diet increased hepatic lipid content. However, intake of GA reduced the accumulation of hepatic lipids including total cholesterol (TC and triglyceride contents. GA elevated the excretion of fecal lipids and bile acid in HF diet-fed rats. Furthermore, GA significantly decreased plasma TC, triglyceride, low density lipoprotein plus very low density lipoprotein cholesterol, and TC/high density lipoprotein cholesterol ratio in HF diet-fed rats. HF diet induced an in plasma glucose and an impaired glucose tolerance, but GA supplementation decreased homeostasis model assessment equation-insulin resistance and improved impairment of glucose tolerance. Taken together, these results indicate that supplementation of GA can improve the impairment of glucose and lipid metabolism in an HF diet-fed rat model.

  18. Long-term feeding of red algae (Gelidium amansii) ameliorates glucose and lipid metabolism in a high fructose diet-impaired glucose tolerance rat model.

    Science.gov (United States)

    Liu, Hshuan-Chen; Chang, Chun-Ju; Yang, Tsung-Han; Chiang, Meng-Tsan

    2017-07-01

    This study was designed to investigate the effect of Gelidium amansii (GA) on carbohydrate and lipid metabolism in rats with high fructose (HF) diet (57.1% w/w). Five-week-old male Sprague-Dawley rats were fed a HF diet to induce glucose intolerance and hyperlipidemia. The experiment was divided into three groups: (1) control diet group (Con); (2) HF diet group (HF); and (3) HF with GA diet group (HF + 5% GA). The rats were fed the experimental diets and drinking water ad libitum for 23 weeks. The results showed that GA significantly decreased retroperitoneal fat mass weight of HF diet-fed rats. Supplementation of GA caused a decrease in plasma glucose, insulin, tumor necrosis factor-α, and leptin. HF diet increased hepatic lipid content. However, intake of GA reduced the accumulation of hepatic lipids including total cholesterol (TC) and triglyceride contents. GA elevated the excretion of fecal lipids and bile acid in HF diet-fed rats. Furthermore, GA significantly decreased plasma TC, triglyceride, low density lipoprotein plus very low density lipoprotein cholesterol, and TC/high density lipoprotein cholesterol ratio in HF diet-fed rats. HF diet induced an in plasma glucose and an impaired glucose tolerance, but GA supplementation decreased homeostasis model assessment equation-insulin resistance and improved impairment of glucose tolerance. Taken together, these results indicate that supplementation of GA can improve the impairment of glucose and lipid metabolism in an HF diet-fed rat model. Copyright © 2016. Published by Elsevier B.V.

  19. Data quality assurance: an analysis of patient non-response.

    Science.gov (United States)

    Derby, Dustin C; Haan, Andrea; Wood, Kurt

    2011-01-01

    Patient satisfaction is paramount to maintaining high clinical quality assurance. This study seeks to compare response rates, response bias, and the completeness of data between paper and electronic collection modes of a chiropractic patient satisfaction survey. A convenience sample of 206 patients presenting to a chiropractic college clinic were surveyed concerning satisfaction with their chiropractic care. Paper (in-clinic and postal) and electronic modes of survey administration were compared for response rates and non-response bias. The online data collection mode resulted in fewer non-responses and a higher response rate, and did not evince response bias when compared to paper modes. The postal paper mode predicted non-response rates over the in-clinic paper and online modalities and exhibited a gender bias. This current study was a single clinic study; future studies should consider multi-clinic data collections. Busy clinic operations and available staff resources restricted the ability to conduct a random sampling of patients or to invite all eligible patients, therefore limiting the generalizability of collected survey data. Results of this study will provide data to aid development of survey protocols that efficiently, account for available human resources, and are convenient for patients while allowing for the most complete and accurate data collection possible in an educational clinic setting. Understanding patient responses across survey modes is critical for the cultivation of quality business intelligence within college teaching clinic settings. This study bridges measurement evidence from three popular data collection modalities and offers support for higher levels of quality for web-based data collection.

  20. Insights from the Fungus Fusarium oxysporum Point to High Affinity Glucose Transporters as Targets for Enhancing Ethanol Production from Lignocellulose

    Science.gov (United States)

    Ali, Shahin S.; Nugent, Brian; Mullins, Ewen; Doohan, Fiona M.

    2013-01-01

    Ethanol is the most-widely used biofuel in the world today. Lignocellulosic plant biomass derived from agricultural residue can be converted to ethanol via microbial bioprocessing. Fungi such as Fusarium oxysporum can simultaneously saccharify straw to sugars and ferment sugars to ethanol. But there are many bottlenecks that need to be overcome to increase the efficacy of microbial production of ethanol from straw, not least enhancement of the rate of fermentation of both hexose and pentose sugars. This research tested the hypothesis that the rate of sugar uptake by F. oxysporum would enhance the ethanol yields from lignocellulosic straw and that high affinity glucose transporters can enhance ethanol yields from this substrate. We characterized a novel hexose transporter (Hxt) from this fungus. The F. oxysporum Hxt represents a novel transporter with homology to yeast glucose signaling/transporter proteins Rgt2 and Snf3, but it lacks their C-terminal domain which is necessary for glucose signalling. Its expression level decreased with increasing glucose concentration in the medium and in a glucose uptake study the Km(glucose) was 0.9 mM, which indicated that the protein is a high affinity glucose transporter. Post-translational gene silencing or over expression of the Hxt in F. oxysporum directly affected the glucose and xylose transport capacity and ethanol yielded by F. oxysporum from straw, glucose and xylose. Thus we conclude that this Hxt has the capacity to transport both C5 and C6 sugars and to enhance ethanol yields from lignocellulosic material. This study has confirmed that high affinity glucose transporters are ideal candidates for improving ethanol yields from lignocellulose because their activity and level of expression is high in low glucose concentrations, which is very common during the process of consolidated processing. PMID:23382943

  1. Insights from the fungus Fusarium oxysporum point to high affinity glucose transporters as targets for enhancing ethanol production from lignocellulose.

    Directory of Open Access Journals (Sweden)

    Shahin S Ali

    Full Text Available Ethanol is the most-widely used biofuel in the world today. Lignocellulosic plant biomass derived from agricultural residue can be converted to ethanol via microbial bioprocessing. Fungi such as Fusarium oxysporum can simultaneously saccharify straw to sugars and ferment sugars to ethanol. But there are many bottlenecks that need to be overcome to increase the efficacy of microbial production of ethanol from straw, not least enhancement of the rate of fermentation of both hexose and pentose sugars. This research tested the hypothesis that the rate of sugar uptake by F. oxysporum would enhance the ethanol yields from lignocellulosic straw and that high affinity glucose transporters can enhance ethanol yields from this substrate. We characterized a novel hexose transporter (Hxt from this fungus. The F. oxysporum Hxt represents a novel transporter with homology to yeast glucose signaling/transporter proteins Rgt2 and Snf3, but it lacks their C-terminal domain which is necessary for glucose signalling. Its expression level decreased with increasing glucose concentration in the medium and in a glucose uptake study the Km((glucose was 0.9 mM, which indicated that the protein is a high affinity glucose transporter. Post-translational gene silencing or over expression of the Hxt in F. oxysporum directly affected the glucose and xylose transport capacity and ethanol yielded by F. oxysporum from straw, glucose and xylose. Thus we conclude that this Hxt has the capacity to transport both C5 and C6 sugars and to enhance ethanol yields from lignocellulosic material. This study has confirmed that high affinity glucose transporters are ideal candidates for improving ethanol yields from lignocellulose because their activity and level of expression is high in low glucose concentrations, which is very common during the process of consolidated processing.

  2. High normal fasting glucose level in obese youth: a marker for insulin resistance and beta cell dysregulation.

    LENUS (Irish Health Repository)

    O'Malley, G

    2010-06-01

    A high but normal fasting plasma glucose level in adults is a risk factor for future development of type 2 diabetes mellitus and cardiovascular disease. We investigated whether normal fasting plasma glucose levels (<5.60 mmol\\/l) are associated with decreases in insulin sensitivity and beta cell function, as well as an adverse cardiovascular profile in obese youth.

  3. A hardware acceleration based on high-level synthesis approach for glucose-insulin analysis

    Science.gov (United States)

    Daud, Nur Atikah Mohd; Mahmud, Farhanahani; Jabbar, Muhamad Hairol

    2017-01-01

    In this paper, the research is focusing on Type 1 Diabetes Mellitus (T1DM). Since this disease requires a full attention on the blood glucose concentration with the help of insulin injection, it is important to have a tool that able to predict that level when consume a certain amount of carbohydrate during meal time. Therefore, to make it realizable, a Hovorka model which is aiming towards T1DM is chosen in this research. A high-level language is chosen that is C++ to construct the mathematical model of the Hovorka model. Later, this constructed code is converted into intellectual property (IP) which is also known as a hardware accelerator by using of high-level synthesis (HLS) approach which able to improve in terms of design and performance for glucose-insulin analysis tool later as will be explained further in this paper. This is the first step in this research before implementing the design into system-on-chip (SoC) to achieve a high-performance system for the glucose-insulin analysis tool.

  4. Nod-like receptor protein 1 inflammasome mediates neuron injury under high glucose.

    Science.gov (United States)

    Meng, Xian-Fang; Wang, Xiao-Lan; Tian, Xiu-Juan; Yang, Zhi-Hua; Chu, Guang-Pin; Zhang, Jing; Li, Man; Shi, Jing; Zhang, Chun

    2014-04-01

    Diabetic encephalopathy is one of the most common complications of diabetes. Inflammatory events during diabetes may be an important mechanism of diabetic encephalopathy. Inflammasome is a multiprotein complex consisting of Nod-like receptor proteins (NLRPs), apoptosis-associated speck-like protein (ASC), and caspase 1 or 5, which functions to switch on the inflammatory process and the release of inflammatory factors. The present study hypothesized that the formation and activation of NLRP1 inflammasome turns on neuroinflammation and neuron injury during hyperglycemia. The results demonstrated that the levels of interleukin-1 beta (IL-1β) were increased in the cortex of streptozocin (STZ)-induced diabetic rats. The levels of mature IL-1β and IL-18 were also elevated in culture medium of neurons treated with high glucose (50 mM). The expression of three essential components of the NLRP1 inflammasome complex, namely, NLRP1, ASC, and caspase 1, was also upregulated in vivo and in vitro under high glucose. Silencing the ASC gene prevented the caspase-1 activation, and inhibiting caspase 1 activity blocked hyperglycemia-induced release of inflammatory factors and neuron injury. Moreover, we found that pannexin 1 mediated the actvitation of NLRP1 inflammasome under high glucose. These results suggest that hyperglycemia induces neuroinflammation through activation of NLRP1 inflammasome, which represents a novel mechanism of diabetes-associated neuron injury.

  5. Enzyme controlled glucose auto-delivery for high cell density cultivations in microplates and shake flasks

    Directory of Open Access Journals (Sweden)

    Casteleijn Marco G

    2008-11-01

    Full Text Available Abstract Background Here we describe a novel cultivation method, called EnBase™, or enzyme-based-substrate-delivery, for the growth of microorganisms in millilitre and sub-millilitre scale which yields 5 to 20 times higher cell densities compared to standard methods. The novel method can be directly applied in microwell plates and shake flasks without any requirements for additional sensors or liquid supply systems. EnBase is therefore readily applicable for many high throughput applications, such as DNA production for genome sequencing, optimisation of protein expression, production of proteins for structural genomics, bioprocess development, and screening of enzyme and metagenomic libraries. Results High cell densities with EnBase are obtained by applying the concept of glucose-limited fed-batch cultivation which is commonly used in industrial processes. The major difference of the novel method is that no external glucose feed is required, but glucose is released into the growth medium by enzymatic degradation of starch. To cope with the high levels of starch necessary for high cell density cultivation, starch is supplied to the growing culture suspension by continuous diffusion from a storage gel. Our results show that the controlled enzyme-based supply of glucose allows a glucose-limited growth to high cell densities of OD600 = 20 to 30 (corresponding to 6 to 9 g l-1 cell dry weight without the external feed of additional compounds in shake flasks and 96-well plates. The final cell density can be further increased by addition of extra nitrogen during the cultivation. Production of a heterologous triosphosphate isomerase in E. coli BL21(DE3 resulted in 10 times higher volumetric product yield and a higher ratio of soluble to insoluble product when compared to the conventional production method. Conclusion The novel EnBase method is robust and simple-to-apply for high cell density cultivation in shake flasks and microwell plates. The

  6. Highly ordered Ni–Ti–O nanotubes for non-enzymatic glucose detection

    Energy Technology Data Exchange (ETDEWEB)

    Hang, Ruiqiang, E-mail: hangruiqiang@tyut.edu.cn [Research Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Liu, Yanlian [Research Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Gao, Ang [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Bai, Long; Huang, Xiaobo; Zhang, Xiangyu; Lin, Naiming [Research Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Tang, Bin, E-mail: tangbin@tyut.edu.cn [Research Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Chu, Paul K. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)

    2015-06-01

    Anodization is used to fabricate Ni–Ti–O nanotube (NT) electrodes for non-enzymatic glucose detection. The morphology, microstructure and composition of the materials are characterized by field emission scanning electron microscopy (FE-SEM), high resolution transmission electron microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS). Our results show amorphous and highly ordered NTs with diameter of 50 nm, length of 800 nm, and Ni/Ti ratio (at %) of 0.35 can be fabricated in ethylene glycol electrolyte supplemented with 0.2 wt.% NH{sub 4}F and 0.5 vol.% H{sub 2}O at 30 °C and 25 V for 1 h. Electrochemical experiments indicate that at an applied potential of 0.60 V vs. Ag/AgCl, the electrode exhibits a linear response window for glucose concentrations from 0.002 mM to 0.2 mM with a response time of 10 s, detection limit of 0.13 μM (S/N = 3), and sensitivity of 83 μA mM{sup −1} cm{sup −2}. The excellent performance of the electrode is attributed to its large specific area and fast electron transfer between the NT walls. The good electrochemical performance of the Ni–Ti–O NTs as well as their simple and low-cost preparation method make the strategy promising in non-enzymatic glucose detection. - Highlights: • Highly ordered Ni–Ti–O nanotubes have been fabricated by one-step anodization. • We find H{sub 2}O contents in the electrolyte is critical to successful fabrication of the NTs. • The Ni–Ti–O nanotubes are ideal electrode materials for non-enzymatic glucose detection.

  7. RAGE-dependent potentiation of TRPV1 currents in sensory neurons exposed to high glucose.

    Science.gov (United States)

    Lam, Doris; Momeni, Zeinab; Theaker, Michael; Jagadeeshan, Santosh; Yamamoto, Yasuhiko; Ianowski, Juan P; Campanucci, Verónica A

    2018-01-01

    Diabetes mellitus is associated with sensory abnormalities, including exacerbated responses to painful (hyperalgesia) or non-painful (allodynia) stimuli. These abnormalities are symptoms of diabetic peripheral neuropathy (DPN), which is the most common complication that affects approximately 50% of diabetic patients. Yet, the underlying mechanisms linking hyperglycemia and symptoms of DPN remain poorly understood. The transient receptor potential vanilloid 1 (TRPV1) channel plays a central role in such sensory abnormalities and shows elevated expression levels in animal models of diabetes. Here, we investigated the function of TRPV1 channels in sensory neurons cultured from the dorsal root ganglion (DRG) of neonatal mice, under control (5mM) and high glucose (25mM) conditions. After maintaining DRG neurons in high glucose for 1 week, we observed a significant increase in capsaicin (CAP)-evoked currents and CAP-evoked depolarizations, independent of TRPV1 channel expression. These functional changes were largely dependent on the expression of the receptor for Advanced Glycation End-products (RAGE), calcium influx, cytoplasmic ROS accumulation, PKC, and Src kinase activity. Like cultured neurons from neonates, mature neurons from adult mice also displayed a similar potentiation of CAP-evoked currents in the high glucose condition. Taken together, our data demonstrate that under the diabetic condition, DRG neurons are directly affected by elevated levels of glucose, independent of vascular or glial signals, and dependent on RAGE expression. These early cellular and molecular changes to sensory neurons in vitro are potential mechanisms that might contribute to sensory abnormalities that can occur in the very early stages of diabetes.

  8. Effect of Buddleja officinalis on high-glucose-induced vascular inflammation in human umbilical vein endothelial cells.

    Science.gov (United States)

    Lee, Yun Jung; Kang, Dae Gill; Kim, Jin Sook; Lee, Ho Sub

    2008-06-01

    In this study, we aimed to investigate whether an aqueous extract of Buddleja officinalis (ABO) suppresses high-glucose-induced vascular inflammatory processes in the primary cultured human umbilical vein endothelial cells (HUVEC). The high-glucose-induced increase in expression of cell adhesion molecules (CAMs) such as intracellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and endothelial-selectin (E-selectin) was significantly attenuated by pretreatment with ABO in a dose-dependent manner. Enhanced cell adhesion caused by high glucose in co-cultured U937 and HUVEC was also blocked by pretreatment with ABO. Pretreatment with ABO also blocked formation of high-glucose-induced reactive oxygen species (ROS). In addition, ABO suppressed the transcriptional activity of NF-kappaB and IkappaB phosphorylation under high-glucose conditions. Pretreatment with N(G)-nitro-l-arginine methyl ester (L-NAME), an endothelial nitric oxide (NO) synthase inhibitor, attenuated the protective action of ABO on high-glucose-induced CAM expression, suggesting a potential role of NO signaling. The present data suggest that ABO could suppress high-glucose-induced vascular inflammatory processes, and ABO may be closely related with the inhibition of ROS and NF-kappaB activation in HUVEC.

  9. Anti-angiogenic mechanism of cordycepin on rhesus macaque choroid-retinal endothelial cell line cultured in high glucose condition

    Directory of Open Access Journals (Sweden)

    Xiao-Li Zhu*

    2016-07-01

    Full Text Available AIM: To investigate the angiogenesis effect and protective mechanism of cordycepin on rhesus macaque choroid-retinal endothelial(RF/6Acell line cultured in high glucose condition. METHODS: Cultured RF/6A cells were divided into normal control group, high glucose group and high glucose(HG+ different concentration cordycepin groups(HG+10μg/mL group, HG+50μg/mL group, HG+100μg/mL group. The cell proliferation was assessed using cholecystokinin octapeptide dye after treated for 48h. The cell migration was investigated by a Transwell assay. The tube formation was measured on Matrigel. Furthermore, the impact of cordycepin on high glucose-induced activation of VEGF and VEGF receptor 2(VEGFR-2was tested by Western blot analysis. RESULTS: Compared with normal control group, cell viability markedly increased in high glucose group(PPPPPPvs normal control group, oppositely gradually decreased with the increase of cordycepin concentrations, and had a statistically significant difference vs high glucose group(PCONCLUSION: Cordycepin can suppress the proliferation, migration and tubu formation of RF/6A in high glucose condition, might via inhibiting expression of VEGF and VEGFR-2.

  10. High-performance glucose biosensor based on chitosan-glucose oxidase immobilized polypyrrole/Nafion/functionalized multi-walled carbon nanotubes bio-nanohybrid film.

    Science.gov (United States)

    Shrestha, Bishnu Kumar; Ahmad, Rafiq; Mousa, Hamouda M; Kim, In-Gi; Kim, Jeong In; Neupane, Madhav Prasad; Park, Chan Hee; Kim, Cheol Sang

    2016-11-15

    A highly electroactive bio-nanohybrid film of polypyrrole (PPy)-Nafion (Nf)-functionalized multi-walled carbon nanotubes (fMWCNTs) nanocomposite was prepared on the glassy carbon electrode (GCE) by a facile one-step electrochemical polymerization technique followed by chitosan-glucose oxidase (CH-GOx) immobilization on its surface to achieve a high-performance glucose biosensor. The as-fabricated nanohybrid composite provides high surface area for GOx immobilization and thus enhances the enzyme-loading efficiency. The structural characterization revealed that the PPy-Nf-fMWCNTs nanocomposite films were uniformly formed on GCE and after GOx immobilization, the surface porosities of the film were decreased due to enzyme encapsulation inside the bio-nanohybrid composite materials. The electrochemical behavior of the fabricated biosensor was investigated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and amperometry measurements. The results indicated an excellent catalytic property of bio-nanohybrid film for glucose detection with improved sensitivity of 2860.3μAmM(-1)cm(-2), the linear range up to 4.7mM (R(2)=0.9992), and a low detection limit of 5μM under a signal/noise (S/N) ratio of 3. Furthermore, the resulting biosensor presented reliable selectivity, better long-term stability, good repeatability, reproducibility, and acceptable measurement of glucose concentration in real serum samples. Thus, this fabricated biosensor provides an efficient and highly sensitive platform for glucose sensing and can open up new avenues for clinical applications. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Targeted Modification of Mitochondrial ROS Production Converts High Glucose-Induced Cytotoxicity to Cytoprotection: Effects on Anesthetic Preconditioning.

    Science.gov (United States)

    Sedlic, Filip; Muravyeva, Maria Y; Sepac, Ana; Sedlic, Marija; Williams, Anna Marie; Yang, Meiying; Bai, Xiaowen; Bosnjak, Zeljko J

    2017-01-01

    Contradictory reports on the effects of diabetes and hyperglycemia on myocardial infarction range from cytotoxicity to cytoprotection. The study was designed to investigate acute effects of high glucose-driven changes in mitochondrial metabolism and osmolarity on adaptive mechanisms and resistance to oxidative stress of isolated rat cardiomyocytes. We examined the effects of high glucose on several parameters of mitochondrial bioenergetics, including changes in oxygen consumption, mitochondrial membrane potential, and NAD(P)H fluorometry. Effects of high glucose on the endogenous cytoprotective mechanisms elicited by anesthetic preconditioning (APC) and the mediators of cell injury were also tested. These experiments included real-time measurements of reactive oxygen species (ROS) production and mitochondrial permeability transition pore (mPTP) opening in single cells by laser scanning fluorescence confocal microscopy, and cell survival assay. High glucose rapidly enhanced mitochondrial energy metabolism, observed by increase in NAD(P)H fluorescence intensity, oxygen consumption, and mitochondrial membrane potential. This substantially elevated production of ROS, accelerated opening of the mPTP, and decreased survival of cells exposed to oxidative stress. Abrogation of high glucose-induced mitochondrial hyperpolarization with 2,4 dinitrophenol (DNP) significantly, but not completely, attenuated ROS production to a level similar to hyperosmotic mannitol control. DNP treatment reversed high glucose-induced cytotoxicity to cytoprotection. Hyperosmotic mannitol treatment also induced cytoprotection. High glucose abrogated APC-induced mitochondrial depolarization, delay in mPTP opening and cytoprotection. In conclusion, high glucose-induced mitochondrial hyperpolarization abolishes APC and augments cell injury. Attenuation of high glucose-induced ROS production by eliminating mitochondrial hyperpolarization protects cardiomyocytes. J. Cell. Physiol. 232: 216-224, 2017

  12. Ultra-high-throughput screening method for the directed evolution of glucose oxidase.

    Science.gov (United States)

    Ostafe, Raluca; Prodanovic, Radivoje; Nazor, Jovana; Fischer, Rainer

    2014-03-20

    Glucose oxidase (GOx) is used in many industrial processes that could benefit from improved versions of the enzyme. Some improvements like higher activity under physiological conditions and thermal stability could be useful for GOx applications in biosensors and biofuel cells. Directed evolution is one of the currently available methods to engineer improved GOx variants. Here, we describe an ultra-high-throughput screening system for sorting the best enzyme variants generated by directed evolution that incorporates several methodological refinements: flow cytometry, in vitro compartmentalization, yeast surface display, fluorescent labeling of the expressed enzyme, delivery of glucose substrate to the reaction mixture through the oil phase, and covalent labeling of the cells with fluorescein-tyramide. The method enables quantitative screening of gene libraries to identify clones with improved activity and it also allows cells to be selected based not only on the overall activity but also on the specific activity of the enzyme. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. PP2A contributes to endothelial death in high glucose: inhibition by benfotiamine.

    Science.gov (United States)

    Du, Y; Kowluru, A; Kern, T S

    2010-12-01

    Endothelial death is critical in diabetic vascular diseases, but regulating factors have been only partially elucidated. Phosphatases play important regulatory roles in cell metabolism, but have not previously been implicated in hyperglycemia-induced cell death. We investigated the role of the phosphatase, type 2A protein phosphatase (PP2A), in hyperglycemia-induced changes in signaling and death in bovine aortic endothelial cells (BAEC). We explored also the influence of benfotiamine on this phosphatase. Activation of PP2A was assessed in BAEC by the extent of methylation and measurement of activity, and the enzyme was inhibited using selective pharmacological (okadaic acid, sodium fostriecin) and molecular (small interfering RNA) approaches. BAECs cultured in 30 mM glucose significantly increased PP2A methylation and activity, and PP2A inhibitors blocked these abnormalities. PP2A activity was increased also in aorta and retina from diabetic rats. NF-κB activity and cell death in BAEC were significantly increased in 30 mM glucose and inhibited by PP2A inhibition. NF-κB played a role in the hyperglycemia-induced death of BAEC, since blocking its translocation with SN50 also inhibited cell death. Inhibition of PP2A blocked the hyperglycemia-induced dephosphorylation of NF-κB and Bad, thus favoring cell survival. Incubation of benfotiamine with BAEC inhibited the high glucose-induced activation of PP2A and NF-κB and cell death, as well as several other metabolic defects, which likewise were inhibited by inhibitors of PP2A. Activation of PP2A contributes to endothelial cell death in high glucose, and beneficial actions of benfotiamine are due, at least in part, to inhibition of PP2A activation.

  14. Coenzyme Q10 Attenuates High Glucose-Induced Endothelial Progenitor Cell Dysfunction through AMP-Activated Protein Kinase Pathways

    Directory of Open Access Journals (Sweden)

    Hsiao-Ya Tsai

    2016-01-01

    Full Text Available Coenzyme Q10 (CoQ10, an antiapoptosis enzyme, is stored in the mitochondria of cells. We investigated whether CoQ10 can attenuate high glucose-induced endothelial progenitor cell (EPC apoptosis and clarified its mechanism. EPCs were incubated with normal glucose (5 mM or high glucose (25 mM enviroment for 3 days, followed by treatment with CoQ10 (10 μM for 24 hr. Cell proliferation, nitric oxide (NO production, and JC-1 assay were examined. The specific signal pathways of AMP-activated protein kinase (AMPK, eNOS/Akt, and heme oxygenase-1 (HO-1 were also assessed. High glucose reduced EPC functional activities, including proliferation and migration. Additionally, Akt/eNOS activity and NO production were downregulated in high glucose-stimulated EPCs. Administration of CoQ10 ameliorated high glucose-induced EPC apoptosis, including downregulation of caspase 3, upregulation of Bcl-2, and increase in mitochondrial membrane potential. Furthermore, treatment with CoQ10 reduced reactive oxygen species, enhanced eNOS/Akt activity, and increased HO-1 expression in high glucose-treated EPCs. These effects were negated by administration of AMPK inhibitor. Transplantation of CoQ10-treated EPCs under high glucose conditions into ischemic hindlimbs improved blood flow recovery. CoQ10 reduced high glucose-induced EPC apoptosis and dysfunction through upregulation of eNOS, HO-1 through the AMPK pathway. Our findings provide a potential treatment strategy targeting dysfunctional EPC in diabetic patients.

  15. Coenzyme Q10 Attenuates High Glucose-Induced Endothelial Progenitor Cell Dysfunction through AMP-Activated Protein Kinase Pathways

    Science.gov (United States)

    Tsai, Hsiao-Ya; Lin, Chih-Pei; Huang, Po-Hsun; Li, Szu-Yuan; Chen, Jia-Shiong; Lin, Feng-Yen; Chen, Jaw-Wen; Lin, Shing-Jong

    2016-01-01

    Coenzyme Q10 (CoQ10), an antiapoptosis enzyme, is stored in the mitochondria of cells. We investigated whether CoQ10 can attenuate high glucose-induced endothelial progenitor cell (EPC) apoptosis and clarified its mechanism. EPCs were incubated with normal glucose (5 mM) or high glucose (25 mM) enviroment for 3 days, followed by treatment with CoQ10 (10 μM) for 24 hr. Cell proliferation, nitric oxide (NO) production, and JC-1 assay were examined. The specific signal pathways of AMP-activated protein kinase (AMPK), eNOS/Akt, and heme oxygenase-1 (HO-1) were also assessed. High glucose reduced EPC functional activities, including proliferation and migration. Additionally, Akt/eNOS activity and NO production were downregulated in high glucose-stimulated EPCs. Administration of CoQ10 ameliorated high glucose-induced EPC apoptosis, including downregulation of caspase 3, upregulation of Bcl-2, and increase in mitochondrial membrane potential. Furthermore, treatment with CoQ10 reduced reactive oxygen species, enhanced eNOS/Akt activity, and increased HO-1 expression in high glucose-treated EPCs. These effects were negated by administration of AMPK inhibitor. Transplantation of CoQ10-treated EPCs under high glucose conditions into ischemic hindlimbs improved blood flow recovery. CoQ10 reduced high glucose-induced EPC apoptosis and dysfunction through upregulation of eNOS, HO-1 through the AMPK pathway. Our findings provide a potential treatment strategy targeting dysfunctional EPC in diabetic patients. PMID:26682233

  16. Convergence role of transcriptional coactivator p300 and apparent modification on HMCs metabolic memory induced by high glucose

    Directory of Open Access Journals (Sweden)

    Hong SU

    2013-03-01

    Full Text Available Objective  To investigate the protein expression of transcriptional coactivator p300, acetylated histone H3 (Ac-H3 and Ac-H4 in human renal mesangial cell (HMCs as imitative "metabolic memory" in vitro, and explore the potential role of convergence point of p300. Methods  The HMCs were divided into the following groups: ① High glucose metabolic memory model: normal glucose group (NG, 5.5mmol/L D-glucose×2d, high glucose group (HG, 25mmol/L D-glucose×2d, memory groups (M1, M2, M3, 25mmol/L D-glucose×2days + 5.5mmol/L D-glucose×3d, 6d or 9d, persisting normal glucose group (NG, 5.5mmol/L D-glucose×9d. ② Advanced glycation end products memory model: normal glucose group (NG, 5.5mmol/ L D-glucose×2d, NG+AGEs group (AGEs, 5.5mmol/L D-glucose+250µg/ml AGEs×2d; AGEs memory group (AGEs-M, 5.5mmol/L D-glucose + 250µg/ml AGEs×2d + 5.5mmol/L D-glucose×3d; BSA control group (NG+BSA, 5.5mmol/L D-glucose + 250µg/ml BSA×2d. ③ H2O2 was used to simulate oxidative stress memory model: normal glucose group (NG, 5.5mmol/L D-glucose×2d, NG+H2O2 group (H2O2, 5.5mmol/L D-glucose +100µmol/L H2O2×30min; H2O2 memory group [(5.5mmol/ L D-glucose + 100µmol/L H2O2×30min + 5.5mmol/L D-glucose×3d]; normal glucose control group (NG3, 5.5mmol/L D-glucose×3d. ④ Transfection with PKCβ2 memory model: normal glucose group (NG, 5.5mmol/L D-glucose×2d; high glucose group (HG, 25mmol/L D-glucose×2d; memory group (M, 25mmol/L D-glucose×2d + 5.5mmol/L D-glucose×3d; Ad5-null memory group (HN, 25mmol/L D-glucose + Ad5-null×2d + 5.5mmol/L D-glucose×3d; PKCβ2 memory group (PO, 25mmol/L D-glucose + Ad5-PKCβ2×2d + 5.5mmol/L D-glucose×3d; inhibitor of PKCβ2 memory group (PI, 25mmol/L D-glucose×2d + 10µmol/L CGP53353 + 5.5mmol/L D-glucose×3d. The expression of intracellular reactive oxygen species (ROS was detected by fluorescence microscope and fluorescence microplate reader. The expression levels of p300, Ac-H3, Ac-H4 and PKCβ2 proteins were

  17. Effect of perilipin-5 on apoptosis of cardiac microvascular endothelial cells induced by high fat and high glucose in mice

    Directory of Open Access Journals (Sweden)

    Jin DU

    2017-12-01

    Full Text Available Objective To investigate the effects and mechanisms of perilipin-5 (Plin5 on the apoptosis of mouse cardiac microvascular endothelial cells induced by high fat and high glucose. Methods The mouse cardiac microvascular endothelial cells (MCMECs cultured with high glucose medium were respectively given 0, 100, 300 and 500μmol/L palmitic acid for 24 hours. In order to explore the effects and mechanisms of Plin5 on MCMECs injuries induced by high fat and high glucose, MCMECs exposed to 300μmol/L palmitic acid for 24 hours were divided into control group, Scra siRNA group and Plin5 siRNA group. The control group was only treated with transfection reagent, the Scra siRNA group was given treatment of transfection reagent and garbled RNA, the Plin5 siRNA group was given treatment of transfection reagent and Plin5 specific siRNA. In order to further confirm the specific mechanism of Plin5 in high fat/glucose inducing MCMECs injury, MCMECs in Plin5 siRNA group were divided into vehicle group and N-acetyl cysteine (NAC group, and given the same intervention of high fat. The apoptotic rate was detected by flow cytometry, qRT-PCR and Western blotting were respectively used to detect the mRNA and protein expression of Plin5, and the intracellular reactive oxygen species (ROS level was tested by DHE staining and ELISA kit. Results The apoptotic rate of MCMECs was increased in a fat concentration-dependent manner (P<0.05. Compared with 0μmol/L palmitic acid group, the intracellular ROS content and the expression of Plin5 increased significantly in 300μmol/L palmitic acid group (P<0.05. Compared with the control group and the Scra siRNA group, the intracellular ROS content and apoptotic rate increased significantly in Plin5 siRNA group under the action of 300μmol/L palmitic acid (P<0.05. Compared with the vehicle group, the intracellular ROS content and apoptotic rate decreased remarkably in NAC group (P<0.05. Conclusion With inhibition of oxidative stress

  18. Fast, Highly-Sensitive, and Wide-Dynamic-Range Interdigitated Capacitor Glucose Biosensor Using Solvatochromic Dye-Containing Sensing Membrane.

    Science.gov (United States)

    Khan, Md Rajibur Rahaman; Khalilian, Alireza; Kang, Shin-Won

    2016-02-20

    In this paper, we proposed an interdigitated capacitor (IDC)-based glucose biosensor to measure different concentrations of glucose from 1 μM to 1 M. We studied four different types of solvatochromic dyes: Auramine O, Nile red, Rhodamine B, and Reichardt's dye (R-dye). These dyes were individually incorporated into a polymer [polyvinyl chloride (PVC)] and N,N-Dimethylacetamide (DMAC) solution to make the respective dielectric/sensing materials. To the best of our knowledge, we report for the first time an IDC glucose biosensing system utilizing a solvatochromic-dye-containing sensing membrane. These four dielectric or sensing materials were individually placed into the interdigitated electrode (IDE) by spin coating to make four IDC glucose biosensing elements. The proposed IDC glucose biosensor has a high sensing ability over a wide dynamic range and its sensitivity was about 23.32 mV/decade. It also has fast response and recovery times of approximately 7 s and 5 s, respectively, excellent reproducibility with a standard deviation of approximately 0.023, highly stable sensing performance, and real-time monitoring capabilities. The proposed IDC glucose biosensor was compared with an IDC, potentiometric, FET, and fiber-optic glucose sensor with respect to response time, dynamic range width, sensitivity, and linearity. We observed that the designed IDC glucose biosensor offered excellent performance.

  19. Fast, Highly-Sensitive, and Wide-Dynamic-Range Interdigitated Capacitor Glucose Biosensor Using Solvatochromic Dye-Containing Sensing Membrane

    Directory of Open Access Journals (Sweden)

    Md. Rajibur Rahaman Khan

    2016-02-01

    Full Text Available In this paper, we proposed an interdigitated capacitor (IDC-based glucose biosensor to measure different concentrations of glucose from 1 μM to 1 M. We studied four different types of solvatochromic dyes: Auramine O, Nile red, Rhodamine B, and Reichardt’s dye (R-dye. These dyes were individually incorporated into a polymer [polyvinyl chloride (PVC] and N,N-Dimethylacetamide (DMAC solution to make the respective dielectric/sensing materials. To the best of our knowledge, we report for the first time an IDC glucose biosensing system utilizing a solvatochromic-dye-containing sensing membrane. These four dielectric or sensing materials were individually placed into the interdigitated electrode (IDE by spin coating to make four IDC glucose biosensing elements. The proposed IDC glucose biosensor has a high sensing ability over a wide dynamic range and its sensitivity was about 23.32 mV/decade. It also has fast response and recovery times of approximately 7 s and 5 s, respectively, excellent reproducibility with a standard deviation of approximately 0.023, highly stable sensing performance, and real-time monitoring capabilities. The proposed IDC glucose biosensor was compared with an IDC, potentiometric, FET, and fiber-optic glucose sensor with respect to response time, dynamic range width, sensitivity, and linearity. We observed that the designed IDC glucose biosensor offered excellent performance.

  20. No difference between high-fructose and high-glucose diets on liver triacylglycerol or biochemistry in healthy overweight men.

    Science.gov (United States)

    Johnston, Richard D; Stephenson, Mary C; Crossland, Hannah; Cordon, Sally M; Palcidi, Elisa; Cox, Eleanor F; Taylor, Moira A; Aithal, Guruprasad P; Macdonald, Ian A

    2013-11-01

    Diets high in fructose have been proposed to contribute to nonalcoholic fatty liver disease. We compared the effects of high-fructose and matched glucose intake on hepatic triacylglycerol (TAG) concentration and other liver parameters. In a double-blind study, we randomly assigned 32 healthy but centrally overweight men to groups that received either a high-fructose or high-glucose diet (25% energy). These diets were provided during an initial isocaloric period of 2 weeks, followed by a 6-week washout period, and then again during a hypercaloric 2-week period. The primary outcome measure was hepatic level of TAG, with additional assessments of TAG levels in serum and soleus muscle, hepatic levels of adenosine triphosphate, and systemic and hepatic insulin resistance. During the isocaloric period of the study, both groups had stable body weights and concentrations of TAG in liver, serum, and soleus muscle. The high-fructose diet produced an increase of 22 ± 52 μmol/L in the serum level of uric acid, whereas the high-glucose diet led to a reduction of 23 ± 25 μmol/L (P fructose diet also produced an increase of 0.8 ± 0.9 in the homeostasis model assessment of insulin resistance, whereas the high-glucose diet produced an increase of only 0.1 ± 0.7 (P = .03). During the hypercaloric period, participants in the high-fructose and high-glucose groups had similar increases in weight (1.0 ± 1.4 vs 0.6 ± 1.0 kg; P = .29) and absolute concentration of TAG in liver (1.70% ± 2.6% vs 2.05% ± 2.9%; P = .73) and serum (0.36 ± 0.75 vs 0.33 ± 0.38 mmol/L; P = .91), and similar results in biochemical assays of liver function. Body weight changes were associated with changes in liver biochemistry and concentration of TAGs. In the isocaloric period, overweight men who were on a high-fructose or a high-glucose diet did not develop any significant changes in hepatic concentration of TAGs or serum levels of liver enzymes. However, in the hypercaloric period

  1. Fatal attraction in glycolysis: how Saccharomyces cerevisiae manages sudden transitions to high glucose

    Science.gov (United States)

    Heerden, Johan H. v.; Wortel, Meike T.; Bruggeman, Frank J.; Heijnen, Joseph J.; Bollen, Yves J.; Planqué, Robert; Hulshof, Josephus; O’Toole, Tom G.; Wahl, S. A.; Teusink, Bas

    2014-01-01

    In the model eukaryote Saccharomyces cerevisiae, it has long been known that a functional trehalose pathway is indispensable for transitions to high glucose conditions. Upon addition of glucose, cells with a defect in trehalose 6-phosphate synthase (Tps1), the first committed step in the trehalose pathway, display what we have termed an imbalanced glycolytic state; in this state the flux through the upper part of glycolysis outpaces that through the lower part of glycolysis. As a consequence, the intermediate fructose 1,6-bisphosphate (FBP) accumulates at low concentrations of ATP and inorganic phosphate (Pi). Despite significant research efforts, a satisfactory understanding of the regulatory role that trehalose metabolism plays during such transitions has remained infamously unresolved. In a recent study, we demonstrate that the startup of glycolysis exhibits two dynamic fates: a proper, functional, steady state or the imbalanced state described above. Both states are stable, attracting states, and the probability distribution of initial states determines the fate of a yeast cell exposed to glucose. Trehalose metabolism steers the dynamics of glycolysis towards the proper functional state through its ATP hydrolysis activity; a mechanism that ensures that the demand and supply of ATP is balanced with Pi availability under dynamic conditions. [van Heerden et al. Science (2014), DOI: 10.1126/science.1245114.] PMID:28357229

  2. Fatal attraction in glycolysis: how Saccharomyces cerevisiae manages sudden transitions to high glucose

    Directory of Open Access Journals (Sweden)

    Johan H. van Heerden

    2015-02-01

    Full Text Available In the model eukaryote Saccharomyces cerevisiae, it has long been known that a functional trehalose pathway is indispensable for transitions to high glucose conditions. Upon addition of glucose, cells with a defect in trehalose 6-phosphate synthase (Tps1, the first committed step in the trehalose pathway, display what we have termed an imbalanced glycolytic state; in this state the flux through the upper part of glycolysis outpaces that through the lower part of glycolysis. As a consequence, the intermediate fructose 1,6-bisphosphate (FBP accumulates at low concentrations of ATP and inorganic phosphate (Pi. Despite significant research efforts, a satisfactory understanding of the regulatory role that trehalose metabolism plays during such transitions has remained infamously unresolved. In a recent study, we demonstrate that the startup of glycolysis exhibits two dynamic fates: a proper, functional, steady state or the imbalanced state described above. Both states are stable, attracting states, and the probability distribution of initial states determines the fate of a yeast cell exposed to glucose. Trehalose metabolism steers the dynamics of glycolysis towards the proper functional state through its ATP hydrolysis activity; a mechanism that ensures that the demand and supply of ATP is balanced with Pi availability under dynamic conditions. [van Heerden et al. Science (2014, DOI: 10.1126/science.1245114.

  3. Interrelations between glucose-induced insulin response, metabolic indicators, and time of first ovulation in high-yielding dairy cows.

    Science.gov (United States)

    Bossaert, P; Leroy, J L M R; De Vliegher, S; Opsomer, G

    2008-09-01

    High-yielding dairy cows are more susceptible to metabolic and reproductive disorders than low-yielding cows. Insulin plays a pivotal role in the development of both problems. In the present study, we aimed to assess the glucose-induced insulin responses of dairy cows at different time points relative to calving and to relate this to the metabolic status and the time of first ovulation. Twenty-three healthy, multiparous Holstein-Friesian cows with a high genetic merit for milk yield were studied from 14 d prepartum to 42 d postpartum. Intravenous glucose tolerance tests were performed on -14, 14, and 42 d relative to calving to evaluate the plasma insulin and glucose responses to a glucose load, as estimated by the peak concentration, the area under the curve (AUC), and the clearance rates of insulin and glucose. Blood samples were obtained at 3-d intervals and analyzed for glucose, insulin, and nonesterified fatty acids (NEFA). The time of first ovulation was defined by transrectal ultrasonography and plasma progesterone analysis. Glucose-induced insulin AUC and peak concentration decreased and glucose clearance increased during lactation compared with the dry period. Plasma NEFA concentrations were negatively related to insulin AUC and peak concentrations. Fourteen cows ovulated within 42 d postpartum, and the remaining 9 cows suffered from delayed resumption of ovarian function. Survival analysis demonstrated that cows with lower NEFA concentrations during the dry period tended to have earlier resumption of ovarian activity. In conclusion, our data suggest a decreased plasma insulin response to glucose postpartum in high-yielding dairy cows, possibly contributing to metabolic stress during the early postpartum period. It is hypothesized that NEFA impair glucose-induced insulin secretion in dairy cows. Additionally, our results suggest the importance of lipolysis during the transition period as a risk factor for delayed ovulation.

  4. The effect of extremely high glucose concentrations on 21 routine chemistry and thyroid Abbott assays: interference study.

    Science.gov (United States)

    Çuhadar, Serap; Köseoğlu, Mehmet; Çinpolat, Yasemin; Buğdaycı, Güler; Usta, Murat; Semerci, Tuna

    2016-01-01

    Extremely high glucose concentrations have been shown to interfere with creatinine assays especially with Jaffe method in peritoneal dialysate. Because diabetes is the fastest growing chronic disease in the world, laboratories study with varying glucose concentrations. We investigated whether different levels of glucose spiked in serum interfere with 21 routine chemistry and thyroid assays at glucose concentrations between 17-51 mmol/L. Baseline (group I) serum pool with glucose concentration of 5.55 (5.44-5.61) mmol/L was prepared from patient sera. Spiking with 20% dextrose solution, sample groups were obtained with glucose concentrations: 17.09, 34.52, and 50.95 mmol/L (group II, III, IV, respectively). Total of 21 biochemistry analytes and thyroid tests were studied on Abbott c8000 and i2000sr with commercial reagents. Bias from baseline value was checked statistically and clinically. Creatinine increased significantly by 8.74%, 31.66%, 55.31% at groups II, III, IV, respectively with P values of < 0.001. At the median glucose concentration of 50.95 mmol/L, calcium, albumin, chloride and FT4 biased significantly clinically (-0.85%, 1.63%, 0.65%, 7.4% with P values 0.138, 0.214, 0.004, < 0.001, respectively). Remaining assays were free of interference. Among the numerous biochemical parameters studied, only a few parameters are affected by dramatically increased glucose concentration. The creatinine measurements obtained in human sera with the Jaffe alkaline method at high glucose concentrations should be interpreted with caution. Other tests that were affected with extremely high glucose concentrations were calcium, albumin, chloride and FT4, hence results should be taken into consideration in patients with poor diabetic control.

  5. High glucose induces activation of NF-κB inflammatory signaling through IκBα sumoylation in rat mesangial cells

    International Nuclear Information System (INIS)

    Huang, Wei; Xu, Ling; Zhou, Xueqin; Gao, Chenlin; Yang, Maojun; Chen, Guo; Zhu, Jianhua; Jiang, Lan; Gan, Huakui; Gou, Fang; Feng, Hong; Peng, Juan; Xu, Yong

    2013-01-01

    Highlights: •The expression of SUMO1, SUMO2/3 under high glucose was obviously enhanced. •High glucose induced degradation of IκBα and activation of NF-κB pathway. •Sumoylation of IκBα in high glucose were significantly decreased. •The proteasome inhibitor MG132 could partially revert the degradation of IκBα. -- Abstract: The posttranslational modification of proteins by small ubiquitin-like modifiers (SUMOs) has emerged as an important regulatory mechanism for the alteration of protein activity, stability, and cellular localization. The latest research demonstrates that sumoylation is extensively involved in the regulation of the nuclear factor κB (NF-κB) pathway, which plays a critical role in the regulation of inflammation and contributes to fibrosis in diabetic nephropathy (DN). However, the role of sumoylation in the regulation of NF-κB signaling in DN is still unclear. In the present study, we cultured rat glomerular mesangial cells (GMCs) stimulated by high glucose and divided GMCs into six groups: normal glucose group (5.6 mmol/L), high glucose groups (10, 20, and 30 mmol/L), mannitol group (i.e., osmotic control group), and MG132 intervention group (30 mmol/L glucose with MG132, a proteasome inhibitor). The expression of SUMO1, SUMO2/3, IκBα, NF-κBp65, and monocyte chemotactic protein 1 (MCP-1) was measured by Western blot, reverse-transcription polymerase chain reaction, and indirect immunofluorescence laser scanning confocal microscopy. The interaction between SUMO1, SUMO2/3, and IκBα was observed by co-immunoprecipitation. The results showed that the expression of SUMO1 and SUMO2/3 was dose- and time-dependently enhanced by high glucose (p < 0.05). However, the expression of IκBα sumoylation in high glucose was significantly decreased compared with the normal glucose group (p < 0.05). The expression of IκBα was dose- and time-dependently decreased, and NF-κBp65 and MCP-1 were increased under high glucose conditions, which

  6. Blockade of store-operated calcium entry alleviates high glucose-induced neurotoxicity via inhibiting apoptosis in rat neurons.

    Science.gov (United States)

    Xu, Zhenkuan; Xu, Wenzhe; Song, Yan; Zhang, Bin; Li, Feng; Liu, Yuguang

    2016-07-25

    Altered store-operated calcium entry (SOCE) has been suggested to be involved in many diabetic complications. However, the association of altered SOCE and diabetic neuronal damage remains unclear. This study aimed to investigate the effects of altered SOCE on primary cultured rat neuron injury induced by high glucose. Our data demonstrated that high glucose increased rat neuron injury and upregulated the expression of store-operated calcium channel (SOC). Inhibition of SOCE by a pharmacological inhibitor and siRNA knockdown of stromal interaction molecule 1 weakened the intracellular calcium overload, restored mitochondrial membrane potential, downregulated cytochrome C release and inhibited cell apoptosis. As well, treatment with the calcium chelator BAPTA-AM prevented cell apoptosis by ameliorating the high glucose-increased intracellular calcium level. These findings suggest that SOCE blockade may alleviate high glucose-induced neuronal damage by inhibiting apoptosis. SOCE might be a promising therapeutic target in diabetic neurotoxicity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Lack of effect of dietary fiber on serum lipids, glucose, and insulin in healthy young men fed high starch diets.

    Science.gov (United States)

    Ullrich, I H; Albrink, M J

    1982-07-01

    Eight healthy young men were fed a 72% carbohydrate high starch diet either high or low in dietary fiber for 4 days in a double cross-over design. Both groups showed a slight transient increase in plasma triglyceride level and a decrease in total and high-density lipoprotein cholesterol. There were few differences in glucose and insulin levels after glucose and meal tolerance tests after each diet. Fasting triglycerides and high-density lipoprotein cholesterol were inversely related at base-line; insulin response to oral glucose was inversely related to high-density lipoprotein cholesterol levels at the end of the study. We conclude that a high carbohydrate high starch diet, whether high or low in fiber, caused little increase in triglycerides, with little difference between the high and low fiber diets. Dietary fiber did not influence the fall in plasma cholesterol or high-density lipoprotein cholesterol concentrations over and above that seen after the low fiber diet.

  8. Proinflammatory Effect of High Glucose Concentrations on HMrSV5 Cells via the Autocrine Effect of HMGB1

    Directory of Open Access Journals (Sweden)

    Yuening Chu

    2017-09-01

    Full Text Available Background: Peritoneal fibrosis, in which inflammation and apoptosis play crucial pathogenic roles, is a severe complication associated with the treatment of kidney failure with peritoneal dialysis (PD using a glucose-based dialysate. Mesothelial cells (MCs take part in the inflammatory processes by producing various cytokines and chemokines, such as monocyte chemoattractant protein 1 (MCP-1 and interleukin 8 (IL-8. The apoptosis of MCs induced by high glucose levels also contributes to complications of PD. High mobility group protein B1 (HMGB1 is an inflammatory factor that has repeatedly been proven to be related to the occurrence of peritoneal dysfunction.Aim: In this study, we aimed to explore the effect and underlying mechanism of endogenous HMGB1 in high-glucose-induced MC injury.Methods: The human peritoneal MC line, HMrSV5 was cultured in high-glucose medium and incubated with recombinant HMGB1. Cellular expression of HMGB1 was blocked using HMGB1 small interfering RNA (siRNA. Apoptosis and production of inflammatory factors as well as the potential intermediary signaling pathways were examined.Results: The major findings of these analyses were: (1 MCs secreted HMGB1 from the nucleus during exposure to high glucose levels; HMGB1 acted in an autocrine fashion on the MCs to promote the production of MCP-1 and IL-8; (2 HMGB1 had little effect on high-glucose-induced apoptosis of the MCs; and (3 HMGB1-mediated MCP-1 and IL-8 production depended on the activation of MAPK signaling pathways. In conclusion, endogenous HMGB1 plays an important role in the inflammatory reaction induced by high glucose on MCs via mitogen-activated protein kinase (MAPK signaling pathways, but it seems to have little effect on high-glucose-induced apoptosis.

  9. High glucose induces inflammatory cytokine through protein kinase C-induced toll-like receptor 2 pathway in gingival fibroblasts

    International Nuclear Information System (INIS)

    Jiang, Shao-Yun; Wei, Cong-Cong; Shang, Ting-Ting; Lian, Qi; Wu, Chen-Xuan; Deng, Jia-Yin

    2012-01-01

    Highlights: ► High glucose significantly induced TLR2 expression in gingival fibroblasts. ► High glucose increased NF-κB p65 nuclear activity, IL-1β and TNF-α levels. ► PKC-α/δ-TLR2 pathway is involved in periodontal inflammation under high glucose. -- Abstract: Toll-like receptors (TLRs) play a key role in innate immune response and inflammation, especially in periodontitis. Meanwhile, hyperglycemia can induce inflammation in diabetes complications. However, the activity of TLRs in periodontitis complicated with hyperglycemia is still unclear. In the present study, high glucose (25 mmol/l) significantly induced TLR2 expression in gingival fibroblasts (p < 0.05). Also, high glucose increased nuclear factor kappa B (NF-κB) p65 nuclear activity, tumor necrosis factor-α (TNF-α) and interleukin-lβ (IL-1β) levels. Protein kinase C (PKC)-α and δ knockdown with siRNA significantly decreased TLR2 and NF-κB p65 expression (p < 0.05), whereas inhibition of PKC-β had no effect on TLR2 and NF-κB p65 under high glucose (p < 0.05). Additional studies revealed that TLR2 knockdown significantly abrogated high-glucose-induced NF-κB expression and inflammatory cytokine secretion. Collectively, these data suggest that high glucose stimulates TNF-α and IL-1β secretion via inducing TLR2 through PKC-α and PKC-δ in human gingival fibroblasts.

  10. High glucose induces inflammatory cytokine through protein kinase C-induced toll-like receptor 2 pathway in gingival fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Shao-Yun, E-mail: jiangshaoyun@yahoo.com [School of Dentistry, Tianjin Medical University, 12 Qi Xiang Tai Street, Heping District, Tianjin 300070 (China); Wei, Cong-Cong; Shang, Ting-Ting; Lian, Qi; Wu, Chen-Xuan [School of Dentistry, Tianjin Medical University, 12 Qi Xiang Tai Street, Heping District, Tianjin 300070 (China); Deng, Jia-Yin, E-mail: yazhou2991@126.com [School of Dentistry, Tianjin Medical University, 12 Qi Xiang Tai Street, Heping District, Tianjin 300070 (China)

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer High glucose significantly induced TLR2 expression in gingival fibroblasts. Black-Right-Pointing-Pointer High glucose increased NF-{kappa}B p65 nuclear activity, IL-1{beta} and TNF-{alpha} levels. Black-Right-Pointing-Pointer PKC-{alpha}/{delta}-TLR2 pathway is involved in periodontal inflammation under high glucose. -- Abstract: Toll-like receptors (TLRs) play a key role in innate immune response and inflammation, especially in periodontitis. Meanwhile, hyperglycemia can induce inflammation in diabetes complications. However, the activity of TLRs in periodontitis complicated with hyperglycemia is still unclear. In the present study, high glucose (25 mmol/l) significantly induced TLR2 expression in gingival fibroblasts (p < 0.05). Also, high glucose increased nuclear factor kappa B (NF-{kappa}B) p65 nuclear activity, tumor necrosis factor-{alpha} (TNF-{alpha}) and interleukin-l{beta} (IL-1{beta}) levels. Protein kinase C (PKC)-{alpha} and {delta} knockdown with siRNA significantly decreased TLR2 and NF-{kappa}B p65 expression (p < 0.05), whereas inhibition of PKC-{beta} had no effect on TLR2 and NF-{kappa}B p65 under high glucose (p < 0.05). Additional studies revealed that TLR2 knockdown significantly abrogated high-glucose-induced NF-{kappa}B expression and inflammatory cytokine secretion. Collectively, these data suggest that high glucose stimulates TNF-{alpha} and IL-1{beta} secretion via inducing TLR2 through PKC-{alpha} and PKC-{delta} in human gingival fibroblasts.

  11. Amide group anchored glucose oxidase based anodic catalysts for high performance enzymatic biofuel cell

    Science.gov (United States)

    Chung, Yongjin; Ahn, Yeonjoo; Kim, Do-Heyoung; Kwon, Yongchai

    2017-01-01

    A new enzyme catalyst is formed by fabricating gold nano particle (GNP)-glucose oxidase (GOx) clusters that are then attached to polyethyleneimine (PEI) and carbon nanotube (CNT) with cross-linkable terephthalaldehyde (TPA) (TPA/[CNT/PEI/GOx-GNP]). Especially, amide bonds belonging to TPA play an anchor role for incorporating rigid bonding among GNP, GOx and CNT/PEI, while middle size GNP is well bonded with thiol group of GOx to form strong GNP-GOx cluster. Those bonds are identified by chemical and electrochemical characterizations like XPS and cyclic voltammogram. The anchording effect of amide bonds induces fast electron transfer and strong chemical bonding, resulting in enhancements in (i) catalytic activity, (ii) amount of immobilized GOx and (ii) performance of enzymatic biofuel cell (EBC) including the catalyst. Regarding the catalytic activity, the TPA/[CNT/PEI/GOx-GNP] produces high electron transfer rate constant (6 s-1), high glucose sensitivity (68 μA mM-1 cm-2), high maximum current density (113 μA cm-2), low charge transfer resistance (17.0 Ω cm2) and long-lasting durability while its chemical structure is characterized by XPS confirming large portion of amide bond. In EBC measurement, it has high maximum power density (0.94 mW cm-2) compatible with catalytic acitivity measurements.

  12. Long-Term Feeding of Chitosan Ameliorates Glucose and Lipid Metabolism in a High-Fructose-Diet-Impaired Rat Model of Glucose Tolerance

    Directory of Open Access Journals (Sweden)

    Shing-Hwa Liu

    2015-12-01

    Full Text Available This study was designed to investigate the effects of long-term feeding of chitosan on plasma glucose and lipids in rats fed a high-fructose (HF diet (63.1%. Male Sprague-Dawley rats aged seven weeks were used as experimental animals. Rats were divided into three groups: (1 normal group (normal; (2 HF group; (3 chitosan + HF group (HF + C. The rats were fed the experimental diets and drinking water ad libitum for 21 weeks. The results showed that chitosan (average molecular weight was about 3.8 × 105 Dalton and degree of deacetylation was about 89.8% significantly decreased body weight, paraepididymal fat mass, and retroperitoneal fat mass weight, but elevated the lipolysis rate in retroperitoneal fats of HF diet-fed rats. Supplementation of chitosan causes a decrease in plasma insulin, tumor necrosis factor (TNF-α, Interleukin (IL-6, and leptin, and an increase in plasma adiponectin. The HF diet increased hepatic lipids. However, intake of chitosan reduced the accumulation of hepatic lipids, including total cholesterol (TC and triglyceride (TG contents. In addition, chitosan elevated the excretion of fecal lipids in HF diet-fed rats. Furthermore, chitosan significantly decreased plasma TC, low-density lipoprotein cholesterol (LDL-C, very-low-density lipoprotein cholesterol (VLDL-C, the TC/high-density lipoprotein cholesterol (HDL-C ratio, and increased the HDL-C/(LDL-C + VLDL-C ratio, but elevated the plasma TG and free fatty acids concentrations in HF diet-fed rats. Plasma angiopoietin-like 4 (ANGPTL4 protein expression was not affected by the HF diet, but it was significantly increased in chitosan-supplemented, HF-diet-fed rats. The high-fructose diet induced an increase in plasma glucose and impaired glucose tolerance, but chitosan supplementation decreased plasma glucose and improved impairment of glucose tolerance and insulin tolerance. Taken together, these results indicate that supplementation with chitosan can improve the impairment

  13. Andrographolide suppresses high glucose-induced fibronectin expression in mesangial cells via inhibiting the AP-1 pathway.

    Science.gov (United States)

    Lan, Tian; Wu, Teng; Gou, Hongju; Zhang, Qianqian; Li, Jiangchao; Qi, Cuiling; He, Xiaodong; Wu, Pingxiang; Wang, Lijing

    2013-11-01

    Mesangial cells (MCs) proliferation and accumulation of glomerular matrix proteins such as fibronectin (FN) are the early features of diabetic nephropathy, with MCs known to upregulate matrix protein synthesis in response to high glucose. Recently, it has been found that andrographolide has renoprotective effects on diabetic nephropathy. However, the molecular mechanism underlying these effects remains unclear. Cell viability and proliferation was evaluated by MTT. FN expression was examined by immunofluorescence and immunoblotting. Activator protein-1 (AP-1) activation was assessed by immunoblotting, luciferase reporter and electrophoretic mobility shift assays. Andrographolide significantly decreased high glucose-induced cell proliferation and FN expression in MCs. Exposure of MCs to high glucose markedly stimulated the expression of phosphorylated c-jun, whereas the stimulation was inhibited by andrographolide. Plasmid pAP-1-Luc luciferase reporter assay showed that andrographolide blocked high glucose-induced AP-1 transcriptional activity. EMSA assay demonstrated that increased AP-1 binding to an AP-1 binding site at -1,029 in the FN gene promoter upon high glucose stimulation, and the binding were disrupted by andrographolide treatment. These data indicate that andrographolide suppresses high glucose-induced FN expression by inhibiting AP-1-mediated pathway. © 2013 Wiley Periodicals, Inc.

  14. Naringin Protects Against High Glucose-Induced Human Endothelial Cell Injury Via Antioxidation and CX3CL1 Downregulation

    Directory of Open Access Journals (Sweden)

    Guilin Li

    2017-08-01

    Full Text Available Background/Aims: The induction of endothelial injury by hyperglycemia in diabetes has been widely accepted. Naringin is a bio-flavonoid. Some studies showed that naringin alleviates diabetic complications, but the exact mechanisms by which naringin improves diabetic anomalies are not yet fully understood. The aim of this research was to study the protective effect of naringin on high glucose-induced injury of human umbilical vein endothelial cells (HUVECs. Methods: HUVECs were cultured with or without high glucose in the absence or presence of naringin for 5 days. The expression of CX3CL1 was determined by quantitative real-time RT-PCR (qPCR and western blot. The cellular bioenergetic analysis oxygen consumption rate (OCR was measured with a Seahorse Bioscience XF analyzer. Results: The production of reactive oxygen species (ROS, the expression of CX3CL1 and the level of AKT phosphorylation were increased in HUVECs cultured with high glucose compared with controls. However, naringin rescued these increases in ROS production, CX3CL1 expression and AKT phosphorylation. Nitric oxide (NO production and OCR were lower in the high glucose group, and naringin restored the changes induced by high glucose. Molecular docking results suggested that Naringin might interact with the CX3CL1 protein. Conclusion: Naringin protects HUVECs from high-glucose-induced damage through its antioxidant properties by downregulating CX3CL1 and by improving mitochondrial function.

  15. Protective role of morin, a flavonoid, against high glucose induced oxidative stress mediated apoptosis in primary rat hepatocytes.

    Directory of Open Access Journals (Sweden)

    Radhika Kapoor

    Full Text Available Apoptosis is an early event of liver damage in diabetes and oxidative stress has been linked to accelerate the apoptosis in hepatocytes. Therefore, the compounds that can scavenge ROS may confer regulatory effects on high-glucose induced apoptosis. In the present study, primary rat hepatocytes were exposed to high concentration (40 mM of glucose. At this concentration decreased cell viability and enhanced ROS generation was observed. Depleted antioxidant status of hepatocytes under high glucose stress was also observed as evident from transcriptional level and activities of antioxidant enzymes. Further, mitochondrial depolarisation was accompanied by the loss of mitochondrial integrity and altered expression of Bax and Bcl-2. Increased translocation of apoptotic proteins like AIF (Apoptosis inducing factor & Endo-G (endonuclease-G from its resident place mitochondria to nucleus was also observed. Cyt-c residing in the inter-membrane space of mitochondria also translocated to cytoplasm. These apoptotic proteins initiated caspase activation, DNA fragmentation, chromatin condensation, increased apoptotic DNA content in glucose treated hepatocytes, suggesting mitochondria mediated apoptotic mode of cell death. Morin, a dietary flavonoid from Psidium guajava was effective in increasing the cell viability and decreasing the ROS level. It maintained mitochondrial integrity, inhibited release of apoptotic proteins from mitochondria, prevented DNA fragmentation, chromatin condensation and hypodiploid DNA upon exposure to high glucose. This study confirms the capacity of dietary flavonoid Morin in regulating apoptosis induced by high glucose via mitochondrial mediated pathway through intervention of oxidative stress.

  16. NFAT2 mediates high glucose-induced glomerular podocyte apoptosis through increased Bax expression

    International Nuclear Information System (INIS)

    Li, Ruizhao; Zhang, Li; Shi, Wei; Zhang, Bin; Liang, Xinling; Liu, Shuangxin; Wang, Wenjian

    2013-01-01

    Background: Hyperglycemia promotes podocyte apoptosis and plays a key role in the pathogenesis of diabetic nephropathy. However, the mechanisms that mediate hyperglycemia-induced podocyte apoptosis is still far from being fully understood. Recent studies reported that high glucose activate nuclear factor of activated T cells (NFAT) in vascular smooth muscle or pancreatic β-cells. Here, we sought to determine if hyperglycemia activates NFAT2 in cultured podocyte and whether this leads to podocyte apoptosis. Meanwhile, we also further explore the mechanisms of NFAT2 activation and NFAT2 mediates high glucose-induced podocyte apoptosis. Methods: Immortalized mouse podocytes were cultured in media containing normal glucose (NG), or high glucose (HG) or HG plus cyclosporine A (a pharmacological inhibitor of calcinerin) or 11R-VIVIT (a special inhibitor of NFAT2). The activation of NFAT2 in podocytes was detected by western blotting and immunofluorescence assay. The role of NFAT2 in hyperglycemia-induced podocyte apoptosis was further evaluated by observing the inhibition of NFAT2 activation by 11R-VIVIT using flow cytometer. Intracellular Ca 2+ was monitored in HG-treated podcocytes using Fluo-3/AM. The mRNA and protein expression of apoptosis gene Bax were measured by real time-qPCR and western blotting. Results: HG stimulation activated NFAT2 in a time- and dose-dependent manner in cultured podocytes. Pretreatment with cyclosporine A (500 nM) or 11R-VIVIT (100 nM) completely blocked NFAT2 nuclear accumulation. Meanwhile, the apoptosis effects induced by HG were also abrogated by concomitant treatment with 11R-VIVIT in cultured podocytes. We further found that HG also increased [Ca 2+ ]i, leading to activation of calcineurin, and subsequent increased nuclear accumulation of NFAT2 and Bax expression in cultured podocytes. Conclusion: Our results identify a new finding that HG-induced podocyte apoptosis is mediated by calcineurin/NFAT2/Bax signaling pathway, which may

  17. NFAT2 mediates high glucose-induced glomerular podocyte apoptosis through increased Bax expression

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ruizhao, E-mail: liruizhao1979@126.com [Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 (China); Zhang, Li, E-mail: Zhanglichangde@163.com [Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 (China); Southern Medical University, Guangzhou, Guangdong (China); Shi, Wei, E-mail: shiwei.gd@139.com [Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 (China); Zhang, Bin, E-mail: zhangbinyes@yahoo.com.cn [Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 (China); Liang, Xinling, E-mail: xinlingliang@yahoo.com [Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 (China); Liu, Shuangxin, E-mail: mplsxi@yahoo.com.cn [Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 (China); Wang, Wenjian, E-mail: wwjph@yahoo.com [Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 (China)

    2013-04-15

    Background: Hyperglycemia promotes podocyte apoptosis and plays a key role in the pathogenesis of diabetic nephropathy. However, the mechanisms that mediate hyperglycemia-induced podocyte apoptosis is still far from being fully understood. Recent studies reported that high glucose activate nuclear factor of activated T cells (NFAT) in vascular smooth muscle or pancreatic β-cells. Here, we sought to determine if hyperglycemia activates NFAT2 in cultured podocyte and whether this leads to podocyte apoptosis. Meanwhile, we also further explore the mechanisms of NFAT2 activation and NFAT2 mediates high glucose-induced podocyte apoptosis. Methods: Immortalized mouse podocytes were cultured in media containing normal glucose (NG), or high glucose (HG) or HG plus cyclosporine A (a pharmacological inhibitor of calcinerin) or 11R-VIVIT (a special inhibitor of NFAT2). The activation of NFAT2 in podocytes was detected by western blotting and immunofluorescence assay. The role of NFAT2 in hyperglycemia-induced podocyte apoptosis was further evaluated by observing the inhibition of NFAT2 activation by 11R-VIVIT using flow cytometer. Intracellular Ca{sup 2+} was monitored in HG-treated podcocytes using Fluo-3/AM. The mRNA and protein expression of apoptosis gene Bax were measured by real time-qPCR and western blotting. Results: HG stimulation activated NFAT2 in a time- and dose-dependent manner in cultured podocytes. Pretreatment with cyclosporine A (500 nM) or 11R-VIVIT (100 nM) completely blocked NFAT2 nuclear accumulation. Meanwhile, the apoptosis effects induced by HG were also abrogated by concomitant treatment with 11R-VIVIT in cultured podocytes. We further found that HG also increased [Ca{sup 2+}]i, leading to activation of calcineurin, and subsequent increased nuclear accumulation of NFAT2 and Bax expression in cultured podocytes. Conclusion: Our results identify a new finding that HG-induced podocyte apoptosis is mediated by calcineurin/NFAT2/Bax signaling pathway

  18. Reduced cerebral glucose metabolism and increased brain capillary permeability following high-dose methotrexate chemotherapy: a positron emission tomographic study

    International Nuclear Information System (INIS)

    Phillips, P.C.; Dhawan, V.; Strother, S.C.; Sidtis, J.J.; Evans, A.C.; Allen, J.C.; Rottenberg, D.A.

    1987-01-01

    Regional glucose metabolic rate constants and blood-to-brain transport of rubidium were estimated using positron emission tomography in an adolescent patient with a brain tumor, before and after chemotherapy with intravenous high-dose methotrexate. Widespread depression of cerebral glucose metabolism was apparent 24 hours after drug administration, which may reflect reduced glucose phosphorylation, and the influx rate constant for 82 Rb was increased, indicating a drug-induced alteration in blood-brain barrier function. Associated changes in neuropsychological performance, electroencephalogram, and plasma amino acid concentration were identified in the absence of evidence of systemic methotrexate toxicity, suggesting primary methotrexate neurotoxicity

  19. Higher Fasting Plasma Glucose Levels, within the Normal Range, are Associated with Decreased Processing Speed in High Functioning Young Elderly.

    Science.gov (United States)

    Raizes, Meytal; Elkana, Odelia; Franko, Motty; Ravona Springer, Ramit; Segev, Shlomo; Beeri, Michal Schnaider

    2016-01-01

    We explored the association of plasma glucose levels within the normal range with processing speed in high functioning young elderly, free of type 2 diabetes mellitus (T2DM). A sample of 41 participants (mean age = 64.7, SD = 10; glucose 94.5 mg/dL, SD = 9.3), were examined with a computerized cognitive battery. Hierarchical linear regression analysis showed that higher plasma glucose levels, albeit within the normal range (levels may have an impact on cognitive function.

  20. High Blood Glucose: What It Means and How To Treat It

    Science.gov (United States)

    ... People who do not have diabetes typically have fasting plasma blood glucose levels that run under 100 ... blood glucose? Be sure to drink plenty of water. It is recommended to drink a minimum of ...

  1. Progression from impaired fasting glucose and impaired glucose tolerance to diabetes in a high-risk screening programme in general practice: the ADDITION Study, Denmark

    DEFF Research Database (Denmark)

    Rasmussen, Signe Sætre; Glümer, Charlotte; Sandbæk, Annelli

    2007-01-01

    -examination after 1 year. Glucose tolerance classification was based on the 1999 WHO definition. At follow-up, diabetes was based on one diabetic glucose value of fasting blood glucose or 2-h blood glucose. RESULTS: At baseline, 308 persons had IFG and 503 had IGT. The incidence of diabetes was 17.6 and 18.8 per...

  2. In vitro evidence of glucose-induced toxicity in GnRH secreting neurons: high glucose concentrations influence GnRH secretion, impair cell viability, and induce apoptosis in the GT1-1 neuronal cell line.

    Science.gov (United States)

    Pal, Lubna; Chu, Hsiao-Pai; Shu, Jun; Topalli, Ilir; Santoro, Nanette; Karkanias, George

    2007-10-01

    To evaluate for direct toxic effects of high glucose concentrations on cellular physiology in GnRH secreting immortalized GT1-1 neurons. Prospective experimental design. In vitro experimental model using a cell culture system. GT1-1 cells were cultured in replicates in media with two different glucose concentrations (450 mg/dL and 100 mg/dL, respectively) for varying time intervals (24, 48, and 72 hours). Effects of glucose concentrations on GnRH secretion by the GT1-1 neurons were evaluated using a static culture model. Cell viability, cellular apoptosis, and cell cycle events in GT1-1 neurons maintained in two different glucose concentrations were assessed by flow cytometry (fluorescence-activated cell sorter) using Annexin V-PI staining. Adverse influences of high glucose concentrations on GnRH secretion and cell viability were noted in cultures maintained in high glucose concentration (450 mg/dL) culture medium for varying time intervals. A significantly higher percentage of cells maintained in high glucose concentration medium demonstrated evidence of apoptosis by a fluorescence-activated cell sorter. We provide in vitro evidence of glucose-induced cellular toxicity in GnRH secreting GT1-1 neurons. Significant alterations in GnRH secretion, reduced cell viability, and a higher percentage of apoptotic cells were observed in GT1-1 cells maintained in high (450 mg/dL) compared with low (100 mg/dL) glucose concentration culture medium.

  3. Mitochondrial dysfunction precedes depression of AMPK/AKT signaling in insulin resistance induced by high glucose in primary cortical neurons.

    Science.gov (United States)

    Peng, Yunhua; Liu, Jing; Shi, Le; Tang, Ying; Gao, Dan; Long, Jiangang; Liu, Jiankang

    2016-06-01

    Recent studies have demonstrated brain insulin signaling impairment and mitochondrial dysfunction in diabetes. Hyperinsulinemia and hyperlipidemia arising from diabetes have been linked to neuronal insulin resistance, and hyperglycemia induces peripheral sensory neuronal impairment and mitochondrial dysfunction. However, how brain glucose at diabetic conditions elicits cortical neuronal insulin signaling impairment and mitochondrial dysfunction remains unknown. In the present study, we cultured primary cortical neurons with high glucose levels and investigated the neuronal mitochondrial function and insulin response. We found that mitochondrial function was declined in presence of 10 mmol/L glucose, prior to the depression of AKT signaling in primary cortical neurons. We further demonstrated that the cerebral cortex of db/db mice exhibited both insulin resistance and loss of mitochondrial complex components. Moreover, we found that adenosine monophosphate-activated protein kinase (AMPK) inactivation is involved in high glucose-induced mitochondrial dysfunction and insulin resistance in primary cortical neurons and neuroblastoma cells, as well as in cerebral cortex of db/db mice, and all these impairments can be rescued by mitochondrial activator, resveratrol. Taken together, our results extend the finding that high glucose (≥10 mmol/L) comparable to diabetic brain extracellular glucose level leads to neuronal mitochondrial dysfunction and resultant insulin resistance, and targeting mitochondria-AMPK signaling might be a promising strategy to protect against diabetes-related neuronal impairment in central nerves system. We found that high glucose (≥10 mmol/L), comparable to diabetic brain extracellular glucose level, leads to neuronal mitochondrial dysfunction and resultant insulin resistance in an AMPK-dependent manner, and targeting mitochondria-AMPK signaling might be a promising strategy to protect against diabetes-related neuronal impairment in central

  4. Effect of chromium chloride supplementation on glucose tolerance and serum lipids including high-density lipoprotein of adult men.

    Science.gov (United States)

    Riales, R; Albrink, M J

    1981-12-01

    Chromium deficiency may cause insulin resistance, hyperinsulinemia, impaired glucose tolerance, and hyperlipidemia, recovered by chromium supplementation. The effect of chromium supplementation on serum lipids and glucose tolerance was tested in a double-blind 12-wk study of 23 healthy adult men aged 31 to 60 yr. Either 200 micrograms trivalent chromium in 5 ml water (Cr) or 5 ml plain water (W) was ingested daily 5 days each week. Half the subjects volunteered for glucose tolerance tests with insulin levels. At 12 wk high-density lipoprotein cholesterol increased in the Cr group from 35 to 39 mg/dl (p less than 0.05) but did not change in the water group (34 mg/dl). The largest increase in high-density lipoprotein cholesterol and decreases in insulin and glucose were found in those subjects having normal glucose levels together with elevated insulin levels at base-line. The data are thus consistent with the hypothesis that Cr supplementation raises high-density lipoprotein cholesterol and improves insulin sensitivity in those with evidence of insulin resistance but normal glucose tolerance.

  5. High glucose induced oxidative stress and apoptosis in cardiac microvascular endothelial cells are regulated by FoxO3a.

    Directory of Open Access Journals (Sweden)

    Chaoming Peng

    Full Text Available Cardiac microvascular endothelial cells (CMECs dysfunction contributes to cardiovascular complications in diabetes, whereas, the underlying mechanism is not fully clarified. FoxO transcription factors are involved in apoptosis and reactive oxygen species (ROS production. Therefore, the present study was designed to elucidate the potential role of FoxO3a on the CMECs injury induced by high glucose.CMECs were isolated from hearts of adult rats and cultured in normal or high glucose medium for 6 h, 12 h and 24 h respectively. To down-regulate FoxO3a expression, CMECs were transfected with FoxO3a siRNA. ROS accumulation and apoptosis in CMECs were assessed by dihydroethidine (DHE staining and TUNEL assay respectively. Moreover, the expressions of Akt, FoxO3a, Bim and BclxL in CMECs were assessed by Western blotting assay.ROS accumulation in CMECs was significantly increased after high glucose incubation for 6 to 24 h. Meanwhile, high glucose also increased apoptosis in CMECs, correlated with decreased the phosphorylation expressions of Akt and FoxO3a. Moreover, high glucose incubation increased the expression of Bim, whereas increased anti-apoptotic protein BclxL. Furthermore, siRNA target FoxO3a silencing enhanced the ROS accumulation, whereas suppressed apoptosis in CMECs. FoxO3a silencing also abolished the disturbance of Bcl-2 proteins induced by high glucose in CMECs.Our data provide evidence that high glucose induced FoxO3a activation which suppressed ROS accumulation, and in parallel, resulted in apoptosis of CMECs.

  6. Neuroprotective effects of ginsenoside Rb1 on high glucose-induced neurotoxicity in primary cultured rat hippocampal neurons.

    Science.gov (United States)

    Liu, Di; Zhang, Hong; Gu, Wenjuan; Liu, Yuqin; Zhang, Mengren

    2013-01-01

    Ginsenoside Rb1 is one of the main active principles in traditional herb ginseng and has been reported to have a wide variety of neuroprotective effects. Endoplasmic reticulum (ER) stress has been implicated in neurodegenerative diseases, so the present study aimed to observe the effects of ginsenoside Rb1 on ER stress signaling pathways in high glucose-treated hippocampal neurons. The results from MTT, TUNEL labeling and Annexin V-FITC/PI/Hoechst assays showed that incubating neurons with 50 mM high glucose for 72 h decreased cell viability and increased the number of apoptotic cells whereas treating neurons with 1 μM Rb1 for 72 h protected the neurons against high glucose-induced cell damage. Further molecular mechanism study demonstrated that Rb1 suppressed the activation of ER stress-associated proteins including protein kinase RNA (PKR)-like ER kinase (PERK) and C/EBP homology protein (CHOP) and downregulation of Bcl-2 induced by high glucose. Moreover, Rb1 inhibited both the elevation of intracellular reactive oxygen species (ROS) and the disruption of mitochondrial membrane potential induced by high glucose. In addition, the high glucose-induced cell apoptosis, activation of ER stress, ROS accumulation and mitochondrial dysfunction can also be attenuated by the inhibitor of ER stress 4-phenylbutyric acid (4-PBA) and anti-oxidant N-acetylcysteine(NAC). In conclusion, these results suggest that Rb1 may protect neurons against high glucose-induced cell injury through inhibiting CHOP signaling pathway as well as oxidative stress and mitochondrial dysfunction.

  7. Delphinidin prevents high glucose-induced cell proliferation and collagen synthesis by inhibition of NOX-1 and mitochondrial superoxide in mesangial cells

    Directory of Open Access Journals (Sweden)

    Seung Eun Song

    2016-04-01

    Full Text Available This study examined the effect of delphinidin on high glucose-induced cell proliferation and collagen synthesis in mesangial cells. Glucose dose-dependently (5.6–25 mM increased cell proliferation and collagen I and IV mRNA levels, whereas pretreatment with delphinidin (50 μM prevented cell proliferation and the increased collagen mRNA levels induced by high glucose (25 mM. High glucose increased reactive oxygen species (ROS generation, and this was suppressed by pretreating delphinidin or the antioxidant N-acetyl cysteine. NADPH oxidase (NOX 1 was upregulated by high glucose, but pretreatment with delphinidin abrogated this upregulation. Increased mitochondrial superoxide by 25 mM glucose was also suppressed by delphinidin. The NOX inhibitor apocynin and mitochondria-targeted antioxidant Mito TEMPO inhibited ROS generation and cell proliferation induced by high glucose. Phosphorylation of extracellular signal regulated kinase (ERK1/2 was increased by high glucose, which was suppressed by delphinidin, apocynin or Mito TEMPO. Furthermore, PD98059 (an ERK1/2 inhibitor prevented the high glucose-induced cell proliferation and increased collagen mRNA levels. Transforming growth factor (TGF-β protein levels were elevated by high glucose, and pretreatment with delphinidin or PD98059 prevented this augmentation. These results suggest that delphinidin prevents high glucose-induced cell proliferation and collagen synthesis by inhibition of NOX-1 and mitochondrial superoxide in mesangial cells.

  8. Effects of Berberine on Amelioration of Hyperglycemia and Oxidative Stress in High Glucose and High Fat Diet-Induced Diabetic Hamsters In Vivo

    Directory of Open Access Journals (Sweden)

    Cong Liu

    2015-01-01

    Full Text Available This study investigated the effects of berberine on amelioration of hyperglycemia and hyperlipidemia and the mechanism involved in high glucose and high fat diet-induced diabetic hamsters. Golden hamsters fed with high glucose and high fat diet were medicated with metformin, simvastatin, and low or high dose of berberine (50 and 100 mg·kg−1 for 6 weeks. The results showed that the body weights were significantly lower in berberine-treated groups than control group. Histological analyses revealed that the treatment of berberine inhibited hepatic fat accumulation. Berberine significantly reduced plasma total cholesterol, triglyceride, free fatty acid, low density lipoprotein cholesterol, malondialdehyde, thiobarbituric acid-reactive substance, and 8-isoprostane level but significantly increased plasma superoxide dismutase activity. Glucose and insulin levels were significantly reduced in metformin and berberine-treated groups. Glucose tolerance tests documented that berberine-treated mice were more glucose tolerant. Berberine treatment increased expression of skeletal muscle glucose transporter 4 mRNA and significantly decreased liver low density lipoprotein receptor mRNA expression. The study suggested that berberine was effective in lowering blood glucose and lipids levels, reducing the body weight, and alleviating the oxidative stress in diabetic hamsters, which might be beneficial in reducing the cardiovascular risk factors in diabetes.

  9. Low-protein, high-carbohydrate diet increases glucose uptake and fatty acid synthesis in brown adipose tissue of rats.

    Science.gov (United States)

    Aparecida de França, Suélem; Pavani Dos Santos, Maísa; Nunes Queiroz da Costa, Roger Vinícius; Froelich, Mendalli; Buzelle, Samyra Lopes; Chaves, Valéria Ernestânia; Giordani, Morenna Alana; Pereira, Mayara Peron; Colodel, Edson Moleta; Marlise Balbinotti Andrade, Cláudia; Kawashita, Nair Honda

    2014-04-01

    The aim of this study was to evaluate glucose uptake and the contribution of glucose to fatty acid (FA) synthesis and the glycerol-3-phosphate (G3P) of triacylglycerol synthesis by interscapular brown adipose tissue (IBAT) of low-protein, high-carbohydrate (LPHC) diet-fed rats. LPHC (6% protein; 74% carbohydrate) or control (17% protein; 63% carbohydrate) diets were administered to rats (∼ 100 g) for 15 d. Total FA and G3P synthesis and the synthesis of FA and G3P from glucose were evaluated in vivo by (3)H2O and (14)C-glucose. Sympathetic neural contribution for FA synthesis was evaluated by comparing the synthesis in denervated (7 d before) IBAT with that of the contralateral innervated side. The insulin signaling and β3 adrenergic receptor (β3-AR) contents, as well as others, were determined by Western blot (Student's t test or analysis of variance; P ≤ 0.05). Total FA synthesis in IBAT was 133% higher in the LPHC group and was reduced 85% and 70% by denervation for the LPHC and control groups, respectively. Glucose uptake was 3.5-fold higher in the IBAT of LPHC rats than in that of the control rats, and the contribution of glucose to the total FA synthesis increased by 12% in control rats compared with 18% in LPHC rats. The LPHC diet increased the G3P generation from glucose by 270% and the insulin receptor content and the p-AKT insulin stimulation in IBAT by 120% and reduced the β3-AR content by 50%. The LPHC diet stimulated glucose uptake, both the total rates and the rates derived from glucose-dependent FA and G3P synthesis, by increasing the insulin sensitivity and the sympathetic flux, despite a reduction in the β3-AR content. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. High hydrogen production from glycerol or glucose by electrohydrogenesis using microbial electrolysis cells

    KAUST Repository

    Selembo, Priscilla A.

    2009-07-01

    The use of glycerol for hydrogen gas production was examined via electrohydrogenesis using microbial electrolysis cells (MECs). A hydrogen yield of 3.9 mol-H2/mol was obtained using glycerol, which is higher than that possible by fermentation, at relatively high rates of 2.0 ± 0.4 m3/m3 d (Eap = 0.9 V). Under the same conditions, hydrogen was produced from glucose at a yield of 7.2 mol-H2/mol and a rate of 1.9 ± 0.3 m3/m3 d. Glycerol was completely removed within 6 h, with 56% of the electrons in intermediates (primarily 1,3-propanediol), with the balance converted to current, intracellular storage products or biomass. Glucose was removed within 5 h, but intermediates (mainly propionate) accounted for only 19% of the electrons. Hydrogen was also produced using the glycerol byproduct of biodiesel fuel production at a rate of 0.41 ± 0.1 m3/m3 d. These results demonstrate that electrohydrogenesis is an effective method for producing hydrogen from either pure glycerol or glycerol byproducts of biodiesel fuel production. © 2009 International Association for Hydrogen Energy.

  11. Mangiferin Upregulates Glyoxalase 1 Through Activation of Nrf2/ARE Signaling in Central Neurons Cultured with High Glucose.

    Science.gov (United States)

    Liu, Yao-Wu; Cheng, Ya-Qin; Liu, Xiao-Li; Hao, Yun-Chao; Li, Yu; Zhu, Xia; Zhang, Fan; Yin, Xiao-Xing

    2017-08-01

    Mangiferin, a natural C-glucoside xanthone, has anti-inflammatory, anti-oxidative, neuroprotective actions. Our previous study showed that mangiferin could attenuate diabetes-associated cognitive impairment of rats by enhancing the function of glyoxalase 1 (Glo-1) in brain. The aim of this study was to investigate whether Glo-1 upregulation by mangiferin in central neurons exposed to chronic high glucose may be related to activation of Nrf2/ARE pathway. Compared with normal glucose (25 mmol/L) culture, Glo-1 protein, mRNA, and activity levels were markedly decreased in primary hippocampal and cerebral cortical neurons cultured with high glucose (50 mmol/L) for 72 h, accompanied by the declined Nrf2 nuclear translocation and protein expression of Nrf2 in cell nucleus, as well as protein expression and mRNA level of γ-glutamylcysteine synthetase (γ-GCS) and superoxide dismutase activity, target genes of Nrf2/ARE signaling. Nonetheless, high glucose cotreating with mangiferin or sulforaphane, a typical inducer of Nrf2 activation, attenuated the above changes in both central neurons. In addition, mangiferin and sulforaphane significantly prevented the formation of advanced glycation end-products (AGEs) reflecting Glo-1 activity, while elevated the level of glutathione, a cofactor of Glo-1 activity and production of γ-GCS, in high glucose cultured central neurons. These findings demonstrated that Glo-1 was greatly downregulated in central neurons exposed to chronic high glucose, which is expected to lead the formation of AGEs and oxidative stress damages. We also proved that mangiferin enhanced the function of Glo-1 under high glucose condition by inducing activation of Nrf2/ARE signaling pathway.

  12. Spherulitic copper–copper oxide nanostructure-based highly sensitive nonenzymatic glucose sensor

    Directory of Open Access Journals (Sweden)

    Das G

    2015-08-01

    Full Text Available Gautam Das, Thao Quynh Ngan Tran, Hyon Hee Yoon Department of Chemical and Biological Engineering, Gachon University, Seongnam, Republic of South Korea Abstract: In this work, three different spherulitic nanostructures Cu–CuOA, Cu–CuOB, and Cu–CuOC were synthesized in water-in-oil microemulsions by varying the surfactant concentration (30 mM, 40 mM, and 50 mM, respectively. The structural and morphological characteristics of the Cu–CuO nanostructures were investigated by ultraviolet–visible (UV–vis spectroscopy, X-ray diffraction, scanning electron microscopy, and high-resolution transmission electron microscopy techniques. The synthesized nanostructures were deposited on multiwalled carbon nanotube (MWCNT-modified indium tin oxide (ITO electrodes to fabricate a nonenzymatic highly sensitive amperometric glucose sensor. The performance of the ITO/MWCNT/Cu–CuO electrodes in the glucose assay was examined by cyclic voltammetry and chronoamperometric studies. The sensitivity of the sensor varied with the spherulite type; Cu–CuOA, Cu–CuOB, and Cu–CuOC exhibited a sensitivity of 1,229, 3,012, and 3,642 µA mM-1·cm-2, respectively. Moreover, the linear range is dependent on the structure types: 0.023–0.29 mM, 0.07–0.8 mM, and 0.023–0.34 mM for Cu–CuOA, Cu–CuOB, and Cu–CuOC, respectively. An excellent response time of 3 seconds and a low detection limit of 2 µM were observed for Cu–CuOB at an applied potential of +0.34 V. In addition, this electrode was found to be resistant to interference by common interfering agents such as urea, cystamine, l-ascorbic acid, and creatinine. The high performance of the Cu–CuO spherulites with nanowire-to-nanorod outgrowths was primarily due to the high surface area and stability, and good three-dimensional structure. Furthermore, the ITO/MWCNT/Cu–CuOB electrode applied to real urine and serum sample showed satisfactory performance. Keywords: copper oxide, multiwalled

  13. Rapid selection of glucose-utilizing variants of the polyhydroxyalkanoate producer Ralstonia eutropha H16 by incubation with high substrate levels.

    Science.gov (United States)

    Franz, A; Rehner, R; Kienle, A; Grammel, H

    2012-01-01

    The application of Ralstonia eutropha H16 for producing polyhydroxyalkanoates as bioplastics is limited by the incapability of the bacterium to utilize glucose as a growth substrate. This study aims in characterizing glucose-utilizing strains that arose after incubation with high glucose levels, in comparison with previously published mutants, generated either by mutagenesis or by metabolic engineering. Cultivations on solid and liquid media showed that the application of high substrate concentrations rapidly induced a glucose-positive phenotype. The time span until the onset of growth and the frequency of glucose-utilizing colonies were correlated to the initial glucose concentration. All mutants exhibited elevated activities of glucose-6-phosphate dehydrogenase. The glucose-positive phenotype was abolished after deleting genes for the N-acetylglucosamine phosphotransferase system. A procedure is provided for selecting glucose-utilizing R. eutropha H16 in an unprecedented short time period and without any mutagenic treatment. An altered N-acetylglucosamine phosphotransferase system appears to be a common motif in all glucose-utilizing mutants examined so far. The correlation of the applied glucose concentration and the appearance of glucose-utilizing mutants poses questions about the randomness or the specificity of adaptive mutations in general. Furthermore, glucose-adapted strains of R. eutropha H16 could be useful for the production of bioplastics. © 2011 The Authors. Letters in Applied Microbiology ©2011 The Society for Applied Microbiology.

  14. High protein and cholesterol intakes associated with emergence of glucose intolerance in a low-risk Canadian Inuit population.

    Science.gov (United States)

    Sefidbakht, Saghar; Johnson-Down, Louise; Young, T Kue; Egeland, Grace M

    2016-07-01

    The rate of type 2 diabetes mellitus among Inuit is 12·2 % in individuals over 50 years of age, similar to the Canadian prevalence. Given marked dietary transitions in the Arctic, we evaluated the dietary and other correlates of not previously diagnosed glucose intolerance, defined as type 2 diabetes mellitus, impaired fasting glucose or impaired glucose tolerance. Cross-sectional analyses were limited to adults with a completed 2 h oral glucose tolerance test and without pre-existing diabetes. Anthropometric assessments, health and medication usage questionnaires and a 24 h dietary recall were administered. Canadian International Polar Year Inuit Health Survey (2007-2008). Inuit adults (n 777). Glucose intolerance was associated with older age and adiposity. Percentage of energy from protein above the Acceptable Macronutrient Distribution Range of 35 %, compared with intake within the range, was associated with increased odds of glucose intolerance (OR=1·98; 95 % CI 1·09, 3·61) in multivariable analyses. Further, cholesterol intake in the highest three quartiles combined (median exposures of 207, 416 and 778 mg/d, respectively) compared with the lowest quartile (median intake of 81 mg/d) was associated with glucose intolerance (OR=2·15; 95 % CI 1·23, 3·78) in multivariable analyses. Past-day traditional food consumption was borderline protective of glucose intolerance (P=0·054) and high fibre intake was not significantly protective (P=0·08). The results contribute to the existing literature on high protein and cholesterol intakes as they may relate to diabetes risk.

  15. Influence of high glucose and advanced glycation end-products (ages) levels in human osteoblast-like cells gene expression.

    Science.gov (United States)

    Miranda, Cristina; Giner, Mercè; Montoya, M José; Vázquez, M Angeles; Miranda, M José; Pérez-Cano, Ramón

    2016-08-31

    Type 2 diabetes mellitus (T2DM) is associated with an increased risk of osteoporotic fracture. Several factors have been identified as being potentially responsible for this risk, such as alterations in bone remodelling that may have been induced by changes in circulating glucose or/and by the presence of non-oxidative end products of glycosylation (AGEs). The aim of this study is to assess whether such variations generate a change in the gene expression related to the differentiation and osteoblast activity (OPG, RANKL, RUNX2, OSTERIX, and AGE receptor) in primary cultures of human osteoblast-like cells (hOB). We recruited 32 patients; 10 patients had osteoporotic hip fractures (OP group), 12 patients had osteoporotic hip fractures with T2DM (T2DM group), and 10 patients had hip osteoarthritis (OA group) with no osteoporotic fractures and no T2DM. The gene expression was analyzed in hOB cultures treated with physiological glucose concentration (4.5 mM) as control, high glucose (25 mM), and high glucose plus AGEs (2 μg/ml) for 24 h. The hOB cultures from patients with hip fractures presented slower proliferation. Additionally, the hOB cultures from the T2DM group were the most negatively affected with respect to RUNX2 and OSX gene expression when treated solely with high glucose or with high glucose plus AGEs. Moreover, high levels of glucose induced a major decrease in the RANKL/OPG ratio when comparing the OP and the T2DM groups to the OA group. Our data indicates an altered bone remodelling rate in the T2DM group, which may, at least partially, explain the reduced bone strength and increased incidence of non-traumatic fractures in diabetic patients.

  16. Correlation between high blood IL-6 level, hyperglycemia, and glucose control in septic patients.

    Science.gov (United States)

    Nakamura, Masataka; Oda, Shigeto; Sadahiro, Tomohito; Watanabe, Eizo; Abe, Ryuzo; Nakada, Taka-Aki; Morita, Yasumasa; Hirasawa, Hiroyuki

    2012-12-12

    The aim of the present study was to investigate the relationship between the blood IL-6 level, the blood glucose level, and glucose control in septic patients. This retrospective observational study in a general ICU of a university hospital included a total of 153 patients with sepsis, severe sepsis, or septic shock who were admitted to the ICU between 2005 and 2010, stayed in the ICU for 7 days or longer, and did not receive steroid therapy prior to or after ICU admission. The severity of stress hyperglycemia, status of glucose control, and correlation between those two factors in these patients were investigated using the blood IL-6 level as an index of hypercytokinemia. A significant positive correlation between blood IL-6 level and blood glucose level on ICU admission was observed in the overall study population (n = 153; r = 0.24, P = 0.01), and was stronger in the nondiabetic subgroup (n = 112; r = 0.42, P glucose control (blood glucose level blood IL-6 level on ICU admission (P blood IL-6 level after ICU admission remained significantly higher and the 60-day survival rate was significantly lower in the failed glucose control group than in the successful glucose control group (P blood IL-6 level was correlated with hyperglycemia and with difficulties in glucose control in septic patients. These results suggest the possibility that hypercytokinemia might be involved in the development of hyperglycemia in sepsis, and thereby might affect the success of glucose control.

  17. The impact of brief high-intensity exercise on blood glucose levels

    Directory of Open Access Journals (Sweden)

    Adams OP

    2013-02-01

    Full Text Available O Peter AdamsFaculty of Medical Sciences, the University of the West Indies, Cave Hill Campus, St Michael, BarbadosBackground: Moderate-intensity exercise improves blood glucose (BG, but most people fail to achieve the required exercise volume. High-intensity exercise (HIE protocols vary. Maximal cycle ergometer sprint interval training typically requires only 2.5 minutes of HIE and a total training time commitment (including rest and warm up of 25 minutes per session. The effect of brief high-intensity exercise on blood glucose levels of people with and without diabetes is reviewed.Methods: HIE (≥80% maximal oxygen uptake, VO2max studies with ≤15 minutes HIE per session were reviewed.Results: Six studies of nondiabetics (51 males, 14 females requiring 7.5 to 20 minutes/week of HIE are reviewed. Two weeks of sprint interval training increased insulin sensitivity up to 3 days postintervention. Twelve weeks near maximal interval running (total exercise time 40 minutes/week improved BG to a similar extent as running at 65% VO2max for 150 minutes/week. Eight studies of diabetics (41 type 1 and 22 type 2 subjects were reviewed. Six were of a single exercise session with 44 seconds to 13 minutes of HIE, and the others were 2 and 7 weeks duration with 20 and 2 minutes/week HIE, respectively. With type 1 and 2 diabetes, BG was generally higher during and up to 2 hours after HIE compared to controls. With type 1 diabetics, BG decreased from midnight to 6 AM following HIE the previous morning. With type 2 diabetes, a single session improved postprandial BG for 24 hours, while a 2-week program reduced the average BG by 13% at 48 to 72 hours after exercise and also increased GLUT4 by 369%.Conclusion: Very brief HIE improves BG 1 to 3 days postexercise in both diabetics and nondiabetics. HIE is unlikely to cause hypoglycemia during and immediately after exercise. Larger and longer randomized studies are needed to determine the safety, acceptability, long

  18. High Glucose-Induced Cardiomyocyte Death May Be Linked to Unbalanced Branched-Chain Amino Acids and Energy Metabolism

    Directory of Open Access Journals (Sweden)

    Xi Zhang

    2018-04-01

    Full Text Available High glucose-induced cardiomyocyte death is a common symptom in advanced-stage diabetic patients, while its metabolic mechanism is still poorly understood. The aim of this study was to explore metabolic changes in high glucose-induced cardiomyocytes and the heart of streptozotocin-induced diabetic rats by 1H-NMR-based metabolomics. We found that high glucose can promote cardiomyocyte death both in vitro and in vivo studies. Metabolomic results show that several metabolites exhibited inconsistent variations in vitro and in vivo. However, we also identified a series of common metabolic changes, including increases in branched-chain amino acids (BCAAs: leucine, isoleucine and valine as well as decreases in aspartate and creatine under high glucose condition. Moreover, a reduced energy metabolism could also be a common metabolic characteristic, as indicated by decreases in ATP in vitro as well as AMP, fumarate and succinate in vivo. Therefore, this study reveals that a decrease in energy metabolism and an increase in BCAAs metabolism could be implicated in high glucose-induced cardiomyocyte death.

  19. Asthma: non-responsiveness to conventional therapy.

    Science.gov (United States)

    Rebuck, A S

    1986-01-01

    Despite regular inhalation of beta-agonists, topical steroids and anticholinergic aerosols and the achievement of therapeutic blood levels of theophylline, some asthmatics have rapidly fluctuating levels of peak flow measurements throughout the day. Often little or no improvement is obtained with larger doses of corticosteroids. Before embarking on more intense drug therapy, attention should be paid to conscientious adherence to the prescribed regimen and avoidance of aspirin and tartrazine, as well as to exposure to allergens such as those associated with household pets. A number of newer therapeutic options are related to the use of air jet or ultrasonic nebulizers, that allow liquid forms of inhalation agents to be taken slowly in the home environment. In this regard, combination therapy with a beta-agonist and the anticholinergic ipratropium has been shown to have bronchodilating properties superior to either agent used alone. Secondly, sodium cromoglycate in its liquid form appears to have bronchodilator properties; taken on a regular basis, four times per day, it appears to have a steroid-sparing effect. Two alternatives are available for increasing the intensity of corticosteroid therapy, other than by prolonged, high-dose prednisone. The first is that of high-dose inhaled beclomethasone (up to 2000 micrograms/day) using the 250 micrograms/puff inhaler. The second is that of intravenous therapy with methylprednisolone, recently shown to have lung permeability superior to that of prednisolone. Office patients can be treated with occasional or even regular 'pulse' doses of methylprednisolone, an approach that is now finding acceptance in the management of the inflammatory alveolitides.

  20. Adaptive Queue Management with Restraint on Non-Responsive Flows

    Directory of Open Access Journals (Sweden)

    Lan Li

    2003-12-01

    Full Text Available This paper proposes an adaptive queue management scheme (adaptive RED to improve Random Early Detection (RED on restraining non-responsive flows. Due to a lack of flow control mechanism, non-responsive flows can starve responsive flows for buffer and bandwidth at the gateway. In order to solve the disproportionate resource problem, RED framework is modified in this way: on detecting when the non-responsive flows starve the queue, packet-drop intensity (Max_p in RED can be adaptively adjusted to curb non-responsive flows for resource fair-sharing, such as buffer and bandwidth fair-sharing. Based on detection of traffic behaviors, intentionally restraining nonresponsive flows is to increase the throughput and decrease the drop rate of responsive flows. Our experimental results based on adaptive RED shows that the enhancement of responsive traffic and the better sharing of buffer and bandwidth can be achieved under a variety of traffic scenarios.

  1. Improved glucose tolerance after high-load strength training in patients undergoing dialysis

    DEFF Research Database (Denmark)

    Mølsted, Stig; Harrison, Adrian Paul; Eidemak, Inge

    2013-01-01

    glucose tolerance (n = 9). Conclusion: The conducted strength training was associated with a significant improvement in glucose tolerance in patients with impaired glucose tolerance or type 2 diabetes undergoing dialysis. The effect was apparently not associated with muscle hypertrophy, whereas the muscle...... a week. Muscle fiber size, composition and capillary density were analyzed in biopsies obtained in the vastus lateralis muscle. Glucose tolerance and the insulin response were measured by a 2-hour oral glucose tolerance test. Results: All outcome measures remained unchanged during the control period....... After strength training the relative area of type 2X fibers was decreased. Muscle fiber size and capillary density remained unchanged. After the strength training, insulin concentrations were significantly lower in patients with impaired glucose tolerance or type 2 diabetes (n = 14) (fasting insulin...

  2. High electro-catalytic activities of glucose oxidase embedded one-dimensional ZnO nanostructures

    International Nuclear Information System (INIS)

    Sarkar, Nirmal K; Bhattacharyya, Swapan K

    2013-01-01

    One-dimensional ZnO nanorods and nanowires are separately synthesized on Zn substrate by simple hydrothermal processes at low temperatures. Electro-catalytic responses of glucose oxidase/ZnO/Zn electrodes using these two synthesized nanostructures of ZnO are reported and compared with others available in literature. It is apparent the Michaelis–Menten constant, K M app , for the present ZnO nanowire, having a greater aspect ratio, is found to be the lowest when compared with others. This sensor shows lower oxidation peak potential with a long detection range of 6.6 μM–380 mM and the highest sensitivity of ∼35.1 μA cm −2 mM −1 , among the reported values in the literature. Enzyme catalytic efficiency and turnover numbers are also found to be remarkably high. (paper)

  3. Effect of Ethanolic Extract of Emblica officinalis (Amla on Glucose Homeostasis in Rats Fed with High Fat Diet

    Directory of Open Access Journals (Sweden)

    Pallavi S. Kanthe

    2017-07-01

    Full Text Available Background: Emblica officinalis contains many biological active components which are found to have some medicinal properties against diseases. Aim and Objectives: To assess hypolipidemic and glucose regulatory actions of Ethanolic Extract of Emblica officinalis (EEO on High Fat Diet (HFD fed experimental rats. Material and Methods: Twenty four rats were divided into four groups, having six rats in each group as following; Group I- Control (20% fat; Group II (EEO 100 mg/kg/b w; Group III (30% fat and Group IV (30% fat + EEO 100 mg/kg/b w. The treatment was continued for 21 days. Gravimetric parameters and lipid profiles of all the groups were measured. Oral Glucose Tolerance Test (OGTT, fasting and postprandial glucose and fasting insulin levels were estimated. Homeostasis Model Assessment of Insulin Resistance (HOMA-IR was calculated. Statistical analysis was done. Results: Significant alteration in serum lipid profile, fasting and post prandial blood glucose levels and fasting insulin level were observed in rats of Group III fed with high fat diet. Supplementation of EEO improved both of glycemic and lipid profiles in rats of Group IV fed with high fat diet. Conclusion: Results from the study indicate the beneficial role of EEO on dyslipidemia and glucose homeostasis in rats treated with high fat diet.

  4. Skeletal Muscle TRIB3 Mediates Glucose Toxicity in Diabetes and High- Fat Diet–Induced Insulin Resistance

    Science.gov (United States)

    Wu, Mengrui; Kim, Teayoun; Jariwala, Ravi H.; Garvey, W. John; Luo, Nanlan; Kang, Minsung; Ma, Elizabeth; Tian, Ling; Steverson, Dennis; Yang, Qinglin; Fu, Yuchang

    2016-01-01

    In the current study, we used muscle-specific TRIB3 overexpressing (MOE) and knockout (MKO) mice to determine whether TRIB3 mediates glucose-induced insulin resistance in diabetes and whether alterations in TRIB3 expression as a function of nutrient availability have a regulatory role in metabolism. In streptozotocin diabetic mice, TRIB3 MOE exacerbated, whereas MKO prevented, glucose-induced insulin resistance and impaired glucose oxidation and defects in insulin signal transduction compared with wild-type (WT) mice, indicating that glucose-induced insulin resistance was dependent on TRIB3. In response to a high-fat diet, TRIB3 MOE mice exhibited greater weight gain and worse insulin resistance in vivo compared with WT mice, coupled with decreased AKT phosphorylation, increased inflammation and oxidative stress, and upregulation of lipid metabolic genes coupled with downregulation of glucose metabolic genes in skeletal muscle. These effects were prevented in the TRIB3 MKO mice relative to WT mice. In conclusion, TRIB3 has a pathophysiological role in diabetes and a physiological role in metabolism. Glucose-induced insulin resistance and insulin resistance due to diet-induced obesity both depend on muscle TRIB3. Under physiological conditions, muscle TRIB3 also influences energy expenditure and substrate metabolism, indicating that the decrease and increase in muscle TRIB3 under fasting and nutrient excess, respectively, are critical for metabolic homeostasis. PMID:27207527

  5. Chickens from lines artificially selected for juvenile low and high body weight differ in glucose homeostasis and pancreas physiology.

    Science.gov (United States)

    Sumners, L H; Zhang, W; Zhao, X; Honaker, C F; Zhang, S; Cline, M A; Siegel, P B; Gilbert, E R

    2014-06-01

    Artificial selection of White Plymouth Rock chickens for juvenile (day 56) body weight resulted in two divergent genetic lines: hypophagic low weight (LWS) chickens and hyperphagic obese high weight (HWS) chickens, with the latter more than 10-fold heavier than the former at selection age. A study was designed to investigate glucose regulation and pancreas physiology at selection age in LWS chickens and HWS chickens. Oral glucose tolerance and insulin sensitivity tests revealed differences in threshold sensitivity to insulin and glucose clearance rate between the lines. Results from real-time PCR showed greater pancreatic mRNA expression of four glucose regulatory genes (preproinsulin, PPI; preproglucagon, PPG; glucose transporter 2, GLUT2; and pancreatic duodenal homeobox 1, Pdx1) in LWS chickens, than HWS chickens. Histological analysis of the pancreas revealed that HWS chickens have larger pancreatic islets, less pancreatic islet mass, and more pancreatic inflammation than LWS chickens, all of which presumably contribute to impaired glucose metabolism. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Overweight, High Blood Pressure and Impaired Fasting Glucose in Uyghur, Han and Kazakh Chinese Children and Adolescents

    Science.gov (United States)

    Wang, Q; Huang, Y. D.; Zhang, W. G.; Zhai, X. H.; Wang, C.C.; Lee, J. H.

    2014-01-01

    Objectives To investigate whether levels of blood pressure and fasting glucose differ among Chinese children of three different ethnicities (i.e., Uyghurs, Kazakhs and Hans) and whether the differences are explained by childhood obesity. Methods A school-based cross-sectional study was conducted in a large three ethnic pediatric population (n=6,633), whose ages ranged from 7–18 years. Anthropometrics and blood pressure were measured using standard protocols. Fasting glucose was measured in a subset of children (n=2,295) who were randomly selected based on ethnicity and age. The age-sex stratified Chinese national cutoffs were used to define obesity and high blood pressure (HBP). The prevalence of HBP, impaired fasting glucose (IFG), mean levels of blood pressure and glucose were compared among three ethnic groups. Results 2,142 Uyghurs, 2,078 Han and 1,997 Kazakhs were analyzed. After adjusting for age and body mass index (BMI), the mean blood pressure for Uyghurs was on average, 2–4 mmHg lower than those for Hans and Kazakhs. Kazakhs had the lowest mean fasting glucose compared with Hans and Uyghurs (4.5 vs 5.0 vs. 4.8mmol/L, respectively). The differences in blood pressure and fasting glucose persisted even after adjusting for age and BMI, and the differences among ethnic groups in blood pressure levels and fasting glucose levels were observed as early as 7 to 9 years of age. Conclusions The prevalence of HBP and IFG differed significantly among Uyghurs, Hans and Kazakhs, and the ethnic differences observed in childhood were consistent with those observed in adults from the same region. While childhood obesity is a significant risk factor for hypertension and elevated glucose, the differences among ethnic groups were not explained by obesity alone. PMID:24904957

  7. Glucose Tolerance, Lipids, and GLP-1 Secretion in JCR:LA-cp Rats Fed a High Protein Fiber Diet

    Science.gov (United States)

    Reimer, Raylene A.; Russell, James C.

    2013-01-01

    Background We have shown that individually, dietary fiber and protein increase secretion of the anorexigenic and insulinotropic hormone, glucagon-like peptide-1 (GLP-1). Objective Our objective was to combine, in one diet, high levels of fiber and protein to maximize GLP-1 secretion, improve glucose tolerance, and reduce weight gain. Methods and Procedures Lean (+/?) and obese (cp/cp) male James C Russell corpulent (JCR:LA-cp) rats lacking a functional leptin receptor were fed one of four experimental diets (control, high protein (HP), high fiber (HF, prebiotic fiber inulin), or combination (CB)) for 3 weeks. An oral glucose tolerance test (OGTT) was performed to evaluate plasma GLP-1, insulin and glucose. Plasma lipids and intestinal proglucagon mRNA expression were determined. Results Energy intake was lower with the HF diet in lean and obese rats. Weight gain did not differ between diets. Higher colonic proglucagon mRNA in lean rats fed a CB diet was associated with higher GLP-1 secretion during OGTT. The HP diet significantly reduced plasma glucose area under the curve (AUC) during OGTT in obese rats, which reflected both an increased GLP-1 AUC and higher fasting insulin. Diets containing inulin resulted in the lowest plasma triglyceride and total cholesterol levels. Discussion Overall, combining HP with HF in the diet increased GLP-1 secretion in response to oral glucose, but did not improve glucose tolerance or lipid profiles more than the HF diet alone did. We also suggest that glycemic and insulinemic response to prebiotics differ among rat models and future research work should examine their role in improving glucose tolerance in diet-induced vs. genetic obesity with overt hyperleptinemia. PMID:18223610

  8. Agmatine Ameliorates High Glucose-Induced Neuronal Cell Senescence by Regulating the p21 and p53 Signaling.

    Science.gov (United States)

    Song, Juhyun; Lee, Byeori; Kang, Somang; Oh, Yumi; Kim, Eosu; Kim, Chul-Hoon; Song, Ho-Taek; Lee, Jong Eun

    2016-02-01

    Neuronal senescence caused by diabetic neuropathy is considered a common complication of diabetes mellitus. Neuronal senescence leads to the secretion of pro-inflammatory cytokines, the production of reactive oxygen species, and the alteration of cellular homeostasis. Agmatine, which is biosynthesized by arginine decarboxylation, has been reported in previous in vitro to exert a protective effect against various stresses. In present study, agmatine attenuated the cell death and the expression of pro-inflammatory cytokines such as IL-6, TNF-alpha and CCL2 in high glucose in vitro conditions. Moreover, the senescence associated-β-galatosidase's activity in high glucose exposed neuronal cells was reduced by agmatine. Increased p21 and reduced p53 in high glucose conditioned cells were changed by agmatine. Ultimately, agmatine inhibits the neuronal cell senescence through the activation of p53 and the inhibition of p21. Here, we propose that agmatine may ameliorate neuronal cell senescence in hyperglycemia.

  9. Treatment non-response: Associations with smoking expectancies among treatment-seeking smokers.

    Science.gov (United States)

    Garey, Lorra; Taha, Samar A; Kauffman, Brooke Y; Manning, Kara F; Neighbors, Clayton; Schmidt, Norman B; Zvolensky, Michael J

    2017-10-01

    Despite the high rate of smoking cessation treatment non-response, relatively little empirical work has examined predictors of treatment non-response. The present study sought to explore the effect of smoking outcome expectancies on treatment response in a sample of treatment-seeking adult daily smokers (N=182; 53.3% female; M age =40.67; SD=13.63). Results indicated that expectancies for smoking to reduce negative affect were related to an increased likelihood of treatment non-response (OR=0.73, CI: 0.54, 0.98). These findings remained significant after controlling for sex, presence of Axis I disorder, tobacco-related health problems, tobacco dependence, anxiety sensitivity, and condition assignment as well as other smoking expectancy dimensions. Post hoc analyses revealed that this relation was stronger for smokers in the integrated care condition vs. the standard care condition (Interaction: OR=1.69, CI: 1.05, 2.73). Additionally, expectancies for smoking to enhance positive affect and provide sensory satisfaction were associated with an increased likelihood of treatment response in the standard care condition. The current findings suggest expectancies that smoking will alleviate negative affect may be a risk factor of smoking cessation treatment non-response. Additionally, findings provide evidence that the relation between smoking expectancies and treatment non-response may differ by smoking cessation treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Benfotiamine increases glucose oxidation and downregulates NADPH oxidase 4 expression in cultured human myotubes exposed to both normal and high glucose concentrations

    OpenAIRE

    Fraser, D. A.; Hessvik, N. P.; Nikolić, N.; Aas, V.; Hanssen, K. F.; Bøhn, S. K.; Thoresen, G. H.; Rustan, A. C.

    2011-01-01

    The aim of the present work was to study the effects of benfotiamine (S-benzoylthiamine O-monophosphate) on glucose and lipid metabolism and gene expression in differentiated human skeletal muscle cells (myotubes) incubated for 4 days under normal (5.5 mM glucose) and hyperglycemic (20 mM glucose) conditions. Myotubes established from lean, healthy volunteers were treated with benfotiamine for 4 days. Glucose and lipid metabolism were studied with labeled precursors. Gene expression was measu...

  11. Myeloperoxidase amplified high glucose-induced endothelial dysfunction in vasculature: Role of NADPH oxidase and hypochlorous acid.

    Science.gov (United States)

    Tian, Rong; Ding, Yun; Peng, Yi-Yuan; Lu, Naihao

    2017-03-11

    Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-derived reactive oxygen species (ROS) such as superoxide and hydrogen peroxide (H 2 O 2 ), have emerged as important molecules in the pathogenesis of diabetic endothelial dysfunction. Additionally, neutrophils-derived myeloperoxidase (MPO) and MPO-catalyzed hypochlorous acid (HOCl) play important roles in the vascular injury. However, it is unknown whether MPO can use vascular-derived ROS to induce diabetic endothelial dysfunction. In the present study, we demonstrated that NADPH oxidase was the main source of ROS formation in high glucose-cultured human umbilical vein endothelial cells (HUVECs), and played a critical role in high glucose-induced endothelial dysfunction such as cell apoptosis, loss of cell viability and reduction of nitric oxide (NO). However, the addition of MPO could amplify the high glucose-induced endothelial dysfunction which was inhibited by the presence of apocynin (NADPH oxidase inhibitor), catalase (H 2 O 2 scavenger), or methionine (HOCl scavenger), demonstrating the contribution of NADPH oxidase-H 2 O 2 -MPO-HOCl pathway in the MPO/high glucose-induced vascular injury. In high glucose-incubated rat aortas, MPO also exacerbated the NADPH oxidase-induced impairment of endothelium-dependent relaxation. Consistent with these in vitro data, in diabetic rat aortas, both MPO expresion and NADPH oxidase activity were increased while the endothelial function was simultaneously impaired. The results suggested that vascular-bound MPO could amplify high glucose-induced vascular injury in diabetes. MPO-NADPH oxidase-HOCl may represent an important pathogenic pathway in diabetic vascular diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Effect of polysaccharide of dendrobium candidum on proliferation and apoptosis of human corneal epithelial cells in high glucose

    Science.gov (United States)

    Li, Qiangxiang; Chen, Jing; Li, Yajia; Chen, Ting; Zou, Jing; Wang, Hua

    2017-01-01

    Abstract Background: The aim of the study was to observe the effect of polysaccharide of dendrobium candidum (PDC) and high glucose on proliferation, apoptosis of human corneal epithelial cells (HCEC). Methods: The MTT method was used to screen and take the optimal high-glucose concentration, treatment time, and PDC concentration using HCEC and divide it into 4 groups: control group (C), high glucose group (HG), PDC group, and HG + PDC group. We observed and compared the effect of the 4 groups on HCEC proliferation by MTT, apoptosis by Annexin V-FITC/PI double fluorescent staining and flow cytometry (FCM), and expression of bax mRNA and bcl-2 mRNA by RT-qPCR. Results: Compared with the control group, proliferative activity of HCEC cells was reduced; the cells apoptosis ratio was increased; the expression of bax mRNA was increased, and the expression of bcl-2 mRNA was reduced in the HG group. Proliferative activity of HCEC cells in the PDC group was increased, and the expression of bcl-2 mRNA was increased but that of bax mRNA was decreased. Proliferative activity of HCEC cells in the HG + PDC group was increased, but it could not restore to the normal level; the expression of bax mRNA was significantly decreased but the expression of bcl-2 mRNA was significantly increased. Conclusions: Our results demonstrate that high glucose can inhibit proliferative activity and induce apoptosis of HCEC. PDC can improve the proliferative activity of HCEC cells under the high glucose environment and reduce the apoptosis of cells by regulating the expression of bax and bcl-2. PDC play a very important role on protecting and repairing of corneal epithelial cells damage in high glucose. PMID:28796073

  13. Exposure to Common Food Additive Carrageenan Alone Leads to Fasting Hyperglycemia and in Combination with High Fat Diet Exacerbates Glucose Intolerance and Hyperlipidemia without Effect on Weight

    Directory of Open Access Journals (Sweden)

    Sumit Bhattacharyya

    2015-01-01

    Full Text Available Aims. Major aims were to determine whether exposure to the commonly used food additive carrageenan could induce fasting hyperglycemia and could increase the effects of a high fat diet on glucose intolerance and dyslipidemia. Methods. C57BL/6J mice were exposed to either carrageenan, high fat diet, or the combination of high fat diet and carrageenan, or untreated, for one year. Effects on fasting blood glucose, glucose tolerance, lipid parameters, weight, glycogen stores, and inflammation were compared. Results. Exposure to carrageenan led to glucose intolerance by six days and produced elevated fasting blood glucose by 23 weeks. Effects of carrageenan on glucose tolerance were more severe than from high fat alone. Carrageenan in combination with high fat produced earlier onset of fasting hyperglycemia and higher glucose levels in glucose tolerance tests and exacerbated dyslipidemia. In contrast to high fat, carrageenan did not lead to weight gain. In hyperinsulinemic, euglycemic clamp studies, the carrageenan-exposed mice had higher early glucose levels and lower glucose infusion rate and longer interval to achieve the steady-state. Conclusions. Carrageenan in the Western diet may contribute to the development of diabetes and the effects of high fat consumption. Carrageenan may be useful as a nonobese model of diabetes in the mouse.

  14. Modification of high saturated fat diet with n-3 polyunsaturated fat improves glucose intolerance and vascular dysfunction

    Science.gov (United States)

    Lamping, KL; Nuno, DW; Coppey, LJ; Holmes, AJ; Hu, S; Oltman, CL; Norris, AW; Yorek, MA

    2013-01-01

    Aims The ability of dietary enrichment with monounsaturated (MUFA), n-3, or n-6 polyunsaturated fatty acids (PUFA) to reverse glucose intolerance and vascular dysfunction resulting from excessive dietary saturated fatty acids is not resolved. We hypothesized that partial replacement of dietary saturated fats with n-3 PUFA enriched menhaden oil (MO) would provide greater improvement in glucose tolerance and vascular function compared to n-6 enriched safflower oil (SO) or MUFA-enriched olive oil (OO). Material and Methods We fed mice a high saturated fat diet (60% kcal from lard) for 12 weeks before substituting half the lard with MO, SO or OO for an additional 4 weeks. At the end of 4 weeks, we assessed glucose tolerance, insulin signaling and reactivity of isolated pressurized gracilis arteries. Results After 12 weeks of saturated fat diet, body weights were elevated and glucose tolerance abnormal compared to mice on control diet (13% kcal lard). Diet substituted with MO restored basal glucose levels, glucose tolerance, and indices of insulin signaling (phosphorylated Akt) to normal whereas restoration was limited for SO and OO substitutions. Although dilation to acetylcholine was reduced in arteries from mice on HF, OO and SO diets compared to normal diet, dilation to acetylcholine was fully restored and constriction to phenylephrine reduced in MO fed mice compared to normal. Conclusion We conclude that short term enrichment of an ongoing high fat diet with n-3 PUFA rich MO but not MUFA rich OO or n-6 PUFA rich SO reverses glucose tolerance, insulin signaling, and vascular dysfunction. PMID:22950668

  15. GABA dramatically improves glucose tolerance in streptozotocin-induced diabetic rats fed with high-fat diet.

    Science.gov (United States)

    Sohrabipour, Shahla; Sharifi, Mohammad Reza; Talebi, Ardeshir; Sharifi, Mohammadreza; Soltani, Nepton

    2018-05-05

    Skeletal muscle, hepatic insulin resistance, and beta cell dysfunction are the characteristic pathophysiological features of type 2 diabetes mellitus. GABA has an important role in pancreatic islet cells. The present study attempted to clarify the possible mechanism of GABA to improve glucose tolerance in a model of type 2 diabetes mellitus in rats. Fifty Wistar rats were divided into five groups: NDC that was fed the normal diet, CD which received a high-fat diet with streptozotocin, CD-GABA animals that received GABA via intraperitoneal injection, plus CD-Ins1 and CD-Ins2 groups which were treated with low and high doses of insulin, respectively. Body weight and blood glucose were measured weekly. Intraperitoneal glucose tolerance test (IPGTT), insulin tolerance test (ITT), urine volume, amount of water drinking, and food intake assessments were performed monthly. The hyperinsulinemic euglycemic clamp was done for assessing insulin resistance. Plasma insulin and glucagon were measured. Abdominal fat was measured. Glucagon receptor, Glucose 6 phosphatase, Phosphoenolpyruvate carboxykinase genes expression were evaluated in liver and Glucose transporter 4 (GLUT4) genes expression and protein translocation were evaluated in the muscle. GABA or insulin therapy improved blood glucose, insulin level, IPGTT, ITT, gluconeogenesis pathway, Glucagon receptor, body weight and body fat in diabetic rats. GLUT4 gene and protein expression increased. GABA whose beneficial effect was comparable to that of insulin, also increased glucose infusion rate during an euglycemic clamp. GABA could improve insulin resistance via rising GLUT4 and also decreasing the gluconeogenesis pathway and Glucagon receptor gene expression. Copyright © 2018. Published by Elsevier B.V.

  16. Downregulation of Lysyl Oxidase Protects Retinal Endothelial Cells From High Glucose-Induced Apoptosis.

    Science.gov (United States)

    Kim, Dongjoon; Mecham, Robert P; Trackman, Philip C; Roy, Sayon

    2017-05-01

    To investigate the effect of reducing high glucose (HG)-induced lysyl oxidase (LOX) overexpression and increased activity on retinal endothelial cell apoptosis. Rat retinal endothelial cells (RRECs) were grown in normal (N) or HG (30 mM glucose) medium for 7 days. In parallel, RRECs were grown in HG medium and transfected with LOX small interfering RNA (siRNA), scrambled siRNA as control, or exposed to β-aminopropionitrile (BAPN), a LOX inhibitor. LOX expression, AKT activation, and caspase-3 activity were determined by Western blot (WB) analysis and apoptosis by differential dye staining assay. Moreover, to determine whether diabetes-induced LOX overexpression alters AKT activation and promotes apoptosis, changes in LOX expression, AKT phosphorylation, caspase-3 activation, and Bax expression were assessed in retinas of streptozotocin (STZ)-induced diabetic mice and LOX heterozygous knockout (LOX+/-) mice. WB analysis indicated significant LOX overexpression and reduced AKT activation under HG condition in RRECs. Interestingly, when cells grown in HG were transfected with LOX siRNA or exposed to BAPN, the number of apoptotic cells was significantly decreased concomitant with increased AKT phosphorylation. Diabetic mouse retinas exhibited LOX overexpression, decreased AKT phosphorylation, and increased Bax and caspase-3 activation compared to values in nondiabetic mice. In LOX+/- mice, reduced LOX levels were observed with increased AKT activity, and reduced Bax and caspase-3 activity. Furthermore, decreased levels of LOX in the LOX+/- mice was protective against diabetes-induced apoptosis. Findings from this study indicate that preventing LOX overexpression may be protective against HG-induced apoptosis in retinal vascular cells associated with diabetic retinopathy.

  17. High Glucose-Induced Reactive Oxygen Species Stimulates Human Mesenchymal Stem Cell Migration Through Snail and EZH2-Dependent E-Cadherin Repression

    Directory of Open Access Journals (Sweden)

    Ji Young Oh

    2018-04-01

    Full Text Available Background/Aims: Glucose plays an important role in stem cell fate determination and behaviors. However, it is still not known how glucose contributes to the precise molecular mechanisms responsible for stem cell migration. Thus, we investigate the effect of glucose on the regulation of the human umbilical cord blood-derived mesenchymal stem cell (hUCB-MSC migration, and analyze the mechanism accompanied by this effect. Methods: Western blot analysis, wound healing migration assays, immunoprecipitation, and chromatin immunoprecipitation assay were performed to investigate the effect of high glucose on hUCB-MSC migration. Additionally, hUCB-MSC transplantation was performed in the mouse excisional wound splinting model. Results: High concentration glucose (25 mM elicits hUCB-MSC migration compared to normal glucose and high glucose-pretreated hUCB-MSC transplantation into the wound sites in mice also accelerates skin wound repair. We therefore elucidated the detailed mechanisms how high glucose induces hUCB-MSC migration. We showed that high glucose regulates E-cadherin repression through increased Snail and EZH2 expressions. And, we found high glucose-induced reactive oxygen species (ROS promotes two signaling; JNK which regulates γ–secretase leading to the cleavage of Notch proteins and PI3K/Akt signaling which enhances GSK-3β phosphorylation. High glucose-mediated JNK/Notch pathway regulates the expression of EZH2, and PI3K/Akt/GSK-3β pathway stimulates Snail stabilization, respectively. High glucose enhances the formation of EZH2/Snail/HDAC1 complex in the nucleus, which in turn causes E-cadherin repression. Conclusion: This study reveals that high glucose-induced ROS stimulates the migration of hUCB-MSC through E-cadherin repression via Snail and EZH2 signaling pathways.

  18. High protein diet maintains glucose production during exercise-induced energy deficit: a controlled trial

    Science.gov (United States)

    Inadequate energy intake induces changes in endogenous glucose production (GP) to preserve muscle mass. Whether addition provision of dietary protein modulates GP response to energy deficit is unclear. The objective was to determine whether exercise-induced energy deficit effects on glucose metaboli...

  19. Gold-coated polydimethylsiloxane microwells for high-throughput electrochemiluminescence analysis of intracellular glucose at single cells.

    Science.gov (United States)

    Xia, Juan; Zhou, Junyu; Zhang, Ronggui; Jiang, Dechen; Jiang, Depeng

    2018-06-04

    In this communication, a gold-coated polydimethylsiloxane (PDMS) chip with cell-sized microwells was prepared through a stamping and spraying process that was applied directly for high-throughput electrochemiluminescence (ECL) analysis of intracellular glucose at single cells. As compared with the previous multiple-step fabrication of photoresist-based microwells on the electrode, the preparation process is simple and offers fresh electrode surface for higher luminescence intensity. More luminescence intensity was recorded from cell-retained microwells than that at the planar region among the microwells that was correlated with the content of intracellular glucose. The successful monitoring of intracellular glucose at single cells using this PDMS chip will provide an alternative strategy for high-throughput single-cell analysis. Graphical abstract ᅟ.

  20. Prevalence and risk factors of clopidogrel non-response among Saudi patients undergoing coronary angiography

    Directory of Open Access Journals (Sweden)

    Haitham I. Sakr

    2016-02-01

    Full Text Available Objectives: To estimate the prevalence of clopidogrel non-response and identify its risk factors among Saudi patients. Methods: This cross-sectional study was conducted at Prince Sultan Cardiac Center, Riyadh, Kingdom of Saudi Arabia between January and June 2013, to assess the degree of platelet inhibition using the VerifyNow assay (Accumetrics, San Diego, CA, USA after receiving clopidogrel standard loading dose. Clopidogrel resistance was defined as ≤15% platelet inhibition or greater than 213 P2Y12 reaction units (PRU. Results: Three hundred and four patients were included in the study. The mean age was 60.3 ± 11.4 years, and 73% were males. Clopidogrel doses were 300 mg (57%, 600 mg (27%, and 75 mg (16%. All patients used aspirin (81 mg in 94%. Approximately 66% (200/304 showed in vitro clopidogrel non-response, 54% had low platelet inhibitions, and 61% had high post-loading PRU. Using multivariate regression analysis that included all significant characteristics; only diabetes (odds ratio [OR]: 2.36, 95% confidence interval [CI]: 1.30-4.27, p=0.005 and higher preloading PRU (OR: 2.39, 95% CI: 1.40-4.11, p=0.002 remained significantly associated with higher clopidogrel non-response while myocardial infarction (OR: 0.34, 95% CI: 0.15-0.81, p=0.014 remained significantly associated with lower clopidogrel non-response. The associations of morbid obesity and diuretics use with higher clopidogrel non-response were slightly attenuated. Conclusion: Our findings indicate a high rate of clopidogrel in-vitro non-response among Saudi patients undergoing coronary angiography.

  1. Benfotiamine increases glucose oxidation and downregulates NADPH oxidase 4 expression in cultured human myotubes exposed to both normal and high glucose concentrations.

    Science.gov (United States)

    Fraser, D A; Hessvik, N P; Nikolić, N; Aas, V; Hanssen, K F; Bøhn, S K; Thoresen, G H; Rustan, A C

    2012-07-01

    The aim of the present work was to study the effects of benfotiamine (S-benzoylthiamine O-monophosphate) on glucose and lipid metabolism and gene expression in differentiated human skeletal muscle cells (myotubes) incubated for 4 days under normal (5.5 mM glucose) and hyperglycemic (20 mM glucose) conditions. Myotubes established from lean, healthy volunteers were treated with benfotiamine for 4 days. Glucose and lipid metabolism were studied with labeled precursors. Gene expression was measured using real-time polymerase chain reaction (qPCR) and microarray technology. Benfotiamine significantly increased glucose oxidation under normoglycemic (35 and 49% increase at 100 and 200 μM benfotiamine, respectively) as well as hyperglycemic conditions (70% increase at 200 μM benfotiamine). Benfotiamine also increased glucose uptake. In comparison, thiamine (200 μM) increased overall glucose metabolism but did not change glucose oxidation. In contrast to glucose, mitochondrial lipid oxidation and overall lipid metabolism were unchanged by benfotiamine. The expression of NADPH oxidase 4 (NOX4) was significantly downregulated by benfotiamine treatment under both normo- and hyperglycemic conditions. Gene set enrichment analysis (GSEA) showed that befotiamine increased peroxisomal lipid oxidation and organelle (mitochondrial) membrane function. In conclusion, benfotiamine increases mitochondrial glucose oxidation in myotubes and downregulates NOX4 expression. These findings may be of relevance to type 2 diabetes where reversal of reduced glucose oxidation and mitochondrial capacity is a desirable goal.

  2. High fat diet-induced glucose intolerance impairs myocardial function, but not myocardial perfusion during hyperaemia: a pilot study

    Directory of Open Access Journals (Sweden)

    van den Brom Charissa E

    2012-06-01

    Full Text Available Abstract Background Glucose intolerance is a major health problem and is associated with increased risk of progression to type 2 diabetes mellitus and cardiovascular disease. However, whether glucose intolerance is related to impaired myocardial perfusion is not known. The purpose of the present study was to study the effect of diet-induced glucose intolerance on myocardial function and perfusion during baseline and pharmacological induced hyperaemia. Methods Male Wistar rats were randomly exposed to a high fat diet (HFD or control diet (CD (n = 8 per group. After 4 weeks, rats underwent an oral glucose tolerance test. Subsequently, rats underwent (contrast echocardiography to determine myocardial function and perfusion during baseline and dipyridamole-induced hyperaemia (20 mg/kg for 10 min. Results Four weeks of HFD feeding resulted in glucose intolerance compared to CD-feeding. Contractile function as represented by fractional shortening was not altered in HFD-fed rats compared to CD-fed rats under baseline conditions. However, dipyridamole increased fractional shortening in CD-fed rats, but not in HFD-fed rats. Basal myocardial perfusion, as measured by estimate of perfusion, was similar in CD- and HFD-fed rats, whereas dipyridamole increased estimate of perfusion in CD-fed rats, but not in HFD-fed rats. However, flow reserve was not different between CD- and HFD-fed rats. Conclusions Diet-induced glucose intolerance is associated with impaired myocardial function during conditions of hyperaemia, but myocardial perfusion is maintained. These findings may result in new insights into the effect of glucose intolerance on myocardial function and perfusion during hyperaemia.

  3. Synthesis of high specific activity [1-3H]-D-glucose

    International Nuclear Information System (INIS)

    Saljoughian, M.; Morimoto, Hiromi; Williams, P.G.; Lee, Hakno

    1991-01-01

    Specifically labeled [1- 3 H]-D-glucose has been used for metabolic and mechanistic studies in erythrocytes. In vitro metabolism of the a and b anomers of the tritiated glucose was readily traced by 3 H NMR spectroscopy. Initial studies used labeled glucose obtained by catalytic exchange labeling (at 4.5-9 Ci/mmole, or 15-30% tritiated at the C-1 position), and this necessitated sample glucose concentrations of 2-4 times physiological. The availability of glucose at maximum specific activity (28.7 Ci/mmole, 100% at the C-1 position) would allow the authors to observe metabolic behavior using 1 mM levels of glucose. Accordingly, they have devised a new route for the synthesis of C-1 tritiated glucose, involving the synthesis of 4,6-O-benzylidene-D-gluconolactone followed by reduction with supertritide. Preliminary work with commercial superdeuteride is complete, and chromatographic and NMR analyses are promising. The analogous tritium reactions are currently underway, and experimental results are presented for all stages of investigation. This strategy should be generally applicable to the labeling of many reducing sugars, with the substrates 2-deoxyglucose and maltotriose being of particular interest to their research

  4. Graphitic Carbon Nitride Nanosheets-Based Ratiometric Fluorescent Probe for Highly Sensitive Detection of H2O2 and Glucose.

    Science.gov (United States)

    Liu, Jin-Wen; Luo, Ying; Wang, Yu-Min; Duan, Lu-Ying; Jiang, Jian-Hui; Yu, Ru-Qin

    2016-12-14

    Graphitic carbon nitride (g-C 3 N 4 ) nanosheets, an emerging graphene-like carbon-based nanomaterial with high fluorescence and large specific surface areas, hold great potential for biosensor applications. Current g-C 3 N 4 nanosheets based fluorescent biosensors majorly rely on single fluorescent intensity reading through fluorescence quenching interactions between the nanosheets and metal ions. Here we report for the first time the development of a novel g-C 3 N 4 nanosheets-based ratiometric fluorescence sensing strategy for highly sensitive detection of H 2 O 2 and glucose. With o-phenylenediamine (OPD) oxidized by H 2 O 2 in the presence of horseradish peroxidase (HRP), the oxidization product can assemble on the g-C 3 N 4 nanosheets through hydrogen bonding and π-π stacking, which effectively quenches the fluorescence of g-C 3 N 4 while delivering a new emission peak. The ratiometric signal variations enable robust and sensitive detection of H 2 O 2 . On the basis of the glucose converting into H 2 O 2 through the catalysis of glucose oxidase, the g-C 3 N 4 -based ratiometric fluorescence sensing platform is also exploited for glucose assay. The developed strategy is demonstrated to give a detection limit of 50 nM for H 2 O 2 and 0.4 μM for glucose, at the same time, it has been successfully used for glucose levels detection in human serum. This strategy may provide a cost-efficient, robust, and high-throughput platform for detecting various species involving H 2 O 2 -generation reactions for biomedical applications.

  5. Glucose and Lipid Dysmetabolism in a Rat Model of Prediabetes Induced by a High-Sucrose Diet

    Science.gov (United States)

    Burgeiro, Ana; Cerqueira, Manuela G.; Varela-Rodríguez, Bárbara M.; Nunes, Sara; Neto, Paula; Pereira, Frederico C.; Reis, Flávio; Carvalho, Eugénia

    2017-01-01

    Glucotoxicity and lipotoxicity are key features of type 2 diabetes mellitus, but their molecular nature during the early stages of the disease remains to be elucidated. We aimed to characterize glucose and lipid metabolism in insulin-target organs (liver, skeletal muscle, and white adipose tissue) in a rat model treated with a high-sucrose (HSu) diet. Two groups of 16-week-old male Wistar rats underwent a 9-week protocol: HSu diet (n = 10)—received 35% of sucrose in drinking water; Control (n = 12)—received vehicle (water). Body weight, food, and beverage consumption were monitored and glucose, insulin, and lipid profiles were measured. Serum and liver triglyceride concentrations, as well as the expression of genes and proteins involved in lipid biosynthesis were assessed. The insulin-stimulated glucose uptake and isoproterenol-stimulated lipolysis were also measured in freshly isolated adipocytes. Even in the absence of obesity, this rat model already presented the main features of prediabetes, with fasting normoglycemia but reduced glucose tolerance, postprandial hyperglycemia, compensatory hyperinsulinemia, as well as decreased insulin sensitivity (resistance) and hypertriglyceridemia. In addition, impaired hepatic function, including altered gluconeogenic and lipogenic pathways, as well as increased expression of acetyl-coenzyme A carboxylase 1 and fatty acid synthase in the liver, were observed, suggesting that liver glucose and lipid dysmetabolism may play a major role at this stage of the disease. PMID:28635632

  6. Fermented Moringa oleifera Decreases Hepatic Adiposity and Ameliorates Glucose Intolerance in High-Fat Diet-Induced Obese Mice.

    Science.gov (United States)

    Joung, Hyunchae; Kim, Bobae; Park, Hyunjoon; Lee, Kyuyeon; Kim, Hee-Hoon; Sim, Ho-Cheol; Do, Hyun-Jin; Hyun, Chang-Kee; Do, Myoung-Sool

    2017-05-01

    Metabolic diseases, such as glucose intolerance and nonalcoholic fatty-liver disease (NAFLD), are primary risk factors for life-threatening conditions such as diabetes, heart attack, stroke, and hepatic cancer. Extracts from the tropical tree Moringa oleifera show antidiabetic, antioxidant, anti-inflammatory, and anticancer effects. Fermentation can further improve the safety and nutritional value of certain foods. We investigated the efficacy of fermented M. oleifera extract (FM) against high-fat diet (HFD)-induced glucose intolerance and hepatic lipid accumulation and investigated the underlying mechanisms by analyzing expression of proteins and genes involved in glucose and lipid regulation. C57BL/6 mice were fed with normal chow diet (ND) or HFD supplemented with distilled water (DW, control), nonfermented M. oleifera extract (NFM), or FM for 10 weeks. Although body weights were similar among HFD-fed treatment groups, liver weight was decreased, and glucose tolerance test (GTT) results improved in the FM group compared with DW and NFM groups. Hepatic lipid accumulation was also lower in the FM group, and expressions of genes involved in liver lipid metabolism were upregulated. In addition, HFD-induced endoplasmic reticulum (ER) stress, oxidative stress, and lipotoxicity in quadriceps muscles were decreased by FM. Finally, proinflammatory cytokine mRNA expression was decreased by FM in the liver, epididymal adipose tissue, and quadriceps of HFD-fed mice. FMs may decrease glucose intolerance and NAFLD under HFD-induced obesity by decreasing ER stress, oxidative stress, and inflammation.

  7. Kaempferol targets estrogen-related receptor α and suppresses the angiogenesis of human retinal endothelial cells under high glucose conditions.

    Science.gov (United States)

    Wu, Yan; Zhang, Qinmei; Zhang, Rui

    2017-12-01

    Diabetic retinopathy (DR) is the most common complication of diabetes and a major cause of new-onset blindness in the developed world. The present study aimed to examine the effect of kaempferol on high glucose-induced human retinal endothelial cells (HRECs) in vitro . The expression levels of various mRNAs and proteins were measured by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blotting, respectively. The target of kaempferol was determined using a luciferase reporter assay. In addition, HREC proliferation, migration and cell sprouting were determined using Cell Counting kit-8, wound scratch and tube formation assays, respectively. RT-qPCR and western blotting results showed that treatment with 30 mM glucose for 12, 24 and 48 h increased the expression level of estrogen-related receptor α (ERRα) mRNA and protein. The luciferase reporter assay demonstrated that kaempferol inhibited ERRα activity in HRECs. Compared with 5 mM normal glucose treatment, high (30 mM) glucose significantly promoted the proliferation, migration and tube formation of HRECs, which was antagonized by 10 and 30 µM kaempferol in a dose-dependent manner. Treatment with 30 mM glucose also increased the expression of vascular endothelial growth factor (VEGF) mRNA and protein, and the expression levels of VEGF mRNA and protein were suppressed by kaempferol (10 and 30 µM). Kaempferol (30 µM) treatment also increased the expression levels of thrombospondin 1 (TSP-1) and a disintegrin and metalloproteinase with thrombospondin motifs 1 (ADAMTS-1) mRNA; however, TSP-1 and ADAMTS-1 levels did not differ between high glucose and normal (5 mM) glucose conditions. The results of this study suggest that kaempferol targets ERRα and suppresses the angiogenesis of HRECs under high glucose conditions. Kaempferol may be a potential drug for use in controlling the progression of DR; however, in vivo studies are required to evaluate its efficacy and safety.

  8. Transgenic rescue of adipocyte glucose-dependent insulinotropic polypeptide receptor expression restores high fat diet-induced body weight gain

    DEFF Research Database (Denmark)

    Ugleholdt, Randi; Pedersen, Jens; Bassi, Maria Rosaria

    2011-01-01

    that was similar between the groups. In contrast, glucose-dependent insulinotropic polypeptide-mediated insulin secretion does not seem to be important for regulation of body weight after high fat feeding. The study supports a role of the adipocyte GIPr in nutrient-dependent regulation of body weight and lean mass...

  9. High glucose-induced oxidative stress represses sirtuin deacetylase expression and increases histone acetylation leading to neural tube defects.

    Science.gov (United States)

    Yu, Jingwen; Wu, Yanqing; Yang, Peixin

    2016-05-01

    Aberrant epigenetic modifications are implicated in maternal diabetes-induced neural tube defects (NTDs). Because cellular stress plays a causal role in diabetic embryopathy, we investigated the possible role of the stress-resistant sirtuin (SIRT) family histone deacetylases. Among the seven sirtuins (SIRT1-7), pre-gestational maternal diabetes in vivo or high glucose in vitro significantly reduced the expression of SIRT 2 and SIRT6 in the embryo or neural stem cells, respectively. The down-regulation of SIRT2 and SIRT6 was reversed by superoxide dismutase 1 (SOD1) over-expression in the in vivo mouse model of diabetic embryopathy and the SOD mimetic, tempol and cell permeable SOD, PEGSOD in neural stem cell cultures. 2,3-dimethoxy-1,4-naphthoquinone (DMNQ), a superoxide generating agent, mimicked high glucose-suppressed SIRT2 and SIRT6 expression. The acetylation of histone 3 at lysine residues 56 (H3K56), H3K14, H3K9, and H3K27, putative substrates of SIRT2 and SIRT6, was increased by maternal diabetes in vivo or high glucose in vitro, and these increases were blocked by SOD1 over-expression or tempol treatment. SIRT2 or SIRT6 over-expression abrogated high glucose-suppressed SIRT2 or SIRT6 expression, and prevented the increase in acetylation of their histone substrates. The potent sirtuin activator (SRT1720) blocked high glucose-increased histone acetylation and NTD formation, whereas the combination of a pharmacological SIRT2 inhibitor and a pan SIRT inhibitor mimicked the effect of high glucose on increased histone acetylation and NTD induction. Thus, diabetes in vivo or high glucose in vitro suppresses SIRT2 and SIRT6 expression through oxidative stress, and sirtuin down-regulation-induced histone acetylation may be involved in diabetes-induced NTDs. The mechanism underlying pre-gestational diabetes-induced neural tube defects (NTDs) is still elusive. Our study unravels a new epigenetic mechanism in which maternal diabetes-induced oxidative stress represses

  10. High glucose increases Cdk5 activity in podocytes via transforming growth factor-β1 signaling pathway

    International Nuclear Information System (INIS)

    Zhang, Yue; Li, Hongbo; Hao, Jun; Zhou, Yi; Liu, Wei

    2014-01-01

    Podocytes are highly specialized and terminally differentiated glomerular cells that play a vital role in the development and progression of diabetic nephropathy (DN). Cyclin-dependent kinase 5 (Cdk5), who is an atypical but essential member of the Cdk family of proline-directed serine/threonine kinases, has been shown as a key regulator of podocyte differentiation, proliferation and morphology. Our previous studies demonstrated that the expression of Cdk5 was significantly increased in podocytes of diabetic rats, and was closely related with podocyte injury of DN. However, the mechanisms of how expression and activity of Cdk5 are regulated under the high glucose environment have not yet been fully elucidated. In this study, we showed that high glucose up-regulated the expression of Cdk5 and its co-activator p35 with a concomitant increase in Cdk5 kinase activity in conditionally immortalized mouse podocytes in vitro. When exposed to 30 mM glucose, transforming growth factor-β1 (TGF-β1) was activated. Most importantly, we found that SB431542, the Tgfbr1 inhibitor, significantly decreased the expression of Cdk5 and p35 and Cdk5 kinase activity in high glucose-treated podocytes. Moreover, high glucose increased the expression of early growth response-1 (Egr-1) via TGF-β1-ERK1/2 pathway in podocytes and inhibition of Egr-1 by siRNA decreased p35 expression and Cdk5 kinase activity. Furthermore, inhibition of Cdk5 kinase activity effectively alleviated podocyte apoptosis induced by high glucose or TGF-β1. Thus, the TGF-β1-ERK1/2-Egr-1 signaling pathway may regulate the p35 expression and Cdk5 kinase activity in high glucose-treated podocytes, which contributes to podocyte injury of DN. - Highlights: • HG up-regulated the expression of Cdk5 and p35, and Cdk5 activity in podocytes. • HG activated TGF-β1 pathway and SB431542 inhibited Cdk5 expression and activity. • HG increased the expression of Egr-1 via TGF-β1-ERK1/2 pathway. • Inhibition of Egr-1

  11. Non-response in a survey among immigrants in Denmark

    DEFF Research Database (Denmark)

    Deding, Mette; Fridberg, Torben; Jakobsen, Vibeke

    The purpose of this paper is to study how various characteristics of respondents and interviewers affect non-response among immigrants. We use a survey conducted among immigrants in Denmark and ethnic Danes. First, we analyse the determinants of overall non-response. Second, we analyse how...... the determinants of contact and of response given contact differ. We find that characteristics of the respondents are important for the response rate – especially they are important for the probability of getting in contact with the respondent. The lower probability of response among immigrants compared to ethnic...

  12. Obese mice on a high-fat alternate-day fasting regimen lose weight and improve glucose tolerance.

    Science.gov (United States)

    Joslin, P M N; Bell, R K; Swoap, S J

    2017-10-01

    Alternate-day fasting (ADF) causes body weight (BW) loss in humans and rodents. However, it is not clear that ADF while maintaining a high-fat (HF) diet results in weight loss and the accompanying improvement in control of circulating glucose. We tested the hypotheses that a high-fat ADF protocol in obese mice would result in (i) BW loss, (ii) improved glucose control, (iii) fluctuating phenotypes on 'fasted' days when compared to 'fed' days and (iv) induction of torpor on 'fasted days'. We evaluated the physiological effects of ADF in diet-induced obese mice for BW, heart rate (HR), body temperature (T b ), glucose tolerance, insulin responsiveness, blood parameters (leptin, insulin, free fatty acids) and hepatic gene expression. Diet-induced obese male C57BL/6J mice lost one-third of their pre-diet BW while on an ADF diet for 10 weeks consisting of HF food. The ADF protocol improved glucose tolerance and insulin sensitivity, although mice on a fast day were less glucose tolerant than the same mice on a fed day. ADF mice on a fast day had low circulating insulin, but had an enhanced response to an insulin-assisted glucose tolerance test, suggesting the impaired glucose tolerance may be a result of insufficient insulin production. On fed days, ADF mice were the warmest, had a high HR and displayed hepatic gene expression and circulating leptin that closely mimicked that of mice fed an ad lib HF diet. ADF mice never entered torpor as assessed by HR and T b . However, on fast days, they were the coolest, had the slowest HR, and displayed hepatic gene expression and circulating leptin that closely mimicked that of Chow-Fed mice. Collectively, the ADF regimen with a HF diet in obese mice results in weight loss, improved blood glucose control, and daily fluctuations in selected physiological and biochemical parameters in the mouse. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.

  13. O-hexadecyl-dextran entrapped berberine nanoparticles abrogate high glucose stress induced apoptosis in primary rat hepatocytes.

    Directory of Open Access Journals (Sweden)

    Radhika Kapoor

    Full Text Available Nanotized phytochemicals are being explored by researchers for promoting their uptake and effectiveness at lower concentrations. In this study, O-hexadecyl-dextran entrapped berberine chloride nanoparticles (BC-HDD NPs were prepared, and evaluated for their cytoprotective efficacy in high glucose stressed primary hepatocytes and the results obtained compared with bulk berberine chloride (BBR treatment. The nanotized formulation treated primary hepatocytes that were exposed to high glucose (40 mM, showed increased viability compared to the bulk BBR treated cells. BC-HDD NPs reduced the ROS generation by ∼ 3.5 fold during co-treatment, prevented GSH depletion by ∼ 1.6 fold, reduced NO formation by ∼ 5 fold and significantly prevented decline in SOD activity in stressed cells. Lipid peroxidation was also prevented by ∼ 1.9 fold in the presence of these NPs confirming the antioxidant capacity of the formulation. High glucose stress increased Bax/Bcl2 ratio followed by mitochondrial depolarization and activation of caspase-9/-3 confirming involvement of mitochondrial pathway of apoptosis in the exposed cells. Co- and post-treatment of BC-HDD NPs prevented depolarization of mitochondrial membrane, reduced Bax/Bcl2 ratio and prevented externalization of phosphatidyl-serine confirming their anti-apoptotic capacity in those cells. Sub-G1 phase apparent in high glucose stressed cells was not seen in BC-HDD NPs treated cells. The present study reveals that BC-HDD NPs at ∼ 20 fold lower concentration are as effective as BBR in preventing high glucose induced oxidative stress, mitochondrial depolarization and downstream events of apoptotic cell death.

  14. [Effect of resveratrol on expression of TLR4 and inflammatory factors in gingival epithelial cells under high glucose environment].

    Science.gov (United States)

    Lv, Jia-Shu; Jiang, Xue-Wei; Zhang, Yan; Zhen, Lei

    2017-02-01

    Through a study of the molecular mechanism of the effect of resveratrol(RSV) on expression of TLR4 and inflammatory factors in gingival epithelial cells under high glucose environment, the therapeutic effect and molecular mechanism of resveratrol on periodontitis in patients with diabetes mellitus was investigated. Gingival epithelial cells were cultured in vitro; according to the way of action, the cultured cells were divided into control group, high glucose group(HG) and HG+RSV group. The mRNA expression of TLR4 was detected by PCR; The third generation of gingival epithelial cells were pre-treated with or without RSV for 24 h under high glucose conditions, and subsequently treated with LPS at 100 ng/mL for 2 h. ELISA was used to detect the secretion of IL-1 beta, IL-6, IL-8 and TNF- alpha; the activation of TLR4 downstream signaling molecules NF-κB p65, p38 MAPK, and STAT3 was determined by Western blot. SPSS17.0 software package was used for statistical analysis. RSV could reverse the increase of TLR4 level in gingival epithelial cells in high glucose medium.LPS markedly increased the expression and secretion of IL-1β, IL-6, IL-8, and TNF-α in GECs cultured in high glucose medium, which was partly blocked in the presence of RSV. Furthermore, Western blot results showed that RSV significantly suppressed the phosphorylation of TLR4 downstream factors NF-κB p65, p38MAPK, and STAT3. RSV reduces inflammatory cytokine secretion in gingival epithelial cells, through negative regulation of TLR4 signaling pathway.

  15. High glucose variability is associated with poor neurodevelopmental outcomes in neonatal hypoxic ischemic encephalopathy.

    Science.gov (United States)

    Al Shafouri, N; Narvey, M; Srinivasan, G; Vallance, J; Hansen, G

    2015-01-01

    In neonatal hypoxic ischemic encephalopathy (HIE), hypo- and hyperglycemia have been associated with poor outcomes. However, glucose variability has not been reported in this population. To examine the association between serum glucose variability within the first 24 hours and two-year neurodevelopmental outcomes in neonates cooled for HIE. In this retrospective cohort study, glucose, clinical and demographic data were documented from 23 term newborns treated with whole body therapeutic hypothermia. Severe neurodevelopmental outcomes from planned two-year assessments were defined as the presence of any one of the following: Gross Motor Function Classification System levels 3 to 5, Bayley III Motor Standard Score neurodevelopmental outcomes from 8 of 23 patients were considered severe, and this group demonstrated a significant increase of mean absolute glucose (MAG) change (-0.28 to -0.03, 95% CI, p = 0.032). There were no significant differences between outcome groups with regards to number of patients with hyperglycemic means, one or multiple hypo- or hyperglycemic measurement(s). There were also no differences between both groups with mean glucose, although mean glucose standard deviation was approaching significance. Poor neurodevelopmental outcomes in whole body cooled HIE neonates are significantly associated with MAG changes. This information may be relevant for prognostication and potential management strategies.

  16. High glucose attenuates shear-induced changes in endothelial hydraulic conductivity by degrading the glycocalyx.

    Directory of Open Access Journals (Sweden)

    Sandra V Lopez-Quintero

    Full Text Available Diabetes mellitus is a risk factor for cardiovascular disease; however, the mechanisms through which diabetes impairs homeostasis of the vasculature have not been completely elucidated. The endothelium interacts with circulating blood through the surface glycocalyx layer, which serves as a mechanosensor/transducer of fluid shear forces leading to biomolecular responses. Atherosclerosis localizes typically in regions of low or disturbed shear stress, but in diabetics, the distribution is more diffuse, suggesting that there is a fundamental difference in the way cells sense shear forces. In the present study, we examined the effect of hyperglycemia on mechanotranduction in bovine aortic endothelial cells (BAEC. After six days in high glucose media, we observed a decrease in heparan sulfate content coincident with a significant attenuation of the shear-induced hydraulic conductivity response, lower activation of eNOS after exposure to shear, and reduced cell alignment with shear stress. These studies are consistent with a diabetes-induced change to the glycocalyx altering endothelial response to shear stress that could affect the distribution of atherosclerotic plaques.

  17. Cinnamaldehyde impairs high glucose-induced hypertrophy in renal interstitial fibroblasts

    International Nuclear Information System (INIS)

    Chao, Louis Kuoping; Chang, W.-T.; Shih, Y.-W.; Huang, J.-S.

    2010-01-01

    Cinnamaldehyde is a major and a bioactive compound isolated from the leaves of Cinnamomum osmophloeum kaneh. To explore whether cinnamaldehyde was linked to altered high glucose (HG)-mediated renal tubulointerstitial fibrosis in diabetic nephropathy (DN), the molecular mechanisms of cinnamaldehyde responsible for inhibition of HG-induced hypertrophy in renal interstitial fibroblasts were examined. We found that cinnamaldehyde caused inhibition of HG-induced cellular mitogenesis rather than cell death by either necrosis or apoptosis. There were no changes in caspase 3 activity, cleaved poly(ADP-ribose) polymerase (PARP) protein expression, and mitochondrial cytochrome c release in HG or cinnamaldehyde treatments in these cells. HG-induced extracellular signal-regulated kinase (ERK)/c-Jun N-terminal kinase (JNK)/p38 mitogen-activated protein kinase (MAPK) (but not the Janus kinase 2/signal transducers and activators of transcription) activation was markedly blocked by cinnamaldehyde. The ability of cinnamaldehyde to inhibit HG-induced hypertrophy was verified by the observation that it significantly decreased cell size, cellular hypertrophy index, and protein levels of collagen IV, fibronectin, and α-smooth muscle actin (α-SMA). The results obtained in this study suggest that cinnamaldehyde treatment of renal interstitial fibroblasts that have been stimulated by HG reduces their ability to proliferate and hypertrophy through mechanisms that may be dependent on inactivation of the ERK/JNK/p38 MAPK pathway.

  18. Suppression of renal fibrosis by galectin-1 in high glucose-treated renal epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Okano, Kazuhiro, E-mail: kaokano@kc.twmu.ac.jp; Tsuruta, Yuki; Yamashita, Tetsuri; Takano, Mari; Echida, Yoshihisa; Nitta, Kosaku

    2010-11-15

    Diabetic nephropathy is the most common cause of chronic kidney disease. We investigated the ability of intracellular galectin-1 (Gal-1), a prototype of endogenous lectin, to prevent renal fibrosis by regulating cell signaling under a high glucose (HG) condition. We demonstrated that overexpression of Gal-1 reduces type I collagen (COL1) expression and transcription in human renal epithelial cells under HG conditions and transforming growth factor-{beta}1 (TGF-{beta}1) stimulation. Matrix metalloproteinase 1 (MMP1) is stimulated by Gal-1. HG conditions and TGF-{beta}1 treatment augment expression and nuclear translocation of Gal-1. In contrast, targeted inhibition of Gal-1 expression reduces COL1 expression and increases MMP1 expression. The Smad3 signaling pathway is inhibited, whereas two mitogen-activated protein kinase (MAPK) pathways, p38 and extracellular signal-regulated kinase (ERK), are activated by Gal-1, indicating that Gal-1 regulates these signaling pathways in COL1 production. Using specific inhibitors of Smad3, ERK, and p38 MAPK, we showed that ERK MAPK activated by Gal-1 plays an inhibitory role in COL1 transcription and that activation of the p38 MAPK pathway by Gal-1 plays a negative role in MMP1 production. Taken together, two MAPK pathways are stimulated by increasing levels of Gal-1 in the HG condition, leading to suppression of COL1 expression and increase of MMP1 expression.

  19. Maternal high-fat feeding leads to alterations of brain glucose metabolism in the offspring: positron emission tomography study in a porcine model.

    Science.gov (United States)

    Sanguinetti, Elena; Liistro, Tiziana; Mainardi, Marco; Pardini, Silvia; Salvadori, Piero A; Vannucci, Alessandro; Burchielli, Silvia; Iozzo, Patricia

    2016-04-01

    Maternal obesity negatively affects fetal development. Abnormalities in brain glucose metabolism are predictive of metabolic-cognitive disorders. We studied the offspring (aged 0, 1, 6, 12 months) of minipigs fed a normal vs high-fat diet (HFD), by positron emission tomography (PET) to measure brain glucose metabolism, and ex vivo assessments of brain insulin receptors (IRβ) and GLUT4. At birth, brain glucose metabolism and IRβ were twice as high in the offspring of HFD-fed than control mothers. During infancy and youth, brain glucose uptake, GLUT4 and IRβ increased in the offspring of control mothers and decreased in those of HFD-fed mothers, leading to a 40-85% difference (p brain glucose overexposure during fetal development, followed by long-lasting depression in brain glucose metabolism in minipigs. These features may predispose the offspring to develop metabolic-neurodegenerative diseases.

  20. Gallic Acid Ameliorated Impaired Glucose and Lipid Homeostasis in High Fat Diet-Induced NAFLD Mice

    Science.gov (United States)

    Chao, Jung; Huo, Teh-Ia; Cheng, Hao-Yuan; Tsai, Jen-Chieh; Liao, Jiunn-Wang; Lee, Meng-Shiou; Qin, Xue-Mei; Hsieh, Ming-Tsuen; Pao, Li-Heng; Peng, Wen-Huang

    2014-01-01

    Gallic acid (GA), a naturally abundant plant phenolic compound in vegetables and fruits, has been shown to have potent anti-oxidative and anti-obesity activity. However, the effects of GA on nonalcoholic fatty liver disease (NAFLD) are poorly understood. In this study, we investigated the beneficial effects of GA administration on nutritional hepatosteatosis model by a more “holistic view” approach, namely 1H NMR-based metabolomics, in order to prove efficacy and to obtain information that might lead to a better understanding of the mode of action of GA. Male C57BL/6 mice were placed for 16 weeks on either a normal chow diet, a high fat diet (HFD, 60%), or a high fat diet supplemented with GA (50 and 100 mg/kg/day, orally). Liver histopathology and serum biochemical examinations indicated that the daily administration of GA protects against hepatic steatosis, obesity, hypercholesterolemia, and insulin resistance among the HFD-induced NAFLD mice. In addition, partial least squares discriminant analysis scores plots demonstrated that the cluster of HFD fed mice is clearly separated from the normal group mice plots, indicating that the metabolic characteristics of these two groups are distinctively different. Specifically, the GA-treated mice are located closer to the normal group of mice, indicating that the HFD-induced disturbances to the metabolic profile were partially reversed by GA treatment. Our results show that the hepatoprotective effect of GA occurs in part through a reversing of the HFD caused disturbances to a range of metabolic pathways, including lipid metabolism, glucose metabolism (glycolysis and gluconeogenesis), amino acids metabolism, choline metabolism and gut-microbiota-associated metabolism. Taken together, this study suggested that a 1H NMR-based metabolomics approach is a useful platform for natural product functional evaluation. The selected metabolites are potentially useful as preventive action biomarkers and could also be used to help

  1. TLQP-21 protects human umbilical vein endothelial cells against high-glucose-induced apoptosis by increasing G6PD expression.

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    Full Text Available Hyperglycemia causes oxidative stress that could damage vascular endothelial cells, leading to cardiovascular complications. The Vgf gene was identified as a nerve growth factor-responsive gene, and its protein product, VGF, is characterized by the presence of partially cleaved products. One of the VGF-derived peptides is TLQP-21, which is composed of 21 amino acids (residues 556-576. Past studies have reported that TLQP-21 could stimulate insulin secretion in pancreatic cells and protect these cells from apoptosis, which suggests that TLQP-21 has a potential function in diabetes therapy. Here, we explore the protective role of TLQP-21 against the high glucose-mediated injury of vascular endothelial cells. Using human umbilical vascular endothelial cells (HUVECs, we demonstrated that TLQP-21 (10 or 50 nM dose-dependently prevented apoptosis under high-glucose (30 mmol/L conditions (the normal glucose concentration is 5.6 mmol/L. TLQP-21 enhanced the expression of NAPDH, resulting in upregulation of glutathione (GSH and a reduction in the levels of reactive oxygen species (ROS. TLQP-21 also upregulated the expression of glucose-6-phosphate dehydrogenase (G6PD, which is known as the main source of NADPH. Knockdown of G6PD almost completely blocked the increase of NADPH induced by TLQP-21, indicating that TLQP-21 functions mainly through G6PD to promote NADPH generation. In conclusion, TLQP-21 could increase G6PD expression, which in turn may increase the synthesis of NADPH and GSH, thereby partially restoring the redox status of vascular endothelial cells under high glucose injury. We propose that TLQP-21 is a promising drug for diabetes therapy.

  2. Endocrine and metabolic effects of consuming beverages sweetened with fructose, glucose, sucrose, or high-fructose corn syrup.

    Science.gov (United States)

    Stanhope, Kimber L; Havel, Peter J

    2008-12-01

    Our laboratory has investigated 2 hypotheses regarding the effects of fructose consumption: 1) the endocrine effects of fructose consumption favor a positive energy balance, and 2) fructose consumption promotes the development of an atherogenic lipid profile. In previous short- and long-term studies, we showed that consumption of fructose-sweetened beverages with 3 meals results in lower 24-h plasma concentrations of glucose, insulin, and leptin in humans than does consumption of glucose-sweetened beverages. We have also tested whether prolonged consumption of high-fructose diets leads to increased caloric intake or decreased energy expenditure, thereby contributing to weight gain and obesity. Results from a study conducted in rhesus monkeys produced equivocal results. Carefully controlled and adequately powered long-term studies are needed to address these hypotheses. In both short- and long-term studies, we showed that consumption of fructose-sweetened beverages substantially increases postprandial triacylglycerol concentrations compared with glucose-sweetened beverages. In the long-term studies, apolipoprotein B concentrations were also increased in subjects consuming fructose, but not in those consuming glucose. Data from a short-term study comparing consumption of beverages sweetened with fructose, glucose, high-fructose corn syrup, and sucrose suggest that high-fructose corn syrup and sucrose increase postprandial triacylglycerol to an extent comparable with that induced by 100% fructose alone. Increased consumption of fructose-sweetened beverages along with increased prevalence of obesity, metabolic syndrome, and type 2 diabetes underscore the importance of investigating the metabolic consequences of fructose consumption in carefully controlled experiments.

  3. Non-alcoholic fatty liver disease and impaired proinsulin conversion as newly identified predictors of the long-term non-response to a lifestyle intervention for diabetes prevention: results from the TULIP study.

    Science.gov (United States)

    Schmid, Vera; Wagner, Robert; Sailer, Corinna; Fritsche, Louise; Kantartzis, Konstantinos; Peter, Andreas; Heni, Martin; Häring, Hans-Ulrich; Stefan, Norbert; Fritsche, Andreas

    2017-12-01

    Lifestyle intervention is effective to prevent type 2 diabetes. However, a considerable long-term non-response occurs to a standard lifestyle intervention. We investigated which risk phenotypes at baseline and their changes during the lifestyle intervention predict long-term glycaemic non-response to the intervention. Of 300 participants at high risk for type 2 diabetes who participated in a 24 month lifestyle intervention with diet modification and increased physical activity, 190 participants could be re-examined after 8.7 ± 1.6 years. All individuals underwent a five-point 75 g OGTT and measurements of body fat compartments and liver fat content with MRI and spectroscopy at baseline, 9 and 24 months during the lifestyle intervention, and at long-term follow-up. Fasting proinsulin to insulin conversion (PI/I ratio) and insulin sensitivity and secretion were calculated from the OGTT. Non-response to lifestyle intervention was defined as no decrease in glycaemia, i.e. no decrease in AUC for glucose at 0-120 min during OGTT (AUCglucose 0-120 min ). Before the lifestyle intervention, 56% of participants had normal glucose regulation and 44% individuals had impaired fasting glucose and/or impaired glucose tolerance. At long-term follow-up, 11% had developed diabetes. Multivariable regression analysis with adjustment for age, sex, BMI and change in BMI during the lifestyle intervention revealed that baseline insulin secretion and insulin sensitivity, as well as change in insulin sensitivity during the lifestyle intervention, predicted long-term glycaemic control after 9 years. In addition, increased hepatic lipid content as well as impaired fasting proinsulin conversion at baseline were newly detected phenotypes that independently predicted long-term glycaemic control. Increased hepatic lipid content and impaired proinsulin conversion are new predictors, independent of change in body weight, for non-response to lifestyle intervention in addition to the

  4. High glucose alters the expression of genes involved in proliferation and cell-fate specification of embryonic neural stem cells.

    Science.gov (United States)

    Fu, J; Tay, S S W; Ling, E A; Dheen, S T

    2006-05-01

    Maternal diabetes induces neural tube defects during embryogenesis. Since the neural tube is derived from neural stem cells (NSCs), it is hypothesised that in diabetic pregnancy neural tube defects result from altered expression of developmental control genes, leading to abnormal proliferation and cell-fate choice of NSCs. Cell viability, proliferation index and apoptosis of NSCs and differentiated cells from mice exposed to physiological or high glucose concentration medium were examined by a tetrazolium salt assay, 5-bromo-2'-deoxyuridine incorporation, terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling and immunocytochemistry. Expression of developmental genes, including sonic hedgehog (Shh), bone morphogenetic protein 4 (Bmp4), neurogenin 1/2 (Neurog1/2), achaete-scute complex-like 1 (Ascl1), oligodendrocyte transcription factor 1 (Olig1), oligodendrocyte lineage transcription factor 2 (Olig2), hairy and enhancer of split 1/5 (Hes1/5) and delta-like 1 (Dll1), was analysed by real-time RT-PCR. Proliferation index and neuronal specification in the forebrain of embryos at embryonic day 11.5 were examined histologically. High glucose decreased the proliferation of NSCs and differentiated cells. The incidence of apoptosis was increased in NSCs treated with high glucose, but not in the differentiated cells. High glucose also accelerated neuronal and glial differentiation from NSCs. The decreased proliferation index and early differentiation of neurons were evident in the telencephalon of embryos derived from diabetic mice. Exposure to high glucose altered the mRNA expression levels of Shh, Bmp4, Neurog1/2, Ascl1, Hes1, Dll1 and Olig1 in NSCs and Shh, Dll1, Neurog1/2 and Hes5 in differentiated cells. The changes in proliferation and differentiation of NSCs exposed to high glucose are associated with altered expression of genes that are involved in cell-cycle progression and cell-fate specification during neurulation. These changes may form the

  5. Effects of endurance training on reduction of plasma glucose during high intensity constant and incremental speed tests in Wistar rats

    Directory of Open Access Journals (Sweden)

    P. Abreu

    Full Text Available The aim of this research was to investigate the effects of endurance training on reduction of plasma glucose during high intensity constant and incremental speed tests in Wistar rats. We hypothesized that plasma glucose might be decreased in the exercised group during heavy (more intense exercise. Twenty-four 10-week-old male Wistar rats were randomly assigned to sedentary and exercised groups. The prescription of endurance exercise training intensity was determined as 60% of the maximum intensity reached at the incremental speed test. The animals were trained by running on a motorized treadmill, five days/week for a total period of 67 weeks. Plasma glucose during the constant speed test in the exercised group at 20 m/min was reduced at the 14th, 21st and 28th min compared to the sedentary group, as well at 25 m/min at the 21st and 28th min. Plasma glucose during the incremental speed test was decreased in the exercised group at the moment of exhaustion (48th min compared to the sedentary group (27th min. Endurance training positively modulates the mitochondrial activity and capacity of substrate oxidation in muscle and liver. Thus, in contrast to other studies on high load of exercise, the effects of endurance training on the decrease of plasma glucose during constant and incremental speed tests was significantly higher in exercised than in sedentary rats and associated with improved muscle and hepatic oxidative capacity, constituting an important non-pharmacological intervention tool for the prevention of insulin resistance, including type 2 diabetes mellitus.

  6. High dose flaxseed oil supplementation may affect fasting blood serum glucose management in human type 2 diabetics.

    Science.gov (United States)

    Barre, Douglas E; Mizier-Barre, Kazimiera A; Griscti, Odette; Hafez, Kevin

    2008-01-01

    Type 2 diabetes is characterized partially by elevated fasting blood serum glucose and insulin concentrations and the percentage of hemoglobin as HbA1c. It was hypothesized that each of blood glucose and its co-factors insulin and HbA1c and would show a more favorable profile as the result of flaxseed oil supplementation. Patients were recruited at random from a population pool responding to a recruitment advertisement in the local newspaper and 2 area physicians. Completing the trial were 10 flaxseed oil males, 8 flaxseed oil females, 8 safflower (placebo) oil males and 6 safflower oil females. Patients visited on two pre-treatment occasions each three months apart (visits 1 and 2). At visit 2 subjects were randomly assigned in double blind fashion and in equal gender numbers to take flaxseed oil or safflower oil for three further months until visit 3. Oil consumption in both groups was approximately 10 g/d. ALA intake in the intervention group was approximately 5.5 g/d. Power was 0.80 to see a difference of 1 mmol of glucose /L using 12 subjects per group with a p < 0.05. Flaxseed oil had no impact on fasting blood serum glucose, insulin or HbA1c levels. It is concluded that high doses of flaxseed oil have no effect on glycemic control in type 2 diabetics.

  7. The Role of Untimed Blood Glucose in Screening for Gestational Diabetes Mellitus in a High Prevalent Diabetic Population

    Directory of Open Access Journals (Sweden)

    Sarah Cuschieri

    2016-01-01

    Full Text Available Global prevalence increase of diabetes type 2 and gestational diabetes (GDM has led to increased awareness and screening of pregnant women for GDM. Ideally screening for GDM should be done by an oral glucose tolerance test (oGTT, which is laborious and time consuming. A randomized glucose test incorporated with anthropomorphic characteristics may be an appropriate cost-effective combined clinical and biochemical screening protocol for clinical practice as well as cutting down on oGTTs. A retrospective observational study was performed on a randomized sample of pregnant women who required an OGTT during their pregnancy. Biochemical and anthropomorphic data along with obstetric outcomes were statistically analyzed. Backward stepwise logistic regression and receiver operating characteristics curves were used to obtain a suitable predictor for GDM without an oGTT and formulate a screening protocol. Significant GDM predictive variables were fasting blood glucose (p=0.0001 and random blood glucose (p=0.012. Different RBG and FBG cutoff points with anthropomorphic characteristics were compared to carbohydrate metabolic status to diagnose GDM without oGTT, leading to a screening protocol. A screening protocol incorporating IADPSG diagnostic criteria, BMI, and different RBG and FBG criteria would help predict GDM among high-risk populations earlier and reduce the need for oGTT test.

  8. Short-Term High-Intensity Interval Training on Body Composition and Blood Glucose in Overweight and Obese Young Women

    Directory of Open Access Journals (Sweden)

    Zhaowei Kong

    2016-01-01

    Full Text Available This study was to determine the effects of five-week high-intensity interval training (HIIT on cardiorespiratory fitness, body composition, blood glucose, and relevant systemic hormones when compared to moderate-intensity continuous training (MICT in overweight and obese young women. Methods. Eighteen subjects completed 20 sessions of HIIT or MICT for five weeks. HIIT involved 60 × 8 s cycling at ~90% of peak oxygen consumption (V˙O2peak interspersed with 12 s recovery, whereas MICT involved 40-minute continuous cycling at 65% of V˙O2peak. V˙O2peak, body composition, blood glucose, and fasting serum hormones, including leptin, growth hormone, testosterone, cortisol, and fibroblast growth factor 21, were measured before and after training. Results. Both exercise groups achieved significant improvements in V˙O2peak (+7.9% in HIIT versus +11.7% in MICT and peak power output (+13.8% in HIIT versus +21.9% in MICT despite no training effects on body composition or the relevant systemic hormones. Blood glucose tended to be decreased after the intervention (p=0.062. The rating of perceived exertion in MICT was higher than that in HIIT (p=0.042. Conclusion. Compared with MICT, short-term HIIT is more time-efficient and is perceived as being easier for improving cardiorespiratory fitness and fasting blood glucose for overweight and obese young women.

  9. Short-Term High-Intensity Interval Training on Body Composition and Blood Glucose in Overweight and Obese Young Women.

    Science.gov (United States)

    Kong, Zhaowei; Sun, Shengyan; Liu, Min; Shi, Qingde

    2016-01-01

    This study was to determine the effects of five-week high-intensity interval training (HIIT) on cardiorespiratory fitness, body composition, blood glucose, and relevant systemic hormones when compared to moderate-intensity continuous training (MICT) in overweight and obese young women. Methods . Eighteen subjects completed 20 sessions of HIIT or MICT for five weeks. HIIT involved 60 × 8 s cycling at ~90% of peak oxygen consumption ([Formula: see text]) interspersed with 12 s recovery, whereas MICT involved 40-minute continuous cycling at 65% of [Formula: see text]. [Formula: see text], body composition, blood glucose, and fasting serum hormones, including leptin, growth hormone, testosterone, cortisol, and fibroblast growth factor 21, were measured before and after training. Results . Both exercise groups achieved significant improvements in [Formula: see text] (+7.9% in HIIT versus +11.7% in MICT) and peak power output (+13.8% in HIIT versus +21.9% in MICT) despite no training effects on body composition or the relevant systemic hormones. Blood glucose tended to be decreased after the intervention ( p = 0.062). The rating of perceived exertion in MICT was higher than that in HIIT ( p = 0.042). Conclusion . Compared with MICT, short-term HIIT is more time-efficient and is perceived as being easier for improving cardiorespiratory fitness and fasting blood glucose for overweight and obese young women.

  10. High efficiency bio-hydrogen production from glucose revealed in an inoculum of heat-pretreated landfill leachate sludge

    International Nuclear Information System (INIS)

    Wong, Y.M.; Juan, J.C.; Ting, Adeline; Wu, T.Y.

    2014-01-01

    Bio-hydrogen is a promising sustainable energy to replace fossil fuels. This study investigated bio-H 2 production from the inoculum of heat-pretreated landfill leachate sludge using glucose as model substrate. The seed sludge pretreated at 65 °C showed the highest amount of H 2 at the optimum condition of pH 6 and 37 °C. The maximum H 2 yield estimated by the modified Gompertz model was 6.43 mol H 2 /mol glucose. The high efficient of H 2 production is thermodynamically feasible with the Gibbs free energy of −34 kJ/mol. This study reveals that pretreated landfill leachate sludge has considerable potential for H 2 production. - Highlights: • Heat retreated landfill leachate sludge revealed high efficient H 2 production. • High efficient H 2 yield, 6.4 mol H 2 /mol glucose. • The synergisms between H 2 -producing bacteria may responsible for the high H 2 yield. • High H 2 yield is thermodynamically feasible with Gibbs free energy of −34 kJ/mol

  11. Glucose oxidase stabilization against thermal inactivation using high hydrostatic pressure and hydrophobic modification.

    Science.gov (United States)

    Halalipour, Ali; Duff, Michael R; Howell, Elizabeth E; Reyes-De-Corcuera, José I

    2017-03-01

    High hydrostatic pressure (HHP) stabilized glucose oxidase (GOx) against thermal inactivation. The apparent first-order kinetics of inactivation of GOx were investigated at 0.1-300 MPa and 58.8-80.0°C. At 240 MPa and 74.5°C, GOx inactivated at a rate 50 times slower than at atmospheric pressure at the same temperature. The apparent activation energy of inactivation at 300 MPa was 281.0 ± 17.4 kJ mol -1 or 1.3-fold smaller than for the inactivation at atmospheric pressure (378.1 ± 25.6 kJ mol -1 ). The stabilizing effect of HHP was greatest at 74.5°C, where the activation volume of 57.0 ± 12.0 cm 3  mol -1 was highest compared to all other studied temperatures. Positive apparent activation volumes for all the treatment temperatures confirmed that HHP favors GOx stabilization. A second approach to increase GOx stability involved crosslinking with N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC) and either aniline or benzoate. The modified enzyme remained fully active with only slight increases in K M (1.3-1.9-fold increases for aniline and benzoate modification, respectively). The thermal stability of GOx increased by 8°C with aniline modification, while it decreased by 0.9°C upon modification with benzoate. Biotechnol. Bioeng. 2017;114: 516-525. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Effects of high levels of glucose on the steroidogenesis and the expression of adiponectin receptors in rat ovarian cells

    Directory of Open Access Journals (Sweden)

    Ramé Christelle

    2008-03-01

    Full Text Available Abstract Background Reproductive dysfunction in the diabetic female rat is associated with altered folliculogenesis and steroidogenesis. However, the molecular mechanisms involved in the reduction of steroid production have not been described. Adiponectin is an adipocytokine that has insulin-sensitizing actions including stimulation of glucose uptake in muscle and suppression of glucose production in liver. Adiponectin acts via two receptor isoforms – AdipoR1 and AdipoR2 – that are regulated by hyperglycaemia and hyperinsulinaemia in liver and muscle. We have recently identified AdipoR1 and AdipoR2 in rat ovary. However, their regulation in ovaries of diabetic female rat remains to be elucidated. Methods We incubated rat primary granulosa cells in vitro with high concentrations of glucose (5 or 10 g/l + or - FSH (10-8 M or IGF-1 (10-8 M, and we studied the ovaries of streptozotocin-induced diabetic rats (STZ in vivo. The levels of oestradiol and progesterone in culture medium and serum were measured by RIA. We used immunoblotting to assay key steroidogenesis factors (3beta HSD, p450scc, p450 aromatase, StAR, and adiponectin receptors and various elements of signalling pathways (MAPK ERK1/2 and AMPK in vivo and in vitro. We also determined cell proliferation by [3H] thymidine incorporation. Results Glucose (5 or 10 g/l impaired the in vitro production in rat granulosa cells of both progesterone and oestradiol in the basal state and in response to FSH and IGF-1 without affecting cell proliferation and viability. This was associated with substantial reductions in the amounts of 3beta HSD, p450scc, p450 aromatase and StAR proteins and MAPK ERK1/2 phosphorylation. In contrast, glucose did not affect the abundance of AdipoR1 or AdipoR2 proteins. In vivo, as expected, STZ treatment of rats caused hyperglycaemia and insulin, adiponectin and resistin deficiencies. Plasma progesterone and oestradiol levels were also reduced in STZ rats. However, the

  13. High heritability and genetic correlation of intravenous glucose- and tolbutamide-induced insulin secretion among non-diabetic family members of type 2 diabetic patients

    DEFF Research Database (Denmark)

    Gjesing, Anette Marianne Prior; Hornbak, Malene; Allin, Kristine H.

    2014-01-01

    ∈±∈SE: 0.49∈±∈0.14) and beta cell responsiveness to glucose (h 2∈±∈SE: 0.66∈±∈0.12). Additionally, strong genetic correlations were found between measures of beta cell response after glucose and tolbutamide stimulation, with correlation coefficients ranging from 0.77 to 0.88. Furthermore, we identified......Aims/hypothesis: The aim of this study was to estimate the heritability of quantitative measures of glucose regulation obtained from a tolbutamide-modified frequently sampled IVGTT (t-FSIGT) and to correlate the heritability of the glucose-stimulated beta cell response to the tolbutamide...... after tolbutamide (DIT), insulin sensitivity (SI), glucose effectiveness (SG) and beta cell responsiveness to glucose were calculated. A polygenic variance component model was used to estimate heritability, genetic correlations and associations. Results: We found high heritabilities for acute insulin...

  14. Heat shock protein 70 modulates neural progenitor cells dynamics in human neuroblastoma SH-SY5Y cells exposed to high glucose content.

    Science.gov (United States)

    Salimi, Leila; Rahbarghazi, Reza; Jafarian, Vahab; Biray Avci, Çıgır; Goker Bagca, Bakiye; Pinar Ozates, Neslihan; Khaksar, Majid; Nourazarian, Alireza

    2018-01-18

    In the current experiment, detrimental effects of high glucose condition were investigated on human neuroblastoma cells. Human neuroblastoma cell line SH-SY5Y were exposed to 5, 40, and 70 mM glucose over a period of 72 h. Survival rate and the proliferation of cells were analyzed by MTT and BrdU incorporation assays. Apoptosis was studied by the assays of flow cytometry and PCR array. In order to investigate the trans-differentiation capacity of the cell into mature neurons, we used immunofluorescence imaging to follow NeuN protein level. The transcription level of HSP70 was shown by real-time PCR analysis. MMP-2 and -9 activities were shown by gelatin Zymography. According to data from MTT and BrdU incorporation assay, 70 mM glucose reduced cell viability and proliferation rate as compared to control (5 mM glucose) and cells treated with 40 mM glucose (P Cell exposure to 70 mM glucose had potential to induced apoptosis after 72 h (P SH-SY5Y cells to detrimental effects of high glucose condition during trans-differentiation into mature neuron-like cells. Real-time PCR analysis confirmed the expression of HSP70 in cells under high content glucose levels, demonstrating the possible cell compensatory response to an insulting condition (p control vs 70 mM group  cells being exposed to 70 mM glucose. High glucose condition could abrogate the dynamics of neural progenitor cells. The intracellular level of HSP70 was proportional to cell damage in high glucose condition. © 2018 Wiley Periodicals, Inc.

  15. Method of preparing uridine-diphospho-/sup 14/C-D-glucose of high molar activity and radiochemical purity by enzyme synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Farkas, V; Biely, P; Koelbl, J

    1980-06-15

    A new method is described of enzyme synthesis of uridine-diphospho-/sup 14/C-D-glucose of high molar activity. After conversion of the initial /sup 14/C-D-glucose, the accompanying sugar phosphates and nucleoside-5'-phosphates are selectively hydrolyzed by the action of alkaline phosphatase in the presence of phenolphthalein as an indicator. Uridine-diphospho-/sup 14/C-D-glucose is separated by paper chromatography from the reaction mixture thus modified. Synthesis yields range within 75% and 85% relative to the starting /sup 14/C-D-glucose.

  16. Fenofibrate suppresses cellular metabolic memory of high glucose in diabetic retinopathy via a sirtuin 1-dependent signalling pathway.

    Science.gov (United States)

    Zhao, Shuzhi; Li, Jun; Wang, Na; Zheng, Bingqing; Li, Tao; Gu, Qing; Xu, Xun; Zheng, Zhi

    2015-10-01

    Inflammation is a major contributing factor in the development of diabetic microvascular complications, regardless of whether improved glycaemic control is achieved. Studies have increasingly indicated that fenofibrate, a lipid‑lowering therapeutic agent in clinical use, exerts a potential anti‑inflammatory effect, which is mediated by sirtuin 1 (SIRT1; an NAD+‑dependent deacetylase) in endothelial cells. The aim of the present study was to investigate the inhibitory effect of fenofibrate on metabolic memory (via the regulation of SIRT1), and inflammatory responses in cell and animal models of diabetic retinopathy (DR). The data demonstrated that high glucose treatment in human retinal endothelial cells (HRECs) inhibited the expression and deacetylase activity of SIRT1. The reduction of SIRT1 expression and deacetylase activity persisted following a return to normal glucose levels. Furthermore, nuclear factor‑κB expression was observed to be negatively correlated with SIRT1 expression and activity in HRECs under high glucose levels and the subsequent return to normal glucose levels. Fenofibrate treatment abrogated these changes. Knockdown of SIRT1 attenuated the effect of fenofibrate on high glucose‑induced NF‑κB expression. In addition, fenofibrate upregulated SIRT1 expression through peroxisome proliferator‑activated receptor α in high glucose‑induced metabolic memory. These findings indicate that fenofibrate is important in anti‑inflammatory processes and suppresses the cellular metabolic memory of high glucose‑induced stress via the SIRT1‑dependent signalling pathway. Thus, treatment with fenofibrate may offer a promising therapeutic strategy for halting the development of DR and other complications of diabetes.

  17. Effect of glibenclamide on insulin release at moderate and high blood glucose levels in normal man

    NARCIS (Netherlands)

    Ligtenberg, JJM; Venker, CE; Sluiter, WJ; VanHaeften, TW

    Insulin release occurs in two phases; sulphonylurea derivatives may have different potencies in stimulating first-and second-phase insulin release. We studied the effect of glibenclamide on insulin secretion at submaximally and maximally stimulating blood glucose levels with a primed hyperglycaemic

  18. A low socio-economic status is an additional risk factor for glucose intolerance in high risk Hong Kong Chinese

    International Nuclear Information System (INIS)

    Ko, Gary T.C.; Chan, Juliana C.N.; Yeung, Vincent T.F.; Chow, Chun-Chung; Tsang, Lynn W.W.; Cockram, Clive S.

    2001-01-01

    To examine whether a low socio-economic status (SES) is an additional risk factor for glucose intolerance in Hong Kong Chinese with known risk factors for glucose intolerance, a total of 2847 Chinese subjects (473 men and 2374 women) were recruited from the community for assessment. They had known risk factors for glucose intolerance including a previous history of gestational diabetes, positive family history of diabetes in first degree relatives and equivocal fasting plasma glucose concentrations between 7 and 8 mmol/l or random plasma glucose concentrations between 8 and 11 mmol/l. The 2847 subjects were classified according to their education levels and occupations: education group 1 = high school or university, group 2 = middle school, group 3 = illiterate or up to elementary school; occupational group 1 = professional or managerial, group 2 = non-manual, group 3 = manual, group 4 = unskilled, group 5 = housewife or unemployed. Different socio-economic groups were well represented in this selected population. The distribution of educational groups in this study was similar to that recorded in the 1991 Hong Kong Census. When analysed according to education levels and after adjustment for age, women in the lowest social class had the highest prevalence of diabetes, body mass index, blood pressure and plasma glucose concentrations. Men with the lowest education level had the highest prevalence of diabetes after age adjustment. The age-adjusted odds ratio (95% confidence intervals) of having diabetes was 2.3 (1.3, 4.3) in female subjects and 2.5 (1.2, 5.4) in male subjects with the lowest SES compared to subjects with the highest SES. When categorised according to occupation and after adjustment for age, women in the lowest social class had the highest prevalence of diabetes and glycaemic indexes. The age-adjusted odds ratio of having diabetes was 4.5 (1.9, 10.9) in female subjects with the lowest SES compared to those with the highest SES. The corresponding age

  19. A single dual-emissive nanofluorophore test paper for highly sensitive colorimetry-based quantification of blood glucose.

    Science.gov (United States)

    Huang, Xiaoyan; Zhou, Yujie; Liu, Cui; Zhang, Ruilong; Zhang, Liying; Du, Shuhu; Liu, Bianhua; Han, Ming-Yong; Zhang, Zhongping

    2016-12-15

    Fluorescent test papers are promising for the wide applications in the assays of diagnosis, environments and foods, but unlike classical dye-absorption-based pH test paper, they are usually limited in the qualitative yes/no type of detection by fluorescent brightness, and the colorimetry-based quantification remains a challenging task. Here, we report a single dual-emissive nanofluorophore probe to achieve the consecutive color variations from blue to red for the quantification of blood glucose on its as-prepared test papers. Red quantum dots were embedded into silica nanoparticles as a stable internal standard emission, and blue carbon dots (CDs) were further covalently linked onto the surface of silica, in which the ratiometric fluorescence intensity of blue to red is controlled at 5:1. While the oxidation of glucose induced the formation of Fe(3+) ions, the blue emission of CDs was thus quenched by the electron transfer from CDs to Fe(3+), displaying a serial of consecutive color variations from blue to red with the dosage of glucose. The high-quality test papers printed by the probe ink exhibited a dosage-sensitive allochromatic capability with the clear differentiations of ~5, 7, 9, 11mM glucose in human serum (normal: 3-8mM). The blood glucose determined by the test paper was almost in accordance with that measured by a standard glucometer. The method reported here opens a window to the wide applications of fluorescent test paper in biological assays. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Effect of Arctium Lappa Root Extract on Glucose Levels and Insulin Resistance in Rats with High Sucrose Diet

    Directory of Open Access Journals (Sweden)

    A Ahangarpour

    2013-06-01

    Full Text Available Introduction: Diabetes Mellitus is a growing health problem in all over the world. Arctium Lappa has been used therapeutically in Europe, North America and Asia. Antioxidants and antidiabetic compounds have been found in the root of Arctium Lappa. This study intends to investigate the effects of Arctium Lappa root aqueous extract on glucose, insulin levels and Fasting Insulin Resistance Index in female rats with high sucrose diet. Methods: 40 female Wistar rats weighting 150-250(g were applied. After having a diet induced by sucrose 50% in drinking water for 5 weeks, the animals were randomly divided into two groups of control, sucrose induced, and three groups of sucrose induced along with Arctium Lappa root aqueous extract (50,100,200 mg/Kg (8 rats in each group. Treatment by extracts was used during 2 weeks (i.p. and 24 hours after the last treatment, heart blood samples were gathered. After Blood samples were centrifuged, fasting plasma glucose (12 h was determined by kit and fasting insulin concentration was assayed by Enzyme-linked immunosorbent assay (Elisa methods. Result: Glucose levels, insulin and FIRI in sucrose group significantly increased in comparison with control group. Glucose levels in aqueous extract groups; 50 mg/kg (116.14±16.64mg/dl and 200 mg/kg (90.66±22.58 mg/dl in comparison with sucrose group (140.5±18.73 mg/dl significantly decreased. Insulin level and FIRI in all of aqueous extract groups were significantly decreased (P<0.001 in comparison with sucrose group. Conclusions: Arctium Lappa root aqueous extracts in animal model has revealed significant decrease in blood glucose and insulin levels.

  1. Enzymatic regulation of glucose disposal in human skeletal muscle after a high-fat, low-carbohydrate diet.

    Science.gov (United States)

    Pehleman, Tanya L; Peters, Sandra J; Heigenhauser, George J F; Spriet, Lawrence L

    2005-01-01

    Whole body glucose disposal and skeletal muscle hexokinase, glycogen synthase (GS), pyruvate dehydrogenase (PDH), and PDH kinase (PDK) activities were measured in aerobically trained men after a standardized control diet (Con; 51% carbohydrate, 29% fat, and 20% protein of total energy intake) and a 56-h eucaloric, high-fat, low-carbohydrate diet (HF/LC; 5% carbohydrate, 73% fat, and 22% protein). An oral glucose tolerance test (OGTT; 1 g/kg) was administered after the Con and HF/LC diets with vastus lateralis muscle biopsies sampled pre-OGTT and 75 min after ingestion of the oral glucose load. The 90-min area under the blood glucose and plasma insulin concentration vs. time curves increased by 2-fold and 1.25-fold, respectively, after the HF/LC diet. The pre-OGTT fraction of GS in its active form and the maximal activity of hexokinase were not affected by the HF/LC diet. However, the HF/LC diet increased PDK activity (0.19 +/- 0.05 vs. 0.08 +/- 0.02 min(-1)) and decreased PDH activation (0.38 +/- 0.08 vs. 0.79 +/- 0.10 mmol acetyl-CoA.kg wet muscle(-1).min(-1)) before the OGTT vs. Con. During the OGTT, GS and PDH activation increased by the same magnitude in both diets, such that PDH activation remained lower during the HF/LC OGTT (0.60 +/- 0.11 vs. 1.04 +/- 0.09 mmol acetyl-CoA.kg(-1).min(-1)). These data demonstrate that the decreased glucose disposal during the OGTT after the 56-h HF/LC diet was in part related to decreased oxidative carbohydrate disposal in skeletal muscle and not to decreased glycogen storage. The rapid increase in PDK activity during the HF/LC diet appeared to account for the reduced potential for oxidative carbohydrate disposal.

  2. High glucose concentration induces endothelial cell proliferation by regulating cyclin-D2-related miR-98.

    Science.gov (United States)

    Li, Xin-Xin; Liu, Yue-Mei; Li, You-Jie; Xie, Ning; Yan, Yun-Fei; Chi, Yong-Liang; Zhou, Ling; Xie, Shu-Yang; Wang, Ping-Yu

    2016-06-01

    Cyclin D2 is involved in the pathology of vascular complications of type 2 diabetes mellitus (T2DM). This study investigated the role of cyclin-D2-regulated miRNAs in endothelial cell proliferation of T2DM. Results showed that higher glucose concentration (4.5 g/l) significantly promoted the proliferation of rat aortic endothelial cells (RAOECs), and significantly increased the expression of cyclin D2 and phosphorylation of retinoblastoma 1 (p-RB1) in RAOECs compared with those under low glucose concentration. The cyclin D2-3' untranslated region is targeted by miR-98, as demonstrated by miRNA analysis software. Western blot also confirmed that cyclin D2 and p-RB1 expression was regulated by miR-98. The results indicated that miR-98 treatment can induce RAOEC apoptosis. The suppression of RAOEC growth by miR-98 might be related to regulation of Bcl-2, Bax and Caspase 9 expression. Furthermore, the expression levels of miR-98 decreased in 4.5 g/l glucose-treated cells compared with those treated by low glucose concentration. Similarly, the expression of miR-98 significantly decreased in aortas of established streptozotocin (STZ)-induced diabetic rat model compared with that in control rats; but cyclin D2 and p-RB1 levels remarkably increased in aortas of STZ-induced diabetic rats compared with those in healthy control rats. In conclusion, this study demonstrated that high glucose concentration induces cyclin D2 up-regulation and miR-98 down-regulation in the RAOECs. By regulating cyclin D2, miR-98 can inhibit human endothelial cell growth, thereby providing novel therapeutic targets for vascular complication of T2DM. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  3. Increased Brain Glucose Uptake After 12 Weeks of Aerobic High-Intensity Interval Training in Young and Older Adults.

    Science.gov (United States)

    Robinson, Matthew M; Lowe, Val J; Nair, K Sreekumaran

    2018-01-01

    Aerobic exercise training can increase brain volume and blood flow, but the impact on brain metabolism is less known. We determined whether high-intensity interval training (HIIT) increases brain metabolism by measuring brain glucose uptake in younger and older adults. Brain glucose uptake was measured before and after HIIT or a sedentary (SED) control period within a larger exercise study. Study procedures were performed at the Mayo Clinic in Rochester, MN. Participants were younger (18 to 30 years) or older (65 to 80 years) SED adults who were free of major medical conditions. Group sizes were 15 for HIIT (nine younger and six older) and 12 for SED (six younger and six older). Participants completed 12 weeks of HIIT or SED. HIIT was 3 days per week of 4 × 4 minute intervals at over 90% of peak aerobic capacity (VO2peak) with 2 days per week of treadmill walking at 70% VO2peak. Resting brain glucose uptake was measured using 18F-fluorodeoxyglucose positron emission tomography scans at baseline and at week 12. Scans were performed at 96 hours after exercise. VO2peak was measured by indirect calorimetry. Glucose uptake increased significantly in the parietal-temporal and caudate regions after HIIT compared with SED. The gains with HIIT were not observed in all brain regions. VO2peak was increased for all participants after HIIT and did not change with SED. We demonstrate that brain glucose metabolism increased after 12 weeks of HIIT in adults in regions where it is reduced in Alzheimer's disease. Copyright © 2017 Endocrine Society

  4. N-Acetyl-Cysteine Alleviates Gut Dysbiosis and Glucose Metabolic Disorder in High-Fat Diet-Induced Mice.

    Science.gov (United States)

    Zheng, Junping; Yuan, Xubing; Zhang, Chen; Jia, Peiyuan; Jiao, Siming; Zhao, Xiaoming; Yin, Heng; Du, Yuguang; Liu, Hongtao

    2018-05-30

    N-acetyl cysteine (NAC), an anti-oxidative reagent for clinical diseases, shows potential application to diabetes and other metabolic diseases. However, it is unknown how NAC modulates the gut microbiota of mice with metabolic syndrome. In present study, we aim to demonstrate the preventive effect of NAC on intestinal dysbiosis and glucose metabolic disorder. C57BL/6J mice were fed with normal chow diet (NCD), NCD plus NAC, high-fat diet (HFD) or HFD plus NAC for five months. After the treatment, the glucose level, circulating endotoxin and metabolism-related key proteins were determined. The fecal samples were analyzed by 16S rRNA sequencing. A novel analysis was carried out to predict the functional changes of gut microbiota. In addition, Spearman's correlation between metabolic biomarkers and bacterial abundance was also assayed. The results show that NAC treatment significantly reversed the glucose intolerance, fasting glucose level, body weight and plasma endotoxin in HFD-fed mice. Further, NAC upregulated the levels of Occludin protein and mucin glycoproteins in proximal colons of HFD-treated mice. Noticeably, NAC promoted the growth of beneficial bacteria such as Akkermansia, Bifidobacterium, Lactobacillus and Allobaculum, and hampered the population of diabetes-related genera including Desulfovibrio and Blautia. Also, NAC may influence the metabolic pathways of intestinal bacteria including lipopolysaccharide biosynthesis, oxidative stress and bacterial motility. Finally, the modified gut microbiota showed close association with the metabolic changes of the NAC treated HFD-fed mice. In summary, NAC may be a potential drug to prevent glucose metabolic disturbance by reshaping the structure of gut microbiota. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  5. Particulate matter exposure exacerbates high glucose-induced cardiomyocyte dysfunction through ROS generation.

    Directory of Open Access Journals (Sweden)

    Li Zuo

    Full Text Available Diabetes mellitus and fine particulate matter from diesel exhaust (DEP are both important contributors to the development of cardiovascular disease (CVD. Diabetes mellitus is a progressive disease with a high mortality rate in patients suffering from CVD, resulting in diabetic cardiomyopathy. Elevated DEP levels in the air are attributed to the development of various CVDs, presumably since fine DEP (<2.5 µm in diameter can be inhaled and gain access to the circulatory system. However, mechanisms defining how DEP affects diabetic or control cardiomyocyte function remain poorly understood. The purpose of the present study was to evaluate cardiomyocyte function and reactive oxygen species (ROS generation in isolated rat ventricular myocytes exposed overnight to fine DEP (0.1 µg/ml, and/or high glucose (HG, 25.5 mM. Our hypothesis was that DEP exposure exacerbates contractile dysfunction via ROS generation in cardiomyocytes exposed to HG. Ventricular myocytes were isolated from male adult Sprague-Dawley rats cultured overnight and sarcomeric contractile properties were evaluated, including: peak shortening normalized to baseline (PS, time-to-90% shortening (TPS(90, time-to-90% relengthening (TR(90 and maximal velocities of shortening/relengthening (±dL/dt, using an IonOptix field-stimulator system. ROS generation was determined using hydroethidine/ethidium confocal microscopy. We found that DEP exposure significantly increased TR(90, decreased PS and ±dL/dt, and enhanced intracellular ROS generation in myocytes exposed to HG. Further studies indicated that co-culture with antioxidants (0.25 mM Tiron and 0.5 mM N-Acetyl-L-cysteine completely restored contractile function in DEP, HG and HG+DEP-treated myocytes. ROS generation was blocked in HG-treated cells with mitochondrial inhibition, while ROS generation was blocked in DEP-treated cells with NADPH oxidase inhibition. Our results suggest that DEP exacerbates myocardial dysfunction in isolated

  6. Regulation of MDA-MB-231 cell proliferation by GSK-3β involves epigenetic modifications under high glucose conditions

    International Nuclear Information System (INIS)

    Gupta, Chanchal; Kaur, Jasmine; Tikoo, Kulbhushan

    2014-01-01

    Hyperglycemia is a critical risk factor for development and progression of breast cancer. We have recently reported that high glucose induces phosphorylation of histone H3 at Ser 10 as well as de-phosphorylation of GSK-3β at Ser 9 in MDA-MB-231 cells. Here, we elucidate the mechanism underlying hyperglycemia-induced proliferation in MDA-MB-231 breast cancer cells. We provide evidence that hyperglycemia led to increased DNA methylation and DNMT1 expression in MDA-MB-231 cells. High glucose condition led to significant increase in the expression of PCNA, cyclin D1 and decrease in the expression of PTPN 12, p21 and PTEN. It also induced hypermethylation of DNA at the promoter region of PTPN 12, whereas hypomethylation at Vimentin and Snail. Silencing of GSK-3β by siRNA prevented histone H3 phosphorylation and reduced DNMT1 expression. We show that chromatin obtained after immunoprecipitation with phospho-histone H3 was hypermethylated under high glucose condition, which indicates a cross-talk between DNA methylation and histone H3 phosphorylation. ChIP-qPCR analysis revealed up-regulation of DNMT1 and metastatic genes viz. Vimentin, Snail and MMP-7 by phospho-histone H3, which were down-regulated upon GSK-3β silencing. To the best of our knowledge, this is the first report which shows that interplay between GSK-3β activation, histone H3 phosphorylation and DNA methylation directs proliferation of breast cancer cells. - Highlights: • High glucose induces phosphorylation of histone H3 and dephosphorylation of GSK-3β. • Moreover, hyperglycemia also leads to increased DNA methylation in MDA-MB-231 cells. • Inhibition of GSK-3β prevented histone H3 phosphorylation and reduced DNMT1 levels. • Interplay exists between GSK-3β, histone H3 phosphorylation and DNA methylation

  7. Heme oxygenase-1 enhances autophagy in podocytes as a protective mechanism against high glucose-induced apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Chenglong [Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing (China); Zheng, Haining [Department of Hyperbaric Oxygen, Nanjing General Hospital of Nanjing Military Command, Nanjing (China); Huang, Shanshan; You, Na; Xu, Jiarong; Ye, Xiaolong; Zhu, Qun; Feng, Yamin; You, Qiang; Miao, Heng [Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing (China); Ding, Dafa, E-mail: dingdafa2004@aliyun.com [Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing (China); Lu, Yibing, E-mail: luyibing2004@126.com [Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing (China)

    2015-10-01

    Injury and loss of podocytes play vital roles in diabetic nephropathy progression. Emerging evidence suggests autophagy, which is induced by multiple stressors including hyperglycemia, plays a protective role. Meanwhile, heme oxygenase-1 (HO-1) possesses powerful anti-apoptotic properties. Therefore, we investigated the impact of autophagy on podocyte apoptosis under diabetic conditions and its association with HO-1. Mouse podocytes were cultured in vitro; apoptosis was detected by flow cytometry. Transmission electron microscopy and biochemical autophagic flux assays were used to measure the autophagy markers microtubule-associated protein 1 light chain 3-II (LC3-II) and beclin-1. LC3-II and beclin-1 expression peaked 12–24 h after exposing podocytes to high glucose. Inhibition of autophagy with 3-methyladenine or Beclin-1 siRNAs or Atg 5 siRNAs sensitized cells to apoptosis, suggesting autophagy is a survival mechanism. HO-1 inactivation inhibited autophagy, which aggravated podocyte injury in vitro. Hemin-induced autophagy also protected podocytes from hyperglycemia in vitro and was abrogated by HO-1 siRNA. Adenosine monophosphate-activated protein kinase phosphorylation was higher in hemin-treated and lower in HO-1 siRNA-treated podocytes. Suppression of AMPK activity reversed HO-1-mediated Beclin-1 upregulation and autophagy, indicating HO-1-mediated autophagy is AMPK dependent. These findings suggest HO-1 induction and regulation of autophagy are potential therapeutic targets for diabetic nephropathy. - Highlights: • High glucose leads to increased autophagy in podocytes at an early stage. • The early autophagic response protects against high glucose-induced apoptosis. • Heme oxygenase-1 enhances autophagy and decreases high glucose -mediated apoptosis. • Heme oxygenase-1 induces autophagy through the activation of AMPK.

  8. Short-Term High-Intensity Interval Training on Body Composition and Blood Glucose in Overweight and Obese Young Women

    OpenAIRE

    Kong, Zhaowei; Sun, Shengyan; Liu, Min; Shi, Qingde

    2016-01-01

    This study was to determine the effects of five-week high-intensity interval training (HIIT) on cardiorespiratory fitness, body composition, blood glucose, and relevant systemic hormones when compared to moderate-intensity continuous training (MICT) in overweight and obese young women. Methods. Eighteen subjects completed 20 sessions of HIIT or MICT for five weeks. HIIT involved 60 ? 8?s cycling at ~90% of peak oxygen consumption ( V ? O 2 p e a k ) interspersed with 12?s recovery, whereas MI...

  9. Regulation of MDA-MB-231 cell proliferation by GSK-3β involves epigenetic modifications under high glucose conditions

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Chanchal; Kaur, Jasmine; Tikoo, Kulbhushan, E-mail: tikoo.k@gmail.com

    2014-05-15

    Hyperglycemia is a critical risk factor for development and progression of breast cancer. We have recently reported that high glucose induces phosphorylation of histone H3 at Ser 10 as well as de-phosphorylation of GSK-3β at Ser 9 in MDA-MB-231 cells. Here, we elucidate the mechanism underlying hyperglycemia-induced proliferation in MDA-MB-231 breast cancer cells. We provide evidence that hyperglycemia led to increased DNA methylation and DNMT1 expression in MDA-MB-231 cells. High glucose condition led to significant increase in the expression of PCNA, cyclin D1 and decrease in the expression of PTPN 12, p21 and PTEN. It also induced hypermethylation of DNA at the promoter region of PTPN 12, whereas hypomethylation at Vimentin and Snail. Silencing of GSK-3β by siRNA prevented histone H3 phosphorylation and reduced DNMT1 expression. We show that chromatin obtained after immunoprecipitation with phospho-histone H3 was hypermethylated under high glucose condition, which indicates a cross-talk between DNA methylation and histone H3 phosphorylation. ChIP-qPCR analysis revealed up-regulation of DNMT1 and metastatic genes viz. Vimentin, Snail and MMP-7 by phospho-histone H3, which were down-regulated upon GSK-3β silencing. To the best of our knowledge, this is the first report which shows that interplay between GSK-3β activation, histone H3 phosphorylation and DNA methylation directs proliferation of breast cancer cells. - Highlights: • High glucose induces phosphorylation of histone H3 and dephosphorylation of GSK-3β. • Moreover, hyperglycemia also leads to increased DNA methylation in MDA-MB-231 cells. • Inhibition of GSK-3β prevented histone H3 phosphorylation and reduced DNMT1 levels. • Interplay exists between GSK-3β, histone H3 phosphorylation and DNA methylation.

  10. Heme oxygenase-1 enhances autophagy in podocytes as a protective mechanism against high glucose-induced apoptosis

    International Nuclear Information System (INIS)

    Dong, Chenglong; Zheng, Haining; Huang, Shanshan; You, Na; Xu, Jiarong; Ye, Xiaolong; Zhu, Qun; Feng, Yamin; You, Qiang; Miao, Heng; Ding, Dafa; Lu, Yibing

    2015-01-01

    Injury and loss of podocytes play vital roles in diabetic nephropathy progression. Emerging evidence suggests autophagy, which is induced by multiple stressors including hyperglycemia, plays a protective role. Meanwhile, heme oxygenase-1 (HO-1) possesses powerful anti-apoptotic properties. Therefore, we investigated the impact of autophagy on podocyte apoptosis under diabetic conditions and its association with HO-1. Mouse podocytes were cultured in vitro; apoptosis was detected by flow cytometry. Transmission electron microscopy and biochemical autophagic flux assays were used to measure the autophagy markers microtubule-associated protein 1 light chain 3-II (LC3-II) and beclin-1. LC3-II and beclin-1 expression peaked 12–24 h after exposing podocytes to high glucose. Inhibition of autophagy with 3-methyladenine or Beclin-1 siRNAs or Atg 5 siRNAs sensitized cells to apoptosis, suggesting autophagy is a survival mechanism. HO-1 inactivation inhibited autophagy, which aggravated podocyte injury in vitro. Hemin-induced autophagy also protected podocytes from hyperglycemia in vitro and was abrogated by HO-1 siRNA. Adenosine monophosphate-activated protein kinase phosphorylation was higher in hemin-treated and lower in HO-1 siRNA-treated podocytes. Suppression of AMPK activity reversed HO-1-mediated Beclin-1 upregulation and autophagy, indicating HO-1-mediated autophagy is AMPK dependent. These findings suggest HO-1 induction and regulation of autophagy are potential therapeutic targets for diabetic nephropathy. - Highlights: • High glucose leads to increased autophagy in podocytes at an early stage. • The early autophagic response protects against high glucose-induced apoptosis. • Heme oxygenase-1 enhances autophagy and decreases high glucose -mediated apoptosis. • Heme oxygenase-1 induces autophagy through the activation of AMPK

  11. Tea polyphenols alleviate high fat and high glucose-induced endothelial hyperpermeability by attenuating ROS production via NADPH oxidase pathway.

    Science.gov (United States)

    Zuo, Xuezhi; Tian, Chong; Zhao, Nana; Ren, Weiye; Meng, Yi; Jin, Xin; Zhang, Ying; Ding, Shibin; Ying, Chenjiang; Ye, Xiaolei

    2014-03-02

    Hyperglycemia-induced endothelial hyperpermeability is crucial to cardiovascular disorders and macro-vascular complications in diabetes mellitus. The objective of this study is to investigate the effects of green tea polyphenols (GTPs) on endothelial hyperpermeability and the role of nicotinamide adenine dinucleotide phosphate (NADPH) pathway. Male Wistar rats fed on a high fat diet (HF) were treated with GTPs (0, 0.8, 1.6, 3.2 g/L in drinking water) for 26 weeks. Bovine aortic endothelial cells (BAECs) were treated with high glucose (HG, 33 mmol/L) and GTPs (0.0, 0.4, or 4 μg/mL) for 24 hours in vitro. The endothelial permeabilities in rat aorta and monolayer BAECs were measured by Evans blue injection method and efflux of fluorescein isothiocyanate (FITC)-dextran, respectively. The reactive oxygen species (ROS) levels in rat aorta and monolayer BAECs were measured by dihydroethidium (DHE) and 2', 7'-dichloro-fluorescein diacetate (DCFH-DA) fluorescent probe, respectively. Protein levels of NADPH oxidase subunits were determined by Western-blot. HF diet-fed increased the endothelial permeability and ROS levels in rat aorta while HG treatments increased the endothelial permeability and ROS levels in cultured BAECs. Co-treatment with GTPs alleviated those changes both in vivo and in vitro. In in vitro studies, GTPs treatments protected against the HG-induced over-expressions of p22phox and p67phox. Diphenylene iodonium chloride (DPI), an inhibitor of NADPH oxidase, alleviated the hyperpermeability induced by HG. GTPs could alleviate endothelial hyperpermeabilities in HF diet-fed rat aorta and in HG treated BAECs. The decrease of ROS production resulting from down-regulation of NADPH oxidase contributed to the alleviation of endothelial hyperpermeability.

  12. Reduced glucose tolerance and insulin resistance induced by steroid treatment, relative physical inactivity, and high-calorie diet impairs the incretin effect in healthy subjects

    DEFF Research Database (Denmark)

    Hansen, K B; Vilsbøll, T; Bagger, J I

    2010-01-01

    The loss of incretin effect in patients with type 2 diabetes mellitus may be secondary to impaired glucose homeostasis. We investigated whether reduced glucose tolerance and insulin resistance induced by steroid treatment, relative physical inactivity, and high-calorie diet in healthy young males...

  13. DNA-dispersed graphene/NiO hybrid materials for highly sensitive non-enzymatic glucose sensor

    International Nuclear Information System (INIS)

    Lv Wei; Jin Fengmin; Guo Quangui; Yang Quanhong; Kang Feiyu

    2012-01-01

    Highlights: ► We investigated the potential of GNS/NiO/DNA hybrid used as a nonenzymatic sensor. ► DNA is a highly efficient disperse agent for GNS/NiO hybrid than ionic surfactants. ► GNS/NiO/DNA hybrid shows fast electron transfer in the electrochemical reaction. ► GNS/NiO/DNA hybrid shows good detection performance towards glucose. - Abstract: We demonstrate graphene nanosheet/NiO hybrids (GNS/NiO) as the active material for high-performance non-enzymatic glucose sensors. Such sensors are fabricated by DNA-dispersed GNS/NiO suspension deposited on glassy carbon electrodes. ss-DNA shows strong dispersing ability for the GNS/NiO hybrid materials resulting in stable water-dispersible GNS/NiO/DNA hybrids with fully separated layers. The GNS/NiO/DNA hybrids show enhanced electron transfer in the electrocatalytic reaction process, and accordingly, such hybrids modified electrodes show good sensing performance towards glucose and are characterized by large detection ranges, short response periods, low detection limit and high sensitivity and stability.

  14. RUMINAL FERMENTATION AND BLOOD GLUCOSE AT LOW AND HIGH LEVEL INTAKE OF GROWING AND MATURE KACANG GOAT

    Directory of Open Access Journals (Sweden)

    N. Luthfi

    2015-09-01

    Full Text Available This study was conducted to compare ruminal Volatile Fatty Acids (VFA concentration andblood glucose in young and mature Kacang goats at different feeding levels. Eigth male young Kacanggoats weights at 12.75±2.68 kg (6-7 months and male mature goat weights at ± 17.34±3.32 kg (8-12months were used in this study. The pelleted complete feed was formulated to give 18,8% of CrudeProtein (CP and 78.82% of total digestible nutrients (TDN. The experiment design was nested designexperimental 2x2 with 4 replications. The main factors (based on nested were young and mature goatsand the second factor was low feeding (near maintenance level and high feeding (2X maintenance.Data measured were daily feed intake, feed digestibilities, ruminal VFA concentration and bloodglucose. The data obtained were analyzed by using analysis of variance. The results showed that drymatter intake (DMI, digestible carbohydrates, digestible crude fiber, and digestible organic matter wasaffected by age (P<0.05, as well as level of feeding (P<0.001, but age and feeding level has no effecton digestibility (P>0.05. Ruminal VFA and blood glucose concentrations were found similar (P>0.05 neither in young and mature goats. However, VFA and concentration on the 3 and 6 h on high feeding aswell as blood glucose on 3 h in high feeding were higher than those on low feeding.

  15. Triglycerides to High-Density Lipoprotein Cholesterol Ratio Can Predict Impaired Glucose Tolerance in Young Women with Polycystic Ovary Syndrome.

    Science.gov (United States)

    Song, Do Kyeong; Lee, Hyejin; Sung, Yeon Ah; Oh, Jee Young

    2016-11-01

    The triglycerides to high-density lipoprotein cholesterol (TG/HDL-C) ratio could be related to insulin resistance (IR). We previously reported that Korean women with polycystic ovary syndrome (PCOS) had a high prevalence of impaired glucose tolerance (IGT). We aimed to determine the cutoff value of the TG/HDL-C ratio for predicting IR and to examine whether the TG/HDL-C ratio is useful for identifying individuals at risk of IGT in young Korean women with PCOS. We recruited 450 women with PCOS (24±5 yrs) and performed a 75-g oral glucose tolerance test (OGTT). IR was assessed by a homeostasis model assessment index over that of the 95th percentile of regular-cycling women who served as the controls (n=450, 24±4 yrs). The cutoff value of the TG/HDL-C ratio for predicting IR was 2.5 in women with PCOS. Among the women with PCOS who had normal fasting glucose (NFG), the prevalence of IGT was significantly higher in the women with PCOS who had a high TG/HDL-C ratio compared with those with a low TG/HDL-C ratio (15.6% vs. 5.6%, p2.5 are recommended to be administered an OGTT to detect IGT even if they have NFG.

  16. Glucose is required to maintain high ATP-levels for the energy utilizing steps during PDT-induced apoptosis

    International Nuclear Information System (INIS)

    Oberdanner, C.; Plaetzer, K.; Kiesslich, T.; Krammer, B.

    2003-01-01

    Full text: Photodynamic therapy (PDT) may trigger apoptosis or necrosis in cancer cells. Several steps in the induction and execution of apoptosis require high amounts of adenosine-5'-triphosphate (ATP). Since the mitochondrial membrane potential (ΔΨ) decreases early in apoptosis, we raised the question about the mechanisms of maintaining a sufficiently high ATP-level. We therefore monitored ΔΨ and the intracellular ATP-level of apoptotic human epidermoid carcinoma cells (A431) after photodynamic treatment with aluminium (III) phthalocyanine tetrasulfonate chloride. A maximum of caspase-3 activation and nuclear fragmentation was found at fluences of about 4 J.cm -2 . Under these conditions apoptotic cells reduced ΔΨ rapidly, while the ATP-level remained high for 4 to 6 hours after treatment for cells supplied with glucose. To analyze the contribution of glycolysis to the energy supply during apoptosis experiments were carried out with cells deprivated of glucose. These cells showed a rapid drop of ATP-content and neither caspase-activation nor nuclear fragmentation could be detected. We conclude that the use of glucose as a source of ATP is obligatory for the execution of PDT-induced apoptosis. (author)

  17. The effects of chromium complex and level on glucose metabolism and memory acquisition in rats fed high-fat diet.

    Science.gov (United States)

    Sahin, Kazim; Tuzcu, Mehmet; Orhan, Cemal; Agca, Can A; Sahin, Nurhan; Guvenc, Mehmet; Krejpcio, Zbigniew; Staniek, Halina; Hayirli, Armagan

    2011-11-01

    Conditions in which glucose metabolism is impaired due to insulin resistance are associated with memory impairment. It was hypothesized that supplemental chromium (Cr) may alleviate insulin resistance in type 2 diabetes and consequently improve memory acquisition, depending upon its source and level. In a complete randomized design experiment, male Wistar rats (n=60; weighing 200-220 g) were fed either normal (8%, normal diet (ND)) or high-fat (40%, high-fat diet (HFD)) diet and supplemented with Cr as either chromium-glycinate (CrGly) or chromium-acetate (CrAc) at doses of 0, 40, or 80 μg/kg body weight (BW) via drinking water from 8 to 20 weeks of age. Feeding HFD induced type 2 diabetes, as reflected by greater glucose/insulin ratio (2.98 vs. 2.74) comparing to feeding ND. Moreover, HFD rats had greater BW (314 vs. 279 g) and less serum (53 vs. 68 μg/L) and brain (14 vs. 24 ng/g) Cr concentrations than ND rats. High-fat diet caused a 32% reduction in expressions of glucose transporters 1 and 3 (GLUTs) in brain tissue and a 27% reduction in mean percentage time spent in the target quadrant and a 38% increase in spatial memory acquisition phase (SMAP) compared with ND. Compared with supplemental Cr as CrAc, CrGly was more effective to ameliorate response variables (i.e., restoration of tissue Cr concentration, enhancement of cerebral GLUTs expressions, and reduction of the glucose/insulin ratio and SMAP) in a dose-response manner, especially in rats fed HFD. Supplemental Cr as CrGly may have therapeutic potential to enhance insulin action and alleviate memory acquisition in a dose-dependent manner, through restoring tissue Cr reserve and enhancing cerebral GLUTs expressions.

  18. Lysate of engineered Escherichia coli supports high-level conversion of glucose to 2,3-butanediol.

    Science.gov (United States)

    Kay, Jennifer E; Jewett, Michael C

    2015-11-01

    Cell-free metabolic engineering (CFME) is emerging as a powerful approach for the production of target molecules and pathway debugging. Unfortunately, high cofactor costs, limited cofactor and energy regeneration, and low volumetric productivities hamper the widespread use and practical implementation of CFME technology. To address these challenges, we have developed a cell-free system that harnesses ensembles of catalytic proteins prepared from crude lysates, or extracts, of cells to fuel highly active heterologous metabolic conversions. As a model pathway, we selected conversion of glucose to 2,3-butanediol (2,3-BD), a medium level commodity chemical with many industrial applications. Specifically, we engineered a single strain of Escherichia coli to express three pathway enzymes necessary to make meso-2,3-BD (m2,3-BD). We then demonstrated that lysates from this strain, with addition of glucose and catalytic amounts of cofactors NAD+ and ATP, can produce m2,3-BD. Endogenous glycolytic enzymes convert glucose to pyruvate, the starting intermediate for m2,3-BD synthesis. Strikingly, with no strain optimization, we observed a maximal synthesis rate of m2,3-BD of 11.3 ± 0.1 g/L/h with a theoretical yield of 71% (0.36 g m2,3-BD/g glucose) in batch reactions. Titers reached 82 ± 8 g/L m2,3-BD in a 30 h fed-batch reaction. Our results highlight the ability for high-level co-factor regeneration in cell-free lysates. Further, they suggest exciting opportunities to use lysate-based systems to rapidly prototype metabolic pathways and carry out molecular transformations when bioconversion yields (g product/L), productivities (g product/L/h), or cellular toxicity limit commercial feasibility of whole-cell fermentation. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  19. Engineering of a novel Saccharomyces cerevisiae wine strain with a respiratory phenotype at high external glucose concentrations.

    Science.gov (United States)

    Henricsson, C; de Jesus Ferreira, M C; Hedfalk, K; Elbing, K; Larsson, C; Bill, R M; Norbeck, J; Hohmann, S; Gustafsson, L

    2005-10-01

    The recently described respiratory strain Saccharomyces cerevisiae KOY.TM6*P is, to our knowledge, the only reported strain of S. cerevisiae which completely redirects the flux of glucose from ethanol fermentation to respiration, even at high external glucose concentrations (27). In the KOY.TM6*P strain, portions of the genes encoding the predominant hexose transporter proteins, Hxt1 and Hxt7, were fused within the regions encoding transmembrane (TM) domain 6. The resulting chimeric gene, TM6*, encoded a chimera composed of the amino-terminal half of Hxt1 and the carboxy-terminal half of Hxt7. It was subsequently integrated into the genome of an hxt null strain. In this study, we have demonstrated the transferability of this respiratory phenotype to the V5 hxt1-7Delta strain, a derivative of a strain used in enology. We also show by using this mutant that it is not necessary to transform a complete hxt null strain with the TM6* construct to obtain a non-ethanol-producing phenotype. The resulting V5.TM6*P strain, obtained by transformation of the V5 hxt1-7Delta strain with the TM6* chimeric gene, produced only minor amounts of ethanol when cultured on external glucose concentrations as high as 5%. Despite the fact that glucose flux was reduced to 30% in the V5.TM6*P strain compared with that of its parental strain, the V5.TM6*P strain produced biomass at a specific rate as high as 85% that of the V5 wild-type strain. Even more relevant for the potential use of such a strain for the production of heterologous proteins and also of low-alcohol beverages is the observation that the biomass yield increased 50% with the mutant compared to its parental strain.

  20. Buddleja officinalis suppresses high glucose-induced vascular smooth muscle cell proliferation: role of mitogen-activated protein kinases, nuclear factor-kappaB and matrix metalloproteinases.

    Science.gov (United States)

    Lee, Yun Jung; Kim, Jin Sook; Kang, Dae Gill; Lee, Ho Sub

    2010-02-01

    Diabetes mellitus is a well-established risk factor for vascular diseases caused by atherosclerosis. In the development of diabetic atherogenesis, vascular smooth muscle cell proliferation is recognized as a key event. Thus, we aimed to investigate whether an ethanol extract of Buddleja officinalis (EBO) suppresses high glucose-induced proliferation in primary cultured human aortic smooth muscle cells (HASMC). [(3)H]-thymidine incorporation revealed that incubation of HASMC with a high concentration of glucose (25 mmol/L) increased cell proliferation. The expression levels of cell cycle protein were also increased by treatment with high glucose concentration. Pretreatment of HASMC with EBO significantly attenuated the increase of high glucose-induced cell proliferation as well as p38 mitogen-activated protein kinases (MAPK) and JNK phosphorylation. EBO suppressed high glucose-induced matrix metalloproteinase (MMP)-9 activity in a dose-dependent manner. In addition, EBO suppressed nuclear factor-kappaB (NF-kappaB) nuclear translocation and transcriptional activity in high glucose conditions. Taken together, the present data suggest that EBO could suppress high glucose-induced atherosclerotic processes through inhibition of p38, JNK, NF-kappaB and MMP signal pathways in HASMC.

  1. Glucose concentration and blood acid-basis status in high-yielding dairy cows during heat stress

    Directory of Open Access Journals (Sweden)

    Vujanac Ivan

    2011-01-01

    Full Text Available The objective of this work was to examine the effect of heat stress on glucose and pH values in blood of high-yielding dairy cows in the early stage of lactation, as well as to determine whether the changes in these parameters are interdependent under such conditions. An experiment was performed on high-yielding dairy cows during the summer and the spring periods. Forty cows were selected, twenty each for the two periods under investigation. In the course of the experiment, the temperature humidity index (THI was determined for the entire period of investigations, and then also the average daily THI, nightmorning THI (average value of hourly THI measured from 22h on the previous day until 10h of the current day, as well as the day-night THI (average value of hourly THI measured during the period from 10h to 22h of the current day. The pH and glucose concentration were determined in blood samples taken in the morning and afternoon of days 30, 60, and 90 of lactation during the spring and summer periods of the investigations. Based on the results for the THI, it was established that the animals were not exposed to the effect of extreme heat stress during the spring period of investigations, while they were periodically exposed to moderate but also extreme heat stress during the summer, in particular in the afternoon hours. It can be concluded from the results obtained for the blood pH that the cows were in respiratory alkalosis during the summer in the morning and afternoon hours on day 30, in the afternoon hours of days 60 and 90 of lactation, as well as in the afternoon on day 90 of lactation during the spring period of investigations. During the summer period, there were no statistically significant differences between the pH value determined in the morning and afternoon hours on day 30 of lactation, while the pH value was significantly higher in the afternoon hours than in the morning hours on days 60 and 90 of lactation. There were no

  2. Hydrogen sulfide inhibits high glucose-induced NADPH oxidase 4 expression and matrix increase by recruiting inducible nitric oxide synthase in kidney proximal tubular epithelial cells.

    Science.gov (United States)

    Lee, Hak Joo; Lee, Doug Yoon; Mariappan, Meenalakshmi M; Feliers, Denis; Ghosh-Choudhury, Goutam; Abboud, Hanna E; Gorin, Yves; Kasinath, Balakuntalam S

    2017-04-07

    High-glucose increases NADPH oxidase 4 (NOX4) expression, reactive oxygen species generation, and matrix protein synthesis by inhibiting AMP-activated protein kinase (AMPK) in renal cells. Because hydrogen sulfide (H 2 S) inhibits high glucose-induced matrix protein increase by activating AMPK in renal cells, we examined whether H 2 S inhibits high glucose-induced expression of NOX4 and matrix protein and whether H 2 S and NO pathways are integrated. High glucose increased NOX4 expression and activity at 24 h in renal proximal tubular epithelial cells, which was inhibited by sodium hydrosulfide (NaHS), a source of H 2 S. High glucose decreased AMPK phosphorylation and activity, which was restored by NaHS. Compound C, an AMPK inhibitor, prevented NaHS inhibition of high glucose-induced NOX4 expression. NaHS inhibition of high glucose-induced NOX4 expression was abrogated by N (ω)-nitro-l-arginine methyl ester, an inhibitor of NOS. NaHS unexpectedly augmented the expression of inducible NOS (iNOS) but not endothelial NOS. iNOS siRNA and 1400W, a selective iNOS inhibitor, abolished the ameliorative effects of NaHS on high glucose-induced NOX4 expression, reactive oxygen species generation, and, matrix laminin expression. Thus, H 2 S recruits iNOS to generate NO to inhibit high glucose-induced NOX4 expression, oxidative stress, and matrix protein accumulation in renal epithelial cells; the two gasotransmitters H 2 S and NO and their interaction may serve as therapeutic targets in diabetic kidney disease. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. The dipeptidyl peptidase-4 (DPP-4) inhibitor teneligliptin functions as antioxidant on human endothelial cells exposed to chronic hyperglycemia and metabolic high-glucose memory.

    Science.gov (United States)

    Pujadas, Gemma; De Nigris, Valeria; Prattichizzo, Francesco; La Sala, Lucia; Testa, Roberto; Ceriello, Antonio

    2017-06-01

    Dipeptidyl peptidase-4 inhibitors are widely used in type 2 diabetes. Endothelium plays a crucial role maintaining vascular integrity and function. Chronic exposure to high glucose drives to endothelial dysfunction generating oxidative stress. Teneligliptin is a novel dipeptidyl peptidase-4 inhibitor with antioxidant properties. This study is aimed to verify a potential protective action of teneligliptin in endothelial cells exposed to high glucose. Human umbilical vein endothelial cells were cultured under normal (5 mmol/L) or high glucose (25 mmol/L) during 21 days, or at high glucose during 14 days followed by 7 days at normal glucose, to reproduce the high-metabolic memory state. During this period, different concentrations of teneligliptin (0.1, 1.0 and 3.0 µmol/L) or sitagliptin (0.5 µmol/L) were added to cells. Ribonucleic acid and protein expression were assessed for antioxidant response, proliferation, apoptosis and endoplasmic reticulum stress markers. Teneligliptin promotes the antioxidant response in human umbilical vein endothelial cells, reducing ROS levels and inducing Nrf2-target genes messenger ribonucleic acid expression. Teneligliptin, but not sitagliptin, reduces the expression of the nicotine amide adenine dinucleotide phosphate oxidase regulatory subunit P22 -phox , however, both blunt the high glucose-induced increase of TXNIP. Teneligliptin improves proliferation rates in human umbilical vein endothelial cells exposed to high glucose, regulating the expression of cell-cycle inhibitors markers (P53, P21 and P27), and reducing proapoptotic genes (BAX and CASP3), while promotes BCL2 expression. Teneligliptin ameliorates high glucose-induced endoplasmic reticulum stress reducing the expression of several markers (BIP, PERK, ATF4, CHOP, IRE1a and ATF6). Teneligliptin has antioxidant properties, ameliorates oxidative stress and apoptotic phenotype and it can overcome the metabolic memory effect, induced by chronic exposure to high

  4. Nanofiber-deposited porous platinum enables glucose fuel cell anodes with high current density in body fluids

    Science.gov (United States)

    Frei, Maxi; Erben, Johannes; Martin, Julian; Zengerle, Roland; Kerzenmacher, Sven

    2017-09-01

    The poisoning of platinum anodes by body-fluid constituents such as amino acids is currently the main hurdle preventing the application of abiotic glucose fuel cells as battery-independent power supply for medical implants. We present a novel anode material that enables continuous operation of glucose oxidation anodes in horse serum for at least 30 days at a current density of (7.2 ± 1.9) μA cm-2. The fabrication process is based on the electro-deposition of highly porous platinum onto a 3-dimensional carbon nanofiber support, leading to approximately 2-fold increased electrode roughness factors (up to 16500 ± 2300). The material's superior performance is not only related to its high specific surface area, but also to an improved catalytic activity and/or poisoning resistance. Presumably, this results from the micro- and nanostructure of the platinum deposits. This represents a major step forward in the development of implantable glucose fuel cells based on long-term stable platinum electrodes.

  5. In vivo cardiac glucose metabolism in the high-fat fed mouse: Comparison of euglycemic–hyperinsulinemic clamp derived measures of glucose uptake with a dynamic metabolomic flux profiling approach

    International Nuclear Information System (INIS)

    Kowalski, Greg M.; De Souza, David P.; Risis, Steve; Burch, Micah L.; Hamley, Steven; Kloehn, Joachim; Selathurai, Ahrathy; Lee-Young, Robert S.; Tull, Dedreia; O'Callaghan, Sean; McConville, Malcolm J.; Bruce, Clinton R.

    2015-01-01

    Rationale: Cardiac metabolism is thought to be altered in insulin resistance and type 2 diabetes (T2D). Our understanding of the regulation of cardiac substrate metabolism and insulin sensitivity has largely been derived from ex vivo preparations which are not subject to the same metabolic regulation as in the intact heart in vivo. Studies are therefore required to examine in vivo cardiac glucose metabolism under physiologically relevant conditions. Objective: To determine the temporal pattern of the development of cardiac insulin resistance and to compare with dynamic approaches to interrogate cardiac glucose and intermediary metabolism in vivo. Methods and results: Studies were conducted to determine the evolution of cardiac insulin resistance in C57Bl/6 mice fed a high-fat diet (HFD) for between 1 and 16 weeks. Dynamic in vivo cardiac glucose metabolism was determined following oral administration of [U- 13 C] glucose. Hearts were collected after 15 and 60 min and flux profiling was determined by measuring 13 C mass isotopomers in glycolytic and tricarboxylic acid (TCA) cycle intermediates. Cardiac insulin resistance, determined by euglycemic–hyperinsulinemic clamp, was evident after 3 weeks of HFD. Despite the presence of insulin resistance, in vivo cardiac glucose metabolism following oral glucose administration was not compromised in HFD mice. This contrasts our recent findings in skeletal muscle, where TCA cycle activity was reduced in mice fed a HFD. Similar to our report in muscle, glucose derived pyruvate entry into the TCA cycle in the heart was almost exclusively via pyruvate dehydrogenase, with pyruvate carboxylase mediated anaplerosis being negligible after oral glucose administration. Conclusions: Under experimental conditions which closely mimic the postprandial state, the insulin resistant mouse heart retains the ability to stimulate glucose metabolism. - Highlights: • Insulin clamp was used to determine the evolution of cardiac insulin

  6. In vivo cardiac glucose metabolism in the high-fat fed mouse: Comparison of euglycemic–hyperinsulinemic clamp derived measures of glucose uptake with a dynamic metabolomic flux profiling approach

    Energy Technology Data Exchange (ETDEWEB)

    Kowalski, Greg M., E-mail: greg.kowalski@deakin.edu.au [Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria 3125 (Australia); De Souza, David P. [Metabolomics Australia, Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria 3010 (Australia); Risis, Steve [Cellular and Molecular Metabolism Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria 3004 (Australia); Burch, Micah L. [Brigham and Women' s Hospital, Department of Medicine, Boston, MA (United States); Hamley, Steven [Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria 3125 (Australia); Kloehn, Joachim [Metabolomics Australia, Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria 3010 (Australia); Selathurai, Ahrathy [Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria 3125 (Australia); Lee-Young, Robert S. [Cellular and Molecular Metabolism Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria 3004 (Australia); Tull, Dedreia; O' Callaghan, Sean; McConville, Malcolm J. [Metabolomics Australia, Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria 3010 (Australia); Bruce, Clinton R. [Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria 3125 (Australia)

    2015-08-07

    Rationale: Cardiac metabolism is thought to be altered in insulin resistance and type 2 diabetes (T2D). Our understanding of the regulation of cardiac substrate metabolism and insulin sensitivity has largely been derived from ex vivo preparations which are not subject to the same metabolic regulation as in the intact heart in vivo. Studies are therefore required to examine in vivo cardiac glucose metabolism under physiologically relevant conditions. Objective: To determine the temporal pattern of the development of cardiac insulin resistance and to compare with dynamic approaches to interrogate cardiac glucose and intermediary metabolism in vivo. Methods and results: Studies were conducted to determine the evolution of cardiac insulin resistance in C57Bl/6 mice fed a high-fat diet (HFD) for between 1 and 16 weeks. Dynamic in vivo cardiac glucose metabolism was determined following oral administration of [U-{sup 13}C] glucose. Hearts were collected after 15 and 60 min and flux profiling was determined by measuring {sup 13}C mass isotopomers in glycolytic and tricarboxylic acid (TCA) cycle intermediates. Cardiac insulin resistance, determined by euglycemic–hyperinsulinemic clamp, was evident after 3 weeks of HFD. Despite the presence of insulin resistance, in vivo cardiac glucose metabolism following oral glucose administration was not compromised in HFD mice. This contrasts our recent findings in skeletal muscle, where TCA cycle activity was reduced in mice fed a HFD. Similar to our report in muscle, glucose derived pyruvate entry into the TCA cycle in the heart was almost exclusively via pyruvate dehydrogenase, with pyruvate carboxylase mediated anaplerosis being negligible after oral glucose administration. Conclusions: Under experimental conditions which closely mimic the postprandial state, the insulin resistant mouse heart retains the ability to stimulate glucose metabolism. - Highlights: • Insulin clamp was used to determine the evolution of cardiac

  7. Transmutation of Personal Glucose Meters into Portable and Highly Sensitive Microbial Pathogen Detection Platform.

    Science.gov (United States)

    Wang, Zhenzhen; Chen, Zhaowei; Gao, Nan; Ren, Jinsong; Qu, Xiaogang

    2015-10-07

    Herein, for the first time, we presented a simple and general approach by using personal glucose meters (PGM) for portable and ultrasensitive detection of microbial pathogens. Upon addition of pathogenic bacteria, glucoamylase-quaternized magnetic nanoparticles (GA-QMNPS) conjugates were disrupted by the competitive multivalent interactions between bacteria and QMNPS, resulting in the release of GA. After magnetic separation, the free GA could catalyze the hydrolysis of amylose into glucose for quantitative readout by PGM. In such way, PGM was transmuted into a bacterial detection device and extremely low detection limits down to 20 cells mL(-1) was achieved. More importantly, QMNPS could inhibit the growth of the bacteria and destroy its cellular structure, which enabled bacteria detection and inhibition simultaneously. The simplicity, portability, sensitivity and low cost of presented work make it attractive for clinical applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Continuous glucose monitoring and HbA1c in the evaluation of glucose metabolism in children at high risk for type 1 diabetes mellitus.

    Science.gov (United States)

    Helminen, Olli; Pokka, Tytti; Tossavainen, Päivi; Ilonen, Jorma; Knip, Mikael; Veijola, Riitta

    2016-10-01

    Continuous glucose monitoring (CGM) parameters, self-monitored blood glucose (SMBG), HbA1c and oral glucose tolerance test (OGTT) were studied during preclinical type 1 diabetes mellitus. Ten asymptomatic children with multiple (⩾2) islet autoantibodies (cases) and 10 age and sex-matched autoantibody-negative controls from the Type 1 Diabetes Prediction and Prevention (DIPP) Study were invited to 7-day CGM with Dexcom G4 Platinum Sensor. HbA1c and two daily SMBG values (morning and evening) were analyzed. Five-point OGTTs were performed and carbohydrate intake was assessed by food records. The matched pairs were compared with the paired sample t-test. The cases showed higher mean values and higher variation in glucose levels during CGM compared to the controls. The time spent ⩾7.8mmol/l was 5.8% in the cases compared to 0.4% in the controls (p=0.040). Postprandial CGM values were similar except after the dinner (6.6mmol/l in cases vs. 6.1mmol/l in controls; p=0.023). When analyzing the SMBG values higher mean level, higher evening levels, as well as higher variation were observed in the cases when compared to the controls. HbA1c was significantly higher in the cases [5.7% (39mmol/mol) vs. 5.3% (34mmol/mol); p=0.045]. No differences were observed in glucose or C-peptide levels during OGTT. Daily carbohydrate intake was slightly higher in the cases (254.2g vs. 217.7g; p=0.034). Glucose levels measured by CGM and SMBG are useful indicators of dysglycemia during preclinical type 1 diabetes mellitus. Increased evening glucose values seem to be common in children with preclinical type 1 diabetes mellitus. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Monomeric adiponectin modulates nitric oxide release and calcium movements in porcine aortic endothelial cells in normal/high glucose conditions.

    Science.gov (United States)

    Grossini, Elena; Farruggio, Serena; Qoqaiche, Fatima; Raina, Giulia; Camillo, Lara; Sigaudo, Lorenzo; Mary, David; Surico, Nicola; Surico, Daniela

    2016-09-15

    Perivascular adipose tissue can be involved in the process of cardiovascular pathology through the release of adipokines, namely adiponectins. Monomeric adiponectin has been shown to increase coronary blood flow in anesthetized pigs through increased nitric oxide (NO) release and the involvement of adiponectin receptor 1 (AdipoR1). The present study was therefore planned to examine the effects of monomeric adiponectin on NO release and Ca(2+) transients in porcine aortic endothelial cells (PAEs) in normal/high glucose conditions and the related mechanisms. PAEs were treated with monomeric adiponectin alone or in the presence of intracellular kinases blocker, AdipoR1 and Ca(2+)-ATPase pump inhibitors. The role of Na(+)/Ca(2+) exchanger was examined in experiments performed in zero Na(+) medium. NO release and intracellular Ca(2+) were measured through specific probes. In PAE cultured in normal glucose conditions, monomeric adiponectin elevated NO production and [Ca(2+)]c. Similar effects were observed in high glucose conditions, although the response was lower and not transient. The Ca(2+) mobilized by monomeric adiponectin originated from an intracellular pool thapsigargin- and ATP-sensitive and from the extracellular space. Moreover, the effects of monomeric adiponectin were prevented by kinase blockers and AdipoR1 inhibitor. Finally, in normal glucose condition, a role for Na(+)/Ca(2+) exchanger and Ca(2+)-ATPase pump in restoring Ca(2+) was found. Our results add new information about the control of endothelial function elicited by monomeric adiponectin, which would be achieved by modulation of NO release and Ca(2+) transients. A signalling related to Akt, ERK1/2 and p38MAPK downstream AdipoR1 would be involved. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Glucose homeostasis in rainbow trout fed a high-carbohydrate diet: metformin and insulin interact in a tissue-dependent manner.

    Science.gov (United States)

    Polakof, S; Moon, T W; Aguirre, P; Skiba-Cassy, S; Panserat, S

    2011-01-01

    Carnivorous fish species such as the rainbow trout (Oncorhynchus mykiss) are considered to be "glucose intolerant" because of the prolonged hyperglycemia experienced after intake of a carbohydrate-enriched meal. In the present study, we use this species to study glucose homeostasis in fish chronically infused with the hypoglycemic agents, insulin, and metformin, and fed with a high proportion of carbohydrates (30%). We analyzed liver, skeletal muscle, and white adipose tissue (WAT), which are insulin- and metformin-specific targets at both the biochemical and molecular levels. Trout infused with the combination of insulin and metformin can effectively utilize dietary glucose at the liver, resulting in lowered glycemia, increased insulin sensitivity, and glucose storage capacity, combined with reduced glucose output. However, in both WAT and skeletal muscle, we observed decreased insulin sensitivity with the combined insulin + metformin treatment, resulting in the absence of changes at the metabolic level in the skeletal muscle and an increased potential for glucose uptake and storage in the WAT. Thus, the poor utilization by rainbow trout of a diet with a high proportion of carbohydrate can at least be partially improved by a combined treatment with insulin and metformin, and the glucose intolerance observed in this species could be, in part, due to some of the downstream components of the insulin and metformin signaling pathways. However, the predominant effects of metformin treatment on the action of insulin in these three tissues thought to be involved in glucose homeostasis remain exclusive in this species.

  11. Glucose Sensing

    CERN Document Server

    Geddes, Chris D

    2006-01-01

    Topics in Fluorescence Spectroscopy, Glucose Sensing is the eleventh volume in the popular series Topics in Fluorescence Spectroscopy, edited by Drs. Chris D. Geddes and Joseph R. Lakowicz. This volume incorporates authoritative analytical fluorescence-based glucose sensing reviews specialized enough to be attractive to professional researchers, yet also appealing to the wider audience of scientists in related disciplines of fluorescence. Glucose Sensing is an essential reference for any lab working in the analytical fluorescence glucose sensing field. All academics, bench scientists, and industry professionals wishing to take advantage of the latest and greatest in the continuously emerging field of glucose sensing, and diabetes care & management, will find this volume an invaluable resource. Topics in Fluorescence Spectroscopy Volume 11, Glucose Sensing Chapters include: Implantable Sensors for Interstitial Fluid Smart Tattoo Glucose Sensors Optical Enzyme-based Glucose Biosensors Plasmonic Glucose Sens...

  12. High sensitivity C-reactive protein and its relationship with impaired glucose regulation in lean patients with polycystic ovary syndrome.

    Science.gov (United States)

    Kim, Ji Won; Han, Ji Eun; Kim, You Shin; Won, Hyung Jae; Yoon, Tae Ki; Lee, Woo Sik

    2012-04-01

    The polycystic ovary syndrome (PCOS) is the most common endocrine-metabolic disorder, also associated with the metabolic syndrome. Serum high sensitivity C-reactive protein (hs-CRP), a marker of low-grade chronic inflammation is a potent predictor of cardiovascular events, closely linked to metabolic syndrome features and higher in patients with PCOS. However, hs-CRP in lean patients with PCOS has not been fully evaluated and few data are available. We aimed to investigate the relation between glucose intolerance and hs-CRP levels in lean patients with PCOS, and to evaluate the possible relationship between hs-CRP and PCOS by evaluating PCOS-related metabolic abnormalities in Korean women. We consecutively recruited 115 lean (BMI PCOS and 103 lean healthy controls. The PCOS group was divided two groups: impaired glucose regulation (IGR) and normal glucose tolerance group (NGT). In lean patients with PCOS, hs-CRP level was higher in the IGR group than in the NGT group (0.60 ± 1.37 versus 0.18 ± 0.46, p(Bonf) = 0.023) and other metabolic risk factors were also higher in the IGR group than in the NGT group. And there were close relationships between hs-CRP level and metabolic risk factor, such as 2 h postprandial insulin level in the lean patients with PCOS.

  13. Direct electrodeposition of highly ordered gold nanotube arrays for use in non-enzymatic amperometric sensing of glucose

    International Nuclear Information System (INIS)

    Tian, Taolei; Dong, Junping; Xu, Jiaqiang

    2016-01-01

    The authors describe vertically aligned gold nanotube arrays (Au-NTAs) and gold nanowire arrays (Au-NWAs) that were directly grown in alumina oxide templates by galvanostatic deposition. The morphology of the gold arrays can be controlled by adjusting the pH value of the plating bath. Scanning electron microscopy shows the nanoarrays to be highly ordered (with an average length of around 2 μm), and the opening width of the gold nanotube arrays to be uniform (with diameters of around 50 nm). The electrocatalytic activities of the Au-NTAs and Au-NWAs deposited on a glassy carbon electrode toward glucose oxidation were compared by cyclic voltammetry and amperometry at pH 7.2. The Au-NTAs yield higher amperometric currents. The respective glucose sensor, when operated at a working potential of 0.25 V (vs. SCE), exhibits a linear range that extends from 5 μM to 16.4 mM concentrations of glucose, a sensitivity of 44.2 μA mM"−"1 cm"−"2, and a detection limit of 2.1 μM (at an S/N ratio of 3). The excellent sensing performance is attributed to the large surface area and the fast electron transfer rate for the one-dimensional gold nanoarrays (author)

  14. TheClinical Research Tool: a high-performance microdialysis-based system for reliably measuring interstitial fluid glucose concentration.

    Science.gov (United States)

    Ocvirk, Gregor; Hajnsek, Martin; Gillen, Ralph; Guenther, Arnfried; Hochmuth, Gernot; Kamecke, Ulrike; Koelker, Karl-Heinz; Kraemer, Peter; Obermaier, Karin; Reinheimer, Cornelia; Jendrike, Nina; Freckmann, Guido

    2009-05-01

    A novel microdialysis-based continuous glucose monitoring system, the so-called Clinical Research Tool (CRT), is presented. The CRT was designed exclusively for investigational use to offer high analytical accuracy and reliability. The CRT was built to avoid signal artifacts due to catheter clogging, flow obstruction by air bubbles, and flow variation caused by inconstant pumping. For differentiation between physiological events and system artifacts, the sensor current, counter electrode and polarization voltage, battery voltage, sensor temperature, and flow rate are recorded at a rate of 1 Hz. In vitro characterization with buffered glucose solutions (c(glucose) = 0 - 26 x 10(-3) mol liter(-1)) over 120 h yielded a mean absolute relative error (MARE) of 2.9 +/- 0.9% and a recorded mean flow rate of 330 +/- 48 nl/min with periodic flow rate variation amounting to 24 +/- 7%. The first 120 h in vivo testing was conducted with five type 1 diabetes subjects wearing two systems each. A mean flow rate of 350 +/- 59 nl/min and a periodic variation of 22 +/- 6% were recorded. Utilizing 3 blood glucose measurements per day and a physical lag time of 1980 s, retrospective calibration of the 10 in vivo experiments yielded a MARE value of 12.4 +/- 5.7. Clarke error grid analysis resulted in 81.0%, 16.6%, 0.8%, 1.6%, and 0% in regions A, B, C, D, and E, respectively. The CRT demonstrates exceptional reliability of system operation and very good measurement performance. The ability to differentiate between artifacts and physiological effects suggests the use of the CRT as a reference tool in clinical investigations. 2009 Diabetes Technology Society.

  15. Assembly and Stacking of Flow-through Enzymatic Bioelectrodes for High Power Glucose Fuel Cells.

    Science.gov (United States)

    Abreu, Caroline; Nedellec, Yannig; Gross, Andrew J; Ondel, Olivier; Buret, Francois; Goff, Alan Le; Holzinger, Michael; Cosnier, Serge

    2017-07-19

    Bioelectrocatalytic carbon nanotube based pellets comprising redox enzymes were directly integrated in a newly conceived flow-through fuel cell. Porous electrodes and a separating cellulose membrane were housed in a glucose/oxygen biofuel cell design with inlets and outlets allowing the flow of electrolyte through the entire fuel cell. Different flow setups were tested and the optimized single cell setup, exploiting only 5 mmol L -1 glucose, showed an open circuit voltage (OCV) of 0.663 V and provided 1.03 ± 0.05 mW at 0.34 V. Furthermore, different charge/discharge cycles at 500 Ω and 3 kΩ were applied to optimize long-term stability leading to 3.6 J (1 mW h) of produced electrical energy after 48 h. Under continuous discharge at 6 kΩ, about 0.7 mW h could be produced after a 24 h period. The biofuel cell design further allows a convenient assembly of several glucose biofuel cells in reduced volumes and their connection in parallel or in series. The configuration of two biofuel cells connected in series showed an OCV of 1.35 V and provided 1.82 ± 0.09 mW at 0.675 V, and when connected in parallel, showed an OCV of 0.669 V and provided 1.75 ± 0.09 mW at 0.381 V. The presented design is conceived to stack an unlimited amount of biofuel cells to reach the necessary voltage and power for portable electronic devices without the need for step-up converters or energy managing systems.

  16. Highly sensitive colorimetric detection of glucose in a serum based on DNA-embeded Au@Ag core–shell nanoparticles

    International Nuclear Information System (INIS)

    Kang, Fei; Xu, Kun; Hou, Xiangshu

    2015-01-01

    Glucose is a key energy substance in diverse biology and closely related to the life activities of the organism. To develop a simple and sensitive method for glucose detection is extremely urgent but still remains a key challenge. Herein, we report a colorimetric glucose sensor in a homogeneous system based on DNA-embedded core–shell Au@Ag nanoparticles. In this assay, a glucose substrate was first catalytically oxidized by glucose oxidase to produce H 2 O 2 which would further oxidize and gradually etch the outer silver shell of Au@Ag nanoparticles. Afterwards, the solution color changed from yellow to red and the surface plasmon resonance (SPR) band of Au@Ag nanoparticles declined and red-shifted from 430 to 516 nm. Compared with previous silver-based glucose colorimetric detection strategies, the distinctive SPR band change is superior to the color variation, which is critical to the high sensitivity of this assay. Benefiting from the outstanding optical property, robust stability and well-dispersion of the core–shell Au@AgNPs hybrid, this colorimetric assay obtained a detection limit of glucose as low as 10 nM, which is at least a 10-fold improvement over other AgNPs-based procedures. Moreover, this optical biosensor was successfully employed to the determination of glucose in fetal bovine serum. (paper)

  17. Rare Sugar Syrup Containing d-Allulose but Not High-Fructose Corn Syrup Maintains Glucose Tolerance and Insulin Sensitivity Partly via Hepatic Glucokinase Translocation in Wistar Rats.

    Science.gov (United States)

    Shintani, Tomoya; Yamada, Takako; Hayashi, Noriko; Iida, Tetsuo; Nagata, Yasuo; Ozaki, Nobuaki; Toyoda, Yukiyasu

    2017-04-05

    Ingestion of high-fructose corn syrup (HFCS) is associated with the risk of both diabetes and obesity. Rare sugar syrup (RSS) has been developed by alkaline isomerization of HFCS and has anti-obesity and anti-diabetic effects. However, the influence of RSS on glucose metabolism has not been explored. We investigated whether long-term administration of RSS maintains glucose tolerance and whether the underlying mechanism involves hepatic glucokinase translocation. Wistar rats were administered water, RSS, or HFCS in drinking water for 10 weeks and then evaluated for glucose tolerance, insulin tolerance, liver glycogen content, and subcellular distribution of liver glucokinase. RSS significantly suppressed body weight gain and abdominal fat mass (p glucose tolerance test revealed significantly higher blood glucose levels in the HFCS group compared to the water group, whereas the RSS group had significantly lower blood glucose levels from 90 to 180 min (p water group (p glucose loading, the nuclear export of glucokinase was significantly increased in the RSS group compared to the water group. These results imply that RSS maintains glucose tolerance and insulin sensitivity, at least partly, by enhancing nuclear export of hepatic glucokinase.

  18. Development of a high-sensitivity and portable cell using Helmholtz resonance for noninvasive blood glucose-level measurement based on photoacoustic spectroscopy.

    Science.gov (United States)

    Tachibana, K; Okada, K; Kobayashi, R; Ishihara, Y

    2016-08-01

    We describe the possibility of high-sensitivity noninvasive blood glucose measurement based on photoacoustic spectroscopy (PAS). The demand for noninvasive blood glucose-level measurement has increased due to the explosive increase in diabetic patients. We have developed a noninvasive blood glucose-level measurement based on PAS. The conventional method uses a straight-type resonant cell. However, the cell volume is large, which results in a low detection sensitivity and difficult portability. In this paper, a small-sized Helmholtz-type resonant cell is proposed to improve detection sensitivity and portability by reducing the cell dead volume. First, the acoustic property of the small-sized Helmholtz-type resonant cell was evaluated by performing an experiment using a silicone rubber. As a result, the detection sensitivity of the small-sized Helmholtz-type resonant cell was approximately two times larger than that of the conventional straight-type resonant cell. In addition, the inside volume was approximately 30 times smaller. Second, the detection limits of glucose concentration were estimated by performing an experiment using glucose solutions. The experimental results showed that a glucose concentration of approximately 1% was detected by the small-sized Helmholtz-type resonant cell. Although these results on the sensitivity of blood glucose-level measurement are currently insufficient, they suggest that miniaturization of a resonance cell is effective in the application of noninvasive blood glucose-level measurement.

  19. Effect of lycium barbarum polysaccharides on high glucose-induced retinal ganglion cell apoptosis, gene expression and delayed rectifier potassium current

    Directory of Open Access Journals (Sweden)

    Xiao-Fei Ma

    2017-05-01

    Full Text Available Objective: To study the effect of lycium barbarum polysaccharides (LBP on high glucoseinduced retinal ganglion cell apoptosis, gene expression and delayed rectifier potassium current. Methods: RGC-5 retinal ganglion cell lines were cultured and divided into control group, high glucose group and LBP group that were treated with normal DMEM, highglucose DMEM as well as high-glucose DMEM containing 500 ng/mL LBP respectively. After treatment, the Annexin V-FITC/PI kits were used to measure the number of apoptotic cells, fluorescence quantitative PCR kits were used to determine the expression of apoptosis genes and antioxidant genes, and patch clamp was used to test delayed rectifier potassium current. Results: 12, 24, 36 and 48 h after intervention, the number of apoptotic cells of high glucose group was significantly higher than that of control group, and the number of apoptotic cells of LBP group was significantly lower than that of high glucose group (P<0.05; 24 and 48 h after intervention, c-fos, c-jun, caspase-3, caspase-9, Nrf-2, NQO1 and HO-1 mRNA expression as well as potassium current amplitude (IK and maximum conductance (Gmax of high glucose group were significantly higher than those of control group while half maximum activation voltage (V1/2 was significantly lower than that of control group (P<0.05; c-fos, c-jun, caspase-3 and caspase-9 mRNA expression as well as IK and Gmax of LBP group were significantly lower than those of high glucose group, while Nrf-2, NQO1 and HO-1 mRNA expression as well as V1/2 of LBP group were significantly higher than those of high glucose group (P<0.05. Conclusions: LBP can reduce the high glucose-induced retinal ganglion cell apoptosis and inhibit the delayed rectifier potassium current amplitude.

  20. Application of dynamic metabolomics to examine in vivo skeletal muscle glucose metabolism in the chronically high-fat fed mouse

    Energy Technology Data Exchange (ETDEWEB)

    Kowalski, Greg M., E-mail: greg.kowalski@deakin.edu.au [Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria 3125 (Australia); De Souza, David P. [Metabolomics Australia, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria 3010 (Australia); Burch, Micah L. [Brigham and Women' s Hospital, Department of Medicine, Boston, MA (United States); Hamley, Steven [Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria 3125 (Australia); Kloehn, Joachim [Metabolomics Australia, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria 3010 (Australia); Selathurai, Ahrathy [Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria 3125 (Australia); Tull, Dedreia; O' Callaghan, Sean; McConville, Malcolm J. [Metabolomics Australia, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria 3010 (Australia); Bruce, Clinton R. [Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria 3125 (Australia)

    2015-06-19

    Rationale: Defects in muscle glucose metabolism are linked to type 2 diabetes. Mechanistic studies examining these defects rely on the use of high fat-fed rodent models and typically involve the determination of muscle glucose uptake under insulin-stimulated conditions. While insightful, they do not necessarily reflect the physiology of the postprandial state. In addition, most studies do not examine aspects of glucose metabolism beyond the uptake process. Here we present an approach to study rodent muscle glucose and intermediary metabolism under the dynamic and physiologically relevant setting of the oral glucose tolerance test (OGTT). Methods and results: In vivo muscle glucose and intermediary metabolism was investigated following oral administration of [U-{sup 13}C] glucose. Quadriceps muscles were collected 15 and 60 min after glucose administration and metabolite flux profiling was determined by measuring {sup 13}C mass isotopomers in glycolytic and tricarboxylic acid (TCA) cycle intermediates via gas chromatography–mass spectrometry. While no dietary effects were noted in the glycolytic pathway, muscle from mice fed a high fat diet (HFD) exhibited a reduction in labelling in TCA intermediates. Interestingly, this appeared to be independent of alterations in flux through pyruvate dehydrogenase. In addition, our findings suggest that TCA cycle anaplerosis is negligible in muscle during an OGTT. Conclusions: Under the dynamic physiologically relevant conditions of the OGTT, skeletal muscle from HFD fed mice exhibits alterations in glucose metabolism at the level of the TCA cycle. - Highlights: • Dynamic metabolomics was used to investigate muscle glucose metabolism in vivo. • Mitochondrial TCA cycle metabolism is altered in muscle of HFD mice. • This defect was not pyruvate dehydrogenase mediated, as has been previously thought. • Mitochondrial TCA cycle anaplerosis in muscle is virtually absent during the OGTT.

  1. Application of dynamic metabolomics to examine in vivo skeletal muscle glucose metabolism in the chronically high-fat fed mouse

    International Nuclear Information System (INIS)

    Kowalski, Greg M.; De Souza, David P.; Burch, Micah L.; Hamley, Steven; Kloehn, Joachim; Selathurai, Ahrathy; Tull, Dedreia; O'Callaghan, Sean; McConville, Malcolm J.; Bruce, Clinton R.

    2015-01-01

    Rationale: Defects in muscle glucose metabolism are linked to type 2 diabetes. Mechanistic studies examining these defects rely on the use of high fat-fed rodent models and typically involve the determination of muscle glucose uptake under insulin-stimulated conditions. While insightful, they do not necessarily reflect the physiology of the postprandial state. In addition, most studies do not examine aspects of glucose metabolism beyond the uptake process. Here we present an approach to study rodent muscle glucose and intermediary metabolism under the dynamic and physiologically relevant setting of the oral glucose tolerance test (OGTT). Methods and results: In vivo muscle glucose and intermediary metabolism was investigated following oral administration of [U- 13 C] glucose. Quadriceps muscles were collected 15 and 60 min after glucose administration and metabolite flux profiling was determined by measuring 13 C mass isotopomers in glycolytic and tricarboxylic acid (TCA) cycle intermediates via gas chromatography–mass spectrometry. While no dietary effects were noted in the glycolytic pathway, muscle from mice fed a high fat diet (HFD) exhibited a reduction in labelling in TCA intermediates. Interestingly, this appeared to be independent of alterations in flux through pyruvate dehydrogenase. In addition, our findings suggest that TCA cycle anaplerosis is negligible in muscle during an OGTT. Conclusions: Under the dynamic physiologically relevant conditions of the OGTT, skeletal muscle from HFD fed mice exhibits alterations in glucose metabolism at the level of the TCA cycle. - Highlights: • Dynamic metabolomics was used to investigate muscle glucose metabolism in vivo. • Mitochondrial TCA cycle metabolism is altered in muscle of HFD mice. • This defect was not pyruvate dehydrogenase mediated, as has been previously thought. • Mitochondrial TCA cycle anaplerosis in muscle is virtually absent during the OGTT

  2. High glucose suppresses human islet insulin biosynthesis by inducing miR-133a leading to decreased polypyrimidine tract binding protein-expression.

    Directory of Open Access Journals (Sweden)

    Rikard G Fred

    Full Text Available BACKGROUND: Prolonged periods of high glucose exposure results in human islet dysfunction in vitro. The underlying mechanisms behind this effect of high glucose are, however, unknown. The polypyrimidine tract binding protein (PTB is required for stabilization of insulin mRNA and the PTB mRNA 3'-UTR contains binding sites for the microRNA molecules miR-133a, miR-124a and miR-146. The aim of this study was therefore to investigate whether high glucose increased the levels of these three miRNAs in association with lower PTB levels and lower insulin biosynthesis rates. METHODOLOGY/PRINCIPAL FINDINGS: Human islets were cultured for 24 hours in the presence of low (5.6 mM or high glucose (20 mM. Islets were also exposed to sodium palmitate or the proinflammatory cytokines IL-1beta and IFN-gamma, since saturated free fatty acids and cytokines also cause islet dysfunction. RNA was then isolated for real-time RT-PCR analysis of miR-133a, miR-124a, miR-146, insulin mRNA and PTB mRNA contents. Insulin biosynthesis rates were determined by radioactive labeling and immunoprecipitation. Synthetic miR-133a precursor and inhibitor were delivered to dispersed islet cells by lipofection, and PTB was analyzed by immunoblotting following culture at low or high glucose. Culture in high glucose resulted in increased islet contents of miR-133a and reduced contents of miR-146. Cytokines increased the contents of miR-146. The insulin and PTB mRNA contents were unaffected by high glucose. However, both PTB protein levels and insulin biosynthesis rates were decreased in response to high glucose. The miR-133a inhibitor prevented the high glucose-induced decrease in PTB and insulin biosynthesis, and the miR-133a precursor decreased PTB levels and insulin biosynthesis similarly to high glucose. CONCLUSION: Prolonged high-glucose exposure down-regulates PTB levels and insulin biosynthesis rates in human islets by increasing miR-133a levels. We propose that this mechanism

  3. Pain Sensitization Associated with Non-Response Following Physiotherapy in People with Knee Osteoarthritis.

    Science.gov (United States)

    O'Leary, Helen; Smart, Keith M; Moloney, Niamh A; Blake, Catherine; Doody, Catherine M

    2018-05-22

    In knee osteoarthritis (OA) pain sensitization has been linked to a more severe symptomatology, but the prognostic implications of pain sensitivity in people undergoing conservative treatment such as physiotherapy are not established. This study aimed to prospectively investigate the association between features of pain sensitization and clinical outcome (non-response) following guideline-based physiotherapy in people with knee OA. Participants (n=156) with moderate/severe knee OA were recruited from secondary care. All participants completed self-administered questionnaires and underwent quantitative sensory testing (QST) at baseline, thereby establishing subjective and objective measures of pain sensitization. Participants (n=134) were later classified following a physiotherapy intervention, using treatment responder criteria (responder/non-responder). QST data was reduced to a core set of latent variables using principal component analysis. A hierarchical logistic regression model was constructed to investigate if features related to pain sensitization predicted non-response after controlling for other known predictors of poor outcome in knee OA. Higher temporal summation (TS) (OR 2.00, 95% CI 1.23 to 3.27) and lower pressure pain thresholds (PPT) (OR 0.48, 95% CI 0.29 to 0.81) emerged as robust predictors of non-response following physiotherapy, along with a higher comorbidity score. The model demonstrated high sensitivity (87.8%) but modest specificity (52.3%). The independent relationship between pain sensitization and non-response may indicate an underlying explanatory association between neuroplastic changes in nociceptive processing and the maintenance of on-going pain and disability in knee OA pain. These preliminary results suggest interventions targeting pain sensitization may warrant future investigation in this population.

  4. High-content screening of Aspergillus niger with both increased production and high secretion rate of glucose oxidase.

    Science.gov (United States)

    Zhu, Xudong; Sun, Jingchun; Chu, Ju

    2018-01-01

    To develop a rapid, dual-parameter, plate-based screening process to improve production and secretion rate of glucose oxidase simultaneously in Aspergillus niger. A morphology engineering based on CaCO 3 was implemented, where the yield of GOD by A. niger was increased by up to 50%. Analysis of extracellular GOD activity was achieved in 96-well plates. There was a close negative correlation between the total GOD activity and its residual glucose of the fermentation broth. Based on this, a rapid, plate-based, qualitative analysis method of the total GOD activity was developed. Compared with the conventional analysis method using o-dianisidine, a correlation coefficient of -0.92 by statistical analysis was obtained. Using this dual-parameter screening method, we acquired a strain with GOD activity of 3126 U l -1 , which was 146% higher than the original strain. Its secretion rate of GOD was 83, 32% higher than the original strain.

  5. Lithium iron phosphate with high-rate capability synthesized through hydrothermal reaction in glucose solution

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Guangchuan; Wang, Li; Ou, Xiuqin; Zhao, Xia; Xu, Shengzhao [Institute of Power Source and Ecomaterials Science, Box 1055, Hebei University of Technology, 300130 Tianjin (China)

    2008-10-01

    Carbon-coated lithium iron phosphate (LiFePO{sub 4}/C) was hydrothermally synthesized from commercial LiOH, FeSO{sub 4} and H{sub 3}PO{sub 4} as raw materials and glucose as carbon precursor in aqueous solution at 180 C for 6 h followed by being fired at 750 C for 6 h. The samples were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and constant current charge-discharge cycling test. The results show that the synthesized powders are in situ coated with carbon precursor produced from glucose. At ambient temperature (25{+-}2 C), the specific discharge capacities are 154 mAh g{sup -1} at 0.2C and 136 mAh g{sup -1} at 5 C rate, and the cycling capacity retention rate reaches 98% over 90 cycles. The excellent electrochemical performance can be correlated with the in situ formation of carbon precursor/carbon, thus leading to the even distribution of carbon and the enhancement of conductibility of individual grains. (author)

  6. Maternal and post-weaning high-fat, high-sucrose diet modulates glucose homeostasis and hypothalamic POMC promoter methylation in mouse offspring.

    Science.gov (United States)

    Zheng, Jia; Xiao, Xinhua; Zhang, Qian; Yu, Miao; Xu, Jianping; Wang, Zhixin; Qi, Cuijuan; Wang, Tong

    2015-10-01

    Substantial evidence demonstrated that maternal dietary nutrients can significantly determine the susceptibility to developing metabolic disorders in the offspring. Therefore, we aimed to investigate the later-life effects of maternal and postweaning diets interaction on epigenetic modification of the central nervous system in the offspring. We examined the effects of dams fed a high-fat, high-sucrose (FS) diet during pregnancy and lactation and weaned to FS diet continuously until 32 weeks of age. Then, DNA methylation and gene expressions of hypothalamic proopiomelanocortin (POMC) and melanocortin receptor 4 (MC4R) were determined in the offspring. Offspring of FS diet had heavier body weight, impaired glucose tolerance, decreased insulin sensitivity and higher serum leptin level at 32-week age (p diet during gestation, lactation and into 32-week age (p diet offspring (p fat diet predisposes the offspring for obesity, glucose intolerance and insulin resistance in later life. Our findings can advance our thinking around the DNA methylation status of the promoter of the POMC and MC4R genes between long-term high-fat, high-sucrose diet and glucose homeostasis in mouse.

  7. Inhibitory effects and mechanism of 25-OH-PPD on glomerular mesangial cell proliferation induced by high glucose.

    Science.gov (United States)

    Yu, Junxian; Liu, Chunna; Li, Zhe; Zhang, Chao; Wang, Zheng; Liu, Xinyu

    2016-06-01

    To investigate the protective effects and potential mechanism of the compound 25-OH-PPD (PPD) on the glomerular mesangial cells (GMC) under high glucose condition. The hypertrophic GMC cells were established by DMEM containing glucose and randomly divided into five groups, including the normal control group (Control), the high glucose model group (HG, 25 mmolL(-1)), the PPD low dose group (1μmolL(-1), PPD-L), the PPD middle dose group (5μmolL(-1), PPD -M) and the PPD high dose group (10μmolL(-1), UCN-H). The GMC were incubated for 48h under different treatment factors. Total protein content was determined by Lowry method. The diameter of the single GMC and volume were measured by computer photograph analysis system. The GMC cell viability was analyzed by MTT assay. The level of malondialdehyde (MDA), the content of glutathione (GSH) and superoxide dismutase (SOD) activity were measured by ELISA. [Ca(2+)]і transient was measured by Till image system and by cell-loading Fura-2/AM. The expression of COX-1 and COX-2 were also determined using ELISA method. The viability of GMC and the total protein content were decreased in HG group, different dosage PPD group could increase these indexes (PPPD could reduce the MDA and enhance GSH and SOD (PPPD-L, PPD-M or PPD-H), the [Ca(2+)]і transient was reduced (PPPD groups. The protective effects of PPD on GMC from HG-induced hypertrophy may be associated with the inhibition of [Ca(2+)]і transient and decreasing expression of COX-1 via the oxidative-stress injure pathway. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Wheat bran with enriched gamma-aminobutyric acid attenuates glucose intolerance and hyperinsulinemia induced by a high-fat diet.

    Science.gov (United States)

    Shang, Wenting; Si, Xu; Zhou, Zhongkai; Strappe, Padraig; Blanchard, Chris

    2018-05-23

    In this study, the level of gamma-aminobutyric acid (GABA) in wheat bran was increased to be six times higher through the action of endogenous glutamate decarboxylase compared with untreated bran. The process of GABA formation in wheat bran also led to an increased level of phenolic compounds with enhanced antioxidant capacity 2 times higher than the untreated status. The interventional effect of a diet containing GABA-enriched bran on hyperinsulinemia induced by a high-fat diet (HFD) was investigated in a rat model. The results showed that, when compared with animals fed with HFD-containing untreated bran (NB group), the consumption of HFD-containing GABA-enriched bran (GB group) demonstrated a greater improvement of insulin resistance/sensitivity as revealed by the changes in the homeostatic model assessment for insulin resistance index (HOMA-IR) and the quantitative insulin sensitivity check index (QUICKI). The expression of hepatic genes, cytochrome P450 family 7 subfamily A member 1 (Cyp7a1) and ubiquitin C (Ubc), which are involved in the adipogenesis-associated PPAR signalling pathway, was found to be significantly down-regulated in the GB group compared with the HFD group (P = 0.0055). Meanwhile, changes in the expression of a number of genes associated with lipid metabolism and gluconeogenesis were also noted in the GB group versus the HFD group, but not in the NB group, indicating different regulatory patterns between the two brans in a high-fat diet. More importantly, the analysis of key genes related to glucose metabolism further revealed that the expression of insulin-induced gene 1/2 (Insig-1/2) was increased following GB intervention with a corresponding reduction in phosphoenolpyruvate carboxykinase 1 (Pepck) and glucose-6-phosphatase, catalytic subunit (G6pc) expression, suggesting that glucose homeostasis is greatly improved through the intervention of GABA-enriched bran in the context of a high-fat diet.

  9. Resveratrol prevents high glucose-induced epithelial-mesenchymal transition in renal tubular epithelial cells by inhibiting NADPH oxidase/ROS/ERK pathway.

    Science.gov (United States)

    He, Ting; Guan, Xu; Wang, Song; Xiao, Tangli; Yang, Ke; Xu, Xinli; Wang, Junping; Zhao, Jinghong

    2015-02-15

    Resveratrol (RSV) is reported to have renoprotective activity against diabetic nephropathy, while the mechanisms underlying its function have not been fully elucidated. In this study, we investigate the effect and related mechanism of RSV against high glucose-induced epithelial to mesenchymal transition (EMT) in human tubular epithelial cells (HK-2). A typical EMT is induced by high glucose in HK-2 cells, accompanied by increased levels of reactive oxygen species (ROS). RSV exhibits a strong ability to inhibit high glucose-induced EMT by decreasing intracellular ROS levels via down-regulation of NADPH oxidase subunits NOX1 and NOX4. The activation of extracellular signal-regulated kinase (ERK1/2) is found to be involved in high glucose-induced EMT in HK-2 cells. RSV, like NADPH oxidase inhibitor diphenyleneiodonium, can block ERK1/2 activation induced by high glucose. Our results demonstrate that RSV is a potent agent against high glucose-induced EMT in renal tubular cells via inhibition of NADPH oxidase/ROS/ERK1/2 pathway. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. Emodin attenuates high glucose-induced TGF-β1 and fibronectin expression in mesangial cells through inhibition of NF-κB pathway

    International Nuclear Information System (INIS)

    Yang, Jie; Zeng, Zhi; Wu, Teng; Yang, Zhicheng; Liu, Bing; Lan, Tian

    2013-01-01

    The activation of nuclear factor-κB (NF-κB) and the subsequent overexpression of its downstream targets transforming growth factor-β1 (TGF-β1) and fibronectin (FN) are among the hallmarks for the progressive diabetic nephropathy. Our previous studies demonstrated that emodin ameliorated renal injury and inhibited extracellular matrix accumulation in kidney and mesangial cells under diabetic condition. However, the molecular mechanism has not been fully elucidated. Here, we showed that emodin significantly attenuated high glucose-induced NF-κB nuclear translocation in mesangial cells. Interestingly, emodin also inhibited the DNA-binding activity and transcriptional activity of NF-κB. Furthermore, NF-κB-mediated TGF-β1 and FN expression was significantly decreased by emodin. These results demonstrated that emodin suppressed TGF-β1 and FN overexpression through inhibition of NF-κB activation, suggesting that emodin-mediated inhibition of the NF-κB pathway could protect against diabetic nephropathy. - Highlights: • Emodin decreased high glucose-induced p65 phosphorylation in MCs. • Emodin decreased high glucose-induced IκB-α degradation in MCs. • Emodin decreased high glucose-induced p65 translocation in MCs. • Emodin blocked high glucose-induced NF-κB activity. • Emodin blocked high glucose-induced the expression of TGF-β1 and FN

  11. High Glucose-Induced Oxidative Stress Mediates Apoptosis and Extracellular Matrix Metabolic Imbalances Possibly via p38 MAPK Activation in Rat Nucleus Pulposus Cells

    Directory of Open Access Journals (Sweden)

    Xiaofei Cheng

    2016-01-01

    Full Text Available Objectives. To investigate whether high glucose-induced oxidative stress is implicated in apoptosis of rat nucleus pulposus cells (NPCs and abnormal expression of critical genes involved in the metabolic balance of extracellular matrix (ECM. Methods. NPCs were cultured with various concentrations of glucose to detect cell viability and apoptosis. Cells cultured with high glucose (25 mM were untreated or pretreated with N-acetylcysteine or a p38 MAPK inhibitor SB 202190. Reactive oxygen species (ROS production was evaluated. Activation of p38 MAPK was measured by Western blot. The expression of ECM metabolism-related genes, including type II collagen, aggrecan, SRY-related high-mobility-group box 9 (Sox-9, matrix metalloproteinase 3 (MMP-3, and tissue inhibitor of metalloproteinase 1 (TIMP-1, was analyzed by semiquantitative RT-PCR. Results. High glucose reduced viability of NPCs and induced apoptosis. High glucose resulted in increased ROS generation and p38 MAPK activation. In addition, it negatively regulated the expression of type II collagen, aggrecan, Sox-9, and TIMP-1 and positively regulated MMP-3 expression. These results were changed by pretreatment with N-acetylcysteine or SB 202190. Conclusions. High glucose might promote apoptosis of NPCs, trigger ECM catabolic pathways, and inhibit its anabolic activities, possibly through a p38 MAPK-dependent oxidative stress mechanism.

  12. Effect of High-Dose Vitamin C Infusion in a Glucose-6-Phosphate Dehydrogenase-Deficient Patient

    Science.gov (United States)

    Gerber, Bryan; Kenyon, Katharine; Muthukanagaraj, Purushothaman

    2017-01-01

    Vitamin C supplementation is generally regarded as benign. There has been a resurgence of interest in the general medical community regarding the use of vitamin C most notably in the care of sepsis. Nonetheless, caution must be taken if supraphysiologic vitamin C supplementation is being administered as it should be considered a medication just like any other. We present a case of hemolysis in a glucose-6-phosphate dehydrogenase- (G6PD-) deficient patient receiving high-dose vitamin C infusions for his rheumatoid arthritis. PMID:29317868

  13. Monomeric adiponectin increases cell viability in porcine aortic endothelial cells cultured in normal and high glucose conditions: Data on kinases activation

    Directory of Open Access Journals (Sweden)

    Elena Grossini

    2016-09-01

    Full Text Available We found that monomeric adiponectin was able to increase cell viability in porcine aortic endothelial cells (PAE cultured both in normal and high glucose condition. Moreover, in normal glucose condition monomeric adiponectin increased p38MAPK, Akt, ERK1/2 and eNOS phosphorylation in a dose- and time-dependent way. Also in high glucose condition monomeric adiponectin increased eNOS and above kinases phosphorylation with similar patterns but at lower extent. For interpretation of the data presented in this article, please see the research article “Monomeric adiponectin modulates nitric oxide release and calcium movements in porcine aortic endothelial cells in normal/high glucose conditions” (Grossini et al., in press [1].

  14. A high performance non-enzymatic glucose sensor based on nickel hydroxide modified nitrogen-incorporated nanodiamonds.

    Science.gov (United States)

    Ko, Chih-Yu; Huang, Jin-Hua; Raina, Supil; Kang, Weng P

    2013-06-07

    A highly selective, sensitive, and stable non-enzymatic glucose sensor based on Ni hydroxide modified nitrogen-incorporated nanodiamonds (Ni(OH)2-NND) was developed. The sensor was fabricated by e-beam evaporation of a thin Ni film on NND followed by the growth of Ni(OH)2 using an electrochemical process. It was found that the Ni film thickness greatly affects the morphology and electro-catalytic activity of the as-synthesized electrode for non-enzymatic glucose oxidation. Owing to its nanostructure characteristics, the best sensor fabricated by 150 nm Ni deposition showed two wide response ranges, namely, 0.02-1 mM and 1-9 mM, with sensitivities of 3.20 and 1.41 mA mM(-1) cm(-2), respectively, and a detection limit of 1.2 μM (S/N = 3). The sensor also showed good long-term stability as well as high selectivity in the presence of interferences such as ascorbic acid, acetaminophen, and uric acid. This finding reveals the possibility of exploiting the NND as an electrochemical biosensor platform where high performance addressable sensor arrays could be built.

  15. Phosphorylcholine functionalized dendrimers for the formation of highly stable and reactive gold nanoparticles and their glucose conjugation for biosensing

    International Nuclear Information System (INIS)

    Jia Lan; Lv Liping; Xu Jianping; Ji Jian

    2011-01-01

    Phosphorylcholine (PC)-functionalized poly(amido amine) (PAMAM) dendrimers were prepared and used as both reducing and stabilizing agents for synthesis of highly stable and reactive gold nanoparticles (Au NPs). Biomimetic PC-functionalized PAMAM dendrimers-stabilized gold nanoparticles (Au DSNPs) were formed by simply mixing the PC modified amine-terminated fifth-generation PAMAM dendrimers (G5-PC) with AuCl 4 − ions by controlling the pH, no additional reducing agents or other stabilizers were needed. The obtained Au DSNPs were shown to be spherical, with particle diameters ranging from 5 to 12 nm, the sizes and growth kinetics of Au DSNPs could be tuned by changing the pH and the initial molar ratio of dendrimers to gold as indicated by transmission electron microscopy (TEM) and UV–Vis data. The prepared Au DSNPs showed excellent stability including: (1) stable at wide pH (7–13) values; (2) stable at high salt concentrations up to 2 M NaCl; (3) non-specific protein adsorption resistance. More importantly, surface functionalization could be performed by introducing desired functional groups onto the remained reactive amine groups. This was exemplified by the glucose conjugation. The glucose conjugated Au DSNPs showed bio-specific interaction with Concanavalin A (Con A), which induced aggregation of the Au NPs. Colorimetric detection of Con A based on the plasmon resonance of the glucose conjugated Au DSNPs was realized. A limit of detection (LOD) for Con A was 0.6 μM, based on a signal-to-noise ratio (S/N) of 3. These findings demonstrated that the PC modified Au DSNPs could potentially serve as a versatile nano-platform for the biomedical applications.

  16. Annexin A1 N-terminal derived peptide Ac2-26 stimulates fibroblast migration in high glucose conditions.

    Directory of Open Access Journals (Sweden)

    Valentina Bizzarro

    Full Text Available Deficient wound healing in diabetic patients is very frequent, but the cellular and molecular causes are poorly defined. In this study, we have evaluated whether Annexin A1 derived peptide Ac2-26 stimulates fibroblast migration in high glucose conditions. Using normal human skin fibroblasts WS1 in low glucose (LG or high glucose (HG we observed the enrichment of Annexin A1 protein at cell movement structures like lamellipodial extrusions and interestingly, a significant decrease in levels of the protein in HG conditions. The analysis of the translocation of Annexin A1 to cell membrane showed lower levels of Annexin A1 in both membrane pool and supernatants of WS1 cells treated with HG. Wound-healing assays using cell line transfected with Annexin A1 siRNAs indicated a slowing down in migration speed of cells suggesting that Annexin A1 has a role in the migration of WS1 cells. In order to analyze the role of extracellular Annexin A1 in cell migration, we have performed wound-healing assays using Ac2-26 showing that peptide was able to increase fibroblast cell migration in HG conditions. Experiments on the mobilization of intracellular calcium and analysis of p-ERK expression confirmed the activity of the FPR1 following stimulation with the peptide Ac2-26. A wound-healing assay on WS1 cells in the presence of the FPR agonist fMLP, of the FPR antagonist CsH and in the presence of Ac2-26 indicated that Annexin A1 influences fibroblast cell migration under HG conditions acting through FPR receptors whose expression was slightly increased in HG. In conclusion, these data demonstrate that (i Annexin A1 is involved in migration of WS1 cells, through interaction with FPRs; (ii N- terminal peptide of Annexin A1 Ac2-26 is able to stimulate direct migration of WS1 cells in high glucose treatment possibly due to the increased receptor expression observed in hyperglycemia conditions.

  17. Long-term high-physiological-dose growth hormone reduces intra-abdominal fat in HIV-infected patients with a neutral effect on glucose metabolism

    DEFF Research Database (Denmark)

    Hansen, B R; Haugaard, S B; Jensen, Frank Krieger

    2010-01-01

    , glucose tolerance, and total plasma cholesterol and triglycerides did not significantly change during intervention. CONCLUSIONS: Daily 0.7 mg rhGH treatment for 40 weeks reduced abdominal visceral fat and trunk fat mass in HIV-infected patients. This treatment appeared to be safe with respect to glucose......OBJECTIVES: The aim of the study was to investigate the effect of long-term high-physiological-dose recombinant human growth hormone (rhGH) therapy on fat distribution and glucose metabolism in HIV-infected patients. METHODS: Forty-six HIV-infected Caucasian men on highly active antiretroviral...... between 1 and 3 pm for 40 weeks. Endpoints included changes in visceral adipose tissue (VAT), subcutaneous adipose tissue (SAT), limb fat mass, percentage of limb fat, plasma lipids, insulin resistance and glucose tolerance. RESULTS: VAT and trunk fat mass decreased significantly in the GH group compared...

  18. High d(+)-fructose diet adversely affects testicular weight gain in weaning rats─protection by moderate d(+)-glucose diet.

    Science.gov (United States)

    Shibata, Katsumi; Fukuwatari, Tsutomu

    2013-01-01

    The use of high D(+)-fructose corn syrup has increased over the past several decades in the developed countries, while overweight and obesity rates and the related diseases have risen dramatically. However, we found that feeding a high D(+)-fructose diet (80% D(+)-fructose as part of the diet) to weaning rats for 21 days led to reduced food intake (50% less, P fructose diet. We also challenged a minimum requirement of dietary D(+)-glucose for preventing the adverse effects of D(+)-fructose, such as lower food intake and reduction of body weight and testicular weight; the minimum requirement of D(+)-glucose was ≈23% of the diet. This glucose amount may be the minimum requirement of exogenous glucose for reducing weight gain.

  19. Indomethacin treatment prevents high fat diet-induced obesity and insulin resistance but not glucose intolerance in C57BL/6J Mice

    DEFF Research Database (Denmark)

    Fjære, Even; Aune, Ulrike Liisberg; Røen, Kristin

    2014-01-01

    Chronic low grade inflammation is closely linked to obesity-associated insulin resistance. To examine how administration of the anti-inflammatory compound indomethacin, a general cyclooxygenase inhibitor, affected obesity development and insulin sensitivity, we fed obesity-prone male C57BL/6J mice...... a high fat/high sucrose (HF/HS) diet or a regular diet supplemented or not with indomethacin (±INDO) for 7 weeks. Development of obesity, insulin resistance, and glucose intolerance was monitored, and the effect of indomethacin on glucose-stimulated insulin secretion (GSIS) was measured in vivo...... and in vitro using MIN6 β-cells. We found that supplementation with indomethacin prevented HF/HS-induced obesity and diet-induced changes in systemic insulin sensitivity. Thus, HF/HS+INDO-fed mice remained insulin-sensitive. However, mice fed HF/HS+INDO exhibited pronounced glucose intolerance. Hepatic glucose...

  20. Sustained high plasma mannose less sensitive to fluctuating blood glucose in glycogen storage disease type Ia children

    NARCIS (Netherlands)

    Nagasaka, Hironori; Yorifuji, Tohru; Bandsma, Robert H. J.; Takatani, Tomozumi; Asano, Hisaki; Mochizuki, Hiroshi; Takuwa, Mayuko; Tsukahara, Hirokazu; Inui, Ayano; Tsunoda, Tomoyuki; Komatsu, Haruki; Hiejima, Eitaro; Fujisawa, Tomoo; Hirano, Ken-ichi; Miida, Takashi; Ohtake, Akira; Taguchi, Tadao; Miwa, Ichitomo

    Plasma mannose is suggested to be largely generated from liver glycogen-oriented glucose-6-phosphate. This study examined plasma mannose in glycogen storage disease type Ia (GSD Ia) lacking conversion of glucose-6-phosphate to glucose in the liver. We initially examined fasting-and postprandial 2

  1. Synthesis of highly dispersed Pt nanoclusters anchored graphene composites and their application for non-enzymatic glucose sensing

    International Nuclear Information System (INIS)

    Chang, Gang; Shu, Honghui; Huang, Qiwei; Oyama, Munetaka; Ji, Kai; Liu, Xiong; He, Yunbin

    2015-01-01

    Highlights: • PtNCs/graphene (PVP) composites were obtained by a clean and facile method. • The addition of graphene effectively promotes the catalytic performance of composites. • The highly dispersed PtNCs show superior electrocatalytic activity to glucose oxidation. • PtNCs/graphene (PVP) composites exhibit excellent stability and selectivity for nonenzymatic glucose detection. - Abstract: A facile and clean method by using ascorbic acid as mild reductant was developed to synthesize nanocomposites of graphene and platinum nanoclusters (PtNCs/graphene), in which Polyvinyl-Pyrrolidone (PVP) was added during the one-step reductive process so as to improve the dispersity of PtNCs on the graphene and decrease the size of PtNCs. By several characterization methods such as X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS), we demonstrated that Pt nanoclusters have successfully anchored on the surface of graphene sheets with average diameter of 22 nm. It was found that with the assistant of PVP, Pt nanoclusters appeared with smaller particle size and narrower particle size distribution. Cyclic voltammetry and amperometric methods were used to evaluate the electro-catalytic activity of the synthesized nanocomposites toward the oxidation of glucose in neutral media (0.1 M PBS, pH 7.4). The PtNCs/graphene exhibited a rapid response time (about 3 s), a broad linear range (1 mM to 25 mM), good stability, and sensitivity estimated to be 1.21 μA cm −2 mM −1 (R = 0.995, 71.9 μA cm −2 mM −1 vs. geometric area). Additionally, the impact from the oxidation of interferences can be effectively limited by choosing the appropriate detection potential. These results indicated a great potential of PtNCs/graphene in fabricating novel non-enzymatic glucose sensors with high performance

  2. Nocturnal continuous glucose monitoring

    DEFF Research Database (Denmark)

    Bay, Christiane; Kristensen, Peter Lommer; Pedersen-Bjergaard, Ulrik

    2013-01-01

    Abstract Background: A reliable method to detect biochemical nocturnal hypoglycemia is highly needed, especially in patients with recurrent severe hypoglycemia. We evaluated reliability of nocturnal continuous glucose monitoring (CGM) in patients with type 1 diabetes at high risk of severe...

  3. Maternal High Folic Acid Supplement Promotes Glucose Intolerance and Insulin Resistance in Male Mouse Offspring Fed a High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Yifan Huang

    2014-04-01

    Full Text Available Maternal nutrition may influence metabolic profiles in offspring. We aimed to investigate the effect of maternal folic acid supplement on glucose metabolism in mouse offspring fed a high-fat diet (HFD. Sixty C57BL/6 female mice were randomly assigned into three dietary groups and fed the AIN-93G diet containing 2 (control, 5 (recommended folic acid supplement, RFolS or 40 (high folic acid supplement, HFolS mg folic acid/kg of diet. All male offspring were fed HFD for eight weeks. Physiological, biochemical and genetic variables were measured. Before HFD feeding, developmental variables and metabolic profiles were comparable among each offspring group. However, after eight weeks of HFD feeding, the offspring of HFolS dams (Off-HFolS were more vulnerable to suffer from obesity (p = 0.009, glucose intolerance (p < 0.001 and insulin resistance (p < 0.001, compared with the controls. Off-HFolS had reduced serum adiponectin concentration, accompanied with decreased adiponectin mRNA level but increased global DNA methylation level in white adipose tissue. In conclusion, our results suggest maternal HFolS exacerbates the detrimental effect of HFD on glucose intolerance and insulin resistance in male offspring, implying that HFolS during pregnancy should be adopted cautiously in the general population of pregnant women to avoid potential deleterious effect on the metabolic diseases in their offspring.

  4. Brazilin Ameliorates High Glucose-Induced Vascular Inflammation via Inhibiting ROS and CAMs Production in Human Umbilical Vein Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Thanasekaran Jayakumar

    2014-01-01

    Full Text Available Vascular inflammatory process has been suggested to play a key role in the initiation and progression of atherosclerosis, a major complication of diabetes mellitus. Recent studies have shown that brazilin exhibits antihepatotoxic, antiplatelet, cancer preventive, or anti-inflammatory properties. Thus, we investigated whether brazilin suppresses vascular inflammatory process induced by high glucose (HG in cultured human umbilical vein endothelial cells (HUVEC. HG induced nitrite production, lipid peroxidation, and intracellular reactive oxygen species formation in HUVEC cells, which was reversed by brazilin. Western blot analysis revealed that brazilin markedly inhibited HG-induced phosphorylation of endothelial nitric oxide synthase. Besides, we investigated the effects of brazilin on the MAPK signal transduction pathway because MAPK families are associated with vascular inflammation under stress. Brazilin blocked HG-induced phosphorylation of extracellular signal-regulated kinase and transcription factor NF-κB. Furthermore, brazilin concentration-dependently attenuated cell adhesion molecules (ICAM-1 and VCAM-1 expression induced by various concentrations of HG in HUVEC. Taken together, the present data suggested that brazilin could suppress high glucose-induced vascular inflammatory process, which may be closely related with the inhibition of oxidative stress, CAMs expression, and NF-κB activation in HUVEC. Our findings may highlight a new therapeutic intervention for the prevention of vascular diseases.

  5. Attenuation of oxidative stress and inflammation by gravinol in high glucose-exposed renal tubular epithelial cells

    International Nuclear Information System (INIS)

    Kim, You Jung; Kim, Young Ae; Yokozawa, Takako

    2010-01-01

    Gravinol, a proanthocyanidin from grape seeds, has polyphenolic properties with powerful anti-oxidative effects. Although, increasing evidence strongly suggests that polyphenolic antioxidants suppress diabetic nephropathy that is causally associated with oxidative stress and inflammation, gravinol's protective action against diabetic nephropathy has not been fully explored to date. In the current study, we investigated the protective action of gravinol against oxidative stress and inflammation using the experimental diabetic nephropathy cell model, high glucose-exposed renal tubular epithelial cells. To elucidate the underlying actions of gravinol, several oxidative and inflammatory markers were estimated. Included are measurements of lipid peroxidation, total reactive species (RS), superoxide (·O 2 ), nitric oxide (NO·), and peroxynitrite (ONOO - ), as well as nuclear factor-kappa B (NF-κB) nuclear translocation. Results indicate that gravinol had a potent inhibitory action against lipid peroxidation, total RS, ·O 2 , NO·, ONOO - , the reduced glutathione (GSH)/oxidized glutathione (GSSG) ratio and more importantly, against NF-κB nuclear translocation. We propose that gravinol's strong protective effect against high glucose-induced renal tubular epithelial cell damage attenuates diabetic nephropathy by suppressing oxidative stress and inflammation.

  6. Glucose hypometabolism is highly localized, but lower cortical thickness and brain atrophy are widespread in cognitively normal older adults.

    Science.gov (United States)

    Nugent, Scott; Castellano, Christian-Alexandre; Goffaux, Philippe; Whittingstall, Kevin; Lepage, Martin; Paquet, Nancy; Bocti, Christian; Fulop, Tamas; Cunnane, Stephen C

    2014-06-01

    Several studies have suggested that glucose hypometabolism may be present in specific brain regions in cognitively normal older adults and could contribute to the risk of subsequent cognitive decline. However, certain methodological shortcomings, including a lack of partial volume effect (PVE) correction or insufficient cognitive testing, confound the interpretation of most studies on this topic. We combined [(18)F]fluorodeoxyglucose ([(18)F]FDG) positron emission tomography (PET) and magnetic resonance (MR) imaging to quantify cerebral metabolic rate of glucose (CMRg) as well as cortical volume and thickness in 43 anatomically defined brain regions from a group of cognitively normal younger (25 ± 3 yr old; n = 25) and older adults (71 ± 9 yr old; n = 31). After correcting for PVE, we observed 11-17% lower CMRg in three specific brain regions of the older group: the superior frontal cortex, the caudal middle frontal cortex, and the caudate (P ≤ 0.01 false discovery rate-corrected). In the older group, cortical volumes and cortical thickness were 13-33 and 7-18% lower, respectively, in multiple brain regions (P ≤ 0.01 FDR correction). There were no differences in CMRg between individuals who were or were not prescribed antihypertensive medication. There were no significant correlations between CMRg and cognitive performance or metabolic parameters measured in fasting plasma. We conclude that highly localized glucose hypometabolism and widespread cortical thinning and atrophy can be present in older adults who are cognitively normal, as assessed using age-normed neuropsychological testing measures. Copyright © 2014 the American Physiological Society.

  7. Central inhibition of IKKβ/NF-κB signaling attenuates high-fat diet-induced obesity and glucose intolerance.

    Science.gov (United States)

    Benzler, Jonas; Ganjam, Goutham K; Pretz, Dominik; Oelkrug, Rebecca; Koch, Christiane E; Legler, Karen; Stöhr, Sigrid; Culmsee, Carsten; Williams, Lynda M; Tups, Alexander

    2015-06-01

    Metabolic inflammation in the central nervous system might be causative for the development of overnutrition-induced metabolic syndrome and related disorders, such as obesity, leptin and insulin resistance, and type 2 diabetes. Here we investigated whether nutritive and genetic inhibition of the central IκB kinase β (IKKβ)/nuclear factor-κB (NF-κB) pathway in diet-induced obese (DIO) and leptin-deficient mice improves these metabolic impairments. A known prominent inhibitor of IKKβ/NF-κB signaling is the dietary flavonoid butein. We initially determined that oral, intraperitoneal, and intracerebroventricular administration of this flavonoid improved glucose tolerance and hypothalamic insulin signaling. The dose-dependent glucose-lowering capacity was profound regardless of whether obesity was caused by leptin deficiency or high-fat diet (HFD). To confirm the apparent central role of IKKβ/NF-κB signaling in the control of glucose and energy homeostasis, we genetically inhibited this pathway in neurons of the arcuate nucleus, one key center for control of energy homeostasis, via specific adeno-associated virus serotype 2-mediated overexpression of IκBα, which inhibits NF-κB nuclear translocation. This treatment attenuated HFD-induced body weight gain, body fat mass accumulation, increased energy expenditure, and reduced arcuate suppressor of cytokine signaling 3 expression, indicative for enhanced leptin signaling. These results reinforce a specific role of central proinflammatory IKKβ/NF-κB signaling in the development and potential treatment of DIO-induced comorbidities. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  8. Age and body weight effects on glucose and insulin tolerance in colony cats maintained since weaning on high dietary carbohydrate.

    Science.gov (United States)

    Backus, R C; Cave, N J; Ganjam, V K; Turner, J B M; Biourge, V C

    2010-12-01

    High dietary carbohydrate is suggested to promote development of diabetes mellitus in cats. Glucose tolerance, insulin sensitivity, and insulin secretion were assessed in young [0.8-2.3 (median = 1.1) years, n = 13] and mature [4.0-7.0 (median 5.8) years, n = 12] sexually intact females of a large (n ≅ 700) feline colony in which only dry-type diets (35% metabolizable energy as carbohydrate) were fed from weaning. Insulin sensitivity was assessed from the 'late-phase' (60-120 min) plasma insulin response of intravenous glucose tolerance tests (IVGTTs) and from fractional change in glycaemia from baseline 15 min after an insulin bolus (0.1 U/kg, i.v.). Insulin secretion was assessed from the 'early-phase' (0-15 min) plasma insulin response of IVGTTs. Compared to the young cats, the mature cats had greater body weights [2.3-3.8 (median = 2.9) vs. 3.0-6.3 (median = 4.0) kg, p < 0.01], greater late-phase insulin responses (p < 0.05), lower insulin-induced glycaemic changes (p = 0.06), lower early-phase insulin responses (p < 0.05), and non-significantly different rates of glucose disposal. The late-phase insulin response was correlated with body weight and age (p < 0.05). When group assignments were balanced for body weight, the age-group differences and correlations became non-significant. The findings indicate that body weight gain is more likely than dry-type diets to induce the pre-diabetic conditions of insulin resistance and secretion dysfunction. © 2010 The Authors. Journal of Animal Physiology and Animal Nutrition © 2010 Blackwell Verlag GmbH.

  9. Effects of Providing High-Fat versus High-Carbohydrate Meals on Daily and Postprandial Physical Activity and Glucose Patterns: a Randomised Controlled Trial

    Directory of Open Access Journals (Sweden)

    Evelyn B. Parr

    2018-04-01

    Full Text Available We determined the effects of altering meal timing and diet composition on temporal glucose homeostasis and physical activity measures. Eight sedentary, overweight/obese men (mean ± SD, age: 36 ± 4 years; BMI: 29.8 ± 1.8 kg/m2 completed two × 12-day (12-d measurement periods, including a 7-d habitual period, and then 5 d of each diet (high-fat diet [HFD]: 67:15:18% fat:carbohydrate:protein versus high-carbohydrate diet [HCD]: 67:15:18% carbohydrate:fat:protein of three meals/d at ±30 min of 0800 h, 1230 h, and 1800 h, in a randomised order with an 8-d washout. Energy intake (EI, the timing of meal consumption, blood glucose regulation (continuous glucose monitor system (CGMS, and activity patterns (accelerometer and inclinometer were assessed across each 12-d period. Meal provision did not alter the patterns of reduced physical activity, and increased sedentary behaviour following dinner, compared with following breakfast and lunch. The HCD increased peak (+1.6 mmol/L, p < 0.001, mean (+0.5 mmol/L, p = 0.001, and total area under the curve (+670 mmol/L/min, p = 0.001, as well as 3-h postprandial meal glucose concentrations (all p < 0.001 compared with the HFD. In overweight/obese males, the provision of meals did not alter physical activity patterns, but did affect glycaemic control. Greater emphasis on meal timing and composition is required in diet and/or behaviour intervention studies to ensure relevance to real-world behaviours.

  10. Tofogliflozin, a potent and highly specific sodium/glucose cotransporter 2 inhibitor, improves glycemic control in diabetic rats and mice.

    Science.gov (United States)

    Suzuki, Masayuki; Honda, Kiyofumi; Fukazawa, Masanori; Ozawa, Kazuharu; Hagita, Hitoshi; Kawai, Takahiro; Takeda, Minako; Yata, Tatsuo; Kawai, Mio; Fukuzawa, Taku; Kobayashi, Takamitsu; Sato, Tsutomu; Kawabe, Yoshiki; Ikeda, Sachiya

    2012-06-01

    Sodium/glucose cotransporter 2 (SGLT2) is the predominant mediator of renal glucose reabsorption and is an emerging molecular target for the treatment of diabetes. We identified a novel potent and selective SGLT2 inhibitor, tofogliflozin (CSG452), and examined its efficacy and pharmacological properties as an antidiabetic drug. Tofogliflozin competitively inhibited SGLT2 in cells overexpressing SGLT2, and K(i) values for human, rat, and mouse SGLT2 inhibition were 2.9, 14.9, and 6.4 nM, respectively. The selectivity of tofogliflozin toward human SGLT2 versus human SGLT1, SGLT6, and sodium/myo-inositol transporter 1 was the highest among the tested SGLT2 inhibitors under clinical development. Furthermore, no interaction with tofogliflozin was observed in any of a battery of tests examining glucose-related physiological processes, such as glucose uptake, glucose oxidation, glycogen synthesis, hepatic glucose production, glucose-stimulated insulin secretion, and glucosidase reactions. A single oral gavage of tofogliflozin increased renal glucose clearance and lowered the blood glucose level in Zucker diabetic fatty rats. Tofogliflozin also improved postprandial glucose excursion in a meal tolerance test with GK rats. In db/db mice, 4-week tofogliflozin treatment reduced glycated hemoglobin and improved glucose tolerance in the oral glucose tolerance test 4 days after the final administration. No blood glucose reduction was observed in normoglycemic SD rats treated with tofogliflozin. These findings demonstrate that tofogliflozin inhibits SGLT2 in a specific manner, lowers blood glucose levels by increasing renal glucose clearance, and improves pathological conditions of type 2 diabetes with a low hypoglycemic potential.

  11. Protective Effects of Hesperidin (Citrus Flavonone on High Glucose Induced Oxidative Stress and Apoptosis in a Cellular Model for Diabetic Retinopathy

    Directory of Open Access Journals (Sweden)

    Wayne Young Liu

    2017-12-01

    Full Text Available The aim of this study was to investigate the protective effects and mechanisms of hesperidin, a plant based active flavanone found in citrus fruits, under the oxidative stress and apoptosis induced by high levels of glucose in retinal ganglial cells (RGCs. RGC-5 cells were pretreated with hesperidin (12.5, 25, or 50 μmol/L for 6 h followed by exposure to high (33.3 mmol/L d-glucose for 48 h. The 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay was adopted to evaluate cell viability. Mitochondrial function was estimated by measuring the mitochondrial membrane potential (ΔΨm. A fluorescent probe was employed to evaluate the intercellular production of reactive oxygen species (ROS. Colorimetric assay kits were used to evaluate lipid peroxidation, antioxidant enzyme activities, and protein carbonyls formation. The expression of apoptosis-related proteins and mitogen-activated protein kinase (MAPK were measured with Western blotting. Hesperidin inhibited high glucose-mediated cell loss and restored mitochondrial function including a reversion of ΔΨm loss and cytochrome c release. Treated with hesperidin, high glucose-induced increase in ROS, malondialdehyde, and protein carbonyl levels were blocked in RGC-5 cells. Hesperidin was found to elevate the activities of superoxide dismutase, catalase, glutathione peroxidase, and to recover glutathione levels. Hesperidin inhibited high glucose-induced cell apoptosis by attenuating the downregulation of caspase-9, caspase-3, and Bax/Bcl-2. Furthermore, the phosphorylation of c-Jun N-terminal kinases (JNK and p38 MAPK triggered by high glucose were attenuated in RGC-5 cells after their incubation with hesperdin. We concluded that hesperidin may protect RGC-5 cells from high glucose-induced injury since it owns the properties of antioxidant action and blocks mitochondria-mediated apoptosis.

  12. Impact of high glucose concentration on aspirin-induced acetylation of human serum albumin: An in vitro study

    Directory of Open Access Journals (Sweden)

    Francesco Finamore

    2014-06-01

    Full Text Available Aspirin (ASA plays a key role in protecting high risk cardiovascular patients from ischaemic events. The modifications underlying its effects are the results of the trans-acetylation that occurs between ASA and the amino groups made up of lysine and N-terminal residues. ASA's effects have also been demonstrated on several plasma proteins, including human serum albumin (HSA. However, its beneficial effects seem to be lower in diabetic patients, suggesting that protein glycation may impair ASA's acetylation process. Using immunoblotting and mass spectrometry, this study characterized the degree of HSA acetylation mediated by ASA in vitro, as well as the impact of high glucose concentrations. Glycation's influence on HSA acetylation might impair the latter's biological functions, leading to a potential failure of ASA to prevent cardiovascular complications in diabetes.

  13. Physiological characterization of brewer's yeast in high-gravity beer fermentations with glucose or maltose syrups as adjuncts

    DEFF Research Database (Denmark)

    Piddocke, Maya Petrova; kreisz, Stefan; Heldt-Hansen, Hans Peter

    2009-01-01

    High-gravity brewing, which can decrease production costs by increasing brewery yields, has become an attractive alternative to traditional brewing methods. However, as higher sugar concentration is required, the yeast is exposed to various stresses during fermentation. We evaluated the influence...... of high-gravity brewing on the fermentation performance of the brewer’s yeast under model brewing conditions. The lager brewer’s strain Weihenstephan 34/70 strain was characterized at three different gravities by adding either glucose or maltose syrups to the basic wort. We observed that increased gravity...... resulted in more balanced fermentation performance in terms of higher cell numbers, respectively, higher wort fermentability and a more favorable flavor profile of the final beer. Our study underlines the effects of the various stress factors on brewer’s yeast metabolism and the influence of the type...

  14. High glucose recovery from direct enzymatic hydrolysis of bisulfite-pretreatment on non-detoxified furfural residues.

    Science.gov (United States)

    Xing, Yang; Bu, Lingxi; Sun, Dafeng; Liu, Zhiping; Liu, Shijie; Jiang, Jianxin

    2015-10-01

    This study reports four schemes to pretreat wet furfural residues (FRs) with sodium bisulfite for production of fermentable sugar. The results showed that non-detoxified FRs (pH 2-3) had great potential to lower the cost of bioconversion. The optimal process was that unwashed FRs were first pretreated with bisulfite, and the whole slurry was then directly used for enzymatic hydrolysis. A maximum glucose yield of 99.4% was achieved from substrates pretreated with 0.1 g NaHSO3/g dry substrate (DS), at a relatively low temperature of 100 °C for 3 h. Compared with raw material, enzymatic hydrolysis at a high-solid of 16.5% (w/w) specifically showed more excellent performance with bisulfite treated FRs. Direct bisulfite pretreatment improved the accessibility of substrates and the total glucose recovery. Lignosulfonate in the non-detoxified slurry decreased the non-productive adsorption of cellulase on the substrate, thus improving enzymatic hydrolysis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. The effects of high-intensity interval training on glucose regulation and insulin resistance: a meta-analysis.

    Science.gov (United States)

    Jelleyman, C; Yates, T; O'Donovan, G; Gray, L J; King, J A; Khunti, K; Davies, M J

    2015-11-01

    The aim of this meta-analysis was to quantify the effects of high-intensity interval training (HIIT) on markers of glucose regulation and insulin resistance compared with control conditions (CON) or continuous training (CT). Databases were searched for HIIT interventions based upon the inclusion criteria: training ≥2 weeks, adult participants and outcome measurements that included insulin resistance, fasting glucose, HbA1c or fasting insulin. Dual interventions and participants with type 1 diabetes were excluded. Fifty studies were included. There was a reduction in insulin resistance following HIIT compared with both CON and CT (HIIT vs. CON: standardized mean difference [SMD] = -0.49, confidence intervals [CIs] -0.87 to -0.12, P = 0.009; CT: SMD = -0.35, -0.68 to -0.02, P = 0.036). Compared with CON, HbA1c decreased by 0.19% (-0.36 to -0.03, P = 0.021) and body weight decreased by 1.3 kg (-1.9 to -0.7, P HIIT appears effective at improving metabolic health, particularly in those at risk of or with type 2 diabetes. Larger randomized controlled trials of longer duration than those included in this meta-analysis are required to confirm these results. © 2015 World Obesity.

  16. A ternary nanocatalyst of Ni/Cr/Co oxides with high activity and stability for alkaline glucose electrooxidation

    International Nuclear Information System (INIS)

    Gu, Yingying; Yang, Haihong; Li, Benqiang; An, Yarui

    2016-01-01

    Highlights: • Ni-Cr-Co nanomaterial was synthesized by thermal decomposition method. • Ni 4 -Cr 1 -Co 1.5 has the highest GOR activity among the prepared catalysts. • A catalytic current density of 23.8 mA × cm −2 is attained for alkaline GOR. - Abstract: A novel ternary nanocatalyst of Ni-Cr-Co oxides is synthesized as anode electro-catalysts for glucose oxidation. The nanostructure is characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM), which indicates that the catalyst particles are well dispersed with average size of 30 nm when the calcination temperature is 500 °C. The electrochemical performance is evaluated via cyclic voltammetry (CV). Compared with the bimetallic Ni-Cr and Ni-Co nanocatalysts, Ni-Cr-Co electrocatalysts exhibites more negative onset potential (0.4 V) and high oxidation peak current density (23.8 mA cm −2 ) in alkaline media towards glucose oxidation. Meanwhile, the results also show that the Ni-Cr-Co nanomaterial possesses good performance of anti-poisoning capability, reproducibility and long-time stability, which make it an excellent candidate for fuel cell electrocatalyst.

  17. Combined heart rate- and accelerometer-assessed physical activity energy expenditure and associations with glucose homeostasis markers in a population at high risk of developing diabetes

    DEFF Research Database (Denmark)

    Hansen, Anne-Louise Smidt; Carstensen, Bendix; Helge, Jørn Wulff

    2013-01-01

    OBJECTIVE: Regular physical activity (PA) reduces the risk of developing type 2 diabetes, and different subtypes of dysglycemia have shown different associations with PA. To better understand the associations of PA and glucose homeostasis, we examined the association of objectively measured PA...... energy expenditure (PAEE) with detailed measures of glucose homeostasis. RESEARCH DESIGN AND METHODS: In 1,531 men and women, with low to high risk of developing type 2 diabetes, we measured 7 days of PAEE using a combined accelerometry and heart rate monitor (ActiHeart). Measures and indices of glucose...... of PAEE slightly in an entire population at risk for developing type 2 diabetes may be a realistic and worthwhile goal to reach in order to achieve beneficial effect in terms of glucose metabolism....

  18. Efficient production of L-lactic acid by newly isolated thermophilic Bacillus coagulans WCP10-4 with high glucose tolerance.

    Science.gov (United States)

    Zhou, Xingding; Ye, Lidan; Wu, Jin Chuan

    2013-05-01

    A thermophilic Bacillus coagulans WCP10-4 with tolerance to high concentration of glucose was isolated from soil and used to produce optically pure L-lactic acid from glucose and starch. In batch fermentation at pH 6.0, 240 g/L of glucose was completely consumed giving 210 g/L of L-lactic acid with a yield of 95 % and a productivity of 3.5 g/L/h. In simultaneous saccharification and fermentation at 50 °C without sterilizing the medium, 200 g/L of corn starch was completely consumed producing 202.0 g/L of L-lactic acid. To the best of our knowledge, this strain shows the highest osmotic tolerance to glucose among the strains ever reported for lactic acid production. This is the first report of simultaneous saccharification and fermentation of starch for lactic acid production under a non-sterilized condition.

  19. L-Cysteine supplementation increases adiponectin synthesis and secretion, and GLUT4 and glucose utilization by upregulating disulfide bond A-like protein expression mediated by MCP-1 inhibition in 3T3-L1 adipocytes exposed to high glucose.

    Science.gov (United States)

    Achari, Arunkumar Elumalai; Jain, Sushil K

    2016-03-01

    Adiponectin is an anti-diabetic and anti-atherogenic adipokine; its plasma levels are decreased in obesity, insulin resistance, and type 2 diabetes. An adiponectin-interacting protein named disulfide bond A-like protein (DsbA-L) plays an important role in the assembly of adiponectin. This study examined the hypothesis that L-cysteine (LC) regulates glucose homeostasis through the DsbA-L upregulation and synthesis and secretion of adiponectin in diabetes. 3T3L1 adipocytes were treated with LC (250 and 500 µM, 2 h) and high glucose (HG, 25 mM, 20 h). Results showed that LC supplementation significantly (p L, adiponectin, and GLUT-4 protein expression and glucose utilization in HG-treated adipocytes. LC supplementation significantly (p L expression and adiponectin levels in 3T3-L1 cells. Treatment with LC prevented the decrease in DsbA-L, adiponectin, and GLUT-4 expression in 3T3L1 adipocyte cells exposed to MCP-1. Thus, this study demonstrates that DsbA-L and adiponectin upregulation mediates the beneficial effects of LC on glucose utilization by inhibiting MCP-1 secretion in adipocytes and provides a novel mechanism by which LC supplementation can improve insulin sensitivity in diabetes.

  20. Twenty-four-hour endocrine and metabolic profiles following consumption of high-fructose corn syrup-, sucrose-, fructose-, and glucose-sweetened beverages with meals.

    Science.gov (United States)

    Stanhope, Kimber L; Griffen, Steven C; Bair, Brandi R; Swarbrick, Michael M; Keim, Nancy L; Havel, Peter J

    2008-05-01

    We have reported that, compared with glucose-sweetened beverages, consuming fructose-sweetened beverages with meals results in lower 24-h circulating glucose, insulin, and leptin concentrations and elevated triacylglycerol (TG). However, pure fructose and glucose are not commonly used as sweeteners. High-fructose corn syrup (HFCS) has replaced sucrose as the predominant sweetener in beverages in the United States. We compared the metabolic/endocrine effects of HFCS with sucrose and, in a subset of subjects, with pure fructose and glucose. Thirty-four men and women consumed 3 isocaloric meals with either sucrose- or HFCS-sweetened beverages, and blood samples were collected over 24 h. Eight of the male subjects were also studied when fructose- or glucose-sweetened beverages were consumed. In 34 subjects, 24-h glucose, insulin, leptin, ghrelin, and TG profiles were similar between days that sucrose or HFCS was consumed. Postprandial TG excursions after HFCS or sucrose were larger in men than in women. In the men in whom the effects of 4 sweeteners were compared, the 24-h glucose and insulin responses induced by HFCS and sucrose were intermediate between the lower responses during consumption of fructose and the higher responses during glucose. Unexpectedly, postprandial TG profiles after HFCS or sucrose were not intermediate but comparably high as after pure fructose. Sucrose and HFCS do not have substantially different short-term endocrine/metabolic effects. In male subjects, short-term consumption of sucrose and HFCS resulted in postprandial TG responses comparable to those induced by fructose.

  1. Effects of high-intensity swimming training on GLUT-4 and glucose transport activity in rat skeletal muscle.

    Science.gov (United States)

    Terada, S; Yokozeki, T; Kawanaka, K; Ogawa, K; Higuchi, M; Ezaki, O; Tabata, I

    2001-06-01

    This study was performed to assess the effects of short-term, extremely high-intensity intermittent exercise training on the GLUT-4 content of rat skeletal muscle. Three- to four-week-old male Sprague-Dawley rats with an initial body weight ranging from 45 to 55 g were used for this study. These rats were randomly assigned to an 8-day period of high-intensity intermittent exercise training (HIT), relatively high-intensity intermittent prolonged exercise training (RHT), or low-intensity prolonged exercise training (LIT). Age-matched sedentary rats were used as a control. In the HIT group, the rats repeated fourteen 20-s swimming bouts with a weight equivalent to 14, 15, and 16% of body weight for the first 2, the next 4, and the last 2 days, respectively. Between exercise bouts, a 10-s pause was allowed. RHT consisted of five 17-min swimming bouts with a 3-min rest between bouts. During the first bout, the rat swam without weight, whereas during the following four bouts, the rat was attached to a weight equivalent to 4 and 5% of its body weight for the first 5 days and the following 3 days, respectively. Rats in the LIT group swam 6 h/day for 8 days in two 3-h bouts separated by 45 min of rest. In the first experiment, the HIT, LIT, and control rats were compared. GLUT-4 content in the epitrochlearis muscle in the HIT and LIT groups after training was significantly higher than that in the control rats by 83 and 91%, respectively. Furthermore, glucose transport activity, stimulated maximally by both insulin (2 mU/ml) (HIT: 48%, LIT: 75%) and contractions (25 10-s tetani) (HIT: 55%, LIT: 69%), was higher in the training groups than in the control rats. However, no significant differences in GLUT-4 content or in maximal glucose transport activity in response to both insulin and contractions were observed between the two training groups. The second experiment demonstrated that GLUT-4 content after HIT did not differ from that after RHT (66% higher in trained rats than

  2. NFkappaB activation is essential for miR-21 induction by TGFβ1 in high glucose conditions

    Energy Technology Data Exchange (ETDEWEB)

    Madhyastha, Radha, E-mail: radharao@med.miyazaki-u.ac.jp; Madhyastha, HarishKumar; Pengjam, Yutthana; Nakajima, Yuichi; Omura, Sayuri; Maruyama, Masugi

    2014-09-05

    Highlights: • Transforming growth factor beta 1 (TGFβ1) induces miR-21 in high glucose conditions. • NFkappaB activation and subsequent ROS generation are necessary for TGFβ1’s effect. • TGFβ1 facilitates binding of NFkB p65 to miR-21 promoter. • SMAD proteins bind to R-SBE sites on primary miR-21, in NFkB dependent manner. - Abstract: Transforming growth factor beta1 (TGFβ1) is a pleiotropic growth factor with a very broad spectrum of effects on wound healing. Chronic non-healing wounds such as diabetic foot ulcers express reduced levels of TGFβ1. On the other hand, our previous studies have shown that the microRNA miR-21 is differentially regulated in diabetic wounds and that it promotes migration of fibroblast cells. Although interplay between TGFβ1 and miR-21 are studied in relation to cancer, their interaction in the context of chronic wounds has not yet been investigated. In this study, we examined if TGFβ1 could stimulate miR-21 in fibroblasts that are subjected to high glucose environment. MiR-21 was, in fact, induced by TGFβ1 in high glucose conditions. The induction by TGFβ1 was dependent on NFκB activation and subsequent ROS generation. TGFβ1 was instrumental in degrading the NFκB inhibitor IκBα and facilitating the nuclear translocation of NFκB p65 subunit. EMSA studies showed enhanced DNA binding activity of NFκB in the presence of TGFβ1. ChIP assay revealed binding of p65 to miR-21 promoter. NFκB activation was also required for the nuclear translocation of Smad 4 protein and subsequent direct interaction of Smad proteins with primary miR-21 as revealed by RNA-IP studies. Our results show that manipulation of TGFβ1–NFκB–miR-21 pathway could serve as an innovative approach towards therapeutics to heal diabetic ulcers.

  3. NFkappaB activation is essential for miR-21 induction by TGFβ1 in high glucose conditions

    International Nuclear Information System (INIS)

    Madhyastha, Radha; Madhyastha, HarishKumar; Pengjam, Yutthana; Nakajima, Yuichi; Omura, Sayuri; Maruyama, Masugi

    2014-01-01

    Highlights: • Transforming growth factor beta 1 (TGFβ1) induces miR-21 in high glucose conditions. • NFkappaB activation and subsequent ROS generation are necessary for TGFβ1’s effect. • TGFβ1 facilitates binding of NFkB p65 to miR-21 promoter. • SMAD proteins bind to R-SBE sites on primary miR-21, in NFkB dependent manner. - Abstract: Transforming growth factor beta1 (TGFβ1) is a pleiotropic growth factor with a very broad spectrum of effects on wound healing. Chronic non-healing wounds such as diabetic foot ulcers express reduced levels of TGFβ1. On the other hand, our previous studies have shown that the microRNA miR-21 is differentially regulated in diabetic wounds and that it promotes migration of fibroblast cells. Although interplay between TGFβ1 and miR-21 are studied in relation to cancer, their interaction in the context of chronic wounds has not yet been investigated. In this study, we examined if TGFβ1 could stimulate miR-21 in fibroblasts that are subjected to high glucose environment. MiR-21 was, in fact, induced by TGFβ1 in high glucose conditions. The induction by TGFβ1 was dependent on NFκB activation and subsequent ROS generation. TGFβ1 was instrumental in degrading the NFκB inhibitor IκBα and facilitating the nuclear translocation of NFκB p65 subunit. EMSA studies showed enhanced DNA binding activity of NFκB in the presence of TGFβ1. ChIP assay revealed binding of p65 to miR-21 promoter. NFκB activation was also required for the nuclear translocation of Smad 4 protein and subsequent direct interaction of Smad proteins with primary miR-21 as revealed by RNA-IP studies. Our results show that manipulation of TGFβ1–NFκB–miR-21 pathway could serve as an innovative approach towards therapeutics to heal diabetic ulcers

  4. Dynamin-related protein inhibitor downregulates reactive oxygen species levels to indirectly suppress high glucose-induced hyperproliferation of vascular smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Maimaitijiang, Alimujiang; Zhuang, Xinyu; Jiang, Xiaofei; Li, Yong, E-mail: 11211220031@fudan.edu.cn

    2016-03-18

    Hyperproliferation of vascular smooth muscle cells is a pathogenic mechanism common in diabetic vascular complications and is a putatively important therapeutic target. This study investigated multiple levels of biology, including cellular and organellar changes, as well as perturbations in protein synthesis and morphology. Quantitative and qualitative analysis was utilized to assess the effect of mitochondrial dynamic changes and reactive oxygen species(ROS) levels on high-glucose-induced hyperproliferation of vascular smooth muscle cells. The data demonstrated that the mitochondrial fission inhibitor Mdivi-1 and downregulation of ROS levels both effectively inhibited the high-glucose-induced hyperproliferation of vascular smooth muscle cells. Downregulation of ROS levels played a more direct role and ROS levels were also regulated by mitochondrial dynamics. Increased ROS levels induced excessive mitochondrial fission through dynamin-related protein (Drp 1), while Mdivi-1 suppressed the sensitivity of Drp1 to ROS levels, thus inhibiting excessive mitochondrial fission under high-glucose conditions. This study is the first to propose that mitochondrial dynamic changes and ROS levels interact with each other and regulate high-glucose-induced hyperproliferation of vascular smooth muscle cells. This finding provides novel ideas in understanding the pathogenesis of diabetic vascular remodeling and intervention. - Highlights: • Mdivi-1 inhibits VSMC proliferation by lowering ROS level in high-glucose condition. • ROS may be able to induce mitochondrial fission through Drp1 regulation. • Mdivi-1 can suppress the sensitivity of Drp1 to ROS.

  5. Ginkgolide B Suppresses TLR4-Mediated Inflammatory Response by Inhibiting the Phosphorylation of JAK2/STAT3 and p38 MAPK in High Glucose-Treated HUVECs

    Directory of Open Access Journals (Sweden)

    Kun Chen

    2017-01-01

    Full Text Available Aim. Ginkgolide B is a Ginkgo biloba leaf extract that has been identified as a natural platelet-activating factor receptor (PAFR antagonist. We investigated the effect of ginkgolide B on high glucose-induced TLR4 activation in human umbilical vein endothelial cells (HUVECs. Methods. Protein expression was analyzed by immunoblotting. Small-interfering RNA (siRNA was used to knock down PAFR and TLR4 expression. Results. Ginkgolide B suppressed the expression of TLR4 and MyD88 that was induced by high glucose. Ginkgolide B also reduced the levels of platelet endothelial cell adhesion molecule-1, interleukin-6, and monocyte chemotactic protein 1. Further, we examined the association between PAFR and TLR4 by coimmunoprecipitation. The result showed that high glucose treatment caused the binding of PAFR and TLR4, whereas ginkgolide B abolished this binding. The functional analysis indicated that PAFR siRNA treatment reduced TLR4 expression, and TLR4 siRNA treatment decreased PAFR expression in high glucose-treated HUVECs, further supporting the coimmunoprecipitation data. Ginkgolide B inhibited the phosphorylation of Janus kinase 2 (JAK2/signal transducer and activator of transcription 3 (STAT3 and p38 mitogen-activated protein kinase (MAPK. Conclusion. Ginkgolide B exerted protective effects by inhibiting the TLR4-mediated inflammatory response in high glucose-treated endothelial cells. The mechanism of action of ginkgolide B might be associated with inhibition of the JAK2/STAT3 and p38 MAPK phosphorylation.

  6. 7,8-Dihydroxyflavone ameliorates high-glucose induced diabetic apoptosis in human retinal pigment epithelial cells by activating TrkB.

    Science.gov (United States)

    Yu, Xiaoyi; Liu, Qiuhong; Wang, Xiaochuan; Liu, Hong; Wang, Yan

    2018-01-01

    In diabetic retinopathy, prolonged high-level blood glucose induced significant impairments among various retinal tissues, including retinal pigment epithelial (RPE) cells. In an in vitro model of human RPE cells, we evaluated whether 7,8-Dihydroxyflavone (DHF) may effectively prevent high glucose-induced diabetic apoptosis among human RPE cells. ARPE-19 cells, a Human RPE cell line, were treated with d-glucose (50 mM) to induce apoptosis in vitro. Prior to glucose, ARPE-19 cells were pre-incubated with various concentrations of DHF. The effect of DHF on d-glucose-induced apoptosis was examined by TUNEL assay, in a concentration-dependent manner. The biological effects of DHF on Caspase-9 (Casp-9) and TrkB signaling pathways in d-glucose-injured ARPE-19 cells were evaluated by qRT-PCR and western blot (WB) assays. A TrkB antagonist, K252a, was also applied in DHF and d-glucose treated ARPE-19 cells. Possible effect of K252a blocking TrkB signaling pathway, thus reversing DHF-modulated apoptosis prevention was also examined by TUNEL and WB assays. DHF ameliorated d-glucose-induced diabetic apoptosis in ARPE-19 cells. Apoptotic factor Casp-9, at both mRNA and protein levels, were drastically inhibited by DHF in d-glucose-injured ARPE-19 cells. Also, DHF activated TrkB signaling pathway through phosphorylation. K252a dramatically reversed the preventive effect of DHF on d-glucose-induced apoptosis in ARPE-19 cells. Further investigation showed that K252a functioned through de-activating or de-phosphorylating TrkB signaling pathway. This work demonstrates that DHF, through activation of TrkB signaling pathway, has a preventive function in d-glucose-induced apoptosis in PRE cells in diabetic retinopathy. Copyright © 2017. Published by Elsevier Inc.

  7. Non-response bias in physical activity trend estimates

    Directory of Open Access Journals (Sweden)

    Bauman Adrian

    2009-11-01

    Full Text Available Abstract Background Increases in reported leisure time physical activity (PA and obesity have been observed in several countries. One hypothesis for these apparently contradictory trends is differential bias in estimates over time. The purpose of this short report is to examine the potential impact of changes in response rates over time on the prevalence of adequate PA in Canadian adults. Methods Participants were recruited in representative national telephone surveys of PA from 1995-2007. Differences in PA prevalence estimates between participants and those hard to reach were assessed using Student's t tests adjusted for multiple comparisons. Results The number of telephone calls required to reach and speak with someone in the household increased over time, as did the percentage of selected participants who initially refused during the first interview attempt. A higher prevalence of adequate PA was observed with 5-9 attempts to reach anyone in the household in 1999-2002, but this was not significant after adjustment for multiple comparisons. Conclusion No significant impact on PA trend estimates was observed due to differential non response rates. It is important for health policy makers to understand potential biases and how these may affect secular trends in all aspects of the energy balance equation.

  8. Molecular Characterization of the RNA-Binding Protein Quaking-a in Megalobrama amblycephala: Response to High-Carbohydrate Feeding and Glucose/Insulin/Glucagon Treatment

    Directory of Open Access Journals (Sweden)

    Hua-Juan Shi

    2018-04-01

    Full Text Available The RNA-binding protein quaking-a (Qkia was cloned from the liver of blunt snout bream Megalobrama amblycephala through the rapid amplification of cDNA ends method, with its potential role in glucose metabolism investigated. The full-length cDNA of qkia covered 1,718 bp, with an open reading frame of 1,572 bp, which encodes 383 AA. Sequence alignment and phylogenetic analysis revealed a high degree of conservation (97–99% among most fish and other higher vertebrates. The mRNA of qkia was detected in all examined organs/tissues. Then, the plasma glucose levels and tissue qkia expressions were determined in fish intraperitoneally injected with glucose [1.67 g per kg body weight (BW], insulin (0.052 mg/kg BW, and glucagon (0.075 mg/kg BW respectively, as well as in fish fed two dietary carbohydrate levels (31 and 41% for 12 weeks. Glucose administration induced a remarkable increase of plasma glucose with the highest value being recorded at 1 h. Thereafter, it reduced to the basal value. After glucose administration, qkia expressions significantly decreased with the lowest value being recorded at 1 h in liver and muscle and 8 h in brain, respectively. Then they gradually returned to the basal value. The insulin injection induced a significant decrease of plasma glucose with the lowest value being recorded at 1 h, whereas the opposite was true after glucagon load (the highest value was gained at 4 h. Subsequently, glucose levels gradually returned to the basal value. After insulin administration, the qkia expressions significantly decreased with the lowest value being attained at 2 h in brain and muscle and 1 h in liver, respectively. However, glucagon significantly stimulated the expressions of qkia in tissues with the highest value being gained at 6 h. Moreover, high dietary carbohydrate levels remarkably increased plasma glucose levels, but down-regulated the transcriptions of qkia in tissues. These results indicated that the gene of blunt

  9. Gliadin affects glucose homeostasis and intestinal metagenome in C57BL6 mice fed a high-fat diet

    DEFF Research Database (Denmark)

    Zhang, Li; Hansen, Axel Kornerup; Bahl, Martin Iain

    limited. The aim of this study was to investigate the effect of gliadin on glucose homeostasis and intestinal ecology in the mouse. Forty male C57BL/6 mice were fed a high-fat diet containing either 4% gliadin or no gliadin for 22 weeks. Gliadin consumption significantly increased the HbA1c level over......Dietary gluten and its component gliadin are well-known environmental triggers of celiac disease and important actors in type-1 diabetes, and are reported to induce alterations in the intestinal microbiota. However, research on the impact of gluten on type-2 diabetes in non-celiac subjects is more...... time, with a borderline significance of higher HOMA-IR (homeostasis model assessment of insulin resistance) after 22 weeks. Sequencing of the V3 region of the bacterial 16S rRNA genes showed that gliadin altered the abundance of 81 bacterial taxa, separating the intestinal microbial profile...

  10. OGG1 Involvement in High Glucose-Mediated Enhancement of Bupivacaine-Induced Oxidative DNA Damage in SH-SY5Y Cells

    Science.gov (United States)

    Liu, Zhong-Jie; Zhao, Wei; Zhang, Qing-Guo; Li, Le; Lai, Lu-Ying; Jiang, Shan; Xu, Shi-Yuan

    2015-01-01

    Hyperglycemia can inhibit expression of the 8-oxoG-DNA glycosylase (OGG1) which is one of the key repair enzymes for DNA oxidative damage. The effect of hyperglycemia on OGG1 expression in response to local anesthetics-induced DNA damage is unknown. This study was designed to determine whether high glucose inhibits OGG1 expression and aggravates bupivacaine-induced DNA damage via reactive oxygen species (ROS). SH-SY5Y cells were cultured with or without 50 mM glucose for 8 days before they were treated with 1.5 mM bupivacaine for 24 h. OGG1 expression was measured by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot. ROS was estimated using the redox-sensitive fluorescent dye DCFH-DA. DNA damage was investigated with immunostaining for 8-oxodG and comet assays. OGG1 expression was inhibited in cells exposed to high glucose with concomitant increase in ROS production and more severe DNA damage as compared to control culture conditions, and these changes were further exacerbated by bupivacaine. Treatment with the antioxidant N-acetyl-L-cysteine (NAC) prevented high glucose and bupivacaine mediated increase in ROS production and restored functional expression of OGG1, which lead to attenuated high glucose-mediated exacerbation of bupivacaine neurotoxicity. Our findings indicate that subjects with diabetes may experience more detrimental effects following bupivacaine use. PMID:26161242

  11. Impact of High Glucose and Proteasome Inhibitor MG132 on Histone H2A and H2B Ubiquitination in Rat Glomerular Mesangial Cells

    Directory of Open Access Journals (Sweden)

    Chenlin Gao

    2013-01-01

    Full Text Available Background. Hyperglycemia plays a pivotal role in the development of diabetic nephropathy (DN and may be related to epigenetic metabolic memory. One of the most crucial epigenetic mechanisms is histone modification, which is associated with the expression of a fibrosis factor in vascular injury. Aim .In this study, we investigated the ubiquitination of histones H2A and H2B to explore the epigenetic mechanisms of DN. Materials and Methods. The GMCs were cultured as follows: normal group, high glucose group, mannitol group, and intervention group. After 12 hr, 24 hr, and 48 hr, histones ubiquitination, transforming growth factor-β (TGF-β, and fibronectin (FN were measured using WB, RT-PCR, and IF. Result. High glucose can induce the upregulation of FN. H2A ubiquitination in GMCs increased in high glucose group (P<0.01, whereas it decreased significantly in intervention group (P<0.05. In contrast, H2B ubiquitination decreased with an increasing concentration of glucose, but it was recovered in the intervention group (P<0.05. Expression of TGF-β changed in response to abnormal histone ubiquitination. Conclusions. The high glucose may induce H2A ubiquitination and reduce H2B ubiquitination in GMCs. The changes of histone ubiquitination may be due in part to DN by activating TGF-β signaling pathway.

  12. OGG1 Involvement in High Glucose-Mediated Enhancement of Bupivacaine-Induced Oxidative DNA Damage in SH-SY5Y Cells

    Directory of Open Access Journals (Sweden)

    Zhong-Jie Liu

    2015-01-01

    Full Text Available Hyperglycemia can inhibit expression of the 8-oxoG-DNA glycosylase (OGG1 which is one of the key repair enzymes for DNA oxidative damage. The effect of hyperglycemia on OGG1 expression in response to local anesthetics-induced DNA damage is unknown. This study was designed to determine whether high glucose inhibits OGG1 expression and aggravates bupivacaine-induced DNA damage via reactive oxygen species (ROS. SH-SY5Y cells were cultured with or without 50 mM glucose for 8 days before they were treated with 1.5 mM bupivacaine for 24 h. OGG1 expression was measured by quantitative real-time polymerase chain reaction (qRT-PCR and western blot. ROS was estimated using the redox-sensitive fluorescent dye DCFH-DA. DNA damage was investigated with immunostaining for 8-oxodG and comet assays. OGG1 expression was inhibited in cells exposed to high glucose with concomitant increase in ROS production and more severe DNA damage as compared to control culture conditions, and these changes were further exacerbated by bupivacaine. Treatment with the antioxidant N-acetyl-L-cysteine (NAC prevented high glucose and bupivacaine mediated increase in ROS production and restored functional expression of OGG1, which lead to attenuated high glucose-mediated exacerbation of bupivacaine neurotoxicity. Our findings indicate that subjects with diabetes may experience more detrimental effects following bupivacaine use.

  13. High-Glucose or -Fructose Diet Cause Changes of the Gut Microbiota and Metabolic Disorders in Mice without Body Weight Change

    Directory of Open Access Journals (Sweden)

    Moon Ho Do

    2018-06-01

    Full Text Available High fat diet-induced changes in gut microbiota have been linked to intestinal permeability and metabolic endotoxemia, which is related to metabolic disorders. However, the influence of a high-glucose (HGD or high-fructose (HFrD diet on gut microbiota is largely unknown. We performed changes of gut microbiota in HGD- or HFrD-fed C57BL/6J mice by 16S rRNA analysis. Gut microbiota-derived endotoxin-induced metabolic disorders were evaluated by glucose and insulin tolerance test, gut permeability, Western blot and histological analysis. We found that the HGD and HFrD groups had comparatively higher blood glucose and endotoxin levels, fat mass, dyslipidemia, and glucose intolerance without changes in bodyweight. The HGD- and HFrD-fed mice lost gut microbial diversity, characterized by a lower proportion of Bacteroidetes and a markedly increased proportion of Proteobacteria. Moreover, the HGD and HFrD groups had increased gut permeability due to alterations to the tight junction proteins caused by gut inflammation. Hepatic inflammation and lipid accumulation were also markedly increased in the HGD and HFrD groups. High levels of glucose or fructose in the diet regulate the gut microbiota and increase intestinal permeability, which precedes the development of metabolic endotoxemia, inflammation, and lipid accumulation, ultimately leading to hepatic steatosis and normal-weight obesity.

  14. Sensitive determination of glucose in Dulbecco's modified Eagle medium by high-performance liquid chromatography with 1-phenyl-3-methyl-5-pyrazolone derivatization: application to gluconeogenesis studies.

    Science.gov (United States)

    Ling, Zhaoli; Xu, Ping; Zhong, Zeyu; Wang, Fan; Shu, Nan; Zhang, Ji; Tang, Xiange; Liu, Li; Liu, Xiaodong

    2016-04-01

    A new pre-column derivative high-performance liquid chromatography (HPLC) method for determination of d-glucose with 3-O-methyl-d-glucose (3-OMG) as the internal standard was developed and validated in order to study the gluconeogenesis in HepG2 cells. Samples were derivatized with 1-phenyl-3-methy-5-pyrazolone at 70°C for 50 min. Glucose and 3-OMG were extracted by liquid-liquid extraction and separated on a YMC-Triart C18 column, with a gradient mobile phase composed of acetonitrile and 20 mm ammonium acetate solution containing 0.09% tri-ethylamine at a flow rate of 1.0 mL/min. The eluate were detected using a UV detector at 250 nm. The assay was linear over the range 0.39-25 μm (R(2) = 0.9997, n = 5) and the lower limit of quantitation was 0.39 μm (0.070 mg/mL). Intra- and inter-day precision and accuracy were gluconeogenesis in Dulbecco's modified Eagle medium (DMEM) cultured HepG2 cells. Glucose concentration was determined to be about 1-2.5 μm in this gluconeogenesis assay. In conclusion, this method has been shown to determine small amounts of glucose in DMEM successfully, with lower limit of quantitation and better sensitivity when compared with common commercial glucose assay kits. Copyright © 2015 John Wiley & Sons, Ltd.

  15. Comparison of two methods using plasma triglyceride concentration as a surrogate estimate of insulin action in nondiabetic subjects: triglycerides × glucose versus triglyceride/high-density lipoprotein cholesterol.

    Science.gov (United States)

    Abbasi, Fahim; Reaven, Gerald M

    2011-12-01

    The objective was to compare relationships between insulin-mediated glucose uptake and surrogate estimates of insulin action, particularly those using fasting triglyceride (TG) and high-density lipoprotein cholesterol (HDL-C) concentrations. Insulin-mediated glucose uptake was quantified by determining the steady-state plasma glucose (SSPG) concentration during the insulin suppression test in 455 nondiabetic subjects. Fasting TG, HDL-C, glucose, and insulin concentrations were measured; and calculations were made of the following: (1) plasma concentration ratio of TG/HDL-C, (2) TG × fasting glucose (TyG index), (3) homeostasis model assessment of insulin resistance, and (4) insulin area under the curve (insulin-AUC) during a glucose tolerance test. Insulin-AUC correlated most closely with SSPG (r ∼ 0.75, P index, homeostasis model assessment of insulin resistance, and fasting TG and insulin (r ∼ 0.60, P index correlated with SSPG concentration to a similar degree, and the relationships were comparable to estimates using fasting insulin. The strongest relationship was between SSPG and insulin-AUC. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Effects of High Glucose on Vascular Endothelial Growth Factor Synthesis and Secretion in Aortic Vascular Smooth Muscle Cells from Obese and Lean Zucker Rats

    Directory of Open Access Journals (Sweden)

    Mariella Trovati

    2012-07-01

    Full Text Available Type 1 diabetes is characterized by insulin deficiency, type 2 by both insulin deficiency and insulin resistance: in both conditions, hyperglycaemia is accompanied by an increased cardiovascular risk, due to increased atherosclerotic plaque formation/instabilization and impaired collateral vessel formation. An important factor in these phenomena is the Vascular Endothelial Growth Factor (VEGF, a molecule produced also by Vascular Smooth Muscle Cells (VSMC. We aimed at evaluating the role of high glucose on VEGF-A164 synthesis and secretion in VSMC from lean insulin-sensitive and obese insulin-resistant Zucker rats (LZR and OZR. In cultured aortic VSMC from LZR and OZR incubated for 24 h with D-glucose (5.5, 15 and 25 mM or with the osmotic controls L-glucose and mannitol, we measured VEGF-A164 synthesis (western, blotting and secretion (western blotting and ELISA. We observed that: (i D-glucose dose-dependently increases VEGF-A164 synthesis and secretion in VSMC from LZR and OZR (n = 6, ANOVA p = 0.002–0.0001; (ii all the effects of 15 and 25 mM D-glucose are attenuated in VSMC from OZR vs. LZR (p = 0.0001; (iii L-glucose and mannitol reproduce the VEGF-A164 modulation induced by D-glucose in VSMC from both LZR and OZR. Thus, glucose increases via an osmotic mechanism VEGF synthesis and secretion in VSMC, an effect attenuated in the presence of insulin resistance.

  17. Glucose allostasis

    DEFF Research Database (Denmark)

    Stumvoll, Michael; Tataranni, P Antonio; Stefan, Norbert

    2003-01-01

    individuals with normal glucose tolerance, normoglycemia can always be maintained by compensatorily increasing AIR in response to decreasing M (and vice versa). This has been mathematically described by the hyperbolic relationship between AIR and M and referred to as glucose homeostasis, with glucose......In many organisms, normoglycemia is achieved by a tight coupling of nutrient-stimulated insulin secretion in the pancreatic beta-cell (acute insulin response [AIR]) and the metabolic action of insulin to stimulate glucose disposal (insulin action [M]). It is widely accepted that in healthy...... concentration assumed to remain constant along the hyperbola. Conceivably, glucose is one of the signals stimulating AIR in response to decreasing M. Hypothetically, as with any normally functioning feed-forward system, AIR should not fully compensate for worsening M, since this would remove the stimulus...

  18. Factors affecting study efficiency and item non-response in health surveys in developing countries: the Jamaica national healthy lifestyle survey

    Directory of Open Access Journals (Sweden)

    Bennett Franklyn

    2007-02-01

    Full Text Available Abstract Background Health surveys provide important information on the burden and secular trends of risk factors and disease. Several factors including survey and item non-response can affect data quality. There are few reports on efficiency, validity and the impact of item non-response, from developing countries. This report examines factors associated with item non-response and study efficiency in a national health survey in a developing Caribbean island. Methods A national sample of participants aged 15–74 years was selected in a multi-stage sampling design accounting for 4 health regions and 14 parishes using enumeration districts as primary sampling units. Means and proportions of the variables of interest were compared between various categories. Non-response was defined as failure to provide an analyzable response. Linear and logistic regression models accounting for sample design and post-stratification weighting were used to identify independent correlates of recruitment efficiency and item non-response. Results We recruited 2012 15–74 year-olds (66.2% females at a response rate of 87.6% with significant variation between regions (80.9% to 97.6%; p Conclusion Informative health surveys are possible in developing countries. While survey response rates may be satisfactory, item non-response was high in respect of income and sexual practice. In contrast to developed countries, non-response to questions on income is higher and has different correlates. These findings can inform future surveys.

  19. Protective Effects of Ferulic Acid on High Glucose-Induced Protein Glycation, Lipid Peroxidation, and Membrane Ion Pump Activity in Human Erythrocytes.

    Directory of Open Access Journals (Sweden)

    Weerachat Sompong

    Full Text Available Ferulic acid (FA is the ubiquitous phytochemical phenolic derivative of cinnamic acid. Experimental studies in diabetic models demonstrate that FA possesses multiple mechanisms of action associated with anti-hyperglycemic activity. The mechanism by which FA prevents diabetes-associated vascular damages remains unknown. The aim of study was to investigate the protective effects of FA on protein glycation, lipid peroxidation, membrane ion pump activity, and phosphatidylserine exposure in high glucose-exposed human erythrocytes. Our results demonstrated that FA (10-100 μM significantly reduced the levels of glycated hemoglobin (HbA1c whereas 0.1-100 μM concentrations inhibited lipid peroxidation in erythrocytes exposed to 45 mM glucose. This was associated with increased glucose consumption. High glucose treatment also caused a significant reduction in Na+/K+-ATPase activity in the erythrocyte plasma membrane which could be reversed by FA. Furthermore, we found that FA (0.1-100 μM prevented high glucose-induced phosphatidylserine exposure. These findings provide insights into a novel mechanism of FA for the prevention of vascular dysfunction associated with diabetes.

  20. Roles of p300 and cyclic adenosine monophosphate response element binding protein in high glucose-induced hypoxia-inducible factor 1α inactivation under hypoxic conditions.

    Science.gov (United States)

    Ding, Lingtao; Yang, Minlie; Zhao, Tianlan; Lv, Guozhong

    2017-05-01

    Given the high prevalence of diabetes and burn injuries worldwide, it is essential to dissect the underlying mechanism of delayed burn wound healing in diabetes patients, especially the high glucose-induced hypoxia-inducible factor 1 (HIF-1)-mediated transcription defects. Human umbilical vein endothelial cells were cultured with low or high concentrations of glucose. HIF-1α-induced vascular endothelial growth factor (VEGF) transcription was measured by luciferase assay. Immunofluorescence staining was carried out to visualize cyclic adenosine monophosphate response element binding protein (CREB) localization. Immunoprecipitation was carried out to characterize the association between HIF-1α/p300/CREB. To test whether p300, CREB or p300+CREB co-overexpression was sufficient to rescue the HIF-1-mediated transcription defect after high glucose exposure, p300, CREB or p300+CREB co-overexpression were engineered, and VEGF expression was quantified. Finally, in vitro angiogenesis assay was carried out to test whether the high glucose-induced angiogenesis defect is rescuable by p300 and CREB co-overexpression. Chronic high glucose treatment resulted in impaired HIF-1-induced VEGF transcription and CREB exclusion from the nucleus. P300 or CREB overexpression alone cannot rescue high glucose-induced HIF-1α transcription defects. In contrast, co-overexpression of p300 and CREB dramatically ameliorated high glucose-induced impairment of HIF-1-mediated VEGF transcription, as well as in vitro angiogenesis. Finally, we showed that co-overexpression of p300 and CREB rectifies the dissociation of HIF-1α-p300-CREB protein complex in chronic high glucose-treated cells. Both p300 and CREB are required for the function integrity of HIF-1α transcription machinery and subsequent angiogenesis, suggesting future studies to improve burn wound healing might be directed to optimization of the interaction between p300, CREB and HIF-1α. © 2016 The Authors. Journal of Diabetes

  1. Glucose assisted synthesis of hollow spindle LiMnPO_4/C nanocomposites for high performance Li-ion batteries

    International Nuclear Information System (INIS)

    Fu, Xiaoning; Chang, Zhaorong; Chang, Kun; Li, Bao; Tang, Hongwei; Shangguan, Enbo; Yuan, Xiao-Zi; Wang, Haijiang

    2015-01-01

    Graphical abstract: Nano-sized hollow spindle LiMnPO_4 with a well-developed olivine-type structure exhibits a high specific capacity and cycling performance. - Highlights: • A pure and well-crystallized LiMnPO_4 are synthesized via a solution-phase method. • The LiMnPO_4/C composite constitutes highly and uniformly distributed hollow spindles. • The LiMnPO_4/C composite exhibits a high specific capacity and cycling performance. • The growth process of the hollow spindle LiMnPO_4 particles is revealed. - Abstract: Nano-sized hollow spindle LiMnPO_4 with a well-developed olivine-type structure was synthesized with the assistance of glucose in dimethyl sulfoxide (DMSO)/H_2O under ambient pressure and 108 °C. The scanning electron microscopy (SEM) and transmission electron microscope (TEM) images show that the LiMnPO_4 particles consist of hollow spindles with a mean width of 200 nm, length of 500-700 nm, and wall thickness of about 30-60 nm. The LiMnPO_4/C nanocomposite was obtained by sintering nano-sized LiMnPO_4 with glucose at 650 °C under an inert atmosphere for 4 h. With a coated carbon thickness of about 10 nm, the obtained composite maintained the morphology and size of the hollow spindle. The electrochemical tests show the specific capacity of LiMnPO_4/C nanocomposite is 161.8 mAh g"−"1 at 0.05C, 137.7 mAh g"−"1 at 0.1C and 110.8 mAh g"−"1 at 0.2 C. The retention of discharge capacity maintains 92% after 100 cycles at 0.2 C. After different rate cycles the high capacity of the LiMnPO_4/C nanocomposite can be recovered. This high performance is attributed to the composite material's hollow spindle structure, which facilitates the electrolyte infiltration, resulting in an increased solid-liquid interface. The carbon layer covering the hollow spindle also contributes to the high performance of the LiMnPO_4/C material as the carbon layer improves its electronic conductivity and the nano-scaled wall thickness decreases the paths of Li

  2. Metformin and liraglutide ameliorate high glucose-induced oxidative stress via inhibition of PKC-NAD(P)H oxidase pathway in human aortic endothelial cells.

    Science.gov (United States)

    Batchuluun, Battsetseg; Inoguchi, Toyoshi; Sonoda, Noriyuki; Sasaki, Shuji; Inoue, Tomoaki; Fujimura, Yoshinori; Miura, Daisuke; Takayanagi, Ryoichi

    2014-01-01

    Metformin and glucagon like peptide-1 (GLP-1) prevent diabetic cardiovascular complications and atherosclerosis. However, the direct effects on hyperglycemia-induced oxidative stress in endothelial cells are not fully understood. Thus, we aimed to evaluate the effects of metformin and a GLP-1 analog, liraglutide on high glucose-induced oxidative stress. Production of reactive oxygen species (ROS), activation of protein kinase C (PKC) and NAD(P)H oxidase, and changes in signaling molecules in response to high glucose exposure were evaluated in human aortic endothelial cells with and without treatment of metformin and liraglutide, alone or in combination. PKC-NAD(P)H oxidase pathway was assessed by translocation of GFP-fused PKCβ2 isoform and GFP-fused p47phox, a regulatory subunit of NAD(P)H oxidase, in addition to endogenous PKC phosphorylation and NAD(P)H oxidase activity. High glucose-induced ROS overproduction was blunted by metformin or liraglutide treatment, with a further decrease by a combination of these drugs. Exposure to high glucose caused PKCβ2 translocation and a time-dependent phosphorylation of endogenous PKC but failed to induce its translocation and phosphorylation in the cells treated with metformin and liraglutide. Furthermore, both drugs inhibited p47phox translocation and NAD(P)H oxidase activation, and prevented the high glucose-induced changes in intracellulalr diacylglycerol (DAG) level and phosphorylation of AMP-activated protein kinase (AMPK). A combination of these drugs further enhanced all of these effects. Metformin and liraglutide ameliorate high glucose-induced oxidative stress by inhibiting PKC-NAD(P)H oxidase pathway. A combination of these two drugs provides augmented protective effects, suggesting the clinical usefulness in prevention of diabetic vascular complications. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  3. RXR agonists inhibit high glucose-induced upregulation of inflammation by suppressing activation of the NADPH oxidase-nuclear factor-κB pathway in human endothelial cells.

    Science.gov (United States)

    Ning, R B; Zhu, J; Chai, D J; Xu, C S; Xie, H; Lin, X Y; Zeng, J Z; Lin, J X

    2013-12-13

    An inflammatory response induced by high glucose is a cause of endothelial dysfunction in diabetes and is an important contributing link to atherosclerosis. Diabetes is an independent risk factor of atherosclerosis and activation of retinoid X receptor (RXR) has been shown to exert anti-atherogenic effects. In the present study, we examined the effects of the RXR ligands 9-cis-retinoic acid (9-cis-RA) and SR11237 on high glucose-induced inflammation in human umbilical endothelial vein endothelial cells (HUVECs) and explored the potential mechanism. Our results showed that the inflammation induced by high-glucose in HUVECs was mainly mediated by the activation of nuclear factor-B (NF- κB). High glucose-induced expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) were in comparison, significantly decreased by treatment with RXR. The effect of RXR agonists was mainly due to the inhibition of NF-κB activation. Using pharmacological inhibitors and siRNA, we confirmed that nicotinamide adenine dinucleotide phosphate (NADPH) oxidase was an upstream activator of NF-κB. Furthermore, RXR agonists significantly inhibited high glucose-induced activation of NADPH oxidase and significantly decreased the production of reactive oxygen species (ROS). To explore whether the rapid inhibitory effects of RXR agonists were in fact mediated by RXR, we examined the effect of RXR downregulation by RXR siRNA. Our results showed that RXR siRNA largely abrogated the effects of RXR agonists, suggesting the requirement of RXR expression. Therefore, we have shown that RXR is involved in the regulation of NADPH oxidase- NF-κB signal pathway, as the RXR ligands antagonized the inflammatory response in HUVECs induced by high glucose.

  4. Thiamine and benfotiamine prevent apoptosis induced by high glucose-conditioned extracellular matrix in human retinal pericytes.

    Science.gov (United States)

    Beltramo, Elena; Nizheradze, Konstantin; Berrone, Elena; Tarallo, Sonia; Porta, Massimo

    2009-10-01

    Early and selective loss of pericytes and thickening of the basement membrane are hallmarks of diabetic retinopathy. We reported reduced adhesion, but no changes in apoptosis, of bovine retinal pericytes cultured on extracellular matrix (ECM) produced by endothelial cells in high glucose (HG). Since human and bovine pericytes may behave differently in conditions mimicking the diabetic milieu, we verified the behaviour of human retinal pericytes cultured on HG-conditioned ECM. Pericytes were cultured in physiological/HG on ECM produced by human umbilical vein endothelial cells in physiological/HG, alone or in the presence of thiamine and benfotiamine. Adhesion, proliferation, apoptosis, p53 and Bcl-2/Bax ratio (mRNA levels and protein concentrations) were measured in wild-type and immortalized human pericytes. Both types of pericytes adhered less to HG-conditioned ECM and plastic than to physiological glucose-conditioned ECM. DNA synthesis was impaired in pericytes cultured in HG on the three different surfaces but there were no differences in proliferation. DNA fragmentation and Bcl-2/Bax ratio were greatly enhanced by HG-conditioned ECM in pericytes kept in both physiological and HG. Addition of thiamine and benfotiamine to HG during ECM production completely prevented these damaging effects. Apoptosis is strongly increased in pericytes cultured on ECM produced by endothelium in HG, probably due to impairment of the Bcl-2/Bax ratio. Thiamine and benfotiamine completely revert this effect. This behaviour is therefore completely different from that of bovine pericytes, underlining the importance of establishing species-specific cell models to study the mechanisms of diabetic retinopathy. (c) 2009 John Wiley & Sons, Ltd.

  5. The Prevalence and Clinical Features of Non-responsive Gastroesophageal Reflux Disease to Practical Proton Pump Inhibitor Dose in Korea: A Multicenter Study.

    Science.gov (United States)

    Park, Hong Jun; Park, Soo Heon; Shim, Ki Nam; Kim, Yong Sung; Kim, Hyun Jin; Han, Jae Pil; Kim, Yong Sik; Bang, Byoung Wook; Kim, Gwang Ha; Baik, Gwang Ho; Kim, Hyung Hun; Park, Seon Young; Kim, Sung Soo

    2016-07-25

    In Korea, there are no available multicenter data concerning the prevalence of or diagnostic approaches for non-responsive gastroesophageal reflux disease (GERD) which does not respond to practical dose of proton pump inhibitor (PPI) in Korea. The purpose of this study is to evaluate the prevalence and the symptom pattern of non-responsive GERD. A total of 12 hospitals who were members of a Korean GERD research group joined this study. We used the composite score (CS) as a reflux symptom scale which is a standardized questionnaire based on the frequency and severity of typical symptoms of GERD. We defined "non-responsive GERD" as follows: a subject with the erosive reflux disease (ERD) whose CS was not decreased by at least 50% after standard-dose PPIs for 8 weeks or a subject with non-erosive reflux disease (NERD) whose CS was not decreased by at least 50% after half-dose PPIs for 4 weeks. A total of 234 subjects were analyzed. Among them, 87 and 147 were confirmed to have ERD and NERD, respectively. The prevalence of non-responsive GERD was 26.9% (63/234). The rates of non-responsive GERD were not different between the ERD and NERD groups (25.3% vs. 27.9%, respectively, p=0.664). There were no differences between the non-responsive GERD and responsive GERD groups for sex (p=0.659), age (p=0.134), or BMI (p=0.209). However, the initial CS for epigastric pain and fullness were higher in the non-responsive GERD group (p=0.044, p=0.014, respectively). In conclusion, this multicenter Korean study showed that the rate of non-responsive GERD was substantially high up to 26%. In addition, the patients with the non-responsive GERD frequently showed dyspeptic symptoms such as epigastric pain and fullness.

  6. The effect of Astragalus polysaccharides on attenuation of diabetic cardiomyopathy through inhibiting the extrinsic and intrinsic apoptotic pathways in high glucose -stimulated H9C2 cells.

    Science.gov (United States)

    Sun, Shuqin; Yang, Shuo; Dai, Min; Jia, Xiujuan; Wang, Qiyan; Zhang, Zheng; Mao, Yongjun

    2017-06-13

    Apoptosis plays a critical role in the progression of diabetic cardiomyopathy (DC). Astragalus polysaccharides (APS), an extract of astragalus membranaceus (AM), is an effective cardioprotectant. Currently, little is known about the detailed mechanisms underlying cardioprotective effects of APS. The aims of this study were to investigate the potential effects and mechanisms of APS on apoptosis employing a model of high glucose induction of apoptosis in H9C2 cells. A model of high glucose induction of H9C2 cell apoptosis was adopted in this research. The cell viabilities were analyzed by MTT assay, and the apoptotic response was quantified by flow cytometry. The expression levels of the apoptosis related proteins were determined by Real-time PCR and western blotting. Incubation of H9C2 cells with various concentrations of glucose (i.e., 5.5, 12.5, 25, 33 and 44 mmol/L) for 24 h revealed that cell viability was reduced by high glucose dose-dependently. Pretreatment of cells with APS could inhibit high glucose-induced H9C2 cell apoptosis by decreasing the expressions of caspases and the release of cytochrome C from mitochondria to cytoplasm. Further experiments also showed that APS could modulate the ratio of Bcl-2 to Bax in mitochondria. APS decreases high glucose-induced H9C2 cell apoptosis by inhibiting the expression of pro-apoptotic proteins of both the extrinsic and intrinsic pathways and modulating the ratio of Bcl-2 to Bax in mitochondria.

  7. Effect of high sugar intake on glucose transporter and weight regulating hormones in mice and humans.

    Directory of Open Access Journals (Sweden)

    Yvonne Ritze

    Full Text Available OBJECTIVE: Sugar consumption has increased dramatically over the last decades in Western societies. Especially the intake of sugar-sweetened beverages seems to be a major risk for the development of obesity. Thus, we compared liquid versus solid high-sugar diets with regard to dietary intake, intestinal uptake and metabolic parameters in mice and partly in humans. METHODS: Five iso-caloric diets, enriched with liquid (in water 30% vol/vol or solid (in diet 65% g/g fructose or sucrose or a control diet were fed for eight weeks to C57bl/6 mice. Sugar, liquid and caloric intake, small intestinal sugar transporters (GLUT2/5 and weight regulating hormone mRNA expression, as well as hepatic fat accumulation were measured. In obese versus lean humans that underwent either bariatric surgery or small bowel resection, we analyzed small intestinal GLUT2, GLUT5, and cholecystokinin expression. RESULTS: In mice, the liquid high-sucrose diet caused an enhancement of total caloric intake compared to the solid high-sucrose diet and the control diet. In addition, the liquid high-sucrose diet increased expression of GLUT2, GLUT5, and cholecystokinin expression in the ileum (P<0.001. Enhanced liver triglyceride accumulation was observed in mice being fed the liquid high-sucrose or -fructose, and the solid high-sucrose diet compared to controls. In obese, GLUT2 and GLUT5 mRNA expression was enhanced in comparison to lean individuals. CONCLUSIONS: We show that the form of sugar intake (liquid versus solid is presumably more important than the type of sugar, with regard to feeding behavior, intestinal sugar uptake and liver fat accumulation in mice. Interestingly, in obese individuals, an intestinal sugar transporter modulation also occurred when compared to lean individuals.

  8. Glucose, fructose and sucrose increase the solubility of protein-tannin complexes and at high concentration, glucose and sucrose interfere with bisulphite bleaching of wine pigments.

    Science.gov (United States)

    Harbertson, James F; Yuan, Chunlong; Mireles, Maria S; Hanlin, Rachel L; Downey, Mark O

    2013-05-01

    Wines were modified with increasing sugar concentrations and decreasing tannin concentrations and analysed by a combination of protein precipitation and bisulphite bleaching. Increasing sugar concentration decreased the precipitation of tannin and protein-precipitable polymeric pigments (PPP). The use of a hydrogen bond disruptor (urea) to reduce protein-tannin and protein-pigment complex formation showed that the effect of sugar concentration occurred by increasing the solubility of the tannin-protein complex, not by interfering with protein-tannin complex formation. By increasing the solubility of pigment-protein complexes, non-protein-precipitable polymeric pigments (nPPP) appeared to increase. There was also an increase in total polymeric pigments at each tannin concentration with increasing glucose and sucrose concentration, indicating that sugar concentration might also affect bisulphite bleaching of wine pigments. While a significant effect of sugar concentration on tannin-protein complex solubility was observed, these effects were greatest at sugar concentrations far in excess of normal wine making conditions. Under normal wine making conditions, sugar concentration will have a negligible effect on protein-precipitable tannin, PPP and nPPP concentrations. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. High glucose-induced Ca2+ overload and oxidative stress contribute to apoptosis of cardiac cells through mitochondrial dependent and independent pathways.

    Science.gov (United States)

    Kumar, Sandeep; Kain, Vasundhara; Sitasawad, Sandhya L

    2012-07-01

    Cardiac cell apoptosis is the initiating factor of cardiac complications especially diabetic cardiomyopathy. Mitochondria are susceptible to the damaging effects of elevated glucose condition. Calcium overload and oxidative insult are the two mutually non-exclusive phenomena suggested to cause cardiac dysfunction. Here, we examined the effect of high-glucose induced calcium overload in calpain-1 mediated cardiac apoptosis in an in vitro setting. H9c2, rat ventricular myoblast cell line was treated with elevated glucose condition and the cellular consequences were studied. Intracellular calcium trafficking, ROS generation, calpain-1 activation and caspase-12 and caspase-9 pathway were studied using flow cytometry, confocal microscopy and Western blot analysis. High-glucose treatment resulted in increased intracellular calcium ([Ca2+]i) which was mobilized to the mitochondria. Concomitant intra-mitochondrial calcium ([Ca2+]m) increase resulted in enhanced reactive oxygen and nitrogen species generation. These events led to mitochondrial dysfunction and apoptosis. Cardiomyocyte death exhibited several classical markers of apoptosis, including activation of caspases, appearance of annexin V on the outer plasma membrane, increased population of cells with sub-G0/G1 DNA content and nuclear condensation. Key findings include elucidation of cell signaling mechanism of high-glucose induced calcium-dependent cysteine protease calpain-1 activation, which triggers non-conventional caspases as alternate mode of cell death. This information increases the understanding of cardiac cell death under hyperglycemic condition and can possibly be extended for designing new therapeutic strategies for diabetic cardiomyopathy. The novel findings of the study reveal that high glucose induces apoptosis by both mitochondria-dependent and independent pathways via concomitant rise in intracellular calcium. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. miR-23b-3p induces the cellular metabolic memory of high glucose in diabetic retinopathy through a SIRT1-dependent signalling pathway.

    Science.gov (United States)

    Zhao, Shuzhi; Li, Tao; Li, Jun; Lu, Qianyi; Han, Changjing; Wang, Na; Qiu, Qinghua; Cao, Hui; Xu, Xun; Chen, Haibing; Zheng, Zhi

    2016-03-01

    The mechanisms underlying the cellular metabolic memory induced by high glucose remain unclear. Here, we sought to determine the effects of microRNAs (miRNAs) on metabolic memory in diabetic retinopathy. The miRNA microarray was used to examine human retinal endothelial cells (HRECs) following exposure to normal glucose (N) or high glucose (H) for 1 week or transient H for 2 days followed by N for another 5 days (H→N). Levels of sirtuin 1 (SIRT1) and acetylated-nuclear factor κB (Ac-NF-κB) were examined following transfection with miR-23b-3p inhibitor or with SIRT1 small interfering (si)RNA in the H→N group, and the apoptotic HRECs were determined by flow cytometry. Retinal tissues from diabetic rats were similarly studied following intravitreal injection of miR-23b-3p inhibitor. Chromatin immunoprecipitation (ChIP) analysis was performed to detect binding of NF-κB p65 to the potential binding site of the miR-23b-27b-24-1 gene promoter in HRECs. High glucose increased miR-23b-3p expression, even after the return to normal glucose. Luciferase assays identified SIRT1 as a target mRNA of miR-23b-3p. Reduced miR-23b-3p expression inhibited Ac-NF-κB expression by rescuing SIRT1 expression and also relieved the effect of metabolic memory induced by high glucose in HRECs. The results were confirmed in the retina using a diabetic rat model of metabolic memory. High glucose facilitated the recruitment of NF-κB p65 and promoted transcription of the miR-23b-27b-24-1 gene, which can be suppressed by decreasing miR-23b-3p expression. These studies identify a novel mechanism whereby miR-23b-3p regulates high-glucose-induced cellular metabolic memory in diabetic retinopathy through a SIRT1-dependent signalling pathway.

  11. Dietary fructose and glucose differentially affect lipid and glucose homeostasis.

    Science.gov (United States)

    Schaefer, Ernst J; Gleason, Joi A; Dansinger, Michael L

    2009-06-01

    Absorbed glucose and fructose differ in that glucose largely escapes first-pass removal by the liver, whereas fructose does not, resulting in different metabolic effects of these 2 monosaccharides. In short-term controlled feeding studies, dietary fructose significantly increases postprandial triglyceride (TG) levels and has little effect on serum glucose concentrations, whereas dietary glucose has the opposite effects. When dietary glucose and fructose have been directly compared at approximately 20-25% of energy over a 4- to 6-wk period, dietary fructose caused significant increases in fasting TG and LDL cholesterol concentrations, whereas dietary glucose did not, but dietary glucose did increase serum glucose and insulin concentrations in the postprandial state whereas dietary fructose did not. When fructose at 30-60 g ( approximately 4-12% of energy) was added to the diet in the free-living state, there were no significant effects on lipid or glucose biomarkers. Sucrose and high-fructose corn syrup (HFCS) contain approximately equal amounts of fructose and glucose and no metabolic differences between them have been noted. Controlled feeding studies at more physiologic dietary intakes of fructose and glucose need to be conducted. In our view, to decrease the current high prevalence of obesity, dyslipidemia, insulin resistance, and diabetes, the focus should be on restricting the intake of excess energy, sucrose, HFCS, and animal and trans fats and increasing exercise and the intake of vegetables, vegetable oils, fish, fruit, whole grains, and fiber.

  12. Consumption of Honey, Sucrose, and High-Fructose Corn Syrup Produces Similar Metabolic Effects in Glucose-Tolerant and -Intolerant Individuals.

    Science.gov (United States)

    Raatz, Susan K; Johnson, LuAnn K; Picklo, Matthew J

    2015-10-01

    Public health recommendations call for a reduction in added sugars; however, controversy exists over whether all nutritive sweeteners produce similar metabolic effects. The objective was to compare the effects of the chronic consumption of 3 nutritive sweeteners [honey, sucrose, and high-fructose corn syrup containing 55% fructose (HFCS55)] on circulating glucose, insulin, lipids, and inflammatory markers; body weight; and blood pressure in individuals with normal glucose tolerance (GT) and those with impaired glucose tolerance (IGT). In a crossover design, participants consumed daily, in random order, 50 g carbohydrate from assigned sweeteners for 2 wk with a 2- to 4-wk washout period between treatments. Participants included 28 GT and 27 IGT volunteers with a mean age of 38.9 ± 3.6 y and 52.1 ± 2.7 y, respectively, and a body mass index (in kg/m(2)) of 26 ± 0.8 and 31.5 ± 1.0, respectively. Body weight, blood pressure (BP), serum inflammatory markers, lipids, fasting glucose and insulin, and oral-glucose-tolerance tests (OGTTs) were completed pre- and post-treatment. The OGTT incremental areas under the curve (iAUCs) for glucose and insulin were determined and homeostasis model assessment of insulin resistance (HOMA-IR) scores were calculated. Body weight and serum glucose, insulin, inflammatory markers, and total and LDL-cholesterol concentrations were significantly higher in the IGT group than in the GT group at baseline. Glucose, insulin, HOMA-IR, and the OGTT iAUC for glucose or insulin did not differ by treatment, but all responses were significantly higher in the IGT group compared with the GT group. Body weight was unchanged by treatment. Systolic BP was unchanged, whereas diastolic BP was significantly lower in response to sugar intake across all treatments. An increase in high-sensitivity C-reactive protein (hsCRP) was observed in the IGT group in response to all sugars. No treatment effect was observed for interleukin 6. HDL cholesterol did not

  13. Agmatine protects Müller cells from high-concentration glucose-induced cell damage via N-methyl-D-aspartic acid receptor inhibition.

    Science.gov (United States)

    Han, Ning; Yu, Li; Song, Zhidu; Luo, Lifu; Wu, Yazhen

    2015-07-01

    Neural injury is associated with the development of diabetic retinopathy. Müller cells provide structural and metabolic support for retinal neurons. High glucose concentrations are known to induce Müller cell activity. Agmatine is an endogenous polyamine, which is enzymatically formed in the mammalian brain and has exhibited neuroprotective effects in a number of experimental models. The aims of the present study were to investigate whether agmatine protects Müller cells from glucose-induced damage and to explore the mechanisms underlying this process. Lactate dehydrogenase activity and tumor necrosis factor-α mRNA expression were significantly reduced in Müller cells exposed to a high glucose concentration, following agmatine treatment, compared with cells not treated with agmatine. In addition, agmatine treatment inhibited glucose-induced Müller cell apoptosis, which was associated with the regulation of Bax and Bcl-2 expression. Agmatine treatment suppressed glucose-induced phosphorylation of mitogen-activated protein kinase (MAPK) protein in Müller cells. The present study demonstrated that the protective effects of agmatine on Müller cells were inhibited by N-methyl-D-aspartic acid (NMDA). The results of the present study suggested that agmatine treatment protects Müller cells from high-concentration glucose-induced cell damage. The underlying mechanisms may relate to the anti-inflammatory and antiapoptotic effects of agmatine, as well as to the inhibition of the MAPK pathway, via NMDA receptor suppression. Agmatine may be of use in the development of novel therapeutic approaches for patients with diabetic retinopathy.

  14. Real-time continuous glucose monitoring shows high accuracy within 6 hours after sensor calibration: a prospective study.

    Directory of Open Access Journals (Sweden)

    Xiao-Yan Yue

    Full Text Available Accurate and timely glucose monitoring is essential in intensive care units. Real-time continuous glucose monitoring system (CGMS has been advocated for many years to improve glycemic management in critically ill patients. In order to determine the effect of calibration time on the accuracy of CGMS, real-time subcutaneous CGMS was used in 18 critically ill patients. CGMS sensor was calibrated with blood glucose measurements by blood gas/glucose analyzer every 12 hours. Venous blood was sampled every 2 to 4 hours, and glucose concentration was measured by standard central laboratory device (CLD and by blood gas/glucose analyzer. With CLD measurement as reference, relative absolute difference (mean±SD in CGMS and blood gas/glucose analyzer were 14.4%±12.2% and 6.5%±6.2%, respectively. The percentage of matched points in Clarke error grid zone A was 74.8% in CGMS, and 98.4% in blood gas/glucose analyzer. The relative absolute difference of CGMS obtained within 6 hours after sensor calibration (8.8%±7.2% was significantly less than that between 6 to 12 hours after calibration (20.1%±13.5%, p<0.0001. The percentage of matched points in Clarke error grid zone A was also significantly higher in data sets within 6 hours after calibration (92.4% versus 57.1%, p<0.0001. In conclusion, real-time subcutaneous CGMS is accurate in glucose monitoring in critically ill patients. CGMS sensor should be calibrated less than 6 hours, no matter what time interval recommended by manufacturer.

  15. Cardamom powder supplementation prevents obesity, improves glucose intolerance, inflammation and oxidative stress in liver of high carbohydrate high fat diet induced obese rats.

    Science.gov (United States)

    Rahman, Md Mizanur; Alam, Mohammad Nazmul; Ulla, Anayt; Sumi, Farzana Akther; Subhan, Nusrat; Khan, Trisha; Sikder, Bishwajit; Hossain, Hemayet; Reza, Hasan Mahmud; Alam, Md Ashraful

    2017-08-14

    Cardamom is a well-known spice in Indian subcontinent, used in culinary and traditional medicine practices since ancient times. The current investigation was untaken to evaluate the potential benefit of cardamom powder supplementation in high carbohydrate high fat (HCHF) diet induced obese rats. Male Wistar rats (28 rats) were divided into four different groups such as Control, Control + cardamom, HCHF, HCHF + cardamom. High carbohydrate and high fat (HCHF) diet was prepared in our laboratory. Oral glucose tolerance test, organs wet weight measurements and oxidative stress parameters analysis as well as liver marker enzymes such as alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) activities were assayed on the tissues collected from the rats. Plasma lipids profiles were also measured in all groups of animals. Moreover, histological staining was also performed to evaluate inflammatory cells infiltration and fibrosis in liver. The current investigation showed that, HCHF diet feeding in rats developed glucose intolerance and increased peritoneal fat deposition compared to control rats. Cardamom powder supplementation improved the glucose intolerance significantly (p > 0.05) and prevented the abdominal fat deposition in HCHF diet fed rats. HCHF diet feeding in rats also developed dyslipidemia, increased fat deposition and inflammation in liver compared to control rats. Cardamom powder supplementation significantly prevented the rise of lipid parameters (p > 0.05) in HCHF diet fed rats. Histological assessments confirmed that HCHF diet increased the fat deposition and inflammatory cells infiltration in liver which was normalized by cardamom powder supplementation in HCHF diet fed rats. Furthermore, HCHF diet increased lipid peroxidation, decreased antioxidant enzymes activities and increased advanced protein oxidation product level significantly (p > 0.05) both in plasma and liver tissue which were modulated by

  16. Quantifying the Contribution of Grape Hexoses to Wine Volatiles by High-Precision [U13C]-Glucose Tracer Studies

    Science.gov (United States)

    Nisbet, Mark A.; Tobias, Herbert J.; Brenna, J. Thomas; Sacks, Gavin L.; Mansfield, Anna Katharine

    2016-01-01

    Many fermentation volatiles important to wine aroma potentially arise from yeast metabolism of hexose sugars, but assessing the relative importance of these pathways is challenging due to high endogenous hexose substrate concentrations. To overcome this problem, gas chromatography combustion isotope ratio mass spectrometry (GC-C-IRMS) was used to measure high-precision 13C/12C isotope ratios of volatiles in wines produced from juices spiked with tracer levels (0.01–1 APE) of uniformly labeled [U-13C]-glucose. The contribution of hexose to individual volatiles was determined from the degree of 13C enrichment. As expected, straight-chain fatty acids and their corresponding ethyl esters were derived almost exclusively from hexoses. Most fusel alcohols and their acetate esters were also majority hexose-derived, indicating the importance of anabolic pathways for their formation. Only two compounds were not derived primarily from hexoses (hexanol and isobutyric acid). This approach can be extended to other food systems or substrates for studying precursor–product relationships. PMID:24960193

  17. Quantifying the contribution of grape hexoses to wine volatiles by high-precision [U¹³C]-glucose tracer studies.

    Science.gov (United States)

    Nisbet, Mark A; Tobias, Herbert J; Brenna, J Thomas; Sacks, Gavin L; Mansfield, Anna Katharine

    2014-07-16

    Many fermentation volatiles important to wine aroma potentially arise from yeast metabolism of hexose sugars, but assessing the relative importance of these pathways is challenging due to high endogenous hexose substrate concentrations. To overcome this problem, gas chromatography combustion isotope ratio mass spectrometry (GC-C-IRMS) was used to measure high-precision (13)C/(12)C isotope ratios of volatiles in wines produced from juices spiked with tracer levels (0.01-1 APE) of uniformly labeled [U-(13)C]-glucose. The contribution of hexose to individual volatiles was determined from the degree of (13)C enrichment. As expected, straight-chain fatty acids and their corresponding ethyl esters were derived almost exclusively from hexoses. Most fusel alcohols and their acetate esters were also majority hexose-derived, indicating the importance of anabolic pathways for their formation. Only two compounds were not derived primarily from hexoses (hexanol and isobutyric acid). This approach can be extended to other food systems or substrates for studying precursor-product relationships.

  18. DHEA supplementation in ovariectomized rats reduces impaired glucose-stimulated insulin secretion induced by a high-fat diet

    Directory of Open Access Journals (Sweden)

    Katherine Veras

    2014-01-01

    Full Text Available Dehydroepiandrosterone (DHEA and the dehydroepiandrosterone sulfate (DHEA-S are steroids produced mainly by the adrenal cortex. There is evidence from both human and animal models suggesting beneficial effects of these steroids for obesity, diabetes mellitus, hypertension, and osteoporosis, conditions associated with the post-menopausal period. Accordingly, we hypothesized that DHEA supplementation in ovariectomized (OVX female rats fed a high-fat diet would maintain glucose-induced insulin secretion (GSIS and pancreatic islet function. OVX resulted in a 30% enlargement of the pancreatic islets area compared to the control rats, which was accompanied by a 50% reduction in the phosphorylation of AKT protein in the pancreatic islets. However, a short-term high-fat diet induced insulin resistance, accompanied by impaired GSIS in isolated pancreatic islets. These effects were reversed by DHEA treatment, with improved insulin sensitivity to levels similar to the control group, and with increased serine phosphorylation of the AKT protein. These data confirm the protective effect of DHEA on the endocrine pancreas in a situation of diet-induced overweight and low estrogen concentrations, a phenotype similar to that of the post-menopausal period.

  19. Infliximab treatment prevents hyperglycemia and the intensification of hepatic gluconeogenesis in an animal model of high fat diet-induced liver glucose overproduction

    Directory of Open Access Journals (Sweden)

    Karissa Satomi Haida

    2012-06-01

    Full Text Available The effect of infliximab on gluconeogenesis in an animal model of diet-induced liver glucose overproduction was investigated. The mice were treated with standard diet (SD group or high fat diet (HFD group. HFD group were randomly divided and treated either with saline (100 µl/dose, ip, twice a day or infliximab (10 µg in 100 µl saline per dose, ip, twice a day, i.e., 0.5 mg/kg per day. SD group also received saline. The treatment with infliximab or saline started on the first day of the introduction of the HFD and was maintained during two weeks. After this period, the mice were fasted (15 h and anesthetized. After laparotomy, blood was collected for glucose determination followed by liver perfusion in which L-alanine (5 mM was used as gluconeogenic substrate. HFD group treated with saline showed higher (p < 0.05 liver glucose production from L-alanine and fasting hyperglycemia. However, these metabolic changes were prevented by infliximab treatment. Therefore, this study suggested that infliximab could prevent the glucose overproduction and hyperglycemia related with glucose intolerance and type 2 diabetes.

  20. Supplementation of Syzygium cumini seed powder prevented obesity, glucose intolerance, hyperlipidemia and oxidative stress in high carbohydrate high fat diet induced obese rats.

    Science.gov (United States)

    Ulla, Anayt; Alam, Md Ashraful; Sikder, Biswajit; Sumi, Farzana Akter; Rahman, Md Mizanur; Habib, Zaki Farhad; Mohammed, Mostafe Khalid; Subhan, Nusrat; Hossain, Hemayet; Reza, Hasan Mahmud

    2017-06-02

    Obesity and related complications have now became epidemic both in developed and developing countries. Cafeteria type diet mainly composed of high fat high carbohydrate components which plays a significant role in the development of obesity and metabolic syndrome. This study investigated the effect of Syzygium cumini seed powder on fat accumulation and dyslipidemia in high carbohydrate high fat diet (HCHF) induced obese rats. Male Wistar rats were fed with HCHF diet ad libitum, and the rats on HCHF diet were supplemented with Syzygium cumini seed powder for 56 days (2.5% w/w of diet). Oral glucose tolerance test, lipid parameters, liver marker enzymes (AST, ALT and ALP) and lipid peroxidation products were analyzed at the end of 56 days. Moreover, antioxidant enzyme activities were also measured in all groups of rats. Supplementation with Syzygium cumini seed powder significantly reduced body weight gain, white adipose tissue (WAT) weights, blood glucose, serum insulin, and plasma lipids such as total cholesterol, triglyceride, LDL and HDL concentration. Syzygium cumini seed powder supplementation in HCHF rats improved serum aspartate amino transferase (AST), alanine amino transferase (ALT), and alkaline phosphatase (ALP) activities. Syzygium cumini seed powder supplementation also reduced the hepatic thiobarbituric acid reactive substances (TBARS) and elevated the antioxidant enzyme superoxide dismutase (SOD) and catalase (CAT) activities as well as increased glutathione (GSH) concentration. In addition, histological assessment showed that Syzygium cumini seed powder supplementation prevented inflammatory cell infiltration; fatty droplet deposition and fibrosis in liver of HCHFD fed rats. Our investigation suggests that Syzygium cumini seed powder supplementation prevents oxidative stress and showed anti-inflammatory and antifibrotic activity in liver of HCHF diet fed rats. In addition, Syzygium cumini seed powder may be beneficial in ameliorating insulin

  1. Associations between Ultrasound Measures of Abdominal Fat Distribution and Indices of Glucose Metabolism in a Population at High Risk of Type 2 Diabetes: The ADDITION-PRO Study

    DEFF Research Database (Denmark)

    Philipsen, Annelotte; Jørgensen, Marit E; Vistisen, Dorte

    2015-01-01

    metabolism in a population at high risk of type 2 diabetes. METHODS: A cross-sectional analysis of 1342 participants of the ADDITION-PRO study. We measured visceral adipose tissue and subcutaneous adipose tissue with ultrasonography, anthropometrics and body fat percentage by bioelectrical impedance. Indices...... standard deviation difference in BMI, visceral adipose tissue, waist circumference, waist/height ratio and body fat percentage corresponded approximately to 0.2mmol/l higher fasting glucose, 0.7mmol/l higher 2-hr glucose, 0.06-0.1% higher HbA1c, 30 % lower HOMA index of insulin sensitivity, 20% lower Gutt...

  2. Tissue inhibitor of matrix metalloproteinase-1 is required for high-fat diet-induced glucose intolerance and hepatic steatosis in mice

    DEFF Research Database (Denmark)

    Fjære, Even; Andersen, Charlotte; Myrmel, Lene Secher

    2015-01-01

    -induced glucose intolerance and hepatic steatosis using the Timp1 null mice. METHODS: Timp1 knockout (TKO) and wild type (TWT) mice were fed chow, high-fat diet (HFD) or intermediate fat and sucrose diet (IFSD). We determined body weight, body composition, lipid content of the liver, energy intake, energy...... and had lower energy efficiency than TWT mice when fed HFD, but not when fed chow or IFSD. Importantly, TKO mice were protected from development of HFD- as well as IFSD-induced glucose intolerance, hepatic steatosis, and altered expression of genes involved in hepatic lipid metabolism and inflammation....... CONCLUSION: Collectively, our results indicate that TIMP-1 contributes to the development of diet-induced hepatic steatosis and glucose intolerance and may be a potential therapeutic target....

  3. [Estimation of the consumption frequency of high glucose corn syrup by patients with hypertension].

    Science.gov (United States)

    Semków-Pochwatko, Aneta; Stolarz-Skrzypek, Katarzyna; Czarnecka, Danuta

    Hypertension is a major health problem in modern times, due to its high prevalence. This is an important risk factor for cardiovascular disease, which are the main cause of death in developed countries. The component of prevention and non-pharmacological treatment of hypertension is a proper diet. More and more often an adequate supply of sugars in the diet is emphasized. In recent years particular attention was paid to the consumption of HFCS (high fructose corn syrup), which is present in many processed foods. The aim of this study was to estimate the frequency of consumption of HFCS products among patients with hypertension. The study involved 108 people diagnosed with hypertension, who attended to the Hypertensive Clinic in Krakow. The study was conducted in the form of Food Frequency Questionnaire (FFQ) of 24 selected beverages and solid products, which are a source of HFCS. In addition, the survey included 6 questions about nutrition knowledge on HFCS. The examination took place from October 2014. to March 2015. The vast majority of patients indicated consumption of products with HFSC. The most popular products proved to be sweets (especially chocolate bars, wafers) and fruit drinks and nectars. Frequent consumption of cola drinks was also observed, which were more often chosen by men than women. Younger respondents (<55 years old) more often than respondents over 55. years old chose sweets. At the same time our survey indicated unsatisfactory level of nutritional knowledge on HFCS among patients. The consumption of HFCS in patients with hypertension is common, at low knowledge of its harmful effects on health. Therefore there is apparent need for dietary education of patients with hypertension in this area.

  4. Propolis, a Constituent of Honey, Inhibits the Development of Sugar Cataracts and High-Glucose-Induced Reactive Oxygen Species in Rat Lenses

    Directory of Open Access Journals (Sweden)

    Teppei Shibata

    2016-01-01

    Full Text Available Purpose. This study investigated the effects of oral propolis on the progression of galactose-induced sugar cataracts in rats and the in vitro effects of propolis on high-glucose-induced reactive oxygen species (ROS and cell death in cultured rat lens cells (RLECs. Methods. Galactose-fed rats and RLECs cultured in high glucose (55 mM medium were treated with propolis or vehicle control. Relative lens opacity was assessed by densitometry and changes in lens morphology by histochemical analysis. Intracellular ROS levels and cell viability were measured. Results. Oral administration of propolis significantly inhibited the onset and progression of cataract in 15% and 25% of galactose-fed rats, respectively. RLECs cultured with high glucose showed a significant increase in ROS expression with reduced cell viability. Treatment of these RLECs with 5 and 50 μg/mL propolis cultured significantly reduced ROS levels and increased cell viability, indicating that the antioxidant activity of propolis protected cells against ROS-induced damage. Conclusion. Propolis significantly inhibited the onset and progression of sugar cataract in rats and mitigated high-glucose-induced ROS production and cell death. These effects may be associated with the ability of propolis to inhibit hyperglycemia-evoked oxidative or osmotic stress-induced cellular insults.

  5. Associations between ultrasound measures of abdominal fat distribution and indices of glucose metabolism in a population at high risk of type 2 diabetes: the ADDITION-PRO study.

    Directory of Open Access Journals (Sweden)

    Annelotte Philipsen

    Full Text Available Visceral adipose tissue measured by CT or MRI is strongly associated with an adverse metabolic risk profile. We assessed whether similar associations can be found with ultrasonography, by quantifying the strength of the relationship between different measures of obesity and indices of glucose metabolism in a population at high risk of type 2 diabetes.A cross-sectional analysis of 1342 participants of the ADDITION-PRO study. We measured visceral adipose tissue and subcutaneous adipose tissue with ultrasonography, anthropometrics and body fat percentage by bioelectrical impedance. Indices of glucose metabolism were derived from a three point oral glucose tolerance test. Linear regression of obesity measures on indices of glucose metabolism was performed.Mean age was 66.2 years, BMI 26.9kg/m2, subcutaneous adipose tissue 2.5cm and visceral adipose tissue 8.0cm. All measures of obesity were positively associated with indicators of glycaemia and inversely associated with indicators of insulin sensitivity. Associations were of equivalent magnitude except for subcutaneous adipose tissue and the visceral/subcutaneous adipose tissue ratio, which showed weaker associations. One standard deviation difference in BMI, visceral adipose tissue, waist circumference, waist/height ratio and body fat percentage corresponded approximately to 0.2mmol/l higher fasting glucose, 0.7mmol/l higher 2-hr glucose, 0.06-0.1% higher HbA1c, 30 % lower HOMA index of insulin sensitivity, 20% lower Gutt's index of insulin sensitivity, and 100 unit higher Stumvoll's index of beta-cell function. After adjustment for waist circumference visceral adipose tissue was still significantly associated with glucose intolerance and insulin resistance, whereas there was a trend towards inverse or no associations with subcutaneous adipose tissue. After adjustment, a 1cm increase in visceral adipose tissue was associated with ~5% lower insulin sensitivity (p≤0.0004 and ~0.18mmol/l higher 2-hr

  6. Glucose and lipid metabolism in rats supplemented with glycyrrhizic acid exposed to short- or long- term stress and fed on a high-calorie diet

    OpenAIRE

    Yaw, Hui Ping

    2017-01-01

    Stress and consumption of high-calorie diet are well-recognized as the primary contributor to various metabolic diseases such as the metabolic syndrome. Glycyrrhizic acid (GA), an active compound in the root extract of the licorice plant, Glycyrrhiza glabra has been shown to improve hyperglycaemia and dyslipidaemia in rats fed on a high- calorie diet. However, the effect of GA on glucose and lipid metabolism in rats under stress in combination with high- calorie diet has yet to be expl...

  7. N-Cadherin Attenuates High Glucose-Induced Nucleus Pulposus Cell Senescence Through Regulation of the ROS/NF-κB Pathway.

    Science.gov (United States)

    Hou, Gang; Zhao, Huiqing; Teng, Haijun; Li, Pei; Xu, Wenbin; Zhang, Junbin; Lv, Lulu; Guo, Zhiliang; Wei, Li; Yao, Hui; Xu, Yichun

    2018-05-11

    Diabetes mellitus (DM) is a potential etiology of disc degeneration. N-cadherin (N-CDH) helps maintain the cell viability, cell phenotype and matrix biosynthesis of nucleus pulposus (NP) cells. Here, we mainly aimed to investigate whether N-CDH can attenuate high glucose-induced NP cell senescence and its potential mechanism. Rat NP cells were cultured in a base culture medium and base culture medium with a 0.2 M glucose concentration. Recombinant lentiviral vectors were used to enhance N-CDH expression in NP cells. Senescence-associated β-galactosidase (SA-β-Gal) activity was measured by SA-β-Gal staining. NP cell proliferation was evaluated by CCK-8 assay. Telomerase activity and intracellular reactive oxygen species (ROS) content were tested by specific chemical kits according to the manufacturer's instructions. G0/G1 cell cycle arrest was evaluated by flow cytometry. Real-time PCR and Western blotting were used to analyze mRNA and protein expressions of senescence markers (p16 and p53) and matrix macromolecules (aggrecan and collagen II). Additionally, p-NF-κB expression was also analyzed by Western blotting to evaluate NF-κB pathway activity. High glucose significantly decreased N-CDH expression, increased ROS generation and NF-κB pathway activity, and promoted NP cell senescence, which was reflected in the increase in SA-β-Gal activity and senescence marker (p16 and p53) expression, compared to the control group. High glucose decreased telomerase activity and cell proliferation potency. However, N-CDH overexpression partially attenuated NP cell senescence, decreased ROS content and inhibited the activation of the NF-κB pathway under the high glucose condition. High glucose decreases N-CDH expression and promotes NP cell senescence. N-CDH overexpression can attenuate high glucose-induced NP cell senescence through the regulation of the ROS/ NF-κB pathway. This study suggests that N-CDH is a potential therapeutic target to slow DM-mediated disc NP

  8. Autophagy Inhibition Contributes to ROS-Producing NLRP3-Dependent Inflammasome Activation and Cytokine Secretion in High Glucose-Induced Macrophages.

    Science.gov (United States)

    Dai, Jiezhi; Zhang, Xiaotian; Li, Li; Chen, Hua; Chai, Yimin

    2017-01-01

    Type 2 diabetes is a persistent inflammatory response that impairs the healing process. We hypothesized that stimulation with high glucose following a pro-inflammatory signal would lead to autophagy inhibition, reactive oxygen species (ROS) production and eventually to the activation of the Nod-like receptor protein (NLRP) -3. Macrophages were isolated from human diabetic wound. We measured the expression of NLRP3, caspase1 and interleukin-1 beta (IL-1β) by western blot and real-time PCR, and the surface markers on cells by flow cytometry. THP-1-derived macrophages exposed to high glucose were applied to study the link between autophagy, ROS and NLRP3 activation. LC3-II, P62, NLRP3 inflammation and IL-1β expression were measured by western blot and real-time PCR. ROS production was measured with a Cellular Reactive Oxygen Species Detection Assay Kit. Macrophages isolated from diabetic wounds exhibited a pro-inflammatory phenotype, including sustained NLRP3 inflammasome activity associated with IL-1β secretion. Our data showed that high glucose inhibited autophagy, induced ROS production, and activated NLRP3 inflammasome and cytokine secretion in THP-1-derived macrophages. To study high glucose-induced NLRP3 inflammasome signalling, we performed studies using an autophagy inducer, a ROS inhibitor and a NLRP3 inhibitor and found that all reduced the NLRP3 inflammasome activation and cytokine secretion. Sustained NLRP3 inflammasome activity in wound-derived macrophages contributes to the hyper-inflammation in human diabetic wounds. Autophagy inhibition and ROS generation play an essential role in high glucose-induced NLRP3 inflammasome activation and cytokine secretion in macrophages. © 2017 The Author(s). Published by S. Karger AG, Basel.

  9. Enhancement of high glucose-induced PINK1 expression by melatonin stimulates neuronal cell survival: Involvement of MT2 /Akt/NF-κB pathway.

    Science.gov (United States)

    Onphachanh, Xaykham; Lee, Hyun Jik; Lim, Jae Ryong; Jung, Young Hyun; Kim, Jun Sung; Chae, Chang Woo; Lee, Sei-Jung; Gabr, Amr Ahmed; Han, Ho Jae

    2017-09-01

    Hyperglycemia is a representative hallmark and risk factor for diabetes mellitus (DM) and is closely linked to DM-associated neuronal cell death. Previous investigators reported on a genome-wide association study and showed relationships between DM and melatonin receptor (MT), highlighting the role of MT signaling by assessing melatonin in DM. However, the role of MT signaling in DM pathogenesis is unclear. Therefore, we investigated the role of mitophagy regulators in high glucose-induced neuronal cell death and the effect of melatonin against high glucose-induced mitophagy regulators in neuronal cells. In our results, high glucose significantly increased PTEN-induced putative kinase 1 (PINK1) and LC-3B expressions; as well it decreased cytochrome c oxidase subunit 4 expression and Mitotracker™ fluorescence intensity. Silencing of PINK1 induced mitochondrial reactive oxygen species (ROS) accumulation and mitochondrial membrane potential impairment, increased expressions of cleaved caspases, and increased the number of annexin V-positive cells. In addition, high glucose-stimulated melatonin receptor 1B (MTNR1B) mRNA and PINK1 expressions were reversed by ROS scavenger N-acetyl cysteine pretreatment. Upregulation of PINK1 expression in neuronal cells is suppressed by pretreatment with MT 2 receptor-specific inhibitor 4-P-PDOT. We further showed melatonin stimulated Akt phosphorylation, which was followed by nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) phosphorylation and nuclear translocation. Silencing of PINK1 expression abolished melatonin-regulated mitochondrial ROS production, cleaved caspase-3 and caspase-9 expressions, and the number of annexin V-positive cells. In conclusion, we have demonstrated the melatonin stimulates PINK1 expression via an MT 2 /Akt/NF-κB pathway, and such stimulation is important for the prevention of neuronal cell apoptosis under high glucose conditions. © 2017 The Authors. Journal of Pineal Research

  10. Activation of the PI3K/Akt pathway by oxidative stress mediates high glucose-induced increase of adipogenic differentiation in primary rat osteoblasts.

    Science.gov (United States)

    Zhang, Yu; Yang, Jian-Hong

    2013-11-01

    Diabetes mellitus is associated with increased risk of osteopenia and bone fracture that may be related to hyperglycemia. However, the mechanisms accounting for diabetic bone disorder are unclear. Here, we showed that high glucose significantly promoted the production of reactive oxygen species (ROS) in rat primary osteoblasts. Most importantly, we reported for the first time that ROS induced by high glucose increased alkaline phosphatase activity, inhibited type I collagen (collagen I) protein level and cell mineralization, as well as gene expression of osteogenic markers including runt-related transcription factor 2 (Runx2), collagen I, and osteocalcin, but promoted lipid droplet formation and gene expression of adipogenic markers including peroxisome proliferator-activated receptor gamma, adipocyte fatty acid binding protein (aP2), and adipsin, which were restored by pretreatment with N-acetyl-L-cysteine (NAC), a ROS scavenger. Moreover, high glucose-induced oxidative stress activated PI3K/Akt pathway to inhibited osteogenic differentiation but stimulated adipogenic differentiation. In contrast, NAC and a PI3K inhibitor, LY-294002, reversed the down-regulation of osteogenic markers and the up-regulation of adipogenic markers as well as the activation of Akt under high glucose. These results indicated that oxidative stress played a key role in high glucose-induced increase of adipogenic differentiation, which contributed to the inhibition of osteogenic differentiation. This process was mediated by PI3K/Akt pathway in rat primary osteoblasts. Hence, suppression of oxidative stress could be a potential therapeutic approach for diabetic osteopenia. © 2013 Wiley Periodicals, Inc.

  11. Glucose-dependent insulinotropic polypeptide

    DEFF Research Database (Denmark)

    Christensen, Mikkel Bring

    2016-01-01

    was to investigate how the blood glucose level affects the glucagon and insulin responses to GIP in healthy subjects (Study 1) and patients with Type 2 diabetes (Study 2), and more specifically to investigate the effects of GIP and GLP-1 at low blood glucose in patients with Type 1 diabetes without endogenous...... as his own control. Interventions were intravenous administration of hormones GIP, GLP-1 and placebo (saline) during different blood glucose levels maintained (clamped) at a certain level. The end-points were plasma concentrations of glucagon and insulin as well as the amount of glucose used to clamp...... the blood glucose levels. In Study 3, we also used stable glucose isotopes to estimate the endogenous glucose production and assessed symptoms and cognitive function during hypoglycaemia. The results from the three studies indicate that GIP has effects on insulin and glucagon responses highly dependent upon...

  12. The influence of Bauhinia forficata Link subsp. pruinosa tea on lipid peroxidation and non-protein SH groups in human erythrocytes exposed to high glucose concentrations.

    Science.gov (United States)

    Salgueiro, Andréia C F; Leal, Carina Q; Bianchini, Matheus C; Prado, Ianeli O; Mendez, Andreas S L; Puntel, Robson L; Folmer, Vanderlei; Soares, Félix A; Avila, Daiana S; Puntel, Gustavo O

    2013-06-21

    Bauhinia forficata (BF) has been traditionally used as tea in folk medicine of Brazil for treatment of Diabetes mellitus (DM). To evaluate the effects of BF leaf tea on markers of oxidative damage and antioxidant levels in an experimental model of hyperglycemia in human erythrocytes in vitro. Human erythrocytes were incubated with high glucose concentrations or glucose and BF tea for 24h and 48h. After incubation lipid peroxidation and non-protein SH levels were analyzed. Moreover, quantification of polyphenols and flavonoids, iron chelating property, scavenging of DPPH, and prevention of lipid peroxidation in isolated lipids were also assessed. A significant amount of polyphenols and flavonoids was observed. The main components found by LC-MS analysis were quercetin-3-O-(2-rhamnosyl) rutinoside, kaempferol-3-O-(2-rhamnosyl) rutinoside, quercetin-3-O-rutinoside and kaempferol-3-O-rutinoside. BF tea presents important antioxidant and chelating properties. Moreover, BF tea was effective to increase non-protein SH levels and reduce lipid peroxidation induced by high glucose concentrations in human erythrocytes. The antioxidant effects of BF tea could be related to the presence of different phenolic and flavonoids components. We believe that these components can be responsible to protect human erythrocytes exposed to high glucose concentrations against oxidative damage. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  13. Ni/CdS bifunctional Ti@TiO2 core-shell nanowire electrode for high-performance nonenzymatic glucose sensing.

    Science.gov (United States)

    Guo, Chunyan; Huo, Huanhuan; Han, Xu; Xu, Cailing; Li, Hulin

    2014-01-07

    In this work, a Ni/CdS bifunctional Ti@TiO2 core-shell nanowire electrode with excellent electrochemical sensing property was successfully constructed through a hydrothermal and electrodeposition method. Field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) were employed to confirm the synthesis and characterize the morphology of the as-prepared samples. The results revealed that the CdS layer between Ni and TiO2 plays an important role in the uniform nucleation and the following growth of highly dispersive Ni nanoparticle on the Ti@TiO2 core-shell nanowire surface. The bifunctional nanostructured electrode was applied to construct an electrochemical nonenzymatic sensor for the reliable detection of glucose. Under optimized conditions, this nonenzymatic glucose sensor displayed a high sensitivity up to 1136.67 μA mM(-1) cm(-2), a wider liner range of 0.005-12 mM, and a lower detection limit of 0.35 μM for glucose oxidation. The high dispersity of Ni nanoparticles, combined with the anti-poisoning faculty against the intermediate derived from the self-cleaning ability of CdS under the photoexcitation, was considered to be responsible for these enhanced electrochemical performances. Importantly, favorable reproducibility and long-term performance were also obtained thanks to the robust frameworks. All these results indicate this novel electrode is a promising candidate for nonenzymatic glucose sensing.

  14. Gallic Acid Decreases Inflammatory Cytokine Secretion Through Histone Acetyltransferase/Histone Deacetylase Regulation in High Glucose-Induced Human Monocytes.

    Science.gov (United States)

    Lee, Wooje; Lee, Sang Yeol; Son, Young-Jin; Yun, Jung-Mi

    2015-07-01

    Hyperglycemia contributes to diabetes and several diabetes-related complications. Gallic acid is a polyhydroxy phenolic compound found in various natural products. In this study, we investigated the effects and mechanism of gallic acid on proinflammatory cytokine secretion in high glucose-induced human monocytes (THP-1 cells). THP-1 cells were cultured under normoglycemic or hyperglycemic conditions, in the absence or presence of gallic acid. Hyperglycemic conditions significantly induced histone acetylation, nuclear factor-κB (NF-κB) activation, and proinflammatory cytokine release from THP-1 cells, whereas gallic acid suppressed NF-κB activity and cytokine release. It also significantly reduced CREB-binding protein/p300 (CBP/p300, a NF-κB coactivator) gene expression, acetylation levels, and CBP/p300 histone acetyltransferase (HAT) activity. In addition, histone deacetylase 2 (HDAC2) expression was significantly induced. These results suggest that gallic acid inhibits hyperglycemic-induced cytokine production in monocytes through epigenetic changes involving NF-κB. Therefore, gallic acid may have potential for the treatment and prevention of diabetes and its complications.

  15. High prevalence of Dapsone-induced oxidant hemolysis in North American SCT recipients without glucose-6-phosphate-dehydrogenase deficiency.

    Science.gov (United States)

    Olteanu, H; Harrington, A M; George, B; Hari, P N; Bredeson, C; Kroft, S H

    2012-03-01

    Dapsone (4-4'-diaminodiphenylsulfone) is commonly used for Pneumocystis jirovecii pneumonia (PCP) prophylaxis in immunocompromised patients. Oxidant hemolysis is a known complication of dapsone, but its frequency in adult patients who have undergone a SCT for hematological malignancies is not well established. We studied the presence of oxidant hemolysis, by combining examination of RBC morphology and laboratory data, in 30 patients who underwent a SCT and received dapsone for PCP prophylaxis, and compared this group with 26 patients who underwent a SCT and received trimethoprim-sulfamethoxazole (TMP-SMX) for PCP prophylaxis. All patients had normal glucose-6-phosphate dehydrogenase (G6PDH) enzymatic activity. In SCT patients, dapsone compared with TMP-SMX for PCP prophylaxis was associated with a high incidence of oxidant hemolysis (87 vs 0%, PSCT patients is 20-fold higher than the reported rate in the population of HIV-infected patients, and thus much higher than the prevalence of G6PDH variants in the general population. In our patients, it manifested clinically as a lower Hb that was not significant enough to result in increased packed RBC transfusions.

  16. High Glucose-Induced PC12 Cell Death by Increasing Glutamate Production and Decreasing Methyl Group Metabolism

    Directory of Open Access Journals (Sweden)

    Minjiang Chen

    2016-01-01

    Full Text Available Objective. High glucose- (HG- induced neuronal cell death is responsible for the development of diabetic neuropathy. However, the effect of HG on metabolism in neuronal cells is still unclear. Materials and Methods. The neural-crest derived PC12 cells were cultured for 72 h in the HG (75 mM or control (25 mM groups. We used NMR-based metabolomics to examine both intracellular and extracellular metabolic changes in HG-treated PC12 cells. Results. We found that the reduction in intracellular lactate may be due to excreting more lactate into the extracellular medium under HG condition. HG also induced the changes of other energy-related metabolites, such as an increased succinate and creatine phosphate. Our results also reveal that the synthesis of glutamate from the branched-chain amino acids (isoleucine and valine may be enhanced under HG. Increased levels of intracellular alanine, phenylalanine, myoinositol, and choline were observed in HG-treated PC12 cells. In addition, HG-induced decreases in intracellular dimethylamine, dimethylglycine, and 3-methylhistidine may indicate a downregulation of methyl group metabolism. Conclusions. Our metabolomic results suggest that HG-induced neuronal cell death may be attributed to a series of metabolic changes, involving energy metabolism, amino acids metabolism, osmoregulation and membrane metabolism, and methyl group metabolism.

  17. VDR Activation Reduces Proteinuria and High-Glucose-Induced Injury of Kidneys and Podocytes by Regulating Wnt Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Jia Guo

    2017-08-01

    Full Text Available Background: Diabetic nephropathy (DN is a major cause of end-stage renal disease and proteinuria is one of the most prominent clinical manifestations. The expression of Vitamin D receptor (VDR in patients with chronic kidney diseases was decreased, while VDR agonists could partially alleviate the proteinuria of DN in animal models. The present study was designed to determine the expression of VDR in renal tissues and its relationship with proteinuria the diabetic model db/db mice. Methods: The regulation effects of VDR on the Wnt signaling pathway were analyzed using RNA interference and VDR agonist paricalcitol. Results: With the increase in age of the db/db mice, the VDR protein and mRNA levels in renal tissues were decreased, proteinuria increased, and the protein and mRNA levels of GSK-3β of and β-catenin increased. Paricalcitol treatment resulted in the up-regulation of VDR and down-regulation of GSK-3β and β-catenin, indicating that VDR had a regulatory effect on the Wnt signaling pathway. Conclusion: VDR activation could reduce proteinuria of DN mice and alleviate high-glucose-induced injury of kidneys and podocytes by regulating the key molecules of Wnt signaling pathway.

  18. No difference in ad libitum energy intake in healthy men and women consuming beverages sweetened with fructose, glucose, or high-fructose corn syrup: a randomized trial.

    Science.gov (United States)

    Kuzma, Jessica N; Cromer, Gail; Hagman, Derek K; Breymeyer, Kara L; Roth, Christian L; Foster-Schubert, Karen E; Holte, Sarah E; Callahan, Holly S; Weigle, David S; Kratz, Mario

    2015-12-01

    Increased energy intake is consistently observed in individuals consuming sugar-sweetened beverages (SSBs), likely mainly because of an inadequate satiety response to liquid calories. However, SSBs have a high content of fructose, the consumption of which acutely fails to trigger responses in key signals involved in energy homeostasis. It is unclear whether the fructose content of SSBs contributes to the increased energy intake in individuals drinking SSBs. We investigated whether the relative amounts of fructose and glucose in SSBs modifies ad libitum energy intake over 8 d in healthy adults without fructose malabsorption. We conducted 2 randomized, controlled, double-blind crossover studies to compare the effects of consuming 4 servings/d of a fructose-, glucose-, or aspartame-sweetened beverage (study A; n = 9) or a fructose-, glucose-, or high-fructose corn syrup (HFCS)-sweetened beverage (study B; n = 24) for 8 d on overall energy intake. SSBs were provided at 25% of estimated energy requirement, or an equivalent volume of the aspartame-sweetened beverage, and consumption was mandatory. All solid foods were provided at 125% of estimated energy requirements and were consumed ad libitum. In study A, ad libitum energy intake was 120% ± 10%, 117% ± 12%, and 102% ± 15% of estimated energy requirements when subjects consumed the fructose-, glucose-, and aspartame-sweetened beverages. Energy intake was significantly higher in the fructose and glucose phases than in the aspartame phase (P fructose and glucose phases (P = 0.462). In study B, total energy intake during the fructose, HFCS, and glucose phases was 116% ± 14%, 116% ± 16%, and 116% ± 16% of the subject's estimated total energy requirements (P = 0.880). In healthy adults, total 8-d ad libitum energy intake was increased in individuals consuming SSBs compared with aspartame-sweetened beverages. The energy overconsumption observed in individuals consuming SSBs occurred independently of the relative

  19. No difference in ad libitum energy intake in healthy men and women consuming beverages sweetened with fructose, glucose, or high-fructose corn syrup: a randomized trial1

    Science.gov (United States)

    Kuzma, Jessica N; Cromer, Gail; Hagman, Derek K; Breymeyer, Kara L; Roth, Christian L; Foster-Schubert, Karen E; Holte, Sarah E; Callahan, Holly S; Weigle, David S; Kratz, Mario

    2015-01-01

    Background: Increased energy intake is consistently observed in individuals consuming sugar-sweetened beverages (SSBs), likely mainly because of an inadequate satiety response to liquid calories. However, SSBs have a high content of fructose, the consumption of which acutely fails to trigger responses in key signals involved in energy homeostasis. It is unclear whether the fructose content of SSBs contributes to the increased energy intake in individuals drinking SSBs. Objective: We investigated whether the relative amounts of fructose and glucose in SSBs modifies ad libitum energy intake over 8 d in healthy adults without fructose malabsorption. Design: We conducted 2 randomized, controlled, double-blind crossover studies to compare the effects of consuming 4 servings/d of a fructose-, glucose-, or aspartame-sweetened beverage (study A; n = 9) or a fructose-, glucose-, or high-fructose corn syrup (HFCS)–sweetened beverage (study B; n = 24) for 8 d on overall energy intake. SSBs were provided at 25% of estimated energy requirement, or an equivalent volume of the aspartame-sweetened beverage, and consumption was mandatory. All solid foods were provided at 125% of estimated energy requirements and were consumed ad libitum. Results: In study A, ad libitum energy intake was 120% ± 10%, 117% ± 12%, and 102% ± 15% of estimated energy requirements when subjects consumed the fructose-, glucose-, and aspartame-sweetened beverages. Energy intake was significantly higher in the fructose and glucose phases than in the aspartame phase (P fructose and glucose phases (P = 0.462). In study B, total energy intake during the fructose, HFCS, and glucose phases was 116% ± 14%, 116% ± 16%, and 116% ± 16% of the subject’s estimated total energy requirements (P = 0.880). Conclusions: In healthy adults, total 8-d ad libitum energy intake was increased in individuals consuming SSBs compared with aspartame-sweetened beverages. The energy overconsumption observed in individuals

  20. Oral treatment with γ-aminobutyric acid improves glucose tolerance and insulin sensitivity by inhibiting inflammation in high fat diet-fed mice.

    Directory of Open Access Journals (Sweden)

    Jide Tian

    Full Text Available Adipocyte and β-cell dysfunction and macrophage-related chronic inflammation are critical for the development of obesity-related insulin resistance and type 2 diabetes mellitus (T2DM, which can be negatively regulated by Tregs. Our previous studies and those of others have shown that activation of γ-aminobutyric acid (GABA receptors inhibits inflammation in mice. However, whether GABA could modulate high fat diet (HFD-induced obesity, glucose intolerance and insulin resistance has not been explored. Here, we show that although oral treatment with GABA does not affect water and food consumption it inhibits the HFD-induced gain in body weights in C57BL/6 mice. Furthermore, oral treatment with GABA significantly reduced the concentrations of fasting blood glucose, and improved glucose tolerance and insulin sensitivity in the HFD-fed mice. More importantly, after the onset of obesity and T2DM, oral treatment with GABA inhibited the continual HFD-induced gain in body weights, reduced the concentrations of fasting blood glucose and improved glucose tolerance and insulin sensitivity in mice. In addition, oral treatment with GABA reduced the epididymal fat mass, adipocyte size, and the frequency of macrophage infiltrates in the adipose tissues of HFD-fed mice. Notably, oral treatment with GABA significantly increased the frequency of CD4(+Foxp3(+ Tregs in mice. Collectively, our data indicated that activation of peripheral GABA receptors inhibited the HFD-induced glucose intolerance, insulin resistance, and obesity by inhibiting obesity-related inflammation and up-regulating Treg responses in vivo. Given that GABA is safe for human consumption, activators of GABA receptors may be valuable for the prevention of obesity and intervention of T2DM in the clinic.

  1. Chronic benzylamine administration in the drinking water improves glucose tolerance, reduces body weight gain and circulating cholesterol in high-fat diet-fed mice.

    Science.gov (United States)

    Iffiú-Soltész, Zsuzsa; Wanecq, Estelle; Lomba, Almudena; Portillo, Maria P; Pellati, Federica; Szöko, Eva; Bour, Sandy; Woodley, John; Milagro, Fermin I; Alfredo Martinez, J; Valet, Philippe; Carpéné, Christian

    2010-04-01

    Benzylamine is found in Moringa oleifera, a plant used to treat diabetes in traditional medicine. In mammals, benzylamine is metabolized by semicarbazide-sensitive amine oxidase (SSAO) to benzaldehyde and hydrogen peroxide. This latter product has insulin-mimicking action, and is involved in the effects of benzylamine on human adipocytes: stimulation of glucose transport and inhibition of lipolysis. This study examined whether chronic, oral administration of benzylamine could improve glucose tolerance and the circulating lipid profile without increasing oxidative stress in overweight and pre-diabetic mice. The benzylamine diffusion across the intestine was verified using everted gut sacs. Then, glucose handling and metabolic markers were measured in mice rendered insulin-resistant when fed a high-fat diet (HFD) and receiving or not benzylamine in their drinking water (3600micromol/(kgday)) for 17 weeks. HFD-benzylamine mice showed lower body weight gain, fasting blood glucose, total plasma cholesterol and hyperglycaemic response to glucose load when compared to HFD control. In adipocytes, insulin-induced activation of glucose transport and inhibition of lipolysis remained unchanged. In aorta, benzylamine treatment partially restored the nitrite levels that were reduced by HFD. In liver, lipid peroxidation markers were reduced. Resistin and uric acid, surrogate plasma markers of metabolic syndrome, were decreased. In spite of the putative deleterious nature of the hydrogen peroxide generated during amine oxidation, and in agreement with its in vitro insulin-like actions found on adipocytes, the SSAO-substrate benzylamine could be considered as a potential oral agent to treat metabolic syndrome. Copyright 2010 Elsevier Ltd. All rights reserved.

  2. Dynamics of Nampt/visfatin and high molecular weight adiponectin in response to oral glucose load in obese and lean women.

    Science.gov (United States)

    Unlütürk, Uğur; Harmanci, Ayla; Yildiz, Bülent Okan; Bayraktar, Miyase

    2010-04-01

    High molecular weight adiponectin (HMWA) is the active circulating form of adiponectin. Nampt/visfatin is the enzyme secreted from adipocytes in an active form and is one of the putative regulators of insulin secretion. To investigate the dynamics of total adiponectin (TA), HMWA and Nampt/visfatin in obese and lean women during oral glucose tolerance test (OGTT). We studied normal glucose-tolerant (NGT), age-matched, 30 obese and 30 lean women. All subjects underwent a standard 75 g, 2-h OGTT, and area under the curve (AUC) during OGTT for glucose, insulin, Nampt/visfatin, TA and HMWA was calculated. Body fat mass was assessed by bioimpedance analysis. Results Obese women had significantly higher basal and AUC va