WorldWideScience

Sample records for high gas pressure

  1. High pressure gas reinjection unit

    1976-03-01

    Nuovo Pignone has built for gas reinjection at Ekofisk the highest pressure injection unit to date: suction pressure 246 bar, discharge 647 bar, for 5.7 million cu m/day of natural gas, and driven by a GE MS 5001 gas turbine of 24,000 hp. The barrel-type compressor has been used already in Algeria at Hassi Messaoud. Full scale tests have shown that the unit is satisfactory; special attention being paid to the stability of the rotor. Air cooled heat exchangers were used in the test loop to cool the discharge gas; at Ekofisk, heat exchangers with sea water will be used. The valves in the test loop were of a special, low- noise type. Vibrations of the rotor system and changes in gas pressure monitored, showing that a pressure of 680 bars can be achieved without instability. Economic considerations lead to preference for rotary compressors driven by gas turbines for similar applications in the exploitation of oil fields. A graph of the characteristics of the unit is given.

  2. Safety regulation on high-pressure gas and gas business

    Kim, Du Yeoung; An, Dae Jun

    1978-09-01

    This book is divided into two parts. The first part introduces safety regulation on high-pressure gas, enforcement ordinance on safety regulation about high-pressure gas and enforcement regulation on safety regulation about high-pressure gas. The second part indicates regulations on gas business such as general rules, gas business gas supplies, using land, supervision, supple mentary rules and penalty. It has two appendixes on expected questions and questions during last years.

  3. Solid gas reaction phase diagram under high gas pressure

    Ishizaki, K.

    1992-01-01

    This paper reports that to evaluate which are the stable phases under high gas pressure conditions, a solid-gas reaction phase diagram under high gas pressure (HIP phase diagram) has been proposed by the author. The variables of the diagram are temperature, reactant gas partial pressure and total gas pressure. Up to the present time the diagrams have been constructed using isobaric conditions. In this work, the stable phases for a real HIP process were evaluated assuming an isochoric condition. To understand the effect of the total gas pressure on stability is of primary importance. Two possibilities were considered and evaluated, those are: the total gas pressure acts as an independent variable, or it only affects the fugacity values. The results of this work indicate that the total gas pressure acts as an independent variable, and in turn also affects the fugacity values

  4. Sounding experiments of high pressure gas discharge

    Biele, Joachim K.

    1998-01-01

    A high pressure discharge experiment (200 MPa, 5·10 21 molecules/cm 3 , 3000 K) has been set up to study electrically induced shock waves. The apparatus consists of the combustion chamber (4.2 cm 3 ) to produce high pressure gas by burning solid propellant grains to fill the electrical pump chamber (2.5 cm 3 ) containing an insulated coaxial electrode. Electrical pump energy up to 7.8 kJ at 10 kV, which is roughly three times of the gas energy in the pump chamber, was delivered by a capacitor bank. From the current-voltage relationship the discharge develops at rapidly decreasing voltage. Pressure at the combustion chamber indicating significant underpressure as well as overpressure peaks is followed by an increase of static pressure level. These data are not yet completely understood. However, Lorentz forces are believed to generate pinching with subsequent pinch heating, resulting in fast pressure variations to be propagated as rarefaction and shock waves, respectively. Utilizing pure axisymmetric electrode initiation rather than often used exploding wire technology in the pump chamber, repeatable experiments were achieved

  5. Safety supervision on high-pressure gas regulations

    Lee, Won Il

    1991-01-01

    The first part lists the regulation on safety supervision of high-pressure gas, enforcement ordinance on high-pressure gas safety supervision and enforcement regulations about high-pressure gas safety supervision. The second part indicates safety regulations on liquefied petroleum gas and business, enforcement ordinance of safety on liquefied petroleum gas and business, enforcement regulation of safety supervision over liquefied petroleum gas and business. The third part lists regulation on gas business, enforcement ordinance and enforcement regulations on gas business. Each part has theory and explanation for questions.

  6. The high pressure gas Cerenkov counter at the Omega Facility.

    1975-01-01

    The high-pressure gas Cerenkov was used to measure reactions as pion (or kaon)- hydrogen --> forward proton - X. It was built by the Ecole Polytechnique (Palaiseu). Here Peter Sonderegger and Patrick Fleury,

  7. High pressure gas driven liquid metal MHD homopolar generator

    Itoh, Yasuyuki

    1988-01-01

    A liquid metal MHD homopolar generator is proposed to be used as a high repetition rate pulsed power supply. In the generator, the thermal energy stored in a high pressure gas (He) reservoir is rapidly converted into kinetic energy of a rotating liquid metal (NaK) cylinder which is contracted by a gas driven annular free piston. The rotational kinetic energy is converted into electrical energy by making use of the homopolar generator principle. The conversion efficiency is calculated to be 47% in generating electrical energy of 20 kJ/pulse (1.7 MW peak power) at a repetition rate of 7 Hz. From the viewpoint of energy storage, the high pressure gas reservoir with a charging pressure of 15 MPa is considered to ''electrically'' store the energy at a density of 10 MJ/m 3 . (author)

  8. High pressure gas spheres for neutron and photon experiments

    Rupp, G.; Petrich, D.; Käppeler, F.; Kaltenbaek, J.; Leugers, B.; Reifarth, R.

    2009-09-01

    High pressure gas spheres have been designed and successfully used in several nuclear physics experiments on noble gases. The pros and cons of this solution are the simple design and the high reliability versus the fact that the density is limited to 40-60% of liquid or solid gas samples. Originally produced for neutron capture studies at keV energies, the comparably small mass of the gas spheres were an important advantage, which turned out to be of relevance for other applications as well. The construction, performance, and operation of the spheres are described and examples for their use are presented.

  9. Conformable pressure vessel for high pressure gas storage

    Simmons, Kevin L.; Johnson, Kenneth I.; Lavender, Curt A.; Newhouse, Norman L.; Yeggy, Brian C.

    2016-01-12

    A non-cylindrical pressure vessel storage tank is disclosed. The storage tank includes an internal structure. The internal structure is coupled to at least one wall of the storage tank. The internal structure shapes and internally supports the storage tank. The pressure vessel storage tank has a conformability of about 0.8 to about 1.0. The internal structure can be, but is not limited to, a Schwarz-P structure, an egg-crate shaped structure, or carbon fiber ligament structure.

  10. A system for incubations at high gas partial pressure

    Patrick eSauer

    2012-02-01

    Full Text Available High-pressure is a key feature of deep subsurface environments. High partial pressure of dissolved gasses plays an important role in microbial metabolism, because thermodynamic feasibility of many reactions depends on the concentration of reactants. For gases, this is controlled by their partial pressure, which can exceed one MPa at in-situ conditions. Therefore, high hydrostatic pressure alone is not sufficient to recreate true deep subsurface in-situ conditions, but the partial pressure of dissolved gasses has to be controlled as well.We developed an incubation system that allows for incubations at hydrostatic pressure up to 60 MPa, temperatures up to 120° C and at high gas partial pressure. The composition and partial pressure of gasses can be manipulated during the experiment. The system is mainly made from off-the-shelf components with only very few custom-made parts. A flexible and inert PVDF incubator sleeve, which is almost impermeable for gases, holds the sample and separates it from the pressure fluid. The flexibility of the incubator sleeve allows for sub-sampling of the medium without loss of pressure. Experiments can be run in both static and flow through mode. The incubation system described here is usable for versatile purposes, not only the incubation of microorganisms and determination of growth rates, but also for chemical degradation or extraction experiments under high gas saturation, e.g. fluid-gas-rock-interactions in relation to carbon dioxide sequestration.As an application of the system we extracted organic acids from sub-bituminous coal using H2O as well as a H2O-CO2 mixture at elevated temperature (90°C and pressure (5 MPa. Subsamples were taken during the incubation and analysed by ion chromatography. Furthermore we demonstrated the applicability of the system for studies of microbial activity, using samples from the Isis mud volcano. We could detect an increase in sulphate reduction rate upon the addition of

  11. Atmospheric Pressure Effect of Retained Gas in High Level Waste

    Weber, A.H.

    1999-01-01

    Isolated high level waste tanks in H-Area have unexplained changes in waste-level which have been attributed to environmental effects including pressure, temperature, and relative humidity. Previous studies at SRS have considered waste-level changes from causes not including the presence of gas in the salt cake. This study was undertaken to determine the effect of atmospheric pressure on gas in the salt cake and resultant changes in the supernate level of Tank 41H, and to model that effect if possible. A simple theory has been developed to account for changes in the supernate level in a high level waste tank containing damp salt cake as the response of trapped gases to changes in the ambient pressure. The gas is modeled as an ideal gas retained as bubbles within the interstitial spaces in the salt cake and distributed uniformly throughout the tank. The model does not account for consistent long term increases or decreases in the tank level. Any such trend in the tank level is attributed to changes in the liquid content in the tank (from condensation, evaporation, etc.) and is removed from the data prior to the void estimation. Short term fluctuations in the tank level are explained as the response of the entrained gas volume to changes in the ambient pressure. The model uses the response of the tank level to pressure changes to estimate an average void fraction for the time period of interest. This estimate of the void is then used to predict the expected level response. The theory was applied to three separate time periods of the level data for tank 41H as follows: (1) May 3, 1993 through August 3, 1993, (2) January 23, 1994 through April 21, 1994, and (3) June 4, 1994 through August 24, 1994. A strong correlation was found between fluctuations in the tank level and variations in the ambient pressure. This correlation is a clear marker of the presence of entrained gases in the tank. From model calculations, an average void fraction of 11 percent was estimated to

  12. High temperature gas cleaning for pressurized gasification. Final report

    Alden, H.; Hagstroem, P.; Hallgren, A.; Waldheim, L. [TPS Termiska Processer AB, Nykoeping (Sweden)

    2000-04-01

    The purpose of the project was to build an apparatus to study pressurized, high temperature gas cleaning of raw gasification gas generated from biomass. A flexible and easy to operate pressurized apparatus was designed and installed for the investigations in high temperature gas cleaning by means of thermal, catalytic or chemical procedures. A semi continuos fuel feeding concept, at a maximum rate of 700 g/h, allowed a very constant formation of a gas product at 700 deg C. The gas product was subsequently introduced into a fixed bed secondary reactor where the actual gas cleanup or reformation was fulfilled. The installation work was divided into four work periods and apart from a few delays the work was carried out according to the time plan. During the first work period (January - June 1994) the technical design, drawings etc. of the reactor and additional parts were completed. All material for the construction was ordered and the installation work was started. The second work period (July - December 1994) was dedicated to the construction and the installation of the different components. Initial tests with the electrical heating elements, control system and gas supply were assigned to the third work period (January - June 1995). After the commissioning and the resulting modifications, initial pyrolysis and tar decomposition experiments were performed. During the fourth and final work period, (June - December 1995) encouraging results from first tests allowed the experimental part of the project work to commence, however in a slightly reduced program. The experimental part of the project work comparatively studied tar decomposition as a function of the process conditions as well as of the choice of catalyst. Two different catalysts, dolomite and a commercial Ni-based catalyst, were evaluated in the unit. Their tar cracking ability in the pressure interval 1 - 20 bar and at cracker bed temperatures between 800 - 900 deg C was compared. Long term tests to study

  13. High-pressure gas-breakthrough apparatus and a procedure for determining the gas-breakthrough pressure of compacted clay

    Hume, H.B.

    1997-08-01

    Gas may be produced in a nuclear fuel waste disposal vault. Given that the vault will be sealed with clay-based materials, the fate of the gas is uncertain. Therefore, an instrument was previously built to measure the pressure required to pass gas through compacted clay materials (a gas-breakthrough apparatus). However, the 10 MPa pressure limit of the apparatus was insufficient to test compacted buffer material at the density proposed in the Canadian concept for nuclear fuel waste disposal. Therefore, a high-pressure (50 Wa) gas-breakthrough apparatus was designed, constructed and installed. This report describes the components of the apparatus and the materials and procedures that are used for the gas-breakthrough tests. (author)

  14. Elevated temperature and high pressure large helium gas loop

    Sakasai, Minoru; Midoriyama, Shigeru; Miyata, Toyohiko; Nakase, Tsuyoshi; Izaki, Makoto

    1979-01-01

    The development of high temperature gas-cooled reactors especially aiming at the multi-purpose utilization of nuclear heat energy is carried out actively in Japan and West Germany. In Japan, the experimental HTGR of 50 MWt and 1000 deg C outlet temperature is being developed by Japan Atomic Energy Research Institute and others since 1969, and the development of direct iron-making technology utilizing high temperature reducing gas was started in 1973 as the large project of Ministry of Internalional Trade and Industry. Kawasaki Heavy Industries, Ltd., Has taken part in these development projects, and has developed many softwares for nuclear heat design, system design and safety design of nuclear reactor system and heat utilization system. In hardwares also, efforts have been exerted to develop the technologies of design and manufacture of high temperature machinery and equipments. The high temperature, high pressure, large helium gas loop is under construction in the technical research institute of the company, and it is expected to be completed in December, 1979. The tests planned are that of proving the dynamic performances of the loop and its machinery and equipments and the verification of analysis codes. The loop is composed of the main circulation system, the objects of testing, the helium gas purifying system, the helium supplying and evacuating system, instruments and others. (Kako, I.)

  15. Performance of microstrip and microgap gas detectors at high pressure

    Fraga, F.A.F.; Fraga, M.M.F.R.; Marques, R.F.; Margato, L.M.S.; Goncalo, J.R.; Policarpo, A.J.P.L.

    1997-01-01

    A study of the operation of microstrip and microgap detectors at various gas pressures up to 6 bar with Kr-CO 2 , Xe-CO 2 and Xe-CH 4 is presented. The data were collected with a microstrip (1000 μm pitch) and a microgap (200 μm pitch) detector using a clean chamber and gas system. It is shown that maximum gain is strongly dependent on pressure and gains as high as 9 x 10 3 were obtained with Kr-CO 2 at 6 bar with a MSGC. With the smaller-pitch MGC we could get a gain of 180 with Xe-CH 4 at 6 bar; the typical energy resolution at 22 keV being about 15%. From the present work one can conclude that microstructures can operate at high pressure and that their application in high-efficiency, low-granularity X-ray detectors with an energy range up to a few tens of keV can be seriously considered. (orig.)

  16. High-pressure 3He gas scintillation neutron spectrometer

    Derzon, M.S.; Slaughter, D.R.; Prussin, S.G.

    1985-10-01

    A high-pressure, 3 He-Xe gas scintillation spectrometer has been developed for neutron spectroscopy on D-D fusion plasmas. The spectrometer exhibits an energy resolution of (121 +- 20 keV) keV (FWHM) at 2.5 MeV and an efficiency of (1.9 +- 0.4) x 10 -3 (n/cm 2 ) -1 . The contribution to the resolution (FWHM) from counting statistics is only (22 +- 3 keV) and the remainder is due predominantly to the variation of light collection efficiency with location of neutron events within the active volume of the detector

  17. Vacuum surface flashover and high pressure gas streamers

    Elizondo, J.M.; Krogh, M.L.; Smith, D.; Stolz, D.; Wright, S.N.

    1997-07-01

    Pre-breakdown current traces obtained during high pressure gas breakdown and vacuum surface flashover show similar signatures. The initial pre-breakdown current spike, a flat constant current phase, and the breakdown phase with voltage collapse and current surge differ mostly in magnitude. Given these similarities, a model, consisting of the initial current spike corresponding to a fast precursor streamer (ionization wave led by a photoionizing front), the flat current stage as the heating or glow phase, and the terminal avalanche and gap closure, is applied to vacuum surface flashover. A simple analytical approximation based on the resistivity changes induced in the vacuum and dielectric surface is presented. The approximation yields an excellent fit to pre-breakdown time delay vs applied field for previously published experimental data. A detailed kinetics model that includes surface and gas contributions is being developed based in the initial approximation

  18. Excited Atoms and Molecules in High Pressure Gas Discharges

    Vuskovic, L.; Popovic, S.

    2003-01-01

    Various types of high-pressure non-thermal discharges are increasingly drawing attention in view of many interesting applications. These, partially ionized media in non-equilibrium state, tend to generate complex effects that are difficult to interpret without a detailed knowledge of elementary processes involved. Electronically excited molecules and atoms may play an important role as intermediate states in a wide range of atomic and molecular processes, many of which are important in high-pressure discharges. They can serve also as reservoirs of energy or as sources of high energy electrons either through the energy pooling or through superelastic collisions. By presenting the analysis of current situation on the processes involving excited atoms and molecules of interest for high-pressure gas discharges, we will attempt to draw attention on the insufficiency of available data. In the same time we will show how to circumvent this situation and still be able to develop accurate models and interpretations of the observed phenomena

  19. 49 CFR 192.197 - Control of the pressure of gas delivered from high-pressure distribution systems.

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Control of the pressure of gas delivered from high-pressure distribution systems. 192.197 Section 192.197 Transportation Other Regulations Relating to... STANDARDS Design of Pipeline Components § 192.197 Control of the pressure of gas delivered from high...

  20. High temperature, high pressure gas loop - the Component Flow Test Loop (CFTL)

    Gat, U.; Sanders, J.P.; Young, H.C.

    1984-01-01

    The high-pressure, high-temperature, gas-circulating Component Flow Test Loop located at Oak Ridge National Laboratory was designed and constructed utilizing Section III of the ASME Boiler and Pressure Vessel Code. The quality assurance program for operating and testing is also based on applicable ASME standards. Power to a total of 5 MW is available to the test section, and an air-cooled heat exchanger rated at 4.4 MW serves as heat sink. The three gas-bearing, completely enclosed gas circulators provide a maximum flow of 0.47 m 3 /s at pressures to 10.7 MPa. The control system allows for fast transients in pressure, power, temperature, and flow; it also supports prolonged unattended steady-state operation. The data acquisition system can access and process 10,000 data points per second. High-temperature gas-cooled reactor components are being tested

  1. Construction and calibration of high time resolution gas pressure meter

    Rossi, J.O.; Santos, C.; Ueda, M.

    1989-11-01

    In this report, the construction and calibration of a gas pressure meter with a time resolution better than 20 μs are described. The meter consists basically of a sensor of the FIG (Fast Ionization Gauge) type and an adequate electronic circuit. A 6AU6A pentode vacuum tube without the glass envelope is used as the sensor head. (author) [pt

  2. High temperature and high pressure gas cell for quantitative spectroscopic measurements

    Christiansen, Caspar; Stolberg-Rohr, Thomine; Fateev, Alexander; Clausen, Sønnik

    2016-01-01

    A high temperature and high pressure gas cell (HTPGC) has been manufactured for quantitative spectroscopic measurements in the pressure range 1–200 bar and temperature range 300–1300 K. In the present work the cell was employed at up to 100 bar and 1000 K, and measured absorption coefficients of a CO_2–N_2 mixture at 100 bar and 1000 K are revealed for the first time, exceeding the high temperature and pressure combinations previously reported. This paper discusses the design considerations involved in the construction of the cell and presents validation measurements compared against simulated spectra, as well as published experimental data. - Highlights: • A ceramic gas cell designed for gas measurements up to 1300 K and 200 bar. • The first recorded absorption spectrum of CO_2 at 1000 K and 101 bar is presented. • Voigt profiles might suffice in the modeling of radiation from CO_2 in combustion.

  3. High temperature and high pressure gas cell for quantitative spectroscopic measurements

    Christiansen, Caspar; Stolberg-Rohr, Thomine; Fateev, Alexander

    2016-01-01

    A high temperature and high pressure gas cell (HTPGC) has been manufactured for quantitative spectroscopic measurements in the pressure range 1-200 bar and temperature range 300-1300 K. In the present work the cell was employed at up to 100 bar and 1000 K, and measured absorption coefficients...... of a CO2-N2 mixture at 100 bar and 1000 K are revealed for the first time, exceeding the high temperature and pressure combinations previously reported. This paper discusses the design considerations involved in the construction of the cell and presents validation measurements compared against simulated...

  4. High pressure gas laser technology for atmospheric remote sensing

    Javan, A.

    1980-01-01

    The development of a fixed frequency chirp-free and highly stable intense pulsed laser made for Doppler wind velocity measurements with accurate ranging is described. Energy extraction from a high pressure CO2 laser at a tunable single mode frequency is also examined.

  5. Metallurgical analysis of high pressure gas pipelines rupture

    Hasan, F.; Ahmed, F.

    2007-01-01

    On 6 July 2004, two parallel-running gas pipelines (18-inch and 24-inch diameters), in the main transmission network of SNGPL (a gas company in Pakistan) were ruptured. The ruptures occurred in the early hours of the morning about 8 miles downstream of the compressor station AC-4. The ruptures were indicated by the increased gas flow at the outlet of AC-4 (1), first at about 0648 hours and then again about 20 minutes later. The gas escaping from the ruptured lines had caught fire, and the flames had also 'affected' a third parallel-running pipeline of 30-inch diameter, lying next to the 24-inch line. The metallurgical examination of the two ruptured lines showed that the 24-inch line was ruptured with the help of an explosive device that had been placed on the underside of the pipe. An examination of the 18-inch line showed that this pipe had failed as a result of the heating of the pipe-wall, presumably, by the flame emanating from the 24-inch line. These two observations clearly suggested that the 24-inch line was the first to rupture (by explosives), and the fire following this rupture had heated the 18-inch pipe to a temperature where its yield strength was unable to support the inside gas pressure. The 20 minutes time interval between the two ruptures was obviously the time taken by the 18 inch pipe to be heated upto the level where it started to yield. The 30-inch line lying next to the 24-inch line was affected to the extent that its coating had been burnt-off over a length of about 40-50 feet. However, the pipe did not exhibit any signs of deshaping or deformation what-so-ever. A replica metallographic examination indicated that the microstructure of the pipe was not measurably affected by the heat. It was thus decided not to replace the affected part of the 30-inch pipe, but only to re-coat this affected portion. (author)

  6. Image simulation of high-speed imaging by high-pressure gas ionization detector

    Miao Jichen; Liu Ximing; Wu Zhifang

    2005-01-01

    The signal of the neighbor pixels is cumulated in Freight Train Inspection System because data fetch time is shorter than ion excursion time. This paper analyzes the pertinency of neighbor pixels and designs computer simulation method to generate some emulate images such as indicator image. The result indicates the high-pressure gas ionization detector can be used in high-speed digital radiography field. (authors)

  7. A possible origin of EL6 chondrites from a high temperature-high pressure solar gas

    Blander, M. [Argonne National Lab., IL (United States); Unger, L. [Purdue Univ., Westiville, IN (United States). Dept. of Chemistry; Pelton, A.; Eriksson, G. [Ecole Polytechnique, Montreal, PQ (Canada). Dept. of Metallurgy and Materials Engineering

    1994-05-01

    Condensates from a gas of ``solar`` composition were calculated to investigate the origins of EL6 chondrites using a free energy minimization program with a data base for the thermodynamic properties of multicomponent molten silicates as well as for other liquids solids, solid solutions and gaseous species. Because of high volatility of silicon and silica, the high silicon content of metal (2.6 mole %) can only be produced at pressures 10{sup {minus}2} atm at temperatures above 1475 K. At 100--500 atm, a liquid silicate phase crystallizes at a temperature where the silicon content of the metal, ferrosilite content of the enstatite and albite concentration in the plagioclase are close to measured values. In pyrometallurgy, liquid silicates are catalysts for reactions in which Si-O-Si bridging bonds are broken or formed. Thus, one attractive mode for freezing in the compositions of these three phases is disappearance of fluxing liquid. If the plagioclase can continue to react with the nebula without a liquid phase, lower pressures of 10{sup {minus}1} to 1 atm might be possible. Even if the nebula is more reducing than a solar gas, the measured properties of EL6 chondrites might be reconciled with only slightly lower pressures (less than 3X lower). The temperatures would be about the same as indicated in our calculations since the product of the silicon content of the metal and the square of the ferrosilite content of the enstatite constitute a cosmothermometer for the mineral assemblage in EL6 chondrites.

  8. Prediction and correlation of high-pressure gas solubility in polymers with simplified PC-SAFT

    von Solms, Nicolas; Michelsen, Michael Locht; Kontogeorgis, Georgios

    2005-01-01

    Using simplified PC-SAFT we have modeled gas solubilities at high temperatures and pressures for the gases methane and carbon dioxide in each of the three polymers high-density polyethylene (HDPE), nylon polyamide-11 (PA-11), and poly(vinylidene fluoride) (PVDF). In general the results are satisf......Using simplified PC-SAFT we have modeled gas solubilities at high temperatures and pressures for the gases methane and carbon dioxide in each of the three polymers high-density polyethylene (HDPE), nylon polyamide-11 (PA-11), and poly(vinylidene fluoride) (PVDF). In general the results...

  9. A system for incubations at high gas partial pressure

    Sauer, Patrick; Glombitza, Clemens; Kallmeyer, Jens

    2012-01-01

    dioxide sequestration. As an application of the system we extracted organic compounds from sub-bituminous coal using H2O as well as a H2O–CO2 mixture at elevated temperature (90°C) and pressure (5 MPa). Subsamples were taken at different time points during the incubation and analyzed by ion chromatography....... Furthermore we demonstrated the applicability of the system for studies of microbial activity, using samples from the Isis mud volcano. We could detect an increase in sulfate reduction rate upon the addition of methane to the sample....

  10. High pressure gas - a new approach to calorimetry

    Anon.

    1992-01-01

    The high particle collision rate and radiation levels in detectors at the new high energy high luminosity proton colliders (SSC, LHC, UNK) put stringent demands on the design of detector components. In particular the forward calorimeters will have to deal with particle fluxes in excess of 4 x 106 per sq cm per s and high radiation doses (at the MGy level)

  11. High pressure gas-filled cermet spark gaps

    Avilov, Eh.A.; Yur'ev, A.L.

    2000-01-01

    The results of modernization of the R-48 and R-49 spark gaps making it possible to improve their electrical characteristics are presented. The design is described and characteristics of gas-filled cermet spark gaps are presented. By the voltage rise time of 5-6 μs in the Marx generator scheme they provide for the pulse break-through voltage of 120 and 150 kV. By the voltage rise time of 0.5-1 μs the break-through voltage of these spark gaps may be increased up to 130 and 220 kV. The proper commutation time is equal to ≤ 0.5 ns. Practical recommendations relative to designing cermet spark gaps are given [ru

  12. Studies on Microscopic Structure of Diesel Sprays under Atmospheric and High Gas Pressures

    D. Deshmukh

    2014-06-01

    Full Text Available In the present work, the spray structure of diesel from a 200-μm, single-hole solenoid injector is studied using microscopic imaging at injection pressures of 700, 1000 and 1400 bar for various gas pressures. A long-distance microscope with a high resolution camera is used for spray visualization with a direct imaging technique. This study shows that even at very high injection pressures, the spray structure in an ambient environment of atmospheric pressure reveals presence of entangled ligaments and non-spherical droplets during the injection period. With increase in the injection pressure, the ligaments tend to get smaller and spread radially. The spray structure studies are also conducted at high gas pressures in a specially designed high pressure chamber with optical access. The near nozzle spray structure at the end of the injection shows that the liquid jet breakup is improved with increase in gas density. The droplet size measurement is possible only late in the injection duration when the breakup appears to be complete and mostly spherical droplets are observed. Hence, droplet size measurements are performed after 1.3 ms from start of the injection pulse. Spatial and temporal variation in Sauter Mean Diameter (SMD is observed and reported for the case corresponding to an injection pressure of 700 bar. Overall, this study has highlighted the importance of verifying the extentof atomization and droplet shape even in dense sprays before using conventional dropsizing methods such as PDPA.

  13. Development of high pressure-high vacuum-high conductance piston valve for gas-filled radiation detectors

    Prasad, D N; Ayyappan, R; Kamble, L P; Singh, J P; Muralikrishna, L V; Alex, M; Balagi, V; Mukhopadhyay, P K

    2008-01-01

    Gas-filled radiation detectors need gas filling at pressures that range from few cms of mercury to as high as 25kg/cm 2 at room temperature. Before gas-filling these detectors require evacuation to a vacuum of the order of ∼1 x 10 -5 mbar. For these operations of evacuation and gas filling a system consisting of a vacuum pump with a high vacuum gauge, gas cylinder with a pressure gauge and a valve is used. The valve has to meet the three requirements of compatibility with high-pressure and high vacuum and high conductance. A piston valve suitable for the evacuation and gas filling of radiation detectors has been designed and fabricated to meet the above requirements. The stainless steel body (80mmx160mm overall dimensions) valve with a piston arrangement has a 1/2 inch inlet/outlet opening, neoprene/viton O-ring at piston face and diameter for sealing and a knob for opening and closing the valve. The piston movement mechanism is designed to have minimum wear of sealing O-rings. The valve has been hydrostatic pressure tested up to 75bars and has Helium leak rate of less than 9.6x10 -9 m bar ltr/sec in vacuum mode and 2x10 -7 mbar ltr/sec in pressure mode. As compared to a commercial diaphragm valve, which needed 3 hours to evacuate a 7 litre chamber to 2.5x10 -5 mbar, the new valve achieved vacuum 7.4x10 -6 mbar in the same time under the same conditions

  14. High-Temperature, High-Bandwidth Fiber Optic Pressure and Temperature Sensors for Gas Turbine Applications

    Fielder, Robert S; Palmer, Matthew E

    2003-01-01

    ..., and redesign compressor and turbine stages based on actual measurements. There currently exists no sensor technology capable of making pressure measurements in the critical hot regions of gas turbine engines...

  15. High- and low-pressure operation of the gas electron multiplier

    Bondar, A.; Buzulutskov, A.; Shekhtman, L.; Sauli, F.

    1998-01-01

    We have studied the operation of the gas electron multiplier (GEM) in gas mixtures Xe-CO 2 , Ar-CO 2 and CH 4 at different pressures varying from 0.1 to 5 atm. In Ar- and Xe-based mixtures, the maximum GEM gain considerably decreases with pressure, from a few hundreds at 1 atm to below 10 at 5 atm. Combined gain of GEM and the micro-strip gas chamber (MSGC) can exceed values of 10000 at 1 atm and 100 at 5 atm. High GEM gains, of above 1000, were obtained in CH 4 at low pressures. We have observed the effect of the avalanche confinement in GEM micro-holes, resulting in violation of the pressure scaling and in the possibility of GEM operation in pure noble gases. (author)

  16. Assessing fugitive emissions of CH4 from high-pressure gas pipelines

    Worrall, Fred; Boothroyd, Ian; Davies, Richard

    2017-04-01

    The impact of unconventional natural gas production using hydraulic fracturing methods from shale gas basins has been assessed using life-cycle emissions inventories, covering areas such as pre-production, production and transmission processes. The transmission of natural gas from well pad to processing plants and its transport to domestic sites is an important source of fugitive CH4, yet emissions factors and fluxes from transmission processes are often based upon ver out of date measurements. It is important to determine accurate measurements of natural gas losses when compressed and transported between production and processing facilities so as to accurately determine life-cycle CH4 emissions. This study considers CH4 emissions from the UK National Transmission System (NTS) of high pressure natural gas pipelines. Mobile surveys of CH4 emissions using a Picarro Surveyor cavity-ring-down spectrometer were conducted across four areas in the UK, with routes bisecting high pressure pipelines and separate control routes away from the pipelines. A manual survey of soil gas measurements was also conducted along one of the high pressure pipelines using a tunable diode laser. When wind adjusted 92 km of high pressure pipeline and 72 km of control route were drive over a 10 day period. When wind and distance adjusted CH4 fluxes were significantly greater on routes with a pipeline than those without. The smallest leak detectable was 3% above ambient (1.03 relative concentration) with any leaks below 3% above ambient assumed ambient. The number of leaks detected along the pipelines correlate to the estimated length of pipe joints, inferring that there are constant fugitive CH4 emissions from these joints. When scaled up to the UK's National Transmission System pipeline length of 7600 km gives a fugitive CH4 flux of 4700 ± 2864 kt CH4/yr - this fugitive emission from high pressure pipelines is 0.016% of the annual gas supply.

  17. Assessing fugitive emissions of CH4 from high-pressure gas pipelines in the UK

    Clancy, S.; Worrall, F.; Davies, R. J.; Almond, S.; Boothroyd, I.

    2016-12-01

    Concern over the greenhouse gas impact of the exploitation of unconventional natural gas from shale deposits has caused a spotlight to be shone on to the entire hydrocarbon industry. Numerous studies have developed life-cycle emissions inventories to assess the impact that hydraulic fracturing has upon greenhouse gas emissions. Incorporated within life-cycle assessments are transmission and distribution losses, including infrastructure such as pipelines and compressor stations that pressurise natural gas for transport along pipelines. Estimates of fugitive emissions from transmission, storage and distribution have been criticized for reliance on old data from inappropriate sources (1970s Russian gas pipelines). In this study, we investigate fugitive emissions of CH4 from the UK high pressure national transmission system. The study took two approaches. Firstly, CH4 concentration is detected by driving along roads bisecting high pressure gas pipelines and also along an equivalent distance along a route where no high pressure gas pipeline was nearby. Five pipelines and five equivalent control routes were driven and the test was that CH4 measurements, when adjusted for distance and wind speed, should be greater on any route with a pipe than any route without a pipe. Secondly, 5 km of a high pressure gas pipeline and 5 km of equivalent farmland, were walked and soil gas (above the pipeline where present) was analysed every 7 m using a tunable diode laser. When wind adjusted 92 km of high pressure pipeline and 72 km of control route were drive over a 10 day period. When wind and distance adjusted CH4 fluxes were significantly greater on routes with a pipeline than those without. The smallest leak detectable was 3% above ambient (1.03 relative concentration) with any leaks below 3% above ambient assumed ambient. The number of leaks detected along the pipelines correlate to the estimated length of pipe joints, inferring that there are constant fugitive CH4 emissions from

  18. Study on time response character for high pressure gas ionization chamber of krypton and xenon

    Tan Chunming; Wu Haifeng; Qing Shangyu; Wang Liqiang

    2006-01-01

    The time response character for Kr and Xe high pressure gas ionization chamber is analyzed and deduced. Compared with the measure data of pulse rising time for three gas-filled ionization chambers, the calculated and experimental results are equal to each other. The rising time less than 10 ms for this kind of ionization chamber can be achieved, so this ionization chamber is able to meet the requirement for imaging detection. (authors)

  19. Modern high pressure gas injection centrifugal compressor for enhanced oil recovery

    Almasi, Amin [Worley Parsons Services Pty Ltd, Brisbane, NSW (Australia). Mechanical Dept.

    2011-12-15

    This article covers different design, manufacturing, performance and reliability aspects of modern high pressure gas re-injection centrifugal compressor units. Advances and recent technologies on critical areas such as rotor dynamics, anti-surge system, rotating stall prevention, auxiliary systems, material selection, shop performance tests and gas sealing are studied. Three different case studies for modern re-injection machines including 12 MW, 15 MW and 32 MW trains are presented. (orig.)

  20. On the high gain operation of low-pressure microdot gas avalanche chambers

    Breskin, A.

    1997-01-01

    Microdot avalanche chambers (MDOT) equipped with thin semitransparent Cr photocathodes, were characterized with UV photons at low gas pressure. Gains superior to 10 4 were reached with gas multiplication at the dots. In a mode where preamplification in the gas volume precedes the additional dot multiplication, gains superior to 10 6 were measured at 30-60 torr of propane. The fast amplification mechanism results in narrow high amplitude pulses with 2-3 ns rise time, visible with no further electronic amplification means. We present here our preliminary results and briefly discuss potential applications. (orig.)

  1. An optical method for measuring exhaust gas pressure from an internal combustion engine at high speed.

    Leach, Felix C P; Davy, Martin H; Siskin, Dmitrij; Pechstedt, Ralf; Richardson, David

    2017-12-01

    Measurement of exhaust gas pressure at high speed in an engine is important for engine efficiency, computational fluid dynamics analysis, and turbocharger matching. Currently used piezoresistive sensors are bulky, require cooling, and have limited lifetimes. A new sensor system uses an interferometric technique to measure pressure by measuring the size of an optical cavity, which varies with pressure due to movement of a diaphragm. This pressure measurement system has been used in gas turbine engines where the temperatures and pressures have no significant transients but has never been applied to an internal combustion engine before, an environment where both temperature and pressure can change rapidly. This sensor has been compared with a piezoresistive sensor representing the current state-of-the-art at three engine operating points corresponding to both light load and full load. The results show that the new sensor can match the measurements from the piezoresistive sensor except when there are fast temperature swings, so the latter part of the pressure during exhaust blowdown is only tracked with an offset. A modified sensor designed to compensate for these temperature effects is also tested. The new sensor has shown significant potential as a compact, durable sensor, which does not require external cooling.

  2. An optical method for measuring exhaust gas pressure from an internal combustion engine at high speed

    Leach, Felix C. P.; Davy, Martin H.; Siskin, Dmitrij; Pechstedt, Ralf; Richardson, David

    2017-12-01

    Measurement of exhaust gas pressure at high speed in an engine is important for engine efficiency, computational fluid dynamics analysis, and turbocharger matching. Currently used piezoresistive sensors are bulky, require cooling, and have limited lifetimes. A new sensor system uses an interferometric technique to measure pressure by measuring the size of an optical cavity, which varies with pressure due to movement of a diaphragm. This pressure measurement system has been used in gas turbine engines where the temperatures and pressures have no significant transients but has never been applied to an internal combustion engine before, an environment where both temperature and pressure can change rapidly. This sensor has been compared with a piezoresistive sensor representing the current state-of-the-art at three engine operating points corresponding to both light load and full load. The results show that the new sensor can match the measurements from the piezoresistive sensor except when there are fast temperature swings, so the latter part of the pressure during exhaust blowdown is only tracked with an offset. A modified sensor designed to compensate for these temperature effects is also tested. The new sensor has shown significant potential as a compact, durable sensor, which does not require external cooling.

  3. Dynamic behaviour of high-pressure natural-gas flow in pipelines

    Gato, L.M.C.; Henriques, J.C.C.

    2005-01-01

    The aim of the present study is the numerical modelling of the dynamic behaviour of high-pressure natural-gas flow in pipelines. The numerical simulation was performed by solving the conservation equations, for one-dimensional compressible flow, using the Runge-Kutta discontinuous Galerkin method, with third-order approximation in space and time. The boundary conditions were imposed using a new weak formulation based on the characteristic variables. The occurrence of pressure oscillations in natural-gas pipelines was studied as a result of the compression wave originated by the rapid closure of downstream shut-off valves. The effect of the partial reflection of pressure waves was also analyzed in the transition between pipes of different cross-sectional areas

  4. Dynamic behaviour of high-pressure natural-gas flow in pipelines

    Gato, L.M.C. [Department of Mechanical Engineering, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon (Portugal)]. E-mail: lgato@mail.ist.utl.pt; Henriques, J.C.C. [Department of Mechanical Engineering, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon (Portugal)]. E-mail: jcch@mail.ist.utl.pt

    2005-10-01

    The aim of the present study is the numerical modelling of the dynamic behaviour of high-pressure natural-gas flow in pipelines. The numerical simulation was performed by solving the conservation equations, for one-dimensional compressible flow, using the Runge-Kutta discontinuous Galerkin method, with third-order approximation in space and time. The boundary conditions were imposed using a new weak formulation based on the characteristic variables. The occurrence of pressure oscillations in natural-gas pipelines was studied as a result of the compression wave originated by the rapid closure of downstream shut-off valves. The effect of the partial reflection of pressure waves was also analyzed in the transition between pipes of different cross-sectional areas.

  5. Dry re-forming of methane to synthesis gas over lignite semicokes catalyst at high pressure

    Fengbo Guo

    2016-11-01

    Full Text Available Dry re-forming of methane has been carried out in a high temperature–pressure reactor at different pressures, using Hongce lignite semicokes catalyst. The results show that CH4 and CO2 conversions are decreased as the reaction pressure increased, but both of them kept basically stable when the reaction pressure is between 0.3 and 1 MPa. The comparison shows that the effects of the temperature and the flow of reactant gas on dry re-forming of methane are consistent with between high pressure and atmospheric pressure. The ratio of CO/H2 decreased as the ratio of CH4/CO2 increased, yet the value of CO/H2 is always more than 1 at different pressures. Hongce lignite semicokes catalyst is characterized by FTIR, XRD, SEM and BET, and the analysis results reveled that the physical specific adsorption peak of CO2 at 2350 cm−1 is strengthened significantly at different pressures, the micropore area and volume of Hongce lignite semicokes reduced form 40.2 m2  g−1 and 0.019 cm3  g−1 to 34.9 m2  g−1 and 0.017 cm3  g−1, respectively. Hongce lignite semicokes catalyst exhibited better activity and stability within 0.3–1 MPa range.

  6. High pressure deuterium-tritium gas target vessels for muon-catalyzed fusion experiments

    Caffrey, A.J.; Spaletta, H.W.; Ware, A.G.; Zabriskie, J.M.; Hardwick, D.A.; Maltrud, H.R.; Paciotti, M.A.

    1989-01-01

    In experimental studies of muon-catalyzed fusion, the density of the hydrogen gas mixture is an important parameter. Catalysis of up to 150 fusions per muon has been observed in deuterium-tritium gas mixtures at liquid hydrogen density; at room temperature, such densities require a target gas pressure of the order of 1000 atmospheres (100 MPa, 15,000 psi). We report here the design considerations for hydrogen gas target vessels for muon-catalyzed fusion experiments that operate at 1000 and 10,000 atmospheres. The 1000 atmosphere high pressure target vessels are fabricated of Type A-286 stainless steel and lined with oxygen-free, high-conductivity (OFHC) copper to provide a barrier to hydrogen permeation of the stainless steel. The 10,000 atmosphere ultrahigh pressure target vessels are made from 18Ni (200 grade) maraging steel and are lined with OFHC copper, again to prevent hydrogen permeation of the steel. In addition to target design features, operating requirements, fabrication procedures, and secondary containment are discussed. 13 refs., 3 figs., 1 tab

  7. High-pressure measuring cell for Raman spectroscopic studies of natural gas

    Hansen, Susanne Brunsgaard; Berg, Rolf W.; Stenby, Erling Halfdan

    2001-01-01

    A system for obtaining Raman spectra of gases at high pressure has been constructed. In order to ensure that a natural gas sample is totally representative, a high-pressure gas-measuring cell has been developed, built up by stainless steel fittings and a sapphire tube. The design and construction...... of this cell are described. A perfect pressure seal has been demonstrated up to 15.0 MPaA (MPa absolute). The cell has been successfully used to obtain Raman spectra of natural gas samples. Some of these spectra are presented and assigned. The most remarkable observation in the spectra is that it is possible...... to detect hydrogen sulfide at concentrations of 1-3 mg H2S/Nm(3). An attempt to make a quantitative analysis of natural gas by the so-called "ratio method" is presented. In addition to this, the relative normalized differential Raman scattering cross sections for ethane and i-butane molecules at 8.0 MPa...

  8. Measurement and interpretation of threshold stress intensity factors for steels in high-pressure hydrogen gas.

    Dadfarnia, Mohsen (University of Illinois at Urbana-Champaign, Urbana, IL); Nibur, Kevin A.; San Marchi, Christopher W.; Sofronis, Petros (University of Illinois at Urbana-Champaign, Urbana, IL); Somerday, Brian P.; Foulk, James W., III; Hayden, Gary A. (CP Industries, McKeesport, PA)

    2010-07-01

    Threshold stress intensity factors were measured in high-pressure hydrogen gas for a variety of low alloy ferritic steels using both constant crack opening displacement and rising crack opening displacement procedures. The sustained load cracking procedures are generally consistent with those in ASME Article KD-10 of Section VIII Division 3 of the Boiler and Pressure Vessel Code, which was recently published to guide design of high-pressure hydrogen vessels. Three definitions of threshold were established for the two test methods: K{sub THi}* is the maximum applied stress intensity factor for which no crack extension was observed under constant displacement; K{sub THa} is the stress intensity factor at the arrest position for a crack that extended under constant displacement; and K{sub JH} is the stress intensity factor at the onset of crack extension under rising displacement. The apparent crack initiation threshold under constant displacement, K{sub THi}*, and the crack arrest threshold, K{sub THa}, were both found to be non-conservative due to the hydrogen exposure and crack-tip deformation histories associated with typical procedures for sustained-load cracking tests under constant displacement. In contrast, K{sub JH}, which is measured under concurrent rising displacement and hydrogen gas exposure, provides a more conservative hydrogen-assisted fracture threshold that is relevant to structural components in which sub-critical crack extension is driven by internal hydrogen gas pressure.

  9. Ionization and scintillation response of high-pressure xenon gas to alpha particles

    Álvarez, V; Cárcel, S; Cervera, A; Díaz, J; Ferrario, P; Gil, A; Gómez-Cadenas, J J; Borges, F I G; Conde, C A N; Fernandes, L M P; Freitas, E D C; Cebrián, S; Dafni, T; Gómez, H; Egorov, M; Gehman, V M; Goldschmidt, A; Esteve, R; Evtoukhovitch, P; Ferreira, A L

    2013-01-01

    High-pressure xenon gas is an attractive detection medium for a variety of applications in fundamental and applied physics. In this paper we study the ionization and scintillation detection properties of xenon gas at 10 bar pressure. For this purpose, we use a source of alpha particles in the NEXT-DEMO time projection chamber, the large scale prototype of the NEXT-100 neutrinoless double beta decay experiment, in three different drift electric field configurations. We measure the ionization electron drift velocity and longitudinal diffusion, and compare our results to expectations based on available electron scattering cross sections on pure xenon. In addition, two types of measurements addressing the connection between the ionization and scintillation yields are performed. On the one hand we observe, for the first time in xenon gas, large event-by-event correlated fluctuations between the ionization and scintillation signals, similar to that already observed in liquid xenon. On the other hand, we study the field dependence of the average scintillation and ionization yields. Both types of measurements may shed light on the mechanism of electron-ion recombination in xenon gas for highly-ionizing particles. Finally, by comparing the response of alpha particles and electrons in NEXT-DEMO, we find no evidence for quenching of the primary scintillation light produced by alpha particles in the xenon gas.

  10. Sound produced by an oscillating arc in a high-pressure gas

    Popov, Fedor K.; Shneider, Mikhail N.

    2017-08-01

    We suggest a simple theory to describe the sound generated by small periodic perturbations of a cylindrical arc in a dense gas. Theoretical analysis was done within the framework of the non-self-consistent channel arc model and supplemented with time-dependent gas dynamic equations. It is shown that an arc with power amplitude oscillations on the order of several percent is a source of sound whose intensity is comparable with external ultrasound sources used in experiments to increase the yield of nanoparticles in the high pressure arc systems for nanoparticle synthesis.

  11. High-pressure water electrolysis: Electrochemical mitigation of product gas crossover

    Schalenbach, Maximilian; Stolten, Detlef

    2015-01-01

    Highlights: • New technique to reduce gas crossover during water electrolysis • Increase of the efficiency of pressurized water electrolysis • Prevention of safety hazards due to explosive gas mixtures caused by crossover • Experimental realization for a polymer electrolyte membrane electrolyzer • Discussion of electrochemical crossover mitigation for alkaline water electrolysis - Abstract: Hydrogen produced by water electrolysis can be used as an energy carrier storing electricity generated from renewables. During water electrolysis hydrogen can be evolved under pressure at isothermal conditions, enabling highly efficient compression. However, the permeation of hydrogen through the electrolyte increases with operating pressure and leads to efficiency loss and safety hazards. In this study, we report on an innovative concept, where the hydrogen crossover is electrochemically mitigated by an additional electrode between the anode and the cathode of the electrolysis cell. Experimentally, the technique was applied to a proton exchange membrane water electrolyzer operated at a hydrogen pressure that was fifty times larger than the oxygen pressure. Therewith, the hydrogen crossover was reduced and the current efficiency during partial load operation was increased. The concept is also discussed for water electrolysis that is operated at balanced pressures, where the crossover of hydrogen and oxygen is mitigated using two additional electrodes

  12. Disruption mitigation with high-pressure helium gas injection on EAST tokamak

    Chen, D. L.; Shen, B.; Granetz, R. S.; Qian, J. P.; Zhuang, H. D.; Zeng, L.; Duan, Y.; Shi, T.; Wang, H.; Sun, Y.; Xiao, B. J.

    2018-03-01

    High pressure noble gas injection is a promising technique to mitigate the effect of disruptions in tokamaks. In this paper, results of mitigation experiments with low-Z massive gas injection (helium) on the EAST tokamak are reported. A fast valve has been developed and successfully implemented on EAST, with valve response time  ⩽150 μs, capable of injecting up to 7 × 1022 particles, corresponding to 300 times the plasma inventory. Different amounts of helium gas were injected into stable plasmas in the preliminary experiments. It is seen that a small amount of helium gas (N_He≃ N_plasma ) can not terminate a discharge, but can trigger MHD activity. Injection of 40 times the plasma inventory impurity (N_He≃ 40× N_plasma ) can effectively radiate away part of the thermal energy and make the electron density increase rapidly. The mitigation result is that the current quench time and vertical displacement can both be reduced significantly, without resulting in significantly higher loop voltage. This also reduces the risk of runaway electron generation. As the amount of injected impurity gas increases, the gas penetration time decreases slowly and asymptotes to (˜7 ms). In addition, the impurity gas jet has also been injected into VDEs, which are more challenging to mitigate that stable plasmas.

  13. Behaviour of the ASDEX pressure gauge at high neutral gas pressure and applications for ITER

    Scarabosio, A.; Haas, G.

    2008-01-01

    The ASDEX Pressure Gauge is, at present, the main candidate for in-vessel neutral pressure measurement in ITER. Although the APG output is found to saturate at around 15 Pa, below the ITER requirement of 20 Pa. We show, here, that with small modifications of the gauge geometry and potentials settings we can achieve satisfactory behaviour up to 30 Pa at 6 T

  14. Operating experience with gas-bearing circulators in a high-pressure helium loop

    Sanders, J.P.; Gat, U.; Young, H.C.

    1988-01-01

    A high-pressure engineering test loop has been designed and constructed at the Oak Ridge National Laboratory for circulating helium through a test chamber at temperatures to 1,000 deg. C. The purpose of this loop is to determine the thermal and structural performance of proposed components for the primary loops of gas-cooled nuclear reactors. Three gas-bearing circulators, mounted in series, provide a maximum volumetric flow of 0.47 m 3 /s and a maximum head of 78 kJ/kg at operating pressures from 0.1 to 10.7 MPa. Control of gaseous impurities in the circulating gas was the significant operating requirement that dictated the choice of a circulator that is lubricated by the circulating gas. The motor for each circulator is contained within the pressure boundary, and it is cooled by circulating the gas in the motor cavity over water-cooled coils. Each motor is rated at 200 kW at a speed of 23,500 rpm. The circulators have been operated in the loop for more than 5,000 h. The flow of the gas in the loop is controlled by varying the speed of the circulators through the use of individual 250-kVA, solid state power supplies that can be continuously varied in frequency from 50 to 400 Hz. To prevent excessive wear on the gas bearings during startup, the circulator motor accelerates the rotor to 3,000 rpm in less than one second. During operation, no problems associated with the gas bearings, per se, were encountered; however, related problems pointed to design considerations that should be included in future applications of circulators of this type. The primary test that has been conducted in this loop required sustained operation for several weeks without interruption. After a number of unscheduled interruptions, the operating goals were attained. During part of this period, the loop was operated with only two circulators installed in the pressure vessels with a guard installed in the third vessel to protect the closure flange from the gas temperatures. Unattended

  15. Analysis of pressure drop accidents in high temperature gas-cooled reactors

    Kameoka, Toshiyuki

    1980-01-01

    Research and development are carried out on various problems in order to realize a multi-purpose, high temperature gas-cooled experimental reactor by Japan Atomic Energy Research Institute and others. In the experimental reactor in consideration at present, it is planned to flow helium at 1000 deg C and 40 atm. For the purpose, high temperature heat insulation structures are designed and developed, which insulate heat on the internal surfaces of pressure vessels and pipings. Consideration must be given to these internal heat insulation structures about the various characteristics in the working environmental temperature and pressure conditions, the measures for preventing the by-pass flow due to the formation of gaps and the abnormal leak of heat through the natural convection in the heat insulators and others. In this paper, the experimental results on the rapid pressure reduction characteristics of ceramic fiber heat insulation structures are reported. The ceramic fiber heat insulation structures have the features such as the application to uneven surfaces and penetration parts, the prevention of by-pass flow, and very low permeability. The problem is the restoring force after the high temperature compression. The experiment on rapid pressure reduction due to the accidental release of gas and the results are reported. (Kako, I.)

  16. Beam tests of 'SPACAL' type modules for a high pressure gas calorimeter

    Konstantinov, V.F.; Krasnokutskij, R.N.; Shuvalov, R.S.; Solodkov, A.A.; Starchenko, E.A.; Sushkov, V.V.; Zajtsev, A.M.; Dzhelyadin, R.I.; Kopikov, S.V.; Solov'yanov, O.V.

    1993-01-01

    High-pressure gas modules with cylindrical ionization chambers for a Very Forward Calorimeter are constructed and tested in the IHEP U-70 electron beam. The amplifiers are used in a remote mode (3 m long cables). The module performance at small angles is tested in the energy range of 10-30 GeV using different gas mixtures like Ar + CH 4 , Ar + CF 4 and pure CF 4 at the pressure of 20-40 Atm. The best value of energy resolution equal to 18% is reached at the angle of 5.7 deg for 30 GeV electrons. The design is found to be adequate for future use in ATLAS/LHC. 24 refs., 10 figs

  17. Opportunities and challenges in green house gases reduction using high pressure direct injection of natural gas

    Ouellette, P.

    2001-01-01

    In an effort to reduce Greenhouse Gases, Westport Innovations is developing a high pressure direct injection (HPDI) technology for gaseous fuels. This technology adapts the diesel cycle for gaseous fuels, since the diesel cycle provides high efficiency, high low-speed torque, fast transient capabilities and reliability. Because of their high efficiency, diesels are very favorable from a Greenhouse Gas (GHG) point of view, however they remain challenged by high nitrogen oxides (NOx) and particulate matter (PM) emissions. When directly injecting natural gas, NOx and PM emissions can be reduced by approximately 50% while maintaining the performance of the diesel engine. This allows the use of abundant and historically cheaper natural gas. Because of its lower carbon content per unit energy, natural gas also offers further GHG reduction over the diesel if the efficiency is preserved and if methane emissions are low. This paper discusses development efforts at Westport for several applications including on-highway trucks, light-duty delivery trucks and power generation

  18. The formation of chondrules at high gas pressures in the solar nebula.

    Galy, A; Young, E D; Ash, R D; O'Nions, R K

    2000-12-01

    High-precision magnesium isotope measurements of whole chondrules from the Allende carbonaceous chondrite meteorite show that some aluminum-rich Allende chondrules formed at or near the time of formation of calcium-aluminum-rich inclusions and that some others formed later and incorporated precursors previously enriched in magnesium-26. Chondrule magnesium-25/magnesium-24 correlates with [magnesium]/[aluminum] and size, the aluminum-rich, smaller chondrules being the most enriched in the heavy isotopes of magnesium. These relations imply that high gas pressures prevailed during chondrule formation in the solar nebula.

  19. High pressure operation of tubular solid oxide fuel cells and their intergration with gas turbines

    Haynes, C.; Wepfer, W.J. [Georgia Institute of Technology, Atlanta, GA (United States)

    1996-12-31

    Fossil fuels continue to be used at a rate greater than that of their natural formation, and the current byproducts from their use are believed to have a detrimental effect on the environment (e.g. global warming). There is thus a significant impetus to have cleaner, more efficient fuel consumption alternatives. Recent progress has led to renewed vigor in the development of fuel cell technology, which has been shown to be capable of producing high efficiencies with relatively benign exhaust products. The tubular solid oxide fuel cell developed by Westinghouse Electric Corporation has shown significant promise. Modeling efforts have been and are underway to optimize and better understand this fuel cell technology. Thus far, the bulk of modeling efforts has been for operation at atmospheric pressure. There is now interest in developing high-efficiency integrated gas turbine/solid oxide fuel cell systems. Such operation of fuel cells would obviously occur at higher pressures. The fuel cells have been successfully modeled under high pressure operation and further investigated as integrated components of an open loop gas turbine cycle.

  20. Spectrographic temperature measurement of a high power breakdown arc in a high pressure gas switch

    Yeckel, Christopher; Curry, Randy [Department of Computer and Electrical Engineering, Center for Physical and Power Electronics, University of Missouri--Columbia, Columbia, Missouri 65211 (United States)

    2011-09-15

    A procedure for obtaining an approximate temperature value of conducting plasma generated during self-break closure of a RIMFIRE gas switch is described. The plasma is in the form of a breakdown arc which conducts approximately 12 kJ of energy in 1 {mu}s. A spectrographic analysis of the trigger-section of the 6-MV RIMFIRE laser triggered gas switch used in Sandia National Laboratory's ''Z-Machine'' has been made. It is assumed that the breakdown plasma has sufficiently approached local thermodynamic equilibrium allowing a black-body temperature model to be applied. This model allows the plasma temperature and radiated power to be approximated. The gas dielectric used in these tests was pressurized SF{sub 6}. The electrode gap is set at 4.59 cm for each test. The electrode material is stainless steel and insulator material is poly(methyl methacrylate). A spectrum range from 220 to 550 nanometers has been observed and calibrated using two spectral irradiance lamps and three spectrograph gratings. The approximate plasma temperature is reported.

  1. High pressure gas scintillation drift chambers with wave-shifter fiber readout

    Parsons, A.; Edberg, T.K.; Sadoulet, B.; Weiss, S.; Wilkerson, J.; Hurley, K.; Lin, R.P.

    1990-01-01

    The authors present results from a prototype high pressure xenon gas scintillation drift chamber using a novel wave-shifter fiber readout scheme. They have measured the primary scintillation light yield to be one photon per 76 ± 12 eV deposited energy. They present initial results of our chamber for the two-interaction separation (< 4 mm in the drift direction, ∼ 7 mm orthogonal to the drift); for the position resolution (< 400 μm rms in the plane orthogonal to the drift direction); and for the energy resolution (ΔE/E < 6% FWHM at 122 keV)

  2. Application of quality assurance guidelines to the high pressure gas system, building 331

    Hanel, S.

    1976-01-01

    Major improvements have been made to decrease the tritium release potential for LLL's tritium-handling facilities in Bldg. 331. Some of the major problems and solutions in designing and building the High Pressure Gas System, which was the first system to be rebuilt are described. To increase system safety, it was necessary to specify material and processes used in component manufacture, to inspect all materials and processes to ensure compliance with specifications, to use proper joint design, to use secondary containment in cases where specifications could not be met, and to exercise tighter control of operating procedures

  3. Comparative measurements between a Li-6 glass and a He-3 high-pressure gas scintillator

    Priesmeyer, H.G.; Fischer, P.; Harz, U.; Soldner, B.

    1983-01-01

    The He-3 high-pressure gas scintillation neutron detector commercially available as LND 800, has been compated to a Li-6 glass scintillator type NE 912. (n,γ) pulse height discrimination capabilities and neutron detection efficiencies have been determined. The objective of these measurements was to try to improve the Kiel Fast-Chopper TOF detector system by using a gasscintillator, which could cover the neutron beam geometry and by which gamma ray background contributions could be reduced. The time response always meets the requirements of a chopper experiment, but the neutron detection efficiency of the Li-6 glasses now used had to be maintained. (orig./HP) [de

  4. Corrosion Prevention And Control In High Pressure Oil And Gas Transmission Pipelines

    Hafez, M.T.; Radwan, M.H.; Jones, D.G.

    2004-01-01

    At the start of the 1990s there were concerns over the increasing threat of corrosion to the integrity of high-pressure oil and gas transmission pipelines. For example: corrosion was the major cause of reportable incidents in North America (1]. Corrosion was the major cause of pipeline failure in the Gulf of Mexico [2]. Corrosion in a North American onshore oil pipeline had required over $1 billion in repairs(3]. Internal corrosion along the complete length of pipelines had resulted in replacement[4] . However, the worldwide published failure statistics indicate that the incidents of corrosion are not increasing year on year(5-9]. Indeed, CONCA WE[8,9] statistics (for pipelines In Western Europe) show that the failure rate from corrosion (the most likely failure mode with increasing age) has not increased with pipeline age (Figure 1). In fact the statistics for gas pipelines in Europe

  5. Injection halos of hydrocarbons above oil-gas fields with super-high pressures

    Bakhtin, V.V.

    1979-09-01

    We studied the origin of injection halos of hydrocarbons above oil-gas fields with anomalously high formation pressures (AHFP). Using fields in Azerbaydzhan and Chechen-Ingushetiya as an example, we demonstrate the effect of certain factors (in particular, faults and zones of increased macro- and micro-jointing) on the morpholoy of the halos. The intensity of micro-jointing (jointing permeability, three-dimensional density of micro-jointing) is directly connected with vertical dimensions of the halos. We measured halos based on transverse profiles across the Khayan-Kort field and studied the distribution of bitumen saturation within the injection halo. Discovery of injection halos during drilling has enabled us to improve the technology of wiring deep-seated exploratory wells for oil and gas in regions with development of AHFP.

  6. Synthesis and morphology of iron-iron oxide core-shell nanoparticles produced by high pressure gas condensation

    Xing, Lijuan; ten Brink, Gert H.; Chen, Bin; Schmidt, Franz P.; Haberfehlner, Georg; Hofer, Ferdinand; Kooi, Bart J.; Palasantzas, Georgios

    2016-01-01

    Core-shell structured Fe nanoparticles (NPs) produced by high pressure magnetron sputtering gas condensation were studied using transmission electron microscopy (TEM) techniques, electron diffraction, electron energy-loss spectroscopy (EELS), tomographic reconstruction, and Wulff shape construction

  7. Switching strategy between HP (high pressure)- and LPEGR (low pressure exhaust gas recirculation) systems for reduced fuel consumption and emissions

    Luján, José Manuel; Guardiola, Carlos; Pla, Benjamín; Reig, Alberto

    2015-01-01

    EGR (Exhaust gas recirculation) plays a major role in current Diesel internal combustion engines as a cost-effective solution to reduce NO_x emissions. EGR systems will suffer a significant evolution with the introduction of NO_x after-treatment and the proliferation of more complex EGR architectures such as low pressure EGR or dual EGR. In this paper the combination of HPEGR (high pressure EGR) LPEGR (low pressure EGR) is presented as a method to minimise fuel consumption with reduced NO_x emissions. Particularly, the paper proposes to switch between HPEGR and LPEGR architectures depending on the engine operating conditions in order to exploit the potential of both systems. In this sense, given a driving cycle, in the case at hand the NEDC, the proposed strategy seeks the EGR layout to use at each instant of the cycle to minimise the fuel consumption such that NO_x emissions are kept below a certain limit. The experimental results obtained show that combining both EGR systems sequentially along the NEDC allows to keep NO_x emission below a much lower limit with minimum fuel consumption. - Highlights: • The combination of HP–LPEGR reduces the NO_x with a small impact on consumption. • The switching strategy between HP – LPEGR is derived from Optimal Control Theory. • The proposed strategy is validated experimentally.

  8. Modeling of leak detection system for high pressure transmission system of natural gas

    Qureshi, S.A.; Paracha, Z.J.; Ali, A.

    2005-01-01

    Gas Industry can be considered as one of the most important industries in the economy of any country. Safe Transportation of Gas is thus considered to be vital because interruption of Supply of Gas to consumers not only causes domestic problems but also loss of revenue to country. Now most of power generation Sector has switched over their system to Natural Gas. So, interruption of supply to this sector can cause a lot of problems. This paper has provided assessment of technology approach and formulated this approach for Leak Detection Model in High Pressure Transmission system for current and future operations, which will improve the efficiency of any transmission company to a great extent. This model can be extremely helpful in conditions of Rupture Emergencies or Leakage because of corrosive conditions of Pipeline to manage the situation of resources in pipeline network. Any exceptional readings or messages should alert the user to the fact that something is wrong with the system. Such a system helps a lot in the safe and efficient management of pipeline network. The data and information provided by the Leak Detection System applications will allow for efficient and safe pipeline operation maximizing profitability over the pipeline's service lifetime. (author)

  9. Extension of the thermal porosimetry method to high gas pressure for nanoporosimetry estimation

    Jannot, Y.; Degiovanni, A.; Camus, M.

    2018-04-01

    Standard pore size determination methods like mercury porosimetry, nitrogen sorption, microscopy, or X-ray tomography are not suited to highly porous, low density, and thus very fragile materials. For this kind of materials, a method based on thermal characterization has been developed in a previous study. This method has been used with air pressure varying from 10-1 to 105 Pa for materials having a thermal conductivity less than 0.05 W m-1 K-1 at atmospheric pressure. It enables the estimation of pore size distribution between 100 nm and 1 mm. In this paper, we present a new experimental device enabling thermal conductivity measurement under gas pressure up to 106 Pa, enabling the estimation of the volume fraction of pores having a 10 nm diameter. It is also demonstrated that the main thermal conductivity models (parallel, series, Maxwell, Bruggeman, self-consistent) lead to the same estimation of the pore size distribution as the extended parallel model (EPM) presented in this paper and then used to process the experimental data. Three materials with thermal conductivities at atmospheric pressure ranging from 0.014 W m-1 K-1 to 0.04 W m-1 K-1 are studied. The thermal conductivity measurement results obtained with the three materials are presented, and the corresponding pore size distributions between 10 nm and 1 mm are presented and discussed.

  10. Modelling the Dynamic Interaction Power System Lamp - Application to High Pressure Mercury Gas Discharge Lamps

    ZIANE, M.

    2007-11-01

    Full Text Available The aim of this paper is to study the dynamic behaviour of a plant constituted by an electrical power system and a gas discharge lamp, this latter, increasingly used in street lighting, remains a nonlinear load element. Various approaches are used to represent it, one is the approximation of the discharge represented by a hot "channel", which verifies the assumption of local thermodynamic equilibrium [LTE] or the polynomial form of the conductance variation. A calculation procedure, based on "channel" approximation of the high pressure mercury (HPM gas-discharge lamp, is developed to determine the physical and electric magnitudes, which characterize the dynamic behavior of the couple "lamp-electrical power system". The evolution of the lamp properties when principal parameters of the discharge (pressure of mercury, voltage supply, frequency are varying were studied and analyzed. We show the concordance between simulation, calculations and measurements for electric, energetic or irradiative characteristics. The model reproduces well the evolution of properties of the supply when principal parameters of the discharge vary.

  11. Study of Electron Swarm in High Pressure Hydrogen Gas Filled RF Cavities

    Yonehara, K.; Chung, M.; Jansson, A.; Moretti, A.; Popovic, M.; Tollestrup, A.; Alsharo'a, M.; Johnson, R.P.; Notani, M.; Oka, T.; Wang, H.

    2010-01-01

    A high pressure hydrogen gas filled RF cavity has been proposed for use in the muon collection system for a muon collider. It allows for high electric field gradients in RF cavities located in strong magnetic fields, a condition frequently encountered in a muon cooling channel. In addition, an intense muon beam will generate an electron swarm via the ionization process in the cavity. A large amount of RF power will be consumed into the swarm. We show the results from our studies of the HV RF breakdown in a cavity without a beam and present some results on the resulting electron swarm dynamics. This is preliminary to actual beam tests which will take place late in 2010.

  12. Computational analysis of transient gas release from a high pressure vessel

    Pedro, G.; Oshkai, P.; Djilali, N. [Victoria Univ., BC (Canada). Inst. for Integrated Energy Systems; Penau, F. [CERAM Euro-American Inst. of Technology, Sophia Antipolis (France)

    2006-07-01

    Gas jets exiting from compressed vessels can undergo several regimes as the pressure in the vessel decreases, and a greater understanding of the characteristics of gas jets is needed to determine safety requirements in the transport, distribution, and use of hydrogen. This paper provided a study of the bow shock waves that typically occur during the initial stage of a gas jet incident. The transient behaviour of an initiated jet was investigated using unsteady, compressible flow simulations. The gas was considered to be ideal, and the domain was considered to be axisymmetric. Tank pressure for the analysis was set at a value of 100 atm. Jet structure was examined, as well as the shock structures and separation due to adverse pressure gradients at the nozzle. Shock structure displacement was also characterized.

  13. Matrimid®/polysulfone blend mixed matrix membranes containing ZIF-8 nanoparticles for high pressure stability in natural gas separation

    Shahid, S.; Nijmeijer, K.

    2017-01-01

    Plasticization is of important concern in high pressure natural gas separation. Majority of the pure polymers and MOF-MMM systems suffer from plasticization at low pressures. Combination of polymer blending and MMM approach could lead to plasticization resistant membranes with improved membrane

  14. Recognition and measurement gas-liquid two-phase flow in a vertical concentric annulus at high pressures

    Li, Hao; Sun, Baojiang; Guo, Yanli; Gao, Yonghai; Zhao, Xinxin

    2018-02-01

    The air-water flow characteristics under pressure in the range of 1-6 MPa in a vertical annulus were evaluated in this report. Time-resolved bubble rising velocity and void fraction were also measured using an electrical void fraction meter. The results showed that the pressure has remarkable effect on the density, bubble size and rise velocity of the gas. Four flow patterns (bubble, cap-bubble, cap-slug, and churn) were also observed instead of Taylor bubble at high pressure. Additionally, the transition process from bubble to cap-bubble was investigated at atmospheric and high pressures, respectively. The results revealed that the flow regime transition criteria for atmospheric pressure do not work at high pressure, hence a new flow regime transition model for annular flow channel geometry was developed to predict the flow regime transition, which thereafter exhibited high accuracy at high pressure condition.

  15. High-Temperature, High-Bandwidth Fiber Optic Pressure and Temperature Sensors for Gas Turbine Applications

    Fielder, Robert S; Palmer, Matthew E

    2003-01-01

    The accurate measurement of gas flow conditions in the compressor, combustors, and turbines of gas turbine engines is important to assess performance, predict failure, and facilitate data-driven maintenance...

  16. Pulse Combustor Driven Pressure Gain Combustion for High Efficiency Gas Turbine Engines

    Lisanti, Joel

    2017-02-01

    The gas turbine engine is an essential component of the global energy infrastructure which accounts for a significant portion of the total fossil fuel consumption in transportation and electric power generation sectors. For this reason there is significant interest in further increasing the efficiency and reducing the pollutant emissions of these devices. Conventional approaches to this goal, which include increasing the compression ratio, turbine inlet temperature, and turbine/compressor efficiency, have brought modern gas turbine engines near the limits of what may be achieved with the conventionally applied Brayton cycle. If a significant future step increase in gas turbine efficiency is to be realized some deviation from this convention is necessary. The pressure gain gas turbine concept is a well established new combustion technology that promises to provide a dramatic increase in gas turbine efficiency by replacing the isobaric heat addition process found in conventional technology with an isochoric process. The thermodynamic benefit of even a small increase in stagnation pressure across a gas turbine combustor translates to a significant increase in cycle efficiency. To date there have been a variety of methods proposed for achieving stagnation pressure gains across a gas turbine combustor and these concepts have seen a broad spectrum of levels of success. The following chapter provides an introduction to one of the proposed pressure gain methods that may be most easily realized in a practical application. This approach, known as pulse combustor driven pressure gain combustion, utilizes an acoustically resonant pulse combustor to approximate isochoric heat release and thus produce a rise in stagnation pressure.

  17. Feasibility, strategy, methodology, and analysis of probe measurements in plasma under high gas pressure

    Demidov, V. I.; Koepke, M. E.; Kurlyandskaya, I. P.; Malkov, M. A.

    2018-02-01

    This paper reviews existing theories for interpreting probe measurements of electron distribution functions (EDF) at high gas pressure when collisions of electrons with atoms and/or molecules near the probe are pervasive. An explanation of whether or not the measurements are realizable and reliable, an enumeration of the most common sources of measurement error, and an outline of proper probe-experiment design elements that inherently limit or avoid error is presented. Additionally, we describe recent expanded plasma-condition compatibility for EDF measurement, including in applications of large wall probe plasma diagnostics. This summary of the authors’ experiences gained over decades of practicing and developing probe diagnostics is intended to inform, guide, suggest, and detail the advantages and disadvantages of probe application in plasma research.

  18. High-pressure turbine deposition in land-based gas turbines from various synfuels

    Bons, J.P.; Crosby, J.; Wammack, J.E.; Bentley, B.I.; Fletcher, T.H. [Brigham Young University, Provo, UT (United States). Dept. of Mechanical Engineering

    2007-01-15

    Ash deposits from four candidate power turbine synfuels were studied in an accelerated deposition test facility. The facility matches the gas temperature and velocity of modern first-stage high-pressure turbine vanes. A natural gas combustor was seeded with finely ground fuel ash particulate from four different fuels: straw, sawdust, coal, and petroleum coke. The entrained ash particles were accelerated to a combustor exit flow Mach number of 0.31 before impinging on a thermal barrier coating (TBC) target coupon at 1150{sup o}C. Postexposure analyses included surface topography, scanning electron microscopy and x-ray spectroscopy. Due to significant differences in the chemical composition of the various fuel ash samples, deposit thickness and structure vary considerably for fuel. Biomass products (e.g., sawdust and straw) are significantly less prone to deposition than coal and petcoke for the same particle loading conditions. In a test simulating one turbine operating year at a moderate particulate loading of 0.02 parts per million by weight, deposit thickness from coal and petcoke ash exceeded 1 and 2 mm, respectively. These large deposits from coal and petcoke were found to detach readily from the turbine material with thermal cycling and handling. The smaller biomass deposit samples showed greater tenacity, in adhering to the TBC surface. In all cases, corrosive elements (e.g., Na, K, V, Cl, S) were found to penetrate the TBC layer during the accelerated deposition test. Implications for the power generation goal of fuel flexibility are discussed.

  19. Gas erosion of impeller housing in the operation of a high-temperature, high-pressure helium circulator

    Sanders, J.P.; Heestand, R.L.; Young, H.C.

    1988-01-01

    Three gas-bearing circulators are installed in series in a high-pressure, high-temperature loop to provide helium flow up to 0.47 m 3 /s at a total head of 78 kJ/kg. The design pressure is 10.7 MPa, and temperatures of 1000 deg. C can be obtained in the test section. The inlet temperature to the circulators is limited to 450 deg. C. The 200-kW motor for each circulator is enclosed in the pressure boundary, and the motor is cooled by circulating the gas within the cavity over a water-cooled coil. The full operating speed is 23,500 rpm. A full-flow filter, absolute for particulate above 10 μm, is installed upstream of the circulator to protect the gas bearing surfaces. The minimum clearances between these surfaces during operation are in the range of 15 to 30 μm. During a routine examination of the circulator, deep V-shaped grooves were found in the stationary surface of this cavity. At the same time, a very fine, dark particulate was observed in crevices of the housing. At first it was assumed that the grooves were formed by particulate erosion; however, examination of the grooves and discussions with persons experienced with large circulator operation changed this opinion. Erosion caused by particulate is characteristically rounded on the bottom and has a greater width to depth aspect than the V-shaped grooves, which were observed. Analysis of the particulate indicated that it was essentially the material of the housing that had undergone reactions with impurities in the circulating gas. It was subsequently concluded that the impeller housing had not been heat treated in a sufficiently oxidizing atmosphere after machining to form an adherent oxide coating. This suboxide coating was eroded by the shear forces in the gas. The exposed layer of metal was then further oxidized by the impurities in the gas, and these layers of oxide were successively eroded to produce the grooves. This erosion problem was eliminated by machining a ring of the same material, heat

  20. Direct injection of high pressure gas : scaling properties of pulsed turbulent jets

    Baert, R.S.G.; Klaassen, A.; Doosje, E.

    2010-01-01

    Existing gasoline DI injection equipment has been modified to generate single hole pulsed gas jets. Injection experiments have been performed at combinations of 3 different pressure ratios (2 of which supercritical) respectively 3 different hole geometries (i.e. length to diameter ratios). Injection

  1. Gas erosion of impeller housing in the operation of a high-temperature, high-pressure helium circulator

    Sanders, J.P.; Heestand, R.L.; Young, H.C.

    1987-01-01

    Three gas-bearing circulators are installed in series in a high-pressure, high-temperature loop to provide helium flow up to 0.47 m 3 /s at a total head of 78 kJ/kg. The design pressure is 10.7 MPa, and temperatures of 1000 0 C can be obtained in the test section. The inlet temperature to the circulators is limited to 450 0 C. During a routine examination of the circulator, deep V-shaped grooves were found in the stationary surface of this cavity. At the same time, a very fine, dark particulate was observed in crevices of the housing. At first it was assumed that the grooves were formed by particulate erosion; however, examination of the grooves and discussions with persons experienced with large circulator operation changed this opinion. Erosion caused by particulate is characteristically rounded on the bottom and has a greater width to depth aspect than the V-shaped grooves, which were observed. Analysis of the particulate indicated that it was essentially the material of the housing that had undergone reactions with impurities in the circulating gas. It was subsequently concluded that the impeller housing had not been heat treated in a sufficiently oxidizing atmosphere after machining to form an adherent oxide coating. This suboxide coating was eroded by the shear forces in the gas. The exposed layer of metal was then further oxidized by the impurities in the gas, and these layers of oxide were successively eroded to produce the grooves. This erosion problem was eliminated by machining a ring of the same material, heat treating it to form an adherent stable oxide, and bolting it in place in the cavity

  2. High Pressure Atmospheric Sampling Inlet System for Venus or the Gas Giants, Phase I

    National Aeronautics and Space Administration — Thorleaf Research, Inc. proposes to develop a miniaturized high pressure atmospheric sampling inlet system for sample acquisition in extreme planetary environments,...

  3. Comparison of various droplet breakup models in gas-liquid flows in high-pressure environments

    Khaleghi, H.; Ganji, D. D.; Omidvar, A.

    2008-01-01

    Droplet breakup affects spray penetration and evaporation, and plays a critical role in engine efficiency. The purpose of this research was to examine the rate of penetration and evaporation of droplets in a combustion chamber, and the efficiency of the engine when liquid jet is injected into the compressed gas chamber in an axi-symmetrical fashion leading to a turbulent and unsteady flow. As a result of interaction with the highly compressed air in the chamber, the liquid jet breaks up and forms minute droplets. These particles will in turn breakup because of aerodynamic forces, producing even smaller droplets. A number of models are available for analyzing the breakup of droplets; however, each model is typically reliable only over a limited parameter range. In this research three well-known models are applied for droplet breakup modeling and their results are compared. To obtain the details of the flow field, the Eulerian gas phase mass, momentum and energy conservation equations, as well as equations governing the transport of turbulence and fuel vapor mass fraction are solved together with equations of trajectory, momentum, mass and energy conservation for liquid droplets in Lagrangian form. The numerical solution is performed using the finite volume method and EPISO (Engine-PISO) algorithm. The results obtained from the models show that the breakup process in a high pressure environment significantly affects the penetration and evaporation rates of the spray, and the droplet size is determined by the balance between breakup and coalescence processes. It is also shown that the details of atomization in the nozzle do not significantly influence the ultimate size of droplets. It should be mentioned that droplet collision modeling has been taken into account in the computer code and is activated wherever necessary

  4. The effect of pressurization path on high pressure gas forming of Ti-3Al-2.5V at elevated temperature

    Liu Gang; Wang Jianlong; Dang Kexin; Yuan Shijian

    2015-01-01

    High pressure gas forming is a tubular component forming technology with pressurized gas at elevated temperature, based on QPF, HMGF and Hydroforming. This process can be used to form tube blank at lower temperatures with high energy efficiency and also at higher strain rates. With Ti-3Al-2.5V Ti-alloy tube, the potential of HPGF was studied further through experiments at the elevated temperatures of 650 ∘C and 700 ∘C. In order to know the formability of the Ti-alloy tube, tensile tests were ...

  5. Ultrahigh gas storage both at low and high pressures in KOH-activated carbonized porous aromatic frameworks.

    Li, Yanqiang; Ben, Teng; Zhang, Bingyao; Fu, Yao; Qiu, Shilun

    2013-01-01

    The carbonized PAF-1 derivatives formed by high-temperature KOH activation showed a unique bimodal microporous structure located at 0.6 nm and 1.2 nm and high surface area. These robust micropores were confirmed by nitrogen sorption experiment and high-resolution transmission electron microscopy (TEM). Carbon dioxide, methane and hydrogen sorption experiments indicated that these novel porous carbon materials have significant gas sorption abilities in both low-pressure and high-pressure environments. Moreover the methane storage ability of K-PAF-1-750 is among the best at 35 bars, and its low-pressure gas adsorption abilities are also comparable to the best porous materials in the world. Combined with excellent physicochemical stability, these materials are very promising for industrial applications such as carbon dioxide capture and high-density clean energy storage.

  6. Proposal and design of a natural gas liquefaction process recovering the energy obtained from the pressure reducing stations of high-pressure pipelines

    Tan, Hongbo; Zhao, Qingxuan; Sun, Nannan; Li, Yanzhong

    2016-12-01

    Taking advantage of the refrigerating effect in the expansion at an appropriate temperature, a fraction of high-pressure natural gas transported by pipelines could be liquefied in a city gate station through a well-organized pressure reducing process without consuming any extra energy. The authors proposed such a new process, which mainly consists of a turbo-expander driven booster, throttle valves, multi-stream heat exchangers and separators, to yield liquefied natural gas (LNG) and liquid light hydrocarbons (LLHs) utilizing the high-pressure of the pipelines. Based on the assessment of the effects of several key parameters on the system performance by a steady-state simulation in Aspen HYSYS, an optimal design condition of the proposed process was determined. The results showed that the new process is more appropriate to be applied in a pressure reducing station (PRS) for the pipelines with higher pressure. For the feed gas at the pressure of 10 MPa, the maximum total liquefaction rate (ytot) of 15.4% and the maximum exergy utilizing rate (EUR) of 21.7% could be reached at the optimal condition. The present process could be used as a small-scale natural gas liquefying and peak-shaving plant at a city gate station.

  7. A method for simulating the release of natural gas from the rupture of high-pressure pipelines in any terrain.

    Deng, Yajun; Hu, Hongbing; Yu, Bo; Sun, Dongliang; Hou, Lei; Liang, Yongtu

    2018-01-15

    The rupture of a high-pressure natural gas pipeline can pose a serious threat to human life and environment. In this research, a method has been proposed to simulate the release of natural gas from the rupture of high-pressure pipelines in any terrain. The process of gas releases from the rupture of a high-pressure pipeline is divided into three stages, namely the discharge, jet, and dispersion stages. Firstly, a discharge model is established to calculate the release rate of the orifice. Secondly, an improved jet model is proposed to obtain the parameters of the pseudo source. Thirdly, a fast-modeling method applicable to any terrain is introduced. Finally, based upon these three steps, a dispersion model, which can take any terrain into account, is established. Then, the dispersion scenarios of released gas in four different terrains are studied. Moreover, the effects of pipeline pressure, pipeline diameter, wind speed and concentration of hydrogen sulfide on the dispersion scenario in real terrain are systematically analyzed. The results provide significant guidance for risk assessment and contingency planning of a ruptured natural gas pipeline. Copyright © 2017. Published by Elsevier B.V.

  8. High-resolution thermal expansion measurements under helium-gas pressure

    Manna, Rudra Sekhar; Wolf, Bernd; de Souza, Mariano; Lang, Michael

    2012-08-01

    We report on the realization of a capacitive dilatometer, designed for high-resolution measurements of length changes of a material for temperatures 1.4 K ⩽ T ⩽ 300 K and hydrostatic pressure P ⩽ 250 MPa. Helium (4He) is used as a pressure-transmitting medium, ensuring hydrostatic-pressure conditions. Special emphasis has been given to guarantee, to a good approximation, constant-pressure conditions during temperature sweeps. The performance of the dilatometer is demonstrated by measurements of the coefficient of thermal expansion at pressures P ≃ 0.1 MPa (ambient pressure) and 104 MPa on a single crystal of azurite, Cu3(CO3)2(OH)2, a quasi-one-dimensional spin S = 1/2 Heisenberg antiferromagnet. The results indicate a strong effect of pressure on the magnetic interactions in this system.

  9. Application of water-insoluble polymers to orally disintegrating tablets treated by high-pressure carbon dioxide gas.

    Ito, Yoshitaka; Maeda, Atsushi; Kondo, Hiromu; Iwao, Yasunori; Noguchi, Shuji; Itai, Shigeru

    2016-09-10

    The phase transition of pharmaceutical excipients that can be induced by humidifying or heating is well-known to increase the hardness of orally disintegrating tablets (ODTs). However, these conditions are not applicable to drug substances that are chemically unstable against such stressors. Here, we describe a system which enhances the hardness of tablets containing water-insoluble polymers by using high-pressure carbon dioxide (CO2). On screening of 26 polymeric excipients, aminoalkyl methacrylate copolymer E (AMCE) markedly increased tablet hardness (+155N) when maintained in a high-pressure CO2 environment. ODTs containing 10% AMCE were prepared and treatment with 4.0MPa CO2 gas at 25°C for 10min increased the hardness to +30N, whose level corresponded to heating at 70°C for 720min. In addition, we confirmed the effects of CO2 pressure, temperature, treatment time, and AMCE content on the physical properties of ODTs. Optimal pressure of CO2 gas was considered to be approximately 3.5MPa for an AMCE formula, as excessive pressure delayed the disintegration of ODTs. Combination of high-pressure CO2 gas and AMCE is a prospective approach for increasing the tablet hardness for ODTs, and can be conducted without additional heat or moisture stress using a simple apparatus. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. First proof of topological signature in high pressure xenon gas with electroluminescence amplification

    Ferrario, P.; López-March, N.; Gómez-Cadenas, J.J.; Álvarez, V.; Azevedo, C.D.R.; Borges, F.I.G.; Cárcel, S.; Cebrián, S.; Cervera, A.; Conde, C.A.N.; Dafni, T.; Díaz, J.; Diesburg, M.; Esteve, R.; Fernandes, L.M.P.; Ferreira, A.L.; Freitas, E.D.C.; Gehman, V.M.; Goldschmidt, A.; González-Díaz, D.; Gutiérrez, R.M.; Hauptman, J.; Henriques, C.A.O.; Hernando Morata, J.A.; Irastorza, I.G.; Labarga, L.; Lebrun, P.; Liubarsky, I.; Lorca, D.; Losada, M.; Luzón, G.; Marí, A.; Martín-Albo, J.; Martínez-Lema, G.; Martínez, A.; Miller, T.; Monrabal, F.; Monserrate, M.; Monteiro, C.M.B.; Mora, F.J.; Moutinho, L.M.; Muñoz Vidal, J.; Nebot-Guinot, M.; Novella, P.; Nygren, D.; Para, A.; Pérez, J.; Pérez Aparicio, J.L.; Querol, M.; Renner, J.; Ripoll, L.; Rodríguez, J.; Santos, F.P.; dos Santos, J.M.F.; Serra, L.; Shuman, D.; Simón, A.; Sofka, C.; Sorel, M.; Toledo, J.F.; Torrent, J.; Tsamalaidze, Z.; Veloso, J.F.C.A.; Villar, J.A.; Webb, R.; White, J.T.; Yahlali, N.; Yepes-Ramírez, H.

    2016-01-01

    The NEXT experiment aims to observe the neutrinoless double beta decay of xenon in a high-pressure Xe136 gas TPC using electroluminescence (EL) to amplify the signal from ionization. One of the main advantages of this technology is the possibility to reconstruct the topology of events with energies close to Qbb. This paper presents the first demonstration that the topology provides extra handles to reject background events using data obtained with the NEXT-DEMO prototype. Single electrons resulting from the interactions of Na22 1275 keV gammas and electron-positron pairs produced by conversions of gammas from the Th228 decay chain were used to represent the background and the signal in a double beta decay. These data were used to develop algorithms for the reconstruction of tracks and the identification of the energy deposited at the end-points, providing an extra background rejection factor of 24.3 +- 1.4 (stat.)%, while maintaining an efficiency of 66.7 +- 0.6 (stat.)% for signal events.

  11. Discharge runaway in high power impulse magnetron sputtering of carbon: the effect of gas pressure, composition and target peak voltage

    Vitelaru, Catalin; Aijaz, Asim; Constantina Parau, Anca; Kiss, Adrian Emil; Sobetkii, Arcadie; Kubart, Tomas

    2018-04-01

    Pressure and target voltage driven discharge runaway from low to high discharge current density regimes in high power impulse magnetron sputtering of carbon is investigated. The main purpose is to provide a meaningful insight of the discharge dynamics, with the ultimate goal to establish a correlation between discharge properties and process parameters to control the film growth. This is achieved by examining a wide range of pressures (2–20 mTorr) and target voltages (700–850 V) and measuring ion saturation current density at the substrate position. We show that the minimum plasma impedance is an important parameter identifying the discharge transition as well as establishing a stable operating condition. Using the formalism of generalized recycling model, we introduce a new parameter, ‘recycling ratio’, to quantify the process gas recycling for specific process conditions. The model takes into account the ion flux to the target, the amount of gas available, and the amount of gas required for sustaining the discharge. We show that this parameter describes the relation between the gas recycling and the discharge current density. As a test case, we discuss the pressure and voltage driven transitions by changing the gas composition when adding Ne into the discharge. We propose that standard Ar HiPIMS discharges operated with significant gas recycling do not require Ne to increase the carbon ionization.

  12. Local wall thickness reductions in operative high-pressure gas pipelines; Lokale Wanddickenminderungen an in Betrieb befindlichen Gashochdruckleitungen

    Hass, Georg [Netzdienste Rhein-Main GmbH, Frankfurt am Main (Germany); Hoffmann, Ulrich [Verbundnetz Gas AG (VNG), Leipzig (Germany); Konarske, Juergen [RWE Westfalen-Weser-Ems Netzservice GmbH, Recklinghausen (Germany); Soppa, Thorsten [NG Netz Gas+Wasser (Germany); Steiner, Michael [Open Grid Europe GmbH, Essen (Germany)

    2011-04-15

    TUeV Nord, Salzgitter Mannesmann Forschung and DVGW investigated methods to assess local wall thickness reductions in operative high-pressure gas pipelines. Methods described in the relevant literature were reviewed with regard to the limiting criteria defined for maximum permissible wall thickness reductions. (orig./GL)

  13. Using Modelica to investigate the dynamic behaviour of the German national standard for high pressure natural gas flow metering

    Von der Heyde, M; Schmitz, G; Mickan, B

    2016-01-01

    This paper presents a computational model written in Modelica for the high pressure piston prover (HPPP) used as the national primary standard for high pressure natural gas flow metering in Germany. With a piston prover the gas flow rate is determined by measuring the time a piston needs to displace a certain volume of gas in a cylinder. Fluctuating piston velocity during measurement can be a significant source of uncertainty if not considered in an appropriate way. The model was built to investigate measures for the reduction of this uncertainty. Validation shows a good compliance of the piston velocity in the model with measured data for certain volume flow rates. Reduction of the piston weight, variation of the start valve switching time and integration of a flow straightener were found to reduce the piston velocity fluctuations in the model significantly. The fast and cost effective generation of those results shows the strength of the used modelling approach. (paper)

  14. Thermodynamic characterization of deepwater natural gas mixtures with heavy hydrocarbon content at high pressures

    Atilhan, Mert; Aparicio, Santiago; Ejaz, Saquib; Zhou, Jingjun; Al-Marri, Mohammed; Holste, James J.; Hall, Kenneth R.

    2015-01-01

    This paper includes high-accuracy density measurements and phase envelopes for deepwater natural gas mixtures. Mixtures primarily consist of (0.88 and 0.94) mole fraction methane and both mixtures includes heavy components (C 6+ ) more than 0.002 mole fraction. Experimental density and phase envelope data for deep and ultra-deep reservoir mixtures are scarce in literature and high accuracy measurements for such parameters for such natural gas-like mixtures are essential to validate the benchmark equations for custody transfer such as AGA8-DC92 and GERG-2008 equation of states (EOS). Thus, in this paper we report density and phase envelope experimental data via compact single-sinker magnetic suspension densimeter and isochoric apparatuses. Such data help gas industry to avoid retrograde condensation in natural gas pipelines

  15. Properties of high pressure nitrogen-argon and nitrogen-xenon gas scintillators

    Tornow, W.; Huck, H.; Koeber, H.J.; Mertens, G.

    1976-01-01

    Investigations of scintillation light output and energy resolution have been made at pressures up to 90 atm in gaseous mixtures of nitrogen with both argon and xenon by stopping of 210 Po-alpha particles. In the absence of a wavelength shifter, the N 2 -Ar mixtures gave a maximum pulse height at a ratio of nitrogen to argon partial pressures rsub(N 2 /Ar) approximately =0.2. However, when using the wavelength shifter diphenyl stilbene (DPS), the measured light output was much larger at lower values of rsub(N 2 /Ar), whereas for rsub(N 2 /Ar)>0.2 pulse height and energy resolution of the studied N 2 -Ar mixtures were roughly indentical with and without DPS. The N 2 -Xe gas mixtures exhibited a similar dependence of pulse height and energy resolution to that of the N 2 -Ar mixtures employing DPS, but the pulse height was larger by a factor of about 7. A 40 atm 50% N 2 -50% Xe gas scintillator showed an energy resolution ΔE/E=0.25, while an 80 atm 75% N 2 -25% Xe scintillator gave ΔE/E=0.6. The pulse height from the 80 atm N 2 -Xe scintillator was smaller by a factor of about 240 than the pulse height from a 20 atm pure Xe gas scintillator, but larger by a factor of about 20 than the pulse height from a 75 atm pure N 2 gas scintillator. The N 2 -Xe mixtures showed a remarkable increase of light output as the temperature of the gas was descreased. (Auth.)

  16. Gas-ion laser with gas pressure maintenance means

    Thatcher, J.B.

    1975-01-01

    A gas-ion laser is described including means to maintain the ionizable gas in the laser cavity at a rather constant pressure over an extended period of time to significantly increase the useful life of the gas-ion laser. The gas laser includes a gas makeup system having a high pressure source or storage container and a regulating valve. The valve has a permeable solid state orifice member through which the gas flows from the high pressure source to the laser cavity to replenish the gas in the laser cavity and maintain the gas pressure in the cavity rather constant. The permeable orifice member is selected from a solid state material having a permeability that is variable in relation to the magnitude of the energy applied to the orifice member. The gas-ion laser has a valve operating means such as a heater for varying the applied energy such as thermal energy to the member to regulate the gas flow. Additionally, the gas-ion laser has a valve control means that is responsive to the gas pressure in the laser cavity for controlling the valve control means to maintain the pressure at a desired level. (U.S.)

  17. Development of high pressure deuterium gas targets for the generation of intense mono-energetic fast neutron beams

    Guzek, J.; Richardson, K.; Franklyn, C.B.; Waites, A.; McMurray, W.R.; Watterson, J.I.W.; Tapper, U.A.S.

    1999-01-01

    Two different technical solutions to the problem of generation of mono-energetic fast neutron beams on the gaseous targets are presented here. A simple and cost-effective design of a cooled windowed gas target system is described in the first part of this paper. It utilises a thin metallic foil window and circulating deuterium gas cooled down to 100 K. The ultimate beam handling capability of such target is determined by the properties of the window. Reliable performance of this gas target system was achieved at 1 bar of deuterium gas, when exposed to a 45 μA beam of 5 MeV deuterons, for periods in excess of 6 h. Cooling of the target gas resulted in increased fast neutron output and improved neutron to gamma-ray ratio. The second part of this paper discusses the design of a high pressure, windowless gas target for use with pulsed, low duty cycle accelerators. A rotating seal concept was applied to reduce the gas load in a differentially pumped system. This allows operation at 1.23 bar of deuterium gas pressure in the gas cell region. Such a gas target system is free from the limitations of the windowed target but special attention has to be paid to the heat dissipation capability of the beam dump, due to the use of a thin target. The rotating seal concept is particularly suitable for use with accelerators such as radio-frequency quadrupole (RFQ) linacs that operate with a very high peak current at low duty cycle. The performance of both target systems was comprehensively characterized using the time-of-flight (TOF) technique. This demonstrated that very good quality mono-energetic fast neutron beams were produced with the slow neutron and gamma-ray component below 10% of the total target output

  18. Reduced-order modellin for high-pressure transient flow of hydrogen-natural gas mixture

    Agaie, Baba G.; Khan, Ilyas; Alshomrani, Ali Saleh; Alqahtani, Aisha M.

    2017-05-01

    In this paper the transient flow of hydrogen compressed-natural gas (HCNG) mixture which is also referred to as hydrogen-natural gas mixture in a pipeline is numerically computed using the reduced-order modelling technique. The study on transient conditions is important because the pipeline flows are normally in the unsteady state due to the sudden opening and closure of control valves, but most of the existing studies only analyse the flow in the steady-state conditions. The mathematical model consists in a set of non-linear conservation forms of partial differential equations. The objective of this paper is to improve the accuracy in the prediction of the HCNG transient flow parameters using the Reduced-Order Modelling (ROM). The ROM technique has been successfully used in single-gas and aerodynamic flow problems, the gas mixture has not been done using the ROM. The study is based on the velocity change created by the operation of the valves upstream and downstream the pipeline. Results on the flow characteristics, namely the pressure, density, celerity and mass flux are based on variations of the mixing ratio and valve reaction and actuation time; the ROM computational time cost advantage are also presented.

  19. A system for regulating the pressure of resuperheated steam in high temperature gas-cooled reactor power stations

    Braytenbah, A.S.; Jaegines, K.O.

    1975-01-01

    The invention relates to a system for regulating steam-pressure in the re-superheating portion of a steam-boiler receiving heat from a gas-cooled high temperature nuclear reactor, provided with gas distributing pumps driven by steam-turbines. The system comprises means for generating a pressure signal of desired magnitude for the re-superheating portion, and means for providing a real pressure in the re-superheating portion, means (including a by-passing device) for generating steam-flow rate signal of desired magnitude, a turbine by-pass device comprising a by-pass tapping means for regulating the steam-flow-rate in said turbine according to the desired steam-flow rate signal and means for controlling said by-pass tapping means according to said desired steam-flow-rate signal [fr

  20. Piezoelectric microvalve for precise control of gas flow at high pressure

    Fazal, I.; Elwenspoek, Michael Curt

    2008-01-01

    We present a normally open piezoelectric actuated micro valve, based on the novel concept of micro and fine machining technology. This new design allows a wide controllable range for high flow at a high pressure difference between inlet and outlet. This promising combination of micro and fine

  1. Multiple scattering effects in fast neutron polarization experiments using high-pressure helium-xenon gas scintillators as analyzers

    Tornow, W.; Mertens, G.

    1977-01-01

    In order to study multiple scattering effects both in the gas and particularly in the solid materials of high-pressure gas scintillators, two asymmetry experiments have been performed by scattering of 15.6 MeV polarized neutrons from helium contained in stainless steel vessels of different wall thicknesses. A monte Carlo computer code taking into account the polarization dependence of the differential scattering cross sections has been written to simulate the experiments and to calculate corrections for multiple scattering on helium, xenon and the gas containment materials. Besides the asymmetries for the various scattering processes involved, the code yields time-of-flight spectra of the scattered neutrons and pulse height spectra of the helium recoil nuclei in the gas scintillator. The agreement between experimental results and Monte Carlo calculations is satisfactory. (Auth.)

  2. Development of a laser-induced plasma probe to measure gas phase plasma signals at high pressures and temperatures

    Gounder, J.D.; Kutne, P.; Meier, W.

    2012-01-01

    The ability of laser induced breakdown spectroscopy (LIBS) technique for on line simultaneous measurement of elemental concentrations has led to its application in a wide number of processes. The simplicity of the technique allows its application to harsh environments such as present in boilers, furnaces and gasifiers. This paper presents the design of a probe using a custom optic which transforms a round beam into a ring (Donut) beam, which is used for forming a plasma in an atmosphere of nitrogen at high pressure (20 bar) and temperature (200 °C). The LIBS experiments were performed using a high pressure cell to characterize and test the effectiveness of the donut beam transmitted through the LIBS probe and collect plasma signal in back scatter mode. The first tests used the second harmonic of a Nd:YAG laser, pulse width 7 ns, to form a plasma in nitrogen gas at five different pressures (1, 5, 10, 15 and 20 bar) and three different gas temperatures (25, 100 and 200 °C). The uniqueness of this probe is the custom made optic used for reshaping the round laser beam into a ring (Donut) shaped laser beam, which is fed into the probe and focused to form a plasma at the measurement point. The plasma signal is collected and collimated using the laser focusing lens and is reflected from the laser beam axis onto an achromatic lens by a high reflection mirror mounted in the center section of the donut laser beam. The effect of gas pressure and temperature on N(I) lines in the high pressure cell experiment shows that the line intensity decreases with pressure and increases with temperature. Mean plasma temperature was calculated using the ratios of N(I) line intensities ranging from 7400 K to 8900 K at 1 bar and 2400 K to 3200 K at 20 bar for the three different gas temperatures. The results show that as a proof of principle the donut beam optics in combination with the LIBS probe can be used for performing extensive LIBS measurements in well controlled laboratory

  3. Development of a laser-induced plasma probe to measure gas phase plasma signals at high pressures and temperatures

    Gounder, J.D., E-mail: James.Gounder@dlr.de; Kutne, P.; Meier, W.

    2012-08-15

    The ability of laser induced breakdown spectroscopy (LIBS) technique for on line simultaneous measurement of elemental concentrations has led to its application in a wide number of processes. The simplicity of the technique allows its application to harsh environments such as present in boilers, furnaces and gasifiers. This paper presents the design of a probe using a custom optic which transforms a round beam into a ring (Donut) beam, which is used for forming a plasma in an atmosphere of nitrogen at high pressure (20 bar) and temperature (200 Degree-Sign C). The LIBS experiments were performed using a high pressure cell to characterize and test the effectiveness of the donut beam transmitted through the LIBS probe and collect plasma signal in back scatter mode. The first tests used the second harmonic of a Nd:YAG laser, pulse width 7 ns, to form a plasma in nitrogen gas at five different pressures (1, 5, 10, 15 and 20 bar) and three different gas temperatures (25, 100 and 200 Degree-Sign C). The uniqueness of this probe is the custom made optic used for reshaping the round laser beam into a ring (Donut) shaped laser beam, which is fed into the probe and focused to form a plasma at the measurement point. The plasma signal is collected and collimated using the laser focusing lens and is reflected from the laser beam axis onto an achromatic lens by a high reflection mirror mounted in the center section of the donut laser beam. The effect of gas pressure and temperature on N(I) lines in the high pressure cell experiment shows that the line intensity decreases with pressure and increases with temperature. Mean plasma temperature was calculated using the ratios of N(I) line intensities ranging from 7400 K to 8900 K at 1 bar and 2400 K to 3200 K at 20 bar for the three different gas temperatures. The results show that as a proof of principle the donut beam optics in combination with the LIBS probe can be used for performing extensive LIBS measurements in well controlled

  4. Transport properties of natural gas through polyethylene nanocomposites at high temperature and pressure

    Adewole, Jimoh K.; Jensen, Lars; Al-Mubaiyedh, Usamah A.

    2012-01-01

    High density polyethylene (HDPE)/clay nanocomposites containing nanoclay concentrations of 1, 2.5, and 5 wt% were prepared by a melt blending process. The effects of various types of nanoclays and their concentrations on permeability, solubility, and diffusivity of natural gas in the nanocomposites...... at constant temperature had little influence on the permeability, whereas increasing the temperature from 30 to 70 degrees C significantly increased the permeability of the gas. Additionally, the effect of crystallinity on permeability, solubility, and diffusivity was investigated. Thus, the permeability...

  5. High-pressure tritium

    Coffin, D.O.

    1976-01-01

    Some solutions to problems of compressing and containing tritium gas to 200 MPa at 700 0 K are discussed. The principal emphasis is on commercial compressors and high-pressure equipment that can be easily modified by the researcher for safe use with tritium. Experience with metal bellows and diaphragm compressors has been favorable. Selection of materials, fittings, and gauges for high-pressure tritium work is also reviewed briefly

  6. Wavelength modulation diode laser absorption spectroscopy for high-pressure gas sensing

    Sun, K.; Chao, X.; Sur, R.; Jeffries, J. B.; Hanson, R. K.

    2013-03-01

    A general model for 1 f-normalized wavelength modulation absorption spectroscopy with nf detection (i.e., WMS- nf) is presented that considers the performance of injection-current-tuned diode lasers and the reflective interference produced by other optical components on the line-of-sight (LOS) transmission intensity. This model explores the optimization of sensitive detection of optical absorption by species with structured spectra at elevated pressures. Predictions have been validated by comparison with measurements of the 1 f-normalized WMS- nf (for n = 2-6) lineshape of the R(11) transition in the 1st overtone band of CO near 2.3 μm at four different pressures ranging from 5 to 20 atm, all at room temperature. The CO mole fractions measured by 1 f-normalized WMS-2 f, 3 f, and 4 f techniques agree with calibrated mixtures within 2.0 %. At conditions where absorption features are significantly broadened and large modulation depths are required, uncertainties in the WMS background signals due to reflective interference in the optical path can produce significant error in gas mole fraction measurements by 1 f-normalized WMS-2 f. However, such potential errors can be greatly reduced by using the higher harmonics, i.e., 1 f-normalized WMS- nf with n > 2. In addition, less interference from pressure-broadened neighboring transitions has been observed for WMS with higher harmonics than for WMS-2 f.

  7. The effect of pressurization path on high pressure gas forming of Ti-3Al-2.5V at elevated temperature

    Liu Gang

    2015-01-01

    Full Text Available High pressure gas forming is a tubular component forming technology with pressurized gas at elevated temperature, based on QPF, HMGF and Hydroforming. This process can be used to form tube blank at lower temperatures with high energy efficiency and also at higher strain rates. With Ti-3Al-2.5V Ti-alloy tube, the potential of HPGF was studied further through experiments at the elevated temperatures of 650 ∘C and 700 ∘C. In order to know the formability of the Ti-alloy tube, tensile tests were also carried out. The results show that: at the temperatures of 650 ∘C and 700 ∘C, the flow curves exhibit the power-law constitutive relation until peak stress is reached and the deformability is suitable for the HPGF process of Ti-3Al-2.5V alloy tube. The effects of pressurization path on the corner filling process and thickness profile are obvious. The high pressure inflow process can result in temperature difference between the straight wall area and corner area, which makes the thickness profile special. Besides, with the stepped pressurization path, the more constant filling rate and better thickness profile can be obtained.

  8. A primary scintillation gated high pressure position sensitive gas scintillation proportional counter (HPGSPC) for applications to x-ray astronomy

    Giarrusso, S.; Manzo, G.; Re, S.

    1985-01-01

    The authors describe a new instrument for x-ray astronomy. The instrument, based on a high pressure (5 atm.), xenon filled, position sensitive Gas Scintillation Proportional counter (HPGSPC) is expected to feature an energy resolution better than 4% at 60 keV, an angular resolution of approximately 20 arc-minutes over the full energy range (4 to 100 keV) and a field of view (FOV) of up to 30x30 degrees. A prototype flight unit of the gas cell on which the instrument is based is presently under technological development in the framework of the SAX project

  9. Micro-Structured Sapphire Fiber Sensors for Simultaneous Measurements of High-T and Dynamic Gas Pressure in Harsh Environments

    Xiao, Hai [Clemson Univ., SC (United States); Tsai, Hai-Lung [Missouri Univ. of Science and Technology, Rolla, MO (United States); Dong, Junhang [Univ. of Cincinnati, OH (United States)

    2014-09-30

    This is the final report for the program “Micro-Structured Sapphire Fiber Sensors for Simultaneous Measurements of High Temperature and Dynamic Gas Pressure in Harsh Environments”, funded by NETL, and performed by Missouri University of Science and Technology, Clemson University and University of Cincinnati from October 1, 2009 to September 30, 2014. Securing a sustainable energy economy by developing affordable and clean energy from coal and other fossil fuels is a central element to the mission of The U.S. Department of Energy’s (DOE) National Energy Technology Laboratory (NETL). To further this mission, NETL funds research and development of novel sensor technologies that can function under the extreme operating conditions often found in advanced power systems. The main objective of this research program is to conduct fundamental and applied research that will lead to successful development and demonstration of robust, multiplexed, microstructured silica and single-crystal sapphire fiber sensors to be deployed into the hot zones of advanced power and fuel systems for simultaneous measurements of high temperature and gas pressure. The specific objectives of this research program include: 1) Design, fabrication and demonstration of multiplexed, robust silica and sapphire fiber temperature and dynamic gas pressure sensors that can survive and maintain fully operational in high-temperature harsh environments. 2) Development and demonstration of a novel method to demodulate the multiplexed interferograms for simultaneous measurements of temperature and gas pressure in harsh environments. 3) Development and demonstration of novel sapphire fiber cladding and low numerical aperture (NA) excitation techniques to assure high signal integrity and sensor robustness.

  10. Water-Gas-Shift Membrane Reactor for High-Pressure Hydrogen Production. A comprehensive project report (FY2010 - FY2012)

    Klaehn, John [Idaho National Lab. (INL), Idaho Falls, ID (United States); Peterson, Eric [Idaho National Lab. (INL), Idaho Falls, ID (United States); Orme, Christopher [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bhandari, Dhaval [General Electric Global Research, Niskayuna, New York (United States); Miller, Scott [General Electric Global Research, Niskayuna, New York (United States); Ku, Anthony [General Electric Global Research, Niskayuna, New York (United States); Polishchuk, Kimberly [General Electric Global Research, Niskayuna, New York (United States); Narang, Kristi [General Electric Global Research, Niskayuna, New York (United States); Singh, Surinder [General Electric Global Research, Niskayuna, New York (United States); Wei, Wei [General Electric Global Research, Niskayuna, New York (United States); Shisler, Roger [General Electric Global Research, Niskayuna, New York (United States); Wickersham, Paul [General Electric Global Research, Niskayuna, New York (United States); McEvoy, Kevin [General Electric Global Research, Niskayuna, New York (United States); Alberts, William [General Electric Global Research, Niskayuna, New York (United States); Howson, Paul [General Electric Global Research, Niskayuna, New York (United States); Barton, Thomas [Western Research inst., Laramie, WY (United States); Sethi, Vijay [Western Research inst., Laramie, WY (United States)

    2013-01-01

    Idaho National Laboratory (INL), GE Global Research (GEGR), and Western Research Institute (WRI) have successfully produced hydrogen-selective membranes for water-gas-shift (WGS) modules that enable high-pressure hydrogen product streams. Several high performance (HP) polymer membranes were investigated for their gas separation performance under simulated (mixed gas) and actual syngas conditions. To enable optimal module performance, membranes with high hydrogen (H2) selectivity, permeance, and stability under WGS conditions are required. The team determined that the VTEC PI 80-051 and VTEC PI 1388 (polyimide from Richard Blaine International, Inc.) are prime candidates for the H2 gas separations at operating temperatures (~200°C). VTEC PI 80-051 was thoroughly analyzed for its H2 separations under syngas processing conditions using more-complex membrane configurations, such as tube modules and hollow fibers. These membrane formats have demonstrated that the selected VTEC membrane is capable of providing highly selective H2/CO2 separation (α = 7-9) and H2/CO separation (α = 40-80) in humidified syngas streams. In addition, the VTEC polymer membranes are resilient within the syngas environment (WRI coal gasification) at 200°C for over 1000 hours. The information within this report conveys current developments of VTEC PI 80-051 as an effective H2 gas separations membrane for high-temperature syngas streams.

  11. Deuterium high pressure target

    Perevozchikov, V.V.; Yukhimchuk, A.A.; Vinogradov, Yu.I.

    2001-01-01

    The design of the deuterium high-pressure target is presented. The target having volume of 76 cm 3 serves to provide the experimental research of muon catalyzed fusion reactions in ultra-pure deuterium in the temperature range 80-800 K under pressures of up to 150 MPa. The operation of the main systems of the target is described: generation and purification of deuterium gas, refrigeration, heating, evacuation, automated control system and data collection system

  12. Steady State Structural Analysis of High Pressure Gas Turbine Blade using Finite Element Analysis

    Mazarbhuiya, Hussain Mahamed Sahed Mostafa; Murari Pandey, Krishna

    2017-08-01

    In gas turbines the major portion of performance dependency lies upon turbine blade design. Turbine blades experience very high centrifugal, axial and tangential force during power generation. While withstanding these forces blades undergo elongation. Different methods have proposed for better enhancement of the mechanical properties of blade to withstand in extreme condition. Present paper describes the stress and elongation for blades having properties of different materials. Steady state structural analysis have performed in the present work for different materials (In 625, In 718, In 738, In 738 LC, MAR M246, Ni-Cr, Ti-alloy, Ti-Al, Ti-T6, U500). Remarkable finding is that the root of the blade is subjected to maximum stress for all blade materials and the blade made of MAR M246 has less stress and deformation among all other blade materials which can be selected as a suitable material for gas turbine blade.

  13. Development of a facility for the recovery of high-purity hydrogen from coke oven gas by pressure swing adsorption

    Nakamura, M; Saida, K; Uenoyama, K; Sugishita, M; Imokawa, K

    1985-01-01

    This paper reports 1) a pressure swing adsorption (PSA) system comprising three towers, each packed with three different adsorbents; and 2) studies of the application of this system to the recovery of high-purity hydrogen from coke oven gas. Running the adsorption plant at 35 C and 9.5 kg/cm/sup 2/ gives optimum operating stability and economy. In addition, an optimum time cycle for the three-tower system has been developed. Gas from the PSA equipment proper still contains traces of oxygen. This is removed in a further tower packed with Pd catalyst. The ultimate recovery of hydrogen is closely related to its concentration in the raw coke oven gas and to the degree of purity attained. 3 references.

  14. Design and test of a new high pressure phase equlibrium apparatus for highly corrosive mixtures of importance for natural gas

    Mota Martinez, M.; Samdani, S.; Berrouk, A.S.; Alves da Rocha, M.A.; Elhseinat, E.Y.; Banat, F.; Kroon, M.C.; Peters, C.J.

    2015-01-01

    A new static analytical apparatus for high-pressure phase equilibrium measurements has been designed and built. The new apparatus enables the measurement of vapor–liquid and liquid–liquid equilibria, which can operate at temperatures ranging from 225 K to 475 K and pressures up to 20 MPa. It is

  15. Next Generation Pressurized Oxy-Coal Combustion: High Efficiency and No Flue Gas Recirculation

    Rue, David

    2013-09-30

    The Gas Technology Institute (GTI) has developed a pressurized oxy-coal fired molten bed boiler (MBB) concept, in which coal and oxygen are fired directly into a bed of molten coal slag through burners located on the bottom of the boiler and fired upward. Circulation of heat by the molten slag eliminates the need for a flue gas recirculation loop and provides excellent heat transfer to steam tubes in the boiler walls. Advantages of the MBB technology over other boilers include higher efficiency (from eliminating flue gas recirculation), a smaller and less expensive boiler, modular design leading to direct scalability, decreased fines carryover and handling costs, smaller exhaust duct size, and smaller emissions control equipment sizes. The objective of this project was to conduct techno-economic analyses and an engineering design of the MBB project and to support this work with thermodynamic analyses and oxy-coal burner testing. Techno-economic analyses of GTI’s pressurized oxy-coal fired MBB technology found that the overall plant with compressed CO2 has an efficiency of 31.6%. This is a significant increase over calculated 29.2% efficiency of first generation oxy-coal plants. Cost of electricity (COE) for the pressurized MBB supercritical steam power plant with CO2 capture and compression was calculated to be 134% of the COE for an air-coal supercritical steam power plant with no CO2 capture. This compares positively with a calculated COE for first generation oxy-coal supercritical steam power plants with CO2 capture and compression of 164%. The COE for the MBB power plant is found to meet the U.S. Department of Energy (DOE) target of 135%, before any plant optimization. The MBB power plant was also determined to be simpler than other oxy-coal power plants with a 17% lower capital cost. No other known combustion technology can produce higher efficiencies or lower COE when CO2 capture and compression are included. A thermodynamic enthalpy and exergy analysis

  16. Heat insulating structure for use in transporting and handling gas of high temperature and pressure

    Mathusima, T.; Sato, T.; Uenishi, A.

    1980-01-01

    A heat insulating structure is described that has a heat-resistant tube disposed in a tubular cylindrical body and defining a passage for a high temperature gas, a heat insulating material disposed between the tube and the tubular cylindrical body and adapted to prevent the heat possessed by the gas from being transmitted to the tubular cylindrical body, and a spring adapted to bias the heat insulating material toward the inner surface of the tubular cylindrical body, so as to prevent the formation of a bypass passage for the gas including the gap between the tubular cylindrical body and the heat insulating material. The heat insulating material consists of a plurality of fibrous heat insulating materials mainly consisting of bulky fibrous materials and a plurality of shaped fibrous heat insulating materials. These fibrous heat insulating materials and the shaped fibrous heat insulating materials are arranged alternatingly and independently in the axial direction. In each of the bulky fibrous heat insulating material, disposed is a spring for biasing the shaped fibrous heat insulating material in the axial direction

  17. Development of Probability Evaluation Methodology for High Pressure/Temperature Gas Induced RCS Boundary Failure and SG Creep Rupture

    Lee, Byung Chul; Hong, Soon Joon; Lee, Jin Yong; Lee, Kyung Jin; Lee, Kuh Hyung [FNC Tech. Co., Seoul (Korea, Republic of)

    2008-04-15

    Existing MELCOR 1.8.5 model was improved in view of severe accident natural circulation and MELCOR 1.8.6 input model was developed and calculation sheets for detailed MELCOR 1.8.6 model were produced. Effects of natural circulation modeling were found by simulating SBO accident by comparing existing model with detailed model. Major phenomenon and system operations which affect on natural circulation by high temperature and high pressure gas were investigated and representative accident sequences for creep rupture model of RCS pipeline and SG tube were selected.

  18. Laser-produced dense plasma in extremely high pressure gas and its application to a plasma-bridged gap switch

    Yamada, J.; Okuda, A.

    1989-01-01

    When an extremely high pressure gas is irradiated by an intense laser light, a dense plasma produced at the focal spot moves towards the focusing lens with a high velocity. Making use of this phenomenon, a new plasma-bridged gap switch is proposed and its switching characteristics is experimentally examined. From the experiments, it is confirmed that the switching time is almost constant with the applied voltage only when the focal spot is just on the positive electrode, indicating that the bridging of gap is caused by the laser light. (author)

  19. Reactor for tracking catalyst nanoparticles in liquid at high temperature under a high-pressure gas phase with X-ray absorption spectroscopy.

    Nguyen, Luan; Tao, Franklin Feng

    2018-02-01

    Structure of catalyst nanoparticles dispersed in liquid phase at high temperature under gas phase of reactant(s) at higher pressure (≥5 bars) is important for fundamental understanding of catalytic reactions performed on these catalyst nanoparticles. Most structural characterizations of a catalyst performing catalysis in liquid at high temperature under gas phase at high pressure were performed in an ex situ condition in terms of characterizations before or after catalysis since, from technical point of view, access to the catalyst nanoparticles during catalysis in liquid phase at high temperature under high pressure reactant gas is challenging. Here we designed a reactor which allows us to perform structural characterization using X-ray absorption spectroscopy including X-ray absorption near edge structure spectroscopy and extended X-ray absorption fine structure spectroscopy to study catalyst nanoparticles under harsh catalysis conditions in terms of liquid up to 350 °C under gas phase with a pressure up to 50 bars. This reactor remains nanoparticles of a catalyst homogeneously dispersed in liquid during catalysis and X-ray absorption spectroscopy characterization.

  20. Viability and adaptation potential of indigenous microorganisms from natural gas field fluids in high pressure incubations with supercritical CO2.

    Frerichs, Janin; Rakoczy, Jana; Ostertag-Henning, Christian; Krüger, Martin

    2014-01-21

    Carbon Capture and Storage (CCS) is currently under debate as large-scale solution to globally reduce emissions of the greenhouse gas CO2. Depleted gas or oil reservoirs and saline aquifers are considered as suitable reservoirs providing sufficient storage capacity. We investigated the influence of high CO2 concentrations on the indigenous bacterial population in the saline formation fluids of a natural gas field. Bacterial community changes were closely examined at elevated CO2 concentrations under near in situ pressures and temperatures. Conditions in the high pressure reactor systems simulated reservoir fluids i) close to the CO2 injection point, i.e. saturated with CO2, and ii) at the outer boundaries of the CO2 dissolution gradient. During the incubations with CO2, total cell numbers remained relatively stable, but no microbial sulfate reduction activity was detected. After CO2 release and subsequent transfer of the fluids, an actively sulfate-respiring community was re-established. The predominance of spore-forming Clostridiales provided evidence for the resilience of this taxon against the bactericidal effects of supercritical (sc)CO2. To ensure the long-term safety and injectivity, the viability of fermentative and sulfate-reducing bacteria has to be considered in the selection, design, and operation of CCS sites.

  1. The flip-over effect in pulsed laser deposition: Is it relevant at high background gas pressures?

    Ojeda-G-P, Alejandro; Schneider, Christof W.; Döbeli, Max; Lippert, Thomas; Wokaun, Alexander

    2015-01-01

    Highlights: • The flip-over effect in PLD is observed up to high deposition pressures. • Consistent congruent transfer of the target composition is generally not correct. • The choice of deposition pressure can change the film composition strongly. • Large compositional changes appear at high off-axis angles and large spot sizes. - Abstract: In pulsed laser deposition the use of a rectangular or elliptical beam spot with a non 1:1 aspect ratio leads to the so called flip-over effect. Here, the longest dimension of the laser spot results in the shortest direction of plasma plume expansion. This effect has been mainly reported for vacuum depositions of single element targets and is particularly noticeable when the aspect ratio of the beam spot is large. We investigate the flip-over effect in vacuum and at three relevant background-gas pressures for pulsed laser deposition using a La 0.4 Ca 0.6 MnO 3 target by measuring the thickness dependence of the deposited material as a function of angle. The film thicknesses and compositions are determined by Rutherford backscattering and argon is used to reduce the influence of additional chemical reactions in the plasma. The results show the prevalence of the flip-over effect for all pressures except for the highest, i.e. 1 × 10 −1 mbar, where the film thickness is constant for all angles. The composition profiles show noticeable compositional variations of up to 30% with respect to the target material depending on the background gas pressure, the angular location, and the laser spot dimensions.

  2. The flip-over effect in pulsed laser deposition: Is it relevant at high background gas pressures?

    Ojeda-G-P, Alejandro [Paul Scherrer Institut, General Energy Research Department, 5232 Villigen-PSI (Switzerland); Schneider, Christof W., E-mail: christof.schneider@psi.ch [Paul Scherrer Institut, General Energy Research Department, 5232 Villigen-PSI (Switzerland); Döbeli, Max [Ion Beam Physics, ETH Zurich, CH-8093 Zurich (Switzerland); Lippert, Thomas; Wokaun, Alexander [Paul Scherrer Institut, General Energy Research Department, 5232 Villigen-PSI (Switzerland)

    2015-12-01

    Highlights: • The flip-over effect in PLD is observed up to high deposition pressures. • Consistent congruent transfer of the target composition is generally not correct. • The choice of deposition pressure can change the film composition strongly. • Large compositional changes appear at high off-axis angles and large spot sizes. - Abstract: In pulsed laser deposition the use of a rectangular or elliptical beam spot with a non 1:1 aspect ratio leads to the so called flip-over effect. Here, the longest dimension of the laser spot results in the shortest direction of plasma plume expansion. This effect has been mainly reported for vacuum depositions of single element targets and is particularly noticeable when the aspect ratio of the beam spot is large. We investigate the flip-over effect in vacuum and at three relevant background-gas pressures for pulsed laser deposition using a La{sub 0.4}Ca{sub 0.6}MnO{sub 3} target by measuring the thickness dependence of the deposited material as a function of angle. The film thicknesses and compositions are determined by Rutherford backscattering and argon is used to reduce the influence of additional chemical reactions in the plasma. The results show the prevalence of the flip-over effect for all pressures except for the highest, i.e. 1 × 10{sup −1} mbar, where the film thickness is constant for all angles. The composition profiles show noticeable compositional variations of up to 30% with respect to the target material depending on the background gas pressure, the angular location, and the laser spot dimensions.

  3. A radiotracer technique for testing a high pressure gas compressor for oil leakage

    Eapen, A.C.; Kirti; Jain, S.K.; Gupta, P.P.

    1979-01-01

    The radiotracer investigations carried out at NOCIL, Bombay, to measure the amount of lubrication oil present in the gas being compressed in a 1000 H.P. centrifugal compressor are described. By injecting a few mCi 131 I labelled glyceryl trioleate tracer and monitoring the radioactivity of the outlet gas for about 20 hours, the extent of the oil present in the gas could be determined. (auth.)

  4. Free microparticles—An inducing mechanism of pre-firing in high pressure gas switches for fast linear transformer drivers

    Li, Xiaoang; Pei, Zhehao; Wu, Zhicheng; Zhang, Yuzhao; Liu, Xuandong; Li, Yongdong; Zhang, Qiaogen

    2018-03-01

    Microparticle initiated pre-firing of high pressure gas switches for fast linear transformer drivers (FLTDs) is experimentally and theoretically verified. First, a dual-electrode gas switch equipped with poly-methyl methacrylate baffles is used to capture and collect the microparticles. By analyzing the electrode surfaces and the collecting baffles by a laser scanning confocal microscope, microparticles ranging in size from tens of micrometers to over 100 μm are observed under the typical working conditions of FLTDs. The charging and movement of free microparticles in switch cavity are studied, and the strong DC electric field drives the microparticles to bounce off the electrode. Three different modes of free microparticle motion appear to be responsible for switch pre-firing. (i) Microparticles adhere to the electrode surface and act as a fixed protrusion which distorts the local electric field and initiates the breakdown in the gap. (ii) One particle escapes toward the opposite electrode and causes a near-electrode microdischarge, inducing the breakdown of the residual gap. (iii) Multiple moving microparticles are occasionally in cascade, leading to pre-firing. Finally, as experimental verification, repetitive discharges at ±90 kV are conducted in a three-electrode field-distortion gas switch, with two 8 mm gaps and pressurized with nitrogen. An ultrasonic probe is employed to monitor the bounce signals. In pre-firing incidents, the bounce is detected shortly before the collapse of the voltage waveform, which demonstrates that free microparticles contribute significantly to the mechanism that induces pre-firing in FLTD gas switches.

  5. Free microparticles-An inducing mechanism of pre-firing in high pressure gas switches for fast linear transformer drivers.

    Li, Xiaoang; Pei, Zhehao; Wu, Zhicheng; Zhang, Yuzhao; Liu, Xuandong; Li, Yongdong; Zhang, Qiaogen

    2018-03-01

    Microparticle initiated pre-firing of high pressure gas switches for fast linear transformer drivers (FLTDs) is experimentally and theoretically verified. First, a dual-electrode gas switch equipped with poly-methyl methacrylate baffles is used to capture and collect the microparticles. By analyzing the electrode surfaces and the collecting baffles by a laser scanning confocal microscope, microparticles ranging in size from tens of micrometers to over 100 μm are observed under the typical working conditions of FLTDs. The charging and movement of free microparticles in switch cavity are studied, and the strong DC electric field drives the microparticles to bounce off the electrode. Three different modes of free microparticle motion appear to be responsible for switch pre-firing. (i) Microparticles adhere to the electrode surface and act as a fixed protrusion which distorts the local electric field and initiates the breakdown in the gap. (ii) One particle escapes toward the opposite electrode and causes a near-electrode microdischarge, inducing the breakdown of the residual gap. (iii) Multiple moving microparticles are occasionally in cascade, leading to pre-firing. Finally, as experimental verification, repetitive discharges at ±90 kV are conducted in a three-electrode field-distortion gas switch, with two 8 mm gaps and pressurized with nitrogen. An ultrasonic probe is employed to monitor the bounce signals. In pre-firing incidents, the bounce is detected shortly before the collapse of the voltage waveform, which demonstrates that free microparticles contribute significantly to the mechanism that induces pre-firing in FLTD gas switches.

  6. Coupled Effect of Expansion Ratio and Blade Loading on the Aerodynamics of a High-Pressure Gas Turbine

    Paolo Gaetani

    2017-03-01

    Full Text Available The need of a continuous improvement in gas turbine efficiency for propulsion and power generation, as well as the more demanding operating conditions and power control required to these machines, still ask for great efforts in the design and analysis of the high pressure section of the turbo-expander. To get detailed insights and improve the comprehension of the flow physics, a wide experimental campaign has been performed in the last ten years at Politecnico di Milano on the unsteady aerodynamics of a high-pressure turbine stage considering several operating conditions. This paper presents and discusses the experimental results obtained for the stage operating with different expansion ratios and rotor loading. The turbine stage under study is representative of a modern high-pressure turbine and can be operated in both subsonic and transonic conditions. The experimental tools applied for the current research represents the state of the art when unsteady investigations are foreseen. The detailed flow field, the blade–rows interaction and the overall performance are described and discussed; efforts have been devoted to the discussion of the various contribution to the overall stage efficiency. The direct effects of the expansion ratio, affecting the Reynolds and the Mach numbers, have been highlighted and quantified; similarly, the indirect effects, accounting for a change in the rotor loading, have been commented and quantified as well, thanks to a dedicated set of experiments where different rotor loadings at the same expansion ratio have been prescribed.

  7. Synthesis of copolymerized porous organic frameworks with high gas storage capabilities at both high and low pressures

    Pei, Cuiying

    2014-01-01

    A series of copolymerized porous organic frameworks (C-POFs) were synthesized with monomers of tetrakis(4-bromophenyl)methane and tris(4-bromophenyl)amine in different ratios by a Yamamoto-type Ullmann cross-coupling reaction. These C-POFs exhibit high physicochemical stability, large surface areas and excellent H2, CH4 and CO 2 adsorption properties both at low and high pressures. This journal is © the Partner Organisations 2014.

  8. Research on natural gas fuel injection system. Development of high-performance pressure regulator; Tennen gas yo nenryo funsha system no kenkyu kaihatsu. 1. Tennen gas nenryo funshayo no koseino regulator kaihatsu

    Kato, S; Ishii, M; Takigawa, B; Makabe, K; Harada, S; Ono, H [Nippon Carburetor Co. Ltd., Tokyo (Japan)

    1997-10-01

    With the aim of further reducing the exhaust emissions of natural-gas vehicles, vigorous research and development work is under way today on multi point gas injection (MPGI) system. In this studies, a high-performance pressure regulator, which is one of the main components of this MPGI system, has been newly developed. The results showed that a significantly better accuracy of the regulated pressure level using this regulator was obtained under the wide range of operating conditions, including instantaneously greater changes of fuel flow rate. In addition, the advanced studies of gaseous fuel injectors (GFIs) would be also conducted. 4 refs., 8 figs.

  9. Pressure Dome for High-Pressure Electrolyzer

    Norman, Timothy; Schmitt, Edwin

    2012-01-01

    A high-strength, low-weight pressure vessel dome was designed specifically to house a high-pressure [2,000 psi (approx. = 13.8 MPa)] electrolyzer. In operation, the dome is filled with an inert gas pressurized to roughly 100 psi (approx. = 690 kPa) above the high, balanced pressure product oxygen and hydrogen gas streams. The inert gas acts to reduce the clamping load on electrolyzer stack tie bolts since the dome pressure acting axially inward helps offset the outward axial forces from the stack gas pressure. Likewise, radial and circumferential stresses on electrolyzer frames are minimized. Because the dome is operated at a higher pressure than the electrolyzer product gas, any external electrolyzer leak prevents oxygen or hydrogen from leaking into the dome. Instead the affected stack gas stream pressure rises detectably, thereby enabling a system shutdown. All electrical and fluid connections to the stack are made inside the pressure dome and require special plumbing and electrical dome interfaces for this to be accomplished. Further benefits of the dome are that it can act as a containment shield in the unlikely event of a catastrophic failure. Studies indicate that, for a given active area (and hence, cell ID), frame outside diameter must become ever larger to support stresses at higher operating pressures. This can lead to a large footprint and increased costs associated with thicker and/or larger diameter end-plates, tie-rods, and the frames themselves. One solution is to employ rings that fit snugly around the frame. This complicates stack assembly and is sometimes difficult to achieve in practice, as its success is strongly dependent on frame and ring tolerances, gas pressure, and operating temperature. A pressure dome permits an otherwise low-pressure stack to operate at higher pressures without growing the electrolyzer hardware. The pressure dome consists of two machined segments. An O-ring is placed in an O-ring groove in the flange of the bottom

  10. Pulse Combustor Driven Pressure Gain Combustion for High Efficiency Gas Turbine Engines

    Lisanti, Joel; Roberts, William L.

    2017-01-01

    The gas turbine engine is an essential component of the global energy infrastructure which accounts for a significant portion of the total fossil fuel consumption in transportation and electric power generation sectors. For this reason

  11. Evaluation and compensation of steady gas flow force on the high-pressure electro-pneumatic servo valve direct-driven by voice coil motor

    Li, Baoren; Gao, Longlong; Yang, Gang

    2013-01-01

    Highlights: ► A novel energy saving high-pressure electro-pneumatic servo valve is presented. ► An evaluated method for steady gas flow forces on pneumatic valves is proposed. ► Gas jet angles at the orifices for the valve are larger than 69° commonly used. ► The steady gas flow force is strongly nonlinear with valve opening. ► The steady gas flow force is compensated and the aim at energy saving is realized. - Abstract: A novel voice coil motor (VCM) direct drive single stage high-pressure pneumatic servo valve is designed, and then the steady gas flow force acting on the spool of the servo valve is investigated by numerical simulation and experimental methods in this paper. At present, many studies about flow force are concentrated mainly on hydraulic valves, but rarely on pneumatic valves. However, the velocity of gas is up to sonic when high-pressure gas flows through the servo valve orifice. And therefore, the steady gas flow force, generated by high pressure and high speed gas flow, cannot be neglected and is an important disturbance for the VCM direct-drive single stage high-pressure pneumatic servo valve. Consequently, the numerical simulation with computational fluid dynamics (CFD) is adopted to analyze the flow filed, jet angles, and steady gas flow forces for the servo valve with different valve openings and inlet pressures. The experimental study is performed to evaluate and confirm the numerical analysis. Then the compensated approach is proposed to reduce the steady gas flow force for the servo valve, changing the angle of non-metering port designed in the valve sleeve to the spool axis. The results demonstrate that the presented numerical analysis method is validated, the gas jet angle for the servo valve orifice is more than 69° and varies with different spool openings, and the steady gas flow force is nonlinear with valve opening and linear with inlet pressure when the outlet boundary is atmospheric pressure. Moreover, the steady gas

  12. Data and prediction of water content of high pressure nitrogen, methane and natural gas

    Folas, Georgios; Froyna, E.W.; Lovland, J.

    2007-01-01

    New data for the equilibrium water content of nitrogen, methane and one natural gas mixture are presented. The new binary data and existing binary sets were compared to calculated values of dew point temperature using both the CPA (Cubic-Plus-Association) EoS and the GERG-water EoS. CPA is purely...... predictive (i.e. all binary interaction parameters are set equal to 0), while GERG-water uses a temperature dependent interaction parameter fitted to published data. The GERG-water model is proposed as an ISO standard for determining the water content of natural gas. The data sets for nitrogen cover...... conclusion is that GERG-water must be used with caution outside its specified working range. For some selected natural gas mixtures the two models also perform very much alike. The water content of the mixtures decreases with increasing amount of heavier components, and it seems that both models slightly...

  13. High-Pressure Hot-Gas Self-Acting Floating Ring Shaft Seal for Liquid Rocket Turbopumps. [tapered bore seals

    Burcham, R. E.; Diamond, W. A.

    1980-01-01

    Design analysis, detail design, fabrication, and experimental evaluation was performed on two self acting floating ring shaft seals for a rocket engine turbopump high pressure 24132500 n/sq m (3500 psig) hot gas 533 K 9500 F) high speed 3142 rad/sec (30000 rmp) turbine. The initial design used Rayleigh step hydrodynamic lift pads to assist in centering the seal ring with minimum rubbing contact. The final design used a convergent tapered bore to provide hydrostatic centering force. The Rayleigh step design was tested for 107 starts and 4.52 hours total. The leakage was satisfactory; however, the design was not acceptable due to excessive wear caused by inadequate centering force and failure of the sealing dam caused by erosion damage. The tapered bore design was tested for 370 starts and 15.93 hours total. Satisfactory performance for the required life of 7.5 hours per seal was successfully demonstrated.

  14. PandaX-III: Searching for neutrinoless double beta decay with high pressure 136Xe gas time projection chambers

    Chen, Xun; Fu, ChangBo; Galan, Javier; Giboni, Karl; Giuliani, Franco; Gu, LingHui; Han, Ke; Ji, XiangDong; Lin, Heng; Liu, JiangLai; Ni, KaiXiang; Kusano, Hiroki; Ren, XiangXiang; Wang, ShaoBo; Yang, Yong; Zhang, Dan; Zhang, Tao; Zhao, Li; Sun, XiangMing; Hu, ShouYang; Jian, SiYu; Li, XingLong; Li, XiaoMei; Liang, Hao; Zhang, HuanQiao; Zhao, MingRui; Zhou, Jing; Mao, YaJun; Qiao, Hao; Wang, SiGuang; Yuan, Ying; Wang, Meng; Khan, Amir N.; Raper, Neill; Tang, Jian; Wang, Wei; Dong, JiaNing; Feng, ChangQing; Li, Cheng; Liu, JianBei; Liu, ShuBin; Wang, XiaoLian; Zhu, DanYang; Castel, Juan F.; Cebrián, Susana; Dafni, Theopisti; Garza, Javier G.; Irastorza, Igor G.; Iguaz, Francisco J.; Luzón, Gloria; Mirallas, Hector; Aune, Stephan; Berthoumieux, Eric; Bedfer, Yann; Calvet, Denis; d'Hose, Nicole; Delbart, Alain; Diakaki, Maria; Ferrer-Ribas, Esther; Ferrero, Andrea; Kunne, Fabienne; Neyret, Damien; Papaevangelou, Thomas; Sabatié, Franck; Vanderbroucke, Maxence; Tan, AnDi; Haxton, Wick; Mei, Yuan; Kobdaj, Chinorat; Yan, Yu-Peng

    2017-06-01

    Searching for the neutrinoless double beta decay (NLDBD) is now regarded as the topmost promising technique to explore the nature of neutrinos after the discovery of neutrino masses in oscillation experiments. PandaX-III (particle and astrophysical xenon experiment III) will search for the NLDBD of 136Xe at the China Jin Ping Underground Laboratory (CJPL). In the first phase of the experiment, a high pressure gas Time Projection Chamber (TPC) will contain 200 kg, 90% 136Xe enriched gas operated at 10 bar. Fine pitch micro-pattern gas detector (Microbulk Micromegas) will be used at both ends of the TPC for the charge readout with a cathode in the middle. Charge signals can be used to reconstruct the electron tracks of the NLDBD events and provide good energy and spatial resolution. The detector will be immersed in a large water tank to ensure 5 m of water shielding in all directions. The second phase, a ton-scale experiment, will consist of five TPCs in the same water tank, with improved energy resolution and better control over backgrounds.

  15. Important role of vertical migration of compressed gas, oil and water in formation of AVPD (abnormally high pressure gradient) zones

    Anikiyev, K.A.

    1980-01-01

    The principal role of vertical migration of compressed gases, gas-saturated petroleum and water during formation of abnormally high pressure gradients (AVPD) is confirmed by extensive factual data on gas production, grifons, blowouts and gushers that accompany drilling formations with AVPD from early history to the present time; the sources of vertical migration of compressed fluids, in accordance with geodynamic AVPD theory, are the deep degasified centers of the earth mantle. Among the various types of AVPD zones especially notable are the large (often massive or massive-layer) deposits and the intrusion aureoles that top them in the overlapping covering layers. Prediction of AVPD zones and determining their field and energy potential must be based on field-baric simulation of the formations being drilled in light of laws regarding the important role of the vertical migration of compressed fluids. When developing field-baric models, it is necessary to utilize the extensive and valuable data on grifons, gas production and blowouts that has been collected and categorized by drilling engineers and production geologists. To further develop data on field-baric conditions of the earth, it is necessary to collect and study signals of AVPD. First of all, there is a need to evaluate potential elastic resources of compressed fluids which can move from the bed into the well. Thus it is necessary to study and standardize intrusion aureoles and other AVPD zones within the aspect of fieldbaric modeling.

  16. Two dimensional gas temperature measurements of fuel sprays in a high pressure cell

    Yu, M.

    2012-01-01

    Premixed charge compression ignition (PCCI) is a promising low-emission combustion concept. By partially mixing the fuel, air and exhaust gas before auto-ignition, the soot and NOx emissions are lower than for conventional diesel combustion. However, the fundamental aspects of the mixing process of

  17. On the impact of the ideal gas assumption to high-pressure combustion phenomena in engines

    Evlampiev, A.V.; Somers, L.M.T.; Baert, R.S.G.; Goey, de L.P.H.

    2008-01-01

    The effect of the ideal gas law assumption on auto-ignition and NOx-formation in a rapid compression machine is studied. For both processes the simulations are compared to a reference simulation using a Redlich-Kwong equation-of-state based on the critical properties of all constituents.

  18. An atmospheric pressure high-temperature laminar flow reactor for investigation of combustion and related gas phase reaction systems

    Oßwald, Patrick; Köhler, Markus [Institute of Combustion Technology, German Aerospace Center (DLR), Pfaffenwaldring 38-40, D-70569 Stuttgart (Germany)

    2015-10-15

    A new high-temperature flow reactor experiment utilizing the powerful molecular beam mass spectrometry (MBMS) technique for detailed observation of gas phase kinetics in reacting flows is presented. The reactor design provides a consequent extension of the experimental portfolio of validation experiments for combustion reaction kinetics. Temperatures up to 1800 K are applicable by three individually controlled temperature zones with this atmospheric pressure flow reactor. Detailed speciation data are obtained using the sensitive MBMS technique, providing in situ access to almost all chemical species involved in the combustion process, including highly reactive species such as radicals. Strategies for quantifying the experimental data are presented alongside a careful analysis of the characterization of the experimental boundary conditions to enable precise numeric reproduction of the experimental results. The general capabilities of this new analytical tool for the investigation of reacting flows are demonstrated for a selected range of conditions, fuels, and applications. A detailed dataset for the well-known gaseous fuels, methane and ethylene, is provided and used to verify the experimental approach. Furthermore, application for liquid fuels and fuel components important for technical combustors like gas turbines and engines is demonstrated. Besides the detailed investigation of novel fuels and fuel components, the wide range of operation conditions gives access to extended combustion topics, such as super rich conditions at high temperature important for gasification processes, or the peroxy chemistry governing the low temperature oxidation regime. These demonstrations are accompanied by a first kinetic modeling approach, examining the opportunities for model validation purposes.

  19. An atmospheric pressure high-temperature laminar flow reactor for investigation of combustion and related gas phase reaction systems.

    Oßwald, Patrick; Köhler, Markus

    2015-10-01

    A new high-temperature flow reactor experiment utilizing the powerful molecular beam mass spectrometry (MBMS) technique for detailed observation of gas phase kinetics in reacting flows is presented. The reactor design provides a consequent extension of the experimental portfolio of validation experiments for combustion reaction kinetics. Temperatures up to 1800 K are applicable by three individually controlled temperature zones with this atmospheric pressure flow reactor. Detailed speciation data are obtained using the sensitive MBMS technique, providing in situ access to almost all chemical species involved in the combustion process, including highly reactive species such as radicals. Strategies for quantifying the experimental data are presented alongside a careful analysis of the characterization of the experimental boundary conditions to enable precise numeric reproduction of the experimental results. The general capabilities of this new analytical tool for the investigation of reacting flows are demonstrated for a selected range of conditions, fuels, and applications. A detailed dataset for the well-known gaseous fuels, methane and ethylene, is provided and used to verify the experimental approach. Furthermore, application for liquid fuels and fuel components important for technical combustors like gas turbines and engines is demonstrated. Besides the detailed investigation of novel fuels and fuel components, the wide range of operation conditions gives access to extended combustion topics, such as super rich conditions at high temperature important for gasification processes, or the peroxy chemistry governing the low temperature oxidation regime. These demonstrations are accompanied by a first kinetic modeling approach, examining the opportunities for model validation purposes.

  20. Compact streak camera for the shock study of solids by using the high-pressure gas gun

    Nagayama, Kunihito; Mori, Yasuhito

    1993-01-01

    For the precise observation of high-speed impact phenomena, a compact high-speed streak camera recording system has been developed. The system consists of a high-pressure gas gun, a streak camera, and a long-pulse dye laser. The gas gun installed in our laboratory has a muzzle of 40 mm in diameter, and a launch tube of 2 m long. Projectile velocity is measured by the laser beam cut method. The gun is capable of accelerating a 27 g projectile up to 500 m/s, if helium gas is used as a driver. The system has been designed on the principal idea that the precise optical measurement methods developed in other areas of research can be applied to the gun study. The streak camera is 300 mm in diameter, with a rectangular rotating mirror which is driven by an air turbine spindle. The attainable streak velocity is 3 mm/microsecond(s) . The size of the camera is rather small aiming at the portability and economy. Therefore, the streak velocity is relatively slower than the fast cameras, but it is possible to use low-sensitivity but high-resolution film as a recording medium. We have also constructed a pulsed dye laser of 25 - 30 microsecond(s) in duration. The laser can be used as a light source of observation. The advantage for the use of the laser will be multi-fold, i.e., good directivity, almost single frequency, and so on. The feasibility of the system has been demonstrated by performing several experiments.

  1. Modelling the Dynamic Interaction Power System Lamp - Application to High Pressure Mercury Gas Discharge Lamps

    ZIANE, M.; MEDLES, K.; ADJOUDJ, M.; MILOUA, F.; DAMELINCOURT, J. J.; TILMATINE, A.

    2007-01-01

    The aim of this paper is to study the dynamic behaviour of a plant constituted by an electrical power system and a gas discharge lamp, this latter, increasingly used in street lighting, remains a nonlinear load element. Various approaches are used to represent it, one is the approximation of the discharge represented by a hot "channel", which verifies the assumption of local thermodynamic equilibrium [LTE] or the polynomial form of the conductance variation. A calculation procedure, based on ...

  2. Influence of water–air ratio on the heat transfer and creep life of a high pressure gas turbine blade

    Eshati, S.; Abu, A.; Laskaridis, P.; Khan, F.

    2013-01-01

    An analytical model to investigate the influence of Water–Air Ratio (WAR) on turbine blade heat transfer and cooling processes (and thus the blade creep life) of industrial gas turbines is presented. The effects of WAR are emphasised for the modelling of the gas properties and the subsequent heat transfer process. The approach considers convective/film cooling and includes the influence of a thermal barrier coating. In addition, the approach is based on the thermodynamic outputs of a gas turbine performance simulation, heat transfer model, as well as a method that accounts for the changes in the properties of moist air as a function of WAR. For a given off-design point, the variation of WAR (0.0–0.10) was investigated using the heat transfer model. Results showed that with increasing WAR the blade inlet coolant temperature reduced along the blade span. The blade metal temperature at each section was reduced as WAR increased, which in turn increased the blade creep life. The increase in WAR increased the specific heat of the coolant and increased the heat transfer capacity of the coolant air flow. The model can be implemented by using the thermodynamic cycle of the engine, without knowing the turbine cooling details in the conceptual design stage. Also, this generic method assists the end user to understand the effect of operating conditions and design parameter on the creep life of a high pressure turbine blade. -- Highlights: • The influence of WAR on gas turbine blade heat transfer and creep life is examined. • Coolant specific heat capacity is the key property affected by changes in WAR. • Increase in WAR reduces the coolant and metal temperature along the blade span. • Creep life increases with increase in WAR even if ambient temperature is increased

  3. Analytical study of a gas of gluonic quasiparticles at high temperature: Effective mass, pressure, and trace anomaly

    Giacosa, Francesco

    2011-01-01

    The thermodynamical properties of a pure Yang-Mills theory SU(N) is described by a gas of gluonic quasiparticles with temperature-dependent mass m(T) and a bag function B(T). The analytic behavior of m(T) and the pressure p in the temperature range 2.5-5T c are derived and constraints on the parameters defining B(T) are discussed. The trace anomaly θ=ρ-3p is evaluated in the high T domain: it is dominated by a quadratic behavior θ=nKT 2 , where n=2(N 2 -1) is the number of degrees of freedom and K is an integration constant which does not depend on the bag function B(T). The quadratic rise of θ is in good agreement with recent lattice simulations.

  4. High Blood Pressure

    ... normal blood pressure 140/90 or higher is high blood pressure Between 120 and 139 for the top number, ... prehypertension. Prehypertension means you may end up with high blood pressure, unless you take steps to prevent it. High ...

  5. High Blood Pressure Facts

    ... Stroke Heart Disease Cholesterol Salt Million Hearts® WISEWOMAN High Blood Pressure Facts Recommend on Facebook Tweet Share Compartir On ... Top of Page CDC Fact Sheets Related to High Blood Pressure High Blood Pressure Pulmonary Hypertension Heart Disease Signs ...

  6. High Blood Pressure (Hypertension)

    ... Print Page Text Size: A A A Listen High Blood Pressure (Hypertension) Nearly 1 in 3 American adults has ... weight. How Will I Know if I Have High Blood Pressure? High blood pressure is a silent problem — you ...

  7. Gas-phase ion-molecule reactions and high-pressure mass spectrometer, 1

    Hiraoka, Kenzo

    1977-01-01

    The reasons for the fact that the research in gas-phase ion-molecule reactions, to which wide interest is shown, have greatly contributed to the physical and chemical fields are that, first it is essential in understanding general phenomena concerning ions, second, it can furnish many unique informations in the dynamics of chemical reactions, and third, usefulness of '' chemical ionization'' methods has been established as its application to chemical analysis. In this review, the history and trend of studies and equipments in gas-phase ion-molecule reactions are surveyed. The survey includes the chemical ionization mass spectrometer for simultaneously measuring the positive and negative ions utilizing a quadrupole mass spectrometer presented by Hunt and others, flowing afterglow method derived from the flowing method which traces neutral chemical species mainly optically, ion cyclotron resonance mass spectrometer, trapped ion mass spectrometer and others. Number of reports referred to ion-molecule reactions issued during the last one year well exceeds the total number of reports concerning mass spectrometers presented before 1955. This truly shows how active the research and development are in this field. (Wakatsuki, Y.)

  8. Tritium generation and neutron measurements in Pd-Si under high deuterium gas pressure

    Claytor, T.N.; Tuggle, D.G.; Menlove, H.O.

    1991-01-01

    This paper summarizes some of the methods applicable for low level tritium detection needed in the search for anomalous fusion in metal hydrides. It is also intended to further detail our tritium and neutron results that have been obtained with the Pd-Si-D system, originally presented at earlier workshops. A measure of reproducibility that was not evident in our previous work has been achieved partially due to the better detection sensitivity afforded by the use of low tritium deuterium and partially from the fact that the foil-wafer cells can be made with nearly identical electrical characteristics. This reproducibility has allowed us to narrow the optimum conditions for the experiment. While this experiment is rather different from the ''standard'' electrolytic cell or the Ti gas hydride experiment, similarities exist in that non equilibrium conditions are sought and the tritium generation levels are low and neutron emission is extremely weak. In contrast to many electrochemical cell experiments, the system used in these experiments is completely sealed during operation and uses no electrolyte. The major improvements to the experiment have been the use of vary low tritium deuterium for the hydriding and the replacement of the aluminum neutron counter tubes with ones of stainless steel. These changes have resulted in pronounced improvements to the detection systems since the background tritium level in the gas has been reduced by a factor of 300 and the neutron background has been decreased by a factor of 14. 16 refs., 8 figs., 1 tab

  9. Modeling vapor liquid equilibrium of ionic liquids + gas binary systems at high pressure with cubic equations of state

    A. C. D. Freitas

    2013-03-01

    Full Text Available Ionic liquids (IL have been described as novel environmentally benign solvents because of their remarkable characteristics. Numerous applications of these solvents continue to grow at an exponential rate. In this work, high pressure vapor liquid equilibria for 17 different IL + gas binary systems were modeled at different temperatures with Peng-Robinson (PR and Soave-Redlich-Kwong (SRK equations of state, combined with the van der Waals mixing rule with two binary interaction parameters (vdW-2. The experimental data were taken from the literature. The optimum binary interaction parameters were estimated by minimization of an objective function based on the average absolute relative deviation of liquid and vapor phases, using the modified Simplex algorithm. The solubilities of all gases studied in this work decrease as the temperature increases and increase with increasing pressure. The correlated results were highly satisfactory, with average absolute relative deviations of 2.10% and 2.25% for PR-vdW-2 and SRK-vdW-2, respectively.

  10. Pressure transients analysis of a high-temperature gas-cooled reactor with direct helium turbine cycle

    Dang, M.; Dupont, J. F.; Jacquemoud, P.; Mylonas, R. [Eidgenoessisches Inst. fuer Reaktorforschung, Wuerenlingen (Switzerland)

    1981-01-15

    The direct coupling of a gas cooled reactor with a closed gas turbine cycle leads to a specific dynamic plant behaviour, which may be summarized as follows: a) any operational transient involving a variation of the core mass flow rate causes a variation of the pressure ratio of the turbomachines and leads unavoidably to pressure and temperature transients in the gas turbine cycle; and b) very severe pressure equalization transients initiated by unlikely events such as the deblading of one or more turbomachines must be taken into account. This behaviour is described and illustrated through results gained from computer analyses performed at the Swiss Federal Institute for Reactor Research (EIR) in Wurenlingen within the scope of the Swiss-German HHT project.

  11. High-pressure sodium lamp

    1996-01-01

    A high pressure sodium lamp of the invention is provided with a discharge vessel (20) which is enclosed with intervening space (1) by an outer bulb (10), which space contains a gas-fill with at least 70 mol. % nitrogen gas. Electrodes (30a, 30b) are positioned in the discharge vessel (20) and are

  12. Anomalous He-gas high-pressure studies on superconducting LaO1-xFxFeAs

    Bi, W; Banks, H B; Schilling, J S; Takahashi, H; Okada, H; Kamihara, Y; Hirano, M; Hosono, H

    2010-01-01

    Ac susceptibility measurements have been carried out on superconducting LaO 1-x F x FeAs for x=0.07 and 0.14 under He-gas pressures to ∼0.8 GPa. Not only do the measured values of dT c /dP differ substantially from those obtained in previous studies using other pressure media, but also the T c (P) dependences observed depend on the detailed pressure/temperature history of the sample. A sizeable sensitivity of T c (P) to shear stresses provides a possible explanation.

  13. Hypertension (High Blood Pressure)

    ... Safe Videos for Educators Search English Español Hypertension (High Blood Pressure) KidsHealth / For Teens / Hypertension (High Blood Pressure) What's ... rest temperature diet emotions posture medicines Why Is High Blood Pressure Bad? High blood pressure means a person's heart ...

  14. Rupture of a high pressure gas or steam pipe in a tunnel: a preliminary investigation of the jet thrust exerted on a tunnel barrier

    Baum, M.R.

    1988-04-01

    On power plant, if a high pressure pipe containing high temperature gas or steam were to rupture, sensitive equipment necessary for safety shutdown of the plant could possibly be incapacitated if exposed to the subsequent high temperature environment. In many plant configurations the high pressure pipework is contained in tunnels where it is possible to construct barriers which isolate one section of the plant from another, thereby restricting the spread of the high temperature fluid/air mixture. This paper describes a preliminary experimental investigation of the magnitude of the thrust likely to be exerted on such barriers by a gas jet issuing from the failed pipe. Measurements of the thrust exerted on a flat plate by normal impingement of a highly underexpanded gas jet are in agreement with a semi-quantitative analysis assuming conservation of the axial momentum of the jet. (author)

  15. High Pressure Gas Filled RF Cavity Beam Test at the Fermilab MuCool Test Area

    Freemire, Ben [Illinois Inst. of Technology, Chicago, IL (United States)

    2013-05-01

    The high energy physics community is continually looking to push the limits with respect to the energy and luminosity of particle accelerators. In the realm of leptons, only electron colliders have been built to date. Compared to hadrons, electrons lose a large amount of energy when accelerated in a ring through synchrotron radiation. A solution to this problem is to build long, straight accelerators for electrons, which has been done with great success. With a new generation of lepton colliders being conceived, building longer, more powerful accelerators is not the most enticing option. Muons have been proposed as an alternative particle to electrons. Muons lose less energy to synchrotron radiation and a Muon Collider can provide luminosity within a much smaller energy range than a comparable electron collider. This allows a circular collider to be built with higher attainable energy than any present electron collider. As part of the accelerator, but separate from the collider, it would also be possible to allow the muons to decay to study neutrinos. The possibility of a high energy, high luminosity muon collider and an abundant, precise source of neutrinos is an attractive one. The technological challenges of building a muon accelerator are many and diverse. Because the muon is an unstable particle, a muon beam must be cooled and accelerated to the desired energy within a short amount of time. This requirement places strict requisites on the type of acceleration and focusing that can be used. Muons are generated as tertiary beams with a huge phase space, so strong magnetic fields are required to capture and focus them. Radio frequency (RF) cavities are needed to capture, bunch and accelerate the muons. Unfortunately, traditional vacuum RF cavities have been shown to break down in the magnetic fields necessary for capture and focusing.

  16. Adsorption Device Based on a Langatate Crystal Microbalance for High Temperature High Pressure Gas Adsorption in Zeolite H-ZSM-5.

    Ding, Wenjin; Baracchini, Giulia; Klumpp, Michael; Schwieger, Wilhelm; Dittmeyer, Roland

    2016-08-25

    We present a high-temperature and high-pressure gas adsorption measurement device based on a high-frequency oscillating microbalance (5 MHz langatate crystal microbalance, LCM) and its use for gas adsorption measurements in zeolite H-ZSM-5. Prior to the adsorption measurements, zeolite H-ZSM-5 crystals were synthesized on the gold electrode in the center of the LCM, without covering the connection points of the gold electrodes to the oscillator, by the steam-assisted crystallization (SAC) method, so that the zeolite crystals remain attached to the oscillating microbalance while keeping good electroconductivity of the LCM during the adsorption measurements. Compared to a conventional quartz crystal microbalance (QCM) which is limited to temperatures below 80 °C, the LCM can realize the adsorption measurements in principle at temperatures as high as 200-300 °C (i.e., at or close to the reaction temperature of the target application of one-stage DME synthesis from the synthesis gas), owing to the absence of crystalline-phase transitions up to its melting point (1,470 °C). The system was applied to investigate the adsorption of CO2, H2O, methanol and dimethyl ether (DME), each in the gas phase, on zeolite H-ZSM-5 in the temperature and pressure range of 50-150 °C and 0-18 bar, respectively. The results showed that the adsorption isotherms of these gases in H-ZSM-5 can be well fitted by Langmuir-type adsorption isotherms. Furthermore, the determined adsorption parameters, i.e., adsorption capacities, adsorption enthalpies, and adsorption entropies, compare well to literature data. In this work, the results for CO2 are shown as an example.

  17. High Pressure Biomass Gasification

    Agrawal, Pradeep K [Georgia Tech Research Corporation, Atlanta, GA (United States)

    2016-07-29

    According to the Billion Ton Report, the U.S. has a large supply of biomass available that can supplement fossil fuels for producing chemicals and transportation fuels. Agricultural waste, forest residue, and energy crops offer potential benefits: renewable feedstock, zero to low CO2 emissions depending on the specific source, and domestic supply availability. Biomass can be converted into chemicals and fuels using one of several approaches: (i) biological platform converts corn into ethanol by using depolymerization of cellulose to form sugars followed by fermentation, (ii) low-temperature pyrolysis to obtain bio-oils which must be treated to reduce oxygen content via HDO hydrodeoxygenation), and (iii) high temperature pyrolysis to produce syngas (CO + H2). This last approach consists of producing syngas using the thermal platform which can be used to produce a variety of chemicals and fuels. The goal of this project was to develop an improved understanding of the gasification of biomass at high pressure conditions and how various gasification parameters might affect the gasification behavior. Since most downstream applications of synags conversion (e.g., alcohol synthesis, Fischer-Tropsch synthesis etc) involve utilizing high pressure catalytic processes, there is an interest in carrying out the biomass gasification at high pressure which can potentially reduce the gasifier size and subsequent downstream cleaning processes. It is traditionally accepted that high pressure should increase the gasification rates (kinetic effect). There is also precedence from coal gasification literature from the 1970s that high pressure gasification would be a beneficial route to consider. Traditional approach of using thermogravimetric analyzer (TGA) or high-pressure themogravimetric analyzer (PTGA) worked well in understanding the gasification kinetics of coal gasification which was useful in designing high pressure coal gasification processes. However

  18. Why do Electrons with "Anomalous Energies" appear in High-Pressure Gas Discharges?

    Kozyrev, Andrey; Kozhevnikov, Vasily; Semeniuk, Natalia

    2018-01-01

    Experimental studies connected with runaway electron beams generation convincingly shows the existence of electrons with energies above the maximum voltage applied to the discharge gap. Such electrons are also known as electrons with "anomalous energies". We explain the presence of runaway electrons having so-called "anomalous energies" according to physical kinetics principles, namely, we describe the total ensemble of electrons with the distribution function. Its evolution obeys Boltzmann kinetic equation. The dynamics of self-consistent electromagnetic field is taken into the account by adding complete Maxwell's equation set to the resulting system of equations. The electrodynamic mechanism of the interaction of electrons with a travelling-wave electric field is analyzed in details. It is responsible for the appearance of electrons with high energies in real discharges.

  19. Thermodynamic properties of a high pressure subcritical UF6He gas volume (irradiated by an external source)

    Sterritt, D.E.; Lalos, G.T.; Schneider, R.T.

    1976-12-01

    A computer simulation study concerning a compressed fissioning UF 6 gas is presented. The compression is to be achieved by a ballistic piston compressor. Data on UF 6 obtained with this compressor were incorporated in the simulation study. As a neutron source to create the fission events in the compressed gas, a fast burst reactor was considered. The conclusion is that it takes a neutron flux in excess of 10 15 n/cm 2 -s to produce measurable increases in pressure and temperature, while a flux in excess of 10 19 n/cm 2 -s would probably damage the compressor

  20. Investigation of the on-axis atom number density in the supersonic gas jet under high gas backing pressure by simulation

    Guanglong Chen

    2015-10-01

    Full Text Available The supersonic gas jets from conical nozzles are simulated using 2D model. The on-axis atom number density in gas jet is investigated in detail by comparing the simulated densities with the idealized densities of straight streamline model in scaling laws. It is found that the density is generally lower than the idealized one and the deviation between them is mainly dependent on the opening angle of conical nozzle, the nozzle length and the gas backing pressure. The density deviation is then used to discuss the deviation of the equivalent diameter of a conical nozzle from the idealized deq in scaling laws. The investigation on the lateral expansion of gas jet indicates the lateral expansion could be responsible for the behavior of the density deviation. These results could be useful for the estimation of cluster size and the understanding of experimental results in laser-cluster interaction experiments.

  1. Numerical Analysis on Transient of Steam-gas Pressurizer

    Kim, Jong-Won; Lee, Yeon-Gun; Park, Goon-Cherl

    2008-01-01

    In nuclear reactors, various pressurizers are adopted to satisfy their characteristics and uses. The additional active systems such as heater, pressurizer cooler, spray and insulator are essential for a steam or a gas pressurizer. With a steam-gas pressurizer, additional systems are not required due to the use of steam and non-condensable gas as pressure-buffering materials. The steam-gas pressurizer in integrated small reactors experiences very complicated thermal-hydraulic phenomena. To ensure the integrity of this pressurizer type, the analysis on the transient behavior of the steam-gas pressure is indispensable. For this purpose, the steam-gas pressurizer model is introduced to predict the accurate system pressure. The proposed model includes bulk flashing, rainout, inter-region heat and mass transfer and wall condensation with non-condensable gas. However, the ideal gas law is not applied because of significant interaction at high pressure between steam and non-condensable gas. The results obtained from this proposed model agree with those from pressurizer tests. (authors)

  2. High blood pressure - children

    ... this page: //medlineplus.gov/ency/article/007696.htm High blood pressure - children To use the sharing features on this page, please enable JavaScript. High blood pressure (hypertension) is an increase in the force of ...

  3. Preventing High Blood Pressure

    ... Heart Disease Cholesterol Salt Million Hearts® WISEWOMAN Preventing High Blood Pressure: Healthy Living Habits Recommend on Facebook Tweet Share ... meal and snack options can help you avoid high blood pressure and its complications. Be sure to eat plenty ...

  4. High blood pressure - infants

    ... this page: //medlineplus.gov/ency/article/007329.htm High blood pressure - infants To use the sharing features on this page, please enable JavaScript. High blood pressure (hypertension) is an increase in the force of ...

  5. High blood pressure medications

    ... this page: //medlineplus.gov/ency/article/007484.htm High blood pressure medicines To use the sharing features on this page, please enable JavaScript. Treating high blood pressure will help prevent problems such as heart disease, ...

  6. High-pressure microbiology

    Michiels, Chris; Bartlett, Douglas Hoyt; Aertsen, Abram

    2008-01-01

    ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1. High Hydrostatic Pressure Effects in the Biosphere: from Molecules to Microbiology * Filip Meersman and Karel Heremans . . . . . . . . . . . . 2. Effects...

  7. High ratio recirculating gas compressor

    Weinbrecht, J.F.

    1989-08-22

    A high ratio positive displacement recirculating rotary compressor is disclosed. The compressor includes an integral heat exchanger and recirculation conduits for returning cooled, high pressure discharge gas to the compressor housing to reducing heating of the compressor and enable higher pressure ratios to be sustained. The compressor features a recirculation system which results in continuous and uninterrupted flow of recirculation gas to the compressor with no direct leakage to either the discharge port or the intake port of the compressor, resulting in a capability of higher sustained pressure ratios without overheating of the compressor. 10 figs.

  8. Fundamentals of high pressure adsorption

    Zhou, Y.P.; Zhou, L. [Tianjin University, Tianjin (China). High Pressure Adsorption Laboratory

    2009-12-15

    High-pressure adsorption attracts research interests following the world's attention to alternative fuels, and it exerts essential effect on the study of hydrogen/methane storage and the development of novel materials addressing to the storage. However, theoretical puzzles in high-pressure adsorption hindered the progress of application studies. Therefore, the present paper addresses the major theoretical problems that challenged researchers: i.e., how to model the isotherms with maximum observed in high-pressure adsorption; what is the adsorption mechanism at high pressures; how do we determine the quantity of absolute adsorption based on experimental data. Ideology and methods to tackle these problems are elucidated, which lead to new insights into the nature of high-pressure adsorption and progress in application studies, for example, in modeling multicomponent adsorption, hydrogen storage, natural gas storage, and coalbed methane enrichment, was achieved.

  9. The flip-over effect in pulsed laser deposition: Is it relevant at high background gas pressures?

    Ojeda-G-P, Alejandro; Schneider, Christof W.; Döbeli, Max; Lippert, Thomas; Wokaun, Alexander

    2015-12-01

    In pulsed laser deposition the use of a rectangular or elliptical beam spot with a non 1:1 aspect ratio leads to the so called flip-over effect. Here, the longest dimension of the laser spot results in the shortest direction of plasma plume expansion. This effect has been mainly reported for vacuum depositions of single element targets and is particularly noticeable when the aspect ratio of the beam spot is large. We investigate the flip-over effect in vacuum and at three relevant background-gas pressures for pulsed laser deposition using a La0.4Ca0.6MnO3 target by measuring the thickness dependence of the deposited material as a function of angle. The film thicknesses and compositions are determined by Rutherford backscattering and argon is used to reduce the influence of additional chemical reactions in the plasma. The results show the prevalence of the flip-over effect for all pressures except for the highest, i.e. 1 × 10-1 mbar, where the film thickness is constant for all angles. The composition profiles show noticeable compositional variations of up to 30% with respect to the target material depending on the background gas pressure, the angular location, and the laser spot dimensions.

  10. Oil and gas. Gas supply under pressure

    Forbes, A.

    2008-01-01

    The latest review of natural gas markets from the International Energy Agency (IEA) paints a picture of growing demand in the face of rising prices, a strengthening link between gas and electricity markets, and a globalising influence from increasingly flexible LNG supplies. But there are growing signs that security of supply is under threat from underinvestment, delays and cost escalation

  11. High-pressure apparatus

    Schepdael, van L.J.M.; Bartels, P.V.; Berg, van den R.W.

    1999-01-01

    The invention relates to a high-pressure device (1) having a cylindrical high-pressure vessel (3) and prestressing means in order to exert an axial pressure on the vessel. The vessel (3) can have been formed from a number of layers of composite material, such as glass, carbon or aramide fibers which

  12. Measurement and modelling of high pressure density and interfacial tension of (gas + n-alkane) binary mixtures

    Pereira, Luís M.C.; Chapoy, Antonin; Burgass, Rod; Tohidi, Bahman

    2016-01-01

    Highlights: • (Density + IFT) measurements are performed in synthetic reservoir fluids. • Measured systems include CO_2, CH_4 and N_2 with n-decane. • Novel data are reported for temperatures up to 443 K and pressures up to 69 MPa. • Predictive models are tested in 16 (gas + n-alkane) systems. • Best modelling results are achieved with the Density Gradient Theory. - Abstract: The deployment of more efficient and economical extraction methods and processing facilities of oil and gas requires the accurate knowledge of the interfacial tension (IFT) of fluid phases in contact. In this work, the capillary constant a of binary mixtures containing n-decane and common gases such as carbon dioxide, methane and nitrogen was measured. Experimental measurements were carried at four temperatures (313, 343, 393 and 442 K) and pressures up to 69 MPa, or near the complete vaporisation of the organic phase into the gas-rich phase. To determine accurate IFT values, the capillary constants were combined with saturated phase density data measured with an Anton Paar densitometer and correlated with a model based on the Peng–Robinson 1978 equation of state (PR78 EoS). Correlated density showed an overall percentage absolute deviation (%AAD) to measured data of (0.2 to 0.5)% for the liquid phase and (1.5 to 2.5)% for the vapour phase of the studied systems and P–T conditions. The predictive capability of models to accurately describe both the temperature and pressure dependence of the saturated phase density and IFT of 16 (gas + n-alkane) binary mixtures was assessed in this work by comparison with data gathered from the literature and measured in this work. The IFT models considered include the Parachor, the Linear Gradient Theory (LGT) and the Density Gradient Theory (DGT) approaches combined with the Volume-Translated Predictive Peng–Robinson 1978 EoS (VT-PPR78 EoS). With no adjustable parameters, the VT-PPR78 EoS allowed a good description of both solubility and

  13. High blood pressure - adults

    ... pressure is found. This is called essential hypertension. High blood pressure that is caused by another medical condition or medicine you are taking is called secondary hypertension. Secondary hypertension may be due to: Chronic ...

  14. Role of gas pressure and lateral stress on blistering

    Wolfer, W.G.

    1980-04-01

    Both gas pressure in bubbles and lateral stress have been suggested as primary causes of blistering. An analysis of both mechanisms is presented, and the conditions for blistering are examined. To realistically predict the gas pressure in bubbles, a recently derived high-density equation of state for helium is utilized

  15. Cell formation effects on the burning speeds and flame front area of synthetic gas at high pressures and temperatures

    Askari, Omid; Elia, Mimmo; Ferrari, Matthew; Metghalchi, Hameed

    2017-01-01

    Highlights: • Effect of cell formation on burning speed and flame surface area is investigated. • A new developed non-dimensional number called cellularity factor is introduced. • Cellular burning speed and mass burning rate are calculated using differential based multi-shell model. • Flame instability is studied using thermo-diffusive and hydrodynamics effects. • Power law correlations are developed for cellular burning speeds and mass burning rates. - Abstract: Cellular burning speeds and mass burning rates of premixed syngas/oxidizer/diluent (H_2/CO/O_2/He) have been determined at high pressures and temperatures over a wide range of equivalence ratios which are at engine-relevant conditions. Working on high pressure combustion helps to reduce the pollution and increase the energy efficiency in combustion devices. The experimental facilities consisted of two spherical and cylindrical chambers. The spherical chamber, which can withstand high pressures up to 400 atm, was used to collect pressure rise data due to combustion, to calculate cellular burning speed and mass burning rate. For flame structure and instability analysis the cylindrical chamber was used to take pictures of propagating flame using a high speed CMOS camera and a schlieren photography system. A new differential based multi-shell model based on pressure rise data was used to determine the cellular burning speed and mass burning rate. In this paper, cellular burning speed and mass burning rate of H_2/CO/O_2/He mixture have been measured for a wide range of equivalence ratios from 0.6 to 2, temperatures from 400 to 750 K and pressures from 2 to 50 atm for three hydrogen concentrations of 5, 10 and 25% in the syngas. The power law correlations for cellular burning speed and mass burning rate were developed as a function of equivalence ratio, temperature and pressure. In this study a new developed parameter, called cellularity factor, which indicates the cell formation effect on flame

  16. Axial gas transport and loss of pressure after ballooning rupture of high burn-up fuel rods subjected to LOCA conditions

    Wiesenack, Wolfgang; Oberlaender, Barbara; Kekkonen, Laura

    2008-01-01

    The OECD Halden Reactor Project has implemented integral in-pile tests on issues related to fuel behaviour under LOCA conditions. In this test series, the interaction of bonded fuel and cladding, the behaviour of fragmented fuel around the ballooning area, and the axial gas communication in high burn-up rods as affected by gap closure and fuel-clad bonding are of major interest for the investigations. In the Halden reactor tests, the decay heat is simulated by a low level of nuclear heating, in contrast to the heating conditions implemented in hot laboratory set-ups, and the thermal expansion of fuel and cladding relative to each other is more similar to the real event. The paper deals with observations regarding the loss of rod pressure following the rupture of the cladding. In the majority of the tests conducted so far, the rod pressure dropped practically instantaneously as a consequence of ballooning rupture, while one test showed a remarkably slow pressure loss. The slow loss of pressure in this test was analysed, showing that the 'hydraulic diameter' of the rod over an un-distended upper part was about 30 - 35 μm which is typical of high burn-up fuel at hot-standby conditions. The 'plug' of fuel restricts the gas flow from the plenum through the fuel column and thus limits the availability of high pressure gas for driving the ballooning. This observation is relevant for the analysis of the behaviour of a full length fuel rod under LOCA conditions since restricted gas flow may influence bundle blockage and the number of failures. (authors)

  17. High-pressure {sup 3}He-Xe gas scintillators for simultaneous detection of neutrons and gamma rays over a large energy range

    Tornow, W., E-mail: tornow@tunl.duke.edu [Department of Physics, Duke University, Durham, NC 27708 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Esterline, J.H. [Department of Physics, Duke University, Durham, NC 27708 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Leckey, C.A. [Department of Physics, The College of William and Mary, Williamsburg, VA 23187 (United States); Weisel, G.J. [Department of Physics, Penn State Altoona, Altoona, PA 16601 (United States)

    2011-08-11

    We report on features of high-pressure {sup 3}He-Xe gas scintillators which have not been sufficiently addressed in the past. Such gas scintillators can be used not only for the efficient detection of low-energy neutrons but at the same time for the detection and identification of {gamma}-rays as well. Furthermore, {sup 3}He-Xe gas scintillators are also very convenient detectors for fast neutrons in the 1-10 MeV energy range and for high-energy {gamma}-rays in the 7-15 MeV energy range. Due to their linear pulse-height response and self calibration via the {sup 3}He(n,p){sup 3}H reaction, neutron and {gamma}-ray energies can easily be determined in this high-energy regime.

  18. High-pressure 3He-Xe gas scintillators for simultaneous detection of neutrons and gamma rays over a large energy range

    Tornow, W.; Esterline, J.H.; Leckey, C.A.; Weisel, G.J.

    2011-01-01

    We report on features of high-pressure 3 He-Xe gas scintillators which have not been sufficiently addressed in the past. Such gas scintillators can be used not only for the efficient detection of low-energy neutrons but at the same time for the detection and identification of γ-rays as well. Furthermore, 3 He-Xe gas scintillators are also very convenient detectors for fast neutrons in the 1-10 MeV energy range and for high-energy γ-rays in the 7-15 MeV energy range. Due to their linear pulse-height response and self calibration via the 3 He(n,p) 3 H reaction, neutron and γ-ray energies can easily be determined in this high-energy regime.

  19. A technique to simulate a tube break in a high-pressure gas/cooling water heat exchanger - HTR2008-58161

    Antwerpen, H. J. V.; Mulder, E. J.

    2008-01-01

    The gas cycles of most High Temperature Gas-Cooled Reactors (HTR's) reject heat to water at some stage. In the helium/water heat exchangers of HTR's with direct Brayton cycles, the helium is usually at a much higher pressure than the water. If the pressure boundary between the helium and the water fails inside the heat exchanger. the effect on the rest of the water system has to be established in order to do a proper system design. This can be done most efficiently by using a system simulation code, however, very few system simulation codes has the capability to do gas/liquid interface tracking as required for this problem. This study describes a calculation method with which a gas/liquid heat exchanger tube rupture can be calculated in a simulation code without interface tracking. The course of events after tube rupture is described and appropriate calculation models derived. A mathematical model for a pressure relief valve (PRV) was also created. The calculation models were implemented in the system simulation software Flownex and used to study a tube rupture on a 5000 kPa helium/water heat exchanger. The assembled calculation network solved stable and within reasonable time. The simulation provided insight into the course of events following the tube break. It was shown that the acceleration of water out of the helium cooler, by choked-flow helium, caused the main pressure pulses during the event. The maximum pressure in the water loop occurs on the opposite side of the helium cooler due to constructive interference of the initial pressure wave with itself. It was also shown that by changing only pipe lengths, the system could become prone to severe oscillations after a tube rupture event. (authors)

  20. High pressure flow reactor for in situ X-ray absorption spectroscopy of catalysts in gas-liquid mixtures—A case study on gas and liquid phase activation of a Co-Mo/Al2O3 hydrodesulfurization catalyst

    van Haandel, L.; Hensen, E.J.M.; Weber, Th.

    2017-01-01

    An in situ characterization of heterogeneous catalysts under industrial operating conditions may involve high pressure and reactants in both the gas and the liquid phase. In this paper, we describe an in situ XAS flow reactor, which is suitable to operate under such conditions (pmax 20 bar, Tmax 350

  1. Criteria of assessment for local wall thickness reductions in operative high-pressure gas pipelines; Beurteilungskriterien fuer lokale Wanddickenminderungen an in Betrieb befindlichen Gashochdruckleitungen

    Hass, Georg [NetzDienste Rhein/Main GmbH, Frankfurt am Main (Germany); Hoffman, Ulrich [VNG - Verbundnetz Gas AG, Leipzig (Germany); Konarske, Juergen [RWE Westfalen-Weser-Ems Netzservice GmbH, Recklinghausen (Germany); Soppa, Thorsten [NG Netz Gas+Wasser (Germany). Bau/Betrieb Hochdrucknetz; Steiner, Michael [Open Grid Europe GmbH, Essen (Germany). Integritaet/Werkstofftechnik

    2011-07-01

    TUeV Nord, Salzgitter Mannesmann Forschung and DVGW investigated methods to assess local wall thickness reductions in operative high-pressure gas pipelines. Methods described in the relevant literature were reviewed with regard to the limiting criteria defined for maximum permissible wall thickness reductions. On the basis of this literature study and additional calculations, a comparative evaluation of the available methods was made. Several methods were identified that are compatible with the existing safety concept and general availability. It was found that - nearly independent of the method - burst safeties of 1.8 to 2.0 were used. The ultimate goal is the development of a German standard evaluation concept for local wall thickness reductions in high-pressure gas pipelines in order to avoid uncertainties and/or misinterpretations.

  2. Measurement and calculation of gas compressibility factor for condensate gas and natural gas under pressure up to 116 MPa

    Yan, Ke-Le; Liu, Huang; Sun, Chang-Yu; Ma, Qing-Lan; Chen, Guang-Jin; Shen, De-Ji; Xiao, Xiang-Jiao; Wang, Hai-Ying

    2013-01-01

    Highlights: • Volumetric properties of two reservoir fluid samples were measured with pressure up to 116 MPa. • Dew point pressures at four temperatures for condensate gas sample are obtained. • Correlations and thermodynamic model for describing gas compressibility factor under high pressure were compared. • The thermodynamic model recommended is most suitable for fluids produced from reservoirs with a wide pressure range. -- Abstract: The volumetric properties of two reservoir fluid samples collected from one condensate gas well and one natural gas well were measured under four groups of temperatures, respectively, with pressure up to 116 MPa. For the two samples examined, the experimental results show that the gas compressibility factor increases with the increase of pressure. But the influence of the temperature is related to the range of the experimental pressure. It approximately decreases with the increase of temperature when the pressure is larger than (45 to 50) MPa, while there is the opposite trend when the pressure is lower than (45 to 50) MPa. The dew point pressure was also determined for the condensate gas sample, which decreases with the increase of temperature. The capabilities of four empirical correlations and a thermodynamic model based on equation of state for describing gas compressibility factor of reservoir fluids under high pressure were investigated. The comparison results show that the thermodynamic model recommended is the most suitable for fluids whatever produced from high-pressure reservoirs or conventional mild-pressure reservoirs

  3. Measurement of gas-liquid two-phase flow around horizontal tube bundle using SF6-water. Simulating high-pressure high-temperature gas-liquid two-phase flow of PWR/SG secondary coolant side at normal pressure

    Ishikawa, Atsushi; Imai, Ryoj; Tanaka, Takahiro

    2014-01-01

    In order to improve prediction accuracy of analysis code used for design and development of industrial products, technology had been developed to create and evaluate constitutive equation incorporated in analysis code. The experimental facility for PWR/SG U tubes part was manufactured to measure local void fraction and gas-liquid interfacial velocity with forming gas-liquid upward two-phase flow simulating high-pressure high-temperature secondary coolant (water-steam) rising vertically around horizontal tube bundle. The experimental facility could reproduce flow field having gas-liquid density ratio equivalent to real system with no heating using SF6 (Sulfur Hexafluoride) gas at normal temperature and pressure less than 1 MPa, because gas-liquid density ratio, surface tension and gas-liquid viscosity ratio were important parameters to determine state of gas-liquid two-phase flow and gas-liquid density ratio was most influential. Void fraction was measured by two different methods of bi-optical probe and conductivity type probe. Test results of gas-liquid interfacial velocity vs. apparent velocity were in good agreement with existing empirical equation within 10% error, which could confirm integrity of experimental facility and appropriateness of measuring method so as to set up original constitutive equation in the future. (T. Tanaka)

  4. High pressure experimental water loop

    Grenon, M.

    1958-01-01

    A high pressure experimental water loop has been made for studying the detection and evolution of cladding failure in a pressurized reactor. The loop has been designed for a maximum temperature of 360 deg. C, a maximum of 160 kg/cm 2 and flow rates up to 5 m 3 /h. The entire loop consists of several parts: a main circuit with a canned rotor circulation pump, steam pressurizer, heating tubes, two hydro-cyclones (one de-gasser and one decanter) and one tubular heat exchanger; a continuous purification loop, connected in parallel, comprising pressure reducing valves and resin pots which also allow studies of the stability of resins under pressure, temperature and radiation; following the gas separator is a gas loop for studying the recombination of the radiolytic gases in the steam phase. The preceding circuits, as well as others, return to a low pressure storage circuit. The cold water of the low pressure storage flask is continuously reintroduced into the high pressure main circuit by means of a return pump at a maximum head of 160 kg /cm 2 , and adjusted to the pressurizer level. This loop is also a testing bench for the tight high pressure apparatus. The circulating pump and the connecting flanges (Oak Ridge type) are water-tight. The feed pump and the pressure reducing valves are not; the un-tight ones have a system of leak recovery. To permanently check the tightness the circuit has been fitted with a leak detection system (similar to the HRT one). (author) [fr

  5. Investigation into the effects of operating conditions and design parameters on the creep life of high pressure turbine blades in a stationary gas turbine engine

    Eshati, Samir; Abu, Abdullahi; Laskaridis, Panagiotis; Haslam, Anthony

    2011-01-01

    A physics–based model is used to investigate the relationship between operating conditions and design parameters on the creep life of a stationary gas turbine high pressure turbine (HPT) blade. A performance model is used to size the blade and to determine its stresses. The effects of radial temperature distortion, turbine inlet temperature, ambient temperature and compressor degradation on creep life are then examined. The results show variations in creep life and failure locat...

  6. Experimental screening of porous materials for high pressure gas adsorption and evaluation in gas separations: application to MOFs (MIL-100 and CAU-10).

    Wiersum, Andrew D; Giovannangeli, Christophe; Vincent, Dominique; Bloch, Emily; Reinsch, Helge; Stock, Norbert; Lee, Ji Sun; Chang, Jong-San; Llewellyn, Philip L

    2013-02-11

    A high-throughput gas adsorption apparatus is presented for the evaluation of adsorbents of interest in gas storage and separation applications. This instrument is capable of measuring complete adsorption isotherms up to 40 bar on six samples in parallel using as little as 60 mg of material. Multiple adsorption cycles can be carried out and four gases can be used sequentially, giving as many as 24 adsorption isotherms in 24 h. The apparatus has been used to investigate the effect of metal center (MIL-100) and functional groups (CAU-10) on the adsorption of N(2), CO(2), and light hydrocarbons on MOFs. This demonstrates how it can serve to evaluate sample quality and adsorption reversibility, to determine optimum activation conditions and to estimate separation properties. As such it is a useful tool for the screening of novel adsorbents for different applications in gas separation, providing significant time savings in identifying potentially interesting materials.

  7. High Blood Pressure (Hypertension)

    ... other risk factors, like diabetes, you may need treatment. How does high blood pressure affect pregnant women? A few women will get ... HIV, Birth Control Heart Health for Women Pregnancy Menopause More Women's Health ... High Blood Pressure--Medicines to Help You Women and Diabetes Heart ...

  8. High-pressure crystallography

    Katrusiak, A.

    2008-01-01

    The history and development of high-pressure crystallography are briefly described and examples of structural transformations in compressed compounds are given. The review is focused on the diamond-anvil cell, celebrating its 50th anniversary this year, the principles of its operation and the impact it has had on high-pressure X-ray diffraction.

  9. Changes in structure and preferential cage occupancy of ethane hydrate and ethane-methane mixed gas hydrate under high pressure

    Hirai, H; Takahara, N; Kawamura, T; Yamamoto, Y; Yagi, T

    2010-01-01

    Structural changes and preferential cage occupancies were examined for ethane hydrate and ethane-methane mixed gas hydrates with five compositions in a pressure range of 0.2 to 2.8 GPa at room temperature. X-ray diffractometry and Raman spectroscopy showed the following structural changes. The initial structure, structure I (sI), of ethane hydrate was retained up to 2.1 GPa without any structural change. For the mixed hydrates, sI was widely distributed throughout the region examined except for the methane-rich and lower pressure regions, where sII and sH appeared. Above 2.1 GPa ethane hydrate and all of the mixed hydrates decomposed into ice VI and ethane fluid or methane-ethane fluid, respectively. The Raman study revealed that occupation of the small cages by ethane molecules occurred above 0.1 GPa in ethane hydrate and continued up to decomposition at 2.1 GPa, although it was thought that ethane molecules were contained only in the large cage.

  10. High-pressure Gas Activation for Amorphous Indium-Gallium-Zinc-Oxide Thin-Film Transistors at 100 °C.

    Kim, Won-Gi; Tak, Young Jun; Du Ahn, Byung; Jung, Tae Soo; Chung, Kwun-Bum; Kim, Hyun Jae

    2016-03-14

    We investigated the use of high-pressure gases as an activation energy source for amorphous indium-gallium-zinc-oxide (a-IGZO) thin film transistors (TFTs). High-pressure annealing (HPA) in nitrogen (N2) and oxygen (O2) gases was applied to activate a-IGZO TFTs at 100 °C at pressures in the range from 0.5 to 4 MPa. Activation of the a-IGZO TFTs during HPA is attributed to the effect of the high-pressure environment, so that the activation energy is supplied from the kinetic energy of the gas molecules. We reduced the activation temperature from 300 °C to 100 °C via the use of HPA. The electrical characteristics of a-IGZO TFTs annealed in O2 at 2 MPa were superior to those annealed in N2 at 4 MPa, despite the lower pressure. For O2 HPA under 2 MPa at 100 °C, the field effect mobility and the threshold voltage shift under positive bias stress were improved by 9.00 to 10.58 cm(2)/V.s and 3.89 to 2.64 V, respectively. This is attributed to not only the effects of the pressurizing effect but also the metal-oxide construction effect which assists to facilitate the formation of channel layer and reduces oxygen vacancies, served as electron trap sites.

  11. A numerical study of the gas-liquid, two-phase flow maldistribution in the anode of a high pressure PEM water electrolysis cell

    Olesen, Anders Christian; Rømer, Carsten; Kær, Søren Knudsen

    2016-01-01

    In this work, the use of a circular-planar, interdigitated flow field for the anode of a high pressure proton exchange membrane (PEM) water electrolysis cell is investigated in a numerical study. While PEM fuel cells have separated flow fields for reactant transport and coolant, it is possible...... causes maldistribution, if land areas of equal width are applied. Moreover, below a water stoichiometry of 350, and at a current density of 1 A/cm2, flow and temperature maldistribution is adversely affected by the presence of the gas phase; particularly gas hold-up near outlet channels can cause......-phase flow model for establishing the effect of geometry and a two-phase flow model for studying the effect of dispersed gas bubbles. Both models account for turbulence and heat transport. By means of the developed models, it is elucidated that the circular-planar shape of the interdigitated flow field...

  12. Study on the effect of distance between the two nozzle holes on interaction of high pressure combustion-gas jets with liquid

    Xue, Xiaochun; Yu, Yonggang; Zhang, Qi

    2014-01-01

    Highlights: • We design a five-stage cylindrical stepped-wall chamber to study twin combustion-gas jets. • We observe mixing processes of twin combustion-gases and liquid by high speed photographic system. • We discuss the influence of multiple parameters on expansion shape of the Taylor cavities. • The three-dimensional mathematics model is established to simulate the energy release process. • We obtain distribution characteristics of parameters under different nozzle distances. - Abstract: The combustion-gas generator and cylindrical stepped-wall observation chambers with five stages are designed to study the expansion characteristic of twin combustion-gas jets in liquid working medium under high temperature and high pressure. The expansion processes of Taylor cavities formed by combustion-gas jets and the mixing characteristics of gas–liquid are studied by means of high-speed digital camera system. The effects of the distance between the two nozzle holes, injection pressure and nozzle diameter on jet expansion processes are discussed. The experimental results indicate that, the velocity differences exist on the gas–liquid interface during expansion processes of twin combustion-gas jets, and the effect of Taylor–Helmholtz instability is intense, so interfaces between gas and liquid show turbulent folds and randomness. The strong turbulent mixing of gas and liquid leads to release of combustion-gas energy with the temperature decreasing. Moreover, the mixing effectiveness is obviously enhanced on the corners of each step of the cylindrical stepped-wall structure, forming radial expansion phenomenon. The reasonable matching of multi-parameter can restrain the jet instability and make the combustion-gas energy orderly release. Based on the experiments, the three-dimensional unsteady mathematical model of interaction of twin combustion-gas jets and liquid working medium is established to obtain the density, pressure, velocity and temperature

  13. Analysis of high-pressure safety valves

    Beune, A.

    2009-01-01

    In presently used safety valve sizing standards the gas discharge capacity is based on a nozzle flow derived from ideal gas theory. At high pressures or low temperatures real gas effects can no longer be neglected, so the discharge coefficient corrected for flow losses cannot be assumed constant

  14. Simulation of the build-up phase of a high voltage low pressure gas discharge using Monte-Carlo-methods

    Niessen, W.

    1990-02-01

    In this report the simulation of a Pseudospark predischarge between anode and cathode using Monte-Carlo-Methods is described. In the early phase of the discharge electric and magnetic self-fields can be neglected. The model is based on a discharge between two infinitely extended capacitor plates. Eleven different collision reactions and two electrode surface effects are taken into account. A Fortran program was developed that computes the built-up of the discharge in time and space. A specially of the code is, that not only electrons and ions are taken into account, but also fast neutral atoms and molecules. Three pairs of diode-length and voltage were investigated at different pressures: 350 kV/5.0 cm, 30 kV/10.0 cm and 6.9 kV/0.7 cm. The working gas was hydrogen. The computations included: The Paschen-curve, the time evolution of the current densities of the electrons at the anode and the ions at the cathode, the space- and time-dependent particle densities, the time-dependent energy distributions of the different particle species, the relative number of the different collision reactions. (orig./HSI) [de

  15. High Blood Pressure

    ... kidney disease, diabetes, or metabolic syndrome Read less Unhealthy lifestyle habits Unhealthy lifestyle habits can increase the risk of high blood pressure. These habits include: Unhealthy eating patterns, such as eating too much sodium ...

  16. High Blood Pressure

    ... factors Diabetes High blood pressure Family history Obesity Race/ethnicity Full list of causes and risk factors ... give Give monthly Memorials and tributes Donate a car Donate gently used items Stock donation Workplace giving ...

  17. Open-lung protective ventilation with pressure control ventilation, high-frequency oscillation, and intratracheal pulmonary ventilation results in similar gas exchange, hemodynamics, and lung mechanics.

    Sedeek, Khaled A; Takeuchi, Muneyuki; Suchodolski, Klaudiusz; Vargas, Sara O; Shimaoka, Motomu; Schnitzer, Jay J; Kacmarek, Robert M

    2003-11-01

    Pressure control ventilation (PCV), high-frequency oscillation (HFO), and intratracheal pulmonary ventilation (ITPV) may all be used to provide lung protective ventilation in acute respiratory distress syndrome, but the specific approach that is optimal remains controversial. Saline lavage was used to produce acute respiratory distress syndrome in 21 sheep randomly assigned to receive PCV, HFO, or ITPV as follows: positive end-expiratory pressure (PCV and ITPV) and mean airway pressure (HFO) were set in a pressure-decreasing manner after lung recruitment that achieved a ratio of Pao2/Fio2 > 400 mmHg. Respiratory rates were 30 breaths/min, 120 breaths/min, and 8 Hz, respectively, for PCV, ITPV, and HFO. Eucapnia was targeted with peak carinal pressure of no more than 35 cm H2O. Animals were then ventilated for 4 h. There were no differences among groups in gas exchange, lung mechanics, or hemodynamics. Tidal volume (PCV, 8.9 +/- 2.1 ml/kg; ITPV, 2.7 +/- 0.8 ml/kg; HFO, approximately 2.0 ml/kg) and peak carinal pressure (PCV, 30.6 +/- 2.6 cm H2O; ITPV, 22.3 +/- 4.8 cm H2O; HFO, approximately 24.3 cm H2O) were higher in PCV. Pilot histologic data showed greater interstitial hemorrhage and alveolar septal expansion in PCV than in HFO or ITPV. These data indicate that HFO, ITPV, and PCV when applied with an open-lung protective ventilatory strategy results in the same gas exchange, lung mechanics, and hemodynamic response, but pilot data indicate that lung injury may be greater with PCV.

  18. High enthalpy gas dynamics

    Rathakrishnan, Ethirajan

    2014-01-01

    This is an introductory level textbook which explains the elements of high temperature and high-speed gas dynamics. written in a clear and easy to follow style, the author covers all the latest developments in the field including basic thermodynamic principles, compressible flow regimes and waves propagation in one volume covers theoretical modeling of High Enthalpy Flows, with particular focus on problems in internal and external gas-dynamic flows, of interest in the fields of rockets propulsion and hypersonic aerodynamics High enthalpy gas dynamics is a compulsory course for aerospace engine

  19. Analysis of Heat Transfer and Pressure Drop for a Gas Flowing Through a set of Multiple Parallel Flat Plates at High Temperatures

    Einstein, Thomas H.

    1961-01-01

    Equations were derived representing heat transfer and pressure drop for a gas flowing in the passages of a heater composed of a series of parallel flat plates. The plates generated heat which was transferred to the flowing gas by convection. The relatively high temperature level of this system necessitated the consideration of heat transfer between the plates by radiation. The equations were solved on an IBM 704 computer, and results were obtained for hydrogen as the working fluid for a series of cases with a gas inlet temperature of 200 R, an exit temperature of 5000 0 R, and exit Mach numbers ranging from 0.2 to O.8. The length of the heater composed of the plates ranged from 2 to 4 feet, and the spacing between the plates was varied from 0.003 to 0.01 foot. Most of the results were for a five- plate heater, but results are also given for nine plates to show the effect of increasing the number of plates. The heat generation was assumed to be identical for each plate but was varied along the length of the plates. The axial variation of power used to obtain the results presented is the so-called "2/3-cosine variation." The boundaries surrounding the set of plates, and parallel to it, were assumed adiabatic, so that all the power generated in the plates went into heating the gas. The results are presented in plots of maximum plate and maximum adiabatic wall temperatures as functions of parameters proportional to f(L/D), for the case of both laminar and turbulent flow. Here f is the Fanning friction factor and (L/D) is the length to equivalent diameter ratio of the passages in the heater. The pressure drop through the heater is presented as a function of these same parameters, the exit Mach number, and the pressure at the exit of the heater.

  20. Periodic motions and chaos for a damped mobile piston system in a high pressure gas cylinder with P control

    Wang, Donghua; Huang, Jianzhe

    2017-01-01

    In this paper, the complex motions for a moving piston in a closed gas cylinder will be analyzed using the discrete implicit maps method. The strong nonlinearity of such system will be observed due to the large quadratic and cubic stiffness. Period-1 motions which contain high order of harmonic components will be presented. The periodic motions will be discretized into multiple continuous mappings, and such mapping can be analyzed via Newton–Raphson iteration. The stability analysis will be given and the analytic conditions for the saddle-node and period-doubling bifurcation will be determined. From the semi-analytic solution route, the possible motions without considering the impact of the piston with the end wall of the cylinder will be obtained analytically. The scheme to reduce the vibration of the piston can be obtained through the parameter studies.

  1. A gas thermometer for vapor pressure measurements

    Rusin, A. D.

    2008-08-01

    The pressure of an inert gas over the range 400 1000 K was measured on a tensimetric unit with a quartz membrane pressure gauge of enhanced sensitivity. It was shown that a reactor with a membrane null gauge could be used as a gas thermometer. The experimental confidence pressure and temperature intervals were 0.07 torr and 0.1 K at a significance level of 0.05. A Pt-Pt/10% Rh thermocouple was calibrated; the results were approximated by a polynomial of degree five. The error in temperature calculations was 0.25 K.

  2. Characteristics of Modified 9Cr-1Mo Steel for Reactor Pressure Vessel of Very High Temperature Gas Cooled Reactor

    Kim, Sung Ho; Ryu, W. S.; Han, Chang Hee; Yoon, J. H.; Chang, Jong Hwa

    2004-11-15

    Many researches and developments have been progressed for the construction of VHTR by 2020 in Korea. Modified 9Cr-1Mo steel has been receiving attention for the application to the reactor pressure vessel material of VHTR. We collected and analyzed the research data for modified 9Cr-1Mo steel in order to understand the characteristics of modified 9Cr-1Mo steel. The modified 9Cr-1Mo steel is a modified alloy system similar to conventional 9Cr-1Mo grade ferritic steel. Modifications include additions of vanadium, niobium, and nitrogen, as well as lower carbon content. In this report, we summarized the change of microstructure and mechanical properties after tempering, thermal aging, and irradiation. Modified 9Cr-1Mo steel has high strength and thermal conductivity, low thermal expansion, and good resistance to corrosion. But the irradiation embrittlement behavior of modified 9Cr-1Mo steel should be evaluated and the evaluation methodology also should be developed. At the same time, the characteristics of weldment which is the weak part in pressure vessel should be evaluated.

  3. Use of Expansion Turbines in Natural Gas Pressure Reduction Stations

    Poživil Jaroslav

    2004-09-01

    Full Text Available Through the use of expansion turbines in natural gas pressure reduction stations it is possible to produce clean, “green” electricity.Such energy recovery unit utilize the potential energy of natural gas being delivered under high pressure. Expansion turbines are not onlyefficient and profitable but meet the environmental criteria – no emissions of sulfur dioxide, nitrogen oxides or carbon dioxide.

  4. Experimental Study on Hydrate Induction Time of Gas-Saturated Water-in-Oil Emulsion using a High-Pressure Flow Loop

    Lv X.F.

    2015-11-01

    Full Text Available Hydrate is one of the critical precipitates which have to be controlled for subsea flow assurance. The induction time of hydrate is therefore a significant parameter. However, there have been few studies on the induction time of the natural gas hydrate formation in a flow loop system. Consequently, a series of experiments were firstly performed, including water, natural gas and Diesel oil, on the hydrate induction time under various conditions such as the supercooling and supersaturation degree, water cut, anti-agglomerant dosage, etc. The experiments were conducted in a high-pressure hydrate flow loop newly constructed in the China University of Petroleum (Beijing, and dedicated to flow assurance studies. Then, based on previous research, this study puts forward a method for induction time, which is characterized by clear definition, convenient measurement and good generality. Furthermore, we investigated the influences of the experimental parameters and analyzed the experimental phenomena for the hydrate induction time in a flowing system.

  5. High temperature mechanisms and kinetics of SiC oxidation under low partial pressures of oxygen: application to the fuel cladding of gas fast reactors

    Hun, N.

    2011-01-01

    Gas Fast Reactor (GFR) is one of the different Generation IV concepts under investigation for energy production. SiC/SiC composites are candidates of primary interest for a GFR fuel cladding use, thanks to good corrosion resistance among other properties. The mechanisms and kinetics of SiC oxidation under operating conditions have to be identified and quantified as the corrosion can decrease the mechanical properties of the composite. An experimental device has been developed to study the oxidation of silicon carbide under high temperature and low oxygen partial pressure. The results pointed out that not only parabolic oxidation, but also interfacial reactions and volatilization occur under such conditions. After determining the kinetics of each mechanism, as functions of oxygen partial pressure and temperature, the data are used for the modeling of the composites oxidation. The model will be used to predict the lifetime of the composite in operating conditions. (author) [fr

  6. High Velocity Gas Gun

    1988-01-01

    A video tape related to orbital debris research is presented. The video tape covers the process of loading a High Velocity Gas Gun and firing it into a mounted metal plate. The process is then repeated in slow motion.

  7. Synthesis gas generation by high pressure partial oxidation (HP POX {sup registered}); Synthesegaserzeugung durch Hochdruck-Partialoxidation (HP POX {sup registered})

    Meyer, B.; Seifert, P.; Zeissler, R. [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Energieverfahrenstechnik und Chemieingenieurwesen; Walter, St. [Lurgi AG, Frankfurt/Main (Germany)

    2005-05-01

    The high pressure synthesis gas process HP POX (High Pressure Partial Oxidation) is a thermal conversion process, which converts e.g. natural gas or heavy residue oil with oxygen to fuel or synthesis gas. Innovative burner technologies allow autothermal catalytic or non-catalytic reforming of gaseous feedstock and gasification of liquid feed streams. Hydrogen and carbon monoxide rich synthesis gases with low methane content (particularly suitable as feed gas for methanol synthesis) can be generated. The technology represents a new generation of entrained flow gasification characterized by the new developed equipment and a design pressure of 100 bar. According to the feeds, the HP POX gasification process is the link between the downstream synthesis chemistry (use of gaseous and liquid feeds) and the power plant process (liquid or solid fuels as suspension or slurry). The HP POX development is carried out together with the Lurgi AG at the Institute for Energy Process Engineering and Chemical Engineering (IEC). The 5 MW HP POX test plant built in Freiberg by Lurgi is core of the joint research project, which is supported by the German Federal Ministry of Economics and Labour (BMWA), the Saxon Ministry of Science and the Fine Arts (SMWK), and the mg technologies ag (parent company of Lurgi). The conducted sets of experiments indicate that the unit can be operated in a safe, smooth and stable manner. During this periods of operation, which included nine test campaigns for autothermal reforming (ATR), the maximum pressure for ATR amounted to 70 bar which exceeds the current benchmark in industry for 30 bar. Main objective of R and D work is the development of modelling tools for extreme gasification conditions and different gasification principles of up to 100 bar. These tools are supposed to improve the understanding of the entire gasification process. Their development requires a systematic investigation of the reaction mechanisms and the interactions with the process

  8. High resolution gas volume change sensor

    Dirckx, Joris J. J.; Aernouts, Jef E. F.; Aerts, Johan R. M.

    2007-01-01

    Changes of gas quantity in a system can be measured either by measuring pressure changes or by measuring volume changes. As sensitive pressure sensors are readily available, pressure change is the commonly used technique. In many physiologic systems, however, buildup of pressure influences the gas exchange mechanisms, thus changing the gas quantity change rate. If one wants to study the gas flow in or out of a biological gas pocket, measurements need to be done at constant pressure. In this article we present a highly sensitive sensor for quantitative measurements of gas volume change at constant pressure. The sensor is based on optical detection of the movement of a droplet of fluid enclosed in a capillary. The device is easy to use and delivers gas volume data at a rate of more than 15 measurements/s and a resolution better than 0.06 μl. At the onset of a gas quantity change the sensor shows a small pressure artifact of less than 15 Pa, and at constant change rates the pressure artifact is smaller than 10 Pa or 0.01% of ambient pressure

  9. Fascination at high pressures

    Chidambaram, R.

    1992-01-01

    Research at high pressures has developed into an interdisciplinary area which has important implications for and applications in the areas of physics, chemistry, materials sciences, planetary sciences, biology, engineering sciences and technology. The state of-the-art in this field is reviewed and future directions are indicated. (M.G.B.)

  10. Measurement of the parameters of non-stationary gas flows by diode laser absorption spectroscopy in case of high temperature and high pressure

    Bolshov, M.A.; Liger, V.V.; Kuritsyn, Yu.A.; Mironenko, V.R.; Ponurovskii, Ya.Ya.; Kolesnikov, O.M.

    2017-01-01

    Experimental version of diode laser absorption spectrometer (DLAS) for contactless measurements of temperature and water vapor concentration in supersonic gas flows is developed. The spectrometer can be used for the measurements of temperature up to 2500 K and total pressure up to 3 atm. The technique is based on the registration of the transient absorption spectra of a target molecules and fitting of the experimental spectra by the simulated ones constructed using the spectroscopic databases. The temperature is inferred from the ratio of the intensities of the absorption lines with different low energy levels. In gas media with the above parameters the absorption lines are broadened which demands the use of two diode lasers (DL) working in different spectral ranges. The software for selection of the optimal line combinations was developed. The combination of two strong lines in the spectral ranges 1.39 μ and 1.34 μ was selected as the optimal one. The efficiency of the developed technique was exemplified in the first set of the experiments in conditions of real propulsion in Zhukovsky Central Aerohydrodynamic Institute (TsAGI) for the temperatures within 500-2200 K range and total pressure up to 3 atm.

  11. Windage Power Loss in Gas Foil Bearings and the Rotor-Stator Clearance of High Speed Generators Operating in High Pressure Environments

    Bruckner, Robert J.

    2009-01-01

    Closed Brayton Cycle (CBC) and Closed Supercritical Cycle (CSC) engines are prime candidates to convert heat from a reactor into electric power for robotic space exploration and habitation. These engine concepts incorporate a permanent magnet starter/generator mounted on the engine shaft along with the requisite turbomachinery. Successful completion of the long-duration missions currently anticipated for these engines will require designs that adequately address all losses within the machine. The preliminary thermal management concept for these engine types is to use the cycle working fluid to provide the required cooling. In addition to providing cooling, the working fluid will also serve as the bearing lubricant. Additional requirements, due to the unique application of these microturbines, are zero contamination of the working fluid and entirely maintenance-free operation for many years. Losses in the gas foil bearings and within the rotor-stator gap of the generator become increasingly important as both rotational speed and mean operating pressure are increased. This paper presents the results of an experimental study, which obtained direct torque measurements on gas foil bearings and generator rotor-stator gaps. Test conditions for these measurements included rotational speeds up to 42,000 revolutions per minute, pressures up to 45 atmospheres, and test gases of nitrogen, helium, and carbon dioxide. These conditions provided a maximum test Taylor number of nearly one million. The results show an exponential rise in power loss as mean operating density is increased for both the gas foil bearing and generator windage. These typical "secondary" losses can become larger than the total system output power if conventional design paradigms are followed. A nondimensional analysis is presented to extend the experimental results into the CSC range for the generator windage.

  12. Superconducting cable cooling system by helium gas at two pressures

    Dean, J.W.

    1977-01-01

    Thermally contacting, oppositely streaming, cryogenic fluid streams in the same enclosure in a closed cycle changes the fluid from a cool high pressure helium gas to a cooler reduced pressure helium gas in an expander so as to be at different temperature ranges and pressures respectively in go and return legs that are in thermal contact with each other and in thermal contact with a longitudinally extending superconducting transmission line enclosed in the same cable enclosure that insulates the line from the ambient at a temperature T 1 . By first circulating the fluid from a refrigerator at one end of the line as a cool gas at a temperature range T 2 to T 3 in the go leg, then circulating the gas through an expander at the other end of the line where the gas becomes a cooler gas at a reduced pressure and at a reduced temperature T 4 and finally by circulating the cooler gas back again to the refrigerator in a return leg at a temperature range T 4 to T 5 , while in thermal contact with the gas in the go leg, and in the same enclosure therewith for compression into a higher pressure gas at T 2 in a closed cycle, where T 2 greater than T 3 and T 5 greater than T 4 , the fluid leaves the enclosure in the go leg as a gas at its coldest point in the go leg, and the temperature distribution is such that the line temperature decreases along its length from the refrigerator due to the cooling from the gas in the return leg

  13. Pressure calculations in nanochannel gas flows

    Kim, J.H.; Frijns, A.J.H.; Nedea, S.V.; Steenhoven, van A.A.; Frijns, A.J.H.; Valougeorgis, D.; Colin, S.; Baldas, L.

    2012-01-01

    In this research, pressure driven flow within a nanochannel is studied for argon in rarefied gas states. A Molecular Dynamics simulation is used to resolve the density and stress variations. Normal stress calculations are based on Irving-Kirkwood method, which divides the stress tensor into its

  14. Nucleation at high pressure I: Theoretical considerations.

    Luijten, C.C.M.; Dongen, van M.E.H.

    1999-01-01

    A theoretical approach is presented that accounts for the influence of high pressure background gases on the vapor-to-liquid nucleation process. The key idea is to treat the carrier gas pressure as a perturbation parameter that modifies the properties of the nucleating substance. Two important

  15. Injection characteristics study of high-pressure direct injector for Compressed Natural Gas (CNG) using experimental and analytical method

    Taha, Z.; Rahim, MF Abdul; Mamat, R.

    2017-10-01

    The injection characteristics of direct injector affect the mixture formation and combustion processes. In addition, the injector is converted from gasoline operation for CNG application. Thus measurement of CNG direct injector mass flow rate was done by independently tested a single injector on a test bench. The first case investigated the effect of CNG injection pressure and the second case evaluate the effect of pulse-width of injection duration. An analytical model was also developed to predict the mass flow rate of the injector. The injector was operated in a choked condition in both the experiments and simulation studies. In case 1, it was shown that mass flow rate through the injector is affected by injection pressure linearly. Based on the tested injection pressure of 20 bar to 60 bar, the resultant mass flow rate are in the range of 0.4 g/s to 1.2 g/s which are met with theoretical flow rate required by the engine. However, in Case 2, it was demonstrated that the average mass flow rate at short injection durations is lower than recorded in Case 1. At injection pressure of 50 bar, the average mass flow rate for Case 2 and Case 1 are 0.7 g/s and 1.1 g/s respectively. Also, the measured mass flow rate at short injection duration showing a fluctuating data in the range of 0.2 g/s - 1.3 g/s without any noticeable trends. The injector model able to predict the trend of the mass flow rate at different injection pressure but unable to track the fluctuating trend at short injection duration.

  16. Cryogenic, Absolute, High Pressure Sensor

    Chapman, John J. (Inventor); Shams. Qamar A. (Inventor); Powers, William T. (Inventor)

    2001-01-01

    A pressure sensor is provided for cryogenic, high pressure applications. A highly doped silicon piezoresistive pressure sensor is bonded to a silicon substrate in an absolute pressure sensing configuration. The absolute pressure sensor is bonded to an aluminum nitride substrate. Aluminum nitride has appropriate coefficient of thermal expansion for use with highly doped silicon at cryogenic temperatures. A group of sensors, either two sensors on two substrates or four sensors on a single substrate are packaged in a pressure vessel.

  17. Cryogenic High Pressure Sensor Module

    Chapman, John J. (Inventor); Shams, Qamar A. (Inventor); Powers, William T. (Inventor)

    1999-01-01

    A pressure sensor is provided for cryogenic, high pressure applications. A highly doped silicon piezoresistive pressure sensor is bonded to a silicon substrate in an absolute pressure sensing configuration. The absolute pressure sensor is bonded to an aluminum nitride substrate. Aluminum nitride has appropriate coefficient of thermal expansion for use with highly doped silicon at cryogenic temperatures. A group of sensors, either two sensors on two substrates or four sensors on a single substrate are packaged in a pressure vessel.

  18. Compressed natural gas transportation by utilizing FRP composite pressure vessels

    Campbell, S.C. [Trans Ocean Gas Inc., St. John' s, NF (Canada)

    2004-07-01

    This paper discussed the Trans Ocean Gas (TOG) method for transporting compressed natural gas (CNG). As demand for natural gas increases and with half of the world's reserves considered stranded, a method to transport natural gas by ship is needed. CNG transportation is widely viewed as a viable method. Transported as CNG, stranded gas reserves can be delivered to existing markets or can create new natural gas markets not applicable to liquefied natural gas (LNG). In contrast to LNG, compressed gas requires no processing to offload. TOG proposes that CNG be transported using fiber reinforced plastic (FRP) pressure vessels which overcome all the deficiencies of proposed steel-based systems. FRP pressure vessels have been proven safe and reliable through critical applications in the national defense, aerospace, and natural gas vehicle industries. They are light-weight, highly reliable, have very safe failure modes, are corrosion resistant, and have excellent low temperature characteristics. Under TOG's scheme, natural gas can be stored at two thirds the density of LNG without costly processing. TOG's proposed design and testing of a CNG system was reviewed in detail. 1 fig.

  19. Conditions of the optimum development of a high-pressure natural gas pipeline system regarding up-to-date gas economy. [Hungary

    Csako, D.; Torok, A.; Vasvari, V.

    1980-03-01

    Hungarian engineers enumerate the factors to consider in the planning, construction, and expansion of gas pipeline systems to obtain an optimum solution, both technically and economically. Future development of pipeline systems in Hungary will place equal emphasis on system quality and network expansion.

  20. Cardiovascular Pressures with Venous Gas Embolism and Decompression

    Butler, B. D.; Robinson, R.; Sutton, T.; Kemper, G. B.

    1995-01-01

    Venous gas embolism (VGE) is reported with decompression to a decreased ambient pressure. With severe decompression, or in cases where an intracardiac septal defect (patent foramen ovale) exists, the venous bubbles can become arterialized and cause neurological decompression illness. Incidence rates of patent foramen ovale in the general population range from 25-34% and yet aviators, astronauts, and deepsea divers who have decompression-induced venous bubbles do not demonstrate neurological symptoms at these high rates. This apparent disparity may be attributable to the normal pressure gradient across the atria of the heart that must be reversed for there to be flow potency. We evaluated the effects of: venous gas embolism (0.025, 0.05 and 0.15 ml/ kg min for 180 min.) hyperbaric decompression; and hypobaric decompression on the pressure gradient across the left and right atria in anesthetized dogs with intact atrial septa. Left ventricular end-diastolic pressure was used as a measure of left atrial pressure. In a total of 92 experimental evaluations in 22 dogs, there were no reported reversals in the mean pressure gradient across the atria; a total of 3 transient reversals occurred during the peak pressure gradient changes. The reasons that decompression-induced venous bubbles do not consistently cause serious symptoms of decompression illness may be that the amount of venous gas does not always cause sufficient pressure reversal across a patent foramen ovale to cause arterialization of the venous bubbles.

  1. Source strength and dispersion of CO2 releases from high-pressure pipelines: CFD model using real gas equation of state

    Liu, Xiong; Godbole, Ajit; Lu, Cheng; Michal, Guillaume; Venton, Philip

    2014-01-01

    Highlights: • Validated CFD models for decompression and dispersion of CO 2 releases from pipelines. • Incorporation of real gas EOS into CFD code for source strength estimation. • Demonstration of better performance of SST k–ω turbulence model for jet flow. • Demonstration of better performance of real gas EOS compared to ideal gas EOS. • Demonstration of superiority of CFD models over a commercial risk assessment package. - Abstract: Transportation of CO 2 in high-pressure pipelines forms a crucial link in the ever-increasing application of Carbon Capture and Storage (CCS) technologies. An unplanned release of CO 2 from a pipeline presents a risk to human and animal populations and the environment. Therefore it is very important to develop a deeper understanding of the atmospheric dispersion of CO 2 before the deployment of CO 2 pipelines, to allow the appropriate safety precautions to be taken. This paper presents a two-stage Computational Fluid Dynamics (CFD) study developed (1) to estimate the source strength, and (2) to simulate the subsequent dispersion of CO 2 in the atmosphere, using the source strength estimated in stage (1). The Peng–Robinson (PR) EOS was incorporated into the CFD code. This enabled accurate modelling of the CO 2 jet to achieve more precise source strength estimates. The two-stage simulation approach also resulted in a reduction in the overall computing time. The CFD models were validated against experimental results from the British Petroleum (BP) CO 2 dispersion trials, and also against results produced by the risk management package Phast. Compared with the measurements, the CFD simulation results showed good agreement in both source strength and dispersion profile predictions. Furthermore, the effect of release direction on the dispersion was studied. The presented research provides a viable method for the assessment of risks associated with CCS

  2. Coherent anti-Stokes Raman scattering for quantitative temperature and concentration measurements in a high-pressure gas turbine combustor rig

    Thariyan, Mathew Paul

    Dual-pump coherent anti-Stokes Raman scattering (DP-CARS) temperature and major species (CO2/N2) concentration measurements have been performed in an optically-accessible high-pressure gas turbine combustor facility (GTCF) and for partially-premixed and non-premixed flames in a laminar counter-flow burner. A window assembly incorporating pairs of thin and thick fused silica windows on three sides was designed, fabricated, and assembled in the GTCF for advanced laser diagnostic studies. An injection-seeded optical parametric oscillator (OPO) was used as a narrowband pump laser source in the dual-pump CARS system. Large prisms on computer-controlled translation stages were used to direct the CARS beams either into the main optics leg for measurements in the GTCF or to a reference optics leg for measurements of the nonresonant CARS spectrum and for aligning the CARS system. Combusting flows were stabilized with liquid fuel injection only for the central injector of a 9-element lean direct injection (LDI) device developed at NASA Glenn Research Center. The combustor was operated using Jet A fuel at inlet air temperatures up to 725 K and combustor pressures up to 1.03 MPa. Single-shot DP-CARS spectra were analyzed using the Sandia CARSFT code in the batch operation mode to yield instantaneous temperature and CO2/N2 concentration ratio values. Spatial maps of mean and standard deviations of temperature and CO2/N2 concentrations were obtained in the high-pressure LDI flames by translating the CARS probe volume in axial and vertical directions inside the combustor rig. The mean temperature fields demonstrate the effect of the combustor conditions on the overall flame length and the average flame structure. The temperature relative standard deviation values indicate thermal fluctuations due to the presence of recirculation zones and/or flame brush fluctuations. The correlation between the temperature and relative CO 2 concentration data has been studied at various combustor

  3. Foaming Glass Using High Pressure Sintering

    Østergaard, Martin Bonderup; Petersen, Rasmus Rosenlund; König, Jakob

    Foam glass is a high added value product which contributes to waste recycling and energy efficiency through heat insulation. The foaming can be initiated by a chemical or physical process. Chemical foaming with aid of a foaming agent is the dominant industrial process. Physical foaming has two...... to expand. After heat-treatment foam glass can be obtained with porosities of 80–90 %. In this study we conduct physical foaming of cathode ray tube (CRT) panel glass by sintering under high pressure (5-25 MPa) using helium, nitrogen, or argon at 640 °C (~108 Pa s). Reheating a sample in a heating...... variations. One way is by saturation of glass melts with gas. The other involves sintering of powdered glass under a high gas pressure resulting in glass pellets with high pressure bubbles entrapped. Reheating the glass pellets above the glass transition temperature under ambient pressure allows the bubbles...

  4. High pressure mechanical seal

    Babel, Henry W. (Inventor); Anderson, Raymond H. (Inventor)

    1996-01-01

    A relatively impervious mechanical seal is formed between the outer surface of a tube and the inside surface of a mechanical fitting of a high pressure fluid or hydraulic system by applying a very thin soft metal layer onto the outer surface of the hard metal tube and/or inner surface of the hard metal fitting. The thickness of such thin metal layer is independent of the size of the tube and/or fittings. Many metals and alloys of those metals exhibit the requisite softness, including silver, gold, tin, platinum, indium, rhodium and cadmium. Suitably, the coating is about 0.0025 millimeters (0.10 mils) in thickness. After compression, the tube and fitting combination exhibits very low leak rates on the order or 10.sup.-8 cubic centimeters per second or less as measured using the Helium leak test.

  5. Common High Blood Pressure Myths

    ... Disease Venous Thromboembolism Aortic Aneurysm More Common High Blood Pressure Myths Updated:May 4,2018 Knowing the facts ... This content was last reviewed October 2016. High Blood Pressure • Home • Get the Facts About HBP Introduction What ...

  6. Medications for High Blood Pressure

    ... Consumers Home For Consumers Consumer Updates Medications for High Blood Pressure Share Tweet Linkedin Pin it More sharing options ... age and you cannot tell if you have high blood pressure by the way you feel, so have your ...

  7. High blood pressure and diet

    ... this page: //medlineplus.gov/ency/article/007483.htm High blood pressure and diet To use the sharing features on ... diet is a proven way to help control high blood pressure . These changes can also help you lose weight ...

  8. High Pressure Electrolyzer System Evaluation

    Prokopius, Kevin; Coloza, Anthony

    2010-01-01

    This report documents the continuing efforts to evaluate the operational state of a high pressure PEM based electrolyzer located at the NASA Glenn Research Center. This electrolyzer is a prototype system built by General Electric and refurbished by Hamilton Standard (now named Hamilton Sunstrand). It is capable of producing hydrogen and oxygen at an output pressure of 3000 psi. The electrolyzer has been in storage for a number of years. Evaluation and testing was performed to determine the state of the electrolyzer and provide an estimate of the cost for refurbishment. Pressure testing was performed using nitrogen gas through the oxygen ports to ascertain the status of the internal membranes and seals. It was determined that the integrity of the electrolyzer stack was good as there were no appreciable leaks in the membranes or seals within the stack. In addition to the integrity testing, an itemized list and part cost estimate was produced for the components of the electrolyzer system. An evaluation of the system s present state and an estimate of the cost to bring it back to operational status was also produced.

  9. Controlling your high blood pressure

    ... medlineplus.gov/ency/patientinstructions/000101.htm Controlling your high blood pressure To use the sharing features on this page, ... JavaScript. Hypertension is another term used to describe high blood pressure. High blood pressure can lead to: Stroke Heart ...

  10. Superconductivity at high pressures

    Brandt, N B; Ginzburg, N I

    1969-07-01

    Work published during the last 3 or 4 yrs concerning the effect of pressure on superconductivity is reviewed. Superconducting modifications of Si, Ge, Sb, Te, Se, P and Ce. Change of Fermi surface under pressure for nontransition metals. First experiments on the influence of pressure on the tunneling effect in superconductors provide new information on the nature of the change in phonon and electron energy spectra of metals under hydrostatic compression. 78 references.

  11. High pressure liquid gas pump

    Acres, R. L.

    1972-01-01

    Design and development of two types of pumps for handling liquefied gases are discussed. One pump uses mechanical valve shift and other uses pneumatic valve shift. Illustrations of pumps are provided and detailed description of operation is included.

  12. High Blood Pressure in Pregnancy

    ... of the baby. Controlling your blood pressure during pregnancy and getting regular prenatal care are important for ... your baby. Treatments for high blood pressure in pregnancy may include close monitoring of the baby, lifestyle ...

  13. Automated mini-column solid-phase extraction cleanup for high-throughput analysis of chemical contaminants in foods by low-pressure gas chromatography – tandem mass spectrometry

    This study demonstrated the application of an automated high-throughput mini-cartridge solid-phase extraction (mini-SPE) cleanup for the rapid low-pressure gas chromatography – tandem mass spectrometry (LPGC-MS/MS) analysis of pesticides and environmental contaminants in QuEChERS extracts of foods. ...

  14. High Pressure and Temperature Effects in Polymers

    Bucknall, David; Arrighi, Valeria; Johnston, Kim; Condie, Iain

    Elastomers are widely exploited as the basis for seals in gas and fluid pipelines. The underlying behaviour of these elastomer at the high pressure, elevated temperatures they experience in operation is poorly understood. Consequently, the duty cycle of these materials is often deliberately limited to a few hours, and in order to prevent failure, production is stopped in order to change the seals in critical joints. The result is significant time lost due to bringing down production to change the seals as well as knock on financial costs. In order to address the fundamental nature of the elastomers at their intended operating conditions, we are studying the gas permeation behaviour of hydrogenated natural butyl rubber (HNBR) and fluorinated elastomers (FKM) at a high pressure and elevated temperature. We have developed a pressure system that permits gas permeation studies at gas pressures of up to 5000 psi and operating temperatures up to 150° C. In this paper, we will discuss the nature of the permeation behaviour at these extreme operating conditions, and how this relates to the changes in the polymer structure. We will also discuss the use of graphene-polymer thin layer coatings to modify the gas permeation behaviour of the elastomers.

  15. Effect of internal pressure and gas/liquid interface area on the CO mass transfer coefficient using hollow fibre membranes as a high mass transfer gas diffusing system for microbial syngas fermentation.

    Yasin, Muhammad; Park, Shinyoung; Jeong, Yeseul; Lee, Eun Yeol; Lee, Jinwon; Chang, In Seop

    2014-10-01

    This study proposed a submerged hollow fibre membrane bioreactor (HFMBR) system capable of achieving high carbon monoxide (CO) mass transfer for applications in microbial synthesis gas conversion systems. Hydrophobic polyvinylidene fluoride (PVDF) membrane fibres were used to fabricate a membrane module, which was used for pressurising CO in water phase. Pressure through the hollow fibre lumen (P) and membrane surface area per unit working volume of the liquid (A(S)/V(L)) were used as controllable parameters to determine gas-liquid volumetric mass transfer coefficient (k(L)a) values. We found a k(L)a of 135.72 h(-1) when P was 93.76 kPa and AS/VL was fixed at 27.5m(-1). A higher k(L)a of 155.16 h(-1) was achieved by increasing AS/VL to 62.5m(-1) at a lower P of 37.23 kPa. Practicality of HFMBR to support microbial growth and organic product formation was assessed by CO/CO2 fermentation using Eubacterium limosum KIST612. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Influence of fillers on hydrogen penetration properties and blister fracture of rubber composites for O-ring exposed to high-pressure hydrogen gas

    Yamabe, Junichiro; Nishimura, Shin [Department of Mechanical Science Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); Research Center for Hydrogen Industrial Use and Storage (HYDROGENIUS), National Institute of Advanced Industrial Science and Technology (AIST), 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan)

    2009-02-15

    Ethylene-propylene rubber (EPDM) and nitrile-butadiene rubber (NBR) composites having carbon black, silica, and no fillers were exposed to hydrogen gas at a maximum pressure of 10 MPa; then, blister tests and the measurement of hydrogen content were conducted. The hydrogen contents of the composites were proportional to the hydrogen pressure, i.e., the behavior of their hydrogen contents follows Henry's law. This implies that hydrogen penetrates into the composite as a hydrogen molecule. The addition of carbon black raised the hydrogen content of the composite, while the addition of silica did not. Based on observations, the blister damages of composites with silica were less pronounced, irrespective of the hydrogen pressures. This may be attributed to their lower hydrogen content and relatively better tensile properties than the others. (author)

  17. 21 CFR 868.2610 - Gas pressure gauge.

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Gas pressure gauge. 868.2610 Section 868.2610 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL... to measure gas pressure in a medical gas delivery system. (b) Classification. Class I (general...

  18. What Is High Blood Pressure?

    ... Disease Venous Thromboembolism Aortic Aneurysm More What is High Blood Pressure? Updated:Feb 27,2018 First, let’s define high ... resources . This content was last reviewed October 2016. High Blood Pressure • Home • Get the Facts About HBP Introduction What ...

  19. Development of an installation for the production of high-purity hydrogen using the pressure-swing-adsorption process with coke-oven gas as feedstock

    Nakamura, M; Sugishita, M

    1986-04-01

    This paper describes how Nippon Steel developed a process for producing high-purity hydrogen using the PSA method with coke-oven gas as a feedstock. The process comprises a gas-compression and gas-cooling stage, a pre-treatment stage, an adsorption stage, a de-oxygenation stage and various control and maintenance devices, etc. The triple-tower plant constructed is the equivalent of a four-tower conventional installation, with a maximum capacity of around 10,000 Nm/sup 3//h. 1 tab., 14 figs., 3 refs.

  20. High pressure shaft seal

    Martinson, A.R.; Rogers, V.D.

    1980-01-01

    In relation to reactor primary coolant pumps, mechanical seal assembly for a pump shaft is disclosed which features a rotating seal ring mounting system which utilizes a rigid support ring loaded through narrow annular projections in combination with centering non-sealing O-rings which effectively isolate the rotating seal ring from temperature and pressure transients while securely positioning the ring to adjacent parts. A stationary seal ring mounting configuration allows the stationary seal ring freedom of motion to follow shaft axial movement up to 3/4 of an inch and shaft tilt about the pump axis without any change in the hydraulic or pressure loading on the stationary seal ring or its carrier. (author)

  1. Pressure Gain Combustion for Gas Turbines

    2013-08-20

    downstream of a large  diesel  engine, they tested three turbine geometries the best experienced  a drop in efficiency of 10%.   A few people have  looked...Society of Mechanical Engineers Turbo Expo 1995 [3] Heffer, J., 2010, Integration of Pressure Gain Combustion with Gas Turbines, Ph.D. Thesis...investigated  an  axial  turbocharger  designed  for  use  downstream  of  a  large  diesel   engine,  they  tested  three  turbine geometries the best

  2. High Blood Pressure - Multiple Languages

    ... Being 8 - High Blood Pressure - Amarɨñña / አማርኛ (Amharic) MP3 Siloam Family Health Center Arabic (العربية) Expand Section ... Being 8 - High Blood Pressure - myanma bhasa (Burmese) MP3 Siloam Family Health Center Chinese, Simplified (Mandarin dialect) ( ...

  3. Optimum extracted H- and D- current densities from gas-pressure-limited high-power hydrogen/deuterium tandem ion sources

    Hiskes, J.R.

    1993-01-01

    The tandem hydrogen/deuterium ion source is modelled for the purpose of identifying the maximum current densities that can be extracted subject to the gas-pressure constraints proposed for contemporary beam-line systems. Optimum useful extracted current densities are found to be in the range of approximately 7 to 10 mA cm -2 . The sensitivity of these current densities is examined subject to uncertainties in the underlying atomic/molecular rate processes; A principal uncertainty remains the quantification of the molecular vibrational distribution following H 3 + wall collisions

  4. Pressure sensor for high-temperature liquids

    Forster, G.A.

    1978-01-01

    A pressure sensor for use in measuring pressures in liquid at high temperatures, especially such as liquid sodium or liquid potassium, comprises a soft diaphragm in contact with the liquid. The soft diaphragm is coupled mechanically to a stiff diaphragm. Pressure is measured by measuring the displacement of both diaphragms, typically by measuring the capacitance between the stiff diaphragm and a fixed plate when the stiff diaphragm is deflected in response to the measured pressure through mechanical coupling from the soft diaphragm. Absolute calibration is achieved by admitting gas under pressure to the region between diaphragms and to the region between the stiff diaphragm and the fixed plate, breaking the coupling between the soft and stiff diaphragms. The apparatus can be calibrated rapidly and absolutely

  5. Testing antifreeze protein from the longhorn beetle Rhagium mordax as a kinetic gas hydrate inhibitor using a high-pressure micro differential scanning calorimeter

    Daraboina, Nagu; Perfeldt, Christine Malmos; von Solms, Nicolas

    2015-01-01

    Low dosage kinetic hydrate inhibitors are employed as alternatives to expensive thermodynamic inhibitors to manage the risk of hydrate formation inside oil and gas pipelines. These chemicals need to be tested at appropriate conditions in the laboratory before deployment in the field. A high press...

  6. High pressure phase transformations revisited.

    Levitas, Valery I

    2018-04-25

    High pressure phase transformations play an important role in the search for new materials and material synthesis, as well as in geophysics. However, they are poorly characterized, and phase transformation pressure and pressure hysteresis vary drastically in experiments of different researchers, with different pressure transmitting media, and with different material suppliers. Here we review the current state, challenges in studying phase transformations under high pressure, and the possible ways in overcoming the challenges. This field is critically compared with fields of phase transformations under normal pressure in steels and shape memory alloys, as well as plastic deformation of materials. The main reason for the above mentioned discrepancy is the lack of understanding that there is a fundamental difference between pressure-induced transformations under hydrostatic conditions, stress-induced transformations under nonhydrostatic conditions below yield, and strain-induced transformations during plastic flow. Each of these types of transformations has different mechanisms and requires a completely different thermodynamic and kinetic description and experimental characterization. In comparison with other fields the following challenges are indicated for high pressure phase transformation: (a) initial and evolving microstructure is not included in characterization of transformations; (b) continuum theory is poorly developed; (c) heterogeneous stress and strain fields in experiments are not determined, which leads to confusing material transformational properties with a system behavior. Some ways to advance the field of high pressure phase transformations are suggested. The key points are: (a) to take into account plastic deformations and microstructure evolution during transformations; (b) to formulate phase transformation criteria and kinetic equations in terms of stress and plastic strain tensors (instead of pressure alone); (c) to develop multiscale continuum

  7. High pressure phase transformations revisited

    Levitas, Valery I.

    2018-04-01

    High pressure phase transformations play an important role in the search for new materials and material synthesis, as well as in geophysics. However, they are poorly characterized, and phase transformation pressure and pressure hysteresis vary drastically in experiments of different researchers, with different pressure transmitting media, and with different material suppliers. Here we review the current state, challenges in studying phase transformations under high pressure, and the possible ways in overcoming the challenges. This field is critically compared with fields of phase transformations under normal pressure in steels and shape memory alloys, as well as plastic deformation of materials. The main reason for the above mentioned discrepancy is the lack of understanding that there is a fundamental difference between pressure-induced transformations under hydrostatic conditions, stress-induced transformations under nonhydrostatic conditions below yield, and strain-induced transformations during plastic flow. Each of these types of transformations has different mechanisms and requires a completely different thermodynamic and kinetic description and experimental characterization. In comparison with other fields the following challenges are indicated for high pressure phase transformation: (a) initial and evolving microstructure is not included in characterization of transformations; (b) continuum theory is poorly developed; (c) heterogeneous stress and strain fields in experiments are not determined, which leads to confusing material transformational properties with a system behavior. Some ways to advance the field of high pressure phase transformations are suggested. The key points are: (a) to take into account plastic deformations and microstructure evolution during transformations; (b) to formulate phase transformation criteria and kinetic equations in terms of stress and plastic strain tensors (instead of pressure alone); (c) to develop multiscale continuum

  8. Pressure regulation system for modern gas-filled detectors

    McDonald, R.J.

    1986-08-01

    A gas pressure and flow regulation system has been designed and constructed to service a wide variety of gas-filled detectors which operate at pressures of ∼2 to 1000 Torr and flow rate of ∼5 to 200 standard cubic centimeters per minute (sccm). Pressure regulation is done at the detector input by a pressure transducer linked to a solenoid leak valve via an electronic control system. Gas flow is controlled via a mechanical leak valve at the detector output. Interchangeable transducers, flowmeters, and leak valves allow for different pressure and flow ranges. The differential pressure transducer and control system provide automatic let-up of vacuum chambers to atmospheric pressure while maintaining a controlled overpressure in the detector. The gas system is constructed on a standard 19'' rack-mounted panel from commercially available parts. Five of these systems have been built and are routinely used for both ionization chambers and position-sensitive avalanche detectors

  9. An environmentally-friendly, highly efficient, gas pressure-assisted sample introduction system for ICP-MS and its application to detection of cadmium and lead in human plasma.

    Cao, Yupin; Deng, Biyang; Yan, Lizhen; Huang, Hongli

    2017-05-15

    An environmentally friendly and highly efficient gas pressure-assisted sample introduction system (GPASIS) was developed for inductively-coupled plasma mass spectrometry. A GPASIS consisting of a gas-pressure control device, a customized nebulizer, and a custom-made spray chamber was fabricated. The advantages of this GPASIS derive from its high nebulization efficiencies, small sample volume requirements, low memory effects, good precision, and zero waste emission. A GPASIS can continuously, and stably, nebulize 10% NaCl solution for more than an hour without clogging. Sensitivity, detection limits, precision, long-term stability, double charge and oxide ion levels, nebulization efficiencies, and matrix effects of the sample introduction system were evaluated. Experimental results indicated that the performance of this GPASIS, was equivalent to, or better than, those obtained by conventional sample introduction systems. This GPASIS was successfully used to determine Cd and Pb by ICP-MS in human plasma. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Psoriasis and high blood pressure.

    Salihbegovic, Eldina Malkic; Hadzigrahic, Nermina; Suljagic, Edin; Kurtalic, Nermina; Sadic, Sena; Zejcirovic, Alema; Mujacic, Almina

    2015-02-01

    Psoriasis is a chronic skin ailment which can be connected with an increased occurrence of other illnesses, including high blood pressure. A prospective study has been conducted which included 70 patients affected by psoriasis, both genders, older than 18 years. Average age being 47,14 (SD= ±15,41) years, from that there were 36 men or 51,43 and 34 women or 48,57%. Average duration of psoriasis was 15,52 (SD=±12,54) years. Frequency of high blood pressure in those affected by psoriasis was 54,28%. Average age of the patients with psoriasis and high blood pressure was 53,79 year (SD=±14,15) and average duration of psoriasis was 17,19 years (SD=±13,51). Average values of PASI score were 16,65. Increase in values of PASI score and high blood pressure were statistically highly related (r=0,36, p=0,0001). Psoriasis was related to high blood pressure and there was a correlation between the severity of psoriasis and high blood pressure.

  11. High Blood Pressure and Women

    ... is known as gestational hypertension, a form of secondary hypertension caused by the pregnancy that usually disappears after delivery. If the mother is not treated, high blood pressure can be dangerous to both the mother ...

  12. High Pressure Industrial Water Facility

    1992-01-01

    In conjunction with Space Shuttle Main Engine testing at Stennis, the Nordberg Water Pumps at the High Pressure Industrial Water Facility provide water for cooling the flame deflectors at the test stands during test firings.

  13. High Pressure Research on Materials

    example, represents the stress on the x plane in the y direction. There are three .... optical studies and studying compressibility of fluids. 3.2 Opposed ..... [4] G N Peggs, High Pressure Measurement Techniques, Applied Science. Publishers ...

  14. Test Structures for Rapid Prototyping of Gas and Pressure Sensors

    Buehler, M.; Cheng, L. J.; Martin, D.

    1996-01-01

    A multi-project ceramic substrate was used in developing a gas sensor and pressure sensor. The ceramic substrate cantained 36 chips with six variants including sensors, process control monitors, and an interconnect ship. Tha gas sensor is being developed as an air quality monitor and the pressure gauge as a barometer.

  15. Gas pressure from a nuclear explosion in oil shale

    Taylor, R.W.

    1975-01-01

    The quantity of gas and the gas pressure resulting from a nuclear explosion in oil shale is estimated. These estimates are based on the thermal history of the rock during and after the explosion and the amount of gas that oil shale releases when heated. It is estimated that for oil shale containing less than a few percent of kerogen the gas pressure will be lower than the hydrostatic pressure. A field program to determine the effects of nuclear explosions in rocks that simulate the unique features of oil shale is recommended. (U.S.)

  16. Variations of free gas content in water during pressure fluctuations

    Keller, A.; Zielke, W.

    1977-01-01

    In this paper an experimental programme is described in order to determine the influence of the cavitation nuclei distribution on cavitation inception. This programme has been used to measure air bubbles dimensions and number and particularly to determine the influence of quick pressure variations on the size on the number of bubbles in a pipe. An optical device counting scattered light is used as a measuring technique. Gas bubbles go through an optical control volume where they receive a high intensity light beam and scatter the light, then led to a photomultiplier; the signals are sorted and counted according to their size. If the number of nuclei, the dimensions of the control volume and the velocity of the water are known, it is possible to determine bubbles concentrations and the bulk modulus of the water. This measuring technique has been applied to a flow in a 140 mm diameter pipe with quick pressure variations from 2 bar to 0-10 bar. During the variations, the void fraction depends on the Reynolds number of the flow and on the gas content of the water. The bulk modulus has been computed with different conditions. Most results concern pressures slightly over the vapor pressure. Air content has a strong influence on cavitation and on water compressibility after a vapor cavity collapse

  17. Effects of oxygen gas pressure on properties of iron oxide films grown by pulsed laser deposition

    Guo, Qixin; Shi, Wangzhou; Liu, Feng; Arita, Makoto; Ikoma, Yoshifumi; Saito, Katsuhiko; Tanaka, Tooru; Nishio, Mitsuhiro

    2013-01-01

    Highlights: ► Pulsed laser deposition is a promising technique for growing iron oxide films. ► Crystal structure of the iron oxide films strongly depends on oxygen gas pressure. ► Optimum of the oxygen gas pressure leads single phase magnetite films with high crystal quality. -- Abstract: Iron oxide films were grown on sapphire substrates by pulsed laser deposition at oxygen gas pressures between 1 × 10 −5 and 1 × 10 −1 Pa with a substrate temperature of 600 °C. Atomic force microscope, X-ray diffraction, Raman spectroscopy, X-ray absorption fine structure, and vibrational sample magnetometer analysis revealed that surface morphology and crystal structure of the iron oxide films strongly depend on the oxygen gas pressure during the growth and the optimum oxygen gas pressure range is very narrow around 1 × 10 −3 Pa for obtaining single phase magnetite films with high crystal quality

  18. Microbial corrosion and cracking in steel. A concept for evaluation of hydrogen-assisted stress corrosion cracking in cathodically protected high-pressure gas transmission pipelines

    Nielsen, Lars Vendelbo

    An effort has been undertaken in order to develop a concept for evaluation of the risk of hydrogen-assisted cracking in cathodically protected gas transmission pipelines. The effort was divided into the following subtasks: A. Establish a correlation between the fracture mechanical properties...... crack propagation. This resulted in threshold curves that can be used for assessment of the risk of hydrogen-assisted cracking as a function of operating pressure and hydrogen content - having the flaw size as discrete parameter. The results are to be used mainly on a conceptual basis......, but it was indicated that the requirements for crack propagation include an overprotective CP-condition, a severe sulphate-reducing environment, as well as a large flaw (8 mm or a leak in the present case). A 1 mm flaw (which may be the maximum realistic flaw size) is believed to be unable to provoke crack propagation...

  19. Safety analysis of high pressure gasous fuel container punctures

    Swain, M.R. [Univ. of Miami, Coral Gables, FL (United States)

    1995-09-01

    The following report is divided into two sections. The first section describes the results of ignitability tests of high pressure hydrogen and natural gas leaks. The volume of ignitable gases formed by leaking hydrogen or natural gas were measured. Leaking high pressure hydrogen produced a cone of ignitable gases with 28{degrees} included angle. Leaking high pressure methane produced a cone of ignitable gases with 20{degrees} included angle. Ignition of hydrogen produced larger overpressures than did natural gas. The largest overpressures produced by hydrogen were the same as overpressures produced by inflating a 11 inch child`s balloon until it burst.

  20. Numerical Assessment of the Influences of Gas Pressure on Coal Burst Liability

    Haochen Zhao

    2018-01-01

    Full Text Available When coal mines exploit deep seams with high-gas content, risks are encountered due to the additional high likelihood of rock bursting potential problems. The bursts of coal pillars usually lead to severe fatalities, injuries, and destruction of property, including impeding access to active mine workings underground. The danger exists given that conditions in the already highly brittle coal material can be exacerbated by high stress and high gas pressure conditions. It is thus critical to develop methods that improve current understanding about bursting liability, and techniques to forecast or prevent coal bursting in underground coal mines. This study uses field data from a deep coal mine, and numerical modeling to investigate the effects of gas pressure and mechanical compressive stresses on coal bursting liability in high gas content coal seams. The bursting energy index is adopted to determine the coal bursting liability under high gas pressure conditions. The adopted methodology uses a two-staged approach comprising investigating the influence of gas pressure on the bursting liability of coal pillar, and the influence of the gas pressure on the resulting pillar failure mode. Based on numerical simulations of coal pillars, correlations are observed between the magnitudes of gas pressures and the bursting energy index. Irrespective of pillar size, failure time is shortest when the gas pressure achieves a threshold value between 50 kPa to 70 kPa. At 50 kPa, the value of the BEI increases by 50% going from the 4 m pillar to the 6 m pillar. The value of the BEI increases by 43% going from the 6 m high pillar to the 8 m high pillar at 50 kPa. When pillars fail there is a degree of stress relief leading to a reduction in bursting liability. The results suggest that before 50 kPa, pillar failure is largely due to mechanical loading. After 50 kPa, pillar failure is largely due to excessive gas pressures.

  1. High Blood Pressure (Hypertension) (For Parents)

    ... Safe Videos for Educators Search English Español Hypertension (High Blood Pressure) KidsHealth / For Parents / Hypertension (High Blood Pressure) What's ... High Blood Pressure) Treated? Print What Is Hypertension (High Blood Pressure)? Blood pressure is the pressure of blood against ...

  2. Total gas pressure and biological response

    Powell, C.; Prince, A.

    1999-01-01

    The total gas pressure (TGP) is a possible threat to fish populations, having a potentially lethal effect on them, but if they dive below certain depths they can avoid these effects. The spatial and temporal depth distribution of adult rainbow trout in the Columbia River below the Hugh Keenleyside (HLK) Dam was monitored, and twenty one adult rainbow trout had depth sensitive electronic tags attached to them to allow their spatial and temporal depth behavior to be tracked and recorded. Nineteen of the fish were consistently relocated after release into the Columbia River, and fish were monitored during the numerous day and night 12 hour observation periods to provide a cross section of fish behavior. With a depth benchmark determined, an experiment was carried out to manipulate TGP production levels from the HLK dam and monitor the fish behavior. TGP levels were manipulated while keeping flows downstream of the dam constant. Two groups of fish were monitored and each group of fish was monitored continuously during the specific 12 hour observation periods within each experimental session. The first session recorded fish behavior when TGP was less than 110%, the second session when TGP was elevated to over 110%, and finally, when the TGP levels were lowered back below 110%. Neither temporal nor spatial fish behavior patterns of the rainbow trout monitored appeared to be influenced by the changes in TGP, compared to that of the benchmark observations. Fish continued to hold at and feed at, or within, a 5 m depth of the surface regardless of the TGP

  3. Determination of Fission Gas Inclusion Pressures in High Burnup Nuclear Fuel using Laser Ablation ICP-MS combined with SEM/EPMA and Optical Microscopy

    Horvath, Matthias I.; Guenther-Leopold, Ines; Kivel, Niko; Restani, Renato; Guillong, Marcel; Izmer, Andrei; Hellwig, Christian; Guenther, Detlef

    2008-01-01

    In approximately 20% of all fissions at least one of the fission products is gaseous. These are mainly xenon and krypton isotopes contributing up to 90% by the xenon isotopes. Upon reaching a burn-up of 60 - 75 GWd/tHM a so called High Burnup Structure (HBS) is formed in the cooler rim of the fuel. In this region a depletion of the noble fission gases (FG) in the matrix and an enrichment of FG in μm-sized pores can be observed. Recent calculations show that in these pores the pressure at room temperature can be as large as 30 MPa. The knowledge of the FG pressure in pores is important to understand the high burn-up fuel behavior under accident conditions (i.e. RIA or LOCA). With analytical methods routinely used for the characterization of solid samples, i.e. Electron Probe Micro Analysis (EPMA), Secondary Ion Mass Spectrometry (SIMS), the quantification of gaseous inclusions is very difficult to almost impossible. The combination of a laser ablation system (LA) with an inductively coupled plasma mass spectrometer (ICP-MS) offers a powerful tool for quantification of the gaseous pore inventory. This method offers the advantages of high spatial resolution with laser spot sizes down to 10 μm and low detection limits. By coupling with scanning electron microscopy (SEM) for the pore size distribution, EPMA for the FG inventory in the fuel matrix and optical microscopy for the LA-crater sizes, the pressures in the pores and porosity was calculated. As a first application of this calibration technique for gases, measurements were performed on pressurized water reactor (PWR) fuel with a rod average of 105 GWd/tHM to determine the local FG pressure distribution. (authors)

  4. Terbium oxide at high pressures

    Dogra, Sugandha; Sharma, Nita Dilawar; Singh, Jasveer; Bandhyopadhyay, A.K.

    2011-01-01

    In this work we report the behaviour of terbium oxide at high pressures. The as received sample was characterized at ambient by X-ray diffraction and Raman spectroscopy. The X-ray diffraction showed the sample to be predominantly cubic Tb 4 O 7 , although a few peaks also match closely with Tb 2 O 3 . In fact in a recent study done on the same sample, the sample has been shown to be a mixture of Tb 4 O 7 and Tb 2 O 3 . The sample was subjected to high pressures using a Mao-Bell type diamond anvil cell upto a pressure of about 42 GPa with ruby as pressure monitor

  5. High-Pressure Polymorphism in Orthoamphiboles

    Finkelstein, G. J.; Zhang, D.; Shelton, H.; Dera, P.

    2017-12-01

    Amphiboles are double-chain silicate minerals that are the structurally hydrated counterpart to single-chain, anhydrous pyroxenes. They may play an important role in the earth as a carrier for volatiles in subduction zones, as well as a generator for seismic anisotropy in the upper mantle. Recent work has described previously unrecognized high-pressure polymorphism at low temperatures in a variety of pyroxene minerals, which may be relevant for the structure and dynamics of thick, cold, subducted slabs. However, high-pressure polymorphism in amphiboles above a few GPa in pressure has not been well explored, and if similar polymorphism to pyroxenes exists in this mineral family, it may affect the extent and depth of volatile transport in amphiboles, as well as their rheological properties. At low temperatures and high pressures, orthopyroxenes undergo crystal structure transitions at lower pressures than clinopyroxenes (10-30 GPa vs. > 50 GPa), so for this study we have investigated polymorphism in the anthophyllite-gedrite (Al-free and Al rich) orthoamphibole solid solution series. Using neon gas-loaded diamond anvil cells, we compressed both phases to a maximum pressure of 31 GPa, and observed transitions to new monoclinic structures in both endmembers. In this presentation, we will discuss the details of these transitions and implications for the earth's interior.

  6. Solids, liquids, and gases under high pressure

    Mao, Ho-Kwang; Chen, Xiao-Jia; Ding, Yang; Li, Bing; Wang, Lin

    2018-01-01

    Pressure has long been recognized as a fundamental thermodynamic variable but its application was previously limited by the available pressure vessels and probes. The development of megabar diamond anvil cells and a battery of associated in-laboratory and synchrotron techniques at the turn of the century have opened a vast new window of opportunities. With the addition of the pressure dimension, we are facing a new world with an order of magnitude more materials to be discovered than all that have been explored at ambient pressure. Pressure drastically and categorically alters all elastic, electronic, magnetic, structural, and chemical properties, and pushes materials across conventional barriers between insulators and superconductors, amorphous and crystalline solids, ionic and covalent compounds, vigorously reactive and inert chemicals, etc. In the process, it reveals surprising high-pressure physics and chemistry and creates novel materials. This review describes the principles and methodology used to reach ultrahigh static pressure: the in situ probes, the physical phenomena to be investigated, the long-pursued goals, the surprising discoveries, and the vast potential opportunities. Exciting examples include the quest for metallic hydrogen, the record-breaking superconducting temperature of 203 K in HnS , the complication of "free-electron gas" alkali metals, the magnetic collapse in 3 d transition elements, the pressure-induced superconductivity from topological insulators, the novel stoichiometry in simple compounds, the interaction of nanoscience, the accomplishment of 750 GPa pressure, etc. These highlights are the integral results of technological achievements, specific measurements, and theoretical advancement; therefore, the same highlights will appear in different sections corresponding to these different aspects. Overall, this review demonstrates that high-pressure research is a new dimension in condensed-matter physics.

  7. Reconstruction of Low Pressure Gas Supply System

    S. N. Osipov

    2013-01-01

    Full Text Available The current reconstruction of residential areas in large cities especially with the developed heat-supply systems from thermal power stations and reduction of heat consumption for heating due to higher thermal resistance of building enclosing structures requires new technical solutions in respect of gas-supply problems. While making reconstruction of a gas-supply system of the modernized or new buildings in the operating zone of one gas-distribution plant it is necessary to change hot water-supply systems from gas direct-flow water heaters to centralized heat-supply and free gas volumes are to be used for other needs or gas-supply of new buildings with the current external gas distribution network.Selection of additional gas-line sections and points of gas-supply systems pertaining to new and reconstructed buildings for their connection to the current distribution system of gas-supply is to be executed in accordance with the presented methodology.

  8. High Pressure Treatment in Foods

    Edwin Fabian Torres Bello; Gerardo González Martínez; Bernadette F. Klotz Ceberio; Dolores Rodrigo; Antonio Martínez López

    2014-01-01

    Abstract: High hydrostatic pressure (HHP), a non-thermal technology, which typically uses water as a pressure transfer medium, is characterized by a minimal impact on food characteristics (sensory, nutritional, and functional). Today, this technology, present in many food companies, can effectively inactivate bacterial cells and many enzymes. All this makes HHP very attractive, with very good acceptance by consumers, who value the organoleptic characteristics of products processed by this non...

  9. Advanced Diagnostics for High Pressure Spray Combustion.

    Skeen, Scott A.; Manin, Julien Luc; Pickett, Lyle M.

    2014-06-01

    The development of accurate predictive engine simulations requires experimental data to both inform and validate the models, but very limited information is presently available about the chemical structure of high pressure spray flames under engine- relevant conditions. Probing such flames for chemical information using non- intrusive optical methods or intrusive sampling techniques, however, is challenging because of the physical and optical harshness of the environment. This work details two new diagnostics that have been developed and deployed to obtain quantitative species concentrations and soot volume fractions from a high-pressure combusting spray. A high-speed, high-pressure sampling system was developed to extract gaseous species (including soot precursor species) from within the flame for offline analysis by time-of-flight mass spectrometry. A high-speed multi-wavelength optical extinction diagnostic was also developed to quantify transient and quasi-steady soot processes. High-pressure sampling and offline characterization of gas-phase species formed following the pre-burn event was accomplished as well as characterization of gas-phase species present in the lift-off region of a high-pressure n-dodecane spray flame. For the initial samples discussed in this work several species were identified, including polycyclic aromatic hydrocarbons (PAH); however, quantitative mole fractions were not determined. Nevertheless, the diagnostic developed here does have this capability. Quantitative, time-resolved measurements of soot extinction were also accomplished and the novel use of multiple incident wavelengths proved valuable toward characterizing changes in soot optical properties within different regions of the spray flame.

  10. High temperature and pressure electrochemical test station

    Chatzichristodoulou, Christodoulos; Allebrod, Frank; Mogensen, Mogens Bjerg

    2013-01-01

    An electrochemical test station capable of operating at pressures up to 100 bars and temperatures up to 400 ◦C has been established. It enables control of the partial pressures and mass flow of O2, N2, H2, CO2, and H2O in a single or dual environment arrangement, measurements with highly corrosive...... media, as well as localized sampling of gas evolved at the electrodes for gas analysis. A number of safety and engineering design challenges have been addressed. Furthermore, we present a series of electrochemical cell holders that have been constructed in order to accommodate different types of cells...... and facilitate different types of electrochemical measurements. Selected examples of materials and electrochemical cells examined in the test station are provided, ranging from the evaluation of the ionic conductivity of liquid electrolytic solutions immobilized in mesoporous ceramic structures...

  11. Influence of gas law on ultrasonic behaviour of porous media under pressure.

    Griffiths, S; Ayrault, C

    2010-06-01

    This paper deals with the influence of gas law on ultrasonic behaviour of porous media when the saturating fluid is high pressured. Previous works have demonstrated that ultrasonic transmission through a porous sample with variations of the static pressure (up to 18 bars) of the saturating fluid allows the characterization of high damping materials. In these studies, the perfect gas law was used to link static pressure and density, which is disputable for high pressures. This paper compares the effects of real and perfect gas laws on modeled transmission coefficient for porous foams at these pressures. Direct simulations and a mechanical parameters estimation from minimization show that results are very similar in both cases. The real gas law is thus not necessary to describe the acoustic behaviour of porous media at low ultrasonic frequencies (100 kHz) up to 20 bars. 2010 Elsevier B.V. All rights reserved.

  12. Investigation of Raman bands vapour of contours of trichloroethylene at high pressure

    Zaleskaya, G.A.; Ikramov, M.; Shukurov, T.

    1989-01-01

    Investigation of high-pressure extraneous gas on contour comb. band, spreading trichloroethylene steams are in given article. Increasing of extraneous gas pressure brings to decreasing free molecule circling time is shown

  13. Low pressure gas filling of laser fusion microspheres

    Koo, J.C.; Dressler, J.L.; Hendricks, C.D.

    1979-01-01

    In our laser fusion microsphere production, large, thin gel-microspheres are formed before the chemicals are fused into glass. In this transient stage,, the gel-microspheres are found to be highly permeable to argon and many other inert gases. When the gel transforms to glass, the argon gas, for example, is trapped within to form argon filled, fusion target quality, glass microspheres. On the average, the partial pressure of the argon fills attained in this process is around 2 x 10 4 Pa at room temperature

  14. Feeling the pressure from natural gas

    Taffe, Peter

    1998-01-01

    The European directive establishing a competitive internal natural gas market will be the most important, though not the only, factor in advancing the rapid and far reaching changes which Europe's natural gas sector is undergoing. The knock-on effects which these changes will have on the chemical industry are examined. The benefits of opening up the gas market will be more consumer choice and a more efficient and globally competitive EU gas industry. But for the chemical industry it raises strategic issues surrounding gas procurement such as price risks and security of supply. These are especially acute where gas is used not just as a fuel but also as a feedstock. As the electricity market is progressively deregulated, independent power generation using combined heat and power could be an attractive choice in the chemical industry with the possibility of selling surplus electricity on the spot market. Other changes in the gas sector could arise from the environmental targets agreed in Kyoto which are likely to lead to an increase in fuel taxation, and the development of a spot market in gas as the link between oil and gas prices becomes less direct. (UK)

  15. Pressure recovery in a diffuser for gas centrifuge

    Hanzawa, Masatoshi; Takashima, Yoichi; Mikami, Hisashi

    1977-01-01

    The pressure recovery of supersonic flow at very low density was studied in a vane-island type diffuser for gas centrifuge. A tester of diffuser with a rapidly rotating cylinder was used in experiments. Wall static pressures were measured at many points in the diffuser to observe the static pressure distribution. The change of pressure distribution with back pressure and the effect of flow rate were investigated. Pressure distribution showed that the pressure recovery occurred in the converging section. The pressure ratio increased linearly with the back pressure in this experimental range and the effect of flow rate was not observed. A numerical analysis of the pressure recovery in the channel section of the diffuser was made by applying the finite difference method to the slender-channel equations. The pressure distribution obtained in experiments could be explained as a result of supersonic compression with reverse flow. (auth.)

  16. Motion of gas in highly rarefied space

    Chirkunov, Yu A.

    2017-10-01

    A model describing a motion of gas in a highly rarefied space received an unlucky number 13 in the list of the basic models of the motion of gas in the three-dimensional space obtained by L.V. Ovsyannikov. For a given initial pressure distribution, a special choice of mass Lagrangian variables leads to the system describing this motion for which the number of independent variables is less by one. Hence, there is a foliation of a highly rarefied gas with respect to pressure. In a strongly rarefied space for each given initial pressure distribution, all gas particles are localized on a two-dimensional surface that moves with time in this space We found some exact solutions of the obtained system that describe the processes taking place inside of the tornado. For this system we found all nontrivial conservation laws of the first order. In addition to the classical conservation laws the system has another conservation law, which generalizes the energy conservation law. With the additional condition we found another one generalized energy conservation law.

  17. A cylindrical multiwire high-pressure gas proportional chamber surrounding a gaseous $_{2} target with a mylar separation foil $6 \\mu m thick

    Gastaldi, Ugo; Averdung, H; Bailey, J; Beer, G A; Dreher, B; Erdman, K L; Klempt, E; Merle, K; Neubecker, K; Sabev, C; Schwenk, H; Wendling, R D; White, B L; Wodrich, R

    1978-01-01

    The characteristics and performances of a cylindrical multiwire proportional chamber built and used at CERN in experiment S142 for the study of the pp atom spectroscopy are presented. The chamber surrounds a high-pressure gaseous H/sub 2/ target, from which it is separated by a very thin window (6 mu m mylar foil). The active volume (90 cm long; 2 cm thick, internal diameter=30 cm) is divided into 36 equal and independent cells each covering 10 degrees in azimuth. At 4 abs. atm the detection efficiency for X-rays is higher than 20% in the whole energy range 1.5-15 keV. Typical resolutions are 35% fwhm for the 3 ke V Ar fluorescence line and 25% fwhm for the 5.5 keV /sup 54/Mn line. Working pressures from 0.5 to 16 abs. atm have been used. (8 refs).

  18. Modern gas-based temperature and pressure measurements

    Pavese, Franco

    2013-01-01

    This 2nd edition volume of Modern Gas-Based Temperature and Pressure Measurements follows the first publication in 1992. It collects a much larger set of information, reference data, and bibliography in temperature and pressure metrology of gaseous substances, including the physical-chemical issues related to gaseous substances. The book provides solutions to practical applications where gases are used in different thermodynamic conditions. Modern Gas-Based Temperature and Pressure Measurements, 2nd edition is the only comprehensive survey of methods for pressure measurement in gaseous media used in the medium-to-low pressure range closely connected with thermometry. It assembles current information on thermometry and manometry that involve the use of gaseous substances which are likely to be valid methods for the future. As such, it is an important resource for the researcher. This edition is updated through the very latest scientific and technical developments of gas-based temperature and pressure measurem...

  19. Pressure vessel failure at high internal pressure

    Laemmer, H.; Ritter, B.

    1995-01-01

    A RPV failure due to plastic instability was investigated using the ABAQUS finite element code together with a material model of thermal plasticity for large deformations. Not only rotational symmetric temperature distributions were studied, but also 'hot spots'. Calculations show that merely by the depletion of strength of the material - even at internal wall temperatures well below the melting point of the fuel elements of about 2000/2400 C - the critical internal pressure can decrease to values smaller than the operational pressure of 16 Mpa. (orig.)

  20. Computer simulation at high pressure

    Alder, B.J.

    1977-11-01

    The use of either the Monte Carlo or molecular dynamics method to generate equations-of-state data for various materials at high pressure is discussed. Particular emphasis is given to phase diagrams, such as the generation of various types of critical lines for mixtures, melting, structural and electronic transitions in solids, two-phase ionic fluid systems of astrophysical interest, as well as a brief aside of possible eutectic behavior in the interior of the earth. Then the application of the molecular dynamics method to predict transport coefficients and the neutron scattering function is discussed with a view as to what special features high pressure brings out. Lastly, an analysis by these computational methods of the measured intensity and frequency spectrum of depolarized light and also of the deviation of the dielectric measurements from the constancy of the Clausius--Mosotti function is given that leads to predictions of how the electronic structure of an atom distorts with pressure

  1. Anxiety: A Cause of High Blood Pressure?

    ... of high blood pressure? Can anxiety cause high blood pressure? Answers from Sheldon G. Sheps, M.D. Anxiety doesn't cause long-term high blood pressure (hypertension). But episodes of anxiety can cause dramatic, ...

  2. African Americans and High Blood Pressure

    ANSWERS by heart Lifestyle + Risk Reduction High Blood Pressure What About African Americans and High Blood Pressure? African Americans in the U.S. have a higher prevalence of high blood pressure (HBP) than ...

  3. High Blood Pressure: Medicines to Help You

    ... For Consumers Consumer Information by Audience For Women High Blood Pressure--Medicines to Help You Share Tweet Linkedin Pin ... Click here for the Color Version (PDF 533KB) High blood pressure is a serious illness. High blood pressure is ...

  4. Single stage high pressure centrifugal slurry pump

    Meyer, John W.; Bonin, John H.; Daniel, Arnold D.

    1984-03-27

    Apparatus is shown for feeding a slurry to a pressurized housing. An impeller that includes radial passages is mounted in the loose fitting housing. The impeller hub is connected to a drive means and a slurry supply means which extends through the housing. Pressured gas is fed into the housing for substantially enveloping the impeller in a bubble of gas.

  5. Hydrogen high pressure proportional drift detector

    Arefiev, A.; Balaev, A.

    1983-01-01

    The design and operation performances of a proportional drift detector PDD are described. High sensitivity of the applied PAD makes it possible to detect the neutron-proton elastic scattering in the energy range of recoil protons as low as 1 keV. The PDD is filled with hydrogen up to the pressure at 40 bars. High purity of the gas is maintained by a continuously operating purification system. The detector has been operating for several years in a neutron beam at the North Area of the CERN SPS

  6. Intermolecular Interactions at high pressure

    Eikeland, Espen Zink

    2016-01-01

    In this project high-pressure single crystal X-ray diffraction has been combined with quantitative energy calculations to probe the energy landscape of three hydroquinone clathrates enclosing different guest molecules. The simplicity of the hydroquinone clathrate structures together with their st...

  7. High-pressure water facility

    2006-01-01

    NASA Test Operations Group employees, from left, Todd Pearson, Tim Delcuze and Rodney Wilkinson maintain a water pump in Stennis Space Center's high-pressure water facility. The three were part of a group of employees who rode out Hurricane Katrina at the facility and helped protect NASA's rocket engine test complex.

  8. Vital Signs - High Blood Pressure

    2012-10-02

    In the U.S., nearly one third of the adult population have high blood pressure, the leading risk factor for heart disease and stroke - two of the nation's leading causes of death.  Created: 10/2/2012 by National Center for Chronic Disease Prevention and Health Promotion (NCCDPHP).   Date Released: 10/17/2012.

  9. Ground-state pressure of an ideal Fermi gas

    Delsante, A.E.; Frankel, N.E.

    1979-01-01

    A simple relationship between the pressure, internal energy and Fermi energy of an ideal ultra-degenerate Fermi gas is derived in two ways. The conditions for its validity and its use in simplifying calculations are discussed

  10. Effect of gas pressure on active screen plasma nitriding response

    Nishimoto, Akio; Nagatsuka, Kimiaki; Narita, Ryota; Nii, Hiroaki; Akamatsu, Katsuya

    2010-01-01

    An austenitic stainless steel AISI 304 was active screen plasma nitrided using a 304 steel screen to investigate the effect of the gas pressure on the ASPN response. The sample was treated for 18 ks at 723 K in 25% N2 + 75% H2 gases. The gas pressure was changed to 100, 600 and 1200 Pa. The distance between screen and sample was also changed to 10, 30 and 50 mm. The nitrided samples were characterized by appearance observation, surface roughness, optical microscopy, X-ray diffraction, and microhardness testing. After nitriding, polygonal particles with a normal distribution were observed at the center and edges of all the ASPN-treated sample surfaces. Particles on the sample surfaces were finer with an increase in the gas pressure. The nitrided layer with a greater and homogeneous thickness was obtained at a low gas pressure of 100 Pa. (author)

  11. Effects of hydroxyl-functionalization and sub-Tg thermal annealing on high pressure pure- and mixed-gas CO2/CH4 separation by polyimide membranes based on 6FDA and triptycene-containing dianhydrides

    Swaidan, Raja

    2015-02-01

    A sub-Tg thermally-annealed (250°C, 24h) ultra-microporous PIM-polyimide bearing a 9,10-diisopropyl-triptycene contortion center and hydroxyl-functionalized diamine (2,2-bis(3-amino-4-hydroxyphenyl)-hexafluoropropane, APAF) exhibited plasticization resistance up to 50bar for a 1:1 CO2/CH4 feed mixture, with a 9-fold higher CO2 permeability (30Barrer) and 2-fold increase in CO2/CH4 permselectivity (~50) over conventional dense cellulose acetate membranes at 10bar CO2 partial pressure. Interestingly, mixed-gas CO2/CH4 permselectivities were 10-20% higher than those evaluated under pure-gas conditions due to reduction of mixed-gas CH4 permeability by co-permeation of CO2. Gas transport, physisorption and fluorescence studies indicated a sieving pore-structure engaged in inter-chain charge transfer complexes (CTCs), similar to that of low-free-volume 6FDA-APAF polyimide. The isosteric heat of adsorption of CO2 as well as CO2/CH4 solubility selectivities varied negligibly upon replacement of OH with CH3 but CTC formation was hindered, CO2 sorption increased, CO2 permeability increased ~3-fold, CO2/CH4 permselectivity dropped to ~30 and CH4 mixed-gas co-permeation increased. These results suggest that hydroxyl-functionalization did not cause preferential polymer-gas interactions but primarily elicited diffusion-dominated changes owing to a tightened microstructure more resistant to CO2-induced dilations. Solution-processable hydroxyl-functionalized PIM-type polyimides provide a new platform of advanced materials that unites the high selectivities of low-free-volume polymers with the high permeabilities of PIM-type materials particularly for natural gas sweetening applications.

  12. Heavy particle detection characteristics of an MWPC operating at low (1 <= p <= 30 mbar) gas pressures

    Moeller, G.; Presser, G.; Staehler, J.

    1981-01-01

    Pulse heights, timing properties and detection efficiencies of an MWPC were measured with 5.5 MeV alpha particles for different counting gases at low pressures. The pulse heights show a striking nonmonotonic dependence on the gas pressure that can be explained by a simple model of the amplification process at high reduced electric fields. The consequences of the observed pressure dependence of pulse heights for the detection of heavy ions with low pressure MWPCs are discussed. (orig.)

  13. A new algorithm predicts pressure and temperature profiles of gas/gas-condensate transmission pipelines

    Mokhatab, Saied [OIEC - Oil Industries' Engineering and Construction Group, Tehran (Iran, Islamic Republic of); Vatani, Ali [University of Tehran (Iran, Islamic Republic of)

    2003-07-01

    The main objective of the present study has been the development of a relatively simple analytical algorithm for predicting flow temperature and pressure profiles along the two-phase, gas/gas-condensate transmission pipelines. Results demonstrate the ability of the method to predict reasonably accurate pressure gradient and temperature gradient profiles under operating conditions. (author)

  14. High Pressure Treatment in Foods

    Torres Bello, Edwin Fabian; González Martínez, Gerardo; Klotz Ceberio, Bernadette F.; Rodrigo, Dolores; Martínez López, Antonio

    2014-01-01

    High hydrostatic pressure (HHP), a non-thermal technology, which typically uses water as a pressure transfer medium, is characterized by a minimal impact on food characteristics (sensory, nutritional, and functional). Today, this technology, present in many food companies, can effectively inactivate bacterial cells and many enzymes. All this makes HHP very attractive, with very good acceptance by consumers, who value the organoleptic characteristics of products processed by this non-thermal food preservation technology because they associate these products with fresh-like. On the other hand, this technology reduces the need for non-natural synthetic additives of low consumer acceptance. PMID:28234332

  15. High Pressure Treatment in Foods

    Edwin Fabian Torres Bello

    2014-08-01

    Full Text Available High hydrostatic pressure (HHP, a non-thermal technology, which typically uses water as a pressure transfer medium, is characterized by a minimal impact on food characteristics (sensory, nutritional, and functional. Today, this technology, present in many food companies, can effectively inactivate bacterial cells and many enzymes. All this makes HHP very attractive, with very good acceptance by consumers, who value the organoleptic characteristics of products processed by this non-thermal food preservation technology because they associate these products with fresh-like. On the other hand, this technology reduces the need for non-natural synthetic additives of low consumer acceptance.

  16. Phase transitions in solids under high pressure

    Blank, Vladimir Davydovich

    2013-01-01

    Phase equilibria and kinetics of phase transformations under high pressureEquipment and methods for the study of phase transformations in solids at high pressuresPhase transformations of carbon and boron nitride at high pressure and deformation under pressurePhase transitions in Si and Ge at high pressure and deformation under pressurePolymorphic α-ω transformation in titanium, zirconium and zirconium-titanium alloys Phase transformations in iron and its alloys at high pressure Phase transformations in gallium and ceriumOn the possible polymorphic transformations in transition metals under pressurePressure-induced polymorphic transformations in АIBVII compoundsPhase transformations in AIIBVI and AIIIBV semiconductor compoundsEffect of pressure on the kinetics of phase transformations in iron alloysTransformations during deformation at high pressure Effects due to phase transformations at high pressureKinetics and hysteresis in high-temperature polymorphic transformations under pressureHysteresis and kineti...

  17. Alpha-Particle Gas-Pressure Sensor

    Buehler, M. C.; Bell, L. D.; Hecht, M. H.

    1996-01-01

    An approximate model was developed to establish design curves for the saturation region and a more complete model developed to characterize the current-voltage curves for an alpha-particle pressure sensor. A simple two-parameter current-voltage expression was developed to describe the dependence of the ion current on pressure. The parameters are the saturation-current pressure coefficient and mu/D, the ion mobility/diffusion coefficient. The sensor is useful in the pressure range between 0.1 and 1000 mb using a 1 - mu Ci(241) Am source. Experimental results, taken between 1 and up to 200 mb, show the sensor operates with an anode voltage of 5 V and a sensitivity of 20 fA/mb in nitrogen.

  18. Gas Hydrate-Sediment Morphologies Revealed by Pressure Core Analysis

    Holland, M.; Schultheiss, P.; Roberts, J.; Druce, M.

    2006-12-01

    Analysis of HYACINTH pressure cores collected on IODP Expedition 311 and NGHP Expedition 1 showed gas hydrate layers, lenses, and veins contained in fine-grained sediments as well as gas hydrate contained in coarse-grained layers. Pressure cores were recovered from sediments on the Cascadia Margin off the North American West Coast and in the Krishna-Godavari Basin in the Western Bay of Bengal in water depths of 800- 1400 meters. Recovered cores were transferred to laboratory chambers without loss of pressure and nondestructive measurements were made at in situ pressures and controlled temperatures. Gamma density, P-wave velocity, and X-ray images showed evidence of grain-displacing and pore-filling gas hydrate in the cores. Data highlights include X-ray images of fine-grained sediment cores showing wispy subvertical veins of gas hydrate and P-wave velocity excursions corresponding to grain-displacing layers and pore-filling layers of gas hydrate. Most cores were subjected to controlled depressurization experiments, where expelled gas was collected, analyzed for composition, and used to calculate gas hydrate saturation within the core. Selected cores were stored under pressure for postcruise analysis and subsampling.

  19. Cu-TDPAT, an rht -type dual-functional metal-organic framework offering significant potential for use in H 2 and natural gas purification processes operating at high pressures

    Wu, Haohan; Yao, Kexin; Zhu, Yihan; Li, Baiyan; Shi, Zhan; Krishna, Rajamani A A; Li, Jing

    2012-01-01

    The separations of CO 2/CO/CH 4/H 2, CO 2/H 2, CH 4/H 2, and CO 2/CH 4 mixtures at pressures ranging to 7 MPa are important in a variety of contexts, including H 2 production, natural gas purification, and fuel-gas processing. The primary objective of this study is to demonstrate the selective adsorption potential of an rht-type metal-organic framework [Cu 3(TDPAT)(H 2O) 3]·10H 2O·5DMA (Cu-TDPAT), possessing a high density of both open metal sites and Lewis basic sites. Experimental high pressure pure component isotherm data for CO 2, CO, CH 4, and H 2 are combined with the Ideal Adsorbed Solution Theory (IAST) for estimation of mixture adsorption equilibrium. The separation performance of Cu-TDPAT is compared with four other microporous materials, specifically chosen in order to span a wide range of physicochemical characteristics: MgMOF-74, MIL-101, LTA-5A, and NaX. For all mixtures investigated, the capacity of Cu-TDPAT to produce the desired product, H 2 or CH 4, satisfying stringent purity requirements, in a fixed bed operating at pressures exceeding about 4 MPa, is either comparable to, or exceeds, that of other materials. © 2012 American Chemical Society.

  20. Cu-TDPAT, an rht -type dual-functional metal-organic framework offering significant potential for use in H 2 and natural gas purification processes operating at high pressures

    Wu, Haohan

    2012-08-09

    The separations of CO 2/CO/CH 4/H 2, CO 2/H 2, CH 4/H 2, and CO 2/CH 4 mixtures at pressures ranging to 7 MPa are important in a variety of contexts, including H 2 production, natural gas purification, and fuel-gas processing. The primary objective of this study is to demonstrate the selective adsorption potential of an rht-type metal-organic framework [Cu 3(TDPAT)(H 2O) 3]·10H 2O·5DMA (Cu-TDPAT), possessing a high density of both open metal sites and Lewis basic sites. Experimental high pressure pure component isotherm data for CO 2, CO, CH 4, and H 2 are combined with the Ideal Adsorbed Solution Theory (IAST) for estimation of mixture adsorption equilibrium. The separation performance of Cu-TDPAT is compared with four other microporous materials, specifically chosen in order to span a wide range of physicochemical characteristics: MgMOF-74, MIL-101, LTA-5A, and NaX. For all mixtures investigated, the capacity of Cu-TDPAT to produce the desired product, H 2 or CH 4, satisfying stringent purity requirements, in a fixed bed operating at pressures exceeding about 4 MPa, is either comparable to, or exceeds, that of other materials. © 2012 American Chemical Society.

  1. Inspection of the hydrogen gas pressure with metal shield by cold neutron radiography at CMRR

    Li, Hang; Cao, Chao; Huo, Heyong; Wang, Sheng; Wu, Yang; Yin, Wei; Sun, Yong; Liu, Bin; Tang, Bin [Institute of Nuclear Physics and Chemistry, Chinese Academy of Engineering Physics, Mianyang (China); Key Laboratory of Neutron Physics, Chinese Academy of Engineering Physics, Mianyang (China)

    2017-04-11

    The inspection of the process of gas pressure change is important for some applications (e.g. gas tank stockpile or two phase fluid model) which need quantitative and non-touchable measurement. Neutron radiography provides a suitable tool for such investigations with nice resolution. The quantitative cold neutron radiography (CNR) is developed at China Mianyang Research Reactor (CMRR) to measure the hydrogen gas pressure with metal shield. Because of the high sensitivity to hydrogen, even small change of the hydrogen pressure can be inspected by CNR. The dark background and scattering neutron effect are both corrected to promote measurement precision. The results show that CNR can measure the hydrogen gas pressure exactly and the pressure value average relative error between CNR and barometer is almost 1.9%.

  2. Gas release from pressurized closed pores in nuclear fuels

    Bailey, P.; Donnelly, S.E.; Armour, D.G.; Matzke, H.

    1988-01-01

    Gas release from the nuclear fuels UO 2 and UN out of pressurized closed pores produced by autoclave anneals has been studied by Thermal Desorption Spectrometry (TDS). Investigation of gas release during heating and cooling has indicated stress related mechanical effects leading to gas release. This release occurred in a narrow temperature range between about 1000 and 1500 K for UO 2 , but it continued down to ambient temperature for UN. No burst release was observed above 1500 K for UO 2 . (orig.)

  3. Foam glass obtained through high-pressure sintering

    Østergaard, Martin Bonderup; Petersen, Rasmus Rosenlund; König, Jakob

    2018-01-01

    Foam glasses are usually prepared through a chemical approach, that is, by mixing glass powder with foaming agents, and heating the mixture to a temperature above the softening point (106.6 Pa s) of the glass. The foaming agents release gas, enabling expansion of the sintered glass. Here, we use...... a physical foaming approach to prepare foam glass. First, closed pores filled with inert gases (He, Ar, or N2) are physically introduced into a glass body by sintering cathode ray tube (CRT) panel glass powder at high gas pressure (5‐25 MPa) at 640°C and, then cooled to room temperature. The sintered bodies...... are subjected to a second heat treatment above the glass transition temperature at atmospheric pressure. This heat treatment causes expansion of the pores due to high internal gas pressure. We found that the foaming ability strongly depends on the gas pressure applied during sintering, and on the kinetic...

  4. Development of data logger for atmospheric pressure, temperature and relative humidity for gas-filled detector

    Sahu, S.; Sahu, P.K.; Bhuyan, M.R.; Biswas, S.; Mohanty, B.

    2014-01-01

    At IoP-NISER an initiative has been taken to build and test micro-pattern gas detector such as Gas Electron Multiplier (GEM) for several upcoming High-Energy Physics (HEP) experiment projects. Temperature (t), atmospheric pressure (p) and relative humidity (RH) monitor and recording is very important for gas filled detector development. A data logger to monitor and record the ambient parameters such as temperature, relative humidity and pressure has been developed. With this data logger continuous recording of t, p, RH and time stamp can be done with a programmable sampling interval. This data is necessary to correct the gain of a gas filled detector

  5. Miniature fuel cells relieve gas pressure in sealed batteries

    Frank, H. A.

    1971-01-01

    Miniature fuel cells within sealed silver zinc batteries consume evolved hydrogen and oxygen rapidly, preventing pressure rupturing. They do not significantly increase battery weight and they operate in all battery life phases. Complete gas pressure control requires two fuel cells during all phases of operation of silver zinc batteries.

  6. High Blood Pressure: Unique to Older Adults

    ... our e-newsletter! Aging & Health A to Z High Blood Pressure Hypertension Unique to Older Adults This section provides ... Pressure Targets are Different for Very Old Adults High blood pressure (also called hypertension) increases your chance of having ...

  7. High pressure effects on fruits and vegetables

    Timmermans, R.A.H.; Matser, A.M.

    2016-01-01

    The chapter provides an overview on different high pressure based treatments (high pressure pasteurization, blanching, pressure-assisted thermal processing, pressure-shift freezing and thawing) available for the preservation of fruits and vegetable products and extending their shelf life. Pressure treatment can be used for product modification through pressure gelatinization of starch and pressure denaturation of proteins. Key pressure–thermal treatment effects on vitamin, enzymes, flavor, co...

  8. Brillouin scattering at high pressures

    Grimsditch, M.; Polian, A.

    1988-02-01

    Technical advances which have made Brillouin scattering a useful tool in high pressure diamond anvil cell (DAC) studies, viz. multipassing and tandem operation of Fabry-Perot interferometers, are reviewed. Experimental aspects, such as allowed scattering geometries, are outlined and the data analysis required to transform Brillouin spectra into sound velocities and elastic constants is presented. Experimental results on H 2 , N 2 , Ar, and He are presented, and the close relationship between the Brillouin scattering results and equations of state is highlighted

  9. HIGH PRESSURE COAL COMBUSTON KINETICS PROJECT

    Stefano Orsino

    2005-03-30

    As part of the U.S. Department of Energy (DoE) initiative to improve the efficiency of coal-fired power plants and reduce the pollution generated by these facilities, DOE has funded the High-Pressure Coal Combustion Kinetics (HPCCK) Projects. A series of laboratory experiments were conducted on selected pulverized coals at elevated pressures with the specific goals to provide new data for pressurized coal combustion that will help extend to high pressure and validate models for burnout, pollutant formation, and generate samples of solid combustion products for analyses to fill crucial gaps in knowledge of char morphology and fly ash formation. Two series of high-pressure coal combustion experiments were performed using SRI's pressurized radiant coal flow reactor. The first series of tests characterized the near burner flame zone (NBFZ). Three coals were tested, two high volatile bituminous (Pittsburgh No.8 and Illinois No.6), and one sub-bituminous (Powder River Basin), at pressures of 1, 2, and 3 MPa (10, 20, and 30 atm). The second series of experiments, which covered high-pressure burnout (HPBO) conditions, utilized a range of substantially longer combustion residence times to produce char burnout levels from 50% to 100%. The same three coals were tested at 1, 2, and 3 MPa, as well as at 0.2 MPa. Tests were also conducted on Pittsburgh No.8 coal in CO2 entrainment gas at 0.2, 1, and 2 MPa to begin establishing a database of experiments relevant to carbon sequestration techniques. The HPBO test series included use of an impactor-type particle sampler to measure the particle size distribution of fly ash produced under complete burnout conditions. The collected data have been interpreted with the help of CFD and detailed kinetics simulation to extend and validate devolatilization, char combustion and pollutant model at elevated pressure. A global NOX production sub-model has been proposed. The submodel reproduces the performance of the detailed chemical

  10. Air and gas pockets in sewerage pressure mains.

    Lubbers, C L; Clemens, F

    2005-01-01

    In The Netherlands, wastewater is collected in municipal areas and transported to large centralised WWTPs by means of an extensive system of pressure mains. Over the past decades these pressure mains did not receive much attention in terms of monitoring of performance or maintenance. For that reason, in practice their state of functioning is often not known. Failure of operation is only noticed when the capacity of the system proves to be insufficient to fulfil the minimum design capacity demand. A recent inventory showed that half of the pressure mains show an increased pressure loss for no directly obvious reason. Many causes may account for the reduction of the system's nominal capacity like an increased wall roughness, scaling or occurrence of free gas in the pipeline. The occurrence of free gas may be caused by degassing of dissolved (bio) gas or by air entrained at the pumps' inlet or at air valves. A research study is started that will focus on three main issues: The description of the gas-water phenomena in wastewater pressure mains with respect to transportation and dynamic hydraulic behaviour, A method to diagnose gas problems, and To overcome future problems by either applying remedial measures or improving the design of wastewater pressure systems. For this study, two experimental facilities are constructed, a small circuit for the study of multi-phase flow and a second, larger one for the research into diagnostic methods. This paper describes the preliminary results of the experiments in the multi-phase circuit.

  11. High pressure effects on fruits and vegetables

    Timmermans, R.A.H.; Matser, A.M.

    2016-01-01

    The chapter provides an overview on different high pressure based treatments (high pressure pasteurization, blanching, pressure-assisted thermal processing, pressure-shift freezing and thawing) available for the preservation of fruits and vegetable products and extending their shelf life. Pressure

  12. EQUATIONS FOR GAS RELEASING PROCESS FROM PRESSURIZED VESSELS IN ODH EVALUATION

    JIA, L.X.; WANG, L.

    2001-01-01

    IN THE EVALUATION OF ODH, THE CALCULATION OF THE SPILL RATE FROM THE PRESSURIZED VESSEL IS THE CENTRAL TASK. THE ACCURACY OF THE ENGINEERING ESTIMATION BECOMES ONE OF THE SAFETY DESIGN ISSUES. THIS PAPER SUMMARIZES THE EQUATIONS FOR THE OXYGEN CONCENTRATION CALCULATION IN DIFFERENT CASES, AND DISCUSSES THE EQUATIONS FOR THE GAS RELEASE PROCESS CALCULATION BOTH FOR THE HIGH-PRESSURE GAS TANK AND THE LOW-TEMPERATURE LIQUID CONTAINER

  13. Condensation heat transfer on natural convection at the high pressure

    Jong-Won, Kim; Hyoung-Kyoun, Ahn; Goon-Cherl, Park

    2007-01-01

    The Regional Energy Research Institute for the Next Generation is to develop a small scale electric power system driven by an environment-friendly and stable small nuclear reactor. REX-10 has been developed to assure high system safety in order to be placed in densely populated region and island. REX-10 adopts the steam-gas pressurizer to assure the inherent safety. The thermal-hydraulic phenomena in the steam-gas pressurizer are very complex. Especially, the condensation heat transfer with noncondensable gas on the natural convection is important to evaluate the pressurizer behavior. However, there have been few investigations on the condensation in the presence of noncondensable gas at the high pressure. In this study, the theoretical model is developed to estimate the condensation heat transfer at the high pressure using heat and mass transfer analogy. The analysis results show good agreement with correlations and experimental data. It is found that the condensation heat transfer coefficient increases as the total pressure increases or the mass fraction of the non-condensable gas decreases. In addition, the heat transfer coefficient no more increases over the specific pressure

  14. H2 gas pressure calculation of FPM capsule failure at RSG-GAS reactor core

    Hastuti, Endiah Puji; Sunaryo, Geni Rina

    2002-01-01

    RSG-GAS has been irradiated FPM capsule for 236 times, one of those i.e. capsule number 228 has failure. The one of root cause of failure possibility is radiolysis reaction can be occurred in FPM capsule when it is filled with water during irradiation in the reactor core. The safety analysis of the radiolysis reaction in the capsule has been done. The oc cumulative hydrogen gas production can cause high pressure in the capsule then a mechanical damage occurred. The analysis was done at 10 MW of reactor power which equivalent with neutron flux of 0,6929 x 10 1 4 n/cm 2 sec and γ dose rate of 0,63x10 9 rad/hour. The assumption is the capsule is filled with water at maximum volume, i.e. 176.67 ml. The results of calculation showed that radiolysis reaction with γ and neutron produce hydrogen gas for nominal flow rate each are 494 atm and 19683 atm for γ and neutron radiolysis, respectively. H 2 gas pressure for 5% flow rate each are 723 atm. and 25772 atm., for γ and neutron radiolysis, respectively. The changing of the operation condition due to radiolysis together with one way valve' phenomena, can be produce hydrogen gas from water during irradiation in the reactor core and can be the one of root cause of capsule failure. This analysis recommended the FPM capsule preparation must be guaranteed no water or/and there is no possibility of water immersion in the capsule during irradiation in the core by more accurate leak test

  15. High excitation ISM and gas

    Peeters, E; Martinez-Hernandez, NL; Rodriguez-Fernandez, NJ; Tielens, [No Value

    An overview is given of ISO results on regions of high excitation ISM and gas, i.e. H II regions, the Galactic Centre and Supernova Remnants. IR emission due to fine-structure lines, molecular hydrogen, silicates, polycyclic aromatic hydrocarbons and dust are summarised, their diagnostic

  16. High Excitation Gas and ISM

    Peeters, E.; Martin-Hernandez, N. L.; Rodriguez-Fernandez, N. J.; Tielens, A. G. G. M.

    2004-01-01

    An overview is given of ISO results on regions of high excitation ISM and gas, i.e. HII regions, the Galactic Centre and Supernovae Remnants. IR emission due to fine-structure lines, molecular hydrogen, silicates, polycyclic aromatic hydrocarbons and dust are summarized, their diagnostic capabilities illustrated and their implications highlighted.

  17. Simulation of high consequence areas for gas pipelines

    Orlando Díaz-Parra; Enrique Vera-López

    2018-01-01

    The gas pipeline is used for the transport of natural gas at a great distance. Risks derived from the handling of a combustible material transported under high pressure, by pipelines that pass close to where people live, makes it necessary to adopt prevention, mitigation and control measures to reduce the effect in case of ignition of a gas leak. This work shows the development of a new mathematical model to determine areas of high consequence and their application, using widely available and...

  18. Hydraulic High Pressure Valve Controller Using the In-Situ Pressure Difference

    Bao, Xiaoqi (Inventor); Sherrit, Stewart (Inventor); Badescu, Mircea (Inventor); Bar-Cohen, Yoseph (Inventor); Hall, Jeffery L. (Inventor)

    2016-01-01

    A hydraulic valve controller that uses an existing pressure differential as some or all of the power source for valve operation. In a high pressure environment, such as downhole in an oil or gas well, the pressure differential between the inside of a pipe and the outside of the pipe may be adequately large to drive a linear slide valve. The valve is operated hydraulically by a piston in a bore. When a higher pressure is applied to one end of the bore and a lower pressure to the other end, the piston moves in response to the pressure differential and drives a valve attached to it. If the pressure differential is too small to drive the piston at a sufficiently high speed, a pump is provided to generate a larger pressure differential to be applied. The apparatus is conveniently constructed using multiport valves, which can be rotary valves.

  19. Gas Hydrate Investigations Using Pressure Core Analysis: Current Practice

    Schultheiss, P.; Holland, M.; Roberts, J.; Druce, M.

    2006-12-01

    Recently there have been a number of major gas hydrate expeditions, both academic and commercially oriented, that have benefited from advances in the practice of pressure coring and pressure core analysis, especially using the HYACINTH pressure coring systems. We report on the now mature process of pressure core acquisition, pressure core handling and pressure core analysis and the results from the analysis of pressure cores, which have revealed important in situ properties along with some remarkable views of gas hydrate morphologies. Pressure coring success rates have improved as the tools have been modified and adapted for use on different drilling platforms. To ensure that pressure cores remain within the hydrate stability zone, tool deployment, recovery and on-deck handling procedures now mitigate against unwanted temperature rises. Core analysis has been integrated into the core transfer protocol and automated nondestructive measurements, including P-wave velocity, gamma density, and X-ray imaging, are routinely made on cores. Pressure cores can be subjected to controlled depressurization experiments while nondestructive measurements are being made, or cores can be stored at in situ conditions for further analysis and subsampling.

  20. High temperature pressure water's blowdown into water. Experimental results

    Ishida, Toshihisa; Kusunoki, Tsuyoshi; Kasahara, Yoshiyuki; Iida, Hiromasa

    1994-01-01

    The purpose of the present experimental study is to clarify the phenomena in blowdown of high temperature and pressure water in pressure vessel into the containment water for evaluation of design of an advanced marine reactor(MRX). The water blown into the containment water flushed and formed steam jet plume. The steam jet condensed in the water, but some stream penetrated to gas phase of containment and contributed to increase of containment pressure. (author)

  1. Warm Pressurant Gas Effects on the Liquid Hydrogen Bubble Point

    Hartwig, Jason W.; McQuillen, John B.; Chato, David J.

    2013-01-01

    This paper presents experimental results for the liquid hydrogen bubble point tests using warm pressurant gases conducted at the Cryogenic Components Cell 7 facility at the NASA Glenn Research Center in Cleveland, Ohio. The purpose of the test series was to determine the effect of elevating the temperature of the pressurant gas on the performance of a liquid acquisition device. Three fine mesh screen samples (325 x 2300, 450 x 2750, 510 x 3600) were tested in liquid hydrogen using cold and warm noncondensible (gaseous helium) and condensable (gaseous hydrogen) pressurization schemes. Gases were conditioned from 0 to 90 K above the liquid temperature. Results clearly indicate a degradation in bubble point pressure using warm gas, with a greater reduction in performance using condensable over noncondensible pressurization. Degradation in the bubble point pressure is inversely proportional to screen porosity, as the coarsest mesh demonstrated the highest degradation. Results here have implication on both pressurization and LAD system design for all future cryogenic propulsion systems. A detailed review of historical heated gas tests is also presented for comparison to current results.

  2. A method for measuring the local gas pressure within a gas-flow stage in situ in the transmission electron microscope

    Colby, R.; Alsem, D.H.; Liyu, A.; Kabius, B.

    2015-01-01

    Environmental transmission electron microscopy (TEM) has enabled in situ experiments in a gaseous environment with high resolution imaging and spectroscopy. Addressing scientific challenges in areas such as catalysis, corrosion, and geochemistry can require pressures much higher than the ∼20 mbar achievable with a differentially pumped environmental TEM. Gas flow stages, in which the environment is contained between two semi-transparent thin membrane windows, have been demonstrated at pressures of several atmospheres. However, the relationship between the pressure at the sample and the pressure drop across the system is not clear for some geometries. We demonstrate a method for measuring the gas pressure at the sample by measuring the ratio of elastic to inelastic scattering and the defocus of the pair of thin windows. This method requires two energy filtered high-resolution TEM images that can be performed during an ongoing experiment, at the region of interest. The approach is demonstrated to measure greater than atmosphere pressures of N 2 gas using a commercially available gas-flow stage. This technique provides a means to ensure reproducible sample pressures between different experiments, and even between very differently designed gas-flow stages. - Highlights: • Method developed for measuring gas pressure within a gas-flow stage in the TEM. • EFTEM and CTF-fitting used to calculate amount and volume of gas. • Requires only a pair of images without leaving region of interest. • Demonstrated for P > 1 atm with a common commercial gas-flow stage

  3. A review of helium gas turbine technology for high-temperature gas-cooled reactors

    No, Hee Cheon; Kim, Ji Hwan; Kim, Hyeun Min

    2007-01-01

    Current High-Temperature Gas-cooled Reactors (HTGRs) are based on a closed brayton cycle with helium gas as the working fluid. Thermodynamic performance of the axial-flow helium gas turbines is of critical concern as it considerably affects the overall cycle efficiency. Helium gas turbines pose some design challenges compared to steam or air turbomachinery because of the physical properties of helium and the uniqueness of the operating conditions at high pressure with low pressure ratio. This report present a review of the helium Brayton cycle experiences in Germany and in Japan. The design and availability of helium gas turbines for HTGR are also presented in this study. We have developed a new throughflow calculation code to calculate the design-point performance of helium gas turbines. Use of the method has been illustrated by applying it to the GTHTR300 reference

  4. Relation between plasma plume density and gas flow velocity in atmospheric pressure plasma

    Yambe, Kiyoyuki; Taka, Shogo; Ogura, Kazuo

    2014-01-01

    We have studied atmospheric pressure plasma generated using a quartz tube, helium gas, and copper foil electrode by applying RF high voltage. The atmospheric pressure plasma in the form of a bullet is released as a plume into the atmosphere. To study the properties of the plasma plume, the plasma plume current is estimated from the difference in currents on the circuit, and the drift velocity is measured using a photodetector. The relation of the plasma plume density n plu , which is estimated from the current and the drift velocity, and the gas flow velocity v gas is examined. It is found that the dependence of the density on the gas flow velocity has relations of n plu ∝ log(v gas ). However, the plasma plume density in the laminar flow is higher than that in the turbulent flow. Consequently, in the laminar flow, the density increases with increasing the gas flow velocity

  5. High pressure research at CHESS

    Brister, K.

    1992-01-01

    Since February 1990 there has been a dedicated high pressure line at the Cornell High Energy Synchrotron Source (CHESS). This facility provides X-ray instrumentation for energy dispersive X-ray diffraction and Laue diffraction using diamond anvil cells. Both hard-bend magnet and wiggler radiation are available as well as focused monochromatic radiation. In addition, support instrumentation is also available; a ruby system, laser heating, sample loading, and data analysis software. Experienced users need only to bring their diamond anvil cells and samples and can leave with the initial data analysis finished. Research using diamond anvil cells will be introduced and the facility will be described. Some of the diamond anvil cell research done at CHESS will be reviewed, including crystalline to amorphous transitions (R.R. Winters et al., Chem. Phys, in press), properties of C 6 0 under stress (S.J. Duclos et al., Nature 351 (1991) 380), deep earthquakes (T.C. Wu et al., submitted to J. Geophys. Res.)l, and reaching pressures of the center of Earth (A.L. Ruoff et al., Rev. Sci. Instr. 61 (1990) 3830). (orig.)

  6. Pressure swing adsorption cycle for natural gas pretreatment for liquefaction

    Mann, R.E.

    1984-01-10

    An improved apparatus and method for a regeneration of a solid adsorbent used to pretreat a gas before liquefaction. The spent adsorbent is subjected to a two-step regenerative process, in the first of which the adsorbent is subjected to a low pressure produced by the use of mechanical vacuum pumps. When the pressure of the atmosphere in contact with the adsorbent has been reduced to a level sufficiently low to insure that the gas will flow under laminar rather than viscous conditions, the adsorbent is exposed to the action of a cryoplate condenser maintained at a sufficiently low temperature to cause any molecules of water which impinge thereon to condense and freeze, thereby reducing the partial pressure of water vapor within the chamber. The reduced partial pressure of the water vapor in turn causes adsorbed water on the adsorbent to be desorbed, thereby effectively removing the water from the adsorbent and depositing it as solid ice on the cryoplate condenser.

  7. Operation of gas electron multiplier (GEM) with propane gas at low pressure and comparison with tissue-equivalent gas mixtures

    De Nardo, L., E-mail: laura.denardo@unipd.it [University of Padova, Physics and Astronomy Department and PD-INFN, via Marzolo 8, I-35131 Padova (Italy); Farahmand, M., E-mail: majid.farahmand@rivm.nl [Centre for Environmental Safety and Security, National Institute for Public Health and the Environment (RIVM), PO Box 1, NL-3720 BA Bilthoven (Netherlands)

    2016-05-21

    A Tissue-Equivalent Proportional Counter (TEPC), based on a single GEM foil of standard geometry, has been tested with pure propane gas at low pressure, in order to simulate a tissue site of about 1 µm equivalent size. In this work, the performance of GEM with propane gas at a pressure of 21 and 28 kPa will be presented. The effective gas gain was measured in various conditions using a {sup 244}Cm alpha source. The dependence of effective gain on the electric field strength along the GEM channel and in the drift and induction region was investigated. A maximum effective gain of about 5×10{sup 3} has been reached. Results obtained in pure propane gas are compared with gas gain measurements in gas mixtures commonly employed in microdosimetry, that is propane and methane based Tissue-Equivalent gas mixtures.

  8. Gas separation by pressure swing adsorption

    Martin, J.R.; Gottzman, C.F.; Notaro, F.; Stewart, H.A.

    1986-01-01

    Over the past twenty years separation processes based upon pressure swing adsorption have replaced cryogenic processes in a number of selected applications such as air separation for production of moderate quantities of nitrogen and oxygen and recovery of hydrogen from refinery and chemical plant gases. Key events contributing to the emergence of PSA as an important process option have been the development of synthetic zeolite molecular sieves by Union Carbide Corporation in the USA and of carbon molecular sieves by Bergbau-Forschung in Germany. Today PSA processes enjoy significant commercial use producing oxygen from 0.1 Nm 3 /h for medical application to 1500 Nm 3 /h for steel mill use, for making nitrogen up to 1000 Nm 3 /h for inerting and in purifying hydrogen streams of up to 100,000 Nm 3 /h for refinery use. In this paper some of the principles of adsorptive separations are reviewed. The history of the technology is traced briefly with emphasis on key material, process and application events. The major commercial processes in the application of adsorption to bulk separation of air and hydrogen purification are reviewed in more detail with comparisons made to cryogenic alternatives in terms of specific characteristics, advantages and disadvantages where appropriate. Information on performance, reliability and comparative economics are discussed where available

  9. 1998 Annual Study Report. Standardization of methods for evaluating characteristics of high-strength, large-diameter steel pipes for superhigh-pressure natural gas pipelines; 1998 nendo seika hokokusho. Chokoatsu tennen gas pipeline yo kokyodo daikei kokan no tokusei hoho no hyojunka

    NONE

    1999-03-01

    The pipelines for safely transmitting superhigh-pressure natural gas should have excellent characteristics. The steel pipe is required to have a sufficient toughness, more concretely Charpy impact-absorbing energy, to prevent propagating shear fracture characteristic of natural gas pipelines. Recently, the natural gas pipeline is increasingly required to have higher design pressures (15 Mpa or higher) and grade (X80 or higher). In order to develop the techniques for simulating crack propagation in the propagating shear fracture of natural gas pipe lines as part of the programs to cope with these trends, the 1998 efforts were directed to reviewing the research results obtained so far and analysis of the problems to be solved and tasks to be taken, based on which the analytical procedure for gas releasing phenomena during the fracture process was basically developed, the material characteristic data were collected by the laboratory scale toughness tests, and the preliminary tests with rupture disks were conducted to verify the above analytical procedure. These efforts have established the bases for evaluating the characteristics of high-strength, large-diameter steel pipes in the light of safety against fracture, and greatly advanced the program towards the final target of developing the international specification drafts for toughness. (NEDO)

  10. Techno-economic Analysis of Acid Gas Removal and Liquefaction for Pressurized LNG

    Lee, S. H.; Seo, Y. K.; Chang, D. J.

    2018-05-01

    This study estimated the life cycle cost (LCC) of an acid gas removal and a liquefaction processes for Pressurized LNG (PLNG) production and compared the results with the cost of normal LNG production. PLNG is pressurized LNG that is liquefied at a higher pressure and temperature than normal LNG. Due to the high temperature, the energy for liquefaction is reduced. The allowable CO2 concentration in PLNG is increased up to 3 mol% when the product pressure 25 bar. An amine process with 35 wt% of diethanolamine (DEA) aqueous solution and a nitrogen expansion cycle were selected for the acid gas removal and the liquefaction processes, respectively. Two types of CO2 concentration in the feed gas were investigated to analyze their impacts on the acid gas removal unit. When the CO2 concentration was 5 mol%, the acid gas removal unit was required for both LNG and PLNG production. However, the acid gas removal unit was not necessary in PLNG when the concentration was 0.5 mol% and the pressure was higher than 15 bar. The results showed that the LCC of PLNG was reduced by almost 35% relative to that of LNG when the PLNG pressure was higher than 15 bar.

  11. Modeling beam-front dynamics at low gas pressures

    Briggs, R.J.; Yu, S.

    1982-01-01

    The dynamics of space charge neutralization at the front of an intense self-focused electron beam pulse exhibits important differences in different gas pressure regimes. At very low pressures, the beam front is in the so-called ion-focused regime (IFR) where all secondary electrons are expelled from the beam region by the radial electric field without causing significant additional ionization. We estimate the upper pressure boundary of this regime by considering the distance scale length for cascade (avalanche) ionization. Data from the FX-25 diode experiments indicate a critical transition pressure (P/sub c/) that agrees with this estimate and with its scaling among various gas types. Normal mobility-limited treatments (local conductivity models) of the secondary electrons at the beam front are not justified until the gas pressure is 10 to 50 times higher than P/sub c/, due to runaway of these secondary electrons in the strong space-charge electric field at the lower pressures. The main conclusion of this study is that a non-local phase space (Boltzmann) treatment of the secondary electrons is required to accurately describe these different beam front regimes and the transitions between them; such a code model is currently under development

  12. Hazardous gas treatment using atmospheric pressure microwave discharges

    Mizeraczyk, Jerzy; Jasinski, Mariusz; Zakrzewski, Zenon

    2005-01-01

    Atmospheric pressure microwave discharge methods and devices used for producing non-thermal plasmas for control of gaseous pollutants are described in this paper. The main part of the paper is concerned with microwave torch discharges (MTDs). Results of laboratory experiments on plasma abatement of several volatile organic compounds (VOCs) in their mixtures with either synthetic air or nitrogen in low (∼100 W) and moderate (200-400 W) microwave torch plasmas at atmospheric pressure are presented. Three types of MTD generators, i.e. low-power coaxial-line-based MTDs, moderate-power waveguide-based coaxial-line MTDs and moderate-power waveguide-based MTDs were used. The gas flow rate and microwave (2.45 GHz) power delivered to the discharge were in the range of 1-3 litre min -1 and 100-400 W, respectively. The concentrations of the processed gaseous pollutants were from several to several tens of per cent. The results showed that the MTD plasmas fully decomposed the VOCs at a relatively low energy cost. The energy efficiency of decomposition of several gaseous pollutants reached 1000 g (kW-h) -1 . This suggests that MTD plasmas can be useful tools for decomposition of highly concentrated VOCs

  13. Report on the achievements in research and development of a coal liquefaction technology in the Sunshine Project in fiscal 1981. Development of a high-calorie gas manufacturing technology (research on a pressurized and fluidized gasification system for coal and heavy oil mixed materials); Sekitan gas ka gijutsu no kenkyu kaihatsu seika hokokusho. Kokarori gas seizo gijutsu no kaihatsu (sekitan oyobi jushitsuyu kongo genryo no kaatsu ryudo gas ka hoshiki no kenkyu)

    NONE

    1982-03-01

    This paper describes the achievements in developing a high-calorie gas manufacturing technology for coal gasification in the Sunshine Project in fiscal 1981. Pulverized coal and heavy oil are heated and stirred to make it a slurry, which is forced into a fluidized bed gasification furnace together with spraying steam, and pyrolyzed by using a unique slurry feeding system (a hydrohoist). Carbon-like material as a by-product (char) is partially oxidized (burned) by steam and oxygen at the lower part of the gasification furnace. The material is gasified in the furnace, where the generated heat is sent to the pyrolysis zone in the upper part by the gas and fluidized bed media particles (char), and utilized as a heat source for the slurry pyrolysis. The produced gas is cooled by an indirect heat exchanger of the fluidized bed system and a scrubber to separate tar, dust and unreacted steam. Part of the sensible heat is recovered as steam. Thus, high-calorie gas of 6,000 kcal/Nm{sup 3} can be obtained, which is rich in methane, CO and hydrogen. Fiscal 1981 has performed a continuous test by using an internal heat type low-pressure gasification equipment to evaluate its compatibility to the diversification of materials. (NEDO)

  14. Effect of feed-gas humidity on nitrogen atmospheric-pressure plasma jet for biological applications.

    Stephan, Karl D; McLean, Robert J C; DeLeon, Gian; Melnikov, Vadim

    2016-11-14

    We investigate the effect of feed-gas humidity on the oxidative properties of an atmospheric-pressure plasma jet using nitrogen gas. Plasma jets operating at atmospheric pressure are finding uses in medical and biological settings for sterilization and other applications involving oxidative stress applied to organisms. Most jets use noble gases, but some researchers use less expensive nitrogen gas. The feed-gas water content (humidity) has been found to influence the performance of noble-gas plasma jets, but has not yet been systematically investigated for jets using nitrogen gas. Low-humidity and high-humidity feed gases were used in a nitrogen plasma jet, and the oxidation effect of the jet was measured quantitatively using a chemical dosimeter known as FBX (ferrous sulfate-benzoic acid-xylenol orange). The plasma jet using high humidity was found to have about ten times the oxidation effect of the low-humidity jet, as measured by comparison with the addition of measured amounts of hydrogen peroxide to the FBX dosimeter. Atmospheric-pressure plasma jets using nitrogen as a feed gas have a greater oxidizing effect with a high level of humidity added to the feed gas.

  15. High pressure pure- and mixed-gas separation of CO2/CH4 by thermally-rearranged and carbon molecular sieve membranes derived from a polyimide of intrinsic microporosity

    Swaidan, Raja

    2013-11-01

    Natural gas sweetening, one of the most promising venues for the growth of the membrane gas separation industry, is dominated by polymeric materials with relatively low permeabilities and moderate selectivities. One strategy towards improving the gas transport properties of a polymer is enhancement of microporosity either by design of polymers of intrinsic microporosity (PIMs) or by thermal treatment of polymeric precursors. For the first time, the mixed-gas CO2/CH4 transport properties are investigated for a complete series of thermally-rearranged (TR) (440°C) and carbon molecular sieve (CMS) membranes (600, 630 and 800°C) derived from a polyimide of intrinsic microporosity (PIM-6FDA-OH). The pressure dependence of permeability and selectivity is reported up to 30bar for 1:1, CO2:CH4 mixed-gas feeds at 35°C. The TR membrane exhibited ~15% higher CO2/CH4 selectivity relative to pure-gas feeds due to reductions in mixed-gas CH4 permeability reaching 27% at 30bar. This is attributed to increased hindrance of CH4 transport by co-permeation of CO2. Interestingly, unusual increases in mixed-gas CH4 permeabilities relative to pure-gas values were observed for the CMS membranes, resulting in up to 50% losses in mixed-gas selectivity over the applied pressure range. © 2013 Elsevier B.V.

  16. Gas migration characteristics of highly compacted bentonite ore

    Tanaka, Yukihisa; Hironaga, Michihiko

    2010-01-01

    In the current concept of repository for radioactive waste disposal, compacted bentonite will be used as an engineered barrier mainly for inhibiting migration of radioactive nuclides. Hydrogen gas can be generated inside the engineered barrier by anaerobic corrosion of metals used for containers, etc. If the gas generation rate exceeds the diffusion rate of dissolved gas inside of the engineered barrier, gas will accumulate in the void space inside of the engineered barrier until its pressure becomes large enough for it to enter the bentonite as a discrete gaseous phase. It is expected to be not easy for gas to entering into the bentonite as a discrete gaseous phase because the pore of compacted bentonite is so minute. Gas migration characteristics of highly compacted powdered bentonite are already reported by CRIEPI. In this report, gas migration characteristics of bentonite ore, which is a candidate for construction material of repository for radioactive waste, is investigated. The following conclusions are obtained through the results of the gas migration tests which are conducted in this study: 1) When the total gas pressure exceeds the initial total axial stress, the total axial stress is always equal to the total gas pressure because specimens shrink in the axial direction with causing the clearance between the end of the specimen and porous metal. By increasing the gas pressure more, gas breakthrough, which defined as a sudden and sharp increase in gas flow rate out of the specimen, occurs. Therefore gas migration mechanism of compacted bentonite ore is basically identical to that of compacted powdered bentonite. 2) Hydraulic conductivity measured after the gas breakthrough is somewhat smaller than that measured before the gas migration test. This fact means that it might be possible to neglect decline of the function of bentonite as engineered barrier caused by the gas breakthrough. These characteristics of compacted bentonite ore are identical to those of

  17. High-pressure microhydraulic actuator

    Mosier, Bruce P [San Francisco, CA; Crocker, Robert W [Fremont, CA; Patel, Kamlesh D [Dublin, CA

    2008-06-10

    Electrokinetic ("EK") pumps convert electric to mechanical work when an electric field exerts a body force on ions in the Debye layer of a fluid in a packed bed, which then viscously drags the fluid. Porous silica and polymer monoliths (2.5-mm O.D., and 6-mm to 10-mm length) having a narrow pore size distribution have been developed that are capable of large pressure gradients (250-500 psi/mm) when large electric fields (1000-1500 V/cm) are applied. Flowrates up to 200 .mu.L/min and delivery pressures up to 1200 psi have been demonstrated. Forces up to 5 lb-force at 0.5 mm/s (12 mW) have been demonstrated with a battery-powered DC-DC converter. Hydraulic power of 17 mW (900 psi@ 180 uL/min) has been demonstrated with wall-powered high voltage supplies. The force and stroke delivered by an actuator utilizing an EK pump are shown to exceed the output of solenoids, stepper motors, and DC motors of similar size, despite the low thermodynamic efficiency.

  18. Nuclear magnetic resonance studies at high pressures

    Jonas, J.

    1980-01-01

    Recent advances in the field of NMR spectroscopy at high pressure are reviewed. After a brief discussion of two novel experimental techniques, the main focus of this review is on several specific studies which illustrate the versatility and power of this high pressure field. Experimental aspects of NMR measurements at high pressure and high temperature and the techniques for the high resolution NMR spectroscopy at high pressure are discussed. An overview of NMR studies of the dynamic structure of simple polyatomic liquids and hydrogen bonded liquids is followed by a discussion of high resolution spectroscopy at high pressure. Examples of NMR studies of disordered organic solids and polymers conclude the review. (author)

  19. Direct monitoring of wind-induced pressure-pumping on gas transport in soil

    Laemmel, Thomas; Mohr, Manuel; Schindler, Dirk; Schack-Kirchner, Helmer; Maier, Martin

    2017-04-01

    Gas exchange between soil and atmosphere is important for the biogeochemistry of soils and is commonly assumed to be governed by molecular diffusion. Yet a few previous field studies identified other gas transport processes such as wind-induced pressure-pumping to enhance soil-atmosphere fluxes significantly. However, since these wind-induced non-diffusive gas transport processes in soil often occur intermittently, the quantification of their contribution to soil gas emissions is challenging. To quantify the effects of wind-induced pressure-pumping on soil gas transport, we developed a method for in situ monitoring of soil gas transport. The method includes the use of Helium (He) as a tracer gas which was continuously injected into the soil. The resulting He steady-state concentration profile was monitored. Gas transport parameters of the soil were inversely modelled. We used our method during a field campaign in a well-aerated forest soil over three months. During periods of low wind speed, soil gas transport was modelled assuming diffusion as transport process. During periods of high wind speed, the previously steady diffusive He concentration profile showed temporary concentration decreases in the topsoil, indicating an increase of the effective gas transport rate in the topsoil up to 30%. The enhancement of effective topsoil soil gas diffusivity resulted from wind-induced air pressure fluctuations which are referred to as pressure-pumping. These air pressure fluctuations had frequencies between 0.1 and 0.01 Hz and amplitudes up to 10 Pa and occurred at above-canopy wind speeds greater than 5 m s-1. We could show the importance of the enhancement of the gas transport rate in relation with the wind intensity and corresponding air pressure fluctuations characteristics. We directly detected and quantified the pressure-pumping effect on gas transport in soil in a field study for the first time, and could thus validate and underpin the importance of this non

  20. Adsorption of helium gas near Tλ at low pressures

    Kachalin, G.V.; Kryukov, A.P.; Nesterov, S.B.

    1998-01-01

    Cryosorption of helium isotopes ( 4 He and 3 He) on thin argon cryo layers is studied experimentally in the temperature range 4.2-2 K at low pressures. It is shown that the sorption iso stere 4 He is anomalous at temperatures close to be temperature of the phase transition in the bulk of 4 He, T λ . An abrupt pressure change is observed for a 4 He film thickness approximately equal to two monolayers. The experiments on cryosorption of 3 He gas on an argon layer with a 3 He film thickness of approximately one monolayer display monotonous changes in the pressure within the whole temperature range

  1. Controlling hydrophilicity of polymer film by altering gas flow rate in atmospheric-pressure homogeneous plasma

    Kang, Woo Seok; Hur, Min; Lee, Jae-Ok; Song, Young-Hoon

    2014-01-01

    Graphical abstract: - Highlights: • Controlling hydrophilicity of polymer film by varying gas flow rate is proposed in atmospheric-pressure homogeneous plasma treatment. • Without employing additional reactive gas, requiring more plasma power and longer treatment time, hydrophilicity of polyimide films was improved after the low-gas-flow plasma treatment. • The gas flow rate affects the hydrophilic properties of polymer surface by changing the discharge atmosphere in the particular geometry of the reactor developed. • Low-gas-flow induced wettability control suggests effective and economical plasma treatment. - Abstract: This paper reports on controlling the hydrophilicity of polyimide films using atmospheric-pressure homogeneous plasmas by changing only the gas flow rate. The gas flow changed the discharge atmosphere by mixing the feed gas with ambient air because of the particular geometry of the reactor developed for the study, and a low gas flow rate was found to be favorable because it generated abundant nitrogen or oxygen species that served as sources of hydrophilic functional groups over the polymer surface. After low-gas-flow plasma treatment, the polymer surface exhibited hydrophilic characteristics with increased surface roughness and enhanced chemical properties owing to the surface addition of functional groups. Without adding any reactive gases or requiring high plasma power and longer treatment time, the developed reactor with low-gas-flow operation offered effective and economical wettability control of polyimide films

  2. DASH diet to lower high blood pressure

    ... patientinstructions/000770.htm DASH diet to lower high blood pressure To use the sharing features on this page, ... Hypertension. The DASH diet can help lower high blood pressure and cholesterol and other fats in your blood. ...

  3. What Is High Blood Pressure Medicine?

    ... a medicine calendar. • Set a reminder on your smartphone. What types of medicine may be prescribed? One ... High Blood Pressure Medicine? What are their side effects? For many people, high blood pressure medicine can ...

  4. High blood pressure - medicine-related

    Drug-induced hypertension is high blood pressure caused by using a chemical substance or medicine. ... of the arteries There are several types of high blood pressure : Essential hypertension has no cause that can be ...

  5. High blood pressure and eye disease

    ... this page: //medlineplus.gov/ency/article/000999.htm High blood pressure and eye disease To use the sharing features on this page, please enable JavaScript. High blood pressure can damage blood vessels in the retina . The ...

  6. Gas pressure in bubble attached to tube circular outlet

    Salonen, A; Gay, Cyprien; Maestro, A; Drenckhan, W; Rio, Emmanuelle

    2016-01-01

    In the present Supplementary notes to our work ``Arresting bubble coarsening: A two-bubble experiment to investigate grain growth in presence of surface elasticity'' (accepted in EPL), we derive the expression of the gas pressure inside a bubble located above and attached to the circular outlet of a vertical tube.

  7. Atmospheric pressure helium afterglow discharge detector for gas chromatography

    Rice, Gary; D'Silva, Arthur P.; Fassel, Velmer A.

    1986-05-06

    An apparatus for providing a simple, low-frequency electrodeless discharge system for atmospheric pressure afterglow generation. A single quartz tube through which a gas mixture is passed is extended beyond a concentric electrode positioned thereabout. A grounding rod is placed directly above the tube outlet to permit optical viewing of the discharge between the electrodes.

  8. Development of accurate dimethyl sulphide primary standard gas mixtures at low nanomole per mole levels in high-pressure aluminium cylinders for ambient measurements

    Eon Kim, Mi; Kang, Ji Hwan; Doo Kim, Yong; Lee, Dong Soo; Lee, Sangil

    2018-04-01

    Dimethyl sulphide (DMS) plays an important role in atmospheric chemistry and climate change. Ambient DMS is monitored in a global network and reported at sub-nanomole per mole (nmol/mol) levels. Developing traceable, accurate DMS standards at ambient levels is essential for tracking the long-term trends and understanding the role of DMS in the atmosphere. Gravimetrically prepared gas standards in cylinders are widely used for calibrating instruments. Therefore, a stable primary standard gas mixture (PSM) is required for traceable ambient DMS measurement at remote sites. In this study, to evaluate adsorption loss on the internal surface of the gas cylinder, 6 nmol mol-1 DMS gas mixtures were prepared in three types of aluminium cylinders: a cylinder without a special coating on its internal surface (AL), an Aculife IV  +  III-treated cylinder (AC), and an Experis-treated cylinder (EX). There was little adsorption loss on the EX cylinder, whereas there was substantial adsorption loss on the other two cylinders. The EX cylinder was used to prepare 0.5, 2, 5, and 7 nmol mol-1 DMS PSMs with relative expanded uncertainties of less than 0.4%. The DMS PSMs were analytically verified and consistent within a relative expanded uncertainty of less than 1.2%. The long-term stability of the 7 nmol mol-1 DMS PSM was assessed by tracking the ratio of the DMS to the internal standard, benzene. The results showed that the DMS was stable for about seven months and it was projected to be stable for more than 60 months within a relative expanded uncertainty of 3%.

  9. Commentary on differential-pressure measurements at high reference pressures

    Hasbrouck, R.T.; Noyes, R.P.

    1981-01-01

    Some practical approaches to the difficult problems in calibrating and implementing differential-pressure measurements are discussed. The data presented were gathered several years ago in separate investigations. An attempt is made to compare the results of these investigations to the common mode concept as described by Peter K. Stein in his publication, The Measurement of Differential Quantities - Problems and Approaches. Although one of these investigations involed a 10,000- to 20,000-psi reference-pressure gas measured at an ambient temperature and the other a classic /sup Δ/P flow measurement of cryogenic temperature, the problems encountered were the same

  10. Cryogenic and Gas System Piping Pressure Tests (A Collection of PT Permits)

    Rucinski, Russell A.

    2002-01-01

    This engineering note is a collection of pipe pressure testing documents for various sections of piping for the D-Zero cryogenic and gas systems. High pressure piping must conform with FESHM chapter 5031.1. Piping lines with ratings greater than 150 psig have a pressure test done before the line is put into service. These tests require the use of pressure testing permits. It is my intent that all pressure piping over which my group has responsibility conforms to the chapter. This includes the liquid argon and liquid helium and liquid nitrogen cryogenic systems. It also includes the high pressure air system, and the high pressure gas piping of the WAMUS and MDT gas systems. This is not an all inclusive compilation of test documentation. Some piping tests have their own engineering note. Other piping section test permits are included in separate safety review documents. So if it isn't here, that doesn't mean that it wasn't tested. D-Zero has a back up air supply system to add reliability to air compressor systems. The system includes high pressure piping which requires a review per FESHM 5031.1. The core system consists of a pressurized tube trailer, supply piping into the building and a pressure reducing regulator tied into the air compressor system discharge piping. Air flows from the trailer if the air compressor discharge pressure drops below the regulator setting. The tube trailer is periodically pumped back up to approximately 2000 psig. A high pressure compressor housed in one of the exterior buildings is used for that purpose. The system was previously documented, tested and reviewed for Run I, except for the recent addition of piping to and from the high pressure compressor. The following documents are provided for review of the system: (1) Instrument air flow schematic, drg. 3740.000-ME-273995 rev. H; (2) Component list for air system; (3) Pressure testing permit for high pressure piping; (4) Documentation from Run I contained in D-Zero Engineering note

  11. High pressure metrology for industrial applications

    Sabuga, Wladimir; Rabault, Thierry; Wüthrich, Christian; Pražák, Dominik; Chytil, Miroslav; Brouwer, Ludwig; Ahmed, Ahmed D. S.

    2017-12-01

    To meet the needs of industries using high pressure technologies, in traceable, reliable and accurate pressure measurements, a joint research project of the five national metrology institutes and the university was carried out within the European Metrology Research Programme. In particular, finite element methods were established for stress-strain analysis of elastic and nonlinear elastic-plastic deformation, as well as of contact processes in pressure-measuring piston-cylinder assemblies, and high-pressure components at pressures above 1 GPa. New pressure measuring multipliers were developed and characterised, which allow realisation of the pressure scale up to 1.6 GPa. This characterisation is based on research including measurements of material elastic constants by the resonant ultrasound spectroscopy, hardness of materials of high pressure components, density and viscosity of pressure transmitting liquids at pressures up to 1.4 GPa and dimensional measurements on piston-cylinders. A 1.6 GPa pressure system was created for operation of the 1.6 GPa multipliers and calibration of high pressure transducers. A transfer standard for 1.5 GPa pressure range, based on pressure transducers, was built and tested. Herewith, the project developed the capability of measuring pressures up to 1.6 GPa, from which industrial users can calibrate their pressure measurement devices for accurate measurements up to 1.5 GPa.

  12. Culturable prokaryotic diversity of deep, gas hydrate sediments: first use of a continuous high-pressure, anaerobic, enrichment and isolation system for subseafloor sediments (DeepIsoBUG)

    Parkes, R John; Sellek, Gerard; Webster, Gordon; Martin, Derek; Anders, Erik; Weightman, Andrew J; Sass, Henrik

    2009-01-01

    Deep subseafloor sediments may contain depressurization-sensitive, anaerobic, piezophilic prokaryotes. To test this we developed the DeepIsoBUG system, which when coupled with the HYACINTH pressure-retaining drilling and core storage system and the PRESS core cutting and processing system, enables deep sediments to be handled without depressurization (up to 25 MPa) and anaerobic prokaryotic enrichments and isolation to be conducted up to 100 MPa. Here, we describe the system and its first use...

  13. Gas permeation measurement under defined humidity via constant volume/variable pressure method

    Jan Roman, Pauls

    2012-02-01

    Many industrial gas separations in which membrane processes are feasible entail high water vapour contents, as in CO 2-separation from flue gas in carbon capture and storage (CCS), or in biogas/natural gas processing. Studying the effect of water vapour on gas permeability through polymeric membranes is essential for materials design and optimization of these membrane applications. In particular, for amine-based CO 2 selective facilitated transport membranes, water vapour is necessary for carrier-complex formation (Matsuyama et al., 1996; Deng and Hägg, 2010; Liu et al., 2008; Shishatskiy et al., 2010) [1-4]. But also conventional polymeric membrane materials can vary their permeation behaviour due to water-induced swelling (Potreck, 2009) [5]. Here we describe a simple approach to gas permeability measurement in the presence of water vapour, in the form of a modified constant volume/variable pressure method (pressure increase method). © 2011 Elsevier B.V.

  14. Total dissolved gas, barometric pressure, and water temperature data, lower Columbia River, Oregon and Washington, 1996

    Tanner, Dwight Q.; Harrison, Howard E.; McKenzie, Stuart W.

    1996-01-01

    Increased levels of total dissolved gas pressure can cause gas-bubble trauma in fish downstream from dams on the Columbia River. In cooperation with the U.S. Army Corps of Engineers, the U.S. Geological Survey collected data on total dissolved gas pressure, barometric pressure, water temperature, and dissolved oxygen pressure at 11 stations on the lower Columbia River from the John Day forebay (river mile 215.6) to Wauna Mill (river mile 41.9) from March to September 1996. Methods of data collection, review, and processing are described in this report. Summaries of daily minimum, maximum, and mean hourly values are presented for total dissolved gas pressure, barometric pressure, and water temperature. Hourly values for these parameters are presented graphically. Dissolved oxygen data are not presented in this report because the quality-control data show that the data have poor precision and high bias. Suggested changes to monitoring procedures for future studies include (1) improved calibration procedures for total dissolved gas and dissolved oxygen to better define accuracy at elevated levels of supersaturation and (2) equipping dissolved oxygen sensors with stirrers because river velocities at the shoreline monitoring stations probably cannot maintain an adequate flow of water across the membrane surface of the dissolved oxygen sensor.

  15. Computer simulations of high pressure systems

    Wilkins, M.L.

    1977-01-01

    Numerical methods are capable of solving very difficult problems in solid mechanics and gas dynamics. In the design of engineering structures, critical decisions are possible if the behavior of materials is correctly described in the calculation. Problems of current interest require accurate analysis of stress-strain fields that range from very small elastic displacement to very large plastic deformation. A finite difference program is described that solves problems over this range and in two and three space-dimensions and time. A series of experiments and calculations serve to establish confidence in the plasticity formulation. The program can be used to design high pressure systems where plastic flow occurs. The purpose is to identify material properties, strength and elongation, that meet the operating requirements. An objective is to be able to perform destructive testing on a computer rather than on the engineering structure. Examples of topical interest are given

  16. Urea and deuterium mixtures at high pressures

    Donnelly, M., E-mail: m.donnelly-2@sms.ed.ac.uk; Husband, R. J.; Frantzana, A. D.; Loveday, J. S. [Centre for Science at Extreme Conditions and School of Physics and Astronomy, The University of Edinburgh, Erskine Williamson Building, Peter Guthrie Tait Road, The King’s Buildings, Edinburgh EH9 3FD (United Kingdom); Bull, C. L. [ISIS, Rutherford Appleton Laboratory, Oxford Harwell, Didcot OX11 0QX (United Kingdom); Klotz, S. [IMPMC, CNRS UMR 7590, Université P and M Curie, 4 Place Jussieu, 75252 Paris (France)

    2015-03-28

    Urea, like many network forming compounds, has long been known to form inclusion (guest-host) compounds. Unlike other network formers like water, urea is not known to form such inclusion compounds with simple molecules like hydrogen. Such compounds if they existed would be of interest both for the fundamental insight they provide into molecular bonding and as potential gas storage systems. Urea has been proposed as a potential hydrogen storage material [T. A. Strobel et al., Chem. Phys. Lett. 478, 97 (2009)]. Here, we report the results of high-pressure neutron diffraction studies of urea and D{sub 2} mixtures that indicate no inclusion compound forms up to 3.7 GPa.

  17. Vapour Pressure and Adiabatic Cooling from Champagne: Slow-Motion Visualization of Gas Thermodynamics

    Vollmer, Michael; Mollmann, Klaus-Peter

    2012-01-01

    The recent introduction of inexpensive high-speed cameras offers a new experimental approach to many simple but fast-occurring events in physics. In this paper, the authors present two simple demonstration experiments recorded with high-speed cameras in the fields of gas dynamics and thermal physics. The experiments feature vapour pressure effects…

  18. High-Pressure Lightweight Thrusters

    Holmes, Richard; McKechnie, Timothy; Shchetkovskiy, Anatoliy; Smirnov, Alexander

    2013-01-01

    Returning samples of Martian soil and rock to Earth is of great interest to scientists. There were numerous studies to evaluate Mars Sample Return (MSR) mission architectures, technology needs, development plans, and requirements. The largest propulsion risk element of the MSR mission is the Mars Ascent Vehicle (MAV). Along with the baseline solid-propellant vehicle, liquid propellants have been considered. Similar requirements apply to other lander ascent engines and reaction control systems. The performance of current state-ofthe- art liquid propellant engines can be significantly improved by increasing both combustion temperature and pressure. Pump-fed propulsion is suggested for a single-stage bipropellant MAV. Achieving a 90-percent stage propellant fraction is thought to be possible on a 100-kg scale, including sufficient thrust for lifting off Mars. To increase the performance of storable bipropellant rocket engines, a high-pressure, lightweight combustion chamber was designed. Iridium liner electrodeposition was investigated on complex-shaped thrust chamber mandrels. Dense, uniform iridium liners were produced on chamber and cylindrical mandrels. Carbon/carbon composite (C/C) structures were braided over iridium-lined mandrels and densified by chemical vapor infiltration. Niobium deposition was evaluated for forming a metallic attachment flange on the carbon/ carbon structure. The new thrust chamber was designed to exceed state-of-the-art performance, and was manufactured with an 83-percent weight savings. High-performance C/Cs possess a unique set of properties that make them desirable materials for high-temperature structures used in rocket propulsion components, hypersonic vehicles, and aircraft brakes. In particular, more attention is focused on 3D braided C/Cs due to their mesh-work structure. Research on the properties of C/Cs has shown that the strength of composites is strongly affected by the fiber-matrix interfacial bonding, and that weakening

  19. Warm Pressurant Gas Effects on the Static Bubble Point Pressure for Cryogenic LADs

    Hartwig, Jason W.; McQuillen, John; Chato, Daniel J.

    2014-01-01

    This paper presents experimental results for the liquid hydrogen and nitrogen bubble point tests using warm pressurant gases conducted at the NASA Glenn Research Center. The purpose of the test series was to determine the effect of elevating the temperature of the pressurant gas on the performance of a liquid acquisition device (LAD). Three fine mesh screen samples (325x2300, 450x2750, 510x3600) were tested in liquid hydrogen and liquid nitrogen using cold and warm non-condensable (gaseous helium) and condensable (gaseous hydrogen or nitrogen) pressurization schemes. Gases were conditioned from 0K - 90K above the liquid temperature. Results clearly indicate degradation in bubble point pressure using warm gas, with a greater reduction in performance using condensable over non-condensable pressurization. Degradation in the bubble point pressure is inversely proportional to screen porosity, as the coarsest mesh demonstrated the highest degradation. Results here have implication on both pressurization and LAD system design for all future cryogenic propulsion systems. A detailed review of historical heated gas tests is also presented for comparison to current results.

  20. Evaluation of high temperature pressure sensors

    Choi, In-Mook; Woo, Sam-Yong; Kim, Yong-Kyu

    2011-01-01

    It is becoming more important to measure the pressure in high temperature environments in many industrial fields. However, there is no appropriate evaluation system and compensation method for high temperature pressure sensors since most pressure standards have been established at room temperature. In order to evaluate the high temperature pressure sensors used in harsh environments, such as high temperatures above 250 deg. C, a specialized system has been constructed and evaluated in this study. The pressure standard established at room temperature is connected to a high temperature pressure sensor through a chiller. The sensor can be evaluated in conditions of changing standard pressures at constant temperatures and of changing temperatures at constant pressures. According to the evaluation conditions, two compensation methods are proposed to eliminate deviation due to sensitivity changes and nonlinear behaviors except thermal hysteresis.

  1. Properties of the quantum Hall effect of the two-dimensional electron gas in the n-inversion layer of InSb grain boundaries under high hydrostatic pressure

    Kraak, W.; Nachtwei, G.; Herrmann, R.; Glinski, M.

    1988-01-01

    The magnetotransport properties of the two-dimensional electron gas (2DEG) confined at the interface of the grain boundary in p-type InSb bicrystals are investigated. Under high hydrostatic pressures and in high magnetic fields (B > 5 T) the integral quantum Hall regime is reached, where the Hall resistance ρ xy is quantized to h/e 2 j (j is the number of filled Landau levels of the 2DEG). In this high field regime detailed measurements are given of the resistivity ρ xx and the Hall resistance ρ xy as function of temperature T and current density j x . An unexpected high accuracy of the Hall resistance ρ xy at magnetic field values close to a fully occupied Landau level is found, despite the high value of the diagonal resistivity ρ xx . At high current densities j x in the quantum Hall regime (j = 1) a sudden breakdown of the quantized resistance value associated with a jump-like switching to the next lower quantized value h/2e 2 is observed. A simple macroscopic picture is proposed to account for these novel transport properties associated with the quantum Hall effect. (author)

  2. High pressure apparatus for hydrogen isotopes to pressures of 345 MPa (50,000 psi) and temperatures of 12000C

    Lakner, J.F.

    1977-01-01

    A functional new high pressure, high temperature apparatus for hydrogen isotopes uses an internally heated pressure vessel within a larger pressure vessel. The pressure capability is 345 MPa (50 K psi) at 1200 0 C. The gas pressure inside the internal vessel is balanced with gas pressure in the external vessel. The internal vessel is attached to a closure and is also the sample container. Our design allows thin-walled internal vessel construction and keeps the sample from ''seeing'' the furnace or other extraneous environment. The sample container together with the closure can easily be removed and loaded under argon using standard glove-box procedures. The small volume of the inner vessel permits small volumes of gas to be used, thus increasing the sensitivity during pressure-volume-temperature (PVT) work

  3. The pressure exerted by a confined ideal gas

    Pang Hai; Dai Wusheng; Xie Mi

    2011-01-01

    In this paper, we study the pressure exerted by a confined ideal gas on the container boundary and we introduce a surface force in gases. First, the general expression for the local surface pressure tensor is obtained. We find, by examples, that the pressure vanishes at the edges of a box, peaks at the middle of the surface and its magnitude for different statistics satisfies p Fermi > p classical > p Bose on every boundary point. Then, the relation between the surface pressure tensor and generalized forces is studied. Based on the relation, we find that a confined ideal gas can exert forces whose effect is to reduce the total surface area of the boundary of an incompressible object. The force provides mechanisms for several mechanical effects. (1) The force contributes to the adhesion of two thin films in contact with each other. We derive an expression for the adhesion force between two square sheets, estimate its magnitude, and also give a method for distinguishing it from other adhesion forces. (2) The force can lead to the recoiling of a DNA-like column. We study the recoiling process using a simple model and find a deviation from the result given in the thermodynamic limit, which is in accordance with experiments. (3) An open container immersed in a gas can be compressed by this force like the Casimir effect. We discuss the effect for various geometries. (paper)

  4. Low pressure storage of natural gas on activated carbon

    Wegrzyn, J.; Wiesmann, H.; Lee, T.

    The introduction of natural gas to the transportation energy sector offers the possibility of displacing imported oil with an indigenous fuel. The barrier to the acceptance of natural gas vehicles (NGV) is the limited driving range due to the technical difficulties of on-board storage of a gaseous fuel. In spite of this barrier, compressed natural gas (CNG) vehicles are today being successfully introduced into the market place. The purpose of this work is to demonstrate an adsorbent natural gas (ANG) storage system as a viable alternative to CNG storage. It can be argued that low pressure ANG has reached near parity with CNG, since the storage capacity of CNG (2400 psi) is rated at 190 V/V, while low pressure ANG (500 psi) has reached storage capacities of 180 V/V in the laboratory. A program, which extends laboratory results to a full-scale vehicle test, is necessary before ANG technology will receive widespread acceptance. The objective of this program is to field test a 150 V/V ANG vehicle in FY 1994. As a start towards this goal, carbon adsorbents have been screened by Brookhaven for their potential use in a natural gas storage system. This paper reports on one such carbon, trade name Maxsorb, manufactured by Kansai Coke under an Amoco license.

  5. Measuring and understanding total dissolved gas pressure in groundwater

    Ryan, C.; Roy, J. W.; Randell, J.; Castellon, L.

    2009-05-01

    Since dissolved gases are important to a number of aspects of groundwater (e.g. age dating, active or passive bioremediation, greenhouse gas fluxes, understanding biogeochemical processes involving gases, assessing potential impacts of coal bed methane activities), accurate concentration measurements, and understanding of their subsurface behaviour are important. Researchers have recently begun using total dissolved gas pressure (TGP) sensor measurements, more commonly applied for surface water monitoring, in concert with gas composition analyses to estimate more accurate groundwater gas concentrations in wells. We have used hydraulic packers to isolate the well screens where TDP is being measured, and pump tests to indicate that in-well degassing may reduce TDG below background groundwater levels. Thus, in gas-charged groundwater zones, TGPs can be considerably underestimated in the absence of pumping or screen isolation. We have also observed transient decreased TGPs during pumping that are thought to result from ebullition induced when the water table or water level in the well is lowered below a critical hydrostatic pressure.

  6. A Numerical Investigation on the Effect of Gas Pressure on the Water Saturation of Compacted Bentonite-Sand Samples

    Jiang-Feng Liu

    2017-01-01

    Full Text Available In deep geological disposal for high-level radioactive waste, the generated gas can potentially affect the sealing ability of bentonite buffers. There is a competition between water and gas: the former provides sealing by swelling bentonite, and the latter attempts to desaturate the bentonite buffer. Thus, this study focused on numerically modelling the coupling effects of water and gas on the water saturation and sealing efficiency of compacted bentonite-sand samples. Different gas pressures were applied to the top surface of an upper sample, whereas the water pressure on the bottom side of the lower sample was maintained at 4 MPa. The results indicated that gas pressure did not significantly affect the saturation of the bentonite-sand sample until 2 MPa. At 2 MPa, the degree of water saturation of the upper sample was close to 1.0. As the gas pressure increased, this influence was more apparent. When the gas pressure was 6 MPa or higher, it was difficult for the upper sample to become fully saturated. Additionally, the lower sample was desaturated due to the high gas pressure. This indicated that gas pressure played an important role in the water saturation process and can affect the sealing efficiency of bentonite-based buffer materials.

  7. Development of local heat transfer and pressure drop models for pebble bed high temperature gas-cooled reactor cores - HTR2008-58296

    McLaughlin, B.; Worsley, M.; Stainsby, R.; Grief, A.; Dennier, A.; Macintosh, S.; Van Heerden, E.

    2008-01-01

    This paper describes pressure drop and heat transfer coefficient predictions for a typical coolant flow within the core of a pebble bed reactor (PBR) by examining a representative group of pebbles remote from the reflector region. The three- dimensional steady state flow and heat transfer predictions utilized in this work are obtained from a computational fluid dynamics (CFD) model created in the commercial software ANSYS FLUENT TM . This work utilizes three RANS turbulence models and the Chilton-Colburn analogy for heat transfer. A methodology is included in this paper for creating a quality unstructured mesh with prismatic surface layers on a random arrangement of touching pebbles. The results of the model are validated by comparing them with the correlations of the German KTA rules for a PBR. (authors)

  8. Smart pigging - a contribution to the monitoring of the anti-corrosion protection systems on pig-inspectable high-pressure gas transmission pipelines; Intelligente Molchung - ein Beitrag zur Ueberwachung des Korrosionsschutzes molchbarer Gashochdruckleitungen

    Ahlers, M.; Schoeneich, H.G. [Ruhrgas AG, Essen (Germany). Kompetenz-Center Korrosionsschutz

    2000-07-01

    High-pressure gas transmission pipelines installed underground are exposed to the risk of external corrosion. The application of a sheathing (passive protection) and, since the 1950s, the installation of a cathodic anti-corrosion protection system, provide pipelines with effective protection against this danger. In the past, the effectiveness of cathodic anti-corrosion protection systems was verified by means of intensive measuring and re-measuring cycles. It became apparent that points of damage to the sheathing were protected in the majority of cases against corrosion by the cathodic anti-corrosion protection system. There are, however, particular design circumstances and ambient conditions which can make this anti-corrosion protection concept either partially or completely ineffective. The use of smart pigs for inspection of pig-inspectable gas transmission pipelines makes it possible to detect and eliminate these weak points. (orig.) [German] Gashochdruckleitungen, die im Erdboden verlegt werden, unterliegen einer Gefaehrdung durch Aussenkorrosion. Durch eine Umhuellung (passiver Schutz) und seit den 50er Jahren durch die Einrichtung des kathodischen Korrosionsschutzes (aktiver Schutz) sind die Leitungen gegen diese Gefaehrdung wirkungsvoll geschuetzt. In der Vergangenheit wurde die Ueberpruefung der Wirksamkeit des kathodischen Korrosionsschutzes durch Intensivmessungen und Nachmessungen sichergestellt. Dabei zeigte sich, dass in der ueberwiegenden Zahl Umhuellungsbeschaedigungen durch den kathodischen Korrosionsschutz gegen Korrosion geschuetzt sind. Es gibt jedoch besondere konstruktive oder Umgebungsbedingungen, die dieses Korrosionsschuzkonzept teilweise oder vollstaendig unwirksam werden lassen. Mit dem Einsatz von intelligenten Molchen zur Inspektion molchbarer Gastransportleitungen koennen diese Schwachstellen erkannt und beseitigt werden. (orig.)

  9. Effect of hydrostatic pressure on gas solubilization in micelles.

    Meng, Bin; Ashbaugh, Henry S

    2015-03-24

    Molecular dynamics simulations of anionic sodium decylsulfate and nonionic pentaethylene glycol monodecyl ether micelles in water have been performed to examine the impact of hydrostatic pressure on argon solubilization as a function of pressure. The potential-of-mean force between the micelles and argon demonstrates that nonpolar gases are attracted to the interiors of both micelles. The affinity of argon for micelle interiors, however, decreases with increasing pressure as a result of the comparatively higher molar volume of argon inside assemblies. We evaluate solubility enhancement coefficients, which describe the drop in the solute chemical potential as a function of the micellized surfactant concentration, to quantify the impact of micellization on gas solubilization. While argon is similarly attracted to the hydrophobic cores of both micelles, the gas is more effectively sequestered within nonionic micelles compared with anionic micelles as a result of salting out by charged head groups and accompanying counterions. The solubility enhancement coefficients of both micelles decrease with increasing pressure, reflecting the changing forces observed in the potentials-of-mean force. An analytical liquid drop model is proposed to describe the pressure dependence of argon solubilization within micelles that captures the simulation solubility enhancement coefficients after fitting an effective micelle radius for each surfactant.

  10. HIGH BLOOD PRESSURE: DOES THIS CONCERN ME?

    2007-01-01

    To find out, the Medical Service's nurses are organising A HIGH BLOOD PRESSURE SCREENING AND PREVENTION CAMPAIGN from Monday, 26th to Thursday, 29th March 2007 at the Infirmary - Building 57 - ground floor A blood pressure test, advice, information and, if necessary, referral for specialist medical treatment will be offered to any person working on the CERN site. High blood pressure is a silent threat to health. So come and get your blood pressure checked.

  11. HIGH BLOOD PRESSURE: DOES THIS CONCERN ME?

    2007-01-01

    To find out, the Medical Service's nurses are organising A HIGH BLOOD PRESSURE SCREENING AND PREVENTION CAMPAIGN from Monday, 26th to Thursday, 29th March 2007 at the Infirmary - Building 57 - ground floor A blood pressure test, advice, information and, if necessary, referral for specialist medical treatment will be offered to any person working on the CERN site. High blood pressure is a stealth threat to health. So come and get your blood pressure checked.

  12. Calculation of propellant gas pressure by simple extended corresponding state principle

    Bin Xu; San-jiu Ying; Xin Liao

    2016-01-01

    The virial equation can well describe gas state at high temperature and pressure, but the difficulties in virial coefficient calculation limit the use of virial equation. Simple extended corresponding state principle (SE-CSP) is introduced in virial equation. Based on a corresponding state equation, including three characteristic parameters, an extended parameter is introduced to describe the second virial coefficient expressions of main products of propellant gas. The modified SE-CSP second ...

  13. High-pressure test loop design and application

    Burnette, R.D.; Graves, J.N.; Blair, P.G.; Baldwin, N.L.

    1980-07-01

    A high-pressure test loop (HPTL) has been constructed for the purpose of performing a number of chemistry experiments at simulated HTGR conditions of temperature, pressure, flow, and impurity content. The HPTL can be used to develop, modify, and verify computer codes for a variety of chemical processes involving gas phase transport in the reactor. Processes such as graphite oxidation, fission product transport, fuel reactions, purification systems, and dust entrainment can be studied at high pressure, which would largely eliminate difficulties in correlating existing laboratory data and reactor conditions

  14. High pressure effect for high-Tc superconductors

    Takahashi, Hiroki; Tomita, Takahiro

    2011-01-01

    A number of experimental and theoretical studies have been performed to understand the mechanism of high-T c superconductivity and to enhance T c . High-pressure techniques have played a very important role for these studies. In this paper, the high-pressure techniques and physical properties of high-T c superconductor under high pressure are presented. (author)

  15. Experimental investigation of gas heating and dissociation in a microwave plasma torch at atmospheric pressure

    Su, Liu; Kumar, Rajneesh; Ogungbesan, Babajide; Sassi, Mohamed

    2014-01-01

    Highlights: • Atmospheric-pressure microwave plasma torch. • Gas heating and dissociation. • Parametric studies of plasma operating conditions. • Local thermal equilibrium plasma. - Abstract: Experimental investigations are made to understand gas heating and dissociation in a microwave (MW) plasma torch at atmospheric pressure. The MW induced plasma torch operates at 2.45 GHz frequency and up to 2 kW power. Three different gas mixtures are injected in the form of axial flow and swirl flow in a quartz tube plasma torch to experimentally investigate the MW plasma to gas energy transfer. Air–argon, air–air and air–nitrogen plasmas are formed and their operational ranges are determined in terms of gas flow rates and MW power. Visual observations, optical emission spectroscopy and K-type thermocouple measurements are used to characterize the plasma. The study reveals that the plasma structure is highly dependent on the carrier gas type, gas flow rate, and MW power. However, the plasma gas temperature is shown not to vary much with these parameters. Further spectral and analytical analysis show that the plasma is in thermal equilibrium and presents very good energy coupling between the microwave power and gas heating and dissociation. The MW plasma torch outlet temperature is also measured and found to be suitable for many thermal heating and chemical dissociation applications

  16. CNG transport by ship with FRP pressure vessels access to east coast gas

    Campbell, S. [Trans Ocean Gas Inc., St. John' s, NL (Canada)

    2005-07-01

    This paper discussed the Trans Ocean Gas (TOG) method for transporting compressed natural gas (CNG). CNG transportation offers an alternative method for transporting stranded natural gas to existing markets and for creating new natural gas markets that are not feasible for liquefied natural gas (LNG) or pipelines. Trans Ocean Gas Inc. (TOG) modified an existing fibre reinforced plastic (FRP) pressure vessel technology to safely store CNG on a ship. The newly developed containment system has proven to overcome all the deficiencies of steel-based systems. TOG patented the containment system and will license its use to owners of stranded gas and shipping service providers around the world. The CNG systems will be built and assembled throughout facilities in Atlantic Canada. FRP pressure vessels have been proven safe and reliable through critical applications in the national defense, aerospace, and natural gas vehicle industries. They are light-weight, highly reliable, have very safe failure modes, are corrosion resistant, and have excellent low temperature characteristics. Under TOG's scheme, natural gas can be stored at two thirds the density of LNG without costly processing. TOG's proposed design and testing of a CNG system was reviewed in detail. figs.

  17. Low Pressure Storage of Natural Gas for Vehicular Applications

    Tim Burchell; Mike Rogers

    2000-01-01

    Natural gas is an attractive fuel for vehicles because it is a relatively clean-burning fuel compared with gasoline. Moreover, methane can be stored in the physically adsorbed state[at a pressure of 3.5 MPa (500 psi)] at energy densities comparable to methane compressed at 24.8 MPa (3600 psi). Here we report the development of natural gas storage monoliths[1]. The monolith manufacture and activation methods are reported along with pore structure characterization data. The storage capacities of these monoliths are measured gravimetrically at a pressure of 3.5 MPa (500 psi) and ambient temperature, and storage capacities of and gt;150 V/V have been demonstrated and are reported

  18. The performance of atmospheric pressure gas chromatography-tandem mass spectrometry compared to gas chromatography-high resolution mass spectrometry for the analysis of polychlorinated dioxins and polychlorinated biphenyls in food and feed samples.

    Ten Dam, Guillaume; Pussente, Igor Cabreira; Scholl, Georges; Eppe, Gauthier; Schaechtele, Alexander; van Leeuwen, Stefan

    2016-12-16

    Recently, gas chromatography tandem mass spectrometry (GC-MS/MS) has been added in European Union (EU) legislation as an alternative to magnetic sector high resolution mass spectrometry (HRMS) for the analysis of dioxins and dioxin like polychlorinated biphenyls (dl-PCB) in food and feed. In this study the performance of APGC-MS/MS compared to GC-HRMS is investigated and compared with EU legislation. The study includes the legislative parameters, relative intermediate precision standard deviation (S Rw ,rel), trueness, sensitivity, linear range and ion ratio tolerance. In addition, over 200 real samples of large variety and spanning several orders of magnitude in concentration were analyzed by both techniques and the selectivity was evaluated by comparing chromatograms. The S Rw ,rel and trueness were evaluated using (in-house) reference samples and fulfill to EU legislation, though the S Rw ,rel was better with GC-HRMS. The sensitivity was considerably better than of GC-HRMS while the linear range was similar. Ion ratios were mostly within the tolerable range of ±15%. A (temporary unresolved) systematic deviation in ion ratio was observed for several congeners, yet this did not lead to exceeding of the maximum ion ratio limits. The APGC-MS/MS results for the non-dioxin-like-PCBs (ndl-PCBs) were negatively biased, particularly for PCB138 and 153 in contaminated samples. The selectivity of APGC-MS/MS was lower for several matrices. Particularly for contaminated samples, interfering peaks were observed in the APGC chromatograms of the native compounds (dioxins) and labeled internal standards (PCBs). These can lead to biased results and ultimately to false positive samples. It was concluded that the determination of dioxins and PCBs using APGC-MS/MS meets the requirements set by the European Commission. However, due to generally better selectivity and S Rw ,rel, GC-HRMS is the preferred method for monitoring purposes. Copyright © 2016 Elsevier B.V. All rights

  19. Extremely-high vacuum pressure measurement by laser ionization

    Kokubun, Kiyohide

    1991-01-01

    Laser ionization method has the very high sensitivity for detecting atoms and molecules. Hurst et al. successfully detected a single Cs atom by means of resonance ionization spectroscopy developed by them. Noting this high sensitivity, the authors have attempted to apply the laser ionization method to measure gas pressure, particularly in the range down to extremely high vacuum. At present, hot cathode ionization gauges are used for measuring gas pressure down to ultrahigh vacuum, however, those have a number of disadvantages. The pressure measurement using lasers does not have such disadvantages. The pressure measurement utilizing the laser ionization method is based on the principle that when laser beam is focused through a lens, the amount of atom or molecule ions generated in the focused space region is proportional to gas pressure. In this paper, the experimental results are presented on the nonresonant multiphoton ionization characteristics of various kinds of gases, the ion detection system with high sensitivity and an extremely high vacuum system prepared for the laser ionization experiment. (K.I.)

  20. Pressure pressure-balanced pH sensing system for high temperature and high pressure water

    Tachibana, Koji

    1995-01-01

    As for the pH measurement system for high temperature, high pressure water, there have been the circumstances that first the reference electrodes for monitoring corrosion potential were developed, and subsequently, it was developed for the purpose of maintaining the soundness of metallic materials in high temperature, high pressure water in nuclear power generation. In the process of developing the reference electrodes for high temperature water, it was clarified that the occurrence of stress corrosion cracking in BWRs is closely related to the corrosion potential determined by dissolved oxygen concentration. As the types of pH electrodes, there are metal-hydrogen electrodes, glass electrodes, ZrO 2 diaphragm electrodes and TiO 2 semiconductor electrodes. The principle of pH measurement using ZrO 2 diaphragms is explained. The pH measuring system is composed of YSZ element, pressure-balanced type external reference electrode, pressure balancer and compressed air vessel. The stability and pH response of YSZ elements are reported. (K.I.)

  1. Simulation of high consequence areas for gas pipelines

    Orlando Díaz-Parra

    2018-01-01

    Full Text Available The gas pipeline is used for the transport of natural gas at a great distance. Risks derived from the handling of a combustible material transported under high pressure, by pipelines that pass close to where people live, makes it necessary to adopt prevention, mitigation and control measures to reduce the effect in case of ignition of a gas leak. This work shows the development of a new mathematical model to determine areas of high consequence and their application, using widely available and easy to use software, such as Google Earth and Excel, to determine and visualize the area up to which the level of radiation can affect the integrity of people and buildings. The model takes into account the pressure drop into the gas pipeline from the compression station, the gas leakage rate and possible forms of gas ignition. This development is an alternative to the use of specialized software and highly trained personnel. The simulation is applied to a traced of the Miraflores-Tunja gas pipeline, using a macro developed in Excel to determine the impact area and compare it with the coordinates of the vulnerable areas. The zones where these areas intersect are constituted in high consequence areas and are identified along with the sections of the pipeline that affect them, to provide the operator with a risk analysis tool for the determination and visualization of the gas pipeline and its environment.

  2. Low-pressure gas breakdown in longitudinal combined electric fields

    Lisovskiy, V A; Kharchenko, N D; Yegorenkov, V D

    2010-01-01

    This paper contains the complete experimental and analytical picture of gas breakdown in combined electric fields for arbitrary values of rf and dc fields. To obtain it, we continued the study of the discharge ignition modes in nitrogen with simultaneous application of dc and rf electric fields presented in Lisovskiy et al (2008 J. Phys. D: Appl. Phys. 41 125207). To this end, we studied the effect of rf voltage on dc discharge ignition. When we applied an rf voltage exceeding the one corresponding to the minimum breakdown voltage of a self-sustained rf discharge, the curve of dependence of the dc breakdown voltage of a combined discharge on gas pressure was found to consist of two sections. We got the generalized gas breakdown criterion in the combined field valid for arbitrary values of rf and dc electric fields. The calculation results agree with experimental data satisfactorily.

  3. Pressure-dependent pure- and mixed-gas permeation properties of Nafion®

    Mukaddam, Mohsin Ahmed

    2016-04-20

    The permeation properties of Nafion® at 35 °C are presented for pure gases H2, N2, O2, CH4, CO2, C2H6 and C3H8, as a function of pressure between 2 and 20 atm. The effect of pressure on permeability and selectivity is analyzed to understand two observed phenomena: compression and plasticization. In pure-gas experiments, at increasing feed pressure, compression of the polymer matrix reduced the permeability of low-sorbing penetrants H2, N2, O2, and CH4. In contrast, permeabilities of more soluble penetrants CO2 and C2H6 increased by 18% and 46% respectively, as plasticization effects overcame compression effects. Permeability of C3H8 decreased slightly with increasing pressure up to 4.6 atm as a result of compression, then increased by 3-fold at 9 atm as a result of plasticization associated with high C3H8 solubility. Binary CO2/CH4 (50:50) mixed-gas experiments at total feed pressures up to 36 atm quantified the effect of CO2 plasticization on separation performance. At 10 atm CO2 partial pressure, CH4 permeability increased by 23% relative to its pure-gas value of 0.078 Barrer, while CO2 permeability decreased by 28%. Consequently, CO2/CH4 selectivity decreased to 19, i.e., 42% below its pure-gas value of 32.

  4. Pneumomediastinum following high pressure air injection to the hand.

    Kennedy, J

    2012-02-01

    We present the case of a patient who developed pneumomediastinum after high pressure air injection to the hand. To our knowledge this is the first reported case of pneumomediastinum where the gas injection site was the thenar eminence. Fortunately the patient recovered with conservative management.

  5. Pneumomediastinum following high pressure air injection to the hand.

    Kennedy, J

    2010-04-01

    We present the case of a patient who developed pneumomediastinum after high pressure air injection to the hand. To our knowledge this is the first reported case of pneumomediastinum where the gas injection site was the thenar eminence. Fortunately the patient recovered with conservative management.

  6. Gas density and rail pressure effects on diesel spray growth from a heavy-duty common rail injector

    Klein-Douwel, R.J.H.; Frijters, P.J.M.; Seykens, X.L.J.; Somers, L.M.T.; Baert, R.S.G.

    2009-01-01

    Formation of nonevaporating sprays from diesel fuel injection through a realistic heavy duty multihole common rail injector is studied in a newly developed high-pressure, high-temperature cell, using digital high-speed shadowgraphy at 4500 frames/s. Gas pressure was varied from 13 to 37 bar

  7. Development and design of a UF{sub 6} gas pressure meter for 42 mm pipes

    Peters, E.; Wichers, V.A.

    1995-08-01

    X-ray fluorescence (XRF) has proved to be a feasible method of measuring the pressure of UF{sub 6}-gas for enrichment verification purposes. Complications will arise under extreme conditions, such as high uranium deposit to gas ratios, pipe diameters smaller than 40 mm and pressures less than 100 Pa. This report presents an experimental analysis of the XRF method for design worst case conditions for 42 outer diameter cascade-to-header pipes and the development of a prototype measurement device. This prototype is integrated in the construction of the enrichment verification system. (orig.).

  8. Development and design of a UF6 gas pressure meter for 42 mm pipes

    Peters, E.; Wichers, V.A.

    1995-08-01

    X-ray fluorescence (XRF) has proved to be a feasible method of measuring the pressure of UF 6 -gas for enrichment verification purposes. Complications will arise under extreme conditions, such as high uranium deposit to gas ratios, pipe diameters smaller than 40 mm and pressures less than 100 Pa. This report presents an experimental analysis of the XRF method for design worst case conditions for 42 outer diameter cascade-to-header pipes and the development of a prototype measurement device. This prototype is integrated in the construction of the enrichment verification system. (orig.)

  9. High-current discharge channel contraction in high density gas

    Rutberg, Ph. G.; Bogomaz, A. A.; Pinchuk, M. E.; Budin, A. V.; Leks, A. G.; Pozubenkov, A. A.

    2011-01-01

    Research results for discharges at current amplitudes of 0.5-1.6 MA and current rise rate of ∼10 10 A/s are presented. The discharge is performed in the hydrogen environment at the initial pressure of 5-35 MPa. Initiation is implemented by a wire explosion. The time length of the first half-period of the discharge current is 70-150 μs. Under such conditions, discharge channel contraction is observed; the contraction is followed by soft x-ray radiation. The phenomena are discussed, which are determined by high density of the gas surrounding the discharge channel. These phenomena are increase of the current critical value, where the channel contraction begins and growth of temperature in the axis region of the channel, where the initial density of the gas increases.

  10. Leak detection of SF6 gas pressure vessel safety devices at BARC-TIFR Pelletron accelerator

    Ninawe, N.G.; Sharma, S.C.; Nair, J.P.; Sparrow, H.; Bolar, P.C.; Gudekar, P.V.; Mahapatra, S.; Vishwakarma, R.S.; Ramjilal; Matkar, U.V.; Gore, J.A.; Gupta, A.K.

    2015-01-01

    Pelletron accelerator is in operation since last more than 26 years. To achieve desired voltage gradient SF6 gas of about 20 tons is used to have 75-80 psig pressure in main accelerator tank. During accelerator tank maintenance gas is transferred to four storage tanks, kept in open space in the vicinity of sea. Recently refurbishment and retrofitting of four storage tanks was carried out which includes the installation of new drift space, rupture disc assembly, relief valves and manual valves along with civil and painting work. All components to be installed were tested for high pressure. Helium gas sniffer technique was used to check micro leaks for new joints for all components before installing for storage tanks. Subsequently, the tanks were tested up to 90 psig SF6 gradually in succession. No pressure drop was observed in storage tanks. This work was carried out as per recommendation of the then particle accelerator committee (PASC). (author)

  11. Two dimensional radial gas flows in atmospheric pressure plasma-enhanced chemical vapor deposition

    Kim, Gwihyun; Park, Seran; Shin, Hyunsu; Song, Seungho; Oh, Hoon-Jung; Ko, Dae Hong; Choi, Jung-Il; Baik, Seung Jae

    2017-12-01

    Atmospheric pressure (AP) operation of plasma-enhanced chemical vapor deposition (PECVD) is one of promising concepts for high quality and low cost processing. Atmospheric plasma discharge requires narrow gap configuration, which causes an inherent feature of AP PECVD. Two dimensional radial gas flows in AP PECVD induces radial variation of mass-transport and that of substrate temperature. The opposite trend of these variations would be the key consideration in the development of uniform deposition process. Another inherent feature of AP PECVD is confined plasma discharge, from which volume power density concept is derived as a key parameter for the control of deposition rate. We investigated deposition rate as a function of volume power density, gas flux, source gas partial pressure, hydrogen partial pressure, plasma source frequency, and substrate temperature; and derived a design guideline of deposition tool and process development in terms of deposition rate and uniformity.

  12. High potential recovery -- Gas repressurization

    Madden, M.P.

    1998-05-01

    The objective of this project was to demonstrate that small independent oil producers can use existing gas injection technologies, scaled to their operations, to repressurize petroleum reservoirs and increase their economic oil production. This report gives background information for gas repressurization technologies, the results of workshops held to inform small independent producers about gas repressurization, and the results of four gas repressurization field demonstration projects. Much of the material in this report is based on annual reports (BDM-Oklahoma 1995, BDM-Oklahoma 1996, BDM-Oklahoma 1997), a report describing the results of the workshops (Olsen 1995), and the four final reports for the field demonstration projects which are reproduced in the Appendix. This project was designed to demonstrate that repressurization of reservoirs with gas (natural gas, enriched gas, nitrogen, flue gas, or air) can be used by small independent operators in selected reservoirs to increase production and/or decrease premature abandonment of the resource. The project excluded carbon dioxide because of other DOE-sponsored projects that address carbon dioxide processes directly. Two of the demonstration projects, one using flue gas and the other involving natural gas from a deeper coal zone, were both technical and economic successes. The two major lessons learned from the projects are the importance of (1) adequate infrastructure (piping, wells, compressors, etc.) and (2) adequate planning including testing compatibility between injected gases and fluids, and reservoir gases, fluids, and rocks.

  13. Behavior of a corium jet in high pressure melt ejection from a reactor pressure vessel

    Frid, W.

    1988-04-01

    Discharge of the molten core debris from a pressurized reactor vessel has been recognized as an important accident scenario for pressurized water reactors. Recent high-pressure melt streaming experiments conducted at Sandia National Laboratories, designed to study cavity and containment events related to melt ejection, have resulted in two important observations: (1) Expansion and breakup of the ejected molten jet. (2) Significant aerosol generation during the ejection process. The expansion and breakup of the jet in the experiments are attributed to rapid evolution of the pressurizing gas (nitrogen or hydrogen) dissolved in the melt. It has been concluded that aerosol particles may be formed by condensation of melt vapor and mechanical breakup of the melt and generation. It was also shown that the above stated phenomena are likely to occur in reactor accidents. This report provides results from analytical and experimental investigations on the behavior of a gas supersaturated molten jet expelled from a pressurized vessel. Aero-hydrodynamic stability of liquid jets in gas, stream degassing of molten metals, and gas bubble nucleation in molten metals are relevant problems that are addressed in this work

  14. Investigation of a high pressure oxy-coal process

    Renz, U. [RWTH Aachen Univ. (Germany). Inst. of Heat and Mass Transfer

    2013-07-01

    A study was conducted to investigate the feasibility of an oxy-coal process, which is pressurized to a combustion pressure of 80 bar. At that pressure the water-vapor can be separated economically from the CO{sub 2}/H{sub 2}O flue gases, either by nucleate condensation or by condensation on cooled surfaces in condenser heat exchangers at a temperature of about 300 C. The heat of condensation can be recaptured to preheat the boiler feed water. So the number of economizers is drastically reduced compared to a conventional steam cycle. Another interesting feature of the high pressure oxy-coal process is the fact, that low rank coal with high moisture content can be fired. Such a process at a pressure of about 80 bar is currently investigated by Babcock, USA, as the ThermoEnergy Integrated Power System (TIPS) and will be analyzed in the present paper. A known disadvantage of the oxy-coal processes is the large recirculating flue gas stream to control the combustion temperature, and which need large pipes and heavy recirculation fans. This disadvantage could be avoided if instead of flue gas a part of the condensed water from the condenser heat exchangers is recirculated. Within the present study both types of processes have been simulated and for an electric power output of about 220 MW. Furthermore, results of CFD simulations of a pressurized 250 MW combustor with a single swirl burner and flue gas recirculation will be presented.

  15. High Pressure, High Gradient RF Cavities for Muon Beam Cooling

    Johnson, R P

    2004-01-01

    High intensity, low emittance muon beams are needed for new applications such as muon colliders and neutrino factories based on muon storage rings. Ionization cooling, where muon energy is lost in a low-Z absorber and only the longitudinal component is regenerated using RF cavities, is presently the only known cooling technique that is fast enough to be effective in the short muon lifetime. RF cavities filled with high-pressure hydrogen gas bring two advantages to the ionization technique: the energy absorption and energy regeneration happen simultaneously rather than sequentially, and higher RF gradients and better cavity breakdown behavior are possible than in vacuum due to the Paschen effect. These advantages and some disadvantages and risks will be discussed along with a description of the present and desired RF R&D efforts needed to make accelerators and colliders based on muon beams less futuristic.

  16. Changes in entrapped gas content and hydraulic conductivity with pressure.

    Marinas, Maricris; Roy, James W; Smith, James E

    2013-01-01

    Water table fluctuations continuously introduce entrapped air bubbles into the otherwise saturated capillary fringe and groundwater zone, which reduces the effective (quasi-saturated) hydraulic conductivity, K(quasi), thus impacting groundwater flow, aquifer recharge and solute and contaminant transport. These entrapped gases will be susceptible to compression or expansion with changes in water pressure, as would be expected with water table (and barometric pressure) fluctuations. Here we undertake laboratory experiments using sand-packed columns to quantify the effect of water table changes of up to 250 cm on the entrapped gas content and the quasi-saturated hydraulic conductivity, and discuss our ability to account for these mechanisms in ground water models. Initial entrapped air contents ranged between 0.080 and 0.158, with a corresponding K(quasi) ranging between 2 and 6 times lower compared to the K(s) value. The application of 250 cm of water pressure caused an 18% to 26% reduction in the entrapped air content, resulting in an increase in K(quasi) by 1.16 to 1.57 times compared to its initial (0 cm water pressure) value. The change in entrapped air content measured at pressure step intervals of 50 cm, was essentially linear, and could be modeled according to the ideal gas law. Meanwhile, the changes in K(quasi) with compression-expansion of the bubbles because of pressure changes could be adequately captured with several current hydraulic conductivity models. © Ground Water 2012 and © Her Majesty the Queen in Right of Canada 2012. Ground Water © 2012, National Ground Water Association.

  17. Characterization of high-pressure, underexpanded hydrogen-jet flames

    Schefer, R.W.; Houf, W.G.; Williams, T.C. [Combustion Research Facility, Sandia National Laboratories, Livermore, CA 94551 (United States); Bourne, B.; Colton, J. [SRI International, 333 Ravenwood Ave., Menlo Park, CA 94025 (United States)

    2007-08-15

    Measurements were performed to characterize the dimensional and radiative properties of large-scale, vertical hydrogen-jet flames. This data is relevant to the safety scenario of a sudden leak in a high-pressure hydrogen containment vessel and will provide a technological basis for determining hazardous length scales associated with unintended hydrogen releases at storage and distribution centers. Jet flames originating from high-pressure sources up to 413 bar (6000 psi) were studied to verify the application of correlations and scaling laws based on lower-pressure subsonic and choked-flow jet flames. These higher pressures are expected to be typical of the pressure ranges in future hydrogen storage vessels. At these pressures the flows exiting the jet nozzle are categorized as underexpanded jets in which the flow is choked at the jet exit. Additionally, the gas behavior departs from that of an ideal-gas and alternate formulations for non-ideal gas must be introduced. Visible flame emission was recorded on video to evaluate flame length and structure. Radiometer measurements allowed determination of the radiant heat flux characteristics. The flame length results show that lower-pressure engineering correlations, based on the Froude number and a non-dimensional flame length, also apply to releases up to 413 bar (6000 psi). Similarly, radiative heat flux characteristics of these high-pressure jet flames obey scaling laws developed for low-pressure, smaller-scale flames and a wide variety of fuels. The results verify that such correlations can be used to a priori predict dimensional characteristics and radiative heat flux from a wide variety of hydrogen-jet flames resulting from accidental releases. (author)

  18. High-pressure boron hydride phases

    Barbee, T.W. III; McMahan, A.K.; Klepeis, J.E.; van Schilfgaarde, M.

    1997-01-01

    The stability of boron-hydrogen compounds (boranes) under pressure is studied from a theoretical point of view using total-energy methods. We find that the molecular forms of boranes known to be stable at ambient pressure become unstable at high pressure, while structures with extended networks of bonds or metallic bonding are energetically favored at high pressures. If such structures are metastable on return to ambient pressure, they would be energetic as well as dense hydrogen storage media. An AlH 3 -like structure of BH 3 is particularly interesting in that it may be accessible by high-pressure diamond anvil experiments, and should exhibit both second-order structural and metal-insulator transitions at lower pressures. copyright 1997 The American Physical Society

  19. Subnanosecond breakdown in high-pressure gases

    Naidis, George V.; Tarasenko, Victor F.; Babaeva, Natalia Yu; Lomaev, Mikhail I.

    2018-01-01

    Pulsed discharges in high-pressure gases are of considerable interest as sources of nonequilibrium plasma for various technological applications: pollution control, pumping of laser media, plasma-assisted combustion, etc. Recently, attention has been attracted to the use of subnanosecond voltage fronts, producing diffuse discharges with radii of several millimeters. Such plasma structures, similar to pulsed glow discharges, are of special interest for applications due to quasi-uniformity of plasma parameters in relatively large gas volumes. This review presents the results of experimental and computational study of subnanosecond diffuse discharge formation. A description of generators of short high-voltage pulses with subnanosecond fronts and of discharge setups is given. Diagnostic methods for the measurement of various discharge parameters with high temporal and spatial resolution are described. Obtained experimental data on plasma properties for a wide range of governing factors are discussed. A review of various theoretical approaches used for computational study of the dynamics and structure of fast ionization waves is given; the applicability of conventional fluid streamer models for simulation of subnanosecond ionization waves is discussed. Calculated spatial-temporal profiles of plasma parameters during streamer propagation are presented. The efficiency of subnanosecond discharges for the production of reactive species is evaluated. On the basis of the comparison of simulation results and experimental data the effects of various factors (voltage rise time, polarity, etc.) on discharge characteristics are revealed. The major physical phenomena governing the properties of subnanosecond breakdown are analyzed.

  20. Risetime discrimination applied to pressurized Xe gas proportional counter for hard x-ray detection

    Fujii, Masami; Doi, Kosei

    1978-01-01

    A high pressure Xe proportional counter has been developed for hard X-ray observation. This counter has better energy-resolving power than a NaI scintillation counter, and the realization of large area is relatively easy. This counter is constructed with a cylindrical aluminum tube, and this tube can be used at 40 atmospheric pressure. The detection efficiency curves were obtained in relation to gas pressure. It is necessary to reduce impurities in the Xe gas to increase the energy-resolving power of the counter. The increase of gas pressure made the resolving power worse. The characteristics of the counter were stable for at least a few months. The wave form discrimination was applied to reduce the background signals such as pulses caused by charged particles and gamma-ray. This method has been used for normal pressure counter, and in the present study, it was applied for the high pressure counter. It was found that the discrimination method was able to be applied to this case. (Kato, T.)

  1. Light yield as a function of gas pressure and electric field in gas scintillation proportional counters

    Favata, F.; Smith, A.; Bavdaz, M.; Kowalski, T.Z.

    1990-01-01

    We have investigated the dependence of the scintillation light output for Xe on gas pressure in the range 0.14-1.4 bar, using a gas scintillation proportional counter, in different experimental configurations. We have compared our work with that of previous workers, and have shown that both our results and the results of previous authors are compatible with the intrinsic light output being independent of gas pressure, with any observed dependence being a pure experimental effect due to the spectral response of the various UV detectors used. We also use our experimental data for determining the ratio between the cross section of the Xe 2 ** +Xe→Xe 2 * +Xe reaction and the rate of the Xe 2 ** →2Xe+γ UV reaction. (orig.)

  2. Calculation of high-pressure argon plasma parameters produced by excimer laser

    Tsuda, Norio; Yamada, Jun

    2000-01-01

    When a XeCl excimer laser light was focused in a high-pressure argon gas up to 150 atm, a dense plasma developed not only backward but also forward. It is important to study on the electron density and temperature of the laser-induced plasma in the high-pressure gas. The electron density and temperature in high-pressure argon plasma produced by XeCl excimer laser has been calculated and compared with the experimental data. (author)

  3. Practical and highly sensitive elemental analysis for aqueous samples containing metal impurities employing electrodeposition on indium-tin oxide film samples and laser-induced shock wave plasma in low-pressure helium gas.

    Kurniawan, Koo Hendrik; Pardede, Marincan; Hedwig, Rinda; Abdulmadjid, Syahrun Nur; Lahna, Kurnia; Idris, Nasrullah; Jobiliong, Eric; Suyanto, Hery; Suliyanti, Maria Margaretha; Tjia, May On; Lie, Tjung Jie; Lie, Zener Sukra; Kurniawan, Davy Putra; Kagawa, Kiichiro

    2015-09-01

    We have conducted an experimental study exploring the possible application of laser-induced breakdown spectroscopy (LIBS) for practical and highly sensitive detection of metal impurities in water. The spectrochemical measurements were carried out by means of a 355 nm Nd-YAG laser within N2 and He gas at atmospheric pressures as high as 2 kPa. The aqueous samples were prepared as thin films deposited on indium-tin oxide (ITO) glass by an electrolysis process. The resulting emission spectra suggest that concentrations at parts per billion levels may be achieved for a variety of metal impurities, and it is hence potentially feasible for rapid inspection of water quality in the semiconductor and pharmaceutical industries, as well as for cooling water inspection for possible leakage of radioactivity in nuclear power plants. In view of its relative simplicity, this LIBS equipment offers a practical and less costly alternative to the standard use of inductively coupled plasma-mass spectrometry (ICP-MS) for water samples, and its further potential for in situ and mobile applications.

  4. High-pressure torsion of hafnium

    Edalati, Kaveh; Horita, Zenji; Mine, Yoji

    2010-01-01

    Pure Hf (99.99%) is processed by high-pressure torsion (HPT) under pressures of 4 and 30 GPa to form an ultrafine-grained structure with a gain size of ∼180 nm. X-ray diffraction analysis shows that, unlike Ti and Zr, no ω phase formation is detected after HPT processing even under a pressure of 30 GPa. A hydride formation is detected after straining at the pressure of 4 GPa. The hydride phase decomposes either by application of a higher pressure as 30 GPa or by unloading for prolong time after HPT processing. Microhardness, tensile and bending tests show that a high hardness (360 Hv) and an appreciable ductility (8%) as well as high tensile and bending strength (1.15 and 2.75 GPa, respectively) are achieved following the high-pressure torsion.

  5. High pressure X-ray studies

    Sikka, S.K.

    1981-01-01

    High pressure research has already led to new insights in the physical properties of materials and at times to the synthesis of new ones. In all this, X-ray diffraction has been a valuable diagnostic experimental tool. In particular, X-rays in high pressure field have been used (a) for crystallographic identification of high pressure polymorphs and (b) for study of the effect of pressure on lattice parameters and volume under isothermal conditions. The results in the area (a) are reviewed. The techniques of applying high pressures are described. These include both static and dynamic shockwave X-ray apparatus. To illustrate the effect of pressure, some of the pressure induced phase transitions in pure metals are described. It has been found that there is a clear trend for elements in any group of the periodic table to adopt similar structures at high pressures. These studies have enabled to construct generalized phase diagrams for many groups. In the case of alloys, the high pressure work done on Ti-V alloys is presented. (author)

  6. Gas density and rail pressure effects on diesel spray growth from a heavy-duty common rail injector

    Klein-Douwel, R.J.H.; Frijters, P.J.M.; Seykens, X.L.J.; Somers, L.M.T.; Baert, R.S.G.

    2009-01-01

    Formation of nonevaporating sprays from diesel fuel injection through a realistic heavy duty multihole common rail injector is studied in a newly developed high-pressure, high-temperature cell, using digital highspeed shadowgraphy at 4500 frames/s. Gas pressure was varied from 13 to 37 bar

  7. Study of the MWPC gas gain behaviour as a function of the gas pressure and temperature

    Pinci, D

    2005-01-01

    The Muon System of the LHCb experiment is composed of five detection stations (M1-M5) equipped with 1368 Multi-Wire Proportional Chambers (MWPC) and 24 Triple-GEM detectors. The Multi Wire Proportional Chamber (MWPC) performances (detection efficiency, time resolution, pad-cluster size and ageing properties) are heavily dependent on the gas gain. The chamber gain depends on the gas density and therefore on the gas temperature and pressure. The impact of the environmental parameters on the MWPC gain has been studied in detail. The results, togheter with a simple method proposed to account for the gain variations, are reported in this note. The absolute gas gain at the testing voltage of 2750 V was also measured to be (1.2 +- 0.1)*10^5.

  8. Managing Stress to Control High Blood Pressure

    ... Aortic Aneurysm More Managing Stress to Control High Blood Pressure Updated:Jan 29,2018 The importance of stress ... This content was last reviewed October 2016. High Blood Pressure • Home • Get the Facts About HBP • Know Your ...

  9. Application of High Pressure in Food Processing

    Herceg, Z.

    2011-01-01

    Full Text Available In high pressure processing, foods are subjected to pressures generally in the range of 100 – 800 (1200 MPa. The processing temperature during pressure treatments can be adjusted from below 0 °C to above 100 °C, with exposure times ranging from a few seconds to 20 minutes and even longer, depending on process conditions. The effects of high pressure are system volume reduction and acceleration of reactions that lead to volume reduction. The main areas of interest regarding high-pressure processing of food include: inactivation of microorganisms, modification of biopolymers, quality retention (especially in terms of flavour and colour, and changes in product functionality. Food components responsible for the nutritive value and sensory properties of food remain unaffected by high pressure. Based on the theoretical background of high-pressure processing and taking into account its advantages and limitations, this paper aims to show its possible application in food processing. The paper gives an outline of the special equipment used in highpressure processing. Typical high pressure equipment in which pressure can be generated either by direct or indirect compression are presented together with three major types of high pressure food processing: the conventional (batch system, semicontinuous and continuous systems. In addition to looking at this technology’s ability to inactivate microorganisms at room temperature, which makes it the ultimate alternative to thermal treatments, this paper also explores its application in dairy, meat, fruit and vegetable processing. Here presented are the effects of high-pressure treatment in milk and dairy processing on the inactivation of microorganisms and the modification of milk protein, which has a major impact on rennet coagulation and curd formation properties of treated milk. The possible application of this treatment in controlling cheese manufacture, ripening and safety is discussed. The opportunities

  10. Confinement of hydrogen at high pressure in carbon nanotubes

    Lassila, David H [Aptos, CA; Bonner, Brian P [Livermore, CA

    2011-12-13

    A high pressure hydrogen confinement apparatus according to one embodiment includes carbon nanotubes capped at one or both ends thereof with a hydrogen-permeable membrane to enable the high pressure confinement of hydrogen and release of the hydrogen therethrough. A hydrogen confinement apparatus according to another embodiment includes an array of multi-walled carbon nanotubes each having first and second ends, the second ends being capped with palladium (Pd) to enable the high pressure confinement of hydrogen and release of the hydrogen therethrough as a function of palladium temperature, wherein the array of carbon nanotubes is capable of storing hydrogen gas at a pressure of at least 1 GPa for greater than 24 hours. Additional apparatuses and methods are also presented.

  11. Performance characterization of solid oxide cells under high pressure

    Sun, Xiufu; Bonaccorso, Alfredo Damiano; Graves, Christopher R.

    2014-01-01

    in both fuel cell mode and electrolysis mode. In electrolysis mode at low current density, the performance improvement was counteracted by the increase in open circuit voltage, but it has to be born in mind that the pressurised gas contains higher molar free energy. Operating at high current density...... hydrocarbon fuels, which is normally performed at high pressure to achieve a high yield. Operation of SOECs at elevated pressure will therefore facilitate integration with the downstream fuel synthesis and is furthermore advantageous as it increases the cell performance. In this work, recent pressurised test...... results of a planar Ni-YSZ (YSZ: Yttria stabilized Zirconia) supported solid oxide cell are presented. The test was performed at 800 °C at pressures up to 15 bar. A comparison of the electrochemical performance of the cell at 1 and 3 bar shows a significant and equal performance gain at higher pressure...

  12. Trends in high pressure developments for new perspectives

    Largeteau, Alain; Prakasam, Mythili

    2018-06-01

    Temperature and Pressure are two parameters in the universe, where pressure represents the largest scale in comparison to temperature. The design of high pressure equipment depends mainly on the media used which could be gas, liquid or solid and the objective could be synthesis of materials or in situ characterization. The development of new research fields requiring high pressure equipment which are currently in Bordeaux - France are based on the historical development of high pressure domain initiated by Professor Gerard DEMAZEAU and his team during the last half century, which is discussed here. The main concepts governing the effect of pressure on materials synthesis is by the combination of high pressure and high temperature which are described with apt examples. There is an upsurge in various technologies for strong development for the synthesis of materials to drive several possibilities, for example: to reach very high density to obtain optical ceramics (by conventional SPS), to diminish parameters (P, T, t) of synthesis (by HP-SPS), to sinter at low temperature thermal sensitive composition (by HyS), to consolidate porous materials (by FIP), to densify biocomposite with cold decontamination (by HHP) simultaneously, etc.

  13. Pulsatile pressure driven rarefied gas flow in long rectangular ducts

    Tsimpoukis, Alexandros; Valougeorgis, Dimitris

    2018-04-01

    The pulsatile pressure driven fully developed flow of a rarefied gas through an orthogonal duct is investigated, based on the time-dependent linear Bhatnagar, Gross, and Krook equation, by decomposing the flow into its steady and oscillatory parts. The investigation is focused on the oscillatory part, which is characterized by the gas rarefaction and oscillation parameters, the duct aspect ratio, and the accommodation coefficient. As the oscillation frequency is increased, the amplitude of all macroscopic quantities is decreased, while their phase angle lag is increased reaching the limiting value of π/2. As the gas becomes more rarefied, higher frequencies are needed to trigger this behavior. At small and moderate frequencies, there is a critical degree of gas rarefaction, where a maximum flow rate is obtained. As the duct aspect ratio is decreased and tends to zero, the flow rate and mean wall shear stress amplitudes are increased, while their phase angle lags are slightly affected. The accommodation coefficient has a significant effect on the amplitude and a very weak one on the phase angle of the macroscopic quantities. The computation of the inertia and viscous forces clarifies when the flow consists of only one oscillating viscous region or of two regions, namely, the inviscid piston flow in the core and the oscillating Stokes layer at the wall with the velocity overshooting. Finally, the time average oscillatory pumping power is increased as the oscillation frequency is reduced and its maximum value is one half of the corresponding steady one.

  14. High pressure injection of dimethyl ether

    Glensvig, M.; Sorenson, S.C.; Abata, D.L.

    1997-08-01

    The purpose of this investigation was to achieve a better understanding of the fundamental spray behavior of DME (Dimenthyl Ether) using a standard diesel pump with pintle and hole nozzles. Fundamental spray behavior was characterized by determining fuel spray penetration and angle, atomization and evaporation. The influences of opening pressure, nozzle geometry and ambient pressure above and below the critical pressure of the fuel on the spray behavior were investigated. The influence of opening pressures on the spray characteristics for the hole nozzle was investigated. The results showed that for opening pressures of 120 bar and 180 bar the spray has a similar appearance. For the higher opening pressure (200 bar and 240 bar), the initial spray breaks up very rapidly giving a high initial spray angle. The opening pressure had little influence on spray penetration. The spray angle later in the injection increased as the opening pressure was decreased. Above the critical pressure, the spray from the hole nozzle had a more irregular shape. Penetration decreased and the spray angle increased above the critical pressure. Three pintle nozzles with different geometries and opening pressures were tested. The appearance of the three sprays were very similar. The sprays seemed to be more sharply pointed as the nozzle hole angle decreased. The nozzle with the 4 deg. hole nozzle angle and an opening pressure of 280 bar had the highest penetration and highest initial spray angle. The pintle nozzle with the 12 deg. hole nozzle angle and opening pressure of approx. 450 bar was tested above the critical ambient pressure. Penetration was very similar for injection above and below the critical ambient pressure, while the spray angle decreased for the spray above the critical ambient pressure. (au)

  15. Solid-Gas Coupling Model for Coal-Rock Mass Deformation and Pressure Relief Gas Flow in Protection Layer Mining

    Zhu, Zhuohui; Feng, Tao; Yuan, Zhigang; Xie, Donghai; Chen, Wei

    2018-01-01

    The solid-gas coupling model for mining coal-rock mass deformation and pressure relief gas flow in protection layer mining is the key to determine deformation of coal-rock mass and migration law of pressure relief gas of protection layer mining in outburst coal seams. Based on the physical coupling process between coal-rock mass deformation and pressure-relief gas migration, the coupling variable of mining coal-rock mass, a part of governing equations of gas seepage field and deformation fiel...

  16. High Pressure EVA Glove (HPEG), Phase I

    National Aeronautics and Space Administration — Final Frontier Design's (FFD) High Pressure EVA Glove (HPEG) is a game changing technology enabling future exploration class space missions. The high operating...

  17. Techniques in high pressure neutron scattering

    Klotz, Stefan

    2013-01-01

    Drawing on the author's practical work from the last 20 years, Techniques in High Pressure Neutron Scattering is one of the first books to gather recent methods that allow neutron scattering well beyond 10 GPa. The author shows how neutron scattering has to be adapted to the pressure range and type of measurement.Suitable for both newcomers and experienced high pressure scientists and engineers, the book describes various solutions spanning two to three orders of magnitude in pressure that have emerged in the past three decades. Many engineering concepts are illustrated through examples of rea

  18. Design and development of gas turbine high temperature reactor 300

    Kunitomi, Kazuhiko; Katanishi, Shoji; Takada, Shoji; Yan, Xing; Takizuka, Takakazu

    2003-01-01

    JAERI (Japan Atomic Energy Research Institute) has been designing a Japan's original gas turbine high temperature reactor, GTHTR300 (Gas Turbine High Temperature Reactor 300). The greatly simplified design based on salient features of the HTGR (High Temperature Gas-cooled reactor) with a closed helium gas turbine enables the GTHTR300 a high efficient and economically competitive reactor to be deployed in early 2010s. Also, the GTHTR300 fully taking advantage of various experiences accumulated in design, construction and operation of the HTTR (High Temperature Engineering Test Reactor) and fossil gas turbine systems reduces technological development concerning a reactor system and electric generation system. Original features of this system are core design with two-year refueling interval, conventional steel material usage for a reactor pressure vessel, innovative plant flow scheme and horizontally installed gas turbine unit. Due to these salient features, the capital cost of the GTHTR300 is less than a target cost of 200 thousands Yen/kWe, and the electric generation cost is close to a target cost of 4 Yen/kWh. This paper describes the original design features focusing on reactor core design, fuel design, in-core structure design and reactor pressure vessel design except PCU design. Also, R and D for developing the power conversion unit is briefly described. The present study is entrusted from the Ministry of Education, Culture, Sports, Science and Technology of Japan. (author)

  19. Spectroscopic studies of surface-gas interactions and catalyst restructuring at ambient pressure: mind the gap!

    Rupprechter, Guenther; Weilach, Christian

    2008-01-01

    Recent progress in the application of surface vibrational spectroscopy at ambient pressure allows us to monitor surface-gas interactions and heterogeneous catalytic reactions under conditions approaching those of technical catalysis. The surface specificity of photon-based methods such as polarization modulation infrared reflection absorption spectroscopy (PM-IRAS) and sum frequency generation (SFG) spectroscopy is utilized to monitor catalytically active surfaces while they function at high pressure and high temperature. Together with complementary information from high-pressure x-ray photoelectron spectroscopy (HP-XPS) and high-resolution transmission electron microscopy (HRTEM), reaction mechanisms can be deduced on a molecular level. Well defined model catalysts, prepared under ultrahigh vacuum (UHV), are typically employed in such studies, including smooth and stepped single crystals, thin oxide films, and oxide-supported nanoparticles. A number of studies on unsupported and supported noble metal (Pd, Rh) catalysts are presented, focusing on the transformation of the catalysts from the 'as-prepared' to the 'active state'. This often involves pronounced alterations in catalyst structure and composition, for example the creation of surface carbon phases, surface oxides or surface alloys, as well as nanoparticle restructuring. The reactivity studies include CH 3 OH, CH 4 and CO oxidation with gas phase analysis by gas chromatography and mass spectrometry. Differing results between studies under ultrahigh vacuum and ambient pressure, and between studies on single crystals and supported nanoparticles, demonstrate the importance of 'minding the gap' between idealized and realistic conditions

  20. Gas-solids kinetics of CuO/Al2O3 as an oxygen carrier for high-pressure chemical looping processes : the influence of the total pressure

    San Pio Bordeje, M.A.; Gallucci, F.; Roghair, I.; van Sint Annaland, M.

    2017-01-01

    Copper oxide on alumina is often used as oxygen carrier for chemical looping combustion owing to its very high reduction rates at lower temperatures and its very good mechanical and chemical stability at not too high temperatures. In this work, the redox kinetics of CuO/Al2O3 have been studied at

  1. High-pressure mechanical instability in rocks.

    Byerlee, J D; Brace, W F

    1969-05-09

    At a confining pressure of a few kilobars, deformation of many sedimentary rocks, altered mafic rocks, porous volcanic rocks, and sand is ductile, in that instabilities leading to audible elastic shocks are absent. At pressures of 7 to 10 kilobars, however, unstable faulting and stick-slip in certain of these rocks was observed. This high pressure-low temperature instability might be responsible for earthquakes in deeply buried sedimentary or volcanic sequences.

  2. Atomic and molecular hydrogen gas temperatures in a low-pressure helicon plasma

    Samuell, Cameron M.; Corr, Cormac S.

    2015-08-01

    Neutral gas temperatures in hydrogen plasmas are important for experimental and modelling efforts in fusion technology, plasma processing, and surface modification applications. To provide values relevant to these application areas, neutral gas temperatures were measured in a low pressure (radiofrequency helicon discharge using spectroscopic techniques. The atomic and molecular species were not found to be in thermal equilibrium with the atomic temperature being mostly larger then the molecular temperature. In low power operation (measurements near a graphite target demonstrated localised cooling near the sample surface. The temporal evolution of the molecular gas temperature during a high power 1.1 ms plasma pulse was also investigated and found to vary considerably as a function of pressure.

  3. Variation law of gas holdup in an autoclave during the pressure leaching process by using a mixed-flow agitator

    Tian, Lei; Liu, Yan; Tang, Jun-jie; Lü, Guo-zhi; Zhang, Ting-an

    2017-08-01

    The multiphase reaction process of pressure leaching is mainly carried out in the liquid phase. Therefore, gas holdup is essential for the gas-liquid-solid phase reaction and the extraction rate of valuable metals. In this paper, a transparent quartz autoclave, a six blades disc turbine-type agitator, and a high-speed camera were used to investigate the gas holdup of the pressure leaching process. Furthermore, experiments determining the effects of agitation rate, temperature, and oxygen partial pressure on gas holdup were carried out. The results showed that when the agitation rate increased from 350 to 600 r/min, the gas holdup increased from 0.10% to 0.64%. When the temperature increased from 363 to 423 K, the gas holdup increased from 0.14% to 0.20%. When the oxygen partial pressure increased from 0.1 to 0.8 MPa, the gas holdup increased from 0.13% to 0.19%. A similar criteria relationship was established by Homogeneous Principle and Buckingham's theorem. Comprehensively, empirical equation of gas holdup was deduced on the basis of experimental data and the similarity theory, where the criterion equation was determined as ɛ = 4.54 × 10-11 n 3.65 T 2.08 P g 0.18. It can be seen from the formula that agitation rate made the most important impact on gas holdup in the pressure leaching process using the mixed-flow agitator.

  4. Gas and Pressure Dependence for the Mean Size of Nanoparticles Produced by Laser Ablation of Flowing Aerosols

    Nichols, William T.; Malyavanatham, Gokul; Henneke, Dale E.; Brock, James R.; Becker, Michael F.; Keto, John W.; Glicksman, Howard D.

    2000-01-01

    Silver nanoparticles were produced by laser ablation of a continuously flowing aerosol of microparticles entrained in argon, nitrogen and helium at a variety of gas pressures. Nanoparticles produced in this new, high-volume nanoparticle production technique are compared with our earlier experiments using laser ablation of static microparticles. Transmission electron micrographs of the samples show the nanoparticles to be spherical and highly non-agglomerated under all conditions tested. These micrographs were analyzed to determine the effect of carrier gas type and pressure on size distributions. We conclude that mean diameters can be controlled from 4 to 20 nm by the choice of gas type and pressure. The smallest nanoparticles were produced in helium, with mean sizes increasing with increasing molecular weight of the carrier gas. These results are discussed in terms of a model based on cooling via collisional interaction of the nanoparticles, produced in the laser exploded microparticle, with the ambient gas

  5. Computational phase diagrams of noble gas hydrates under pressure

    Teeratchanan, Pattanasak, E-mail: s1270872@sms.ed.ac.uk; Hermann, Andreas, E-mail: a.hermann@ed.ac.uk [Centre for Science at Extreme Conditions and SUPA, School of Physics and Astronomy, The University of Edinburgh, Edinburgh EH9 3FD (United Kingdom)

    2015-10-21

    We present results from a first-principles study on the stability of noble gas-water compounds in the pressure range 0-100 kbar. Filled-ice structures based on the host water networks ice-I{sub h}, ice-I{sub c}, ice-II, and C{sub 0} interacting with guest species He, Ne, and Ar are investigated, using density functional theory (DFT) with four different exchange-correlation functionals that include dispersion effects to various degrees: the non-local density-based optPBE-van der Waals (vdW) and rPW86-vdW2 functionals, the semi-empirical D2 atom pair correction, and the semi-local PBE functional. In the He-water system, the sequence of stable phases closely matches that seen in the hydrogen hydrates, a guest species of comparable size. In the Ne-water system, we predict a novel hydrate structure based on the C{sub 0} water network to be stable or at least competitive at relatively low pressure. In the Ar-water system, as expected, no filled-ice phases are stable; however, a partially occupied Ar-C{sub 0} hydrate structure is metastable with respect to the constituents. The ability of the different DFT functionals to describe the weak host-guest interactions is analysed and compared to coupled cluster results on gas phase systems.

  6. The steam pressure effect on high temperature corrosion of zircaloy-4

    Kim, K. P.; Park, G. H.

    1998-01-01

    To find the effect of pressure on the high temperature oxidation of zircaloy-4, an autoclave capable of measuring the degree of oxidation at high temperatures and high pressure was manufactured. The degree of high temperature oxidation of zircaloy-4 was measured at three different conditions, high pressure steam, high pressure Ar gas with small amount of steam, and 1 atm steam. All the measurements were done at 750 deg C. The oxide thickness is much thicker in high pressure steam, comparing to that in the 1 atm steam. And, the higher is the steam pressure, the thicker becomes the oxide. No effect was observed in the case of high pressure Ar containing small amount of steam. Many cracks exist on the surface of specimens oxidized at high pressure steam, which come from the enhanced tetragonal to monoclinic phase transformation due to high pressure steam. The enhanced oxidation seems to oxide cracking

  7. High-pressure differential scanning microcalorimeter.

    Senin, A A; Dzhavadov, L N; Potekhin, S A

    2016-03-01

    A differential scanning microcalorimeter for studying thermotropic conformational transitions of biopolymers at high pressure has been designed. The calorimeter allows taking measurements of partial heat capacity of biopolymer solutions vs. temperature at pressures up to 3000 atm. The principles of operation of the device, methods of its calibration, as well as possible applications are discussed.

  8. High-pressure oxidation of ethane

    Hashemi, Hamid; G. Jacobsen, Jon; Rasmussen, Christian T.

    2017-01-01

    Ethane oxidation at intermediate temperatures and high pressures has been investigated in both a laminar flow reactor and a rapid compression machine (RCM). The flow-reactor measurements at 600–900 K and 20–100 bar showed an onset temperature for oxidation of ethane between 700 and 825 K, depending...... on pressure, stoichiometry, and residence time. Measured ignition delay times in the RCM at pressures of 10–80 bar and temperatures of 900–1025 K decreased with increasing pressure and/or temperature. A detailed chemical kinetic model was developed with particular attention to the peroxide chemistry. Rate...

  9. Non-equilibrium plasma chemistry at high pressure and its applications

    Bai Xiyao; Zhang Zhitao; Bai Mindong; Zhu Qiaoying

    2000-01-01

    A review is presented of research and development of gas discharge and non-equilibrium plasma including, new ideas of non-equilibrium plasma at high gas pressure. With special technology, strong electric fields (>400 Td) can be achieved by which electrons are accelerated suddenly, becoming high energy electrons (> 10 eV) at high pressure. On impact with the electrons, the gas molecules dissociate into ions, atomic ions, atoms and free radicals, and new substances or molecules can be synthesized through custom design. Chemical reaction difficult to achieve by conventional method can be realized or accelerated. Non-equilibrium plasma chemistry at high pressure has wide application prospects

  10. High-pressure phase transitions of strontianite

    Speziale, S.; Biedermann, N.; Reichmann, H. J.; Koch-Mueller, M.; Heide, G.

    2015-12-01

    Strontianite (SrCO3) is isostructural to aragonite, a major high-pressure polymorph of calcite. Thus it is a material of interest to investigate the high-pressure phase behavior of aragonite-group minerals. SrCO3 is a common component of natural carbonates and knowing its physical properties at high pressures is necessary to properly model the thermodynamic properties of complex carbonates, which are major crustal minerals but are also present in the deep Earth [Brenker et al., 2007] and control carbon cycling in the Earth's mantle. The few available high-pressure studies of SrCO3 disagree regarding both pressure stability and structure of the post-aragonite phase [Lin & Liu, 1997; Ono et al., 2005; Wang et al. 2015]. To clarify such controversies we investigated the high-pressure behavior of synthetic SrCO3 by Raman spectroscopy. Using a diamond anvil cell we compressed single-crystals or powder of strontianite (synthesized at 4 GPa and 1273 K for 24h in a multi anvil apparatus), and measured Raman scattering up to 78 GPa. SrCO3 presents a complex high-pressure behavior. We observe mode softening above 20 GPa and a phase transition at 25 - 26.9 GPa, which we interpret due to the CO3 groups rotation, in agreement with Lin & Liu [1997]. The lattice modes in the high-pressure phase show dramatic changes which may indicate a change from 9-fold coordinated Sr to a 12-fold-coordination [Ono, 2007]. Our results confirm that the high-pressure phase of strontianite is compatible with Pmmn symmetry. References Brenker, F.E. et al. (2007) Earth and Planet. Sci. Lett., 260, 1; Lin, C.-C. & Liu, L.-G. (1997) J. Phys. Chem. Solids, 58, 977; Ono, S. et al. (2005) Phys. Chem. Minerals, 32, 8; Ono, S. (2007) Phys. Chem. Minerals, 34, 215; Wang, M. et al. (2015) Phys Chem Minerals 42, 517.

  11. Magnetic and Superconducting Materials at High Pressures

    Struzhkin, Viktor V. [Carnegie Inst. of Washington, Washington, DC (United States)

    2015-03-24

    The work concentrates on few important tasks in enabling techniques for search of superconducting compressed hydrogen compounds and pure hydrogen, investigation of mechanisms of high-Tc superconductivity, and exploring new superconducting materials. Along that route we performed several challenging tasks, including discovery of new forms of polyhydrides of alkali metal Na at very high pressures. These experiments help us to establish the experimental environment that will provide important information on the high-pressure properties of hydrogen-rich compounds. Our recent progress in RIXS measurements opens a whole field of strongly correlated 3d materials. We have developed a systematic approach to measure major electronic parameters, like Hubbard energy U, and charge transfer energy Δ, as function of pressure. This technique will enable also RIXS studies of magnetic excitations in iridates and other 5d materials at the L edge, which attract a lot of interest recently. We have developed new magnetic sensing technique based on optically detected magnetic resonance from NV centers in diamond. The technique can be applied to study superconductivity in high-TC materials, to search for magnetic transitions in strongly correlated and itinerant magnetic materials under pressure. Summary of Project Activities; development of high-pressure experimentation platform for exploration of new potential superconductors, metal polyhydrides (including newly discovered alkali metal polyhydrides), and already known superconductors at the limit of static high-pressure techniques; investigation of special classes of superconducting compounds (high-Tc superconductors, new superconducting materials), that may provide new fundamental knowledge and may prove important for application as high-temperature/high-critical parameter superconductors; investigation of the pressure dependence of superconductivity and magnetic/phase transformations in 3d transition metal compounds, including

  12. High pressure processing of meat

    Grossi, Alberto; Christensen, Mette; Ertbjerg, Per

    the rheological properties of pork meat batters by inducing formation of protein gels. HP induced protein gels are suggested to be formed by high molecular weight myofibrillar protein aggregates and by peptides formed by lysosomal enzyme-induced cleavage of myofibrillar proteins. Perspectives: The data presented...

  13. Gas pressure and gas purity analyzing device in nuclear fuel rod

    Mizutani, Chihiro; Hasegawa, Toru.

    1996-01-01

    The present invention provides a device for measuring and analyzing a pressure and a purity of a helium gas sealed in a BWR type nuclear fuel rod. Namely, a portion between a rotational shaft of an electromotive drill for perforating the fuel rod and a vacuum chamber is sealed with a magnetic fluid sealing material so that error factors can be recognized before and after the destruction detection (perforation) of a fuel rod. With such procedures, involving of an atmospheric air from the drill rotational shaft upon perforation can be eliminated. As a result, accuracy for the measurement can be improved. In addition, a filter is disposed to a pipeline connecting the vacuum chamber and the measuring system. With such a constitution, scattering of cutting dusts to the measuring system, troubles due to damages of a stop valve can be reduced. As a result, the efficiency of the measurement is improved. Further, a plurality kinds of gas collecting vessel having different capacities are connected in parallel to the pipeline of the measuring system. Then, the gas collecting vessels can be used selectively. As a result, the device can cope with a gas pressure over a wide range. (I.S.)

  14. Raman spectroscopy of triolein under high pressures

    Tefelski, D. B.; Jastrzębski, C.; Wierzbicki, M.; Siegoczyński, R. M.; Rostocki, A. J.; Wieja, K.; Kościesza, R.

    2010-03-01

    This article presents results of the high pressure Raman spectroscopy of triolein. Triolein, a triacylglyceride (TAG) of oleic acid, is an unsaturated fat, present in natural oils such as olive oil. As a basic food component and an energy storage molecule, it has considerable importance for food and fuel industries. To generate pressure in the experiment, we used a high-pressure cylindrical chamber with sapphire windows, presented in (R.M. Siegoczyński, R. Kościesza, D.B. Tefelski, and A. Kos, Molecular collapse - modification of the liquid structure induced by pressure in oleic acid, High Press. Res. 29 (2009), pp. 61-66). Pressure up to 750 MPa was applied. A Raman spectrometer in "macro"-configuration was employed. Raman spectroscopy provides information on changes of vibrational modes related to structural changes of triolein under pressure. Interesting changes in the triglyceride C‒H stretching region at 2650-3100 cm-1 were observed under high-pressures. Changes were also observed in the ester carbonyl (C˭ O) stretching region 1700-1780 cm-1 and the C‒C stretching region at 1050-1150 cm-1. The overall luminescence of the sample decreased under pressure, making it possible to set longer spectrum acquisition time and obtain more details of the spectrum. The registered changes suggest that the high-pressure solid phase of triolein is organized as β-polymorphic, as was reported in (C. Akita, T. Kawaguchi, and F. Kaneko, Structural study on polymorphism of cis-unsaturated triacylglycerol: Triolein, J. Phys. Chem. B 110 (2006), pp. 4346-4353; E. Da Silva and D. Rousseau, Molecular order and thermodynamics of the solid-liquid transition in triglycerides via Raman spectroscopy, Phys. Chem. Chem. Phys. 10 (2008), pp. 4606-4613) (with temperature-induced phase transitions). The research has shown that Raman spectroscopy in TAGs under pressure reveals useful information about its structural changes.

  15. Electricity and gas supplies under pressure. 2005 winter

    Lewiner, C.; David, P.; Coquet, P.

    2005-10-01

    Point of view on the demand for electricity and gas in light of European deregulation in 2005. Demand for electricity and gas by consumers and businesses soared to record highs as temperatures continued to fall steeply across Europe in January and February 2005. While unexpected seasonal trends have always had a major impact on electricity and gas supplies, this time, it occurred at a time when deregulation across all European markets is bringing new complexity notably in pricing and availability of supply. So what conclusions can be drawn from this acute market situation? Is deregulation delivering what it promised? What are the possible impacts on the business model of suppliers? What trends are we likely to observe in response to the challenges of operating in the new deregulated market place?

  16. High pressure semiconductor physics I

    Willardson, R K; Paul, William; Suski, Tadeusz

    1998-01-01

    Since its inception in 1966, the series of numbered volumes known as Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. The "Willardson and Beer" Series, as it is widely known, has succeeded in publishing numerous landmark volumes and chapters. Not only did many of these volumes make an impact at the time of their publication, but they continue to be well-cited years after their original release. Recently, Professor Eicke R. Weber of the University of California at Berkeley joined as a co-editor of the series. Professor Weber, a well-known expert in the field of semiconductor materials, will further contribute to continuing the series' tradition of publishing timely, highly relevant, and long-impacting volumes. Some of the recent volumes, such as Hydrogen in Semiconductors, Imperfections in III/V Materials, Epitaxial Microstructures, High-Speed Heterostructure Devices, Oxygen in Silicon, and others promise indeed that this tra...

  17. Simulating the gas hydrate production test at Mallik using the pilot scale pressure reservoir LARS

    Heeschen, Katja; Spangenberg, Erik; Schicks, Judith M.; Priegnitz, Mike; Giese, Ronny; Luzi-Helbing, Manja

    2014-05-01

    LARS, the LArge Reservoir Simulator, allows for one of the few pilot scale simulations of gas hydrate formation and dissociation under controlled conditions with a high resolution sensor network to enable the detection of spatial variations. It was designed and built within the German project SUGAR (submarine gas hydrate reservoirs) for sediment samples with a diameter of 0.45 m and a length of 1.3 m. During the project, LARS already served for a number of experiments simulating the production of gas from hydrate-bearing sediments using thermal stimulation and/or depressurization. The latest test simulated the methane production test from gas hydrate-bearing sediments at the Mallik test site, Canada, in 2008 (Uddin et al., 2011). Thus, the starting conditions of 11.5 MPa and 11°C and environmental parameters were set to fit the Mallik test site. The experimental gas hydrate saturation of 90% of the total pore volume (70 l) was slightly higher than volumes found in gas hydrate-bearing formations in the field (70 - 80%). However, the resulting permeability of a few millidarcy was comparable. The depressurization driven gas production at Mallik was conducted in three steps at 7.0 MPa - 5.0 MPa - 4.2 MPa all of which were used in the laboratory experiments. In the lab the pressure was controlled using a back pressure regulator while the confining pressure was stable. All but one of the 12 temperature sensors showed a rapid decrease in temperature throughout the sediment sample, which accompanied the pressure changes as a result of gas hydrate dissociation. During step 1 and 2 they continued up to the point where gas hydrate stability was regained. The pressure decreases and gas hydrate dissociation led to highly variable two phase fluid flow throughout the duration of the simulated production test. The flow rates were measured continuously (gas) and discontinuously (liquid), respectively. Next to being discussed here, both rates were used to verify a model of gas

  18. Equivalent effect of neutral gas pressure and transverse magnetic field in low-pressure glow discharge plasma

    Toma, M.; Rusu, Ioana; Pohoata, V.; Mihaila, I.

    2001-01-01

    In the paper it is emphasized the equivalent effect of the neutral gas pressure and the action of a transverse magnetic field (TMF), respectively, on a striated positive plasma column. Experimental and theoretical results prove that the distance between striations has the same variation under the influence of both neutral gas pressure and the action of TMF. The pressure modification as well as the action of a TMF can induce ionization instability in the plasma column which explains the standing striation appearance. (authors)

  19. Modeling High Pressure Micro Hollow Cathode Discharges

    Boeuf, Jean-Pierre; Pitchford, Leanne

    2004-01-01

    This report results from a contract tasking CPAT as follows: The Grantee will perform theoretical modeling of point, surface, and volume high-pressure plasmas created using Micro Hollow Cathode Discharge sources...

  20. Preeclampsia and High Blood Pressure During Pregnancy

    ... Gynecologists f AQ FREQUENTLY ASKED QUESTIONS FAQ034 PREGNANCY Preeclampsia and High Blood Pressure During Pregnancy • What is ... is chronic hypertension during pregnancy managed? • What is preeclampsia? • When does preeclampsia occur? • What causes preeclampsia? • What ...

  1. Teaming Up Against High Blood Pressure

    This podcast is based on the September 2012 CDC Vital Signs report. A team-based approach by patients, health care systems, and health care providers is one of the best ways to treat uncontrolled high blood pressure.

  2. Inactivation of microorganisms for high pressures in the wine industry

    Montana B, Jaime Nelson; Ortegon T, Sandra Patricia

    2000-01-01

    In order to evaluate experimentally the capacity of N 2 and CO 2 under pressure to inactivate wild yeasts, which remain in the Puntalarga vineyard grape, musts were exposed to hyperbaric treatment with these gases. At the end of the pascalization (after 2 hours), CO 2 at 15 degrades Celsius under pressures from 1 to 5 MPa, reached high inactivation percentages of yeast cells (> 90%). Contrary to CO 2 treatment the use of N 2 at 15 degrades Celsius at 4 and 10 MPa failed to exert microbicide effect in a same treatment time. While CO 2 gas with high solubility in water has the potential to reduce microbial loads in musts, N 2 gas with low solubility in water have not effect on the survival of the pathogenic microorganisms in these juices

  3. High-pressure portable pneumatic drive unit.

    Hete, B F; Savage, M; Batur, C; Smith, W A; Golding, L A; Nosé, Y

    1989-12-01

    The left ventricular assist device (LVAD) of the Cleveland Clinic Foundation (CCF) is a single-chamber assist pump, driven by a high-pressure pneumatic cylinder. A low-cost, portable driver that will allow cardiac care patients, with a high-pressure pneumatic ventricle assist, more freedom of movement has been developed. The compact and light-weight configuration can provide periods of 2 h of freedom from a fixed position driver and does not use exotic technology.

  4. High Pressure Physics at Brigham Young University

    Decker, Daniel

    2000-09-01

    I will discuss the high pressure research of Drs. J. Dean Barnett, Daniel L. Decker and Howard B. Vanfleet of the department of Physics and Astronomy at Brigham Young University and their many graduate students. I will begin by giving a brief history of the beginning of high pressure research at Brigham Young University when H. Tracy Hall came to the University from General Elecrtric Labs. and then follow the work as it progressed from high pressure x-ray diffraction experiments, melting curve measurements under pressure to pressure effects on tracer diffusion and Mossbauer effect spectra. This will be followed by showing the development of pressure calibration techniques from the Decker equation of state of NaCl to the ruby fluorescence spectroscopy and a short discussion of using a liquid cell for hydrostatic measurements and temperature control for precision high pressure measurements. Then I will conclude with a description of thermoelectric measuremnts, critical phenomena at the magnetic Curie point, and the tricritical point of BaTiO_3.

  5. Nasal continuous positive airway pressure: does bubbling improve gas exchange?

    Morley, C J; Lau, R; De Paoli, A; Davis, P G

    2005-07-01

    In a randomised crossover trial, 26 babies, treated with Hudson prong continuous positive airway pressure (CPAP) from a bubbling bottle, received vigorous, high amplitude, or slow bubbling for 30 minutes. Pulse oximetry, transcutaneous carbon dioxide, and respiratory rate were recorded. The bubbling rates had no effect on carbon dioxide, oxygenation, or respiratory rate.

  6. Leak Rate Quantification Method for Gas Pressure Seals with Controlled Pressure Differential

    Daniels, Christopher C.; Braun, Minel J.; Oravec, Heather A.; Mather, Janice L.; Taylor, Shawn C.

    2015-01-01

    An enhancement to the pressure decay leak rate method with mass point analysis solved deficiencies in the standard method. By adding a control system, a constant gas pressure differential across the test article was maintained. As a result, the desired pressure condition was met at the onset of the test, and the mass leak rate and measurement uncertainty were computed in real-time. The data acquisition and control system were programmed to automatically stop when specified criteria were met. Typically, the test was stopped when a specified level of measurement uncertainty was attained. Using silicone O-ring test articles, the new method was compared with the standard method that permitted the downstream pressure to be non-constant atmospheric pressure. The two methods recorded comparable leak rates, but the new method recorded leak rates with significantly lower measurement uncertainty, statistical variance, and test duration. Utilizing this new method in leak rate quantification, projects will reduce cost and schedule, improve test results, and ease interpretation between data sets.

  7. Natural gas : a highly lucrative commodity

    Anon.

    2000-01-01

    Exploration and production of natural gas has become highly profitable as natural gas is becoming a leading future commodity. With new technology, high demand and environmental benefits, natural gas is the preferred choice over petroleum as the leading source of energy to heat home and businesses. Canada is the world's third largest producer of natural gas with its Sable Offshore Energy Project being the fourth largest producing natural gas basin in North America. The basin will produce high quality sweet natural gas from 28 production wells over the course of the next 20 to 25 years. The gas will be transported to markets through Nova Scotia, New Brunswick and into the Northeastern United States via the Maritimes and Northeast Pipeline. The 1051 kilometer underground gas pipeline is currently running laterals to Halifax, Nova Scotia and Saint John, New Brunswick. Market studies are being conducted to determine if additional lines are needed to serve Cape Breton, Prince Edward Island and northern New Brunswick. A recent survey identified the following 5 reasons to convert to natural gas: (1) it is safe, (2) it is reliable, (3) it is easy to use, (4) it is cleaner burning and environmentally friendly compared to other energy sources, and (5) it saves the consumer money

  8. Diagnostics and modeling of high pressure streamer induced discharges

    Marode, E.; Dessante, P.; Deschamps, N.; Deniset, C.

    2001-01-01

    A great variety of diagnostic has been applied to gain information on basic parameter governing high pressure nonthermal filamentary plasmas (and namely streamer induced filamentary discharges). Apart from electrical diagnostics, gas discharge, in contrast with solid state physics, can greatly benefit from all optical techniques owing to its ''transparent'' state. Emission and absorption spectroscopy, as well as LIF or CARS (talk are given during this meeting on these two techniques) are among such specific possibilities. The figures gained from these diagnostic measurements has generally no meaning by itself. They must be worked out, by means of calibrated former results, and/or by using them as input in high pressure plasma modeling. Mixing experimental and modeling approach is necessary for reaching relevant physical knowledge of the high pressure filamentary discharges processes. It is shown that diffusion, and thermal space and time distribution, must fully be taken into account

  9. Effects of Xe Gas Content and Total Gas Pressure on the Discharge Characteristics of Colour Plasma Display Panels

    Hu Wenbo; Han Mengju; Liang Zhihu

    2006-01-01

    The effects of the Xe gas content and total gas pressure on the discharge characteristics of colour plasma display panels including the sustaining voltage margin, white-field chromaticity, discharge time lag (DTL), discharge current peak, and full-width-at-half-maximum (FWHM) of the discharge current pulse, are experimentally studied. The results indicate that as the Xe gas content in the He-Ne-Xe gas mixture or total pressure increases, the sustaining voltage margin increases, the white-field chromaticity improves, and the discharge current peak has a maximum value, while DTL and FWHM have a minimum value. The mean electron energy in the gas mixture discharge is also calculated through a numerical solution of Boltzmann equation. The experimental results are explained from a view of the mean electron energy variations with the Xe gas content and total gas pressure

  10. Simulation of plasma loading of high-pressure RF cavities

    Yu, K.; Samulyak, R.; Yonehara, K.; Freemire, B.

    2018-01-01

    Muon beam-induced plasma loading of radio-frequency (RF) cavities filled with high pressure hydrogen gas with 1% dry air dopant has been studied via numerical simulations. The electromagnetic code SPACE, that resolves relevant atomic physics processes, including ionization by the muon beam, electron attachment to dopant molecules, and electron-ion and ion-ion recombination, has been used. Simulations studies have been performed in the range of parameters typical for practical muon cooling channels.

  11. Simulation of plasma loading of high-pressure RF cavities

    Yu, K. [Brookhaven National Lab. (BNL), Upton, NY (United States). Computational Science Initiative; Samulyak, R. [Brookhaven National Lab. (BNL), Upton, NY (United States). Computational Science Initiative; Stony Brook Univ., NY (United States). Dept. of Applied Mathematics and Statistics; Yonehara, K. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Freemire, B. [Northern Illinois Univ., DeKalb, IL (United States)

    2018-01-11

    Muon beam-induced plasma loading of radio-frequency (RF) cavities filled with high pressure hydrogen gas with 1% dry air dopant has been studied via numerical simulations. The electromagnetic code SPACE, that resolves relevant atomic physics processes, including ionization by the muon beam, electron attachment to dopant molecules, and electron-ion and ion-ion recombination, has been used. Simulations studies have also been performed in the range of parameters typical for practical muon cooling channels.

  12. Holographic interferometry of high pressure

    McIlwain, M.E.

    1987-01-01

    Measurements in turbulent flows have been historically performed using various types of probes and optical diagnostic methods. In general, probes suffer from plasma perturbation effects and are single point determination methods. Optical methods appear to be better suited to determinations in turbulent flows, however interpretation of the resulting data can often be complex. Methods such as laser Doppler anemometry, which relies on entrained particles, suffers from the fact that particles small enough to be swept along by the plasma are usually melted or sublimed in the plasma. Light refraction or diffraction methods such as shadow photography, interferometry, and holography have also been used to observe plasma flows. These methods typically suffer from the difficulty of interpreting line of sight images and obtaining quantitative data. A new method based on multi-pass holographic interferometry will be discussed. This method has certain advantages which can significantly simplify the complexity of line of sight interferometry image deconvolution. When the method employs high speed cinematography, time resolved images of the plasma flow can be obtained. This method has been applied to both transferred and non-transferred arcs and various types of DC-plasma torch produced jets. These studies and conclusions as to the usefulness of the technique are presented

  13. Compressed gas domestic aerosol valve design using high viscous product

    A Nourian

    2016-10-01

    Full Text Available Most of the current universal consumer aerosol products using high viscous product such as cooking oil, antiperspirants, hair removal cream are primarily used LPG (Liquefied Petroleum Gas propellant which is unfriendly environmental. The advantages of the new innovative technology described in this paper are: i. No butane or other liquefied hydrocarbon gas is used as a propellant and it replaced with Compressed air, nitrogen or other safe gas propellant. ii. Customer acceptable spray quality and consistency during can lifetime iii. Conventional cans and filling technology There is only a feasible energy source which is inert gas (i.e. compressed air to replace VOCs (Volatile Organic Compounds and greenhouse gases, which must be avoided, to improve atomisation by generating gas bubbles and turbulence inside the atomiser insert and the actuator. This research concentrates on using "bubbly flow" in the valve stem, with injection of compressed gas into the passing flow, thus also generating turbulence. The new valve designed in this investigation using inert gases has advantageous over conventional valve with butane propellant using high viscous product (> 400 Cp because, when the valving arrangement is fully open, there are negligible energy losses as fluid passes through the valve from the interior of the container to the actuator insert. The use of valving arrangement thus permits all pressure drops to be controlled, resulting in improved control of atomising efficiency and flow rate, whereas in conventional valves a significant pressure drops occurs through the valve which has a complex effect on the corresponding spray.

  14. Effect of ambient pressure variation on closed loop gas system for India based Neutrino Observatory (INO)

    Satyanarayana, B.; Majumder, G.; Mondal, N. K.; Kalmani, S. D.; Shinde, R. R.; Joshi, A.

    2014-10-01

    Pilot unit of a closed loop gas mixing and distribution system for the INO project was designed and is being operated with 1.8meters × 1.9meters RPCs for about two years. A number of studies on controlling the flow and optimisation of the gas mixture through the RPC stack were carried out during this period. The gas system essentially measures and attempts to maintain absolute pressure inside the RPC gas volume. During typical Mumbai monsoon seasons, the barometric pressure changes rather rapidly, due to which the gas system fails to maintain the set differential pressure between the ambience and the RPC gas volume. As the safety bubblers on the RPC gas input lines are set to work on fixed pressure differentials, the ambient pressure changes lead to either venting out and thus wasting gas through safety bubblers or over pressuring the RPCs gas volume and thus degrading its performance. The above problem also leads to gas mixture contamination through minute leaks in gas gap. The problem stated above was solved by including the ambient barometric pressure as an input parameter in the closed loop. Using this, it is now possible to maintain any set differential pressure between the ambience and RPC gas volumes between 0 to 20mm of water column, thus always ensuring a positive pressure inside the RPC gas volume with respect to the ambience. This has resulted in improved performance of the gas system by maintaining the constant gas flow and reducing the gas toping up frequency. In this paper, we will highlight the design features and improvements of the closed loop gas system. We will present some of the performance studies and considerations for scaling up the system to be used with the engineering module and then followed by Iron Calorimeter detector (ICAL), which is designed to deploy about 30,000 RPCs of 1.8meters × 1.9 meters in area.

  15. High-pressure oxidation of methane

    Hashemi, Hamid; Christensen, Jakob Munkholt; Gersen, Sander

    2016-01-01

    Methane oxidation at high pressures and intermediate temperatures was investigated in a laminar flow reactor and in a rapid compression machine (RCM). The flow-reactor experiments were conducted at 700–900 K and 100 bar for fuel-air equivalence ratios (Φ) ranging from 0.06 to 19.7, all highly...... diluted in nitrogen. It was found that under the investigated conditions, the onset temperature for methane oxidation ranged from 723 K under reducing conditions to 750 K under stoichiometric and oxidizing conditions. The RCM experiments were carried out at pressures of 15–80 bar and temperatures of 800......–1250 K under stoichiometric and fuel-lean (Φ=0.5) conditions. Ignition delays, in the range of 1–100 ms, decreased monotonically with increasing pressure and temperature. A chemical kinetic model for high-pressure methane oxidation was established, with particular emphasis on the peroxide chemistry...

  16. On high-pressure melting of tantalum

    Luo, Sheng-Nian; Swift, Damian C.

    2007-01-01

    The issues related to high-pressure melting of Ta are discussed within the context of diamond-anvil cell (DAC) and shock wave experiments, theoretical calculations and common melting models. The discrepancies between the extrapolations of the DAC melting curve and the melting point inferred from shock wave experiments, cannot be reconciled either by superheating or solid-solid phase transition. The failure to reproduce low-pressure DAC melting curve by melting models such as dislocation-mediated melting and the Lindemann law, and molecular dynamics and quantum mechanics-based calculations, undermines their predictions at moderate and high pressures. Despite claims to the contrary, the melting curve of Ta (as well as Mo and W) remains inconclusive at high pressures.

  17. Temperature and pressure gas geoindicators at the Solfatara fumaroles (Campi Flegrei

    Carmine Minopoli

    2011-06-01

    Full Text Available Long time series of fluid pressure and temperature within a hydrothermal system feeding the Solfatara fumaroles are investigated here, on the basis of the chemical equilibria within the CO2–H2O–H2–CO gas system. The Pisciarelli fumarole external to Solfatara crater shows an annual cycle of CO contents that indicates the occurrence of shallow secondary processes that mask the deep signals. In contrast, the Bocca Grande and Bocca Nova fumaroles located inside Solfatara crater do not show evidence of secondary processes, and their compositional variations are linked to the temperature–pressure changes within the hydrothermal system. The agreement between geochemical signals and the ground movements of the area (bradyseismic phenomena suggests a direct relationship between the pressurization process and the ground uplift. Since 2007, the gas geoindicators have indicated pressurization of the system, which is most probably caused by the arrival of deep gases with high CO2 contents in the shallow parts of the hydrothermal system. This pressurization process causes critical conditions in the hydrothermal system, as highlighted by the increase in the fumarole temperature, the opening of new vents, and the localized seismic activity. If the pressurization process continues with time, it is not possible to rule out the occurrence of phreatic explosions.

  18. Gas bubble dimensions in Archean lava flows indicate low air pressure at 2.7 Ga

    Som, S. M.; Buick, R.; Hagadorn, J.; Blake, T.; Perreault, J.; Harnmeijer, J.; Catling, D. C.

    2014-12-01

    Air pressure constrains atmospheric composition, which, in turn, is linked to the Earth system through biogeochemical cycles and fluxes of volatiles from and to the Earth's interior. Previous studies have only placed maximum levels on surface air pressure for the early Earth [1]. Here, we calculate an absolute value for Archean barometric pressure using gas bubble size (vesicle) distributions in uninflated basaltic lava flows that solidified at sea level 2.7 billion years ago in the Pilbara Craton, Western Australia. These vesicles have been filled in by secondary minerals deposited during metasomatism and so are now amydules, but thin sections show that infilling did not change vesicle dimensions. Amygdule dimensions are measured using high-resolution X-ray tomography from core samples obtained from the top and bottom of the lava flows. The modal size expressed at the top and at the bottom of an uninflated flow can be linked to atmospheric pressure using the ideal gas law. Such a technique has been verified as a paleoaltimeter using Hawaiian Quaternary lava flows [2]. We use statistical methods to estimate the mean and standard deviation of the volumetric size of the amygdules by applying 'bootstrap'resampling and the Central Limit Theorem. Our data indicate a surprisingly low atmospheric pressure. Greater nitrogen burial under anaerobic conditions likely explains lower pressure. Refs: [1] Som et al. (2012) Nature 484, 359-262. D. L. Sahagian et al. (2002) J. Geol., 110, 671-685.

  19. Evaluation of Failure Pressure for Gas Pipelines with Combined Defects

    Tadas Vilkys

    2018-05-01

    Full Text Available The paper presents the study of the influence of mechanical damage on the safe operation of gas transmission pipelines. The main types of pipeline damage with the actual parameters and their influence on the operational parameters are analysed. The damaged fractures of the section of the pipeline Kaunas (Lithuania–Kaliningrad (Russia were investigated in the laboratory. The main operational characteristics and the structure of the pipeline’s metal after the period of long-term operation were determined using various research and experimental methods. The influence of the pipeline’s damage was modelled by using the Finite Element Method and the ANSYS code. The predictions of the failure pressure were made, taking into consideration the actual properties of the pipeline’s metal. Techniques including the hardness and microhardness measurement, chemical analysis, the impact strength test, and metallography analysis with an optical microscope, were used in the experimental study.

  20. A reliability analysis of a natural-gas pressure-regulating installation

    Gerbec, Marko, E-mail: marko.gerbec@ijs.s [Jozef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia)

    2010-11-15

    A case study involving analyses of the operability, reliability and availability was made for a selected, typical, high-pressure, natural-gas, pressure-regulating installation (PRI). The study was commissioned by the national operator of the natural-gas, transmission-pipeline network for the purpose of validating the existing operability and maintenance practices and policies. The study involved a failure-risk analysis (HAZOP) of the selected typical installation, retrieval and analysis of the available corrective maintenance data for the PRI's equipment at the network level in order to obtain the failure rates followed by an elaboration of the quantitative fault trees. Thus, both operator-specific and generic literature data on equipment failure rates were used. The results obtained show that two failure scenarios need to be considered: the first is related to the PRI's failure to provide gas to the consumer(s) due to a low-pressure state and the second is related to a failure of the gas pre-heating at the high-pressure reduction stage, leading to a low temperature (a non-critical, but unfavorable, PRI state). Related to the first scenario, the most important cause of failure was found to be a transient pressure disturbance back from the consumer side. The network's average PRI failure frequency was assessed to be about once per 32 years, and the average unavailability to be about 4 minutes per year (the confidence intervals were also assessed). Based on the results obtained, some improvements to the monitoring of the PRI are proposed.

  1. A reliability analysis of a natural-gas pressure-regulating installation

    Gerbec, Marko

    2010-01-01

    A case study involving analyses of the operability, reliability and availability was made for a selected, typical, high-pressure, natural-gas, pressure-regulating installation (PRI). The study was commissioned by the national operator of the natural-gas, transmission-pipeline network for the purpose of validating the existing operability and maintenance practices and policies. The study involved a failure-risk analysis (HAZOP) of the selected typical installation, retrieval and analysis of the available corrective maintenance data for the PRI's equipment at the network level in order to obtain the failure rates followed by an elaboration of the quantitative fault trees. Thus, both operator-specific and generic literature data on equipment failure rates were used. The results obtained show that two failure scenarios need to be considered: the first is related to the PRI's failure to provide gas to the consumer(s) due to a low-pressure state and the second is related to a failure of the gas pre-heating at the high-pressure reduction stage, leading to a low temperature (a non-critical, but unfavorable, PRI state). Related to the first scenario, the most important cause of failure was found to be a transient pressure disturbance back from the consumer side. The network's average PRI failure frequency was assessed to be about once per 32 years, and the average unavailability to be about 4 minutes per year (the confidence intervals were also assessed). Based on the results obtained, some improvements to the monitoring of the PRI are proposed.

  2. [Investigation on the gas temperature of a plasma jet at atmospheric pressure by emission spectrum].

    Li, Xue-chen; Yuan, Ning; Jia, Peng-ying; Niu, Dong-ying

    2010-11-01

    A plasma jet of a dielectric barrier discharge in coaxial electrode was used to produce plasma plume in atmospheric pressure argon. Spatially and temporally resolved measurement was carried out by photomultiplier tubes. The light emission signals both from the dielectric barrier discharge and from the plasma plume were analyzed. Furthermore, emission spectrum from the plasma plume was collected by high-resolution optical spectrometer. The emission spectra of OH (A 2sigma + --> X2 II, 307.7-308.9 nm) and the first negative band of N2+ (B2 sigma u+ --> X2 IIg+, 390-391.6 nm) were used to estimate the rotational temperature of the plasma plume by fitting the experimental spectra to the simulated spectra. The rotational temperature obtained is about 443 K by fitting the emission spectrum from the OH, and that from the first negative band of N2+ is about 450 K. The rotational temperatures obtained by the two method are consistent within 5% error band. The gas temperature of the plasma plume at atmospheric pressure was obtained because rotational temperature equals to gas temperature approximately in gas discharge at atmospheric pressure. Results show that gas temperature increases with increasing the applied voltage.

  3. Radioresistance increase in polymers at high pressures

    Milinchuk, V.; Kirjukhin, V.; Klinshpont, E.

    1977-01-01

    The effect was studied of very high pressures ranging within 100 and 2,700 MPa on the radioresistance of polytetrafluoroethylene, polypropylene and polyethylene in gamma irradiation. For experiments industrial polymers in the shape of blocks, films and fibres were used. It is shown that in easily breakable polymers, such as polytetrafluoroethylene and polypropylene 1.3 to 2 times less free radicals are formed as a result of gamma irradiation and a pressure of 150 MPa than at normal pressure. The considerably reduced radiation-chemical formation of radicals and the destruction suppression by cross-linking in polymers is the evidence of the polymer radioresistance in irradiation at high pressures. (J.B.)

  4. High Temperature and Pressure Alkaline Electrolysis

    Allebrod, Frank

    against conventional technologies for hydrogen production, such as natural gas reforming, the production and investment costs have to be reduced. A reduction of the investment costs may be achieved by increasing the operational pressure and temperature of the electrolyzer, as this will result in: 1.......3 A cm-2 combined with relatively small production costs may lead to both reduced investment and operating costs for hydrogen and oxygen production. One of the produced electrolysis cells was operated for 350 h. Based on the successful results a patent application covering this novel cell was filed...

  5. A reactor for high-throughput high-pressure nuclear magnetic resonance spectroscopy

    Beach, N. J.; Knapp, S. M. M.; Landis, C. R., E-mail: landis@chem.wisc.edu [Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53719 (United States)

    2015-10-15

    The design of a reactor for operando nuclear magnetic resonance (NMR) monitoring of high-pressure gas-liquid reactions is described. The Wisconsin High Pressure NMR Reactor (WiHP-NMRR) design comprises four modules: a sapphire NMR tube with titanium tube holder rated for pressures as high as 1000 psig (68 atm) and temperatures ranging from −90 to 90 °C, a gas circulation system that maintains equilibrium concentrations of dissolved gases during gas-consuming or gas-releasing reactions, a liquid injection apparatus that is capable of adding measured amounts of solutions to the reactor under high pressure conditions, and a rapid wash system that enables the reactor to be cleaned without removal from the NMR instrument. The WiHP-NMRR is compatible with commercial 10 mm NMR probes. Reactions performed in the WiHP-NMRR yield high quality, information-rich, and multinuclear NMR data over the entire reaction time course with rapid experimental turnaround.

  6. High pressure microwave discharge for electrodeless Xe-lamp

    Kudela, J.; Kando, M.

    1998-01-01

    Preliminary results are presented of the investigation into the high pressure Xe microwave discharge in bent tubes, sustained by electromagnetic surface wave. The research was aimed to help with the design of a new generation of high intensity light sources with generally more complex shapes than those commonly used. The results show that the electromagnetic surface wave can effectively sustain discharge in tubes with various bending radii within the large pressure range. The curved shapes of discharge tubes improve the cooling of the lamp which is one of the major technological difficulties. It was shown that under relatively lower powers and higher gas pressures (100 Torr) the discharge exhibits a streamer-like filamentation and the branching of filaments. The phenomena of the effective sustaining of the discharge by surface wave propagation along curved plasma columns will be investigated in more detail by measurements of the profiles of surface wave electric and magnetic field intensities. (author)

  7. High-temperature Gas Reactor (HTGR)

    Abedi, Sajad

    2011-05-01

    General Atomics (GA) has over 35 years experience in prismatic block High-temperature Gas Reactor (HTGR) technology design. During this period, the design has recently involved into a modular have been performed to demonstrate its versatility. This versatility is directly related to refractory TRISO coated - particle fuel that can contain any type of fuel. This paper summarized GA's fuel cycle studies individually and compares each based upon its cycle sustainability, proliferation-resistance capabilities, and other performance data against pressurized water reactor (PWR) fuel cycle data. Fuel cycle studies LEU-NV;commercial HEU-Th;commercial LEU-Th;weapons-grade plutonium consumption; and burning of LWR waste including plutonium and minor actinides in the MHR. results show that all commercial MHR options, with the exception of HEU-TH, are more sustainable than a PWR fuel cycle. With LEU-NV being the most sustainable commercial options. In addition, all commercial MHR options out perform the PWR with regards to its proliferation-resistance, with thorium fuel cycle having the best proliferation-resistance characteristics.

  8. Cathode erosion in high-current high-pressure arc

    Nemchinsky, V A

    2003-01-01

    Cathode erosion rate was experimentally investigated for two types of arcs: one with tungsten cathode in nitrogen atmosphere and one with hafnium cathode in oxygen atmosphere. Conditions were typical for plasma arc cutting systems: gas pressure from 2 to 5 atm, arc current from 200 to 400 A, gas flow rate from 50 to 130 litre min sup - sup 1. It was found that the actual cathode evaporation rate G is much lower than G sub 0 , the evaporation rate that follows from the Hertz-Knudsen formula: G = nu G sub 0. The difference is because some of the evaporated particles return back to the cathode. For conditions of our experiments, the factor nu could be as low as 0.01. It was shown experimentally that nu depends strongly on the gas flow pattern close to the cathode. In particular, swirling the gas increases nu many times. To explain the influence of gas swirling, model calculations of gas flows were performed. These calculations revealed difference between swirling and non-swirling flows: swirling the gas enhances...

  9. observed by high pressure NMR and NQR

    Akogun, Hyogo 678-1297, Japan. ∗. Email: kohara@sci.himeji tech.ac.jp. Abstract. NMR and NQR studies on two interesting systems (URu2Si2, CeTIn5) were performed under high pressure. (1) URu2Si2: In the pressure range 3.0 to 8.3 kbar, we have observed new 29Si. NMR signals arising from the antiferromagnetic ...

  10. Study of gas holdup and pressure characteristics in a column flotation cell using coal

    Shukla, S.C.; Kundu, G.; Mukherjee, D. [Indian Institute of Technology, Kharagpur (India). Dept. of Chemical Engineering

    2010-07-15

    Present work has been carried out to observe the effect of process variables (gas flow rate, feed flow rate, solid concentration and frother concentration) on gas holdup and pressure characteristics in flotation column using coal. Gas holdup has been estimated using phase separation method while piezometers have been used to obtain column's axial pressure profile. It was observed that gas holdup in collection zone was affected by both air as well as feed flow rates. Up to 6% change in gas holdup may occur when the feed flow rate changes from 1-2 cm/s. It was also observed that addition of coal decreased the gas holdup while addition of methyl isobutyl carbinol (MIBC) had opposite effect. Almost linear variation in columns axial pressure characteristics has been observed with gas flow rate. An empirical relationship between gas holdup in the flotation column with column's axial pressure difference was developed.

  11. High pressure, high current, low inductance, high reliability sealed terminals

    Hsu, John S [Oak Ridge, TN; McKeever, John W [Oak Ridge, TN

    2010-03-23

    The invention is a terminal assembly having a casing with at least one delivery tapered-cone conductor and at least one return tapered-cone conductor routed there-through. The delivery and return tapered-cone conductors are electrically isolated from each other and positioned in the annuluses of ordered concentric cones at an off-normal angle. The tapered cone conductor service can be AC phase conductors and DC link conductors. The center core has at least one service conduit of gate signal leads, diagnostic signal wires, and refrigerant tubing routed there-through. A seal material is in direct contact with the casing inner surface, the tapered-cone conductors, and the service conduits thereby hermetically filling the interstitial space in the casing interior core and center core. The assembly provides simultaneous high-current, high-pressure, low-inductance, and high-reliability service.

  12. High Temperature Dynamic Pressure Measurements Using Silicon Carbide Pressure Sensors

    Okojie, Robert S.; Meredith, Roger D.; Chang, Clarence T.; Savrun, Ender

    2014-01-01

    Un-cooled, MEMS-based silicon carbide (SiC) static pressure sensors were used for the first time to measure pressure perturbations at temperatures as high as 600 C during laboratory characterization, and subsequently evaluated in a combustor rig operated under various engine conditions to extract the frequencies that are associated with thermoacoustic instabilities. One SiC sensor was placed directly in the flow stream of the combustor rig while a benchmark commercial water-cooled piezoceramic dynamic pressure transducer was co-located axially but kept some distance away from the hot flow stream. In the combustor rig test, the SiC sensor detected thermoacoustic instabilities across a range of engine operating conditions, amplitude magnitude as low as 0.5 psi at 585 C, in good agreement with the benchmark piezoceramic sensor. The SiC sensor experienced low signal to noise ratio at higher temperature, primarily due to the fact that it was a static sensor with low sensitivity.

  13. Fully kinetic particle simulations of high pressure streamer propagation

    Rose, David; Welch, Dale; Thoma, Carsten; Clark, Robert

    2012-10-01

    Streamer and leader formation in high pressure devices is a dynamic process involving a hierarchy of physical phenomena. These include elastic and inelastic particle collisions in the gas, radiation generation, transport and absorption, and electrode interactions. We have performed 2D and 3D fully EM implicit particle-in-cell simulation model of gas breakdown leading to streamer formation under DC and RF fields. The model uses a Monte Carlo treatment for all particle interactions and includes discrete photon generation, transport, and absorption for ultra-violet and soft x-ray radiation. Central to the realization of this fully kinetic particle treatment is an algorithm [D. R. Welch, et al., J. Comp. Phys. 227, 143 (2007)] that manages the total particle count by species while preserving the local momentum distribution functions and conserving charge. These models are being applied to the analysis of high-pressure gas switches [D. V. Rose, et al., Phys. Plasmas 18, 093501 (2011)] and gas-filled RF accelerator cavities [D. V. Rose, et al. Proc. IPAC12, to appear].

  14. High-pressure oxidation of methane

    Hashemi, Hamid; Christensen, Jakob M.; Gersen, Sander; Levinsky, Howard; Klippenstein, Stephen J.; Glarborg, Peter

    2016-01-01

    Methane oxidation at high pressures and intermediate temperatures was investigated in a laminar flow reactor and in a rapid compression machine (RCM). The flow-reactor experiments were conducted at 700–900 K and 100 bar for fuel-air equivalence ratios (Φ) ranging from 0.06 to 19.7, all highly

  15. High pressure synthesis of bismuth disulfide

    Søndergaard-Pedersen, Simone; Nielsen, Morten Bormann; Bremholm, Martin

    In this research the BiS2 compound was synthesized by a high pressure and high temperature method using a multi-anvil large volume press and the structure was solved by single crystal diffraction. The structure contains Bi atoms in distorted square-based pyramidal coordination to five surrounding...

  16. High-purity aluminium creep under high hydrostatic pressure

    Zajtsev, V.I.; Lyafer, E.I.; Tokij, V.V.

    1977-01-01

    The effect of the hydrostatic pressure on the rate of steady-state creep of high-purity aluminium was investigated. It is shown that the hydrostatic pressure inhibits the creep. The activation volume of the creep is independent of the direction in the range of (4.7-6.2) kg/mm 2 and of the pressure in the range of (1-7.8000) atm. It is concluded that self-diffusion does not control the creep of high-purity aluminium at room temperature in the investigated stress and pressure range

  17. Optical fiber tip interferometer gas pressure sensor based on anti-resonant reflecting guidance mechanism

    Yang, Y. B.; Wang, D. N.; Xu, Ben; Wang, Z. K.

    2018-05-01

    We propose and demonstrate a gas pressure sensor based on an anti-resonant reflecting guidance (ARRG) mechanism in quartz capillary tube with an open cavity. The device is simple in fabrication by only fusion splicing a segment of capillary tube with single mode fiber. It has compact size, robust structure, convenient mode of operation, and high sensitivity of 4.278 nm/MPa. Moreover, as two Faby-Perot cavities exist in the device, which create the interference spectrum with several distinct resonance dips, a simultaneous gas pressure and temperature detection can be readily achieved by tracing two dip wavelengths. The error in the measurement due to the choice of different resonant dips can be effectively reduced by using the Fourier band pass filtering method.

  18. Hydrogen - High pressure production and storage

    Lauretta, J.R

    2005-01-01

    The development of simple, safe and more and more efficient technologies for the production and the storage of hydrogen is necessary condition for the transition towards the economy of hydrogen.In this work the hydrogen production studies experimentally to high pressure by electrolysis of alkaline solutions without the intervention of compressing systems and its direct storage in safe containers.The made tests show that the process of electrolysis to high pressure is feasible and has better yield than to low pressure, and that is possible to solve the operation problems, with relatively simple technology.The preliminary studies and tests indicate that the system container that studied is immune to the outbreak and can have forms and very different sizes, nevertheless, to reach or to surpass the efficiency of storage of the conventional systems the investments necessary will be due to make to be able to produce aluminum alloy tubes of high resistance

  19. High-Tc superconductors under very high pressure

    Wijngaarden, R.J.; Scholtz, J.J.; Eenige, E.N. van; Griessen, R.

    1991-01-01

    High pressure has played a crucial role in the short history of high T c superconductors. Soon after the discovery of superconductivity by Bednorz and Muller in La-Ba-Cu-O, Chu et al. showed that the critical temperature T c could be significantly increased by pressure. This observation led to the discovery of YBa 2 Cu 3 O 7 by Wu et al. with a T c above 90 K. Incidentally, this high T c is probably also due to the fact that YBa 2 Cu 3 O 7 has two CuO 2 layers per unit cell instead of a single one in La-Ba-Cu-O. The authors discuss the high pressure dependence of the oxide superconductors, particularly at pressures above 10 GPa, and the nonmonotonic dependence of transition temperature on pressure

  20. Turbine airfoil cooling system with cooling systems using high and low pressure cooling fluids

    Marsh, Jan H.; Messmann, Stephen John; Scribner, Carmen Andrew

    2017-10-25

    A turbine airfoil cooling system including a low pressure cooling system and a high pressure cooling system for a turbine airfoil of a gas turbine engine is disclosed. In at least one embodiment, the low pressure cooling system may be an ambient air cooling system, and the high pressure cooling system may be a compressor bleed air cooling system. In at least one embodiment, the compressor bleed air cooling system in communication with a high pressure subsystem that may be a snubber cooling system positioned within a snubber. A delivery system including a movable air supply tube may be used to separate the low and high pressure cooling subsystems. The delivery system may enable high pressure cooling air to be passed to the snubber cooling system separate from low pressure cooling fluid supplied by the low pressure cooling system to other portions of the turbine airfoil cooling system.

  1. High pressure freon decontamination of remote equipment

    Wilson, C.E.

    1987-01-01

    A series of decontamination tests using high pressure FREON 113 was conducted in the 200 Area of the Hanford site. The intent of these tests was to evaluate the effectiveness of FREON 113 in decontamination of manipulator components, tools, and equipment items contaminated with mixed fission products. The test results indicated that high pressure FREON 113 is very effective in removing fissile material from a variety of objects and can reduce both the quantity and the volume of the radioactive waste material presently being buried

  2. High pressure water jet cutting and stripping

    Hoppe, David T.; Babai, Majid K.

    1991-01-01

    High pressure water cutting techniques have a wide range of applications to the American space effort. Hydroblasting techniques are commonly used during the refurbishment of the reusable solid rocket motors. The process can be controlled to strip a thermal protective ablator without incurring any damage to the painted surface underneath by using a variation of possible parameters. Hydroblasting is a technique which is easily automated. Automation removes personnel from the hostile environment of the high pressure water. Computer controlled robots can perform the same task in a fraction of the time that would be required by manual operation.

  3. High pressure water jet mining machine

    Barker, Clark R.

    1981-05-05

    A high pressure water jet mining machine for the longwall mining of coal is described. The machine is generally in the shape of a plowshare and is advanced in the direction in which the coal is cut. The machine has mounted thereon a plurality of nozzle modules each containing a high pressure water jet nozzle disposed to oscillate in a particular plane. The nozzle modules are oriented to cut in vertical and horizontal planes on the leading edge of the machine and the coal so cut is cleaved off by the wedge-shaped body.

  4. Photoionization and High Density Gas

    Kallman, T.; Bautista, M.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We present results of calculations using the XSTAR version 2 computer code. This code is loosely based on the XSTAR v.1 code which has been available for public use for some time. However it represents an improvement and update in several major respects, including atomic data, code structure, user interface, and improved physical description of ionization/excitation. In particular, it now is applicable to high density situations in which significant excited atomic level populations are likely to occur. We describe the computational techniques and assumptions, and present sample runs with particular emphasis on high density situations.

  5. Raman study of opal at high pressure

    Farfan, G.; Wang, S.; Mao, W. L.

    2011-12-01

    More commonly known for their beauty and lore as gemstones, opals are also intriguing geological materials which may have potential for materials science applications. Opal lacks a definite crystalline structure, and is composed of an amorphous packing of hydrated silica (SiO2) spheroids, which provides us with a unique nano-scaled mineraloid with properties unlike those of other amorphous materials like glass. Opals from different localities were studied at high pressure using a diamond anvil cell to apply pressure and Raman spectroscopy to look at changes in bonding as pressure was increased. We first tested different samples from Virgin Valley, NV, Spencer, ID, Juniper Ridge, OR, and Australia, which contain varying amounts of water at ambient conditions, using Raman spectroscopy to determine if they were opal-CT (semicrystalline cristobalite-trydimite volcanic origin) or opal-A (amorphous sedimentary origin). We then used x-ray diffraction and Raman spectroscopy in a diamond anvil cell to see how their bonding and structure changed under compression and to determine what effect water content had on their high pressure behavior. Comparison of our results on opal to other high pressure studies of amorphous materials like glass has implications from a geological and materials science standpoint.

  6. Dynamism or Disorder at High Pressures?

    Angel, R. J.; Bismayer, U.; Marshall, W. G.

    2002-12-01

    Phase transitions in minerals at elevated temperatures typically involve dynamics as a natural consequence of the increase in thermal energy available to the system. Classic examples include quartz, cristobalite, and carbonates in which the high-temperature, high symmetry phase is dynamically disordered. This disorder has important thermodynamic consequences, including displacement and curvature of phase boundaries (e.g. calcite-aragonite). In other minerals such as clinopyroxenes and anorthite feldspar, the dynamic behaviour is restricted to the neighbourhood of the phase transition. The fundamental question is whether increasing pressure generally suppresses such dynamic behaviour (as in anorthite; Angel, 1988), or not. In the latter case it must be included in thermodynamic models of high-pressure phase equilibria and seismological modelling of the mantle; the potential dynamics and softening in stishovite may provide the critical observational constraint on the presence or otherwise of free silica in the lower mantle. We have continued to use the lead phosphate as a prototype ferroelastic in which to understand dynamic behaviour, simply because its dynamics and transition behaviour is far better characterised than any mineral. Furthermore, the phase transition is at a pressure where experimental difficulties do not dominate the experimental results. Our previous neutron diffraction study (Angel et al., 2001) revealed that some disorder, either dynamic or static, is retained in the high-symmetry, high-pressure phase just above the phase transition. New neutron diffraction data on the pure material now suggests that this disorder slowly decreases with increasing pressure until at twice the transition pressure it is ordered. Further data for doped material provides insights into the nature of this disorder. Angel (1988) Amer. Mineral. 73:1114. Angel et al (2001) J PhysC 13: 5353.

  7. High pressure photoinduced ring opening of benzene

    Ciabini, Lucia; Santoro, Mario; Bini, Roberto; Schettino, Vincenzo

    2002-01-01

    The chemical transformation of crystalline benzene into an amorphous solid (a-C:H) was induced at high pressure by employing laser light of suitable wavelengths. The reaction was forced to occur at 16 GPa, well below the pressure value (23 GPa) where the reaction normally occurs. Different laser sources were used to tune the pumping wavelength into the red wing of the first excited singlet state S 1 ( 1 B 2u ) absorption edge. Here the benzene ring is distorted, presenting a greater flexibility which makes the molecule unstable at high pressure. The selective pumping of the S 1 level, in addition to structural considerations, was of paramount importance to clarify the mechanism of the reaction

  8. Forecasting of reservoir pressures of oil and gas bearing complexes in northern part of West Siberia for safety oil and gas deposits exploration and development

    Gorbunov, P. A.; Vorobyov, S. V.

    2017-10-01

    In the paper the features of reservoir pressures changes in the northern part of West Siberian oil-and gas province are described. This research is based on the results of hydrodynamic studies in prospecting and explorating wells in Yamal-Nenets Autonomous District. In the Cenomanian, Albian, Aptian and in the top of Neocomian deposits, according to the research, reservoir pressure is usually equal to hydrostatic pressure. At the bottom of the Neocomian and Jurassic deposits zones with abnormally high reservoir pressures (AHRP) are distinguished within Gydan and Yamal Peninsula and in the Nadym-Pur-Taz interfluve. Authors performed the unique zoning of the territory of the Yamal-Nenets Autonomous District according to the patterns of changes of reservoir pressures in the section of the sedimentary cover. The performed zoning and structural modeling allow authors to create a set of the initial reservoir pressures maps for the main oil and gas bearing complexes of the northern part of West Siberia. The results of the survey should improve the efficiency of exploration drilling by preventing complications and accidents during this operation in zones with abnormally high reservoir pressures. In addition, the results of the study can be used to estimate gas resources within prospective areas of Yamal-Nenets Autonomous District.

  9. High-BTU gas production from tar-bearing hot coke oven gas over iron catalyst

    L.Y. Li; K. Morishita; T. Takarada [Gunma University, Gunma (Japan). Department of Biological and Chemical Engineering

    2005-07-01

    To utilize the tar-bearing hot coke oven gas (the by-product of coke making process) more effectively, a process was developed by converting the hot coke oven gas into a methane rich high-BTU gas over iron-bearing catalysts. The catalytic behaviour of Indonesian limonite ore was mainly discussed. For a reference, a conventional nickel catalyst (Ni/Al{sub 2}O{sub 3}) was employed. Laboratory scale tests were carried out in a two-stage fixed-bed reactor at ambient pressure. A bituminous coal sample was heated at first stage, the volatiles was carried by feed gas and decomposed at second stage. The limonite promoted hydropyrolysis of coal volatiles similar to Ni/Al{sub 2}O{sub 3} catalyst. High yields of total product gas and methane were obtained at 50 vol.% hydrogen atmosphere with a feed gas of 60 ml min{sup -1} hydrogen and 60 ml min{sup -1} nitrogen. After experiments, hydrocarbons heavier than ethane were not observed. Also that, carbon balance was more than 99.8% in coal char, product gases and carbon deposits. It was considered that coal volatiles converted into light gases and carbon almost completely in catalyst bed. Yields of product gas and methane depended upon catalytic temperature. At 923 K, the maximum yield of product gas was achieved at 74.3% for limonite catalyst on carbon balance with methane 83.2 vol.% of the carbonaceous gas products. Comparing with limonite, Fe/Al{sub 2}O{sub 3} and BOF dust samples showed low activities on coal volatiles catalytic decomposition. 21 refs., 5 figs., 3 tabs.

  10. Estimation of Power Production Potential from Natural Gas Pressure Reduction Stations in Pakistan Using ASPEN HYSYS

    Imran Nazir Unar

    2015-07-01

    Full Text Available Pakistan is a gas rich but power poor country. It consumes approximately 1, 559 Billion cubic feet of natural gas annually. Gas is transported around the country in a system of pressurized transmission pipelines under a pressure range of 600-1000 psig exclusively operated by two state owned companies i.e. SNGPL (Sui Northern Gas Pipelines Limited and SSGCL (Sui Southern Gas Company Limited. The gas is distributed by reducing from the transmission pressure into distribution pressure up to maximum level of 150 psig at the city gate stations normally called SMS (Sales Metering Station. As a normal practice gas pressure reduction at those SMSs is accomplished in pressure regulators (PCVs or in throttle valves where isenthalpic expansion takes place without producing any energy. Pressure potential of natural gas is an untapped energy resource which is currently wasted by its throttling. This pressure reduction at SMS (pressure drop through SMS may also be achieved by expansion of natural gas in TE, which converts its pressure into the mechanical energy, which can be transmitted any loading device for example electric generator. The aim of present paper is to explore the expected power production potential of various Sales Metering Stations of SSGCL company in Pakistan. The model of sales metering station was developed in a standard flow sheeting software Aspen HYSYS®7.1 to calculate power and study other parameters when an expansion turbine is used instead of throttling valves. It was observed from the simulation results that a significant power (more than 140 KW can be produced at pressure reducing stations of SSGC network with gas flows more than 2.2 MMSCFD and pressure ration more than 1.3.

  11. Cobalt ferrite nanoparticles under high pressure

    Saccone, F. D.; Ferrari, S.; Grinblat, F.; Bilovol, V. [Instituto de Tecnologías y Ciencias de la Ingeniería, “Ing. H. Fernández Long,” Av. Paseo Colón 850 (1063), Buenos Aires (Argentina); Errandonea, D., E-mail: daniel.errandonea@uv.es [Departamento de Fisica Aplicada, Institut Universitari de Ciència dels Materials, Universitat de Valencia, c/ Doctor Moliner 50, E-46100 Burjassot, Valencia (Spain); Agouram, S. [Departamento de Física Aplicada y Electromagnetismo, Universitat de València, 46100 Burjassot, Valencia (Spain)

    2015-08-21

    We report by the first time a high pressure X-ray diffraction and Raman spectroscopy study of cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles carried out at room temperature up to 17 GPa. In contrast with previous studies of nanoparticles, which proposed the transition pressure to be reduced from 20–27 GPa to 7.5–12.5 GPa (depending on particle size), we found that cobalt ferrite nanoparticles remain in the spinel structure up to the highest pressure covered by our experiments. In addition, we report the pressure dependence of the unit-cell parameter and Raman modes of the studied sample. We found that under quasi-hydrostatic conditions, the bulk modulus of the nanoparticles (B{sub 0} = 204 GPa) is considerably larger than the value previously reported for bulk CoFe{sub 2}O{sub 4} (B{sub 0} = 172 GPa). In addition, when the pressure medium becomes non-hydrostatic and deviatoric stresses affect the experiments, there is a noticeable decrease of the compressibility of the studied sample (B{sub 0} = 284 GPa). After decompression, the cobalt ferrite lattice parameter does not revert to its initial value, evidencing a unit cell contraction after pressure was removed. Finally, Raman spectroscopy provides information on the pressure dependence of all Raman-active modes and evidences that cation inversion is enhanced by pressure under non-hydrostatic conditions, being this effect not fully reversible.

  12. Industrial high pressure applications. Processes, equipment and safety

    Eggers, Rudolf (ed.) [Technische Univ. Hamburg-Harburg, Hamburg (Germany). Inst. fuer Thermische Verfahrenstechnik

    2012-07-01

    Industrial high pressure processes open the door to many reactions that are not possible under 'normal' conditions. These are to be found in such different areas as polymerization, catalytic reactions, separations, oil and gas recovery, food processing, biocatalysis and more. The most famous high pressure process is the so-called Haber-Bosch process used for fertilizers and which was awarded a Nobel prize. Following an introduction on historical development, the current state, and future trends, this timely and comprehensive publication goes on to describe different industrial processes, including methanol and other catalytic syntheses, polymerization and renewable energy processes, before covering safety and equipment issues. With its excellent choice of industrial contributions, this handbook offers high quality information not found elsewhere, making it invaluable reading for a broad and interdisciplinary audience.

  13. Acquired tracheoesophageal fistula due to high intracuff pressure

    Hameed Akmal

    2008-01-01

    Full Text Available High-compliance endotracheal tube cuffs are used to prevent gas leak and also pulmonary aspiration in mechanically ventilated patients. However, the use of the usual cuff inflation volumes may cause tracheal damage and lead to tracheoesophageal fistula. Tracheostomy tube cuffs seal against the tracheal wall and prevent leakage of air around the tube, assuring that the tidal volume is delivered to the lungs. In the past, high-pressure cuffs were used, but these contributed to tracheal injury and have been replaced by high-volume, low-pressure cuffs. For long-term applications, some newer tubes have low-profile (tight to shaft cuffs that facilitate the tracheostomy tube changes by eliminating the lip that forms when standard cuffs are deflated.

  14. High Pressure Inactivation of HAV within Mussels

    The potential of hepatitis A virus (HAV) to be inactivated within Mediterranean mussels (Mytilus galloprovincialis) and blue mussels (Mytilus edulis) by high pressure processing was evaluated. HAV was bioaccumulated within mussels to approximately 6-log10 PFU by exposure of mussels to HAV-contamina...

  15. Teaming Up Against High Blood Pressure

    2012-09-04

    This podcast is based on the September 2012 CDC Vital Signs report. A team-based approach by patients, health care systems, and health care providers is one of the best ways to treat uncontrolled high blood pressure.  Created: 9/4/2012 by Centers for Disease Control and Prevention (CDC).   Date Released: 9/4/2012.

  16. High pressure and synchrotron radiation satellite workshop

    Bass, J.; Guignot, N.; Morard, G.; Mezouar, M.; Andrault, D.; Bolfan-Casanova, N.; Sturhahn, W.; Daniel, I.; Reynard, B.; Simionovici, A.; Sanchez Valle, C.; Martinez, I.; Kantor, I.; Dubrovinsky, I.; Mccammon, C.; Dubrovinskaia, N.; Kurnosiv, A.; Kuznetsov, A.; Goncharenko, I.; Loubeyre, P.; Desgreniers, S.; Weck, G.; Yoo, C.S.; Iota, V.; Park, J.; Cynn, H.; Gorelli, F.; Toulemonde, P.; Machon, D.; Merlen, A.; San Miguel, A.; Amboage, M.; Aquilanti, G.; Mathon, O.; Pascarelli, S.; Itie, J.P.; Mcmillan, P.F.; Trapananti, A.; Di Cicco, A.; Panfilis, S. de; Filipponi, A.; Kreisel, J.; Bouvier, P.; Dkhil, B.; Chaabane, B.; Rosner, H.; Koudela, D.; Schwarz, U.; Handestein, A.; Hanfland, M.; Opahle, I.; Koepernik, K.; Kuzmin, M.; Mueller, K.H.; Mydosh, J.; Richter, M.; Hejny, C.; Falconi, S.; Lundegaard, L.F.; Mcmahon, M.I; Loa, I.; Syassen, K.; Wang, X.; Roth, H.; Lorenz, T.; Farber Daniel, I.; Antonangeli Daniele, I.; Krisch, M.; Badro, J.; Fiquet, G.; Occelli, F.; Mao, W.L.; Mao, H.K.; Eng, P.; Kao, C.C.; Shu, J.F.; Hemley, R.J.; Tse, J.S.; Yao, Y.; Deen, P.P.; Paolasini, I.; Braithwaite, D.; Kernavanois, N.; Lapertot, G.; Rupprecht, K.; Leupold, O.; Ponkratz, U.; Wortmann, G.; Beraud, A.; Krisch, M.; Farber, D.; Antonangeli, D.; Aracne, C.; Zarestky, J.L.; Mcqueeney, R.; Mathon, O.; Baudelet, F.; Decremps, F.; Itie, J.P.; Nataf, I.; Pascarelli, S.; Polian, A

    2006-07-01

    The workshop is dedicated to recent advances on science at high pressure at third generation synchrotron sources. A variety of experiments using synchrotron radiation techniques including X-ray diffraction, EXAFS (extended X-ray absorption fine structure), inelastic X-ray scattering, Compton scattering and Moessbauer spectroscopy of crystalline, liquid or amorphous samples, are reported. This document gathers the abstracts of the presentations.

  17. Study of ceramics sintering under high pressures

    Kunrath Neto, A.O.

    1990-01-01

    A systematic study was made on high pressure sintering of ceramics in order to obtain materials with controlled microstructure, which are not accessible by conventional methods. Some aspects with particular interest were: to achieve very low porosity, with fine grains; to produce dispersed metastable and denser phases which can act as toughening agents; the study of new possibilities for toughening enhancement. (author)

  18. High pressure studies of planetary matter

    Ross, M.

    1989-06-01

    Those materials which are of greatest interest to the physics of the deep planetary interiors are Fe, H 2 , He and the Ices. These are sufficiently diverse and intensively studied to offer an overview of present day high pressure research. 13 refs., 1 fig

  19. High pressure and synchrotron radiation satellite workshop

    Bass, J.; Guignot, N.; Morard, G.; Mezouar, M.; Andrault, D.; Bolfan-Casanova, N.; Sturhahn, W.; Daniel, I.; Reynard, B.; Simionovici, A.; Sanchez Valle, C.; Martinez, I.; Kantor, I.; Dubrovinsky, I.; Mccammon, C.; Dubrovinskaia, N.; Kurnosiv, A.; Kuznetsov, A.; Goncharenko, I.; Loubeyre, P.; Desgreniers, S.; Weck, G.; Yoo, C.S.; Iota, V.; Park, J.; Cynn, H.; Gorelli, F.; Toulemonde, P.; Machon, D.; Merlen, A.; San Miguel, A.; Amboage, M.; Aquilanti, G.; Mathon, O.; Pascarelli, S.; Itie, J.P.; Mcmillan, P.F.; Trapananti, A.; Di Cicco, A.; Panfilis, S. de; Filipponi, A.; Kreisel, J.; Bouvier, P.; Dkhil, B.; Chaabane, B.; Rosner, H.; Koudela, D.; Schwarz, U.; Handestein, A.; Hanfland, M.; Opahle, I.; Koepernik, K.; Kuzmin, M.; Mueller, K.H.; Mydosh, J.; Richter, M.; Hejny, C.; Falconi, S.; Lundegaard, L.F.; Mcmahon, M.I; Loa, I.; Syassen, K.; Wang, X.; Roth, H.; Lorenz, T.; Farber Daniel, I.; Antonangeli Daniele, I.; Krisch, M.; Badro, J.; Fiquet, G.; Occelli, F.; Mao, W.L.; Mao, H.K.; Eng, P.; Kao, C.C.; Shu, J.F.; Hemley, R.J.; Tse, J.S.; Yao, Y.; Deen, P.P.; Paolasini, I.; Braithwaite, D.; Kernavanois, N.; Lapertot, G.; Rupprecht, K.; Leupold, O.; Ponkratz, U.; Wortmann, G.; Beraud, A.; Krisch, M.; Farber, D.; Antonangeli, D.; Aracne, C.; Zarestky, J.L.; Mcqueeney, R.; Mathon, O.; Baudelet, F.; Decremps, F.; Itie, J.P.; Nataf, I.; Pascarelli, S.; Polian, A.

    2006-01-01

    The workshop is dedicated to recent advances on science at high pressure at third generation synchrotron sources. A variety of experiments using synchrotron radiation techniques including X-ray diffraction, EXAFS (extended X-ray absorption fine structure), inelastic X-ray scattering, Compton scattering and Moessbauer spectroscopy of crystalline, liquid or amorphous samples, are reported. This document gathers the abstracts of the presentations

  20. Investigation of fracture in pressurized gas metal arc welded beryllium

    Heiple, C.R.; Merlini, R.J.; Adams, R.O.

    1976-01-01

    Premature failures during proof testing of pressurized-gas-metal-arc (PGMA) welded beryllium assemblies were investigated. The failures were almost entirely within the beryllium (a forming grade, similar to HP-10 or S-240), close to and parallel to the weld interface. The aluminum-silicon weld filler metal deposit was not centered in the weld groove in the failed assemblies, and failure occurred on the side of the weld opposite the bias in the weld deposit. Tensile tests of welded samples demonstrated that the failures were unrelated to residual machining damage from cutting the weld groove, and indicated small lack-of-fusion areas near the weld start to be the most likely origin of the failures. Acoustic emission was monitored during tensile tests of the welds. The majority of acoustic emission was probably from crack propagation through the weld filler metal. Tensile bars cut from the region of the weld start behaved differently; they failed at lower loads and exhibited an acoustic emission behavior believed to be from cracking in the weld metal-beryllium interface. Improvement in the quality of these and similar beryllium welds can therefore most likely be made by centering the weld deposit and reducing the size of the weld start defect. 21 fig