WorldWideScience

Sample records for high gamma-ray fluxes

  1. Gamma-ray-spectroscopy following high-flux 14-MeV neutron activation

    Energy Technology Data Exchange (ETDEWEB)

    Williams, R.E.

    1981-10-12

    The Rotating Target Neutron Source (RTNS-I), a high-intensity source of 14-MeV neutrons at the Lawrence Livermore National Laboratory (LLNL), has been used for applications in activation analysis, inertial-confinement-fusion diagnostic development, and fission decay-heat studies. The fast-neutron flux from the RTNS-I is at least 50 times the maximum fluxes available from typical neutron generators, making these applications possible. Facilities and procedures necessary for gamma-ray spectroscopy of samples irradiated at the RTNS-I were developed.

  2. Gamma-ray-spectroscopy following high-flux 14-MeV neutron activation

    International Nuclear Information System (INIS)

    Williams, R.E.

    1981-01-01

    The Rotating Target Neutron Source (RTNS-I), a high-intensity source of 14-MeV neutrons at the Lawrence Livermore National Laboratory (LLNL), has been used for applications in activation analysis, inertial-confinement-fusion diagnostic development, and fission decay-heat studies. The fast-neutron flux from the RTNS-I is at least 50 times the maximum fluxes available from typical neutron generators, making these applications possible. Facilities and procedures necessary for gamma-ray spectroscopy of samples irradiated at the RTNS-I were developed

  3. Self-powered neutron and gamma-ray flux detector

    International Nuclear Information System (INIS)

    Allan, C.J.; Shields, R.B.; Lynch, G.F.; Cuttler, J.M.

    1980-01-01

    A new type of self-powered neutron detector was developed which is sensitive to both the neutron and gamma-ray fluxes. The emitter comprises two parts. The central emitter core is made of materials that generate high-energy electrons on exposure to neutrons. The outer layer acts as a gamma-ray/electron converter, and since it has a higher atomic number and higher back-scattering coefficient than the collector, increases the net outflow or emmission of electrons. The collector, which is around the emitter outer layer, is insulated from the outer layer electrically with dielectric insulation formed from compressed metal-oxide powder. The fraction of electrons given off by the emitter that is reflected back by the collector is less than the fraction of electrons emitted by the collector that is reflected back by the emitter. The thickness of the outer layer needed to achieve this result is very small. A detector of this design responds to external reactor gamma-rays as well as to neutron capture gamma-rays from the collector. The emitter core is either nickel, iron or titanium, or alloys based on these metals. The outer layer is made of platinum, tantalum, osmium, molybdenum or cerium. The detector is particularly useful for monitoring neutron and gamma ray flux intensities in nuclear reactor cores in which the neutron and gamma ray flux intensities are closely proportional, are unltimately related to the fission rate, and are used as measurements of nuclear reactor power. (DN)

  4. Very high energy gamma-ray astronomy

    International Nuclear Information System (INIS)

    Weekes, T.C.

    1989-01-01

    It is apparent that very high gamma-ray astronomy, at the very end of the electromagnetic spectrum, is just at the threshold of becoming an important channel of astronomical information. The author discusses how, to fully develop, it requires telescopes with improved minimum flux sensitivity; development of techniques that characterize the nature of the primary; more overlapping observations to remove any question of the reality of the detected phenomenon; more consistency in the application of statistics among experimenters and more openness about methods used; development of models that will predict the phenomenon to be expected rather than explain what has been observed; and more accurate calibrations to determine absolute fluxes and energies

  5. SN 1987A gamma-ray line profiles and fluxes

    International Nuclear Information System (INIS)

    Bussard, R.W.; Burrows, A.; The, L.S.

    1989-01-01

    Results for the time dependence of the line profiles and integrated fluxes for the 0.847 and 1.238 MeV gamma rays from the decay of cobalt to excited states of iron are presented for several models of the ejectum of SN 1987A. The relatively early detection of these lines has led several workers to propose that some degree of mixing has brought the cobalt closer to the electron-scattering photosphere than standard models predict. Constraints on the amount of mixing from recent observations are discussed using calculations of the energy-integrated line fluxes as a function of time since the explosion. Implications for the line profiles at various times are considered, and it is found that they show strong time dependences and are quite sensitive to the degree of mixing. The two primary effects are Doppler broadening due to the presence of radioactive material at higher velocities and a strong blueshift at early times resulting from optical depth effects. These results have important implications for gamma-ray observations, especially with high-resolution germanium instruments. Finally, the consequences of the fragmentation of the debris for the early emergence of the gamma-ray lines are considered. 32 refs

  6. High energy photons and neutrinos from gamma ray bursts

    International Nuclear Information System (INIS)

    Dar, A.

    1998-01-01

    The Hubble space telescope has recently discovered thousands of gigantic comet-like objects in a ring around the central star in the nearest planetary nebula. It is suggested that such circumstellar rings exist around most of stars. Collisions of the relativistic debris from gamma ray bursts in dense stellar regions with such gigantic comet-like objects, which have been stripped off from the circumstellar rings by gravitational perturbations, produce detectable fluxes of high energy gamma-rays and neutrinos from gamma ray bursts

  7. Very high-energy gamma rays from gamma-ray bursts.

    Science.gov (United States)

    Chadwick, Paula M

    2007-05-15

    Very high-energy (VHE) gamma-ray astronomy has undergone a transformation in the last few years, with telescopes of unprecedented sensitivity having greatly expanded the source catalogue. Such progress makes the detection of a gamma-ray burst at the highest energies much more likely than previously. This paper describes the facilities currently operating and their chances for detecting gamma-ray bursts, and reviews predictions for VHE gamma-ray emission from gamma-ray bursts. Results to date are summarized.

  8. Very high energy gamma-ray astronomy

    International Nuclear Information System (INIS)

    Weekes, T.C.

    1988-01-01

    Current interest in gamma-ray astronomy at energies above 100 GeV comes from the identification of Cygnus X-3 and other X-ray binaries as sources. In addition there are reports of emission from radio pulsars and a variety of other objects. The statistical significance of many of the observations is not high and many reported effects await confirmation, but there are a sufficient number of independent reports that very high energy gamma-ray astronomy must now be considered to have an observational basis. The observations are summarized with particular emphasis on those reported since 1980. The techniques used - the detection of small air showers using the secondary photons and particles at ground level - are unusual and are described. Future prospects for the field are discussed in relation to new ground-based experiments, satellite gamma-ray studies and proposed neutrino astronomy experiments. (orig.) With 296 refs

  9. Very high energy gamma ray astrophysics

    International Nuclear Information System (INIS)

    Lamb, R.C.; Lewis, D.A.

    1991-01-01

    The Whipple Observatory High Resolution Camera will be used in a vigorous program of observations to search for new sources of very-high-energy gamma rays. In addition, a search for antimatter using the moon-earth system as an ion spectrometer will be begun. The first phase of GRANITE, the new 37-element 11-m camera, will be concluded with first light scheduled for September, 1991. The two cameras will operate in support of the Gamma Ray Observatory mission in the winter of 1991/2

  10. Gamma-ray bursts at high redshift

    NARCIS (Netherlands)

    Wijers, R.A.M.J.

    1999-01-01

    Gamma-ray bursts are much brighter than supernovae, and could therefore possibly probe the Universe to high redshift. The presently established GRB redshifts range from 0.83 to 5, and quite possibly even beyond that. Since most proposed mechanisms for GRB link them closely to deaths of massive

  11. A high-energy, high-flux source of gamma-rays from all-optical non-linear Thomson scattering

    Energy Technology Data Exchange (ETDEWEB)

    Corvan, D.J., E-mail: dcorvan01@qub.ac.uk; Zepf, M.; Sarri, G.

    2016-09-01

    γ-Ray sources are among the most fundamental experimental tools currently available to modern physics. As well as the obvious benefits to fundamental research, an ultra-bright source of γ-rays could form the foundation of scanning of shipping containers for special nuclear materials and provide the bases for new types of cancer therapy. However, for these applications to prove viable, γ-ray sources must become compact and relatively cheap to manufacture. In recent years, advances in laser technology have formed the cornerstone of optical sources of high energy electrons which already have been used to generate synchrotron radiation on a compact scale. Exploiting the scattering induced by a second laser, one can further enhance the energy and number of photons produced provided the problems of synchronisation and compact γ-ray detection are solved. Here, we report on the work that has been done in developing an all-optical and hence, compact non-linear Thomson scattering source, including the new methods of synchronisation and compact γ-ray detection. We present evidence of the generation of multi-MeV (maximum 16–18 MeV) and ultra-high brilliance (exceeding 10{sup 20} photons s{sup −1}mm{sup −2}mrad{sup −2} 0.1% BW at 15 MeV) γ-ray beams. These characteristics are appealing for the paramount practical applications mentioned above. - Highlights: • How synchrotron radiation can be produced in an all optical setting using laser-plasmas. • Generating high-energy, high-flux gamma ray beams. • Presenting results from a recent NLTS experimental campaign. • Reveal insight into the experimental techniques employed.

  12. The gamma-ray-flux PDF from galactic halo substructure

    International Nuclear Information System (INIS)

    Lee, Samuel K.; Ando, Shin'ichiro; Kamionkowski, Marc

    2009-01-01

    One of the targets of the recently launched Fermi Gamma-ray Space Telescope is a diffuse gamma-ray background from dark-matter annihilation or decay in the Galactic halo. N-body simulations and theoretical arguments suggest that the dark matter in the Galactic halo may be clumped into substructure, rather than smoothly distributed. Here we propose the gamma-ray-flux probability distribution function (PDF) as a probe of substructure in the Galactic halo. We calculate this PDF for a phenomenological model of halo substructure and determine the regions of the substructure parameter space in which the PDF may be distinguished from the PDF for a smooth distribution of dark matter. In principle, the PDF allows a statistical detection of substructure, even if individual halos cannot be detected. It may also allow detection of substructure on the smallest microhalo mass scales, ∼ M ⊕ , for weakly-interacting massive particles (WIMPs). Furthermore, it may also provide a method to measure the substructure mass function. However, an analysis that assumes a typical halo substructure model and a conservative estimate of the diffuse background suggests that the substructure PDF may not be detectable in the lifespan of Fermi in the specific case that the WIMP is a neutralino. Nevertheless, for a large range of substructure, WIMP annihilation, and diffuse background models, PDF analysis may provide a clear signature of substructure

  13. A high energy gamma ray astronomy experiment

    International Nuclear Information System (INIS)

    Hofstadter, R.

    1988-01-01

    The author describes work involving NASA's Gamma Ray Observatory (GRO). GRO exemplifies the near zero principle because it investigates new gamma ray phenomena by relying on the space program to take us into the region of zero interference above the earth's atmosphere. In its present form GRO has four experiments

  14. High dose gamma-ray standard

    International Nuclear Information System (INIS)

    Macrin, R.; Moraru, R.

    1999-01-01

    The high gamma-ray doses produced in a gamma irradiator are used, mainly, for radiation processing, i.e. sterilization of medical products, processing of food, modifications of polymers, irradiation of electronic devices, a.s.o. The used absorbed doses depend on the application and cover the range 10 Gy to 100 MGy. The regulations in our country require that the response of the dosimetry systems, used for the irradiation of food and medical products, be calibrated and traceable to the national standards. In order to be sure that the products receive the desired absorbed dose, appropriate dosimetric measurements must be performed, including the calibration of the dosemeters and their traceability to the national standards. The high dose gamma-ray measurements are predominantly based on the use of reference radiochemical dosemeters. Among them the ferrous sulfate can be used as reference dosemeter for low doses (up to 400 Gy) but due to its characteristics it deserves to be considered a standard dosemeter and to be used for transferring the conventional absorbed dose to other chemical dosemeters used for absorbed doses up to 100 MGy. The study of the ferrous sulfate dosemeter consisted in preparing many batches of solution by different operators in quality assurance conditions and in determining for all batches the linearity, the relative intrinsic error, the repeatability and the reproducibility. The principal results are the following: the linear regression coefficient: 0.999, the relative intrinsic error: max.6 %, the repeatability (for P* = 95 %): max.3 %, the reproducibility (P* = 95%): max.5 %. (authors)

  15. High-energy gamma-ray emission in compact binaries

    International Nuclear Information System (INIS)

    Cerutti, Benoit

    2010-01-01

    Four gamma-ray sources have been associated with binary systems in our Galaxy: the micro-quasar Cygnus X-3 and the gamma-ray binaries LS I +61 degrees 303, LS 5039 and PSR B1259-63. These systems are composed of a massive companion star and a compact object of unknown nature, except in PSR B1259-63 where there is a young pulsar. I propose a comprehensive theoretical model for the high-energy gamma-ray emission and variability in gamma-ray emitting binaries. In this model, the high-energy radiation is produced by inverse Compton scattering of stellar photons on ultra-relativistic electron-positron pairs injected by a young pulsar in gamma-ray binaries and in a relativistic jet in micro-quasars. Considering anisotropic inverse Compton scattering, pair production and pair cascade emission, the TeV gamma-ray emission is well explained in LS 5039. Nevertheless, this model cannot account for the gamma-ray emission in LS I +61 degrees 303 and PSR B1259-63. Other processes should dominate in these complex systems. In Cygnus X-3, the gamma-ray radiation is convincingly reproduced by Doppler-boosted Compton emission of pairs in a relativistic jet. Gamma-ray binaries and micro-quasars provide a novel environment for the study of pulsar winds and relativistic jets at very small spatial scales. (author)

  16. An Indication of Anisotropy in Arrival Directions of Ultra-high-energy Cosmic Rays through Comparison to the Flux Pattern of Extragalactic Gamma-Ray Sources

    Energy Technology Data Exchange (ETDEWEB)

    Aab, A.; Abreu, P.; Aglietta, M.; Albuquerque, I. F. M.; Allekotte, I.; Almela, A.; Castillo, J. Alvarez; Alvarez-Muñiz, J.; Anastasi, G. A.; Anchordoqui, L.; Andrada, B.; Andringa, S.; Aramo, C.; Arsene, N.; Asorey, H.; Assis, P.; Avila, G.; Badescu, A. M.; Balaceanu, A.; Barbato, F.; Luz, R. J. Barreira; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Biteau, J.; Blaess, S. G.; Blanco, A.; Blazek, J.; Bleve, C.; Boháčová, M.; Bonifazi, C.; Borodai, N.; Botti, A. M.; Brack, J.; Brancus, I.; Bretz, T.; Bridgeman, A.; Briechle, F. L.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, L.; Cancio, A.; Canfora, F.; Caruso, R.; Castellina, A.; Catalani, F.; Cataldi, G.; Cazon, L.; Chavez, A. G.; Chinellato, J. A.; Chudoba, J.; Clay, R. W.; Cerutti, A. C. Cobos; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Consolati, G.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Cronin, J.; D’Amico, S.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; Almeida, R. M. de; Jong, S. J. de; Mauro, G. De; de Mello Neto, J. R. T.; Mitri, I. De; Oliveira, J. de; Souza, V. de; Debatin, J.; Deligny, O.; Castro, M. L. Díaz; Diogo, F.; Dobrigkeit, C.; D’Olivo, J. C.; Dorosti, Q.; Anjos, R. C. dos; Dova, M. T.; Dundovic, A.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Falcke, H.; Farmer, J.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Fenu, F.; Fick, B.; Figueira, J. M.; Filipčič, A.; Freire, M. M.; Fujii, T.; Fuster, A.; Gaïor, R.; García, B.; Gaté, F.; Gemmeke, H.; Gherghel-Lascu, A.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Głas, D.; Glaser, C.; Golup, G.; Berisso, M. Gómez; Vitale, P. F. Gómez; González, N.; Gorgi, A.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Halliday, R.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huege, T.; Hulsman, J.; Insolia, A.; Isar, P. G.; Jandt, I.; Johnsen, J. A.; Josebachuili, M.; Jurysek, J.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Keilhauer, B.; Kemmerich, N.; Kemp, E.; Kemp, J.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Kuempel, D.; Mezek, G. Kukec; Kunka, N.; Awad, A. Kuotb; Lago, B. L.; LaHurd, D.; Lang, R. G.; Lauscher, M.; Legumina, R.; Oliveira, M. A. Leigui de; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Presti, D. Lo; Lopes, L.; López, R.; Casado, A. López; Lorek, R.; Luce, Q.; Lucero, A.; Malacari, M.; Mallamaci, M.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Mariş, I. C.; Marsella, G.; Martello, D.; Martinez, H.; Bravo, O. Martínez; Meza, J. J. Masías; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthiae, G.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melo, D.; Menshikov, A.; Merenda, K. -D.; Michal, S.; Micheletti, M. I.; Middendorf, L.; Miramonti, L.; Mitrica, B.; Mockler, D.; Mollerach, S.; Montanet, F.; Morello, C.; Morlino, G.; Mostafá, M.; Müller, A. L.; Müller, G.; Muller, M. A.; Müller, S.; Mussa, R.; Naranjo, I.; Nellen, L.; Nguyen, P. H.; Niculescu-Oglinzanu, M.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, L.; Núñez, L. A.; Oikonomou, F.; Olinto, A.; Palatka, M.; Pallotta, J.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pedreira, F.; Pȩkala, J.; Pelayo, R.; Peña-Rodriguez, J.; Pereira, L. A. S.; Perlin, M.; Perrone, L.; Peters, C.; Petrera, S.; Phuntsok, J.; Pierog, T.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Poh, J.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Ramos-Pollan, R.; Rautenberg, J.; Ravignani, D.; Ridky, J.; Riehn, F.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Roncoroni, M. J.; Roth, M.; Roulet, E.; Rovero, A. C.; Ruehl, P.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Saleh, A.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santos, E. M.; Santos, E.; Sarazin, F.; Sarmento, R.; Sarmiento-Cano, C.; Sato, R.; Schauer, M.; Scherini, V.; Schieler, H.; Schimp, M.; Schmidt, D.; Scholten, O.; Schovánek, P.; Schröder, F. G.; Schröder, S.; Schulz, A.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Shadkam, A.; Shellard, R. C.; Sigl, G.; Silli, G.; Šmída, R.; Snow, G. R.; Sommers, P.; Sonntag, S.; Soriano, J. F.; Squartini, R.; Stanca, D.; Stanič, S.; Stasielak, J.; Stassi, P.; Stolpovskiy, M.; Strafella, F.; Streich, A.; Suarez, F.; Durán, M. Suarez; Sudholz, T.; Suomijärvi, T.; Supanitsky, A. D.; Šupík, J.; Swain, J.; Szadkowski, Z.; Taboada, A.; Taborda, O. A.; Theodoro, V. M.; Timmermans, C.; Peixoto, C. J. Todero; Tomankova, L.; Tomé, B.; Elipe, G. Torralba; Travnicek, P.; Trini, M.; Ulrich, R.; Unger, M.; Urban, M.; Galicia, J. F. Valdés; Valiño, I.; Valore, L.; van Aar, G.; van Bodegom, P.; Berg, A. M. van den; Vliet, A. van; Varela, E.; Cárdenas, B. Vargas; Vázquez, R. A.; Veberič, D.; Ventura, C.; Quispe, I. D. Vergara; Verzi, V.; Vicha, J.; Villaseñor, L.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weindl, A.; Wiedeński, M.; Wiencke, L.; Wilczyński, H.; Wirtz, M.; Wittkowski, D.; Wundheiler, B.; Yang, L.; Yushkov, A.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.; Zimmermann, B.; Ziolkowski, M.; Zong, Z.; Zuccarello, F.

    2018-02-01

    A new analysis of the dataset from the Pierre Auger Observatory provides evidence for anisotropy in the arrival directions of ultra-high-energy cosmic rays on an intermediate angular scale, which is indicative of excess arrivals from strong, nearby sources. The data consist of 5514 events above 20 EeV with zenith angles up to 80 deg recorded before 2017 April 30. Sky models have been created for two distinct populations of extragalactic gamma-ray emitters: active galactic nuclei from the second catalog of hard Fermi-LAT sources (2FHL) and starburst galaxies from a sample that was examined with Fermi-LAT. Flux-limited samples, which include all types of galaxies from the Swift-BAT and 2MASS surveys, have been investigated for comparison. The sky model of cosmic-ray density constructed using each catalog has two free parameters, the fraction of events correlating with astrophysical objects and an angular scale characterizing the clustering of cosmic rays around extragalactic sources. A maximum-likelihood ratio test is used to evaluate the best values of these parameters and to quantify the strength of each model by contrast with isotropy. It is found that the starburst model fits the data better than the hypothesis of isotropy with a statistical significance of 4.0 sigma, the highest value of the test statistic being for energies above 39 EeV. The three alternative models are favored against isotropy with 2.7-3.2 sigma significance. The origin of the indicated deviation from isotropy is examined and prospects for more sensitive future studies are discussed.

  17. An Indication of Anisotropy in Arrival Directions of Ultra-high-energy Cosmic Rays through Comparison to the Flux Pattern of Extragalactic Gamma-Ray Sources

    Science.gov (United States)

    Aab, A.; Abreu, P.; Aglietta, M.; Albuquerque, I. F. M.; Allekotte, I.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Anastasi, G. A.; Anchordoqui, L.; Andrada, B.; Andringa, S.; Aramo, C.; Arsene, N.; Asorey, H.; Assis, P.; Avila, G.; Badescu, A. M.; Balaceanu, A.; Barbato, F.; Barreira Luz, R. J.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Biteau, J.; Blaess, S. G.; Blanco, A.; Blazek, J.; Bleve, C.; Boháčová, M.; Bonifazi, C.; Borodai, N.; Botti, A. M.; Brack, J.; Brancus, I.; Bretz, T.; Bridgeman, A.; Briechle, F. L.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, L.; Cancio, A.; Canfora, F.; Caruso, R.; Castellina, A.; Catalani, F.; Cataldi, G.; Cazon, L.; Chavez, A. G.; Chinellato, J. A.; Chudoba, J.; Clay, R. W.; Cobos Cerutti, A. C.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Consolati, G.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Cronin, J.; D’Amico, S.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Jong, S. J.; De Mauro, G.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; Debatin, J.; Deligny, O.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; D’Olivo, J. C.; Dorosti, Q.; dos Anjos, R. C.; Dova, M. T.; Dundovic, A.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Falcke, H.; Farmer, J.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Fenu, F.; Fick, B.; Figueira, J. M.; Filipčič, A.; Freire, M. M.; Fujii, T.; Fuster, A.; Gaïor, R.; García, B.; Gaté, F.; Gemmeke, H.; Gherghel-Lascu, A.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Głas, D.; Glaser, C.; Golup, G.; Gómez Berisso, M.; Gómez Vitale, P. F.; González, N.; Gorgi, A.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Halliday, R.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huege, T.; Hulsman, J.; Insolia, A.; Isar, P. G.; Jandt, I.; Johnsen, J. A.; Josebachuili, M.; Jurysek, J.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Keilhauer, B.; Kemmerich, N.; Kemp, E.; Kemp, J.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Kuempel, D.; Kukec Mezek, G.; Kunka, N.; Kuotb Awad, A.; Lago, B. L.; LaHurd, D.; Lang, R. G.; Lauscher, M.; Legumina, R.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lo Presti, D.; Lopes, L.; López, R.; López Casado, A.; Lorek, R.; Luce, Q.; Lucero, A.; Malacari, M.; Mallamaci, M.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Mariş, I. C.; Marsella, G.; Martello, D.; Martinez, H.; Martínez Bravo, O.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthiae, G.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melo, D.; Menshikov, A.; Merenda, K.-D.; Michal, S.; Micheletti, M. I.; Middendorf, L.; Miramonti, L.; Mitrica, B.; Mockler, D.; Mollerach, S.; Montanet, F.; Morello, C.; Morlino, G.; Mostafá, M.; Müller, A. L.; Müller, G.; Muller, M. A.; Müller, S.; Mussa, R.; Naranjo, I.; Nellen, L.; Nguyen, P. H.; Niculescu-Oglinzanu, M.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, L.; Núñez, L. A.; Oikonomou, F.; Olinto, A.; Palatka, M.; Pallotta, J.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pedreira, F.; Pȩkala, J.; Pelayo, R.; Peña-Rodriguez, J.; Pereira, L. A. S.; Perlin, M.; Perrone, L.; Peters, C.; Petrera, S.; Phuntsok, J.; Pierog, T.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Poh, J.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Ramos-Pollan, R.; Rautenberg, J.; Ravignani, D.; Ridky, J.; Riehn, F.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Roncoroni, M. J.; Roth, M.; Roulet, E.; Rovero, A. C.; Ruehl, P.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Saleh, A.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santos, E. M.; Santos, E.; Sarazin, F.; Sarmento, R.; Sarmiento-Cano, C.; Sato, R.; Schauer, M.; Scherini, V.; Schieler, H.; Schimp, M.; Schmidt, D.; Scholten, O.; Schovánek, P.; Schröder, F. G.; Schröder, S.; Schulz, A.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Shadkam, A.; Shellard, R. C.; Sigl, G.; Silli, G.; Šmída, R.; Snow, G. R.; Sommers, P.; Sonntag, S.; Soriano, J. F.; Squartini, R.; Stanca, D.; Stanič, S.; Stasielak, J.; Stassi, P.; Stolpovskiy, M.; Strafella, F.; Streich, A.; Suarez, F.; Suarez Durán, M.; Sudholz, T.; Suomijärvi, T.; Supanitsky, A. D.; Šupík, J.; Swain, J.; Szadkowski, Z.; Taboada, A.; Taborda, O. A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Tomankova, L.; Tomé, B.; Torralba Elipe, G.; Travnicek, P.; Trini, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Vázquez, R. A.; Veberič, D.; Ventura, C.; Vergara Quispe, I. D.; Verzi, V.; Vicha, J.; Villaseñor, L.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weindl, A.; Wiedeński, M.; Wiencke, L.; Wilczyński, H.; Wirtz, M.; Wittkowski, D.; Wundheiler, B.; Yang, L.; Yushkov, A.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.; Zimmermann, B.; Ziolkowski, M.; Zong, Z.; Zuccarello, F.; The Pierre Auger Collaboration

    2018-02-01

    A new analysis of the data set from the Pierre Auger Observatory provides evidence for anisotropy in the arrival directions of ultra-high-energy cosmic rays on an intermediate angular scale, which is indicative of excess arrivals from strong, nearby sources. The data consist of 5514 events above 20 {EeV} with zenith angles up to 80° recorded before 2017 April 30. Sky models have been created for two distinct populations of extragalactic gamma-ray emitters: active galactic nuclei from the second catalog of hard Fermi-LAT sources (2FHL) and starburst galaxies from a sample that was examined with Fermi-LAT. Flux-limited samples, which include all types of galaxies from the Swift-BAT and 2MASS surveys, have been investigated for comparison. The sky model of cosmic-ray density constructed using each catalog has two free parameters, the fraction of events correlating with astrophysical objects, and an angular scale characterizing the clustering of cosmic rays around extragalactic sources. A maximum-likelihood ratio test is used to evaluate the best values of these parameters and to quantify the strength of each model by contrast with isotropy. It is found that the starburst model fits the data better than the hypothesis of isotropy with a statistical significance of 4.0σ, the highest value of the test statistic being for energies above 39 {EeV}. The three alternative models are favored against isotropy with 2.7σ–3.2σ significance. The origin of the indicated deviation from isotropy is examined and prospects for more sensitive future studies are discussed. Any correspondence should be addressed to .

  18. High energy neutrinos from gamma-ray bursts with precursor supernovae.

    Science.gov (United States)

    Razzaque, Soebur; Mészáros, Peter; Waxman, Eli

    2003-06-20

    The high energy neutrino signature from proton-proton and photo-meson interactions in a supernova remnant shell ejected prior to a gamma-ray burst provides a test for the precursor supernova, or supranova, model of gamma-ray bursts. Protons in the supernova remnant shell and photons entrapped from a supernova explosion or a pulsar wind from a fast-rotating neutron star remnant provide ample targets for protons escaping the internal shocks of the gamma-ray burst to interact and produce high energy neutrinos. We calculate the expected neutrino fluxes, which can be detected by current and future experiments.

  19. Portable high energy gamma ray imagers

    International Nuclear Information System (INIS)

    Guru, S.V.; Squillante, M.R.

    1996-01-01

    To satisfy the needs of high energy gamma ray imagers for industrial nuclear imaging applications, three high energy gamma cameras are presented. The RMD-Pinhole camera uses a lead pinhole collimator and a segmented BGO detector viewed by a 3 in. square position sensitive photomultiplier tube (PSPMT). This pinhole gamma camera displayed an energy resolution of 25.0% FWHM at the center of the camera at 662 keV and an angular resolution of 6.2 FWHM at 412 keV. The fixed multiple hole collimated camera (FMCC), used a multiple hole collimator and a continuous slab of NaI(Tl) detector viewed by the same PSPMT. The FMCC displayed an energy resolution of 12.4% FWHM at 662 keV at the center of the camera and an angular resolution of 6.0 FWHM at 412 keV. The rotating multiple hole collimated camera (RMCC) used a 180 antisymmetric rotation modulation collimator and CsI(Tl) detectors coupled to PIN silicon photodiodes. The RMCC displayed an energy resolution of 7.1% FWHM at 662 keV and an angular resolution of 4.0 FWHM at 810 keV. The performance of these imagers is discussed in this paper. (orig.)

  20. Extended gamma-ray sources around pulsars constrain the origin of the positron flux at Earth

    OpenAIRE

    Abeysekara, A. U.; Albert, A.; Alfaro, R.; Alvarez, C.; Álvarez, J. D.; Arceo, R.; Arteaga-Velázquez, J. C.; Rojas, D. Avila; Solares, H. A. Ayala; Barber, A. S.; Bautista-Elivar, N.; Becerril, A.; Belmont-Moreno, E.; BenZvi, S. Y.; Berley, D.

    2017-01-01

    The unexpectedly high flux of cosmic ray positrons detected at Earth may originate from nearby astrophysical sources, dark matter, or unknown processes of cosmic-ray secondary production. We report the detection, using the HighAltitude Water Cherenkov Observatory (HAWC), of extended tera-electron volt gamma-ray emission coincident with the locations of two nearby middle-aged pulsars (Geminga and PSR B0656+14). The HAWC observations demonstrate that these pulsars are indeed local sources of ac...

  1. High Energy Gamma-rays from FR I Jets

    CERN Document Server

    Sikora, M

    2003-01-01

    Thanks to Hubble and Chandra telescopes, some of the large scale jets in extragalactic radio sources are now being observed at optical and X-ray frequencies. For the FR I objects the synchrotron nature of this emission is surely established, although a lot of uncertainties--connected for example with the particle acceleration processes involved--remain. In this paper we study production of high energy gamma-rays in FR I kiloparsec-scale jets by inverse-Compton emission of the synchrotron-emitting electrons. We consider different origin of seed photons contributing to the inverse-Compton scattering, including nuclear jet radiation as well as ambient, stellar and circumstellar emission of the host galaxies. We discuss how future detections or non-detections of the evaluated gamma-ray fluxes can provide constraints on the unknown large scale jet parameters, i.e. the magnetic field intensity and the jet Doppler factor. For the nearby sources Centaurus A and M 87, we find measurable fluxes of TeV photons resulting...

  2. The high intensity {gamma}-ray source (HI{gamma}S) and recent results

    Energy Technology Data Exchange (ETDEWEB)

    Tonchev, A.P. [Duke University and TUNL, Triangle University Nuclear Laboratory, P.O. Box 90308, Durham, NC 27708 0308 (United States)]. E-mail: tonchev@tunl.duke.edu; Boswell, M. [University of North Carolina at Chapel Hill and TUNL, Chapel Hill, NC 27599 (United States); Howell, C.R. [Duke University and TUNL, Triangle University Nuclear Laboratory, P.O. Box 90308, Durham, NC 27708 0308 (United States); Karwowski, H.J. [University of North Carolina at Chapel Hill and TUNL, Chapel Hill, NC 27599 (United States); Kelley, J.H. [North Carolina State University and TUNL, Raleigh, NC 27695 (United States); Tornow, W. [Duke University and TUNL, Triangle University Nuclear Laboratory, P.O. Box 90308, Durham, NC 27708 0308 (United States); Wu, Y.K. [Duke University and Duke Free Electron Laser Laboratory, Durham, NC 27708-0319 (United States)

    2005-12-15

    The high intensity {gamma}-ray source (HI{gamma}S) utilizes intra-cavity backscattering of free electron laser photons from the Duke electron storage ring to produce a unique monoenergetic beam of high-flux {gamma}-rays with high polarization and selectable energy resolution. At present, {gamma}-ray beams with energies from 2 to 58 MeV are available with intensities as high as 10{sup 5}-5 x 10{sup 6} {gamma}/s, energy spreads of 3% or better, and nearly 100% linear polarization. The quality and intensity of the {gamma}-ray beams at HI{gamma}S are responsible for the unprecedented performance of this facility in a broad range of research programs in nuclear structure, nuclear astrophysics and nuclear applications. Recent results from excitation of isomeric states in ({gamma}, n) reactions and parity assignments of dipole states determined via the ({gamma}, {gamma}') reaction are presented.

  3. Multidimensional analysis of high resolution. gamma. -ray data

    Energy Technology Data Exchange (ETDEWEB)

    Flibotte, S.; Huettmeier, U.J.; France, G. de; Haas, B.; Romain, P.; Theisen, C.; Vivien, J.P.; Zen, J. (Centre de Recherches Nucleaires, 67 - Strasbourg (France)); Bednarczyk, P. (Inst. of Nuclear Physics, Krakow (Poland))

    1992-08-15

    Algorithms are developed to analyze high-fold {gamma}-ray coincidences. Performances of the programs have been tested in 3, 4 and 5 dimensions using events generated with a Monte Carlo simulation. (orig.).

  4. High-energy gamma-ray beams from Compton-backscattered laser light

    Energy Technology Data Exchange (ETDEWEB)

    Sandorfi, A.M.; LeVine, M.J.; Thorn, C.E.; Giordano, G.; Matone, G.

    1983-01-01

    Collisions of light photons with relativistic electrons have previously been used to produce polarized ..gamma..-ray beams with modest (-10%) resolution but relatively low intensity. In contrast, the LEGS project (Laser + Electron Gamma Source) at Brookhaven will produce a very high flux (>2 x 10/sup 7/ s/sup -1/) of background-free polarized ..gamma.. rays whose energy will be determined to a high accuracy (..delta..E = 2.3 MeV). Initially, 300(420)-MeV ..gamma.. rays will be produced by backscattering uv light from the new 2.5(3.0)-GeV X-ray storage ring of the National Synchrotron Light Source (NSLS). The LEGS facility will operate as one of many passive users of the NSLS. In a later stage of the project, a Free Electron Laser is expectred to extend the ..gamma..-ray energy up to 700 MeV.

  5. Very high energy gamma ray astronomy from Hanle

    International Nuclear Information System (INIS)

    Chitnis, Varsha R.

    2015-01-01

    Over a past decade very high energy (VHE) gamma ray astronomy has emerged as a major astronomical discipline. In India, we have a long tradition of experiments in this field. Few years ago, multi-institutional Himalayan Gamma Ray Observatory (HiGRO) collaboration was formed to set up VHE gamma rays experiments at Hanle, a high altitude location in Himalayas. HAGAR, the first phase of this collaboration is operational since 2008. HAGAR has successfully detected VHE gamma ray emission from some of the extragalactic objects like Mrk 421, Mrk 501 as well as galactic sources including Crab nebula/pulsar. Details of HAGAR telescope system and results obtained will be discussed. HiGRO is now gearing up for the next phase, i.e. 21 m diameter MACE telescope, which is being installed at Hanle at present. Details of MACE telescope system and future plans will be discussed. (author)

  6. Relation between gamma-ray emission, radio bursts, and proton fluxes from solar flares

    International Nuclear Information System (INIS)

    Fomichev, V.V.; Chertok, I.M.

    1985-01-01

    Data on solar gamma-ray flares, including 24 flares with gamma-ray lines, recorded up to June 1982, are analyzed. It is shown that from the point of view of radio emission the differences between flares with and without gamma-ray lines has a purely quantitative character: the former are accompanied by the most intense microwave bursts. Meter type II bursts are not a distinctive feature of flares with gamma-ray lines. Pulsed flares, regardless of the presence or absence of gamma-ray lines, are not accompanied by significant proton fluxes at the earth. On the whole, contrary to the popular opinion in the literature, flares with gamma-ray lines do not display a deficit of proton flux in interplanetary space in comparison with similar flares without gamma-ray lines. The results of quantitative diagnostics of proton flares based on radio bursts are not at variance with the presence of flares without detectable gamma-ray emission in lines but with a pronounced increase in the proton flux at the earth. 23 references

  7. Gamma-Ray Imager With High Spatial And Spectral Resolution

    Science.gov (United States)

    Callas, John L.; Varnell, Larry S.; Wheaton, William A.; Mahoney, William A.

    1996-01-01

    Gamma-ray instrument developed to enable both two-dimensional imaging at relatively high spatial resolution and spectroscopy at fractional-photon-energy resolution of about 10 to the negative 3rd power in photon-energy range from 10 keV to greater than 10 MeV. In its spectroscopic aspect, instrument enables identification of both narrow and weak gamma-ray spectral peaks.

  8. Calculation of the flux density of gamma rays above the surface of Venus and the Earth

    International Nuclear Information System (INIS)

    Surkov, Yu.A.; Manvelyan, O.S.

    1987-01-01

    In this article the authors present the results of calculating the flux density of unscattered gamma rays as a function of height above the surfaces of Venus and the Earth. At each height they calculate the areas which will collect a certain fraction of the gamma rays. The authors calculate the spectra of scattered gamma rays, as well as their integrated fluxes at various heights above the surface of Venus. They consider how the atmosphere will affect the recording of gamma rays. Their results enable them to evaluate the optimal conditions for measuring the gamma-ray fields above the surfaces of Venus and the Earth and to determine the area of the planet which can be investigated in this way. These results are also necessary if they are to determine the elemental composition of the rock from the characteristic recorded spectrum of gamma radiation

  9. High energy astrophysics with ground-based gamma ray detectors

    International Nuclear Information System (INIS)

    Aharonian, F; Buckley, J; Kifune, T; Sinnis, G

    2008-01-01

    Recent advances in ground-based gamma ray astronomy have led to the discovery of more than 70 sources of very high energy (E γ ≥ 100 GeV) gamma rays, falling into a number of source populations including pulsar wind nebulae, shell type supernova remnants, Wolf-Rayet stars, giant molecular clouds, binary systems, the Galactic Center, active galactic nuclei and 'dark' (yet unidentified) galactic objects. We summarize the history of TeV gamma ray astronomy up to the current status of the field including a description of experimental techniques and highlight recent astrophysical results. We also discuss the potential of ground-based gamma ray astronomy for future discoveries and describe possible directions for future instrumental developments

  10. Characteristics of the telescope for high energy gamma-ray astronomy selected for definition studies on the Gamma Ray Observatory

    Science.gov (United States)

    Hughes, E. B.; Hofstadter, R.; Rolfe, J.; Johansson, A.; Bertsch, D. L.; Cruickshank, W. J.; Ehrmann, C. H.; Fichtel, C. E.; Hartman, R. C.; Kniffen, D. A.

    1980-01-01

    The high energy gamma-ray telescope selected for definition studies on the Gamma Ray Observatory provides a substantial improvement in observational capability over earlier instruments. It will have about 20 times more sensitivity, cover a much broader energy range, have considerably better energy resolution and provide a significantly improved angular resolution. The design and performance are described.

  11. Ultra high energy gamma-ray astronomy

    International Nuclear Information System (INIS)

    Wdowczyk, J.

    1986-01-01

    The experimental data on ultra high energy γ-rays are reviewed and a comparison of the properties of photon and proton initiated shower is made. The consequences of the existence of the strong ultra high energy γ-ray sources for other observations is analysed and possible mechanisms for the production of ultra high energy γ-rays in the sources are discussed. It is demonstrated that if the γ-rays are produced via cosmic ray interactions the sources have to produce very high fluxes of cosmic ray particles. In fact it is possible that a small number of such sources can supply the whole Galactic cosmic ray flux

  12. Very high energy gamma ray astrophysics

    International Nuclear Information System (INIS)

    Lamb, R.C.; Lewis, D.A.

    1986-01-01

    The Whipple Observatory's atmospheric Cerenkov camera has detected TeV radiation from four galactic sources: the Crab Nebula, Cygnus X-3, Hercules X-1, and 4U0115+63. Recent simulations encourage the view that unwanted cosmic-ray background showers may be suppressed by a large factor. Emphasis in the coming year will be on determining optimum selection criteria for enhancing gamma-ray signals and in developing a prototype camera with finer angular resolution as a first step towards implementation of the HERCULES concept

  13. Very high energy gamma ray astrophysics

    International Nuclear Information System (INIS)

    Lamb, R.C.; Lewis, D.A.

    1990-02-01

    Our scientific goal is to discover and study by means of gamma-ray astronomy those regions of the universe where particles are accelerated to extreme energies. The atmospheric Cherenkov technique provides a unique and potentially sensitive window in the region of 10 11 to approximately 10 14 eV for this purpose. The Whipple Observatory Collaboration is currently engaged in the development of a Cherenkov camera which has the ultimate capability of distinguishing gamma-ray showers from the numerous cosmic-ray background showers by imaging the Cherenkov light from each shower. We have recently demonstrated the potential of the imaging technique with our 18 sigma detection of TeV photons from the Crab Nebula using a camera of 10 elements, pixel spacing 0.25 degrees. This detection represents a factor of 10 improvement in sensitivity compared to a non-imaging detector. The next step in the development of the detector is to obtain a second large reflector, similar to the present 10 meter instrument, for stereoscopic viewing of showers. This project, named GRANITE, is now approved by DOE. With GRANITE it should be possible to probe more deeply in space by a factor of 7, and to fully investigate the possibility of new physics which has been suggested by reports of anomalous radiation from Hercules X-1. 18 refs

  14. High energy gamma-ray production in nuclear reactions

    International Nuclear Information System (INIS)

    Pinston, J.A.; Nifenecker, H.; Nifenecker, H.

    1989-01-01

    Experimental techniques used to study high energy gamma-ray production in nuclear reactions are reviewed. High energy photon production in nucleus-nucleus collisions is discussed. Semi-classical descriptions of the nucleus-nucleus gamma reactions are introduced. Nucleon-nucleon gamma cross sections are considered, including theoretical aspects and experimental data. High energy gamma ray production in proton-nucleus reactions is explained. Theoretical explanations of photon emission in nucleus-nucleus collisions are treated. The contribution of charged pion currents to photon production is mentioned

  15. Correlation between X-ray and high energy gamma-ray emission form Cygnus X-3

    International Nuclear Information System (INIS)

    Weekes, T.C.; Danaher, S.; Fegan, D.J.; Porter, N.A.

    1981-01-01

    In May-June 1980, the 4.8 hour modulated X-ray flux from Cygnus X-3 underwent a significant change in the shape of the light curve; this change correlates with the peak in the high-energy (E > 2 x 10 12 eV) gamma ray emission at the same epoch. (orig.)

  16. NEW FERMI-LAT EVENT RECONSTRUCTION REVEALS MORE HIGH-ENERGY GAMMA RAYS FROM GAMMA-RAY BURSTS

    Energy Technology Data Exchange (ETDEWEB)

    Atwood, W. B. [Santa Cruz Institute for Particle Physics, Department of Physics and Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064 (United States); Baldini, L. [Universita di Pisa and Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Bregeon, J.; Pesce-Rollins, M.; Sgro, C.; Tinivella, M. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Bruel, P. [Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3, Palaiseau (France); Chekhtman, A. [Center for Earth Observing and Space Research, College of Science, George Mason University, Fairfax, VA 22030 (United States); Cohen-Tanugi, J. [Laboratoire Univers et Particules de Montpellier, Universite Montpellier 2, CNRS/IN2P3, F-34095 Montpellier (France); Drlica-Wagner, A.; Omodei, N.; Rochester, L. S.; Usher, T. L. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Granot, J. [Department of Natural Sciences, The Open University of Israel, 1 University Road, P.O. Box 808, Ra' anana 43537 (Israel); Longo, F. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste (Italy); Razzaque, S. [Department of Physics, University of Johannesburg, Auckland Park 2006 (South Africa); Zimmer, S., E-mail: melissa.pesce.rollins@pi.infn.it, E-mail: nicola.omodei@stanford.edu, E-mail: granot@openu.ac.il [Department of Physics, Stockholm University, AlbaNova, SE-106 91 Stockholm (Sweden)

    2013-09-01

    Based on the experience gained during the four and a half years of the mission, the Fermi-LAT Collaboration has undertaken a comprehensive revision of the event-level analysis going under the name of Pass 8. Although it is not yet finalized, we can test the improvements in the new event reconstruction with the special case of the prompt phase of bright gamma-ray bursts (GRBs), where the signal-to-noise ratio is large enough that loose selection cuts are sufficient to identify gamma rays associated with the source. Using the new event reconstruction, we have re-analyzed 10 GRBs previously detected by the Large Area Telescope (LAT) for which an X-ray/optical follow-up was possible and found four new gamma rays with energies greater than 10 GeV in addition to the seven previously known. Among these four is a 27.4 GeV gamma ray from GRB 080916C, which has a redshift of 4.35, thus making it the gamma ray with the highest intrinsic energy ({approx}147 GeV) detected from a GRB. We present here the salient aspects of the new event reconstruction and discuss the scientific implications of these new high-energy gamma rays, such as constraining extragalactic background light models, Lorentz invariance violation tests, the prompt emission mechanism, and the bulk Lorentz factor of the emitting region.

  17. Modulated High-Energy Gamma-Ray Emission from the Micro-quasar Cygnus X-3

    International Nuclear Information System (INIS)

    Abdo, A.A.; Cheung, C.C.; Dermer, C.D.; Grove, J.E.; Johnson, W.N.; Lovellette, M.N.; Makeev, A.; Ray, P.S.; Strickman, M.S.; Wood, K.S.; Abdo, A.A.; Cheung, C.C.; Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R.D.; Bloom, E.D.; Borgland, A.W.; Cameron, R.A.; Chiang, J.; Claus, R.; Digel, S.W.; Silva, E.D.E.; Drell, P.S.; Dubois, R.; Focke, W.B.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Johnson, A.S.; Kamae, T.; Kocian, M.L.; Lande, J.; Madejski, G.M.; Michelson, P.F.; Mitthumsiri, W.; Monzani, M.E.; Moskalenko, I.V.; Murgia, S.; Nolan, P.L.; Paneque, D.; Reimer, A.; Reimer, O.; Rochester, L.S.; Romani, R.W.; Tanaka, T.; Thayer, J.B.; Tramacere, A.; Uchiyama, Y.; Usher, T.L.; Waite, A.P.; Wang, P.; Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R.D.; Bloom, E.D.; Borgland, A.W.; Cameron, R.A.; Chiang, J.; Claus, R.; Digel, S.W.; Silva, E.D.E.; Drell, P.S.; Dubois, R.; Focke, W.B.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Johnson, A.S.; Kamae, T.; Kocian, M.L.; Lande, J.; Madejski, G.M.; Michelson, P.F.; Mitthumsiri, W.; Monzani, M.E.; Moskalenko, I.V.; Murgia, S.; Nolan, P.L.; Paneque, D.; Reimer, A.; Reimer, O.; Rochester, L.S.; Romani, R.W.; Tanaka, T.; Thayer, J.B.; Tramacere, A.; Uchiyama, Y.; Usher, T.L.; Waite, A.P.; Wang, P.; Axelsson, M.; Hjalmarsdotter, L.; Axelsson, M.; Conrad, J.; Hjalmarsdotter, L.; Jackson, M.S.; Meurer, C.; Ryde, F.; Ylinen, T.; Baldini, L.; Bellazzini, R.; Brez, A.; Kuss, M.; Latronico, L.; Omodei, N.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.; Ballet, J.; Casandjian, J.M.; Chaty, S.; Corbel, S.; Grenier, I.A.; Koerding, E.; Rodriguez, J.; Starck, J.L.; Tibaldo, L.

    2009-01-01

    Micro-quasars are accreting black holes or neutron stars in binary systems with associated relativistic jets. Despite their frequent outburst activity, they have never been unambiguously detected emitting high-energy gamma rays. The Fermi Large Area Telescope (LAT) has detected a variable high-energy source coinciding with the position of the x-ray binary and micro-quasar Cygnus X-3. Its identification with Cygnus X-3 is secured by the detection of its orbital period in gamma rays, as well as the correlation of the LAT flux with radio emission from the relativistic jets of Cygnus X-3. The gamma-ray emission probably originates from within the binary system, opening new areas in which to study the formation of relativistic jets. (authors)

  18. Spectra of gamma-ray bursts at high energies

    International Nuclear Information System (INIS)

    Matz, S.M.

    1986-01-01

    Between 1980 February and 1983 August the Gamma-Ray Spectrometer (GRS) on the Solar Maximum Mission satellite (SMM) observed 71 gamma-ray bursts. These events form a representative subset of the class of classical gamma-ray bursts. Since their discovery more than 15 years ago, hundreds of gamma-ray bursts have been detected; however, most observations have been limited to an energy range of roughly 30 keV-1 MeV. The large sensitive area and spectral range of the GRS allow, for the first time, an investigation of the high energy (>1 MeV) behavior of a substantial number of gamma-ray bursts. It is found that high-energy emission is seen in a large fraction of all events and that the data are consistent with all bursts emitting to at least 5 MeV with no cut-offs. Further, no burst spectrum measured by GRS has a clear high-energy cut-off. The high-energy emission can be a significant part of the total burst energy on the average about 30% of the observed energy above 30 keV is contained in the >1 MeV photons. The fact that the observations are consistent with the presence of high-energy emission in all events implies a limit on the preferential beaming of high-energy photons, from any mechanism. Single-photon pair-production in a strong magnetic field produces such beaming; assuming that the low-energy emission is isotropic, the data imply an upper limit of 1 x 10 12 G on the typical magnetic field at burst radiation sites

  19. A model problem for restricted-data gamma ray emission tomography of highly active nuclear waste

    International Nuclear Information System (INIS)

    Cattle, Brian A.

    2007-01-01

    This paper develops the work of Cattle et al. [Cattle, B.A., Fellerman, A.S., West, R.M., 2004. On the detection of solid deposits using gamma ray emission tomography with limited data. Measurement Science and Technology 15, 1429-1439] by considering a generalization of the model employed therein. The focus of the work is the gamma ray tomographic analysis of high-level waste processing. The work in this paper considers a two-dimensional model for the measurement of gamma ray photon flux, as opposed to the previous one-dimensional analysis via the integrated Beer-Lambert law. The mathematical inverse problem that arises in determining physical quantities from the photon count measurements is tackled using Bayesian statistical methods that are implemented computationally using a Markov chain Monte Carlo (MCMC) approach. In a further new development, the effect of the degree of collimation of the detector on the reliability of the solutions is also considered

  20. High energy particles from {gamma}-ray bursts

    Energy Technology Data Exchange (ETDEWEB)

    Waxman, E [Weizmann Institute of Science, Rehovot (Israel)

    2001-11-15

    A review is presented of the fireball model of {gamma}-ray bursts (GRBs), and of the production in GRB fireballs of high energy protons and neutrinos. Constraints imposed on the model by recent afterglow observations, which support the association of GRB and ultra-high energy cosmic-ray (UHECR) sources, are discussed. Predictions of the GRB model for UHECR production, which can be tested with planned large area UHECR detectors and with planned high energy neutrino telescopes, are reviewed. (author)

  1. Very high energy gamma ray astrophysics: Progress report, May 1, 1987-February 1, 1988

    International Nuclear Information System (INIS)

    Lamb, R.G.; Lewis, D.A.

    1988-02-01

    The Whipple observatory Gamma Ray Collaboration has continued to make steady progress in its development of a highly sensitive stereoscopic imaging gamma-ray telescope (known as the HERCULES project). The milestones in this year's development include: the demonstration of the success of the imaging concept with a single camera by the detection of a very weak flux of gamma rays from the Crab Nebula at a high level of statistical significance (7 sigma), the confirmation of our detection of an anomalous pulsed flux from Hercules X-1 in the summer of 1986 by two other groups; this result has serious implications for the mechanism for gamma-ray emission in this binary source. The construction and installation of the new high resolution camera on the 10 m reflector; the realistic simulation of the sensitivity of this camera as well as that of the full HERCULES system was also undertaken. These, and other highlights of this year's program at the Iowa State University and the Smithsonian Astrophysical Observatory, are discussed in this paper. 6 figs

  2. Cosmic very high-energy {gamma}-rays

    Energy Technology Data Exchange (ETDEWEB)

    Plaga, R. [Max-Planck-Institut fur Physik, Muenchen (Germany)

    1998-12-31

    The article gives a brief overview, aimed at nonspecialists, about the goals and selected recent results of the detection of very-high energy {gamma}-rays (energies above 100 GeV) with ground based detectors. The stress is on the physics questions, specially the origin of Galactic Cosmic Rays and the emission of TeV {gamma}-radiation from active galaxies. Moreover some particle-physics questions which are addressed in this area are discussed.

  3. Monitoring the radon flux from gold-mine dumps by gamma-ray mapping

    NARCIS (Netherlands)

    Lindsay, R; de Meijer, RJ; Maleka, PP; Newman, RT; Motlhabane, TGK; de Villiers, D

    The exhalation of radon from the large mine dumps at the gold mines in South Africa is a potential health hazard. Determination of radon fluxes from these dumpsites is problematic due to the scatter in the data in time and place and the cost involved in getting a representative sample. gamma-ray

  4. Performance characteristics of high resolution semiconductor gamma ray spectrometry system

    Energy Technology Data Exchange (ETDEWEB)

    Naing, Ko Ko

    1994-05-01

    A high purity germanium (HPGe) gamma-ray detector has been used in Nuclear Research Laboratory, Department of Physics, Yangon University for over fourteen years. Now it is still being used and it is coupled to new peripheral devices, such as spectroscopy amplifier, analog to digital converter and computer fit-in S-100 multichannel analyser. Therefore, it is necessary to determine the important parameters: energy resolution, detecting efficiency and relative efficiency of the system. In the present work, these parameters were obtained by using mixed calibrated source. The results were compared to the data given by the manufacturer. Moreover, the parameters of another {gamma}-ray detecting system NaI(T1) were also determined. In conclusion the results obtained from the above two measurements were compared and discussed

  5. High-energy photons and neutrinos from gamma-ray bursts

    International Nuclear Information System (INIS)

    Dar, A.

    1998-01-01

    The Hubble Space Telescope has recently discovered thousands of gigantic cometlike objects in a ring around the central star in the nearest planetary nebula. It is assumed that such circumstellar rings exist around the majority of stars. Collisions of relativistic debris from gamma-ray bursts (GRB) in dense stellar regions with such gigantic cometlike objects, which have been stripped off from the circumstellar rings by gravitational perturbations, produce detectable fluxes of high energy γ rays and neutrinos from GRBs

  6. High-energy neutrinos from gamma ray bursts

    International Nuclear Information System (INIS)

    Dermer, Charles D.; Atoyan, Armen

    2003-01-01

    We treat high-energy neutrino production in gamma ray bursts (GRBs). Detailed calculations of photomeson neutrino production are presented for the collapsar model, where internal nonthermal synchrotron radiation is the primary target photon field, and the supranova model, where external pulsar-wind synchrotron radiation provides important additional target photons. Detection of > or approx. 10 TeV neutrinos from GRBs with Doppler factors > or approx. 200, inferred from γ-ray observations, would support the supranova model. Detection of or approx. 3x10 -4 erg cm -2 offer a realistic prospect for detection of ν μ

  7. Modelling neutrino and gamma-ray fluxes in supernova remnants

    International Nuclear Information System (INIS)

    Ballet, J; Cassam-Chenai, G; Maurin, G; Naumann, C

    2008-01-01

    Supernova remnants (SNRs) are believed to accelerate charged particles by diffusive shock acceleration (DSA) and to produce the majority of galactic cosmic rays, at least up to the 'knee' at 3-10 15 electron volts. In the framework of a hydrodynamic self-similar simulation of the evolution of young supernova remnants, its interaction with the ambient matter as well as the microwave and infrared background is studied. The photon spectra resulting from synchrotron and inverse Compton emission as well as from hadronic processes are calculated, as are the accompanying neutrino fluxes. Applying this method to the particular case of the SNR RXJ-1713, 7-3946, we find that its TeV emission can in principle be explained by pion decay if the ambient density is assumed to grow with increasing distance from the centre. The neutrino flux associated with this hadronic model is of a magnitude that may be detectable by a cubic-kilometre sized deep-sea neutrino telescope in the northern hemisphere. In this poster, a description of the supernova remnant simulation is given together with the results concerning RXJ-1713.

  8. Calculation of neutron and gamma-ray flux-to-dose-rate conversion factors

    International Nuclear Information System (INIS)

    Kwon, S.G.; Lee, S.Y.; Yook, C.C.

    1981-01-01

    This paper presents flux-to-dose-rate conversion factors for neutrons and gamma rays based on the American National Standard Institute (ANSI) N666. These data are used to calculate the dose rate distribution of neutron and gamma ray in radiation fields. Neutron flux-to-dose-rate conversion factors for energies from 2.5 x 10 -8 to 20 MeV are presented; the corresponding energy range for gamma rays is 0.01 to 15 MeV. Flux-to-dose-rate conversion factors were calculated, under the assumption that radiation energy distribution has nonlinearity in the phantom, have different meaning from those values obtained by monoenergetic radiation. Especially, these values were determined with the cross section library. The flux-to-dose-rate conversion factors obtained in this work were in a good agreement to the values presented by ANSI. Those data will be useful for the radiation shielding analysis and the radiation dosimetry in the case of continuous energy distributions. (author)

  9. GeV GAMMA-RAY FLUX UPPER LIMITS FROM CLUSTERS OF GALAXIES

    International Nuclear Information System (INIS)

    Ackermann, M.; Ajello, M.; Allafort, A.; Bechtol, K.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Buehler, R.; Baldini, L.; Bellazzini, R.; Bregeon, J.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Blasi, P.; Bonamente, E.; Brandt, T. J.; Brigida, M.; Bruel, P.

    2010-01-01

    The detection of diffuse radio emission associated with clusters of galaxies indicates populations of relativistic leptons infusing the intracluster medium (ICM). Those electrons and positrons are either injected into and accelerated directly in the ICM, or produced as secondary pairs by cosmic-ray ions scattering on ambient protons. Radiation mechanisms involving the energetic leptons together with the decay of neutral pions produced by hadronic interactions have the potential to produce abundant GeV photons. Here, we report on the search for GeV emission from clusters of galaxies using data collected by the Large Area Telescope on the Fermi Gamma-ray Space Telescope from 2008 August to 2010 February. Thirty-three galaxy clusters have been selected according to their proximity and high mass, X-ray flux and temperature, and indications of non-thermal activity for this study. We report upper limits on the photon flux in the range 0.2-100 GeV toward a sample of observed clusters (typical values (1-5) x10 -9 photon cm -2 s -1 ) considering both point-like and spatially resolved models for the high-energy emission and discuss how these results constrain the characteristics of energetic leptons and hadrons, and magnetic fields in the ICM. The volume-averaged relativistic-hadron-to-thermal energy density ratio is found to be <5%-10% in several clusters.

  10. Some aspects of ultra high energy gamma ray astronomy

    International Nuclear Information System (INIS)

    De Jager, O.C.

    1983-11-01

    A short review of ultra high energy (UHE) gamma ray astronomy (10 11 14 eV) as well as a description of a planned experiment to be erected at Potchefstroom is given in the introduction. This experiment will be the first and only one in the Southern Hemisphere and as such may play an important role in this new field of astronomy and astrophysics. In the first part the necessary infrastructure for astronomical observations of known celestial objects is developed. This embodies the special physical, mechanical and astronomical constraints in this type of astronomy, such as the definition of the various astronomical coordinate systems and transformations between them, the effect of precession and nutation on the source position etc. This leads to automatic observation schedules for the various applicable techniques of observation. In the second part the various effects which may influence the arrival time of a gamma ray at the telescope is investigated. It is found that dispersion and relativistic effects are negligible, given the special type of analysis used in this low counting rate system. The classic Doppler effect due to the motion of Earth as well as the configuration of the telescope does have a major effect and must be taken into consideration when analysing the data. A simple method, depending only on the movement of Earth around the sun, is developed to simplify the identification of pulsars at the planned observatory where computing facilities are limited

  11. A possible very high energy gamma-ray burst from Hercules X-1

    International Nuclear Information System (INIS)

    Vishwanath, P.R.; Bhat, P.N.; Ramanamurthy, P.V.; Sreekantan, B.V.

    1989-01-01

    A large increase is observed in the trigger rate in the direction of Hercules X-1 in the Atmospheric Cerenkov array at Pachmarhi, India. The burst lasted from 2147 UT to 2201 UT on April 11, 1986. The accidental coincidence rate did not show any increase during the burst. Barring any electronic noise or celestial or terrestrial optical phenomenon with time structure similar to that of atmospheric Cerenkov phenomenon, the increase is ascribed to TeV gamma rays from Her X-1. The number of gamma-ray events during the burst amounted to about 54 percent of the cosmic-ray flux, resulting in a 42-sigma effect. This is the largest TeV gamma-ray signal seen from any source till now. The time-averaged flux for the burst period is 1.8 x 10 photons/sq cm per s above a threshold energy of 0.4 TeV, which results in a luminosity of 1.8 x 10 to the 37 ergs/s. The burst took place at the end of the 'high on' state in the 35-day cycle of the Her X-1 binary system indicating accretion disk as the possible production site. 14 refs

  12. A study of the sensitivity of an imaging telescope (GRITS) for high energy gamma-ray astronomy. Final report

    International Nuclear Information System (INIS)

    Yearian, M.R.

    1990-08-01

    When a gamma-ray telescope is placed in Earth orbit, it is bombarded by a flux of cosmic protons much greater than the flux of interesting gammas. These protons can interact in the telescope's thermal shielding to produce detectable gamma rays, most of which are vetoed. Since the proton flux is so high, the unvetoed gamma rays constitute a significant background relative to some weak sources. This background increases the observing time required to pinpoint some sources and entirely obscures other sources. Although recent telescopes have been designed to minimize this background, its strength and spectral characteristics were not previously calculated in detail. Monte Carlo calculations are presented which characterize the strength, spectrum and other features of the cosmic proton background using FLUKA, a hadronic cascade program. Several gamma-ray telescopes, including SAS-2, EGRET and the Gamma Ray Imaging Telescope System (GRITS), are analyzed, and their proton-induced backgrounds are characterized. In all cases, the backgrounds are either shown to be low relative to interesting signals or suggestions are made which would reduce the background sufficiently to leave the telescope unimpaired. In addition, several limiting cases are examined for comparison to previous estimates and calibration measurements

  13. American National Standard: neutron and gamma-ray flux-to-dose rate factors

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    This Standard presents data recommended for computing biological dose rates due to neutron and gamma-ray radiation fields. Neutron flux-to-dose-rate conversion factors for energies from 2.5 x 10 -8 to 20 MeV are given; the energy range for the gamma-ray conversion factors is 0.01 to 15 MeV. Specifically, this Standard is intended for use by shield designers to calculate wholebody dose rates to radiation workers and the general public. Establishing dose-rate limits is outside the scope of this Standard. Use of this Standard in cases where the dose equivalents are far in excess of occupational exposure guidelines is not recommended

  14. Experimental techniques for the detection of the high energy gamma rays of cosmic origin

    International Nuclear Information System (INIS)

    Dumitrescu, Gh.; Angelescu, T.; Radu, A.A.

    2002-01-01

    The observation of high energy gamma rays of cosmic origin in the early 90 by Volcano Ranch experiment opened a new direction of study in astrophysics. The very high energy and the very low flux of these gamma rays, posed numerous detection problems which in turn were the object of a very intense research activity. The present article tries to review the detection techniques for the high energy gamma rays of cosmic origin. In the 'Introduction' we summarize the specific problems involved in the detection of this type of radiation. 'Chapter 1' presents the classic technique based on the use of scintillation detectors. 'Chapter 2' includes the imaging atmospheric Cherenkov technique (IACT) and the sampling wavefront technique. 'Chapter 3' is dedicated to the detection of the atmospheric nitrogen. 'Chapter 4' describes issues related to the calibration of the detectors, the cross checking of the experimental data, the use of the Monte Carlo simulations and the use of the density observed at a distance of 600 m S(600), in order to estimate the primary energy. The characteristics of some future developments of the above presented techniques are included in the last chapter. (authors)

  15. Are gamma-ray bursts the sources of ultra-high energy cosmic rays?

    International Nuclear Information System (INIS)

    Baerwald, Philipp

    2014-07-01

    We reconsider the possibility that gamma-ray bursts (GRBs) are the sources of the ultra-high energy cosmic rays (UHECRs) within the internal shock model, assuming a pure proton composition of the UHECRs. For the first time, we combine the information from gamma-rays, cosmic rays, prompt neutrinos, and cosmogenic neutrinos quantitatively in a joint cosmic ray production and propagation model, and we show that the information on the cosmic energy budget can be obtained as a consequence. In addition to the neutron model, we consider alternative scenarios for the cosmic ray escape from the GRBs, i.e., that cosmic rays can leak from the sources. We find that the dip model, which describes the ankle in UHECR observations by the pair production dip, is strongly disfavored in combination with the internal shock model because (a) unrealistically high baryonic loadings (energy in protons versus energy in electrons/gamma-rays) are needed for the individual GRBs and (b) the prompt neutrino flux easily overshoots the corresponding neutrino bound. On the other hand, GRBs may account for the UHECRs in the ankle transition model if cosmic rays leak out from the source at the highest energies. In that case, we demonstrate that future neutrino observations can efficiently test most of the parameter space - unless the baryonic loading is much larger than previously anticipated.

  16. VERY HIGH ENERGY OBSERVATIONS OF GAMMA-RAY BURSTS WITH STACEE

    International Nuclear Information System (INIS)

    Jarvis, A.; Ong, R. A.; Ball, J.; Carson, J. E.; Zweerink, J.; Williams, D. A.; Aune, T.; Covault, C. E.; Driscoll, D. D.; Fortin, P.; Mukherjee, R.; Gingrich, D. M.; Hanna, D. S.; Kildea, J.; Lindner, T.; Mueller, C.; Ragan, K.

    2010-01-01

    Gamma-ray bursts (GRBs) are the most powerful explosions known in the universe. Sensitive measurements of the high-energy spectra of GRBs can place important constraints on the burst environments and radiation processes. Until recently, there were no observations during the first few minutes of GRB afterglows in the energy range between 30 GeV and ∼1 TeV. With the launch of the Swift GRB Explorer in late 2004, GRB alerts and localizations within seconds of the bursts became available. The Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE) was a ground-based, gamma-ray telescope with an energy threshold of ∼150 GeV for sources at zenith. At the time of Swift's launch, STACEE was in a rare position to provide >150 GeV follow-up observations of GRBs as fast as three minutes after the burst alert. In addition, STACEE performed follow-up observations of several GRBs that were localized by the HETE-2 and INTEGRAL satellites. Between 2002 June and 2007 July, STACEE made follow-up observations of 23 GRBs. Upper limits are placed on the high-energy gamma-ray fluxes from 21 of these bursts.

  17. Unattented mode monitoring of high resolution gamma-ray spectra

    International Nuclear Information System (INIS)

    Smith, B.G.R.; Van Dyck, P.; Debraix, P.

    1991-01-01

    An Isotope Monitoring System (IMS) for unattended spectrum acquisition is described. This consists of a simple low cost flexible software package running on a Compaq 80386 and controlling up to 4 Canberra Packard System 100 multi-channel analyzer (MCA) cards. The IMS permits the independent configuration of each of the 4 MCA cards for different monitoring cycles and for different spectrum acquisition cycles each being based upon different trigger criteria. In this way IMS is able to automatically identify events, time tag them, and acquire and store valid spectra corresponding to those event. An additional feature of IMS permits to run a Multigroup Analysis (MGA) software package for the determination of plutonium isotopic compositions in batch mode. One particular application is discussed which consists of 4 high resolution gamma-ray detector systems connected together to the IMS for unattended spectrum acquisition. The off-line batch mode analysis of the spectra using MGA is also discussed

  18. Performance characteristics of high resolution semiconductor gamma ray spectrometry system

    International Nuclear Information System (INIS)

    Ko Ko Naing

    1994-05-01

    A high purity germanium (HPGe) gamma-ray detector has been used in Nuclear Research Laboratory, Department of Physics, Yangon University for over fourteen years. Now it is still being used and it is coupled to new peripheral devices, such as spectroscopy amplifier, analog to digital converter and computer fit-in S-100 multichannel analyser. Therefore, it is necessary to determine the important parameters: energy resolution, detecting efficiency and relative efficiency of the system. In the present work, these parameters were obtained by using mixed calibrated source. The results were compared to the data given by the manufacturer. Moreover, the parameters of another γ-ray detecting system NaI(T1) were also determined. In conclusion the results obtained from the above two measurements were compared and discussed

  19. High-z Universe with Gamma Ray Bursts

    Science.gov (United States)

    Kouveliotou, C.

    2011-01-01

    Gamma-Ray Bursts (GRBs) are the most luminous explosions in space and trace the cosmic star formation history back to the first generations of stars. Their bright afterglows allow us to trace the abundances of heavy elements to large distances, thereby measuring cosmic chemical evolution. To date GRBs have been detected up to distances of z=8.23 and possibly even beyond z9. This makes GRBs a unique and powerful tool to probe the high-z Universe up to the re-ionization era. We discuss the current status of the field, place it in context with other probes, and also discuss new mission concepts that have been planned to utilize GRBs as probes.

  20. Measuring planetary neutron albedo fluxes by remote gamma-ray sensing

    International Nuclear Information System (INIS)

    Haines, E.L.; Metzger, A.E.

    1984-01-01

    A remote-sensing γ-ray spectrometer (GRS) is capable of measuring planetary surface composition through the detection of characteristic gamma rays. In addition, the planetary neutron leakage flux may be detected by means of a thin neutron absorber surrounding the γ-ray detector which converts the neutron flux into a γ-ray flux having a unique energy signature. The γ rays representing the neutron flux are observed against interference consisting of cosmic γ rays, planetary continuum and line emission, and a variety of gamma rays arising from cosmic-ray particle interactions with the γ-ray spectrometer and spacecraft (SC). In this paper the amplitudes of planetary and non-planetary neutron fluxes are assessed and their impact on the sensitivity of measurement is calculated for a lunar orbiter mission and a comet nucleus rendezvous mission. For a 100 h observation period from an altitude of 100 km, a GRS on a lunar orbiter can detect a thermal neutron albedo flux as low as 0.002 cm -2 s -1 and measure the expected flux of approx.=0.6 cm -2 s -1 with an uncertainty of 0.001 cm -2 s -1 . A GRS rendezvousing with a comet at a distance equal to the radius of the comet's nucleus, again for a 100 h observation time, should detect a thermal neutron albedo flux at a level of 0.006 cm -2 s -1 and measure the expected flux of approx.=0.4 cm -2 s -1 with an uncertainty of 0.004 cm -2 s -1 . Mapping the planetary neutron flux jointly with the direct detection of H will not only provide a more accurate model for translating observed γ-ray fluxes into concentrations but will also extend the effective sampling depth and should provide a capability for simple stratigraphic modeling of hydrogen. (orig.)

  1. Measurement of gamma ray flux within the containment building at the first unit of Kori nuclear power station

    Energy Technology Data Exchange (ETDEWEB)

    Kim, T. W.; Kim, K. D.; Yoon, C. H.; Han, J. M.; Hu, Y. H. [Korea Hydraulic and Nuclear Power Company, Taejon (Korea, Republic of)

    2004-07-01

    To evaluate gamma ray dose response of GM counter being used for monitoring of gamma ray field in nuclear power plants, gamma ray energy spectra and fluxes were obtained for three positions at the unit 1 of the Kori nuclear power station. By applying the response values of Eberline's E112B survey meter to the results, the doses represented on the survey meter were overestimated from 1.31 to 1.37 times when compared to the real doses for these three positions.

  2. Ultra-high energy cosmic rays and prompt TeV gamma rays from ...

    Indian Academy of Sciences (India)

    physics pp. 789-792. Ultra-high energy cosmic rays and prompt. TeV gamma rays from gamma ray bursts ... The origin of the observed ultra-high energy cosmic ray (UHECR) events with ... are proton and electron rest mass, respectively.

  3. A SEARCH FOR VERY HIGH ENERGY GAMMA RAYS FROM THE MISSING LINK BINARY PULSAR J1023+0038 WITH VERITAS

    Energy Technology Data Exchange (ETDEWEB)

    Aliu, E. [Department of Physics and Astronomy, Barnard College, Columbia University, NY 10027 (United States); Archambault, S. [Physics Department, McGill University, Montreal, QC H3A 2T8 (Canada); Archer, A.; Buckley, J. H.; Bugaev, V. [Department of Physics, Washington University, St. Louis, MO 63130 (United States); Benbow, W.; Cerruti, M. [Fred Lawrence Whipple Observatory, Harvard-Smithsonian Center for Astrophysics, Amado, AZ 85645 (United States); Bird, R. [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Biteau, J. [Santa Cruz Institute for Particle Physics and Department of Physics, University of California, Santa Cruz, CA 95064 (United States); Buchovecky, M. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Byrum, K. [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States); Cardenzana, J. V; Dickinson, H. J.; Eisch, J. D. [Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); Chen, X. [Institute of Physics and Astronomy, University of Potsdam, D-14476 Potsdam-Golm (Germany); Ciupik, L. [Astronomy Department, Adler Planetarium and Astronomy Museum, Chicago, IL 60605 (United States); Connolly, M. P. [School of Physics, National University of Ireland Galway, University Road, Galway (Ireland); Cui, W.; Feng, Q. [Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907 (United States); Falcone, A., E-mail: ester.aliu.fuste@gmail.com, E-mail: gtrichards@gatech.edu, E-mail: masha.chernyakova@dcu.ie, E-mail: malloryr@gmail.com [Department of Astronomy and Astrophysics, 525 Davey Lab, Pennsylvania State University, University Park, PA 16802 (United States); and others

    2016-11-10

    The binary millisecond radio pulsar PSR J1023+0038 exhibits many characteristics similar to the gamma-ray binary system PSR B1259–63/LS 2883, making it an ideal candidate for the study of high-energy nonthermal emission. It has been the subject of multiwavelength campaigns following the disappearance of the pulsed radio emission in 2013 June, which revealed the appearance of an accretion disk around the neutron star. We present the results of very high energy (VHE) gamma-ray observations carried out by the Very Energetic Radiation Imaging Telescope Array System before and after this change of state. Searches for steady and pulsed emission of both data sets yield no significant gamma-ray signal above 100 GeV, and upper limits are given for both a steady and pulsed gamma-ray flux. These upper limits are used to constrain the magnetic field strength in the shock region of the PSR J1023+0038 system. Assuming that VHE gamma rays are produced via an inverse Compton mechanism in the shock region, we constrain the shock magnetic field to be greater than ∼2 G before the disappearance of the radio pulsar and greater than ∼10 G afterward.

  4. High energy X-ray observations of COS-B gamma-ray sources from OSO-8

    Science.gov (United States)

    Dolan, J. F.; Crannell, C. J.; Dennis, B. R.; Frost, K. J.; Orwig, L. E.; Caraveo, P. A.

    1985-01-01

    During the three years between satellite launch in June 1975 and turn-off in October 1978, the high energy X-ray spectrometer on board OSO-8 observed nearly all of the COS-B gamma-ray source positions given in the 2CG catalog (Swanenburg et al., 1981). An X-ray source was detected at energies above 20 keV at the 6-sigma level of significance in the gamma-ray error box containing 2CG342 - 02 and at the 3-sigma level of significance in the error boxes containing 2CG065 + 00, 2CG195 + 04, and 2CG311 - 01. No definite association between the X-ray and gamma-ray sources can be made from these data alone. Upper limits are given for the 2CG sources from which no X-ray flux was detected above 20 keV.

  5. The goals of gamma-ray spectroscopy in high energy astrophysics

    Science.gov (United States)

    Lingenfelter, Richard E.; Higdon, James C.; Leventhal, Marvin; Ramaty, Reuven; Woosley, Stanford E.

    1990-01-01

    The use of high resolution gamma-ray spectroscopy in astrophysics is discussed with specific attention given to the application of the Nuclear Astrophysics Explorer (NAE). The gamma-ray lines from nuclear transitions in radionucleic decay and positron annihilation permits the study of current sites, rates and models of nucleosynthesis, and galactic structure. Diffuse galactic emission is discussed, and the high-resolution observations of gamma-ray lines from discrete sites are also described. Interstellar mixing and elemental abundances can also be inferred from high-resolution gamma-ray spectroscopy of nucleosynthetic products. Compact objects can also be examined by means of gamma-ray emissions, allowing better understanding of neutron stars and the accreting black hole near the galactic center. Solar physics can also be investigated by examining such features as solar-flare particle acceleration and atmospheric abundances.

  6. Identifying high-redshift gamma-ray bursts with RATIR

    Energy Technology Data Exchange (ETDEWEB)

    Littlejohns, O. M.; Butler, N. R. [School of Earth and Space Exploration, Arizona State University, AZ 85287 (United States); Cucchiara, A. [Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Watson, A. M.; Lee, W. H.; Richer, M. G.; De Diego, J. A.; Georgiev, L.; González, J.; Román-Zúñiga, C. G. [Instituto de Astronomía, Universidad Nacional Autónoma de México, Apartado Postal 70-264, 04510 México, D. F. (Mexico); Kutyrev, A. S.; Troja, E.; Gehrels, N.; Moseley, H. [NASA, Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Klein, C. R.; Fox, O. D.; Bloom, J. S. [Astronomy Department, University of California, Berkeley, CA 94720-7450 (United States); Prochaska, J. X.; Ramirez-Ruiz, E. [Department of Astronomy and Astrophysics, UCO/Lick Observatory, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States)

    2014-07-01

    We present a template-fitting algorithm for determining photometric redshifts, z {sub phot}, of candidate high-redshift gamma-ray bursts (GRBs). Using afterglow photometry, obtained by the Reionization and Transients InfraRed (RATIR) camera, this algorithm accounts for the intrinsic GRB afterglow spectral energy distribution, host dust extinction, and the effect of neutral hydrogen (local and cosmological) along the line of sight. We present the results obtained by this algorithm and the RATIR photometry of GRB 130606A, finding a range of best-fit solutions, 5.6 < z {sub phot} < 6.0, for models of several host dust extinction laws (none, the Milky Way, Large Magellanic Clouds, and Small Magellanic Clouds), consistent with spectroscopic measurements of the redshift of this GRB. Using simulated RATIR photometry, we find that our algorithm provides precise measures of z {sub phot} in the ranges of 4 < z {sub phot} ≲ 8 and 9 < z {sub phot} < 10 and can robustly determine when z {sub phot} > 4. Further testing highlights the required caution in cases of highly dust-extincted host galaxies. These tests also show that our algorithm does not erroneously find z {sub phot} < 4 when z {sub sim} > 4, thereby minimizing false negatives and allowing us to rapidly identify all potential high-redshift events.

  7. Identifying high-redshift gamma-ray bursts with RATIR

    International Nuclear Information System (INIS)

    Littlejohns, O. M.; Butler, N. R.; Cucchiara, A.; Watson, A. M.; Lee, W. H.; Richer, M. G.; De Diego, J. A.; Georgiev, L.; González, J.; Román-Zúñiga, C. G.; Kutyrev, A. S.; Troja, E.; Gehrels, N.; Moseley, H.; Klein, C. R.; Fox, O. D.; Bloom, J. S.; Prochaska, J. X.; Ramirez-Ruiz, E.

    2014-01-01

    We present a template-fitting algorithm for determining photometric redshifts, z phot , of candidate high-redshift gamma-ray bursts (GRBs). Using afterglow photometry, obtained by the Reionization and Transients InfraRed (RATIR) camera, this algorithm accounts for the intrinsic GRB afterglow spectral energy distribution, host dust extinction, and the effect of neutral hydrogen (local and cosmological) along the line of sight. We present the results obtained by this algorithm and the RATIR photometry of GRB 130606A, finding a range of best-fit solutions, 5.6 < z phot < 6.0, for models of several host dust extinction laws (none, the Milky Way, Large Magellanic Clouds, and Small Magellanic Clouds), consistent with spectroscopic measurements of the redshift of this GRB. Using simulated RATIR photometry, we find that our algorithm provides precise measures of z phot in the ranges of 4 < z phot ≲ 8 and 9 < z phot < 10 and can robustly determine when z phot > 4. Further testing highlights the required caution in cases of highly dust-extincted host galaxies. These tests also show that our algorithm does not erroneously find z phot < 4 when z sim > 4, thereby minimizing false negatives and allowing us to rapidly identify all potential high-redshift events.

  8. Gamma-ray spectrometer utilizing xenon at high pressure

    International Nuclear Information System (INIS)

    Smith, G.C.; Mahler, G.J.; Yu, B.; Kane, W.R.; Markey, J.K.

    1994-01-01

    A prototype gamma-ray spectrometer utilizing xenon gas near the critical point (166 degrees C, 58 atm) is under development. The spectrometer will function as a room-temperature ionization chamber detecting gamma rays in the energy range 100 keV2 MeV, with an energy resolution intermediate between semiconductor (Ge) and scintillation (NaI) spectrometers. The energy resolution is superior to that of a NaI scintillation spectrometer by a substantial margin (approximately a factor 5), and accordingly, much more information can be extracted from a given gamma-ray spectrum. Unlike germanium detectors, the spectrometer possesses the capability for sustained operation under ambient temperature conditions without a requirement for liquid nitrogen

  9. Absolute peak detection efficiencies of a Ge(Li) detector for high gamma-ray energies

    International Nuclear Information System (INIS)

    Katagiri, Masaki

    1985-11-01

    Absolute peak detection efficiencies of a Ge(Li) detector for gamma-rays of 3.5 MeV to 12 MeV were measured using four (p,γ) reactions and a (n,γ) reaction. Two-line-method was used to obtaine peak detection efficiencies. The efficiencies with the both cases are agreed very well. Utilization of (n,γ) reaction is, therefore, effective for measuring these efficiencies, because high energy gamma-rays can be generated easily by using a neutron source. These results were applied to calibration of a gamma-ray standard source, emitting 6.13 MeV gamma-rays, and of intensities of 56 Co standard gamma-ray source. (author)

  10. Design optimization of high speed gamma-ray tomography

    International Nuclear Information System (INIS)

    Maad, Rachid

    2009-01-01

    This thesis concerns research and development of efficient gamma-ray systems for high speed tomographic imaging of hydrocarbon flow dynamics with a particular focus on gas liquid imaging. The Bergen HSGT (High Speed Gamma-ray Tomograph) based on instant imaging with a fixed source-detector geometry setup, has been thoroughly characterized with a variety of image reconstruction algorithms and flow conditions. Experiments in flow loops have been carried out for reliable characterization and error analysis, static flow phantoms have been applied for the majority of experiments to provide accurate imaging references. A semi-empirical model has been developed for estimation of the contribution of scattered radiation to each HSGT detector and further for correction of this contribution prior to data reconstruction. The Bergen FGGT (Flexible Geometry Gamma-ray Tomograph) has been further developed, particularly on the software side. The system emulates any fan beam tomography. Based on user input of geometry and other conditions, the new software perform scanning, data acquisition and storage, and also weight matrix calculation and image reconstruction with the desired method. The FGGT has been used for experiments supporting those carried out with the HSGT, and in addition for research on other fan beam geometries suitable for hydrocarbon flow imaging applications. An instant no-scanning tomograph like the HSGT has no flexibility with respect to change of geometry, which usually is necessary when applying the tomograph for a new application. A computer controlled FGGT has been designed and built at the UoB. The software developed for the FGGT controls the scanning procedure, the data acquisition, calculates the weight matrix necessary for the image reconstruction, reconstructs the image using standard reconstruction algorithms, and calculates the error of the reconstructed image. The performance of the geometry has been investigated using a 100 mCi 241 Am disk source, a

  11. Limits to the Fraction of High-energy Photon Emitting Gamma-Ray Bursts

    Science.gov (United States)

    Akerlof, Carl W.; Zheng, WeiKang

    2013-02-01

    After almost four years of operation, the two instruments on board the Fermi Gamma-ray Space Telescope have shown that the number of gamma-ray bursts (GRBs) with high-energy photon emission above 100 MeV cannot exceed roughly 9% of the total number of all such events, at least at the present detection limits. In a recent paper, we found that GRBs with photons detected in the Large Area Telescope have a surprisingly broad distribution with respect to the observed event photon number. Extrapolation of our empirical fit to numbers of photons below our previous detection limit suggests that the overall rate of such low flux events could be estimated by standard image co-adding techniques. In this case, we have taken advantage of the excellent angular resolution of the Swift mission to provide accurate reference points for 79 GRB events which have eluded any previous correlations with high-energy photons. We find a small but significant signal in the co-added field. Guided by the extrapolated power-law fit previously obtained for the number distribution of GRBs with higher fluxes, the data suggest that only a small fraction of GRBs are sources of high-energy photons.

  12. LIMITS TO THE FRACTION OF HIGH-ENERGY PHOTON EMITTING GAMMA-RAY BURSTS

    International Nuclear Information System (INIS)

    Akerlof, Carl W.; Zheng, WeiKang

    2013-01-01

    After almost four years of operation, the two instruments on board the Fermi Gamma-ray Space Telescope have shown that the number of gamma-ray bursts (GRBs) with high-energy photon emission above 100 MeV cannot exceed roughly 9% of the total number of all such events, at least at the present detection limits. In a recent paper, we found that GRBs with photons detected in the Large Area Telescope have a surprisingly broad distribution with respect to the observed event photon number. Extrapolation of our empirical fit to numbers of photons below our previous detection limit suggests that the overall rate of such low flux events could be estimated by standard image co-adding techniques. In this case, we have taken advantage of the excellent angular resolution of the Swift mission to provide accurate reference points for 79 GRB events which have eluded any previous correlations with high-energy photons. We find a small but significant signal in the co-added field. Guided by the extrapolated power-law fit previously obtained for the number distribution of GRBs with higher fluxes, the data suggest that only a small fraction of GRBs are sources of high-energy photons.

  13. Atmospheric gamma-ray observation with the BETS detectorfor calibrating atmospheric neutrino flux calculations

    CERN Document Server

    Kasahara, K.; Torii, S.; Tamura, T.; Tateyama, N.; Yoshida, K.; Yamagami, T.; Saito, Y.; Nishimura, J.; Murakami, H.; Kobayashi, T.; Komori, Y.; Honda, M.; Ohuchi, T.; Midorikawa, S.; Yuda, T.

    2002-01-01

    We observed atmospheric gamma-rays around 10 GeV at balloon altitudes (15~25 km) and at a mountain (2770 m a.s.l). The observed results were compared with Monte Carlo calculations to find that an interaction model (Lund Fritiof1.6) used in an old neutrino flux calculation was not good enough for describing the observed values. In stead, we found that two other nuclear interaction models, Lund Fritiof7.02 and dpmjet3.03, gave much better agreement with the observations. Our data will serve for examining nuclear interaction models and for deriving a reliable absolute atmospheric neutrino flux in the GeV region.

  14. Properties of a large NaI(Tl) spectrometer for the energy measurement of high-energy gamma rays on the Gamma Ray Observatory

    International Nuclear Information System (INIS)

    Hughes, E.B.; Finman, L.C.; Hofstadter, R.; Lepetich, J.E.; Lin, Y.C.; Mattox, J.R.; Nolan, P.L.; Parks, R.; Walker, A.H.

    1986-01-01

    A large NaI(T1) spectrometer is expected to play a crucial role in the measurement of the energy spectra from an all-sky survey of high-energy celestial gamma rays on the Gamma Ray Observatory. The crystal size and requirements of space flight have resulted in a novel crystal-packaging and optics combination. The structure of this spectrometer and the operating characteristics determined in a test program using high energy positrons are described

  15. A Very High Energy Gamma-Ray Spectrum of 1ES 2344+514

    OpenAIRE

    Schroedter, M.; Badran, H. M.; Buckley, J. H.; Gordo, J. Bussons; Carter-Lewis, D. A.; Duke, C.; Fegan, D. J.; Fegan, S. F.; Finley, J. P.; Gillanders, G. H.; Grube, J.; Horan, D.; Kenny, G. E.; Kertzman, M.; Kosack, K.

    2005-01-01

    The BL Lacertae (BL Lac) object 1ES 2344+514 (1ES 2344), at a redshift of 0.044, was discovered as a source of very high energy (VHE) gamma rays by the Whipple Collaboration in 1995 \\citep{2344Catanese98}. This detection was recently confirmed by the HEGRA Collaboration \\citep{2344Hegra03}. As is typical for high-frequency peaked blazars, the VHE gamma-ray emission is highly variable. On the night of 20 December, 1995, a gamma-ray flare of 5.3-sigma significance was detected, the brightest ou...

  16. Impulsive and long duration high-energy gamma-ray emission from the very bright 2012 March 7 solar flares

    Energy Technology Data Exchange (ETDEWEB)

    Ajello, M. [Space Sciences Laboratory, 7 Gauss Way, University of California, Berkeley, CA 94720-7450 (United States); Albert, A.; Allafort, A.; Caliandro, G. A.; Cameron, R. A.; Charles, E. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Baldini, L. [Università di Pisa and Istituto Nazionale di Fisica Nucleare, Sezione di Pisa I-56127 Pisa (Italy); Barbiellini, G. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste (Italy); Bastieri, D.; Buson, S. [Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova (Italy); Bellazzini, R.; Bregeon, J. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Bissaldi, E. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, and Università di Trieste, I-34127 Trieste (Italy); Bonamente, E.; Cecchi, C. [Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, I-06123 Perugia (Italy); Brandt, T. J. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Brigida, M. [Dipartimento di Fisica " M. Merlin" dell' Università e del Politecnico di Bari, I-70126 Bari (Italy); Bruel, P. [Laboratoire Leprince-Ringuet, École polytechnique, CNRS/IN2P3, Palaiseau (France); Buehler, R. [Deutsches Elektronen Synchrotron DESY, D-15738 Zeuthen (Germany); Caraveo, P. A., E-mail: nicola.omodei@stanford.edu, E-mail: vahep@stanford.edu, E-mail: melissa.pesce.rollins@pi.infn.it [INAF-Istituto di Astrofisica Spaziale e Fisica Cosmica, I-20133 Milano (Italy); and others

    2014-07-01

    The Fermi Large Area Telescope (LAT) detected gamma-rays up to 4 GeV from two bright X-class solar flares on 2012 March 7, showing both an impulsive and temporally extended emission phases. The gamma-rays appear to originate from the same active region as the X-rays associated with these flares. The >100 MeV gamma-ray flux decreases monotonically during the first hour (impulsive phase) followed by a slower decrease for the next 20 hr. A power law with a high-energy exponential cutoff can adequately describe the photon spectrum. Assuming that the gamma rays result from the decay of pions produced by accelerated protons and ions with a power-law spectrum, we find that the index of that spectrum is ∼3, with minor variations during the impulsive phase. During the extended phase the photon spectrum softens monotonically, requiring the proton index varying from ∼4 to >5. The >30 MeV proton flux observed by the GOES satellites also shows a flux decrease and spectral softening, but with a harder spectrum (index ∼2-3). Based on these observations, we explore the relative merits of prompt or continuous acceleration scenarios, hadronic or leptonic emission processes, and acceleration at the solar corona or by the fast coronal mass ejections. We conclude that the most likely scenario is continuous acceleration of protons in the solar corona that penetrate the lower solar atmosphere and produce pions that decay into gamma rays. However, acceleration in the downstream of the shock cannot be definitely ruled out.

  17. The dynamic range of ultra-high-resolution cryogenic gamma-ray spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Shafinaz [Advanced Detector Group, Lawrence Livermore National Laboratory, 7000 East Avenue, L-270, Livermore, CA 94550 (United States); Terracol, Stephane F. [Advanced Detector Group, Lawrence Livermore National Laboratory, 7000 East Avenue, L-270, Livermore, CA 94550 (United States); Drury, Owen B. [Advanced Detector Group, Lawrence Livermore National Laboratory, 7000 East Avenue, L-270, Livermore, CA 94550 (United States); Friedrich, Stephan [Advanced Detector Group, Lawrence Livermore National Laboratory, 7000 East Avenue, L-270, Livermore, CA 94550 (United States)]. E-mail: friedrich1@llnl.gov

    2006-04-15

    We are developing high-resolution cryogenic gamma-ray spectrometers for nuclear science and non-proliferation applications. The gamma-ray detectors are composed of a bulk superconducting Sn foil absorber attached to a multilayer Mo/Cu transition-edge sensor (TES). The energy resolution of a detector with a 1x1x0.25 mm{sup 3} Sn absorber is 50-90 eV FWHM for {gamma}-rays up to 100 keV, and it decreases for larger absorbers. Here, we present the detector performance for different absorber volumes, and discuss the trade-offs between energy resolution and dynamic range.

  18. Gamma rays made on Earth have unexpectedly high energies

    International Nuclear Information System (INIS)

    Miller, Johanna

    2011-01-01

    Terrestrial gamma-ray flashes (TGFs) are the source of the highest-energy nonanthropogenic photons produced on Earth. Associated with thunder-storms - and in fact, with individual lightning discharges - they are presumed to be the bremsstrahlung produced when relativistic electrons, accelerated by the storms' strong electric fields, collide with air molecules some 10-20 km above sea level. The TGFs last up to a few milliseconds and contain photons with energies on the order of MeV.

  19. High-energy emission from gamma-ray bursts

    International Nuclear Information System (INIS)

    Nolan, P.L.; Share, G.H.; Matz, S.; Chupp, E.L.; Forrest, D.J.; Rieger, E.

    1984-01-01

    We discuss broad-band continuum spectroscopy of 17 gamma-ray bursts above 0.3 MeV. The spectra were fitted by 3 trial functions, none of which provided an adequate fit to all the spectra. Most were too hard for a thermal bremsstarhlung function. Harder functional forms, such as thermal synchrotron or power-law, provide better fits for most of the spectra. The strong emission observed above 1 MeV raises some interesting theoretical questions

  20. RAPID GAMMA-RAY FLUX VARIABILITY DURING THE 2013 MARCH CRAB NEBULA FLARE

    International Nuclear Information System (INIS)

    Mayer, M.; Buehler, R.; Hays, E.; Cheung, C. C.; Grove, J. E.; Dutka, M. S.; Kerr, M.; Ojha, R.

    2013-01-01

    We report on a bright flare in the Crab Nebula detected by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope. The period of significantly increased luminosity occurred in 2013 March and lasted for approximately two weeks. During this period, we observed flux variability on timescales of approximately 5 hr. The combined photon flux above 100 MeV from the pulsar and its nebula reached a peak value of (12.5 ± 0.8) · 10 –6 cm –2 s –1 on 2013 March 6. This value exceeds the average flux by almost a factor of six and implies a ∼20 times higher flux for the synchrotron component of the nebula alone. This is the second brightest flare observed from this source. Spectral and temporal analysis of the LAT data collected during the outburst reveal a rapidly varying synchrotron component of the Crab Nebula while the pulsar emission remains constant in time

  1. Systematic search for very-high-energy gamma-ray emission from bow shocks of runaway stars

    Science.gov (United States)

    H.E.S.S. Collaboration; Abdalla, H.; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Andersson, T.; Angüner, E. O.; Arakawa, M.; Arrieta, M.; Aubert, P.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Becker Tjus, J.; Berge, D.; Bernhard, S.; Bernlöhr, K.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Büchele, M.; Bulik, T.; Capasso, M.; Carr, J.; Casanova, S.; Cerruti, M.; Chakraborty, N.; Chalme-Calvet, R.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Chrétien, M.; Coffaro, M.; Colafrancesco, S.; Cologna, G.; Condon, B.; Conrad, J.; Cui, Y.; Davids, I. D.; Decock, J.; Degrange, B.; Deil, C.; Devin, J.; deWilt, P.; Dirson, L.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; Drury, L. O.'C.; Dutson, K.; Dyks, J.; Edwards, T.; Egberts, K.; Eger, P.; Ernenwein, J.-P.; Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Funk, S.; Füßling, M.; Gabici, S.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Goyal, A.; Grondin, M.-H.; Hahn, J.; Haupt, M.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holler, M.; Horns, D.; Ivascenko, A.; Iwasaki, H.; Jacholkowska, A.; Jamrozy, M.; Janiak, M.; Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jogler, T.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katsuragawa, M.; Katz, U.; Kerszberg, D.; Khangulyan, D.; Khélifi, B.; Kieffer, M.; King, J.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Kraus, M.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lees, J.-P.; Lefaucheur, J.; Lefranc, V.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Leser, E.; Lohse, T.; Lorentz, M.; Liu, R.; López-Coto, R.; Lypova, I.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Morå, K.; Moulin, E.; Murach, T.; Nakashima, S.; de Naurois, M.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Öttl, S.; Ohm, S.; Ostrowski, M.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Pekeur, N. W.; Pelletier, G.; Perennes, C.; Petrucci, P.-O.; Peyaud, B.; Piel, Q.; Pita, S.; Poon, H.; Prokhorov, D.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Richter, S.; Rieger, F.; Romoli, C.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Saito, S.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Seglar-Arroyo, M.; Settimo, M.; Seyffert, A. S.; Shafi, N.; Shilon, I.; Simoni, R.; Sol, H.; Spanier, F.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stycz, K.; Sushch, I.; Takahashi, T.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tibaldo, L.; Tiziani, D.; Tluczykont, M.; Trichard, C.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der Walt, D. J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zaborov, D.; Zacharias, M.; Zanin, R.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Żywucka, N.

    2018-04-01

    Context. Runaway stars form bow shocks by ploughing through the interstellar medium at supersonic speeds and are promising sources of non-thermal emission of photons. One of these objects has been found to emit non-thermal radiation in the radio band. This triggered the development of theoretical models predicting non-thermal photons from radio up to very-high-energy (VHE, E ≥ 0.1 TeV) gamma rays. Subsequently, one bow shock was also detected in X-ray observations. However, the data did not allow discrimination between a hot thermal and a non-thermal origin. Further observations of different candidates at X-ray energies showed no evidence for emission at the position of the bow shocks either. A systematic search in the Fermi-LAT energy regime resulted in flux upper limits for 27 candidates listed in the E-BOSS catalogue. Aim. Here we perform the first systematic search for VHE gamma-ray emission from bow shocks of runaway stars. Methods: Using all available archival H.E.S.S. data we search for very-high-energy gamma-ray emission at the positions of bow shock candidates listed in the second E-BOSS catalogue release. Out of the 73 bow shock candidates in this catalogue, 32 have been observed with H.E.S.S. Results: None of the observed 32 bow shock candidates in this population study show significant emission in the H.E.S.S. energy range. Therefore, flux upper limits are calculated in five energy bins and the fraction of the kinetic wind power that is converted into VHE gamma rays is constrained. Conclusions: Emission from stellar bow shocks is not detected in the energy range between 0.14 and 18 TeV.The resulting upper limits constrain the level of VHE gamma-ray emission from these objects down to 0.1-1% of the kinetic wind energy.

  2. Very-high-energy gamma rays from a distant quasar: how transparent is the universe?

    Science.gov (United States)

    Albert, J; Aliu, E; Anderhub, H; Antonelli, L A; Antoranz, P; Backes, M; Baixeras, C; Barrio, J A; Bartko, H; Bastieri, D; Becker, J K; Bednarek, W; Berger, K; Bernardini, E; Bigongiari, C; Biland, A; Bock, R K; Bonnoli, G; Bordas, P; Bosch-Ramon, V; Bretz, T; Britvitch, I; Camara, M; Carmona, E; Chilingarian, A; Commichau, S; Contreras, J L; Cortina, J; Costado, M T; Covino, S; Curtef, V; Dazzi, F; De Angelis, A; De Cea Del Pozo, E; de Los Reyes, R; De Lotto, B; De Maria, M; De Sabata, F; Mendez, C Delgado; Dominguez, A; Dorner, D; Doro, M; Errando, M; Fagiolini, M; Ferenc, D; Fernández, E; Firpo, R; Fonseca, M V; Font, L; Galante, N; López, R J García; Garczarczyk, M; Gaug, M; Goebel, F; Hayashida, M; Herrero, A; Höhne, D; Hose, J; Hsu, C C; Huber, S; Jogler, T; Kneiske, T M; Kranich, D; La Barbera, A; Laille, A; Leonardo, E; Lindfors, E; Lombardi, S; Longo, F; López, M; Lorenz, E; Majumdar, P; Maneva, G; Mankuzhiyil, N; Mannheim, K; Maraschi, L; Mariotti, M; Martínez, M; Mazin, D; Meucci, M; Meyer, M; Miranda, J M; Mirzoyan, R; Mizobuchi, S; Moles, M; Moralejo, A; Nieto, D; Nilsson, K; Ninkovic, J; Otte, N; Oya, I; Panniello, M; Paoletti, R; Paredes, J M; Pasanen, M; Pascoli, D; Pauss, F; Pegna, R G; Perez-Torres, M A; Persic, M; Peruzzo, L; Piccioli, A; Prada, F; Prandini, E; Puchades, N; Raymers, A; Rhode, W; Ribó, M; Rico, J; Rissi, M; Robert, A; Rügamer, S; Saggion, A; Saito, T Y; Salvati, M; Sanchez-Conde, M; Sartori, P; Satalecka, K; Scalzotto, V; Scapin, V; Schmitt, R; Schweizer, T; Shayduk, M; Shinozaki, K; Shore, S N; Sidro, N; Sierpowska-Bartosik, A; Sillanpää, A; Sobczynska, D; Spanier, F; Stamerra, A; Stark, L S; Takalo, L; Tavecchio, F; Temnikov, P; Tescaro, D; Teshima, M; Tluczykont, M; Torres, D F; Turini, N; Vankov, H; Venturini, A; Vitale, V; Wagner, R M; Wittek, W; Zabalza, V; Zandanel, F; Zanin, R; Zapatero, J

    2008-06-27

    The atmospheric Cherenkov gamma-ray telescope MAGIC, designed for a low-energy threshold, has detected very-high-energy gamma rays from a giant flare of the distant Quasi-Stellar Radio Source (in short: radio quasar) 3C 279, at a distance of more than 5 billion light-years (a redshift of 0.536). No quasar has been observed previously in very-high-energy gamma radiation, and this is also the most distant object detected emitting gamma rays above 50 gigaelectron volts. Because high-energy gamma rays may be stopped by interacting with the diffuse background light in the universe, the observations by MAGIC imply a low amount for such light, consistent with that known from galaxy counts.

  3. NEUTRINO EMISSION FROM HIGH-ENERGY COMPONENT GAMMA-RAY BURSTS

    International Nuclear Information System (INIS)

    Becker, Julia K.; Olivo, Martino; Halzen, Francis; O Murchadha, Aongus

    2010-01-01

    Gamma-ray bursts (GRBs) have the potential to produce the particle energies (up to 10 21 eV) and energy budget (10 44 erg yr -1 Mpc -3 ) to accommodate the spectrum of the highest energy cosmic rays; on the other hand, there is no observational evidence that they accelerate hadrons. The Fermi Gamma-ray Space Telescope recently observed two bursts that exhibit a power-law high-energy extension of a typical (Band) photon spectrum that extends to ∼30 GeV. On the basis of fireball phenomenology we argue that these two bursts, along with GRB941017 observed by EGRET in 1994, show indirect evidence for considerable baryon loading. Since the detection of neutrinos is the only unambiguous way to establish that GRBs accelerate protons, we use two methods to estimate the neutrino flux produced when they interact with fireball photons to produce charged pions and neutrinos. While the number of events expected from the two Fermi bursts discussed is small, should GRBs be the sources of the observed cosmic rays, a GRB941017-like event that has a hadronic power-law tail extending to several tens of GeV will be detected by the IceCube neutrino telescope.

  4. Bursts of the Crab Nebula gamma-ray emission at high and ultra-high energies

    Directory of Open Access Journals (Sweden)

    Lidvansky A.S.

    2017-01-01

    Full Text Available Characteristics of the flares of gamma rays detected from the Crab Nebula by the AGILE and Fermi-LAT satellite instruments are compared with those of a gamma ray burst recorded by several air shower arrays on February 23, 1989 and with one recent observation made by the ARGO-YBJ array. It is demonstrated that though pulsar-periodicity and energy spectra of emissions at 100 MeV (satellite gamma ray telescopes and 100 TeV (EAS arrays are different, their time structures seem to be similar. Moreover, maybe the difference between “flares” and “waves” recently found in the Crab Nebula emission by the AGILE team also exists at ultra-high energies.

  5. Galactic sources of high energy neutrinos: Expectation from gamma-ray data

    Directory of Open Access Journals (Sweden)

    Sahakyan N.

    2016-01-01

    Full Text Available The recent results from ground based γ-ray detectors (HESS, MAGIC, VERITAS provide a population of TeV galactic γ-ray sources which are potential sources of High Energy (HE neutrinos. Since the γ-rays and ν-s are produced from decays of neutral and charged pions, the flux of TeV γ-rays can be used to estimate the upper limit of ν flux and vice versa; the detectability of ν flux implies a minimum flux of the accompanying γ-rays (assuming the internal and the external absorption of γ-rays is negligible. Using this minimum flux, it is possible to find the sources which can be detected with cubic-kilometer telescopes. I will discuss the possibility to detect HE neutrinos from powerful galactic accelerators, such as Supernova Remnants (SNRs and Pulsar Wind Nebulae (PWNe and show that likely only RX J1713.7-3946, RX J0852.0-4622 and Vela X can be detected by current generation of instruments (IceCube and Km3Net. It will be shown also, that galactic binary systems could be promising sources of HE ν-s. In particular, ν-s and γ-rays from Cygnus X-3 will be discussed during recent gamma-ray activity, showing that in the future such kind of activities could produce detectable flux of HE ν-s.

  6. EGRET upper limits to the high-energy gamma-ray emission from the millisecond pulsars in nearby globular clusters

    Science.gov (United States)

    Michelson, P. F.; Bertsch, D. L.; Brazier, K.; Chiang, J.; Dingus, B. L.; Fichtel, C. E.; Fierro, J.; Hartman, R. C.; Hunter, S. D.; Kanbach, G.

    1994-01-01

    We report upper limits to the high-energy gamma-ray emission from the millisecond pulsars (MSPs) in a number of globular clusters. The observations were done as part of an all-sky survey by the energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory (CGRO) during Phase I of the CGRO mission (1991 June to 1992 November). Several theoretical models suggest that MSPs may be sources of high-energy gamma radiation emitted either as primary radiation from the pulsar magnetosphere or as secondary radiation generated by conversion into photons of a substantial part of the relativistic e(+/-) pair wind expected to flow from the pulsar. To date, no high-energy emission has been detected from an individual MSP. However, a large number of MSPs are expected in globular cluster cores where the formation rate of accreting binary systems is high. Model predictions of the total number of pulsars range in the hundreds for some clusters. These expectations have been reinforced by recent discoveries of a substantial number of radio MSPs in several clusters; for example, 11 have been found in 47 Tucanae (Manchester et al.). The EGRET observations have been used to obtain upper limits for the efficiency eta of conversion of MSP spin-down power into hard gamma rays. The upper limits are also compared with the gamma-ray fluxes predicted from theoretical models of pulsar wind emission (Tavani). The EGRET limits put significant constraints on either the emission models or the number of pulsars in the globular clusters.

  7. Fieldable computer system for determining gamma-ray pulse-height distributions, flux spectra, and dose rates from Little Boy

    International Nuclear Information System (INIS)

    Moss, C.E.; Lucas, M.C.; Tisinger, E.W.; Hamm, M.E.

    1984-01-01

    Our system consists of a LeCroy 3500 data acquisition system with a built-in CAMAC crate and eight bismuth-germanate detectors 7.62 cm in diameter and 7.62 cm long. Gamma-ray pulse-height distributions are acquired simultaneously for up to eight positions. The system was very carefully calibrated and characterized from 0.1 to 8.3 MeV using gamma-ray spectra from a variety of radioactive sources. By fitting the pulse-height distributions from the sources with a function containing 17 parameters, we determined theoretical repsonse functions. We use these response functions to unfold the distributions to obtain flux spectra. A flux-to-dose-rate conversion curve based on the work of Dimbylow and Francis is then used to obtain dose rates. Direct use of measured spectra and flux-to-dose-rate curves to obtain dose rates avoids the errors that can arise from spectrum dependence in simple gamma-ray dosimeter instruments. We present some gamma-ray doses for the Little Boy assembly operated at low power. These results can be used to determine the exposures of the Hiroshima survivors and thus aid in the establishment of radation exposure limits for the nuclear industry

  8. The opacity of the universe for high and very high energy {gamma}-rays

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Manuel

    2013-08-15

    The flux of high energy (HE, energy 100 MeVhigh energy (VHE, E>or similar 100 GeV) {gamma}-rays originating from cosmological sources is attenuated due to pair production in interactions with photons at ultraviolet to infrared wavelengths of the extragalactic background light (EBL). The main components contributing to the EBL photon density are the starlight integrated over cosmic time and the starlight reprocessed by dust in galaxies. Consequently, the EBL is an integral measure of the cosmic star formation history. Depending on the source distance, the Universe should be opaque to {gamma}-rays above a certain energy. Nevertheless, the number of detected {gamma}-ray sources has increased continuously in recent years. VHE emitting objects beyond redshifts of z>0.5 have been detected with imaging air Cherenkov telescopes (IACTs), while HE {gamma}-rays from active galactic nuclei (AGN) above redshifts z>or similar 3 have been observed with the Large Area Telescope (LAT) on board the Fermi satellite. In this work, a large sample of VHE {gamma}-ray spectra will be combined with data of the Fermi-LAT to derive upper limits on the EBL photon density at z = 0. Generic EBL realizations are used to correct AGN spectra for absorption, which are subsequently tested against model assumptions. The evolution of the EBL with redshift is accounted for, and a possible formation of electromagnetic cascades is considered. As a result, the EBL density is constrained over almost three orders of magnitude in wavelength, between 0.4 {mu}m and 100 {mu}m. At optical wavelengths, an EBL intensity above 24 nW m{sup -2}sr{sup -1} is ruled out, and between 8 {mu}m and 31 {mu}m it is limited to be below 5 nW m{sup -2}sr{sup -1}. In the infrared, the constraints are within a factor {proportional_to} 2 of lower limits derived from galaxy number counts. Additionally,the behavior of VHE spectra in the transition from the optical depth regimes {tau

  9. Search for very-high-energy emission from Gamma-ray Bursts using the first 18 months of data from the HAWC Gamma-ray Observatory

    OpenAIRE

    The HAWC collaboration; Alfaro, R.; Alvarez, C.; Álvarez, J. D.; Arceo, R.; Arteaga-Velázquez, J. C.; Rojas, D. Avila; Solares, H. A. Ayala; Barber, A. S.; Bautista-Elivar, N.; Becerril, A.; Belmont-Moreno, E.; BenZvi, S. Y.; Bernal, A.; Braun, J.

    2017-01-01

    The High Altitude Water Cherenkov (HAWC) Gamma-ray Observatory is an extensive air shower detector operating in central Mexico, which has recently completed its first two years of full operations. If for a burst like GRB 130427A at a redshift of 0.34 and a high-energy component following a power law with index -1.66, the high-energy component is extended to higher energies with no cut-off other than from extragalactic background light attenuation, HAWC would observe gamma rays with a peak ene...

  10. Constraining the High-Energy Emission from Gamma-Ray Bursts with Fermi

    Science.gov (United States)

    Gehrels, Neil; Harding, A. K.; Hays, E.; Racusin, J. L.; Sonbas, E.; Stamatikos, M.; Guirec, S.

    2012-01-01

    We examine 288 GRBs detected by the Fermi Gamma-ray Space Telescope's Gamma-ray Burst Monitor (GBM) that fell within the field-of-view of Fermi's Large Area Telescope (LAT) during the first 2.5 years of observations, which showed no evidence for emission above 100 MeV. We report the photon flux upper limits in the 0.1-10 GeV range during the prompt emission phase as well as for fixed 30 s and 100 s integrations starting from the trigger time for each burst. We compare these limits with the fluxes that would be expected from extrapolations of spectral fits presented in the first GBM spectral catalog and infer that roughly half of the GBM-detected bursts either require spectral breaks between the GBM and LAT energy bands or have intrinsically steeper spectra above the peak of the nuF(sub v) spectra (E(sub pk)). In order to distinguish between these two scenarios, we perform joint GBM and LAT spectral fits to the 30 brightest GBM-detected bursts and find that a majority of these bursts are indeed softer above E(sub pk) than would be inferred from fitting the GBM data alone. Approximately 20% of this spectroscopic subsample show statistically significant evidence for a cut-off in their high-energy spectra, which if assumed to be due to gamma gamma attenuation, places limits on the maximum Lorentz factor associated with the relativistic outflow producing this emission. All of these latter bursts have maximum Lorentz factor estimates that are well below the minimum Lorentz factors calculated for LAT-detected GRBs, revealing a wide distribution in the bulk Lorentz factor of GRB outflows and indicating that LAT-detected bursts may represent the high end of this distribution.

  11. The Prompt and High Energy Emission of Gamma Ray Bursts

    International Nuclear Information System (INIS)

    Meszaros, P.

    2009-01-01

    I discuss some recent developments concerning the prompt emission of gamma-ray bursts, in particular the jet properties and radiation mechanisms, as exemplified by the naked-eye burst GRB 080319b, and the prompt X-ray emission of XRB080109/SN2008d, where the progenitor has, for the first time, been shown to contribute to the prompt emission. I discuss then some recent theoretical calculations of the GeV/TeV spectrum of GRB in the context of both leptonic SSC models and hadronic models. The recent observations by the Fermi satellite of GRB 080916C are then reviewed, and their implications for such models are discussed, together with its interesting determination of a bulk Lorentz factor, and the highest lower limit on the quantum gravity energy scale so far.

  12. SEARCH FOR A CORRELATION BETWEEN VERY-HIGH-ENERGY GAMMA RAYS AND GIANT RADIO PULSES IN THE CRAB PULSAR

    Energy Technology Data Exchange (ETDEWEB)

    Aliu, E. [Department of Physics and Astronomy, Barnard College, Columbia University, NY 10027 (United States); Archambault, S. [Physics Department, McGill University, Montreal, QC H3A 2T8 (Canada); Arlen, T. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Aune, T.; Bouvier, A. [Santa Cruz Institute for Particle Physics and Department of Physics, University of California, Santa Cruz, CA 95064 (United States); Beilicke, M.; Buckley, J. H.; Bugaev, V.; Dickherber, R. [Department of Physics, Washington University, St. Louis, MO 63130 (United States); Benbow, W. [Fred Lawrence Whipple Observatory, Harvard-Smithsonian Center for Astrophysics, Amado, AZ 85645 (United States); Byrum, K. [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States); Cesarini, A.; Connolly, M. P. [School of Physics, National University of Ireland Galway, University Road, Galway (Ireland); Ciupik, L. [Astronomy Department, Adler Planetarium and Astronomy Museum, Chicago, IL 60605 (United States); Collins-Hughes, E. [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Cui, W. [Department of Physics, Purdue University, West Lafayette, IN 47907 (United States); Duke, C. [Department of Physics, Grinnell College, Grinnell, IA 50112-1690 (United States); Dumm, J. [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); Falcone, A. [Department of Astronomy and Astrophysics, 525 Davey Lab, Pennsylvania State University, University Park, PA 16802 (United States); Federici, S., E-mail: schroedter@veritas.sao.arizona.edu, E-mail: mccann@kicp.uchicago.edu, E-mail: nepomuk.otte@gmail.com [DESY, Platanenallee 6, 15738 Zeuthen (Germany); and others

    2012-12-01

    We present the results of a joint observational campaign between the Green Bank radio telescope and the VERITAS gamma-ray telescope, which searched for a correlation between the emission of very-high-energy (VHE) gamma rays (E {sub {gamma}} > 150 GeV) and giant radio pulses (GRPs) from the Crab pulsar at 8.9 GHz. A total of 15,366 GRPs were recorded during 11.6 hr of simultaneous observations, which were made across four nights in 2008 December and in 2009 November and December. We searched for an enhancement of the pulsed gamma-ray emission within time windows placed around the arrival time of the GRP events. In total, eight different time windows with durations ranging from 0.033 ms to 72 s were positioned at three different locations relative to the GRP to search for enhanced gamma-ray emission which lagged, led, or was concurrent with, the GRP event. Furthermore, we performed separate searches on main pulse GRPs and interpulse GRPs and on the most energetic GRPs in our data sample. No significant enhancement of pulsed VHE emission was found in any of the preformed searches. We set upper limits of 5-10 times the average VHE flux of the Crab pulsar on the flux simultaneous with interpulse GRPs on single-rotation-period timescales. On {approx}8 s timescales around interpulse GRPs, we set an upper limit of 2-3 times the average VHE flux. Within the framework of recent models for pulsed VHE emission from the Crab pulsar, the expected VHE-GRP emission correlations are below the derived limits.

  13. Search for a Correlation Between Very-High-Energy Gamma Rays and Giant Radio Pulses in the Crab Pulsar

    Science.gov (United States)

    Aliu, E.; Archambault, S.; Arlen, T.; Aune, T.; Beilicke, M.; Benbow, W.; Bouvier, A.; Buckley, J. H.; Bugaev, V.; Byrum, K.; hide

    2012-01-01

    We present the results of a joint observational campaign between the Green Bank radio telescope and the VERITAS gamma-ray telescope, which searched for a correlation between the emission of very-high-energy (VHE) gamma rays ( E(sub Gamma) > 150 GeV) and giant radio pulses (GRPs) from the Crab pulsar at 8.9 GHz. A total of 15,366 GRPs were recorded during 11.6 hr of simultaneous observations, which were made across four nights in 2008 December and in 2009 November and December. We searched for an enhancement of the pulsed gamma-ray emission within time windows placed around the arrival time of the GRP events. In total, eight different time windows with durations ranging from 0.033 ms to 72 s were positioned at three different locations relative to the GRP to search for enhanced gamma-ray emission which lagged, led, or was concurrent with, the GRP event. Furthermore, we performed separate searches on main pulse GRPs and interpulse GRPs and on the most energetic GRPs in our data sample. No significant enhancement of pulsed VHE emission was found in any of the preformed searches. We set upper limits of 5-10 times the average VHE flux of the Crab pulsar on the flux simultaneous with interpulse GRPs on single-rotation-period timescales. On approx. 8 s timescales around interpulse GRPs, we set an upper limit of 2-3 times the average VHE flux. Within the framework of recent models for pulsed VHE emission from the Crab pulsar, the expected VHE-GRP emission correlations are below the derived limits.

  14. Calculation of gamma-rays and fast neutrons fluxes with the program Mercure-4

    International Nuclear Information System (INIS)

    Baur, A.; Dupont, C.; Totth, B.

    1978-01-01

    The program MERCURE-4 evaluates gamma ray or fast neutron attenuation, through laminated or bulky three-dimensionnal shields. The method used is that of line of sight point attenuation kernel, the scattered rays being taken into account by means of build-up factors for γ and removal cross sections for fast neutrons. The integration of the point kernel over the range of sources distributed in space and energy, is performed by the Monte-Carlo method, with an automatic adjustment of the importance functions. Since it is operationnal the program MERCURE-4 has been intensively used for many various problems, for example: - the calculation of gamma heating in reactor cores, control rods and shielding screens, as well as in experimental devices and irradiation loops; - the evaluation of fast neutron fluxes and corresponding damage in structural materials of reactors (vessel steels...); - the estimation of gamma dose rates on nuclear instrumentation in the reactors, around the reactor circuits and around spent fuel shipping casks

  15. High-energy gamma-ray and neutrino production in star-forming galaxies across cosmic time: Difficulties in explaining the IceCube data

    Science.gov (United States)

    Sudoh, Takahiro; Totani, Tomonori; Kawanaka, Norita

    2018-04-01

    We present new theoretical modeling to predict the luminosity and spectrum of gamma-ray and neutrino emission of a star-forming galaxy, from the star formation rate (ψ), gas mass (Mgas), stellar mass, and disk size, taking into account production, propagation, and interactions of cosmic rays. The model reproduces the observed gamma-ray luminosities of nearby galaxies detected by Fermi better than the simple power-law models as a function of ψ or ψMgas. This model is then used to predict the cosmic background flux of gamma-rays and neutrinos from star-forming galaxies, by using a semi-analytical model of cosmological galaxy formation that reproduces many observed quantities of local and high-redshift galaxies. Calibration of the model using gamma-ray luminosities of nearby galaxies allows us to make a more reliable prediction than previous studies. In our baseline model, star-forming galaxies produce about 20% of the isotropic gamma-ray background unresolved by Fermi, and only 0.5% of IceCube neutrinos. Even with an extreme model assuming a hard injection cosmic-ray spectral index of 2.0 for all galaxies, at most 22% of IceCube neutrinos can be accounted for. These results indicate that it is difficult to explain most of the IceCube neutrinos by star-forming galaxies, without violating the gamma-ray constraints from nearby galaxies.

  16. SEARCH FOR VERY HIGH ENERGY GAMMA-RAY EMISSION FROM PULSAR-PULSAR WIND NEBULA SYSTEMS WITH THE MAGIC TELESCOPE

    International Nuclear Information System (INIS)

    Anderhub, H.; Biland, A.; Antonelli, L. A.; Antoranz, P.; Balestra, S.; Barrio, J. A.; Bose, D.; Backes, M.; Becker, J. K.; Baixeras, C.; Bastieri, D.; Bock, R. K.; Gonzalez, J. Becerra; Bednarek, W.; Berger, K.; Bernardini, E.; Bonnoli, G.; Bordas, P.; Bosch-Ramon, V.; Tridon, D. Borla

    2010-01-01

    The MAGIC collaboration has searched for high-energy gamma-ray emission of some of the most promising pulsar candidates above an energy threshold of 50 GeV, an energy not reachable up to now by other ground-based instruments. Neither pulsed nor steady gamma-ray emission has been observed at energies of 100 GeV from the classical radio pulsars PSR J0205+6449 and PSR J2229+6114 (and their nebulae 3C58 and Boomerang, respectively) and the millisecond pulsar PSR J0218+4232. Here, we present the flux upper limits for these sources and discuss their implications in the context of current model predictions.

  17. Very high-energy {gamma}-ray observations of the Crab nebula and other potential sources with the GRAAL experiment

    Energy Technology Data Exchange (ETDEWEB)

    Arqueros, F.A.; Ballestrin, J.; Berenguel, M.; Borque, D.M.; Camacho, E.F.; Diaz, M.; Enriquez, R.; Gebauer, H.J.; Plaga, R.

    2001-07-01

    The Gamma Ray Astronomy at Almeria (GRAAL) experiment uses 63 heliostat-mirrors with a total mirror area of {approx}2500 m''2 from the CESA-1 field to collect Cherenkov light from air showers. The detector is located in a central solar tower and detects photon-induced showers with an energy threshold of 250{+-}110 GeV and an asymptotic effective detection area of about 15000 m''2. Data sets taken in the period September 1999-September 2000 in the direction of the Crab pulsar and the active galaxy 3C 454.3 were analysed for high energy {gamma}-ray emission. Evidence for {gamma}-ray flux from the Crab pulsar with an integral flux of 2.2{+-}0.4 (stat) ''1.9{sub 1}.5 (syst x 10''-9 cm''-2 s''-1) above threshold and a significance of 4.5 {sigma} in a total (usable) observing time of 7 hours and 10 minutes on source was found. No evidence for emission from the other sources was seen. The effect of the field-of-view restricted to the central part of a detected air shower on the lateral distribution and iming properties of Cherenkov light and their effect on an efficient {gamma}-hadron separation are discussed. (Author) 6 refs.

  18. ICF ignition capsule neutron, gamma ray, and high energy x-ray images

    Science.gov (United States)

    Bradley, P. A.; Wilson, D. C.; Swenson, F. J.; Morgan, G. L.

    2003-03-01

    Post-processed total neutron, RIF neutron, gamma-ray, and x-ray images from 2D LASNEX calculations of burning ignition capsules are presented. The capsules have yields ranging from tens of kilojoules (failures) to over 16 MJ (ignition), and their implosion symmetry ranges from prolate (flattest at the hohlraum equator) to oblate (flattest towards the laser entrance hole). The simulated total neutron images emphasize regions of high DT density and temperature; the reaction-in-flight neutrons emphasize regions of high DT density; the gamma rays emphasize regions of high shell density; and the high energy x rays (>10 keV) emphasize regions of high temperature.

  19. THE 2010 VERY HIGH ENERGY {gamma}-RAY FLARE AND 10 YEARS OF MULTI-WAVELENGTH OBSERVATIONS OF M 87

    Energy Technology Data Exchange (ETDEWEB)

    Abramowski, A. [Institut fuer Experimentalphysik, Universitaet Hamburg, Luruper Chaussee 149, D 22761 Hamburg (Germany); Acero, F. [Laboratoire Univers et Particules de Montpellier, Universite Montpellier 2, CNRS/IN2P3, CC 72, Place Eugene Bataillon, F-34095 Montpellier Cedex 5 (France); Aharonian, F.; Bernloehr, K.; Bochow, A. [Max-Planck-Institut fuer Kernphysik, P.O. Box 103980, D 69029 Heidelberg (Germany); Akhperjanian, A. G. [National Academy of Sciences of the Republic of Armenia, 24 Marshall Baghramian Avenue, 0019 Yerevan (Armenia); Anton, G.; Balzer, A. [Physikalisches Institut, Universitaet Erlangen-Nuernberg, Erwin-Rommel-Str. 1, D 91058 Erlangen (Germany); Barnacka, A. [Nicolaus Copernicus Astronomical Center, ul. Bartycka 18, 00-716 Warsaw (Poland); Barres de Almeida, U. [Department of Physics, University of Durham, South Road, Durham DH1 3LE (United Kingdom); Becherini, Y. [Astroparticule et Cosmologie (APC), CNRS, Universite Paris 7 Denis Diderot, 10, rue Alice Domon et Leonie Duquet, F-75205 Paris Cedex 13 (France); Becker, J. [Institut fuer Theoretische Physik, Lehrstuhl IV: Weltraum und Astrophysik, Ruhr-Universitaet Bochum, D 44780 Bochum (Germany); Behera, B. [Landessternwarte, Universitaet Heidelberg, Koenigstuhl, D 69117 Heidelberg (Germany); Birsin, E. [Institut fuer Physik, Humboldt-Universitaet zu Berlin, Newtonstr. 15, D 12489 Berlin (Germany); Biteau, J. [Laboratoire Leprince-Ringuet, Ecole Polytechnique, CNRS/IN2P3, F-91128 Palaiseau (France); Boisson, C. [LUTH, Observatoire de Paris, CNRS, Universite Paris Diderot, 5 Place Jules Janssen, 92190 Meudon (France); Bolmont, J. [LPNHE, Universite Pierre et Marie Curie Paris 6, Universite Denis Diderot Paris 7, CNRS/IN2P3, 4 Place Jussieu, F-75252, Paris Cedex 5 (France); Bordas, P., E-mail: martin.raue@desy.de [Institut fuer Astronomie und Astrophysik, Universitaet Tuebingen, Sand 1, D 72076 Tuebingen (Germany); Collaboration: H.E.S.S. Collaboration; MAGIC Collaboration; VERITAS Collaboration; and others

    2012-02-20

    The giant radio galaxy M 87 with its proximity (16 Mpc), famous jet, and very massive black hole ((3 - 6) Multiplication-Sign 10{sup 9} M{sub Sun }) provides a unique opportunity to investigate the origin of very high energy (VHE; E > 100 GeV) {gamma}-ray emission generated in relativistic outflows and the surroundings of supermassive black holes. M 87 has been established as a VHE {gamma}-ray emitter since 2006. The VHE {gamma}-ray emission displays strong variability on timescales as short as a day. In this paper, results from a joint VHE monitoring campaign on M 87 by the MAGIC and VERITAS instruments in 2010 are reported. During the campaign, a flare at VHE was detected triggering further observations at VHE (H.E.S.S.), X-rays (Chandra), and radio (43 GHz Very Long Baseline Array, VLBA). The excellent sampling of the VHE {gamma}-ray light curve enables one to derive a precise temporal characterization of the flare: the single, isolated flare is well described by a two-sided exponential function with significantly different flux rise and decay times of {tau}{sup rise}{sub d} = (1.69 {+-} 0.30) days and {tau}{sup decay}{sub d} = (0.611 {+-} 0.080) days, respectively. While the overall variability pattern of the 2010 flare appears somewhat different from that of previous VHE flares in 2005 and 2008, they share very similar timescales ({approx}day), peak fluxes ({Phi}{sub >0.35TeV} {approx_equal} (1-3) Multiplication-Sign 10{sup -11} photons cm{sup -2} s{sup -1}), and VHE spectra. VLBA radio observations of 43 GHz of the inner jet regions indicate no enhanced flux in 2010 in contrast to observations in 2008, where an increase of the radio flux of the innermost core regions coincided with a VHE flare. On the other hand, Chandra X-ray observations taken {approx}3 days after the peak of the VHE {gamma}-ray emission reveal an enhanced flux from the core (flux increased by factor {approx}2; variability timescale <2 days). The long-term (2001-2010) multi-wavelength (MWL

  20. Gamma rays induced bold seeded high yielding mutant in chickpea

    International Nuclear Information System (INIS)

    Wani, A.A.; Anis, M.

    2001-01-01

    In pulses especially in chickpea (Cicer arietinum L.), genetic variability has been exhausted due to natural selection and hence conventional breeding methods are not very fruitful. Mutation techniques are the best methods to enlarge the genetically conditioned variability of a species within a short time and have played a significant role in the development of many crop varieties. Investigations on the effects of ionizing radiations and chemical mutagens in induction of macro-mutations have received much attention owing to their utmost importance in plant breeding. The present study reports a bold seeded mutant in chickpea, the most dominating pulse crop on the Indian subcontinent. Fresh seeds of chickpea variety 'Pusa-212' were procured from IARI, New Delhi and treated with different doses/concentrations of gamma rays ( 60 Co source at NBRI, Lucknow) and ethyl methanesulphonate (EMS), individually as well as in combination, to raise the M1 generation. Seeds of M 1 plants were sown to raise M2 plant progenies. A bold seeded mutant was isolated from 400 Gy gamma ray treatments. The mutant was confirmed as true bred, all the mutant seeds gave rise to morphologically similar plants in M 3 , which were quite distinct from the control. The bold seeded mutant showed 'gigas' characteristics and vigorous growth. The plant remained initially straight but later on attained a trailing habit due to heavy secondary branching. The leaves, petioles, flowers, pods and seeds were almost double that of the parent variety, in size. The flowering occurred 10 days later than the parent and maturity was also delayed accordingly. Observations were recorded on various quantitative traits. Plant height and number of primary branches showed a significant improvement over the parent. It is interesting to note that the number of pods and number of seeds per pod significantly decreased. However, the hundred seed weight (31.73±0.59g) in the mutant plants was more than double in the parent

  1. Characterization of Compton-suppressed TIGRESS detectors for high energy gamma-rays

    International Nuclear Information System (INIS)

    Kshetri, R.; Andreoiu, C.; Cross, D.S.; Galinski, N.; Ball, G.C.; Djongolov, M.; Garnsworthy, A.B.; Hackman, G.; Orce, J.N.; Pearson, C.; Triambak, S.; Williams, S.J.; Drake, T.; Smalley, D.; Svensson, C.E.

    2009-01-01

    The TRIUMF-ISAC Gamma-Ray Escape- Suppressed Spectrometer (TIGRESS) will consist of 12 large-volume, 32-fold segmented HPGe clover detectors. Each detector is shielded by a 20-fold segmented Compton suppression shield. For performing discrete gamma-ray spectroscopy of light mass nuclei with TIGRESS, we need information about full energy peak efficiency, resolution and lineshape of full energy peaks for high energy gamma-rays. However, suitable radioactive sources having decay gamma-rays of energies greater than ∼ 3.5 MeV are not easily available. So the characteristics of gamma spectrometers at energies higher than 3.5 MeV are usually determined from simulation data. Predictions from GEANT4 simulations (experimentally validated from 0.3 to 3 MeV) indicate that TIGRESS will be capable for single 10 MeV gamma-rays of absolute detection efficiency of 1.5% for backward configuration of the array. It has been observed experimentally that simulation results work well up to certain energies and might deviate at higher energies. So, it is essential to check the validity of simulation results for energies above 3.3 MeV. We have investigated the high energy performance of seven TIGRESS detectors up to 8 MeV

  2. Portable gamma-ray holdup and attributes measurements of high- and variable-burnup plutonium

    International Nuclear Information System (INIS)

    Wenz, T.R.; Russo, P.A.; Miller, M.C.; Menlove, H.O.; Takahashi, S.; Yamamoto, Y.; Aoki, I.

    1991-01-01

    High burnup-plutonium holdup has been assayed quantitatively by low resolution gamma-ray spectrometry. The assay was calibrated with four plutonium standards representing a range of fuel burnup and 241 Am content. Selection of a calibration standard based on its qualitative spectral similarity to gamma-ray spectra of the process material is partially responsible for the success of these holdup measurements. The spectral analysis method is based on the determination of net counts in a single spectral region of interest (ROI). However, the low-resolution gamma-ray assay signal for the high-burnup plutonium includes unknown amounts of contamination from 241 Am. For most needs, the range of calibration standards required for this selection procedure is not available. A new low-resolution gamma-ray spectral analysis procedure for assay of 239 Pu has been developed. The procedure uses the calculated isotope activity ratios and the measured net counts in three spectral ROIs to evaluate and remove the 241 Am contamination from the 239 Pu assay signal on a spectrum-by-spectrum basis. The calibration for the new procedure requires only a single plutonium standard. The procedure also provides a measure of the burnup and age attributes of holdup deposits. The new procedure has been demonstrated using portable gamma-ray spectroscopy equipment for a wide range of plutonium standards and has also been applied to the assay of 239 Pu holdup in a mixed oxide fuel fabrication facility. 10 refs., 5 figs., 3 tabs

  3. Open high-level data formats and software for gamma-ray astronomy

    Science.gov (United States)

    Deil, Christoph; Boisson, Catherine; Kosack, Karl; Perkins, Jeremy; King, Johannes; Eger, Peter; Mayer, Michael; Wood, Matthew; Zabalza, Victor; Knödlseder, Jürgen; Hassan, Tarek; Mohrmann, Lars; Ziegler, Alexander; Khelifi, Bruno; Dorner, Daniela; Maier, Gernot; Pedaletti, Giovanna; Rosado, Jaime; Contreras, José Luis; Lefaucheur, Julien; Brügge, Kai; Servillat, Mathieu; Terrier, Régis; Walter, Roland; Lombardi, Saverio

    2017-01-01

    In gamma-ray astronomy, a variety of data formats and proprietary software have been traditionally used, often developed for one specific mission or experiment. Especially for ground-based imaging atmospheric Cherenkov telescopes (IACTs), data and software are mostly private to the collaborations operating the telescopes. However, there is a general movement in science towards the use of open data and software. In addition, the next-generation IACT instrument, the Cherenkov Telescope Array (CTA), will be operated as an open observatory. We have created a Github organisation at https://github.com/open-gamma-ray-astro where we are developing high-level data format specifications. A public mailing list was set up at https://lists.nasa.gov/mailman/listinfo/open-gamma-ray-astro and a first face-to-face meeting on the IACT high-level data model and formats took place in April 2016 in Meudon (France). This open multi-mission effort will help to accelerate the development of open data formats and open-source software for gamma-ray astronomy, leading to synergies in the development of analysis codes and eventually better scientific results (reproducible, multi-mission). This write-up presents this effort for the first time, explaining the motivation and context, the available resources and process we use, as well as the status and planned next steps for the data format specifications. We hope that it will stimulate feedback and future contributions from the gamma-ray astronomy community.

  4. ON ULTRA-HIGH-ENERGY COSMIC RAYS AND THEIR RESULTANT GAMMA-RAYS

    Energy Technology Data Exchange (ETDEWEB)

    Gavish, Eyal; Eichler, David [Physics Department, Ben-Gurion University, Be’er-Sheva 84105 (Israel)

    2016-05-01

    The Fermi Large Area Telescope collaboration has recently reported on 50 months of measurements of the isotropic extragalactic gamma-ray background (EGRB) spectrum between 100 MeV and 820 GeV. Ultra-high-energy cosmic ray (UHECR) protons interact with the cosmic microwave background photons and produce cascade photons of energies 10 MeV–1 TeV that contribute to the EGRB flux. We examine seven possible evolution models for UHECRs and find that UHECR sources that evolve as the star formation rate (SFR), medium low luminosity active galactic nuclei type-1 ( L = 10{sup 43.5} erg s{sup −1} in the [0.5–2] KeV band), and BL Lacertae objects (BL Lacs) are the most acceptable given the constraints imposed by the observed EGRB. Other possibilities produce too much secondary γ -radiation. In all cases, the decaying dark matter (DM) contribution improves the fit at high energy, but the contribution of still unresolved blazars, which would leave the smallest role for decaying DM, may yet provide an alternative improvement. The possibility that the entire EGRB can be fitted with resolvable but not-yet-resolved blazars, as recently claimed by Ajello et al., would leave little room in the EGRB to accommodate γ -rays from extragalactic UHECR production, even for many source evolution rates that would otherwise be acceptable. We find that under the assumption of UHECRs being mostly protons, there is not enough room for producing extragalactic UHECRs with active galactic nucleus, gamma-ray burst, or even SFR source evolution. Sources that evolve as BL Lacs, on the other hand, would produce much less secondary γ -radiation and would remain a viable source of UHECRs, provided that they dominate.

  5. Upper limits of a cosmic infrared background flux as determined by X- and gamma-ray observations on M87

    International Nuclear Information System (INIS)

    Schlickeiser, R.; Cambridge Univ.; Harwit, M.; Cornell Univ., Ithaca, NY

    1982-01-01

    Upper limits on the energy density of infrared photons in the radio lobe regions of M87 are derived using measurements of the X-ray and gamma-ray emission. The calculations are based on an inverse Compton scattering model initiated by radio-flux producing electrons. It is shown that the energy density of infrared photons in the radio lobe regions is similar than 2 eV cm -3 . (orig.)

  6. Gamma ray astronomy

    International Nuclear Information System (INIS)

    Fichtel, C.E.

    1975-01-01

    The first certain detection of celestial high energy gamma rays came from a satellite experiment flown on the third Orbiting Solar Observatory (OSO-111). A Gamma ray spark chamber telescope with substantively greater sensitivity and angular resolution (a few degrees) flown on the second Small Astronomy Satellite (SAS-II) has now provided a better picture of the gamma ray sky, and particularly the galactic plane and pulsars. This paper will summarize the present picture of gamma ray astronomy as it has developed at this conference from measurements made with experiments carried out on balloons, those remaining on the ground, and ones flown on satellites. (orig.) [de

  7. Fermi observations of high-energy gamma-ray emission from GRB 080916C.

    Science.gov (United States)

    Abdo, A A; Ackermann, M; Arimoto, M; Asano, K; Atwood, W B; Axelsson, M; Baldini, L; Ballet, J; Band, D L; Barbiellini, G; Baring, M G; Bastieri, D; Battelino, M; Baughman, B M; Bechtol, K; Bellardi, F; Bellazzini, R; Berenji, B; Bhat, P N; Bissaldi, E; Blandford, R D; Bloom, E D; Bogaert, G; Bogart, J R; Bonamente, E; Bonnell, J; Borgland, A W; Bouvier, A; Bregeon, J; Brez, A; Briggs, M S; Brigida, M; Bruel, P; Burnett, T H; Burrows, D; Busetto, G; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Ceccanti, M; Cecchi, C; Celotti, A; Charles, E; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Cominsky, L R; Connaughton, V; Conrad, J; Costamante, L; Cutini, S; Deklotz, M; Dermer, C D; de Angelis, A; de Palma, F; Digel, S W; Dingus, B L; do Couto E Silva, E; Drell, P S; Dubois, R; Dumora, D; Edmonds, Y; Evans, P A; Fabiani, D; Farnier, C; Favuzzi, C; Finke, J; Fishman, G; Focke, W B; Frailis, M; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giebels, B; Giglietto, N; Giommi, P; Giordano, F; Glanzman, T; Godfrey, G; Goldstein, A; Granot, J; Greiner, J; Grenier, I A; Grondin, M-H; Grove, J E; Guillemot, L; Guiriec, S; Haller, G; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Hernando Morat, J A; Hoover, A; Hughes, R E; Jóhannesson, G; Johnson, A S; Johnson, R P; Johnson, T J; Johnson, W N; Kamae, T; Katagiri, H; Kataoka, J; Kavelaars, A; Kawai, N; Kelly, H; Kennea, J; Kerr, M; Kippen, R M; Knödlseder, J; Kocevski, D; Kocian, M L; Komin, N; Kouveliotou, C; Kuehn, F; Kuss, M; Lande, J; Landriu, D; Larsson, S; Latronico, L; Lavalley, C; Lee, B; Lee, S-H; Lemoine-Goumard, M; Lichti, G G; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Makeev, A; Marangelli, B; Mazziotta, M N; McBreen, S; McEnery, J E; McGlynn, S; Meegan, C; Mészáros, P; Meurer, C; Michelson, P F; Minuti, M; Mirizzi, N; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Moretti, E; Morselli, A; Moskalenko, I V; Murgia, S; Nakamori, T; Nelson, D; Nolan, P L; Norris, J P; Nuss, E; Ohno, M; Ohsugi, T; Okumura, A; Omodei, N; Orlando, E; Ormes, J F; Ozaki, M; Paciesas, W S; Paneque, D; Panetta, J H; Parent, D; Pelassa, V; Pepe, M; Perri, M; Pesce-Rollins, M; Petrosian, V; Pinchera, M; Piron, F; Porter, T A; Preece, R; Rainò, S; Ramirez-Ruiz, E; Rando, R; Rapposelli, E; Razzano, M; Razzaque, S; Rea, N; Reimer, A; Reimer, O; Reposeur, T; Reyes, L C; Ritz, S; Rochester, L S; Rodriguez, A Y; Roth, M; Ryde, F; Sadrozinski, H F-W; Sanchez, D; Sander, A; Saz Parkinson, P M; Scargle, J D; Schalk, T L; Segal, K N; Sgrò, C; Shimokawabe, T; Siskind, E J; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Stamatikos, M; Starck, J-L; Stecker, F W; Steinle, H; Stephens, T E; Strickman, M S; Suson, D J; Tagliaferri, G; Tajima, H; Takahashi, H; Takahashi, T; Tanaka, T; Tenze, A; Thayer, J B; Thayer, J G; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Turri, M; Tuvi, S; Usher, T L; van der Horst, A J; Vigiani, L; Vilchez, N; Vitale, V; von Kienlin, A; Waite, A P; Williams, D A; Wilson-Hodge, C; Winer, B L; Wood, K S; Wu, X F; Yamazaki, R; Ylinen, T; Ziegler, M

    2009-03-27

    Gamma-ray bursts (GRBs) are highly energetic explosions signaling the death of massive stars in distant galaxies. The Gamma-ray Burst Monitor and Large Area Telescope onboard the Fermi Observatory together record GRBs over a broad energy range spanning about 7 decades of gammaray energy. In September 2008, Fermi observed the exceptionally luminous GRB 080916C, with the largest apparent energy release yet measured. The high-energy gamma rays are observed to start later and persist longer than the lower energy photons. A simple spectral form fits the entire GRB spectrum, providing strong constraints on emission models. The known distance of the burst enables placing lower limits on the bulk Lorentz factor of the outflow and on the quantum gravity mass.

  8. The future of high energy gamma ray astronomy and its potential astrophysical implications

    Science.gov (United States)

    Fichtel, C. E.

    1982-01-01

    Future satellites should carry instruments having over an order of magnitude greater sensitivity than those flown thus far as well as improved energy and angular resolution. The information to be obtained from these experiments should greatly enhance knowledge of: the very energetic and nuclear processes associated with compact objects; the structure of our galaxy; the origin and dynamic pressure effects of the cosmic rays; the high energy particles and energetic processes in other galaxies; and the degree of matter-antimatter symmetry of the universe. The relevant aspects of extragalactic gamma ray phenomena are emphasized along with the instruments planned. The high energy gamma ray results of forthcoming programs such as GAMMA-1 and the Gamma Ray Observatory should justify even more sophisticated telescopes. These advanced instruments might be placed on the space station currently being considered by NASA.

  9. Fermi Observations of high-energy gamma-ray emissions from GRB 080916C

    CERN Document Server

    Abdo, A A; Arimoto, M; Asano, K; Atwood, W B; Axelsson, M; Baldini, L; Ballet, J; Band, D L; Barbiellini, Guido; Baring, Matthew G; Bastieri, Denis; Battelino, M; Baughman, B M; Bechtol, K; Bellardi, F; Bellazzini, R; Berenji, B; Bhat, P N; Bissaldi, E; Blandford, R D; Bloom, Elliott D; Bogaert, G; Bogart, J R; Bonamente, E; Bonnell, J; Borgland, A W; Bouvier, A; Bregeon, J; Brez, A; Briggs, M S; Brigida, M; Bruel, P; Burnett, Thompson H; Burrows, David N; Busetto, Giovanni; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Ceccanti, M; Cecchi, C; Celotti, Annalisa; Charles, E; Chekhtman, A; Cheung, C.C.Teddy; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, Johann; Cominsky, Lynn R; Connaughton, V; Conrad, J; Costamante, L; Cutini, S; DeKlotz, M; Dermer, C D; De Angelis, Alessandro; de Palma, F; Digel, S W; Dingus, B L; do Couto e Silva, Eduardo; Drell, P S; Dubois, R; Dumora, D; Edmonds, Y; Evans, P A; Fabiani, D; Farnier, C; Favuzzi, C; Finke, Justin D; Fishman, G; Focke, W B; Frailis, M; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giebels, B; Giglietto, N; Giommi, P; Giordano, F; Glanzman, Thomas Lynn; Godfrey, Gary L; Goldstein, A; Granot, J; Greiner, J; Grenier, I A; Grondin, M H; Grove, J.Eric; Guillemot, L; Guiriec, S; Haller, G; Hanabata, Y; Harding, Alice K; Hayashida, M; Hays, Elizabeth A; Hernando Morata, J A; Hoover, A; Hughes, R E; Johannesson, G; Johnson, A S; Johnson, R P; Johnson, T J; Johnson, W N; Kamae, Tsuneyoshi; Katagiri, H; Kataoka, J; Kavelaars, A; Kawai, N; Kelly, H; Kennea, J; Kerr, M; Kippen, R M; Knodlseder, J; Kocevski, D; Kocian, M L; Komin, N; Kouveliotou, C; Kuehn, Frederick Gabriel Ivar; Kuss, Michael; Lande, J; Landriu, D; Larsson, S; Latronico, L; Lavalley, C; Lee, B; Lee, S H; Lemoine-Goumard, M; Lichti, G G; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, Pasquale; Madejski, G M; Makeev, A; Marangelli, B; Mazziotta, M N; McBreen, Sheila; McEnery, J E; McGlynn, S; Meegan, C; Miszaros, P; Meurer, C; Michelson, P F; Minuti, M; Mirizzi, N; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Moretti, E; Morselli, A; Moskalenko, Igor Vladimirovich; Murgia, Simona; Nakamori, T; Nelson, D; Nolan, P L; Norris, J P; Nuss, E; Ohno, M; Ohsugi, Takashi; Okumura, Akira; Omodei, N; Orlando, E; Ormes, J F; Ozaki, M; Paciesas, W S; Paneque, D; Panetta, J H; Parent, D; Pelassa, V; Pepe, M; Perri, M; Pesce-Rollins, M; Petrosian, Vahe; Pinchera, M; Piron, F; Porter, Troy A; Preece, R; Rainr, S; Ramirez-Ruiz, E; Rando, R; Rapposelli, E; Razzano, M; Razzaque, Soebur; Rea, N; Reimer, A; Reimer, O; Reposeur, Thierry; Reyes, Luis C; Ritz, S; Rochester, L S; Rodriguez, A Y; Roth, M; Ryde, F; Sadrozinski, H F W; Sanchez, D; Sander, A; Parkinson, P.M.Saz; Scargle, J D; Schalk, T L; Segal, K N; Sgro, C; Shimokawabe, T; Siskind, E J; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Stamatikos, M; Starck, Jean-Luc; Stecker, Floyd William; Steinle, H; Stephens, T E; Strickman, M S; Suson, Daniel J; Tagliaferri, G.; Tajima, Hiroyasu; Takahashi, H; Takahashi, T; Tanaka, T; Tenze, A; Thayer, J B; Thayer, J G; Thompson, D J; Tibaldo, L; Torres, Diego F; Tosti, G; Tramacere, A; Turri, M; Tuvi, S; Usher, T L; van der Horst, A J; Vigiani, L; Vilchez, N; Vitale, V; von Kienlin, A; Waite, A P; Williams, D A; Wilson-Hodge, C; Winer, B L; Wood, K S; Wu, X F; Yamazaki, R; Ylinen, T; Ziegler, M

    2009-01-01

    Gamma-ray bursts (GRBs) are highly energetic explosions signaling the death of massive stars in distant galaxies. The Gamma-ray Burst Monitor and Large Area Telescope onboard the Fermi Observatory together record GRBs over a broad energy range spanning about 7 decades of gammaray energy. In September 2008, Fermi observed the exceptionally luminous GRB 080916C, with the largest apparent energy release yet measured. The high-energy gamma rays are observed to start later and persist longer than the lower energy photons. A simple spectral form fits the entire GRB spectrum, providing strong constraints on emission models. The known distance of the burst enables placing lower limits on the bulk Lorentz factor of the outflow and on the quantum gravity mass.

  10. CeBr3 as a room-temperature, high-resolution gamma-ray detector

    International Nuclear Information System (INIS)

    Guss, Paul; Reed, Michael; Yuan Ding; Reed, Alexis; Mukhopadhyay, Sanjoy

    2009-01-01

    Cerium bromide (CeBr 3 ) has become a material of interest in the race for high-resolution gamma-ray spectroscopy at room temperature. This investigation quantified the potential of CeBr 3 as a room-temperature, high-resolution gamma-ray detector. The performance of CeBr 3 crystals was compared to other scintillation crystals of similar dimensions and detection environments. Comparison of self-activity of CeBr 3 to cerium-doped lanthanum tribromide (LaBr 3 :Ce) was performed. Energy resolution and relative intrinsic efficiency were measured and are presented.

  11. Search for Very High-energy Gamma Rays from the Northern Fermi Bubble Region with HAWC

    OpenAIRE

    Abeysekara, AU; Albert, A; Alfaro, R; Alvarez, C; Alvarez, JD; Arceo, R; Arteaga-Velázquez, JC; Ayala Solares, HA; Barber, AS; Bautista-Elivar, N; Becerril, A; Belmont-Moreno, E; BenZvi, SY; Berley, D; Braun, J

    2017-01-01

    © 2017. The American Astronomical Society. All rights reserved. We present a search for very high-energy gamma-ray emission from the Northern Fermi Bubble region using data collected with the High Altitude Water Cherenkov gamma-ray observatory. The size of the data set is 290 days. No significant excess is observed in the Northern Fermi Bubble region, so upper limits above 1 TeV are calculated. The upper limits are between and . The upper limits disfavor a proton injection spectrum that exten...

  12. High resolution gamma-ray spectrometry of culverts containing transuranic waste at the Savannah River Site

    International Nuclear Information System (INIS)

    Hofstetter, K.J.; Sigg, R.

    1990-01-01

    A number of concrete culverts used to retrievably store drummed, dry, radioactive waste at the Savannah River Site (SRS), were suspected of containing ambiguous quantities of transuranic (TRU) nuclides. These culverts were assayed in place for Pu-239 content using thermal and fast neutron counting techniques. High resolution gamma-ray spectroscopy on 17 culverts, having neutron emission rates several times higher than expected, showed characteristic gamma-ray signatures of neutron emitters other than Pu-239 (e.g., Pu-238, Pu/Be, or Am/Be neutron sources). This study confirmed the Pu-239 content of the culverts with anomalous neutron rates and established limits on the Pu-239 mass in each of the 17 suspect culverts by in-field, non-intrusive gamma-ray measurements

  13. FERMI OBSERVATIONS OF HIGH-ENERGY GAMMA-RAY EMISSION FROM GRB 080825C

    International Nuclear Information System (INIS)

    Abdo, A. A.; Ackermann, M.; Bechtol, K.; Berenji, B.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Asano, K.; Atwood, W. B.; Axelsson, M.; Baldini, L.; Bellazzini, R.; Bregeon, J.; Ballet, J.; Band, D. L.; Barbiellini, G.; Bastieri, D.; Bhat, P. N.; Bissaldi, E.; Bonamente, E.

    2009-01-01

    The Fermi Gamma-ray Space Telescope has opened a new high-energy window in the study of gamma-ray bursts (GRBs). Here we present a thorough analysis of GRB 080825C, which triggered the Fermi Gamma-ray Burst Monitor (GBM), and was the first firm detection of a GRB by the Fermi Large Area Telescope (LAT). We discuss the LAT event selections, background estimation, significance calculations, and localization for Fermi GRBs in general and GRB 080825C in particular. We show the results of temporal and time-resolved spectral analysis of the GBM and LAT data. We also present some theoretical interpretation of GRB 080825C observations as well as some common features observed in other LAT GRBs.

  14. Buildup factor and mechanical properties of high-density cement mixed with crumb rubber and prompt gamma ray study

    Science.gov (United States)

    Aim-O, P.; Wongsawaeng, D.; Tancharakorn, S.; Sophon, M.

    2017-09-01

    High-density cement mixed with crumb rubber has been studied to be a gamma ray and neutron shielding material, especially for photonuclear reactions that may occur from accelerators where both types of radiation exist. The Buildup factors from gamma ray scattering, prompt and secondary gamma ray emissions from neutron capture and mechanical properties were evaluated. For buildup factor studies, two different geometries were used: narrow beam and broad beam. Prompt Gamma Neutron Activation Analysis (PGNAA) was carried out to determine the prompt and secondary gamma ray emissions. The compressive strength of samples was evaluated by using compression testing machine which was central point loading crushing test. The results revealed that addition of crumb rubber increased the buildup factor. Gamma ray spectra following PGNAA revealed no prompt or secondary gamma ray emission. Mechanical testing indicated that the compressive strength of the shielding material decreased with increasing volume percentage of crumb rubber.

  15. A search for high energy gamma rays from a quiet sun

    International Nuclear Information System (INIS)

    Kim, C.Y.

    1975-01-01

    A search for solar gamma-rays in the energy range 10 MeV and greater was made by measuring the angular distribution of the flux from the direction of the sun using a stack of oriented nuclear emulsions flown by balloon on July 21, 1974, from Fort Churchill, Manitoba, Canada. The emulsion plates were scanned for the electron-positron pairs. An upper limit to the flux of solar gamma-rays, for a 90% statistical confidence level, was estimated to be 3.1 x 10 -4 photons cm -2 s -1 in the energy region above 10 MeV. On the day of the flight the sun spot number (Rsub(z)) was 55, and no major solar flares were reported. (orig.) [de

  16. A field-deployable gamma-ray spectrometer utilizing xenon at high pressure

    International Nuclear Information System (INIS)

    Smith, G.C.; Mahler, G.J.; Yu, B.; Salwen, C.; Kane, W.R.; Lemley, J.R.

    1996-01-01

    Prototype gamma-ray spectrometers utilizing xenon gas at high pressure, suitable for applications in the nuclear safeguards, arms control, and nonproliferation communities, have been developed at Brookhaven National Laboratory (BNL). These spectrometers function as ambient-temperature ionization chambers detecting gamma rays with good efficiency in the energy range 50 keV - 2 MeV, with an energy resolution intermediate between semiconductor (Ge) and scintillation (NaI) spectrometers. They are capable of prolonged, low-power operation without a requirement for cryogenic fluids or other cooling mechanisms, and with the addition of small quantities of 3 He gas, can function simultaneously as efficient thermal neutron detectors

  17. Real-time image parameterization in high energy gamma-ray astronomy using transputers

    International Nuclear Information System (INIS)

    Punch, M.; Fegan, D.J.

    1991-01-01

    Recently, significant advances in Very-High-Energy gamma-ray astronomy have been made by parameterization of the Cherenkov images arising from gamma-ray initiated showers in the Earth's atmosphere. A prototype system to evaluate the use of Transputers as a parallel-processing elements for real-time analysis of data from a Cherenkov imaging camera is described in this paper. The operation of and benefits resulting from such a system are described, and the viability of an applicaiton of the prototype system is discussed

  18. The Dynamic Range of Ultra-High Resolution Cryogenic Gamma-ray Spectrometers

    International Nuclear Information System (INIS)

    Ali, S; Terracol, S F; Drury, O B; Friedrich, S

    2005-01-01

    We are developing high-resolution cryogenic gamma-ray spectrometers for nuclear science and non-proliferation applications. The gamma-ray detectors are composed of a bulk superconducting Sn foil absorber attached to multilayer Mo/Cu transition-edge sensors (TES). The energy resolution achieved with a 1 x 1 x 0.25 mm 3 Sn absorber is 50 -90eV for γ-rays up to 100 keV and it decreases for large absorber sizes. We discuss the trade-offs between energy resolution and dynamic range, as well as development of TES arrays for higher count rates and better sensitivity

  19. Very-high-energy gamma-ray observations of the Type Ia Supernova SN 2014J with the MAGIC telescopes

    Science.gov (United States)

    Ahnen, M. L.; Ansoldi, S.; Antonelli, L. A.; Antoranz, P.; Arcaro, C.; Babic, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; Barrio, J. A.; Becerra González, J.; Bednarek, W.; Bernardini, E.; Berti, A.; Biasuzzi, B.; Biland, A.; Blanch, O.; Bonnefoy, S.; Bonnoli, G.; Borracci, F.; Bretz, T.; Carosi, R.; Carosi, A.; Chatterjee, A.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; Cumani, P.; Da Vela, P.; Dazzi, F.; De Angelis, A.; De Lotto, B.; de Oña Wilhelmi, E.; Di Pierro, F.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Einecke, S.; Eisenacher Glawion, D.; Elsaesser, D.; Engelkemeier, M.; Fallah Ramazani, V.; Fernández-Barral, A.; Fidalgo, D.; Fonseca, M. V.; Font, L.; Frantzen, K.; Fruck, C.; Galindo, D.; García López, R. J.; Garczarczyk, M.; Garrido Terrats, D.; Gaug, M.; Giammaria, P.; Godinović, N.; Gora, D.; Guberman, D.; Hadasch, D.; Hahn, A.; Hayashida, M.; Herrera, J.; Hose, J.; Hrupec, D.; Hughes, G.; Idec, W.; Kodani, K.; Konno, Y.; Kubo, H.; Kushida, J.; La Barbera, A.; Lelas, D.; Lindfors, E.; Lombardi, S.; Longo, F.; López, M.; López-Coto, R.; Majumdar, P.; Makariev, M.; Mallot, K.; Maneva, G.; Manganaro, M.; Mannheim, K.; Maraschi, L.; Marcote, B.; Mariotti, M.; Martínez, M.; Mazin, D.; Menzel, U.; Miranda, J. M.; Mirzoyan, R.; Moralejo, A.; Moretti, E.; Nakajima, D.; Neustroev, V.; Niedzwiecki, A.; Nievas Rosillo, M.; Nilsson, K.; Nishijima, K.; Noda, K.; Nogués, L.; Paiano, S.; Palacio, J.; Palatiello, M.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Paredes-Fortuny, X.; Pedaletti, G.; Peresano, M.; Perri, L.; Persic, M.; Poutanen, J.; Prada Moroni, P. G.; Prandini, E.; Puljak, I.; Garcia, J. R.; Reichardt, I.; Rhode, W.; Ribó, M.; Rico, J.; Saito, T.; Satalecka, K.; Schroeder, S.; Schweizer, T.; Sillanpää, A.; Sitarek, J.; Snidaric, I.; Sobczynska, D.; Stamerra, A.; Strzys, M.; Surić, T.; Takalo, L.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Torres, D. F.; Toyama, T.; Treves, A.; Vanzo, G.; Vazquez Acosta, M.; Vovk, I.; Ward, J. E.; Will, M.; Wu, M. H.; Zanin, R.

    2017-06-01

    Context. In this work we present data from observations with the MAGIC telescopes of SN 2014J detected on January 21 2014, the closest Type Ia supernova since Imaging Air Cherenkov Telescopes started to operate. Aims: We aim to probe the possibility of very-high-energy (VHE; E ≥ 100 GeV) gamma rays produced in the early stages of Type Ia supernova explosions. Methods: We performed follow-up observations after this supernova (SN) explosion for five days, between January 27 and February 2 2014. We searched for gamma-ray signals in the energy range between 100 GeV and several TeV from the location of SN 2014J using data from a total of 5.5 h of observations. Prospects for observing gamma rays of hadronic origin from SN 2014J in the near future are also being addressed. Results: No significant excess was detected from the direction of SN 2014J. Upper limits at 95% confidence level on the integral flux, assuming a power-law spectrum, dF/dE ∝ E- Γ, with a spectral index of Γ = 2.6, for energies higher than 300 GeV and 700 GeV, are established at 1.3 × 10-12 and 4.1 × 10-13 photons cm-2 s-1, respectively. Conclusions: For the first time, upper limits on the VHE emission of a Type Ia supernova are established. The energy fraction isotropically emitted into TeV gamma rays during the first 10 days after the supernova explosion for energies greater than 300 GeV is limited to 10-6 of the total available energy budget ( 1051 erg). Within the assumed theoretical scenario, the MAGIC upper limits on the VHE emission suggest that SN 2014J will not be detectable in the future by any current or planned generation of Imaging Atmospheric Cherenkov Telescopes.

  20. Silicon detectors for x and gamma-ray with high radiation resistance

    International Nuclear Information System (INIS)

    Cimpoca, Valerica; Popescu, Ion V.; Ruscu, Radu

    2001-01-01

    Silicon detectors are widely used in X and gamma-ray spectroscopy for direct detection or coupled with scintillators in high energy nuclear physics (modern collider experiments are representative), medicine and industrial applications. In X and gamma dosimetry, a low detection limit (under 6 KeV) with silicon detectors becomes available. Work at the room temperature is now possible due to the silicon processing evolution, which assures low reverse current and high life time of carriers. For several years, modern semiconductor detectors have been the primary choice for the measurement of nuclear radiation in various scientific fields. Nowadays the recently developed high resolution silicon detectors found their way in medical applications. As a consequence many efforts have been devoted to the development of high sensitivity and radiation hardened X and gamma-ray detectors for the energy range of 5 - 150 keV. The paper presents some results concerning the technology and behaviour of X and Gamma ray silicon detectors used in physics research, industrial and medical radiography. The electrical characteristics of these detectors, their modification after exposure to radiation and the results of spectroscopic X and Gamma-ray measurements are discussed. The results indicated that the proposed detectors enables the development of reliable silicon detectors to be used in controlling the low and high radiation levels encountered in a lot of application

  1. High gamma-ray measurement using optical emission of ceramic material

    Energy Technology Data Exchange (ETDEWEB)

    Kakuta, Tsunemi; Sakasai, Kaoru; Yamagishi, Hideshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Nakazawa, Masaharu

    1996-07-01

    This paper describes the fluorescence phenomena in Zr-O ceramic under expose to high gamma-ray and fission neutron source. In addition, the paper also discusses the possibility of ionizing radiation detection in the core region of reactor. (J.P.N.)

  2. An efficiency study of a high resolution gamma-ray spectrometer

    International Nuclear Information System (INIS)

    Marti Climent, J.M.

    1987-01-01

    A review of the different curves for the efficiency fit of a high resolution gamma-ray spectrometer was made. These curves are used to fit the efficiency of our detector system. In order to study the goodness of the different fits various standards were used, and the ICRP GAM-83 exercise results were employed. (author)

  3. First limits on the very-high energy gamma-ray afterglow emission of a fast radio burst. H.E.S.S. observations of FRB 150418

    Science.gov (United States)

    H.E.S.S. Collaboration; Abdalla, H.; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Andersson, T.; Angüner, E. O.; Arakawa, M.; Arrieta, M.; Aubert, P.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Becker Tjus, J.; Berge, D.; Bernhard, S.; Bernlöhr, K.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Büchele, M.; Bulik, T.; Capasso, M.; Carr, J.; Casanova, S.; Cerruti, M.; Chakraborty, N.; Chalme-Calvet, R.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Chrétien, M.; Coffaro, M.; Colafrancesco, S.; Cologna, G.; Condon, B.; Conrad, J.; Cui, Y.; Davids, I. D.; Decock, J.; Degrange, B.; Deil, C.; Devin, J.; Dewilt, P.; Dirson, L.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; Drury, L. O.'c.; Dutson, K.; Dyks, J.; Edwards, T.; Egberts, K.; Eger, P.; Ernenwein, J.-P.; Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Funk, S.; Füßling, M.; Gabici, S.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Goyal, A.; Grondin, M.-H.; Hahn, J.; Haupt, M.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holler, M.; Horns, D.; Ivascenko, A.; Iwasaki, H.; Jacholkowska, A.; Jamrozy, M.; Janiak, M.; Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jogler, T.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katsuragawa, M.; Katz, U.; Kerszberg, D.; Khangulyan, D.; Khélifi, B.; Kieffer, M.; King, J.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Kraus, M.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lees, J.-P.; Lefaucheur, J.; Lefranc, V.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Leser, E.; Lohse, T.; Lorentz, M.; Liu, R.; López-Coto, R.; Lypova, I.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Morå, K.; Moulin, E.; Murach, T.; Nakashima, S.; de Naurois, M.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Öttl, S.; Ohm, S.; Ostrowski, M.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Pekeur, N. W.; Pelletier, G.; Perennes, C.; Petrucci, P.-O.; Peyaud, B.; Piel, Q.; Pita, S.; Poon, H.; Prokhorov, D.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Reimer, A.; Reimer, O.; Renaud, M.; de Los Reyes, R.; Richter, S.; Rieger, F.; Romoli, C.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Saito, S.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Seglar-Arroyo, M.; Settimo, M.; Seyffert, A. S.; Shafi, N.; Shilon, I.; Simoni, R.; Sol, H.; Spanier, F.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stycz, K.; Sushch, I.; Takahashi, T.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tibaldo, L.; Tiziani, D.; Tluczykont, M.; Trichard, C.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der Walt, D. J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zaborov, D.; Zacharias, M.; Zanin, R.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Żywucka, N.; Superb Collaboration; Jankowski, F.; Keane, E. F.; Petroff, E.

    2017-01-01

    Aims: Following the detection of the fast radio burst FRB150418 by the SUPERB project at the Parkes radio telescope, we aim to search for very-high energy gamma-ray afterglow emission. Methods: Follow-up observations in the very-high energy gamma-ray domain were obtained with the H.E.S.S. imaging atmospheric Cherenkov telescope system within 14.5 h of the radio burst. Results: The obtained 1.4 h of gamma-ray observations are presented and discussed. At the 99% C.L. we obtained an integral upper limit on the gamma-ray flux of Φγ(E > 350 GeV) FRB 150418. Conclusions: No hints for high-energy afterglow emission of FRB 150418 were found. Taking absorption on the extragalactic background light into account and assuming a distance of z = 0.492 based on radio and optical counterpart studies and consistent with the FRB dispersion, we constrain the gamma-ray luminosity at 1 TeV to L < 5.1 × 1047 erg/s at 99% C.L.

  4. VLBI OBSERVATIONS OF THE JET IN M 87 DURING THE VERY HIGH ENERGY {gamma}-RAY FLARE IN 2010 APRIL

    Energy Technology Data Exchange (ETDEWEB)

    Hada, Kazuhiro; Giroletti, Marcello; Giovannini, Gabriele [INAF Istituto di Radioastronomia, via Gobetti 101, I-40129 Bologna (Italy); Kino, Motoki; Nagai, Hiroshi [National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo 181-8588 (Japan); Doi, Akihiro [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo, Sagamihara 252-5210 (Japan); Hagiwara, Yoshiaki; Honma, Mareki; Kawaguchi, Noriyuki [Department of Astronomical Science, Graduate University for Advanced Studies (SOKENDAI), 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2012-11-20

    We report on the detailed radio status of the M 87 jet during the very high energy (VHE) {gamma}-ray flaring event in 2010 April, obtained from high-resolution, multi-frequency, phase-referencing Very Long Baseline Array observations. We especially focus on the properties of the jet base (the radio core) and the peculiar knot HST-1, which are currently favored as the {gamma}-ray emitting sites. During the VHE flaring event, the HST-1 region remains stable in terms of its structure and flux density in the optically thin regime above 2 GHz, being consistent with no signs of enhanced activities reported at X-ray for this feature. The radio core shows an inverted spectrum at least up to 43 GHz during this event. Astrometry of the core position, which is specified as {approx}20 R {sub s} from the central engine in our previous study, shows that the core position is stable on a level of 4 R {sub s}. The core at 43 and 22 GHz tends to show slightly ({approx}10%) higher flux level near the date of the VHE flux peak compared with the epochs before/after the event. The size of the 43 GHz core is estimated to be {approx}17 R {sub s}, which is close to the size of the emitting region suggested from the observed timescale of rapid variability at VHE. These results tend to favor the scenario that the VHE {gamma}-ray flare in 2010 April is associated with the radio core.

  5. ADVANCED X-BAND TEST ACCELERATOR FOR HIGH BRIGHTNESS ELECTRON AND GAMMA RAY BEAMS

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, R A; Anderson, S G; Barty, C P; Chu, T S; Ebbers, C A; Gibson, D J; Hartemann, F V; Adolphsen, C; Jongewaard, E N; Raubenheimer, T; Tantawi, S G; Vlieks, A E; Wang, J W

    2010-05-12

    In support of Compton scattering gamma-ray source efforts at LLNL, a multi-bunch test stand is being developed to investigate accelerator optimization for future upgrades. This test stand will enable work to explore the science and technology paths required to boost the current 10 Hz monoenergetic gamma-ray (MEGa-Ray) technology to an effective repetition rate exceeding 1 kHz, potentially increasing the average gamma-ray brightness by two orders of magnitude. Multiple bunches must be of exceedingly high quality to produce narrow-bandwidth gamma-rays. Modeling efforts will be presented, along with plans for a multi-bunch test stand at LLNL. The test stand will consist of a 5.5 cell X-band rf photoinjector, single accelerator section, and beam diagnostics. The photoinjector will be a high gradient standing wave structure, featuring a dual feed racetrack coupler. The accelerator will increase the electron energy so that the emittance can be measured using quadrupole scanning techniques. Multi-bunch diagnostics will be developed so that the beam quality can be measured and compared with theory. Design will be presented with modeling simulations, and layout plans.

  6. THE HIGH ENERGY BUDGET ALLOCATIONS IN SHOCKS AND GAMMA RAY BURSTS

    International Nuclear Information System (INIS)

    Eichler, David; Guetta, Dafne; Pohl, Martin

    2010-01-01

    The statistical distribution of energies among particles responsible for long gamma-ray burst (GRB) emission is analyzed in light of recent results of the Fermi Observatory. The all-sky flux, F γ , recorded by the Gamma-Ray Burst Monitor (GBM) is shown, despite its larger energy range, to be not significantly larger than that reported by the Burst and Transient Explorer, suggesting a relatively small flux in the 3-30 MeV energy range. The present-day energy input rate in γ-rays recorded by the GBM from long GRBs is found, assuming star formation rates in the literature, to be W-dot(0)=0.5 F γ H/c=5x10 42 erg Mpc -3 yr -1 . The Large Area Telescope fluence, when observed, is about 5%-10% per decade of the total, in good agreement with the predictions of saturated, nonlinear shock acceleration. The high-energy component of long GRBs, as measured by Fermi, is found to contain only ∼10 -2.5 of the energy needed to produce ultrahigh-energy cosmic rays (UHECRs) above 4 EeV, assuming the latter to be extragalactic, when various numerical factors are carefully included, if the cosmic-ray source spectrum has a spectral index of -2. The observed γ-ray fraction of the required UHECR energy is even smaller if the source spectrum is softer than E -2 . The AMANDA II limits rule out such a GRB origin for UHECRs if much more than 10 -2 of the cosmic-ray energy goes into neutrinos that are within, and simultaneous with, the γ-ray beam. It is suggested that 'orphan' neutrinos out of the γ-ray beam might be identifiable via orphan afterglow or other wide angle signatures of GRBs in lieu of coincidence with prompt γ-rays, and it is recommended that feasible single neutrino trigger criteria be established to search for such coincidences.

  7. Measurement of the gamma ray flux between 50 and 350 GeV from the Mrk 501 Blazar with the experiment CELESTE

    International Nuclear Information System (INIS)

    Brion, E.

    2005-10-01

    The blazar Mrk 501 has a non-thermal emission spectrum with 2 components. The first one, located between radio waves and X-rays, is due to the synchrotron emission of the magnetized jet, while the second one, emitted in the high energy gamma-ray domain, is still not fully understood. Until 1999, this last domain had only been covered between 100 MeV and 4 GeV as well as above 300 GeV. This energy gap was filled by the creation of the CELESTE experiment, recording Cherenkov emission produced by gamma-rays between 50 and 350 GeV penetrating the atmosphere. Mrk 501, which has a variable emission, was observed in 2000 and 2001, and was detected in 2000. A flux has been calculated which constrains the high energy emission models, presented in this thesis. Crab nebula flux measurements validate the method since this source is the standard candle for atmospheric Cherenkov telescopes. Analysis cuts for Mrk 501 are determined using data from the blazar Mrk 421, which has nearly the same declination as Mrk 501. Finally, improved detector simulations were used to calculate the effective area of the instrument, taking the atmosphere quality into account, yielding the flux for Mrk 501 during observations taken between April and June 2000. This flux was compared with a synchrotron self-Compton emission model and with data taken in X-rays. It shows that Mrk 501 was slightly more active during this period compared to the remainder of the year and to the year 2001. A flux upper limit is calculated for other measurements. This is the first measurement in the energy range 50 - 350 GeV (this range represents the limits in energy for which the trigger rate, that is the convolution between the source spectrum and the effective area of the instrument, is higher than 20% of the trigger maximum). It helps to constrain the position of the inverse Compton emission maximum and tends to favor, in this particular case, X- and gamma-ray emission processes from 2 different electron populations

  8. DISCOVERY OF VERY HIGH ENERGY GAMMA RAYS FROM PKS 1424+240 AND MULTIWAVELENGTH CONSTRAINTS ON ITS REDSHIFT

    International Nuclear Information System (INIS)

    Acciari, V. A.; Benbow, W.; Aliu, E.; Boltuch, D.; Arlen, T.; Chow, Y. C.; Aune, T.; Bautista, M.; Cogan, P.; Beilicke, M.; Buckley, J. H.; Bugaev, V.; Boettcher, M.; Bradbury, S. M.; Byrum, K.; Cannon, A.; Cesarini, A.; Ciupik, L.; Cui, W.; Duke, C.

    2010-01-01

    We report the first detection of very high energy 83 Gamma-ray emission above 100 GeV. (VHE) gamma-ray emission above 140 GeV from PKS 1424+240, a BL Lac object with an unknown redshift. The photon spectrum above 140 GeV measured by VERITAS is well described by a power law with a photon index of 3.8 ± 0.5 stat ± 0.3 syst and a flux normalization at 200 GeV of (5.1 ± 0.9 stat ± 0.5 syst ) x 10 -11 TeV -1 cm -2 s -1 , where stat and syst denote the statistical and systematical uncertainties, respectively. The VHE flux is steady over the observation period between MJD 54881 and 55003 (from 2009 February 19 to June 21). Flux variability is also not observed in contemporaneous high-energy observations with the Fermi Large Area Telescope. Contemporaneous X-ray and optical data were also obtained from the Swift XRT and MDM observatory, respectively. The broadband spectral energy distribution is well described by a one-zone synchrotron self-Compton model favoring a redshift of less than 0.1. Using the photon index measured with Fermi in combination with recent extragalactic background light absorption models it can be concluded from the VERITAS data that the redshift of PKS 1424+240 is less than 0.66.

  9. Modeling high-energy gamma-rays from the Fermi Bubbles

    Energy Technology Data Exchange (ETDEWEB)

    Splettstoesser, Megan

    2015-09-17

    In 2010, the Fermi Bubbles were discovered at the galactic center of the Milky Way. These giant gamma-ray structures, extending 55° in galactic latitude and 20°-30° in galactic longitude, were not predicted. We wish to develop a model for the gamma-ray emission of the Fermi Bubbles. To do so, we assume that second order Fermi acceleration requires charged particles and irregular magnetic fields- both of which are present in the disk of the Milky Way galaxy. By solving the steady-state case of the transport equation, I compute the proton spectrum due to second order Fermi acceleration. I compare the analytical solutions of the proton spectrum to a numerical solution. I find that the numerical solution to the transport equation converges to the analytical solution in all cases. The gamma-ray spectrum due to proton-proton interaction is compared to Fermi Bubble data (from Ackermann et al. 2014), and I find that second order Fermi acceleration is a good fit for the gamma-ray spectrum of the Fermi Bubbles at low energies with an injection source term of S = 1.5 x 10⁻¹⁰ GeV⁻¹cm⁻³yr⁻¹. I find that a non-steady-state solution to the gamma-ray spectrum with an injection source term of S = 2 x 10⁻¹⁰ GeV⁻¹cm⁻³yr⁻¹ matches the bubble data at high energies.

  10. Gamma-ray spectrometer system with high efficiency and high resolution

    International Nuclear Information System (INIS)

    Moss, C.E.; Bernard, W.; Dowdy, E.J.; Garcia, C.; Lucas, M.C.; Pratt, J.C.

    1983-01-01

    Our gamma-ray spectrometer system, designed for field use, offers high efficiency and high resolution for safeguards applications. The system consists of three 40% high-purity germanium detectors and a LeCroy 3500 data acquisition system that calculates a composite spectrum for the three detectors. The LeCroy 3500 mainframe can be operated remotely from the detector array with control exercised through modems and the telephone system. System performance with a mixed source of 125 Sb, 154 Eu, and 155 Eu confirms the expected efficiency of 120% with the overall resolution showing little degradation over that of the worst detector

  11. Gamma-rays from decaying dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Bertone, G. [Paris-6 Univ., 75 (France). Inst. d' Astrophysique; Buchmueller, W.; Covi, L.; Ibarra, A. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2007-10-15

    We study the prospects for detecting gamma-rays from decaying Dark Matter (DM), focusing in particular on gravitino DM in R-parity breaking vacua. Given the substantially different angular distribution of the predicted gamma-ray signal with respect to the case of annihilating DM, and the relatively poor (of order 0.1 ) angular resolution of gamma-ray detectors, the best strategy for detection is in this case to look for an exotic contribution to the gamma-ray flux at high galactic latitudes, where the decaying DM contribution would resemble an astrophysical extragalactic component, similar to the one inferred by EGRET observations. Upcoming experiments such as GLAST and AMS-02 may identify this exotic contribution and discriminate it from astrophysical sources, or place significant constraints on the mass and lifetime of DM particles. (orig.)

  12. Multi-dimensional analysis of high resolution {gamma}-ray data

    Energy Technology Data Exchange (ETDEWEB)

    Flibotte, S.; Huettmeier, U.J.; France, G. de; Haas, B.; Romain, P.; Theisen, Ch.; Vivien, J.P.; Zen, J. [Strasbourg-1 Univ., 67 (France). Centre de Recherches Nucleaires

    1992-12-31

    A new generation of high resolution {gamma}-ray spectrometers capable of recording high-fold coincidence events with a large efficiency will soon be available. Algorithms are developed to analyze high-fold {gamma}-ray coincidences. As a contribution to the software development associated with the EUROGAM spectrometer, the performances of computer codes designed to select multi-dimensional gates from 3-, 4- and 5-fold coincidence databases were tested. The tests were performed on events generated with a Monte Carlo simulation and also on real experimental triple data recorded with the 8{pi} spectrometer and with a preliminary version of the EUROGAM array. (R.P.) 14 refs.; 3 figs.; 3 tabs.

  13. High-energy gamma-ray emission from the Galactic Center

    DEFF Research Database (Denmark)

    Mayer-Hasselwander, H.A.; Bertsch, D.L.; Dingus, B.L.

    1998-01-01

    '. A compact sources model hints at an origin in pulsars. While the spectrum suggests middle-aged pulsars like Vela, too many are required to produce the observed flux. The only detected very young pulsar, the Crab pulsar, has an incompatible spectrum. However, it is not proven that the Crab spectrum...... is characteristic for all young pulsars: thus, a single or a few very young pulsars (at the GC not detectable in radio emission), provided their gamma-ray emission is larger than that of the Crab pulsar by a factor of 13, are likely candidates. Alternatively, more exotic scenarios, related to the postulated central...

  14. Numerical simulations on efficiency and measurement of capabilities of BGO detectors for high energy gamma ray

    CERN Document Server

    Wen Wan Xin

    2002-01-01

    The energy resolution and time resolution of two phi 75 x 100 BGO detectors for high energy gamma ray newly made were measured with sup 1 sup 3 sup 7 Cs and sup 6 sup 0 Co resources. The two characteristic gamma rays of high energy emitted from the thermal neutron capture of germanium in BGO crystal were used for the energy calibration of gamma spectra. The intrinsic photopeak efficiency, single escape probability and double escape probabilities of BGO detectors in photon energy range of 4-30 MeV are numerically calculated with GEANT code. The real count response and count ratio of the uniformly distributed incident photons in energy range of 0-30 MeV are also calculated. The distortion of gamma spectra caused by the photon energy loss extension to lower energy in detection medium is discussed

  15. Radioresistance increase in polymers at high pressures. [. gamma. rays

    Energy Technology Data Exchange (ETDEWEB)

    Milinchuk, V; KIRJUKHIN, V; KLINSHPONT, E

    1977-06-01

    The effect was studied of very high pressures ranging within 100 and 2,700 MPa on the radioresistance of polytetrafluoroethylene, polypropylene and polyethylene in gamma irradiation. For experiments industrial polymers in the shape of blocks, films and fibers were used. It is shown that in easily breakable polymers, such as polytetrafluoroethylene and polypropylene, 1.3 to 2 times less free radicals are formed as a result of gamma irradiation and a pressure of 150 MPa than at normal pressure. The considerably reduced radiation-chemical formation of radicals and the destruction suppression by cross-linking in polymers is the evidence of the polymer radioresistance in irradiation at high pressures.

  16. Neutron and gamma-ray sources in LWR high-level nuclear waste

    International Nuclear Information System (INIS)

    Dupree, S.A.

    1977-06-01

    Predictions of the composition of high-level waste from U-fueled LWRs have been used to calculate the neutron and gamma-ray sources in such waste at cooling times of 3 and 10 years. The results are intended for interim application to studies of waste shipping and storage pending the availability of more exact knowledge of fuel recycling and of waste concentration and solidification

  17. Point source search techniques in ultra high energy gamma ray astronomy

    International Nuclear Information System (INIS)

    Alexandreas, D.E.; Biller, S.; Dion, G.M.; Lu, X.Q.; Yodh, G.B.; Berley, D.; Goodman, J.A.; Haines, T.J.; Hoffman, C.M.; Horch, E.; Sinnis, C.; Zhang, W.

    1993-01-01

    Searches for point astrophysical sources of ultra high energy (UHE) gamma rays are plagued by large numbers of background events from isotropic cosmic rays. Some of the methods that have been used to estimate the expected number of background events coming from the direction of a possible source are found to contain biases. Search techniques that avoid this problem are described. There is also a discussion of how to optimize the sensitivity of a search to emission from a point source. (orig.)

  18. Digital approach to high rate gamma-ray spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Korolczuk, Stefan; Mianowski, Slawomir; Rzadkiewicz, Jacek; Sibczynski, Pawel; Swiderski, Lukasz; Szewinski, Jaroslaw; Zychor, Izabella [Narodowe Centrum Badan Jadrowych (NCBJ), 05-400 Otwock, (Poland)

    2015-07-01

    Basic concepts and preliminary results of creating high rate digital spectrometry system using efficient ADCs and latest FPGA are presented as well as a comparison with commercially available devices. The possibility to use such systems, coupled to scintillators, in plasma experiments is discussed. (authors)

  19. New stage in high-energy gamma-ray studies with GAMMA-400 after Fermi-LAT

    Directory of Open Access Journals (Sweden)

    Topchiev N.P.

    2017-01-01

    Full Text Available Fermi-LAT has made a significant contribution to the study of high-energy gamma-ray diffuse emission and the observations of 3000 discrete sources. However, one third of all gamma-ray sources (both galactic and extragalactic are unidentified, the data on the diffuse gamma-ray emission should be clarified, and signatures of dark matter particles in the high-energy gamma-ray range are not observed up to now. GAMMA-400, the currently developing gamma-ray telescope, will have angular (∼0.01∘ at 100 GeV and energy (∼1% at 100 GeV resolutions in the energy range of 10–1000 GeV which are better than Fermi-LAT (as well as ground gamma-ray telescopes by a factor of 5–10. It will observe some regions of the Universe (such as the Galactic Center, Fermi Bubbles, Crab, Cygnus, etc. in a highly elliptic orbit (without shading the telescope by the Earth continuously for a long time. It will allow us to identify many discrete sources, to clarify the structure of extended sources, to specify the data on the diffuse emission, and to resolve gamma rays from dark matter particles.

  20. High energy gamma ray response of liquid scintillator

    International Nuclear Information System (INIS)

    Shigyo, N.; Ishibashi, K.; Matsufuji, N.; Nakamoto, T.; Numajiri, M.

    1994-01-01

    We made the experiment on the spallation reaction. NE213 organic liquid scintillators were used for measuring neutrons and γ rays. To produce the γ ray emission cross section, we used the response functions by EGS4 code. The response functions look like uniform above γ ray energies of 60 MeV. The experimental data of the γ ray emission cross section are different from the data of High Energy Transport Code. (author)

  1. Very high energy gamma ray astrophysics. Progress report, August 1, 1980-July 31, 1981

    International Nuclear Information System (INIS)

    Lamb, R.C.

    1981-04-01

    Very high energy (VHE) gamma ray astronomy gives insight into fundamental questions regarding the origins of cosmic rays and the types of particle acceleration mechanisms which operate in nature. VHE photons are detected by means of the Cerenkov light their secondaries produce in the atmosphere. During June - September 1981 the solar collectors at Edwards Air Force Base will be used to detect the Cerenkov light from the photons from Cygnus X-3 thus extending its observation into a previously unexplored region. The time of each detector event will be recorded to the nearest 0.5 ms. If Cygnus X-3 is the neutron star remnant of a recent (unseen) supernova, then the VHE gamma rays may be pulsed at its rotation rate, and the data obtained will allow a sensitive test of this possibility. The equipment for the summer observations is nearly ready and will be tested in May prior to any early run in June

  2. High resolution gamma-ray spectroscopy applied to bulk sample analysis

    International Nuclear Information System (INIS)

    Kosanke, K.L.; Koch, C.D.; Wilson, R.D.

    1980-01-01

    A high resolution Ge(Li) gamma-ray spectrometer has been installed and made operational for use in routine bulk sample analysis by the Bendix Field Engineering Corporation (BFEC) geochemical analysis department. The Ge(Li) spectrometer provides bulk sample analyses for potassium, uranium, and thorium that are superior to those obtained by the BFEC sodium iodide spectrometer. The near term analysis scheme permits a direct assay for uranium that corrects for bulk sample self-absorption effects and is independent of the uranium/radium disequilibrium condition of the sample. A more complete analysis scheme has been developed that fully utilizes the gamma-ray data provided by the Ge(Li) spectrometer and that more properly accounts for the sample self-absorption effect. This new analysis scheme should be implemented on the BFEC Ge(Li) spectrometer at the earliest date

  3. The Multi-Messenger Approach to High-Energy Gamma-Ray Sources

    CERN Document Server

    Paredes, Josep M; Torres, Diego F

    2008-01-01

    This book provides a theoretical and observational overview of the state of the art of gamma-ray astrophysics, and their impact and connection with the physics of cosmic rays and neutrinos. With the aim of shedding new and fresh light on the problem of the nature of the gamma-ray sources, particularly those yet unidentified, this book summarizes contributions to a workshop that continues with the series initiated by the meeting held at Tonantzintla in October 2000, and Hong-Kong in May 2004. This books will be of interest for all active researchers in the field of high energy astrophysics and astroparticle physics, as well as for graduate students entering into the subject.

  4. Improved yield of high resolution mercuric iodide gamma-ray spectrometers

    International Nuclear Information System (INIS)

    Gerrish, V.; van den Berg, L.

    1990-01-01

    Mercuric iodide (HgI 2 ) exhibits properties which make it attractive for use as a solid state nuclear radiation detector. The wide bandgap (E g = 2.1 eV) and low dark current allow room temperature operation, while the high atomic number provides a large gamma-ray cross section. However, poor hole transport has been a major limitation in the routine fabrication of high-resolution spectrometers using this material. This paper presents the results of gamma-ray response and charge transport parameter measurements conducted during the past year at EG ampersand G/EM on 96 HgI 2 spectrometers. The gamma-ray response measurements reveal that detector quality is correlated with the starting material used in the crystal growth. In particular, an increased yield of high-resolution spectrometers was obtained from HgI 2 which was synthesized by precipitation from an aqueous solution, as opposed to using material from commercial vendors. Data are also presented which suggest that better spectrometer performance is tied to improved hole transport. Finally, some initial results on a study of detector uniformity reveal spatial variations which may explain why the correlation between hole transport parameters and spectrometer performance is sometimes violated. 6 refs., 3 figs

  5. High Resolution Gamma Ray Analysis of Medical Isotopes

    Science.gov (United States)

    Chillery, Thomas

    2015-10-01

    Compton-suppressed high-purity Germanium detectors at the University of Massachusetts Lowell have been used to study medical radioisotopes produced at Brookhaven Linac Isotope Producer (BLIP), in particular isotopes such as Pt-191 used for cancer therapy in patients. The ability to precisely analyze the concentrations of such radio-isotopes is essential for both production facilities such as Brookhaven and consumer hospitals across the U.S. Without accurate knowledge of the quantities and strengths of these isotopes, it is possible for doctors to administer incorrect dosages to patients, thus leading to undesired results. Samples have been produced at Brookhaven and shipped to UML, and the advanced electronics and data acquisition capabilities at UML have been used to extract peak areas in the gamma decay spectra. Levels of Pt isotopes in diluted samples have been quantified, and reaction cross-sections deduced from the irradiation parameters. These provide both cross checks with published work, as well as a rigorous quantitative framework with high quality state-of-the-art detection apparatus in use in the experimental nuclear physics community.

  6. Search for very high-energy gamma-ray emission from the microquasar Cygnus X-1 with the MAGIC telescopes

    Science.gov (United States)

    Ahnen, M. L.; Ansoldi, S.; Antonelli, L. A.; Arcaro, C.; Babić, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; Barrio, J. A.; Becerra González, J.; Bednarek, W.; Bernardini, E.; Berti, A.; Bhattacharyya, W.; Biasuzzi, B.; Biland, A.; Blanch, O.; Bonnefoy, S.; Bonnoli, G.; Carosi, R.; Carosi, A.; Chatterjee, A.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; Cumani, P.; da Vela, P.; Dazzi, F.; de Angelis, A.; de Lotto, B.; de Oña Wilhelmi, E.; di Pierro, F.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Einecke, S.; Eisenacher Glawion, D.; Elsaesser, D.; Engelkemeier, M.; Fallah Ramazani, V.; Fernández-Barral, A.; Fidalgo, D.; Fonseca, M. V.; Font, L.; Fruck, C.; Galindo, D.; García López, R. J.; Garczarczyk, M.; Gaug, M.; Giammaria, P.; Godinović, N.; Gora, D.; Guberman, D.; Hadasch, D.; Hahn, A.; Hassan, T.; Hayashida, M.; Herrera, J.; Hose, J.; Hrupec, D.; Ishio, K.; Konno, Y.; Kubo, H.; Kushida, J.; Kuveždić, D.; Lelas, D.; Lindfors, E.; Lombardi, S.; Longo, F.; López, M.; Maggio, C.; Majumdar, P.; Makariev, M.; Maneva, G.; Manganaro, M.; Mannheim, K.; Maraschi, L.; Mariotti, M.; Martínez, M.; Mazin, D.; Menzel, U.; Minev, M.; Mirzoyan, R.; Moralejo, A.; Moreno, V.; Moretti, E.; Neustroev, V.; Niedzwiecki, A.; Nievas Rosillo, M.; Nilsson, K.; Ninci, D.; Nishijima, K.; Noda, K.; Nogués, L.; Paiano, S.; Palacio, J.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Paredes-Fortuny, X.; Pedaletti, G.; Peresano, M.; Perri, L.; Persic, M.; Prada Moroni, P. G.; Prandini, E.; Puljak, I.; Garcia, J. R.; Reichardt, I.; Rhode, W.; Ribó, M.; Rico, J.; Righi, C.; Saito, T.; Satalecka, K.; Schroeder, S.; Schweizer, T.; Sitarek, J.; Šnidarić, I.; Sobczynska, D.; Stamerra, A.; Strzys, M.; Surić, T.; Takalo, L.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Torres, D. F.; Torres-Albà, N.; Treves, A.; Vanzo, G.; Vazquez Acosta, M.; Vovk, I.; Ward, J. E.; Will, M.; Zarić, D.; MAGIC Collaboration; Bosch-Ramon, V.; Pooley, G. G.; Trushkin, S. A.; Zanin, R.

    2017-12-01

    The microquasar Cygnus X-1 displays the two typical soft and hard X-ray states of a black hole transient. During the latter, Cygnus X-1 shows a one-sided relativistic radio-jet. Recent detection of the system in the high energy (HE; E ≳ 60 MeV) gamma-ray range with Fermi-LAT associates this emission with the outflow. Former MAGIC observations revealed a hint of flaring activity in the very high-energy (VHE; E ≳ 100 GeV) regime during this X-ray state. We analyse ∼97 h of Cygnus X-1 data taken with the MAGIC telescopes between July 2007 and October 2014. To shed light on the correlation between hard X-ray and VHE gamma rays as previously suggested, we study each main X-ray state separately. We perform an orbital phase-folded analysis to look for variability in the VHE band. Additionally, to place this variability behaviour in a multiwavelength context, we compare our results with Fermi-LAT, AGILE, Swift-BAT, MAXI, RXTE-ASM, AMI and RATAN-600 data. We do not detect Cygnus X-1 in the VHE regime. We establish upper limits for each X-ray state, assuming a power-law distribution with photon index Γ = 3.2. For steady emission in the hard and soft X-ray states, we set integral upper limits at 95 per cent confidence level for energies above 200 GeV at 2.6 × 10-12 photons cm-2 s-1 and 1.0 × 10-11 photons cm-2 s-1, respectively. We rule out steady VHE gamma-ray emission above this energy range, at the level of the MAGIC sensitivity, originating in the interaction between the relativistic jet and the surrounding medium, while the emission above this flux level produced inside the binary still remains a valid possibility.

  7. High-energy gamma-rays from Cyg X-1

    Science.gov (United States)

    Zdziarski, Andrzej A.; Malyshev, Denys; Chernyakova, Maria; Pooley, Guy G.

    2017-11-01

    We have obtained a firm detection of Cyg X-1 during its hard and intermediate spectral states in the energy range of 40 MeV-60 GeV based on observations by the Fermi Large Area Telescope, confirming the independent results at ≥60 MeV of a previous work. The detection significance is ≃8σ in the 0.1-10 GeV range. In the soft state, we have found only upper limits on the emission at energies ≳0.1 MeV. However, we have found emission with a very soft spectrum in the 40-80 MeV range, not detected previously. This is likely to represent the high-energy cut-off of the high-energy power-law tail observed in the soft state. Similarly, we have detected a γ-ray soft excess in the hard state, which appears to be of similar origin. We have also confirmed the presence of an orbital modulation of the detected emission in the hard state, expected if the γ-rays are from Compton upscattering of stellar blackbody photons. However, the observed modulation is significantly weaker than that predicted if the blackbody upscattering were the dominant source of γ-rays. This argues for a significant contribution from γ-rays produced by the synchrotron self-Compton process. We have found that such strong contribution is possible if the jet is strongly clumped. We reproduce the observed hard-state average broad-band spectrum using a self-consistent jet model, taking into account all the relevant emission processes, e± pair absorption and clumping. This model also reproduces the amplitude of the observed orbital modulation.

  8. High-energy gamma-ray emission from solar flares: Constraining the accelerated proton spectrum

    Science.gov (United States)

    Alexander, David; Dunphy, Philip P.; Mackinnon, Alexander L.

    1994-01-01

    Using a multi-component model to describe the gamma-ray emission, we investigate the flares of December 16, 1988 and March 6, 1989 which exhibited unambiguous evidence of neutral pion decay. The observations are then combined with theoretical calculations of pion production to constrain the accelerated proton spectra. The detection of pi(sup 0) emission alone can indicate much about the energy distribution and spectral variation of the protons accelerated to pion producing energies. Here both the intensity and detailed spectral shape of the Doppler-broadened pi(sup 0) decay feature are used to determine the spectral form of the accelerated proton energy distribution. The Doppler width of this gamma-ray emission provides a unique diagnostic of the spectral shape at high energies, independent of any normalisation. To our knowledge, this is the first time that this diagnostic has been used to constrain the proton spectra. The form of the energetic proton distribution is found to be severely limited by the observed intensity and Doppler width of the pi(sup 0) decay emission, demonstrating effectively the diagnostic capabilities of the pi(sup 0) decay gamma-rays. The spectral index derived from the gamma-ray intensity is found to be much harder than that derived from the Doppler width. To reconcile this apparent discrepancy we investigate the effects of introducing a high-energy cut-off in the accelerated proton distribution. With cut-off energies of around 0.5-0.8 GeV and relatively hard spectra, the observed intensities and broadening can be reproduced with a single energetic proton distribution above the pion production threshold.

  9. Active neutron and gamma-ray imaging of highly enriched uranium for treaty verification.

    Science.gov (United States)

    Hamel, Michael C; Polack, J Kyle; Ruch, Marc L; Marcath, Matthew J; Clarke, Shaun D; Pozzi, Sara A

    2017-08-11

    The detection and characterization of highly enriched uranium (HEU) presents a large challenge in the non-proliferation field. HEU has a low neutron emission rate and most gamma rays are low energy and easily shielded. To address this challenge, an instrument known as the dual-particle imager (DPI) was used with a portable deuterium-tritium (DT) neutron generator to detect neutrons and gamma rays from induced fission in HEU. We evaluated system response using a 13.7-kg HEU sphere in several configurations with no moderation, high-density polyethylene (HDPE) moderation, and tungsten moderation. A hollow tungsten sphere was interrogated to evaluate the response to a possible hoax item. First, localization capabilities were demonstrated by reconstructing neutron and gamma-ray images. Once localized, additional properties such as fast neutron energy spectra and time-dependent neutron count rates were attributed to the items. For the interrogated configurations containing HEU, the reconstructed neutron spectra resembled Watt spectra, which gave confidence that the interrogated items were undergoing induced fission. The time-dependent neutron count rate was also compared for each configuration and shown to be dependent on the neutron multiplication of the item. This result showed that the DPI is a viable tool for localizing and confirming fissile mass and multiplication.

  10. THE 2010 VERY HIGH ENERGY gamma-RAY FLARE AND 10 YEARS OF MULTI-WAVELENGTH OBSERVATIONS OF M 87

    OpenAIRE

    Abramowski, A.; Acero, F.; Aharonian, F.; Akhperjanian, A. G.; Anton, G.; Balzer, A.; Barnacka, A.; de Almeida, U. Barres; Becherini, Y.; Becker, J.; Behera, B.; Bernloehr, K.; Birsin, E.; Biteau, J.; Bochow, A.

    2012-01-01

    The giant radio galaxy M 87 with its proximity (16 Mpc), famous jet, and very massive black hole ((3-6) x 10(9) M-circle dot) provides a unique opportunity to investigate the origin of very high energy (VHE; E > 100 GeV) gamma-ray emission generated in relativistic outflows and the surroundings of supermassive black holes. M 87 has been established as a VHE gamma-ray emitter since 2006. The VHE gamma-ray emission displays strong variability on timescales as short as a day. In this paper, resu...

  11. BiI3 Crystals for High Energy Resolution Gamma-Ray Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Nino, Juan C. [Univ. of Florida, Gainesville, FL (United States); Baciak, James [Univ. of Florida, Gainesville, FL (United States); Johns, Paul [Univ. of Florida, Gainesville, FL (United States); Sulekar, Soumitra [Univ. of Florida, Gainesville, FL (United States); Totten, James [Univ. of Florida, Gainesville, FL (United States); Nimmagadda, Jyothir [Univ. of Florida, Gainesville, FL (United States)

    2017-04-12

    BiI3 had been investigated for its unique properties as a layered compound semiconductor for many decades. However, despite the exceptional atomic, physical, and electronic properties of this material, good resolution gamma ray spectra had never been reported for BiI3. The shortcomings that previously prevented BiI3 from reaching success as a gamma ray sensor were, through this project, identified and suppressed to unlock the performance of this promising compound. Included in this work were studies on a number of methods which have, for the first time, enabled BiI3 to exhibit spectral performance rivaling many other candidate semiconductors for room temperature gamma ray sensors. New approaches to crystal growth were explored that allow BiI3 spectrometers to be fabricated with up to 2.2% spectral resolution at 662 keV. Fundamental studies on trap states, dopant incorporation, and polarization were performed to enhance performance of this compound. Additionally, advanced detection techniques were applied to display the capabilities of high quality BiI3 spectrometers. Overall, through this work, BiI3 has been revealed as a potentially transformative material for nuclear security and radiation detection sciences.

  12. Diffuse galactic gamma rays at intermediate and high latitudes. Pt. 1. Constraints on the ISM properties

    Energy Technology Data Exchange (ETDEWEB)

    Cholis, Ilias; Tavakoli, Maryam; Ullio, Piero [SISSA, Trieste (Italy); INFN, Trieste (Italy); Evoli, Carmelo [SISSA, Trieste (Italy); Chinese Academy of Sciences, Beijing (China). National Astronomical Observatories; Maccione, Luca [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2011-06-15

    We study the high latitude (vertical stroke b vertical stroke >10 ) diffuse {gamma}-ray emission in the Galaxy in light of the recently published data from the Fermi collaboration at energies between 100 MeV and 100 GeV. The unprecedented accuracy in these measurements allows to probe and constrain the properties of sources and propagation of cosmic rays (CRs) in the Galaxy, as well as confirming conventional assumptions made on the interstellar medium (ISM). Using the publicly available DRAGON code, that has been shown to reproduce local measurements of CRs, we study assumptions made in the literature on HI and H2 gas distributions in the ISM, and non spatially uniform models of diffusion in the Galaxy. By performing a combined analysis of CR and {gamma}-ray spectra, we derive constraints on the properties of the ISM gas distribution and the vertical scale height of galactic CR diffusion, which may have implications also on indirect Dark Matter detection. We also discuss some of the possible interpretations of the break at {proportional_to}230 GeV in CR protons and helium spectra, recently observed by PAMELA and their impact on {gamma}-rays. (orig.)

  13. On the high energy gamma ray spectrum and the particle production model

    International Nuclear Information System (INIS)

    Ohta, Itaru; Tezuka, Ikuo.

    1979-01-01

    A small emulsion chamber, 25 cm x 20 cm in area and 12 radiation lengths in thick, was exposed with JAL jet-cargo at an atmospheric depth of 260 g/cm 2 during 150 hrs. The gamma ray spectrum derived by combining data from X-ray films and nuclear emulsions is well represented by I sub(r) (>=Er) = (3.65 +- 0.30) x 10 -8 [E sub(r)/TeV]sup(-1.89+0.06-0.09)/cm 2 sr sec in the energy range 200 - 3,000 GeV. This result is in good agreement with those of several other groups. We discuss our data in terms of Feynman's and Koba-Nielsen-Olesen's scaling law of high energy particle production model. Interpreted in terms of an assumption of mild violation of the scaling law as x.d delta-s / delta-s indx = AE sup(2a)exp (-BE sup(a)x), our gamma ray spectrum results suggest an existence of a violation parameter of a = 0.18, which is consistent with results from gamma ray spectrum observations at great depth such as the mountain elevations. (author)

  14. A data acquisition and control system for high-speed gamma-ray tomography

    Science.gov (United States)

    Hjertaker, B. T.; Maad, R.; Schuster, E.; Almås, O. A.; Johansen, G. A.

    2008-09-01

    A data acquisition and control system (DACS) for high-speed gamma-ray tomography based on the USB (Universal Serial Bus) and Ethernet communication protocols has been designed and implemented. The high-speed gamma-ray tomograph comprises five 500 mCi 241Am gamma-ray sources, each at a principal energy of 59.5 keV, which corresponds to five detector modules, each consisting of 17 CdZnTe detectors. The DACS design is based on Microchip's PIC18F4550 and PIC18F4620 microcontrollers, which facilitates an USB 2.0 interface protocol and an Ethernet (IEEE 802.3) interface protocol, respectively. By implementing the USB- and Ethernet-based DACS, a sufficiently high data acquisition rate is obtained and no dedicated hardware installation is required for the data acquisition computer, assuming that it is already equipped with a standard USB and/or Ethernet port. The API (Application Programming Interface) for the DACS is founded on the National Instrument's LabVIEW® graphical development tool, which provides a simple and robust foundation for further application software developments for the tomograph. The data acquisition interval, i.e. the integration time, of the high-speed gamma-ray tomograph is user selectable and is a function of the statistical measurement accuracy required for the specific application. The bandwidth of the DACS is 85 kBytes s-1 for the USB communication protocol and 28 kBytes s-1 for the Ethernet protocol. When using the iterative least square technique reconstruction algorithm with a 1 ms integration time, the USB-based DACS provides an online image update rate of 38 Hz, i.e. 38 frames per second, whereas 31 Hz for the Ethernet-based DACS. The off-line image update rate (storage to disk) for the USB-based DACS is 278 Hz using a 1 ms integration time. Initial characterization of the high-speed gamma-ray tomograph using the DACS on polypropylene phantoms is presented in the paper.

  15. A data acquisition and control system for high-speed gamma-ray tomography

    International Nuclear Information System (INIS)

    Hjertaker, B T; Maad, R; Schuster, E; Almås, O A; Johansen, G A

    2008-01-01

    A data acquisition and control system (DACS) for high-speed gamma-ray tomography based on the USB (Universal Serial Bus) and Ethernet communication protocols has been designed and implemented. The high-speed gamma-ray tomograph comprises five 500 mCi 241 Am gamma-ray sources, each at a principal energy of 59.5 keV, which corresponds to five detector modules, each consisting of 17 CdZnTe detectors. The DACS design is based on Microchip's PIC18F4550 and PIC18F4620 microcontrollers, which facilitates an USB 2.0 interface protocol and an Ethernet (IEEE 802.3) interface protocol, respectively. By implementing the USB- and Ethernet-based DACS, a sufficiently high data acquisition rate is obtained and no dedicated hardware installation is required for the data acquisition computer, assuming that it is already equipped with a standard USB and/or Ethernet port. The API (Application Programming Interface) for the DACS is founded on the National Instrument's LabVIEW® graphical development tool, which provides a simple and robust foundation for further application software developments for the tomograph. The data acquisition interval, i.e. the integration time, of the high-speed gamma-ray tomograph is user selectable and is a function of the statistical measurement accuracy required for the specific application. The bandwidth of the DACS is 85 kBytes s −1 for the USB communication protocol and 28 kBytes s −1 for the Ethernet protocol. When using the iterative least square technique reconstruction algorithm with a 1 ms integration time, the USB-based DACS provides an online image update rate of 38 Hz, i.e. 38 frames per second, whereas 31 Hz for the Ethernet-based DACS. The off-line image update rate (storage to disk) for the USB-based DACS is 278 Hz using a 1 ms integration time. Initial characterization of the high-speed gamma-ray tomograph using the DACS on polypropylene phantoms is presented in the paper

  16. A gamma-ray burst with a high-energy spectral component inconsistent with the synchrotron shock model.

    Science.gov (United States)

    González, M M; Dingus, B L; Kaneko, Y; Preece, R D; Dermer, C D; Briggs, M S

    2003-08-14

    Gamma-ray bursts are among the most powerful events in nature. These events release most of their energy as photons with energies in the range from 30 keV to a few MeV, with a smaller fraction of the energy radiated in radio, optical, and soft X-ray afterglows. The data are in general agreement with a relativistic shock model, where the prompt and afterglow emissions correspond to synchrotron radiation from shock-accelerated electrons. Here we report an observation of a high-energy (multi-MeV) spectral component in the burst of 17 October 1994 that is distinct from the previously observed lower-energy gamma-ray component. The flux of the high-energy component decays more slowly and its fluence is greater than the lower-energy component; it is described by a power law of differential photon number index approximately -1 up to about 200 MeV. This observation is difficult to explain with the standard synchrotron shock model, suggesting the presence of new phenomena such as a different non-thermal electron process, or the interaction of relativistic protons with photons at the source.

  17. Prompt Gamma Ray Spectroscopy for process monitoring

    International Nuclear Information System (INIS)

    Zoller, W.H.; Holmes, J.L.

    1991-01-01

    Prompt Gamma Ray Spectroscopy (PGRS) is a very powerful analytical technique able to measure many metallic, contamination problem elements. The technique involves measurement of gamma rays that are emitted by nuclei upon capturing a neutron. This method is sensitive not only to the target element but also to the particular isotope of that element. PGRS is capable of measuring dissolved metal ions in a flowing system. In the field, isotopic neutron sources are used to produce the desired neutron flux ( 252 Cf can produce neutron flux of the order of 10 8 neutrons/cm 2 --sec.). Due to high penetrating power of gamma radiation, high efficiency gamma ray detectors can be placed in an appropriate geometry to maximize sensitivity, providing real-time monitoring with low detection level capabilities

  18. Neutron detection in a high gamma-ray background with EJ-301 and EJ-309 liquid scintillators

    International Nuclear Information System (INIS)

    Stevanato, L.; Cester, D.; Nebbia, G.; Viesti, G.

    2012-01-01

    Using a fast digitizer, the neutron–gamma discrimination capability of the new liquid scintillator EJ-309 is compared with that obtained using standard EJ-301. Moreover the capability of both the scintillation detectors to identify a weak neutron source in a high gamma-ray background is demonstrated. The probability of neutron detection is PD=95% at 95% confidence level for a gamma-ray background corresponding to a dose rate of 100 μSv/h.

  19. Stacked search for time shifted high energy neutrinos from gamma ray bursts with the Antares neutrino telescope

    International Nuclear Information System (INIS)

    Adrian-Martinez, S.; Ardid, M.; Felis, I.; Martinez-Mora, J.A.; Saldana, M.; Albert, A.; Drouhin, D.; Racca, C.; Andre, M.; Anghinolfi, M.; Anton, G.; Eberl, T.; Enzenhoefer, A.; Fehn, K.; Folger, F.; Geisselsoeder, S.; Geyer, K.; Gleixner, A.; Graf, K.; Hallmann, S.; Hoessl, J.; Hofestaedt, J.; James, C.W.; Kalekin, O.; Katz, U.; Kiessling, D.; Lahmann, R.; Richter, R.; Roensch, K.; Schmid, J.; Schnabel, J.; Seitz, T.; Sieger, C.; Tselengidou, M.; Wagner, S.; Aubert, J.J.; Bertin, V.; Brunner, J.; Busto, J.; Carr, J.; Costantini, H.; Coyle, P.; Dornic, D.; Mathieu, A.; Vallee, C.; Baret, B.; Barrios-Marti, J.; Hernandez-Rey, J.J.; Sanchez-Losa, A.; Toennis, C.; Zornoza, J.D.; Zuniga, J.; Basa, S.; Marcelin, M.; Nezri, E.; Biagi, S.; Coniglione, R.; Distefano, C.; Piattelli, P.; Riccobene, G.; Sapienza, P.; Trovato, A.; Bormuth, R.; Jong, M. de; Samtleben, D.F.E.; Bouwhuis, M.C.; Heijboer, A.J.; Michael, T.; Steijger, J.J.M.; Visser, E.; Bruijn, R.; Capone, A.; De Bonis, G.; Fermani, P.; Perrina, C.; Caramete, L.; Pavalas, G.E.; Popa, V.; Chiarusi, T.; Circella, M.; Creusot, A.; Galata, S.; Gracia-Ruiz, R.; Van Elewyck, V.; Dekeyser, I.; Lefevre, D.; Tamburini, C.; Deschamps, A.; Hello, Y.; Donzaud, C.; Dumas, A.; Gay, P.; Elsaesser, D.; Kadler, M.; Kreter, M.; Mueller, C.; Fusco, L.A.; Margiotta, A.; Pellegrino, C.; Spurio, M.; Giordano, V.; Haren, H. van; Hugon, C.; Taiuti, M.; Kooijman, P.; Kouchner, A.; Kreykenbohm, I.; Wilms, J.; Kulikovskiy, V.; Leonora, E.; Loucatos, S.; Marinelli, A.; Migliozzi, P.; Moussa, A.; Pradier, T.; Sanguineti, M.; Schuessler, F.; Stolarczyk, T.; Vallage, B.; Vivolo, D.

    2017-01-01

    A search for high-energy neutrino emission correlated with gamma-ray bursts outside the electromagnetic prompt-emission time window is presented. Using a stacking approach of the time delays between reported gamma-ray burst alerts and spatially coincident muon-neutrino signatures, data from the Antares neutrino telescope recorded between 2007 and 2012 are analysed. One year of public data from the IceCube detector between 2008 and 2009 have been also investigated. The respective timing profiles are scanned for statistically significant accumulations within 40 days of the Gamma Ray Burst, as expected from Lorentz Invariance Violation effects and some astrophysical models. No significant excess over the expected accidental coincidence rate could be found in either of the two data sets. The average strength of the neutrino signal is found to be fainter than one detectable neutrino signal per hundred gamma-ray bursts in the Antares data at 90% confidence level. (orig.)

  20. Gamma ray heating rates due to chromium isotopes in stellar core during late stages of high mass stars (>10M⊙

    Directory of Open Access Journals (Sweden)

    Nabi Jameel-Un

    2017-01-01

    Full Text Available Gamma ray heating rates are thought to play a crucial role during the pre-supernova stage of high mass stars. Gamma ray heating rates, due to β±-decay and electron (positron capture on chromium isotopes, are calculated using proton-neutron quasiparticle random phase approximation theory. The electron capture significantly affects the lepton fraction (Ye and accelerates the core contraction. The gamma rays emitted as a result of weak processes heat the core and tend to hinder the cooling and contraction due to electron capture and neutrino emission. The emitted gamma rays tend to produce enormous entropy and set the convection to play its role at this stage. The gamma heating rates, on 50-60Cr, are calculated for the density range 10 < ρ (g.cm-3 < 1011 and temperature range 107 < T (K < 3.0×1010.

  1. Stacked search for time shifted high energy neutrinos from gamma ray bursts with the Antares neutrino telescope

    Energy Technology Data Exchange (ETDEWEB)

    Adrian-Martinez, S.; Ardid, M.; Felis, I.; Martinez-Mora, J.A.; Saldana, M. [Universitat Politecnica de Valencia, Institut d' Investigacio per a la Gestio Integrada de les Zones Costaneres (IGIC), Gandia (Spain); Albert, A.; Drouhin, D.; Racca, C. [GRPHE-Institut Universitaire de Technologie de Colmar, 34 rue du Grillenbreit, BP 50568, Colmar (France); Andre, M. [Technical University of Catalonia, Laboratory of Applied Bioacoustics, Vilanova i la Geltru, Barcelona (Spain); Anghinolfi, M. [INFN-Sezione di Genova, Genoa (Italy); Anton, G.; Eberl, T.; Enzenhoefer, A.; Fehn, K.; Folger, F.; Geisselsoeder, S.; Geyer, K.; Gleixner, A.; Graf, K.; Hallmann, S.; Hoessl, J.; Hofestaedt, J.; James, C.W.; Kalekin, O.; Katz, U.; Kiessling, D.; Lahmann, R.; Richter, R.; Roensch, K.; Schmid, J.; Schnabel, J.; Seitz, T.; Sieger, C.; Tselengidou, M.; Wagner, S. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen Centre for Astroparticle Physics, Erlangen (Germany); Aubert, J.J.; Bertin, V.; Brunner, J.; Busto, J.; Carr, J.; Costantini, H.; Coyle, P.; Dornic, D.; Mathieu, A.; Vallee, C. [CPPM, Aix-Marseille Universite, CNRS/IN2P3, Marseille (France); Baret, B.; Barrios-Marti, J.; Hernandez-Rey, J.J.; Sanchez-Losa, A.; Toennis, C.; Zornoza, J.D.; Zuniga, J. [CSIC-Universitat de Valencia, IFIC-Instituto de Fisica Corpuscular, Edificios Investigacion de Paterna, Paterna, Valencia (Spain); Basa, S.; Marcelin, M.; Nezri, E. [Pole de l' Etoile Site de Chateau-Gombert, LAM-Laboratoire d' Astrophysique de Marseille, Marseille Cedex 13 (France); Biagi, S.; Coniglione, R.; Distefano, C.; Piattelli, P.; Riccobene, G.; Sapienza, P.; Trovato, A. [INFN-Laboratori Nazionali del Sud (LNS), Catania (Italy); Bormuth, R.; Jong, M. de; Samtleben, D.F.E. [Nikhef, Science Park, Amsterdam (Netherlands); Universiteit Leiden, Leids Instituut voor Onderzoek in Natuurkunde, Leiden (Netherlands); Bouwhuis, M.C.; Heijboer, A.J.; Michael, T.; Steijger, J.J.M.; Visser, E. [Nikhef, Science Park, Amsterdam (Netherlands); Bruijn, R. [Nikhef, Science Park, Amsterdam (Netherlands); Universiteit van Amsterdam, Instituut voor Hoge-Energie Fysica, Amsterdam (Netherlands); Capone, A.; De Bonis, G.; Fermani, P.; Perrina, C. [INFN-Sezione di Roma, Rome (Italy); Dipartimento di Fisica dell' Universita La Sapienza, Rome (Italy); Caramete, L.; Pavalas, G.E.; Popa, V. [Institute for Space Sciences, Bucharest, Magurele (Romania); Chiarusi, T. [INFN-Sezione di Bologna, Bologna (Italy); Circella, M. [INFN-Sezione di Bari, Bari (Italy); Creusot, A.; Galata, S.; Gracia-Ruiz, R.; Van Elewyck, V. [APC, Universite Paris Diderot, CNRS/IN2P3, CEA/IRFU, Observatoire de Paris, Sorbonne Paris Cite, Paris (France); Dekeyser, I.; Lefevre, D.; Tamburini, C. [Aix-Marseille University, Mediterranean Institute of Oceanography (MIO), Marseille Cedex 9 (France); Universite du Sud Toulon-Var, CNRS-INSU/IRD UM 110, La Garde Cedex (France); Deschamps, A.; Hello, Y. [Geoazur, Universite Nice Sophia-Antipolis, CNRS/INSU, IRD, Observatoire de la Cote d' Azur, Sophia Antipolis (France); Donzaud, C. [APC, Universite Paris Diderot, CNRS/IN2P3, CEA/IRFU, Observatoire de Paris, Sorbonne Paris Cite, Paris (France); Universite Paris-Sud, Orsay Cedex (France); Dumas, A.; Gay, P. [Clermont Universite, Universite Blaise Pascal, CNRS/IN2P3, Laboratoire de Physique Corpusculaire, BP 10448, Clermont-Ferrand (France); Elsaesser, D.; Kadler, M.; Kreter, M.; Mueller, C. [Universitaet Wuerzburg, Institut fuer Theoretische Physik und Astrophysik, Wuerzburg (Germany); Fusco, L.A.; Margiotta, A.; Pellegrino, C.; Spurio, M. [INFN-Sezione di Bologna, Bologna (Italy); Dipartimento di Fisica dell' Universita, Bologna (Italy); Giordano, V. [INFN-Sezione di Catania, Catania (Italy); Haren, H. van [Royal Netherlands Institute for Sea Research (NIOZ), ' t Horntje, Texel (Netherlands); Hugon, C.; Taiuti, M. [INFN-Sezione di Genova, Genoa (Italy); Dipartimento di Fisica dell' Universita, Genoa (Italy); Kooijman, P. [Nikhef, Science Park, Amsterdam (Netherlands); Universiteit Utrecht, Faculteit Betawetenschappen, Utrecht (Netherlands); Universiteit van Amsterdam, Instituut voor Hoge-Energie Fysica, Amsterdam (Netherlands); Kouchner, A. [APC, Universite Paris Diderot, CNRS/IN2P3, CEA/IRFU, Observatoire de Paris, Sorbonne Paris Cite, Paris (France); Institut Universitaire de France, Paris (France); Kreykenbohm, I.; Wilms, J. [Universitaet Erlangen-Nuernberg, Dr. Remeis-Sternwarte and ECAP, Bamberg (Germany); Kulikovskiy, V. [INFN-Laboratori Nazionali del Sud (LNS), Catania (Italy); Moscow State University, Skobeltsyn Institute of Nuclear Physics, Moscow (Russian Federation); Leonora, E. [INFN-Sezione di Catania, Catania (Italy); Dipartimento di Fisica ed Astronomia dell' Universita, Catania (Italy); Loucatos, S. [APC, Universite Paris Diderot, CNRS/IN2P3, CEA/IRFU, Observatoire de Paris, Sorbonne Paris Cite, Paris (France); CEA Saclay, Direction des Sciences de la Matiere, Institut de recherche sur les lois fondamentales de l' Univers, Service de Physique des Particules, Gif-sur-Yvette Cedex (France); Marinelli, A. [INFN-Sezione di Pisa, Pisa (Italy); Dipartimento di Fisica dell' Universita, Pisa (Italy); Migliozzi, P. [INFN-Sezione di Napoli, Naples (IT); Moussa, A. [University Mohammed I, Laboratory of Physics of Matter and Radiations, Oujda (MA); Pradier, T. [Universite de Strasbourg et CNRS/IN2P3, IPHC-Institut Pluridisciplinaire Hubert Curien, 23 rue du Loess, BP 28, Strasbourg Cedex 2 (FR); Sanguineti, M. [Dipartimento di Fisica dell' Universita, Genoa (IT); Schuessler, F.; Stolarczyk, T.; Vallage, B. [CEA Saclay, Direction des Sciences de la Matiere, Institut de recherche sur les lois fondamentales de l' Univers, Service de Physique des Particules, Gif-sur-Yvette Cedex (FR); Vivolo, D. [INFN-Sezione di Napoli, Naples (IT); Dipartimento di Fisica dell' Universita Federico II di Napoli, Naples (IT)

    2017-01-15

    A search for high-energy neutrino emission correlated with gamma-ray bursts outside the electromagnetic prompt-emission time window is presented. Using a stacking approach of the time delays between reported gamma-ray burst alerts and spatially coincident muon-neutrino signatures, data from the Antares neutrino telescope recorded between 2007 and 2012 are analysed. One year of public data from the IceCube detector between 2008 and 2009 have been also investigated. The respective timing profiles are scanned for statistically significant accumulations within 40 days of the Gamma Ray Burst, as expected from Lorentz Invariance Violation effects and some astrophysical models. No significant excess over the expected accidental coincidence rate could be found in either of the two data sets. The average strength of the neutrino signal is found to be fainter than one detectable neutrino signal per hundred gamma-ray bursts in the Antares data at 90% confidence level. (orig.)

  2. Cosmic and solar gamma-ray x-ray and particle measurements from high altitude balloons in Antarctica

    International Nuclear Information System (INIS)

    Lin, R.P.

    1990-01-01

    For measurements of cosmic and solar gamma-rays, hard X-rays, and particles, Antarctica offers the potential for very long, 10--20 day, continuous, twenty-four-hour-a-day observations, with balloon flights circling the South Pole during austral summer. For X-ray/gamma-ray sources at high south latitude the overlying atmosphere is minimized, and for cosmic ray measurements the low geomagnetic cutoff permits entry of low rigidity particles. The first Antarctic flight of a heavy (∼2400 lb.) payload on a large (11.6x10 6 cu. ft.) balloon took place in January, 1988, to search for the gamma-ray lines of 56 Co produced in the new supernova SN 1987A in the Large Magellanic Cloud. The long duration balloon flights presently planned from Antarctica include those for further gamma-ray/hard X-ray studies of SN 1987A and for the NASA Max '91 program for solar flare studies

  3. The application of two-dimensional imaging to very high energy gamma ray astronomy

    International Nuclear Information System (INIS)

    Weekes, T.C.

    1992-05-01

    A technique has been developed to distinguish air showers generated by gamma rays from those generated by hadronic cosmic rays. The method involves the registration of the Cherenkov light images by a large aperture multi-phototube telescope at the Whipple Observatory in southern Arizona. The energy threshold is 0.4 TeV. The efficacy of the technique has been demonstrated by the detection of a signal from the Crab Nebula, a supernova remnant. The physics of shower development at TeV energies is demonstrated to be what is expected, and no support is found for the detection of anomalous signals from binary sources. The sensitivity of the technique is such that a five sigma gamma-ray signal from the Crab can be detected in just an hour of observation. Further improvements in the technique are under way; in particular, a second large aperture camera is now operated in conjunction with the original camera to give stereoscopic images of showers. When completed, this system will give a flux sensitivity a factor of ten below that now available

  4. Probing Pre-Galactic Metal Enrichment with High-Redshift Gamma-Ray Bursts

    Science.gov (United States)

    Wang, F. Y.; Bromm, Volker; Greif, Thomas H.; Stacy, Athena; Dai, Z. G.; Loeb, Abraham; Cheng, K. S.

    2012-01-01

    We explore high-redshift gamma-ray bursts (GRBs) as promising tools to probe pre-galactic metal enrichment. We utilize the bright afterglow of a Population III (Pop III) GRB exploding in a primordial dwarf galaxy as a luminous background source, and calculate the strength of metal absorption lines that are imprinted by the first heavy elements in the intergalactic medium (IGM). To derive the GRB absorption line diagnostics, we use an existing highly resolved simulation of the formation of a first galaxy which is characterized by the onset of atomic hydrogen cooling in a halo with virial temperature approximately greater than10(exp 4) K.We explore the unusual circumburst environment inside the systems that hosted Pop III stars, modeling the density evolution with the self-similar solution for a champagne flow. For minihalos close to the cooling threshold, the circumburst density is roughly proportional to (1 + z) with values of about a few cm(exp -3). In more massive halos, corresponding to the first galaxies, the density may be larger, n approximately greater than100 cm(exp -3). The resulting afterglow fluxes are weakly dependent on redshift at a fixed observed time, and may be detectable with the James Webb Space Telescope and Very Large Array in the near-IR and radio wavebands, respectively, out to redshift z approximately greater than 20. We predict that the maximum of the afterglow emission shifts from near-IR to millimeter bands with peak fluxes from mJy to Jy at different observed times. The metal absorption line signature is expected to be detectable in the near future. GRBs are ideal tools for probing the metal enrichment in the early IGM, due to their high luminosities and featureless power-law spectra. The metals in the first galaxies produced by the first supernova (SN) explosions are likely to reside in low-ionization stages (C II, O I, Si II and Fe II). We show that, if the afterglow can be observed sufficiently early, analysis of the metal lines may

  5. Full energy peak efficiency of composite detectors for high energy gamma-rays

    International Nuclear Information System (INIS)

    Kshetri, Ritesh

    2015-01-01

    Experiments involving radioactive beams demand high detection efficiencies. One of the ways to obtain high detection efficiency without deteriorating the energy resolution or timing characteristics is the use of composite detectors which are composed of standard HPGe crystals arranged in a compact way. Two simplest composite detectors are the clover and cluster detectors. The TRIUMF-ISAC Gamma-Ray Escape-Suppressed Spectrometer (TIGRESS) comprises of 16 large volume, 32-fold segmented HPGe clover detectors, where each detector is shielded by a 20-fold segmented escape suppression shield (ESS)

  6. High energy radiation from black holes gamma rays, cosmic rays, and neutrinos

    CERN Document Server

    Dermer, Charles D

    2009-01-01

    Bright gamma-ray flares observed from sources far beyond our Milky Way Galaxy are best explained if enormous amounts of energy are liberated by black holes. The highest- energy particles in nature--the ultra-high-energy cosmic rays--cannot be confined by the Milky Way's magnetic field, and must originate from sources outside our Galaxy. Understanding these energetic radiations requires an extensive theoretical framework involving the radiation physics and strong-field gravity of black holes. In High Energy Radiation from Black Holes, Charles Dermer and Govind Menon present a systemat

  7. Biological dose estimation for accidental supra-high dose gamma-ray exposure

    International Nuclear Information System (INIS)

    Chen, Y.; Yan, X.K.; Du, J.; Wang, Z.D.; Zhang, X.Q.; Zeng, F.G.; Zhou, P.K.

    2011-01-01

    To correctly estimate the biological dose of victims accidentally exposed to a very high dose of 60 Co gamma-ray, a new dose-effect curve of chromosomal dicentrics/multicentrics and rings in the supra-high dose range was established. Peripheral blood from two healthy men was irradiated in vitro with doses of 60 Co gamma-rays ranging from 6 to 22 Gy at a dose rate of 2.0 Gy/min. Lymphocytes were concentrated, cultured and harvested at 52 h, 68 h and 72 h. The numbers of dic + r were counted. The dose-effect curves were established and validated using comparisons with doses from the Tokai-mura accident and were then applied to two victims of supra-high dose exposure accident. The results indicated that there were no significant differences in chromosome aberration frequency among the different culture times from 52 h to 72 h. The 6-22 Gy dose-effect curve was fitted to a linear quadratic model Y = -2.269 + 0.776D - 7.868 x l0 -3 D 2 . Using this mathematic model, the dose estimates were similar to data from Tokai-mura which were estimated by PCC ring. Whole body average doses of 9.7 Gy and 18.1 Gy for two victims in the Jining accident were satisfactorily given. We established and successfully applied a new dose-effect curve of chromosomal dicentrics plus ring (dic + r) after 6-22 Gy γ-irradiation from a supra-high dose 60 Co gamma-ray accident.

  8. THE HIGH-ENERGY, ARCMINUTE-SCALE GALACTIC CENTER GAMMA-RAY SOURCE

    International Nuclear Information System (INIS)

    Chernyakova, M.; Malyshev, D.; Aharonian, F. A.; Crocker, R. M.; Jones, D. I.

    2011-01-01

    Employing data collected during the first 25 months of observations by the Fermi-LAT, we describe and subsequently seek to model the very high energy (>300 MeV) emission from the central few parsecs of our Galaxy. We analyze the morphological, spectral, and temporal characteristics of the central source, 1FGL J1745.6-2900. The data show a clear, statistically significant signal at energies above 10 GeV, where the Fermi-LAT has angular resolution comparable to that of HESS at TeV energies. This makes a meaningful joint analysis of the data possible. Our analysis of the Fermi data (alone) does not uncover any statistically significant variability of 1FGL J1745.6-2900 at GeV energies on the month timescale. Using the combination of Fermi data on 1FGL J1745.6-2900 and HESS data on the coincident, TeV source HESS J1745-290, we show that the spectrum of the central gamma-ray source is inflected with a relatively steep spectral region matching between the flatter spectrum found at both low and high energies. We model the gamma-ray production in the inner 10 pc of the Galaxy and examine cosmic ray (CR) proton propagation scenarios that reproduce the observed spectrum of the central source. We show that a model that instantiates a transition from diffusive propagation of the CR protons at low energy to almost rectilinear propagation at high energies can explain well the spectral phenomenology. We find considerable degeneracy between different parameter choices which will only be broken with the addition of morphological information that gamma-ray telescopes cannot deliver given current angular resolution limits. We argue that a future analysis performed in combination with higher-resolution radio continuum data holds out the promise of breaking this degeneracy.

  9. Measurement of the high-energy gamma-ray emission from the Moon with the Fermi Large Area Telescope

    CERN Document Server

    Ackermann, M.; Albert, A.; Atwood, W. B.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; Bissaldi, E.; Blandford, R. D.; Bonino, R.; Bottacini, E.; Bregeon, J.; Bruel, P.; Buehler, R.; Caliandro, G. A.; Cameron, R. A.; Caragiulo, M.; Caraveo, P.A.; Cavazzuti, E.; Cecchi, C.; Chekhtman, A.; Chiang, J.; Chiaro, G.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Costanza, F.; Cuoco, A.; Cutini, S.; D'Ammando, F.; de Angelis, A.; de Palma, F.; Desiante, R.; Digel, S.W.; Di Venere, L.; Drell, P.S.; Favuzzi, C.; Fegan, S.J.; Focke, W.B.; Franckowiak, A.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Giglietto, N.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Grenier, I. A.; Grove, J.E.; Guiriec, S.; Harding, A. K.; Hewitt, J. W.; Horan, D.; Hou, X.; Iafrate, G.; Jóhannesson, G.; Kamae, T.; Kuss, M.; Larsson, S.; Latronico, L.; Li, J.; Li, L.; Longo, F.; Loparco, F.; Lovellette, M.N.; Lubrano, P.; Magill, J.; Maldera, S.; Manfreda, A.; Mayer, M.; Mazziotta, M.N.; Michelson, P.F.; Mitthumsiri, W.; Mizuno, T.; Monzani, M.E.; Morselli, A.; Murgia, S.; Nuss, E.; Omodei, N.; Orlando, E.; Ormes, J.F.; Paneque, D.; Perkins, J. S.; Pesce-Rollins, M.; Petrosian, V.; Piron, F.; Pivato, G.; Rainò, S.; Rando, R.; Razzano, M.; Reimer, A.; Reimer, O.; Sgrò, C.; Reposeur, T.; Siskind, E.J.; Spada, F.; Spandre, G.; Spinelli, P.; Takahashi, H.; Thayer, J.B.; Thompson, D.J.; Tibaldo, L.; Torres, D. F.; Tosti, G.; Troja, E.; Vianello, G.; Winer, B. L.; Wood, K. S.; Yassine, M.; Cerutti, F.; Ferrari, A.; Sala, P.R.

    2016-01-01

    We have measured the gamma-ray emission spectrum of the Moon using the data collected by the Large Area Telescope onboard the Fermi satellite during its first 7 years of operation, in the energy range from 30 MeV up to a few GeV. We have also studied the time evolution of the flux, finding a correlation with the solar activity. We have developed a full Monte Carlo simulation describing the interactions of cosmic rays with the lunar surface. The results of the present analysis can be explained in the framework of this model, where the production of gamma rays is due to the interactions of cosmic-ray proton and helium nuclei with the surface of the Moon. Finally, we have used our simulation to derive the cosmic-ray proton and helium spectra near Earth from the Moon gamma-ray data.

  10. High-resolution gamma-ray spectroscopy with a microwave-multiplexed transition-edge sensor array

    Energy Technology Data Exchange (ETDEWEB)

    Noroozian, Omid [National Institute of Standards and Technology, Boulder, Colorado 80305 (United States); Center for Astrophysics and Space Astronomy, University of Colorado, Boulder, Colorado 80309 (United States); Mates, John A. B.; Bennett, Douglas A.; Brevik, Justus A.; Fowler, Joseph W.; Gao, Jiansong; Hilton, Gene C.; Horansky, Robert D.; Irwin, Kent D.; Schmidt, Daniel R.; Vale, Leila R.; Ullom, Joel N. [National Institute of Standards and Technology, Boulder, Colorado 80305 (United States); Kang, Zhao [Department of Physics, University of Colorado, Boulder, Colorado 80309 (United States)

    2013-11-11

    We demonstrate very high resolution photon spectroscopy with a microwave-multiplexed two-pixel transition-edge sensor (TES) array. We measured a {sup 153}Gd photon source and achieved an energy resolution of 63 eV full-width-at-half-maximum at 97 keV and an equivalent readout system noise of 86 pA/√(Hz) at the TES. The readout circuit consists of superconducting microwave resonators coupled to radio-frequency superconducting-quantum-interference-devices and transduces changes in input current to changes in phase of a microwave signal. We use flux-ramp modulation to linearize the response and evade low-frequency noise. This demonstration establishes one path for the readout of cryogenic X-ray and gamma-ray sensor arrays with more than 10{sup 3} elements and spectral resolving powers R=λ/Δλ>10{sup 3}.

  11. Gamma rays at airplane altitudes

    International Nuclear Information System (INIS)

    Iwai, J.; Koss, T.; Lord, J.; Strausz, S.; Wilkes, J.; Woosley, J.

    1990-01-01

    An examination of the gamma ray flux above 1 TeV in the atmosphere is needed to better understand the anomalous showers from point sources. Suggestions are made for future experiments on board airplanes

  12. High-precision gamma-ray spectroscopy for enhancing production and application of medical isotopes

    Science.gov (United States)

    McCutchan, E. A.; Sonzogni, A. A.; Smith, S. V.; Muench, L.; Nino, M.; Greene, J. P.; Carpenter, M. P.; Zhu, S.; Chillery, T.; Chowdhury, P.; Harding, R.; Lister, C. J.

    2015-10-01

    Nuclear medicine is a field which requires precise decay data for use in planning radionuclide production and in imaging and therapeutic applications. To address deficiencies in decay data, sources of medical isotopes were produced and purified at the Brookhaven Linear Isotope Producer (BLIP) then shipped to Argonne National Laboratory where high-precision, gamma-ray measurements were performed using Gammasphere. New decay schemes for a number of PET isotopes and the impact on dose calculations will be presented. To investigate the production of next-generation theranostic or radiotherapeutic isotopes, cross section measurements with high energy protons have also been explored at BLIP. The 100-200 MeV proton energy regime is relatively unexplored for isotope production, thus offering high discovery potential but at the same time a challenging analysis due to the large number of open channels at these energies. Results of cross sections deduced from Compton-suppressed, coincidence gamma-ray spectroscopy performed at Lowell will be presented, focusing on the production of platinum isotopes by irradiating natural platinum foils with 100 to 200 MeV protons. DOE Isotope Program is acknowledged for funding ST5001030. Work supported by the US DOE under Grant DE-FG02-94ER40848 and Contracts DE-AC02-98CH10946 and DE-AC02-06CH11357.

  13. FERMI OBSERVATIONS OF HIGH-ENERGY GAMMA-RAY EMISSION FROM GRB 090217A

    International Nuclear Information System (INIS)

    Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Borgland, A. W.; Bouvier, A.; Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Ballet, J.; Barbiellini, G.; Baring, M. G.; Bastieri, D.; Bhat, P. N.; Briggs, M. S.; Bissaldi, E.; Bonamente, E.; Brigida, M.

    2010-01-01

    The Fermi observatory is advancing our knowledge of gamma-ray bursts (GRBs) through pioneering observations at high energies, covering more than seven decades in energy with the two on-board detectors, the Large Area Telescope (LAT) and the Gamma-ray Burst Monitor (GBM). Here, we report on the observation of the long GRB 090217A which triggered the GBM and has been detected by the LAT with a significance greater than 9σ. We present the GBM and LAT observations and on-ground analyses, including the time-resolved spectra and the study of the temporal profile from 8 keV up to ∼1 GeV. All spectra are well reproduced by a Band model. We compare these observations to the first two LAT-detected, long bursts GRB 080825C and GRB 080916C. These bursts were found to have time-dependent spectra and exhibited a delayed onset of the high-energy emission, which are not observed in the case of GRB 090217A. We discuss some theoretical implications for the high-energy emission of GRBs.

  14. Contraband detection using high-energy gamma rays from 16O*

    International Nuclear Information System (INIS)

    Micklich, B.J.; Fink, C.L.; Sagalovsky, L.; Smith, D.L.

    1996-01-01

    High-energy monoenergetic gamma rays (6.13 and 7.12 MeV) from the decay of excited states of the 16 O* nucleus are highly penetrating and thus offer potential for non-intrusive inspection of loaded containers for narcotics, explosives, and other contraband items. These excited states can be produced by irradiation of water with 14-MeV neutrons from a DT neutron generator or through the 19 F(p,α) 16 O* reaction. Resonances in 19 F(p,α) 16 O* at proton energies between 340 keV and 2 MeV allow use of a low-energy accelerator to provide a compact, portable gamma source of reasonable intensity. The present work provides estimates of gamma source parameters and suggests how various types of contraband could be detected. Gamma rays can be used to perform transmission or emission radiography of containers or other objects. Through the use of (γ, n) and (γ, fission) reactions, this technique is also capable of detecting special nuclear materials such as deuterium, lithium, beryllium, uranium, and plutonium. Analytic and Monte Carlo techniques are used to model empty and loaded container inspection for accelerator-produced gamma, radioisotope, and x-ray sources

  15. Toward a next-generation high-energy gamma-ray telescope. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Bloom, E.D.; Evans, L.L. [eds.

    1997-03-01

    It has been some time between the time of the first Gamma-ray Large Area Space Telescope (GLAST) workshop, Towards a Next Generation High-Energy Gamma-Ray Telescope, in late August 1994, and the publication of a partial proceedings of that meeting. Since then there has been considerable progress in both the technical and project development of GLAST. From its origins at SLAC/Stanford in early 1992, the collaboration has currently grown to more than 20 institutions from France, Germany, Italy, Japan, and the US, and is still growing. About half of these are astrophysics/astronomy institutions; the other half are high-energy physics institutions. About 100 astronomers, astrophysicists, and particle physicists are currently spending some fraction of their time on the GLAST R and D program. The late publication date of this proceedings has resulted in some additions to the original content of the meeting. The first paper is actually a brochure prepared for NASA by Peter Michelson in early 1996. Except for the appendix, the other papers in the proceedings were presented at the conference, and written up over the following two years. Some presentations were never written up.

  16. High resolution phoswich gamma-ray imager utilizing monolithic MPPC arrays with submillimeter pixelized crystals

    Science.gov (United States)

    Kato, T.; Kataoka, J.; Nakamori, T.; Kishimoto, A.; Yamamoto, S.; Sato, K.; Ishikawa, Y.; Yamamura, K.; Kawabata, N.; Ikeda, H.; Kamada, K.

    2013-05-01

    We report the development of a high spatial resolution tweezers-type coincidence gamma-ray camera for medical imaging. This application consists of large-area monolithic Multi-Pixel Photon Counters (MPPCs) and submillimeter pixelized scintillator matrices. The MPPC array has 4 × 4 channels with a three-side buttable, very compact package. For typical operational gain of 7.5 × 105 at + 20 °C, gain fluctuation over the entire MPPC device is only ± 5.6%, and dark count rates (as measured at the 1 p.e. level) amount to acrylic light guide measuring 1 mm thick, and with summing operational amplifiers that compile the signals into four position-encoded analog outputs being used for signal readout. Spatial resolution of 1.1 mm was achieved with the coincidence imaging system using a 22Na point source. These results suggest that the gamma-ray imagers offer excellent potential for applications in high spatial medical imaging.

  17. Towards a next-generation high-energy gamma-ray telescope. Proceedings

    International Nuclear Information System (INIS)

    Bloom, E.D.; Evans, L.L.

    1997-03-01

    It has been some time between the time of the first Gamma-ray Large Area Space Telescope (GLAST) workshop, Towards a Next Generation High-Energy Gamma-Ray Telescope, in late August 1994, and the publication of a partial proceedings of that meeting. Since then there has been considerable progress in both the technical and project development of GLAST. From its origins at SLAC/Stanford in early 1992, the collaboration has currently grown to more than 20 institutions from France, Germany, Italy, Japan, and the US, and is still growing. About half of these are astrophysics/astronomy institutions; the other half are high-energy physics institutions. About 100 astronomers, astrophysicists, and particle physicists are currently spending some fraction of their time on the GLAST R and D program. The late publication date of this proceedings has resulted in some additions to the original content of the meeting. The first paper is actually a brochure prepared for NASA by Peter Michelson in early 1996. Except for the appendix, the other papers in the proceedings were presented at the conference, and written up over the following two years. Some presentations were never written up

  18. High-resolution gamma ray attenuation density measurements on mining exploration drill cores, including cut cores

    Science.gov (United States)

    Ross, P.-S.; Bourke, A.

    2017-01-01

    Physical property measurements are increasingly important in mining exploration. For density determinations on rocks, one method applicable on exploration drill cores relies on gamma ray attenuation. This non-destructive method is ideal because each measurement takes only 10 s, making it suitable for high-resolution logging. However calibration has been problematic. In this paper we present new empirical, site-specific correction equations for whole NQ and BQ cores. The corrections force back the gamma densities to the "true" values established by the immersion method. For the NQ core caliber, the density range extends to high values (massive pyrite, 5 g/cm3) and the correction is thought to be very robust. We also present additional empirical correction factors for cut cores which take into account the missing material. These "cut core correction factors", which are not site-specific, were established by making gamma density measurements on truncated aluminum cylinders of various residual thicknesses. Finally we show two examples of application for the Abitibi Greenstone Belt in Canada. The gamma ray attenuation measurement system is part of a multi-sensor core logger which also determines magnetic susceptibility, geochemistry and mineralogy on rock cores, and performs line-scan imaging.

  19. High-resolution imaging gamma-ray spectroscopy with externally segmented germanium detectors

    Science.gov (United States)

    Callas, J. L.; Mahoney, W. A.; Varnell, L. S.; Wheaton, W. A.

    1993-01-01

    Externally segmented germanium detectors promise a breakthrough in gamma-ray imaging capabilities while retaining the superb energy resolution of germanium spectrometers. An angular resolution of 0.2 deg becomes practical by combining position-sensitive germanium detectors having a segment thickness of a few millimeters with a one-dimensional coded aperture located about a meter from the detectors. Correspondingly higher angular resolutions are possible with larger separations between the detectors and the coded aperture. Two-dimensional images can be obtained by rotating the instrument. Although the basic concept is similar to optical or X-ray coded-aperture imaging techniques, several complicating effects arise because of the penetrating nature of gamma rays. The complications include partial transmission through the coded aperture elements, Compton scattering in the germanium detectors, and high background count rates. Extensive electron-photon Monte Carlo modeling of a realistic detector/coded-aperture/collimator system has been performed. Results show that these complicating effects can be characterized and accounted for with no significant loss in instrument sensitivity.

  20. High spectral resolution studies of gamma ray bursts on new missions

    International Nuclear Information System (INIS)

    Desai, U. D.; Acuna, M. H.; Cline, T. L.; Dennis, B. R.; Orwig, L. E.; Trombka, J. I.; Starr, R. D.

    1996-01-01

    Two new missions will be launched in 1996 and 1997, each carrying X-ray and gamma ray detectors capable of high spectral resolution at room temperature. The Argentine Satelite de Aplicaciones Cientificas (SAC-B) and the Small Spacecraft Technology Initiative (SSTI) Clark missions will each carry several arrays of X-ray detectors primarily intended for the study of solar flares and gamma-ray bursts. Arrays of small (1 cm 2 ) cadmium zinc telluride (CZT) units will provide x-ray measurements in the 10 to 80 keV range with an energy resolution of ≅6 keV. Arrays of both silicon avalanche photodiodes (APD) and P-intrinsic-N (PIN) photodiodes (for the SAC-B mission only) will provide energy coverage from 2-25 keV with ≅1 keV resolution. For SAC-B, higher energy spectral data covering the 30-300 keV energy range will be provided by CsI(Tl) scintillators coupled to silicon APDs, resulting in similar resolution but greater simplicity relative to conventional CsI/PMT systems. Because of problems with the Pegasus launch vehicle, the launch of SAC-B has been delayed until 1997. The launch of the SSTI Clark mission is scheduled for June 1996

  1. Transport calculations of. gamma. -ray flux density and dose rate about implantable californium-252 sources

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, A; Lin, B I [Cincinnati Univ., Ohio (USA). Dept. of Chemical and Nuclear Engineering; Windham, J P; Kereiakes, J G

    1976-07-01

    ..gamma.. flux density and dose rate distributions have been calculated about implantable californium-252 sources for an infinite tissue medium. Point source flux densities as a function of energy and position were obtained from a discrete-ordinates calculation, and the flux densities were multiplied by their corresponding kerma factors and added to obtain point source dose rates. The point dose rates were integrated over the line source to obtain line dose rates. Container attenuation was accounted for by evaluating the point dose rate as a function of platinum thickness. Both primary and secondary flux densities and dose rates are presented. The agreement with an independent Monte Carlo calculation was excellent. The data presented should be useful for the design of new source configurations.

  2. Discovery of Very High Energy Gamma Rays from PKS 1424+240 and Multiwavelength Constraints on its Redshift

    Energy Technology Data Exchange (ETDEWEB)

    Acciari, V.A.; /Harvard-Smithsonian Ctr. Astrophys.; Aliu, E.; /Delaware U., Bartol Inst.; Arlen, T.; /UCLA; Aune, T.; /UC, Santa Cruz; Bautista, M.; /McGill U.; Beilicke, M. /Washington U., St. Louis; Benbow, W.; /Harvard-Smithsonian Ctr. Astrophys.; Bottcher, M.; /Ohio U.; Boltuch, D.; /Delaware U., Bartol Inst.; Bradbury, S.M.; /Leeds U.; Buckley, J.H.; /Washington U., St. Louis; Bugaev, V.; /Washington U., St. Louis; Byrum, K.; /Argonne; Cannon, A.; /University Coll., Dublin; Cesarini, A.; /Natl. U. of Ireland, Galway; Chow, Y.C.; /UCLA; Ciupik, L.; /Roosevelt U., Chicago; Cogan, P.; /McGill U.; Cui, W.; /Purdue U.; Duke, C.; /Grinnell Coll.; Falcone, A.; /Penn State U. /Purdue U. /Utah U. /Roosevelt U., Chicago /Harvard-Smithsonian Ctr. Astrophys. /Purdue U. /Natl. U. of Ireland, Galway /Utah U. /University Coll., Dublin /McGill U. /Roosevelt U., Chicago /McGill U. /Delaware U., Bartol Inst. /Utah U. /Chicago U., EFI /Iowa State U. /Roosevelt U., Chicago /DePauw U. /Utah U. /Pittsburg State U. /Washington U., St. Louis /Iowa State U. /Natl. U. of Ireland, Galway /Utah U. /McGill U. /Washington U., St. Louis /McGill U. /McGill U. /Purdue U. /Anderson U. /Galway-Mayo Inst. of Tech. /Iowa State U. /UCLA; /more authors..

    2012-04-05

    We report the first detection of very-high-energy (VHE) gamma-ray emission above 140GeV from PKS 1424+240, a BL Lac object with an unknown redshift. The photon spectrum above 140GeV measured by VERITAS is well described by a power law with a photon index of 3.8 {+-}0.5{sub stat} {+-} 0.3{sub syst} and a flux normalization at 200 GeV of (5.1 {+-} 0.9{sub stat} {+-} 0.5{sub syst}) x 10{sup -11} TeV{sup -1} cm{sup -2} s{sup -1}, where stat and syst denote the statistical and systematical uncertainty, respectively. The VHE flux is steady over the observation period between MJD 54881 and 55003 (2009 February 19 to June 21). Flux variability is also not observed in contemporaneous high energy observations with the Fermi Large Area Telescope (LAT). Contemporaneous X-ray and optical data were also obtained from the Swift XRT and MDM observatory, respectively. The broadband spectral energy distribution (SED) is well described by a one-zone synchrotron self-Compton (SSC) model favoring a redshift of less than 0.1. Using the photon index measured with Fermi in combination with recent extragalactic background light (EBL) absorption models it can be concluded from the VERITAS data that the redshift of PKS 1424+240 is less than 0.66.

  3. Development of a Watt-level gamma-ray source based on high-repetition-rate inverse Compton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Mihalcea, D.; Murokh, A.; Piot, P.; Ruan, J.

    2017-07-01

    A high-brilliance (~1022 photon s-1 mm-2 mrad-2 /0.1%) gamma-ray source experiment is currently being planned at Fermilab (Eγ≃1.1 MeV). The source implements a high-repetition-rate inverse Compton scattering by colliding electron bunches formed in a ~300-MeV superconducting linac with a high-intensity laser pulse. This paper describes the design rationale along with some of technical challenges associated to producing high-repetition-rate collision. The expected performances of the gamma-ray source are also presented.

  4. Janus probe, a detection system for high energy reactor gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Gold, R.; Kaiser, B.J.

    1980-03-01

    In reactor environments, gamma-ray spectra are continuous and the absolute magnitude as well as the general shape of the gamma continuum are of paramount importance. Consequently, conventional methods of gamma-ray detection are not suitable for in-core gamma-ray spectrometry. To meet these specific needs, a method of continuous gamma-ray spectrometry, namely Compton Recoil Gamma-Ray Spectrometry, was developed for in-situ observations of reactor environments. A new gamma-ray detection system has been developed which extends the applicability of Compton Recoil Gamma-Ray Spectrometry up to roughly 7 MeV. This detection system is comprised of two separate Si(Li) detectors placed face-to-face. Hence this new detection system is called the Janus probe. Also shown is the block diagram of pulse processing instrumentation for the Janus probe. This new gamma probe not only extends the upper energy limit of in-core gamma-ray spectrometry, but in addition possesses other fundamental advantages

  5. Neutron interrogation system using high gamma ray signature to detect contraband special nuclear materials in cargo

    Science.gov (United States)

    Slaughter, Dennis R [Oakland, CA; Pohl, Bertram A [Berkeley, CA; Dougan, Arden D [San Ramon, CA; Bernstein, Adam [Palo Alto, CA; Prussin, Stanley G [Kensington, CA; Norman, Eric B [Oakland, CA

    2008-04-15

    A system for inspecting cargo for the presence of special nuclear material. The cargo is irradiated with neutrons. The neutrons produce fission products in the special nuclear material which generate gamma rays. The gamma rays are detecting indicating the presence of the special nuclear material.

  6. High-Resolution Gamma-Ray Imaging Measurements Using Externally Segmented Germanium Detectors

    Science.gov (United States)

    Callas, J.; Mahoney, W.; Skelton, R.; Varnell, L.; Wheaton, W.

    1994-01-01

    Fully two-dimensional gamma-ray imaging with simultaneous high-resolution spectroscopy has been demonstrated using an externally segmented germanium sensor. The system employs a single high-purity coaxial detector with its outer electrode segmented into 5 distinct charge collection regions and a lead coded aperture with a uniformly redundant array (URA) pattern. A series of one-dimensional responses was collected around 511 keV while the system was rotated in steps through 180 degrees. A non-negative, linear least-squares algorithm was then employed to reconstruct a 2-dimensional image. Corrections for multiple scattering in the detector, and the finite distance of source and detector are made in the reconstruction process.

  7. Ultra high energy gamma rays and observations with CYGNUS/MILAGRO

    International Nuclear Information System (INIS)

    Weeks, D.D.; Yodh, G.B.

    1992-01-01

    This talk discusses high-energy observations of the Crab pulsar/nebula and the pulsar in the X-ray binary, Hercules X-1, and makes the case for continued observations with ground-based γ-ray detectors. The CYGNUS Air Shower Array has a wide field of view on monitors several astrophysical γ-ray sources at the same time, many of which are prime objects observed by the Compton Gamma Ray Observatory (GRO) and air Cerenkov telescopes. This array and the future MILAGRO Water Cerenkov Detector can perform observations that are simultaneous with similar experiments to provide confirmation of emission, and can measure source spectra at a range of high energies previously unexplored

  8. Examining the nature of very-high-energy gamma-ray emission from the AGN PKS 1222+216 and 3C 279

    Science.gov (United States)

    Price, Sharleen; Brill, Ari; Mukherjee, Reshmi; VERITAS

    2018-01-01

    Blazars are a type of active galactic nuclei (AGN) that emit jets of ionized matter which move towards the Earth at relativistic speeds. In this research we carried out a study of two objects, 3C 279 and PKS 1222+216, which belong to the subset of blazars known as FSRQs (flat spectrum radio quasars), the most powerful TeV-detected sources at gamma-ray energies with bolometric luminosities exceeding 1048 erg/s. The high-energy emission of quasars peaks in the MeV-GeV band, making these sources very rarely detectable in the TeV energy range. In fact, only six FSRQs have ever been detected in this range by very-high-energy gamma-ray telescopes. We will present results from observing campaigns on 3C 279 in 2014 and 2016, when the object was detected in high flux states by Fermi-LAT. Observations include simultaneous coverage with the Fermi-LAT satellite and the VERITAS ground-based array spanning four decades in energy from 100 MeV to 1 TeV. We will also report VERITAS observations of PKS 1222+216 between 2008 and 2017. The detection/non-detection of TeV emission during flaring episodes at MeV energies will further contribute to our understanding of particle acceleration and gamma-ray emission mechanisms in blazar jets.

  9. Search for Very High Energy Gamma Rays from the Northern $\\textit{Fermi}$ Bubble Region with HAWC

    OpenAIRE

    Abeysekara, A. U.; Albert, A.; Alfaro, R.; Alvarez, C.; Álvarez, J. D.; Arceo, R.; Arteaga-Velázquez, J. C.; Solares, H. A. Ayala; Barber, A. S.; Bautista-Elivar, N.; Becerril, A.; Belmont-Moreno, E.; BenZvi, S. Y.; Berley, D.; Braun, J.

    2017-01-01

    We present a search of very high energy gamma-ray emission from the Northern $\\textit{Fermi}$ Bubble region using data collected with the High Altitude Water Cherenkov (HAWC) gamma-ray observatory. The size of the data set is 290 days. No significant excess is observed in the Northern $\\textit{Fermi}$ Bubble region, hence upper limits above $1\\,\\text{TeV}$ are calculated. The upper limits are between $3\\times 10^{-7}\\,\\text{GeV}\\, \\text{cm}^{-2}\\, \\text{s}^{-1}\\,\\text{sr}^{-1}$ and $4\\times 1...

  10. Calculation of gamma-ray flux density above the Venus and Earth surfaces

    International Nuclear Information System (INIS)

    Surkov, Yu.A.; Manvelyan, O.S.

    1987-01-01

    Calculational results of dependence of flux density of nonscattered gamma-quanta on the height above the Venus and Earth planet surfaces are presented in the paper. Areas, where a certain part of gamma quanta is accumulated, are calaculted for each height. Spectra of scattered gamma quanta and their integral fluxes at different heights above the Venera planet surface are calculated. Effect of the atmosphere on gamma radiation recorded is considered. The results obtained allow to estimate optimal conditions for measuring gamma-fields above the Venus and Earth planet surfaces, to determine the area of the planet surface investigated. They are also necessary to determine the elementary composition of the rock according to the characteristic gamma radiation spectrum recorded

  11. Topics in High-Energy Astrophysics: X-ray Time Lags and Gamma-ray Flares

    Science.gov (United States)

    Kroon, John J.

    2016-03-01

    The Universe is host to a wide variety of high-energy processes that convert gravitational potential energy or rest-mass energy into non-thermal radiation such as bremsstrahlung and synchrotron. Prevailing models of X-ray emission from accreting Black Hole Binaries (BHBs) struggle to simultaneously fit the quiescent X-ray spectrum and the transients which result in the phenomenon known as X-ray time lags. And similarly, classical models of diffusive shock acceleration in pulsar wind nebulae fail to explain the extreme particle acceleration in very short timescales as is inferred from recent gamma-ray flares from the Crab nebula. In this dissertation, I develop new exact analytic models to shed light on these intriguing processes. I take a fresh look at the formation of X-ray time lags in compact sources using a new mathematical approach in which I obtain the exact Green's function solution. The resulting Green's function allows one to explore a variety of injection scenarios, including both monochromatic and broadband (bremsstrahlung) seed photon injection. I obtain the exact solution for the dependence of the time lags on the Fourier frequency, for both homogeneous and inhomogeneous clouds. The model can successfully reproduce both the observed time lags and the quiescent X-ray spectrum using a single set of coronal parameters. I show that the implied coronal radii in the new model are significantly smaller than those obtained in the Monte Carlo simulations, hence greatly reducing the coronal heating problem. Recent bright gamma-ray flares from the Crab nebula observed by AGILE and Fermi reaching GeV energies and lasting several days challenge the contemporary model for particle acceleration in pulsar wind nebulae, specifically the diffusive shock acceleration model. Simulations indicate electron/positron pairs in the Crab nebula pulsar wind must be accelerated up to PeV energies in the presence of ambient magnetic fields with strength B ~100 microG. No

  12. High resolution phoswich gamma-ray imager utilizing monolithic MPPC arrays with submillimeter pixelized crystals

    International Nuclear Information System (INIS)

    Kato, T; Kataoka, J; Nakamori, T; Kishimoto, A; Yamamoto, S; Sato, K; Ishikawa, Y; Yamamura, K; Kawabata, N; Ikeda, H; Kamada, K

    2013-01-01

    We report the development of a high spatial resolution tweezers-type coincidence gamma-ray camera for medical imaging. This application consists of large-area monolithic Multi-Pixel Photon Counters (MPPCs) and submillimeter pixelized scintillator matrices. The MPPC array has 4 × 4 channels with a three-side buttable, very compact package. For typical operational gain of 7.5 × 10 5 at + 20 °C, gain fluctuation over the entire MPPC device is only ± 5.6%, and dark count rates (as measured at the 1 p.e. level) amount to ≤ 400 kcps per channel. We selected Ce-doped (Lu,Y) 2 (SiO 4 )O (Ce:LYSO) and a brand-new scintillator, Ce-doped Gd 3 Al 2 Ga 3 O 12 (Ce:GAGG) due to their high light yield and density. To improve the spatial resolution, these scintillators were fabricated into 15 × 15 matrices of 0.5 × 0.5 mm 2 pixels. The Ce:LYSO and Ce:GAGG scintillator matrices were assembled into phosphor sandwich (phoswich) detectors, and then coupled to the MPPC array along with an acrylic light guide measuring 1 mm thick, and with summing operational amplifiers that compile the signals into four position-encoded analog outputs being used for signal readout. Spatial resolution of 1.1 mm was achieved with the coincidence imaging system using a 22 Na point source. These results suggest that the gamma-ray imagers offer excellent potential for applications in high spatial medical imaging.

  13. Overview of high intensity x-ray and gamma-ray sources

    International Nuclear Information System (INIS)

    Prestwich, K.R.; Lee, J.R.; Ramirez, J.J.; Sanford, T.W.L.; Agee, F.J.; Frazier, G.B.; Miller, A.R.

    1987-01-01

    The requirements for intense x-ray and gamma-ray sources to simulate the radiation effects from nuclear weapons has led to the development of several types of terawatt-pulsed power systems. One example of a major gamma-ray source is Aurora, a 10-MV, 1.6-MA, 120-ns four-module, electron-beam generator. Recent requirements to improve the dose rate has led to the Aurora upgrade program and to the development of the 20-MV, 800-kA, 40-ns Hermes-III electron-beam accelerator. The Aurora program includes improvements to the pulsed power system and research on techniques to improve the pulse shape of the electron beam. Hermes III will feature twenty 1-MV, 800-kA induction accelerator cavities supplying energy to a magnetically insulated transmission line adder. Hermes III will become operational in 1988. Intense x-ray sources consist of pulsed power systems that operate with 1-MV to 2-MV output voltages and up to 25-TW output powers. These high powers are achieved with either low impedance electron-beam generators or multimodular pulsed power systems. The low-impedance generators have high voltage Marx generators that store the energy and then sequentially transfer this energy to pulse-forming transmission lines with lower and lower impedance until the high currents are reached. In the multimode machines, each module produces 0.7-TW to 4-TW output pulses, and all of the modules are connected together to supply energy to a single diode

  14. Air shower array designed for cosmic ray variation measurements and high energy gamma ray astronomy

    Energy Technology Data Exchange (ETDEWEB)

    Morello, C; Navarra, G [Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica

    1981-08-15

    We describe an array for performing measurements of counting rates and arrival directions of extensive air showers at primary energy E/sub 0/ approx. equal to 3 x 10/sup 9/ eV. The aim of the research is to study the time variations and the anisotropies of cosmic rays and the observable gamma ray sources in the high energy region. The installation, composed of four large area scintillation counters and completely controlled by a microcomputer system, operates at mountain altitude (3500 m a.s.l.). The preanalysis of data, stability tests and periodic calibrations are performed by on-line programs. The method for obtaining the required stability and the corrections on temperature and gain variations are also described.

  15. Extended performance gas Cherenkov detector for gamma-ray detection in high-energy density experiments

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, H. W., E-mail: herrmann@lanl.gov; Kim, Y. H.; Young, C. S.; Fatherley, V. E.; Lopez, F. E.; Oertel, J. A.; Batha, S. H. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Malone, R. M. [National Security Technologies, LLC, Los Alamos, New Mexico 87544 (United States); Rubery, M. S.; Horsfield, C. J. [Atomic Weapons Establishment, Aldermaston, Berkshire RG7 4PR (United Kingdom); Stoeffl, W. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Zylstra, A. B. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Shmayda, W. T. [Laboratory for Laser Energetics, Rochester, New York 14623 (United States)

    2014-11-15

    A new Gas Cherenkov Detector (GCD) with low-energy threshold and high sensitivity, currently known as Super GCD (or GCD-3 at OMEGA), is being developed for use at the OMEGA Laser Facility and the National Ignition Facility (NIF). Super GCD is designed to be pressurized to ≤400 psi (absolute) and uses all metal seals to allow the use of fluorinated gases inside the target chamber. This will allow the gamma energy threshold to be run as low at 1.8 MeV with 400 psi (absolute) of C{sub 2}F{sub 6}, opening up a new portion of the gamma ray spectrum. Super GCD operating at 20 cm from TCC will be ∼400 × more efficient at detecting DT fusion gammas at 16.7 MeV than the Gamma Reaction History diagnostic at NIF (GRH-6m) when operated at their minimum thresholds.

  16. Gamma ray spectrum of Am 241 in a backscattering geometry using a high purity germanium detector

    International Nuclear Information System (INIS)

    Chong Chon Sing; Ibrahim Salih Elyaseery; Ahmad Shukri Mustapa Kamal; Abdul Aziz Tajuddin

    1997-01-01

    In back scattering geometry using an annular Am-241 source and a HPGE detector has been set up to study both the coherent and incoherent scattering of photon emissions of Am-241 from medium-Z and high-Z elements. Besides the coherent and incoherent scattered peaks of the emissions from the source, the gamma ray spectrum from the different target elements obtained using a microcomputer based multichannel analyser showed the presence of several other peaks. These peaks have been identified to arise from the fluorescence of the targets, the fluorescence of the shielding material Pb, and also as fluorescence sum peaks and X-ray escape peaks of the detector material Ge. The spectra are presented for three target elements viz. Mo, Zn and W

  17. The application of computer technique in routine neutron activation analysis using high resolution gamma ray spectrometry

    International Nuclear Information System (INIS)

    Szopa, Z.; Plejewska, M.; Staszelis, J.

    1982-01-01

    A full system of four computer programs for routine - qualitative and quantitative - neutron activation analysis (NAA) using high resolution gamma ray-spectrometry had been elaborated. The structure and possibilities of the ''data flow'' programs i.e. programs DIDPDP and DIDCDC, dedicated for fast and reliable ''off line'' data transfer between the buffer memory of the spectrometric line (9-track magnetic tape) and the fast access memory (disc) of the used computers PDP-11/45 and CYBER-73 had been presented. The structure and organization of the ''data processing'' programs i.e. programs SAWAPS and MAZYG had been presented as well. The utility and reliability of these programs in the case of the large-scale, routine NAA, exampled by analysis of filters with air polutants, had been tested and discussed. Programs are written mainly in FORTRAN. (author)

  18. Imaging of gamma rays with the WINKLER high-resolution germanium spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, T.R.; Hamilton, T.W.; Hawley, J.D.; Kilner, J.R.; Murphy, M.J.; Nakano, G.H. (Luckheed Palo Alto Research Lab., Palo Alto, CA (US))

    1990-06-01

    The WINKLER spectrometer is a matrix of nine high-purity {ital n}-type germanium detectors developed for astrophysical observations and terrestrial radiation monitoring. The spectrometer has been fitted with a set of modulation collimator grids designed for imaging hard x-ray and gamma-ray sources by the Mertz, Nakano, and Kilner method. This technique employs a pair of gridded collimators in front of each detector with the number of grid bars varying from one to {ital N}, where {ital N} is the number of detectors. When the collimator pairs are rotated through a full 360-degree angular range, the detector signals provide the information for a two-dimensional band-limited Fourier reconstruction of order {ital N}. Tests of the spectrometer with single and multiple point sources as well as continuous source distributions are reported.

  19. Self-powered detector probes for electron and gamma-ray beam monitoring in high-power industrial accelerators

    International Nuclear Information System (INIS)

    Lone, M.A.

    1992-08-01

    A self-powered detector (SPD) is a simple passive device that consists of a coaxial probe with a metallic outer sleeve, a mineral oxide insulating layer, and a metallic inner core. SPDs are used in nuclear reactors for monitoring neutron and gamma ray fields. Responses of various SPDs to electron and gamma ray beams from industrial accelerators were investigated with Monte Carlo simulations. By judicious choice of transmission filters, threshold SPD probes were investigated for on-line monitoring of the beam energy spectrum of the high-power IMPELA industrial electron accelerator. (Author) (14 figs, 16 refs.)

  20. COS-B observation of the milky way in high-energy gamma rays

    International Nuclear Information System (INIS)

    Mayer-Hasselwander, H.A.; Lebrun, F.; Masnou, J.L.

    1978-01-01

    The Caravane Collaboration's gamma-ray astronomy experiment aboard ESA's satellite COS-B has been recording celestial gamma rays in the energy range from about 50 MeV to several GeV since August 1975. These observations covers the whole range of galactic longitude, thus making it possible to present here the first complete detailed gamma-ray survey of the Milky Way with greatly improved statistical accuracy and significantly better energy measurement than in the previous survey. The present work concentrates on the spatial aspects of the gamma radiation, including localised sources

  1. High-energy gamma-ray astronomy and the COS-B mission

    International Nuclear Information System (INIS)

    Wills, R.D.

    1977-01-01

    The most significant results in gamma-ray astronomy have been produced by satellite- and balloon-borne instruments sensitive in the range 30 MeV to approximately 10 GeV. The COS-B instrument which is described is typical of this type of detector. For this reason the review of gamma-ray production mechanisms gives greater attention to those processes which are specifically important in that energy range. (orig.) [de

  2. The TeV {gamma}-ray binary PSR B1259-63. Observations with the high energy stereoscopic system in the years 2005-2007

    Energy Technology Data Exchange (ETDEWEB)

    Kerschhaggl, Matthias

    2010-04-06

    PSR B1259-63/SS2883 is a binary system where a 48 ms pulsar orbits a massive Be star with a period of 3.4 years. The system exhibits variable, non-thermal radiation around periastron on the highly eccentric orbit (e=0.87) visible from radio to very high energies (VHE; E>100 GeV). When being detected in TeV {gamma}-rays with the High Energy Stereoscopic System (H.E.S.S.) in 2004 it became known as the first variable galactic VHE source. This thesis presents VHE data from PSR B1259-63 as taken during the years 2005, 2006 and before as well as shortly after the 2007 periastron passage. These data extend the knowledge of the lightcurve of this object to all phases of the binary orbit. The lightcurve constrains physical mechanisms present in this TeV source. Observations of VHE {gamma}-rays with the H.E.S.S. telescope array using the Imaging Atmospheric Cherenkov Technique were performed. The H.E.S.S. instrument features an angular resolution of < 0.1 and an energy resolution of < 20%. Gamma-ray events in an energy range of 0.5-70 TeV were recorded. From these data, energy spectra and lightcurve with a monthly time sampling were extracted. VHE {gamma}-ray emission from PSRB1259-63 was detected with an overall significance of 9.5 standard deviations using 55 h of exposure, obtained from April to August 2007. The monthly flux of -rays during the observation period was measured, yielding VHE lightcurve data for the early pre-periastron phase of the system for the first time. No spectral variability was found on timescales of months. The spectrum is described by a power law with a photon index of {gamma}=2.8{+-}0.2{sub stat}{+-}0.2{sub sys} and flux normalisation {phi}{sub 0}=(1.1{+-}0.1{sub stat}{+-}0.2{sub sys}) x 10{sup -12} TeV{sup -1}cm{sup -2}s{sup -1}. PSR B1259-63 was also monitored in 2005 and 2006, far from periastron passage, comprising 8.9 h and 7.5 h of exposure, respectively. No significant excess of {gamma}-rays is seen in those observations. PSR B1259-63 has

  3. The TeV {gamma}-ray binary PSR B1259-63. Observations with the high energy stereoscopic system in the years 2005-2007

    Energy Technology Data Exchange (ETDEWEB)

    Kerschhaggl, Matthias

    2010-04-06

    PSR B1259-63/SS2883 is a binary system where a 48 ms pulsar orbits a massive Be star with a period of 3.4 years. The system exhibits variable, non-thermal radiation around periastron on the highly eccentric orbit (e=0.87) visible from radio to very high energies (VHE; E>100 GeV). When being detected in TeV {gamma}-rays with the High Energy Stereoscopic System (H.E.S.S.) in 2004 it became known as the first variable galactic VHE source. This thesis presents VHE data from PSR B1259-63 as taken during the years 2005, 2006 and before as well as shortly after the 2007 periastron passage. These data extend the knowledge of the lightcurve of this object to all phases of the binary orbit. The lightcurve constrains physical mechanisms present in this TeV source. Observations of VHE {gamma}-rays with the H.E.S.S. telescope array using the Imaging Atmospheric Cherenkov Technique were performed. The H.E.S.S. instrument features an angular resolution of < 0.1 and an energy resolution of < 20%. Gamma-ray events in an energy range of 0.5-70 TeV were recorded. From these data, energy spectra and lightcurve with a monthly time sampling were extracted. VHE {gamma}-ray emission from PSRB1259-63 was detected with an overall significance of 9.5 standard deviations using 55 h of exposure, obtained from April to August 2007. The monthly flux of -rays during the observation period was measured, yielding VHE lightcurve data for the early pre-periastron phase of the system for the first time. No spectral variability was found on timescales of months. The spectrum is described by a power law with a photon index of {gamma}=2.8{+-}0.2{sub stat}{+-}0.2{sub sys} and flux normalisation {phi}{sub 0}=(1.1{+-}0.1{sub stat}{+-}0.2{sub sys}) x 10{sup -12} TeV{sup -1}cm{sup -2}s{sup -1}. PSR B1259-63 was also monitored in 2005 and 2006, far from periastron passage, comprising 8.9 h and 7.5 h of exposure, respectively. No significant excess of {gamma}-rays is seen in those observations. PSR B1259-63 has

  4. A Performance Evaluation of a Notebook PC under a High Dose-Rate Gamma Ray Irradiation Test

    Directory of Open Access Journals (Sweden)

    Jai Wan Cho

    2014-01-01

    Full Text Available We describe the performance of a notebook PC under a high dose-rate gamma ray irradiation test. A notebook PC, which is small and light weight, is generally used as the control unit of a robot system and loaded onto the robot body. Using TEPCO’s CAMS (containment atmospheric monitoring system data, the gamma ray dose rate before and after a hydrogen explosion in reactor units 1–3 of the Fukushima nuclear power plant was more than 150 Gy/h. To use a notebook PC as the control unit of a robot system entering a reactor building to mitigate the severe accident situation of a nuclear power plant, the performance of the notebook PC under such intense gamma-irradiation fields should be evaluated. Under a similar dose-rate (150 Gy/h gamma ray environment, the performances of different notebook PCs were evaluated. In addition, a simple method for a performance evaluation of a notebook PC under a high dose-rate gamma ray irradiation test is proposed. Three notebook PCs were tested to verify the method proposed in this paper.

  5. Local gamma ray events as tests of the antimatter theory of gamma ray bursts

    International Nuclear Information System (INIS)

    Sofia, S.; Wilson, R.E.

    1976-01-01

    Nearby examples of the antimatter 'chunks' postulated by Sofia and Van Horn to explain the cosmic gamma ray bursts may produce detectable gamma ray events when struck by solar system meteoroids. These events would have a much shorter time scale and higher energy spectrum than the bursts already observed. In order to have a reasonably high event rate, the local meteoroid population must extend to a distance from the Sun of the order of 0.1 pc, but the required distance could become much lower if the instrumental threshold is improved. The expected gamma ray flux for interaction of the antimatter bodies with the solar wind is also examined, and found to be far below present instrumental capabilities. (Auth.)

  6. High-energy Emission from Nonrelativistic Radiative Shocks: Application to Gamma-Ray Novae

    Science.gov (United States)

    Vurm, Indrek; Metzger, Brian D.

    2018-01-01

    The observation of GeV gamma-rays from novae by Fermi/LAT demonstrates that the nonrelativistic radiative shocks in these systems can accelerate particles to energies of at least ∼10 GeV. The low-energy extension of the same nonthermal particle distribution inevitably gives rise to emission in the hard X-ray band. Above ≳ 10 {keV}, this radiation can escape the system without significant absorption/attenuation, and can potentially be detected by NuSTAR. We present theoretical models for hard X-ray and gamma-ray emission from radiative shocks in both leptonic and hadronic scenarios, accounting for the rapid evolution of the downstream properties due to the fast cooling of thermal plasma. We find that due to strong Coulomb losses, only a fraction of {10}-4{--}{10}-3 of the gamma-ray luminosity is radiated in the NuSTAR band; nevertheless, this emission could be detectable simultaneously with the LAT emission in bright gamma-ray novae with a ∼50 ks exposure. The spectral slope in hard X-rays is α ≈ 0 for typical nova parameters, thus serving as a testable prediction of the model. Our work demonstrates how combined hard X-ray and gamma-ray observations can be used to constrain properties of the nova outflow (velocity, density, and mass outflow rate) and particle acceleration at the shock. A very low X-ray to gamma-ray luminosity ratio ({L}{{X}}/{L}γ ≲ 5× {10}-4) would disfavor leptonic models for the gamma-ray emission. Our model can also be applied to other astrophysical environments with radiative shocks, including SNe IIn and colliding winds in massive star binaries.

  7. Highly accurate determination of relative gamma-ray detection efficiency for Ge detector and its application

    International Nuclear Information System (INIS)

    Miyahara, H.; Mori, C.; Fleming, R.F.; Dewaraja, Y.K.

    1997-01-01

    When quantitative measurements of γ-rays using High-Purity Ge (HPGe) detectors are made for a variety of applications, accurate knowledge of oy-ray detection efficiency is required. The emission rates of γ-rays from sources can be determined quickly in the case that the absolute peak efficiency is calibrated. On the other hand, the relative peak efficiencies can be used for determination of intensity ratios for plural samples and for comparison to the standard source. Thus, both absolute and relative detection efficiencies are important in use of γ-ray detector. The objective of this work is to determine the relative gamma-ray peak detection efficiency for an HPGe detector with the uncertainty approaching 0.1% . We used some nuclides which emit at least two gamma-rays with energies from 700 to 2400 keV for which the relative emission probabilities are known with uncertainties much smaller than 0.1%. The relative peak detection efficiencies were calculated from the measurements of the nuclides, 46 Sc, 48 Sc, 60 Co and 94 Nb, emitting two γ- rays with the emission probabilities of almost unity. It is important that various corrections for the emission probabilities, the cascade summing effect, and the self-absorption are small. A third order polynomial function on both logarithmic scales of energy and efficiency was fitted to the data, and the peak efficiency predicted at certain energy from covariance matrix showed the uncertainty less than 0.5% except for near 700 keV. As an application, the emission probabilities of the 1037.5 and 1212.9 keV γ-rays for 48 Sc were determined using the function of the highly precise relative peak efficiency. Those were 0.9777+0,.00079 and 0.02345+0.00017 for the 1037.5 and 1212.9 keV γ-rays, respectively. The sum of these probabilities is close to unity within the uncertainty which means that the certainties of the results are high and the accuracy has been improved considerably

  8. SU-F-I-56: High-Precision Gamma-Ray Analysis of Medical Isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Chopra, N; Chillery, T; Chowdhury, P; Lister, C [University of Massachusetts-Lowell, Lowell, MA (United States); McCutchan, E [National Nuclear Data Center, Brookhaven National Laboratory, Upton, NY (United States); Smith, C [BLIP Facility, Brookhaven National Laboratory, Upton, NY (United States)

    2016-06-15

    Purpose: Advanced, time-resolved, Compton-suppressed gamma-ray spectroscopy with germanium detectors is implemented for assaying medical isotopes to study the radioactive decay process leading to a more accurate appraisal of the received dose and treatment planning. Lowell’s Array for Radiological Assay (LARA), a detector array that is comprised of six Compton-suppressed high-purity germanium detectors, is currently under development at UMass-Lowell which combines Compton-suppression and time-and-angle correlations to allow for highly efficient and highly sensitive measurements. Methods: Two isotopes produced Brookhaven Linac Isotope Producer (BLIP) were investigated. {sup 82}Sr which is the parent isotope for producing {sup 82}Rb is often used in cardiac PET. {sup 82}Sr gamma-ray spectrum is dominated by the 511keV photons from positron annihilation which prevent precise measurement of co-produced contaminant isotopes. A second project was to investigate the production of platinum isotopes. Natural platinum was bombarded with protons from 53MeV to 200MeV. The resulting spectrum was complicated due to the large number of stable platinum isotopes in the target, the variety of open reaction channels (p,xn), (p,pxn), (p,axn). Results: By using face-to-face NaI(Tl) counters 90-degrees to the Compton-suppressed germaniums to detect the 511keV photons, a much cleaner and more sensitive measurement of {sup 85}Sr and other contaminants was obtained. For the platinum target, we identified the production of {sup 188–189–191–195}Pt, {sup 191–192–193–194–195–196}Au and {sup 186–188–189–190–192–194–189–190–192–194}Ir. For example, at the lower energies (53 and 65MeV), we measured {sup 191}Pt production cross-sections of 144mb and 157mb. Considerable care was needed in following the process of dissolving and diluting the samples to get consistent results. The new LARA array will help us better ascertain the absolute efficiency of the counting

  9. Gamma ray generator

    Science.gov (United States)

    Firestone, Richard B; Reijonen, Jani

    2014-05-27

    An embodiment of a gamma ray generator includes a neutron generator and a moderator. The moderator is coupled to the neutron generator. The moderator includes a neutron capture material. In operation, the neutron generator produces neutrons and the neutron capture material captures at least some of the neutrons to produces gamma rays. An application of the gamma ray generator is as a source of gamma rays for calibration of gamma ray detectors.

  10. Improvement of high-fold gamma-ray data processing: the spherical gate method

    CERN Document Server

    Theisen, C; Stezowski, O; Vivien, J P

    1999-01-01

    A new method for optimizing the processing of events from a highly efficient large array gamma-ray detector is described in this article. The spherical gates technique, developed to project high-fold events, consists of optimizing n-dimensional gate shape as a function of peak width and shape of each detector. Formulas in closed form are proposed for determining the projected statistics from coincidence fold and peak shape and for estimating the increased quality of projected spectra. This procedure has been tested on high-fold, high statistics data sets including superdeformed cascades. Compared to the classical 'square-gate' technique, better peak-to-background ratios as well as a reduction in fluctuations are observed. A quality parameter is defined to characterize the optimal parameter set. This method leads roughly to a gain in spectral quality equivalent of one fold. It is also shown that the efficiency of the method increases with coincidence fold. This should be particularly suited for future higher-f...

  11. Multi-dimensional analysis of high resolution {gamma}-ray data

    Energy Technology Data Exchange (ETDEWEB)

    Flibotte, S; Huttmeier, U J; France, G de; Haas, B; Romain, P; Theisen, Ch; Vivien, J P; Zen, J [Centre National de la Recherche Scientifique (CNRS), 67 - Strasbourg (France); Bednarczyk, P [Institute of Nuclear Physics, Cracow (Poland)

    1992-08-01

    High resolution {gamma}-ray multi-detectors capable of measuring high-fold coincidences with a large efficiency are presently under construction (EUROGAM, GASP, GAMMASPHERE). The future experimental progress in our understanding of nuclear structure at high spin critically depends on our ability to analyze the data in a multi-dimensional space and to resolve small photopeaks of interest from the generally large background. Development of programs to process such high-fold events is still in its infancy and only the 3-fold case has been treated so far. As a contribution to the software development associated with the EUROGAM spectrometer, we have written and tested the performances of computer codes designed to select multi-dimensional gates from 3-, 4- and 5-fold coincidence databases. The tests were performed on events generated with a Monte Carlo simulation and also on experimental data (triples) recorded with the 8{pi} spectrometer and with a preliminary version of the EUROGAM array. (author). 7 refs., 3 tabs., 1 fig.

  12. Very high-frequency gravitational waves from magnetars and gamma-ray bursts

    Science.gov (United States)

    Wen, Hao; Li, Fang-Yu; Li, Jin; Fang, Zhen-Yun; Beckwith, Andrew

    2017-12-01

    Extremely powerful astrophysical electromagnetic (EM) systems could be possible sources of high-frequency gravitational waves (HFGWs). Here, based on properties of magnetars and gamma-ray bursts (GRBs), we address “Gamma-HFGWs” (with very high-frequency around 1020 Hz) caused by ultra-strong EM radiation (in the radiation-dominated phase of GRB fireballs) interacting with super-high magnetar surface magnetic fields (˜1011 T). By certain parameters of distance and power, the Gamma-HFGWs would have far field energy density Ω gw around 10-6, and they would cause perturbed signal EM waves of ˜10-20 W/m2 in a proposed HFGW detection system based on the EM response to GWs. Specially, Gamma-HFGWs would possess distinctive envelopes with characteristic shapes depending on the particular structures of surface magnetic fields of magnetars, which could be exclusive features helpful to distinguish them from background noise. Results obtained suggest that magnetars could be involved in possible astrophysical EM sources of GWs in the very high-frequency band, and Gamma-HFGWs could be potential targets for observations in the future. Supported by National Natural Science Foundation of China (11605015, 11375279, 11205254, 11647307) and the Fundamental Research Funds for the Central Universities (106112017CDJXY300003, 106112017CDJXFLX0014)

  13. Developments in gamma-ray spectrometry: systems, software, and methods-II. 4. High-Performance Digital Gamma-Ray Spectrometry

    International Nuclear Information System (INIS)

    Michael Momayezi

    2001-01-01

    use is to correct for the effect of varying charge collection times when measuring gamma-ray energies using large-volume Ge detectors. The substantial charge collection times in a large Ge detector cause ballistic deficit when used with a resistive feedback preamplifier. Conventional Gaussian shaping with long time constants can reduce the resulting spectral broadening to an insignificant level at the great expense of limiting the high count rate capability of a big Ge detector. Pulse shape analysis can be used to accurately correct for the preamplifier ballistic deficit independent of the filter time. As a result, the energy resolution of a big Ge detector at high count rates will be degraded only by the noise performance of its preamplifier. Pulse rise time analysis can be fruitfully applied to hemispherical CdZnTe detectors with a small charge-collecting electrode. In CdZnTe electrons travel fast and are collected with good efficiency over appreciable distances. Holes, on the other hand, travel slowly and are collected with poor efficiency. Hemispherical detectors use the small-pixel effect to reduce their intrinsic sensitivity to this effect. Yet, a pulse rise time analysis can provide a significant improvement in spectral resolution by eliminating events in which the gamma ray converts close to the collecting electrode. Finally, pulse rise time analysis can be used to implement an extremely efficient pileup rejecter, with an equivalent double pulse resolution much less than the trigger filter time or the sampling time of the wave form digitizer. (authors)

  14. Formation properties from high resolution neutron activation gamma-ray spectra

    International Nuclear Information System (INIS)

    Mellor, D.W.; Underwood, M.C.

    1985-01-01

    A neutron activation logging tool has been developed comprising a Five Curie /sup 241/ Am-Be neutron source and a large n-type hyper-pure germanium gamma-ray detector. The tool maintains a constant temperature cryogenic environment for periods in excess of twenty hours. No liquid nitrogen or other consumable material is used in the operating or recharging stages. A large calibration tank in simulated well-bore geometry has been constructed with sand bodies saturated with oil and low salinity water (14,000 ppm NaCl). In the water zone prompt neutron capture gamma-rays from silicon, hydrogen and chlorine were prominent; gamma-rays from inelastic scattering on oxygen and silicon were detected. No gamma-rays arising from inelastic scattering on carbon were detected. These data have been interpreted to yield the porosity, fluid saturations, salinity and matrix composition. In the oil zone, gamma-rays arising from inelastic scattering on oxygen, silicon and carbon were detected. The intensity of the carbon line was very poor, and inadequate for quantitative purposes

  15. Standard guide for high-resolution gamma-ray spectrometry of soil samples

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2004-01-01

    1.1 This guide covers the identification and quantitative determination of gamma-ray emitting radionuclides in soil samples by means of gamma-ray spectrometry. It is applicable to nuclides emitting gamma rays with an approximate energy range of 20 to 2000 keV. For typical gamma-ray spectrometry systems and sample types, activity levels of about 5 Bq (135 pCi) are measured easily for most nuclides, and activity levels as low as 0.1 Bq (2.7 pCi) can be measured for many nuclides. It is not applicable to radionuclides that emit no gamma rays such as the pure beta-emitting radionuclides hydrogen-3, carbon-14, strontium-90, and becquerel quantities of most transuranics. This guide does not address the in situ measurement techniques, where soil is analyzed in place without sampling. Guidance for in situ techniques can be found in Ref (1) and (2). This guide also does not discuss methods for determining lower limits of detection. Such discussions can be found in Refs (3), (4), (5), and (6). 1.2 This guide can be us...

  16. Discovery of a point-like very-high-energy gamma-ray source in Monoceros

    International Nuclear Information System (INIS)

    Aharonian, F.A.; Benbow, W.; Berge, D.; Bernlohr, K.; Bolz, O.; Braun, I.; Buhler, R.; Carrigan, S.; Costamante, L.; Domainko, W.; Egberts, K.; Forster, A.; Funk, S.; Hauser, D.; Hermann, G.; Hinton, J.A.; Hofmann, W.; Hoppe, S.; Khelifi, B.; Kosack, K.; Masterson, C.; Panter, M.; Rowell, G.; van Eldik, C.; Volk, H.J.; Akhperjanian, A.G.; Sahakian, V.; Bazer-Bachi, A.R.; Borrel, V.; Marcowith, A.; Olive, J.P.; Beilicke, M.; Cornils, R.; Heinzelmann, G.; Raue, M.; Ripken, J.; Bernlohr, K.; Funk, Seb.; Fussling, M.; Kerschhaggl, M.; Lohse, T.; Schlenker, S.; Schwanke, U.; Boisson, C.; Martin, J.M.; Sol, H.; Brion, E.; Glicenstein, J.F.; Goret, P.; Moulin, E.; Rolland, L.

    2007-01-01

    Aims. The complex Monoceros Loop SNR/Rosette Nebula region contains several potential sources of very-high-energy (VHE) γ-ray emission and two as yet unidentified high-energy EGRET sources. Sensitive VHE observations are required to probe acceleration processes in this region. Methods. The HESS telescope array has been used to search for very high-energy gamma-ray sources in this region. CO data from the NANTEN telescope were used to map the molecular clouds in the region, which could act as target material for γ-ray production via hadronic interactions. Results. We announce the discovery of a new γ-ray source, HESS J0632+057, located close to the rim of the Monoceros SNR. This source is unresolved by HESS and has no clear counterpart at other wavelengths but is possibly associated with the weak X-ray source 1RXS J063258.3+054857, the Be-star MWC148 and/or the lower energy γ-ray source 3EGJ0634+0521. No evidence for an associated molecular cloud was found in the CO data. (authors)

  17. High resolution gamma-ray spectroscopy and the fascinating angular momentum realm of the atomic nucleus

    International Nuclear Information System (INIS)

    Riley, M A; Simpson, J; Paul, E S

    2016-01-01

    In 1974 Aage Bohr and Ben Mottelson predicted the different ‘phases’ that may be expected in deformed nuclei as a function of increasing angular momentum and excitation energy all the way up to the fission limit. While admitting their picture was highly conjectural they confidently stated ‘...with the ingenious experimental approaches that are being developed, we may look forward with excitement to the detailed spectroscopic studies that will illuminate the behaviour of the spinning quantised nucleus’ . High resolution gamma-ray spectroscopy has indeed been a major tool in studying the structure of atomic nuclei and has witnessed numerous significant advances over the last four decades. This article will select highlights from investigations at the Niels Bohr Institute, Denmark, and Daresbury Laboratory, UK, in the late 1970s and early 1980s, some of which have continued at other national laboratories in Europe and the USA to the present day. These studies illustrate the remarkable diversity of phenomena and symmetries exhibited by nuclei in the angular momentum–excitation energy plane that continue to surprise and fascinate scientists. (invited comment)

  18. TARGET: A multi-channel digitizer chip for very-high-energy gamma-ray telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Bechtol, K.; Funk, S.; /Stanford U., HEPL /KIPAC, Menlo Park; Okumura, A.; /JAXA, Sagamihara /Stanford U., HEPL /KIPAC, Menlo Park; Ruckman, L.; /Hawaii U.; Simons, A.; Tajima, H.; Vandenbroucke, J.; /Stanford U., HEPL /KIPAC, Menlo Park; Varner, G.; /Hawaii U.

    2011-08-11

    The next-generation very-high-energy (VHE) gamma-ray observatory, the Cherenkov Telescope Array, will feature dozens of imaging atmospheric Cherenkov telescopes (IACTs), each with thousands of pixels of photosensors. To be affordable and reliable, reading out such a mega-channel array requires event recording technology that is highly integrated and modular, with a low cost per channel. We present the design and performance of a chip targeted to this application: the TeV Array Readout with GSa/s sampling and Event Trigger (TARGET). This application-specific integrated circuit (ASIC) has 16 parallel input channels, a 4096-sample buffer for each channel, adjustable input termination, self-trigger functionality, and tight window-selected readout. We report the performance of TARGET in terms of sampling frequency, power consumption, dynamic range, current-mode gain, analog bandwidth, and cross talk. The large number of channels per chip allows a low cost per channel ($10 to $20 including front-end and back-end electronics but not including photosensors) to be achieved with a TARGET-based IACT readout system. In addition to basic performance parameters of the TARGET chip itself, we present a camera module prototype as well as a second-generation chip (TARGET 2), both of which have been produced.

  19. High resolution gamma-ray spectroscopy and the fascinating angular momentum realm of the atomic nucleus

    Science.gov (United States)

    Riley, M. A.; Simpson, J.; Paul, E. S.

    2016-12-01

    In 1974 Aage Bohr and Ben Mottelson predicted the different ‘phases’ that may be expected in deformed nuclei as a function of increasing angular momentum and excitation energy all the way up to the fission limit. While admitting their picture was highly conjectural they confidently stated ‘...with the ingenious experimental approaches that are being developed, we may look forward with excitement to the detailed spectroscopic studies that will illuminate the behaviour of the spinning quantised nucleus’. High resolution gamma-ray spectroscopy has indeed been a major tool in studying the structure of atomic nuclei and has witnessed numerous significant advances over the last four decades. This article will select highlights from investigations at the Niels Bohr Institute, Denmark, and Daresbury Laboratory, UK, in the late 1970s and early 1980s, some of which have continued at other national laboratories in Europe and the USA to the present day. These studies illustrate the remarkable diversity of phenomena and symmetries exhibited by nuclei in the angular momentum-excitation energy plane that continue to surprise and fascinate scientists.

  20. Large-area atmospheric Cherenkov detectors for high-energy gamma-ray astronomy

    International Nuclear Information System (INIS)

    Ong, R.A.

    1996-01-01

    This paper describes the development of new ground-based gamma-ray detectors to explore the energy region between 20 and 200 GeV. This region in energy is interesting because it is currently unexplored by any experiment. The proposed detectors use the atmospheric Cherenkov technique, in which Cherenkov radiation produced in the gamma-ray air showers is detected using mirrors and light-sensitive devices. The important feature of the proposed experiments is the use of large mirror collection areas, which should allow for a significant improvement (i.e. reduction) in energy threshold over existing experiments. Large mirror areas are available for relatively low cost at central tower solar power plants, and there are two groups developing gamma-ray experiments using solar heliostat arrays. This paper summarizes the progress in the design of experiments using this novel approach

  1. High-resolution gamma-ray measurement systems using a compact electro- mechanically cooled detector system and intelligent software

    International Nuclear Information System (INIS)

    Buckley, W.M.; Carlson, J.B.; Neufeld, K.W.

    1995-01-01

    Obtaining high-resolution gamma-ray measurements using high-purity germanium (HPGe) detectors in the field has been of limited practicality due to the need to use and maintain a supply of liquid nitrogen (LN 2 ). This same constraint limits high-resolution gamma measurements in unattended safeguards or treaty Verification applications. We are developing detectors and software to greatly extend the applicability of high-resolution germanium-based measurements for these situations

  2. High resolution gamma-ray spectroscopy at high count rates with a prototype High Purity Germanium detector

    Science.gov (United States)

    Cooper, R. J.; Amman, M.; Vetter, K.

    2018-04-01

    High-resolution gamma-ray spectrometers are required for applications in nuclear safeguards, emergency response, and fundamental nuclear physics. To overcome one of the shortcomings of conventional High Purity Germanium (HPGe) detectors, we have developed a prototype device capable of achieving high event throughput and high energy resolution at very high count rates. This device, the design of which we have previously reported on, features a planar HPGe crystal with a reduced-capacitance strip electrode geometry. This design is intended to provide good energy resolution at the short shaping or digital filter times that are required for high rate operation and which are enabled by the fast charge collection afforded by the planar geometry crystal. In this work, we report on the initial performance of the system at count rates up to and including two million counts per second.

  3. modern utilization of accurate methods for gamma-ray spectral analysis detected by high pure germanium (HPGE) detectors through different applications

    International Nuclear Information System (INIS)

    El-Sayed, M.M.

    2006-01-01

    this thesis presents a novel way for application of wavelet transform theory in gamma-ray spectroscopy . this technique was applied for searching real and weak peaks, solving problem of multiplets, smoothing and de-noising gamma-ray spectra, and using artificial neural network for identifying peaks. a brief description about gamma-ray spectrum analysis is presented. we discussed the necessary formulas and algorithms of wavelet theory to solve these main problems in gamma -ray spectrum analysis. the algorithm of peak search was applied on different types of spectra, IAEA spectra and other sources of gamma spectra. the algorithm of multiplets algorithm was applied successfully on different types of multiplets. the algorithm of de noising was applied successfully on different sources of spectra.finally, a database for neutron activation laboratory is created. this data base consists of five routines, wavelet gamma spectrum analysis, peak identification, elemental concentration , neutron flux determination,and detector efficiency calculation

  4. High-Z Nanoparticle/Polymer Nanocomposites for Gamma-Ray Scintillation Detectors

    Science.gov (United States)

    Liu, Chao

    An affordable and reliable solution for spectroscopic gamma-ray detection has long been sought after due to the needs from research, defense, and medical applications. Scintillators resolve gamma energy by proportionally converting a single high-energy photon into a number of photomultiplier-tube-detectable low-energy photons, which is considered a more affordable solution for general purposes compared to the delicate semiconductor detectors. An ideal scintillator should simultaneously exhibit the following characteristics: 1) high atomic number (Z) for high gamma stopping power and photoelectron production; 2) high light yield since the energy resolution is inversely proportional to the square root of light yield; 3) short emission decay lifetime; and 4) low cost and scalable production. However, commercial scintillators made from either inorganic single crystals or plastics fail to satisfy all requirements due to their intrinsic material properties and fabrication limitations. The concept of adding high-Z constituents into plastic scintillators to harness high Z, low cost, and fast emission in the resulting nanocomposite scintillators is not new in and of itself. Attempts have been made by adding organometallics, quantum dots, and scintillation nanocrystals into the plastic matrix. High-Z organometallics have long been used to improve the Z of plastic scintillators; however, their strong spin-orbit coupling effect entails careful triplet energy matching using expensive triplet emitters to avoid severe quenching of the light yield. On the other hand, reported quantum dot- and nanocrystal-polymer nanocomposites suffer from moderate Z and high optical loss due to aggregation and self-absorption at loadings higher than 10 wt%, limiting their potential for practical application. This dissertation strives to improve the performance of nanoparticle-based nanocomposite scintillators. One focus is to synthesize transparent nanocomposites with higher loadings of high

  5. High-energy Neutrino Emission from Short Gamma-Ray Bursts: Prospects for Coincident Detection with Gravitational Waves

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Shigeo S.; Murase, Kohta; Mészáros, Peter [Department of Physics, Pennsylvania State University, University Park, PA 16802 (United States); Kiuchi, Kenta [Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto, Kyoto 606-8502 (Japan)

    2017-10-10

    We investigate current and future prospects for coincident detection of high-energy neutrinos and gravitational waves (GWs). Short gamma-ray bursts (SGRBs) are believed to originate from mergers of compact star binaries involving neutron stars. We estimate high-energy neutrino fluences from prompt emission, extended emission (EE), X-ray flares, and plateau emission, and we show that neutrino signals associated with the EE are the most promising. Assuming that the cosmic-ray loading factor is ∼10 and the Lorentz factor distribution is lognormal, we calculate the probability of neutrino detection from EE by current and future neutrino detectors, and we find that the quasi-simultaneous detection of high-energy neutrinos, gamma-rays, and GWs is possible with future instruments or even with current instruments for nearby SGRBs having EE. We also discuss stacking analyses that will also be useful with future experiments such as IceCube-Gen2.

  6. Dust extinction in high-z galaxies with gamma-ray burst afterglow spectroscopy

    DEFF Research Database (Denmark)

    Elíasdóttir, Á.; Fynbo, J. P. U.; Hjorth, J.

    2009-01-01

    We report the clear detection of the 2175 Å dust absorption feature in the optical afterglow spectrum of the gamma-ray burst (GRB) GRB 070802 at a redshift of z = 2.45. This is the highest redshift for a detected 2175 Å dust bump to date, and it is the first clear detection of the 2175 Å bump...

  7. Advanced techniques for high resolution spectroscopic observations of cosmic gamma-ray sources

    International Nuclear Information System (INIS)

    Matteson, J.L.; Pelling, M.R.; Peterson, L.E.

    1985-08-01

    We describe an advanced gamma-ray spectrometer that is currently in development. It will obtain a sensitivity of -4 ph/cm -2 -sec in a 6 hour balloon observation and uses innovative techniques for background reduction and source imaging

  8. Gamma-ray bursts from stellar remnants - Probing the universe at high redshift

    NARCIS (Netherlands)

    Wijers, R.A.M.J.; Bloom, J.S.; Bagla, J.S.; Natarajan, P.

    1998-01-01

    A gamma-ray burst (GRB) releases an amount of energy similar to that of a supernova explosion, which combined with its rapid variability suggests an origin related to neutron stars or black holes. Since these compact stellar remnants form from the most massive stars not long after their birth, GRBs

  9. A BaF2-BGO detector for high-energy gamma rays

    International Nuclear Information System (INIS)

    Bargholtz, C.; Ritzen, B.; Tegner, P.E.

    1989-01-01

    A scintillation detector has been developed for gamma rays with energy between a few hundred keV and approximately 100 MeV. The detector comprises a BaF 2 and a BGO crystal giving it good timing properties and a reasonably good energy resolution in combination with compact size. (orig.)

  10. High-energy gamma-ray and neutrino backgrounds from clusters of galaxies and radio constraints

    NARCIS (Netherlands)

    Zandanel, F.; Tamborra, I.; Gabici, S.; Ando, S.

    2015-01-01

    Cosmic-ray protons accumulate for cosmological times in clusters of galaxies because their typical radiative and diffusive escape times are longer than the Hubble time. Their hadronic interactions with protons of the intra-cluster medium generate secondary electrons, gamma rays, and neutrinos. In

  11. EJ-309 pulse shape discrimination performance with a high gamma-ray-to-neutron ratio and low threshold

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, A.C., E-mail: Alexis.C.Kaplan@gmail.com [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, 2355 Bonisteel Blvd., Ann Arbor, MI 48104 (United States); Nuclear Engineering and Nonproliferation Division, Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Flaska, M.; Enqvist, A.; Dolan, J.L.; Pozzi, S.A. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, 2355 Bonisteel Blvd., Ann Arbor, MI 48104 (United States)

    2013-11-21

    Measuring neutrons in the presence of high gamma-ray fluence is a challenge with multi-particle detectors. Organic liquid scintillators such as the EJ-309 are capable of accurate pulse-shape discrimination (PSD) but the chance for particle misclassification is not negligible for some applications. By varying the distance from an EJ-309 scintillator to a strong-gamma-ray source and keeping a weak-neutron source at a fixed position, various gamma-to-neutron ratios can be measured and PSD performance can be quantified. Comparing neutron pulse-height distributions allows for pulse-height specific PSD evaluation, and quantification and visualization of deviation from {sup 252}Cf alone. Even with the addition of the misclassified gamma-rays, the PSD is effective in separating particles so that neutron count rate can be predicted with less than 10% error up to a gamma-to-neutron ratio of almost 650. For applications which can afford a reduction in neutron detection efficiency, PSD can be sufficiently effective in discriminating particles to measure a weak neutron source in a high gamma-ray background. -- Highlights: •We measure neutrons in a high photon background with EJ-309 liquid scintillators. •A low threshold is used to test the limits of particle discrimination. •A weak neutron signal is detectable with a gamma/neutron ratio as high as 770. •Photon pileup most commonly adds to error in classification of neutrons. •Neutron count rates are within 10% of expected rate under high gamma background.

  12. EJ-309 pulse shape discrimination performance with a high gamma-ray-to-neutron ratio and low threshold

    International Nuclear Information System (INIS)

    Kaplan, A.C.; Flaska, M.; Enqvist, A.; Dolan, J.L.; Pozzi, S.A.

    2013-01-01

    Measuring neutrons in the presence of high gamma-ray fluence is a challenge with multi-particle detectors. Organic liquid scintillators such as the EJ-309 are capable of accurate pulse-shape discrimination (PSD) but the chance for particle misclassification is not negligible for some applications. By varying the distance from an EJ-309 scintillator to a strong-gamma-ray source and keeping a weak-neutron source at a fixed position, various gamma-to-neutron ratios can be measured and PSD performance can be quantified. Comparing neutron pulse-height distributions allows for pulse-height specific PSD evaluation, and quantification and visualization of deviation from 252 Cf alone. Even with the addition of the misclassified gamma-rays, the PSD is effective in separating particles so that neutron count rate can be predicted with less than 10% error up to a gamma-to-neutron ratio of almost 650. For applications which can afford a reduction in neutron detection efficiency, PSD can be sufficiently effective in discriminating particles to measure a weak neutron source in a high gamma-ray background. -- Highlights: •We measure neutrons in a high photon background with EJ-309 liquid scintillators. •A low threshold is used to test the limits of particle discrimination. •A weak neutron signal is detectable with a gamma/neutron ratio as high as 770. •Photon pileup most commonly adds to error in classification of neutrons. •Neutron count rates are within 10% of expected rate under high gamma background

  13. High spin {gamma}-ray spectroscopy of {sup 121,122}Xe

    Energy Technology Data Exchange (ETDEWEB)

    Timmers, H [Liverpool Univ. (United Kingdom). Oliver Lodge Lab.; [Department of Physics, SUNY at Stony Brook, NY (United States); Riley, M A; Hanna, F; Mullins, S M; Sharpey-Schafer, J F [Liverpool Univ. (United Kingdom). Oliver Lodge Lab.; Hughes, J R; Fossan, D B; Liang, Y; Ma, R; Xu, N [Department of Physics, SUNY at Stony Brook, NY (United States); Simpson, J; Bentley, M A [Daresbury Lab. (United Kingdom); Bengtsson, T [Lund Univ. (Sweden). Dept. of Mathematical Physics; Wyss, R [Institute for Heavy Ion Research, Oak Ridge, TN (United States)

    1992-08-01

    High-spin states have been populated in {sup 121,122}Xe using the reactions {sup 108}Pd({sup 16}O,3n){sup 121}Xe at 65 MeV and {sup 96}Zr({sup 30}Si,4n/5n){sup 122}Xe/{sup 121}Xe at 135 MeV. Coincident {gamma} rays following the neutron evaporation were detected by six Compton-suppressed Ge detectors and the TESSA3 array respectively. The level structure of {sup 121}Xe and {sup 122}Xe has been extended up to 47/2 {Dirac_h} and 32 {Dirac_h} respectively. In {sup 121}Xe a coupled band was found feeding the 19/2{sup -} level. In {sup 122}Xe several decays are suggested to be a sequence of stretched E2 quadrupole transitions connecting states of positive parity. While in {sup 121}Xe this phenomenon was not observed, at high spin a phase transition from prolate collective rotation to oblate single particle excitation was detected in {sup 122}Xe. For the new, probably positive parity side band in{sup 122}Xe a four quasi-neutron or a two quasi-proton configuration of h{sub 11/2} quasi-nucleons might be considered. The positive parity high spin structure in {sup 122}Xe contains three I{sup {pi}} = 22{sup +} states of different character. This is predicted by TRS (total Routhian surface) calculations, which identify these states as two shapes with predominantly prolate collective characteristic and the third as an oblate single particle configuration. 12 refs., 3 figs.

  14. Precision linac and laser technologies for nuclear photonics gamma-ray sources

    Energy Technology Data Exchange (ETDEWEB)

    Albert, F.; Hartemann, F. V.; Anderson, S. G.; Cross, R. R.; Gibson, D. J.; Hall, J.; Marsh, R. A.; Messerly, M.; Wu, S. S.; Siders, C. W.; Barty, C. P. J. [Lawrence Livermore National Laboratory, NIF and Photon Science, 7000 East Avenue, Livermore, California 94550 (United States)

    2012-05-15

    Tunable, high precision gamma-ray sources are under development to enable nuclear photonics, an emerging field of research. This paper focuses on the technological and theoretical challenges related to precision Compton scattering gamma-ray sources. In this scheme, incident laser photons are scattered and Doppler upshifted by a high brightness electron beam to generate tunable and highly collimated gamma-ray pulses. The electron and laser beam parameters can be optimized to achieve the spectral brightness and narrow bandwidth required by nuclear photonics applications. A description of the design of the next generation precision gamma-ray source currently under construction at Lawrence Livermore National Laboratory is presented, along with the underlying motivations. Within this context, high-gradient X-band technology, used in conjunction with fiber-based photocathode drive laser and diode pumped solid-state interaction laser technologies, will be shown to offer optimal performance for high gamma-ray spectral flux, narrow bandwidth applications.

  15. X- and gamma-ray N+PP+ silicon detectors with high radiation resistance

    International Nuclear Information System (INIS)

    Petris, M.; Ruscu, R.; Moraru, R.; Cimpoca, V.

    1998-01-01

    We have investigated the use of p-type silicon detectors as starting material for X-and gamma-ray detectors because of several potential benefits it would bring: 1. high purity p-type silicon grown by the float-zone process exhibits better radial dopant uniformity than n-type float-zone silicon; 2. it is free of radiation damage due to the neutron transmutation doping process and behaves better in a radiation field because mainly acceptor like centers are created through the exposure and the bulk material type inversion does not occur as in the n-type silicon. But the p-type silicon, in combination with a passivating layer of silicon dioxide, leads to a more complex detector layout since the positive charge in the oxide causes an inversion in the surface layer under the silicon dioxide. Consequently, it would be expected that N + P diodes have a higher leakage current than P + N ones. All these facts have been demonstrated experimentally. These features set stringent requirements for the technology of p-type silicon detectors. Our work presents two new geometries and an improved technology for p-type high resistivity material to obtain low noise radiation detectors. Test structures were characterized before and after the gamma exposure with a cumulative dose in the range 10 4 - 5 x 10 6 rad ( 60 Co). Results indicate that proposed structures and their technology enable the development of reliable N + PP + silicon detectors. For some samples (0.8 - 12 mm 2 ), extremely low reverse currents were obtained and, in combination with a low noise charge preamplifier, the splitting of 241 Am X-ray lines was possible and also the Mn Kα line (5.9 keV) was extracted from the noise with a 1.9 keV FWHM at the room temperature. An experimental model of a nuclear probe based on these diodes was designed for X-ray detection applications. (authors)

  16. A method for unfolding high-energy scintillation gamma-ray spectra up to 8 MeV

    International Nuclear Information System (INIS)

    Dymke, N.; Hofmann, B.

    1982-01-01

    In unfolding a high-energy scintillation gamma-ray spectrum up to 8 MeV with the help of a response matrix, the means of linear algebra fail if the matrix is ill conditioned. In such cases, unfolding could be accomplished by means of a mathematical method based on a priori knowledge of the photon spectrum to be expected. The method which belongs to the class of regularization techniques was tested on in-situ gamma-ray spectra of 16 N recorded in a nuclear power plant near the primary circuit, using an 1.5 x 1.5 in. NaI(Tl) scintillation detector. For one regularized unfolding the results were presented in the form of an energy and a dose-rate spectrum. (author)

  17. About cosmic gamma ray lines

    Science.gov (United States)

    Diehl, Roland

    2017-06-01

    Gamma ray lines from cosmic sources convey the action of nuclear reactions in cosmic sites and their impacts on astrophysical objects. Gamma rays at characteristic energies result from nuclear transitions following radioactive decays or high-energy collisions with excitation of nuclei. The gamma-ray line from the annihilation of positrons at 511 keV falls into the same energy window, although of different origin. We present here the concepts of cosmic gamma ray spectrometry and the corresponding instruments and missions, followed by a discussion of recent results and the challenges and open issues for the future. Among the lessons learned are the diffuse radioactive afterglow of massive-star nucleosynthesis in 26Al and 60Fe gamma rays, which is now being exploited towards the cycle of matter driven by massive stars and their supernovae; large interstellar cavities and superbubbles have been recognised to be of key importance here. Also, constraints on the complex processes making stars explode as either thermonuclear or core-collapse supernovae are being illuminated by gamma-ray lines, in this case from shortlived radioactivities from 56Ni and 44Ti decays. In particular, the three-dimensionality and asphericities that have recently been recognised as important are enlightened in different ways through such gamma-ray line spectroscopy. Finally, the distribution of positron annihilation gamma ray emission with its puzzling bulge-dominated intensity disctribution is measured through spatially-resolved spectra, which indicate that annihilation conditions may differ in different parts of our Galaxy. But it is now understood that a variety of sources may feed positrons into the interstellar medium, and their characteristics largely get lost during slowing down and propagation of positrons before annihilation; a recent microquasar flare was caught as an opportunity to see positrons annihilate at a source.

  18. Measurement and Analysis of the Neutron and Gamma-Ray Flux Spectra in a Neutronics Mock-Up of the HCPB Test Blanket Module

    International Nuclear Information System (INIS)

    Seidel, K.; Freiesleben, H.; Poenitz, E.; Klix, A.; Unholzer, S.; Batistoni, P.; Fischer, U.; Leichtle, D.

    2006-01-01

    The nuclear parameters of a breeding blanket, such as tritium production rate, nuclear heating, activation and dose rate, are calculated by integral folding of an energy dependent cross section (or coefficient) with the neutron (or gamma-ray) flux energy spectra. The uncertainties of the designed parameters are determined by the uncertainties of both the cross section data and the flux spectra obtained by transport calculations. Also the analysis of possible discrepancies between measured and calculated integral nuclear parameter represents a two-step procedure. First, the energy region and the amount of flux discrepancies has to be found out and second, the cross section data have to be checked. To this end, neutron and gamma-ray flux spectra in a mock-up of the EU Helium-Cooled Pebble Bed (HCPB) breeder Test Blanket Module (TBM), irradiated with 14 MeV neutrons, were measured and analysed by means of Monte Carlo transport calculations. The flux spectra were determined for the energy ranges that are relevant for the most important nuclear parameters of the TBM, which are the tritium production rate and the shielding capability. The fast neutron flux which determines the tritium production on 7 Li and dominates the shield design was measured by the pulse-height distribution obtained from an organic liquid scintillation detector. Simultaneously, the gamma-ray flux spectra were measured. The neutron flux at lower energies, down to thermal, which determines the tritium production on 6 Li, was measured with time-of-arrival spectroscopy. For this purpose, the TUD neutron generator was operated in pulsed mode (pulse width 10 μs, frequency 1 kHz) and the neutrons arriving at a 3 He proportional counter in the mock-up were recorded as a function of time after the source neutron pulse. The spectral distributions for the two positions in the mock-up, where measurements were carried out, were calculated with the Monte Carlo code MCNP, version 5, and nuclear data from the

  19. Spatial distribution of the gamma-ray bursts at very high redshift

    Science.gov (United States)

    Mészáros, Attila

    2018-05-01

    The author - with his collaborators - already in years 1995-96 have shown - purely from the analyses of the observations - that the gamma-ray bursts (GRBs) can be till redshift 20. Since that time several other statistical studies of the spatial distribution of GRBs were provided. Remarkable conclusions concerning the star-formation rate and the validity of the cosmological principle were obtained about the regions of the cosmic dawn. In this contribution these efforts are surveyed.

  20. International comparison of methods to test the validity of dead-time and pile-up corrections for high-precision. gamma. -ray spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Houtermans, H.; Schaerf, K.; Reichel, F. (International Atomic Energy Agency, Vienna (Austria)); Debertin, K. (Physikalisch-Technische Bundesanstalt, Braunschweig (Germany, F.R.))

    1983-02-01

    The International Atomic Energy Agency organized an international comparison of methods applied in high-precision ..gamma..-ray spectrometry for the correction of dead-time and pile-up losses. Results of this comparison are reported and discussed.

  1. Array-type sensor to determine corrosive conditions in high temperature water under gamma rays irradiation

    International Nuclear Information System (INIS)

    Satoh, T.; Tsukada, T.; Uchida, S.; Katoh, C.

    2010-01-01

    One of the problems to determine electrochemical corrosion potential (ECP) in high temperature water under irradiation is to apply long-lived and reliable reference electrodes. In order to avoid troubles due to the reference electrode, a new concept to determine ECP without the reference electrode has been proposed. Several metal plates are applied as working electrodes and at the same time as the reference electrodes. Potential of the metal plates with stable oxide films on their surfaces show stable values in high temperature water. As a result of the combination of their potential values, ECP of each metal can be determined without any specific reference electrode. Array-type sensors consisting of several metal plates, e.g., Fe, Ni, Cr, Zr, Pt, Pd, Re, Ir, with well developed oxide films on their surface were prepared for ECP measurement in high temperature water under neutron/gamma ray irradiations. In order to confirm the feasibility of this concept, responses of the redox potentials of the pure metals to changes in the simulated BWR reactor water conditions were measured and the ECP was determined by the differences in potentials between a couple of metal plates. Major conclusions of the study are as follows: 1) The redox potentials of the Fe, Pt, Zr, Ir, Pd, and Re electrodes showed the different dependences on the changes in O 2 and H 2 O 2 concentrations. The redox potentials of the electrodes increased as the oxidant concentrations increased except for Zr electrode. The potential of the Zr electrode was kept the very low potential at the wide range of O 2 and H 2 O 2 concentrations differed form the other electrodes. 2) It was estimated that the redox potential of highly soluble metal may be increased, while that of low soluble metal may be decreased by an oxide film. The stable oxide film would cause the stable potential response of the electrode with oxide film. 3) The relationship between the oxidant concentrations and the redox potentials of the

  2. APPLE-3: improvement of APPLE for neutron and gamma-ray flux, spectrum and reaction rate plotting code, and of its code manual

    International Nuclear Information System (INIS)

    Kawasaki, Hiromitu; Maki, Koichi; Seki, Yasushi.

    1991-03-01

    A code APPLE was produced in 1976 for calculating and plotting tritium breeding ratio and tritium production rate distributions. That code was improved as 'APPLE-2' in 1982, to calculate and plot not only tritium breeding ratio but also distributions of neutron and gamma-ray fluxes, their spectra, nuclear heating rates and other reaction rates, and dose rate distributions during operation and after shutdown in 1982. The code APPLE-2 can calculate and plot these nuclear properties derived from neutron and gamma-ray fluxes by ANISN (one dimensional transport code), DOT3.5 (two dimensional transport code) and MORSE (three dimensional Monte Carlo code). We revised the code APPLE-2 as 'APPLE-3' by adding many functions to the APPLE-2 code in accordance with users' requirements proposed in recent progress of fusion reaction nuclear design. With minor modification of APPLE-2, a number of inconsistencies have been found between the code manual and the input data in the code. In the present report, the new functions added to APPLE-2 and improved users' manual are explained. (author)

  3. SYSTEMATIC STUDY OF GAMMA-RAY-BRIGHT BLAZARS WITH OPTICAL POLARIZATION AND GAMMA-RAY VARIABILITY

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Ryosuke; Fukazawa, Yasushi; Kanda, Yuka; Shiki, Kensei; Kawabata, Miho; Nakaoka, Tatsuya; Takaki, Katsutoshi; Takata, Koji; Ui, Takahiro [Department of Physical Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Nalewajko, Krzysztof; Madejski, Greg M. [Kavli Institute for Particle Astrophysics and Cosmology, SLAC National Accelerator Laboratory, Stanford University, 2575 Sand Hill Road M/S 29, Menlo Park, CA 94025 (United States); Uemura, Makoto; Tanaka, Yasuyuki T.; Kawabata, Koji S.; Akitaya, Hiroshi; Ohsugi, Takashi [Hiroshima Astrophysical Science Center, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Schinzel, Frank K. [Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131 (United States); Moritani, Yuki [Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Kashiwa, Chiba 277-8583 (Japan); Sasada, Mahito [Institute for Astrophysical Research, Boston University, 725 Commonwealth Avenue, Boston, MA 02215 (United States); Yamanaka, Masayuki, E-mail: itoh@hep01.hepl.hiroshima-u.ac.jp, E-mail: itoh@hp.phys.titech.ac.jp [Department of Physics, Faculty of Science and Engineering, Konan University, Okamoto, Kobe, Hyogo 658-8501 (Japan); and others

    2016-12-10

    Blazars are highly variable active galactic nuclei that emit radiation at all wavelengths from radio to gamma rays. Polarized radiation from blazars is one key piece of evidence for synchrotron radiation at low energies, and it also varies dramatically. The polarization of blazars is of interest for understanding the origin, confinement, and propagation of jets. However, even though numerous measurements have been performed, the mechanisms behind jet creation, composition, and variability are still debated. We performed simultaneous gamma-ray and optical photopolarimetry observations of 45 blazars between 2008 July and 2014 December to investigate the mechanisms of variability and search for a basic relation between the several subclasses of blazars. We identify a correlation between the maximum degree of optical linear polarization and the gamma-ray luminosity or the ratio of gamma-ray to optical fluxes. Since the maximum polarization degree depends on the condition of the magnetic field (chaotic or ordered), this result implies a systematic difference in the intrinsic alignment of magnetic fields in parsec-scale relativistic jets between different types of blazars (flat-spectrum radio quasars vs. BL Lacs) and consequently between different types of radio galaxies (FR I versus FR II).

  4. Observations of the highest energy gamma-rays from gamma-ray bursts

    International Nuclear Information System (INIS)

    Dingus, Brenda L.

    2001-01-01

    EGRET has extended the highest energy observations of gamma-ray bursts to GeV gamma rays. Such high energies imply the fireball that is radiating the gamma-rays has a bulk Lorentz factor of several hundred. However, EGRET only detected a few gamma-ray bursts. GLAST will likely detect several hundred bursts and may extend the maximum energy to a few 100 GeV. Meanwhile new ground based detectors with sensitivity to gamma-ray bursts are beginning operation, and one recently reported evidence for TeV emission from a burst

  5. High-energy emissions from the gamma-ray binary LS 5039

    Energy Technology Data Exchange (ETDEWEB)

    Takata, J.; Leung, Gene C. K.; Cheng, K. S. [Department of Physics, University of Hong Kong, Pokfulam Road (Hong Kong); Tam, P. H. T.; Kong, A. K. H. [Institute of Astronomy and Department of Physics, National Tsing Hua University, Hsinchu, Taiwan (China); Hui, C. Y., E-mail: takata@hku.hk, E-mail: gene930@connect.hku.hk, E-mail: hrspksc@hku.hk [Department of Astronomy and Space Science, Chungnam National University, Daejeon (Korea, Republic of)

    2014-07-20

    We study mechanisms of multi-wavelength emissions (X-ray, GeV, and TeV gamma-rays) from the gamma-ray binary LS 5039. This paper is composed of two parts. In the first part, we report on results of observational analysis using 4 yr data of the Fermi Large Area Telescope. Due to the improvement of instrumental response function and increase of the statistics, the observational uncertainties of the spectrum in the ∼100-300 MeV bands and >10 GeV bands are significantly improved. The present data analysis suggests that the 0.1-100 GeV emissions from LS 5039 contain three different components: (1) the first component contributes to <1 GeV emissions around superior conjunction, (2) the second component dominates in the 1-10 GeV energy bands, and (3) the third component is compatible with the lower-energy tail of the TeV emissions. In the second part, we develop an emission model to explain the properties of the phase-resolved emissions in multi-wavelength observations. Assuming that LS 5039 includes a pulsar, we argue that emissions from both the magnetospheric outer gap and the inverse-Compton scattering process of cold-relativistic pulsar wind contribute to the observed GeV emissions. We assume that the pulsar is wrapped by two kinds of termination shock: Shock-I due to the interaction between the pulsar wind and the stellar wind and Shock-II due to the effect of the orbital motion. We propose that the X-rays are produced by the synchrotron radiation at the Shock-I region and the TeV gamma-rays are produced by the inverse-Compton scattering process at the Shock-II region.

  6. Extragalactic Gamma-Ray Astrophysics

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    During the last decades, various classes of radio-loud active galactic nuclei have been established as sources of high-energy radiation extending over a very broad range from soft gamma-rays (photon energies E~MeV) up to very-high-energy gamma-rays (E>100 GeV). These include blazars of different types, as well as young and evolved radio galaxies. The observed gamma-ray emission from such implies efficient particle acceleration processes taking place in highly magnetized and relativistic jets produced by supermassive black holes, processes that have yet to be identified and properly understood. In addition, nearby starforming and starburst galaxies, some of which host radio-quiet Seyfert-type nuclei, have been detected in the gamma-ray range as well. In their cases, the observed gamma-ray emission is due to non-thermal activity in the interstellar medium, possibly including also a contribution from accretion disks and nuclear outflows. Finally, the high-energy emission from clusters of galaxies remains elusive...

  7. Observations of gamma-ray bursts

    International Nuclear Information System (INIS)

    Strong, I.B.; Klebesadel, R.W.; Evans, W.D.

    1975-01-01

    Observational data on gamma-ray bursts are reviewed. Information is grouped into temporal properties, energy fluxes and spectral properties, and directions and distributions of the sources in space. (BJG)

  8. Characterisation of a Compton suppressed Clover detector for high energy gamma rays (=<11MeV)

    International Nuclear Information System (INIS)

    Saha Sarkar, M.; Kshetri, Ritesh; Raut, Rajarshi; Mukherjee, A.; Sinha, Mandira; Ray, Maitreyi; Goswami, A.; Roy, Subinit; Basu, P.; Majumder, H.; Bhattacharya, S.; Dasmahapatra, B.

    2006-01-01

    Gamma ray spectra of two (p,γ) resonances have been utilised for the characterisation of the Clover detector at energies beyond 5MeV. Apart from the efficiency and the resolution of the detector, the shapes of the full energy peaks as well as the nature of the escape peaks which are also very crucial at higher energies have been analysed with special attention. Proper gain matching in software have checked deterioration in the energy resolution and distortion in the peak shape due to addback. The addback factors show sharp increasing trend even at energies around 11MeV

  9. Characterisation of a Compton suppressed Clover detector for high energy gamma rays (=<11MeV)

    Energy Technology Data Exchange (ETDEWEB)

    Saha Sarkar, M. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata-700064 (India)]. E-mail: maitrayee.sahasarkar@saha.ac.in; Kshetri, Ritesh [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata-700064 (India); Raut, Rajarshi [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata-700064 (India); Mukherjee, A. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata-700064 (India); Sinha, Mandira [Gurudas College, Narkeldanga, Kolkata-700054 (India); Ray, Maitreyi [Behala College, Parnashree, Kolkata-700060 (India); Goswami, A. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata-700064 (India); Roy, Subinit [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata-700064 (India); Basu, P. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata-700064 (India); Majumder, H. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata-700064 (India); Bhattacharya, S. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata-700064 (India); Dasmahapatra, B. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata-700064 (India)

    2006-01-01

    Gamma ray spectra of two (p,{gamma}) resonances have been utilised for the characterisation of the Clover detector at energies beyond 5MeV. Apart from the efficiency and the resolution of the detector, the shapes of the full energy peaks as well as the nature of the escape peaks which are also very crucial at higher energies have been analysed with special attention. Proper gain matching in software have checked deterioration in the energy resolution and distortion in the peak shape due to addback. The addback factors show sharp increasing trend even at energies around 11MeV.

  10. Development of high yielding mutants of Brassica campestris L. cv. Toria selection through gamma rays irradiation

    International Nuclear Information System (INIS)

    Javed, M.A.; Siddiqui, M.A.; Khan, M.K.R.; Khatri, A.; Khan, I.A.; Dahar, N.A.; Khanzada, M.H.; Khan, R.

    2003-01-01

    Homogeneous seeds of Brassica campestris L. cv. Toria selection were treated with different doses of gamma rays (750, 1000 and 1250 Gy) to induce genetic variability for the selection of new genotypes with improved agronomic traits. After passing through different stages of selection, two promising mutants were selected for further studies. Two selected mutants along with 5 other entries including parent variety were evaluated for yield and yield components in yield trials for two consecutive years. The mutant TS96-752 was significantly (P less than or equal to 0.05) superior to all other entries in grain yield but at par with FSD 86028-3

  11. A Modular Pipelined Processor for High Resolution Gamma-Ray Spectroscopy

    Science.gov (United States)

    Veiga, Alejandro; Grunfeld, Christian

    2016-02-01

    The design of a digital signal processor for gamma-ray applications is presented in which a single ADC input can simultaneously provide temporal and energy characterization of gamma radiation for a wide range of applications. Applying pipelining techniques, the processor is able to manage and synchronize very large volumes of streamed real-time data. Its modular user interface provides a flexible environment for experimental design. The processor can fit in a medium-sized FPGA device operating at ADC sampling frequency, providing an efficient solution for multi-channel applications. Two experiments are presented in order to characterize its temporal and energy resolution.

  12. ROLE OF LINE-OF-SIGHT COSMIC-RAY INTERACTIONS IN FORMING THE SPECTRA OF DISTANT BLAZARS IN TeV GAMMA RAYS AND HIGH-ENERGY NEUTRINOS

    International Nuclear Information System (INIS)

    Essey, Warren; Kusenko, Alexander; Kalashev, Oleg; Beacom, John F.

    2011-01-01

    Active galactic nuclei (AGNs) can produce both gamma rays and cosmic rays. The observed high-energy gamma-ray signals from distant blazars may be dominated by secondary gamma rays produced along the line of sight by the interactions of cosmic-ray protons with background photons. This explains the surprisingly low attenuation observed for distant blazars, because the production of secondary gamma rays occurs, on average, much closer to Earth than the distance to the source. Thus, the observed spectrum in the TeV range does not depend on the intrinsic gamma-ray spectrum, while it depends on the output of the source in cosmic rays. We apply this hypothesis to a number of sources and, in every case, we obtain an excellent fit, strengthening the interpretation of the observed spectra as being due to secondary gamma rays. We explore the ramifications of this interpretation for limits on the extragalactic background light and for the production of cosmic rays in AGNs. We also make predictions for the neutrino signals, which can help probe the acceleration of cosmic rays in AGNs.

  13. Relativistic motion in gamma-ray bursts

    International Nuclear Information System (INIS)

    Krolik, J.H.; Pier, E.A.

    1991-01-01

    Three fundamental problems affect models of gamma-ray bursts, i.e., the energy source, the ability of high-energy photons to escape the radiation region, and the comparative weakness of X-ray emission. It is indicated that relativistic bulk motion of the gamma-ray-emitting plasma generically provides a solution to all three of these problems. Results show that, if the plasma that produces gamma-ray bursts has a bulk relativistic velocity with Lorentz factor gamma of about 10, several of the most troubling problems having to do with gamma-ray bursts are solved. 42 refs

  14. Balloon observation of gamma-ray burst

    International Nuclear Information System (INIS)

    Nishimura, Jun; Fujii, Masami; Yamagami, Takamasa; Oda, Minoru; Ogawara, Yoshiaki

    1978-01-01

    Cosmic gamma-ray burst is an interesting high energy astrophysical phenomenon, but the burst mechanism has not been well understood. Since 1975, long duration balloon flight has been conducted to search for gamma-ray bursts and to determine the source locations. A rotating cross-modulation collimator was employed to determine the locations of sources, and four NaI(Tl) scintillation counters were employed to detect hard X-ray with energy from 20 to 200 keV. The balloon light was performed at altitude of 8.3 mb from September 28, 1977, and the observation time of 79 hours was achieved. In this experiment, the monitor counter was not mounted. The count increase was observed at 16 h 22 m 31 s JST on October 1, 1977. The event disappeared after 1 sec. The total flux is estimated to be 1.6 x 10 -6 erg/cm 2 sec at the top of the atmosphere. When this event was observed, the solar-terrestrial environment was also quiet. Thus, this event was attributed to a small gamma-ray burst. Unfortunately, the duration of the burst was so short that the position of the burst source was not able to be determined. (Yoshimori, M.)

  15. AGILE: A gamma-ray mission

    International Nuclear Information System (INIS)

    Tavani, M.; Caraveo, P.; Mereghetti, S.; Perotti, F.; Vercellone, S.; Barbiellini, G.; Budini, G.; Longo, F.; Prest, M.; Vallazza, E.; Cocco, V.; Morselli, A.; Picozza, P.; Pittori, C.; Costa, E.; Feroci, M.; Lapshov, I.; Morelli, E.; Rubini, A.; Soffitta, P.

    2000-01-01

    AGILE is an innovative, cost-effective gamma-ray mission selected by the Italian Space Agency for a Program of Small Scientific Missions. The AGILE gamma-ray imaging detector (GRID, made of a Silicon tracker and CsI Mini-Calorimeter) is designed to detect and image photons in the 30 MeV-50 GeV energy band with good sensitivity and very large field of view (FOV ∼3 sr). The X-ray detector, Super-AGILE, sensitive in the 10-40 keV band and integrated on top of the GRID gamma-ray tracker will provide imaging (1-3 arcmin) and moderate spectroscopy. For selected sky areas, AGILE might achieve a flux sensitivity (above 100 MeV) better than 5x10 -8 ph cm 2 s -1 at the completion of its scientific program. AGILE will operate as an Observatory open to the international community and is planned to be operational during the year 2002 for a nominal 2-year mission. It will be an ideal 'bridge' between EGRET and GLAST, and the only mission entirely dedicated to high-energy astrophysics above 30 MeV during that period

  16. Gamma-Ray Bursts: Lighting Up the High-Redshift Universe

    Science.gov (United States)

    Toy, Vicki Louise

    Gamma-ray bursts (GRBs) are the most luminous events in the Universe with Egamma,iso ˜ 1048-54 erg. Leading models hypothesize that GRBs are created from inter- nal collisions within collimated and ultrarelativistic jets. The jets then shock-heat the surrounding material (e.g. interstellar medium) to create GRB afterglows. These afterglows are extremely useful probes of the Universe because long GRBs are (1) bright events that can be used as backlights for absorption studies, (2) able to probe at all redshifts massive stars exist, and (3) transient events that allow us to follow- up on the host galaxies at late times. In this thesis we study the environments of GRBs. We first explore the relationship between GRB and supernova (SN) using a nearby GRB-SN (GRB 130702A/SN 2013dx) at z = 0.145. There are only nine other GRB-SNe that were close enough to have extensive spectroscopic and photometric follow-up of the SN at late times. We create a quasi-bolometic light curve of SN 2013dx and fit an analytical equation to the quasi-bolometric light curve combined with measurements of the photospheric velocity to determine SN parameters: mass of 56Ni, kinetic energy, and ejecta mass. We examine the relationship between SN parameters and E gamma,iso for the 10 well-studied GRB-SNe, but find no correlations despite numerical simulation predictions that the mass of 56Ni should correlate with the degree of asymmetry. We then move to larger distance scales and use GRB afterglows as bright back- lights to study distant galaxies. We examine the galactic environments of Damped Lyman-alpha systems (DLAs; NHI ≥ 1020.3 cm-2 ) identified with GRB afterglows at z ˜ 2 - 6. We use late-time photometry after the GRB afterglow has faded to determine star formation rates (SFRs) from rest-frame ultraviolet measurements or spectral energy distribution (SED) models from multiband photometry. We com- pare our sample's SFRs to a sample of quasars (QSOs) DLA host galaxies. Despite the

  17. A fast, high light output scintillator for gamma ray and neutron detection. Fifth Semi-Annual Report

    International Nuclear Information System (INIS)

    Entine, Gerald; Kanai, S.; Shah, M.S.; Leonard Cirignano, M.S.; Jarek Glodo; Van Loef, Edgar V.

    2003-01-01

    In view of the attractive properties of RbGd2Br7:Ce for gamma-ray and thermal neutron detection, and the lack of larger volume crystals, the goal of the Phase I project was to perform a rigorous investigation of the crystal growth of this exciting material and explore its capabilities for gamma-ray and thermal neutron detection. The Phase I research was very successful. All technical objectives were met and in many cases exceeded expectations. We were able to produce large (>1 cm3) RbGd2Br7:Ce crystals with excellent scintillation properties and demonstrated the possibility to detect thermal neutrons. As far as we are aware, our Phase I experiment was the first to demonstrate thermal neutron detection with RbGd2Br7:Ce. Clearly, the feasibility of the proposed research was adequately proven. The Phase II research builds on the successful results obtained during Phase I. Phase II will initially focus on optimizing the RbGd2Br7:Ce growth process to produce high quality, larger volume RbGd2Br7:Ce crystals. We will continue to use the versatile Bridgman technique. During this process, crystal growth parameters will be adjusted for optimal growth conditions. Our goal is to produce high quality RbGd2Br7:Ce crystals of size 1 inch x 1 inch x 1 inch (∼16 cm3). We will work on packaging aspects that allow efficient light collection and prevent crystal degradation. We will study and measure emission spectra, light yield, scintillation decay, energy and time resolution. The effects of variation in Ce concentration on the scintillation properties of RbGd2Br7:Ce will be examined in detail. Comprehensive gamma-ray spectroscopic and imaging studies will be conducted. Also, optimization of RbGd2Br7:Ce for thermal neutron detection will be addressed. Our initial studies will determine the optimal geometry of the RbGd2Br7:Ce crystals for neutron detection. For thermal neutron detection experiments, we will produce large area, thin samples in order to minimize gamma-ray sensitivity

  18. Terrestrial gamma-ray flashes

    Science.gov (United States)

    Marisaldi, Martino; Fuschino, Fabio; Labanti, Claudio; Tavani, Marco; Argan, Andrea; Del Monte, Ettore; Longo, Francesco; Barbiellini, Guido; Giuliani, Andrea; Trois, Alessio; Bulgarelli, Andrea; Gianotti, Fulvio; Trifoglio, Massimo

    2013-08-01

    Lightning and thunderstorm systems in general have been recently recognized as powerful particle accelerators, capable of producing electrons, positrons, gamma-rays and neutrons with energies as high as several tens of MeV. In fact, these natural systems turn out to be the highest energy and most efficient natural particle accelerators on Earth. Terrestrial Gamma-ray Flashes (TGFs) are millisecond long, very intense bursts of gamma-rays and are one of the most intriguing manifestation of these natural accelerators. Only three currently operative missions are capable of detecting TGFs from space: the RHESSI, Fermi and AGILE satellites. In this paper we review the characteristics of TGFs, including energy spectrum, timing structure, beam geometry and correlation with lightning, and the basic principles of the associated production models. Then we focus on the recent AGILE discoveries concerning the high energy extension of the TGF spectrum up to 100 MeV, which is difficult to reconcile with current theoretical models.

  19. Terrestrial gamma-ray flashes

    International Nuclear Information System (INIS)

    Marisaldi, Martino; Fuschino, Fabio; Labanti, Claudio; Tavani, Marco; Argan, Andrea; Del Monte, Ettore; Longo, Francesco; Barbiellini, Guido; Giuliani, Andrea; Trois, Alessio; Bulgarelli, Andrea; Gianotti, Fulvio; Trifoglio, Massimo

    2013-01-01

    Lightning and thunderstorm systems in general have been recently recognized as powerful particle accelerators, capable of producing electrons, positrons, gamma-rays and neutrons with energies as high as several tens of MeV. In fact, these natural systems turn out to be the highest energy and most efficient natural particle accelerators on Earth. Terrestrial Gamma-ray Flashes (TGFs) are millisecond long, very intense bursts of gamma-rays and are one of the most intriguing manifestation of these natural accelerators. Only three currently operative missions are capable of detecting TGFs from space: the RHESSI, Fermi and AGILE satellites. In this paper we review the characteristics of TGFs, including energy spectrum, timing structure, beam geometry and correlation with lightning, and the basic principles of the associated production models. Then we focus on the recent AGILE discoveries concerning the high energy extension of the TGF spectrum up to 100 MeV, which is difficult to reconcile with current theoretical models

  20. Utilization of freshly induced high-energy gamma-ray activity as a measure of fission rates in re-irradiated burnt UO{sub 2} fuel

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, M. F.; Perret, G. [Paul Scherrer Institut (PSI), CH-5232 Villigen (Switzerland); Krohnert, H.; Chawla, R. [Paul Scherrer Institut (PSI), CH-5232 Villigen (Switzerland); Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland)

    2009-07-01

    In the frame of the LIFE-PROTEUS (Large-scale Irradiation Fuel Experiments at PROTEUS) program, a measurement technique is being developed to measure fission rates in burnt fuel, following re-irradiation in a zero-power research reactor. In the presented approach, the fission rates are estimated by measuring high energy gamma-rays (above 2000 keV) emitted by short-lived fission products freshly produced in the fuel. Due to their high energies, these gamma-rays can be discriminated against the high intrinsic gamma-ray activity of the burnt fuel, which reaches energies up to 2000 keV. To demonstrate the feasibility of this approach, fresh and burnt fuel samples (with burn-ups varying from 36 to 64 MWd/kg) were irradiated in the PROTEUS reactor at the Paul Scherrer Institut, and their emitted gamma-ray spectra were recorded shortly after irradiation. It was possible, for the first time, to detect the short-lived gamma-ray activity in the high-energy region, even in the presence of the intrinsic gamma-ray background of the burnt fuel samples. Using the short-lived gamma-ray lines {sup 142}La (2542 keV), {sup 89}Rb (2570 keV), 95Y (2632 keV), {sup 138}Cs (2640 keV) and {sup 95}Y (3576 keV), relative fission rates between different core positions were derived for a fresh sample as well as for a burnt sample with a burn-up of 36 MWd/kg. It was shown that, for both the fresh and burnt fuel samples, the measured fission rate ratios agreed well, i.e. within the statistical uncertainties, with calculation results obtained by Monte Carlo simulations. (authors)

  1. Application of intrinsic germanium spectral gamma-ray logging for characterization of high-level nuclear waste tank leaks

    International Nuclear Information System (INIS)

    Brodeur, J.R.; Kiesler, J.P.; Kos, S.E.; Koizumi, C.J.; Nicaise, W.F.; Price, R.K.

    1993-11-01

    Spectral gamma-ray logging with a high-resolution, intrinsic germanium logging system was completed in boreholes surrounding two high-level nuclear waste tanks at the US Department of Energy's Hanford Site. The purpose was to characterize the concentrations of man-made radionuclides in the unsaturated zone sediments and identify any new leaks from the tanks. An intrinsic germanium detection system was used for this work because it was important to positively identify the specific radionuclides and to precisely assay those radionuclides. The spectral gamma log data were processed and displayed as log plots for each individual borehole and as three-dimensional plots of 137 Cs radionuclide concentrations. These data were reviewed to identify the sources of the contamination. The investigation did not uncover a new or active leak from either of the tanks. Most of the contamination found could be related to known pipeline leaks, to surface contamination from aboveground liquid spills, or to leaks from other tanks. The current spectral gamma ray data now provide a new baseline from which to compare future log data and identify any changes in the radioelement concentration

  2. Status of the GILDA project for the 30 MeV-100 GeV high energy gamma ray astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Casolino, M.; Sparvoli, R.; Morselli, A.; Picozza, P. [Rome Univ. `Tor Vergata` (Italy)]|[INFN, Rome (Italy); Barbiellini, G. [Trieste Univ. (Italy)]|[INFN, Trieste (Italy); Fuglesang, C. [ESA-EAC, Cologne (Germany); Ozerov, Yu.V.; Zemskov, V.M.; Zverev, V.G.; Galper, A.M. [Moscow Engineering Physics Institute, Moscow (Russian Federation)

    1995-09-01

    High energy gamma-ray astrophysics has greatly developed in the last few years because of the results of EGRET, on the Compton gamma ray observatory. The satellite observations have shown the importance of continuing the investigation of high energy gamma radiation but the emerging of new astrophysical and cosmological problems require for future experiments the realization of telescopes with parameters significatively improved with respect to the previous missions. In a traditional point of view, this is achieved with the increase of the length L of the device and, consequently, the mass of the telescope and satellite (growing as L{sup 3}). Such kinds of experiments are becoming rather expensive and are approaching the maximum value in cost, satellite mass and consuming resources. The telescope project GILDA presented in this paper is based on the use of silicon strip detectors. The silicon technique consents to obtain a much wider solid angle aperture; in this way there is more sensitivity without a growing in the size of the

  3. Status of the GILDA project for the 30 MeV-100 GeV high energy gamma ray astrophysics

    International Nuclear Information System (INIS)

    Casolino, M.; Sparvoli, R.; Morselli, A.; Picozza, P.; Barbiellini, G.; Fuglesang, C.; Ozerov, Yu.V.; Zemskov, V.M.; Zverev, V.G.; Galper, A.M.

    1995-01-01

    High energy gamma-ray astrophysics has greatly developed in the last few years because of the results of EGRET, on the Compton gamma ray observatory. The satellite observations have shown the importance of continuing the investigation of high energy gamma radiation but the emerging of new astrophysical and cosmological problems require for future experiments the realization of telescopes with parameters significatively improved with respect to the previous missions. In a traditional point of view, this is achieved with the increase of the length L of the device and, consequently, the mass of the telescope and satellite (growing as L 3 ). Such kinds of experiments are becoming rather expensive and are approaching the maximum value in cost, satellite mass and consuming resources. The telescope project GILDA presented in this paper is based on the use of silicon strip detectors. The silicon technique consents to obtain a much wider solid angle aperture; in this way there is more sensitivity without a growing in the size of the

  4. Comparative study on hematopoietic damage of mice caused by high-dose of gamma-ray irradiation

    International Nuclear Information System (INIS)

    Wu Hongying; Wang Yueying; Li Deguan; Wang Xiaochun; Zhang Heng; Lu Lu; Chang Jianhui; Du Liqing; Wang Yan; Men Aimin

    2010-01-01

    Objective: To study the effect of high-dose of gamma-ray irradiation on hematopoiesis injury and recovery of IRM-2 and C57BL/6 J mouse. Methods: The experiment was designed to study the effects of radiation (4 Gy) on spleen index, CFU-S and DNA damage on the 9 th day of IRM-2 and ICR mice and the effects of radiation (6 Gy) on WBC change and its absolute value on the 45 th days of IRM-2 and C57BL/6 J mice. Results: The IRM-2 mouse spleen index, CFU-S and DNA were higher than ICR mouse on the 9 th days, and there were significant difference in CFU-S and DNA (P<0.01). The IRM-2 mouse WBC, RMC, HGB and HCT were higher than C57BL/6 J mouse on the 45 th days, and there were significant difference (P<0.01). Conclusion: IRM-2 mouse hematopoiesis resumes quicker than C57BL/6 J and ICR do after high-dose of gamma-ray irradiation. (authors)

  5. Gamma-ray sources

    International Nuclear Information System (INIS)

    Hermsen, W.

    1980-01-01

    Results are presented from an analysis of the celestial gamma-ray fine-scale structure based on over half of the data which may ultimately be available from the COS-B satellite. A catalogue consisting of 25 gamma-ray sources measured at energies above 100 MeV is presented. (Auth.)

  6. Gamma ray astronomy

    International Nuclear Information System (INIS)

    Hillier, R.

    1984-01-01

    The book reviews the development of gamma ray astronomy over the past twenty five years. A large section of the book is devoted to the problems of background radiation and the design of detectors. Gamma rays from the sun, the galactic disc, the galaxy, and extra galactic sources; are also discussed. (U.K.)

  7. SkyFACT: high-dimensional modeling of gamma-ray emission with adaptive templates and penalized likelihoods

    Energy Technology Data Exchange (ETDEWEB)

    Storm, Emma; Weniger, Christoph [GRAPPA, Institute of Physics, University of Amsterdam, Science Park 904, 1090 GL Amsterdam (Netherlands); Calore, Francesca, E-mail: e.m.storm@uva.nl, E-mail: c.weniger@uva.nl, E-mail: francesca.calore@lapth.cnrs.fr [LAPTh, CNRS, 9 Chemin de Bellevue, BP-110, Annecy-le-Vieux, 74941, Annecy Cedex (France)

    2017-08-01

    We present SkyFACT (Sky Factorization with Adaptive Constrained Templates), a new approach for studying, modeling and decomposing diffuse gamma-ray emission. Like most previous analyses, the approach relies on predictions from cosmic-ray propagation codes like GALPROP and DRAGON. However, in contrast to previous approaches, we account for the fact that models are not perfect and allow for a very large number (∼> 10{sup 5}) of nuisance parameters to parameterize these imperfections. We combine methods of image reconstruction and adaptive spatio-spectral template regression in one coherent hybrid approach. To this end, we use penalized Poisson likelihood regression, with regularization functions that are motivated by the maximum entropy method. We introduce methods to efficiently handle the high dimensionality of the convex optimization problem as well as the associated semi-sparse covariance matrix, using the L-BFGS-B algorithm and Cholesky factorization. We test the method both on synthetic data as well as on gamma-ray emission from the inner Galaxy, |ℓ|<90{sup o} and | b |<20{sup o}, as observed by the Fermi Large Area Telescope. We finally define a simple reference model that removes most of the residual emission from the inner Galaxy, based on conventional diffuse emission components as well as components for the Fermi bubbles, the Fermi Galactic center excess, and extended sources along the Galactic disk. Variants of this reference model can serve as basis for future studies of diffuse emission in and outside the Galactic disk.

  8. Design and expected performance of a novel hybrid detector for very-high-energy gamma-ray astrophysics

    Science.gov (United States)

    Assis, P.; Barres de Almeida, U.; Blanco, A.; Conceição, R.; D'Ettorre Piazzoli, B.; De Angelis, A.; Doro, M.; Fonte, P.; Lopes, L.; Matthiae, G.; Pimenta, M.; Shellard, R.; Tomé, B.

    2018-05-01

    Current detectors for Very-High-Energy γ-ray astrophysics are either pointing instruments with a small field of view (Cherenkov telescopes), or large field-of-view instruments with relatively large energy thresholds (extensive air shower detectors). In this article, we propose a new hybrid extensive air shower detector sensitive in an energy region starting from about 100 GeV. The detector combines a small water-Cherenkov detector, able to provide a calorimetric measurement of shower particles at ground, with resistive plate chambers which contribute significantly to the accurate shower geometry reconstruction. A full simulation of this detector concept shows that it is able to reach better sensitivity than any previous gamma-ray wide field-of-view experiment in the sub-TeV energy region. It is expected to detect with a 5σ significance a source fainter than the Crab Nebula in one year at 100 GeV and, above 1 TeV a source as faint as 10% of it. As such, this instrument is suited to detect transient phenomena making it a very powerful tool to trigger observations of variable sources and to detect transients coupled to gravitational waves and gamma-ray bursts.

  9. Preliminary Determination of Natural Radioactivity Levels of the State of Qatar using High-Resolution Gamma-ray Spectrometry

    International Nuclear Information System (INIS)

    Al-Sulaiti, H.A.; Regan, P.H.; Bradley, D.A.; Matthews, M.; Santawamaitre, T.; Malain, D.

    2009-01-01

    The State of Qatar is a peninsula with a total area of 11,437 km 2 which lies over a geological formation comprising a sequence of limestone, chalk, clay and gypsum. Establishing a baseline for the radioactivity concentration in Qatar's soil is the main purpose behind the present study. The project is focused on obtaining measurements of representative soil samples from various areas in Qatar to establish concentrations of the 235 U, 238 U and 232 Th natural decay chains and also the long-lived naturally occurring radionuclide 40 K. The 235 U, 238 U, 232 Th and 40 K concentrations have been measured via high-resolution gamma-ray spectrometry using a hyper-pure germanium detector situated in a low-background environment with a copper inner-plated passive lead shield. A wide range of different gamma-ray energy transitions lines arising from the multiple decay products from the 235 U, 238 U and 232 Th decay chains have been analyzed separately to obtain more statistically significant overall results

  10. Gamma-ray observations of SN 1987A with an array of high-purity germanium detectors

    International Nuclear Information System (INIS)

    Sandie, W.G.; Nakano, G.H.; Chase, L.F. Jr.; Fishman, G.J.; Meegan, C.A.; Wilson, R.B.; Paciesas, W.

    1988-01-01

    A balloon borne gamma-ray spectrometer comprising an array of high-purity n-type germanium (HPGe) detectors having geometric area 119 cm 2 , resolution 2.5 keV at 1.0 MeV, surrounded by an active NaI (Tl) collimator and Compton suppressing anticoincidence shield nominally 10 cm thick, was flown from Alice Springs, Northern Territory, Australia, on May 29--30, 1987, 96 days after the observed neutrino pulse. The average column depth of residual atmosphere in the direction of SN 1987A at float altitude was 6.3 g cm-2 during the observation. SN 1987A was within the 22-deg full-width-half-maximum (FWHM) field of view for about 3300 s during May 29.9--30.3 UT. No excess gamma rays were observed at energies appropriate to the Ni(56)-Co(56) decay chain or from other lines in the energy region from 0.1 to 3.0 MeV. With 80% of the data analyzed, the 3-sigma upper limit obtained for the 1238-keV line from Co(56) at the instrument resolution (about 3 keV) is 1.3 x 10-3 photons cm-2 s-1

  11. Gamma Ray Bursts - Observations

    Science.gov (United States)

    Gehrels, N.; Cannizzo, J. K.

    2010-01-01

    We are in an exciting period of discovery for gamma-ray bursts. The Swift observatory is detecting 100 bursts per year, providing arcsecond localizations and sensitive observations of the prompt and afterglow emission. The Fermi observatory is observing 250 bursts per year with its medium-energy GRB instrument and about 10 bursts per year with its high-energy LAT instrument. In addition, rapid-response telescopes on the ground are providing new capabilities to study optical emission during the prompt phase and spectral signatures of the host galaxies. The combined data set is enabling great advances in our understanding of GRBs including afterglow physics, short burst origin, and high energy emission.

  12. High-energy emission from bright gamma-ray bursts using Fermi

    Energy Technology Data Exchange (ETDEWEB)

    Bissaldi, Elisabetta

    2010-05-25

    Among the scientific objectives of one of the present NASA missions, the Fermi Gamma-ray Space Telescope (FGST), is the study of gamma-ray bursts (GRBs). Fermi's payload comprises two science instruments, the Large Area Telescope (LAT) and the Gamma-Ray Burst Monitor (GBM). GBM was designed to detect and localize bursts for the Fermi mission. By means of an array of 12 NaI(Tl) (8 keV to 1 MeV) and two BGO (0.2 to 40 MeV) scintillation detectors, GBM extends the energy range (20 MeV to > 300 GeV) of the LAT instrument into the traditional range of current GRB databases. The physical detector response of the GBM instrument to GRBs has been determined with the help of Monte Carlo simulations, which are supported and verified by on-ground individual detector calibration measurements. The GBM detectors have been calibrated from 10 keV to 17.5 MeV using various gamma sources, and the detector response has been derived by simulations over the entire energy range (8 keV to 40 MeV) using GEANT. The GBM instrument has been operating successfully in orbit since June 11, 2008. The total trigger count from the time GBM triggering was enabled in July 2008 through December 2009 is 655, and about 380 of these triggers were classified as GRBs. Moreover, GBM detected several bursts in common with the LAT. These amazing detections mainly fulfill the primary science goal of GBM, which is the joint analysis of spectra and time histories of GRBs observed by both Fermi instruments. For every trigger, GBM provides near-real time on-board burst locations to permit repointing of the spacecraft and to obtain LAT observations of delayed emission from bursts. GBM and LAT refined locations are rapidly disseminated to the scientific community, often permitting extensive multiwavelength follow-up observations by NASA's Swift mission or other space- based observatories, and by numerous ground-based telescopes, thus allowing redshift determinations. Calculations of LAT upper limits are

  13. High-energy emission from bright gamma-ray bursts using Fermi

    International Nuclear Information System (INIS)

    Bissaldi, Elisabetta

    2010-01-01

    Among the scientific objectives of one of the present NASA missions, the Fermi Gamma-ray Space Telescope (FGST), is the study of gamma-ray bursts (GRBs). Fermi's payload comprises two science instruments, the Large Area Telescope (LAT) and the Gamma-Ray Burst Monitor (GBM). GBM was designed to detect and localize bursts for the Fermi mission. By means of an array of 12 NaI(Tl) (8 keV to 1 MeV) and two BGO (0.2 to 40 MeV) scintillation detectors, GBM extends the energy range (20 MeV to > 300 GeV) of the LAT instrument into the traditional range of current GRB databases. The physical detector response of the GBM instrument to GRBs has been determined with the help of Monte Carlo simulations, which are supported and verified by on-ground individual detector calibration measurements. The GBM detectors have been calibrated from 10 keV to 17.5 MeV using various gamma sources, and the detector response has been derived by simulations over the entire energy range (8 keV to 40 MeV) using GEANT. The GBM instrument has been operating successfully in orbit since June 11, 2008. The total trigger count from the time GBM triggering was enabled in July 2008 through December 2009 is 655, and about 380 of these triggers were classified as GRBs. Moreover, GBM detected several bursts in common with the LAT. These amazing detections mainly fulfill the primary science goal of GBM, which is the joint analysis of spectra and time histories of GRBs observed by both Fermi instruments. For every trigger, GBM provides near-real time on-board burst locations to permit repointing of the spacecraft and to obtain LAT observations of delayed emission from bursts. GBM and LAT refined locations are rapidly disseminated to the scientific community, often permitting extensive multiwavelength follow-up observations by NASA's Swift mission or other space- based observatories, and by numerous ground-based telescopes, thus allowing redshift determinations. Calculations of LAT upper limits are mainly based

  14. A new approach for the high-precision determination of the elemental uranium concentration in uranium ore by gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Nagel, W.; Quik, F.

    1993-01-01

    A new approach for the determination of elemental uranium in uranium bearing ore, using high resolution gamma-ray spectrometry, was applied. Using a variant of the enrichment meter technique an agreement of better than 1% has been obtained between gamma-ray measurement results and the certified value obtained by other analytical methods. For the calibration of the gamma-ray spectrometer uranium reference samples have been used which are made available jointly in Europe and the USA as Certified Reference Materials for Gamma-ray Spectrometry (EC NRM 171 and NBS SRM 969, respectively). The measured ore has been put in a special designed container which ensured in all directions seen from the radiation window a uniform degree of infinite thickness of about 95%. The measurement results can be taken as an example for the applicability of gamma-ray spectrometry when high accuracy is required and under conditions where homogeneous distributed elemental uranium is embedded in a larger amount of matrix material. (author). 8 refs., 10 figs., 2 tabs., 2 appendices

  15. Selection of variants with high levels of biotin from cultured green Lavandula vera cells irradiated with gamma rays

    International Nuclear Information System (INIS)

    Watanabe, K.; Yamada, Y.

    1982-01-01

    Cultured green Lavandula vera cells were irradiated with various dosages of gamma rays which increased the variation in the amount of free biotin produced by the cell clones. Variant sublines containing much more free biotin than the original line were obtained by repeated selection. The effectiveness of gamma rays for the induction of the variant sublines is described

  16. Plutonium characterisation with prompt high energy gamma-rays from (n,gamma) reactions for nuclear warhead dismantlement verification

    Energy Technology Data Exchange (ETDEWEB)

    Postelt, Frederik; Gerald, Kirchner [Carl Friedrich von Weizsaecker-Centre for Science and Peace Research, Hamburg (Germany)

    2015-07-01

    Measurements of neutron induced gammas allow the characterisation of fissile material (i.e. plutonium and uranium), despite self- and additional shielding. Most prompt gamma-rays from radiative neutron capture reactions in fissile material have energies between 3 and 6.5 MeV. Such high energy photons have a high penetrability and therefore minimise shielding and self-absorption effects. They are also isotope specific and therefore well suited to determine the isotopic composition of fissile material. As they are non-destructive, their application in dismantlement verification is desirable. Disadvantages are low detector efficiencies at high gamma energies, as well as a high background of gammas which result from induced fission reactions in the fissile material, as well as delayed gammas from both, (n,f) and(n,gamma) reactions. In this talk, simulations of (n,gamma) measurements and their implications are presented. Their potential for characterising fissile material is assessed and open questions are addressed.

  17. High-pressure {sup 3}He-Xe gas scintillators for simultaneous detection of neutrons and gamma rays over a large energy range

    Energy Technology Data Exchange (ETDEWEB)

    Tornow, W., E-mail: tornow@tunl.duke.edu [Department of Physics, Duke University, Durham, NC 27708 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Esterline, J.H. [Department of Physics, Duke University, Durham, NC 27708 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Leckey, C.A. [Department of Physics, The College of William and Mary, Williamsburg, VA 23187 (United States); Weisel, G.J. [Department of Physics, Penn State Altoona, Altoona, PA 16601 (United States)

    2011-08-11

    We report on features of high-pressure {sup 3}He-Xe gas scintillators which have not been sufficiently addressed in the past. Such gas scintillators can be used not only for the efficient detection of low-energy neutrons but at the same time for the detection and identification of {gamma}-rays as well. Furthermore, {sup 3}He-Xe gas scintillators are also very convenient detectors for fast neutrons in the 1-10 MeV energy range and for high-energy {gamma}-rays in the 7-15 MeV energy range. Due to their linear pulse-height response and self calibration via the {sup 3}He(n,p){sup 3}H reaction, neutron and {gamma}-ray energies can easily be determined in this high-energy regime.

  18. A high resolution gamma-ray spectrometer based on superconducting microcalorimeters

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, D. A.; Horansky, R. D. [National Institute of Standards and Technology, Boulder, Colorado 80305 (United States); University of Denver, Denver, Colorado 80208 (United States); Schmidt, D. R.; Doriese, W. B.; Fowler, J. W.; Kotsubo, V.; Mates, J. A. B. [National Institute of Standards and Technology, Boulder, Colorado 80305 (United States); University of Colorado, Boulder, Colorado 80309 (United States); Hoover, A. S.; Winkler, R.; Rabin, M. W. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Alpert, B. K.; Beall, J. A.; Fitzgerald, C. P.; Hilton, G. C.; Irwin, K. D.; O' Neil, G. C.; Reintsema, C. D.; Schima, F. J.; Swetz, D. S.; Vale, L. R. [National Institute of Standards and Technology, Boulder, Colorado 80305 (United States); and others

    2012-09-15

    Improvements in superconductor device fabrication, detector hybridization techniques, and superconducting quantum interference device readout have made square-centimeter-sized arrays of gamma-ray microcalorimeters, based on transition-edge sensors (TESs), possible. At these collecting areas, gamma microcalorimeters can utilize their unprecedented energy resolution to perform spectroscopy in a number of applications that are limited by closely-spaced spectral peaks, for example, the nondestructive analysis of nuclear materials. We have built a 256 pixel spectrometer with an average full-width-at-half-maximum energy resolution of 53 eV at 97 keV, a useable dynamic range above 400 keV, and a collecting area of 5 cm{sup 2}. We have demonstrated multiplexed readout of the full 256 pixel array with 236 of the pixels (91%) giving spectroscopic data. This is the largest multiplexed array of TES microcalorimeters to date. This paper will review the spectrometer, highlighting the instrument design, detector fabrication, readout, operation of the instrument, and data processing. Further, we describe the characterization and performance of the newest 256 pixel array.

  19. High performance gamma-ray spectrometer for runaway electron studies on the FT-2 tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Shevelev, A.E., E-mail: Shevelev@cycla.ioffe.ru [Ioffe Institute, Politekhnicheskaya 26, St. Petersburg 194021 (Russian Federation); Khilkevitch, E.M.; Lashkul, S.I.; Rozhdestvensky, V.V.; Altukhov, A.B.; Chugunov, I.N.; Doinikov, D.N.; Esipov, L.A.; Gin, D.B.; Iliasova, M.V.; Naidenov, V.O.; Nersesyan, N.S.; Polunovsky, I.A.; Sidorov, A.V. [Ioffe Institute, Politekhnicheskaya 26, St. Petersburg 194021 (Russian Federation); Kiptily, V.G. [CCFE, Culham Science Centre, Abingdon, Oxon X14 3DB (United Kingdom)

    2016-09-11

    A gamma-ray spectrometer based on LaBr{sub 3}(Ce) scintillator has been used for measurements of hard X-ray emission generated by runaway electrons in the FT-2 tokamak plasmas. Using of the fast LaBr{sub 3}(Ce) has allowed extending count rate range of the spectrometer by a factor of 10. A developed digital processing algorithm of the detector signal recorded with a digitizer sampling rate of 250 MHz has provided a pulse height analysis at count rates up to 10{sup 7} s{sup −1}. A spectrum deconvolution code DeGaSum has been applied for inferring the energy distribution of runaway electrons escaping from the plasma and interacting with materials of the FT-2 limiter in the vacuum chamber. The developed digital signal processing technique for LaBr{sub 3}(Ce) spectrometer has allowed studying the evolution of runaways energy distribution in the FT-2 plasma discharges with time resolution of 1–5 ms.

  20. Surface passivation of high-purity germanium gamma-ray detector

    International Nuclear Information System (INIS)

    Alexiev, D.; Butcher, K.S.A.; Edmondson, M.; Lawson, E.M.

    1993-01-01

    The experimental work consists of two parts. The first involves fabrication of hyper-pure germanium gamma ray detectors using standard surface treatment, chemical etchings and containment in a suitable cryostat. Then, after cooling the detectors to 77 K, γ-ray emissions from radioisotopes are resolved, resolution, depletion depth, V R versus I R characteristics and /N A -N D / of the germanium are measured. The second part of the work involves investigation of surface states in an effort to achieve long-term stability of operating characteristics. Several methods are used: plasma hydrogenation, a-Si and a-Ge pinch-off effect and simple oxidation. A-Ge and a-Si thicknesses were measured using Rutherford backscattering techniques; surface states were measured with deep level transient spectroscopy and diode reverse current versus reverse voltage plots. Some scanning electron microscope measurements were used in determining major film contaminants during backscattering of a-Si and a-Ge films. Surface passivation studies revealed unexpected hole trapping defects generated when a-Ge:H film is applied. The a-Si:H films were found to be mechanically strong, no defect traps were found and preliminary results suggest that such films will be good passivants. 14 refs., 2 tabs., 7 figs., 13 ills

  1. Peak fitting and identification software library for high resolution gamma-ray spectra

    International Nuclear Information System (INIS)

    Uher, Josef; Roach, Greg; Tickner, James

    2010-01-01

    A new gamma-ray spectral analysis software package is under development in our laboratory. It can be operated as a stand-alone program or called as a software library from Java, C, C++ and MATLAB TM environments. It provides an advanced graphical user interface for data acquisition, spectral analysis and radioisotope identification. The code uses a peak-fitting function that includes peak asymmetry, Compton continuum and flexible background terms. Peak fitting function parameters can be calibrated as functions of energy. Each parameter can be constrained to improve fitting of overlapping peaks. All of these features can be adjusted by the user. To assist with peak identification, the code can automatically measure half-lives of single or multiple overlapping peaks from a time series of spectra. It implements library-based peak identification, with options for restricting the search based on radioisotope half-lives and reaction types. The software also improves the reliability of isotope identification by utilizing Monte-Carlo simulation results.

  2. On-Line High Dose-Rate Gamma Ray Irradiation Test of the CCD/CMOS Cameras

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jai Wan; Jeong, Kyung Min [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    In this paper, test results of gamma ray irradiation to CCD/CMOS cameras are described. From the CAMS (containment atmospheric monitoring system) data of Fukushima Dai-ichi nuclear power plant station, we found out that the gamma ray dose-rate when the hydrogen explosion occurred in nuclear reactors 1{approx}3 is about 160 Gy/h. If assumed that the emergency response robot for the management of severe accident of the nuclear power plant has been sent into the reactor area to grasp the inside situation of reactor building and to take precautionary measures against releasing radioactive materials, the CCD/CMOS cameras, which are loaded with the robot, serve as eye of the emergency response robot. In the case of the Japanese Quince robot system, which was sent to carry out investigating the unit 2 reactor building refueling floor situation, 7 CCD/CMOS cameras are used. 2 CCD cameras of Quince robot are used for the forward and backward monitoring of the surroundings during navigation. And 2 CCD (or CMOS) cameras are used for monitoring the status of front-end and back-end motion mechanics such as flippers and crawlers. A CCD camera with wide field of view optics is used for monitoring the status of the communication (VDSL) cable reel. And another 2 CCD cameras are assigned for reading the indication value of the radiation dosimeter and the instrument. In the preceding assumptions, a major problem which arises when dealing with CCD/CMOS cameras in the severe accident situations of the nuclear power plant is the presence of high dose-rate gamma irradiation fields. In the case of the DBA (design basis accident) situations of the nuclear power plant, in order to use a CCD/CMOS camera as an ad-hoc monitoring unit in the vicinity of high radioactivity structures and components of the nuclear reactor area, a robust survivability of this camera in such intense gamma-radiation fields therefore should be verified. The CCD/CMOS cameras of various types were gamma irradiated at a

  3. Matrix of response functions for xenon gamma-ray detector

    International Nuclear Information System (INIS)

    Shustov, A.E.; Vlasik, K.F.; Grachev, V.M.; Dmitrenko, V.V.; Novikov, A.S.; P'ya, S.N.; Ulin, S.E.; Uteshev, Z.M.; Chernysheva, I.V.

    2014-01-01

    An approach of creation of response matrix using simulation GEANT4 gamma-ray Monte-Carlo method has been described for gamma-ray spectrometer based on high pressure xenon impulse ionization chamber with a shielding grid [ru

  4. Development of a bottom-hole gamma-ray diagnostic capability for high-level environments, during CTBT on-site inspection drilling

    International Nuclear Information System (INIS)

    Fontenot, R.; Shakir, S.; Heuze, F.; Butler, M.

    1998-05-01

    Testing completed at NTS confirmed that the Anadrill gamma-ray tool was fully operational up to 50,000 API, as specified in the initial objective. Recorded results were within expected ranges when compared to the hand-held detector. The gamma-ray module will require special 'high-rate' detection software to be loaded prior to drilling operations. The other components within the VIPER system have been modified to operate with either software (normal or 'high-rate') installed in the gamma-ray module. The successful completion of this test is but one step towards the main goal. The next step will be testing this module in the VIPER tool during an actual 're-entry' drilling operation, which could be performed at NTS on a former U.S. event. (author)

  5. A serach for moderate- and high-energy neturino emission correlated with gamma-ray bursts

    Science.gov (United States)

    Becker-Szendy, R.; Bratton, C. B.; Breault, J.; Casper, D.; Dye, S. T.; Gajewski, W.; Goldhaber, M.; Haines, T. J.; Halverson, P. G.; Kielczewska, D.

    1995-01-01

    A temporal correlation analysis between moderate- (60 Mev less than or equal to E(sub nu)greater than or equal to 2500 MeV) and high-energy (E(sub nu) greater than or equal to 2000 MeV) neutrino interactions consist of two types: the moderate-energy interactions that are contained within the volume of IMB-3 and the upward-going muons produced by high-energy nu(sub mu) interactions in the rock around the detector. No evidence is found for moderate- or high-energy neutrino emission from GRBs nor for any neutrino/neutrino correlation. The nonobservation of nu/GRB correlations allows upper limits to be placed on the neutrino flux associated with GRBs.

  6. CRPropa 2.0. A public framework for propagating high energy nuclei, secondary gamma rays and neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Kampert, Karl-Heinz [Wuppertal Univ. (Germany); Kulbartz, Joerg; Schiffer, Peter; Sigl, Guenter; Vliet, Arjen Rene van [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Maccione, Luca [Muenchen Univ. (Germany); Max-Planck-Institut fuer Physik, Muenchen (Germany); Nierstenhoefer, Nils [Wuppertal Univ. (Germany); Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    2012-06-15

    Version 2.0 of CRPropa is public software to model the extra-galactic propagation of ultra-high energy nuclei of atomic number Z{<=}26 through structured magnetic fields and ambient photon backgrounds taking into account all relevant particle interactions. CRPropa covers the energy range 6 x 10{sup 16} < E/eV < A x 10{sup 22} where A is the nuclear mass number. CRPropa can also be used to track secondary {gamma}-rays and neutrinos which allows the study of their link with the charged primary nuclei - the so called multi-messenger connection. After a general introduction we present several sample applications of current interest concerning the physics of extragalactic ultra-high energy radiation.

  7. Fission-product yields for thermal-neutron fission of 243Cm determined from measurements with a high-resolution low-energy germanium gamma-ray detector

    International Nuclear Information System (INIS)

    Merriman, L.D.

    1984-04-01

    Cumulative fission-product yields have been determined for 13 gamma rays emitted during the decay of 12 fission products created by thermal-neutron fission of 243 Cm. A high-resolution low-energy germanium detector was used to measure the pulse-height spectra of gamma rays emitted from a 77-nanogram sample of 243 Cm after the sample had been irradiated by thermal neutrons. Analysis of the data resulted in the identification and matching of gamma-ray energies and half-lives to individual radioisotopes. From these results, 12 cumulative fission product yields were deduced for radionuclides with half-lives between 4.2 min and 84.2 min. 7 references

  8. High-energy gamma-ray beams from Compton-backscattered laser light

    International Nuclear Information System (INIS)

    Sandorfi, A.M.; LeVine, M.J.; Thorn, C.E.; Giordano, G.; Matone, G.

    1983-01-01

    Collisions of light photons with relativistic electrons have previously been used to produce polarized #betta#-ray beams with modest (-10%) resolution but relatively low intensity. In contrast, the LEGS project (Laser + Electron Gamma Source) at Brookhaven will produce a very high flux (>2 x 10 7 s - 1 ) of background-free polarized #betta# rays whose energy will be determined to a high accuracy (δE = 2.3 MeV). Initially, 300(420)-MeV #betta# rays will be produced by backscattering uv light from the new 2.5(3.0)-GeV X-ray storage ring of the National Synchrotron Light Source (NSLS). The LEGS facility will operate as one of many passive users of the NSLS. In a later stage of the project, a Free Electron Laser is expectred to extend the #betta#-ray energy up to 700 MeV

  9. Thermal, tensile and rheological properties of high density polyethylene (HDPE) processed and irradiated by gamma-ray in different atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Ferreto, H. F. R., E-mail: hferreto@ipen.br, E-mail: ana-feitoza@yahoo.com.br; Oliveira, A. C. F., E-mail: hferreto@ipen.br, E-mail: ana-feitoza@yahoo.com.br; Parra, D. F., E-mail: dfparra@ipen.br, E-mail: ablugao@ipen.br; Lugão, A. B., E-mail: dfparra@ipen.br, E-mail: ablugao@ipen.br [Center of Chemistry and Environment, Institute of Energy and Nuclear Research - IPEN (Brazil); Gaia, R., E-mail: renan-gaia7@hotmail.com [Faculdades Oswaldo Cruz (Brazil)

    2014-05-15

    The aim of this paper is to investigate structural changes of high density polyethylene (HDPE) modified by ionizing radiation (gamma rays) in different atmospheres. The gamma radiation process for modification of commercial polymers is a widely applied technique to promote new physical-chemical and mechanical properties. Gamma irradiation originates free radicals which can induce chain scission or recombination, providing its annihilation, branching or crosslinking. This polymer was irradiated with gamma source of {sup 60}Co at doses of 5, 10, 20, 50 or 100 kGy at a dose rate of 5 kGy/h. The changes in molecular structure of HDPE, after gamma irradiations were evaluated using thermogravimetric analysis (TGA) and tensile machine and oscillatory rheology. The results showed the variations of the properties depending on the dose at each atmosphere.

  10. Performance of A Compact Multi-crystal High-purity Germanium Detector Array for Measuring Coincident Gamma-ray Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Howard, Chris [Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Univ. Nuclear Lab., Durham, NC (United States); Daigle, Stephen [Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Univ. Nuclear Lab., Durham, NC (United States); Buckner, Matt [Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Univ. Nuclear Lab., Durham, NC (United States); Erikson, Luke E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Runkle, Robert C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Stave, Sean C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Champagne, Art [Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Univ. Nuclear Lab., Durham, NC (United States); Cooper, Andrew [Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Univ. Nuclear Lab., Durham, NC (United States); Downen, Lori [Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Univ. Nuclear Lab., Durham, NC (United States); Glasgow, Brian D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kelly, Keegan [Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Univ. Nuclear Lab., Durham, NC (United States); Sallaska, Anne [Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Univ. Nuclear Lab., Durham, NC (United States)

    2015-02-18

    The Multi-sensor Airborne Radiation Survey (MARS) detector is a 14-crystal array of high-purity germanium (HPGe) detectors housed in a single cryostat. The array was used to measure the astrophysical S-factor for the 14N(p,γ)15O* reaction for several transition energies at an effective center of mass energy of 163 keV. Owing to the segmented nature of the MARS detector, the effect of gamma-ray summing was greatly reduced in comparison to past experiments which utilized large, single-crystal detectors. The new S-factor values agree within the uncertainties with the past measurements. Details of the analysis and detector performance will be presented.

  11. Performance of a compact multi-crystal high-purity germanium detector array for measuring coincident gamma-ray emissions

    Energy Technology Data Exchange (ETDEWEB)

    Howard, Chris; Daigle, Stephen; Buckner, Matt [University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Erikson, Luke E.; Runkle, Robert C. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Stave, Sean C., E-mail: Sean.Stave@pnnl.gov [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Champagne, Arthur E.; Cooper, Andrew; Downen, Lori [University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Glasgow, Brian D. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Kelly, Keegan; Sallaska, Anne [University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States)

    2015-05-21

    The Multi-sensor Airborne Radiation Survey (MARS) detector is a 14-crystal array of high-purity germanium (HPGe) detectors housed in a single cryostat. The array was used to measure the astrophysical S-factor for the {sup 14}N(p,γ){sup 15}O{sup ⁎} reaction for several transition energies at an effective center-of-mass energy of 163 keV. Owing to the granular nature of the MARS detector, the effect of gamma-ray summing was greatly reduced in comparison to past experiments which utilized large, single-crystal detectors. The new S-factor values agree within their uncertainties with the past measurements. Details of the analysis and detector performance are presented.

  12. Fermi Discovery of Gamma-Ray Emission from NGC 1275

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, Aous A.; /Naval Research Lab, Wash., D.C.; Ackermann, M.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Ajello, M.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Asano, K.; /Tokyo Inst. Tech.; Baldini, L.; /INFN, Pisa; Ballet, J.; /DAPNIA, Saclay; Barbiellini, Guido; /INFN, Trieste /Trieste U.; Bastieri, Denis; /INFN, Padua /Padua U.; Baughman, B.M.; /Ohio State U.; Bechtol, K.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bellazzini, R.; /INFN, Pisa; Blandford, R.D.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bloom, Elliott D.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bonamente, E.; /INFN, Perugia /Perugia U.; Borgland, A.W.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bregeon, J.; /INFN, Pisa; Brez, A.; /INFN, Pisa; Brigida, M.; /Bari U. /INFN, Bari; Bruel, P.; /Ecole Polytechnique; Burnett, Thompson H.; /Washington U., Seattle; Caliandro, G.A.; /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /IASF, Milan /IASF, Milan /DAPNIA, Saclay /ASDC, Frascati /INFN, Perugia /Perugia U. /SISSA, Trieste /George Mason U. /Naval Research Lab, Wash., D.C. /NASA, Goddard /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Montpellier U. /ASDC, Frascati /Sonoma State U. /Stockholm U., OKC /Royal Inst. Tech., Stockholm /Stockholm U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Naval Research Lab, Wash., D.C. /INFN, Trieste /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /NASA, Goddard /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /CENBG, Gradignan /CENBG, Gradignan /Montpellier U. /Bari U. /INFN, Bari /Naval Research Lab, Wash., D.C. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /INFN, Trieste /Hiroshima U.; /more authors..

    2009-05-15

    We report the discovery of high-energy (E > 100 MeV) {gamma}-ray emission from NGC 1275, a giant elliptical galaxy lying at the center of the Perseus cluster of galaxies, based on observations made with the Large Area Telescope (LAT) of the Fermi Gamma-ray Space Telescope. The positional center of the {gamma}-ray source is only {approx}3{prime} away from the NGC 1275 nucleus, well within the 95% LAT error circle of {approx}5{prime}. The spatial distribution of {gamma}-ray photons is consistent with a point source. The average flux and power-law photon index measured with the LAT from 2008 August 4 to 2008 December 5 are F{sub {gamma}} = (2.10 {+-} 0.23) x 10{sup -7} ph (>100 MeV) cm{sup -2} s{sup -1} and {Gamma} = 2.17 {+-} 0.05, respectively. The measurements are statistically consistent with constant flux during the four-month LAT observing period. Previous EGRET observations gave an upper limit of F{sub {gamma}} < 3.72 x 10{sup -8} ph (>100 MeV) cm{sup -2} s{sup -1} to the {gamma}-ray flux from NGC 1275. This indicates that the source is variable on timescales of years to decades, and therefore restricts the fraction of emission that can be produced in extended regions of the galaxy cluster. Contemporaneous and historical radio observations are also reported. The broadband spectrum of NGC 1275 is modeled with a simple one-zone synchrotron/synchrotron self-Compton model and a model with a decelerating jet flow.

  13. Sensitivity analysis of high resolution gamma-ray detection for safeguards monitoring at natural uranium conversion facilities

    Energy Technology Data Exchange (ETDEWEB)

    Dewji, S.A., E-mail: dewjisa@ornl.gov [Oak Ridge National Laboratory, PO Box 2008 MS-6335, Oak Ridge TN 37831 (United States); Georgia Institute of Technology, 770 State Street, Atlanta, GA 30332-0745 (United States); Croft, S. [Oak Ridge National Laboratory, PO Box 2008 MS-6335, Oak Ridge TN 37831 (United States); Hertel, N.E. [Oak Ridge National Laboratory, PO Box 2008 MS-6335, Oak Ridge TN 37831 (United States); Georgia Institute of Technology, 770 State Street, Atlanta, GA 30332-0745 (United States)

    2017-03-11

    Under the policies proposed by recent International Atomic Energy Agency (IAEA) circulars and policy papers, implementation of safeguards exists when any purified aqueous uranium solution or uranium oxides suitable for isotopic enrichment or fuel fabrication exists. Under IAEA Policy Paper 18, the starting point for nuclear material under safeguards was reinterpreted, suggesting that purified uranium compounds should be subject to safeguards procedures no later than the first point in the conversion process. In response to this technical need, a combination of simulation models and experimental measurements were employed in previous work to develop and validate gamma-ray nondestructive assay monitoring systems in a natural uranium conversion plant (NUCP). In particular, uranyl nitrate (UO{sub 2}(NO{sub 3}){sub 2}) solution exiting solvent extraction was identified as a key measurement point (KMP). Passive nondestructive assay techniques using high resolution gamma-ray spectroscopy were evaluated to determine their viability as a technical means for drawing safeguards conclusions at NUCPs, and if the IAEA detection requirements of 1 significant quantity (SQ) can be met in a timely manner. Building upon the aforementioned previous validation work on detector sensitivity to varying concentrations of uranyl nitrate via a series of dilution measurements, this work investigates detector response parameter sensitivities to gamma-ray signatures of uranyl nitrate. The full energy peak efficiency of a detection system is dependent upon the sample, geometry, absorption, and intrinsic efficiency parameters. Perturbation of these parameters translates into corresponding variations of the 185.7 keV peak area of the {sup 235}U in uranyl nitrate. Such perturbations in the assayed signature impact the quality or versatility of the safeguards conclusions drawn. Given the potentially high throughput of uranyl nitrate in NUCPs, the ability to assay 1 SQ of material requires

  14. Report of the High Energy Physics Advisory Panel (HEPAP) subpanel on high energy gamma ray and neutrino astronomy

    International Nuclear Information System (INIS)

    Gaisser, T.K.; Gordon, H.A.; Melissinos, A.; Rosen, S.P.; Ruderman, M.A.; Turner, M.S.; Zeller, M.

    1988-11-01

    This report contains information on topics of neutrino and gammay-ray astronomy. Some of the topics discussed are: SN1987A, statistics and variability, background rejection and muons, relation between photon and neutrinos, sensitivity of gamma-ray experiments, comparison of air Cherenkov experiments, air shower experiment, and underground experiments

  15. Egret observations of the extragalactic gamma-ray emission

    DEFF Research Database (Denmark)

    Sreekumar, P.; Bertsch, D.L.; Dingus, B.L.

    1998-01-01

    The all-sky survey in high-energy gamma rays (E > 30 MeV) carried out by EGRET aboard the Compton Gamma Ray Observatory provides a unique opportunity to examine in detail the diffuse gamma-ray emission. The observed diffuse emission has a Galactic component arising from cosmic-ray interactions wi...

  16. Basics of Gamma Ray Detection

    Energy Technology Data Exchange (ETDEWEB)

    Stinnett, Jacob [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Venkataraman, Ram [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-09-13

    The objective of this training is to explain the origin of x-rays and gamma rays, gamma ray interactions with matter, detectors and electronics used in gamma ray-spectrometry, and features of a gamma-ray spectrum for nuclear material that is safeguarded.

  17. Natural background gamma-ray spectrum. List of gamma-rays ordered in energy from natural radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Ichimiya, Tsutomu [Japan Radioisotope Association, Tokyo (Japan); Narita, Tsutomu; Kitao, Kensuke

    1998-03-01

    A quick index to {gamma}-rays and X-rays from natural radionuclides is presented. In the list, {gamma}-rays are arranged in order of increasing energy. The list also contains {gamma}-rays from radioactive nuclides produced in a germanium detector and its surrounding materials by interaction with cosmic neutrons, as well as direct {gamma}-rays from interaction with the neutrons. Artificial radioactive nuclides emitting {gamma}-rays with same or near energy value as that of the natural {gamma}-rays and X-rays are also listed. In appendix, {gamma}-ray spectra from a rock, uranium ore, thorium, monazite and uraninite and also background spectra obtained with germanium detectors placed in iron or lead shield have been given. The list is designed for use in {gamma}-ray spectroscopy under the conditions of highly natural background, such as in-situ environmental radiation monitoring or low-level activity measurements, with a germanium detector. (author)

  18. X and gamma ray backgroud observations in Antarctic

    International Nuclear Information System (INIS)

    Jayanthi, U.B.

    1988-01-01

    Atmospheric X amd gamma rays are products of complex electromagnetic interation between charged particles and atmospheric constituents. The latitudinal dependence of the cosmic rays secondaries, auroral and South Atlantic Anomaly phenomena produce flux variations, especially the later temporal flux variations. We propose to discuss these variations in relevance to balloon flight observations of X and gamma ray atmospheric background at polar latitudes. (author) [pt

  19. Response of mammary tissue to high-LET HZE particle (Silicon ions) radiation or low-LET gamma-rays

    Data.gov (United States)

    National Aeronautics and Space Administration — Transcriptional profiling of mammary tissue irradiated at 10 weeks of age with either 100 cGy sparsely ionizing gamma-rays or 10 cGy or 30 cGy densely ionizing...

  20. Inter-pulse high-resolution gamma-ray spectra using a 14 MeV pulsed neutron generator

    Science.gov (United States)

    Evans, L.G.; Trombka, J.I.; Jensen, D.H.; Stephenson, W.A.; Hoover, R.A.; Mikesell, J.L.; Tanner, A.B.; Senftle, F.E.

    1984-01-01

    A neutron generator pulsed at 100 s-1 was suspended in an artificial borehole containing a 7.7 metric ton mixture of sand, aragonite, magnetite, sulfur, and salt. Two Ge(HP) gamma-ray detectors were used: one in a borehole sonde, and one at the outside wall of the sample tank opposite the neutron generator target. Gamma-ray spectra were collected by the outside detector during each of 10 discrete time windows during the 10 ms period following the onset of gamma-ray build-up after each neutron burst. The sample was measured first when dry and then when saturated with water. In the dry sample, gamma rays due to inelastic neutron scattering, neutron capture, and decay were counted during the first (150 ??s) time window. Subsequently only capture and decay gamma rays were observed. In the wet sample, only neutron capture and decay gamma rays were observed. Neutron capture gamma rays dominated the spectrum during the period from 150 to 400 ??s after the neutron burst in both samples, but decreased with time much more rapidly in the wet sample. A signal-to-noise-ratio (S/N) analysis indicates that optimum conditions for neutron capture analysis occurred in the 350-800 ??s window. A poor S/N in the first 100-150 ??s is due to a large background continuum during the first time interval. Time gating can be used to enhance gamma-ray spectra, depending on the nuclides in the target material and the reactions needed to produce them, and should improve the sensitivity of in situ well logging. ?? 1984.

  1. Future prospects for. gamma. -ray astronomy

    Energy Technology Data Exchange (ETDEWEB)

    Fichtel, C [National Aeronautics and Space Administration, Greenbelt, MD (USA). Goddard Space Flight Center

    1981-06-30

    As ..gamma..-ray astronomy moves from the discovery to the exploratory phase, the promise of ..gamma..-ray astrophysics noted by theorists in the late 1940s and 1950s is beginning to be realized. In the future, satellites should carry instruments that will have over an order of magnitude greater sensitivity than those flown thus far, and, for at least some portions of the ..gamma..-ray energy range, these detectors will also have substantially improved energy and angular resolution. The information to be obtained from these experiments should greatly enhance our knowledge of several astrophysical phenomena including the very energetic and nuclear processes associated with compact objects, astrophysical nucleosynthesis, solar particle acceleration, the chemical composition of the planets and other bodies of the Solar System, the structure of our Galaxy, the origin and dynamic pressure effects of the cosmic rays, high energy particles and energetic processes in other galaxies especially active ones, and the degree of matter-antimatter symmetry of the Universe. The ..gamma..-ray results of the forthcoming programs such as Gamma-I, the Gamma Ray Observatory, the ..gamma..-ray burst network, Solar Polar, and very high energy ..gamma..-ray telescopes on the ground will almost certainly provide justification for more sophisticated telescopes. These advanced instruments might be placed on the Space Platform currently under study by N.A.S.A.

  2. Observations Of Gamma-ray Loud Blazars With The VLBA At 5 GHz

    Science.gov (United States)

    Linford, Justin; Taylor, G. B.; Romani, R.; Readhead, A. C. S.; Reeves, R.; Richards, J. L.; Helmboldt, J. F.

    2011-01-01

    The Fermi Gamma-ray Space Telescope has been scanning the sky for more than a year. About half of the sources detected by Fermi's Large Area Telesope (LAT) are active galactic nuclei (AGN). Nearly all of these gamma-ray loud AGN are blazars; strong, compact radio emitters that exhibit variability in their flux and apparent superluminal motion in their jets. Several groups are currently monitoring the radio properties of these gamma-ray loud blazars. We present results from both archival and contemporaneous observations of 200 LAT-detected blazars using the Very Long Baseline Array (VLBA) at a frequency of 5 GHz (wavelength of 6 cm). Our large, flux-limited sample provides unique insights into the mechanism that produces strong gamma-ray emissions. We explore the parsec-scale properties of the cores and jets of these highly energetic objects, including core polarization. We compare the gamma-ray loud blazars to their gamma-ray quiet counterparts in the VLBA Imaging and Polarimetry Survey (VIPS). We also investigate the differences between the BL Lacertae objects (BL Lacs) and flat-spectrum radio quasars (FSRQs).

  3. Gamma-Ray Emission from Galaxy Clusters : DARK MATTER AND COSMIC-RAYS

    Science.gov (United States)

    Pinzke, Anders

    The quest for the first detection of a galaxy cluster in the high energy gamma-ray regime is ongoing, and even though clusters are observed in several other wave-bands, there is still no firm detection in gamma-rays. To complement the observational efforts we estimate the gamma-ray contributions from both annihilating dark matter and cosmic-ray (CR) proton as well as CR electron induced emission. Using high-resolution simulations of galaxy clusters, we find a universal concave shaped CR proton spectrum independent of the simulated galaxy cluster. Specifically, the gamma-ray spectra from decaying neutral pions, which are produced by CR protons, dominate the cluster emission. Furthermore, based on our derived flux and luminosity functions, we identify the galaxy clusters with the brightest galaxy clusters in gamma-rays. While this emission is challenging to detect using the Fermi satellite, major observations with Cherenkov telescopes in the near future may put important constraints on the CR physics in clusters. To extend these predictions, we use a dark matter model that fits the recent electron and positron data from Fermi, PAMELA, and H.E.S.S. with remarkable precision, and make predictions about the expected gamma-ray flux from nearby clusters. In order to remain consistent with the EGRET upper limit on the gamma-ray emission from Virgo, we constrain the minimum mass of substructures for cold dark matter halos. In addition, we find comparable levels of gamma-ray emission from CR interactions and dark matter annihilations without Sommerfeld enhancement.

  4. VELOCIRAPTOR: An X-band photoinjector and linear accelerator for the production of Mono-Energetic {gamma}-rays

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, S.G., E-mail: anderson131@llnl.gov [Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, CA 94551 (United States); Albert, F.; Bayramian, A.J.; Beer, G.; Bonanno, R.E.; Cross, R.R.; Deis, G.; Ebbers, C.A.; Gibson, D.J.; Hartemann, F.V.; Houck, T.L.; Marsh, R.A.; McNabb, D.P.; Messerly, M.J.; Scarpetti, R.D.; Shverdin, M.Y.; Siders, C.W.; Wu, S.S.; Barty, C.P.J. [Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, CA 94551 (United States); Adolphsen, C.E. [SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025 (United States); and others

    2011-11-21

    The rf photoinjector and linear accelerator in the Mono-Energetic Gamma-ray (MEGa-ray) facility at LLNL is presented. This machine uses 11.4 GHz rf technology to accelerate a high-brightness electron beam up to 250 MeV to produce MeV {gamma}-rays through Compton scattering with a Joule-class laser pulse. Compton scattering-based generation of high flux, narrow bandwidth {gamma}-rays places stringent requirements on the performance of the accelerator. The component parts of the accelerator are presented and their requirements described. Simulations of expected electron beam parameters and the resulting light source properties are presented.

  5. Electron-positron pair production by gamma-rays in an anisotropic flux of soft photons, and application to pulsar polar caps

    Science.gov (United States)

    Voisin, Guillaume; Mottez, Fabrice; Bonazzola, Silvano

    2018-02-01

    Electron-positron pair production by collision of photons is investigated in view of application to pulsar physics. We compute the absorption rate of individual gamma-ray photons by an arbitrary anisotropic distribution of softer photons, and the energy and angular spectrum of the outgoing leptons. We work analytically within the approximation that 1 ≫ mc2/E > ɛ/E, with E and ɛ the gamma-ray and soft-photon maximum energy and mc2 the electron mass energy. We give results at leading order in these small parameters. For practical purposes, we provide expressions in the form of Laurent series which give correct reaction rates in the isotropic case within an average error of ˜ 7 per cent. We apply this formalism to gamma-rays flying downward or upward from a hot neutron star thermally radiating at a uniform temperature of 106 K. Other temperatures can be easily deduced using the relevant scaling laws. We find differences in absorption between these two extreme directions of almost two orders of magnitude, much larger than our error estimate. The magnetosphere appears completely opaque to downward gamma-rays while there are up to ˜ 10 per cent chances of absorbing an upward gamma-ray. We provide energy and angular spectra for both upward and downward gamma-rays. Energy spectra show a typical double peak, with larger separation at larger gamma-ray energies. Angular spectra are very narrow, with an opening angle ranging from 10-3 to 10-7 radians with increasing gamma-ray energies.

  6. Analysis of hard X-ray emission from selected very high energy {gamma}-ray sources observed with INTEGRAL

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Agnes Irene Dorothee

    2009-11-13

    A few years ago, the era of very high energy {gamma}-ray astronomy started, when the latest generation of Imaging Atmospheric Cherenkov Telescopes (IACT) like H.E.S.S. began to operate and to resolve the sources of TeV emission. Identifications via multi-wavelength studies reveal that the detected sources are supernova remnants and active galactic nuclei, but also pulsar wind nebulae and a few binaries. One widely discussed open question is, how these sources are able to accelerate particles to such high energies. The understanding of the underlying particle distribution, the acceleration processes taking place, and the knowledge of the radiation processes which produce the observed emission, is, therefore, of crucial interest. Observations in the hard X-ray domain can be a key to get information on these particle distributions and processes. Important for this thesis are the TeV and the hard X-ray range. The two instruments, H.E.S.S. and INTEGRAL, whose data were used, are, therefore, described in detail. The main part of this thesis is focused on the X-ray binary system LS 5039/RX J1826.2-1450. It was observed in several energy ranges. The nature of the compact object is still not known, and it was proposed either to be a microquasar system or a non-accreting pulsar system. The observed TeV emission is modulated with the orbital cycle. Several explanations for this variability have been discussed in recent years. The observations with INTEGRAL presented in this thesis have provided new information to solve this question. Therefore, a search for a detection in the hard X-ray range and for its orbital dependence was worthwhile. Since LS 5039 is a faint source and the sky region where it is located is crowded, a very careful, non-standard handling of the INTEGRAL data was necessary, and a cross-checking with other analysis methods was essential to provide reliable results. We found that LS 5039 is emitting in the hard X-ray energy range. A flux rate and an upper

  7. Compton suppression gamma ray spectrometry

    International Nuclear Information System (INIS)

    Landsberger, S.; Iskander, F.Y.; Niset, M.; Heydorn, K.

    2002-01-01

    In the past decade there have been many studies to use Compton suppression methods in routine neutron activation analysis as well as in the traditional role of low level gamma ray counting of environmental samples. On a separate path there have been many new PC based software packages that have been developed to enhance photopeak fitting. Although the newer PC based algorithms have had significant improvements, they still suffer from being effectively used in weak gamma ray lines in natural samples or in neutron activated samples that have very high Compton backgrounds. We have completed a series of experiments to show the usefulness of Compton suppression. As well we have shown the pitfalls when using Compton suppression methods for high counting deadtimes as in the case of neutron activated samples. We have also investigated if counting statistics are the same both suppressed and normal modes. Results are presented in four separate experiments. (author)

  8. DISCOVERY OF GAMMA-RAY PULSATIONS FROM THE TRANSITIONAL REDBACK PSR J1227-4853

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, T. J. [College of Science, George Mason University, Fairfax, VA 22030 (United States); Ray, P. S.; Cheung, C. C. [Space Science Division, Naval Research Laboratory, Washington, DC 20375-5352 (United States); Roy, J.; Bhattacharyya, B.; Stappers, B. W. [Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL (United Kingdom); Harding, A. K. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Pletsch, H. J.; Fort, S. [Albert-Einstein-Institut, Max-Planck-Institut für Gravitationsphysik, D-30167 Hannover (Germany); Camilo, F. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Deneva, J. [National Research Council Research Associate, National Academy of Sciences, Washington, DC 20001 (United States); Kerr, M., E-mail: tyrel.j.johnson@gmail.com, E-mail: Paul.Ray@nrl.navy.mil, E-mail: jayanta.roy@manchester.ac.uk [CSIRO Astronomy and Space Science, Australia Telescope National Facility, Epping NSW 1710 (Australia)

    2015-06-10

    The 1.69 ms spin period of PSR J1227−4853 was recently discovered in radio observations of the low-mass X-ray binary XSS J12270−4859 following the announcement of a possible transition to a rotation-powered millisecond pulsar state, inferred from decreases in optical, X-ray, and gamma-ray flux from the source. We report the detection of significant (5σ) gamma-ray pulsations after the transition, at the known spin period, using ∼1 year of data from the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope. The gamma-ray light curve of PSR J1227−4853 can be fit by one broad peak, which occurs at nearly the same phase as the main peak in the 1.4 GHz radio profile. The partial alignment of light-curve peaks in different wavebands suggests that at least some of the radio emission may originate at high altitude in the pulsar magnetosphere, in extended regions co-located with the gamma-ray emission site. We folded the LAT data at the orbital period, both pre- and post-transition, but find no evidence for significant modulation of the gamma-ray flux. Analysis of the gamma-ray flux over the mission suggests an approximate transition time of 2012 November 30. Continued study of the pulsed emission and monitoring of PSR J1227−4853, and other known redback systems, for subsequent flux changes will increase our knowledge of the pulsar emission mechanism and transitioning systems.

  9. Gamma-Ray Bursts

    Science.gov (United States)

    Pellizza, L. J.

    Gamma-ray bursts are the brightest transient sources in the gamma-ray sky. Since their discovery in the late 1960s, the investigation of the astrophysical sys- tems in which these phenomena take place, and the physical mechanisms that drive them, has become a vast and prolific area of modern astrophysics. In this work I will briefly describe the most relevant observations of these sources, and the models that describe their nature, emphasizing on the in- vestigations about the progenitor astrophysical systems. FULL TEXT IN SPANISH

  10. Gamma Ray Bursts

    Science.gov (United States)

    Gehrels, Neil; Meszaros, Peter

    2012-01-01

    Gamma-ray bursts (GRBs) are bright flashes of gamma-rays coming from the cosmos. They occur roughly once per day ,last typically lOs of seconds and are the most luminous events in the universe. More than three decades after their discovery, and after pioneering advances from space and ground experiments, they still remain mysterious. The launch of the Swift and Fermi satellites in 2004 and 2008 brought in a trove of qualitatively new data. In this review we survey the interplay between these recent observations and the theoretical models of the prompt GRB emission and the subsequent afterglows.

  11. Results of Gamma-Ray Imaging with High-Energy Radiation Visualizer HERV at Nuclear Reactor in Russia and Germany

    International Nuclear Information System (INIS)

    Ivanov, O.P.; Stepanov, V.E.; Sudarkin, A.N.; Urutskoev, L.I.

    1999-01-01

    HER V-high energy radiation visualizer is a system for imaging in X-and gamma-ray regions developed by RECOM during recent years. Its later version provides the real industrial prototype that has been already tested under the complex gamma-field conditions of highly contaminated nuclear facilities in Russia and Germany. New special options for initial CCD camera frames processing (CCD camera operates in slow repetition mode) allow one to perform imaging without heavy shielding during a long exposure time. Image processing options allowing one to take into account background radiation, noise and drift of electronics are described. The contaminated pipelines and vessels HER V imagery results are presented. Background does rate in rooms with contaminated equipment appeared to be up to 1 R/hour and from 1m R/hour up to 50 m R/hour at detector's head location. The major contaminating nuclides proved to be Co-60 and Cs-137. Imaging time was chosen to be 0.2-1 hour. Data acquisition and processing procedures enabled to avoid the high background dose rate influence at the device measuring head location. Superposition of gamma images over optical images indicates that the major contaminated parts of the pipelines were their bends, places of their connection, and their valves

  12. Design and environmental applications of an ultra-low-background, high-efficiency intrinsic Ge gamma-ray spectrometer

    International Nuclear Information System (INIS)

    Wogman, N.A.

    1981-04-01

    A coincidence shielded intrinsic Ge gamma-ray spectrometer incorporating a 25% efficient, high resolution coaxial diode inside a 30 cm diameter NaI(Tl) shield is described. System design eliminates the major cause of background and minimizes cosmic-ray created background events through the use of electronic means. The system provides a peak-to-Compton ratio of greater than 1000 to 1 for 137 Cs and high sensitivity for both low and high level radionuclide measurements. At 3 MeV the background is 0.000058 counts per minute per keV. At 1 MeV it is 0.00048 counts per minute per keV, and at 0.5 MeV it is 0.0045 counts per minute per keV. Traces of primordial radionuclides create background events such as at 2.614 MeV (0.016 counts per minute total peak area), at 2.448 MeV (0.0058 counts per minute per total peak area), and at 2.204 MeV (0.023 counts per minute per total peak area). The system is discussed with respect to its background design, methods to improve its design, and its application to measurements of neutron activated and environmental materials problems

  13. High-Quality Medium-Resolution Gamma-Ray Spectra from Certified Reference Uranium and Plutonium Materials

    International Nuclear Information System (INIS)

    Zsigrai, J.; Muehleisen, A.; ); Weber, A.-L.; Funk, P.; Berlizov, A.; Mintcheva, J.

    2015-01-01

    The Institute of Transuranium Elements (ITU) has made an effort to record a collection of medium resolution gamma-ray spectra from well-characterized U and Pu certified reference materials CRM-171 (also known as SRM-969), CBNM-271, and Harwell PIDIE standards. The goal of this exercise was twofold: (i) to complement the international database of reference gamma-ray spectra with high-quality data for medium resolution spectrometers, and (ii) to feed Phase I of the U/Pu isotopic inter-comparison exercise that is being jointly organized by the ESARDA NDA Working Group and IAEA. Phase II of the exercise will be fed by similar spectra recorded by Institute for Radiological Protection and Nuclear Safety (IRSN). These activities are supported through a joint Member State Support Programmes (MSSP) task and aimed at delivering reliable methodologies for the determination of U/Pu isotopic composition using medium resolution gamma-spectrometers. The latter have obvious benefits for in-field applications, amongst which are better usability, portability and maintainability. As the spectra will be made available online for software developers and end users, ultimately this will also contribute to sustainability as well as the improved and validated performance of existing U/Pu isotopic codes. The spectra were recorded using the IAEA's standard Lanthanum Bromide (LaBr3(Ce)) (2.0'' x 0.5'') and Cadmium Zink Telluride (CdZnTe) (500 mm''3) detectors and acquisition electronics. Aiming to acquire the highest quality reference data, the spectra were measured for long acquisition times, ensuring very good counting statistics across potentially useful spectral intervals — up to 1 MeV for the CdZnTe and up to 2.6 MeV for the LaBr3(Ce) detectors. Great attention was also paid to ensure that the measurement geometry was stable and reproducible, and the spectra had minimum influence from background radiation and pile-up effects. The paper will briefly

  14. Processing of gamma-ray spectrometric logs

    International Nuclear Information System (INIS)

    Umiastowski, K.; Dumesnil, P.

    1984-10-01

    CEA (Commissariat a l'Energie Atomique) has developped a gamma-ray spectrometric tool, containing an analog-to-digital converter. This new tool permits to perform very precise uranium logs (natural gamma-ray spectrometry), neutron activation logs and litho-density logs (gamma-gamma spectrometric logs). Specific processing methods were developped to treate the particular problems of down-hole gamma-ray spectrometry. Extraction of the characteristic gamma-ray peak, even if they are superposed on the background radiation of very high intensity, is possible. This processing methode enables also to obtain geological informations contained in the continuous background of the spectrum. Computer programs are written in high level language for SIRIUS (VICTOR) and APOLLO computers. Exemples of uranium and neutron activation logs treatment are presented [fr

  15. Programme in Basic-Applesoft language for microcomputer to analyse pulse spectra from a high-resolution gamma ray system

    International Nuclear Information System (INIS)

    Nascimento Filho, V.F. do; Marques, D.A.; Pessenda, L.C.R.; Barros Ferraz, E.S. de; Nadai, E.A. de; Sao Paulo Univ., Piracicaba

    1988-01-01

    A programme in BASIC-Applesoft language has been developed for low cost microcomputer to analyze spectra from a high-resolution gamma-ray system (high-purity germanium and 4096 channels analyzer). Data is received by the microcomputer directly from analyzer (4 min) or keyboard and shown on video (4 min) or printed (9,7 min). Graphics of parts of the spectrum can be either shown on video (a cursor is used to identify peaks) or printed. The peak search, centroid, energy, net photopeak area, standard deviation and relative standard deviation are included in the programme (5 min), besides filing of data in flexible disk (1,3 min). The programme was used on a 12 h real-time detection in Marinelli beaker of 1265 g sandy soil sample (Ref-Yellow Latosol, 0-3 cm layer). Thirty-one peaks from U-238 and Th-232 daughters were analyzed (rsd less than 20%), besides natural K-40 and artificial Cs-137, from fallout. (author) [pt

  16. CAMAC gamma ray scanning system

    International Nuclear Information System (INIS)

    Moss, C.E.; Pratt, J.C.; Shunk, E.R.

    1981-01-01

    A flexible gamma-ray scanning system, based on a LeCroy 3500 multichannel analyzer and CAMAC modules, is described. The system is designed for making simultaneous passive and active scans of objects of interest to nuclear safeguards. The scanner is a stepping-motor-driven carriage; the detectors, a bismuth-germanate scintillator and a high-purity germanium detector. A total of sixteen peaks in the two detector-produced spectra can be integrated simultaneously, and any scan can be viewed during data acquisition. For active scanning, the 2615-keV gamma-ray line from a 232 U source and the 4439-keV gamma-ray line from 9 Be(α,n) 12 C were selected. The system can be easily reconfigured to accommodate up to seven detectors because it is based on CAMAC modules and FORTRAN. The system is designed for field use and is easily transported. Examples of passive and active scans are presented

  17. Gamma ray astronomy

    International Nuclear Information System (INIS)

    Broomhead, Laurent.

    1980-01-01

    The nuclear gamma astronomy is presented, in particular the Gamma Ray Observatory, an enormous eight tonnes machine fitted with gamma telescopes, scheduled for launching around 1985. It is thereby hoped to study the natural nuclear reactions which occur when stars explode [fr

  18. Gamma ray calibration system

    International Nuclear Information System (INIS)

    Rosauer, P.J.; Flaherty, J.J.

    1981-01-01

    This invention is in the field of gamma ray inspection devices for tubular products and the like employing an improved calibrating block which prevents the sensing system from being overloaded when no tubular product is present, and also provides the operator with a means for visually detecting the presence of wall thicknesses which are less than a required minimum. (author)

  19. Lunar occultations for gamma-ray source measurements

    Science.gov (United States)

    Koch, David G.; Hughes, E. B.; Nolan, Patrick L.

    1990-01-01

    The unambiguous association of discrete gamma-ray sources with objects radiating at other wavelengths, the separation of discrete sources from the extended emission within the Galaxy, the mapping of gamma-ray emission from nearby galaxies and the measurement of structure within a discrete source cannot presently be accomplished at gamma-ray energies. In the past, the detection processes used in high-energy gamma-ray astronomy have not allowed for good angular resolution. This problem can be overcome by placing gamma-ray detectors on the moon and using the horizon as an occulting edge to achieve arcsec resolution. For purposes of discussion, this concept is examined for gamma rays above 100 MeV for which pair production dominates the detection process and locally-generated nuclear gamma rays do not contribute to the background.

  20. Constraining decaying dark matter with Fermi LAT gamma-rays

    International Nuclear Information System (INIS)

    Zhang, Le; Sigl, Günter; Weniger, Christoph; Maccione, Luca; Redondo, Javier

    2010-01-01

    High energy electrons and positrons from decaying dark matter can produce a significant flux of gamma rays by inverse Compton off low energy photons in the interstellar radiation field. This possibility is inevitably related with the dark matter interpretation of the observed PAMELA and FERMI excesses. The aim of this paper is providing a simple and universal method to constrain dark matter models which produce electrons and positrons in their decay by using the Fermi LAT gamma-ray observations in the energy range between 0.5 GeV and 300 GeV. We provide a set of universal response functions that, once convolved with a specific dark matter model produce the desired constraints. Our response functions contain all the astrophysical inputs such as the electron propagation in the galaxy, the dark matter profile, the gamma-ray fluxes of known origin, and the Fermi LAT data. We study the uncertainties in the determination of the response functions and apply them to place constraints on some specific dark matter decay models that can well fit the positron and electron fluxes observed by PAMELA and Fermi LAT. To this end we also take into account prompt radiation from the dark matter decay. We find that with the available data decaying dark matter cannot be excluded as source of the PAMELA positron excess

  1. Gamma-Ray Pulsar Studies With GLAST

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, D.J.; /NASA, Goddard

    2011-11-23

    Some pulsars have their maximum observable energy output in the gamma-ray band, offering the possibility of using these high-energy photons as probes of the particle acceleration and interaction processes in pulsar magnetospheres. After an extended hiatus between satellite missions, the recently-launched AGILE mission and the upcoming Gamma-ray Large Area Space Telescope (GLAST) Large Area Telescope (LAT) will allow gamma-ray tests of the theoretical models developed based on past discoveries. With its greatly improved sensitivity, better angular resolution, and larger energy reach than older instruments, GLAST LAT should detect dozens to hundreds of new gamma-ray pulsars and measure luminosities, light curves, and phase-resolved spectra with unprecedented resolution. It will also have the potential to find radio-quiet pulsars like Geminga, using blind search techniques. Cooperation with radio and X-ray pulsar astronomers is an important aspect of the LAT team's planning for pulsar studies.

  2. Gamma ray astronomy with COS-B

    International Nuclear Information System (INIS)

    Swanenburg, B.N.

    1981-01-01

    Observational results in the field of gamma-ray astronomy that have been obtained to date with the COS-B satellite are discussed and questions raised by these observations are summarized. Following a brief review of the instrumental characteristics of COS-B and the extent of COS-B gamma-ray coverage of the sky, particular attention is given to the questions raised by the discovery of many unidentified gamma-ray sources with no apparent optical, X-ray or radio counterparts and the detection of high-energy gamma radiation from the quasar 3C 273, which suggests the role of gamma-ray emission in the creation of other radiation

  3. The effect of energy peak drift on the calibration of a high resolution gamma-ray soil density gauge

    International Nuclear Information System (INIS)

    Henshall, J.K.

    1994-01-01

    High spatial resolution is obtained from a gamma-ray transmission density gauge by restricting the measured counts to a narrow band of the energy spectrum, close to the emission energy peak. The effect on measurement accuracy of any movement of this measurement window relative to the energy peak was investigated. The findings were related to anticipated energy peak movements in a proposed LED-based gain-stabilization system. Movements of the energy peaks during recording of unstabilized spectra prevented direct comparisons of spectra at different positions. A simulation procedure was, therefore, developed in which movements of the measurement window relative to sets of stable calibration spectra were examined. When analysing spectra, recorded using a gauge with a different gain-stabilization system, accuracy was found to be unaffected by simulated peak movements of up to 0.03 MeV in the direction of increasing energy. However, movements of stabilized spectra in the direction of decreasing energy, and of unstabilized spectra in either direction, increased measurement errors to twice the level of inherent measurement errors within 0.02 MeV, with errors in bulk density of up to 0.7 Mg m −3 for movements of 0.1 MeV. The spectra of the new LED-based stabilization system are expected to behave in a manner similar to the unstabilized system, therefore requiring regular monitoring of the peak position. (author)

  4. Cosmic-ray muons as a calibration source for high-energy gamma-ray detectors

    International Nuclear Information System (INIS)

    Thoerngren Engblom, P.

    1990-09-01

    In this paper a measurement of the directional distribution of cosmic-ray muons, at the latitude of Stockholm, is reported. In fitting the measured flux to a simple analytical expression, the distribution was found to be symmetric around a line approximately to the northwest at 4.2±0.7 degrees from zenith. The east-west asymmetry amounted to a difference in the total intensity of 20±4% at the zenith angle of 45 degrees. The spectra of energies deposited by the muons in a BGO-detector orientated at different angles, are obtained through a Monte Carlo-simulation, where the muon distribution is used as a weight function for sampling muons in different directions. (author)

  5. Statistical analysis for discrimination of prompt gamma ray peak induced by high energy neutron: Monte Carlo simulation study

    International Nuclear Information System (INIS)

    Do-Kun Yoon; Joo-Young Jung; Tae Suk Suh; Seong-Min Han

    2015-01-01

    The purpose of this research is a statistical analysis for discrimination of prompt gamma ray peak induced by the 14.1 MeV neutron particles from spectra using Monte Carlo simulation. For the simulation, the information of 18 detector materials was used to simulate spectra by the neutron capture reaction. The discrimination of nine prompt gamma ray peaks from the simulation of each detector material was performed. We presented the several comparison indexes of energy resolution performance depending on the detector material using the simulation and statistics for the prompt gamma activation analysis. (author)

  6. Very-high-energy gamma-ray observations of pulsar wind nebulae and cataclysmic variable stars with MAGIC and development of trigger systems for IACTs

    Science.gov (United States)

    Lopez-Coto, Ruben

    2015-07-01

    The history of astronomy is as ancient as the reach of our written records. All the human civilizations have been interested in the study and interpretation of the night sky and its objects and phenomena. These observations were performed with the naked eye until the beginning of the 17th century, when Galileo Galilei started to use an instrument recently developed called telescope. Since then, the range of accessible wavelengths has been increasing, with a burst in the 20th century with the developing of instruments to observe them: antennas (radio and submillimeter), telescopes (optical, IR) and satellites (UV, X-rays and soft gamma rays). The last wavelength range accessed was the Very-High-Energy (VHE) gamma rays. At this range fluxes are so low that it is not possible to use space-based instruments with typical collection areas of O(1) m2. We must resort to the imaging atmospheric Cherenkov technique, which is based on the detection of the flashes of Cherenkov light that VHE gamma rays produce when they interact with the Earth's atmosphere. The field is very young, with the first source discovered in 1989 by the pioneering Whipple telescope. It is very dynamic with more than 150 sources detected to date, most of them by MAGIC, HESS and VERITAS, that make up the current generation of instruments. Finally, the field is also very promising, with the preparation of a next generation of imaging atmospheric Cherenkov telescopes: CTA, that is expected to start full operation in 2020. The work presented in this thesis comprises my efforts to take the ground-based γ-ray astronomy one step forward. Part I of the thesis is an introduction to the non- thermal universe, the imaging atmospheric Cherenkov technique and the Imaging Atmospheric Cherenkov Telescopes (IACTs) MAGIC and CTA. Part II deals with several ways to reduce the trigger threshold of IACTs. This includes the simula- tion, characterization and test of an analog trigger especially designed to achieve the

  7. RAPID, MACHINE-LEARNED RESOURCE ALLOCATION: APPLICATION TO HIGH-REDSHIFT GAMMA-RAY BURST FOLLOW-UP

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, A N; Richards, Joseph W; Butler, Nathaniel R; Bloom, Joshua S [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Long, James; Broderick, Tamara [Department of Statistics, University of California, Berkeley, CA 94720-3860 (United States)

    2012-02-20

    As the number of observed gamma-ray bursts (GRBs) continues to grow, follow-up resources need to be used more efficiently in order to maximize science output from limited telescope time. As such, it is becoming increasingly important to rapidly identify bursts of interest as soon as possible after the event, before the afterglows fade beyond detectability. Studying the most distant (highest redshift) events, for instance, remains a primary goal for many in the field. Here, we present our Random Forest Automated Triage Estimator for GRB redshifts (RATE GRB-z ) for rapid identification of high-redshift candidates using early-time metrics from the three telescopes onboard Swift. While the basic RATE methodology is generalizable to a number of resource allocation problems, here we demonstrate its utility for telescope-constrained follow-up efforts with the primary goal to identify and study high-z GRBs. For each new GRB, RATE GRB-z provides a recommendation-based on the available telescope time-of whether the event warrants additional follow-up resources. We train RATE GRB-z using a set consisting of 135 Swift bursts with known redshifts, only 18 of which are z > 4. Cross-validated performance metrics on these training data suggest that {approx}56% of high-z bursts can be captured from following up the top 20% of the ranked candidates, and {approx}84% of high-z bursts are identified after following up the top {approx}40% of candidates. We further use the method to rank 200 + Swift bursts with unknown redshifts according to their likelihood of being high-z.

  8. Multielement CdZnTe detectors for high-efficiency, ambient-temperature gamma-ray spectroscopy

    International Nuclear Information System (INIS)

    Prettyman, T.H.; Moss, C.E.; Sweet, M.R.; Ianakiev, K.; Reedy, R.C.; Li, J.; Valentine, J.D.

    1998-01-01

    CdZnTe is an attractive alternative to scintillator-based technology for ambient-temperature, gamma-ray spectroscopy. Large, single-element devices up to 3500 mm 3 have been developed for gamma-ray spectroscopy and are now available commercially. Because CdZnTe is a wide band-gap semiconductor, it can operate over a wide range of ambient temperatures with minimal power consumption. Over this range, CdZnTe detectors routinely yield better overall performance for gamma-ray spectroscopy than scintillator detectors. Manufacturing issues and material electronic properties limit the maximum size of single-element CdZnTe detectors. The authors are investigating methods to combine CdZnTe detectors together to improve detection efficiency and overall performance of gamma-ray spectroscopy. The applications include the assay and identification of radioisotopes for nuclear material safeguards and nonproliferation (over the energy range 50 keV to 1 MeV), and the analysis of elemental composition for planetary science (over the energy range 1 MeV to 10 MeV). Design issues for the two energy ranges are summarized

  9. Pulse-shape discrimination of high-energy neutrons and gamma rays in NaI(Tl)

    International Nuclear Information System (INIS)

    Share, G.H.; Kurfess, J.D.; Theus, R.B.

    1978-01-01

    Pulse-shape discrimination can be used to separate neutron and gamma-ray interactions depositing energies up to in excess of 50 MeV in NaI(Tl) crystals. The secondary alpha particles, deuterons and protons produced in the neutron interactions are also resolvable. (Auth.)

  10. A 3D CZT high resolution detector for x- and gamma-ray astronomy

    DEFF Research Database (Denmark)

    Kuvvetli, Irfan; Budtz-Jørgensen, Carl; Zappettini, A.

    2014-01-01

    At DTU Space we have developed a high resolution three dimensional (3D) position sensitive CZT detector for high energy astronomy. The design of the 3D CZT detector is based on the CZT Drift Strip detector principle. The position determination perpendicular to the anode strips is performed using...

  11. Are there nuclear contributions to gamma ray burst spectra

    International Nuclear Information System (INIS)

    Matz, S.M.; Chupp, E.L.; Forrest, D.J.; Share, G.H.; Nolan, P.L.; Rieger, E.

    1984-01-01

    We have examined the spectra of 38 γ-ray bursts observed by the Gamma Ray Spectrometer (GRS) on the Solar Maximum Mission (SMM) satellite for evidence of a nuclear contribution to the high energy flux. A sum of spectra from the nine bursts with detectable flux >4 MeV suggests but does not require a drop-off above 7 MeV. A cutoff between 7 and 8 MeV is consistent with a high energy spectrum dominated by nuclear lines

  12. Determination of high level absorbed dose in a 60Co gamma ray field with ionization chambers

    International Nuclear Information System (INIS)

    Zhongying Li; Benjiang Mao; Lu Zhang

    1995-01-01

    This paper relates to the principles and methods for determining the absorbed dose of high energy photons radiation with ionization chambers, and its shows the doserate results of high level 60 Co γ-rays in water measured with Farmer chambers. The results with two kinds of chambers at a same point are consistent within 0.3%, and the total uncertainty is less than ± 4%. In the domestic intercomparison on determining high level absorbed dose in which 12 laboratories participated, the deviation of our result from the mean result of the intercomparison is -0.04% [Chen Yundong (1992). Summing up report on a high level absorbed dose intercomparison (in Chinese)]. (author)

  13. Radio observations of a galactic high energy gamma-ray source

    Energy Technology Data Exchange (ETDEWEB)

    Giacani, E.; Rovero, A.C. [Instituto de Astronomia y Fisica del Espacio, Buenos Aires (Argentina)

    2001-10-01

    PSR B1706-44 is one of the very few galactic pulsars that has been discovered at TeV energies. PSR B1706-44 has been also detected in the X-ray domain. It has been suggested that the high energy radiation could be due to inverse Compton radiation from a pulsar wind nebula (PWN). It was reported on VLA high-resolution observations of a region around the pulsar PSR B1706-44 at 1.4, 4.8 and 8.4 GHz. The pulsar appears embedded in a synchrotron nebula. It was proposed that this synchrotron nebula is the radio counterpart of the high energy emission powered by the spin-down energy of the pulsar.

  14. Gamma-ray bursts

    CERN Document Server

    Wijers, Ralph A M J; Woosley, Stan

    2012-01-01

    Cosmic gamma ray bursts (GRBs) have fascinated scientists and the public alike since their discovery in the late 1960s. Their story is told here by some of the scientists who participated in their discovery and, after many decades of false starts, solved the problem of their origin. Fourteen chapters by active researchers in the field present a detailed history of the discovery, a comprehensive theoretical description of GRB central engine and emission models, a discussion of GRB host galaxies and a guide to how GRBs can be used as cosmological tools. Observations are grouped into three sets from the satellites CGRO, BeppoSAX and Swift, and followed by a discussion of multi-wavelength observations. This is the first edited volume on GRB astrophysics that presents a fully comprehensive review of the subject. Utilizing the latest research, Gamma-ray Bursts is an essential desktop companion for graduate students and researchers in astrophysics.

  15. Gamma ray camera

    International Nuclear Information System (INIS)

    Wang, S.-H.; Robbins, C.D.

    1979-01-01

    An Anger gamma ray camera is improved by the substitution of a gamma ray sensitive, proximity type image intensifier tube for the scintillator screen in the Anger camera. The image intensifier tube has a negatively charged flat scintillator screen, a flat photocathode layer, and a grounded, flat output phosphor display screen, all of which have the same dimension to maintain unit image magnification; all components are contained within a grounded metallic tube, with a metallic, inwardly curved input window between the scintillator screen and a collimator. The display screen can be viewed by an array of photomultipliers or solid state detectors. There are two photocathodes and two phosphor screens to give a two stage intensification, the two stages being optically coupled by a light guide. (author)

  16. Characterisation of a compton suppressed clover detector for high energy gamma rays (5 MeV ≤ E ≤ 11 MeV)

    International Nuclear Information System (INIS)

    Saha Sarkar, M.; Kshetri, Ritesh; Raut, Rajarshi; Mukherjee, A.; Goswami, A.; Ray, S.; Basu, P.; Majumder, H.; Bhattacharya, S.; Dasmahapatra, B.; Sinha, Mandira; Ray, Maitreyee

    2004-01-01

    The Clover detectors in their add back mode have been seen to be excellent tools for detecting high energy gamma rays (≥ 2 MeV). Recently studies were carried out on the characteristics of a Compton suppressed Clover germanium detector up to 5 MeV using a radioactive 66 Ga (T 1/2 =9.41 h) source for the first time

  17. Rapid non-destructive quantitative estimation of urania/ thoria in mixed thorium uranium di-oxide pellets by high-resolution gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Shriwastwa, B.B.; Kumar, Anil; Raghunath, B.; Nair, M.R.; Abani, M.C.; Ramachandran, R.; Majumdar, S.; Ghosh, J.K.

    2001-01-01

    A non-destructive technique using high-resolution gamma-ray spectrometry has been standardised for quantitative estimation of uranium/thorium in mixed (ThO 2 -UO 2 ) fuel pellets of varying composition. Four gamma energies were selected; two each from the uranium and thorium series and the time of counting has been optimised. This technique can be used for rapid estimation of U/Th percentage in a large number of mixed fuel pellets from a production campaign

  18. Early results utilizing high-energy fission product gamma rays to detect fissionable material in cargo

    International Nuclear Information System (INIS)

    Slaughter, D.R.; Accatino, M.R.; Alford, O.J.; Bernstein, A.; Descalle, M.; Gosnell, T.B.; Hall, J.M.; Loshak, A.; Manatt, D.R.; McDowell, M.R.; Moore, T.L.; Petersen, D.C.; Pohl, B.A.; Pruet, J.A.; Prussin, S.G.

    2004-01-01

    Full text: A concept for detecting the presence of special nuclear material ( 235 U or 239 Pu) concealed in inter modal cargo containers is described. It is based on interrogation with a pulsed beam of 6-8 MeV neutrons and fission events are identified between beam pulses by their β-delayed neutron emission or β -delayed high-energy γ-radiation. The high-energy γ-ray signature is being employed for the first time. Fission product γ-rays above 3 MeV are distinct from natural radioactivity and from nearly all of the induced activity in a normal cargo. High-energy γ-radiation is nearly 10X more abundant than the delayed neutrons and penetrates even thick cargo's readily. The concept employs two large (8x20 ft) arrays of liquid scintillation detectors that have high efficiency for the detection of both delayed neutrons and delayed γ-radiation. Detector backgrounds and potential interferences with the fission signature radiation have been identified and quantified. This information, together with predicted signature strength, has been applied to the estimation of detection probability for the nuclear material and estimation of false alarm rates. This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48

  19. Gamma ray detector for solar maximum mission (SMM) of NASA

    International Nuclear Information System (INIS)

    Brunner, W.; Brichzin, K.; Sach, E.

    1981-06-01

    For NASA's Project Solar Maximum Mission-SMM (launch 14.2.80) a Gamma Ray Detector was developed, manufactured and tested to measure solar high energetic Gamma rays and Neutron fluxes within the energy range 10-160 MeV, 4,43 MeV amd 2,23 MeV. The main components of the sensor are 7 NaI crystals 3 x 3 and a CsI crystal 30 cm diameter x 7,5 cm. The rejection of charged particles is done by two plasitc scintillators and 4 CsI-shields. From the beginning of the mission the experiment is working fully successfull. (orig.) [de

  20. Monte-Carlo method applied to the energy loss calculation of the gamma rays isotropic flux in the NaI(tau l) cylindrical scintillator between 0.5-20 MeV

    International Nuclear Information System (INIS)

    Martin, I.M.; Dutra, S.L.G.; Palmeira, R.A.R.

    1975-01-01

    Using the 'Monte Carlo' method, a determination was made of the response function of a NaI cylindrical crystal when exposed to an omnidirectional γ ray flux in the range 0.5 - 20 MeV. Improvements over previous similar calculations include considerations of the bremsstrahlung and multiple scattering processes in the slowing down of the secondary electrons. These calculations will be applied to the problem of determining the energy spectrum of an incident gamma ray flux from the measured response of the crystal in the space [pt

  1. Curved crystals for high-resolution focusing of X and gamma rays through a Laue lens

    Science.gov (United States)

    Guidi, Vincenzo; Bellucci, Valerio; Camattari, Riccardo; Neri, Ilaria

    2013-08-01

    Crystals with curved diffracting planes have been investigated as high-efficiency optical components for the realization of a Laue lens for satellite-borne experiments in astrophysics. At Sensor and Semiconductor Laboratory (Ferrara, Italy) a research and development plan to implement Si and Ge curved crystals by surface grooving technique has been undertaken. The method of surface grooving allows obtaining Si and Ge curved crystals with self-standing curvature, i.e., with no need for external bending device, which is a mandatory issue in satellite-borne experiments. Si and Ge grooved crystals have been characterized by X-ray diffraction at ESRF and ILL to prove their functionality for a high-reflectivity Laue lens.

  2. High-z semiconductor nuclear radiation detectors for room-temperature gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Bornand, Bernard; Friant, Alain.

    1978-09-01

    A bibliographical review (182 articles of periodicals, conferences, reports, thesis and french patents) is presented, as addendum of the report CEA-BIB-210 (1974) on high-Z semiconductor compounds used as materials for the gamma and X-ray detection and spectrometry. This publication reviews issues from 1974 to 1977. References and summaries (in french) are incorporated into 182 bibliograhical notices. Index for authors, corporate authors, documents and periodicals, and subjects is included [fr

  3. Determination of 137Cs activity in soil from Qatar using high-resolution gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Al-Sulaiti, Huda; Nasir, Tabassum; Al Mugren, K.S.; Alkhomashi, N.; Al-Dahan, N.; Al-Dosari, M.; Bradley, D.A.; Bukhari, S.; Matthews, M.; Regan, P.H.; Santawamaitre, T.; Malain, D.; Habib, A.; Al-Dosari, Hanan; Al Sadig, Ibrahim

    2016-01-01

    With interest in establishing baseline concentrations of 137 Cs in soil from the Qatarian peninsula, we focus on determination of the activity concentrations in 129 soil samples collected across the State of Qatar prior to the 2011 Fukushima Dai-ichi nuclear power plant accident. As such, the data provides the basis of a reference map for the detection of releases of this fission product. The activity concentrations were measured via high-resolution gamma-ray spectrometry using a hyper-pure germanium detector enclosed in a copper-lined passive lead shield that was situated in a low-background environment. The activity concentrations ranged from 0.21 to 15.41 Bq/kg, with a median value of 1 Bq/kg, the greatest activity concentration being observed in a sample obtained from northern Qatar. Although it cannot be confirmed, it is expected that this contamination is mainly due to releases from the Chernobyl accident of 26 April 1986, there being a lack of data from Qatar before the accident. The values are typically within but are sometimes lower than the range indicated by data from other countries in the region. The lower values than those of others is suggested to be due to variation in soil characteristics as well as metrological factors at the time of deposition. - Highlights: • A baseline for the radionuclide 137 Cs in soil samples collected from Qatar was established. • 129 soil samples collected across the landscape. • Samples were collected before the most recent accident “the 2011 Fukushima Dai-ichi NNP accident”. • The highest activity concentration was found to be 15.41±0.67 Stat. and 0.11 Syst. • The relatively high concentrations can be attributed to rain washout.

  4. Parallel processing method for high-speed real time digital pulse processing for gamma-ray spectroscopy

    International Nuclear Information System (INIS)

    Fernandes, A.M.; Pereira, R.C.; Sousa, J.; Neto, A.; Carvalho, P.; Batista, A.J.N.; Carvalho, B.B.; Varandas, C.A.F.; Tardocchi, M.; Gorini, G.

    2010-01-01

    A new data acquisition (DAQ) system was developed to fulfil the requirements of the gamma-ray spectrometer (GRS) JET-EP2 (joint European Torus enhancement project 2), providing high-resolution spectroscopy at very high-count rate (up to few MHz). The system is based on the Advanced Telecommunications Computing Architecture TM (ATCA TM ) and includes a transient record (TR) module with 8 channels of 14 bits resolution at 400 MSamples/s (MSPS) sampling rate, 4 GB of local memory, and 2 field programmable gate array (FPGA) able to perform real time algorithms for data reduction and digital pulse processing. Although at 400 MSPS only fast programmable devices such as FPGAs can be used either for data processing and data transfer, FPGA resources also present speed limitation at some specific tasks, leading to an unavoidable data lost when demanding algorithms are applied. To overcome this problem and foreseeing an increase of the algorithm complexity, a new digital parallel filter was developed, aiming to perform real time pulse processing in the FPGAs of the TR module at the presented sampling rate. The filter is based on the conventional digital time-invariant trapezoidal shaper operating with parallelized data while performing pulse height analysis (PHA) and pile up rejection (PUR). The incoming sampled data is successively parallelized and fed into the processing algorithm block at one fourth of the sampling rate. The following data processing and data transfer is also performed at one fourth of the sampling rate. The algorithm based on data parallelization technique was implemented and tested at JET facilities, where a spectrum was obtained. Attending to the observed results, the PHA algorithm will be improved by implementing the pulse pile up discrimination.

  5. High-Resolution and -Efficiency Gamma-Ray Detection for the FRIB Decay Station

    Science.gov (United States)

    Grover, Hannah; Leach, Kyle; Natzke, Connor; FRIB Decay Station Collaboration Collaboration

    2017-09-01

    As we push our knowledge of nuclear structure to the frontier of the unknown with FRIB, a new high-efficiency, -resolution, and -sensitivity photon-detection device is critical. The FRIB Decay Station Collaboration is working to create a new detector array that meets the needs of the exploratory nature of FRIB by minimizing cost and maximizing efficiency. GEANT4 simulations are being utilized to combine detectors in various configurations to test their feasibility. I will discuss these simulations and how they compare to existing simulations of past-generation decay-spectroscopy equipment. This work has been funded by the DOE Office of Science, Office of Nuclear Physics.

  6. Measurement of air kerma rates for 6- to 7-MeV high-energy gamma-ray field by ionisation chamber and build-up plate.

    Science.gov (United States)

    Kowatari, Munehiko; Tanimura, Yoshihiko; Tsutsumi, Masahiro

    2014-12-01

    The 6- to 7-MeV high-energy gamma-ray calibration field by the (19)F(p, αγ)(16)O reaction is to be served at the Japan Atomic Energy Agency. For the determination of air kerma rates using an ionisation chamber in the 6- to 7-MeV high-energy gamma-ray field, the establishment of the charged particle equilibrium must be achieved during measurement. In addition to measurement of air kerma rates by the ionisation chamber with a thick build-up cap, measurement using the ionisation chamber and a build-up plate (BUP) was attempted, in order to directly determine air kerma rates under the condition of regular calibration for ordinary survey meters and personal dosemeters. Before measurements, Monte Carlo calculations were made to find the optimum arrangement of BUP in front of the ionisation chamber so that the charged particle equilibrium could be well established. Measured results imply that air kerma rates for the 6- to 7-MeV high-energy gamma-ray field could be directly determined under the appropriate condition using an ionisation chamber coupled with build-up materials. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Diffuse galactic gamma rays at intermediate and high latitudes. I. Constraints on the ISM properties

    International Nuclear Information System (INIS)

    Cholis, Ilias; Tavakoli, Maryam; Evoli, Carmelo; Ullio, Piero; Maccione, Luca

    2012-01-01

    We study the high latitude (|b| > 10°) diffuse γ-ray emission in the Galaxy in light of the recently published data from the Fermi collaboration at energies between 100 MeV and 100 GeV. The unprecedented accuracy in these measurements allows to probe and constrain the properties of sources and propagation of cosmic rays (CRs) in the Galaxy, as well as confirming conventional assumptions made on the interstellar medium (ISM). Using the publicly available DRAGON code, that has been shown to reproduce local measurements of CRs, we study assumptions made in the literature on atomic (HI) and molecular hydrogen (H2) gas distributions in the ISM, and non spatially uniform models of diffusion in the Galaxy. By performing a combined analysis of CR and γ-ray spectra, we derive constraints on the properties of the ISM gas distribution and the vertical scale height of galactic CR diffusion, which may have implications also on indirect Dark Matter detection. We also discuss some of the possible interpretations of the break at high rigidity in CR protons and helium spectra, recently observed by PAMELA and their impact on γ-rays

  8. Gamma-ray detector based on high pressure xenon for radiation and environmental safety

    International Nuclear Information System (INIS)

    Kutny, V.E.; Rybka, A.V.; Davydov, L.N.; Pudov, A.O.; Sokolov, S.A.; Kholomeyev, G.A.; Melnikov, S.I.; Turchin, A.A.

    2017-01-01

    Gamma-spectrometers based on compressed xenon gas assigned for monitoring the reactors and the radiation background at nuclear power plants, non-proliferation of radioactive materials, supervision and control over the radiation background in the environmentally disadvantaged areas, and other applications, are very promising detectors with excellent performance characteristics. This article reports on the results of the first stage of work on the creation of the portable gamma-spectrometer based on compressed xenon that is unique for Ukraine. In order to work with ultra-pure gases under pressure, the complex cryogenic installation for Xe purification and detector filling was designed and manufactured. The installation was made of specially cleaned components, equipped with a heating system for the degassing of the inner walls, and is able of maintaining high vacuum down to 2 centre dot 10"-"9 mbar. A prototype ionization chamber for the use in portable HP Xe detectors was developed and made. For the detector testing, a spectrometric channel based on high-quality electronic components was designed and manufactured. In the initial experiments, a study of the properties of the purified Xe mixed with the dopant H_2 was carried out. The assessment of the lifetime of charge carriers τ in the working gas at a pressure of 30 bar gave the value of τ > 150 μs

  9. Coded aperture detector for high precision gamma-ray burst source locations

    International Nuclear Information System (INIS)

    Helmken, H.; Gorenstein, P.

    1977-01-01

    Coded aperture collimators in conjunction with position-sensitive detectors are very useful in the study of transient phenomenon because they combine broad field of view, high sensitivity, and an ability for precise source locations. Since the preceeding conference, a series of computer simulations of various detector designs have been carried out with the aid of a CDC 6400. Particular emphasis was placed on the development of a unit consisting of a one-dimensional random or periodic collimator in conjunction with a two-dimensional position-sensitive Xenon proportional counter. A configuration involving four of these units has been incorporated into the preliminary design study of the Transient Explorer (ATREX) satellite and are applicable to any SAS or HEAO type satellite mission. Results of this study, including detector response, fields of view, and source location precision, will be presented

  10. Fabrication, characterization and gamma rays shielding properties of nano and micro lead oxide-dispersed-high density polyethylene composites

    Science.gov (United States)

    Mahmoud, Mohamed E.; El-Khatib, Ahmed M.; Badawi, Mohamed S.; Rashad, Amal R.; El-Sharkawy, Rehab M.; Thabet, Abouzeid A.

    2018-04-01

    Polymer composites of high-density polyethylene (HD-PE) filled with powdered lead oxide nanoparticles (PbO NPs) and bulk lead oxide (PbO Blk) were prepared with filler weight fraction [10% and 50%]. These polymer composites were investigated for radiation-shielding of gamma-rays emitted from radioactive point sources [241Am, 133Ba, 137Cs, and 60Co]. The polymer was found to decrease the heaviness of the shielding material and increase the flexibility while the metal oxide fillers acted as principle radiation attenuators in the polymer composite. The prepared composites were characterized by Fourier transform infrared spectrophotometer (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscope (SEM), Brunauer-Emmett-Teller surface area (BET) and field emission transmission electron microscope (FE-TEM). The morphological analysis of the assembled composites showed that, PbO NPs and PbO Blk materials exhibited homogenous dispersion in the polymer-matrix. Thermogravimetric analysis (TGA) demonstrated that the thermal-stability of HD-PE was enhanced in the presence of both PbO Blk and PbO NPs. The results declared that, the density of polymer composites was increase with the percentage of filler contents. The highest density value was identified as 1.652 g cm-3 for 50 wt% of PbO NPs. Linear attenuation coefficients (μ) have been estimated from the use of XCOM code and measured results. Reasonable agreement was attended between theoretical and experimental results. These composites were also found to display excellent percentage of heaviness with respect to other conventional materials.

  11. Very high energy gamma-ray astronomy with H.E.S.S. Development of a multivariate analysis and application to study of pulsar wind nebulae

    International Nuclear Information System (INIS)

    Dubois, Florent

    2009-01-01

    H.E.S.S. (High Energy Stereoscopic System) is one of the leading systems of four Imaging Atmospheric Cherenkov Telescopes that investigates very high energy (VHE) cosmic gamma-rays in the 100 GeV to 100 TeV energy range. H.E.S.S. is located in Namibia, near the Gamsberg mountain and operational since December 2003. The H.E.S.S. experiment is mainly aimed to the observation of the southern sky including the galactic plan and the numerous astrophysics sources therein. Three analysis methods have been developed using various properties of the electromagnetic showers generated by the interaction of primary cosmic gamma-rays within the Earth atmosphere. The first goal of this thesis was to combine the information from these methods for the selection and the energy and direction reconstruction of gamma-ray events. The new analysis called X eff improves significantly the quality of the selection and the precision of the reconstruction. This analysis has been afterwards applied to the study of pulsar wind nebulae like Vela X, G0.9+0.1 and MSH 15-52. New results were found concerning the source extension (Vela X) or spectral analysis (G0.9+0.1 and MSH 15-52) at TeV energies, thanks to additional data and to the improved efficiency of the new method. In 2010, a new phase will begin with the achievement of a fifth telescope dedicated to gamma-ray observation from tens GeV. The calibration processes of the photomultipliers equipping the camera of the new telescope, as well as the results of the tests, are also described in this thesis. (author)

  12. Standardization of high-dose measurement of electron and gamma ray absorbed doses and dose rates

    International Nuclear Information System (INIS)

    McLaughlin, W.L.

    1985-01-01

    Intense electron beams and gamma radiation fields are used for sterilizing medical devices, treating municipal wastes, processing industrial goods, controlling parasites and pathogens, and extending the shelf-life of foods. Quality control of such radiation processes depends largely on maintaining measurement quality assurance through sound dosimetry procedures in the research leading to each process, in the commissioning of that process, and in the routine dose monitoring practices. This affords documentation as to whether satisfactory dose uniformity is maintained throughout the product and throughout the process. Therefore, dosimetry at high doses and dose rates must in many radiation processes be standardized carefully, so that 'dosimetry release' of a product is verified. This standardization is initiated through preliminary dosimetry intercomparison studies such as those sponsored recently by the IAEA. This is followed by establishing periodic exercises in traceability to national or international standards of absorbed dose and dose rate. Traceability is achieved by careful selection of dosimetry methods and proven reference dosimeters capable of giving sufficiently accurate and precise 'transfer' dose assessments: (1) they must be calibrated or have well-established radiation-yield indices; (2) their radiation response characteristics must be reproducible and cover the dose range of interest; (3) they must withstand the rigours of back-and-forth mailing between a central standardizing laboratory and radiation processing facilities, without excessive errors arising due to instabilities, dosimeter batch non-uniformities, and environmental and handling stresses. (author)

  13. Diffuse galactic gamma rays at intermediate and high latitudes. Pt. 1. Constraints on the ISM properties

    International Nuclear Information System (INIS)

    Cholis, Ilias; Tavakoli, Maryam; Ullio, Piero; Evoli, Carmelo

    2011-06-01

    We study the high latitude (vertical stroke b vertical stroke >10 ) diffuse γ-ray emission in the Galaxy in light of the recently published data from the Fermi collaboration at energies between 100 MeV and 100 GeV. The unprecedented accuracy in these measurements allows to probe and constrain the properties of sources and propagation of cosmic rays (CRs) in the Galaxy, as well as confirming conventional assumptions made on the interstellar medium (ISM). Using the publicly available DRAGON code, that has been shown to reproduce local measurements of CRs, we study assumptions made in the literature on HI and H2 gas distributions in the ISM, and non spatially uniform models of diffusion in the Galaxy. By performing a combined analysis of CR and γ-ray spectra, we derive constraints on the properties of the ISM gas distribution and the vertical scale height of galactic CR diffusion, which may have implications also on indirect Dark Matter detection. We also discuss some of the possible interpretations of the break at ∝230 GeV in CR protons and helium spectra, recently observed by PAMELA and their impact on γ-rays. (orig.)

  14. High spin gamma-ray coincidence spectroscopy with large detector arrays

    International Nuclear Information System (INIS)

    Bergstroem, M.H.

    1992-12-01

    In-beam γ-ray spectroscopy has been used to study rapidly rotating nuclei in the rare-earth region. The experiments were performed using the high-resolution multi detector arrays ESSA30 and TESSA3 at the Nuclear Structure Facility, Daresbury Laboratories in Great Britain and the NORDBALL at the Niels Bohr Tandem Accelerator at Risoe in Denmark. The studied nuclei were produced using heavy-ion induced fusion-evaporation reactions. New techniques for the analysis of γ-γ correlation spectra were developed. These involves viewing the two-dimensional γ-γ spectrum as well as projection in both energy axes, determination of centroids and volumes of peaks and full two-dimensional Gauss fits of an arbitrarily shaped area. The data acquisition system of the NORDBALL multi detector array is presented. In two of the studied nuclei ( 167 Lu and 163 Tm) the strongly shape driving πh 9/2 [541]1/2 - is studied. The shift to larger frequency of the neutron AB crossing in these decay sequences is not fully understood. The study of 171 Re revealed a second backbend of the [402]5/2 + band. The observed bandcrossings are interpreted using the CSM and three-band mixing calculations. The study of 171,172 W revealed five new bands and although these nuclei are expected to be stably deformed the small differences in the formation showed to be crucial in order to reproduce data well. (au)

  15. Statistical measurement of the gamma-ray source-count distribution as a function of energy

    Science.gov (United States)

    Zechlin, H.-S.; Cuoco, A.; Donato, F.; Fornengo, N.; Regis, M.

    2017-01-01

    Photon counts statistics have recently been proven to provide a sensitive observable for characterizing gamma-ray source populations and for measuring the composition of the gamma-ray sky. In this work, we generalize the use of the standard 1-point probability distribution function (1pPDF) to decompose the high-latitude gamma-ray emission observed with Fermi-LAT into: (i) point-source contributions, (ii) the Galactic foreground contribution, and (iii) a diffuse isotropic background contribution. We analyze gamma-ray data in five adjacent energy bands between 1 and 171 GeV. We measure the source-count distribution dN/dS as a function of energy, and demonstrate that our results extend current measurements from source catalogs to the regime of so far undetected sources. Our method improves the sensitivity for resolving point-source populations by about one order of magnitude in flux. The dN/dS distribution as a function of flux is found to be compatible with a broken power law. We derive upper limits on further possible breaks as well as the angular power of unresolved sources. We discuss the composition of the gamma-ray sky and capabilities of the 1pPDF method.

  16. Highlights of GeV Gamma-Ray Astronomy

    Science.gov (United States)

    Thompson, David J.

    2010-01-01

    Because high-energy gamma rays are primarily produced by high-energy particle interactions, the gamma-ray survey of the sky by the Fermi Gamma-ray Space Telescope offers a view of sites of cosmic ray production and interactions. Gamma-ray bursts, pulsars, pulsar wind nebulae, binary sources, and Active Galactic Nuclei are all phenomena that reveal particle acceleration through their gamma-ray emission. Diffuse Galactic gamma radiation, Solar System gamma-ray sources, and energetic radiation from supernova remnants are likely tracers of high-energy particle interactions with matter and photon fields. This paper will present a broad overview of the constantly changing sky seen with the Large Area Telescope (LAT) on the Fermi spacecraft.

  17. Bulk density calculations from prompt gamma ray yield

    International Nuclear Information System (INIS)

    Naqvi, A.A.; Nagadi, M.M.; Al-Amoudi, O.S.B.; Maslehuddin, M.

    2006-01-01

    Full text: The gamma ray yield from a Prompt Gamma ray Neutron Activation Analysis (PGNAA) setup is a linear function of element concentration and neutron flux in a the sample with constant bulk density. If the sample bulk density varies as well, then the element concentration and the neutron flux has a nonlinear correlation with the gamma ray yield [1]. The measurement of gamma ray yield non-linearity from samples and a standard can be used to estimate the bulk density of the samples. In this study the prompt gamma ray yield from Blast Furnace Slag, Fly Ash, Silica Fumes and Superpozz cements samples have been measured as a function of their calcium and silicon concentration using KFUPM accelerator-based PGNAA setup [2]. Due to different bulk densities of the blended cement samples, the measured gamma ray yields have nonlinear correlation with calcium and silicon concentration of the samples. The non-linearity in the yield was observed to increase with gamma rays energy and element concentration. The bulk densities of the cement samples were calculated from ratio of gamma ray yield from blended cement and that from a Portland cement standard. The calculated bulk densities have good agreement with the published data. The result of this study will be presented

  18. Coincidence gamma-ray spectrometry

    DEFF Research Database (Denmark)

    Markovic, Nikola; Roos, Per; Nielsen, Sven Poul

    2017-01-01

    Gamma-ray spectrometry with high-purity germanium (HPGe) detectors is often the technique of choice in an environmental radioactivity laboratory. When measuring environmental samples associated activities are usually low so an important parameter that describes the performance of the spectrometer...... for a nuclide of interest is the minimum detectable activity (MDA). There are many ways for lowering the MDAs in gamma spectrometry. Recently, developments of fast and compact digital acquisition systems have led to growing number of multiple HPGe detector spectrometers. In these applications all detected...

  19. Measurement of gamma ray from fuel of high temperature engineering test reactor. Method of measurement and results

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Nozomu; Nojiri, Naoki; Takada, Eiji [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment] [and others

    2001-02-01

    To obtain information in the HTTR core directly, gamma ray from fuel blocks was measured when fuel blocks were discharged from the core and reloaded to the core. Gamma ray was measured using GM detector, CZT semiconductor detector installed in a door valve and area monitors installed in a stand pipe compartment. The measurement was carried out for 20 fuel blocks in 4 columns considering the symmetry of uranium enrichment distribution in the core. Relative axial distribution in each column obtained by the GM detector and CZT detector agreed with calculated results. However, calculation values showed higher values than measured values in upper region of the core, lower those in lower region of the core. The axial distributions were also evaluated by the area monitors. The measured values agreed with calculated values. It became clear that it was possible to obtain the data inside the core by this method. (author)

  20. High resolution inelastic gamma-ray measurements with a white neutron source from 1 to 200 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, R.O.; Laymon, C.M.; Wender, S.A.

    1990-01-01

    Measurements of prompt gamma rays following neutron-induced reactions have recently been made at the spallation neutron source at the WNR target area of LAMPF using germanium detectors. These experiments provide extensive excitation function data for inelastic neutron scattering as well as for other reactions such as (n,{alpha}), (n,n{alpha}), (n,p), (n,np), (n,nnp) and (n,xn) for 1 {le} {times} {le} 11. The continuous energy coverage available from 1 MeV to over 200 MeV is ideal for excitation function measurements and greatly extends the energy range for such data. The results of these measurements will provide a database for interpretation of gamma-ray spectra from the planned Mars Observer mission, aid in radiation transport calculations, allow verification of nuclear reaction models, and improve the evaluated neutron reaction data base.

  1. High resolution inelastic gamma-ray measurements with a white neutron source from 1 to 200 MeV

    International Nuclear Information System (INIS)

    Nelson, R.O.; Laymon, C.M.; Wender, S.A.

    1990-01-01

    Measurements of prompt gamma rays following neutron-induced reactions have recently been made at the spallation neutron source at the WNR target area of LAMPF using germanium detectors. These experiments provide extensive excitation function data for inelastic neutron scattering as well as for other reactions such as (n,α), (n,nα), (n,p), (n,np), (n,nnp) and (n,xn) for 1 ≤ x ≤ 11. The continuous energy coverage available from 1 MeV to over 200 MeV is ideal for excitation function measurements and greatly extends the energy range for such data. The results of these measurements will provide a database for interpretation of gamma-ray spectra from the planned Mars Observer mission, aid in radiation transport calculations, allow verification of nuclear reaction models, and improve the evaluated neutron reaction data base

  2. A novel background reduction strategy for high level triggers and processing in gamma-ray Cherenkov detectors

    International Nuclear Information System (INIS)

    Cabras, G.; De Angelis, A.; De Lotto, B.; De Maria, M. M.; De Sabata, F.; Mansutti, O.; Frailis, M.; Persic, M.; Bigongiari, C.; Doro, M.; Mariotti, M.; Peruzzo, L.; Saggion, A.; Scalzotto, V.; Paoletti, R.; Scribano, A.; Turini, N.; Moralejo, A.; Tescaro, D.

    2008-01-01

    Gamma ray astronomy is now at the leading edge for studies related both to fundamental physics and astrophysics. The sensitivity of gamma detectors is limited by the huge amount of background, constituted by hadronic cosmic rays (typically two to three orders of magnitude more than the signal) and by the accidental background in the detectors. By using the information on the temporal evolution of the Cherenkov light, the background can be reduced. We will present here the results obtained within the MAGIC experiment using a new technique for the reduction of the background. Particle showers produced by gamma rays show a different temporal distribution with respect to showers produced by hadrons; the background due to accidental counts shows no dependence on time. Such novel strategy can increase the sensitivity of present instruments

  3. [Application of two-dimensional imaging to very high energy gamma ray astronomy]: Progress report, 1987-1988

    International Nuclear Information System (INIS)

    1988-01-01

    The major accomplishment of this project was the development of a gamma camera for detection of very weak flux from the Crab Nebula. In addition, the detection of a pulsed flux from Hercules X-1 and the installation of a new high resolution camera are reported. 6 figs

  4. A novel background reduction strategy for high level triggers and processing in gamma-ray Cherenkov detectors

    OpenAIRE

    Cabras, G.; De Angelis, A.; De Lotto, B.; De Maria, M. M.; De Sabata, F.; Mansutti, O.; Frailis, M.; Persic, M.; Bigongiari, C.; Doro, M.; Mariotti, M.; Peruzzo, L.; Saggion, A.; Scalzotto, V.; Paoletti, R.

    2008-01-01

    Gamma ray astronomy is now at the leading edge for studies related both to fundamental physics and astrophysics. The sensitivity of gamma detectors is limited by the huge amount of background, constituted by hadronic cosmic rays (typically two to three orders of magnitude more than the signal) and by the accidental background in the detectors. By using the information on the temporal evolution of the Cherenkov light, the background can be reduced. We will present here the results obtained wit...

  5. Fermi LAT Observation of Diffuse Gamma-Rays Produced through Interactions Between Local Interstellar Matter and High Energy Cosmic Rays

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, A.A.; /Naval Research Lab, Wash., D.C. /Federal City Coll.; Ackermann, M.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Ajello, M.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Atwood, W.B.; /UC, Santa Cruz; Axelsson, M.; /Stockholm U. /Stockholm U., OKC; Baldini, L.; /INFN, Pisa; Ballet, J.; /DAPNIA, Saclay; Barbiellini, G.; /INFN, Trieste /Trieste U.; Bastieri, D.; /INFN, Padua /Padua U.; Baughman, B.M.; /Ohio State U.; Bechtol, K.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bellazzini, R.; /INFN, Pisa; Berenji, B.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bloom, E.D.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bonamente, E.; /INFN, Perugia /Perugia U.; Borgland, A.W.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bregeon, J.; /INFN, Pisa; Brez, A.; /INFN, Pisa; Brigida, M.; /Bari U. /INFN, Bari; Bruel, P.; /Ecole Polytechnique; Burnett, T.H.; /Washington U., Seattle /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /IASF, Milan /Milan Polytechnic /Royal Inst. Tech., Stockholm /Stockholm U., OKC /DAPNIA, Saclay /INFN, Perugia /Perugia U. /NASA, Goddard /Naval Research Lab, Wash., D.C. /George Mason U. /NASA, Goddard /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Montpellier U. /Stockholm U. /Stockholm U., OKC /Royal Inst. Tech., Stockholm /ASDC, Frascati /Naval Research Lab, Wash., D.C. /INFN, Trieste /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /CENBG, Gradignan /CENBG, Gradignan /Montpellier U. /Bari U. /INFN, Bari /Ecole Polytechnique /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /INFN, Trieste /Hiroshima U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Bari U. /INFN, Bari /INFN, Bari; /more authors..

    2012-03-30

    Observations by the Large Area Telescope (LAT) on the Fermi mission of diffuse {gamma}-rays in a mid-latitude region in the third quadrant (Galactic longitude l from 200{sup o} to 260{sup o} and latitude |b| from 22{sup o} to 60{sup o}) are reported. The region contains no known large molecular cloud and most of the atomic hydrogen is within 1 kpc of the solar system. The contributions of {gamma}-ray point sources and inverse Compton scattering are estimated and subtracted. The residual {gamma}-ray intensity exhibits a linear correlation with the atomic gas column density in energy from 100 MeV to 10 GeV. The measured integrated {gamma}-ray emissivity is (1.63 {+-} 0.05) x 10{sup -26} photons s{sup -1}sr{sup -1} H-atom{sup -1} and (0.66 {+-} 0.02) x 10{sup -26} photons s{sup -1}sr{sup -1} H-atom{sup -1} above 100 MeV and above 300 MeV, respectively, with an additional systematic error of {approx}10%. The differential emissivity from 100 MeV to 10 GeV agrees with calculations based on cosmic ray spectra consistent with those directly measured, at the 10% level. The results obtained indicate that cosmic ray nuclei spectra within 1 kpc from the solar system in regions studied are close to the local interstellar spectra inferred from direct measurements at the Earth within {approx}10%.

  6. The GAMMA Ray Sky as Seen by Fermi: Opening a New Window on the High Energy Space Environment

    Science.gov (United States)

    2009-01-01

    important early discoveries of Fermi have been from objects in our galaxy. The LAT has discovered 12 new pulsars that seem to be visible only in gamma...have now been discov- ered by LAT. Finally, the discovery of pulsed gamma rays from several radio pulsars with millisecond spin periods, previously... pulsars , stars whose repeating emissions can be used as ultra-precise chronometers. Measurement of gamma radiation provides unique insight

  7. Review of GRANAT observations of gamma-ray bursts

    DEFF Research Database (Denmark)

    Terekhov, O.; Denissenko, D.; Sunyaev, R.

    1995-01-01

    The GRANAT observatory was launched into a high apogee orbit on 1 December, 1989. Three instruments onboard GRANAT - PHEBUS, WATCH and SIGMA are able to detect gamma-ray bursts in a very broad energy range from 6 keV up to 100 MeV. Over 250 gamma-ray bursts were detected. We discuss the results...... of the observations of the time histories and spectral evolution of the detected events provided by the different instruments in different energy ranges. Short Gamma-Ray Bursts ( 2 s) events. Evidence of the existence...... of four differently behaving componenents in gamma-ray burst spectra is discussed. Statistical properties of the gamma-ray burst sources based on the 5 years of observations with (∼ 10−6 erg/cm2) sensitivity as well as the results of high sensitivity (∼ 10−8 erg/cm2) search for Gamma-Ray Bursts within...

  8. Application of the self-powered detector concept in the design of a threshold gamma-ray detector

    International Nuclear Information System (INIS)

    LeVert, F.E.

    1979-01-01

    The self-powered detector concept has been utilized to develop an energy threshold gamma-ray detector. Gamma-ray energy discrimination is achieved by using a thick annular lead shield around the outer wall (emitter) of the detector in conjunction with a self-shielding central electrode (collector). Measurements conducted in the graphite pit of the Argonne Thermal Source Reactor have confirmed its ability to detect high-energy prompt fission gamma rays while discriminating against a significant flux of low-energy gamma rays from the decay of fission products. Also, auto-power spectral densities obtained with the detector were used to estimate the kinetic parameter, β/l, of the reactor

  9. gamma. -ray. Present status and problems

    Energy Technology Data Exchange (ETDEWEB)

    Okudaira, K [Rikkyo Univ., Tokyo (Japan). Faculty of Science

    1975-01-01

    As ..gamma..-ray advances straightly through space, the study on cosmic ..gamma..-ray will give the information concerning the origin directly. However, the intensity is weak, and the avoidance of background is a serious problem. The wide-spread components were studied by OSO-3. The intensity of the galactic disc component around 100 MeV was reported as (3.4+-1.0)x10/sup -5/ photons (cm/sup 2/, radian, sec)/sup -1/ by OSO-3 and 0.2x10/sup -4/ photons (cm/sup 2/, radian sec)/sup -1/ by SAS-2, and corresponds to the calculated ..gamma.. yield from ..pi../sup 0/. The strong disc component, so-called galactic center region, has been observed, and is due to the mixture of ..gamma..-ray from ..pi../sup 0/ and inverse Compton ..gamma..-ray. A peak at 476+-24 KeV was found as well as the continuous component. Special care must be taken for the observation of isotropic component, since it is hardly distinguished from the background. It is considered that the isotropic component is due to the inverse Compton scattering of 3/sup 0/K radiation in super-galactic space and the contribution from outer galaxy. The nearest point source of ..gamma..-ray is the sun. Among the other point sources, the crab nebula is the most reliable one. The energy flux of pulse component showed the spectrum of E/sup -1/. ..gamma..-ray bursts were observed by man-made satellites Vela-5 and 6. Theoretical explanation is still incomplete regarding the bursts. (Kato, T.).

  10. The Gamma-Ray Imager GRI

    Science.gov (United States)

    Wunderer, Cornelia B.; GRI Collaboration

    2008-03-01

    Observations of the gamma-ray sky reveal the most powerful sources and the most violent events in the Universe. While at lower wavebands the observed emission is generally dominated by thermal processes, the gamma-ray sky provides us with a view on the non-thermal Universe. Here particles are accelerated to extreme relativistic energies by mechanisms which are still poorly understood, and nuclear reactions are synthesizing the basic constituents of our world. Cosmic accelerators and cosmic explosions are major science themes that are addressed in the gamma-ray regime. ESA's INTEGRAL observatory currently provides the astronomical community with a unique tool to investigate the sky up to MeV energies and hundreds of sources, new classes of objects, extraordinary views of antimatter annihilation in our Galaxy, and fingerprints of recent nucleosynthesis processes have been discovered. NASA's GLAST mission will similarly take the next step in surveying the high-energy ( GeV) sky, and NuSTAR will pioneer focusing observations at hard X-ray energies (to 80 keV). There will be clearly a growing need to perform deeper, more focused investigations of gamma-ray sources in the 100-keV to MeV regime. Recent technological advances in the domain of gamma-ray focusing using Laue diffraction and multilayer-coated mirror techniques have paved the way towards a gamma-ray mission, providing major improvements compared to past missions regarding sensitivity and angular resolution. Such a future Gamma-Ray Imager will allow the study of particle acceleration processes and explosion physics in unprecedented detail, providing essential clues on the innermost nature of the most violent and most energetic processes in the Universe.

  11. Discovery and characterization of the first low-peaked and intermediate-peaked BL Lacertae objects in the very high energy {gamma}-ray regime

    Energy Technology Data Exchange (ETDEWEB)

    Berger, Karsten

    2009-12-19

    20 years after the discovery of the Crab Nebula as a source of very high energy {gamma}-rays, the number of sources newly discovered above 100 GeV using ground-based Cherenkov telescopes has considerably grown, at the time of writing of this thesis to a total of 81. The sources are of different types, including galactic sources such as supernova remnants, pulsars, binary systems, or so-far unidentified accelerators and extragalactic sources such as blazars and radio galaxies. The goal of this thesis work was to search for {gamma}-ray emission from a particular type of blazars previously undetected at very high {gamma}-ray energies, by using the MAGIC telescope. Those blazars previously detected were all of the same type, the so-called high-peaked BL Lacertae objects. The sources emit purely non-thermal emission, and exhibit a peak in their radio-to-X-ray spectral energy distribution at X-ray energies. The entire blazar population extends from these rare, low-luminosity BL Lacertae objects with peaks at X-ray energies to the much more numerous, high-luminosity infrared-peaked radio quasars. Indeed, the low-peaked sources dominate the source counts obtained from space-borne observations at {gamma}-ray energies up to 10 GeV. Their spectra observed at lower {gamma}-ray energies show power-law extensions to higher energies, although theoretical models suggest them to turn over at energies below 100 GeV. This opened the quest for MAGIC as the Cherenkov telescope with the currently lowest energy threshold. In the framework of this thesis, the search was focused on the prominent sources BL Lac, W Comae and S5 0716+714, respectively. Two of the sources were unambiguously discovered at very high energy {gamma}-rays with the MAGIC telescope, based on the analysis of a total of about 150 hours worth of data collected between 2005 and 2008. The analysis of this very large data set required novel techniques for treating the effects of twilight conditions on the data quality

  12. Isotopic composition of uranium in U3O8 by neutron induced reactions utilizing thermal neutrons from critical facility and high resolution gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Acharya, R.; Pujari, P.K.; Goel, Lokesh

    2015-01-01

    Uranium in oxide and metal forms is used as fuel material in nuclear power reactors. For chemical quality control, it is necessary to know the isotopic composition (IC) of uranium i.e., 235 U to 238 U atom ratio as well as 235 U atom % in addition to its total concentration. Uranium samples can be directly assayed by passive gamma ray spectrometry for obtaining IC by utilizing 185 keV (γ-ray abundance 57.2%) of 235 U and 1001 keV (γ-ray abundance 0.837%) of 234m Pa (decay product of 238 U). However, due to low abundance of 1001 keV, often it is not practiced to obtain IC by this method as it gives higher uncertainty even if higher mass of sample and counting time are used. IC of uranium can be determined using activity ratio of neutron induced fission product of 235 U to activation product of 238 U ( 239 Np). In the present work, authors have demonstrated methodologies for determination of IC of U as well as 235 U atom% in natural ( 235 U 0.715%) and low enriched uranium (LEU, 3-20 atom % of 235 U) samples of uranium oxide (U 3 O 8 ) by utilizing ratio of counts at 185 keV γ-ray or γ-rays of fission products with respect to 277 keV of 239 Np. Natural and enriched samples (about 25 mg) were neutron irradiated for 4 hours in graphite reflector position of AHWR Critical Facility (CF) using highly thermalized (>99.9% thermal component) neutron flux (∼10 7 cm -2 s -1 )

  13. Orbital Normalization of MESSENGER Gamma-Ray Spectrometer Data

    Science.gov (United States)

    Rhodes, E. A.; Peplowski, P. N.; Evans, L. G.; Hamara, D. K.; Boynton, W. V.; Solomon, S. C.

    2011-12-01

    The MESSENGER Gamma-Ray Spectrometer (GRS) measures energy spectra of gamma rays emanating from the surface of Mercury. Analysis of these spectra provides elemental abundances of surface material. The MESSENGER mission necessarily provides some data normalization challenges for GRS analysis. So as to keep the spacecraft cool while orbiting the dayside of the planet, the orbits are highly eccentric, with altitudes varying from 200-500 km to ~ 15,000 km. A small fraction of time is spent at the low altitudes where gamma-ray signals are largest, requiring a large number of orbits to yield sufficient counting statistics for elemental analysis. Also, the sunshade must always shield the spacecraft from the Sun, which causes the orientation of the GRS often to be far from nadir-pointing, so the detector efficiency and attenuation of gamma rays from the planet must be known for a wide range of off-nadir orientations. An efficiency/attenuation map for the expected ranges of orientations and energies was constructed in a ground calibration experiment for a limited range of orientations using a nuclear reactor and radioisotope sources, and those results were extended to other orientations by radiation transport computations using as input a computer-aided design model of the spacecraft and its composition. This normalization has allowed abundance determinations of elements K, Th, and U from radioisotopes of these elements in the Mercury regolith during the first quarter of the year-long mission. These results provide constraints on models of Mercury's chemical and thermal evolution. The normalization of gamma-ray spectra for surface elements not having radioisotopes is considerably more complex; these gamma rays come from neutron inelastic-scatter and capture reactions in the regolith, where the neutrons are generated by cosmic ray impact onto the planet. A radiation transport computation was performed to generate the expected count rates in the neutron-generated gamma-ray

  14. On the correlation between radio and gamma-ray luminosities of active galactic nuclei

    DEFF Research Database (Denmark)

    Mücke, A.; Pohl, M.

    1997-01-01

    in flux-limited samples if intrinsic scatter does not exceed similar to 40 % of the original gamma-ray luminosity. However, if mean flux values of high variable sources are used we find the chance probability of high Spearman's correlation coefficient be significant underestimated. The analysis presented......The possibility of a correlation between the radio (cm)- and gamma-ray luminosity of variable AGN seen by EGRET is investigated. We perform Monte-Carlo simulations of typical data sets and apply different correlation techniques (partial correlation analysis, chi(2)-test applied on flux......-flux relations) in view of a truncation bias caused by sensitivity limits of the surveys. For K-corrected flux densities, we find that with the least squares method only a linear correlation can be recovered. Partial correlation analysis on the other side provides a robust tool to detect correlations even...

  15. Lunar based gamma ray astronomy

    International Nuclear Information System (INIS)

    Haymes, R.C.

    1985-01-01

    Gamma ray astronomy represents the study of the universe on the basis of the electromagnetic radiation with the highest energy. Gamma ray astronomy provides a crucial tool for the understanding of astronomical phenomena, taking into account nucleosynthesis in supernovae, black holes, active galaxies, quasars, the sources of cosmic rays, neutron stars, and matter-antimatter annihilation. Difficulties concerning the conduction of studies by gamma ray astronomy are related to the necessity to perform such studies far from earth because the atmosphere is a source of gamma rays. Studies involving the use of gamma ray instruments in earth orbit have been conducted, and more gamma ray astronomy observations are planned for the future. Imperfections of studies conducted in low earth orbit could be overcome by estalishing an observatory on the moon which represents a satellite orbiting at 60 earth radii. Details concerning such an observatory are discussed. 5 references

  16. Gamma-Ray Pulsars: Beaming Evolution, Stats and Unident. EGRET Sources

    OpenAIRE

    Yadigaroglu, I. -A.; Romani, Roger W.

    1994-01-01

    We compute the variation of the beaming fraction with the efficiency of high energy gamma-ray production in the outer gap pulsar model of Romani and Yadigaroglu. This allows us to correct the fluxes observed for pulsars in the EGRET band and to derive a simple estimate of the variation of efficiency with age. Integration of this model over the population of young neutron stars gives the expected number of gamma-ray pulsars along with their distributions in age and distance. This model also sh...

  17. Gamma ray beam transmutation

    International Nuclear Information System (INIS)

    Imasaki, K.; Li, D.; Miyamoto, S.; Amano, S.; Motizuki, T.

    2007-01-01

    We have proposed a new approach to nuclear transmutation by a gamma ray beam of Compton scattered laser photon. We obtained 20 MeV gamma ray in this way to obtain transmutation rates with the giant resonance of 1 97Au and 1 29Iodine. The rate of the transmutation agreed with the theoretical calculation. Experiments on energy spectrum of positron, electron and neutron from targets were performed for the energy balance and design of the system scheme. The reaction rate was about 1.5∼4% for appropriate photon energies and neutron production rate was up to 4% in the measurements. We had stored laser photon more than 5000 times in a small cavity which implied for a significant improvement of system efficiency. Using these technologies, we have designed an actual transmutation system for 1 29Iodine which has a 16 million year's activity. In my presentation, I will address the properties of this scheme, experiments results and transmutation system for iodine transmutation

  18. Observation of gamma-ray bursts with GINGA

    International Nuclear Information System (INIS)

    Murakami, Toshio; Fujii, Masami; Nishimura, Jun

    1989-01-01

    Gamma-ray Burst Detector System (GBD) on board the scientific satellite 'GINGA' which was launched on Feb. 5, 1987, was realized as an international cooperation between ISAS and LANL. It has recorded more than 40 Gamma-Ray Burst candidates during 20 months observation. Although many observational evidences were accumulated in past 20 years after the discovery of gamma-ray burst by LANL scientists, there are not enough evidence to determine the origin and the production mechanism of the gamma-ray burst. GBD consists of a proportional counter and a NaI scintillation counter so that it became possible to observe energy spectrum of the gamma-ray burst with high energy resolution over wide range of energy (1.5-380 keV) together with high time resolution. As the result of observation, the following facts are obtained: (1) A large fraction of observed gamma-ray bursts has a long X-ray tail after the harder part of gamma-ray emission has terminated. (2) Clear spectral absorption features with harmonic in energy was observed in some of the energy spectrum of gamma-ray bursts. These evidences support the hypothesis that the strongly magnetized neutron star is the origin of gamma-ray burst. (author)

  19. Modeling of Pulses in Terrestrial Gamma-ray Flashes

    Science.gov (United States)

    Xu, Wei; Celestin, Sebastien; Pasko, Victor

    2015-04-01

    Terrestrial Gamma-ray Flashes (TGFs) are high-energy photon bursts originating from the Earth's atmosphere that are associated with lightning activities. After their discovery in 1994 by the Burst and Transient Source Experiment (BATSE) detector aboard the Compton Gamma-Ray Observatory [Fishman et al., Science, 264, 1313, 1994], this phenomenon has been further observed by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) [Smith et al., Science, 307, 1085, 2005], the Fermi Gamma-ray Space Telescope [Briggs et al., JGR, 115, A07323, 2010] and the Astrorivelatore Gamma a Immagini Leggero (AGILE) satellite [Marisaldi et al., JGR, 115, A00E13, 2010]. Photon spectra corresponding to the mechanism of relativistic runaway electron avalanches (RREAs) usually provide a very good agreement with satellite observations [Dwyer and Smith, GRL, 32, L22804, 2005]. On the other hand, Celestin and Pasko [JGR, 116, A03315, 2011] have shown theoretically that the large flux of thermal runaway electrons generated by streamers during the negative corona flash stage of stepping lightning leaders in intracloud lightning flashes could be responsible for TGFs. Recently, based on analysis of the temporal profiles of 278 TGF events observed by the Fermi Gamma-Ray Burst Monitor, Foley et al. [JGR, 119, 5931, 2014] have suggested that 67% of TGF pulses detected are asymmetric and these asymmetric pulses are consistent with the production mechanism of TGFs by relativistic feedback discharges. In the present work, we employ a Monte Carlo model to study the temporal distribution of photons at low-orbit satellite altitudes during TGF events. Using the pulse fitting method described in [Foley et al., 2014], we further investigate the characteristics of TGF pulses. We mainly focus on the effects of Compton scattering on the symmetry properties and the rise and fall times of TGF pulses.

  20. Detection of gamma rays using scintillation optical fibers

    International Nuclear Information System (INIS)

    Park, J. W.; Hong, S. B.

    2002-01-01

    Scintillating optical fibers have several advantages over other conventional materials used for radiation detection. We have used glass and plastic scintillating fibers to detect gamma rays emitted from 60 Co and 137 Cs, and beta rays from 90 Sr. The sensors are constructed of single strand or multi-strand fibers of 1 mm diameter. The glass scintillating fiber used contains cerium-activated lithium-silicate as scintillating material and the plastic scintillating fiber used is Bicron model BCF-12. In this paper, we report the pulse-height spectra obtained by both sensor types, and analyze them in the aspect of their usability for radiation detectors. Our investigation suggests that the glass fiber can be used to develop gamma ray detectors which will function in high and low gamma ray flux environments. Use of the sensor for the beta ray detection was not satisfactory. The plastic fiber sensor did not work satisfactorily for the weak gamma sources, but did produce somewhat promising results. The scintillating plastic fiber offers some feasibility as beta ray sensor material

  1. Study of a high finesse four mirrors Fabry Perot cavity for X-rays and Gamma rays production by laser-electron Compton scattering

    International Nuclear Information System (INIS)

    Fedala, Y.

    2008-10-01

    The main goal of this thesis is the study and design of a high finesse Fabry Perot cavity to amplify a laser beam in order to achieve power gains ranging from 10 4 to 10 5 . This cavity is dedicated to the production of intense and monochromatic X-ray for medical applications (medical RADIOTHOMX ring) and gamma rays for a Compton based polarized positron source by Compton scattering of a high power laser beam and electron beam. To increase the brightness of the Compton interaction at the collision points, it is essential to have not only a high power laser beam but also very small laser beam radii at the interaction points. To achieve such performances, 2 scenarios are possible: a concentric 2 mirrors cavity which is mechanically unstable or a 4 mirrors cavity more complex but more stable. We tested numerically mechanical stability and stability of Eigen modes polarization of various planar and non-planar geometries of 4 mirrors cavities. Experimentally, we have developed a four mirrors tetrahedral 'bow-tie' cavity; radii of the order of 20 microns were made. The Eigen modes of such a cavity, in both planar and non planar geometries, were measured and compared with the numerical results. A good agreement was observed. In a second time, the impact of Compton interaction on the transverse dynamics, in the case of the polarized positrons source, and the longitudinal dynamic, in the case of the medical ring of the electron beam was studied. Compton scattering causes energy loss and induces an additional dispersion of energy in electron beam. For the polarized positrons source, 10 collision points are planned. The transport line has been determined and the modelling of the Compton interaction effect with a simple matrix calculation was made. For the medical ring, Compton scattering causes bunch lengthening and the increase of energy dispersion which are to influence the produced X-ray flux. A study of the longitudinal dynamics of the electron beam in the ring was

  2. Technology Needs for Gamma Ray Astronomy

    Science.gov (United States)

    Gehrels, Neil

    2011-01-01

    Gamma ray astronomy is currently in an exciting period of multiple missions and a wealth of data. Results from INTEGRAL, Fermi, AGILE, Suzaku and Swift are making large contributions to our knowledge of high energy processes in the universe. The advances are due to new detector and imaging technologies. The steps to date have been from scintillators to solid state detectors for sensors and from light buckets to coded aperture masks and pair telescopes for imagers. A key direction for the future is toward focusing telescopes pushing into the hard X-ray regime and Compton telescopes and pair telescopes with fine spatial resolution for medium and high energy gamma rays. These technologies will provide finer imaging of gamma-ray sources. Importantly, they will also enable large steps forward in sensitivity by reducing background.

  3. GRAP, Gamma-Ray Level-Scheme Assignment

    International Nuclear Information System (INIS)

    Franklyn, C.B.

    2002-01-01

    1 - Description of program or function: An interactive program for allocating gamma-rays to an energy level scheme. Procedure allows for searching for new candidate levels of the form: 1) L1 + G(A) + G(B) = L2; 2) G(A) + G(B) = G(C); 3) G(A) + G(B) = C (C is a user defined number); 4) L1 + G(A) + G(B) + G(C) = L2. Procedure indicates intensity balance of feed and decay of each energy level. Provides for optimization of a level energy (and associated error). Overall procedure allows for pre-defining of certain gamma-rays as belonging to particular regions of the level scheme, for example, high energy transition levels, or due to beta- decay. 2 - Method of solution: Search for cases in which the energy difference between two energy levels is equal to a gamma-ray energy within user-defined limits. 3 - Restrictions on the complexity of the problem: Maximum number of gamma-rays: 999; Maximum gamma ray energy: 32000 units; Minimum gamma ray energy: 10 units; Maximum gamma-ray intensity: 32000 units; Minimum gamma-ray intensity: 0.001 units; Maximum number of levels: 255; Maximum level energy: 32000 units; Minimum level energy: 10 units; Maximum error on energy, intensity: 32 units; Minimum error on energy, intensity: 0.001 units; Maximum number of combinations: 6400 (ca); Maximum number of gamma-ray types : 127

  4. Planetary gamma-ray spectroscopy: the effects of hydrogen absorption cross-section of the gamma-ray spectrum

    International Nuclear Information System (INIS)

    Lapides, J.R.

    1981-01-01

    The gamma-ray spectroscopy of planet surfaces is one of several possible methods that are useful in determining the elemental composition of planet surfaces from orbiting spacecraft. This has been demonstrated on the Apollos 15 and 16 missions as well as the Soviet Mars-5 mission. Planetary gamma-ray emission is primarily the result of natural radioactive decay and cosmic-ray and solar-flare-induced nuclear reactions. Secondary neutron reactions play a large role in the more intense gamma-ray emission. The technique provides information on the elemental composition of the top few tens of centimeters of the planet surface. Varying concentrations of hydrogen and compositional variations that alter the macroscopic thermal-neutron absorption cross section have a significant effect on the neutron flux in the planet surface and therefore also on the gamma-ray emission from the surface. These effects have been systematically studied for a wide range of possible planetary compositions that include Mercury, the moon, Mars, the comets, and the asteroids. The problem of the Martian atmosphere was also investigated. The results of these calculations, in which both surface neutron fluxes and gamma-ray emission fluxes were determined, were used to develop general procedures for obtaining planet compositions from the gamma-ray spectrum. Several changes have been suggested for reanalyzing the Apollos 15 and 16 gamma-ray results. In addition, procedures have been suggested that can be applied to neutron-gamma techniques in mineral and oil exploration

  5. Black Hole Accretion in Gamma Ray Bursts

    Directory of Open Access Journals (Sweden)

    Agnieszka Janiuk

    2017-02-01

    Full Text Available We study the structure and evolution of the hyperaccreting disks and outflows in the gamma ray bursts central engines. The torus around a stellar mass black hole is composed of free nucleons, Helium, electron-positron pairs, and is cooled by neutrino emission. Accretion of matter powers the relativistic jets, responsible for the gamma ray prompt emission. The significant number density of neutrons in the disk and outflowing material will cause subsequent formation of heavier nuclei. We study the process of nucleosynthesis and its possible observational consequences. We also apply our scenario to the recent observation of the gravitational wave signal, detected on 14 September 2015 by the two Advanced LIGO detectors, and related to an inspiral and merger of a binary black hole system. A gamma ray burst that could possibly be related with the GW150914 event was observed by the Fermi satellite. It had a duration of about 1 s and appeared about 0.4 s after the gravitational-wave signal. We propose that a collapsing massive star and a black hole in a close binary could lead to the event. The gamma ray burst was powered by a weak neutrino flux produced in the star remnant’s matter. Low spin and kick velocity of the merged black hole are reproduced in our simulations. Coincident gravitational-wave emission originates from the merger of the collapsed core and the companion black hole.

  6. Design studies for nonimaging light concentrators to be used in very high-energy gamma-ray astronomy

    International Nuclear Information System (INIS)

    Radu, A.A.Aurelian A.; Mattox, John R.; Ahlen, Steven

    2000-01-01

    Light concentrators to be used by the camera of a telescope to view gamma-ray-induced Cherenkov light, are analyzed from the point of view of optical efficiency, background rejection capability and manufacturability. A small decrease in the optical efficiency due to multiple reflections undergone by rays incident at small angles in a compound parabolic concentrator is observed. The influence of the angle of incidence on the reflectivity of the wall is analyzed and found to be inconsequential. A closed-packed matrix of concentrators with hexagonal entrance apertures is considered and the light spread in the adjacent pixels introduced by the removal of portions of the surface of concentrators is evaluated

  7. Design studies for nonimaging light concentrators to be used in very high-energy gamma-ray astronomy

    Energy Technology Data Exchange (ETDEWEB)

    Radu, A.A.Aurelian A.; Mattox, John R.; Ahlen, Steven

    2000-05-21

    Light concentrators to be used by the camera of a telescope to view gamma-ray-induced Cherenkov light, are analyzed from the point of view of optical efficiency, background rejection capability and manufacturability. A small decrease in the optical efficiency due to multiple reflections undergone by rays incident at small angles in a compound parabolic concentrator is observed. The influence of the angle of incidence on the reflectivity of the wall is analyzed and found to be inconsequential. A closed-packed matrix of concentrators with hexagonal entrance apertures is considered and the light spread in the adjacent pixels introduced by the removal of portions of the surface of concentrators is evaluated.

  8. Detecting special nuclear materials in suspect containers using high-energy gamma rays emitted by fission products

    Science.gov (United States)

    Norman, Eric B [Oakland, CA; Prussin, Stanley G [Kensington, CA

    2009-01-27

    A method and a system for detecting the presence of special nuclear materials in a suspect container. The system and its method include irradiating the suspect container with a beam of neutrons, so as to induce a thermal fission in a portion of the special nuclear materials, detecting the gamma rays that are emitted from the fission products formed by the thermal fission, to produce a detector signal, comparing the detector signal with a threshold value to form a comparison, and detecting the presence of the special nuclear materials using the comparison.

  9. THE SECOND FERMI LARGE AREA TELESCOPE CATALOG OF GAMMA-RAY PULSARS

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, A. A. [Center for Earth Observing and Space Research, College of Science, George Mason University, Fairfax, VA 22030 (United States); Ajello, M. [Space Sciences Laboratory, 7 Gauss Way, University of California, Berkeley, CA 94720-7450 (United States); Allafort, A.; Bloom, E. D.; Bottacini, E. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Baldini, L. [Università di Pisa and Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Ballet, J. [Laboratoire AIM, CEA-IRFU/CNRS/Université Paris Diderot, Service d' Astrophysique, CEA Saclay, F-91191 Gif sur Yvette (France); Barbiellini, G. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste (Italy); Baring, M. G. [Rice University, Department of Physics and Astronomy, MS-108, P.O. Box 1892, Houston, TX 77251 (United States); Bastieri, D. [Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova (Italy); Belfiore, A. [Santa Cruz Institute for Particle Physics, Department of Physics and Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064 (United States); Bellazzini, R.; Bregeon, J. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Bhattacharyya, B. [National Centre for Radio Astrophysics, Tata Institute of Fundamental Research, Pune 411 007 (India); Bissaldi, E. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, and Università di Trieste, I-34127 Trieste (Italy); Bonamente, E. [Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, I-06123 Perugia (Italy); Brandt, T. J. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Brigida, M., E-mail: hartog@stanford.edu [Dipartimento di Fisica ' ' M. Merlin' ' dell' Università e del Politecnico di Bari, I-70126 Bari (Italy); and others

    2013-10-01

    This catalog summarizes 117 high-confidence ≥0.1 GeV gamma-ray pulsar detections using three years of data acquired by the Large Area Telescope (LAT) on the Fermi satellite. Half are neutron stars discovered using LAT data through periodicity searches in gamma-ray and radio data around LAT unassociated source positions. The 117 pulsars are evenly divided into three groups: millisecond pulsars, young radio-loud pulsars, and young radio-quiet pulsars. We characterize the pulse profiles and energy spectra and derive luminosities when distance information exists. Spectral analysis of the off-peak phase intervals indicates probable pulsar wind nebula emission for four pulsars, and off-peak magnetospheric emission for several young and millisecond pulsars. We compare the gamma-ray properties with those in the radio, optical, and X-ray bands. We provide flux limits for pulsars with no observed gamma-ray emission, highlighting a small number of gamma-faint, radio-loud pulsars. The large, varied gamma-ray pulsar sample constrains emission models. Fermi's selection biases complement those of radio surveys, enhancing comparisons with predicted population distributions.

  10. The second FERMI large area telescope catalog of gamma-ray pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, A. A.; Ajello, M.; Allafort, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M. G.; Bastieri, D.; Belfiore, A.; Bellazzini, R.; Bhattacharyya, B.; Bissaldi, E.; Bloom, E. D.; Bonamente, E.; Bottacini, E.; Brandt, T. J.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Burgay, M.; Burnett, T. H.; Busetto, G.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Camilo, F.; Caraveo, P. A.; Casandjian, J. M.; Cecchi, C.; Çelik, Ö.; Charles, E.; Chaty, S.; Chaves, R. C. G.; Chekhtman, A.; Chen, A. W.; Chiang, J.; Chiaro, G.; Ciprini, S.; Claus, R.; Cognard, I.; Cohen-Tanugi, J.; Cominsky, L. R.; Conrad, J.; Cutini, S.; D' Ammando, F.; de Angelis, A.; DeCesar, M. E.; De Luca, A.; den Hartog, P. R.; de Palma, F.; Dermer, C. D.; Desvignes, G.; Digel, S. W.; Di Venere, L.; Drell, P. S.; Drlica-Wagner, A.; Dubois, R.; Dumora, D.; Espinoza, C. M.; Falletti, L.; Favuzzi, C.; Ferrara, E. C.; Focke, W. B.; Franckowiak, A.; Freire, P. C. C.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Germani, S.; Giglietto, N.; Giommi, P.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Gotthelf, E. V.; Grenier, I. A.; Grondin, M. -H.; Grove, J. E.; Guillemot, L.; Guiriec, S.; Hadasch, D.; Hanabata, Y.; Harding, A. K.; Hayashida, M.; Hays, E.; Hessels, J.; Hewitt, J.; Hill, A. B.; Horan, D.; Hou, X.; Hughes, R. E.; Jackson, M. S.; Janssen, G. H.; Jogler, T.; Jóhannesson, G.; Johnson, R. P.; Johnson, A. S.; Johnson, T. J.; Johnson, W. N.; Johnston, S.; Kamae, T.; Kataoka, J.; Keith, M.; Kerr, M.; Knödlseder, J.; Kramer, M.; Kuss, M.; Lande, J.; Larsson, S.; Latronico, L.; Lemoine-Goumard, M.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Lyne, A. G.; Manchester, R. N.; Marelli, M.; Massaro, F.; Mayer, M.; Mazziotta, M. N.; McEnery, J. E.; McLaughlin, M. A.; Mehault, J.; Michelson, P. F.; Mignani, R. P.; Mitthumsiri, W.; Mizuno, T.; Moiseev, A. A.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nakamori, T.; Nemmen, R.; Nuss, E.; Ohno, M.; Ohsugi, T.; Orienti, M.; Orlando, E.; Ormes, J. F.; Paneque, D.; Panetta, J. H.; Parent, D.; Perkins, J. S.; Pesce-Rollins, M.; Pierbattista, M.; Piron, F.; Pivato, G.; Pletsch, H. J.; Porter, T. A.; Possenti, A.; Rainò, S.; Rando, R.; Ransom, S. M.; Ray, P. S.; Razzano, M.; Rea, N.; Reimer, A.; Reimer, O.; Renault, N.; Reposeur, T.; Ritz, S.; Romani, R. W.; Roth, M.; Rousseau, R.; Roy, J.; Ruan, J.; Sartori, A.; Saz Parkinson, P. M.; Scargle, J. D.; Schulz, A.; Sgrò, C.; Shannon, R.; Siskind, E. J.; Smith, D. A.; Spandre, G.; Spinelli, P.; Stappers, B. W.; Strong, A. W.; Suson, D. J.; Takahashi, H.; Thayer, J. G.; Thayer, J. B.; Theureau, G.; Thompson, D. J.; Thorsett, S. E.; Tibaldo, L.; Tibolla, O.; Tinivella, M.; Torres, D. F.; Tosti, G.; Troja, E.; Uchiyama, Y.; Usher, T. L.; Vandenbroucke, J.; Vasileiou, V.; Venter, C.; Vianello, G.; Vitale, V.; Wang, N.; Weltevrede, P.; Winer, B. L.; Wolff, M. T.; Wood, D. L.; Wood, K. S.; Wood, M.; Yang, Z.

    2013-09-19

    This catalog summarizes 117 high-confidence ≥0.1 GeV gamma-ray pulsar detections using three years of data acquired by the Large Area Telescope (LAT) on the Fermi satellite. Half are neutron stars discovered using LAT data through periodicity searches in gamma-ray and radio data around LAT unassociated source positions. The 117 pulsars are evenly divided into three groups: millisecond pulsars, young radio-loud pulsars, and young radio-quiet pulsars. We characterize the pulse profiles and energy spectra and derive luminosities when distance information exists. Spectral analysis of the off-peak phase intervals indicates probable pulsar wind nebula emission for four pulsars, and off-peak magnetospheric emission for several young and millisecond pulsars. We compare the gamma-ray properties with those in the radio, optical, and X-ray bands. We provide flux limits for pulsars with no observed gamma-ray emission, highlighting a small number of gamma-faint, radio-loud pulsars. The large, varied gamma-ray pulsar sample constrains emission models. Fermi's selection biases complement those of radio surveys, enhancing comparisons with predicted population distributions.

  11. The second fermi large area telescope catalog of gamma-ray pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, A. A.; Ajello, M.; Allafort, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M. G.; Bastieri, D.; Belfiore, A.; Bellazzini, R.; Bhattacharyya, B.; Bissaldi, E.; Bloom, E. D.; Bonamente, E.; Bottacini, E.; Brandt, T. J.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Burgay, M.; Burnett, T. H.; Busetto, G.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Camilo, F.; Caraveo, P. A.; Casandjian, J. M.; Cecchi, C.; Çelik, Ö.; Charles, E.; Chaty, S.; Chaves, R. C. G.; Chekhtman, A.; Chen, A. W.; Chiang, J.; Chiaro, G.; Ciprini, S.; Claus, R.; Cognard, I.; Cohen-Tanugi, J.; Cominsky, L. R.; Conrad, J.; Cutini, S.; D' Ammando, F.; de Angelis, A.; DeCesar, M. E.; De Luca, A.; den Hartog, P. R.; de Palma, F.; Dermer, C. D.; Desvignes, G.; Digel, S. W.; Di Venere, L.; Drell, P. S.; Drlica-Wagner, A.; Dubois, R.; Dumora, D.; Espinoza, C. M.; Falletti, L.; Favuzzi, C.; Ferrara, E. C.; Focke, W. B.; Franckowiak, A.; Freire, P. C. C.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Germani, S.; Giglietto, N.; Giommi, P.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Gotthelf, E. V.; Grenier, I. A.; Grondin, M. -H.; Grove, J. E.; Guillemot, L.; Guiriec, S.; Hadasch, D.; Hanabata, Y.; Harding, A. K.; Hayashida, M.; Hays, E.; Hessels, J.; Hewitt, J.; Hill, A. B.; Horan, D.; Hou, X.; Hughes, R. E.; Jackson, M. S.; Janssen, G. H.; Jogler, T.; Jóhannesson, G.; Johnson, R. P.; Johnson, A. S.; Johnson, T. J.; Johnson, W. N.; Johnston, S.; Kamae, T.; Kataoka, J.; Keith, M.; Kerr, M.; Knödlseder, J.; Kramer, M.; Kuss, M.; Lande, J.; Larsson, S.; Latronico, L.; Lemoine-Goumard, M.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Lyne, A. G.; Manchester, R. N.; Marelli, M.; Massaro, F.; Mayer, M.; Mazziotta, M. N.; McEnery, J. E.; McLaughlin, M. A.; Mehault, J.; Michelson, P. F.; Mignani, R. P.; Mitthumsiri, W.; Mizuno, T.; Moiseev, A. A.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nakamori, T.; Nemmen, R.; Nuss, E.; Ohno, M.; Ohsugi, T.; Orienti, M.; Orlando, E.; Ormes, J. F.; Paneque, D.; Panetta, J. H.; Parent, D.; Perkins, J. S.; Pesce-Rollins, M.; Pierbattista, M.; Piron, F.; Pivato, G.; Pletsch, H. J.; Porter, T. A.; Possenti, A.; Rainò, S.; Rando, R.; Ransom, S. M.; Ray, P. S.; Razzano, M.; Rea, N.; Reimer, A.; Reimer, O.; Renault, N.; Reposeur, T.; Ritz, S.; Romani, R. W.; Roth, M.; Rousseau, R.; Roy, J.; Ruan, J.; Sartori, A.; Saz Parkinson, P. M.; Scargle, J. D.; Schulz, A.; Sgrò, C.; Shannon, R.; Siskind, E. J.; Smith, D. A.; Spandre, G.; Spinelli, P.; Stappers, B. W.; Strong, A. W.; Suson, D. J.; Takahashi, H.; Thayer, J. G.; Thayer, J. B.; Theureau, G.; Thompson, D. J.; Thorsett, S. E.; Tibaldo, L.; Tibolla, O.; Tinivella, M.; Torres, D. F.; Tosti, G.; Troja, E.; Uchiyama, Y.; Usher, T. L.; Vandenbroucke, J.; Vasileiou, V.; Venter, C.; Vianello, G.; Vitale, V.; Wang, N.; Weltevrede, P.; Winer, B. L.; Wolff, M. T.; Wood, D. L.; Wood, K. S.; Wood, M.; Yang, Z.

    2013-09-19

    This catalog summarizes 117 high-confidence ≥0.1 GeV gamma-ray pulsar detections using three years of data acquired by the Large Area Telescope (LAT) on the Fermi satellite. Half are neutron stars discovered using LAT data through periodicity searches in gamma-ray and radio data around LAT unassociated source positions. The 117 pulsars are evenly divided into three groups: millisecond pulsars, young radio-loud pulsars, and young radio-quiet pulsars. We characterize the pulse profiles and energy spectra and derive luminosities when distance information exists. Spectral analysis of the off-peak phase intervals indicates probable pulsar wind nebula emission for four pulsars, and off-peak magnetospheric emission for several young and millisecond pulsars. We compare the gamma-ray properties with those in the radio, optical, and X-ray bands. We provide flux limits for pulsars with no observed gamma-ray emission, highlighting a small number of gamma-faint, radio-loud pulsars. The large, varied gamma-ray pulsar sample constrains emission models. Fermi's selection biases complement those of radio surveys, enhancing comparisons with predicted population distributions.

  12. Study of the high energy gamma-ray emission from the crab pulsar with the MAGIC telescope and Fermi-LAT

    International Nuclear Information System (INIS)

    Saito, Takayuki

    2010-01-01

    My thesis deals with a fundamental question of high energy gamma-ray astronomy. Namely, I studied the cut-off shape of the Crab pulsar spectrum to distinguish between the leading scenarios for the pulsar models. Pulsars are celestial objects, which emit periodic pulsed electromagnetic radiation (pulsation) from radio to high energy gamma-rays. Two major scenarios evolved in past 40 years to explain the pulsation mechanism: the inner magnetosphere scenario and the outer magnetosphere scenario. Both scenarios predict a high energy cut-off in the gamma-ray energy spectrum, but with different cut-off sharpness. An exponential cut-off is expected for the outer magnetosphere scenario while a super-exponential cut-off is predicted for the inner magnetosphere scenario. Therefore, one of the best ways to confirm or refute these scenarios is to measure the energy spectrum of a pulsar at around the cut-off energy, i.e., at energies between a few GeV and a few tens of GeV. All past attempts to measure pulsar spectra with ground-based instruments have failed while satellite-borne detectors had a too small area to study detailed spectra in the GeV domain. In this thesis, the gamma-ray emission at around the cut-off energy from the Crab pulsar is studied with the MAGIC telescope. The public data of the satellite-borne gamma-ray detector, Fermi-LAT, are also analyzed in order to discuss the MAGIC observation results in comparison with the adjacent energy band. In late 2007, a new trigger system (SUM trigger system) allowed to reduce the threshold energy of the MAGIC telescope from 50 GeV to 25 GeV and the Crab pulsar was successfully detected during observations from October 2007 and January 2009. My analysis reveals that the energy spectrum is consistent with a simple power law between 25 GeV to 100 GeV. The extension of the energy spectrum up to 100 GeV rules out the inner magnetosphere scenario. Fermi-LAT started operation in August 2008. The Fermi-LAT data reveal that a power

  13. Study of the high energy gamma-ray emission from the crab pulsar with the MAGIC telescope and Fermi-LAT

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Takayuki

    2010-12-06

    My thesis deals with a fundamental question of high energy gamma-ray astronomy. Namely, I studied the cut-off shape of the Crab pulsar spectrum to distinguish between the leading scenarios for the pulsar models. Pulsars are celestial objects, which emit periodic pulsed electromagnetic radiation (pulsation) from radio to high energy gamma-rays. Two major scenarios evolved in past 40 years to explain the pulsation mechanism: the inner magnetosphere scenario and the outer magnetosphere scenario. Both scenarios predict a high energy cut-off in the gamma-ray energy spectrum, but with different cut-off sharpness. An exponential cut-off is expected for the outer magnetosphere scenario while a super-exponential cut-off is predicted for the inner magnetosphere scenario. Therefore, one of the best ways to confirm or refute these scenarios is to measure the energy spectrum of a pulsar at around the cut-off energy, i.e., at energies between a few GeV and a few tens of GeV. All past attempts to measure pulsar spectra with ground-based instruments have failed while satellite-borne detectors had a too small area to study detailed spectra in the GeV domain. In this thesis, the gamma-ray emission at around the cut-off energy from the Crab pulsar is studied with the MAGIC telescope. The public data of the satellite-borne gamma-ray detector, Fermi-LAT, are also analyzed in order to discuss the MAGIC observation results in comparison with the adjacent energy band. In late 2007, a new trigger system (SUM trigger system) allowed to reduce the threshold energy of the MAGIC telescope from 50 GeV to 25 GeV and the Crab pulsar was successfully detected during observations from October 2007 and January 2009. My analysis reveals that the energy spectrum is consistent with a simple power law between 25 GeV to 100 GeV. The extension of the energy spectrum up to 100 GeV rules out the inner magnetosphere scenario. Fermi-LAT started operation in August 2008. The Fermi-LAT data reveal that a power

  14. Gamma ray spectroscopy monitoring method and apparatus

    Science.gov (United States)

    Stagg, William R; Policke, Timothy A

    2017-05-16

    The present invention relates generally to the field of gamma ray spectroscopy monitoring and a system for accomplishing same to monitor one or more aspects of various isotope production processes. In one embodiment, the present invention relates to a monitoring system, and method of utilizing same, for monitoring one or more aspects of an isotope production process where the monitoring system comprises: (A) at least one sample cell; (B) at least one measuring port; (C) at least one adjustable collimator device; (D) at least one shutter; and (E) at least one high resolution gamma ray spectrometer.

  15. Nuclear Forensics using Gamma-ray Spectroscopy

    Directory of Open Access Journals (Sweden)

    Norman E. B.

    2016-01-01

    Full Text Available Much of George Dracoulis’s research career was devoted to utilising gamma-ray spectroscopy in fundamental studies in nuclear physics. This same technology is useful in a wide range of applications in the area of nuclear forensics. Over the last several years, our research group has made use of both high- and low-resolution gamma-ray spectrometers to: identify the first sample of plutonium large enough to be weighed; determine the yield of the Trinity nuclear explosion; measure fission fragment yields as a function of target nucleus and neutron energy; and observe fallout in the U. S. from the Fukushima nuclear reactor accident.

  16. High-energy particle production in solar flares (SEP, gamma-ray and neutron emissions). [solar energetic particles

    Science.gov (United States)

    Chupp, E. L.

    1987-01-01

    Electrons and ions, over a wide range of energies, are produced in association with solar flares. Solar energetic particles (SEPs), observed in space and near earth, consist of electrons and ions that range in energy from 10 keV to about 100 MeV and from 1 MeV to 20 GeV, respectively. SEPs are directly recorded by charged particle detectors, while X-ray, gamma-ray, and neutron detectors indicate the properties of the accelerated particles (electrons and ions) which have interacted in the solar atmosphere. A major problem of solar physics is to understand the relationship between these two groups of charged particles; in particular whether they are accelerated by the same mechanism. The paper reviews the physics of gamma-rays and neutron production in the solar atmosphere and the method by which properties of the primary charged particles produced in the solar flare can be deduced. Recent observations of energetic photons and neutrons in space and at the earth are used to present a current picture of the properties of impulsively flare accelerated electrons and ions. Some important properties discussed are time scale of production, composition, energy spectra, accelerator geometry. Particular attention is given to energetic particle production in the large flare on June 3, 1982.

  17. Rapid non-destructive quantitative estimation of urania/ thoria in mixed thorium uranium di-oxide pellets by high-resolution gamma-ray spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Shriwastwa, B.B.; Kumar, Anil; Raghunath, B.; Nair, M.R.; Abani, M.C.; Ramachandran, R.; Majumdar, S.; Ghosh, J.K

    2001-06-01

    A non-destructive technique using high-resolution gamma-ray spectrometry has been standardised for quantitative estimation of uranium/thorium in mixed (ThO{sub 2}-UO{sub 2}) fuel pellets of varying composition. Four gamma energies were selected; two each from the uranium and thorium series and the time of counting has been optimised. This technique can be used for rapid estimation of U/Th percentage in a large number of mixed fuel pellets from a production campaign.

  18. Status of gamma-ray heating characterization in LMFBR

    International Nuclear Information System (INIS)

    Gold, R.

    1975-11-01

    Efforts to define gamma-ray heating in Liquid Metal Fast Breeder Reactor (LMFBR) environments have been surveyed. Emphasis is placed on both current practice for the Experimental Breeder Reactor-II (EBR-II) and future needs of the Fast Flux Test Facility (FFTF). Experimental and theoretical work are included in this preliminary survey for both high and low power environments. Current ''state-of-the-art'' accuracies and limitations are assessed. On this basis, it is concluded that a broad and sustained effort be initiated to meet requested FFTF goal accuracies. To this end, recommendations are advanced for improving the current status of gamma heating characterization and temperature measurements in LMFBR

  19. High gamma-rays irradiation tests of critical components for ITER (International Thermonuclear Experimental Reactor) in-vessel remote handling system

    International Nuclear Information System (INIS)

    Obara, Kenjiro; Kakudate, Satoshi; Oka, Kiyoshi

    1999-02-01

    In ITER, the in-vessel remote handling is inevitably required to assemble and maintain the activated in-vessel components due to deuterium and tritium operation. Since the in-vessel remote handling system has to be operated under the intense of gamma ray irradiation, the components of the remote handling system are required to have radiation hardness so as to allow maintenance operation for a sufficient length of time under the ITER in-vessel environments. For this, the Japan, European and Russian Home Teams have extensively conducted gamma ray irradiation tests and quality improvements including optimization of material composition through ITER R and D program in order to develop radiation hard components which satisfy the doses from 10 MGy to 100 MGy at a dose rate of 1 x 10 6 R/h (ITER R and D Task: T252). This report describes the latest status of radiation hard component development which has been conducted by the Japan Home Team in the ITER R and D program. The number of remote handling components tested is about seventy and these are categorized into robotics (Subtask 1), viewing system (Subtask 2) and common components (Subtask 3). The irradiation tests, including commercial base products for screening, modified products and newly developed products to improve the radiation hardness, were carried out using the gamma ray irradiation cells in Takasaki Establishment, JAERI. As a result, the development of the radiation hard components which can be tolerable for high temperature and gamma radiation has been well progressed, and many components, such as AC servo motor with ceramics insulated wire, optical periscope and CCD camera, have been newly developed. (author)

  20. High gamma-rays irradiation tests of critical components for ITER (International Thermonuclear Experimental Reactor) in-vessel remote handling system

    Energy Technology Data Exchange (ETDEWEB)

    Obara, Kenjiro; Kakudate, Satoshi; Oka, Kiyoshi [Department of Fusion Engineering Research, Naka Fusion Research Establishment, Japan Atomic Energy Research Institute, Naka, Ibaraki (Japan)] [and others

    1999-02-01

    In ITER, the in-vessel remote handling is inevitably required to assemble and maintain the activated in-vessel components due to deuterium and tritium operation. Since the in-vessel remote handling system has to be operated under the intense of gamma ray irradiation, the components of the remote handling system are required to have radiation hardness so as to allow maintenance operation for a sufficient length of time under the ITER in-vessel environments. For this, the Japan, European and Russian Home Teams have extensively conducted gamma ray irradiation tests and quality improvements including optimization of material composition through ITER R and D program in order to develop radiation hard components which satisfy the doses from 10 MGy to 100 MGy at a dose rate of 1 x 10{sup 6} R/h (ITER R and D Task: T252). This report describes the latest status of radiation hard component development which has been conducted by the Japan Home Team in the ITER R and D program. The number of remote handling components tested is about seventy and these are categorized into robotics (Subtask 1), viewing system (Subtask 2) and common components (Subtask 3). The irradiation tests, including commercial base products for screening, modified products and newly developed products to improve the radiation hardness, were carried out using the gamma ray irradiation cells in Takasaki Establishment, JAERI. As a result, the development of the radiation hard components which can be tolerable for high temperature and gamma radiation has been well progressed, and many components, such as AC servo motor with ceramics insulated wire, optical periscope and CCD camera, have been newly developed. (author)

  1. Star formation rates and stellar masses in z ~ 1 gamma-ray burst hosts

    DEFF Research Database (Denmark)

    Castro Cerón, José María; Michalowski, Michal; Hjorth, J.

    2006-01-01

    Cosmology: Observations, ISM: Dust, Extinction, Galaxies: High-Redshift, Galaxies: ISM, Gamma Rays: Bursts, Infrared: Galaxies Udgivelsesdato: Dec. 4......Cosmology: Observations, ISM: Dust, Extinction, Galaxies: High-Redshift, Galaxies: ISM, Gamma Rays: Bursts, Infrared: Galaxies Udgivelsesdato: Dec. 4...

  2. Gamma ray energy tracking in GRETINA

    Science.gov (United States)

    Lee, I. Y.

    2011-10-01

    The next generation of stable and exotic beam accelerators will provide physics opportunities to study nuclei farther away from the line of stability. However, these experiments will be more demanding on instrumentation performance. These come from the lower production rate for more exotic beams, worse beam impurities, and large beam velocity from the fragmentation and inverse reactions. Gamma-ray spectroscopy will be one of the most effective tools to study exotic nuclei. However, to fully exploit the physics reach provided by these new facilities, better gamma-ray detector will be needed. In the last 10 years, a new concept, gamma-ray energy tracking array, was developed. Tracking arrays will increase the detection sensitivity by factors of several hundred compared to current arrays used in nuclear physics research. Particularly, the capability of reconstructing the position of the interaction with millimeters resolution is needed to correct the Doppler broadening of gamma rays emitted from high velocity nuclei. GRETINA is a gamma-ray tracking array which uses 28 Ge crystals, each with 36 segments, to cover ¼ of the 4 π of the 4 π solid angle. The gamma ray tracking technique requires detailed pulse shape information from each of the segments. These pulses are digitized using 14-bit 100 MHz flash ADCs, and digital signal analysis algorithms implemented in the on-board FPGAs provides energy, time and selection of pulse traces. A digital trigger system, provided flexible trigger functions including a fast trigger output, and also allows complicated trigger decisions to be made up to 20 microseconds. Further analyzed, carried out in a computer cluster, determine the energy, time, and three-dimensional positions of all gamma-ray interactions in the array. This information is then utilized, together with the characteristics of Compton scattering and pair-production processes, to track the scattering sequences of the gamma rays. GRETINA construction is completed in

  3. The First Fermi-LAT Gamma-Ray Burst Catalog

    NARCIS (Netherlands)

    Ackermann, M.; et al., [Unknown; van der Horst, A.J.

    2013-01-01

    In three years of observations since the beginning of nominal science operations in 2008 August, the Large Area Telescope (LAT) on board the Fermi Gamma-Ray Space Telescope has observed high-energy (gsim 20 MeV) γ-ray emission from 35 gamma-ray bursts (GRBs). Among these, 28 GRBs have been detected

  4. Observation of solar gamma-ray by Hinotori

    International Nuclear Information System (INIS)

    Yoshimori, Masato; Okudaira, Kiyoaki; Hirashima, Yo; Kondo, Ichiro.

    1982-01-01

    The solar gamma-ray emitted by solar flare was observed. The gamma-ray is the electromagnetic radiation with the energy more than 300 keV. The line gamma-ray intensity and the time profile were observed. The gamma-ray detector CsI (Tl) was loaded on Hinotori, and the observed gamma-ray was analyzed by a multi-channel analyzer. The observed line gamma-ray was the radiation from Fe-56 and Ne-20. The line gamma-ray from C-12 and O-16 was also seen. These gamma-ray is the direct evidence of the nuclear reaction on the sun. The observed spectrum suggested the existence of the lines from Mg-24 and Si-28. The intensity of the 2.22 MeV gamma-line was small. This fact showed that the origin of this line was different from other nuclear gamma-ray. Two kinds of hard X-ray bursts were detected. The one was impulsive burst, and the other was gradual burst. There was no time difference between the hard X-ray and the gamma-ray of the impulsive burst. The impulsive burst may be explained by the beam model. The delay of time profile in the high energy gamma-ray of the gradual burst was observed. This means that the time when accelerated electrons cause bremsstrahlung depends on the electron energy. The long trapping of electrons at the top of magnetic loop is suggested. (Kato, T.)

  5. Found: A Galaxy's Missing Gamma Rays

    Science.gov (United States)

    Kohler, Susanna

    2016-04-01

    Recent reanalysis of data from the Fermi Gamma-ray Space Telescope has resulted in the first detection of high-energy gamma rays emitted from a nearby galaxy. This discovery reveals more about how supernovae interact with their environments.Colliding Supernova RemnantAfter a stellar explosion, the supernovas ejecta expand, eventually encountering the ambient interstellar medium. According to models, this generates a strong shock, and a fraction of the kinetic energy of the ejecta is transferred into cosmic rays high-energy radiation composed primarily of protons and atomic nuclei. Much is still unknown about this process, however. One open question is: what fraction of the supernovas explosion power goes into accelerating these cosmic rays?In theory, one way to answer this is by looking for gamma rays. In a starburst galaxy, the collision of the supernova-accelerated cosmic rays with the dense interstellar medium is predicted to produce high-energy gamma rays. That radiation should then escape the galaxy and be visible to us.Pass 8 to the RescueObservational tests of this model, however, have beenstumped by Arp 220. This nearby ultraluminous infrared galaxy is the product of a galaxy merger ~700 million years ago that fueled a frenzy of starbirth. Due to its dusty interior and extreme levels of star formation, Arp 220 has long been predicted to emit the gamma rays produced by supernova-accelerated cosmic rays. But though weve looked, gamma-ray emission has never been detected from this galaxy until now.In a recent study, a team of scientists led by Fang-Kun Peng (Nanjing University) reprocessed 7.5 years of Fermi observations using the new Pass 8 analysis software. The resulting increase in resolution revealed the first detection of GeV emission from Arp 220!Acceleration EfficiencyGamma-ray luminosity vs. total infrared luminosity for LAT-detected star-forming galaxies and Seyferts. Arp 220s luminosities are consistent with the scaling relation. [Peng et al. 2016

  6. Limits for an inverse bremsstrahlung origin of the diffuse Galactic soft gamma-ray emission

    DEFF Research Database (Denmark)

    Pohl, M.

    1998-01-01

    origin of the soft Galactic gamma-ray continuum through inverse bremsstrahlung. A flux of low-energy cosmic rays strong enough to produce the observed spectrum of gamma-rays implies substantial gamma-ray emission at a few MeV through nuclear de-excitation. It is shown that the existing limits on excess 3......-7 MeV emission from the Galactic plane, in concert with the constraints from pi(0)-decay gamma-ray emission at higher energies, are in serious conflict with an inverse bremsstrahlung origin of the Galactic soft gamma-ray emission for any physically plausible low-energy cosmic ray spectrum. While...

  7. Measuring The Variability Of Gamma-Ray Sources With AGILE

    International Nuclear Information System (INIS)

    Chen, Andrew W.; Vercellone, Stefano; Pellizzoni, Alberto; Tavani, Marco

    2005-01-01

    Variability in the gamma-ray flux above 100 MeV at various time scales is one of the primary characteristics of the sources detected by EGRET, both allowing the identification of individual sources and constraining the unidentified source classes. We present a detailed simulation of the capacity of AGILE to characterize the variability of gamma-ray sources, discussing the implications for source population studies

  8. Determination of the natural radioactivity levels in north west of Dukhan, Qatar using high-resolution gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Al-Sulaiti, Huda; Nasir, Tabassum; Al Mugren, K.S.; Alkhomashi, N.; Al-Dahan, N.; Al-Dosari, M.; Bradley, D.A.; Bukhari, S.; Matthews, M.; Regan, P.H.; Santawamaitre, T.; Malain, D.; Habib, A.

    2012-01-01

    This study is aimed at the determination of the activity concentrations of naturally occuring and technologically enhanced levels of radiation in 34 representative soil samples that have been collected from an inshore oil field area which was found to have, in a previous study, the highest observed value of 226 Ra concentration among 129 soil samples. The activity concentrations of 238 U and 226 Ra have been inferred from gamma-ray transitions associated with their decay progenies and measured using a hyper-pure germanium detector. Details of the sample preparation and the gamma-ray spectroscopic analysis techniques are presented, together with the values of the activity concentrations associated with the naturally occuring radionuclide chains for all the samples collected from NW Dukhan. Discrete-line, gamma-ray energy transitions from spectral lines ranging in energy from ∼100 keV up to 2.6 MeV have been associated with characteristic decays of the various decay products within the 235.8 U and 232 Th radioactive decay chains. These data have been analyzed, under the assumption of secular equilibrium for the U and Th decay chains. Details of the sample preparation and the gamma-ray spectroscopic analysis techniques are presented. The weighted mean value of the activity concentrations of 226 Ra in one of the samples was found to be around a factor of 2 higher than the values obtained in the previous study and approximately a factor of 10 higher than the accepted worldwide average value of 35 Bq/kg. The weighted mean values of the activity concentrations of 232 Th and 40 K were also deduced and found to be within the worldwide average values of 30 and 400 Bq/kg, respectively. Our previous study reported a value of 201.9±1.5 Stat. ±13 Syst. Bq/kg for 226 Ra in one sample and further investigation in the current work determined a measured value for 226 Ra of 342.00±1.9 Stat. ±25 Syst. Bq/kg in a sample taken from the same locality. This is significantly higher

  9. Determination of the natural radioactivity levels in north west of Dukhan, Qatar using high-resolution gamma-ray spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Al-Sulaiti, Huda [Centre for Nuclear and Radiation Physics, Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Radiation Protection and Chemicals Department, Ministry of Environment, P.O. Box 7634, Doha (Qatar); Nasir, Tabassum [Centre for Nuclear and Radiation Physics, Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Department of Physics, Gomal University, D.I. Khan (Pakistan); Al Mugren, K S [Centre for Nuclear and Radiation Physics, Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Physics Department, Faculty of Sciences, Princess Nora Bint Abdul Rahman University, Riyadh (Saudi Arabia); Alkhomashi, N [King Abdulaziz City of Science and Technology (KACST), P.O. Box 6086, Riyadh 11442 (Saudi Arabia); Al-Dahan, N [Centre for Nuclear and Radiation Physics, Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Department of Physics, College of Science, University of Kerbala, Kerbala (Iraq); Al-Dosari, M [Radiation Protection and Chemicals Department, Ministry of Environment, P.O. Box 7634, Doha (Qatar); Bradley, D A [Centre for Nuclear and Radiation Physics, Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Bukhari, S [Information Systems Management Department, Ministry of Environment, P.O. Box 7634, Doha (Qatar); Matthews, M [Centre of Environmental Health Engineering, Department of Civil Engineering, University of Surrey, Guildford GU2 7XH (United Kingdom); Regan, P H [Centre for Nuclear and Radiation Physics, Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Santawamaitre, T [Radiation Protection and Chemicals Department, Ministry of Environment, P.O. Box 7634, Doha (Qatar); Malain, D; Habib, A [Centre for Nuclear and Radiation Physics, Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom)

    2012-07-15

    This study is aimed at the determination of the activity concentrations of naturally occuring and technologically enhanced levels of radiation in 34 representative soil samples that have been collected from an inshore oil field area which was found to have, in a previous study, the highest observed value of {sup 226}Ra concentration among 129 soil samples. The activity concentrations of {sup 238}U and {sup 226}Ra have been inferred from gamma-ray transitions associated with their decay progenies and measured using a hyper-pure germanium detector. Details of the sample preparation and the gamma-ray spectroscopic analysis techniques are presented, together with the values of the activity concentrations associated with the naturally occuring radionuclide chains for all the samples collected from NW Dukhan. Discrete-line, gamma-ray energy transitions from spectral lines ranging in energy from {approx}100 keV up to 2.6 MeV have been associated with characteristic decays of the various decay products within the {sup 235.8}U and {sup 232}Th radioactive decay chains. These data have been analyzed, under the assumption of secular equilibrium for the U and Th decay chains. Details of the sample preparation and the gamma-ray spectroscopic analysis techniques are presented. The weighted mean value of the activity concentrations of {sup 226}Ra in one of the samples was found to be around a factor of 2 higher than the values obtained in the previous study and approximately a factor of 10 higher than the accepted worldwide average value of 35 Bq/kg. The weighted mean values of the activity concentrations of {sup 232}Th and {sup 40}K were also deduced and found to be within the worldwide average values of 30 and 400 Bq/kg, respectively. Our previous study reported a value of 201.9{+-}1.5{sub Stat.}{+-}13{sub Syst.} Bq/kg for {sup 226}Ra in one sample and further investigation in the current work determined a measured value for {sup 226}Ra of 342.00{+-}1.9{sub Stat.}{+-}25{sub Syst

  10. Current segmented gamma-ray scanner technology

    International Nuclear Information System (INIS)

    Bjork, C.W.

    1987-01-01

    A new generation of segmented gamma-ray scanners has been developed at Los Alamos for scrap and waste measurements at the Savannah River Plant and the Los Alamos Plutonium Facility. The new designs are highly automated and exhibit special features such as good segmentation and thorough shielding to improve performance

  11. Discoveries by the Fermi Gamma Ray Space Telescope

    Science.gov (United States)

    Gehrels, Neil

    2011-01-01

    Fermi is a large space gamma-ray mission developed by NASA and the DOE with major contributions from France, Germany, Italy, Japan and Sweden. It was launched in June 2008 and has been performing flawlessly since then. The main instrument is the Large Area Telescope (LAT) operating in the 20 MeV to 300 GeV range and a smaller monitor instrument is the Gamma-ray Burst Monitor (GBM) operating in the 8 keV to 40 MeV range. New findings are occurring every week. Some of the key discoveries are: 1) Discovery of many new gamma-ray pulsars, including gamma-ray only and millisecond pulsars. 2) Detection of high energy gamma-ray emission from globular clusters, most likely due to summed emission from msec pulsars. 3) Discovery of delayed and extended high energy gamma-ray emission from short and long gamma-ray busts. 4) Detection of approximately 250 gamma-ray bursts per year with the GBM instrument. 5) Most accurate measurement of the cosmic ray electron spectrum between 30 GeV and 1 TeV, showing some excess above the conventional diffusion model. The talk will present the new discoveries and their implications.

  12. Apparatus for gamma ray radiography

    International Nuclear Information System (INIS)

    Kobayashi, Masatoshi; Enomoto, Shigemasa; Oga, Hiroshi

    1979-01-01

    This is the standard of Japan Non-Destructive Inspection Society, NDIS 1101-79, which stipulates on the design, construction and testing method of the apparatuses for gamma ray radiography used for taking industrial radiograms. The gamma ray apparatuses stipulated in this standard are those containing sealed radioactive isotopes exceeding 100 μCi, which emit gamma ray. The gamma ray apparatuses are classified into three groups according to their movability. The general design conditions, the irradiation dose rate and the sealed radiation sources for the gamma ray apparatuses are stipulated. The construction of the gamma ray apparatuses must be in accordance with the notification No. 52 of the Ministry of Labor, and safety devices and collimators must be equipped. The main bodies of the gamma ray apparatuses must pass the vibration test, penetration test, impact test and shielding efficiency test. The method of each test is described. The attached equipments must be also tested. The tests according to this standard are carried out by the makers of the apparatuses. The test records must be made when the apparatuses have passed the tests, and the test certificates are attached. The limit of guarantee by the endurance test must be clearly shown. The items to be shown on the apparatuses are stipulated. (Kako, I.)

  13. Comparison of laser fluorimetry, high resolution gamma-ray spectrometry and neutron activation analysis techniques for determination of uranium content in soil samples

    International Nuclear Information System (INIS)

    Ghods, A.; Asgharizadeh, F.; Salimi, B.; Abbasi, A.

    2004-01-01

    Much more concern is given nowadays for exposure of the world population to natural radiation especially to uranium since 57% of that exposure is due to radon-222, which is a member of uranium decay series. Most of the methods used for uranium determination is low concentration require either tedious separation and preconcentration or the accessibility to special instrumentation for detection of uranium at this low level. this study compares three techniques and methods for uranium analysis among different soil sample with variable uranium contents. Two of these techniques, neutron activation analysis and high resolution gamma-ray spectrometry , are non-destructive while the other, laser fluorimetry is done via chemical extraction of uranium. Analysis of standard materials is done also to control the quality and accuracy of the work. In spite of having quite variable ranges of detection limit, results obtained by high resolution gamma-ray spectrometry based on the assumption of having secular equilibrium between uranium and its daughters, which causes deviation whenever this condition was missed. For samples with reasonable uranium content, neutron activation analysis would be a rapid and reliable technique, while for low uranium content laser fluorimetry would be the most appropriate and accurate technique

  14. Applied gamma-ray spectrometry

    CERN Document Server

    Dams, R; Crouthamel, Carl E

    1970-01-01

    Applied Gamma-Ray Spectrometry covers real life application of the gamma-ray and the devices used in their experimental studies. This book is organized into 9 chapters, and starts with discussions of the various decay processes, the possible interaction mechanisms of gamma radiation with matter, and the intrinsic and extrinsic variables, which affect the observed gamma-ray and X-ray spectra. The subsequent chapters deal with the properties and fabrication of scintillation detectors, semiconductor detectors, and proportional gas counters. These chapters present some of the most widely utilized

  15. High-precision gamma-ray spectroscopy of 82Rb and 72As, two important medical isotopes used in positron emission tomography

    Science.gov (United States)

    Nino, Michael; McCutchan, E.; Smith, S.; Sonzogni, A.; Muench, L.; Greene, J.; Carpenter, M.; Zhu, S.; Lister, C.

    2015-10-01

    Both 82Rb and 72As are very important medical isotopes used in imaging procedures, yet their full decay schemes were last studied decades ago using low-sensitivity detection systems; high quality decay data is necessary to determine the total dose received by the patient, the background in imaging technologies, and shielding requirements in production facilities. To improve the decay data of these two isotopes, sources were produced at the Brookhaven Linac Isotope Producer (BLIP) and then the Gammasphere array, consisting of 89 Compton-suppressed HPGe detectors, at Argonne National Laboratory was used to analyze the gamma-ray emissions from the daughter nuclei 82 Kr and 72 Ge. Gamma-ray singles and coincidence information were recorded and analyzed using Radware Gf3m software. Significant revisions were made to the level schemes including the observation of many new transitions and levels as well as a reduction in uncertainty on measured γ-ray intensities and deduced β-feedings. The new decay schemes as well as their impact on dose calculations will be presented. DOE Isotope Program is acknowledged for funding ST5001030. Work supported by the U.S. DOE under Grant No. DE-FG02-94ER40848 and Contract Nos. DE-AC02-98CH10946 and DE-AC02-06CH11357 and by the Science Undergraduate Laboratory Internships Program (SULI).

  16. The supernova-gamma-ray burst-jet connection.

    Science.gov (United States)

    Hjorth, Jens

    2013-06-13

    The observed association between supernovae and gamma-ray bursts represents a cornerstone in our understanding of the nature of gamma-ray bursts. The collapsar model provides a theoretical framework for this connection. A key element is the launch of a bipolar jet (seen as a gamma-ray burst). The resulting hot cocoon disrupts the star, whereas the (56)Ni produced gives rise to radioactive heating of the ejecta, seen as a supernova. In this discussion paper, I summarize the observational status of the supernova-gamma-ray burst connection in the context of the 'engine' picture of jet-driven supernovae and highlight SN 2012bz/GRB 120422A--with its luminous supernova but intermediate high-energy luminosity--as a possible transition object between low-luminosity and jet gamma-ray bursts. The jet channel for supernova explosions may provide new insights into supernova explosions in general.

  17. Spatial distribution and polarization of gamma-rays generated via Compton backscattering in the Duke/OK-4 storage ring FEL

    CERN Document Server

    Park, S H; Tornow, W; Montgomery, C

    2001-01-01

    Beams of nearly monochromatic gamma-rays are produced via intracavity Compton backscattering in the OK-4/Duke storage ring FEL, the high-intensity gamma-ray source (HI gamma S). Presently, HI gamma S generates gamma-ray beams with an energy tunable from 2 to 58 MeV and a maximum flux of 5x10 sup 7 gamma-rays per second. The gamma-rays are linearly polarized with a degree of polarization close to 100% (V.N. Litvinenko, et al., Predictions and expected performance for the VUV OK-5/Duke Storage Ring FEL with variable polarization, Nucl. Instr. and Meth. A, to be published in this proceeding) and they are collimated to pencil-like semi-monoenergetic beams with RMS energy spreads as low as 0.2%. The detailed theoretical and experimental studies of the gamma-ray beam quality were conducted during the last two years (S.H. Park, Thesis, Duke University, Durham, NC, USA, 2000). In this paper, we present the theoretical analysis and the experimental results on the spatial distribution and polarization of gamma-rays fro...

  18. Spatial distribution and polarization of {gamma}-rays generated via Compton backscattering in the Duke/OK-4 storage ring FEL

    Energy Technology Data Exchange (ETDEWEB)

    Park, S.H. E-mail: shpark@nanum.kaeri.re.kr; Litvinenko, V.N.; Tornow, W.; Montgomery, C

    2001-12-21

    Beams of nearly monochromatic {gamma}-rays are produced via intracavity Compton backscattering in the OK-4/Duke storage ring FEL, the high-intensity {gamma}-ray source (HI{gamma}S). Presently, HI{gamma}S generates {gamma}-ray beams with an energy tunable from 2 to 58 MeV and a maximum flux of 5x10{sup 7} {gamma}-rays per second. The {gamma}-rays are linearly polarized with a degree of polarization close to 100% (V.N. Litvinenko, et al., Predictions and expected performance for the VUV OK-5/Duke Storage Ring FEL with variable polarization, Nucl. Instr. and Meth. A, to be published in this proceeding) and they are collimated to pencil-like semi-monoenergetic beams with RMS energy spreads as low as 0.2%. The detailed theoretical and experimental studies of the {gamma}-ray beam quality were conducted during the last two years (S.H. Park, Thesis, Duke University, Durham, NC, USA, 2000). In this paper, we present the theoretical analysis and the experimental results on the spatial distribution and polarization of {gamma}-rays from the HI{gamma}S facility.

  19. Gamma-ray Emission from Globular Clusters

    Directory of Open Access Journals (Sweden)

    Pak-Hin T. Tam

    2016-03-01

    Full Text Available Over the last few years, the data obtained using the Large Area Telescope (LAT aboard the Fermi Gamma-ray Space Telescope has provided new insights on high-energy processes in globular clusters, particularly those involving compact objects such as MilliSecond Pulsars (MSPs. Gamma-ray emission in the 100 MeV to 10 GeV range has been detected from more than a dozen globular clusters in our galaxy, including 47 Tucanae and Terzan 5. Based on a sample of known gammaray globular clusters, the empirical relations between gamma-ray luminosity and properties of globular clusters such as their stellar encounter rate, metallicity, and possible optical and infrared photon energy densities, have been derived. The measured gamma-ray spectra are generally described by a power law with a cut-off at a few gigaelectronvolts. Together with the detection of pulsed γ-rays from two MSPs in two different globular clusters, such spectral signature lends support to the hypothesis that γ-rays from globular clusters represent collective curvature emission from magnetospheres of MSPs in the clusters. Alternative models, involving Inverse-Compton (IC emission of relativistic electrons that are accelerated close to MSPs or pulsar wind nebula shocks, have also been suggested. Observations at >100 GeV by using Fermi/LAT and atmospheric Cherenkov telescopes such as H.E.S.S.-II, MAGIC-II, VERITAS, and CTA will help to settle some questions unanswered by current data.

  20. Inverse Compton gamma-rays from galactic dark matter annihilation. Anisotropy signatures

    International Nuclear Information System (INIS)

    Zhang, Le; Sigl, Guenter; Miniati, Francesco

    2010-08-01

    High energy electrons and positrons from annihilating dark matter can imprint unique angular anisotropies on the diffuse gamma-ray flux by inverse Compton scattering off the interstellar radiation field. We develop a numerical tool to compute gamma-ray emission from such electrons and positrons diffusing in the smooth host halo and in substructure halos with masses down to 10 -6 M s un. We show that, unlike the total gamma-ray angular power spectrum observed by Fermi-LAT, the angular power spectrum from inverse Compton scattering is exponentially suppressed below an angular scale determined by the diffusion length of electrons and positrons. For TeV scale dark matter with a canonical thermal freeze-out cross section 3 x 10 -26 cm 3 /s, this feature may be detectable by Fermi-LAT in the energy range 100-300 GeV after more sophisticated foreground subtraction. We also find that the total flux and the shape of the angular power spectrum depends sensitively on the spatial distribution of subhalos in the Milky Way. Finally, the contribution from the smooth host halo component to the gamma-ray mean intensity is negligibly small compared to subhalos. (orig.)

  1. Inverse Compton gamma-rays from galactic dark matter annihilation. Anisotropy signatures

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Le; Sigl, Guenter [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Miniati, Francesco [ETH Zuerich (Switzerland). Physics Dept.

    2010-08-15

    High energy electrons and positrons from annihilating dark matter can imprint unique angular anisotropies on the diffuse gamma-ray flux by inverse Compton scattering off the interstellar radiation field. We develop a numerical tool to compute gamma-ray emission from such electrons and positrons diffusing in the smooth host halo and in substructure halos with masses down to 10{sup -6}M{sub s}un. We show that, unlike the total gamma-ray angular power spectrum observed by Fermi-LAT, the angular power spectrum from inverse Compton scattering is exponentially suppressed below an angular scale determined by the diffusion length of electrons and positrons. For TeV scale dark matter with a canonical thermal freeze-out cross section 3 x 10{sup -26} cm{sup 3}/s, this feature may be detectable by Fermi-LAT in the energy range 100-300 GeV after more sophisticated foreground subtraction. We also find that the total flux and the shape of the angular power spectrum depends sensitively on the spatial distribution of subhalos in the Milky Way. Finally, the contribution from the smooth host halo component to the gamma-ray mean intensity is negligibly small compared to subhalos. (orig.)

  2. Gamma-ray flares from the Crab Nebula.

    Science.gov (United States)

    Abdo, A A; Ackermann, M; Ajello, M; Allafort, A; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bouvier, A; Brandt, T J; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Buehler, R; Buson, S; Caliandro, G A; Cameron, R A; Cannon, A; Caraveo, P A; Casandjian, J M; Çelik, Ö; Charles, E; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Costamante, L; Cutini, S; D'Ammando, F; Dermer, C D; de Angelis, A; de Luca, A; de Palma, F; Digel, S W; do Couto e Silva, E; Drell, P S; Drlica-Wagner, A; Dubois, R; Dumora, D; Favuzzi, C; Fegan, S J; Ferrara, E C; Focke, W B; Fortin, P; Frailis, M; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Grenier, I A; Grondin, M-H; Grove, J E; Guiriec, S; Hadasch, D; Hanabata, Y; Harding, A K; Hayashi, K; Hayashida, M; Hays, E; Horan, D; Itoh, R; Jóhannesson, G; Johnson, A S; Johnson, T J; Khangulyan, D; Kamae, T; Katagiri, H; Kataoka, J; Kerr, M; Knödlseder, J; Kuss, M; Lande, J; Latronico, L; Lee, S-H; Lemoine-Goumard, M; Longo, F; Loparco, F; Lubrano, P; Madejski, G M; Makeev, A; Marelli, M; Mazziotta, M N; McEnery, J E; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nakamori, T; Naumann-Godo, M; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Okumura, A; Omodei, N; Ormes, J F; Ozaki, M; Paneque, D; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Pierbattista, M; Piron, F; Porter, T A; Rainò, S; Rando, R; Ray, P S; Razzano, M; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Romani, R W; Sadrozinski, H F-W; Sanchez, D; Saz Parkinson, P M; Scargle, J D; Schalk, T L; Sgrò, C; Siskind, E J; Smith, P D; Spandre, G; Spinelli, P; Strickman, M S; Suson, D J; Takahashi, H; Takahashi, T; Tanaka, T; Thayer, J B; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Troja, E; Uchiyama, Y; Vandenbroucke, J; Vasileiou, V; Vianello, G; Vitale, V; Wang, P; Wood, K S; Yang, Z; Ziegler, M

    2011-02-11

    A young and energetic pulsar powers the well-known Crab Nebula. Here, we describe two separate gamma-ray (photon energy greater than 100 mega-electron volts) flares from this source detected by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. The first flare occurred in February 2009 and lasted approximately 16 days. The second flare was detected in September 2010 and lasted approximately 4 days. During these outbursts, the gamma-ray flux from the nebula increased by factors of four and six, respectively. The brevity of the flares implies that the gamma rays were emitted via synchrotron radiation from peta-electron-volt (10(15) electron volts) electrons in a region smaller than 1.4 × 10(-2) parsecs. These are the highest-energy particles that can be associated with a discrete astronomical source, and they pose challenges to particle acceleration theory.

  3. Gamma-ray flares from the Crab nebula

    International Nuclear Information System (INIS)

    Abdo, A.A.; Ackermann, M.; Ajello, M.; Allafort, A.; Baldini, L.; Ballet, J.; Casandjian, J.M.; Grenier, I.A.; Naumann-Godo, M.; Pierbattista, M.; Tibaldo, L.

    2011-01-01

    A young and energetic pulsar powers the well-known Crab Nebula. Here, we describe two separate gamma-ray (photon energy greater than 100 mega-electron volts) flares from this source detected by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. The first flare occurred in February 2009 and lasted approximately 16 days. The second flare was detected in September 2010 and lasted approximately 4 days. During these outbursts, the gamma-ray flux from the nebula increased by factors of four and six, respectively. The brevity of the flares implies that the gamma rays were emitted via synchrotron radiation from peta-electron-volt (10 15 electron volts) electrons in a region smaller than 1.4 * 10 -2 parsecs. These are the highest-energy particles that can be associated with a discrete astronomical source, and they pose challenges to particle acceleration theory. (authors)

  4. Multiwavelength Study of Gamma-Ray Bright Blazars

    Science.gov (United States)

    Morozova, Daria; Larionov, V. M.; Hagen-Thorn, V. A.; Jorstad, S. G.; Marscher, A. P.; Troitskii, I. S.

    2011-01-01

    We investigate total intensity radio images of 6 gamma-ray bright blazars (BL Lac, 3C 279, 3C 273, W Com, PKS 1510-089, and 3C 66A) and their optical and gamma-ray light curves to study connections between gamma-ray and optical brightness variations and changes in the parsec-scale radio structure. We use high-resolution maps obtained by the BU group at 43 GHz with the VLBA, optical light curves constructed by the St.Petersburg State U. (Russia) team using measurements with the 0.4 m telescope of St.Petersburg State U. (LX200) and the 0.7 m telescope of the Crimean Astrophysical Observatory (AZT-8), and gamma-ray light curves, which we have constructed with data provided by the Fermi Large Area Telescope. Over the period from August 2008 to November 2009, superluminal motion is found in all 6 objects with apparent speed ranging from 2c to 40c. The blazars with faster apparent speeds, 3C 273, 3C 279, PKS 1510-089, and 3C 66A, exhibit stronger variability of the gamma-ray emission. There is a tendency for sources with sharply peaked gamma-ray flares to have faster jet speed than sources with gamma-ray light curves with no sharp peaks. Gamma-ray light curves with sharply peaked gamma-ray flares possess a stronger gamma-ray/optical correlations. The research at St.Petersburg State U. was funded by the Minister of Education and Science of the Russian Federation (state contract N#P123). The research at BU was funded in part by NASA Fermi Guest Investigator grant NNX08AV65G and by NSF grant AST-0907893. The VLBA is an instrument of the National Radio Astronomy Observatory, a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

  5. X-ray and. gamma. -ray sources: a comparison of their characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Freund, A K [Institut Max von Laue - Paul Langevin, 38 - Grenoble (France)

    1979-11-01

    A comparison of the various source characteristics, in particular the available fluxes of radiation in the X-ray/..gamma..-ray region from (1) high power rotary anode X-ray generators, (2) radioactive ..gamma..-ray sources and (3) high energy electron storage rings is presented. Some of the specific characteristics and possible applications of synchrotron radiation as a source are discussed in detail, together with problems associated with the monochromatization of the continuous radiation in the X-ray/..gamma..-ray region. The new high energy machines PEP at Stanford, the 8 GeV storage ring CESR at Cornell and the PETRA storage ring in Hamburg, which will soon come into operation provide a spectrum of high intensity radiation reaching well above h..gamma..sub(photon)=100 keV. The possibilities of using ondulators (wigglers), and laser-electron scattering for constructing high repetition rate tunable ..gamma..-ray sources are also discussed. Finally the potentials of using the powerful spontaneous emission of ..gamma..-quanta by relativistic channeled particles are mentioned.

  6. Gamma ray bursts of black hole universe

    Science.gov (United States)

    Zhang, T. X.

    2015-07-01

    Slightly modifying the standard big bang theory, Zhang recently developed a new cosmological model called black hole universe, which has only a single postulate but is consistent with Mach's principle, governed by Einstein's general theory of relativity, and able to explain existing observations of the universe. In the previous studies, we have explained the origin, structure, evolution, expansion, cosmic microwave background radiation, quasar, and acceleration of black hole universe, which grew from a star-like black hole with several solar masses through a supermassive black hole with billions of solar masses to the present state with hundred billion-trillions of solar masses by accreting ambient matter and merging with other black holes. This study investigates gamma ray bursts of black hole universe and provides an alternative explanation for the energy and spectrum measurements of gamma ray bursts according to the black hole universe model. The results indicate that gamma ray bursts can be understood as emissions of dynamic star-like black holes. A black hole, when it accretes its star or merges with another black hole, becomes dynamic. A dynamic black hole has a broken event horizon and thus cannot hold the inside hot (or high-frequency) blackbody radiation, which flows or leaks out and produces a GRB. A star when it collapses into its core black hole produces a long GRB and releases the gravitational potential energy of the star as gamma rays. A black hole that merges with another black hole produces a short GRB and releases a part of their blackbody radiation as gamma rays. The amount of energy obtained from the emissions of dynamic star-like black holes are consistent with the measurements of energy from GRBs. The GRB energy spectra derived from this new emission mechanism are also consistent with the measurements.

  7. Application of high resolution NMR, ESR, and gamma-ray scintillation spectroscopy to the study of ligand binding in proteins

    International Nuclear Information System (INIS)

    Lancione, G.V.

    1982-01-01

    Electron spin resonance spectroscopy has been employed to study the nature of the ligand binding site of alpha-1-antitrypsin. Spectra of spin-labeled alpha-1-antitrypsin were recorded at pH's ranging from 2.4 to 12.5. This data demonstrates the tight binding of the spin-label to the protease, and the sensitivity of the bound spin-label to informational changes in the protease inhibitor. A molecular dipstick approach has also been applied to this system and has yielded information on the geometry of the cleft accommodating the spin-label. 160 Terbium(III) exchange experiments have been performed on the acetylcholine receptor protein isolated from Torpedo californica, employing a specially designed flow dialysis apparatus constructed in the laboratory. The apparatus is designed to allow continuous monitoring of 160 Tb(III) gamma-ray emission from the protein compartment of the flow dialysis cell. Nicotinic ligand-induced displacement of 160 Tb(III) from the nicotinic binding site of the receptor was monitored as a funtion of (1) the concentration of nicotinic ligand in the washout buffer, and (2) the nature of the nicotinic ligand in the buffer. Measured 160 Tb(III) exchange half-lives indicate (1) a direct relationship between 160 Tb(III) displacement and nicotinic ligand concentration in the wash-out buffer, and (2) an enhanced 160 Tb(III) displacement for nicotinic agents possessing quaternary ammonium functions

  8. The relative biological effectiveness (RBE) of high-energy electrons, x-rays and Co-60 gamma-rays

    International Nuclear Information System (INIS)

    Kiyono, Kunihiro

    1974-01-01

    Linac (Mitsubishi-Shimizu 15 MeV medical linear accelerator) electron beams with actual generated energies of 8, 10, 12 and 15 MeV were compared with X-ray beams having energies of 8 and 10 MV. The RBE values were calculated from 50 percent hatch-ability (LD 50 ) in silk-worm embryos, 30-days lethality (LDsub(50/30)) in ddY mice, and mean lethal dose (Do) in cultured mouse YL cells or human FL cells. To estimate the RBE in clinical experiments, LRD (leukocyte reduction dose) value was calculated for each patient irradiated on the chest or lumbar vertebrae. It was concluded that there is little difference in practical significance between 8 to 10 MV X-rays and 8 to 15 MeV electrons, and that the biological effects of Linac radiations are about 90 to 100 percent of the effect of 60 Co gamma rays. The RBE values gradually decreased, contrary to the elevation of energy between 8 and 15 MeV for electrons and between 8 and 10 MV for X-rays. These values were compared with those of earlier reviews of work in this field, and were briefly discussed. (Evans, J.)

  9. The History of Ground-Based Very High Energy Gamma-Ray Astrophysics with the Atmospheric Air Cherenkov Telescope Technique

    Energy Technology Data Exchange (ETDEWEB)

    Mirzoyan, Razmik

    2013-06-15

    In the recent two decades the ground-based technique of imaging atmosphericescopes has established itself as a powerful new discipline in science. As of today some ∼ 150 sources of gamma rays of very different types, of both galactic and extragalactic origin, have been discovered due to this technique. The study of these sources is providing clues to many basic questions in astrophysics, astro-particle physics, physics of cosmic rays and cosmology. The current generation of telescopes, despite the young age of the technique, offers a solid performance. The technique is still maturing, leading to the next generation large instrument known under the name Cherenkov Telescope Array. The latter's sensitivity will be an order of magnitude higher than that of the currently best instruments VERITAS, H.E.S.S. and MAGIC. This article is devoted to outlining the milestones in a long history that step-by-step have given shape to this technique and have brought about today's successful source marathon.

  10. Measurement of electron drift velocities in the mixture of Xe and He for a new high-pressure Xe gamma-ray detector

    CERN Document Server

    Kobayashi, S; Dmitrenko, V V

    2003-01-01

    Drift velocities of electrons in a mixture of Xe (20 atm)-He (3 atm) were measured using a cylindrical high-pressure xenon chamber. The drift velocities were found to be greater than 3x10 sup 5 cm/s above the reduced electric field of 2.0x10 sup - sup 1 sup 8 V centre dot cm sup 2 at room temperature, which are close to those in Xe-H sub 2 (0.3%). The mixture of He gas into high-pressure xenon improved the resolving time of detectors because it increased the electron drift velocities. This implies that a high-pressure xenon chamber mixed with sup 3 He instead of He gas operates as a gamma-ray detector sensitive to thermal neutrons. (author)

  11. Constraining decaying dark matter with FERMI-LAT gamma rays

    International Nuclear Information System (INIS)

    Maccione, L.

    2011-01-01

    High energy electron sand positrons from decaying dark matter can produce a significant flux of gamma rays by inverse Compton of low energy photons in the interstellar radiation field. This possibility is inevitably related with the dark matter interpretation of the observed PAMELA and FERMI excesses. We will describe a simple and universal method to constrain dark matter models which produce electrons and positrons in their decay by using the FERMI-LAT gamma-ray observations in the energy range between 0.5 GeV and 300 GeV, by exploiting universal response functions that, once convolved with a specific dark matter model, produce the desired constraint. The response functions contain all the astrophysical inputs. Here is discussed the uncertainties in the determination of the response functions and apply them to place constraints on some specific dark matter decay models that can well fit the positron and electron fluxes observed by PAMELA and FERMI LAT, also taking into account prompt radiation from the dark matter decay. With the available data decaying dark matter can not be excluded as source of the PAMELA positron excess.

  12. First detection of very-high-energy gamma-ray emission from the extreme blazar PGC 2402248 with the MAGIC telescopes

    Science.gov (United States)

    Mirzoyan, Razmik

    2018-04-01

    The MAGIC collaboration reports the first detection of very-high-energy (VHE; E > 100 GeV) gamma-ray emission from PGC 2402248, also known as 2WHSP J073326.7+515354 (Chang et al. 2016, A & A, 598, A17) with coordinates R.A.: 07:33:26.7 h, Dec: +51:53:54.99 deg. The source is classified as an extreme high-energy peaked BL Lacertae object of unknown redshift, included in the 2WHSP catalog with a synchrotron peak located at 10^17.9 Hz. PGC 2402248 was observed with the MAGIC telescopes from 2018/01/23 to 2018/04/18 (MJD 58141-58226) for about 23 h. The preliminary analysis of these data resulted in the detection of PGC 2402248 with a statistical significance of more than 6 standard deviations.

  13. Cosmic gamma-ray burst

    International Nuclear Information System (INIS)

    Yamagami, Takamasa

    1985-01-01

    Ballon experiments for searching gamma-ray burst were carried out by employing rotating-cross modulation collimators. From a very long observation of total 315 hours during 1975 to 1979, three gamma-ray intensity anomalies were observed which were speculated as a gamma-ray burst. As for the first gamma-ray intensity anomaly observed in 1975, the burst source could be located precisely but the source, heavenly body, could not be specified. Gamma-ray burst source estimation was made by analyzing distribution of burst source in the celestial sphere, burst size distribution, and burst peak. Using the above-mentioned data together with previously published ones, apparent inconsistency was found between the observed results and the adopted theory that the source was in the Galaxy, and this inconsistency was found due to the different time profiles of the burst observed with instruments of different efficiency. It was concluded by these analysis results that employment of logN - logP (relation between burst frequency and burst count) was better than that of logN - logS (burst size) in the examination of gamma-ray burst because the former was less uncertain than the latter. Analyzing the author's observed gamma-ray burst data and the related published data, it was clarified that the burst distribution was almost P -312 for the burst peak value larger than 10 -6 erg/cm 2 .sec. The author could indicate that the calculated celestial distribution of burst source was consistent with the observed results by the derivation using the logN - logP relationship and that the burst larger than 10 -6 erg/cm 2 .sec happens about one thousand times a year, about ten times of the previous value. (Takagi, S.)

  14. Compton Gamma-Ray Observatory

    Science.gov (United States)

    1991-01-01

    This photograph shows the Compton Gamma-Ray Observatory (GRO) being deployed by the Remote Manipulator System (RMS) arm aboard the Space Shuttle Atlantis during the STS-37 mission in April 1991. The GRO reentered Earth atmosphere and ended its successful mission in June 2000. For nearly 9 years, the GRO Burst and Transient Source Experiment (BATSE), designed and built by the Marshall Space Flight Center (MSFC), kept an unblinking watch on the universe to alert scientists to the invisible, mysterious gamma-ray bursts that had puzzled them for decades. By studying gamma-rays from objects like black holes, pulsars, quasars, neutron stars, and other exotic objects, scientists could discover clues to the birth, evolution, and death of stars, galaxies, and the universe. The gamma-ray instrument was one of four major science instruments aboard the Compton. It consisted of eight detectors, or modules, located at each corner of the rectangular satellite to simultaneously scan the entire universe for bursts of gamma-rays ranging in duration from fractions of a second to minutes. In January 1999, the instrument, via the Internet, cued a computer-controlled telescope at Las Alamos National Laboratory in Los Alamos, New Mexico, within 20 seconds of registering a burst. With this capability, the gamma-ray experiment came to serve as a gamma-ray burst alert for the Hubble Space Telescope, the Chandra X-Ray Observatory, and major gound-based observatories around the world. Thirty-seven universities, observatories, and NASA centers in 19 states, and 11 more institutions in Europe and Russia, participated in the BATSE science program.

  15. Probing the very-high-energy gamma-ray spectral curvature in the blazar PG 1553+113 with the MAGIC telescopes

    CERN Document Server

    Aleksić, J.; Antonelli, L A; Antoranz, P; Babic, A; Bangale, P; Barrio, J A; González, J Becerra; Bednarek, W; Bernardini, E; Biasuzzi, B; Biland, A; Blanch, O; Bonnefoy, S; Bonnoli, G; Borracci, F; Bretz, T; Carmona, E; Carosi, A; Colin, P; Colombo, E; Contreras, J.L; Cortina, J; Covino, S; Da Vela, P; Dazzi, F; De Angelis, A; De Caneva, G; De Lotto, B; Wilhelmi, E de Oña; Mendez, C Delgado; Prester, D Dominis; Dorner, D; Doro, M; Einecke, S; Eisenacher, D; Elsaesser, D; Fidalgo, D; Fonseca, M.V; Font, L; Frantzen, K; Fruck, C; Galindo, D; López, R J García; Garczarczyk, M; Terrats, D Garrido; Gaug, M; Godinović, N; Muñoz, A González; Gozzini, S R; Hadasch, D; Hanabata, Y; Hayashida, M; Herrera, J; Hose, J; Hrupec, D; Idec, W; Kadenius, V; Kellermann, H; Knoetig, M L; Kodani, K; Konno, Y; Krause, J; Kubo, H; Kushida, J; La Barbera, A; Lelas, D; Lewandowska, N; Lindfors, E; Lombardi, S; Longo, F; López, M; López-Coto, R; López-Oramas, A; Lorenz, E; Lozano, I; Makariev, M; Mallot, K; Maneva, G; Mannheim, K; Maraschi, L; Marcote, B; Mariotti, M; Martínez, M; Mazin, D; Menzel, U; Miranda, J M; Mirzoyan, R; Moralejo, A; Munar-Adrover, P; Nakajima, D; Neustroev, V; Niedzwiecki, A; Nilsson, K; Nishijima, K; Noda, K; Orito, R; Overkemping, A; Paiano, S; Palatiello, M; Paneque, D; Paoletti, R; Paredes, J M; Paredes-Fortuny, X; Persic, M; Poutanen, J; Moroni, P G Prada; Prandini, E; Puljak, I; Reinthal, R; Rhode, W; Ribó, M; Rico, J; Garcia, J Rodriguez; Rügamer, S; Saito, T; Saito, K; Satalecka, K; Scalzotto, V; Scapin, V; Schultz, C; Schweizer, T; Sillanpää, A; Sitarek, J; Snidaric, I; Sobczynska, D; Spanier, F; Stamerra, A; Steinbring, T; Storz, J; Strzys, M; Takalo, L; Takami, H; Tavecchio, F; Temnikov, P; Terzić, T; Tescaro, D; Teshima, M; Thaele, J; Tibolla, O; Torres, D F; Toyama, T; Treves, A; Vogler, P; Will, M; Zanin, R; D'Ammando, F; Lähteenmäki, A; Tornikoski, M; Hovatta, T; Readhead, A C S; Max-Moerbeck, W; Richards, J.L

    2015-01-01

    PG 1553+113 is a very-high-energy (VHE, E>100 GeV) gamma-ray emitter classified as a BL Lac object. Its redshift is constrained by intergalactic absorption lines in the range 0.40.2). The observed curvature is compatible with the extragalactic background light (EBL) imprint predicted by the current generation of EBL models assuming a redshift z~0.4. New constraints on the redshift were derived from the VHE spectrum. These constraints are compatible with previous limits and suggest that the source is most likely located around the optical lower limit, z=0.4. Finally, we find that the synchrotron self-Compton (SSC) model gives a satisfactory description of the observed multi-wavelength spectral energy distribution during the flare.

  16. Presentation of a semiempirical method for the calculation of doses due to neutrons and capture gamma rays inside high energy accelerators rooms

    International Nuclear Information System (INIS)

    Larcher, A.M.; Bonet Duran, S.M.

    1998-01-01

    Full text: Medical electron accelerators operating above 10 MeV produce radiation beams that are contaminated with neutrons. Therefore, shielding design for high energy accelerator rooms must consider the neutron component of the radiation field. In this paper a semiempirical method is presented to calculate doses due to neutrons and capture gamma rays inside the room and the maze. The calculation method is based on the knowledge of the neutron yield Q (neutrons/Gy of photons at isocenter) and the average energy of the primary beam of neutrons Eo (MeV). The method constitutes an appropriate tool for shielding facilities evaluation. The accuracy of the method has been contrasted with data obtained from the literature and an excellent correlation among the calculations and the measured values was achieved. In addition, the method has been used in the verification of experimental data corresponding to a 15 MeV linear accelerator installed in the country with similar results. (author) [es

  17. Design Study for Direction Variable Compton Scattering Gamma Ray

    Science.gov (United States)

    Kii, T.; Omer, M.; Negm, H.; Choi, Y. W.; Kinjo, R.; Yoshida, K.; Konstantin, T.; Kimura, N.; Ishida, K.; Imon, H.; Shibata, M.; Shimahashi, K.; Komai, T.; Okumura, K.; Zen, H.; Masuda, K.; Hori, T.; Ohgaki, H.

    2013-03-01

    A monochromatic gamma ray beam is attractive for isotope-specific material/medical imaging or non-destructive inspection. A laser Compton scattering (LCS) gamma ray source which is based on the backward Compton scattering of laser light on high-energy electrons can generate energy variable quasi-monochromatic gamma ray. Due to the principle of the LCS gamma ray, the direction of the gamma beam is limited to the direction of the high-energy electrons. Then the target object is placed on the beam axis, and is usually moved if spatial scanning is required. In this work, we proposed an electron beam transport system consisting of four bending magnets which can stick the collision point and control the electron beam direction, and a laser system consisting of a spheroidal mirror and a parabolic mirror which can also stick the collision point. Then the collision point can be placed on one focus of the spheroid. Thus gamma ray direction and collision angle between the electron beam and the laser beam can be easily controlled. As the results, travelling direction of the LCS gamma ray can be controlled under the limitation of the beam transport system, energy of the gamma ray can be controlled by controlling incident angle of the colliding beams, and energy spread can be controlled by changing the divergence of the laser beam.

  18. Gamma-Ray Imaging Spectrometer (GRIS): a new balloon-borne experiment for gamma-ray line astronomy

    International Nuclear Information System (INIS)

    Teegarden, B.J.; Cline, T.L.; Gehrels, N.; Porreca, G.; Tueller, J.; Leventhal, M.; Huters, A.F.; Maccallum, C.J.; Stang, P.D.; Sandia Labs., Albuquerque, NM)

    1985-01-01

    High resolution gamma-ray spectroscopy is a relatively new field that holds great promise for further understanding of high energy astrophysical processes. When the high resolution gamma-ray spectrometer (GRSE) was removed from the GRO payload, a balloon program was initiated to permit continued development and improvement of instrumentation in this field, as well as continued scientific observations. The Gamma-Ray Imaging Spectrometer (GRIS) is one of the experiments selected as part of this program. The instrument contains a number of new and innovative features that are expected to produce a significant improvement in source location accuracy and sensitivity over previous balloon and satellite experiments

  19. Radiation Dosimetry of the Pressure Vessel Internals of the High Flux Beam Reactor

    Science.gov (United States)

    Holden, Norman E.; Reciniello, Richard N.; Hu, Jih-Perng; Rorer, David C.

    2003-06-01

    In preparation for the eventual decommissioning of the High Flux Beam Reactor after the permanent removal of its fuel elements from the Brookhaven National Laboratory, both measurements and calculations of the decay gamma-ray dose rate have been performed for the reactor pressure vessel and vessel internal structures which included the upper and lower thermal shields, the Transition Plate, and the Control Rod blades. The measurements were made using Red Perspex™ polymethyl methacrylate high-level film dosimeters, a Radcal "peanut" ion chamber, and Eberline's high-range ion chamber. To compare with measured gamma-ray dose rates, the Monte Carlo MCNP code and geometric progressive MicroShield code were used to model the gamma-ray transport and dose buildup.

  20. Broad Line Radio Galaxies Observed with Fermi-LAT: The Origin of the GeV Gamma-Ray Emission

    Energy Technology Data Exchange (ETDEWEB)

    Kataoka, J.; /Waseda U., RISE; Stawarz, L.; /JAXA, Sagamihara /Jagiellonian U., Astron. Observ.; Takahashi, Y.; /Waseda U., RISE; Cheung, C.C.; /Natl. Acad. Sci. /Naval Research Lab, Wash., D.C.; Hayashida, M.; /SLAC /Stanford U., HEPL /KIPAC, Menlo Park; Grandi, P.; /Bologna Observ.; Burnett, T.H.; /Washington U., Seattle; Celotti, A.; /SISSA, Trieste; Fegan, S.J.; Fortin, P.; /Ecole Polytechnique; Maeda, K.; Nakamori, T.; /Waseda U., RISE; Taylor, G.B.; /New Mexico U.; Tosti, G.; /INFN, Perugia /Perugia U.; Digel, S.W.; /SLAC /Stanford U., HEPL /KIPAC, Menlo Park; McConville, W.; /NASA, Goddard /Maryland U.; Finke, J.; /Naval Research Lab, Wash., D.C.; D' Ammando, F.; /IASF, Palermo /INAF, Rome

    2012-06-07

    We report on a detailed investigation of the {gamma}-ray emission from 18 broad line radio galaxies (BLRGs) based on two years of Fermi Large Area Telescope (LAT) data. We confirm the previously reported detections of 3C 120 and 3C 111 in the GeV photon energy range; a detailed look at the temporal characteristics of the observed {gamma}-ray emission reveals in addition possible flux variability in both sources. No statistically significant {gamma}-ray detection of the other BLRGs was however found in the considered dataset. Though the sample size studied is small, what appears to differentiate 3C 111 and 3C 120 from the BLRGs not yet detected in {gamma}-rays is the particularly strong nuclear radio flux. This finding, together with the indications of the {gamma}-ray flux variability and a number of other arguments presented, indicate that the GeV emission of BLRGs is most likely dominated by the beamed radiation of relativistic jets observed at intermediate viewing angles. In this paper we also analyzed a comparison sample of high accretion-rate Seyfert 1 galaxies, which can be considered radio-quiet counterparts of BLRGs, and found none were detected in {gamma}-rays. A simple phenomenological hybrid model applied for the broad-band emission of the discussed radio-loud and radio-quiet type 1 active galaxies suggests that the relative contribution of the nuclear jets to the accreting matter is {ge} 1% on average for BLRGs, while {le} 0.1% for Seyfert 1 galaxies.

  1. SPECTRAL ANALYSIS AND INTERPRETATION OF THE {gamma}-RAY EMISSION FROM THE STARBURST GALAXY NGC 253

    Energy Technology Data Exchange (ETDEWEB)

    Abramowski, A. [Institut fuer Experimentalphysik, Universitaet Hamburg, Luruper Chaussee 149, D-22761 Hamburg (Germany); Acero, F. [Laboratoire Univers et Particules de Montpellier, Universite Montpellier 2, CNRS/IN2P3, CC 72, Place Eugene Bataillon, F-34095 Montpellier Cedex 5 (France); Aharonian, F.; Bernloehr, K.; Bochow, A. [Max-Planck-Institut fuer Kernphysik, P.O. Box 103980, D-69029 Heidelberg (Germany); Akhperjanian, A. G. [National Academy of Sciences of the Republic of Armenia, Yerevan (Armenia); Anton, G.; Balzer, A.; Brucker, J. [Physikalisches Institut, Universitaet Erlangen-Nuernberg, Erwin-Rommel-Str. 1, D-91058 Erlangen (Germany); Barnacka, A. [Nicolaus Copernicus Astronomical Center, ul. Bartycka 18, 00-716 Warsaw (Poland); Becherini, Y. [APC, AstroParticule et Cosmologie, Universite Paris Diderot, CNRS/IN2P3, CEA/lrfu, Observatoire de Paris, Sorbonne Paris Cite, 10, rue Alice Domon et Leonie Duquet, F-75205 Paris Cedex 13 (France); Becker, J. [Institut fuer Theoretische Physik, Lehrstuhl IV: Weltraum und Astrophysik, Ruhr-Universitaet Bochum, D-44780 Bochum (Germany); Birsin, E. [Institut fuer Physik, Humboldt-Universitaet zu Berlin, Newtonstr. 15, D-12489 Berlin (Germany); Biteau, J.; Brun, F. [Laboratoire Leprince-Ringuet, Ecole Polytechnique, CNRS/IN2P3, F-91128 Palaiseau (France); Boisson, C. [LUTH, Observatoire de Paris, CNRS, Universite Paris Diderot, 5 Place Jules Janssen, F-92190 Meudon (France); Bolmont, J. [LPNHE, Universite Pierre et Marie Curie Paris 6, Universite Denis Diderot Paris 7, CNRS/IN2P3, 4 Place Jussieu, F-75252, Paris Cedex 5 (France); Bordas, P. [Institut fuer Astronomie und Astrophysik, Universitaet Tuebingen, Sand 1, D-72076 Tuebingen (Germany); Brun, P. [CEA Saclay, DSM/IRFU, F-91191 Gif-Sur-Yvette Cedex (France); Bulik, T., E-mail: stefan.ohm@le.ac.uk [Astronomical Observatory, The University of Warsaw, Al. Ujazdowskie 4, 00-478 Warsaw (Poland); Collaboration: H.E.S.S. Collaboration; and others

    2012-10-01

    Very high energy (VHE; E {>=} 100 GeV) and high-energy (HE; 100 MeV {<=} E {<=} 100 GeV) data from {gamma}-ray observations performed with the H.E.S.S. telescope array and the Fermi-LAT instrument, respectively, are analyzed in order to investigate the non-thermal processes in the starburst galaxy NGC 253. The VHE {gamma}-ray data can be described by a power law in energy with differential photon index {Gamma} = 2.14 {+-} 0.18{sub stat} {+-} 0.30{sub sys} and differential flux normalization at 1 TeV of F{sub 0} = (9.6 {+-} 1.5{sub stat}(+ 5.7, -2.9){sub sys}) Multiplication-Sign 10{sup -14} TeV{sup -1} cm{sup -2} s{sup -1}. A power-law fit to the differential HE {gamma}-ray spectrum reveals a photon index of {Gamma} 2.24 {+-} 0.14{sub stat} {+-} 0.03{sub sys} and an integral flux between 200 MeV and 200 GeV of F(0.2-200 GeV) = (4.9 {+-} 1.0{sub stat} {+-} 0.3{sub sys}) Multiplication-Sign 10{sup -9} cm{sup -2} s{sup -1}. No evidence for a spectral break or turnover is found over the dynamic range of both the LAT instrument and the H.E.S.S. experiment: a combined fit of a power law to the HE and VHE {gamma}-ray data results in a differential photon index {Gamma} = 2.34 {+-} 0.03 with a p-value of 30%. The {gamma}-ray observations indicate that at least about 20% of the energy of the cosmic rays (CRs) capable of producing hadronic interactions is channeled into pion production. The smooth alignment between the spectra in the HE and VHE {gamma}-ray domain suggests that the same transport processes dominate in the entire energy range. Advection is most likely responsible for charged particle removal from the starburst nucleus from GeV to multiple TeV energies. In a hadronic scenario for the {gamma}-ray production, the single overall power-law spectrum observed would therefore correspond to the mean energy spectrum produced by the ensemble of CR sources in the starburst region.

  2. Flash photoionization of gamma-ray burst environments

    Science.gov (United States)

    Band, David L.; Hartmann, Dieter H.

    1992-01-01

    The H-alpha line emission that a flash-photoionized region emits is calculated. Archival transients, as well as various theoretical predictions, suggest that there may be significant ionizing flux. The limits on the line flux which might be observable indicate that the density must be fairly high for the recombination radiation to be observable. The intense burst radiation is insufficient to melt the dust which will be present in such a dense medium. This dust may attenuate the observable line emission, but does not attenuate the ionizing radiation before it ionizes the neutral medium surrounding the burst source. The dust can also produce a light echo. If there are indeed gamma-ray bursts in dense clouds, then it is possible that the burst was triggered by Bondi-Hoyle accretion from the dense medium, although it is unlikely on statistical grounds that all bursts occur in clouds.

  3. Determination of the gamma-ray flux of the stopped WWR-SM reactor by color center production in LiF

    International Nuclear Information System (INIS)

    Mussaeva, M.A.; Kalannov, M.U.; Ibragimova, E.M.; Karabaev, Kh.Kh.

    2004-01-01

    Full text: Gamma-radiation with a wide energy spectrum, accompanying neutron flux in the nuclear reactor, is known to result in radiation heating of materials. It is usually detected either by calorimetry or by an ionizing chamber maintained in the active zone while the reactor works and high-energy neutrons also contribute into ionization. The aim of this research was to separate the gamma-component from the neutron flux upon stopping the WWR-SM reactor and to determine the gamma-intensity both with the ionization chamber and the well-known dosimeter LiF crystal, and also by comparing with the effect of monochromatic 60 Co gamma-radiation of the known flux and dose. For LiF with small Z the photoelectric effect is weak, and Compton scattering prevails. Both the optical absorption and photo-luminescence techniques together with micro-hardness and X-ray diffraction analysis were used for measuring the structure defect generation rate in the irradiated crystals, which is proportional to the gamma-intensity. Fluorine vacancy trapping electron is the well-known stable F-center responsible for the isolated absorption band at 250 nm and induced by radiolysis mechanism. The sequential irradiations and measurements were done within 150 hours after the moment of the reactor quenching. The dose dependence of the absorption band was found to be linear up to the dose of 10 6 R. The F-center concentration as a measure of an accumulated dose was calculated by the Smakula formula. At higher doses another band at 440 nm appears like that for 60 Co irradiation, which is responsible for unstable F 2 and F 3 centers formed due to coagulation of F-centers. X-diffraction analysis revealed twin structure in (111) plane. Yet the micro-hardness of the gamma-irradiated samples did not change noticeably. For higher doses the photo-luminescence band at 650 nm was also used as a dosimetric item. The luminescence kinetics has a fast nanosecond scale component and a weak tail in a microsecond

  4. The Gamma-ray Sky with Fermi

    Science.gov (United States)

    Thompson, David

    2012-01-01

    Gamma rays reveal extreme, nonthermal conditions in the Universe. The Fermi Gamma-ray Space Telescope has been exploring the gamma-ray sky for more than four years, enabling a search for powerful transients like gamma-ray bursts, novae, solar flares, and flaring active galactic nuclei, as well as long-term studies including pulsars, binary systems, supernova remnants, and searches for predicted sources of gamma rays such as dark matter annihilation. Some results include a stringent limit on Lorentz invariance derived from a gamma-ray burst, unexpected gamma-ray variability from the Crab Nebula, a huge gamma-ray structure associated with the center of our galaxy, surprising behavior from some gamma-ray binary systems, and a possible constraint on some WIMP models for dark matter.

  5. A pulse shape discriminator with high precision of neutron and gamma ray selection at high counting rate

    International Nuclear Information System (INIS)

    Bialkowski, J.; Moszynski, M.; Wolski, D.

    1989-01-01

    A pulse shape discriminator based on the zero-crossing principle is described. Due to dc negative feedback loops stabilizing the shaping amplifier and the zero-crossing discriminator, the working of the circuit is not affected by the high counting rate and the temperature variations. The pileup rejection circuit built into the discriminator improves the quality of the n-γ separation at high counting rates. A full γ-ray rejection is obtained for a recoil energy of electrons down to 25 keV. At high counting rates the remaining γ-ray contribution is evidently due to the pileup effect which is equal to about 2% at 4x10 5 counts/s. (orig.)

  6. Gamma-Ray Instrument for Polarimetry, Spectroscopy and Imaging (GIPSI)

    National Research Council Canada - National Science Library

    Kroeger, R. A; Johnson, W. N; Kinzer, R. L; Kurfess, J. D; Inderhees, S. E; Phlips, B. F; Graham, B. L

    1996-01-01

    .... Gamma-ray polarimetry in the energy band around 60-300 keV is an interesting area of high energy astrophysics where observations have not been possible with the technologies employed in current and past space missions...

  7. Some deficiencies and solutions in gamma ray spectrometry

    International Nuclear Information System (INIS)

    Westmeier, W.

    1998-01-01

    A number of problems in high-resolution gamma ray spectrometry as well as some deficiencies of existing computer programs for the quantitative evaluation of spectra are discussed and some practical solutions are proposed. (author)

  8. Gamma-Ray Pulsars Models and Predictions

    CERN Document Server

    Harding, A K

    2001-01-01

    Pulsed emission from gamma-ray pulsars originates inside the magnetosphere, from radiation by charged particles accelerated near the magnetic poles or in the outer gaps. In polar cap models, the high energy spectrum is cut off by magnetic pair production above an energy that is dependent on the local magnetic field strength. While most young pulsars with surface fields in the range B = 10^{12} - 10^{13} G are expected to have high energy cutoffs around several GeV, the gamma-ray spectra of old pulsars having lower surface fields may extend to 50 GeV. Although the gamma-ray emission of older pulsars is weaker, detecting pulsed emission at high energies from nearby sources would be an important confirmation of polar cap models. Outer gap models predict more gradual high-energy turnovers at around 10 GeV, but also predict an inverse Compton component extending to TeV energies. Detection of pulsed TeV emission, which would not survive attenuation at the polar caps, is thus an important test of outer gap models. N...

  9. On Gamma-Ray Bursts

    CERN Document Server

    Ruffini, Remo; Bianco, Carlo Luciano; Caito, Letizia; Chardonnet, Pascal; Cherubini, Christian; Dainotti, Maria Giovanna; Fraschetti, Federico; Geralico, Andrea; Guida, Roberto; Patricelli, Barbara; Rotondo, Michael; Hernandez, Jorge Armando Rueda; Vereshchagin, Gregory; Xue, She-Sheng

    2008-01-01

    (Shortened) We show by example how the uncoding of Gamma-Ray Bursts (GRBs) offers unprecedented possibilities to foster new knowledge in fundamental physics and in astrophysics. After recalling some of the classic work on vacuum polarization in uniform electric fields by Klein, Sauter, Heisenberg, Euler and Schwinger, we summarize some of the efforts to observe these effects in heavy ions and high energy ion collisions. We then turn to the theory of vacuum polarization around a Kerr-Newman black hole, leading to the extraction of the blackholic energy, to the concept of dyadosphere and dyadotorus, and to the creation of an electron-positron-photon plasma. We then present a new theoretical approach encompassing the physics of neutron stars and heavy nuclei. It is shown that configurations of nuclear matter in bulk with global charge neutrality can exist on macroscopic scales and with electric fields close to the critical value near their surfaces. These configurations may represent an initial condition for the...

  10. Modern utilization of accurate methods for gamma-ray spectral analysis detected by high pure germanium (HPGE) detectors through different applications

    International Nuclear Information System (INIS)

    El-Sayed, M.M.

    2005-01-01

    this thesis presents a novel way for application of wavelet trans-from theory in gamma -ray spectroscopy. this technique was applied for searching real and weak peaks, solving problem of multiplets, smoothing and de-noising gamma-ray spectra, and using artificial neural network for identifying peaks. a brief description about gamma-ray spectrum analysis is presented . we discussed the necessary formulas and algorithms of wavelet theory to solve these main problems in gamma ray spectrum analysis. the algorithm of peak search was applied on different types of spectra, IAEA spectra and other sources of gamma spectra. the algorithm of multiplets algorithm was applied successfully on different types of multiplets. the algorithm of denoising was applied successfully on different sources of spectra

  11. Gamma-ray burst spectra

    International Nuclear Information System (INIS)

    Teegarden, B.J.

    1982-01-01

    A review of recent results in gamma-ray burst spectroscopy is given. Particular attention is paid to the recent discovery of emission and absorption features in the burst spectra. These lines represent the strongest evidence to date that gamma-ray bursts originate on or near neutron stars. Line parameters give information on the temperature, magnetic field and possibly the gravitational potential of the neutron star. The behavior of the continuum spectrum is also discussed. A remarkably good fit to nearly all bursts is obtained with a thermal-bremsstrahlung-like continuum. Significant evolution is observed of both the continuum and line features within most events

  12. Airborne gamma-ray spectrometry

    DEFF Research Database (Denmark)

    Hovgaard, Jens

    A new method - Noise Adjusted Singular Value Decomposition, NASVD - for processing gamma-ray spectra has been developed as part of a Ph.D. project. By using this technique one is able to decompose a large set of data - for example from airborne gamma-ray surveys - into a few spectral components....... By knowing the spectral components and their amplitudes in each of the measured spectra one is able to extract more information from the data than possible with the methods used otherwise....

  13. Gamma-ray Imaging Methods

    Energy Technology Data Exchange (ETDEWEB)

    Vetter, K; Mihailescu, L; Nelson, K; Valentine, J; Wright, D

    2006-10-05

    In this document we discuss specific implementations for gamma-ray imaging instruments including the principle of operation and describe systems which have been built and demonstrated as well as systems currently under development. There are several fundamentally different technologies each with specific operational requirements and performance trade offs. We provide an overview of the different gamma-ray imaging techniques and briefly discuss challenges and limitations associated with each modality (in the appendix we give detailed descriptions of specific implementations for many of these technologies). In Section 3 we summarize the performance and operational aspects in tabular form as an aid for comparing technologies and mapping technologies to potential applications.

  14. Photoneutron cross sections measurements in 9Be, 13C e 17O with thermal neutron capture gamma-rays

    International Nuclear Information System (INIS)

    Semmler, Renato

    2006-01-01

    Photoneutron cross sections measurements of 9 Be, 13 C and 17 O have been obtained in the energy interval between 1,6 and 10,8 MeV, using neutron capture gamma-rays with high resolution in energy (3 a 21 eV), produced by 21 target materials, placed inside a tangential beam port, near the core of the IPEN/CNEN-SP IEA-R1 (5 MW) research reactor. The samples have been irradiated inside a 4π geometry neutron detector system 'Long Counter', 520,5 cm away from the capture target. The capture gamma-ray flux was determined by means of the analysis of the gamma spectrum obtained by using a Ge(Li) solid-state detector (EG and G ORTEC, 25 cm 3 , 5%), previously calibrated with capture gamma-rays from a standard target of Nitrogen (Melamine). The neutron photoproduction cross section has been measured for each target capture gamma-ray spectrum (compound cross section). A inversion matrix methodology to solve inversion problems for unfolding the set of experimental compound cross sections, was used in order to obtain the cross sections at specific excitation energy values (principal gamma line energies of the capture targets). The cross sections obtained at the energy values of the principal gamma lines were compared with experimental data reported by other authors, with have employed different gamma-ray sources. A good agreement was observed among the experimental data in this work with reported in the literature. (author)

  15. The Future of Gamma Ray Astrophysics

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    Over the past decade, gamma ray astrophysics has entered the astrophysical mainstream. Extremely successful space-borne (GeV) and ground-based (TeV) detectors, combined with a multitude of partner telescopes, have revealed a fascinating “astroscape" of active galactic nuclei, pulsars, gamma ray bursts, supernova remnants, binary stars, star-forming galaxies, novae much more, exhibiting major pathways along which large energy releases can flow. From  a basic physics perspective, exquisitely sensitive measurements have constrained the nature of dark matter, the cosmological origin of magnetic field and the properties of black holes. These advances have motivated the development of new facilities, including HAWC, DAMPE, CTA and SVOM, which will further our understanding of the high energy universe. Topics that will receive special attention include merging neutron star binaries, clusters of galaxies, galactic cosmic rays and putative, TeV dark matter.

  16. Optical observations of Gamma-Ray Bursts

    International Nuclear Information System (INIS)

    Hjorth, J.; Pian, E.; Fynbo, J.P.U.

    2004-01-01

    We briefly review the status and recent progress in the field of optical observations of gamma-ray burst afterglows. We will focus on the fundamental observational evidence for the relationship between gamma-ray bursts and the final evolutionary phases of massive stars. In particular, we will address (i) gamma-ray burst host galaxies, (ii) optically dark gamma-ray burst afterglows, (iii) the gamma-ray burst-supernova connection, and (iv) the relation between X-ray flashes, gamma-ray bursts, and supernovae

  17. Equipment for x- and gamma ray radiography

    International Nuclear Information System (INIS)

    Abd Nasir Ibrahim; Azali Muhammad; Ab Razak Hamzah; Abd Aziz Mohamed; Mohammad Pauzi Ismail

    2004-01-01

    The following topics related to the equipment for x - and gamma ray radiography are discussed in this chapter. The topics are x-ray source for Industrial Radiography: properties of x-ray, generation of x-ray, mechanism of x-ray production, x-ray equipment, power supply, distribution of x-ray intensity along the tube: gamma ray source for Industrial Radiography: properties of gamma rays, gamma ray sources, gamma ray projectors on cameras, source changing. Care of Radiographic Equipments: Merits and Demerits of x and Gamma Rays

  18. The Animated Gamma-ray Sky Revealed by the Fermi Gamma-ray Space Telescope

    International Nuclear Information System (INIS)

    Grenier, Isabelle

    2009-01-01

    The Fermi Gamma-ray Space Telescope has been observing the sky in gamma-rays since August 2008. In addition to breakthrough capabilities in energy coverage (20 MeV-300 GeV) and angular resolution, the wide field of view of the Large Area Telescope enables observations of 20% of the sky at any instant, and of the whole sky every three hours. It has revealed a very animated sky with bright gamma-ray bursts flashing and vanishing in minutes, powerful active galactic nuclei flaring over hours and days, many pulsars twinkling in the Milky Way, and X-ray binaries shimmering along their orbit. Most of these variable sources had not been seen by the Fermi predecessor, EGRET, and the wealth of new data already brings important clues to the origin of the high-energy emission and particles powered by the compact objects. The telescope also brings crisp images of the bright gamma-ray emission produced by cosmic-ray interactions in the interstellar medium, thus allowing to measure the cosmic nuclei and electron spectra across the Galaxy, to weigh interstellar clouds, in particular in the dark-gas phase. The telescope sensitivity at high energy will soon provide useful constraints on dark-matter annihilations in a variety of environments. I will review the current results and future prospects of the Fermi mission.

  19. Exploring the extreme gamma-ray sky with HESS

    International Nuclear Information System (INIS)

    Sol, Helene

    2006-01-01

    The international HESS experiment. High Energy Stereoscopic System, fully operational since January 2004, is opening a new era for extreme gamma-ray astronomy. Located in Namibia, it is now the most sensitive detector for cosmic sources of very high energy (VHE) gamma-rays, in the tera-electron-volt (TeV) range. In July 2005, it had already more than double the number of sources detected at such energies, with the discovery of several active galactic nuclei (AGN), supernova remnants and plerions, a binary pulsar system, a microquasar candidate, and a sample of yet unidentified sources. HESS has also provide for the first time gamma-ray images of extended sources with the first astrophysical jet resolved in gamma-rays, and the first mapping of a shell supernova remnant, which proves the efficiency of in situ acceleration of particles up to 100 TeV and beyond

  20. Discovery of Pulsed Gamma Rays from the Young Radio Pulsar PSR J1028-5819 with the Fermi Large Area Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, Aous A.; /Naval Research Lab, Wash., D.C.; Ackermann, M.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Atwood, W.B.; /UC, Santa Cruz; Baldini, L.; /INFN, Pisa; Ballet, J.; /DAPNIA, Saclay; Barbiellini, Guido; /INFN, Trieste /Trieste U.; Baring, Matthew G.; /Rice U.; Bastieri, Denis; /INFN, Padua /Padua U.; Baughman, B.M.; /Ohio State U.; Bechtol, K.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bellazzini, R.; /INFN, Pisa; Berenji, B.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bloom, Elliott D.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bonamente, E.; /INFN, Perugia /Perugia U.; Borgland, A.W.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bregeon, J.; /INFN, Pisa; Brez, A.; /INFN, Pisa; Brigida, M.; /Bari U. /INFN, Bari; Bruel, P.; /Ecole Polytechnique; Burnett, Thompson H.; /Washington U., Seattle; Caliandro, G.A.; /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /IASF, Milan /IASF, Milan /DAPNIA, Saclay /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /George Mason U. /Naval Research Lab, Wash., D.C. /NASA, Goddard /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Montpellier U. /Sonoma State U. /Stockholm U., OKC /Royal Inst. Tech., Stockholm /Stockholm U. /Naval Research Lab, Wash., D.C. /INFN, Trieste /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /NASA, Goddard /UC, Santa Cruz /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /CENBG, Gradignan /CENBG, Gradignan /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Montpellier U. /Bari U. /INFN, Bari /Ecole Polytechnique /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /INFN, Trieste /Hiroshima U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; /more authors..

    2009-05-15

    Radio pulsar PSR J1028-5819 was recently discovered in a high-frequency search (at 3.1 GHz) in the error circle of the Energetic Gamma-Ray Experiment Telescope (EGRET) source 3EG J1027-5817. The spin-down power of this young pulsar is great enough to make it very likely the counterpart for the EGRET source. We report here the discovery of {gamma}-ray pulsations from PSR J1028-5819 in early observations by the Large Area Telescope (LAT) on the Fermi Gamma-Ray Space Telescope. The {gamma}-ray light curve shows two sharp peaks having phase separation of 0.460 {+-} 0.004, trailing the very narrow radio pulse by 0.200 {+-} 0.003 in phase, very similar to that of other known {gamma}-ray pulsars. The measured {gamma}-ray flux gives an efficiency for the pulsar of {approx}10-20% (for outer magnetosphere beam models). No evidence of a surrounding pulsar wind nebula is seen in the current Fermi data but limits on associated emission are weak because the source lies in a crowded region with high background emission. However, the improved angular resolution afforded by the LAT enables the disentanglement of the previous COS-B and EGRET source detections into at least two distinct sources, one of which is now identified as PSR J1028-5819.

  1. In-flight observation of long duration gamma-ray glows by aircraft

    Science.gov (United States)

    Kochkin, Pavlo; (Lex) van Deursen, A. P. J.; de Boer, Alte; Bardet, Michiel; Allasia, Cedric; Boissin, Jean Francois; Ostgaard, Nikolai

    2017-04-01

    The Gamma-Ray Glow is a long-lasting (several seconds to minutes) X- and gamma radiation presumably originated from high-electric field of thunderclouds. Such glows were previously observed by aircraft, balloons, and from the ground. When detected on ground with other particles, i.e. electrons and neutrons, they are usually called Thunderstorm Ground Enhancements (TGEs). Their measured spectra are often consistent with Relativistic Runaway Electron Avalanche (RREA) mechanism. That is why RREA is a commonly accepted explanation for their existence. The gamma-ray glows are observed to be interrupted by lightning discharge, which terminates the high-electric field region. In January 2016 an Airbus A340 factory test aircraft was performing intentional flights through thunderstorms over Northern Australia. The aircraft was equipped with a dedicated in-flight lightning detection system called ILDAS (http://ildas.nlr.nl). The system also contained two scintillation detectors each with 38x38 mm cylinder LaBr3 crystals. While being at 12 km altitude the system detected a gamma-ray flux enhancement 30 times the background counts. It lasted for 20 seconds and was abruptly terminated by a lightning flash. The flash hit the aircraft and its parameters were recorded with 10 ns sampling time including gamma radiation. Ground-based lightning detection network WWLLN detected 4 strikes in the nearby region, all in association with the same flash. The ILDAS system recorded the time-resolved spectrum of the glow. In 6 minutes, after making a U-turn, the aircraft passed the same glow region. Smaller gamma-ray enhancement was again detected. In this presentation we will show the mapped event timeline including airplane, gamma-ray glow, WWLLN, and cloud data. We will discuss the glow's properties, i.e. intensity and differential spectrum, and its possible origin. This result will also be compared to previously reported observations.

  2. Advances in gamma-ray burst astronomy

    International Nuclear Information System (INIS)

    Cline, T.L.; Desai, U.D.

    1976-01-01

    Work at Goddard is presently being carried out in three major areas of gamma-ray burst research: (1) A pair of simultaneously operating 0.8-m 2 burst detectors were successfully balloon-borne at locations 800 miles apart on 9 May, 1975, each to atmospheric depths of 3 to 4 g cm -2 , for a 20-h period of coincident data coverage. This experiment investigates the size spectrum of bursts in the 10 -7 to 10 -6 erg cm -2 size region where dozens of events per day are expected on a -1.5 index integral power-law extrapolation. Considerable separation in latitude was used to avoid possible atmospheric and auroral secondary effects. Its results are not yet available. (2) A deep-space burst detector, the first spacecraft instrument built specifically for gamma-ray burst studies, was recently successfully integrated into the Helios-B space probe. Its use at distances of up to 2 AU will make possible the first high-resolution directional study of gamma-ray burst source locations. Similar modifications to several other space vehicles are also being prepared. (3) The gamma-ray instrument on the IMP-7 satellite is presently the most sensitive burst detector still operating in orbit. Its results have shown that all measured event-average energy spectra are consistent with being alike. Using this characteristic spectrum to select IMP-7 candidate events of smaller size than those detected using other spacecraft in coincidence, a size spectrum is constructed which fits the -1.5 index power law down to 2.5 x 10 -5 erg cm -2 per event, at an occurrence rate of about once per month. (Auth.)

  3. Radio Flares from Gamma-ray Bursts

    Science.gov (United States)

    Kopač, D.; Mundell, C. G.; Kobayashi, S.; Virgili, F. J.; Harrison, R.; Japelj, J.; Guidorzi, C.; Melandri, A.; Gomboc, A.

    2015-06-01

    We present predictions of centimeter and millimeter radio emission from reverse shocks (RSs) in the early afterglows of gamma-ray bursts (GRBs) with the goal of determining their detectability with current and future radio facilities. Using a range of GRB properties, such as peak optical brightness and time, isotropic equivalent gamma-ray energy, and redshift, we simulate radio light curves in a framework generalized for any circumburst medium structure and including a parameterization of the shell thickness regime that is more realistic than the simple assumption of thick- or thin-shell approximations. Building on earlier work by Mundell et al. and Melandri et al. in which the typical frequency of the RS was suggested to lie at radio rather than optical wavelengths at early times, we show that the brightest and most distinct RS radio signatures are detectable up to 0.1-1 day after the burst, emphasizing the need for rapid radio follow-up. Detection is easier for bursts with later optical peaks, high isotropic energies, lower circumburst medium densities, and at observing frequencies that are less prone to synchrotron self-absorption effects—typically above a few GHz. Given recent detections of polarized prompt gamma-ray and optical RS emission, we suggest that detection of polarized radio/millimeter emission will unambiguously confirm the presence of low-frequency RSs at early time.

  4. RADIO FLARES FROM GAMMA-RAY BURSTS

    International Nuclear Information System (INIS)

    Kopač, D.; Mundell, C. G.; Kobayashi, S.; Virgili, F. J.; Harrison, R.; Japelj, J.; Gomboc, A.; Guidorzi, C.; Melandri, A.

    2015-01-01

    We present predictions of centimeter and millimeter radio emission from reverse shocks (RSs) in the early afterglows of gamma-ray bursts (GRBs) with the goal of determining their detectability with current and future radio facilities. Using a range of GRB properties, such as peak optical brightness and time, isotropic equivalent gamma-ray energy, and redshift, we simulate radio light curves in a framework generalized for any circumburst medium structure and including a parameterization of the shell thickness regime that is more realistic than the simple assumption of thick- or thin-shell approximations. Building on earlier work by Mundell et al. and Melandri et al. in which the typical frequency of the RS was suggested to lie at radio rather than optical wavelengths at early times, we show that the brightest and most distinct RS radio signatures are detectable up to 0.1–1 day after the burst, emphasizing the need for rapid radio follow-up. Detection is easier for bursts with later optical peaks, high isotropic energies, lower circumburst medium densities, and at observing frequencies that are less prone to synchrotron self-absorption effects—typically above a few GHz. Given recent detections of polarized prompt gamma-ray and optical RS emission, we suggest that detection of polarized radio/millimeter emission will unambiguously confirm the presence of low-frequency RSs at early time

  5. Design and Performance of the GAMMA-400 Gamma-Ray Telescope for Dark Matter Searches

    Science.gov (United States)

    Galper, A. M.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Boezio, M.; Bonvicini, V.; Boyarchuk, K. A.; Fradkin, M. I.; Gusakov, Yu V.; hide

    2012-01-01

    The GAMMA-400 gamma-ray telescope is designed to measure the fluxes of gamma-rays and cosmic-ray electrons (+) positrons, which can be produced by annihilation or decay of the dark matter particles, as well as to survey the celestial sphere in order to study point and extended sources of gamma-rays, measure energy spectra of Galactic and extragalactic diffuse gamma-ray emission, gamma-ray bursts, and gamma-ray emission from the Sun. GAMMA-400 covers the energy range from 100 MeV to 3000 GeV. Its angular resolution is approximately 0.01deg (E(sub gamma) greater than 100 GeV), the energy resolution approximately 1% (E(sub gamma) greater than 10 GeV), and the proton rejection factor approximately 10(exp 6). GAMMA-400 will be installed on the Russian space platform Navigator. The beginning of observations is planned for 2018.

  6. The Advanced Gamma-ray Imaging System (AGIS): Simulation Studies

    Science.gov (United States)

    Fegan, Stephen; Buckley, J. H.; Bugaev, S.; Funk, S.; Konopelko, A.; Maier, G.; Vassiliev, V. V.; Simulation Studies Working Group; AGIS Collaboration

    2008-03-01

    The Advanced Gamma-ray Imaging System (AGIS) is a concept for the next generation instrument in ground-based very high energy gamma-ray astronomy. It has the goal of achieving significant improvement in sensitivity over current experiments. We present the results of simulation studies of various possible designs for AGIS. The primary characteristics of the array performance, collecting area, angular resolution, background rejection, and sensitivity are discussed.

  7. AGIS -- the Advanced Gamma-ray Imaging System

    Science.gov (United States)

    Krennrich, Frank

    2009-05-01

    The Advanced Gamma-ray Imaging System, AGIS, is envisioned to become the follow-up mission of the current generation of very high energy gamma-ray telescopes, namely, H.E.S.S., MAGIC and VERITAS. These instruments have provided a glimpse of the TeV gamma-ray sky, showing more than 70 sources while their detailed studies constrain a wealth of physics and astrophysics. The particle acceleration, emission and absorption processes in these sources permit the study of extreme physical conditions found in galactic and extragalactic TeV sources. AGIS will dramatically improve the sensitivity and angular resolution of TeV gamma-ray observations and therefore provide unique prospects for particle physics, astrophysics and cosmology. This talk will provide an overview of the science drivers, scientific capabilities and the novel technical approaches that are pursued to maximize the performance of the large array concept of AGIS.

  8. THE BRAKING INDEX OF A RADIO-QUIET GAMMA-RAY PULSAR

    Energy Technology Data Exchange (ETDEWEB)

    Clark, C. J.; Pletsch, H. J.; Allen, B.; Aulbert, C.; Beer, C.; Bock, O.; Cuéllar, A.; Eggenstein, H. B.; Fehrmann, H.; Machenschalk, B.; Nieder, L. [Albert-Einstein-Institut, Max-Planck-Institut für Gravitationsphysik, D-30167 Hannover (Germany); Wu, J.; Guillemot, L.; Kramer, M. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Camilo, F. [SKA South Africa, Pinelands, 7405 (South Africa); Johnson, T. J. [College of Science, George Mason University, Fairfax, VA 22030 (United States); Kerr, M., E-mail: colin.clark@aei.mpg.de [CSIRO Astronomy and Space Science, Australia Telescope National Facility, Epping, NSW 1710 (Australia)

    2016-11-20

    We report the discovery and timing measurements of PSR J1208−6238, a young and highly magnetized gamma-ray pulsar, with a spin period of 440 ms. The pulsar was discovered in gamma-ray photon data from the Fermi Large Area Telescope (LAT) during a blind-search survey of unidentified LAT sources, running on the distributed volunteer computing system Einstein@Home . No radio pulsations were detected in dedicated follow-up searches with the Parkes radio telescope, with a flux density upper limit at 1369 MHz of 30 μ Jy. By timing this pulsar’s gamma-ray pulsations, we measure its braking index over five years of LAT observations to be n = 2.598 ± 0.001 ± 0.1, where the first uncertainty is statistical and the second estimates the bias due to timing noise. Assuming its braking index has been similar since birth, the pulsar has an estimated age of around 2700 years, making it the youngest pulsar to be found in a blind search of gamma-ray data and the youngest known radio-quiet gamma-ray pulsar. Despite its young age, the pulsar is not associated with any known supernova remnant or pulsar wind nebula. The pulsar’s inferred dipolar surface magnetic field strength is 3.8 × 10{sup 13} G, almost 90% of the quantum-critical level. We investigate some potential physical causes of the braking index deviating from the simple dipole model but find that LAT data covering a longer time interval will be necessary to distinguish between these.

  9. THE BRAKING INDEX OF A RADIO-QUIET GAMMA-RAY PULSAR

    International Nuclear Information System (INIS)

    Clark, C. J.; Pletsch, H. J.; Allen, B.; Aulbert, C.; Beer, C.; Bock, O.; Cuéllar, A.; Eggenstein, H. B.; Fehrmann, H.; Machenschalk, B.; Nieder, L.; Wu, J.; Guillemot, L.; Kramer, M.; Camilo, F.; Johnson, T. J.; Kerr, M.

    2016-01-01

    We report the discovery and timing measurements of PSR J1208−6238, a young and highly magnetized gamma-ray pulsar, with a spin period of 440 ms. The pulsar was discovered in gamma-ray photon data from the Fermi Large Area Telescope (LAT) during a blind-search survey of unidentified LAT sources, running on the distributed volunteer computing system Einstein@Home . No radio pulsations were detected in dedicated follow-up searches with the Parkes radio telescope, with a flux density upper limit at 1369 MHz of 30 μ Jy. By timing this pulsar’s gamma-ray pulsations, we measure its braking index over five years of LAT observations to be n = 2.598 ± 0.001 ± 0.1, where the first uncertainty is statistical and the second estimates the bias due to timing noise. Assuming its braking index has been similar since birth, the pulsar has an estimated age of around 2700 years, making it the youngest pulsar to be found in a blind search of gamma-ray data and the youngest known radio-quiet gamma-ray pulsar. Despite its young age, the pulsar is not associated with any known supernova remnant or pulsar wind nebula. The pulsar’s inferred dipolar surface magnetic field strength is 3.8 × 10 13 G, almost 90% of the quantum-critical level. We investigate some potential physical causes of the braking index deviating from the simple dipole model but find that LAT data covering a longer time interval will be necessary to distinguish between these.

  10. The Gamma-ray Universe through Fermi

    Science.gov (United States)

    Thompson, David J.

    2012-01-01

    Gamma rays, the most powerful form of light, reveal extreme conditions in the Universe. The Fermi Gamma-ray Space Telescope and its smaller cousin AGILE have been exploring the gamma-ray sky for several years, enabling a search for powerful transients like gamma-ray bursts, novae, solar flares, and flaring active galactic nuclei, as well as long-term studies including pulsars, binary systems, supernova remnants, and searches for predicted sources of gamma rays such as dark matter annihilation. Some results include a stringent limit on Lorentz invariance derived from a gamma-ray burst, unexpected gamma-ray variability from the Crab Nebula, a huge ga.nuna-ray structure associated with the center of our galaxy, surprising behavior from some gamma-ray binary systems, and a possible constraint on some WIMP models for dark matter.

  11. Constraints on the gamma-ray burst luminosity function from Pioneer Venus Orbiter and BATSE observations

    NARCIS (Netherlands)

    Ulmer, A.; Wijers, R.A.M.J.; Fenimore, E.E.

    1995-01-01

    We examine the width of the gamma ray burst luminosity function through the distribution of Gamma Ray Burst (GRB) peak fluxes as detected by the Pioneer Venus Orbiter (PVO) and the Burst and Transient Source Experiment (BATSE). The strength of the analysis is greatly enhanced by using a merged

  12. Diffuse gamma ray measurement above 20 MeV with a balloon borne experiment

    International Nuclear Information System (INIS)

    Parlier, B.; Forichon, M.; Montmerle, T.; Agrinier, B.; Palmeira, R.

    1975-01-01

    During two balloon flights of a spark chamber gamma ray telescope launched from Sao Jose dos Campos (Brazil) in 1973, the growth of the secondary gamma rays in function of the atmospheric pressure has been monitored. The extrapolation to zero residual atmosphere giving evidence of an extraterrestrial flux is discussed [fr

  13. Upgrade of the JET gamma-ray cameras

    International Nuclear Information System (INIS)

    Soare, S.; Curuia, M.; Anghel, M.; Constantin, M.; David, E.; Craciunescu, T.; Falie, D.; Pantea, A.; Tiseanu, I.; Kiptily, V.; Prior, P.; Edlington, T.; Griph, S.; Krivchenkov, Y.; Loughlin, M.; Popovichev, S.; Riccardo, V; Syme, B.; Thompson, V.; Lengar, I.; Murari, A.; Bonheure, G.; Le Guern, F.

    2007-01-01

    Full text: The JET gamma-ray camera diagnostics have already provided valuable information on the gamma-ray imaging of fast ion in JET plasmas. The applicability of gamma-ray imaging to high performance deuterium and deuterium-tritium JET discharges is strongly dependent on the fulfilment of rather strict requirements for the characterisation of the neutron and gamma-ray radiation fields. These requirements have to be satisfied within very stringent boundary conditions for the design, such as the requirement of minimum impact on the co-existing neutron camera diagnostics. The JET Gamma-Ray Cameras (GRC) upgrade project deals with these issues with particular emphasis on the design of appropriate neutron/gamma-ray filters ('neutron attenuators'). Several design versions have been developed and evaluated for the JET GRC neutron attenuators at the conceptual design level. The main design parameter was the neutron attenuation factor. The two design solutions, that have been finally chosen and developed at the level of scheme design, consist of: a) one quasi-crescent shaped neutron attenuator (for the horizontal camera) and b) two quasi-trapezoid shaped neutron attenuators (for the vertical one). The second design solution has different attenuation lengths: a short version, to be used together with the horizontal attenuator for deuterium discharges, and a long version to be used for high performance deuterium and DT discharges. Various neutron-attenuating materials have been considered (lithium hydride with natural isotopic composition and 6 Li enriched, light and heavy water, polyethylene). Pure light water was finally chosen as the attenuating material for the JET gamma-ray cameras. The neutron attenuators will be steered in and out of the detector line-of-sight by means of an electro-pneumatic steering and control system. The MCNP code was used for neutron and gamma ray transport in order to evaluate the effect of the neutron attenuators on the neutron field of the

  14. Development of a new wheat germplasm with high anther culture ability by using a combination of gamma-ray irradiation and anther culture.

    Science.gov (United States)

    Zhao, Linshu; Liu, Luxiang; Wang, Jing; Guo, Huijun; Gu, Jiayu; Zhao, Shirong; Li, Junhui; Xie, Yongdun

    2015-01-01

    Wheat with high anther culture ability would be beneficial for breeding. We aimed to screen a wheat germplasm to with high anther culture ability as well as good agronomic characteristics. The F1 young spikes of winter wheat cross combination Yanfu188/Jimai37 were irradiated with gamma rays at a dose of 1.5 Gy to develop a new germplasm H307 with high anther culture ability. The proportion of green plantlets per 100 anthers (GP/100A) of H307 was 14.50% which was higher than other H2 lines (P green plantlet regeneration ability of H307 remained high in all 3 years. Reciprocal crosses between H307 and Nongda3308 showed no significant differences in their values for calli per 100 anthers (CA/100A), green plantlets per 100 calli (GP/100C) and GP/100A (P > 0.05). Five main wheat varieties used in production, namely Yumai68, Yanzhan4110, Bainongaikang58, Zhoumai18 and Xinmai18, were selected to cross with the new H307. CA/100A, GP/100C and GP/100A were used to assess the anther culture ability of F1 hybrids, demonstrating that the anther culture ability of H307 was heritable. H307 possessed high anther culture ability that was heritable, which would be potential germplasm for improving wheat anther breeding ability. © 2014 Society of Chemical Industry.

  15. Early Fermi Gamma-ray Space Telescope Observations of the Quasar 3C454.3

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, A

    2009-05-07

    This is the first report of Fermi Gamma-ray Space Telescope observations of the quasar 3C 454.3, which has been undergoing pronounced long-term outbursts since 2000. The data from the Large Area Telescope (LAT), covering 2008 July 7-October 6, indicate strong, highly variable {gamma}-ray emission with an average flux of {approx} 3 x 10{sup -6} photons cm{sup -2} s{sup -1}, for energies > 100 MeV. The {gamma}-ray flux is variable, with strong, distinct, symmetrically-shaped flares for which the flux increases by a factor of several on a time scale of about three days. This variability indicates a compact emission region, and the requirement that the source is optically thin to pair-production implies relativistic beaming with Doppler factor {delta} > 8, consistent with the values inferred from VLBI observations of superluminal expansion ({delta} {approx} 25). The observed {gamma}-ray spectrum is not consistent with a simple power-law, but instead steepens strongly above {approx} 2 GeV, and is well described by a broken power-law with photon indices of {approx} 2.3 and {approx} 3.5 below and above the break, respectively. This is the first direct observation of a break in the spectrum of a high luminosity blazar above 100 MeV, and it is likely direct evidence for an intrinsic break in the energy distribution of the radiating particles. Alternatively, the spectral softening above 2GeV could be due to -ray absorption via photonphoton pair production on the soft X-ray photon field of the host AGN, but such an interpretation would require the dissipation region to be located very close ({approx}< 100 gravitational radii) to the black hole, which would be inconsistent with the X-ray spectrum of the source.

  16. Physics and astrophysics with gamma-ray telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Vandenbroucke, J. [Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States)

    2012-08-15

    In the past few years gamma-ray astronomy has entered a golden age. A modern suite of telescopes is now scanning the sky over both hemispheres and over six orders of magnitude in energy. At {approx}TeV energies, only a handful of sources were known a decade ago, but the current generation of ground-based imaging atmospheric Cherenkov telescopes (H.E.S.S., MAGIC, and VERITAS) has increased this number to nearly one hundred. With a large field of view and duty cycle, the Tibet and Milagro air shower detectors have demonstrated the promise of the direct particle detection technique for TeV gamma rays. At {approx}GeV energies, the Fermi Gamma-ray Space Telescope has increased the number of known sources by nearly an order of magnitude in its first year of operation. New classes of sources that were previously theorized to be gamma-ray emitters have now been confirmed observationally. Moreover, there have been surprise discoveries of GeV gamma-ray emission from source classes for which no theory predicted it was possible. In addition to elucidating the processes of high-energy astrophysics, gamma-ray telescopes are making essential contributions to fundamental physics topics including quantum gravity, gravitational waves, and dark matter. I summarize the current census of astrophysical gamma-ray sources, highlight some recent discoveries relevant to fundamental physics, and describe the synergetic connections between gamma-ray and neutrino astronomy. This is a brief overview intended in particular for particle physicists and neutrino astronomers, based on a presentation at the Neutrino 2010 conference in Athens, Greece. I focus in particular on results from Fermi (which was launched soon after Neutrino 2008), and conclude with a description of the next generation of instruments, namely HAWC and the Cherenkov Telescope Array.

  17. Multifrequency Observations of Gamma-Ray Burst

    OpenAIRE

    Greiner, J.

    1995-01-01

    Neither a flaring nor a quiescent counterpart to a gamma-ray burst has yet been convincingly identified at any wavelength region. The present status of the search for counterparts of classical gamma-ray bursts is given. Particular emphasis is put on the search for flaring counterparts, i.e. emission during or shortly after the gamma-ray emission.

  18. Stellar Sources of Gamma-ray Bursts

    OpenAIRE

    Luchkov, B. I.

    2011-01-01

    Correlation analysis of Swift gamma-ray burst coordinates and nearby star locations (catalog Gliese) reveals 4 coincidences with good angular accuracy. The random probability is 4\\times 10^{-5}, so evidencing that coincident stars are indeed gamma-ray burst sources. Some additional search of stellar gamma-ray bursts is discussed.

  19. Gamma-rays from deep inelastic collisions

    International Nuclear Information System (INIS)

    Stephens, F.S.

    1981-01-01

    My objective in this talk is to consider the question: 'What can be learned about deep inelastic collisions (DIC) from studying the associated gamma-rays'. First, I discuss the origin and nature of the gamma-rays from DIC, then the kinds of information gamma-ray spectra contain, and finally come to the combination of these two subjects. (orig./HSI)

  20. Structure and content of the galaxy and galactic gamma rays

    Energy Technology Data Exchange (ETDEWEB)

    1976-01-01

    The conference included papers on ..gamma..-ray pulsars, galactic diffuse flux and surveys, radio surveys of external galaxies, galactic distribution of pulsars, and galactic gamma emission. Galactic structure drawing on all branches of galactic astronomy is discussed. New and unpublished material is included. (JFP)

  1. Gamma-ray astrophysics

    International Nuclear Information System (INIS)

    Fichtel, C.E.

    1977-01-01

    The most striking feature of the celestial sphere when viewed in the frequency range of γ-rays is the emission from the galactic plane, which is particularly intense in the galactic longitudinal region from 300 0 to 50 0 . The longitudinal and latitudinal distributions are generally correlated with galactic structural features and when studied in detail suggest a non-uniform distribution of cosmic rays in the galaxy. Several point γ-ray sources have now been observed, including four radio pulsars. This last result is particularly striking since only one radio pulsar has been seen at either optical or X-ray frequencies. Nuclear γ-ray lines have been seen from the Sun during a large solar flare and future satellite experiments are planned to search for γ-ray lines from supernovae and their remnants. A general apparently diffuse flux of γ-rays has also been seen whose energy spectrum has interesting implications; however, in view of the possible contribution of point sources and the observation of galactic features such as