WorldWideScience

Sample records for high gain fel

  1. Dispersion relations for 1D high-gain FELs

    Energy Technology Data Exchange (ETDEWEB)

    Webb, S.D.; Litvinenko, V.N.

    2010-08-23

    We present analytical results for the one-dimensional dispersion relation for high-gain FELs. Using kappa-n distributions, we obtain analytical relations between the dispersion relations for various order kappa distributions. Since an exact solution exists for the kappa-1 (Lorentzian) distribution, this provides some insight into the number of modes on the way to the Gaussian distribution.

  2. STARS A Two Stage High Gain Harmonic Generation FEL Demonstrator

    Energy Technology Data Exchange (ETDEWEB)

    M. Abo-Bakr; W. Anders; J. Bahrdt; P. Budz; K.B. Buerkmann-Gehrlein; O. Dressler; H.A. Duerr; V. Duerr; W. Eberhardt; S. Eisebitt; J. Feikes; R. Follath; A. Gaupp; R. Goergen; K. Goldammer; S.C. Hessler; K. Holldack; E. Jaeschke; Thorsten Kamps; S. Klauke; J. Knobloch; O. Kugeler; B.C. Kuske; P. Kuske; A. Meseck; R. Mitzner; R. Mueller; M. Neeb; A. Neumann; K. Ott; D. Pfluckhahn; T. Quast; M. Scheer; Th. Schroeter; M. Schuster; F. Senf; G. Wuestefeld; D. Kramer; Frank Marhauser

    2007-08-01

    BESSY is proposing a demonstration facility, called STARS, for a two-stage high-gain harmonic generation free electron laser (HGHG FEL). STARS is planned for lasing in the wavelength range 40 to 70 nm, requiring a beam energy of 325 MeV. The facility consists of a normal conducting gun, three superconducting TESLA-type acceleration modules modified for CW operation, a single stage bunch compressor and finally a two-stage HGHG cascaded FEL. This paper describes the faciliy layout and the rationale behind the operation parameters.

  3. VISA IB Ultra-High Bandwidth, High Gain SASE FEL

    CERN Document Server

    Andonian, Gerard; Murokh, Alex; Pellegrini, Claudio; Reiche, Sven; Rosenzweig, J B; Travish, Gil

    2004-01-01

    The results of a high energy-spread SASE FEL experiment, the intermediary experiment linking the VISA I and VISA II projects, are presented. A highly chirped beam (~1.7%) was transported without correction of longitudinal aberrations in the ATF dogleg, and injected into the VISA undulator. The output FEL radiation displayed an uncharacteristicly large bandwidth (~11%) with extremely stable lasing and measured energy of about 2 microJoules. Start-to-end simulations reproduce key features of the measured results and provide an insight into the mechanisms giving rise to such a high bandwidth. These analyses are described as they relate to important considerations for the VISA II experiment.

  4. Steady State Analysis of Short-wavelength, High-gainFELs in a Large Storage Ring

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Z.; Bane, K.; Cai, Y.; Chao, A.; Hettel, R.; /SLAC; Pellegrini, C.; /UCLA

    2007-10-15

    Storage ring FELs have operated successfully in the low-gain regime using optical cavities. Discussions of a high-gain FEL in a storage ring typically involve a special bypass to decouple the FEL interaction from the storage ring dynamics. In this paper, we investigate the coupled dynamics of a high-gain FEL in a large storage ring such as PEP and analyze the equilibrium solution. We show that an FEL in the EUV and soft x-ray regimes can be integrated into a very bright storage ring and potentially provides three orders of magnitude improvement in the average brightness at these radiation wavelengths. We also discuss possibilities of seeding with HHG sources to obtain ultra-short, high-peak power EUV and soft x-ray pulses.

  5. A Coherent Compton Backscattering High Gain FEL using an X-Band Microwave Undulator

    Energy Technology Data Exchange (ETDEWEB)

    Tantawi, S.; Dolgashev, V.; Nantista, C.; /SLAC; Pellegrini, C.; Rosenzweig, J.; Travish, G.; /UCLA

    2005-12-14

    High power microwave sources at X-Band, delivering 400 to 500 of megawatts for about 400 ns, have been recently developed. These sources can power a microwave undulator with short period and large gap, and can be used in short wavelength FELs reaching the nm region at a beam energy of about 1 GeV. We present here an experiment designed to demonstrate that microwave undulators have the field quality needed for high gain FELs.

  6. Analysis of FEL-based CeC amplification at high gain limit

    Energy Technology Data Exchange (ETDEWEB)

    Wang, G. [Brookhaven National Lab. (BNL), Upton, NY (United States); Litvinenko, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Jing, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    An analysis of Coherent electron Cooling (CeC) amplifier based on 1D Free Electron Laser (FEL) theory was previously performed with exact solution of the dispersion relation, assuming electrons having Lorentzian energy distribution. At high gain limit, the asymptotic behavior of the FEL amplifier can be better understood by Taylor expanding the exact solution of the dispersion relation with respect to the detuning parameter. In this work, we make quadratic expansion of the dispersion relation for Lorentzian energy distribution and investigate how longitudinal space charge and electrons’ energy spread affect the FEL amplification process.

  7. Performance of a Combined System Using an X-Ray FEL Oscillator and a High-Gain FEL Amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, L.; Lindberg, R.; Kim, K. -J.

    2016-10-01

    The LCLS-II at SLAC will feature a 4 GeV CW superconducting (SC) RF linac [1] that can potentially drive a 5th harmonic X-Ray FEL Oscillator (XFELO) to produce fully coherent, 1 MW photon pulses with a 5 meV bandwidth at 14.4 keV [2]. The XFELO output can serve as the input seed signal for a high-gain FEL amplifier employing fs electron beams from the normal conducting SLAC linac, thereby generating coherent, fs x-ray pulses with TW peak powers using a tapered undulator after saturation [3]. Coherent, intense output at several tens of keV will also be feasible if one considers a harmonic generation scheme. Thus, one can potentially reach the 42 keV photon energy required for the MaRIE project [4] by beginning with an XFELO operating at the 3rd harmonic to produce 14.0 keV photons using a 12 GeV SCRF linac, and then subsequently using the high-gain harmonic generation scheme to generate and amplify the 3th harmonic at 42 keV [5]. We report extensive GINGER simulations that determine an optimized parameter set for the combined system.

  8. SOFT X-RAY FEL BY CASCADING STAGES OF HIGH GAIN HARMONIC GENERATION.

    Energy Technology Data Exchange (ETDEWEB)

    YU,L.H.

    2003-04-17

    Short wavelength Free-Electron Lasers are perceived as the next generation of synchrotron light sources. In the past decade, significant advances have been made in the theory and technology of high brightness electron beams and single pass FELs. These developments facilitate the construction of practical VUV FELs and make x-ray FELs possible. Self-Amplified Spontaneous Emission (SASE) and High Gain Harmonic Generation (HGHG)[17-19] are the two leading candidates for x-ray FELs. The first lasing of HGHG proof-of-principle experiment succeeded in August, 1999 in Brookhaven National Laboratory. The experimental results agree with the theory prediction. Compared with SASE FEL, the following advantages of HGHG FEL were confirmed; (1) Better longitudinal coherence, and hence, much narrower bandwidth than SASE. (2) More stable central wavelength, (3) More stable output energy. In this introduction, we will first briefly describe the principle of HGHG in Section A. Then in Section B, we give a general description about how to produce soft x-ray by cascading HGHG scheme. In section 2, we give a detailed description of the system design. Then, in section 3, we give a description of an analytical estimate for the HGHG process, and the calculation of the parameters of different parts of the system. The estimate is found to agree with simulation within about a factor 2 for most cases we studied. The stability issue, the sensitivity to parameter variation, the harmonic contents of the final output, and the noise degradation issue of such HGHG scheme are discussed in Section 4. The results are presented in Section 4. Finally, in Section 5, we will give some discussion of the challenges in development of the system. The conclusion is given in Section 6.

  9. The general solution of the eigenvalue problem for a high-gain FEL

    CERN Document Server

    Saldin, E L; Yurkov, M V

    2001-01-01

    The exact solution of the eigenvalue equation for a high-gain FEL derived in Xie (Nucl. Instr. and Meth. A 445 (2000) 59) is generalized in order to include the space charge effects. This solution is valid not only for natural undulator focusing, but also for alternating-gradient focusing under some condition that is presented. At such, the obtained solution includes all the important effects in the system of axially homogeneous electron beam and undulator: diffraction, betatron motion, energy spread, space charge and frequency detuning. It is valid for ground TEM sub 0 sub 0 mode as well as for high-order modes and can be used for calculation of high-gain FEL amplifiers operating in the wavelength regions from far infrared down to X-ray. In addition, a computationally efficient approximate solution for TEM sub 0 sub 0 mode is derived providing high accuracy (better than 1% in the whole range of parameters). It can be used for quick optimization of FEL amplifiers.

  10. High-gain Seeded FEL Amplifier Tunable in the Terahertz Range

    CERN Document Server

    Sung, C; Pellegrini, C; Ralph, J E; Reiche, S; Rosenzweig, J B; Tochitsky, Sergei Ya

    2005-01-01

    The lack of a high-power, relatively low-cost and compact terahertz (THz) source in the range 0.3-3x10(12) Hz is the major obstacle in progressing on biomedical and material studies at these wavelengths. A high-gain, single pass seeded FEL technique allows to obtain high power THz pulses of a high spectral brightness. We describe an ongoing project at the Neptune laboratory where a ~ 1kW seed pulse generated by difference frequency mixing of CO2 laser lines in a GaAs nonlinear crystal is injected into a waveguide FEL amplifier. The FEL is driven by a 5 ps (r.m.s) long electron pulse with a peak current up to 100A provided by a regular S-band photoinjector. According to 3-D, time dependent simulations, up to ~ 10 MW THz power can be generated using a 2 meter long planar undulator. By mixing different pairs of CO2 laser lines and matching resonant energy of the electron beam, tunability in the 100-400 mm range is expected. A tunable Fabri-Perot interferometer will be used to select a high-power 5ps THz pulse. T...

  11. DEMONSTRATION OF 3D EFFECTS WITH HIGH GAIN AND EFFICIENCY IN A UV FEL OSCILLATOR

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Benson; George Biallas; Keith Blackburn; James Boyce; Donald Bullard; James Coleman; Cody Dickover; David Douglas; Forrest Ellingsworth; Pavel Evtushenko; Carlos Hernandez-Garcia; Christopher Gould; Joseph Gubeli; David Hardy; Kevin Jordan; John Klopf; James Kortze; Robert Legg; Matthew Marchlik; Steven Moore; George Neil; Thomas Powers; Daniel Sexton; Michelle D. Shinn; Christopher Tennant; Richard Walker; Anne Watson; Gwyn Williams; Frederick Wilson; Shukui Zhang

    2011-03-01

    We report on the performance of a high gain UV FEL oscillator operating on an energy recovery linac at Jefferson Lab. The high brightness of the electron beam leads to both gain and efficiency that cannot be reconciled with a one-dimensional model. Three-dimensional simulations do predict the performance with reasonable precision. Gain in excess of 100% per pass and an efficiency close to 1/2NW, where NW is the number of wiggler periods, is seen. The laser mirror tuning curves currently permit operation in the wavelength range of 438 to 362 nm. Another mirror set allows operation at longer wavelengths in the red with even higher gain and efficiency.

  12. Exact and variational solutions of 3D eigenmodes in high gain FELs [Exact and variational solutions of 3D eigenmodes in high gain free electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Ming [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2000-05-18

    Exact solution and variational approximation of eigenmodes in high gain FELs are presented. These eigenmodes specify transverse profiles and exponential growth rates of the laser field before saturation. They are self-consistent solutions of coupled Maxwell–Vlasov equations describing FEL interaction taking into account the effects due to energy spread, emittance and betatron oscillations of the electron beam, as well as diffraction and optical guiding of the laser field. A new formalism of scaling is introduced and based on which solutions in various limiting cases are discussed. Additionally, a fitting formula is obtained from interpolating the variational solution for quick calculation of exponential growth rate of the fundamental mode.

  13. Parameter Analysis For A High-Gain Harmonic Generation FEL By Numerical Calculation Based On 1D Theory

    CERN Document Server

    Li, Yuhui; Zhang, Shancai

    2004-01-01

    The high-gain harmonic generation (HGHG) free-electron laser (FEL) is an important candidate for a fourth-generation light source. Lots of theoretical work has been performed. Recently a further 1D theory about HGHG FEL has been developed. It considers the effects of different parameters for the whole process. An initial program based on this theory has been made. In this paper, a brief comparison of the results from this 1D program and from TDA (3D code) is discussed. It also analyses the parameters for Shanghai deep ultra violate free-electron laser source (SDUV-FEL), including electron beam energy spread, seed laser power, strength of dispersion section etc.

  14. Parameter analysis for a high-gain harmonic generation FEL using a recently developed 3D polychromatic code

    CERN Document Server

    Biedron, S G; Yu, L H

    2000-01-01

    One possible design for a fourth-generation light source is the high-gain harmonic generation (HGHG) free-electron laser (FEL). Here, a coherent seed with a wavelength at a subharmonic of the desired output radiation interacts with the electron beam in an energy-modulating section. This energy modulation is then converted into spatial bunching while traversing a dispersive section (a three-dipole chicane). The final step is passage through an undulator tuned to the desired higher harmonic output wavelength. The coherent seed serves to suppress and can be at a much lower subharmonic of the output radiation. Recently, a 3D code that includes multiple frequencies, multiple undulators (both in quantity and/or type), quadrupole magnets, and dipole magnets was developed to easily simulate HGHG. Here, a brief review of the HGHG theory, the code development, the Accelerator Test Facility's (ATF) HGHG FEL experimental parameters, and the parameter analysis from simulations of this specific experiment will be discussed...

  15. High Average Power Optical FEL Amplifiers

    CERN Document Server

    Ben-Zvi, I; Litvinenko, V

    2005-01-01

    Historically, the first demonstration of the FEL was in an amplifier configuration at Stanford University. There were other notable instances of amplifying a seed laser, such as the LLNL amplifier and the BNL ATF High-Gain Harmonic Generation FEL. However, for the most part FELs are operated as oscillators or self amplified spontaneous emission devices. Yet, in wavelength regimes where a conventional laser seed can be used, the FEL can be used as an amplifier. One promising application is for very high average power generation, for instance a 100 kW average power FEL. The high electron beam power, high brightness and high efficiency that can be achieved with photoinjectors and superconducting energy recovery linacs combine well with the high-gain FEL amplifier to produce unprecedented average power FELs with some advantages. In addition to the general features of the high average power FEL amplifier, we will look at a 100 kW class FEL amplifier is being designed to operate on the 0.5 ampere Energy Recovery Li...

  16. FEL gain optimisation and spontaneous radiation

    Energy Technology Data Exchange (ETDEWEB)

    Bali, L.M.; Srivastava, A.; Pandya, T.P. [Lucknow Univ. (India)] [and others

    1995-12-31

    Colson have evaluated FEL gains for small deviations from perfect electron beam injection, with radiation of the same polarisation as that of the wiggler fields. We find that for optimum gain the polarisation of the optical field should be the same as that of the spontaneous emission under these conditions. With a helical wiggler the axial oscillations resulting from small departures from perfect electron beam injection lead to injection dependent unequal amplitudes and phases of the spontaneous radiation in the two transverse directions. Viewed along the axis therefore the spontaneous emission is elliptically polarised. The azimuth of the ellipse varies with the difference of phase of the two transverse components of spontaneous emission but the eccentricity remains the same. With planar wigglers the spontaneous emission viewed in the axial direction is linearly polarised, again with an injection dependent azimuth. For optimum coherent gain of a radiation field its polarisation characteristics must be the same as those of the spontaneous radiation with both types of wiggler. Thus, with a helical wiggler and the data reported earlier, an increase of 10% in the FEL gain at the fundamental frequency and of 11% at the fifth harmonic has been calculated in the small gain per pass limit. Larger enhancements in gain may result from more favourable values of input parameters.

  17. Derivation of FEL Gain Using Wakefield Approach

    Energy Technology Data Exchange (ETDEWEB)

    Stupakov, Gennady V.

    2003-05-27

    We describe the one-dimensional SASE FEL instability using the wake approach. First, we obtain an expression for the longitudinal 1-D wake in a helical undulator. We then show that taking into account the retardation effect in the Vlasov equation with the proper wake leads to the correct result for the FEL instability, in agreement with the traditional theory.

  18. Industrial Applications of High Average Power FELS

    CERN Document Server

    Shinn, Michelle D

    2005-01-01

    The use of lasers for material processing continues to expand, and the annual sales of such lasers exceeds $1 B (US). Large scale (many m2) processing of materials require the economical production of laser powers of the tens of kilowatts, and therefore are not yet commercial processes, although they have been demonstrated. The development of FELs based on superconducting RF (SRF) linac technology provides a scaleable path to laser outputs above 50 kW in the IR, rendering these applications economically viable, since the cost/photon drops as the output power increases. This approach also enables high average power ~ 1 kW output in the UV spectrum. Such FELs will provide quasi-cw (PRFs in the tens of MHz), of ultrafast (pulsewidth ~ 1 ps) output with very high beam quality. This talk will provide an overview of applications tests by our facility's users such as pulsed laser deposition, laser ablation, and laser surface modification, as well as present plans that will be tested with our upgraded FELs. These upg...

  19. Powerful electrostatic FEL: Regime of operation, recovery of the spent electron beam and high voltage generator

    Energy Technology Data Exchange (ETDEWEB)

    Boscolo, I. [Univ. and INFN, Milan (Italy); Gong, J. [Southwest Jiaotong Univ., Chengdu (China)

    1995-02-01

    FEL, driven by a Cockcroft-Walton electrostatic accelerator with the recovery of the spent electron beam, is proposed as powerful radiation source for plasma heating. The low gain and high gain regimes are compared in view of the recovery problem and the high gain regime is shown to be much more favourable. A new design of the onion Cockcroft-Walton is presented.

  20. Gain enhancement in a two-frequency high-gain waveguide free-electron laser

    CERN Document Server

    Lefèvre, T; Rullier, J L; Gouard, P; Donohue, J T

    2002-01-01

    In a waveguide monomode free-electron laser (FEL), two resonant frequencies can be amplified by the electron beam. At the CEA/CESTA facility, single-pass high-gain FEL experiments have been performed over the last five years using relativistic electron beams provided by induction linacs. Most of the work was done in the amplifier regime (at the higher frequency) with the aim of producing a 35 GHz bunched beam. However, super-radiant measurements were also made and have shown that the FEL gain at the upper frequency is higher than in the amplifier regime and may be driven by the lower frequency FEL interaction.

  1. The Gain and Efficiency Enhancement in Double-Undulator Fels Induced Betatron Oscillations

    NARCIS (Netherlands)

    Bazylev, V. A.; Tulupov, A. V.

    1993-01-01

    A new construction of a free-electron laser using induced betatron oscillations to increase the FEL gain or efficiency is proposed. Induced betatron oscillations are driven by an additional space-periodic magnetic field with a period close to that of electron betatron oscillations in an undulator

  2. Gain length dependence on phase shake in the VUV-FEL at the TESLA Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Pflueger, J. [DESY/HASYLAB, Hamburg (Germany); Schneidmiller, E.A. [Automatic Systems Corporation, Samara (Russian Federation); Pierini, P. [INFN, Milano (Italy)

    1995-12-31

    The TTF VUV FEL, which is in its design stage at DESY, consists of a 30 m long SASE FEL which will radiate around 6 nm, driven by a superconducting linac with final energy of 1 GeV. One of the important issues in its design is the undulator performance, which is studied in this paper. The present setup, including FODO lattice, is discussed in this paper. Results of simulations, including the realistic wiggler field errors and beam stearing, are presented. Dependence of the performance, in particular the gain and saturation length as well as the saturation peak power, on the wiggler field errors is discussed.

  3. High-power FEL design issues - a critical review

    Energy Technology Data Exchange (ETDEWEB)

    Litvinenko, V.N.; Madey, J.M.J.; O`Shea, P.G. [Duke Univ., Durham, NC (United States)

    1995-12-31

    The high-average power capability of FELs has been much advertised but little realized. In this paper we provide a critical analysis of the technological and economic issues associated with high-average power FEL operation from the UV to near IR. The project of IR FEL for the Siberian Center of photochemical researches is described. The distinguished features of this project are the use of the race-track microtron-recuperator and the {open_quotes}electron output of radiation{close_quotes}. The building for the machine is under reconstruction now. About half of hardware has been manufactured. The assembly of installation began.

  4. A HIGH REPETITION RATE VUV-SOFT X-RAY FEL CONCEPT

    Energy Technology Data Exchange (ETDEWEB)

    Corlett, J.; Byrd, J.; Fawley, W.M.; Gullans, M.; Li, D.; Lidia,S.M.; Padmore, H.; Penn, G.; Pogorelov, I.; Qiang, J.; Robin, D.; Sannibale, F.; Staples, J.W.; Steier, C.; Venturini, M.; Virostek, S.; Wan, W.; Wells, R.; Wilcox, R.; Wurtele, J.; Zholents, A.

    2007-06-24

    We report on design studies for a seeded FEL light source that is responsive to the scientific needs of the future. The FEL process increases radiation flux by several orders of magnitude above existing incoherent sources, and offers the additional enhancements attainable by optical manipulations of the electron beam: control of the temporal duration and bandwidth of the coherent output, reduced gain length in the FEL, utilization of harmonics to attain shorter wavelengths, and precise synchronization of the x-ray pulse with seed laser systems. We describe an FEL facility concept based on a high repetition rate RF photocathode gun, that would allow simultaneous operation of multiple independent FEL's, each producing high average brightness, tunable over the VUV-soft x-ray range, and each with individual performance characteristics determined by the configuration of the FEL. SASE, enhanced-SASE (ESASE), seeded, harmonic generation, and other configurations making use of optical manipulations of the electron beam may be employed, providing a wide range of photon beam properties to meet varied user demands.

  5. Summary of the working group on FEL theory

    Energy Technology Data Exchange (ETDEWEB)

    Pellegrini, C.

    1984-01-01

    The working group on FEL theory dedicated most of its discussions to topics relevant to the high gain regime in a free electron laser. In addition the area of interest was mainly restricted to FELs for the production of XUV radiation (<1000 A). A list of the topics that were felt to be relevant is: (1) characterization of the FEL high gain regime; (2) the amplified spontaneous emission mode of operation (ASE); (3) superradiance in FELs; (4) diffraction effects for high gain FELs; (5) noise and start-up; (6) coherence properties of the radiation for the ASE and superradiant FELS. 9 references.

  6. Status report on the development of a high-power UV/IR FEL at CEBAF

    Energy Technology Data Exchange (ETDEWEB)

    Benson, S.; Bohn, C.; Dylla, H.F. [Continuous Electron Beam Accelerator Facility, Newport News, VA (United States)] [and others

    1995-12-31

    Last year we presented a design for a kilowatt industrial UV FEL based on a superconducting RF accelerator delivering 5 mA of electron-beam current at 200 MeV with energy recovery to enhance efficiency. Since then, we have progressed toward resolving several issues associated with that design. More exact simulations of the injector have resulted in a more accurate estimate of the injector performance. A new injection method has reduced the longitudinal and transverse emittance at the linac entrance. A more compact lattice has been designed for the UV FEL, and a new recirculation scheme has been identified which greatly increases the threshold for longitudinal instabilities. We decided to use a wiggler from the Advanced Photon Source which leads to a robust high-gain FEL. Analysis of the stability of an RF control system based on CEBAF control modules indicates that only minor modifications will be needed to apply them to this FEL. Detailed magnet specifications, vacuum-chamber beam apertures, and diagnostic specifications have been developed for the recirculation arcs. The design of the optical cavity has been conceptualized, and control systems have been devised to regulate mirror distortion. A half-scale model of one of the end-corner cubes has been built and tested. Finally, three-dimensional simulations have been carried out which indicate that the FEL should exceed its minimum design goals with adequate performance margin.

  7. Photoinjector RF cavity design for high power CW FEL

    Energy Technology Data Exchange (ETDEWEB)

    Kurennoy, S. (Sergey); Schrage, D. L. (Dale L.); Wood R. L. (Richard L.); Young, L. M. (Lloyd M.); Schultheiss, T. (Thomas); Christina, V.; Rathke, J.

    2003-01-01

    The project is under way to develop a key enabling technology for highpower CW FEL: an RF photoinjector capable of producing continuous average current greater than 100 mA. The specific aim is a n-mode, normalconducting IW photoinjector, 3 nC of bunch charge, 100 mA of current (at 33.3-MHz bunch repetition rate) and emittance less than 10 mm-mad. This level of performance will enable robust 100-kW-class FEL operation with electron beam energy <100 MeV, thereby reducing the size and cost of the FEL. This design is scalable to the MW power level by increasing the electron bunch repetition rate to a higher value. The major challenges are emittance control and high heat flux within the CW 700-MHz RF cavities. Results of RF cavity design and cooling schemes are presented, including both high-velocity water and liquid-nitrogen cooling options.

  8. A high-average-power FEL for industrial applications

    Energy Technology Data Exchange (ETDEWEB)

    Dylla, H.F.; Benson, S.; Bisognano, J.

    1995-12-31

    CEBAF has developed a comprehensive conceptual design of an industrial user facility based on a kilowatt UV (150-1000 nm) and IR (2-25 micron) FEL driven by a recirculating, energy-recovering 200 MeV superconducting radio-frequency (SRF) accelerator. FEL users{endash}CEBAF`s partners in the Laser Processing Consortium, including AT&T, DuPont, IBM, Northrop-Grumman, 3M, and Xerox{endash}plan to develop applications such as polymer surface processing, metals and ceramics micromachining, and metal surface processing, with the overall effort leading to later scale-up to industrial systems at 50-100 kW. Representative applications are described. The proposed high-average-power FEL overcomes limitations of conventional laser sources in available power, cost-effectiveness, tunability and pulse structure. 4 refs., 3 figs., 2 tabs.

  9. Application of the green function formalism to nonlinear evolution of the low gain FEL oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Shvets, G. [Princeton Plasma Physics Lab., NJ (United States); Wurtele, J.S.; Gardent, D. [Massachusetts Institute of Technology, Cambridge, MA (United States)] [and others

    1995-12-31

    A matrix formalism for the optical pulse evolution in the frequency domain, is applied to the nonlinear regime of operation. The formalism was previously developed for studies of the linear evolution of the low-gain FEL oscillator with an arbitrary shape of the electron beam. By varying experimentally controllable parameters, such as cavity detunning and cavity losses, different regimes of operation of the FEL oscillator, such as a steady state saturation and limit cycle saturation, are studied numerically. It is demonstrated that the linear supermodes, numerically obtained from the matrix formalism, provide an appropriate framework for analyzing the periodic change in the output power in the limit cycle regime. The frequency of this oscillation is related to the frequencies of the lowest-order linear supermodes. The response of the output radiation to periodic variation of the electron energy is studied. It is found that the response is enhanced when the frequency of the energy variation corresponds to the difference of per-pass phase advances of the lowest linear supermodes. Finally, various nonlinear models are tested to capture the steady state saturation and limit cycle variation of the EM field in the oscillator cavity.

  10. Photoinjector RF cavity design for high power CW FEL

    Energy Technology Data Exchange (ETDEWEB)

    Kurennoy, S. (Sergey); Schrage, D. L. (Dale L.); Wood R. L. (Richard L.); Young, L. M. (Lloyd M.); Schultheiss, T. (Thomas); Christina, V.; Rathke, J. (John)

    2002-01-01

    The project is under way to develop a key enabling technology for high-power CW FEL: an RF photoinjector capable of producing continuous average current greater than 100 mA. The specific aim is a 700 MHz pi-mode, normal-conducting RF photoinjector, 3 nC of bunch charge, 100 mA of current (at 33.3-MHz bunch repetition rate) and emittance less than 10 mm-mrad. This level of performance will enable robust 100-kW-class FEL operation with electron beam energy 400 MeV, thereby reducing the size and cost of the FEL. This design is scalable to the MW power level by increasing the electron bunch repetition rate from 33.3 MHz to a higher value. The major challenges are emittance control and high heat flux within the CW 700-MHz RF cavities. Results of RF cavity design and cooling schemes are presented, including both high-velocity water and liquid nitrogen cooling options.

  11. Measurement and modeling of mirror distortion in a high power FEL

    Energy Technology Data Exchange (ETDEWEB)

    Benson, S.; Neil, G.; Michelle D. Shinn

    2000-01-01

    Mirror heating in a high power FEL can alter the optical mode and affect the gain of the laser. This can lead to a large reduction of the laser power from ideal values. Measurements of the power and mode size in the Jefferson Lab IR Demo laser have shown clear evidence of mirror distortion at high average power leading (up to 17 kW incident on the mirrors and over 40 W absorbed per mirror). The measurements and comparisons with modeling will be presented. Both steady state and transient analyses and measurements are considered.

  12. High Power Operation of the JLab IR FEL Driver Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Beard; Stephen Benson; George Biallas; James Boyce; Donald Bullard; James Coleman; David Douglas; H. Dylla; Richard Evans; Pavel Evtushenko; Christopher Gould; Albert Grippo; Joseph Gubeli; David Hardy; Carlos Hernandez-Garcia; J. Hovater; Kevin Jordan; John Klopf; Rui Li; Steven Moore; George Neil; Benard Poelker; Thomas Powers; Joseph Preble; Robert Rimmer; Daniel Sexton; Michelle D. Shinn; Christopher Tennant; Richard Walker; Gwyn Williams; Shukui Zhang

    2007-08-01

    Operation of the JLab IR Upgrade FEL at CW powers in excess of 10 kW requires sustained production of high electron beam powers by the driver ERL. This in turn demands attention to numerous issues and effects, including: cathode lifetime; control of beamline and RF system vacuum during high current operation; longitudinal space charge; longitudinal and transverse matching of irregular/large volume phase space distributions; halo management; management of remnant dispersive effects; resistive wall, wake-field, and RF heating of beam vacuum chambers; the beam break up instability; the impact of coherent synchrotron radiation (both on beam quality and the performance of laser optics); magnetic component stability and reproducibility; and RF stability and reproducibility. We discuss our experience with these issues and describe the modus vivendi that has evolved during prolonged high current, high power beam and laser operation.

  13. High Average Current Electron Guns for High-Power FELs

    Science.gov (United States)

    2009-12-09

    FELs 10 Appendix B: Thermionic Injectors 11 Appendix C: Grid Fields and Bunch Emittance 13 Appendix D: PARMELA Simulation of an IOT Gun 16...Inductive Output Tube ( IOT ) amplifiers [32-34] and can generate average currents of ~1 A, peak currents of ~ 5-10 A, cathode-anode voltages of ~ 35...of grid wires, centered at z = zG and x = ±a, ±3a, ±5a, ..., is given by <D(JC,Z) = - X n = ±l.±3. Fa(x,z) Gn(x,z) ( C3 ) where *0 = (1 / 2

  14. Computations of longitudinal electron dynamics in the recirculating cw RF accelerator-recuperator for the high average power FEL

    Science.gov (United States)

    Sokolov, A. S.; Vinokurov, N. A.

    1994-03-01

    The use of optimal longitudinal phase-energy motion conditions for bunched electrons in a recirculating RF accelerator gives the possibility to increase the final electron peak current and, correspondingly, the FEL gain. The computer code RECFEL, developed for simulations of the longitudinal compression of electron bunches with high average current, essentially loading the cw RF cavities of the recirculator-recuperator, is briefly described and illustrated by some computational results.

  15. Gain of harmonic generation in high gain free electron laser

    Institute of Scientific and Technical Information of China (English)

    DENG Hai-Xiao; DAI Zhi-Min

    2008-01-01

    In a planar undulator employed free electron laser(FEL),each harmonic radiation starts from linear amplification and ends with nonlinear harmonic interactions of the lower nonlinear harmonics and the fundamental radiation.In this paper,we investigate the harmonic generation based on the dispersion relation driven from the coupled Maxwell-Vlasov equations,taking into account the effects due to energy spread,emittance,betatron oscillation of electron beam as well as diffraction guiding of the radiation field.A 3D universal scaling function for gain of the linear harmonic generation and a 1D universal scaling function for gain of the nonlinear harmonic generation are presented,which promise rapid computation in FEL design and optimization.The analytical approaches have been validated by 3D simulation results in large range.

  16. RF coupler for high-power CW FEL photoinjector

    Energy Technology Data Exchange (ETDEWEB)

    Kurennoy, S. (Sergey); Young, L. M. (Lloyd M.)

    2003-01-01

    A high-current emittance-compensated RF photoinjector is a key enabling technology for a high-power CW FEL. The design presently under way is a 100-mA 2.5-cell {pi}-mode, 700-MHz, normal conducting demonstration CW RF photoinjector. This photoinjector will be capable of accelerating 3 nC per bunch with an emittance at the wiggler less than 10 mm-mrad. The paper presents results for the RF coupling from ridged wave guides to hte photoinjector RF cavity. The LEDA and SNS couplers inspired this 'dog-bone' design. Electromagnetic modeling of the coupler-cavity system has been performed using both 2-D and 3-D frequency-domain calculations, and a novel time-domain approach with MicroWave Studio. These simulations were used to adjust the coupling coefficient and calculate the power-loss distribution on the coupling slot. The cooling of this slot is a rather challenging thermal management project.

  17. Status of the project of Novosibirsk high power FEL

    Energy Technology Data Exchange (ETDEWEB)

    Pinayev, I.V.; Erg, G.I.; Gavrilov, N.G. [Budker Institute of Nuclear Physics, Novosibirsk (Russian Federation)] [and others

    1995-12-31

    The project of IR FEL for the Siberian Center of photochemical researches is described. The distinguished features of this project are the use of the race-track microtron-recuperator and the {open_quotes}electron output of radiation{close_quotes}. The building for the machine is under reconstruction now. About half of hardware has been manufactured. The assembly of installation began.

  18. Prospects for a soft x-ray FEL powered by a relativistic-klystron high-gradient accelerator (RK-HGA)

    Energy Technology Data Exchange (ETDEWEB)

    Shay, H.D.; Barletta, W.A.; Yu, S.S.; Schlueter, R.; Deis, G.A.

    1989-09-28

    We present here the concept of x-ray FELs using high gain, single-pass amplifiers with electron beams accelerated in high gradient structures powered by relativistic klystrons. Other authors have also considered x-ray FELs; the unique aspect of this paper is the use of high gradient acceleration. One of the authors has previously presented preliminary studies on this concept. The intent in this paper is to display the results of a top level design study on a high gain FEL, to present its sensitivity to a variety of fabrication and tuning errors, to discuss several mechanisms for increasing gain yet more, and to present explicitly the output characteristics of such an FEL. The philosophy of the design study is to find a plausible operating point which employs existing or nearly existing state-of-the-art technologies while minimizing the accelerator and wiggler lengths. The notion is to distribute the technical risk as evenly as possible over the several technologies so that each must advance only slightly in order to make this design feasible. This study entailed no systematic investigation of possible costs so that, for example, the sole criterion for balancing the trade-off between beam energy and wiggler length is that the two components have comparable lengths. 20 refs., 10 figs., 1 tab.

  19. An FEL based high-intensity gamma source at the TESLA Test Facility at DESY

    CERN Document Server

    Pagani, C; Schneidmiller, E A; Yurkov, M V

    1999-01-01

    One possible extension of the FEL activity at DESY is connected with the installation of an additional FEL beamline providing tunable UV radiation with peak and average power of 220 GW and 7 kW, respectively. This report presents the feasibility study of a high-intensity, polarized, monochromatic gamma source at the TESLA Test Facility. Gamma quanta are produced in the process of Compton backscattering of the UV FEL radiation on 1 GeV electrons of the TTF accelerator. The ultimate intensity of the gamma source can reach a value up to 10 sup 1 sup 2 gamma quanta per second with a maximum energy of about 100 MeV. The energy resolution of the gamma source can be reduced down to a value of about 0.2%. Potential applications of the intense gamma source at the TESLA Test Facility are discussed as well.

  20. A project of accelerator-recuperator for Novosibirsk high-power FEL

    Science.gov (United States)

    Bolotin, V. P.; Vinokurov, N. A.; Kayran, D. A.; Knyazev, B. A.; Kolobanov, E. I.; Kotenkov, V. V.; Kubarev, V. V.; Kulipanov, G. N.; Matveenko, A. N.; Medvedev, L. E.; Miginsky, S. V.; Mironenko, L. A.; Oreshkov, A. D.; Ovchar, V. K.; Popik, V. M.; Salikova, T. V.; Serednyakov, S. S.; Skrinsky, A. N.; Tcheskidov, V. G.; Shevchenko, O. A.; Scheglov, M. A.

    2006-12-01

    The first stage of the Novosibirsk high-power free-electron laser (FEL) was commissioned in 2003. It is driven by a CW energy recovery linac. The next step will be the full-scale machine, a four-track accelerator-recuperator based on the same RF accelerating structure. This upgrade will permit to get shorter wavelengths in the infrared region and increase the average power of the FEL by several times. The scheme and some technical details of the project are set out. The installation will be a prototype for future multiturn accelerator-recuperators.

  1. High-performance UV/VUV optics for the Storage Ring FEL at ELETTRA

    CERN Document Server

    Gatto, A; Kaiser, N; Ristau, D; Guenster, S; Kohlhaas, J; Marsi, M; Trovò, M; Walker, R P

    2002-01-01

    Going to shorter wavelengths beyond the deep ultraviolet involves the development of dedicated optics for FEL with devoted coating techniques and characterizations. Low loss, high reflectivity dielectric mirrors with a long lifetime in a strongly harsh synchrotron radiation environment are required. In February 2001, lasing at 189.7 nm was obtained with Al sub 2 O sub 3 /SiO sub 2 Ion Beam Sputtering mirrors, the shortest wavelength obtained so far with FEL oscillators. In July 2001, 330 mW extracted power was measured with optimized transmission mirrors. Coating research and development correlated to lasing performance obtained so far is reported.

  2. Obtaining high degree of circular polarization at X-ray FELs via a reverse undulator taper

    Energy Technology Data Exchange (ETDEWEB)

    Schneidmiller, E.A.; Yurkov, M.V.

    2013-08-15

    Baseline design of a typical X-ray FEL undulator assumes a planar configuration which results in a linear polarization of the FEL radiation. However, many experiments at X-ray FEL user facilities would profit from using a circularly polarized radiation. As a cheap upgrade one can consider an installation of a short helical (or cross-planar) afterburner, but then one should have an efficient method to suppress powerful linearly polarized background from the main undulator. In this paper we propose a new method for such a suppression: an application of the reverse taper in the main undulator. We discover that in a certain range of the taper strength, the density modulation (bunching) at saturation is practically the same as in the case of non-tapered undulator while the power of linearly polarized radiation is suppressed by orders of magnitude. Then strongly modulated electron beam radiates at full power in the afterburner. Considering SASE3 undulator of the European XFEL as a practical example, we demonstrate that soft X-ray radiation pulses with peak power in excess of 100 GW and an ultimately high degree of circular polarization can be produced. The proposed method is rather universal, i.e. it can be used at SASE FELs and seeded (self-seeded) FELs, with any wavelength of interest, in a wide range of electron beam parameters, and with any repetition rate. It can be used at different X-ray FEL facilities, in particular at LCLS after installation of the helical afterburner in the near future.

  3. Los Alamos High-Brightness Accelerator FEL (HIBAF) facility

    Energy Technology Data Exchange (ETDEWEB)

    Cornelius, W.D.; Bender, S.; Meier, K.; Thode, L.E.; Watson, J.M.

    1989-01-01

    The 10-/mu/m Los Alamos free-electron laser (FEL) facility is being upgraded. The conventional electron gun and bunchers have been replaced with a much more compact 6-MeV photoinjector accelerator. By adding existing parts from previous experiments, the primary beam energy will be doubled to 40 MeV. With the existing 1-m wiggler (/lambda//sub w/ = 2.7 cm) and resonator, the facility can produce photons with wavelengths from 3 to 100 /mu/m when lasing on the fundamental mode and produce photons in the visible spectrum with short-period wigglers or harmonic operation. After installation of a 150/degree/ bend, a second wiggler will be added as an amplifier. The installation of laser transport tubes between the accelerator vault and an upstairs laboratory will provide experimenters with a radiation-free environment for experiments. Although the initial experimental program of the upgraded facility will be to test the single accelerator-master oscillator/power amplifier configuration, some portion of the operational time of the facility can be dedicated to user experiments. 13 refs., 5 figs., 6 tabs.

  4. Innovative FEL schemes using variable-gap undulators

    Science.gov (United States)

    Schneidmiller, E. A.; Yurkov, M. V.

    2017-06-01

    We discuss theoretical background and experimental verification of advanced schemes for X-ray FELs using variable gap undulators (harmonic lasing self-seeded FEL, reverse taper etc.) Harmonic lasing in XFELs is an opportunity to extend operating range of existing and planned X-ray FEL user facilities. Contrary to nonlinear harmonic generation, harmonic lasing can provide much more intense, stable, and narrow-band FEL beam which is easier to handle due to the suppressed fundamental. Another interesting application of harmonic lasing is Harmonic Lasing Self-Seeded (HLSS) FEL that allows to improve longitudinal coherence and spectral power of a SASE FEL. Recently this concept was successfully tested at the soft X-ray FEL user facility FLASH in the wavelength range between 4.5 nm and 15 nm. That was also the first experimental demonstration of harmonic lasing in a high-gain FEL and at a short wavelength (before it worked only in infrared FEL oscillators). Another innovative scheme that was tested at FLASH2 is the reverse tapering that can be used to produce circularly polarized radiation from a dedicated afterburner with strongly suppressed linearly polarized radiation from the main undulator. This scheme can also be used for an efficient background-free production of harmonics in an afterburner. Experiments on the frequency doubling that allowed to reach the shortest wavelength at FLASH as well as on post-saturation tapering to produce a record intencity in XUV regime are also discussed.

  5. Normal-conducting RF cavity of high current photoinjector for high power CW FEL.

    Energy Technology Data Exchange (ETDEWEB)

    Kurennoy, S. (Sergey); Schrage, D. L. (Dale L.); Wood R. L. (Richard L.); Schultheiss, T. (Thomas); Rathke, J. (John); Young, L. M. (Lloyd M.)

    2004-01-01

    An RF photoinjector capable of producing high continuous average current with low emittance and energy spread is a key enabling technology for high power CW FEL. The design of a 2.5-cell, {pi}-mode, 700-MHz normal-conducting RF photoinjector cavity with magnetic emittance compensation is completed. With the electric field gradients of 7.7, and 5 MV/m in the three cells, the photoinjector will produce a 2.5-MeV electron beam with 3-nC charge per bunch and the transverse rms emittance 7 mm-mrad. Electromagnetic modeling was used extensively to optimize ridge-loaded tapered waveguides and RF couplers, which led to a new, improved coupler iris design. The results, combined with a thermal and stress analysis, show that the challenging problem of cavity cooling can be successfully solved. The manufacturing of a demo 100-mA (at 35 MHz bunch repetition rate) photoinjector is underway. The design is scalable to higher power levels by increasing the electron bunch repetition rate, and provides a path to a MW-class amplifier FEL. This paper presents the cavity design and details of RF coupler modeling.

  6. Normal conducting RF cavity of high current photoinjector for high power CW FEL.

    Energy Technology Data Exchange (ETDEWEB)

    Kurennoy, S. (Sergey); Schrage, D. L. (Dale L.); Wood R. L. (Richard L.); Schultheiss, T. (Thomas); Rathke, J. (John); Christina, V.; Young, L. M. (Lloyd M.)

    2004-01-01

    An RF photoinjector capable of producing high continuous average current with low emittance and energy spread is a key enabling technology for high power CW FEL. The design of a 2.5-cell {pi}-mode 700-MHz normal-conducting RF photoinjector cavity with magnetic emittance compensation is completed. With the electric field gradients of 7, 7, and 5 MV/m in the three cells, the photoinjector will produce a 2.5-MeV electron beam with 3-nC charge per bunch and 7 mm-mrad transverse rms emittance. Electromagnetic modeling was used extensively to optimize ridge-loaded tapered waveguides and RF couplers, which led to a new improved coupler-iris design. The results, combined with a thermal/stress analysis, show that the challenging problem of cavity cooling can be successfully solved. A demo 100-mA (at 35-MHz bunch-repetition rate) photoinjector is being manufactured. The design is scalable to higher power levels by increasing the bunch repetition rate, and provides a path to a MW-class amplifier FEL. The cavity design and details of RF coupler modeling are presented.

  7. Normal-Conducting High Current RF Photoinjector for High Power CW FEL

    CERN Document Server

    Kurennoy, Sergey; Nguyen, Dinh C; Rathke, John; Schrage, Dale L; Schultheiss, Tom; Wood, Richard L; Young, Lloyd M

    2005-01-01

    An RF photoinjector capable of producing high average current with low emittance and energy spread is a key enabling technology for high power CW FEL. The design of a 2.5-cell, pi-mode, 700-MHz normal-conducting RF photoinjector cavity with magnetic emittance compensation is completed. With average gradients of 7, 7, and 5 MV/m in its three accelerating cells, the photoinjector will produce a 2.5-MeV electron beam with 3-nC charge per bunch and transverse rms emittance below 7 mm-mrad. Electromagnetic modeling has been used extensively to optimize ridge-loaded tapered waveguides and RF couplers, and led to a new, improved coupler iris design. The results, combined with a thermal and stress analysis, show that the challenging problem of cavity cooling can be successfully solved. Fabrication of a demo 100-mA (at 35 MHz bunch repetition rate) photoinjector is underway. The design is scalable to higher average currents by increasing the electron bunch repetition rate, and provides a path to a MW-class FEL. This p...

  8. A non-conventional ERL configuration for high-power EUV FELs

    Energy Technology Data Exchange (ETDEWEB)

    Venturini, M., E-mail: mventurini@lbl.gov; Penn, G.

    2015-09-21

    We show that a standard Linac configuration (consisting of accelerating sections, linearizing section, and magnetic chicane compressor) currently used in drivers for single-pass EUV/x-ray FELs is compatible with energy recovery, provided that certain timing constraints are met. By circulating the spent, rather than the fresh beam as in a conventional high-power ERL FEL design, the beam brightness can be more easily preserved thus facilitating lasing at short wavelength. As in a conventional ERL, the proposed design allows for energy-spread compression, enabling low-energy beam dumping and high energy-recovery efficiency. Results from numerical simulations presented in this paper show that this configuration could, in principle, support the generation of multi-kW average radiation power required for high-volume production EUV lithography.

  9. Design Studies for a High-Repetition-Rate FEL Facility at LBNL.

    Energy Technology Data Exchange (ETDEWEB)

    CORLETT, J.; BELKACEM, A.; BYRD, J. M.; FAWLEY, W.; KIRZ, J.; LIDIA, S.; MCCURDY, W.; PADMORE, H.; PENN, G.; POGORELOV, I.; QIANG, J.; ROBIN, D.; SANNIBALE, F.; SCHOENLEIN, R.; STAPLES, J.; STEIER, C.; VENTURINI, M.; WAN, W.; WILCOX, R.; ZHOLENTS, A.

    2007-10-04

    Lawrence Berkeley National Laboratory (LBNL) is working to address the needs of the primary scientific Grand Challenges now being considered by the U.S. Department of Energy, Office of Basic Energy Sciences: we are exploring scientific discovery opportunities, and new areas of science, to be unlocked with the use of advanced photon sources. A partnership of several divisions at LBNL is working to define the science and instruments needed in the future. To meet these needs, we propose a seeded, high-repetition-rate, free-electron laser (FEL) facility. Temporally and spatially coherent photon pulses, of controlled duration ranging from picosecond to sub-femtosecond, are within reach in the vacuum ultraviolet (VUV) to soft X-ray regime, and LBNL is developing critical accelerator physics and technologies toward this goal. We envision a facility with an array of FELs, each independently configurable and tunable, providing a range of photon-beam properties with high average and peak flux and brightness.

  10. Studies of a Linac Driver for a High Repetition Rate X-Ray FEL

    Energy Technology Data Exchange (ETDEWEB)

    Venturini, M.; Corlett, J.; Doolittle, L.; Filippetto, D.; Papadopoulos, C.; Penn, G.; Prosnitz, D.; Qiang, J.; Reinsch, M.; Ryne, R.; Sannibale, F.; Staples, J.; Wells, R.; Wurtele, J.; Zolotorev, M.; Zholents, A.

    2011-06-01

    We report on on-going studies of a superconducting CW linac driver intended to support a high repetition rate FEL operating in the soft x-rays spectrum. We present a pointdesign for a 1.8 GeV machine tuned for 300 pC bunches and delivering low-emittance, low-energy spread beams as needed for the SASE and seeded beamlines.

  11. A status report on the development of a high power UV and IR FEL at CEBAF

    Energy Technology Data Exchange (ETDEWEB)

    Benson, S.V.; Bisognano, J.; Bohn, C. [and others

    1996-08-01

    Previously the authors presented a design for a kilowatt demonstration industrial UVFEL. Progress has been made in resolving several design issues identified in that work. More exact simulations of the injector have resulted in a better estimate of the injector performance. A more compact lattice has been designed meeting the design requirements for the UV FEL, and a new design point has been studied which greatly increases the threshold for longitudinal instabilities. A stability analysis of the RF control system has found that only minor modifications from the existing CEBAF controls will be necessary to allow them to be used with a high current, energy-recovery accelerator. Designs for the optical cavity length and figure control systems have been conceptualized and a model of the corner-cube resonator is being built and tested. Finally, three-dimensional simulations of the FEL have been carried out which show that the laser should exceed its minimum design goals for average power.

  12. S2E simulation of an ERL-based high-power EUV-FEL source for lithography

    Science.gov (United States)

    Nakamura, N.; Kato, R.; Miyajima, T.; Shimada, M.; Hotei, T.; Hajima, R.

    2017-07-01

    Energy recovery linac (ERL) based extreme ultraviolet (EUV) free electron lasers (FELs) are candidates of a next-generation high-power EUV source for lithography. An ERL-based EUV FEL source has been designed in order to demonstrate the feasibility of generating a 10-kW class EUV power. Start-to-End (S2E) simulation including the injection beam optimization, bunch compression, FEL lasing and bunch decompression is performed for the designed EUV source. As a result it is demonstrated that the EUV FEL can produce high power more than 10 kW at 10 mA and that the electron beam can be well transported throughout the EUV source without beam loss.

  13. Development of photoinjector RF cavity for high-power CW FEL

    Science.gov (United States)

    Kurennoy, S. S.; Schrage, D. L.; Wood, R. L.; Young, L. M.; Schultheiss, T.; Christina, V.; Rathke, J.

    2004-08-01

    An RF photoinjector capable of producing high continuous average current with low emittance and energy spread is a key enabling technology for high-power CW FEL. A preliminary design of the first, and the most challenging, section of a 700-MHz CW RF normal-conducting photoinjector—a 2.5-cell, pi-mode cavity with solenoidal magnetic field for emittance compensation—is completed. Beam dynamics simulations demonstrate that this cavity with an electric field gradient of 7 MV/m will produce an electron beam at 2.7 MeV with the transverse rms emittance 7 mm mrad at 3 nC of charge per bunch. Electromagnetic field computations combined with a thermal and stress analysis show that the challenging problem of cavity cooling can be successfully resolved. We are in the process of building a 100-mA (3 nC of bunch charge at 33.3 MHz bunch repetition rate) photoinjector for demonstration purposes. Its performance parameters will enable a robust 100-kW-class FEL operation with electron beam energy below 100 MeV. The design is scalable to higher power levels by increasing the electron bunch repetition rate and provides a path to a MW-class amplifier FEL.

  14. Development of photoinjector RF cavity for high-power CW FEL

    Energy Technology Data Exchange (ETDEWEB)

    Kurennoy, S.S. E-mail: kurennoy@lanl.gov; Schrage, D.L.; Wood, R.L.; Young, L.M.; Schultheiss, T.; Christina, V.; Rathke, J

    2004-08-01

    An RF photoinjector capable of producing high continuous average current with low emittance and energy spread is a key enabling technology for high-power CW FEL. A preliminary design of the first, and the most challenging, section of a 700-MHz CW RF normal-conducting photoinjector - a 2.5-cell, pi-mode cavity with solenoidal magnetic field for emittance compensation - is completed. Beam dynamics simulations demonstrate that this cavity with an electric field gradient of 7 MV/m will produce an electron beam at 2.7 MeV with the transverse rms emittance 7 mm mrad at 3 nC of charge per bunch. Electromagnetic field computations combined with a thermal and stress analysis show that the challenging problem of cavity cooling can be successfully resolved. We are in the process of building a 100-mA (3 nC of bunch charge at 33.3 MHz bunch repetition rate) photoinjector for demonstration purposes. Its performance parameters will enable a robust 100-kW-class FEL operation with electron beam energy below 100 MeV. The design is scalable to higher power levels by increasing the electron bunch repetition rate and provides a path to a MW-class amplifier FEL.

  15. FEL Applications in EUV Lithography

    CERN Document Server

    Goldstein, M; Shroff, Y A; Silverman, P J; Williams, D

    2005-01-01

    Semiconductor industry growth has largely been made possible by regular improvements in lithography. State of the art lithographic tools cost upwards of twenty five million dollars and use 0.93 numerical aperture projection optics with 193nm wavelengths to pattern features for 45 nm node development. Scaling beyond the 32 nm feature size node is expected to require extreme ultraviolet (EUV) wavelength light. EUV source requirements and equipment industry plasma source development efforts are reviewed. Exploratory research on a novel hybrid klystron and high gain harmonic generation FEL with oblique laser seeding will be disclosed. The opportunity and challenges for FELs to serve as a second generation (year 2011-2013) source technology in the semiconductor industry are presented.

  16. Possible enhancement of SASE FEL output field intensity induced by local phase jump

    Science.gov (United States)

    Varfolomeev, A. A.; Yarovoi, T. V.; Bousine, P. V.

    1998-02-01

    A possible influence on the FEL dynamics of a locally induced phase jump between the FEL radiation and electron beam is considered. A numerical study has been made for the SASE mode FEL supposing that the phase jumps are introduced at different depths inside the undulator. The FEL evolution starting from a small input signal was studied in 1D high gain approach. It was shown that the FEL radiation output is sensitive to the phase jump value if it is introduced at the depth where saturation of output power takes places. In the steady state regime, the phase displacement of order ˜π provides enhancement of the peak output power up to 50%. Some kind of optical tapering is also possible giving further FEL efficiency enhancement.

  17. Experimental results of a sheet-beam, high power, FEL amplifier with application to magnetic fusion research

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, S.; Destler, W.W.; Granatstein, V.L. [Univ. of Maryland, College Park, MD (United States)] [and others

    1995-12-31

    The experimental study of sheet-beam FELs as candidate millimeter-wave sources for heating magnetic fusion plasmas has achieved a major milestone. In a proof-of-principle, pulsed experiment, saturated FEL amplifier operation was achieved with 250 kW of output power at 86 GHz. Input microwave power was 1 kW, beam voltage was 450 kV and beam current was 17 A. The planar wiggler had a peak value of 3.8 kG, a period of 0.96 cm and was 71 cm long. The linear gain of 30 dB, saturated gain of 24 dB and saturated efficiency of 3% all are in good agreement with theoretical prediction. Follow-on work would include development of a thermionic sheet-beam electron-gun compatible with CW FEL operation, adding a section of tapered wiggler to increase the output power to levels in excess of 1 megawatt, and increasing the FEL frequency.

  18. Spontaneous emission effects in optically pumped x-ray FEL

    Energy Technology Data Exchange (ETDEWEB)

    Smetanin, I.V.; Grigor`ev, S.V. [P.N. Lebedev Physics Institute, Moscow (Russian Federation)

    1995-12-31

    An effect of spontaneous emission in both quantum and classical regimes of the optically pumped X-ray free electron laser (FEL) in investigated. The quantum properties of an FEL are determined by the ratio of the separation {h_bar} between the absorption and emission lines (i.e. the quanta emitted) and their effective width {Delta}{epsilon} {eta}={h_bar}/{Delta}{epsilon}. In the conventional classical regime {eta} {much_lt} 1 an electron emits and absorbes a great number of shortwavelength photons over the interaction region, the gain in FEL being the result of these competitive processes. In the quantum limit {eta} {much_gt} 1 the emission and absorption lines are completely separated and thus the FEL becomes a two-level quantum oscillator with a completely inverted active medium. Spontaneous emission causes the electron to leave the range of energies where resonant interaction with the laser field occurs, thus effectively reducing the number of particles that take part in generating the induced X-ray signal. This effect is found to be crucial for lasing in optically pumped X-ray FEL. The characteristic relaxation times are calculated for both classical and quantum FEL regimes. It is shown that spontaneous emission results in FEL electron beam threshold current, which is of rather high value. An optimal range of pumping laser intensities is determined.

  19. Nonlinear harmonics in the high-gain harmonic generation (HGHG) experiment

    CERN Document Server

    Biedron, S G; Milton, S V; Yu, L H; Wang, X J

    2001-01-01

    We have previously performed rigorous analyses of the nonlinear harmonics in self-amplified spontaneous emission (SASE) free-electron lasers (FELs) using a 3D simulation code. To date, we have presented only preliminary results of these higher harmonics resulting in the high-gain harmonic generation (HGHG) process. A single-pass, high-gain FEL experiment based on the HGHG theory is underway at the Accelerator Test Facility (ATF) at Brookhaven National Laboratory (BNL) in collaboration with the Advanced Photon Source (APS) at Argonne National Laboratory (ANL). Using the above experiment's design parameters, the specific case of the harmonic output from the HGHG experiment will be examined using a 3D simulation code. The sensitivity of nonlinear harmonic output for this HGHG experiment as functions of emittance, energy spread, and peak current in both cases, and for the dispersive section strength and input seed power in the HGHG case, will be presented.

  20. Laser-plasma interactions from thin tapes for high-energy electron accelerators and seeding compact FELs

    Science.gov (United States)

    Shaw, Brian Henry

    This thesis comprises a detailed investigation of the physics of using a plasma mirror (PM) from a tape by reflecting ultrashort pulses from a laser-triggered surface plasma. The tapes used in the characterization of the PM are VHS and computer data storage tape. The tapes are 6.6 m (computer storage tape) and 15 m (VHS) thick. Each tape is 0.5 inches wide, and 10s of meters of tape are spooled using a tape drive; providing thousands of shots on a single reel of tape. The amount of reflected energy of the PM was studied for different input intensities. The fluence was varied by translating the focus of the laser upstream and downstream of the tape, which changed the spot size on the tape surface and hence changed the fluence. This study measured reflectances from both sides of the two tapes, and for input light of both s and p-polarizations. Lastly, an analytic model was developed to understand the reflectance as a function of fluence for each tape material and polarization. Another application that benefits from the advancements of LPA technology is an LPAbased FEL. By sending a high quality electron bunch through an undulator (a periodic structure of positive and negative magnetic poles), the electrons oscillate transversely to the propagation axis and produce radiation. The 1.5 m THUNDER undulator at the BELLA Center has been commissioned using electron beams of 400MeV beams with broad energy spread (35%). To produce a coherent LPA-based FEL, the beam quality would need to improve to sub-percent level energy spread. A seed source could be used to help induce bunching of the electron beam within the undulator. This thesis described the experimental investigation of the physics of using solid-based surface high-harmonic generation (SHHG) from a thin tape as a possible seed source for an FEL. A thin tape placed within centimeters of the undulator's entrance could act as a harmonic generating source, while simultaneously transmitting an electron beam. This removes

  1. Design Formulas for VUV and X-Ray FELs

    CERN Document Server

    Saldin, Evgeny L; Yurkov, Mikhail V

    2004-01-01

    Simple formulas for optimization of VUV and X-ray SASE FELs are presented. The FEL gain length and the optimal beta-function are explicitly expressed in terms of the electron beam and undulator parameters. The FEL saturation length is estimated taking into account energy diffusion due to quantum fluctuations of the undulator radiation. Examples of the FEL optimization are given. Parameters of a SASE FEL, operating at the Compton wavelength, are suggested.

  2. A compact FEL upconverter of coherent radiation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y.; Marshall, T.C. [Columbia Univ., New York, NY (United States)

    1995-12-31

    The objective is to generate a powerful millimeter-wave FEL signal in a single pass, using a coherent microwave source (24GHz) to prebunch the electron beam for a harmonically-related wave (72GHz). We use the Columbia FEL facility, operating the electron beam at 600kV, 100A; undulator period = 1.85cm and 250G (K = 0.25); electron beam diameter = 3mm inside a 8.5 mm ID drift tube; guiding field of 8800G. Under these conditions, both the microwave signal (5kW input) and the millimeter signal will show travelling-wave gain in the TE11 mode. We report initial experimental results for the millimeter wave spectrum and find an overall power gain of {approximately}20 for the 24GHz input wave. Also presented will be numerical solutions of the wave growth using the FEL equations with slippage. This device has the advantage of producing a high-power FEL output in a single-pass travelling-wave configuration, obtaining a millimeter wave which is phase-referenced to a coherent laboratory source.

  3. Design of a high average-power FEL driven by an existing 20 MV electrostatic-accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kimel, I.; Elias, L.R. [Univ. of Central Florida, Orlando, FL (United States)

    1995-12-31

    There are some important applications where high average-power radiation is required. Two examples are industrial machining and space power-beaming. Unfortunately, up to date no FEL has been able to show more than 10 Watts of average power. To remedy this situation we started a program geared towards the development of high average-power FELs. As a first step we are building in our CREOL laboratory, a compact FEL which will generate close to 1 kW in CW operation. As the next step we are also engaged in the design of a much higher average-power system based on a 20 MV electrostatic accelerator. This FEL will be capable of operating CW with a power output of 60 kW. The idea is to perform a high power demonstration using the existing 20 MV electrostatic accelerator at the Tandar facility in Buenos Aires. This machine has been dedicated to accelerate heavy ions for experiments and applications in nuclear and atomic physics. The necessary adaptations required to utilize the machine to accelerate electrons will be described. An important aspect of the design of the 20 MV system, is the electron beam optics through almost 30 meters of accelerating and decelerating tubes as well as the undulator. Of equal importance is a careful design of the long resonator with mirrors able to withstand high power loading with proper heat dissipation features.

  4. Initial observations of high-charge, low-emittance electron beams at HIBAF (High Brightness Accelerator FEL)

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A.H.; Feldman, R.B.; Carsten, B.E.; Feldman, D.W.; Sheffield, R.L.; Stein, W.E.; Johnson, W.J.; Thode, L.E.; Bender, S.C.; Busch, G.E.

    1990-01-01

    We report our initial measurements of bright (high-charge, low-emittance) electron beams generated at the Los Alamos High Brightness Accelerator FEL (HIBAF) Facility. Normalized emittance values of less than 50 {pi} mm-mrad for charges ranging from 0.7 to 8.7 nC were obtained for single micropulses at a y-waist and at an energy of 14.7 MeV. These measurements were part of the commissioning campaign on the HIBAF photoelectric injector. Macropulse measurements have also been performed and are compared with PARMELA simulations. 5 refs., 8 figs., 3 tabs.

  5. High gain harmonic generation free electron lasers enhanced by pseudoenergy bands

    Directory of Open Access Journals (Sweden)

    Takashi Tanaka

    2017-08-01

    Full Text Available We propose a new scheme for high gain harmonic generation free electron lasers (HGHG FELs, which is seeded by a pair of intersecting laser beams to interact with an electron beam in a modulator undulator located in a dispersive section. The interference of the laser beams gives rise to a two-dimensional modulation in the energy-time phase space because of a strong correlation between the electron energy and the position in the direction of dispersion. This eventually forms pseudoenergy bands in the electron beam, which result in efficient harmonic generation in HGHG FELs in a similar manner to the well-known scheme using the echo effects. The advantage of the proposed scheme is that the beam quality is less deteriorated than in other existing schemes.

  6. High gain harmonic generation free electron lasers enhanced by pseudoenergy bands

    Science.gov (United States)

    Tanaka, Takashi; Kinjo, Ryota

    2017-08-01

    We propose a new scheme for high gain harmonic generation free electron lasers (HGHG FELs), which is seeded by a pair of intersecting laser beams to interact with an electron beam in a modulator undulator located in a dispersive section. The interference of the laser beams gives rise to a two-dimensional modulation in the energy-time phase space because of a strong correlation between the electron energy and the position in the direction of dispersion. This eventually forms pseudoenergy bands in the electron beam, which result in efficient harmonic generation in HGHG FELs in a similar manner to the well-known scheme using the echo effects. The advantage of the proposed scheme is that the beam quality is less deteriorated than in other existing schemes.

  7. Spectral Phase Modulation and chirped pulse amplification in High Gain Harmonic Generation

    CERN Document Server

    Wu, Zilu; Krinsky, Sam; Loos, Henrik; Murphy, James; Shaftan, Timur; Sheehy, Brian; Shen, Yuzhen; Wang, Xijie; Yu Li Hua

    2004-01-01

    High Gain Harmonic Generation (HGHG), because it produces longitudinally coherent pulses derived from a coherent seed, presents remarkable possibilities for manipulating FEL pulses. If spectral phase modulation imposed on the seed modulates the spectral phase of the HGHG in a deterministic fashion, then chirped pulse amplification, pulse shaping, and coherent control experiments at short wavelengths become possible. In addition, the details of the transfer function will likely depend on electron beam and radiator dynamics and so prove to be a useful tool for studying these. Using the DUVFEL at the National Synchrotron Light Source at Brookhaven National Laboratory, we present spectral phase analyses of both coherent HGHG and incoherent SASE ultraviolet FEL radiation, applying Spectral Interferometry for Direct Electric Field Reconstruction (SPIDER), and assess the potential for employing compression and shaping techniques.

  8. RF Couplers for Normal-Conducting Photoinjector of High-Power CW FEL

    CERN Document Server

    Kurennoy, Sergey; Wood, Richard L; Schultheiss, T J; Rathke, John; Young, Lloyd

    2004-01-01

    A high-current emittance-compensated RF photoinjector is a key enabling technology for a high-power CW FEL. A preliminary design of a normal-conducting, 2.5-cell pi-mode, 700-MHz CW RF photoinjector that will be built for demonstration purposes, is completed. This photoinjector will be capable of accelerating a 100-mA electron beam (3 nC per bunch at 35 MHz bunch repetition rate) to 2.7 MeV while providing an emittance below 7 mm-mrad at the wiggler. More than 1 MW of RF power will be fed into the photoinjector cavity through two ridge-loaded tapered waveguides. The waveguides are coupled to the cavity by "dog-bone" irises cut in a thick wall. Due to CW operation of the photoinjector, the cooling of the coupler irises is a rather challenging thermal management project. This paper presents results of a detailed electromagnetic modeling of the coupler-cavity system, which has been performed to select the coupler design that minimizes the iris heating due to RF power loss in its walls.

  9. RF Couplers for Normal-Conducting Photoinjector of High-Power CW FEL

    Science.gov (United States)

    Kurennoy, Sergey; Schrage, Dale; Wood, Richard; Schultheiss, Tom; Rathke, John; Young, Lloyd

    2004-05-01

    A high-current emittance-compensated RF photoinjector is a key enabling technology for a high-power CW FEL. A preliminary design of a normal-conducting, 2.5-cell pi-mode, 700-MHz CW RF photoinjector that will be build for demonstration purposes, is completed. This photoinjector will be capable of accelerating a 100-mA electron beam (3 nC per bunch at 35 MHz bunch repetition rate) to 2.7 MeV while providing an emittance below 7 mm-mrad at the wiggler. More than 1 MW of RF power will be fed into the photoinjector cavity through two ridge-loaded tapered waveguides. The waveguides are coupled to the cavity by "dog-bone" irises cut in a thick wall. Due to CW operation of the photoinjector, the cooling of the coupler irises is a rather challenging thermal management project. This paper presents results of a detailed electromagnetic modeling of the coupler-cavity system, which has been performed to select the coupler design that minimizes the iris heating due to RF power loss in its walls.

  10. RF couplers for normal-conducting photoinjector of high-power CW FEL

    Energy Technology Data Exchange (ETDEWEB)

    Kurennoy, S. (Sergey)

    2004-01-01

    A high-current emittance-compensated RF photoinjector is a key enabling technology for a high-power CW FEL. A preliminary design of a normal-conducting, 2.5-cell pi-mode, 700-MHz CW RF photoinjector that will be built for demonstration purposes, is completed. This photoinjector will be capable of accelerating a 100-mA electron beam (3 nC per bunch at 35 MHz bunch repetition rate) to 2.7 MeV while providing an emittance below 7 mm-mrad at the wiggler. More than 1 MW of RF power will be fed into the photoinjector cavity through two ridge-loaded tapered waveguides. The waveguides are coupled to the cavity by 'dog-bone' irises cut in a thick wall. Due to CW operation of the photoinjector, the cooling of the coupler irises is a rather challenging thermal management project. This paper presents results of a detailed electromagnetic modeling of the coupler-cavity system, which has been performed to select the coupler design that minimizes the iris heating due to RF power loss in its walls.

  11. Development of a pump-probe facility with sub-picosecond time resolution combining a high-power ultraviolet regenerative FEL amplifier and a soft X-ray SASE FEL

    CERN Document Server

    Faatz, B; Feldhaus, J; Krzywinski, J; Pflüger, J; Rossbach, J; Saldin, E L; Schneidmiller, E A; Yurkov, M V

    2001-01-01

    This paper presents the conceptual design of a high power radiation source with laser-like characteristics in the ultraviolet spectral range at the TESLA Test Facility (TTF). The concept is based on the generation of radiation in a regenerative FEL amplifier (RAFEL). The RAFEL described in this paper covers a wavelength range of 200-400 nm and provides 200 fs pulses with 2 mJ of optical energy per pulse. The linac operates at 1% duty factor and the average output radiation power exceeds 100 W. The RAFEL will be driven by the spent electron beam leaving the soft X-ray FEL, thus providing minimal interference between these two devices. The RAFEL output radiation has the same time structure as the X-ray FEL and the UV pulses are naturally synchronized with the soft X-ray pulses from the TTF FEL. Therefore, it should be possible to achieve synchronization close to the duration of the radiation pulses (200 fs) for pump-probe techniques using either an UV pulse as a pump and soft X-ray pulse as a probe, or vice ver...

  12. FEL development at the Budker Institute of Nuclear Physics

    Science.gov (United States)

    Vinokurov, N. A.

    1993-07-01

    There are three different FEL projects at the Budker Institute of Nuclear Physics: 1) the FEL on the VEPP-3 storage ring which operates in the visible and ultraviolet region; 2) the high power FEL using a racetrack microtron recuperator (this machine will provide an average power of about tens of kilowatt in the infrared region); and 3) the compact infrared FEL project, using a microton, and a powerful FEL on a dedicated superconducting storage ring, which is under consideration now.

  13. Beam Line Commissioning of a UV/VUV FEL at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Benson, Stephen; Blackburn, Keith; Bullard, Daniel; Clavero Perez, Cesar; Coleman, James; Dickover, Cody; Douglas, David; Ellingsworth, Forrest; Evtushenko, Pavel; Hernandez-Garcia, Carlos; Gould, Christopher; Gubeli, Joseph; Hardy, David; Jordan, Kevin; Klopf, John; James, Kortze; Legg, Robert; Marchlik, Matthew; Moore, Steven; Neil, George; Powers, Thomas; Sexton, Daniel; Shinn, Michelle D; Tennant, Christopher; Walker, Richard; Williams, Gwyn; Wilson, Frederick

    2011-08-01

    Many novel applications in photon sciences require very high brightness and/or short pulses in the vacuum ultra-violet (VUV). Jefferson Lab has commissioned a UV oscillator with high gain and has transported the third harmonic of the UV to a user lab. The experimental performance of the UV FEL is much better than simulated performance in both gain and efficiency. This success is important for efforts to push towards higher gain FELs at short wavelengths where mirrors absorb strongly. We will report on efforts to characterize the UV laser and the VUV coherent harmonics as well as designs to lase directly in the VUV wavelength range.

  14. Transverse Emittance Measurements In High-power Fir Fel Energy-recovery Linac

    CERN Document Server

    Bolotin, V P; Matveenko, A N; Shevchenko, O A; Vinokurov, N A

    2004-01-01

    50 MeV accelerator-recirculator of Siberian Center for Photochemical Research has been designed to drive the FIR FEL with an average power of up to 10 kW in the wavelengths region from 5 to 200 μm. The first stage with the beam energy of 14 MeV was put into operation and laser power of about 200 W on 150 μm was achieved recently [1]. Transverse emittance measurements are carried out online in a number of locations along the beam-line. OTR screens and video-cameras are used to capture the beam shape images, video signal is digitized by a frame grabber and the pictures are processed further. Online measurements allow the accelerator parameters to be optimized to minimize the emittance growth, which is essential to the FEL operation. The transverse emittance measurements system and data processing techniques are presented in this paper.

  15. X-ray Production by Cascading Stages of a High-Gain Harmonic Generation Free-Electron Laser II: Special Topics

    Energy Technology Data Exchange (ETDEWEB)

    Wu, J

    2004-09-01

    In this paper, we study the tolerance of a new approach to produce coherent x-ray by cascading several stages of a High-Gain Harmonic Generation (HGHG) Free-Electron Laser (FEL). Being a harmonic generation process, a small noise in the initial fundamental signal will lead to a significant noise-to-signal (NTS) ratio in the final harmonic, so the noise issue is studied in this paper. We study two sources of noise: the incoherent undulator radiation, which is a noise with respect to the seed laser; and the noise of the seed laser itself. In reality, the electron beam longitudinal current profile is not uniform. Since the electron beam is the amplification medium for the FEL, this non- uniformity will induce phase error in the FEL. Therefore, this effect is studied. Phase error due to the wakefield and electron beam self-field is also studied. Synchrotronization of the electron beam and the seed laser is an important issue determining the success of the HGHG. We study the timing jitter induced frequency jitter in this paper. We also show that an HGHG FEL poses a less stringent requirement on the emittance than a SASE FEL does, due to a Natural Emittance Effect Reduction (NEER) mechanism. This NEER mechanism suggests a new operation mode, i.e., the HGHG FEL could adopt a high current, though unavoidable, a high emittance electron beam. Study in this paper shows that, production of hard x-rays with good longitudinal coherence by cascading stages of a HGHG FEL is promising. However, technical improvement is demanded.

  16. Contributions to the FEL2005 conference

    Energy Technology Data Exchange (ETDEWEB)

    Grimm, O. (comp.)

    2005-07-01

    The following topics were dealt with: First lasing at 32 nm of the VUV-FEL at DESY, properties of the radiation from VUV-FEL at DESY, accelerator lay out and physics of X-ray free-electron lasers, bunch compression stability dependence on RF parameters, undulator systems and photon diagnostic for the European XFEL project, electron beam characterization at PITZ and the VUV-FEL at DESY, high precision optical synchronization systems for X-ray free electron lasers, optical laser synnchronized for the DESY VUV-FEL for two-color pump probe experiments, properties of the third harmonic of the SASE FEL radiation, detector response and beam line transmission measurements with far-infrared radiation, upgrades of the laser beam-line at PITZ, bunch length measurements using a Martin-Puplett interferometer at the VUV-FEL, next generation synchronization system for the VUV-FEL at DESY, transverse electron beam diagnostics at the VYV-FEL at DESY, the infrared undulator project at the VUV-FEL, misconceptions regarding second harmonic generation in X-ray free-electron lasers, influence of an energy chirp on SASE FEL operation, design considerations for the 4GLS XUV-FEL, broadband single shot spectrometer, commissioning of TTF2 bunch compressors for 20 fs SASE source, observation of femtosecond bunch length using a transverse deflecting structure, measurement of slice-emittance using a transverse deflecting structure, the injector of the VUV-FEL at DESY, spectral decoding electro-optic measurements for longitudinal bunch diagnostics at the DESY VUV-FEL, longitudinal phase space studies at PITZ, modelling the transverse phase space and core emittance studies at PITZ, measurements of thermal emittance for cesium telluride photocathodes at PITZ, status and first results from the upgraded PITZ facility, commissioning of the SPARC movable emittance meter and its first operation at PITZ. (HSI)

  17. The SPARC project: a high-brightness electron beam source at LNF to drive a SASE-FEL experiment

    Energy Technology Data Exchange (ETDEWEB)

    Alesini, D.; Bertolucci, S.; Biagini, M.E.; Biscari, C.; Boni, R.; Boscolo, M.; Castellano, M.; Clozza, A.; Di Pirro, G.; Drago, A.; Esposito, A.; Ferrario, M. E-mail: massimo.ferrario@lnf.infn.it; Fusco, V.; Gallo, A.; Ghigo, A.; Guiducci, S.; Incurvati, M.; Laurelli, P.; Ligi, C.; Marcellini, F.; Migliorati, M.; Milardi, C.; Palumbo, L.; Pellegrino, L.; Preger, M.; Raimondi, P.; Ricci, R.; Sanelli, C.; Sgamma, F.; Spataro, B.; Serio, M.; Stecchi, A.; Stella, A.; Tazzioli, F.; Vaccarezza, C.; Vescovi, M.; Vicario, C.; Zobov, M.; Acerbi, E.; Alessandria, F.; Barni, D.; Bellomo, G.; Boscolo, I.; Broggi, F.; Cialdi, S.; DeMartinis, C.; Giove, D.; Maroli, C.; Petrillo, V.; Rome' , M.; Serafini, L.; Chiadroni, E.; Felici, G.; Levi, D.; Mastrucci, M.; Mattioli, M.; Medici, G.; Petrarca, G.S.; Catani, L.; Cianchi, A.; D' Angelo, A.; Di Salvo, R.; Fantini, A.; Moricciani, D.; Schaerf, C.; Bartolini, R.; Ciocci, F.; Dattoli, G.; Doria, A.; Flora, F.; Gallerano, G.P.; Giannessi, L.; Giovenale, E.; Messina, G.; Mezi, L.; Ottaviani, P.L.; Picardi, L.; Quattromini, M.; Renieri, A.; Ronsivalle, C.; Avaldi, L.; Carbone, C.; Cricenti, A.; Pifferi, A.; Perfetti, P.; Prosperi, T.; Albertini, V. Rossi; Quaresima, C.; Zema, N

    2003-07-11

    The Project Sorgente Pulsata e Amplificata di Radiazione Coerente (SPARC), proposed by a collaboration among ENEA-INFN-CNR-Universita' di Tor Vergata-INFM-ST, was recently approved by the Italian Government and will be built at LNF. The aim of the project is to promote an R and D activity oriented to the development of a coherent ultra-brilliant X-ray source in Italy. This collaboration has identified a program founded on two main issues: the generation of ultra-high peak brightness electron beams and of resonant higher harmonics in the SASE-FEL process, as presented in this paper.

  18. High-Gain Magnetized Inertial Fusion

    Science.gov (United States)

    Slutz, Stephen A.; Vesey, Roger A.

    2012-01-01

    Magnetized inertial fusion (MIF) could substantially ease the difficulty of reaching plasma conditions required for significant fusion yields, but it has been widely accepted that the gain is not sufficient for fusion energy. Numerical simulations are presented showing that high-gain MIF is possible in cylindrical liner implosions based on the MagLIF concept [S. A. Slutz et al Phys. Plasmas 17, 056303 (2010)PHPAEN1070-664X10.1063/1.3333505] with the addition of a cryogenic layer of deuterium-tritium (DT). These simulations show that a burn wave propagates radially from the magnetized hot spot into the surrounding much denser cold DT given sufficient hot-spot areal density. For a drive current of 60 MA the simulated gain exceeds 100, which is more than adequate for fusion energy applications. The simulated gain exceeds 1000 for a drive current of 70 MA.

  19. Harmonic Inverse FEL Interaction at 800nm

    CERN Document Server

    Sears, C M S; Siemann, R; Spencer, J E

    2005-01-01

    The inverse Free Electron Laser (IFEL) interaction has recently been proposed and demonstrated as a premodulator for High Gain Harmonic Generation (HGHG) experiments. These experiments utilized the fundamental of the interaction between the laser field and electron bunch. In the current experiment, we explore the higher order resonances of the IFEL interaction from a 3 period, 1.8 centimeter wavelength undulator with a picosecond, 0.25 mJ/pulse laser at 800nm. The resonances are observed by adjusting the gap of the undulator while keeping the beam energy constant. The harmonic IFEL can add flexibility to HGHG FEL design.

  20. First lasing of a high-gain harmonic generation free- electron laser experiment

    CERN Document Server

    Yu, L H; Ben-Zvi, I; Di Mauro, Louis F; Doyuran, A; Graves, W; Johnson, E; Krinsky, S; Malone, R; Pogorelsky, I V; Skaritka, J; Rakowsky, G; Solomon, L; Wang, X J; Woodle, M; Yakimenko, V; Biedron, S G; Galayda, J N; Gluskin, E; Jagger, J; Sajaev, Vadim; Vasserman, I

    2000-01-01

    We report on the first lasing of a high-gain harmonic generation (HGHG) free-electron laser (FEL). The experiment was conducted at the Accelerator Test Facility (ATF) at Brookhaven National Laboratory (BNL). This is a BNL experiment in collaboration with the Advanced Photon Source (APS) at Argonne National Laboratory. A preliminary measurement gives a high-gain harmonic generation (HGHG) pulse energy that is 2x10 sup 7 times larger than the spontaneous radiation. In a purely self-amplified spontaneous emission (SASE) mode of operation, the signal was measured as 10 times larger than the spontaneous radiation in the same distance (approx 2 m) through the same wiggler. This means the HGHG signal is 2x10 sup 6 times larger than the SASE signal. To obtain the same saturated output power by the SASE process, the radiator would have to be 3 times longer (6 m).

  1. Recent Results from and Future Plans for the VISA II SASE FEL

    CERN Document Server

    Andonian, Gerard; Babzien, Marcus; Ben-Zvi, Ilan; Boscolo, Ilario; Cialdi, Simone; Ferrario, Massimo; Flacco, Alessandro Federico; Frigola, Pedro; Huang, Jung Y; Litvinenko, Vladimir N; Murokh, Alex; Palumbo, Luigi; Pellegrini, Claudio; Reiche, Sven; Rosenzweig, James E; Travish, Gil; Vicario, Carlo; Yakimenko, Vitaly

    2005-01-01

    As the promise of X-ray Free Electron Lasers (FEL) comes close to realization, the creation and diagnosis of ultra-short pulses is of great relevance in the SASE FEL (Self-Amplified Spontaneous Emission) community. The VISA II (Visible to Infrared SASE Amplifier) experiment entails the use of a chirped electron beam to drive a high gain SASE FEL at the Accelerator Test Facility (ATF) in Brookhaven National Labs (BNL). The resulting ultra-short pulses will be diagnosed using an advanced FROG (Frequency Resolved Optical Gating) technique, as well as a double differential spectrum (angle/wavelength) diagnostic. Implementation of sextupole corrections to the longitudinal aberrations affecting the high energy-spread chirped beam during transport to the VISA undulator is studied. Start-to-end simulations, including radiation diagnostics, are discussed. Initial experimental results involving a highly chirped beam transported without sextupole correction, the resulting high gain lasing, and computational analysis are...

  2. Two scale high gain adaptive control

    NARCIS (Netherlands)

    Polderman, Jan W.; Mareels, I.M.Y.; Mareels, Iven

    2004-01-01

    Simple adaptive controllers based on high gain output feedback suffer a lack of robustness with respect to bounded disturbances. Existing modifications achieve boundedness of all solutions but introduce solutions that, even in the absence of disturbances, do not achieve regulation. In this paper a

  3. High fat diet causes rebound weight gain.

    Science.gov (United States)

    McNay, David E G; Speakman, John R

    2012-01-01

    Obesity is at epidemic proportions but treatment options remain limited. Treatment of obesity by calorie restriction (CR) despite having initial success often fails due to rebound weight gain. One possibility is that this reflects an increased body weight (BW) set-point. Indeed, high fat diets (HFD) reduce adult neurogenesis altering hypothalamic neuroarchitecture. However, it is uncertain if these changes are associated with weight rebound or if long-term weight management is associated with reversing this. Here we show that obese mice have an increased BW set-point and lowering this set-point is associated with rescuing hypothalamic remodelling. Treating obesity by CR using HFD causes weight loss, but not rescued remodelling resulting in rebound weight gain. However, treating obesity by CR using non-HFD causes weight loss, rescued remodelling and attenuates rebound weight gain. We propose that these phenomena may explain why successful short-term weight loss improves obesity in some people but not in others.

  4. AN OVERVIEW OF THE DEVELOPMENT OF LOW GAIN FEEDBACK AND LOW-AND-HIGH GAIN FEEDBACK

    Institute of Scientific and Technical Information of China (English)

    Zongli LIN

    2009-01-01

    Low gain feedback refers to certain families of stabilizing state feedback gains that are parameterized in a scalar and go to zero as the scalar decreases to zero. Low gain feedback was initially proposed to achieve semi-global stabilization of linear systems subject to input saturation. It was then combined with high gain feedback in different ways for solving various control problems. The resulting feedback laws are referred to as low-and-high gain feedback. Since the introduction of low gain feedback in the context of semi-global stabilization of linear systems subject to input saturation,there has been effort to develop alternative methods for low gain design, to characterize key features of low gain feedback, and to explore new applications of the low gain and low-and-high gain feedback.This paper reviews the developments in low gain and low-and-high gain feedback designs.

  5. Conceptual design of a high-brightness linac for soft X-ray SASE-FEL source

    Energy Technology Data Exchange (ETDEWEB)

    Alesini, D.; Bertolucci, S.; Biagini, M.E.; Biscari, C.; Boni, R.; Boscolo, M.; Castellano, M.; Clozza, A.; Pirro, G.D.G. Di; Drago, A.; Esposito, A.; Ferrario, M. E-mail: massimo.ferrario@lnf.infn.it; Fusco, V.; Gallo, A.; Ghigo, A.; Guiducci, S.; Incurvati, M.; Laurelli, P.; Ligi, C.; Marcellini, F.; Migliorati, M.; Milardi, C.; Palumbo, L.; Pellegrino, L.; Preger, M.; Raimondi, P.; Ricci, R.; Sanelli, C.; Sgamma, F.; Spataro, B.; Serio, M.; Stecchi, A.; Stella, A.; Tazzioli, F.; Vaccarezza, C.; Vescovi, M.; Vicario, C.; Zobov, M.; Acerbi, E.; Alessandria, F.; Barni, D.; Bellomo, G.; Birattari, C.; Bonardi, M.; Boscolo, I.; Bosotti, A.; Broggi, F.; Cialdi, S.; DeMartinis, C.; Giove, D.; Maroli, C.; Michelato, P.; Monaco, L.; Pagani, C.; Petrillo, V.; Pierini, P.; Serafini, L.; Sertore, D.; Volpini, G.; Chiadroni, E.; Felici, G.; Levi, D.; Mastrucci, M.; Mattioli, M.; Medici, G.; Petrarca, G.S.; Catani, L.; Cianchi, A.; D' Angelo, A.; Salvo, R.D.R. Di; Fantini, A.; Moricciani, D.; Schaerf, C.; Bartolini, R.; Ciocci, F.; Dattoli, G.; Doria, A.; Flora, F.; Gallerano, G.P.; Giannessi, L.; Giovenale, E.; Messina, G.; Mezi, L.; Ottaviani, P.L.; Picardi, L.; Quattromini, M.; Renieri, A.; Ronsivalle, C.; Avaldi, L.; Carbone, C.; Cricenti, A.; Pifferi, A.; Perfetti, P.; Prosperi, T.; Albertini, V.R.V. Rossi; Quaresima, C.; Zema, N

    2003-07-11

    FELs based on SASE are believed to be powerful tools to explore the frontiers of basic sciences, from physics to chemistry to biology. Intense R and D programs have started in the USA and Europe in order to understand the SASE physics and to prove the feasibility of these sources. The allocation of considerable resources in the Italian National Research Plan (PNR) brought about the formation of a CNR-ENEA-INFN-University of Roma 'Tor Vergata' study group. A conceptual design study has been developed and possible schemes for linac sources have been investigated, leading to the SPARX proposal. We report in this paper the results of a preliminary start to end simulation concerning one option we are considering based on an S-band normal conducting linac with high-brightness photoinjector integrated in an RF compressor.

  6. Coherence Improvement of the BESSY HGHG FEL Radiation

    CERN Document Server

    Abo-Bakr, M; Meseck, A

    2005-01-01

    BESSY proposes a soft X-ray free electron laser (FEL) multi-user facility. It will consist of three undulator lines, each based on a cascaded High-Gain Harmonic-Generation (HGHG) scheme. With a seed laser, tunable between 230 nm and 460 nm, the desired output radiation wavelength range from 1.24 nm to 51 nm can be covered. Signal to noise ratio and coherence of the HGHG FEL radiation degrades quadratically with the harmonic number. For the short-wavelength BESSY-FEL line, operating on the 225th harmonic of the seed, a cure to this effect and maintaining the coherence is to improve the spectral purity of the output radiation by implementation of a "non-dispersive double-monochromator" system between two HGHG stages. Layout and parameters of such a monochromator section are described. To separate the electron beam path from the optical devices a bypass section is needed. Its design is presented and influences on the electron beam dynamics are discussed. Simulations of the full cascaded HGHG FEL, using the resto...

  7. FEL simulations for the LCLS

    CERN Document Server

    Nuhn, H D

    1999-01-01

    A first design study report has recently been completed (The LCLS Design Study Group, LCLS Design Study Report, April 1998, SLAC-R-521) for the linac coherent light source (LCLS), a proposal to build an X-ray free electron laser (FEL) at the Stanford Linear Accelerator Center (SLAC) as a single pass self-amplified spontaneous emission (SASE) amplifier. The proposal includes the use of a very low emittance electron beam accelerated up to 15 GeV by the last third of the SLAC linac to produce sub-picosecond X-ray pulses with high brightness and full transverse coherence in a 112-m long undulator. Many aspects of the FEL design have been analyzed with FEL simulation codes. The paper discusses some of the results of these aspects, i.e. temporal X-ray pulse structure and power spectrum, trajectory errors and effects of undulator beam tube wakefields.

  8. Stochastic Temporal Properties of the SASE FEL

    Energy Technology Data Exchange (ETDEWEB)

    Krinsky, S.

    2009-08-23

    We review the statistical description of the chaotic time evolution of the radiation from a self-amplified spontaneous-emission free-electron laser in the linear region before saturation. A high-gain, self-amplified spontaneous-emission (SASE) free-electron laser (FEL) [1, 2], based on modern beam technology, has the advantage of operating without a resonator and hence is capable of generating coherent radiation with wavelength down to the x-ray region. The LCLS at SLAC has recently achieved high gain and saturation at 1.5 {angstrom} [3]. A review of SASE theory can be found in ref. [4]. In this paper, we have considered the linear regime before saturation. In the nonlinear saturation regime, SASE is no longer a Gaussian process and analytic treatment is very difficult. A valuable numerical simulation analysis of the statistical behavior in the nonlinear regime can be found in ref. [10,11].

  9. The ARC-EN-CIEL FEL Proposal

    CERN Document Server

    Couprie, M E

    2005-01-01

    ARC-EN-CIEL (Accelerator-Radiation for Enhanced Coherent Intense Extended Light), the French project of a fourth generation light source aims at providing the user community with coherent femtosecond light pulses covering from UV to soft X ray. It is based on a CW 1 GeV superconducting linear accelerator delivering high charge, subpicosecond, low emittance electron bunches with a high repetition rate. The FEL is based on in the injection of High Harmonics in Gases in a High Gain Harmonic Generation scheme, leading to a rather compact solution. The produced radiation extending down to 0.8 nm with the Non Linear Harmonic reproduces the good longitudinal and transverse coherence of the harmonics in gas. Optional beam loops are foreseen to increase the beam current or the energy. They will accommodate fs synchrotron radiation sources in the IR, VUV and X ray ranges and a FEL oscillator in the 10 nm range. An important synergy is expected between accelerator and laser communities. Indeed, electron plasma accelerat...

  10. Critical issues for high-power FEL based on microtron recuperator/electron out-coupling scheme

    Science.gov (United States)

    Vinokurov, Nikolai A.; Zholents, Alexander A.; Fawley, William M.; Kim, Kwang J.

    1997-05-01

    The FELs based on the rf accelerator-recuperator and the electron outcoupling is promising for obtaining average output power of hundreds of kilowatts. We present basic considerations for the system stability and performance optimization for this scheme.

  11. Hybrid optical antenna with high directivity gain.

    Science.gov (United States)

    Bonakdar, Alireza; Mohseni, Hooman

    2013-08-01

    Coupling of a far-field optical mode to electronic states of a quantum absorber or emitter is a crucial process in many applications, including infrared sensors, single molecule spectroscopy, and quantum metrology. In particular, achieving high quantum efficiency for a system with a deep subwavelength quantum absorber/emitter has remained desirable. In this Letter, a hybrid optical antenna based on coupling of a photonic nanojet to a metallo-dielectric antenna is proposed, which allows such efficient coupling. A quantum efficiency of about 50% is predicted for a semiconductor with volume of ~λ³/170. Despite the weak optical absorption coefficient of 2000 cm(-1) in the long infrared wavelength of ~8 μm, very strong far-field coupling has been achieved, as evidenced by an axial directivity gain of 16 dB, which is only 3 dB below of theoretical limit. Unlike the common phased array antenna, this structure does not require coherent sources to achieve a high directivity. The quantum efficiency and directivity gain are more than an order of magnitude higher than existing metallic, dielectric, or metallo-dielectric optical antenna.

  12. Start-To-End Injector and Linac Tolerance Studies for the BESSY FEL

    CERN Document Server

    Abo-Bakr, Michael; Knobloch, Jens; Kuske, Bettina; Meseck, Atoosa

    2004-01-01

    BESSY is proposing a Soft X-ray FEL user facility in Berlin, delivering short and stabile photon pulses in the wavelength range of 62 nm < λ < 1.2 nm by applying up to four cascaded High Gain Harmonic Generation (HGHG) stages. For optimization of the FEL performance of the cascaded HGHG stages extensive Start-to-End (S2E) simulations have been carried out. In order to test the quality of the chosen configuration with respect to the sensitivity against various error sources tolerance studies from the injector to the linac end have been performed. Procedures and results of these studies will be presented.

  13. Limitations of the transverse coherence in the self-amplified spontaneous emission FEL

    CERN Document Server

    Saldin, E L; Yurkov, M V

    2001-01-01

    In this paper we analyze the process of the formation of transverse coherence of radiation from a self-amplified spontaneous emission (SASE) FEL. It is shown that in the high-gain linear regime the degree of transverse coherence approaches unity asymptotically as z sup - sup 1 , but not exponentially, as one would expect from a simple physical assumption that the transverse coherence is established due to the transverse mode selection. It has been found that even after finishing the transverse mode selection process the degree of transverse coherence of the radiation from SASE FEL visibly differs from unity. This is a consequence of the interdependence of the longitudinal and transverse coherence. The SASE FEL has poor longitudinal coherence which develops slowly with the undulator length thus preventing a full transverse coherence.

  14. Comparative Design Studies for the BESSY FEL Program using the MEDUSA and GENESIS Simulation Codes

    CERN Document Server

    Freund, H

    2005-01-01

    The BESSY FEL is based on a seeded cascade of High Gain Harmonic Generation (HGHG) sections followed by an amplifier to produce coherent and stable short wavelength output. Here, we report on comparative design studies carried out using the MEDUSA [1], and GENESIS [2] simulation codes. These two codes have each been used to successfully predict a variety of FEL designs and have agreed well with a number of important experiments. In addition, they were included in a comparative study of FEL simulation [3] that reported substantial agreement between the codes for the specific configurations studied. However, these codes are based on different assumptions. GENESIS treats the particle dynamics using a wiggler-averaged orbit approximation, the transverse electromagnetic field is treated using a field solver, and harmonics are not included. MEDUSA does not use the wiggler-averaged orbit approximation to treat particle dynamics, the transverse fields are treated using a Gaussian modal superposition, and harmonics ar...

  15. Multi-mode competition in an FEL oscillator at perfect synchronism of an optical cavity

    CERN Document Server

    Dong, Z W; Kii, T; Yamazaki, T; Yoshikawa, K

    2002-01-01

    The sustained saturation in a short pulse free electron laser (FEL) oscillator at perfect synchronism of an optical cavity has been observed recently by Japan Atomic Energy Research Institute (JAERI) FEL group by using their super-conducting linac (Phys. Rev. Lett., in preparation). The experiments have clearly shown that FEL efficiency becomes maximum at perfect synchronism, although it has been considered that only a transient state exists at perfect synchronism due to the lethargy effect. Through careful analyses of the experimental condition of JAERI FEL, we found that, in spite of the short length of the electron micro-bunch, the saturation appears due to the following features, which were different from other FEL experiments: (1) very large ratio of the small signal gain to losses, (2) very long electron macro-bunch which can tolerate a slow start up. The saturation and high efficiency at perfect synchronism were benefited from the contribution of the weak sideband instability. In order to analyse these...

  16. Two FEL`s in one

    Energy Technology Data Exchange (ETDEWEB)

    Epp, V. [Tomsk Pedagogical Institute (Russian Federation); Nikitin, M. [Tomsk Polytechnical Univ. (Russian Federation)

    1995-12-31

    A new scheme for a FEL operation is proposed. The conventional principle of FEL operation is means that the electron bunch passes through the interaction area of FEL only in one direction. We suggest another possible layout which implies that the electron bunch makes a turn after leaving the wiggler and entries the wiggler at the same end. Actually the wiggler is a kind of a bridge between two storage rings. The electron bunches on the orbit are expected to be adjusted in the way that after one of them leaves the wiggler, another one enters in the opposite direction and in the proper phase with the wave pulse emitted by the previous bunch. So the electron bunch comes in interaction with the amplified electromagnetic wave in both directions i.e. twice per period. It is especially important for the short wavelength FELs, because each reflection from the mirror causes a significant losses of the wave magnitude. The proposed design gives one interaction per each reflection instead of one interaction per two reflections in the traditional scheme. Another way to realize the suggested principle of operating is to insert the wiggler in the electron-positron storage ring. But this layout can be less efficient because of low intensity of the positron beam. The comparison study of radiation from different types of described double wigglers is fulfilled. The synchronization problems are discussed in this paper.

  17. High Gain Amplifier with Enhanced Cascoded Compensation

    Directory of Open Access Journals (Sweden)

    J. Lemus-Lopez

    2014-04-01

    Full Text Available A two-stage CMOS operational amplifier with both, gain-boosting and indirect current feedback frequency compensation performed by means of regulated cascode amplifiers, is presented. By using quasi-floating-gate transistors (QFGT the supply requirements, the number of capacitors and the size of the compensation capacitors respect to other Miller schemes are reduced. A prototype was fabricated using a 0.5 μm technology, resulting, for a load of 45 pF and supply voltage of 1.65 V, in open-loop-gain of 129 dB, 23 MHz of gain-bandwidth product, 60o phase margin, 675 μW power consumption and 1% settling time of 28 ns.

  18. LCLS X-Ray FEL Output Performance in the Presence of Highly Time-Dependent Undulator Wakefields

    CERN Document Server

    Fawley, W M; Emma, P; Huang, Z; Nuhn, H D; Reiche, S; Stupakov, G

    2005-01-01

    Energy loss due to wakefields within a long undulator, if not compensated by an appropriate tapering of the magnetic field strength, can degrade the FEL process by detuning the resonant FEL frequency. The wakefields arise from the vacuum chamber wall resistivity, its surface roughness, and abrupt changes in its aperture. For LCLS parameters, the resistive component is the most critical and depends upon the chamber wall material (e.g. Cu) and its radius. Of recent interest [1] is the so-called "AC" component of the resistive wake which can lead to strong variations on very short timescales (e.g. ~20 fs). To study the expected performance of the LCLS in the presence of these wakefields, we have made an extensive series of start-to-end SASE simulations with tracking codes PARMELA and ELEGANT, and time-dependent FEL simulation codes GENESIS1.3 and GINGER. We discuss the impact of the wakefield losses upon output energy, spectral bandwidth, and temporal envelope of the output FEL pulse, as well a...

  19. Optimization Issues in a Harmonic Cascade FEL

    CERN Document Server

    De Ninno, G

    2005-01-01

    Presently there is significant interest by multiple groups (e.g. BNL, ELETTRA, LBNL, BESSY, MIT) to reach short output wavelengths via a harmonic cascade FEL using an external seed laser. In a multistage device, there are a number of "free" parameters such as the nominal power of the input seed, the lengths of the individual modulator and radiator undulators, the strengths (i.e. the R56's) of the dispersive sections, the choice of the actual harmonic numbers to reach a given wavelength, etc., whose optimization is a non-trivial exercise. In particular, one can choose whether to operate predominantly in the "high gain" regime such as was proposed by Yu [1] in which case each radiator undulator is many gain lengths long or, alternatively, in the "low gain" regime in which case all undulators (except possibly the last radiator) are a couple gain lengths or less long and the output from each radiator essentially corresponds to coherent spontaneous emission from a pre-bunched beam. With particular emphasis upon th...

  20. Simulation of the fundamental and nonlinear harmonic output from an FEL amplifier with a soft x-ray seed laser

    Energy Technology Data Exchange (ETDEWEB)

    Biedron, S. G.; Freund, H. P.; Li, Y.; Milton, S. V.

    2000-07-05

    A single-pass, high-gain free-electron laser (FEL) x-ray amplifier was simulated using the 3D, polychromatic simulation code MEDUSA. The seed for the system is a table-top, soft x-ray laser. The simulated fundamental and nonlinear harmonic x-ray output wavelengths are discussed.

  1. Generating polarization controllable FELs at Dalian coherent light source

    CERN Document Server

    Zhang, T; Wang, D; Zhao, Z T; Zhang, W Q; Wu, G R; Dai, D X; Yang, X M

    2013-01-01

    The property of the FEL polarization is of great importance to the user community. FEL pulses with ultra-high intensity and flexible polarization control ability will absolutely open up new scientific realms. In this paper, several polarization control approaches are presented to investigate the great potential on Dalian coherent light source, which is a government-approved novel FEL user facility with the capability of wavelength continuously tunable in the EUV regime of 50-150 nm. The numerical simulations show that both circularly polarized FELs with highly modulating frequency and 100 microjoule level pulse energy could be generated at Dalian coherent light source.

  2. Experimental and numerical study of short pulse effects in FELs

    CERN Document Server

    Khodyachykh, S; Genz, H; Hessler, C; Richter, A; Asgekar, V

    2004-01-01

    We report the experimental and numerical investigations of the influence of short pulse effects occurring in FELs in different operational regimes for electron bunch lengths which are of the order of the slippage distance. Several observables such as the small signal gain, the macropulse power and the spectral distribution of the FEL radiation were determined experimentally within the constraints of the stable focus regime at the infrared FEL at the S- DALINAC and for the limit cycle regime at the Dutch near infrared FEL FELIX. The experimental findings were compared to predictions of numerical simulations based on the 1D time dependent code FEL1D-OSC. The agreement between experiment and simulation is good. Furthermore, the simulations reveal a chaotic behavior of the macropulses for specific values of the slippage as well as period-doubling, two effects that are predicted to show up in the spectral distribution.

  3. Experimental and numerical study of short pulse effects in FELs

    Science.gov (United States)

    Khodyachykh, S.; Brunken, M.; Genz, H.; Hessler, C.; Richter, A.; Asgekar, V.

    2004-09-01

    We report the experimental and numerical investigations of the influence of short pulse effects occurring in FELs in different operational regimes for electron bunch lengths which are of the order of the slippage distance. Several observables such as the small signal gain, the macropulse power and the spectral distribution of the FEL radiation were determined experimentally within the constraints of the stable focus regime at the infrared FEL at the S-DALINAC and for the limit cycle regime at the Dutch near infrared FEL FELIX. The experimental findings were compared to predictions of numerical simulations based on the 1D time dependent code FEL1D-OSC. The agreement between experiment and simulation is good. Furthermore, the simulations reveal a chaotic behavior of the macropulses for specific values of the slippage as well as period-doubling, two effects that are predicted to show up in the spectral distribution.

  4. A helical optical for circular polarized UV-FEL project at the UVSOR

    Energy Technology Data Exchange (ETDEWEB)

    Hama, Hiroyuki [Institute for Molecular Science, Okazaki (Japan)

    1995-12-31

    Most of existing storage ring free electron lasers (SRFEL) are restricted those performances by degradation of mirrors in optical cavities. In general, the SRFEL gain at the short wavelength region with high energy electrons is quite low, and the high reflectivity mirrors such as dielectric multilayer mirrors are therefore required. The mirror degradation is considered as a result of irradiation of higher harmonic photons that are simultaneously emitted from planar optical klystron (OK) type undulators, which are commonly used in SRFEL. This problem is getting severer as the lasing wavelength becomes shorter. The UVSOR-FEL had been originally scheduled to be shutdown by 1996 because another undulator project for spectroscopic studies with circular polarized photon would take the FEL`s place. According to suggestion of the insertion device group of the SPring-8, we have designed a helical undulator that is able to vary degree and direction of the polarization easily. In addition, the undulator can be converted into a helical OK by replacing magnets at the center part of undulator in order to coexist with further FEL experiments. Using a calculated magnetic field for magnet configurations of the OK mode, the radiation spectrum at wide wavelength range was simulated by a Fourier transform of Lienard-Wiechert potentials. As a matter of course, some higher harmonics are radiated on the off-axis angle. However it was found out that the higher harmonics is almost negligible as far as inside a solid angle of the Gaussian laser mode. Moreover the gain at the UV region of 250 nm is expected to be much higher than our present FEL because of high brilliant fundamental radiation. The calculated spatial distribution of higher harmonics and the estimated instantaneous gain is presented. Advantages of the helical OK for SRFEL will be discussed in view of our experience, and a possibility of application two-color experiment with SR will be also mentioned.

  5. The BESSY Soft X-Ray FEL User Facility

    CERN Document Server

    Kraemer, Dieter

    2005-01-01

    The user requests for an optimized 2nd generation FEL facility in the VUV to soft X-ray range demand for ultra short photon pulses (t = 20 fs) at a peak power of several GW. A high shot to shot reproducibility of the pulse shape and pulse power allowing for fs-synchronization for pump-probe experiments is feasible in a seeded FEL approach. Free selectable photon polarization and wavelength tuning is essential for any 2nd generation FEL source like the proposed BESSY-Soft X-ray FEL user facility. Freely selectable pulse repetition rates and freely selectable pulse patterns, including fast switching to different parallel operating FEL-Lines are necessary ingredients, feasible with a suitable injector in combination with a CW-superconducting linac. The status of the BESSY HGHG-FEL project will be reviewed.

  6. High-Gain High-Field Fusion Plasma

    Science.gov (United States)

    Li, Ge

    2015-01-01

    A Faraday wheel (FW)—an electric generator of constant electrical polarity that produces huge currents—could be implemented in an existing tokamak to study high-gain high-field (HGHF) fusion plasma, such as the Experimental Advanced Superconducting Tokamak (EAST). HGHF plasma can be realized in EAST by updating its pulsed-power system to compress plasma in two steps by induction fields; high gains of the Lawson trinity parameter and fusion power are both predicted by formulating the HGHF plasma. Both gain rates are faster than the decrease rate of the plasma volume. The formulation is checked by earlier ATC tests. Good agreement between theory and tests indicates that scaling to over 10 T at EAST may be possible by two-step compressions with a compression ratio of the minor radius of up to 3. These results point to a quick new path of fusion plasma study, i.e., simulating the Sun by EAST. PMID:26507314

  7. Femtosecond laser-generated high-energy-density states studied by x-ray FELs

    Science.gov (United States)

    Nakatsutsumi, M.; Appel, K.; Baehtz, C.; Chen, B.; Cowan, T. E.; Göde, S.; Konopkova, Z.; Pelka, A.; Priebe, G.; Schmidt, A.; Sukharnikov, K.; Thorpe, I.; Tschentscher, Th; Zastrau, U.

    2017-01-01

    The combination of powerful optical lasers and an x-ray free-electron laser (XFEL) provides unique capabilities to study the transient behaviour of matter in extreme conditions. The high energy density science instrument (HED instrument) at the European XFEL will provide the experimental platform on which an unique x-ray source can be combined with various types of high-power optical lasers. In this paper, we highlight selected scientific examples together with the associated x-ray techniques, with particular emphasis on femtosecond (fs)-timescale pump-probe experiments. Subsequently, we present the current design status of the HED instrument, outlining how the experiments could be performed. First user experiments will start at the beginning of 2018, after which various optical lasers will be commissioned and made available to the international scientific community.

  8. High Power Lasing in the IR Upgrade FEL at Jefferson Lab

    CERN Document Server

    Benson, S V; Behre, Chris; Herman-Biallas, George; Boyce, James; Douglas, David; Dylla, Fred; Evans, Richard; Grippo, A; Gubeli, Joe; Hardy, David; Hernandez-Garcia, Carlos; Jordan, Kevin; Merminga, Lia; Neil, George; Preble, Joe; Shinn, Michelle D; Siggins, Tim; Walker, Richard; Williams, Gwyn; Yunn, Byung; Zhang, Shukui

    2004-01-01

    We report on progress in commissioning the IR Upgrade facility at Jefferson Lab. Operation at high power has been demonstrated at 5.7 microns with over 4 kW of continuous power output and a recirculated electron beam power of up to 800 kW. We report on the features and limitations of the present design and on efforts to increase the power to over 10 kW.

  9. High Power Lasing in the IR Upgrade FEL at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Vincent Benson; Kevin Beard; Chris Behre; George Herman Biallas; James Boyce; David Douglas; Fred Dylla; Richard Evans; Al Grippo; Joe Gubeli; David Hardy; Carlos Hernandez-Garcia; Kevin Jordan; Lia Merminga; George Neil; Joe Preble; Michelle D. Shinn; Tim Siggins; Richard Walker; Gwyn Williams; Byung Yunn; Shukui Zhang

    2004-08-01

    We report on progress in commissioning the IR Upgrade facility at Jefferson Lab. Operation at high power has been demonstrated at 5.7 microns with over 8.5 kW of continuous power output, 10 kW for 1 second long pulses, and CW recirculated electron beam power of over 1.1 MW. We report on the features and limitations of the present design and report on the path to getting even higher powers.

  10. First measurements of electron-beam transit times and micropulse elongation in a photoelectric injector at the High-Brightness Accelerator FEL (HIBAF)

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A.H.; Carlsten, B.E.; Feldman, R.B.

    1990-01-01

    Key aspects of the dynamics of a photoelectric injector (PEI) on the Los Alamos High-Brightness Accelerator FEL (HIBAF) facility have been investigated using a synchroscan streak camera. By phase-locking the streak camera sweep to the reference 108.3 MHz rf signal, the variations of micropulse temporal elongations (30 to 80% over the drive-laser pulse length) and of transit times (25 ps for a 16{degree}-phase change) were observed for the first time. These results were in good agreement with PARMELA simulations. 2 refs., 8 figs.

  11. Filamentation effect in a gas attenuator for high-repetition-rate X-ray FELs

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Yiping; Krzywinski, Jacek; Schafer, Donald W.; Ortiz, Eliazar; Rowen, Michael; Raubenheimer, Tor O.

    2016-01-01

    A sustained filamentation or density depression phenomenon in an argon gas attenuator servicing a high-repetition femtosecond X-ray free-electron laser has been studied using a finite-difference method applied to the thermal diffusion equation for an ideal gas. A steady-state solution was obtained by assuming continuous-wave input of an equivalent time-averaged beam power and that the pressure of the entire gas volume has reached equilibrium. Both radial and axial temperature/density gradients were found and describable as filamentation or density depression previously reported for a femtosecond optical laser of similar attributes. The effect exhibits complex dependence on the input power, the desired attenuation, and the geometries of the beam and the attenuator. Time-dependent simulations were carried out to further elucidate the evolution of the temperature/density gradients in between pulses, from which the actual attenuation received by any given pulse can be properly calculated.

  12. A Unified Approach to High-Gain Adaptive Controllers

    Directory of Open Access Journals (Sweden)

    Ian A. Gravagne

    2009-01-01

    Full Text Available It has been known for some time that proportional output feedback will stabilize MIMO, minimum-phase, linear time-invariant systems if the feedback gain is sufficiently large. High-gain adaptive controllers achieve stability by automatically driving up the feedback gain monotonically. More recently, it was demonstrated that sample-and-hold implementations of the high-gain adaptive controller also require adaptation of the sampling rate. In this paper, we use recent advances in the mathematical field of dynamic equations on time scales to unify and generalize the discrete and continuous versions of the high-gain adaptive controller. We prove the stability of high-gain adaptive controllers on a wide class of time scales.

  13. Optical tailoring of xFEL beams

    Energy Technology Data Exchange (ETDEWEB)

    West, Gavin [SLAC National Accelerator Lab., Menlo Park, CA (United States); Coffee, R. [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-08-20

    There is an inherent exibility unique to free electron lasers (FELs) that lends well to experimental approaches normally too difficult for other light sources to accomplish. This includes the ability to optically shape the electron bunch prior to final its acceleration for the final FEL process. Optical pulse shaping of the electron bunch can enable both femtosecond and attosecond level FEL pulse control. Pulse shaping is currently implemented, not optically but mechanically, in LCLS-I with an adjustable foil slit that physically spoils the momentum phase of the electron bunch. This selectively suppresses the downstream FEL process ofspoiled electrons. Such a mechanical spoiling method fails for both the soft x-ray regime as well as the high repetition rates that are planned in LCLS-II. Our proposed optical spoiling method circumvents this limitation by making use of the existing ultrafast laser beam that is typically used for adjusting the energy spread for the initial electron bunch. Using Fourier domain shaping we can nearly arbitrarily shape the laser pulses to affect the electron bunch. This can selectively spoil electrons within each bunch. Here we demonstrate the viability of this approach with a programmable acousto-optic dispersive filter. This method is not only well suited for LCLS-II but also has several advantages over mechanical spoiling, including lack of radiation concerns, experiment specific FEL pulse shapes, and real-time adjustment for applications that require high duty-cycle variation such as lock-in amplification of small signals.

  14. High gain durable anti-reflective coating

    Energy Technology Data Exchange (ETDEWEB)

    Maghsoodi, Sina; Brophy, Brenor L.; Colson, Thomas E.; Gonsalves, Peter R.; Abrams, Ze' ev R.

    2016-07-26

    Disclosed herein are polysilsesquioxane-based anti-reflective coating (ARC) compositions, methods of preparation, and methods of deposition on a substrate. In one embodiment, the polysilsesquioxane of this disclosure is prepared in a two-step process of acid catalyzed hydrolysis of organoalkoxysilane followed by addition of tetralkoxysilane that generates silicone polymers with >40 mol % silanol based on Si-NMR. These high silanol siloxane polymers are stable and have a long shelf-life in polar organic solvents at room temperature. Also disclosed are low refractive index ARC made from these compositions with and without additives such as porogens, templates, thermal radical initiator, photo radical initiators, crosslinkers, Si--OH condensation catalyst and nano-fillers. Also disclosed are methods and apparatus for applying coatings to flat substrates including substrate pre-treatment processes, coating processes and coating curing processes including skin-curing using hot-air knives. Also disclosed are coating compositions and formulations for highly tunable, durable, highly abrasion-resistant functionalized anti-reflective coatings.

  15. High gain durable anti-reflective coating

    Energy Technology Data Exchange (ETDEWEB)

    Maghsoodi, Sina; Brophy, Brenor L.; Colson, Thomas E.; Gonsalves, Peter R.; Abrams, Ze' ev R.

    2017-06-27

    Disclosed herein are polysilsesquioxane-based anti-reflective coating (ARC) compositions, methods of preparation, and methods of deposition on a substrate. In one embodiment, the polysilsesquioxane of this disclosure is prepared in a two-step process of acid catalyzed hydrolysis of organoalkoxysilane followed by addition of tetralkoxysilane that generates silicone polymers with >40 mol % silanol based on Si-NMR. These high silanol siloxane polymers are stable and have a long shelf-life in polar organic solvents at room temperature. Also disclosed are low refractive index ARC made from these compositions with and without additives such as porogens, templates, thermal radical initiator, photo radical initiators, crosslinkers, Si--OH condensation catalyst and nano-fillers. Also disclosed are methods and apparatus for applying coatings to flat substrates including substrate pre-treatment processes, coating processes and coating curing processes including skin-curing using hot-air knives. Also disclosed are coating compositions and formulations for highly tunable, durable, highly abrasion-resistant functionalized anti-reflective coatings.

  16. Dynamical aspects on FEL interaction in single passage and storage ring devices

    Energy Technology Data Exchange (ETDEWEB)

    Dattoli, G.; Renieri, A. [ENEA, Frascati (Italy)

    1995-12-31

    The dynamical behaviour of the free-electron lasers is investigated using appropriate scaling relations valid for devices operating in the low and high gain regimes, including saturation. The analysis is applied to both single passage and storage ring configurations. In the latter case the interplay between the interaction of the electron bean with the laser field and with the accelerator environment is investigated. In particular we discuss the effect of FEL interaction on the microwave instability.

  17. Users program for storage-ring based FEL and synchrotron sources of the Duke FEL Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Straub, K.D.; Barnett, G.; Burnham, B. [and others

    1995-12-31

    The storage ring at the Duke FEL Laboratory was first operated with a stored e-beam in November, 1994. It has now achieved operation energies in excess 1 GeV with more than 100 mA current at 280 MeV. The ring has several ports for FEL and synchrotron light source research. The circulating ring current can be synchronized with the seperate Mark III FEL operating in the 2-9.5 {mu}m IR region. This allows low optical jitter (10-20 ps) between the two sources and thus pump-probe operation. The ring has been configured to drive a number of light sources including the OK-4 FEL system capable of FEL operation between 400 and 65 nm, an inverse Compton scattering source using this undulator which will yield 4-200 MeV gammas, an undulator source at approximately 40 {angstrom} (not an FEL), a mm FEL with inverse compton scattering providing 1-100 keV x-rays and two synchrotron ports from the bend magnets for which the {lambda}{sub c} = 11-12 {angstrom} for 1 GeV. The broadly tunable FEL sources and their associated inverse compton scattering are extremely bright. The initial research proposals, submitted to the Laboratory emphasizes photoelectron spectroscopy, PEEM, high resolution vacuum UV of gases, solid spectroscopy and photochemistry in the UV, X-ray microprobe studies, X-ray microscopy, X-ray holography, X-ray crystallography, Mossbauer spectroscopy, nuclear spectroscopy, neutron production, photon activation therapy and broadband synchrotron as a probe of fast reaction in the IR and near IR.

  18. Diagnostics and Instrumentation for FEL

    CERN Document Server

    Couprie, M E

    2001-01-01

    Free Electron Laser are coherent sources of radiation based on the interaction of a relativistic electron beam in an undulator field. According to the energy of the accelerator, they presently cover a wide spectral range, from the infra-red to the VUV. FELs combine the diagnostics of typical laser systems (for the measurement of spectral and temporal characteristics, the transverse mode pattern, the polarisation) and the diagnostics of relativistic electron beams. The electron beam is characterised in order to evaluate and control the FEL performances, but also in order to measure the effect of the FEL on the electron beam. The FEL characteristics are monitored with various types of detectors, depending mainly on the spectral range. Diagnostics for Linac based Infra Red FELs and storage ring FELs in the UV-VUV will be described. Particular instrumentation, required for FEL operation, such as the optical resonator, possible diagnostics inside the undulator will also be analysed.

  19. An output amplitude configurable wideband automatic gain control with high gain step accuracy

    Institute of Scientific and Technical Information of China (English)

    何晓丰; 莫太山; 马成炎; 叶甜春

    2012-01-01

    An output amplitude configurable wideband automatic gain control (AGC) with high gain step accuracy for the GNSS receiver is presented.The amplitude of an AGC is configurable in order to cooperate with baseband chips to achieve interference suppression and be compatible with different full range ADCs.And what's more,the gain-boosting technology is introduced and the circuit is improved to increase the step accuracy.A zero,which is composed by the source feedback resistance and the source capacity,is introduced to compensate for the pole.The AGC is fabricated in a 0.18 μm CMOS process.The AGC shows a 62 dB gain control range by 1 dB each step with a gain error of less than 0.2 dB.The AGC provides 3 dB bandwidth larger than 80 MHz and the overall power consumption is less than 1.8 mA,and the die area is 800 × 300μm2.

  20. FEL-accelerator related diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Jordan; David Douglas; Stephen V. Benson; Pavel Evtuschenko

    2007-08-02

    Free Electron Lasers (FEL) present a unique set of beam parameters to the diagnostics suite. The FEL requires characterization of the full six dimensional phase space of the electron beam at the wiggler and accurate alignment of the electron beam to the optical mode of the laser. In addition to the FEL requirements on the diagnostics suite, the Jefferson Lab FEL is operated as an Energy Recovered Linac (ERL) which imposes additional requirements on the diagnostics. The ERL aspect of the Jefferson Lab FEL requires that diagnostics operate over a unique dynamic range and operate with simultaneous transport of the accelerated and energy recovered beams. This talk will present how these challenges are addressed at the Jefferson Lab FEL.

  1. Multiscale degradations of storage ring FEL optics

    CERN Document Server

    Gatto, A; Amra, C; Boccara, C; Couprie, Marie Emmanuelle; De Ninno, G; Feigl, T; Garzella, D; Grewe, M; Kaiser, N; Marsi, M; Paoloni, S; Reita, V; Roger, J P; Torchio, P; Trovò, M; Walker, R; Wille, K

    2002-01-01

    The advanced understanding of the complete degradation phenomena is crucial in order to develop robust optics for FEL. Under very harsh Synchrotron Radiation conditions, results show that multiscale wavelength damages could be observed, inducing local crystalline structure modifications of the high optical index material with a severe increase of the surface roughness.

  2. Tapered undulators for SASE FELs

    CERN Document Server

    Fawley, W M; Vinokurov, N A

    2002-01-01

    We discuss the use of tapered undulators to enhance the performance of free-electron lasers (FELs) based upon self-amplified spontaneous emission, where the radiation tends to have a relatively broad bandwidth and limited temporal coherence. Using the polychromatic FEL simulation code GINGER, we numerically demonstrate the effectiveness of tapered undulators for parameters corresponding to the Argonne low-energy undulator test line FEL and the proposed linac coherent light source.

  3. An experimental study of an FEL oscillator with a linear taper

    CERN Document Server

    Benson, S; Neil, G R

    2001-01-01

    Motivated by the work of Saldin, Schneidmiller and Yurkov, we have measured the detuning curve widths, spectral characteristics, efficiency, and energy spread as a function of the taper for low and high Q resonators in the IR Demo FEL at Jefferson Lab. Both positive and negative tapers were used. Gain and frequency agreed surprisingly well with the predictions of a single mode theory. The efficiency agreed reasonably well for a negative taper with a high Q resonator but disagreed for lower Q values both due to the large slippage parameter and the non-ideal resonator Q. We saw better efficiency for a negative taper than for the same positive taper. The energy spread induced in the beam, normalized to the efficiency is larger for the positive taper than for the corresponding negative taper. This indicates that a negative taper is preferred over a positive taper in an energy recovery FEL.

  4. An experimental study of an FEL oscillator with a linear taper

    Science.gov (United States)

    Benson, S.; Gubeli, J.; Neil, G. R.

    2001-12-01

    Motivated by the work of Saldin, Schneidmiller and Yurkov, we have measured the detuning curve widths, spectral characteristics, efficiency, and energy spread as a function of the taper for low and high Q resonators in the IR Demo FEL at Jefferson Lab. Both positive and negative tapers were used. Gain and frequency agreed surprisingly well with the predictions of a single mode theory. The efficiency agreed reasonably well for a negative taper with a high Q resonator but disagreed for lower Q values both due to the large slippage parameter and the non-ideal resonator Q. We saw better efficiency for a negative taper than for the same positive taper. The energy spread induced in the beam, normalized to the efficiency is larger for the positive taper than for the corresponding negative taper. This indicates that a negative taper is preferred over a positive taper in an energy recovery FEL.

  5. A Novel High Gain DC-DC Step up Converter

    Directory of Open Access Journals (Sweden)

    M. Al Mamun

    2016-07-01

    Full Text Available High gain dc-dc converters are widely used to maximize the energy harvest for renewable energy systems, for example, photovoltaic systems and fuel cell. Conventional boost converters usually operates at extreme duty cycle to obtain high voltage gain. Operation at extreme duty cycle leads to reverse recovery problem at the switches, high conduction loss, electromagnetic interference etc. This paper proposes a very high gain dc-dc step up converter operating at very low duty cycle (i.e. duty cycle <0.5. The additional advantage of the proposed converter is that a single control signal is used for the switches which reduces the operation complexity. The steady-state theoretical analysis described in this paper is finally verified by simulation results

  6. BEAM OPTIMIZATION STUDY FOR AN X-RAY FEL OSCILLATOR AT THE LCLS-II

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Weilun; Huang, S.; Liu, K.X.; Huang, Z; Ding, Y.; Maxwell, T.J.; Kim, K.-J.

    2016-06-01

    The 4 GeV LCLS-II superconducting linac with high repetition beam rate enables the possibility to drive an X-Ray FEL oscillator at harmonic frequencies *. Compared to the regular LCLS-II machine setup, the oscillator mode requires a much longer bunch length with a relatively lower current. Also a flat longitudinal phase space distribution is critical to maintain the FEL gain since the X-ray cavity has extremely narrow bandwidth. In this paper, we study the longitudinal phase space optimization including shaping the initial beam from the injector and optimizing the bunch compressor and dechirper parameters. We obtain a bunch with a flat energy chirp over 400 fs in the core part with current above 100 A. The optimization was based on LiTrack and Elegant simulations using LCLS-II beam parameters.

  7. A High-Resolution S-band Down-Converting Digital Phase Detector for SASE FEL Use

    CERN Document Server

    Grelick, A E

    2004-01-01

    Each of the rf phase detectors in the Advanced Photon Source linac consists of a module that down converts from S-band to 20 MHz followed by an analog I/Q detector. Phase is calculated from one digitized sample per pulse each of I and Q. The resulting data has excellent long-term stability but is noisy enough so that a number of samples must be averaged to get a usable reading. The more recent requirement to support a SASE FEL has presented the need to accurately resolve the relative phase of a single pulse. Replacing analog detection with digital sampling and replacing internal intermediate frequency reference oscillators with a lower noise external oscillator were used to control the two largest components of noise. The implementation of a central, ultralow noise reference oscillator and a distribution system capable of maintaining the low phase noise is described, together with the results obtained to date. The principal remaining technical issue is determining the processing power required as a function o...

  8. Proposal for Research on High-Brightness Cathodes for High-Power Free-Electron Lasers (FEL)

    Science.gov (United States)

    2013-05-09

    diamond field-emitter array (DFEA). The second is the gridded thermionic cathode, based on the development of gridded cathodes for high-power microwave ...possible as a method of increasing current density in exchange for higher turn-on field. Oxidation and deposition Diamond seeding : We now utilize...atmosphere or vacuum (~107 Torr) after the initial heat treatment results in performance that is slightly lower than that for operation at 450°C. This

  9. Harmonic lasing in X-ray FELs

    CERN Document Server

    Schneidmiller, E A

    2012-01-01

    Harmonic lasing in a free electron laser with a planar undulator (under the condition that the fundamental frequency is suppressed) might be a cheap and efficient way of extension of wavelength ranges of existing and planned X-ray FEL facilities. Contrary to nonlinear harmonic generation, harmonic lasing can provide much more intense, stable, and narrow-band FEL beam which is easier to handle due to the suppressed fundamental frequency. In this paper we perform a parametrization of the solution of the eigenvalue equation for lasing at odd harmonics, and present an explicit expression for FEL gain length, taking into account all essential effects. We propose and discuss methods for suppression of the fundamental harmonic. We also suggest a combined use of harmonic lasing and lasing at the retuned fundamental wavelength in order to reduce bandwidth and to increase brilliance of X-ray beam at saturation. Considering 3rd harmonic lasing as a practical example, we come to the conclusion that it is much more robust...

  10. Harmonic cascade FEL designs for LUX

    Energy Technology Data Exchange (ETDEWEB)

    Penn, G.; Reinsch, M.; Wurtele, J.; Corlett, J.N.; Fawley, W.M.; Zholents, A.; Wan, W.

    2004-07-16

    LUX is a design concept for an ultrafast X-ray science facility, based on an electron beam accelerated to GeV energies in are circulating linac. Included in the design are short duration (200 fs or shorter FWHM) light sources using multiple stages of higher harmonic generation, seeded by a 200-250 nm laser of similar duration. This laser modulates the energy of a group of electrons within the electron bunch; this section of the electron bunch then produces radiation at a higher harmonic after entering a second, differently tuned undulator. Repeated stages in a cascade yield increasing photon energies up to 1 keV. Most of the undulators in the cascade operate in the low-gain FEL regime. Harmonic cascades have been designed for each pass of the recirculating linac up to a final electron beam energy of 3.1 GeV. For a given cascade, the photon energy can be selected over a wide range by varying the seed laser frequency and the field strength in the undulators. We present simulation results using the codes GENESIS and GINGER, as well as the results of analytical models which predict FEL performance. We discuss lattice considerations pertinent for harmonic cascade FELs, as well as sensitivity studies and requirements on the electron beam.

  11. High Power VCSEL Device with Periodic Gain Active Region

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    High power vertical cavity surface emitting lasers(VCSEKLs) with large aperture have been fabricated through improving passivation, lateral oxidation and heat dissipation techniques. Different from conventional three quantum well structures, a periodic gain active region with nine quantum wells was incorporated into the VCSEL structure, with which high efficiency and high power operation were expected. The nine quantum wells were divided into three groups with each of them located at the antinodes of the ca...

  12. Radiation Response of Emerging High Gain, Low Noise Detectors

    Science.gov (United States)

    Becker, Heidi N.; Farr, William H; Zhu, David Q.

    2007-01-01

    Data illustrating the radiation response of emerging high gain, low noise detectors are presented. Ionizing dose testing of silicon internal discrete avalanche photodiodes, and 51-MeV proton testing of InGaAs/InAlAs avalanche photodiodes operated in Geiger mode are discussed.

  13. Optimization of Scatterer Concentration in High-Gain Scattering Media

    Institute of Scientific and Technical Information of China (English)

    ZHU Jiu-Gao; ZHU He-Yuan; SUN Die-Chi; DU Ge-Guo; LI Fu-Ming

    2001-01-01

    We report the scatterer concentration-dependent behaviour of laser action in high-gain scattering media. Amodified model of a random laser is proposed to explain the experimental results in good agreement. We mayuse this modified model to design and optimize the random laser system. A further detailed model is needed toquantitatively analyse the far-field distribution of random laser action.

  14. The Shanghai FEL User Facility

    Institute of Scientific and Technical Information of China (English)

    ZhaoXiao-Feng; LuoYing-Xiong; 等

    1998-01-01

    The shanghai FEL User Facility(SFEL) for interdisciplinary studies is based on a rf linear accelerator.the prime goal of SEFL is provide a brodly tunable laser beam from near=IR to far-IR with tens of MW at peak power,A linear accelerator will operate in three modes:-3 MeV moed,20-30MeV mode and 40-50MeV mode.In 20-30 MeV mode,the accelerator consists of a ns grid gun driven at 476MHzm,a 476MHz subharmonic buncher,a 2856 MHz T-W type of buncher with high field gradients,and a SLAC type linac.

  15. A High Gain Omnidirectional Antenna Using Negative Permeability Metamaterial

    Directory of Open Access Journals (Sweden)

    Hangfei Tang

    2013-01-01

    Full Text Available A high gain omnidirectional antenna with low profile is proposed and is investigated numerically and experimentally. Based on the conventional center-fed circular epsilon-negative (ENG zeroth-order resonator (ZOR antenna, dendritic structure negative permeability metamaterial (NPM is used as the substrate to enhance the gain of the omnidirectional antenna. The experimental results show that the gain of a center-fed circular ENG ZOR antenna with NPM substrate is enhanced about 2.2 dB, and the efficiency is enhanced about 38%, in the whole broad operating bandwidth as compared to that of the antenna without NPM substrate, which can be used to improve the reliability of wireless communications.

  16. High current gain silicon-based spin transistor

    CERN Document Server

    Dennis, C L; Ensell, G J; Gregg, J F; Thompson, S M

    2003-01-01

    A silicon-based spin transistor of novel operating principle has been demonstrated in which the current gain at room temperature is 1.4 (n-type) and 0.97 (p-type). This high current gain was obtained from a hybrid metal/semiconductor analogue to the bipolar junction transistor which functions by tunnel-injecting carriers from a ferromagnetic emitter into a diffusion driven silicon base and then tunnel-collecting them via a ferromagnetic collector. The switching of the magnetic state of the collector ferromagnet controls the collector efficiency and the current gain. Furthermore, the magnetocurrent, which is determined to be 98% (140%) for p-type (n-type) in -110 Oe, is attributable to the spin-polarized base diffusion current.

  17. Silicon photodiodes with high photoconductive gain at room temperature.

    Science.gov (United States)

    Li, X; Carey, J E; Sickler, J W; Pralle, M U; Palsule, C; Vineis, C J

    2012-02-27

    Silicon photodiodes with high photoconductive gain are demonstrated. The photodiodes are fabricated in a complementary metal-oxide-semiconductor (CMOS)-compatible process. The typical room temperature responsivity at 940 nm is >20 A/W and the dark current density is ≈ 100 nA/cm2 at 5 V reverse bias, yielding a detectivity of ≈ 10(14) Jones. These photodiodes are good candidates for applications that require high detection sensitivity and low bias operation.

  18. Self-amplified spontaneous emission FEL with energy-chirped electron beam and its application for generation of attosecond x-ray pulses

    Directory of Open Access Journals (Sweden)

    E. L. Saldin

    2006-05-01

    Full Text Available Influence of a linear energy chirp in the electron beam on a self-amplified spontaneous emission (SASE Free Electron Laser (FEL operation is studied analytically and numerically using a 1D model. Analytical results are based on the theoretical background developed by Krinsky and Huang [Phys. Rev. ST Accel. Beams 6, 050702 (2003PRABFM1098-4402]. Explicit expressions for Green’s functions and for output power of a SASE FEL are obtained for the high-gain linear regime in the limits of small and large energy chirp parameters. Saturation length and power versus energy chirp parameter are calculated numerically. It is shown that the effect of linear energy chirp on FEL gain is equivalent to the linear undulator tapering (or linear energy variation along the undulator. A consequence of this fact is a possibility to perfectly compensate FEL gain degradation, caused by the energy chirp, by means of the undulator tapering independently of the value of the energy chirp parameter. An application of this effect for generation of attosecond pulses from a hard x-ray FEL is proposed. Strong energy modulation within a short slice of an electron bunch is produced by a few-cycle optical laser pulse in a short undulator, placed in front of the main undulator. Gain degradation within this slice is compensated by an appropriate undulator taper while the rest of the bunch suffers from this taper and does not lase. Three-dimensional simulations predict that short (200 attoseconds high-power (up to 100 GW pulses can be produced in Angstrom wavelength range with a high degree of contrast. A possibility to reduce pulse duration to sub-100 attosecond scale is discussed.

  19. The Dresden 100 T/10 ms project a high magnetic field facility at an IR-FEL

    CERN Document Server

    Dorr, M; Eschrig, H; Fischer, F; Fulde, P; Groessinger, R; Grunberger, W; Handstein, A; Hinz, D; Kratz, R; Krug, H; Loewenhaupt, M; Müller, K H; Pobell, F; Schultz, L; Siegel, H; Steglich, F; Vergés, P

    2002-01-01

    Summary form only given. We have proposed to build a 100 T/10 ms, 70 T/100 ms, 60 T/1 s pulsed field user facility with a 50 MJ capacitor bank at the Forschungszentrum Rossendorf near Dresden. This would provide the appealing possibility to have access to Zeeman energies in the energy range of the infrared free-electron-lasers (5 mu m to 150 mu m; 2 ps; cw; >10 W) now under construction at the radiation source ELBE (superconducting electron linear accelerator; 40 MeV; 1 m A; 2 ps; cw) in Rossendorf. The work is accompanied by computer simulations of the planned coil systems, of the power supply, and by the development of high-strength conductors aiming at a tensile strength of about 1.5 GPa at sigma approximately= sigma /sub Cu//2 (microcomposite CuAg alloys and Cu-steel macro compounds). With a view of gaining experience in the construction and operation of pulsed magnets, a pilot pulsed field laboratory was established at the Institute of Solid State and Materials Research Dresden (IFW Dresden). The laborat...

  20. Extended High-Gain Observer for Mars Entry Guidance

    Directory of Open Access Journals (Sweden)

    Pingyuan Cui

    2013-02-01

    Full Text Available To deliver a Mars entry vehicle to the prescribed parachute deployment point, active entry guidance is essential. This paper addresses the problem of Mars atmospheric entry guidance through drag tracking method with extended high gain observer. First, an extended high gain observer combined with feedback linearization is applied in drag tracking for Mars entry longitudinal guidance.  The observer estimates the drag and drag rate for drag tracking, estimates the perturbation due to model uncertainty and disturbance, and compensate for the perturbation by canceling its estimate. Then, bank reversal is adopted in the lateral plane to reduce the cross-range error. Finally, Mars entry simulation is performed to assess the performance of the adaptive guidance law. The results demonstrate that the proposed guidance law exhibits good performance.

  1. Quasi-isochronous storage ring for enhanced FEL performance

    Science.gov (United States)

    Ohgaki, H.; Robin, D.; Yamazaki, T.

    1996-02-01

    A compact storage ring is designed to be used as driver for a free electron laser (FEL). This ring can be operated very close to zero momentum compaction factor (α) to increase the electron density and thus the gain of the FEL. In order to control α with zero dispersion in the straight sections we use an inverted dipole located between the bending magnets and 4 families of quadrupoles. By using 3 families of sextupoles we can control the 2 transverse chromaticities and 2nd order momentum compaction. We find that the ring has sufficient dynamic aperture for good performance.

  2. Remote Robot Control With High Force-Feedback Gain

    Science.gov (United States)

    Kim, Won S.

    1993-01-01

    Improved scheme for force-reflecting hand control of remote robotic manipulator provides unprecedently high force-reflection gain, even when dissimilar master and slave arms used. Three feedback loops contained in remote robot control system exerting position-error-based force feedback and compliance control. Outputs of force and torque sensors on robot not used directly for force reflection, but for compliance control, while errors in position used to generate reflected forces.

  3. FEL Design Studies at LBNL: Activities and Plans

    Energy Technology Data Exchange (ETDEWEB)

    Corlett, John N.; Fawley, W.; Lidia, S.; Padmore, H.; Penn, G.; Pogorelov, I.; Qiang, J.; Sannibale, F.; Staples, J.; Steier, C.; Venturini, M.; Wan, W.; Wilcox, R.; Zholents, A.

    2007-03-01

    LBNL staff are currently pursuing R&D for future x-ray FELs, and participate in two FEL construction projects. Our strategy is to address the most fundamental challenges, which are the cost-drivers and performance limitations of FEL facilities. An internally funded R&D program is aimed at investigating accelerator physics and technologies in three key areas: (1) Theoretical study, modeling, and experimental development of low emittance, high quantum efficiency cathodes; (2) Design studies of electron beam delivery systems, including emittance manipulations, high-resolution modeling of 6-D phase space, and low-emittance beam transport; and (3) Design studies of optical manipulations of electron beams for seeded and SASE FELs, providing short x-ray pulses of variable duration, synchronous with the seed and pump laser sources, and also long transform-limited pulses with a narrow bandwidth. Design studies of means for production of attosecond x-ray pulses at various wavelengths. We are collaborators in the FERMI{at}Elettra seeded FEL facility under construction at Sincrotrone Trieste, Italy, participating in accelerator design and FEL physics studies, and mechanical and electrical engineering. We are participating in the LCLS project at SLAC, implementing our design of stabilized timing and synchronization systems. Here we outline our long-term objectives, and current activities.

  4. Application of a PWFA to an X-ray FEL

    CERN Document Server

    Israeli, Yasmine; Reiche, Sven; Pedrozzi, Marco; Muggli, Patric

    2016-01-01

    There is a growing demand for X-ray Free-electron lasers (FELs) in various science fields, in particular for those with short pulses, larger photon fluxes and shorter wavelengths. The level of X-ray power and the pulse energy depend on the amount of electron bunch energy. Increasing the latter will increase the power of the radiating X-rays. Using numerical simulations we explore the possibility of using a plasma wakefield accelerator (PWFA) scheme to increase the electron beam energy of an existing FEL facility without significantly increasing the accelerator length. In this paper we use parameters of the SwissFEL beam. The simulations are carried out in 2D cylindrical symmetry using the code OSIRIS. Initial results show an energy gain of ~2 GeV after propagation of 0.5 m in the plasma with a relative energy spread of ~1%.

  5. Dielectric Wakefield Accelerator to drive the future FEL Light Source.

    Energy Technology Data Exchange (ETDEWEB)

    Jing, C.; Power, J.; Zholents, A. (Accelerator Systems Division (APS)); ( HEP); (LLC)

    2011-04-20

    X-ray free-electron lasers (FELs) are expensive instruments and a large part of the cost of the entire facility is driven by the accelerator. Using a high-energy gain dielectric wake-field accelerator (DWA) instead of the conventional accelerator may provide a significant cost saving and reduction of the facility size. In this article, we investigate using a collinear dielectric wakefield accelerator to provide a high repetition rate, high current, high energy beam to drive a future FEL x-ray light source. As an initial case study, a {approx}100 MV/m loaded gradient, 850 GHz quartz dielectric based 2-stage, wakefield accelerator is proposed to generate a main electron beam of 8 GeV, 50 pC/bunch, {approx}1.2 kA of peak current, 10 x 10 kHz (10 beamlines) in just 100 meters with the fill factor and beam loading considered. This scheme provides 10 parallel main beams with one 100 kHz drive beam. A drive-to-main beam efficiency {approx}38.5% can be achieved with an advanced transformer ratio enhancement technique. rf power dissipation in the structure is only 5 W/cm{sup 2} in the high repetition rate, high gradient operation mode, which is in the range of advanced water cooling capability. Details of study presented in the article include the overall layout, the transform ratio enhancement scheme used to increase the drive to main beam efficiency, main wakefield linac design, cooling of the structure, etc.

  6. Present and next steps of the JAERI superconducting rf linac based FEL program

    Energy Technology Data Exchange (ETDEWEB)

    Minehara, E.J.; Yamauchi, T.; Sugimoto, M. [FEL Laboratory at Tokai, Advanced Photon Research Center, Kansai Research Establishment, Japan Atomic Energy Research Institute, Tokai, Ibaraki (JP)] (and others)

    2000-03-01

    The JAERI superconducting rf linac based FEL has successfully been lased to produce a 0.3 kW FEL light and 100 kW or larger electron beam output in quasi continuous wave operation in 1999. The 1 kW class output as our present program goal will be achieved to improve the optical out coupling method in the FEL optical resonator, the electron gun, and the electron beam optics in the JAERI FEL driver. As our next 5 year program goal is the 100 kW class FEL light and a few tens MW class electron beam output in average, quasi continuous wave operation of the light and electron beam will be planned in the JAERI superconducting rf linac based FEL facility. Conceptual design options needed for such a very high power operation and shorter wavelength light sources will be discussed to improve and to upgrade the exciting facility. (author)

  7. Macro-particle FEL model with self-consistent spontaneous radiation

    CERN Document Server

    Litvinenko, Vladimir N

    2015-01-01

    Spontaneous radiation plays an important role in SASE FELs and storage ring FELs operating in giant pulse mode. It defines the correlation function of the FEL radiation as well as its many spectral features. Simulations of these systems using randomly distributed macro-particles with charge much higher that of a single electron create the problem of anomalously strong spontaneous radiation, limiting the capabilities of many FEL codes. In this paper we present a self-consistent macro-particle model which provided statistically exact simulation of multi-mode, multi-harmonic and multi-frequency short-wavelength 3-D FELs including the high power and saturation effects. The use of macro-particle clones allows both spontaneous and induced radiation to be treated in the same fashion. Simulations using this model do not require a seed and provide complete temporal and spatial structure of the FEL optical field.

  8. FEL options for power beaming

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.J.; Zholents, A.A.; Zolotorev, M.S. [Lawrence Berkeley National Lab., CA (United States); Vinokurov, N.A. [Budker Inst. of Nuclear Physics, Novosibirsk (Russian Federation)

    1997-10-01

    The demand for the output power of communication satellites has been increasing exponentially. The satellite power is generated from solar panels which collect the sunlight and convert it to electrical power. The power per satellite is limited due to the limit in the practical size of the solar panel. One way to meet the power demand is to employ multiple satellites (up to 10) per the internationally agreed-upon ``slot`` in the geosynchronous earth orbit (GEO). However, this approach is very expensive due to the high cost of sending a satellite into a GEO orbit. An alternative approach is power beaming, i.e., to illuminate the solar panels with high power, highly-directed laser beams from earth. The power beaming generates more power per satellite for the same area of the solar panel. The minimum optical beam power, interesting for power beaming application, is P{sub L} = 200kW. The wavelength is chosen to be {lambda} = 0.84 {micro}m, so that it is within one of the transmission windows of the air, and at the same time near the peak of the photo-voltaic conversion efficiency of Si, which is the commonly used material for the solar panels. Free electron lasers (FELs) are well suited for the power beaming application because they can provide high power with coherent wavefront, but without high energy density in media. In this article the authors discuss some principal issues, such as the choice of accelerator and electron gun, the choice of beam parameters, radiation hazards, technological availability, and overall efficiency and reliability of the installation. They also attempt to highlight the compromise between the cost of the primary installation, the operation cost, and the choice of technology, and its maturity. They then present several schemes for the accelerator-FEL systems based on RF accelerators. The initial electron beam accelerator up to the energy of a few MeV is more or less common for all these schemes.

  9. Renewal of KU-FEL Facility

    CERN Document Server

    Kii, Toshiteru; Masuda, Kai; Murakami, Shio; Ohgaki, Hideaki; Yamazaki, Tetsuo; Yoshikawa, Kiyoshi; Zen, Heishun

    2004-01-01

    Users demands to a high power tunable IR laser are increasing in Japan in energy-related science, such as basic study of high-efficiency solar cells, generation of new energy source of alcohol and/or H2 from polluted gas, and separation of DNA and/or RNA. To satisfy these demands, we decided to renew our FEL facility more user friendly and to operate more flexibly. Construction and fundamental studies on the KU-FEL have been carried out at a building of Institute of Chemical Research where few other accelerators are operating. Therefore, available machine time for our experiments is quite limited. We are now modifying the room by adding concrete walls of 2-m thickness and some space for users will be available. The present FEL system will be moved to the room A photocathode RF-gun system will be nearly added to the system and the present thermionic RF-gun will be used ternatively according to the demands of users. The photocathode material will be Cs2Te. The room with the shielding will be completed in June, ...

  10. Theory of high gain harmonic generation an analytical estimate

    CERN Document Server

    Yu Li Hua

    2002-01-01

    We discuss the theory of the High Gain Harmonic Generation (HGHG). First, we describe an analytical estimate using the HGHG parameters in the DUVFEL project at BNL as an example. We show that the effective energy spread in a chicane dispersion section is found to be very small, and the effect of finite emittance can be neglected during the calculation of coherent harmonic generation. Then we discuss some issues such as the intensity stability, and how to use HGHG to obtain information about local energy spread. We compare these issues with recent experimental results in the infrared. We discuss some of the key issues in the cascading HGHG scheme and its possible limitations.

  11. Improvement of the beam quality by chromaticity correction for wavelength shortening in the NIJI-IV FEL

    CERN Document Server

    Sei, N; Ohgaki, H; Litvinenko, V N; Mikado, T; Yamazaki, T

    1999-01-01

    Electron-beam qualities improved by chromaticity correction in the storage ring NIJI-IV were investigated at the beam energy of 309 MeV. Sextupole-quadrupole-sextupole (SQS) magnets, which were installed in all of the short-straight sections in NIJI-IV, perfectly corrected a horizontal and a vertical chromaticity. This improvement suppressed a head-tail instability, so that higher beam current (approx 30 mA) and higher peak-electron density (approx 6x10 sup 1 sup 6 m sup - sup 3) were available for FEL experiments. The maximum FEL gain was estimated to be about 2.5% at a wavelength of 240 nm. The lasing of an FEL around 300 nm was achieved in March 1998, and the lasing of an FEL at around 240 nm was successfully observed in May 1998. The shortest wavelength of FELs with the NIJI-IV FEL system was 228 nm.

  12. Coherent harmonic production using a two-section undulator FEL

    Energy Technology Data Exchange (ETDEWEB)

    Jaroszynski, D.A. [Commissariat a l`Energie, Bruyeres-le-Chatel (France); Prazeres, R.; Glotin, F. [Centre Universitaire Paris-Sud (France)] [and others

    1995-12-31

    We present measurements and a theoretical analysis of a new method of generating harmonic radiation in a free-electron laser oscillator with a two section undulator in a single optical cavity. To produce coherent harmonic radiation the undulator is arranged so that the downstream undulator section resonance frequency matches a harmonic of the upstream undulator. Both the fundamental and the harmonic optical fields evolve in the same optical cavity and are coupled out with different extraction fractions using a hole in one of the cavity mirrors. We present measurements that show that the optical power at the second and third harmonic can be enhanced by more than an order of magnitude in this fundamental/harmonic configuration. We compare the production of harmonic radiation of a two sectioned fundamental/harmonic undulator with that produced from a FEL operating at its highest efficiency with a step-tapered undulator, where the bunching at the end of the first section is very large. We examine, the dependence of the harmonic power on the intracavity power by adjusting the optical cavity desynchronism, {delta}L. We also examine the evolution of the fundamental and harmonic powers as a function of cavity roundtrip number to evaluate the importance of the small signal gain at the harmonic. We compare our measurements with predictions of a multi-electron numerical model that follows the evolution of fundamental and harmonic power to saturation. This fundamental/harmonic mode, of operation of the FEL may have useful applications in the production of coherent X-ray and VUV radiation, a spectral range where high reflectivity optical cavity mirrors are difficult or impossible to manufacture.

  13. Calibration status and plans for the charge integrating JUNGFRAU pixel detector for SwissFEL

    Science.gov (United States)

    Redford, S.; Bergamaschi, A.; Brückner, M.; Cartier, S.; Dinapoli, R.; Ekinci, Y.; Fröjdh, E.; Greiffenberg, D.; Mayilyan, D.; Mezza, D.; Mozzanica, A.; Rajeev, R.; Ramilli, M.; Ruder, C.; Schädler, L.; Schmitt, B.; Shi, X.; Thattil, D.; Tinti, G.; Zhang, J.

    2016-11-01

    JUNGFRAU (adJUstiNg Gain detector FoR the Aramis User station) is a two-dimensional hybrid pixel detector under development for photon science applications at free electron laser and synchrotron facilities. In particular, JUNGFRAU detectors will equip the Aramis end stations of SwissFEL, an X-ray free electron laser currently under construction at the Paul Scherrer Institut in Villigen, Switzerland. JUNGFRAU has been designed specifically to meet the challenges of photon science at XFELs, including high frame rates, single photon sensitivity in combination with a high dynamic range, vacuum compatibility and tilable modules. This has resulted in a charge integrating detector with three dynamically adjusting gains, a low noise of 55 ENC RMS, readout speeds in excess of 2 kHz, single photon sensitivity down to 2 keV (with a signal to noise ratio of 10) and a dynamic range covering four orders of magnitude at 12 keV. Each JUNGFRAU module consists of eight chips of 256 × 256 pixels, each 75 × 75 μm2 in size. The chips are arranged in 2 × 4 formation and bump-bonded to a single silicon sensor 320 μm thick, resulting in an active area of approximately 4 × 8 cm2 per module. Multi-module vacuum compatible systems comprising up to 16 Mpixels (32 modules) will be used at SwissFEL. The design of SwissFEL and the JUNGFRAU system for the Aramis end station A will be introduced, together with results from early prototypes and a characterisation using the first batch of final JUNGFRAU modules. Plans and first results of the pixel-by-pixel calibration will also be shown. The vacuum compatibility of the JUNGFRAU module is demonstrated for the first time.

  14. Recent Progress of the NIJI-IV VUV/IR FEL

    CERN Document Server

    Sei, N; Watanabe, K W; Yamada, K Y; Yasumoto, M Y

    2005-01-01

    Free electron lasers (FELs) are being developed in a broad wavelength region from the VUV to the IR with the compact storage ring NIJI-IV at AIST. In the DUV and VUV regions, the FEL is used as an intense light source for real-time surface observation with the photoelectron emission microscopy. To extend the application field of the NIJI-IV FEL, for example to the structural analysis of proteins, experiments to obtain FEL oscillations at the wavelength below 195 nm are going on. In addition, a 3.6-m optical klystron, ETLOK-III, for developing infrared FELs has been installed in the north straight section of the NIJI-IV. Fundamental and higher harmonic spontaneous emissions from the ETLOK-III were observed in the visible and near-infrared regions. It was expected that the FEL gain for the 3rd harmonics exceed 5%. In the presentation, we will report the recent results of the VUV and IR FEL experiments.

  15. Application of FEL technique for constructing high-intensity, monochromatic, polarized gamma-sources at storage rings

    Energy Technology Data Exchange (ETDEWEB)

    Saldin, E.L.; Schneidmiller, E.A.; Ulyanov, Yu.N. [Automatic Systems Corporation, Samara (Russian Federation)] [and others

    1995-12-31

    A possibility to construct high-intensity tunable monochromatic{gamma}-source at high energy storage rings is discussed. It is proposed to produce {gamma}-quanta by means of Compton backscattering of laser photons on electrons circulating in the storage. The laser light wavelength is chosen in such a way that after the scattering, the electron does not leave the separatrix. So as the probability of the scattering is rather small, energy oscillations are damped prior the next scattering. As a result, the proposed source can operate in {open_quotes}parasitic{close_quote} mode not interfering with the main mode of the storage ring operation. Analysis of parameters of existent storage rings (PETRA, ESRF, Spring-8, etc) shows that the laser light wavelength should be in infrared, {lambda}{approximately} 10 - 400 {mu}m, wavelength band. Installation at storage rings of tunable free-electron lasers with the peak and average output power {approximately} 10 MW and {approximately} 1 kW, respectively, will result in the intensity of the {gamma}-source up to {approximately} 10{sup 14}s{sup -1} with tunable {gamma}-quanta energy from several MeV up to several hundreds MeV. Such a {gamma}-source will reveal unique possibilities for precision investigations in nuclear physics.

  16. Fast ignition integrated experiments and high-gain point design

    Energy Technology Data Exchange (ETDEWEB)

    Shiraga, H. [Osaka Univ., Osaka (Japan); Nagatomo, H. [Osaka Univ., Osaka (Japan); Theobald, W. [Univ. of Rochester, Rochester, NY (United States); Solodov, A. A. [Univ. of Rochester, Rochester, NY (United States); Tabak, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-04-17

    Here, integrated fast ignition experiments were performed at ILE, Osaka, and LLE, Rochester, in which a nanosecond driver laser implodes a deuterated plastic shell in front of the tip of a hollow metal cone and an intense ultrashort-pulse laser is injected through the cone to heat the compressed plasma. Based on the initial successful results of fast electron heating of cone-in-shell targets, large-energy short-pulse laser beam lines were constructed and became operational: OMEGA-EP at Rochester and LFEX at Osaka. Neutron enhancement due to heating with a ~kJ short-pulse laser has been demonstrated in the integrated experiments at Osaka and Rochester. The neutron yields are being analyzed by comparing the experimental results with simulations. Details of the fast electron beam transport and the electron energy deposition in the imploded fuel plasma are complicated and further studies are imperative. The hydrodynamics of the implosion was studied including the interaction of the imploded core plasma with the cone tip. Theory and simulation studies are presented on the hydrodynamics of a high-gain target for a fast ignition point design.

  17. Feedback Requirements for SASE-FELs

    Energy Technology Data Exchange (ETDEWEB)

    Loos, Henrik; /SLAC

    2012-07-06

    The operation of a Self Amplified Spontaneous Emission (SASE) Free Electron Lasers (FEL) at soft and hard X-ray wavelengths driven by a high brightness electron beam imposes strong requirements on the stability of the accelerator and feedback systems are necessary to both guarantee saturation of the SASE process as well as a stable photon beam for user experiments. Diagnostics for the relevant transverse and longitudinal beam parameters are presented and various examples of feedback systems for bunches with low repetition rate as well as systems for intra bunch train feedbacks are discussed.

  18. Fluid dynamics analysis of a gas attenuator for X-ray FELs under high-repetition-rate operation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Bo; Wu, Juhao; Raubenheimer, Tor O.; Feng, Yiping

    2017-04-18

    Newtonian fluid dynamics simulations were performed using the Navier–Stokes–Fourier formulations to elucidate the short time-scale (µs and longer) evolution of the density and temperature distributions in an argon-gas-filled attenuator for an X-ray free-electron laser under high-repetition-rate operation. Both hydrodynamic motions of the gas molecules and thermal conductions were included in a finite-volume calculation. It was found that the hydrodynamic wave motions play the primary role in creating a density depression (also known as a filament) by advectively transporting gas particles away from the X-ray laser–gas interaction region, where large pressure and temperature gradients have been built upon the initial energy depositionviaX-ray photoelectric absorption and subsequent thermalization. Concurrent outward heat conduction tends to reduce the pressure in the filament core region, generating a counter gas flow to backfill the filament, but on an initially slower time scale. If the inter-pulse separation is sufficiently short so the filament cannot recover, the depth of the filament progressively increases as the trailing pulses remove additional gas particles. Since the rate of hydrodynamic removal decreases while the rate of heat conduction back flow increases as time elapses, the two competing mechanisms ultimately reach a dynamic balance, establishing a repeating pattern for each pulse cycle. By performing simulations at higher repetition rates but lower per pulse energies while maintaining a constant time-averaged power, the amplitude of the hydrodynamic motion per pulse becomes smaller, and the evolution of the temperature and density distributions approach asymptotically towards, as expected, those calculated for a continuous-wave input of the equivalent power.

  19. Plasma switch as a temporal overlap tool for pump-probe experiments at FEL facilities

    Science.gov (United States)

    Harmand, M.; Murphy, C. D.; Brown, C. R. D.; Cammarata, M.; Döppner, T.; Düsterer, S.; Fritz, D.; Förster, E.; Galtier, E.; Gaudin, J.; Glenzer, S. H.; Göde, S.; Gregori, G.; Hilbert, V.; Hochhaus, D.; Laarmann, T.; Lee, H. J.; Lemke, H.; Meiwes-Broer, K.-H.; Moinard, A.; Neumayer, P.; Przystawik, A.; Redlin, H.; Schulz, M.; Skruszewicz, S.; Tavella, F.; Tschentscher, T.; White, T.; Zastrau, U.; Toleikis, S.

    2012-08-01

    We have developed an easy-to-use and reliable timing tool to determine the arrival time of an optical laser and a free electron laser (FEL) pulses within the jitter limitation. This timing tool can be used from XUV to X-rays and exploits high FELs intensities. It uses a shadowgraph technique where we optically (at 800 nm) image a plasma created by an intense XUV or X-ray FEL pulse on a transparent sample (glass slide) directly placed at the pump - probe sample position. It is based on the physical principle that the optical properties of the material are drastically changed when its free electron density reaches the critical density. At this point the excited glass sample becomes opaque to the optical laser pulse. The ultra-short and intense XUV or X-ray FEL pulse ensures that a critical electron density can be reached via photoionization and subsequent collisional ionization within the XUV or X-ray FEL pulse duration or even faster. This technique allows to determine the relative arrival time between the optical laser and the FEL pulses in only few single shots with an accuracy mainly limited by the optical laser pulse duration and the jitter between the FEL and the optical laser. Considering the major interest in pump-probe experiments at FEL facilities in general, such a femtosecond resolution timing tool is of utmost importance.

  20. Present Status and Results from the KAERI Compact THz FEL Facility

    CERN Document Server

    Jeong, Y U; Lee, B C; Park, S H

    2005-01-01

    We have developed a laboratory-scale users facility with a compact terahertz (THz) free electron laser (FEL). The FEL operates in the wavelength range of 100-1200 μm, which corresponds to 0.3-3 THz. The peak power of the FEL micropulse having 30 ps pulse duration is 1 kW and the pulse energy of the 3-μs-FEL-macropulse is approximately 0.3 mJ. The main application of the FEL is THz imaging for bio-medical researches. Transmitted THz imaging of various samples including bugs have been measured. The samples were scanned by a 2-dimensional stage at the focal point of the THz beam. The bugs were not dry because they were killed just before experiments. We could get the transmitted THz imaging of the bugs at 3 THz with the high power THz FEL. THz spectral characteristics of several materials have been studied by the FEL and a THz FTIR spectrometer. We will introduce recent results on the imaging and spectroscopy by the THz FEL.

  1. The bunch compression system at the TESLA test facility FEL

    Science.gov (United States)

    Limberg, T.; Weise, H.; Molodozhentsev, A.; Petrov, V.

    1996-02-01

    A SASE-FEL [A.M. Kontradenko and E.L. Saldin, Particle Accelerators 10 (1980) 207; R. Bonifacio, C. Pellegrini and I.M. Narducci, Opt. Commun. 50 (1884) 373] requires extremely high peak currents which cannot be achieved by electron guns. The bunch length therefore has to be reduced along the accelerating linac, the bunch has to be compressed. In the TTF-FEL this is done with the help of bending magnet chicanes in three stages. We present the lay-out of the scheme as well as first beam dynamics calculations.

  2. The PixFEL project: Progress towards a fine pitch X-ray imaging camera for next generation FEL facilities

    Science.gov (United States)

    Rizzo, G.; Batignani, G.; Benkechkache, M. A.; Bettarini, S.; Casarosa, G.; Comotti, D.; Dalla Betta, G.-F.; Fabris, L.; Forti, F.; Grassi, M.; Lodola, L.; Malcovati, P.; Manghisoni, M.; Mendicino, R.; Morsani, F.; Paladino, A.; Pancheri, L.; Paoloni, E.; Ratti, L.; Re, V.; Traversi, G.; Vacchi, C.; Verzellesi, G.; Xu, H.

    2016-07-01

    The INFN PixFEL project is developing the fundamental building blocks for a large area X-ray imaging camera to be deployed at next generation free electron laser (FEL) facilities with unprecedented intensity. Improvement in performance beyond the state of art in imaging instrumentation will be explored adopting advanced technologies like active edge sensors, a 65 nm node CMOS process and vertical integration. These are the key ingredients of the PixFEL project to realize a seamless large area focal plane instrument composed by a matrix of multilayer four-side buttable tiles. In order to minimize the dead area and reduce ambiguities in image reconstruction, a fine pitch active edge thick sensor is being optimized to cope with very high intensity photon flux, up to 104 photons per pixel, in the range from 1 to 10 keV. A low noise analog front-end channel with this wide dynamic range and a novel dynamic compression feature, together with a low power 10 bit analog to digital conversion up to 5 MHz, has been realized in a 110 μm pitch with a 65 nm CMOS process. Vertical interconnection of two CMOS tiers will be also explored in the future to build a four-side buttable readout chip with high density memories. In the long run the objective of the PixFEL project is to build a flexible X-ray imaging camera for operation both in burst mode, like at the European X-FEL, or in continuous mode with the high frame rates anticipated for future FEL facilities.

  3. The PixFEL project: Progress towards a fine pitch X-ray imaging camera for next generation FEL facilities

    Energy Technology Data Exchange (ETDEWEB)

    Rizzo, G., E-mail: giuliana.rizzo@pi.infn.it [Università di Pisa, Dipartimento di Fisica, I-56127 Pisa (Italy); INFN, Sezione di Pisa, I-56127 Pisa (Italy); Batignani, G. [Università di Pisa, Dipartimento di Fisica, I-56127 Pisa (Italy); INFN, Sezione di Pisa, I-56127 Pisa (Italy); Benkechkache, M.A. [Università di Trento, Dipartimento di Ingegneria Industriale, I-38123 Trento (Italy); University Constantine 1, Department of Electronics in the Science and Technology Faculty, I-25017, Constantine (Algeria); Bettarini, S.; Casarosa, G. [Università di Pisa, Dipartimento di Fisica, I-56127 Pisa (Italy); INFN, Sezione di Pisa, I-56127 Pisa (Italy); Comotti, D. [Università di Pavia, Dipartimento di Ingegneria Industriale e dell' Informazione, I-27100 Pavia (Italy); INFN Sezione di Pavia, I-27100 Pavia (Italy); Dalla Betta, G.-F. [Università di Trento, Dipartimento di Ingegneria Industriale, I-38123 Trento (Italy); TIFPA INFN, I-38123 Trento (Italy); Fabris, L. [INFN Sezione di Pavia, I-27100 Pavia (Italy); Università di Bergamo, Dipartimento di Ingegneria e Scienze Applicate, I-24044 Dalmine (Italy); Forti, F. [Università di Pisa, Dipartimento di Fisica, I-56127 Pisa (Italy); INFN, Sezione di Pisa, I-56127 Pisa (Italy); Grassi, M.; Lodola, L.; Malcovati, P. [Università di Pavia, Dipartimento di Ingegneria Industriale e dell' Informazione, I-27100 Pavia (Italy); INFN Sezione di Pavia, I-27100 Pavia (Italy); Manghisoni, M. [INFN Sezione di Pavia, I-27100 Pavia (Italy); Università di Bergamo, Dipartimento di Ingegneria e Scienze Applicate, I-24044 Dalmine (Italy); and others

    2016-07-11

    The INFN PixFEL project is developing the fundamental building blocks for a large area X-ray imaging camera to be deployed at next generation free electron laser (FEL) facilities with unprecedented intensity. Improvement in performance beyond the state of art in imaging instrumentation will be explored adopting advanced technologies like active edge sensors, a 65 nm node CMOS process and vertical integration. These are the key ingredients of the PixFEL project to realize a seamless large area focal plane instrument composed by a matrix of multilayer four-side buttable tiles. In order to minimize the dead area and reduce ambiguities in image reconstruction, a fine pitch active edge thick sensor is being optimized to cope with very high intensity photon flux, up to 10{sup 4} photons per pixel, in the range from 1 to 10 keV. A low noise analog front-end channel with this wide dynamic range and a novel dynamic compression feature, together with a low power 10 bit analog to digital conversion up to 5 MHz, has been realized in a 110 μm pitch with a 65 nm CMOS process. Vertical interconnection of two CMOS tiers will be also explored in the future to build a four-side buttable readout chip with high density memories. In the long run the objective of the PixFEL project is to build a flexible X-ray imaging camera for operation both in burst mode, like at the European X-FEL, or in continuous mode with the high frame rates anticipated for future FEL facilities.

  4. Design of a high linearity and high gain accuracy analog baseband circuit for DAB receiver

    Science.gov (United States)

    Li, Ma; Zhigong, Wang; Jian, Xu; Yiqiang, Wu; Junliang, Wang; Mi, Tian; Jianping, Chen

    2015-02-01

    An analog baseband circuit of high linearity and high gain accuracy for a digital audio broadcasting receiver is implemented in a 0.18-μm RFCMOS process. The circuit comprises a 3rd-order active-RC complex filter (CF) and a programmable gain amplifier (PGA). An automatic tuning circuit is also designed to tune the CF's pass band. Instead of the class-A fully differential operational amplifier (FDOPA) adopted in the conventional CF and PGA design, a class-AB FDOPA is specially employed in this circuit to achieve a higher linearity and gain accuracy for its large current swing capability with lower static current consumption. In the PGA circuit, a novel DC offset cancellation technique based on the MOS resistor is introduced to reduce the settling time significantly. A reformative switching network is proposed, which can eliminate the switch resistor's influence on the gain accuracy of the PGA. The measurement result shows the gain range of the circuit is 10-50 dB with a 1-dB step size, and the gain accuracy is less than ±0.3 dB. The OIP3 is 23.3 dBm at the gain of 10 dB. Simulation results show that the settling time is reduced from 100 to 1 ms. The image band rejection is about 40 dB. It only draws 4.5 mA current from a 1.8 V supply voltage.

  5. High gain multigap avalanche detectors for Cerenkov ring imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gilmore, R.S.; Lavender, W.M.; Leith, D.W.G.S.; Williams, S.H.

    1980-10-01

    We report on a continuing study of multigap parallel plate avalanche chambers, primarily as photoelectron detectors for use with Cerenkov ring imaging counters. By suitable control of the fields in successive gaps and by introducing screens to reduce photon feedback to the cathode the gain many be increased considerably. We have obtained gains in excess of 6 x 10/sup 7/ for photoelectrons with a good pulse height spectrum and expect to increase this further. We discuss the use of resistive anodes to give avalanche positions in two dimensions by charge division.

  6. High Peak Power Gain Switched Flared Waveguide Lasers

    Energy Technology Data Exchange (ETDEWEB)

    Chow, W.W.; Indik, R.; Koch, S.W.; Mar, Alan, Vawter, G. Allen; Moloney, J.

    1999-08-05

    We gain-switch flared waveguide lasers to obtain 14.5 W peak powers and 0.5 nJ pulse energies with laser structures compatible with the generation of diffraction-limited beams. The results are in excellent agreement with a microscopic laser model.

  7. The GALAXIE all-optical FEL project

    Energy Technology Data Exchange (ETDEWEB)

    Rosenzweig, J. B.; Arab, E.; Andonian, G.; Cahill, A.; Fitzmorris, K.; Fukusawa, A.; Hoang, P.; Jovanovic, I.; Marcus, G.; Marinelli, A.; Murokh, A.; Musumeci, P.; Naranjo, B.; O' Shea, B.; O' Shea, F.; Ovodenko, A.; Pogorelsky, I.; Putterman, S.; Roberts, K.; Shumail, M. [Dept. of Physics and Astronomy, University of California, Los Angeles, 405 Hilgard Ave., Los Angeles, CA 90034 (United States); Dept. of Mechanical and Nuclear Engineering, Pennsylvania State University, University Park, PA 16802 (United States); Dept. of Physics and Astronomy, University of California, Los Angeles, 405 Hilgard Ave., Los Angeles, CA 90034 (United States); and others

    2012-12-21

    We describe a comprehensive project, funded under the DARPA AXiS program, to develop an all-optical table-top X-ray FEL based on dielectric acceleration and electromagnetic undulators, yielding a compact source of coherent X-rays for medical and related applications. The compactness of this source demands that high field (>GV/m) acceleration and undulation-inducing fields be employed, thus giving rise to the project's acronym: GV/m AcceLerator And X-ray Integrated Experiment (GALAXIE). There are numerous physics and technical hurdles to surmount in this ambitious scenario, and the integrated solutions include: a biharmonic photonic TW structure, 200 micron wavelength electromagnetic undulators, 5 {mu}m laser development, ultra-high brightness magnetized/asymmetric emittance electron beam generation, and SASE FEL operation. We describe the overall design philosophy of the project, the innovative approaches to addressing the challenges presented by the design, and the significant progress towards realization of these approaches in the nine months since project initialization.

  8. FELs, nice toys or efficient tools?

    Science.gov (United States)

    van der Meer, A. F. G.

    2004-08-01

    An FEL is an intrinsically interesting device and pushing its performance presents a natural challenge to a physicist. Nonetheless, the main justification for doing FEL research is of course its potential as a unique, versatile source of radiation to be employed for something useful. After 25 years of FEL research, one may wonder how efficient these tools have become. In this paper, I will reflect on this issue from the perspective of 10 years of operation of FELIX as a user facility.

  9. High Gain and High Directive of Antenna Arrays Utilizing Dielectric Layer on Bismuth Titanate Ceramics

    Directory of Open Access Journals (Sweden)

    F. H. Wee

    2012-01-01

    Full Text Available A high gain and high directive microstrip patch array antenna formed from dielectric layer stacked on bismuth titanate (BiT ceramics have been investigated, fabricated, and measured. The antennas are designed and constructed with a combination of two-, four-, and six-BiT elements in an array form application on microwave substrate. For gain and directivity enhancement, a layer of dielectric was stacked on the BiT antenna array. We measured the gain and directivity of BiT array antennas with and without the dielectric layer and found that the gain of BiT array antenna with the dielectric layer was enhanced by about 1.4 dBi of directivity and 1.3 dB of gain over the one without the dielectric layer at 2.3 GHz. The impedance bandwidth of the BiT array antenna both with and without the dielectric layer is about 500 MHz and 350 MHz, respectively, which is suitable for the application of the WiMAX 2.3 GHz system. The utilization of BiT ceramics that covers about 90% of antenna led to high radiation efficiency, and small-size antennas were produced. In order to validate the proposed design, theoretical and measured results are provided and discussed.

  10. Electron Beam Characterization at PITZ and the VUV-FEL at DESY

    CERN Document Server

    Honkavaara, K

    2005-01-01

    The VUV-FEL being commissioned at DESY Hamburg is a user facility for SASE FEL radiation in the VUV wavelength range. The quality of the high brightness electron beam driving the VUV-FEL plays an important role for the performance of the facility. Prior to installation, the electron photo-injector of the VUV-FEL has been fully tested and characterized at the PITZ photo injector test facility at DESY Zeuthen, dedicated to develop high brightness electron sources for FEL projects like the VUV-FEL and the XFEL. We summarize the results on transverse emittance optimization at PITZ and report on the upgrade of the PITZ facility presently under construction. Results on transverse emittance optimization and measurements at the VUV-FEL are presented. Projected emittances around 1.4 mm mrad for 90% of a 1 nC bunch have been regularly measured. In addition, recent measurements of the longitudinal bunch profile after compression using a transverse deflecting cavity are presented.

  11. FAST: a three-dimensional time-dependent FEL simulation code

    CERN Document Server

    Saldin, E L; Yurkov, M V

    1999-01-01

    In this report we briefly describe the three-dimensional, time-dependent FEL simulation code FAST. The equations of motion of the particles and Maxwell's equations are solved simultaneously taking into account the slippage effect. Radiation fields are calculated using an integral solution of Maxwell's equations. A special technique has been developed for fast calculations of the radiation field, drastically reducing the required CPU time. As a result, the developed code allows one to use a personal computer for time-dependent simulations. The code allows one to simulate the radiation from the electron bunch of any transverse and longitudinal bunch shape; to simulate simultaneously an external seed with superimposed noise in the electron beam; to take into account energy spread in the electron beam and the space charge fields; and to simulate a high-gain, high-efficiency FEL amplifier with a tapered undulator. It is important to note that there are no significant memory limitations in the developed code and an...

  12. Design considerations of 10 kW-scale, extreme ultraviolet SASE FEL for lithography

    CERN Document Server

    Pagani, C; Schneidmiller, E A; Yurkov, M V

    2001-01-01

    The semiconductor industry growth is driven to a large extent by steady advancements in microlithography. According to the newly updated industry road map, the 70 nm generation is anticipated to be available in the year 2008. However, the path to get there is not clear. The problem of construction of extreme ultraviolet (EUV) quantum lasers for lithography is still unsolved: progress in this field is rather moderate and we cannot expect a significant breakthrough in the near future. Nevertheless, there is clear path for optical lithography to take us to sub-100 nm dimensions. Theoretical and experimental work in Self-Amplified Spontaneous Emission (SASE) Free Electron Lasers (FEL) physics and the physics of superconducting linear accelerators over the last 10 years has pointed to the possibility of the generation of high-power optical beams with laser-like characteristics in the EUV spectral range. Recently, there have been important advances in demonstrating a high-gain SASE FEL at 100 nm wavelength (J. Andr...

  13. High Energy Gain IFEL at UCLA Neptune Laboratory

    CERN Document Server

    Musumeci, Pietro; Clayton, Chris; Doyuran, Adnan; England, Robert J; Joshi, Chandrashekhar; Pellegrini, Claudio; Ralph, Joseph; Rosenzweig, James E; Sung, Chieh; Tochitsky, Sergei Ya; Tolmachev, Sergey; Travish, Gil; Varfolomeev, A; Varfolomeev, Alexander; Yarovoi, Timofey V; Yoder, Rodney

    2005-01-01

    We report the observation of energy gain in excess of 20 MeV at the Inverse Free Electron Laser Accelerator experiment at the Neptune Laboratory at UCLA. A 14.5 MeV electron beam is injected in an undulator strongly tapered in period and field amplitude. The IFEL driver is a CO2 10.6 mkm laser with power larger than 400 GW. The Rayleigh range of the laser, ~ 1.8 cm, is much shorter than the undulator length so that the interaction is diffraction dominated. A few per cent of the injected particles are trapped in a stable accelerating bucket. Electrons with energies up to 35 MeV are measured by a magnetic spectrometer. Simulations, in good agreement with the experimental data, show that most of the energy gain occurs in the first half of the undulator at a gradient of 70 MeV/m and that the structure in the measured energy spectrum arises because of higher harmonic IFEL interaction in the second half of the undulator.

  14. Experimental Demostration of Wavelength Tuning in High-Gain Harmonic Generation Free Electron Laser

    CERN Document Server

    Shaftan, Timur; Krinsky, Sam; Loos, Henrik; Murphy, James; Rakowsky, George; Rose, James; Sheehy, Brian; Skaritka, John; Wang, Xijie; Wu, Zilu; Yu Li Hua

    2004-01-01

    We present experimental results on tuning of the HGHG FEL output wavelength while holding the input seed wavelength constant. Using compression of the initially chirped beam in the HGHG dispersion section we have measured the wavelength shift of about 1% around the nominal value of 266 nm. The tuning range is expected to reach 3 % after the dispersive section upgrade at the DUV FEL. An optimized design based on this principle, using additional linac sections, would have the capability of providing full tunability.

  15. Compact THz FELs and Their Potential in Biological Applications

    CERN Document Server

    Gallerano, G P; Giovenale, E; Messina, G; Spassovsky, I P

    2005-01-01

    Two THz FEL sources are available at ENEA-Frascati covering the spectral range from 90 GHz to 0.7 THz. The first source, the ENEA Compact FEL, is based on a 5 MeV Microtron providing 4 A of peak current in 13 ps bunches. Peak power in excess of 3kW is obtained at 130 GHz. When the beam is focused, a peak E-field greater than 2 kV/cm can be obtained in the micropulse. The second source, FEL-CATS, is based on a 2.5 MeV RF Linac. After the Linac electrons enter a RF device that correlates their distribution in energy and phase. As a result a strong coherent spontaneous emission occurs in the undulator. Power up to several kW has been measured in the macropulse. The absence of a resonator results in a broad band emission from 0.4 to 0.7 THz. The peculiar temporal structure of the emitted radiation allows the investigation of the effects of high peak power, while maintaining a low average power incident on the sample. A variety of biological systems have been studied with the ENEA Compact FEL in the frame of the E...

  16. A novel design of ultra-broadband, high-gain and high-linearity variable gain distributed amplifier in 0.13 μm CMOS technology

    Science.gov (United States)

    Baharvand, Zainab; Hakimi, Ahmad; Rashedi, Esmat

    2016-12-01

    A high-gain, high-linearity and ultra-broadband variable gain distributed amplifier (VGDA) based on employing multiple techniques is presented to substantially increase the gain. The complete design is composed of two major parts including a VGDA part followed by a single stage distributed amplifier (SSDA) part. The VGDA part makes it possible to achieve different gain settings. For high gain considerations, the SSDA part cascades with the VGDA part that takes the benefits of the multiplicative gain mechanism. A theory is presented to enhance the linearity without imposing further DC power consumption. This idea has been validated by simulation results as expected. The design is analysed and simulated in the standard 0.13 μm CMOS technology. It presents the large gain tuning range of 35 dB, from -5 dB attenuation gain up to +30 dB maximum amplification gain, in relation to the control voltage (Vctr) that varies between 0.42 and 1.1 V. At the maximum amplification gain setting, it presents a DC up to 16 GHz 3 dB bandwidth, an average noise figure of 3.2 dB and an IIP3 of -2 dB m. Furthermore, it dissipates 46.42 mW from 0.7 and 0.9 V power supplies of the drain lines of VGDA and SSDA parts, respectively. Additionally, the Monte Carlo (MC) simulation has been performed to predict an estimate of the accuracy of performance of the proposed design under various conditions.

  17. SIW HIGH GAIN SLOT ANTENNA FOR WLAN/WIMAX APPLICATION

    Directory of Open Access Journals (Sweden)

    Neda Akbari

    2014-01-01

    Full Text Available In this paper with using substrate integrated waveguide technology and slot antenna, an antenna array with 8 (2×4 elements has been designed. The antenna substrate is ROGERs 4003 with two different thickness. In lower substrate with 0.5 mm thickness fed network of antenna is putted and upper substrate with 1.5 mm thickness slot in order to radation is embedded. The proposed antenna is designed in C band for WLAN/WiMAX application. Pattern of antenna is directive with peak gain about 18dBi. In feed netowork is used from new method of feeding with using of aperture couple and cavity resonator method.

  18. FELS, nice toys or efficient tools?

    NARCIS (Netherlands)

    van der Meer, A. F. G.

    2004-01-01

    An FEL is an intrinsically interesting device and pushing its performance presents a natural challenge to a physicist. Nonetheless, the main justification for doing FEL research is of course its potential as a unique, versatile source of radiation to be employed for something useful. After 25 years

  19. Electron bunch length measurement at the Vanderbilt FEL

    Energy Technology Data Exchange (ETDEWEB)

    Amirmadhi, F.; Brau, C.A.; Mendenhall, M. [Vanderbilt Free-Electron-Laser Center, Nashville, TN (United States)] [and others

    1995-12-31

    During the past few years, a number of experiments have been performed to demonstrate the possibility to extract the longitudinal charge distribution from spectroscopic measurements of the coherent far-infrared radiation emitted as transition radiation or synchrotron radiation. Coherent emission occurs in a spectral region where the wavelength is comparable to or longer than the bunch length, leading to an enhancement of the radiation intensity that is on the order of the number of particles per bunch, as compared to incoherent radiation. This technique is particularly useful in the region of mm and sub-mm bunch lengths, a range where streak-cameras cannot be used for beam diagnostics due to their limited time resolution. Here we report on experiments that go beyond the proof of principle of this technique by applying it to the study and optimization of FEL performance. We investigated the longitudinal bunch length of the Vanderbilt FEL by analyzing the spectrum of coherent transition radiation emitted by the electron bunches. By monitoring the bunch length while applying a bunch-compression technique, the amount of the compression could be easily observed. This enabled us to perform a systematic study of the FEL performance, especially gain and optical pulse width, as a function of the longitudinal electron distribution in the bunch. The results of this study will be presented and discussed.

  20. SOFT-SWITCHED HIGH STEP-UP DC-DC CONVERTER WITH HIGH VOLTAGE GAIN

    Directory of Open Access Journals (Sweden)

    J.C. PAUL IMMANUEL

    2013-04-01

    Full Text Available This paper presents a new design of soft switched high step-up dc-dc converter with high voltage gain which is suitable for high power applications such as Uninterruptible Power System (UPS, Photo Voltaic system and hybrid electric vehicles. The emergence of this front-end converter is to improve the shape of active input current given to the system. This converter proposes Soft-Switching technique to achieve ZVS turn on of active switches and ZCS turn off of diodes using Lr - Cr resonance in the auxiliary circuit. Therefore reduces the switching losses. Comparatively the voltage conversion ratio of this converter is higher when compared with the ordinary boost converter. Hence the voltage gain of this converter is also higher. A simulation platform is created using MATLAB which illustrates the ZVS and ZCS operation of the switches and diodes. Open loop and closed loop controlled converter systems are modelled and simulated.

  1. Optical Fibre Dosimeter for SASE FEL Undulators

    CERN Document Server

    Körfer, M

    2003-01-01

    Single pass Free Electron Lasers (FELs) based on self-amplified spontaneous emission (SASE) are developed for high brightness and short wavelength applications. They use permanent magnet undulators which are radiation sensitive devices. During accelerator commissioning beam losses can appear anywhere along the undulator line. To avoid damage of the permanent magnets due to radiation, an optical fibre dosimeter system can be used. The increase of absorption caused by ionizing radiation is measured in radiation sensitive optical fibers. The dose system enables relatively fast particle loss tuning during accelerator operation and allows the monitoring of the accumulated dose. Dose measurements in narrow gaps which are inaccessible for any other (online) dosimeter type become possible. The electromagnetic insensitivity of optical fibre sensor is an advantage of applications in strong magnetic undulator fields. At each location the light absorption is measured by using an optical power-meter. The dynamic range is ...

  2. An induction linac developed for FEL application

    Science.gov (United States)

    de Mascureau, J.; Anthouard, Ph.; Bardy, J.; Eyharts, Ph.; Eyl, P.; Launspach, J.; Thevenot, M.; Villate, D.

    1992-07-01

    An induction linac is being studied and built at CESTA for FEL application. At first we studied the induction technology and namely the high-voltage (HV) generators and the induction cells. A HV generator designed to feed the cells with calibrated pulses (150 kV, 50 ns, δV/V magnetic switches. This generator is planned for kHz repetition-rate operation. A prototype induction cell has also been built and tested with a cable generator. An electron injector (1.5 MeV, 1.5kA) has been designed and is now under test: it uses ten induction cells and a thermionic dispenser cathode. Numerical codes have been developed and simulations have been compared with experimental results for HV generators, induction cells, and the injector. An induction accelerating module has been studied and we plan to have the accelerator working at 3 MeV in 1992.

  3. A novel "gain chip" concept for high-power lasers (Conference Presentation)

    Science.gov (United States)

    Li, Min; Li, Mingzhong; Wang, Zhenguo; Yan, Xiongwei; Jiang, Xinying; Zheng, Jiangang; Cui, Xudong; Zhang, Xiaomin

    2017-05-01

    High-power lasers, including high-peak power lasers (HPPL) and high-average power lasers (HAPL), attract much interest for enormous variety of applications in inertial fusion energy (IFE), materials processing, defense, spectroscopy, and high-field physics research. To meet the requirements of high efficiency and quality, a "gain chip" concept is proposed to properly design the pumping, cooling and lasing fields. The gain chip mainly consists of the laser diode arrays, lens duct, rectangle wave guide and slab-shaped gain media. For the pumping field, the pump light will be compressed and homogenized by the lens duct to high irradiance with total internal reflection, and further coupled into the gain media through its two edge faces. For the cooling field, the coolant travels along the flow channel created by the adjacent slabs in the other two edge-face direction, and cool the lateral faces of the gain media. For the lasing field, the laser beam travels through the lateral faces and experiences minimum thermal wavefront distortions. Thereby, these three fields are in orthogonality offering more spatial freedom to handle them during the construction of the lasers. Transverse gradient doping profiles for HPPL and HAPL have been employed to achieve uniform gain distributions (UGD) within the gain media, respectively. This UGD will improve the management for both amplified spontaneous emission (ASE) and thermal behavior. Since each "gain chip" has its own pump source, power scaling can be easily achieved by placing identical "gain chips" along the laser beam axis without disturbing the gain and thermal distributions. To detail our concept, a 1-kJ pulsed amplifier is designed and optical-to-optical efficiency up to 40% has been obtained. We believe that with proper coolant (gas or liquid) and gain media (Yb:YAG, Nd:glass or Nd:YAG) our "gain chip" concept might provide a general configuration for high-power lasers with high efficiency and quality.

  4. High Gain Patch Antenna for 2.4GHz using Metamaterial Superstrate

    Institute of Scientific and Technical Information of China (English)

    Kyu-Chang; LEE; Seung-In; YANG

    2010-01-01

    <正>A patch antenna and our proposed metamaterial patch antenna are simulated and compared. A high gain patch antenna using a single layer metamaterial superstrate with a near to zero refractive index(n)is proposed.The simulation results provide that the gain of the proposed antenna is increased by about 7dB. Consequently,the high gain antenna can be easily obtained by using our metamaterial superstrate.

  5. High Gain Hybrid Graphene-Organic Semiconductor Phototransistors

    NARCIS (Netherlands)

    Huisman, Everardus H.; Shulga, Artem G.; Zomer, Paul J.; Tombros, Nikolaos; Bartesaghi, Davide; Bisri, Satria Zulkarnaen; Loi, Maria A.; Koster, L. Jan Anton; van Wees, Bart J.

    2015-01-01

    Hybrid phototransistors of graphene and the organic semiconductor poly(3-hexylthiophene-2,5-diyl) (P3HT) are presented. Two types of phototransistors are demonstrated with a charge carrier transit time that differs by more than 6 orders of magnitude. High transit time devices are fabricated using a

  6. High gain durable anti-reflective coating with oblate voids

    Energy Technology Data Exchange (ETDEWEB)

    Maghsoodi, Sina; Brophy, Brenor L.; Colson, Thomas E.; Gonsalves, Peter R.; Abrams, Ze' ev

    2016-06-28

    Disclosed herein are single layer transparent coatings with an anti-reflective property, a hydrophobic property, and that are highly abrasion resistant. The single layer transparent coatings contain a plurality of oblate voids. At least 1% of the oblate voids are open to a surface of the single layer transparent coatings.

  7. Status and Future Plans of JAERI Eergy-Recovery Linac FEL

    CERN Document Server

    Hajima, R; Kikuzawa, N; Minehara, E J; Nagai, R; Nishimori, N; Nishitani, T; Sawamura, M; Yamauchi, T

    2005-01-01

    An energy-recovery linac for a high-power free-electron laser is in operation at Japan Atomic Energy Research Institute (JAERI). In this paper, we report results of research activities and future plans of JAERI ERL-FEL, which are the construction of FEL transport line, the operation of newly-installed RF controller and IOTs, the development of super-lattice photo cathode.

  8. Stabilization of sandwich non-linear systems with low-and-high gain feedback design

    NARCIS (Netherlands)

    Stoorvogel, Anton A.; Wang, Xu; Saberi, Ali; Sannuti, Peddapullaiah

    2010-01-01

    In this paper, we consider the problems of semi- global and global internal stabilization of a class of sandwich systems consisting of two linear systems with a saturation element in between. We develop here low-and-high gain and scheduled low-and-high gain state feedback design methodolo- gies to s

  9. Quasi-real-time photon pulse duration measurement by analysis of FEL radiation spectra

    Energy Technology Data Exchange (ETDEWEB)

    Engel, Robin, E-mail: robin.engel@uni-oldenburg.de [Deutsches Elektronen-Synchrotron, Notkestrasse 85, D-22603 Hamburg (Germany); Institut für Physik, Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg (Germany); Institut für Laser und Optik, Hochschule Emden/Leer, University of Applied Sciences, Constantiaplatz 4, D-26723 Emden (Germany); Düsterer, Stefan; Brenner, Günter [Deutsches Elektronen-Synchrotron, Notkestrasse 85, D-22603 Hamburg (Germany); Teubner, Ulrich [Deutsches Elektronen-Synchrotron, Notkestrasse 85, D-22603 Hamburg (Germany); Institut für Physik, Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg (Germany); Institut für Laser und Optik, Hochschule Emden/Leer, University of Applied Sciences, Constantiaplatz 4, D-26723 Emden (Germany)

    2016-01-01

    Considering the second-order spectral correlation function of SASE-FEL radiation allows a real-time observation of the photon pulse duration during spectra acquisition. For photon diagnostics at free-electron lasers (FELs), the determination of the photon pulse duration is an important challenge and a complex task. This is especially true for SASE FELs with strongly fluctuating pulse parameters. However, most techniques require an extensive experimental setup, data acquisition and evaluation time, limiting the usability in all-day operation. In contrast, the presented work uses an existing approach based on the analysis of statistical properties of measured SASE FEL spectra and implements it as a software tool, integrated in FLASH’s data acquisition system. This allows the calculation of the average pulse durations from a set of measured spectral distributions with only seconds of delay, whenever high-resolution spectra are recorded.

  10. Enhancing FEL Power with Phase Shifters

    Energy Technology Data Exchange (ETDEWEB)

    Ratner, Daniel; /Stanford U.; Chao, Alex; Huang, Zhirong; /SLAC

    2010-07-30

    Tapering the undulator parameter is a well-known method for maintaining the resonant condition past saturation, and increasing Free Electron Laser (FEL) efficiency. In this paper, we demonstrate that shifting the electron bunch phase relative to the radiation is equivalent to tapering the undulator parameter. Using discrete phase changes derived from optimized undulator tapers for the Linac Coherent Light Source (LCLS) x-ray FEL, we show that appropriate phase shifts between undulator sections can reproduce the power enhancement of undulator tapers. Phase shifters are relatively easy to implement and operate, and could be used to aid or replace undulator tapers in optimizing FEL performance.

  11. Fused rock from Köfels, Tyrol

    Science.gov (United States)

    Milton, Daniel J.

    1964-01-01

    The vesicular glass from Köfels, Tyrol, contains grains of quartz that have been partially melted but not dissolved in the matrix glass. This phenomenon has been observed in similar glasses formed by friction along a thrust fault and by meteorite impact, but not in volcanic glasses. The explosion of a small nuclear device buried behind a steep slope produced a geologic structure that is a good small-scale model of that at Köfels. Impact of a large meteorite would have an effect analogous to that of a subsurface nuclear explosion and is the probable cause of the Köfels feature.

  12. High-gain, high-bandwidth, rail-to-rail, constant-gm CMOS operational amplifier

    Science.gov (United States)

    Huang, Hong-Yi; Wang, Bo-Ruei

    2013-01-01

    This study presents a high-gain, high-bandwidth, constant-gm , rail-to-rail operational amplifier (op-amp). The constant transconductance is improved with a source-to-bulk bias control of an input pair. A source degeneration scheme is also adapted to the output stage for receiving wide input range without degradation of the gain. Additionally, several compensation schemes are employed to enhance the stability. A test chip is fabricated in a 0.18 µm complementary metal-oxide semiconductor process. The active area of the op-amp is 181 × 173 µm2 and it consumes a power of 2.41 mW at a supply voltage of 1.8 V. The op-amp achieves a dc gain of 94.3 dB and a bandwidth of 45 MHz when the output capacitive load is connected to an effective load of 42.5 pF. A class-AB output stage combining a slew rate (SR) boost circuit provides a sinking current of 6 mA and an SR of 17 V/µs.

  13. Highly efficient multifunctional metasurface for high-gain lens antenna application

    Science.gov (United States)

    Hou, Haisheng; Wang, Guangming; Li, Haipeng; Guo, Wenlong; Li, Tangjing

    2017-07-01

    In this paper, a novel multifunctional metasurface combining linear-to-circular polarization conversion and electromagnetic waves focusing has been proposed and applied to design a high-gain lens antenna working at Ku band. The multifunctional metasurface consists of 15 × 15 unit cells. Each unit cell is composed of four identical metallic layers and three intermediate dielectric layers. Due to well optimization, the multifunctional metasurface can convert the linearly polarized waves generated by the source to circularly polarized waves and focus the waves. By placing a patch antenna operating at 15 GHz at the focal point of the metasurface and setting the focal distance to diameter ratio ( F/ D) to 0.34, we obtain a multifunctional lens antenna. Simulated and measured results coincide well, indicating that the metasurface can convert linearly polarized waves to right-handed circularly polarized waves at 15 GHz with excellent performances in terms of the 3 dB axial ratio bandwidth of 5.3%, realized gain of 16.9 dB and aperture efficiency of 41.2%. Because of the advantages of high gain, competitive efficiency and easy fabrication, the proposed lens antenna has a great potential application in wireless and satellite communication.

  14. Avalanche effect and gain saturation in high harmonic generation

    CERN Document Server

    Serrat, Carles; Budesca, Josep M; Seres, Jozsef; Seres, Enikoe; Aurand, Bastian; Hoffmann, Andreas; Namba, Shinichi; Kuehl, Thomas; Spielmann, Christian

    2015-01-01

    Optical amplifiers in all ranges of the electromagnetic spectrum exhibit two essential characteristics: i) the input signal during the propagation in the medium is multiplied by the avalanche effect of the stimulated emission to produce exponential growth and ii) the amplification saturates at increasing input signal. We demonstrate that the strong-field theory in the frame of high harmonic generation fully supports the appearance of both the avalanche and saturation effects in the amplification of extreme ultraviolet attosecond pulse trains. We confirm that the amplification takes place only if the seed pulses are perfectly synchronized with the driving strong field in the amplifier. We performed an experimental study and subsequent model calculation on He gas driven by intense 30-fs-long laser pulses, which was seeded with an attosecond pulse train at 110 eV generated in a separated Ne gas jet. The comparison of the performed calculations with the measurements clearly demonstrates that the pumped He gas med...

  15. High-gain Yb:YAG amplifier for ultrashort pulse laser at high-average power

    Science.gov (United States)

    Vetrovec, John; Copeland, Drew A.; Litt, Amardeep S.; Du, Detao

    2016-03-01

    We report on a Yb:YAG laser amplifier for ultrashort pulse applications at kW-class average power. The laser uses two large-aperture, disk-type gain elements fabricated from composite ceramic YAG material, and a multi-pass extraction architecture to obtain high gain in a chirped-pulse amplification system. The disks are edge-pumped, thus allowing for reduced doping of host material with laser ions, which translates to lower lasing threshold and lower heat dissipation in the Yb:YAG material. The latter makes it possible to amplify a near diffraction-limited seed without significant thermo-optical distortions. This work presents results of testing the laser amplifier with relay optics configured for energy extraction with up to 40 passes through the disks. Applications for the ultrashort pulse laser amplifier include producing laser-induced plasma channel, laser material ablation, and laser acceleration of atomic particles.

  16. High speed InAs electron avalanche photodiodes overcome the conventional gain-bandwidth product limit.

    Science.gov (United States)

    Marshall, Andrew R J; Ker, Pin Jern; Krysa, Andrey; David, John P R; Tan, Chee Hing

    2011-11-07

    High bandwidth, uncooled, Indium Arsenide (InAs) electron avalanche photodiodes (e-APDs) with unique and highly desirable characteristics are reported. The e-APDs exhibit a 3dB bandwidth of 3.5 GHz which, unlike that of conventional APDs, is shown not to reduce with increasing avalanche gain. Hence these InAs e-APDs demonstrate a characteristic of theoretically ideal electron only APDs, the absence of a gain-bandwidth product limit. This is important because gain-bandwidth products restrict the maximum exploitable gain in all conventional high bandwidth APDs. Non-limiting gain-bandwidth products up to 580 GHz have been measured on these first high bandwidth e-APDs.

  17. Lasing Towards the VUV in the NIJI-IV FEL

    CERN Document Server

    Yamada, K; Ohgaki, H; Mikado, T; Sugiyama, S; Yamazaki, T

    2000-01-01

    The lasing wavelength in the NIJI-IV free electron laser (FEL) reached 212 nm in the deep ultraviolet (UV) range. Adoption of Al sub 2 O sub 3 /SiO sub 2 multilayer mirrors to the laser cavity, whose light absorption loss is sufficiently small even below 220 nm, compared with HfO sub 2 /SiO sub 2 usually used in the UV, was essential to shorten the wavelength in the deep UV range. The laser gain was estimated to be approx 2% around 214 nm with a peak beam current of approx 4A (average beam current of approx 20 mA) from the measured loss of the cavity degraded after the lasing experiments which agreed well with an analytic gain calculation. Lasing in the vacuum ultraviolet (VUV) range is also expected even on the compact storage ring NIJI-IV with possible enhancement of the laser gain.

  18. Study on Dielectric Resonator Antenna with Annular Patch for High Gain and Large Bandwidth

    Institute of Scientific and Technical Information of China (English)

    FENG Kuisheng; LI Na; MENG Qingwei; WANG Yongfeng; ZHANG Jingwei

    2015-01-01

    A new high-gain cylindrical Dielectric res-onator antenna (DRA) with a large bandwidth is proposed. A cylindrical Dielectric resonator (DR), a double-annular patch and a metallic cylinder are used to obtain a large bandwidth and a high gain. The mode TM12 excited in the patch is used to enhance the gain of the DRA, and the cavity formed by the metallic cylinder provides a further higher gain and a larger bandwidth. The measured results demonstrate that the proposed DRA achieves a large band-width of 23%from 5.3 to 6.8GHz with VSWR less than two and a high gain around 11 dBi.

  19. The Design of High-Q Sallen-Key Biquads with Unity-Gain Buffer Amplifiers

    DEFF Research Database (Denmark)

    Gaunholt, Hans; Guldbrandsen, Birthe

    1997-01-01

    and to implement the Sallen- Key biquad even in the high-Q case with reasonable sensitivities. The method is based on the unity gain version of the biquad and as unity gain buffer amplifiers are readily manufactured in integrated circuit technology the results may be very useful in the fabrication of integrated...

  20. Expected properties of the radiation from VUV-FEL at DESY femtosecond mode of operation

    CERN Document Server

    Saldin, E L; Yurkov, M V

    2004-01-01

    For the next three years the nominal "long pulse" (200 fs) mode of FEL operation at VUV-FEL, based on a linearized bunch compression, is not available due to the lack of a key element - a 3rd harmonic RF cavity. Essentially nonlinear compression leads naturally to a formation of a short high-current leading peak (spike) in the density distribution that produces FEL radiation. Such a mode of operation was successfully tested at VUV-FEL, Phase I. In this paper we present optimized parameters of the beam formation system that allow us to get a current spike which is bright enough to get SASE saturation for the VUV-FEL, Phase 2 at shortest design wavelength down to 6 nm. The main feature of the considered mode of operation is the production of short (15-50 fs FWHM) radiation pulses with GW-level peak power that are attractive for many users. Main parameters of the SASE FEL radiation (temporal and spectral characteristics, intensity distributions, etc.) are presented, too.

  1. Seeded quantum FEL at 478 keV

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, Marc [Max-Planck-Institut fuer Quantenoptik, Garching (Germany); Thirolf, Peter; Seggebrock, Thorben [Ludwig-Maximilians-Universitaet Muenchen, Garching (Germany); Habs, Dietrich [Max-Planck-Institut fuer Quantenoptik, Garching (Germany); Ludwig-Maximilians-Universitaet Muenchen, Garching (Germany)

    2012-07-01

    We present for the first time a concept for a seeded {gamma} quantum Free Electron Laser (QFEL) at 478 keV (transition in {sup 7}Li). To produce a highly intense and coherent {gamma} beam, we intend to use a seeded FEL scheme. Important for the production of a highly brilliant and coherent {gamma} beam are novel refractive {gamma} lenses for focusing and an efficient monochromator, allowing to generate a very intense and coherent seed beam. To realize such a coherent {gamma} beam at 478 keV (1/38 A), it is suitable to use a quantum FEL design based on a new ''asymmetric'' laser-electron Compton back scattering scheme as pursued for the MeGaRay and ELI-NP facilities. Here the pulse length of the laser is much longer than the electron bunch length, equivalent to a {gamma}-FEL with laser wiggler. The coherence of a seeded QFEL can open up totally new areas of fundamental physics and applications. Especially, 478 keV can be attractive for ''green energy'' and life-science research, such as the detection of Li deposition in the brain for manic-depressive psychosis treatment with high spatial resolution or isotope-specific nuclear waste management and treatment.

  2. Stabilization of a high-order harmonic generation seeded extreme ultraviolet free electron laser by time-synchronization control with electro-optic sampling

    Institute of Scientific and Technical Information of China (English)

    H.Tomizawa; T.Sato; K.Ogawa; K.Togawa; T.Tanaka; T.Hara; M.Yabashi; H.Tanaka; T.Ishikawa; T.Togashi; S.Matsubara; Y.Okayasu; T.Watanabe; E.J.Takahashi; K.Midorikawa; M.Aoyama; K.Yamakawa; S.Owada; A.Iwasaki; K.Yamanouchi

    2015-01-01

    A fully coherent free electron laser(FEL) seeded with a higher-order harmonic(HH) pulse from high-order harmonic generation(HHG) is successfully operated for a sufficiently prolonged time in pilot user experiments by using a timing drift feedback. For HHG-seeded FELs, the seeding laser pulses have to be synchronized with electron bunches. Despite seeded FELs being non-chaotic light sources in principle, external laser-seeded FELs are often unstable in practice because of a timing jitter and a drift between the seeding laser pulses and the accelerated electron bunches. Accordingly,we constructed a relative arrival-timing monitor based on non-invasive electro-optic sampling(EOS). The EOS monitor made uninterrupted shot-to-shot monitoring possible even during the seeded FEL operation. The EOS system was then used for arrival-timing feedback with an adjustability of 100 fs for continual operation of the HHG-seeded FEL. Using the EOS-based beam drift controlling system, the HHG-seeded FEL was operated over half a day with an effective hit rate of 20%–30%. The output pulse energy was 20 μJ at the 61.2 nm wavelength. Towards seeded FELs in the water window region, we investigated our upgrade plan to seed high-power FELs with HH photon energy of 30–100 e V and lase at shorter wavelengths of up to 2 nm through high-gain harmonic generation(HGHG) at the energy-upgraded SPring-8Compact SASE Source(SCSS) accelerator. We studied a benefit as well as the feasibility of the next HHG-seeded FEL machine with single-stage HGHG with tunability of a lasing wavelength.

  3. The Infrared Undulator Project at the VUV-FEL

    CERN Document Server

    Grimm, O; Rossbach, J; Saldin, E L; Schneidmiller, E; Yurkov, M V

    2005-01-01

    A special electromagnetic wiggler generating infrared radiation in the range 1-200 microns is planned to be installed at the DESY VUV-FEL in Hamburg by autumn 2006. The device is located after the FEL undulators, using the spent electron beam. The purpose is two-fold: first, it will serve longitudinal electron beam diagnostics, similar to other methods currently investigated using the coherent emission of radiation at wavelengths similar to the bunch length, and second it will be used as a powerful (100 MW peak) source for short (few ps) infrared radiation pulses. The natural, perfect synchronization with the VUV pulses will allow for pump-probe experiments with high timing precision. This paper will give an overview of the project, including the infrared beam transport line.

  4. Locking Lasers to RF in an Ultra Fast FEL

    Energy Technology Data Exchange (ETDEWEB)

    Wilcox, R.; Huang, G.; Doolittle, L.; White, W.; Frisch, J.; Coffee, R.

    2010-01-02

    Using a novel, phase-stabilized RF-over-fiber scheme, they transmit 3GHz over 300m with 27fs RMS error in 250kHz bandwidth over 12 hours, and phase lock a laser to enable ultrafast pump-probe experiments. Free-electron lasers (FELs) are capable of producing short-duration (< 10fs), high-energy X-ray pulses for a range of scientific applications. The recently activated Linac Coherent Light Source (LCLS) FEL facility at SLAC will support experiments which require synchronized light pulses for pump-probe schemes. They developed and operated a fiber optic RF transmission system to synchronize lasers to the emitted X-ray pulses, which was used to enable the first pump-probe experiments at the LCLS.

  5. Terahertz IFEL/FEL Microbunching for Plasma Beatwave Accelerators

    CERN Document Server

    Sung, Chieh; Joshi, Chandrashekhar; Musumeci, Pietro; Pellegrini, Claudio; Ralph, Joseph; Reiche, Sven; Rosenzweig, James E; Tochitsky, Sergei Ya

    2005-01-01

    In order to obtain monoenergetic acceleration of electrons, phase-locked injection using electron microbunches shorter than the accelerating structure is necessary. For a laser-driven plasma beatwave accelerator experiment, we propose to microbunch the electrons by interaction with terahertz (THz) radiation in an undulator via two mechanisms– free electron laser (FEL) and inverse free electron laser (IFEL). Since the high power FIR radiation will be generated via difference frequency mixing in GaAs by the same CO2 beatwave used to drive the plasma wave, electrons could be phase-locked and pre-bunched into a series of microbunches separated with the same periodicity. Here we examine the criteria for undulator design and present simulation results for both IFEL and FEL approaches. Using different CO2 laser lines, electrons can be microbunched with different periodicity 300 – 100 mm suitable for injection into plasma densities in the range 1016 – 1017 cm-3, respectively. The requiremen...

  6. A wiggler magnet for FEL low voltage operation

    Energy Technology Data Exchange (ETDEWEB)

    Al-Shamma`a, A.; Stuart, R.A.; Lucas, J.

    1995-12-31

    In low voltage FELs (ie, 200kV), operation is necessarily in the microwave frequency range for wiggler periods of the order of cms., so that a waveguide system is mandatory. Also, because of the relatively low velocity of the electron beam, the wiggle amplitude of the electron beam can be much larger than is normal for highly relativistic FELs. Both these factors mean that the electron trajectory must be carefully controlled to avoid beam collision with the waveguide walls. A wiggler system with half poles at entrance and exit is not an acceptable solution because of the offset is gives rise to the electron trajectory. Consequently, we have designed and constructed a wiggler magnet with exponential entrance and exit tapers for a minimal deflection and displacement of the electron beam. Simulations and experimental measurements showed that an on axis trajectory is easily obtainable.

  7. Operation regimes, gain dynamics and highly stable operation points of Ho:YLF regenerative amplifiers

    CERN Document Server

    Kroetz, Peter; Calendron, Anne-Laure; Chatterjee, Gourab; Cankaya, Huseyin; Murari, Krishna; Kaertner, Franz X; Hartl, Ingmar; Miller, R J Dwayne

    2016-01-01

    We present a comprehensive study of laser pulse amplification with respect to operation regimes, gain dynamics, and highly stable operation points of Ho:YLF regenerative amplifiers (RAs). The findings are expected to be more generic than for this specific case. Operation regimes are distinguished with respect to pulse energy and the appearance of pulse instability as a function of the repetition rate, seed energy, and pump intensity. The corresponding gain dynamics are presented, identifying highly stable operation points related to high gain build -up during pumping and high gain depletion during pulse amplification. These operation points are studied numerically and experimentally as a function of several parameters, thereby achieving, for our Ho:YLF RA, highly stable output pulses with measured fluctuations of only 0.19% (standard deviation).

  8. Planar undulator motion excited by a fixed traveling wave. Quasiperiodic averaging normal forms and the FEL pendulum

    Energy Technology Data Exchange (ETDEWEB)

    Ellison, James A.; Heinemann, Klaus [New Mexico Univ., Albuquerque, NM (United States). Dept. of Mathematics and Statistics; Vogt, Mathias [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Gooden, Matthew [North Carolina State Univ., Raleigh, NC (United States). Dept. of Physics

    2013-03-15

    We present a mathematical analysis of planar motion of energetic electrons moving through a planar dipole undulator, excited by a fixed planar polarized plane wave Maxwell field in the X-Ray FEL regime. Our starting point is the 6D Lorentz system, which allows planar motions, and we examine this dynamical system as the wave length {lambda} of the traveling wave varies. By scalings and transformations the 6D system is reduced, without approximation, to a 2D system in a form for a rigorous asymptotic analysis using the Method of Averaging (MoA), a long time perturbation theory. The two dependent variables are a scaled energy deviation and a generalization of the so- called ponderomotive phase. As {lambda} varies the system passes through resonant and nonresonant (NR) zones and we develop NR and near-to-resonant (NtoR) MoA normal form approximations. The NtoR normal forms contain a parameter which measures the distance from a resonance. For a special initial condition, for the planar motion and on resonance, the NtoR normal form reduces to the well known FEL pendulum system. We then state and prove NR and NtoR first-order averaging theorems which give explicit error bounds for the normal form approximations. We prove the theorems in great detail, giving the interested reader a tutorial on mathematically rigorous perturbation theory in a context where the proofs are easily understood. The proofs are novel in that they do not use a near identity transformation and they use a system of differential inequalities. The NR case is an example of quasiperiodic averaging where the small divisor problem enters in the simplest possible way. To our knowledge the planar prob- lem has not been analyzed with the generality we aspire to here nor has the standard FEL pendulum system been derived with associated error bounds as we do here. We briefly discuss the low gain theory in light of our NtoR normal form. Our mathematical treatment of the noncollective FEL beam dynamics problem in

  9. High But Not Low Probability of Gain Elicits a Positive Feeling Leading to the Framing Effect.

    Science.gov (United States)

    Gosling, Corentin J; Moutier, Sylvain

    2017-01-01

    Human risky decision-making is known to be highly susceptible to profit-motivated responses elicited by the way in which options are framed. In fact, studies investigating the framing effect have shown that the choice between sure and risky options depends on how these options are presented. Interestingly, the probability of gain of the risky option has been highlighted as one of the main factors causing variations in susceptibility to the framing effect. However, while it has been shown that high probabilities of gain of the risky option systematically lead to framing bias, questions remain about the influence of low probabilities of gain. Therefore, the first aim of this paper was to clarify the respective roles of high and low probabilities of gain in the framing effect. Due to the difference between studies using a within- or between-subjects design, we conducted a first study investigating the respective roles of these designs. For both designs, we showed that trials with a high probability of gain led to the framing effect whereas those with a low probability did not. Second, as emotions are known to play a key role in the framing effect, we sought to determine whether they are responsible for such a debiasing effect of the low probability of gain. Our second study thus investigated the relationship between emotion and the framing effect depending on high and low probabilities. Our results revealed that positive emotion was related to risk-seeking in the loss frame, but only for trials with a high probability of gain. Taken together, these results support the interpretation that low probabilities of gain suppress the framing effect because they prevent the positive emotion of gain anticipation.

  10. High But Not Low Probability of Gain Elicits a Positive Feeling Leading to the Framing Effect

    Science.gov (United States)

    Gosling, Corentin J.; Moutier, Sylvain

    2017-01-01

    Human risky decision-making is known to be highly susceptible to profit-motivated responses elicited by the way in which options are framed. In fact, studies investigating the framing effect have shown that the choice between sure and risky options depends on how these options are presented. Interestingly, the probability of gain of the risky option has been highlighted as one of the main factors causing variations in susceptibility to the framing effect. However, while it has been shown that high probabilities of gain of the risky option systematically lead to framing bias, questions remain about the influence of low probabilities of gain. Therefore, the first aim of this paper was to clarify the respective roles of high and low probabilities of gain in the framing effect. Due to the difference between studies using a within- or between-subjects design, we conducted a first study investigating the respective roles of these designs. For both designs, we showed that trials with a high probability of gain led to the framing effect whereas those with a low probability did not. Second, as emotions are known to play a key role in the framing effect, we sought to determine whether they are responsible for such a debiasing effect of the low probability of gain. Our second study thus investigated the relationship between emotion and the framing effect depending on high and low probabilities. Our results revealed that positive emotion was related to risk-seeking in the loss frame, but only for trials with a high probability of gain. Taken together, these results support the interpretation that low probabilities of gain suppress the framing effect because they prevent the positive emotion of gain anticipation.

  11. A Cherenkov radiator for FEL-synchronized VUV-pulses at a linac-based FEL

    NARCIS (Netherlands)

    Goloviznin, V. V.; Oepts, D.; van der Wiel, M. J.

    1997-01-01

    A possible way to carry out two-color IR+VUV pump-probe experiments at linac-based FELs is proposed. The idea is to supply an FEL facility with a gas cell filled with helium or hydrogen, so that the electron beam, upon passage through the undulator, could be used to generate ultraviolet Cherenkov

  12. Noise calculation model and analysis of high-gain readout circuits for CMOS image sensors

    Science.gov (United States)

    Kawahito, Shoji; Itoh, Shinya

    2008-02-01

    A thermal noise calculation model of high-gain switched-capacitor column noise cancellers for CMOS image sensors is presented. In the high-gain noise canceller with a single noise cancelling stage, the reset noise of the readout circuits dominates the noise at high gain. Using the double-stage architecture using a switched-capacitor gain stage and a sample-and-hold stage using two sampling capacitors, the reset noise of the gain stage can be cancelled. The resulting input referred thermal noise power of high-gain double-stage switched-capacitor noise canceller is revealed to be proportional to (g_a/g_s)/GC_L where g_a, G and C_L are the transconductance, gain and output capacitance of the amplifier, respectively, and g_s is the output conductance of an in-pixel source follower. An important contribution of the proposed noise calculation formula is the inclusion of the influence of the transconductance ratio of the amplifier to that of the source follower. For low-noise design, it is important that the transconductance of the amplifier used in the noise canceller is minimized under the condition of meeting the required response time of the switched capacitor amplifier which is inversely proportional to the cutoff angular frequency.

  13. Very High Gain and Low Noise Near Infrared Single Photon Counting Detectors and Arrays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Amplification Technologies Inc ("ATI") proposes to develop the enabling material and device technology for the design of ultra low noise, high gain and low...

  14. A novel SWIR detector with an ultra-high internal gain and negligible excess noise

    Science.gov (United States)

    Mohseni, H.; Memis, O. G.; Kong, S. C.; Katsnelson, A.; Wu, W.

    2007-10-01

    Short wave infrared (SWIR) imaging systems have several advantages due to the spectral content of the nightglow and better discrimination against camouflage. Achieving single photon detection sensitivity can significantly improve the image quality of these systems. However, the internal noise of the detector and readout circuits are significant barriers to achieve this goal. One can prove that the noise limitations of the readout can be alleviated, if the detector exhibits sufficiently high internal gain. Unfortunately, the existing detectors with internal gain have a very high noise as well. Here we present the recent results from our novel FOcalized Carrier aUgmented Sensor (FOCUS). It utilizes very high charge compression into a nano-injector, and subsequent carrier injection to achieve high quantum efficiency and high sensitivity at short infrared at room temperature. We obtain internal gain values exceeding several thousand at bias values of less than 1 volt. The current responsivity at 1.55 μm is more than 1500 A/W, and the noise equivalent power (NEP) is less that 0.5 x10 -15 W/Hz 1/2 at room temperature. These are significantly better than the performance of the existing room temperature devices with internal gain. Also, unlike avalanche-based photodiodes, the measured excess noise factor for our device is near unity, even at very high gain values. The stable gain of the device combined with the low operating voltage are unique advantages of this technology for high-performance SWIR imaging arrays.

  15. Microstructure-Fibre-Based Optical Parametric Amplification in Telecom Band with Ultra-High Gain Slope

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wei; XIAO Li; ZHANG Lei; HUANG Yi-Dong; PENG Jiang-De

    2006-01-01

    @@ We report a microstructure-fibre-based parametric amplification experiment in telecom band with ultra-high gain slope. A peak on-off gain of 52.3 dB is achieved using 25 m high nonlinear microstructure fibre (MF) and only 5.3 W pump power. The parametric gain slope is up to 580dBW-1 km-1. From the experimental data, the linear coefficient of the MF is estimated to be about 66. 7 W-1 km-1. The experiment shows the great potential of MFs in practical fibre parametric amplifiers.

  16. Detailed theoretical and experimental investigation of high-gain erbium-doped fiber amplifier

    DEFF Research Database (Denmark)

    Pedersen, Bo; Dybdal, Kristen; Dam-Hansen, Carsten

    1990-01-01

    A full-scale numerical model for the erbium-doped fiber amplifier has been developed that incorporates realistic index and erbium-concentration profiles as well as the spectral distribution of amplified spontaneous emission (ASE). The high accuracy of the model is demonstrated by comparison...... with a comprehensive set of data, including gain, ASE, and pump power, obtained for a well-characterized Er-Al-doped fiber. An absorption-to-emission cross-section ratio of 1.0 was measured at the gain peak. Pumping at 654 nm, the excited state absorption was observed to be insignificant. A high gain of 39.6 d...

  17. High-Gain AlxGa1-xAs/GaAs Transistors For Neural Networks

    Science.gov (United States)

    Kim, Jae-Hoon; Lin, Steven H.

    1991-01-01

    High-gain AlxGa1-xAs/GaAs npn double heterojunction bipolar transistors developed for use as phototransistors in optoelectronic integrated circuits, especially in artificial neural networks. Transistors perform both photodetection and saturating-amplification functions of neurons. Good candidates for such application because structurally compatible with laser diodes and light-emitting diodes, detect light, and provide high current gain needed to compensate for losses in holographic optical elements.

  18. An advanced UV optical cavity for the European FEL project

    CERN Document Server

    Poole, M W; Chesworth, A A; Clarke, J A; Fell, B; Hill, C; Marl, R; Mullacrane, I D; Reid, R J

    2000-01-01

    A European collaboration is constructing a short wavelength FEL for the ELETTRA storage ring. The optical cavity has been designed and constructed at Daresbury Laboratory for delivery to Sincrotrone Trieste in Autumn 1999, following commissioning tests over the Summer. Initial FEL operation will be at 350 nm but subsequently down to 200 nm or less and mirrors will be 40 mm diameter. The 32 m optical cavity is controllable to 0.01 mu rad in mirror pitch and yaw using digital piezo translators. A novel feature is the simultaneous presence of three remotely interchangeable mirrors to extend the tuning range and also to interchange damaged mirrors immediately. In addition, a transfer arm and load-lock arrangement will permit a mirror to be withdrawn from the chamber and replaced without disruption to the UHV system. The FEL is designed to operate at high power (1-10 W) and multi-watt spontaneous emission is also present: power loading has been investigated by FEA analysis and has necessitated specification of a w...

  19. Polarization-insensitive optical gain characteristics of highly stacked InAs/GaAs quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Kita, Takashi; Suwa, Masaya; Kaizu, Toshiyuki; Harada, Yukihiro [Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501 (Japan)

    2014-06-21

    The polarized optical gain characteristics of highly stacked InAs/GaAs quantum dots (QDs) with a thin spacer layer fabricated on an n{sup +}-GaAs (001) substrate were studied in the sub-threshold gain region. Using a 4.0-nm-thick spacer layer, we realized an electronically coupled QD superlattice structure along the stacking direction, which enabled the enhancement of the optical gain of the [001] transverse-magnetic (TM) polarization component. We systematically studied the polarized electroluminescence properties of laser devices containing 30 and 40 stacked InAs/GaAs QDs. The net modal gain was analyzed using the Hakki-Paoli method. Owing to the in-plane shape anisotropy of QDs, the polarization sensitivity of the gain depends on the waveguide direction. The gain showing polarization isotropy between the TM and transverse-electric polarization components is high for the [110] waveguide structure, which occurs for higher amounts of stacked QDs. Conversely, the isotropy of the [−110] waveguide is easily achieved even if the stacking is relatively low, although the gain is small.

  20. Generation of doublet spectral lines at self-seeded X-ray FELs

    CERN Document Server

    Geloni, Gianluca; Saldin, Evgeni

    2010-01-01

    Self-seeding schemes, consisting of two undulators with a monochromator in between, aim to reduce the bandwidth of SASE X-ray FELs. We recently proposed a new method of monochromatization exploiting a single crystal in Bragg-transmission geometry for self-seeding in the hard X-ray range. A straightforward extension is to use such kind of monochromator setup with two -or more- crystals arranged in a series to spectrally filter the SASE radiation at two closely-spaced wavelengths within the FEL gain band. This allows for the production of doublet -or multiplet- spectral lines. Applications involve any process with a large change in cross section over a narrow wavelength range, as in multiple wavelength anomalous diffraction. Here we consider the simultaneous operation of the LCLS hard X-ray FEL at two closely spaced wavelengths. We present simulation results for the LCLS baseline, yielding fully coherent radiation shared between two longitudinal modes. Mode spacing can be easily tuned within the FEL gain band. ...

  1. Utilizing wideband AMC structures for high-gain inkjet-printed antennas on lossy paper substrate

    KAUST Repository

    Cook, Benjamin Stassen

    2013-01-01

    Significant gain and bandwidth improvement of inkjet-printed antennas with integrated artificial magnetic conductor (AMC) is achieved by utilizing wideband ground-backed frequency selective surfaces (FSSs) to overcome the high losses of organic substrates such as paper. A microstrip-fed monopole mounted on an artificial magnetic conductor is demonstrated to improve the gain by 5 dB over previous works and exhibit much wider impedance bandwidth while maintaining a thin antenna profile and a 20% electrical size reduction. The effect of AMC bandwidth on substrate losses and the gain reduction caused by finite AMC array effects are investigated in an effort to produce high-gain, miniaturized, low-cost wearable and structure mount antennas. © 2013 IEEE.

  2. 3-D numerical analysis of a high-gain free-electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Gallardo, J.C.

    1988-10-19

    We present a novel approach to the 3-dimensional high-gain free- electron laser amplifier problem. The method allows us to write the laser field as an integral equation which can be efficiently and accurately evaluated on a small computer. The model is general enough to allow the inclusion of various initial electron beam distributions to study the gain reduction mechanism and its dependence on the physical parameters. 16 refs., 8 figs., 1 tab.

  3. The cat lipocalin Fel d 7 and its cross-reactivity with the dog lipocalin Can f 1.

    Science.gov (United States)

    Apostolovic, D; Sánchez-Vidaurre, S; Waden, K; Curin, M; Grundström, J; Gafvelin, G; Cirkovic Velickovic, T; Grönlund, H; Thomas, W R; Valenta, R; Hamsten, C; van Hage, M

    2016-10-01

    We investigated the prevalence of sensitization to the cat lipocalin Fel d 7 among 140 cat-sensitized Swedish patients and elucidated its allergenic activity and cross-reactivity with the dog lipocalin Can f 1. Sixty-five of 140 patients had IgE to rFel d 7 whereof 60 also had IgE to rCan f 1. A moderate correlation between IgE levels to rFel d 7 and rCan f 1 was found. rFel d 7 activated basophils in vitro and inhibited IgE binding to rCan f 1 in 4 of 13 patients, whereas rCan f 1 inhibited IgE binding to rFel d 7 in 7 of 13 patients. Fel d 7 and Can f 1 showed high similarities in protein structure and epitopes in common were found using cross-reactive antisera. Fel d 7 is a common allergen in a Swedish cat-sensitized population that cross-reacts with Can f 1, and may contribute to symptoms in cat- but also in dog-allergic patients.

  4. Properties of the Third Harmonic of the SASE FEL Radiation

    CERN Document Server

    Saldin, E L; Schneidmiller, E

    2005-01-01

    Recent theoretical and experimental studies have shown that SASE FEL with a planar undulator holds a potential for generation of relatively strong coherent radiation at the third harmonic of the fundamental frequency. Here we present detailed study of the nonlinear harmonic generation in SASE FEL obtained with time-dependent FEL simulation code FAST. Using similarity techniques we present universal dependencies for temporal, spectral, and statistical properties of the third harmonic radiation from SASE FEL.

  5. Investigation of a 2-Colour Undulator FEL Using Puffin

    CERN Document Server

    Campbell, L T; Reiche, S

    2013-01-01

    Initial studies of a 2-colour FEL amplifier using one monoenergetic electron beam are presented. The interaction is modelled using the unaveraged, broadband FEL code Puffin. A series of undulator modules are tuned to generate two resonant frequencies along the FEL interaction and a self-consistent 2-colour FEL interaction at widely spaced non-harmonic wavelengths at 1nm and 2.4nm is demonstrated.

  6. Shock-Ignited High Gain/Yield Targets for the National Ignition Facility

    Science.gov (United States)

    Perkins, L. J.; Lafortune, K. N.; Bedrosiian, P.; Tabak, M.; Miles, A.; Dixit, S.; Betti, R.; Anderson, K.; Zhou, C.

    2006-10-01

    Shock-ignition, a new concept for ICF ignition [C.Zhou, R.Betti Bull APS, v50, 2005], is being studied as a future option for efficiently achieving high gains in large laser facilities such as NIF. Accordingly, this offers the potential for testing: (1)High yield (up to 200MJ), reactor-relevant targets for inertial fusion energy (2)High fusion yield targets for DOE NNSA stockpile application (3)Targets with appreciable gain at low laser drive energies (gains of 10's at 150kJ) (4)Ignition of simple, non-cryo (room temperature) single shell gas targets at (unity gain). By contrast to conventional hotspot ignition, we separate the assembly and ignition phases by initially imploding a massive cryogenic shell on a low adiabat (alpha 0.7) at low velocity (less than 2e7cm/s) using a direct drive pulse of modest total energy. The assembled fuel is then separately ignited by a strong, spherically convergent shock driven by a high intensity spike at the end of the pulse and timed to reach the center as the main fuel is stagnating and starting to rebound. Like fast ignition, shock ignition can achieve high gains with low drive energy, but has the advantages of requiring only a single laser with less demanding timing and spatial focusing requirements.

  7. Low Emittance X-FEL Development

    CERN Document Server

    Li, K S B; Anghel, A; Bakker, R J; Böge, M; Candel, A E; Dehler, M; Ganter, R; Gough, C; Ingold, G; Leemann, S C; Pedrozzi, M; Raguin, J Y; Rivkin, L; Schlott, V; Streun, A; Wrulich, A F

    2005-01-01

    The Paul Scherrer Institute (PSI) in Switzerland currently develops a Low-Emittance electron-Gun (LEG) based on field-emitter technology [1]. The target is a normalized transverse emittance of 5 10(-8) m rad or less. Such a source is particularly interesting for FELs that target wavelengths below 0.3 nm since it permits a reduction of the required beam-energy and hence, a reduction of the construction- and operational costs of X-ray FELs. That is, for the case that this initial low emittance can be maintained throughout the accelerator. Here we present a concept for a 0.1 nm X-FEL based on LEG, which can be located close to the Swiss Light Source (SLS). Special attention goes to the maintenance of the emittance during the process of acceleration and bunch-compression, in particular in the regimes where either space-charge forces or coherent-synchrotron radiation are of importance.

  8. Performance Analysis of Low Power, High Gain Operational Amplifier Using CMOS VLSI Design

    Directory of Open Access Journals (Sweden)

    Ankush S. Patharkar

    2014-07-01

    Full Text Available The operational amplifier is one of the most useful and important component of analog electronics. They are widely used in popular electronics. Their primary limitation is that they are not especially fast. The typical performance degrades rapidly for frequencies greater than about 1 MHz, although some models are designed specifically to handle higher frequencies. The primary use of op-amps in amplifier and related circuits is closely connected to the concept of negative feedback. The operational amplifier has high gain, high input impedance and low output impedance. Here the operational amplifier designed by using CMOS VLSI technology having low power consumption and high gain.

  9. Design study on the merger for BXERL-FEL

    Institute of Scientific and Technical Information of China (English)

    ZHU Xiong-Wei; WANG Shu-Hong; CHEN Sen-Yu

    2009-01-01

    In North China, there is a preliminary proposal for ERL-FEL light source (BXERL-FEL) with its aim at "one machine, two purposes" (the XFEL and ERL work simultaneously). One of the key technologies is the merger section. In this paper, we give the physical design of the merger section for BXERL-FEL which merges three kinds of electron beam.

  10. Impact of gain saturation on the mode instability threshold in high-power fiber amplifiers

    DEFF Research Database (Denmark)

    Hansen, Kristian Rymann; Lægsgaard, Jesper

    2014-01-01

    We present a coupled-mode model of transverse mode instability in high-power fiber amplifiers, which takes the effect of gain saturation into account. The model provides simple semi-analytical formulas for the mode instability threshold, which are valid also for highly saturated amplifiers...

  11. High-gain X-ray free electron laser by beat-wave terahertz undulator

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chao; Hei, DongWei [Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi' an City 710024 (China); Institute of Energy, Tsinghua University, Beijing 100084 (China); Pellegrin, Claudio; Tantawi, Sami [SLAC National Accelerator Laboratory, Stanford University, Stanford, California 94309 (United States)

    2013-12-15

    The THz undulator has a higher gain to realize a much brighter X-ray at saturation, compared with the optical undulator under the same undulator strength and beam quality. In order to fill the high-power THz gap and realize the THz undulator, two superimposed laser pulses at normal incidence to the electron-beam moving direction form an equivalent high-field THz undulator by the frequency difference to realize the high-gain X-ray Free electron laser. The pulse front tilt of lateral fed lasers is used to realize the electron-laser synchronic interaction. By PIC simulation, a higher gain and a larger X-ray radiation power by the beat wave THz undulator could be realized, compared with the optical undulator for the same electron beam parameters.

  12. Development of low read noise high conversion gain CMOS image sensor for photon counting level imaging

    Science.gov (United States)

    Seo, Min-Woong; Kawahito, Shoji; Kagawa, Keiichiro; Yasutomi, Keita

    2016-05-01

    A CMOS image sensor with deep sub-electron read noise and high pixel conversion gain has been developed. Its performance is recognized through image outputs from an area image sensor, confirming the capability of photoelectroncounting- level imaging. To achieve high conversion gain, the proposed pixel has special structures to reduce the parasitic capacitances around FD node. As a result, the pixel conversion gain is increased due to the optimized FD node capacitance, and the noise performance is also improved by removing two noise sources from power supply. For the first time, high contrast images from the reset-gate-less CMOS image sensor, with less than 0.3e- rms noise level, have been generated at an extremely low light level of a few electrons per pixel. In addition, the photon-counting capability of the developed CMOS imager is demonstrated by a measurement, photoelectron-counting histogram (PCH).

  13. Recommissioning of Duke Storage Ring with a HOM-Damped RF Cavity and a New Straight Section Lattice for FELs

    CERN Document Server

    Wu, Y K; Emamian, Mark; Faircloth, Joe; Gustavsson, J; Hartman, Steven M; Howell, C; Johnson, M; Li, Jingyi; Mikhailov, Stepan; Oakeley, Owen; Patterson, J; Pentico, Maurice; Popov, Victor; Rathbone, V; Swift, Gary; Wallace, Patrick W; Wang, Ping

    2005-01-01

    The Duke FEL lab operates a unique UV/VUV storage ring FEL and an FEL driven, nearly monochromatic, highly polarized, high intensity Compton gamma-ray source. The Duke storage ring light source is undergoing several phases of upgrade in order to significantly improve light source capabilities and performance. The 2004 phase included an upgrade of the RF system with a high-order mode damped RF cavity and a new 34 meter long straight section lattice to host new FEL wigglers in the next phase. This upgrade was completed in August 2004 and storage ring and light source commissioning were completed in November 2004. This paper will provide an overview of this upgrade project and report our commissioning experience of the storage ring and light sources.

  14. Feasibility Study of a Laser Beat-Wave Seeded THz FEL at the Neptune Laboratory

    CERN Document Server

    Reiche, Sven; Pellegrini, Claudio; Rosenzweig, James E; Shvets, Gennady; Tochitsky, Sergei Ya

    2005-01-01

    Free-Electron Laser in the THz range can be used to generate high output power radiation or to modulate the electron beam longitudinally on the radiation wavelength scale. Microbunching on the scale of 1-5 THz is of particular importance for potential phase-locking of a modulated electron beam to a laser-driven plasma accelerating structure. However the lack of a seeding source for the FEL at this spectral range limits operation to a SASE FEL only, which denies a subpicosecond synchronization of the current modulation or radiation with an external laser source. One possibility to overcome this problem is to seed the FEL with two external laser beams, which difference (beat-wave) frequency is matched to the resonant FEL frequency in the THz range. In this presentation we study feasibility of an experiment on laser beat-wave injection in the THz FEL considered at the UCLA Neptune Laboratory, where both a high brightness photoinjector and a two-wavelength, TW-class CO2 laser system exist. By incorporating the en...

  15. EXPERIENCE AND PLANS OF THE JLAB FEL FACILITY AS A USER FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    Michelle D. Shinn

    2007-08-26

    Jefferson Lab's IR Upgrade FEL building was planned from the beginning to be a user facility, and includes an associated 600 m2 area containing seven laboratories. The high average power capability (multikilowatt-level) in the near-infrared (1-3 microns), and many hundreds of watts at longer wavelengths, along with an ultrafast (~ 1 ps) high PRF (10's MHz) temporal structure makes this laser a unique source for both applied and basic research. In addition to the FEL, we have a dedicated laboratory capable of delivering high power (many tens of watts) of broadband THz light. After commissioning the IR Upgrade, we once again began delivering beam to users in 2005. In this presentation, I will give an overview of the FEL facility and its current performance, lessons learned over the last two years, and a synopsis of current and future experiments.

  16. Gain optimization in fiber optical parametric amplifiers by combining standard and high-SBS threshold highly nonlinear fibers

    DEFF Research Database (Denmark)

    Da Ros, Francesco; Rottwitt, Karsten; Peucheret, Christophe

    2012-01-01

    Combining Al-doped and Ge-doped HNLFs as gain media in FOPAs is proposed and optimized, resulting in efficient SBS mitigation while circumventing the additional loss of the high SBS threshold Al-doped fiber.......Combining Al-doped and Ge-doped HNLFs as gain media in FOPAs is proposed and optimized, resulting in efficient SBS mitigation while circumventing the additional loss of the high SBS threshold Al-doped fiber....

  17. High-Directional Wave Propagation in Periodic Gain/Loss Modulated Materials

    CERN Document Server

    Kumar, N; Herrero, R; Loiko, Yu; Staliunas, K

    2012-01-01

    Amplification/attenuation of light waves in artificial materials with a gain/loss modulation on the wavelength scale can be sensitive to the propagation direction. We give a numerical proof of the high anisotropy of the gain/loss in two dimensional periodic structures with square and rhombic lattice symmetry by solving the full set of Maxwell's equations using the finite difference time domain method. Anisotropy of amplification/attenuation leads to the narrowing of the angular spectrum of propagating radiation with wavevectors close to the edges of the first Brillouin Zone. The effect provides a novel and useful method to filter out high spatial harmonics from noisy beams.

  18. A Broadband and High Gain Tapered Slot Antenna for W-Band Imaging Array Applications

    Directory of Open Access Journals (Sweden)

    Dong Sik Woo

    2014-01-01

    Full Text Available A broadband and high gain tapered slot antenna (TSA by utilizing a broadband microstrip- (MS- to-coplanar stripline (CPS balun has been developed for millimeter-wave imaging systems and sensors. This antenna exhibits ultrawideband performance for frequency ranges from 70 to over 110 GHz with the high antenna gain, low sidelobe levels, and narrow beamwidth. The validity of this antenna as imaging arrays is also demonstrated by analyzing mutual couplings and 4-element linear array. This antenna can be applied to mm-wave phased array, imaging array for plasma diagnostics applications.

  19. Adaptive control of linear multivariable systems with high frequency gain matrix hurwitz

    Institute of Scientific and Technical Information of China (English)

    Ying ZHOU; Yuqiang WU; Shumin FEI

    2005-01-01

    A new adaptive control scheme is proposed for multivariable model reference adaptive control(MRAC) systems based on the nonlinear backstepping approach with vector form.The assumption on a priori knowledge of the high frequency gain matrix in existing results is relaxed and the new required condition for the high frequency gain matrix can be easily checked for certain plants so that the proposed method is widely applicable.This control scheme guarantees the global stability of the closed-loop systems and the tracking error can be arbitrary small.The simulation result for an application example shows the validity of the proposed nonlinear adaptive scheme.

  20. Very high-accuracy calibration of radiation pattern and gain of a near-field probe

    DEFF Research Database (Denmark)

    Pivnenko, Sergey; Nielsen, Jeppe Majlund; Breinbjerg, Olav

    2014-01-01

    In this paper, very high-accuracy calibration of the radiation pattern and gain of a near-field probe is described. An open-ended waveguide near-field probe has been used in a recent measurement of the C-band Synthetic Aperture Radar (SAR) Antenna Subsystem for the Sentinel 1 mission of the Europ......In this paper, very high-accuracy calibration of the radiation pattern and gain of a near-field probe is described. An open-ended waveguide near-field probe has been used in a recent measurement of the C-band Synthetic Aperture Radar (SAR) Antenna Subsystem for the Sentinel 1 mission...

  1. FEL system for gamma-gamma collider at TESLA

    CERN Document Server

    Saldin, E L; Yurkov, M V

    2001-01-01

    The present paper contains the results of optimization of the free electron laser for the gamma-gamma collider at TESLA. A superconducting linear accelerator, similar to the TTF (TESLA Test Facility) accelerator, produces a driving electron beam for the FEL. The MOPA FEL scheme is studied when the radiation from a master oscillator is amplified in the FEL amplifier with tapered undulator. The FEL produces a radiation of TW level with a wavelength of 1 mu m. Optimization of the FEL amplifier is performed with a three-dimensional, time-dependent simulation code FAST.

  2. Inkjet Printing of Paper-Based Wideband and High Gain Antennas

    KAUST Repository

    Cook, Benjamin

    2011-12-07

    This thesis represents a major contribution to wideband and high gain inkjet-printed antennas on paper. This work includes the complete characterization of the inkjet printing process for passive microwave devices on paper substrate as well as several ultra-wideband and high gain antenna designs. The characterization work includes the electrical characterization of the permittivity and loss tangent for paper substrate through 10 GHz, ink conductivity data for variable sintering conditions, and minimum feature sizes obtainable by today’s current inkjet processes for metallic nanoparticles. For the first time ever, inkjet-printed antennas are demonstrated that operate over the entire UWB band and demonstrate gains up to 8dB. This work also presents the first fractal-based inkjet-printed antennas with enhanced bandwidth and reduced production costs, and a novel slow wave log periodic dipole array which shows minimizations of 20% in width over conventional log periodic antennas.

  3. Improvement on a 2 × 2 Elements High-Gain Circularly Polarized Antenna Array

    Directory of Open Access Journals (Sweden)

    C. Liu

    2015-01-01

    Full Text Available A novel antipodal Vivaldi antenna with tapering serrated structure at the edges is proposed. Compared with traditional Vivaldi antennas without serrated structure, the gain of the designed antenna is significantly improved in the desired frequency band (4.5–7.5 GHz. In addition, a 2 × 2 Vivaldi antenna array with an orthorhombic structure is designed and fabricated to achieve a circular polarization (CP characteristic. With this configuration, the 3 dB axial ratio bandwidth of the array reaches about 42% with respect to the center frequency of 6 GHz and a high gain is achieved as well. The novel Vivaldi antenna and CP antenna array both have ultrawide band (UWB and high-gain characteristics, which may be applied to the field of commercial communication, remote sensing, and so forth.

  4. Dynamic properties of a pulse-pumped fiber laser with a short, high-gain cavity

    Science.gov (United States)

    Yang, Chaolin; Guo, Junhong; Wei, Pu; Wan, Hongdan; Xu, Ji; Wang, Jin

    2016-09-01

    We demonstrate a pulsed high-gain all-fiber laser without intracavity modulators, where a short and heavily Erbium-doped fiber is used as the gain medium in a ring cavity. By pulsed-pumping this short high gain cavity and tuning an intracavity variable optical coupler, the laser generates optical pulses with a pulse-width of μs at a repetition rate in the order of kHz down to one-shot operation. Furthermore, dynamic properties of this laser are investigated theoretically based on a traveling-wave-model, in which an adaptive-discrete-grid-finite-difference-method is applied. The simulation results validate the experimental results. The demonstrated pulsed laser is compact, flexible and cost-effective, which will have great potential for applications in all-optical sensing and communication systems.

  5. Enhancing speed of pinning synchronizability: low-degree nodes with high feedback gains

    CERN Document Server

    Zhou, Ming-Yang; Liao, Hao; Fu, Zhong-Qian; Cai, Shi-Min

    2015-01-01

    Controlling complex networks is of paramount importance in science and engineering. Despite recent efforts to improve controllability and synchronous strength, little attention has been paid to the speed of pinning synchronizability (rate of convergence in pinning control) and the corresponding pinning node selection. To address this issue, we propose a hypothesis to restrict the control cost, then build a linear matrix inequality related to the speed of pinning controllability. By solving the inequality, we obtain both the speed of pinning controllability and optimal control strength (feedback gains in pinning control) for all nodes. Interestingly, some low-degree nodes are able to achieve large feedback gains, which suggests that they have high influence on controlling system. In addition, when choosing nodes with high feedback gains as pinning nodes, the controlling speed of real systems is remarkably enhanced compared to that of traditional large-degree and large-betweenness selections. Thus, the proposed...

  6. Recent progress in high gain InAs avalanche photodiodes (Presentation Recording)

    Science.gov (United States)

    Bank, Seth; Maddox, Scott J.; Sun, Wenlu; Nair, Hari P.; Campbell, Joe C.

    2015-08-01

    InAs possesses nearly ideal material properties for the fabrication of near- and mid-infrared avalanche photodiodes (APDs), which result in strong electron-initiated impact ionization and negligible hole-initiated impact ionization [1]. Consequently, InAs multiplication regions exhibit several appealing characteristics, including extremely low excess noise factors and bandwidth independent of gain [2], [3]. These properties make InAs APDs attractive for a number of near- and mid-infrared sensing applications including remote gas sensing, light detection and ranging (LIDAR), and both active and passive imaging. Here, we discuss our recent advances in the growth and fabrication of high gain, low noise InAs APDs. Devices yielded room temperature multiplication gains >300, with much reduced (~10x) lower dark current densities. We will also discuss a likely key contributor to our current performance limitations: silicon diffusion into the intrinsic (multiplication) region from the underlying n-type layer during growth. Future work will focus on increasing the intrinsic region thickness, targeting gains >1000. This work was supported by the Army Research Office (W911NF-10-1-0391). [1] A. R. J. Marshall, C. H. Tan, M. J. Steer, and J. P. R. David, "Electron dominated impact ionization and avalanche gain characteristics in InAs photodiodes," Applied Physics Letters, vol. 93, p. 111107, 2008. [2] A. R. J. Marshall, A. Krysa, S. Zhang, A. S. Idris, S. Xie, J. P. R. David, and C. H. Tan, "High gain InAs avalanche photodiodes," in 6th EMRS DTC Technical Conference, Edinburgh, Scotland, UK, 2009. [3] S. J. Maddox, W. Sun, Z. Lu, H. P. Nair, J. C. Campbell, and S. R. Bank, "Enhanced low-noise gain from InAs avalanche photodiodes with reduced dark current and background doping," Applied Physics Letters, vol. 101, no. 15, pp. 151124-151124-3, Oct. 2012.

  7. PFM2: a 32 × 32 processor for X-ray diffraction imaging at FELs

    Science.gov (United States)

    Manghisoni, M.; Fabris, L.; Re, V.; Traversi, G.; Ratti, L.; Grassi, M.; Lodola, L.; Malcovati, P.; Vacchi, C.; Pancheri, L.; Benkechcache, M. E. A.; Dalla Betta, G.-F.; Xu, H.; Verzellesi, G.; Ronchin, S.; Boscardin, M.; Batignani, G.; Bettarini, S.; Casarosa, G.; Forti, F.; Giorgi, M.; Paladino, A.; Paoloni, E.; Rizzo, G.; Morsani, F.

    2016-11-01

    This work is concerned with the design of a readout chip for application to experiments at the next generation X-ray Free Electron Lasers (FEL). The ASIC, named PixFEL Matrix (PFM2), has been designed in a 65 nm CMOS technology and consists of 32 × 32 pixels. Each cell covers an area of 110 × 110 μm2 and includes a low-noise charge sensitive amplifier (CSA) with dynamic signal compression, a time-variant shaper used to process the preamplifier output signal, a 10-bit successive approximation register (SAR) analog-to-digital converter (ADC) and digital circuitry for channel control and data readout. Two different solutions for the readout channel, based on different versions of the time-variant filter, have been integrated in the chip. Both solutions can be operated in such a way to cope with the high frame rate (exceeding 1 MHz) foreseen for future X-ray FEL machines. The ASIC will be bump bonded to a slim/active edge pixel sensor to form the first demonstrator for the PixFEL X-ray imager. This work has been carried out in the frame of the PixFEL project funded by Istituto Nazionale di Fisica Nucleare (INFN), Italy.

  8. Numerical Modeling on Thermal Loading of Diamond Crystal in X-ray FEL Oscillator

    CERN Document Server

    Song, Meiqi; Guo, Yuhang; Li, Kai; Deng, Haixiao

    2015-01-01

    Due to high reflectivity and high resolution to X-ray pulse, diamond is one of the most popular Bragg crystals serving as the reflecting mirror and mono-chromator in the next generation free electrons lasers (FELs). The energy deposition of X-rays will result in thermal heating, and thus lattice expanding of diamond crystal, which may degrade the performance of X-ray FELs. In this paper, the thermal loading effect of diamond crystal for X-ray FEL oscillator has been systematically studied by the combined simulation of Geant4 and ANSYS, and its dependence on the environment temperature, crystal size, X-ray pulse repetition rate and pulse energy are presented.

  9. Shock Ignition: A New Approach to High Gain Targets for the National Ignition Facility

    Science.gov (United States)

    Perkins, L. John; Lafortune, Kai; Divol, Laurent; Betti, Riccardo

    2008-11-01

    Shock-ignition is being studied as a future option for achieving high target gains on NIF, offering the potential for testing high yield (200MJ), reactor-relevant targets for inertial fusion energy and targets with appreciable gains at drive energies much less than 1MJ. In contrast to conventional hotspot ignition, the assembly and ignition phases are separated by imploding a high mass shell at low velocity. The assembled fuel is then separately ignited by a strong, spherical shock driven by a high intensity spike at the end of the pulse and timed to reach the center as the main fuel is stagnating. Because the implosion velocity is significantly less than that required for hotspot ignition, considerably more fuel mass can be assembled and burned for the same kinetic energy in the shell. Like fast ignition, shock ignition could achieve high gains at low drive energy, but has the advantages of requiring only a single laser with less demanding timing and spatial focusing requirements. We will discuss gain curves for shock-ignited NIF targets in both UV and green light and examine the feasibility of designs that employ indirect drive fuel assembly with direct drive shock ignition

  10. 75 FR 61228 - Board Meeting: Technical Lessons Gained From High-Level Nuclear Waste Disposal Efforts

    Science.gov (United States)

    2010-10-04

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR WASTE TECHNICAL REVIEW BOARD Board Meeting: Technical Lessons Gained From High-Level Nuclear Waste Disposal Efforts Pursuant to its authority under section 5051 of Public Law 100-203, Nuclear Waste Policy Amendments Act...

  11. Femtosecond Ti:sapphire cryogenic amplifier with high gain and MHz repetition rate

    DEFF Research Database (Denmark)

    Dantan, Aurelien Romain; Laurat, Julien; Ourjoumtsev, Alexei

    2007-01-01

    We demonstrate high gain amplification of 160-femtosecond pulses in a compact double-pass cryogenic Ti:sapphire amplifier. The setup involves a negative GVD mirrors recompression stage, and operates with a repetition rate between 0.2 and 4 MHz with a continuous pump laser. Amplification factors...

  12. Review on High Gain Conical Horn Antenna for Short-Range Communications

    Directory of Open Access Journals (Sweden)

    Priyanka Bhagwat

    2013-11-01

    Full Text Available Horn antennas are very popular at UHF (300 MHz-3 GHz and higher frequencies ( as high as 140 GHz. Horn antennas often have a directional radiation pattern with a high antenna gain, which can range up to 25 dB in some cases, with 10-20 dB being typical. Horn antennas have a wide impedance bandwidth, implying that the input impedance is slowly varying over a wide frequency range. The bandwidth for practical horn antennas can be of the order of 20:1 (for instance, operating from 1 GHz-20 GHz, with a 10:1 bandwidth being common. The gain of horn antennas often increases as the frequency of operation is increased. This is because the size of the horn aperture is measured in wavelengths; at higher frequencies the horn antenna is "electrically larger" because high frequency has a smaller wavelength. Horn antennas have very little loss, so the directivity of a horn is roughly equal to its gain. In this paper, we will present review about conical horn antenna which uses hybrid technique and provides high gain at frequencies ranging 3GHz keeping its size within limits. Also, literature survey will demostrate other reference papers will includes horn antennas using different techniques and used for various applications.

  13. Magnetically coupled high-gain Y-source isolated DC/DC converter

    DEFF Research Database (Denmark)

    Siwakoti, Yam P.; Loh, Poh Chiang; Blaabjerg, Frede

    2014-01-01

    A new form of magnetically coupled DC/DC converter is proposed for medium power applications (250 W to 2 kW), requiring a high-voltage gain, short inductive charging time and galvanic isolation. The proposed converter can be realised using a unique Y-source impedance network and a two-switch push...

  14. A high voltage gain quasi Z-source isolated DC/DC converter

    DEFF Research Database (Denmark)

    Siwakoti, Yam P.; Blaabjerg, Frede; Loh, Poh Chiang

    2014-01-01

    A compact quasi-Z-source DC/DC converter is presented with high voltage gain, isolated output, and improved efficiency. The improvements in size and performance were achieved by using a square wave inverter with only two output switches driving an isolating transformer in push-pull mode, followed...

  15. Convergent evolution towards high net carbon gain efficiency contributes to the shade tolerance of palms (Arecaceae)

    NARCIS (Netherlands)

    Ma, Ren Yi; Zhang, Jiao Lin; Cavaleri, Molly A.; Sterck, Frank; Strijk, J.S.; Cao, Kun Fang

    2015-01-01

    Most palm species occur in the shaded lower strata of tropical rain forests, but how their traits relate to shade adaptation is poorly understood. We hypothesized that palms are adapted to the shade of their native habitats by convergent evolution towards high net carbon gain efficiency (CGEn),

  16. Resistance and susceptibility to weight gain: individual variability in response to a high-fat diet.

    Science.gov (United States)

    Blundell, J E; Stubbs, R J; Golding, C; Croden, F; Alam, R; Whybrow, S; Le Noury, J; Lawton, C L

    2005-12-15

    An obesigenic environment is a potent force for promoting weight gain. However, not all people exposed to such an environment become obese; some remain lean. This means that some people are susceptible to weight gain (in a weight-promoting environment) and others are resistant. Identifying the characteristics of appetite control and food motivation in these two groups could throw light on the causes of weight gain and how this can be either treated or prevented. We have investigated the issue experimentally by identifying people who habitually consume a high-fat diet (greater than 43% fat energy). These individuals have been termed high-fat phenotypes. We have compared individuals, of the same age (mean=37 years old) and gender (male), who have gained weight (BMI=34) or who have remained lean (BMI=22). The susceptible individuals are characterised by a cluster of characteristics including a weak satiety response to fatty meals, a maintained preference for high-fat over low-energy foods in the post-ingestive satiety period, a strong hedonic attraction to palatable foods and to eating, and high scores on the TFEQ factors of Disinhibition and Hunger. The analysis of large databases suggests that this profile of factors contributes to an average daily positive energy balance from food of approximately 0.5 MJ. This profile of characteristics helps to define the symptomatology of a thrifty phenotype.

  17. Role of surface in high photoconductive gain measured in ZnO nanowire-based photodetector

    Energy Technology Data Exchange (ETDEWEB)

    Mallampati, Bhargav [University of North Texas, Department of Electrical Engineering (United States); Nair, S. V.; Ruda, H. E. [University of Toronto, Centre for Advanced Nanotechnology (Canada); Philipose, U., E-mail: usha.philipose@unt.edu [University of North Texas, Department of Physics (United States)

    2015-04-15

    On account of their large surface-to-volume ratio, nanowires contain an extremely high density of surface states which can lead to significantly enhanced photocarrier lifetimes resulting in persistent photoconductivity. There are reports that attribute the high photoconductive gain of ZnO nanowire-based photodetectors to hole trapping and de-trapping following oxygen adsorption and desorption from the nanowire surface. Through this work we provide experimental evidence of the role of surface and defects in carrier dynamics, resulting in enhanced photoresponse. ZnO nanowires with an average length of about 20 μm and diameters in the range of 60–80 nm were used in this experiment. Using intensity and temperature dependence of the rise and decay rate of photocurrent, we present a detailed analysis that provides an estimate of the activation energies of carrier trapping mechanisms. The high gain ZnO nanowire photodetector was sensitive to photoexcitation at or below 370 nm corresponding to the band-edge absorption profile of ZnO. At an incident wavelength of 370 nm and at a bias field of 5 kV/cm, it was found that the maximum responsivity is over 10{sup 5} A/W corresponding to an extremely high photoconductive gain of the order of 10{sup 6}. This corresponds to a normalized photoconductive gain of 4 × 10{sup −3} m{sup 2}V{sup −1}.

  18. High-Current Gain Two-Dimensional MoS 2 -Base Hot-Electron Transistors

    KAUST Repository

    Torres, Carlos M.

    2015-12-09

    The vertical transport of nonequilibrium charge carriers through semiconductor heterostructures has led to milestones in electronics with the development of the hot-electron transistor. Recently, significant advances have been made with atomically sharp heterostructures implementing various two-dimensional materials. Although graphene-base hot-electron transistors show great promise for electronic switching at high frequencies, they are limited by their low current gain. Here we show that, by choosing MoS2 and HfO2 for the filter barrier interface and using a noncrystalline semiconductor such as ITO for the collector, we can achieve an unprecedentedly high-current gain (α ∼ 0.95) in our hot-electron transistors operating at room temperature. Furthermore, the current gain can be tuned over 2 orders of magnitude with the collector-base voltage albeit this feature currently presents a drawback in the transistor performance metrics such as poor output resistance and poor intrinsic voltage gain. We anticipate our transistors will pave the way toward the realization of novel flexible 2D material-based high-density, low-energy, and high-frequency hot-carrier electronic applications. © 2015 American Chemical Society.

  19. Prior exercise training blunts short-term high-fat diet-induced weight gain.

    Science.gov (United States)

    Snook, Laelie A; MacPherson, Rebecca E K; Monaco, Cynthia M F; Frendo-Cumbo, Scott; Castellani, Laura; Peppler, Willem T; Anderson, Zachary G; Buzelle, Samyra L; LeBlanc, Paul J; Holloway, Graham P; Wright, David C

    2016-08-01

    High-fat diets rapidly cause weight gain and glucose intolerance. We sought to determine whether these changes could be mitigated with prior exercise training. Male C57BL/6J mice were exercise-trained by treadmill running (1 h/day, 5 days/wk) for 4 wk. Twenty-four hours after the final bout of exercise, mice were provided with a high-fat diet (HFD; 60% kcal from lard) for 4 days, with no further exercise. In mice fed the HFD prior to exercise training, the results were blunted weight gain, reduced fat mass, and a slight attenuation in glucose intolerance that was mirrored by greater insulin-induced Akt phosphorylation in skeletal muscle compared with sedentary mice fed the HFD. When ad libitum-fed sedentary mice were compared with sedentary high-fat fed mice that were calorie restricted (-30%) to match the weight gain of the previously trained high-fat fed mice, the same attenuated impairments in glucose tolerance were found. Blunted weight gain was associated with a greater capacity to increase energy expenditure in trained compared with sedentary mice when challenged with a HFD. Although mitochondrial enzymes in white adipose tissue and UCP-1 protein content in brown adipose tissue were increased in previously exercised compared with sedentary mice fed a HFD, ex vivo mitochondrial respiration was not increased in either tissue. Our data suggest that prior exercise training attenuates high-fat diet-induced weight gain and glucose intolerance and is associated with a greater ability to increase energy expenditure in response to a high-fat diet.

  20. Design on X-band Wideband and High-gain Multi-layer Microstrip Antenna

    Directory of Open Access Journals (Sweden)

    Soufian LAKRIT

    2014-07-01

    Full Text Available In this paper, a wide-band and high-gain microstrip antenna with mullti-layer microstrip patch and an aperture-coupled feeding is proposed. The antenna has a condensed structure where the dimension is about 8.5mm by 7.5mm by 4.662mm leading to good bandwidths covering 8.05 GHz to 12.01 GHz (39.48%, and the gain is up to 5.23dB. The low expenses of this profile and its simple configuration allows for an its easy fabrication, with appropriation with wireless and satellite communication.

  1. Design on X-band Wideband and High-gain Multi-layer Microstrip Antenna

    OpenAIRE

    Soufian LAKRIT; Hassan AMMOR

    2014-01-01

    In this paper, a wide-band and high-gain microstrip antenna with mullti-layer microstrip patch and an aperture-coupled feeding is proposed. The antenna has a condensed structure where the dimension is about 8.5mm by 7.5mm by 4.662mm leading to good bandwidths covering 8.05 GHz to 12.01 GHz (39.48%), and the gain is up to 5.23dB. The low expenses of this profile and its simple configuration allows for an its easy fabrication, with appropriation with wireless and satellite communica...

  2. High-precision gas gain and energy transfer measurements in Ar–CO{sub 2} mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Şahin, Özkan, E-mail: osahin@uludag.edu.tr [Department of Physics, Uludağ University, 16059 Bursa (Turkey); Kowalski, Tadeusz Z. [Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Kraków (Poland); Veenhof, Rob [Department of Physics, Uludağ University, 16059 Bursa (Turkey); RD51 collaboration, CERN, Genève (Switzerland)

    2014-12-21

    Ar–CO{sub 2} is a Penning mixture since a fraction of the energy stored in Ar 3p{sup 5}3d and higher excited states can be transferred to ionize CO{sub 2} molecules. In the present work, concentration and pressure dependence of Penning transfer rate and photon feedback parameter in Ar–CO{sub 2} mixtures have been investigated with recent systematic high-precision gas gain measurements which cover the range 1–50% CO{sub 2} at 400, 800, 1200, 1800 hPa and gas gain from 1 to 5×10{sup 5}.

  3. High-precision gas gain and energy transfer measurements in Ar–CO2 mixtures

    CERN Document Server

    Şahin, Özkan; Veenhof, Rob

    2014-01-01

    Ar–CO2 is a Penning mixture since a fraction of the energy stored in Ar 3p53d3p53d and higher excited states can be transferred to ionize CO2 molecules. In the present work, concentration and pressure dependence of Penning transfer rate and photon feedback parameter in Ar–CO2 mixtures have been investigated with recent systematic high-precision gas gain measurements which cover the range 1–50% CO2 at 400, 800, 1200, 1800 hPa and gas gain from 1 to 5×105.

  4. Study of CSR Effects in the Jefferson Laboratory FEL Driver

    Energy Technology Data Exchange (ETDEWEB)

    Hall, C. C. [Colorado State U.; Biedron, S. [Colorado State U.; Burleson, Theodore A. [Colorado State U.; Milton, Stephen V. [Colorado State U.; Morin, Auralee L. [Colorado State U.; Benson, Stephen V. [JLAB; Douglas, David R. [JLAB; Evtushenko, Pavel E. [JLAB; Hannon, Fay E. [JLAB; Li, Rui [JLAB; Tennant, Christopher D. [JLAB; Zhang, Shukui [JLAB; Carlsten, Bruce E. [LANL; Lewellen, John W. [LANL

    2013-08-01

    In a recent experiment conducted on the Jefferson Laboratory IR FEL driver the effects of Coherent Synchrotron Radiation (CSR) on beam quality were studied. The primary goal of this work was to explore CSR output and effect on the beam with variation of the bunch compression in the IR chicane. This experiment also provides a valuable opportunity to benchmark existing CSR models in a system that may not be fully represented by a 1-D CSR model. Here we present results from this experiment and compare to initial simulations of CSR in the magnetic compression chicane of the machine. Finally, we touch upon the possibility for CSR induced microbunching gain in the magnetic compression chicane, and show that parameters in the machine are such that it should be thoroughly damped.

  5. Single spike operation in SPARC SASE-FEL

    Energy Technology Data Exchange (ETDEWEB)

    Boscolo, M. [INFN/LNF, Via Enrico Fermi 40, 00044 Frascati, Roma (Italy)], E-mail: Manuela.Boscolo@lnf.infn.it; Ferrario, M. [INFN/LNF, Via Enrico Fermi 40, 00044 Frascati, Roma (Italy); Boscolo, I.; Castelli, F.; Cialdi, S.; Petrillo, V. [University of Milano, Via Celoria 16, 20133 Milano (Italy); Bonifacio, R. [CBPF, Rio de Janeiro (Brazil); Palumbo, L. [La Sapienza, Roma (Italy); Serafini, L. [INFN/MI, Via Celoria 16, 20133 Milano (Italy)

    2008-08-01

    We describe in this paper a possible experiment with the existing SPARC photoinjector to test the generation of sub-picosecond high brightness electron bunches able to produce single spike radiation pulses at 500 nm in the SPARC self-amplified spontaneous emission free-electron laser (SASE-FEL). The main purpose of the experiment will be the production of short electron bunches as long as few SASE cooperation lengths and to validate scaling laws to foresee operation at shorter wavelength in the future operation with SPARX. The basic physics, the experimental parameters and 3D simulations are discussed.

  6. Quantum limited noise figure operation of high gain erbium doped fiber amplifiers

    DEFF Research Database (Denmark)

    Lumholt, Ole; Povlsen, Jørn Hedegaard; Schüsler, Kim;

    1993-01-01

    powers below -5 dBm, and an improvement of 2.0 dB with a simultaneous gain increase of 4.1 dB is measured relative to a gain-optimized fiber. The optimum isolator location is evaluated for different pump and signal wavelengths in both an Al/Er-doped and a Ge/Er-doped fiber, for pump and signal power......Performance improvements obtained by using an isolator as an amplified-spontaneous-emission-suppressing component within erbium-doped fibers are evaluated. Simultaneous high-gain and near-quantum-limited noise figures can be obtained by such a scheme. The noise figure improves for input signal...... variations and different pump configurations. In all cases the optimum isolator position lies within 10-37% of the total fiber length for small signal operation...

  7. Millimeter Wave Fabry-Perot Resonator Antenna Fed by CPW with High Gain and Broadband

    Directory of Open Access Journals (Sweden)

    Xue-Xia Yang

    2016-01-01

    Full Text Available A novel millimeter wave coplanar waveguide (CPW fed Fabry-Perot (F-P antenna with high gain, broad bandwidth, and low profile is reported. The partially reflective surface (PRS and the ground form the F-P resonator cavity, which is filled with the same dielectric substrate. A dual rhombic slot loop on the ground acts as the primary feeding antenna, which is fed by the CPW and has broad bandwidth. In order to improve the antenna gain, metal vias are inserted surrounding the F-P cavity. A CPW-to-microstrip transition is designed to measure the performances of the antenna and extend the applications. The measured impedance bandwidth of S11 less than −10 dB is from 34 to 37.7 GHz (10.5%, and the gain is 15.4 dBi at the center frequency of 35 GHz with a 3 dB gain bandwidth of 7.1%. This performance of the antenna shows a tradeoff among gain, bandwidth, and profile.

  8. Design of anisotropic focusing metasurface and its application for high-gain lens antenna

    Science.gov (United States)

    Guo, Wenlong; Wang, Guangming; Li, Haipeng; Li, Tangjing; Ge, Qichao; Zhuang, Yaqiang

    2017-03-01

    In this paper, we propose an anisotropic focusing metasurface with function of focusing orthogonally polarized waves in refraction and reflection modes respectively. By employing four layered metallic patches spaced by triple layered dielectric spacers, an anisotropic phase element is designed with capability of transmitting x-polarized waves but reflecting y-polarized beams efficiently. Composed of 21 × 21 cells and with size of 105 × 105 mm2, a focusing metasurface operating at 15 GHz is designed with the same focal length of 30 mm for x- and y-polarized waves. By setting a patch antenna at the focal point, the metasurface sample is employed to enhance gain of the radiation source. For verification, the metasurface sample is fabricated and measured. The antenna performance, in terms of realized boresight gain and operating bandwidth under x- and y-polarized waves illumination, is presented. Results show that the 1 dB gain bandwidths are respectively from 14.7 to 15.3 GHz and 14.7 to 15.2 GHz, and the gain are enhanced by 14.1 dB, 15.1 dB in refraction and reflection modes when the metasurface is impinged by x- and y-polarized spherical waves. The proposed anisotropic metasurface may afford an alternative for designing anisotropic planar lens or high-gain antenna.

  9. Operation of the European FEL at ELETTRA Below 190 nm A Tunable Laser Source for VUV Spectroscopy

    CERN Document Server

    De Ninno, G; Curbis, F; Danailov, M B; Diviacco, B; Marsi, M; Trovò, M

    2005-01-01

    Thanks to an intensive technological effort in the framework of the EEC Contract HPRI CT-2001-50025 (EUFELE), the European FEL at ELETTRA was able to break the previous record for the shortest wavelength of an FEL oscillator. Novel solutions were adopted for multilayer mirrors to allow FEL operation in the wavelength region between 160 and 190 nm, which is one of the main targets of the project. The characteristics of the FEL pulses measured at 176 nm (spectral profiles, high intensity, meV bandpass, MHz repetition rate) make it a competitive light source for spectroscopy, in particular for fluorescence studies in the VUV spectral range. Proof of principle experiments have been performed on different types of silica glasses, yielding information on the mechanisms of light absorption in this material.

  10. Cat (Fel d 1) and dog (Can f 1) allergen levels in cars, dwellings and schools.

    Science.gov (United States)

    Niesler, A; Ścigała, G; Łudzeń-Izbińska, B

    Pets are an important source of indoor allergens. The aim of the study was to compare cat and dog allergen levels in cars, schools and homes. The study was carried out in 17 cars, 14 classrooms and 19 dwellings located in the highly industrialized and urbanized region of Poland. Dust and air samples were analyzed for Fel d 1 and Can f 1 using a double monoclonal ELISA assay. The highest amounts of cat and dog allergens (Fel d 1: 1169 μg/g; Can f 1: 277 μg/g) were found in dwellings with pets. Allergen concentrations were correlated with the number of animals kept at home. Although concentrations on automobile seats were lower, Fel d 1 levels exceeded 8 μg/g in 23.5 % of cars and high levels of Can f 1 (>10 μg/g) were found in 17.6 % of cars. The study revealed that cars of pet owners may be reservoirs of cat and dog allergens even when animals are not transported in them. In schools, concentrations of pet allergens did not reach high levels, but the moderate levels of Fel d 1 (≥1-8 μg/g) and Can f 1 (≥2-10 μg/g) were detected in 42.9 and 7.1 % of the investigated classrooms. Concentrations of cat and dog allergen in schools were higher than in homes without pets. While airborne Fel d 1 and Can f 1 levels were found low, residential allergen concentrations in settled dust and air were correlated. The study results suggest that classrooms and cars of pet owners may be important sites of exposure to cat and dog allergens, though the highest concentrations of Fel d 1 and Can f 1 are found in homes of pet owners.

  11. The magnetic and diagnostics systems for the Advanced Photon Source self-amplified spontaneously emitting FEL

    CERN Document Server

    Gluskin, E; Dejus, Roger J; Hartog, P K D; Deriy, B N; Makarov, O A; Milton, S V; Moog, E R; Ogurtsov, V I; Trakhtenberg, E; Robinson, K E; Vasserman, I B; Vinokurov, N A; Xu, S

    1999-01-01

    A self-amplified spontaneously emitting (SASE) free-electron laser (FEL) for the visible-to-ultraviolet spectral range is under construction at the Advanced Photon Source at Argonne National Laboratory. The amplifier part of the FEL consists of twelve identical 2.7-m-long sections. Each section includes a 2.4-m-long, 33-mm-period hybrid undulator, a quadrupole lens, and a set of electron beam and radiation diagnostics equipment. The undulators will operate at a fixed magnetic gap (approx. 9.3 mm) with K=3.1. The electron beam position will be monitored using capacitive beam position monitors, YAG scintillators with imaging optics, and secondary emission detectors. The spatial distribution of the photon beam will be monitored by position sensitive detectors equipped with narrow-band filters. A high-resolution spectrograph will be used to observe the spectral distribution of the FEL radiation.

  12. IR-FEL-induced green fluorescence protein (GFP) gene transfer into plant cell

    CERN Document Server

    Awazu, K; Tamiya, E

    2002-01-01

    A Free Electron Laser (FEL) holds potential for various biotechnological applications due to its characteristics such as flexible wavelength tunability, short pulse and high peak power. We could successfully introduce the Green Fluorescent Protein (GFP) gene into tobacco BY2 cells by IR-FEL laser irradiation. The irradiated area of the solution containing BY2 cells and plasmid was about 0.1 mm sup 2. FEL irradiation at a wavelength of 5.75 and 6.1 mu m, targeting absorption by the ester bond of the lipid and the amide I bond of the protein, respectively, was shown to cause the introduction of the fluorescent dye into the cell. On the other hand, transient expression of the GFP fluorescence was only observed after irradiation at 5.75 mu m. The maximum transfer efficiency was about 0.5%.

  13. High gain GaAs photoconductive semiconductor switches for ground penetrating radar

    Energy Technology Data Exchange (ETDEWEB)

    Loubriel, G.M.; Aurand, J.F.; Buttram, M.T.; Zutavern, F.J.; Helgeson, W.D.; O`Malley, M.W. [Sandia National Labs., Albuquerque, NM (United States); Brown, D.J. [Ktech Corp., Albuquerque, NM (United States)

    1996-07-01

    The ability of high gain GaAs Photoconductive Semiconductor switches (PCSS) to deliver high peak power, fast risetime pulses when triggered with small laser diode arrays makes them suitable for their use in radars that rely on fast impulses. This type of direct time domain radar is uniquely suited for observation of large structures under ground because it can operate at low frequencies and at high average power. This paper will summarize the state-of-the-art in high gain GaAs switches and discuss their use in a radar transmitter. We will also present a summary of an analysis of the effectiveness of different pulser geometries that result in transmitted pulses with varying frequency content. To this end we developed a simple model that includes transmit and receive antenna response, attenuation and dispersion of the electromagnetic impulses by the soil, and target cross sections.

  14. The Nonlinear Theory of FEL

    CERN Document Server

    Badikyan, Karen

    2016-01-01

    The nonlinear theory of relyativistic strophotron is developed. Classical equations of motion are averaged over fast oscillations. The slow motion phase and saturation parameter are found different from usual undulator oscillation parameters. In the strong field approximation the analytical expression of gain is found on higher harmonics of main resonance frequency.

  15. Femtosecond Ti:sapphire cryogenic amplifier with high gain and MHz repetition rate.

    Science.gov (United States)

    Dantan, Aurélien; Laurat, Julien; Ourjoumtsev, Alexei; Tualle-Brouri, Rosa; Grangier, Philippe

    2007-07-09

    We demonstrate high gain amplification of 160-femtosecond pulses in a compact double-pass cryogenic Ti:sapphire amplifier. The setup involves a negative GVD mirrors recompression stage, and operates with a repetition rate between 0.2 and 4 MHz with a continuous pump laser. Amplification factors as high as 17 and 320 nJ Fourier-limited pulses are obtained at a 800 kHz repetition rate.

  16. Optimization and Modeling of the Accelerator for the FERMI @ Elettra FEL

    CERN Document Server

    Di Mitri, S; Emma, P; Huang, Z; Wang, D; Wu, J; Zholents, A; Craievich, P

    2005-01-01

    Design studies are in progress to use the existing FERMI@Elettra linear accelerator for a seeded harmonic cascade FEL facility [1]. This accelerator will be upgraded to 1.2 GeV and equipped with a low-emittance RF photocathode gun, laser heater, two bunch compressors, and beam delivery system. We present an optimization study for all the components following the gun, with the aim of achieving high peak current, low energy spread and low emittance electron beam necessary for the FEL. Various operational scenarios are discussed. Results of accelerator simulations including effects of space charge, coherent synchrotron radiation, and wakefields are reported.

  17. The 18-kDa form of cat allergen Felis domesticus 1 (Fel d 1) is associated with gelatin- and fibronectin-degrading activity

    DEFF Research Database (Denmark)

    Ring, P C; Wan, H; Schou, C;

    2000-01-01

    , allergens that degrade proteins have been suggested to facilitate allergen presentation by increasing parallelular permeability of airways epithelium. However, little information exists to indicate whether Fel d 1 has other activities relevant to allergic responses. OBJECTIVE: To study whether Fel d 1......, suggest that their inhibitory action may be due to noncatalytic site interactions. Alternatively, highly purified Fel d 1 may be associated with an active contaminant, although none were found. CONCLUSION: These results suggest that Fel d 1 is another example of a domestic allergen which is associated...... with enzyme activity. It remains to be established whether the activity resides in Fel d 1 itself or in an unresolved, and possibly related, protein....

  18. Novel High-Gain Circularly Polarized Lens Antenna Using Single-Layer Transmissive Metasurface

    Science.gov (United States)

    Zhuang, Yaqiang; Wang, Guangming; Li, Haipeng; Guo, Wenlong

    2017-03-01

    A high-gain lens antenna employing single-layer focusing metasurface (MS) is proposed in this article. The single-layer element achieves a 360° transmission phase range with a transmission magnitude better than 0.9. And the focusing MS consists of 169 elements was designed by utilizing the technique of varying rotation angle to compensate the phase delay. Thus, a lens antenna is constructed by placing a circularly polarized (CP) patch antenna at the focal point of the MS. The fabricated lens antenna demonstrates a good performance of 4.6 % 3-dB axial ratio bandwidth and 6 % 1-dB gain bandwidth, respectively. Moreover, the maximum gain is 18.3 dBic at 15 GHz, which is enhanced by 11.4 dBic compared with the patch antenna. Due to the single-layer structure, this design has a low profile and easy fabrication process compared with the conventional designs, making it an attractive alternative to compact high-gain antenna.

  19. Whey protein reduces early life weight gain in mice fed a high-fat diet

    DEFF Research Database (Denmark)

    Tranberg, Britt; Hellgren, Lars; Lykkesfeldt, Jens;

    2013-01-01

    An increasing number of studies indicate that dairy products, including whey protein, alleviate several disorders of the metabolic syndrome. Here, we investigated the effects of whey protein isolate (whey) in mice fed a high-fat diet hypothesising that the metabolic effects of whey would...... be associated with changes in the gut microbiota composition. Five-week-old male C57BL/6 mice were fed a high-fat diet ad libitum for 14 weeks with the protein source being either whey or casein. Faeces were collected at week 0, 7, and 13 and the fecal microbiota was analysed by denaturing gradient gel...... reduced weight gain in young C57BL/6 mice fed a high-fat diet compared to casein. Although the effect on weight gain ceased, whey alleviated glucose intolerance, improved insulin sensitivity and reduced plasma cholesterol. These findings could not be explained by changes in food intake or gut microbiota...

  20. Calculation of the gain of a self-launched high-density free-electron laser by using a newly confirmed law stated as the impossibility of free-electron net stimulated radiation and modal analysis based on plasma hydrodynamics

    Science.gov (United States)

    Kim, S. H.

    2017-05-01

    We reason based on the concept of stationary plasma fluctuation that in the free-electron laser (FEL), the Coulomb force from the surrounding electrons and the Ampérian force arising from the beam current do not disrupt the density-deviation mode driven by the laser field in cooperation with the magnetic wiggler. We adopt the synchronization principle that in the state of a stationary plasma density-wave and laser wave, all electrons arriving at the same position can emit laser photons all together only at t = NT + t o , where N is an integer and T is the laser period. We find that in the FEL, the incident laser radiation acts as a dummy field in net stimulated radiation. Using these findings and noticing a previously-recognized concept that the radiation power from an electron is given by Δ E/T, where Δ E is the amplitude of the net work done by the electron during T [1], we derive the laser gain of a self-launched FEL. The thusly derived gain is in excellent agreement with the measured gain.

  1. A differential low-voltage high gain current-mode integrated RF receiver front-end

    Science.gov (United States)

    Chunhua, Wang; Minglin, Ma; Jingru, Sun; Sichun, Du; Xiaorong, Guo; Haizhen, He

    2011-02-01

    A differential low-voltage high gain current-mode integrated RF front end for an 802.11b WLAN is proposed. It contains a differential transconductance low noise amplifier (Gm-LNA) and a differential current-mode down converted mixer. The single terminal of the Gm-LNA contains just one MOS transistor, two capacitors and two inductors. The gate-source shunt capacitors, Cx1 and Cx2, can not only reduce the effects of gate-source Cgs on resonance frequency and input-matching impedance, but they also enable the gate inductance Lg1,2 to be selected at a very small value. The current-mode mixer is composed of four switched current mirrors. Adjusting the ratio of the drain channel sizes of the switched current mirrors can increase the gain of the mixer and accordingly increase the gain of RF receiver front-end. The RF front-end operates under 1 V supply voltage. The receiver RFIC was fabricated using a chartered 0.18 μm CMOS process. The integrated RF receiver front-end has a measured power conversion gain of 17.48 dB and an input referred third-order intercept point (IIP3) of -7.02 dBm. The total noise figure is 4.5 dB and the power is only 14 mW by post-simulations.

  2. High-energy electron induced gain degradation in bipolar junction transistors

    Energy Technology Data Exchange (ETDEWEB)

    Kulkarni, S.R. [Department of PG Studies in Physics, SBMJC, Jayanagar, Bangalore 560 011 (India)]. E-mail: srinivask24@hotmail.com; Ravindra, M. [Components Division, ICG, ISRO Satellite Centre, Airport Road, Bangalore 560 017 (India); Joshi, G.R. [Components Division, ICG, ISRO Satellite Centre, Airport Road, Bangalore 560 017 (India); Damle, R. [Department of Physics, Bangalore University, Bangalore 560 056 (India)]. E-mail: damleraju@yahoo.com

    2006-09-15

    This paper describes the effect of 8 MeV electron beam on the forward current gain of space borne commercial indigenous bipolar junction transistors 2N2219A (npn), 2N3019 (npn) and 2N2905A (pnp). The devices are exposed to 8 MeV electron in the biased condition. The collector characteristics and Gummel plots are obtained as a function of accumulated dose. An excess base current model as well as Messenger-Spratt equation have been used to account for the observed gain degradation. The results indicate that 8 MeV electrons of high dose rate induce gain degradation by increasing the base current as well as decrease in collector current. The current gain degradation appears to be predominantly due to displacement damage in the bulk of the transistor. Off-line measurements of the h {sub FE} of the irradiated transistors indicate that the displacement induced defect and recombination centers do not anneal even at 150 {sup o}C.

  3. High-gain direct-drive inertial confinement fusion for the Laser Megajoule: recent progress

    Energy Technology Data Exchange (ETDEWEB)

    Canaud, B [CEA/DAM Ile-de-France, BP12, F-91680 Bruyeres-le-Chatel, Cedex (France); Garaude, F [CEA/DAM Ile-de-France, BP12, F-91680 Bruyeres-le-Chatel, Cedex (France); Ballereau, P [CEA/DAM Ile-de-France, BP12, F-91680 Bruyeres-le-Chatel, Cedex (France); Bourgade, J L [CEA/DAM Ile-de-France, BP12, F-91680 Bruyeres-le-Chatel, Cedex (France); Clique, C [CEA/DAM Ile-de-France, BP12, F-91680 Bruyeres-le-Chatel, Cedex (France); Dureau, D [CEA/DAM Ile-de-France, BP12, F-91680 Bruyeres-le-Chatel, Cedex (France); Houry, M [CEA/DAM Ile-de-France, BP12, F-91680 Bruyeres-le-Chatel, Cedex (France); Jaouen, S [CEA/DAM Ile-de-France, BP12, F-91680 Bruyeres-le-Chatel, Cedex (France); Jourdren, H [CEA/DAM Ile-de-France, BP12, F-91680 Bruyeres-le-Chatel, Cedex (France); Lecler, N [CEA/DAM Ile-de-France, BP12, F-91680 Bruyeres-le-Chatel, Cedex (France); Masse, L [CEA/DAM Ile-de-France, BP12, F-91680 Bruyeres-le-Chatel, Cedex (France); Masson, A [CEA/DAM Ile-de-France, BP12, F-91680 Bruyeres-le-Chatel, Cedex (France); Quach, R [CEA/DAM Ile-de-France, BP12, F-91680 Bruyeres-le-Chatel, Cedex (France); Piron, R [CEA/DAM Ile-de-France, BP12, F-91680 Bruyeres-le-Chatel, Cedex (France); Riz, D [CEA/DAM Ile-de-France, BP12, F-91680 Bruyeres-le-Chatel, Cedex (France); Vliet, J van der [CEA/DAM Ile-de-France, BP12, F-91680 Bruyeres-le-Chatel, Cedex (France); Temporal, M [Calle Grau, 685, Sucre (Bolivia); Delettrez, J A [Laboratory of Laser Energetics, University of Rochester, 250 East River Road, Rochester, NY 14623 (United States); McKenty, P W [Laboratory of Laser Energetics, University of Rochester, 250 East River Road, Rochester, NY 14623 (United States)

    2007-12-15

    Recent progress in high-gain direct-drive inertial confinement fusion with the laser Megajoule is reviewed. A new baseline direct-drive target design is presented which implodes with a two-cones irradiation pattern of indirect-drive beam configuration and zooming. Perturbation amplitudes and correlated growth rates of hydrodynamic instabilities in the compressed core of a directly driven inertial confinement fusion capsule are analyzed in planar and spherical geometries, with and without heat conduction, in the unsteady state regime of the deceleration. Shock propagation in heterogeneous media is addressed in the context of first shock. The neutron and photon emissions of high-gain direct-drive target are characterized. Numerical interpretations of directly driven homothetic cryogenic D{sub 2} target implosion experiments on the Omega facility are presented.

  4. High power double-scale pulses from a gain-guided double-clad fiber laser

    Science.gov (United States)

    Zhang, Haitao; Gao, Gan; Li, Qinghua; Gong, Mali

    2017-03-01

    Generation of high power double-scale pulses from a gain-guided double-clad fiber laser is experimentally demonstrated. By employing the Yb-doped 10/130 double-clad fiber as the gain medium, the laser realizes an output power of 5.1 W and pulse energy of 0.175 µJ at repetition rate of 29.14 MHz. To the best of our knowledge, this average output power is the highest among the reported double-scale pulse oscillators. The autocorrelation trace of pulses contains the short (98 fs) and long (29.5 ps) components, and the spectral bandwidth of the pulse is 27.3 nm. Such double-scale pulses are well suited for seeding the high power MOPA (master oscillator power amplifier) systems, nonlinear frequency conversion and optical coherence tomography.

  5. Growth of transverse coherence in SASE FELs

    CERN Document Server

    Kumar, V

    2000-01-01

    We introduce the correlation function between the electric field at two different points in the transverse plane as a parameter to quantify the degree of transverse coherence. We also propose a more realistic model for the initialization of the radiation in computer codes used to study SASE FELs. We make these modifications in the code TDA and use it to study the growth of transverse coherence as a function of electron beam size, beam current and transverse emittance. Our results show explicitly that the onset of full transverse coherence in SASE takes place much before the power saturates. With the more realistic model the onset of the exponential growth regime is delayed, and to get a given power from the FEL one needs a longer undulator than would be predicted by the original TDA code.

  6. Duke storage rink UV/VUV FEL: Status and prospects

    Energy Technology Data Exchange (ETDEWEB)

    Litvinenko, V.N.; Burnham, B.; Madey, J.M.J. [Duke Univ., Durham, NC (United States)] [and others

    1995-12-31

    The 1 GeV Duke storage ring was successfully commissioned with parameters exceeding initial specification. The OK-4 FEL has arrived at the Duke FEL laboratory from the Novosibirsk Institute of Nuclear Physics. The OK-4 installation and commissioning is in progress. In this paper we describe the up-to-date status of the Duke storage ring and the OK-4 FEL. The projected performance of the OK-4 UV/VUV FEL is presented based on the electron beam parameters achieved. Initial plans to operate the OK-4 UV/VUV FEL at the Duke 1 GeV storage ring are outlined. Future plans and prospects of both the OK-4 FEL and the Duke storage ring are discussed.

  7. Performance of the OK-4/Duke storage ring FEL

    CERN Document Server

    Litvinenko, V N; Pinayev, I V; Wu, Y

    2001-01-01

    In this paper, we report measured parameters of the OK-4 FEL driven by the Duke storage ring. The OK-4 FEL was being operated continuously for 2 yr in the broad wavelength range for user applications utilising spontaneous and coherent XUV and UV radiation as well as Compton back-scattered gamma-rays in the range of 2-58 MeV. During this time, the OK-4 FEL lased in the range from 193.7 to about 730 nm using five sets of mirrors and electron beam energies from 240 to 800 MeV. Our predictions for the OK-4 FEL are compared with measured performance, both in the CW and in the giant pulse mode. We discuss our future plans for the OK-4 FEL operation as well as the construction and commissioning of the OK-5 FEL with helical wigglers.

  8. Commissioning of the accelerator-recuperator for the FEL at the Siberian Center for Photochemical Research.

    Science.gov (United States)

    Antokhin, E I; Akberdin, R R; Bokov, M A; Bolotin, V P; Deichuli, O I; Dementyev, E N; Dubrovin, A N; Dovgenko, B A; Evtushenko, Yu A; Gavrilov, N G; Gorniker, E I; Kairan, D A; Kholopov, M A; Kiselev, O B; Kolmogorov, V V; Kolobanov, E I; Kondakov, A A; Kondakova, N L; Krutikhin, S A; Kubarev, V V; Kulipanov, G N; Kuper, E A; Kuptsov, I V; Kurkin, G Ya; Leontyevskaya, L G; Loskutov, V Yu; Medvedev, L E; Medvedko, A S; Miginsky, S V; Mironenko, L A; Oreshkov, A D; Ovchar, V K; Petrov, S P; Petrov, V M; Popik, V M; Rotov, E A; Salikova, T V; Sedlyarov, I K; Scheglov, M A; Serednyakov, S S; Shevchenko, O A; Shubin, E I; Skrinsky, A N; Tararyshkin, S V; Timoshina, L A; Tribendis, A G; Veremeenko, V F; Vinokurov, N A; Vobly, P D; Zagorodnikov, E I; Zaigrayeva, N S

    2003-09-01

    A 100 MeV eight-turn accelerator-recuperator intended to drive a high-power infrared free-electron laser (FEL) is currently under construction in Novosibirsk. The first stage of the machine includes a one-turn accelerator-recuperator that contains a full-scale RF system. It was commissioned successfully in June 2002.

  9. An Electron Bunch Compressor Based on an FEL Interaction in the Far Infra Red

    OpenAIRE

    Gaupp, Andreas

    2013-01-01

    In this note an electron bunch compressor is proposed based on FEL type interaction of the electron bunch with far infrared (FIR) radiation. This mechanism maintains phase space density and thus requires a high quality electron beam to produce bunches of the length of a few ten micrometer.

  10. Performance of the SASE amplifier of the TEU-FEL project

    NARCIS (Netherlands)

    Ernst, G.J.; Goldstein, J.C.

    1992-01-01

    The free-electron laser of the TEU-FEL project of the University of Twente will be driven by a photoinjector followed by a racetrack microtron. The injector, which is now under construction, will provide a very high-brightness electron beam with an energy of about 6 MeV. In phase I of the project, e

  11. Characterization of X-Ray FEL Radiation

    CERN Document Server

    Bionta, R M

    2005-01-01

    The Linac Coherent Light Source (LCLS) will generate X-FEL radiation with photon energies tunable from 826 eV to 8261 eV. It is expected that elements of the Linac and Undulator systems will require careful tuning in order to achieve lasing at these wavelengths. The tuning will be guided by measurements of both the electron and photon beam characteristics. The primary characteristics of the photon beam that can be measured are the total pulse energy, its spatial shape, and spectra. During the initial commissioning phase, these measurements will be performed on the spontaneous radiation emitted by one or more undulators as they are added to the LCLS. The next phase of commissioning requires detecting and measuring faint (unsaturated) FEL radiation for the purposes of tuning the Linac and undulator to achieve saturation. During the last phases of commissioning these measurements will have to be performed on the saturated FEL beam. The photon measurements are complicated by the large dynamic range required, the ...

  12. A proposed visible FEL Facility at Boeing

    Energy Technology Data Exchange (ETDEWEB)

    Dowell, D.H.; Adamski, J.L.; Hayward, T.D. [Boeing Defense & Space Group, Seattle, WA (United States)] [and others

    1995-12-31

    A 1-kW average power, visible wavelength FEL is described, based on a 120-MeV, 0.1. A macropulse average current linac operating at a duty factor of 0. 6% and having average beam power of 70 kW. The accelerator will employ a demonstrated photoinjector, 18-MeV, 433-MHz linac as an injector, followed by a 1300-MHz longitudinal phase space {open_quotes} linearizer,{close_quotes} a magnetic buncher chicane, and seven 1300-MHz, pulsed traveling wave linac sections. The magnets used to transport the beam from the linac to the FEL centerline, the 5-m THUNDER wiggler, and the optical resonator will be reclaimed from previous FEL demonstration experiments. We expect to attain pulse lengths of 7 ps for 3.5 nC, with minimal distortion of the pulse profile and normalized rms emittance of 7.5 {+-} 2.5 {pi} mm-mr. FELEX projects a laser conversion efficiency of 4.3 %, yielding average output of 3 kW.

  13. Proposals for gain cascading in single-pass of a free-electron laser oscillator

    CERN Document Server

    Deng, Haixiao

    2016-01-01

    The low-gain free electron laser (FEL) oscillators are cutting-edge tools to produce fully coherent radiation in the spectral region from terahertz to vacuum ultraviolet, and potentially in hard X-ray. In this paper, it is proposed to utilize an oscillator with multi-stage undulators to enable gain cascading in a single pass of FEL oscillator, making it possible to achieve shorter pulses and higher power than classical FEL oscillators. Theoretical analysis and numerical simulations in the infrared and hard X-ray regions show that our proposal is effective and practically simple to implement.

  14. A Vehicle Haptic Steering by Wire System Based on High Gain GPI Observers

    Directory of Open Access Journals (Sweden)

    A. Rodriguez-Angeles

    2014-01-01

    Full Text Available A vehicle steering by wire (SBW haptic system based on high gain generalized proportional integral (GPI observers is introduced. The observers are considered for the estimation of dynamic perturbations that are present at the tire and steering wheel. To ensure efficient tracking between the commanded steering wheel angle and the tire orientation angle, the estimated perturbations are on line canceled. As to provide a haptic interface with the driver, the estimated dynamic effects at the steering rack are fed back to the steering wheel, yielding a master-slave haptic system with bilateral communication. For implementation purposes few sensors and minimum knowledge of the dynamic model are required, which is a major advantage compared to other approaches. Only position tracking errors are fed back, while all other signals are estimated by the high gain GPI observers. The scheme is robust to uncertainty on the input gain and cancels dynamic perturbation effects such as friction and aligning forces on the tire. Experimental results are presented on a prototype platform.

  15. Design of high-gain, wideband antenna using microwave hyperbolic metasurface

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yan, E-mail: yan.z@chula.ac.th [International School of Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330 (Thailand)

    2016-05-15

    In this work, we apply hyperbolic metasurfaces (HMSs) to design high-gain and wideband antennas. It is shown that HMSs formed by a single layer of split-ring resonators (SRRs) can be excited to generate highly directive beams. In particular, we suggest two types of the SRR-HMS: a capacitively loaded SRR (CLSRR)-HMS and a substrate-backed double SRR (DSRR)-HMS. Both configurations ensure that the periodicity of the structures is sufficiently small for satisfying the effective medium theory. For the antenna design, we propose a two-layer-stacked configuration for the 2.4 GHz frequency band based on the DSRR-HMS excited by a folded monopole. Measurement results confirm numerical simulations and demonstrate that an antenna gain of more than 5 dBi can be obtained for the frequency range of 2.1 - 2.6 GHz, with a maximum gain of 7.8 dBi at 2.4 GHz.

  16. Olanzapine-high potency antipsychotic drug inducing significant weight gain: A case report

    Directory of Open Access Journals (Sweden)

    Marić Nađa P.

    2008-01-01

    Full Text Available INTRODUCTION Olanzapine is a second generation antipsychotic (SGA with a high level of therapeutic effectiveness in schizophrenia and other psychotic disorders. Along with the positive therapeutic effects, an increase of the body weight frequently occurs. According to the literature, the average weight gain is about 6-7 kg during several months of treatment. This could be valued as a moderate weight increase. CASE OUTLINE This article presents a case of a young female with schizophrenia, without clinical improvement with several antipsychotics (clozapine, risperidone, haloperidol and with the occurrence of significant neurological side effects. The treatment started with olanzapine (baseline was associated with good initial response (PANSS reduction 20% in the first two weeks and the improvement was maintained further on (PANSS reduction 50% after 16 weeks. Significant increase (20 kg, 40% in weight appeared during the following 16 weeks (BMI at baseline 17.9 kg/m2; BMI 16 weeks later 25.1 kg/m2. CONCLUSION High effectiveness of olanzapine in schizophrenia symptoms reduction was accompanied by a significant weight gain. However, this drug leads to impaired glucoregulation, dyslipidaemia etc. It also increases the risk of diabetes and cardio-vascular diseases, i.e. the main causes of mortality in schizophrenia after a suicide. Therefore, clinicians are suggested to focus on possible predictors of weight gain during olanzapine therapy, and act accordingly in order to prevent serious health consequences.

  17. A bootstrapped, low-noise, and high-gain photodetector for shot noise measurement.

    Science.gov (United States)

    Zhou, Haijun; Yang, Wenhai; Li, Zhixiu; Li, Xuefeng; Zheng, Yaohui

    2014-01-01

    We presented a low-noise, high-gain photodetector based on the bootstrap structure and the L-C (inductance and capacitance) combination. Electronic characteristics of the photodetector, including electronic noise, gain and frequency response, and dynamic range, were verified through a single-frequency Nd:YVO4 laser at 1064 nm with coherent output. The measured shot noise of 50 μW laser was 13 dB above the electronic noise at the analysis frequency of 2 MHz, and 10 dB at 3 MHz. And a maximum clearance of 28 dB at 2 MHz was achieved when 1.52 mW laser was illuminated. In addition, the photodetector showed excellent linearities for both DC and AC amplifications in the laser power range between 12.5 μW and 1.52 mW.

  18. High-gain multipassed Yb:YAG amplifier for ultrashort pulse laser

    Science.gov (United States)

    Vetrovec, John; Copeland, Drew A.; Litt, Amardeep S.; Du, Detao

    2016-05-01

    We report on a Yb:YAG laser amplifier for ultrashort pulse applications at kW-class average power. The laser uses two large-aperture, disk-type gain elements fabricated from composite ceramic YAG material, and a multi-pass extraction architecture to obtain high gain in a chirped-pulse amplification system. The disks are edge-pumped, thus allowing for reduced doping of the host material with laser ions, which translates to lower lasing threshold and lower heat dissipation in the Yb:YAG material. The latter makes it possible to amplify a near diffraction-limited seed without significant thermo-optical distortions. This work presents results of testing the laser amplifier with relay optics and passive polarization switching configured for energy extraction with up to 40 passes through the disks. Applications for the ultrashort pulse laser amplifier include producing a laser-induced plasma channel, laser material ablation, and laser acceleration of atomic particles.

  19. Inkjet printing of novel wideband and high gain antennas on low-cost paper substrate

    KAUST Repository

    Cook, Benjamin Stassen

    2012-09-01

    A complete characterization of the inkjet printing process using metallic nanoparticle inks on a paper substrate for microwave frequencies up to 12.5 GHz as well as its application to low-cost, high gain and wideband antenna design are demonstrated in this work. Laser and heat sintering of metallic nanoparticles are compared on paper substrate for the first time which demonstrate immense cost and time benefits of laser sintering. The antennas fabricated using the characterized process include a Vivaldi for the UWB band which exhibits a significantly higher gain of up to 8 dBi as compared to the currently published inkjet printed antennas, and a novel slow-wave log periodic dipole array which employs a new miniaturization technique to show 20% width reduction. © 1963-2012 IEEE.

  20. High gain broadband amplification of ultraviolet pulses in optical parametric chirped pulse amplifier.

    Science.gov (United States)

    Wnuk, Paweł; Stepanenko, Yuriy; Radzewicz, Czesław

    2010-04-12

    We report on a high gain amplification of broadband ultraviolet femtosecond pulses in an optical parametric chirped pulse amplifier. Broadband ultraviolet seed pulses were obtained by an achromatic frequency doubling of the output from a femtosecond Ti:Sapphire oscillator. Stretched seed pulses were amplified in a multipass parametric amplifier with a single BBO crystal pumped by a ns frequency quadrupled Nd:YAG laser. A noncollinear configuration was used for a broadband amplification. The total (after compression) amplification of 2.510(5) was achieved, with compressed pulse energy of 30 microJ and pulse duration of 24 fs. We found that the measured gain was limited by thermal effects induced by the absorption of the pump laser by color centers created in the BBO crystal.

  1. Interpolating gain-scheduled H∞ loop shaping design for high speed ball screw feed drives.

    Science.gov (United States)

    Dong, Liang; Tang, WenCheng; Bao, DaFei

    2015-03-01

    This paper presents a method to design servo controllers for flexible ball screw drives with time-varying dynamics, which are mainly due to the time-varying table position and the workpiece mass. A gain-scheduled H∞ loop shaping controller is designed to achieve high tracking performance against the dynamic variations. H∞ loop shaping design procedure incorporates open loop shaping by a set of compensators to obtain performance/robust stability tradeoffs. The interpolating gain-scheduled controller is obtained by interpolating the state space model of the linear time-invariant (LTI) controllers estimated for fixed values of the scheduling parameters and a linear least squares problem can be solved. The proposed controller has been compared with P/PI with velocity and acceleration feedforward and adaptive backstepping sliding mode control experimentally. The experimental results indicate that the tracking performance has been improved and the robustness for time-varying dynamics has been achieved with the proposed scheme.

  2. A bootstrapped, low-noise, and high-gain photodetector for shot noise measurement

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Haijun; Yang, Wenhai; Li, Zhixiu; Li, Xuefeng; Zheng, Yaohui, E-mail: yhzheng@sxu.edu.cn [State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006 (China)

    2014-01-15

    We presented a low-noise, high-gain photodetector based on the bootstrap structure and the L-C (inductance and capacitance) combination. Electronic characteristics of the photodetector, including electronic noise, gain and frequency response, and dynamic range, were verified through a single-frequency Nd:YVO{sub 4} laser at 1064 nm with coherent output. The measured shot noise of 50 μW laser was 13 dB above the electronic noise at the analysis frequency of 2 MHz, and 10 dB at 3 MHz. And a maximum clearance of 28 dB at 2 MHz was achieved when 1.52 mW laser was illuminated. In addition, the photodetector showed excellent linearities for both DC and AC amplifications in the laser power range between 12.5 μW and 1.52 mW.

  3. Modeling and Analysis of Transformerless High Gain Buck-boost DC-DC Converters

    Directory of Open Access Journals (Sweden)

    Vu Tran

    2014-12-01

    Full Text Available This paper proposes a transfomerless switched capacitor buck boost converter model, which provides higher voltage gain and higher efficiency when compared to the conventional buck boost converter. The averaged model based on state-space description is analyzed in the paper. The simulation results are presented to confirm the capability of the converter to generate high voltage ratios. The comparison between the proposed model and the traditional model is also provided to reveal the improvement. The proposed converter is suitable for for a wide application which requires high step-up DC-DC converters such as DC micro-grids and solar electrical energy.

  4. A new Design for an High Gain Vacuum Photomultiplier: The Silicon PMT Used as Amplification Stage

    Energy Technology Data Exchange (ETDEWEB)

    Barbarino, Giancarlo [Universita di Napoli ' Federico II' , Dipartimento di Scienze fisiche, via Cintia 80126 Napoli (Italy); Asmundis, Riccardo de; De Rosa, Gianfranca [Istituto Nazionale di fisica Nucleare, sezione di Napoli, Complesso di Monte S. Angelo Ed. 6, via Cintia 80126 Napoli (Italy); Fiorillo, Giuliana; Russo, Stefano [Universita di Napoli ' Federico II' , Dipartimento di Scienze fisiche, via Cintia 80126 Napoli (Italy)

    2009-12-15

    Photons detection will continue to be a channel of great interest in the High Energy Physics and Astroparticle Physics fields for medium and big scale experiments in the next future. Thus, new solutions for photon detectors, that overcome the current limits of classical photomultipliers, are welcomed. We propose an innovative design for a hybrid, modern, high gain Vacuum Silicon Photomultiplier Tube (VSiPMT) which is boosted by the recent Geiger-mode avalanche silicon photodiode (G-APD) for which a massive production is today available.

  5. A feasibility study of TAC IR-FEL project

    Energy Technology Data Exchange (ETDEWEB)

    Aksakal, Huesnue, E-mail: aksakal@cern.c [Nigde University, Department of Physics, Faculty of Letter and Science, 51240 Nigde (Turkey); Arikan, Ertan [Nigde University, Department of Physics, Faculty of Letter and Science, 51240 Nigde (Turkey)

    2010-08-21

    We have performed preliminary simulation of amplifier mode operation of Turkish accelerator complex (TAC) infrared free electron laser (IR-FEL) facility which is designed to operate in oscillator mode. FEL power values of amplifier mode are explored using 3D SIMPLEX 1.3 (X-ray FEL Practical Simulator) simulation code and it is argued that the same or higher amount of power of TAC IR-FEL planing to obtain in the oscillator mode, could be obtained in the amplifier mode, using same undulator and electron beam parameters with a small modification.

  6. Tapering studies for Terawatt level X-ray FELs with a superconducting undulator

    CERN Document Server

    Emma, Claudio; Emma, Paul; Huang, Zhirong; Pellegrini, Claudio

    2015-01-01

    We study the tapering optimization scheme for a short period, less than two cm, superconducting undulator, and show that it can generate 4 keV X-ray pulses with peak power in excess of 1 terawatt, using LCLS electron beam parameters. We study the e?ect of undulator module length relative to the FEL gain length for continous and step-wise taper pro?les. For the optimal section length of 1.5m we study the evolution of the FEL process for two di?erent superconducting technologies NbTi and Nb3Sn. We discuss the major factors limiting the maximum output power, particle detrapping around the saturation location and time dependent detrapping due to generation and ampli?cation of sideband modes.

  7. Lean rats gained more body weight from a high-fructooligosaccharide diet.

    Science.gov (United States)

    Li, Shaoting; Yingyi, Gu; Chen, Long; Lijuan, Gao; Ou, Shiyi; Peng, Xichun

    2015-07-01

    Fructooligosaccharides (FOS) are believed to be beneficial to the host growth and its gut health. This article is intended to investigate the different influences of a high-fructooligosaccharide (FOS) diet on the growth and gut microbiota of lean and obese rats. Diet-induced lean and obese rats were fed a high-FOS diet for 8 weeks. Rats' body weight (BW) and feed intake were recorded weekly, and their gut microbiota was analyzed by 16S rDNA sequencing. The results showed that the lean rats gained more BW than the obese ones from the high-FOS diet. In the meanwhile, the gut microbiota in both lean and obese rats was altered by this diet. The abundance of Bacteroidetes was increased significantly (P diet. In conclusion, this study first reported that the lean rats gained more body weight from a high-FOS diet than the obese ones, and the increase of Bacteroidetes might help rats harvest more energy from the high-FOS diet.

  8. Effects of high CO2 levels on dynamic photosynthesis: carbon gain, mechanisms, and environmental interactions.

    Science.gov (United States)

    Tomimatsu, Hajime; Tang, Yanhong

    2016-05-01

    Understanding the photosynthetic responses of terrestrial plants to environments with high levels of CO2 is essential to address the ecological effects of elevated atmospheric CO2. Most photosynthetic models used for global carbon issues are based on steady-state photosynthesis, whereby photosynthesis is measured under constant environmental conditions; however, terrestrial plant photosynthesis under natural conditions is highly dynamic, and photosynthetic rates change in response to rapid changes in environmental factors. To predict future contributions of photosynthesis to the global carbon cycle, it is necessary to understand the dynamic nature of photosynthesis in relation to high CO2 levels. In this review, we summarize the current body of knowledge on the photosynthetic response to changes in light intensity under experimentally elevated CO2 conditions. We found that short-term exposure to high CO2 enhances photosynthetic rate, reduces photosynthetic induction time, and reduces post-illumination CO2 burst, resulting in increased leaf carbon gain during dynamic photosynthesis. However, long-term exposure to high CO2 during plant growth has varying effects on dynamic photosynthesis. High levels of CO2 increase the carbon gain in photosynthetic induction in some species, but have no significant effects in other species. Some studies have shown that high CO2 levels reduce the biochemical limitation on RuBP regeneration and Rubisco activation during photosynthetic induction, whereas the effects of high levels of CO2 on stomatal conductance differ among species. Few studies have examined the influence of environmental factors on effects of high levels of CO2 on dynamic photosynthesis. We identified several knowledge gaps that should be addressed to aid future predictions of photosynthesis in high-CO2 environments.

  9. Analysis of the Optimum Gain of a High-Pass L-Matching Network for Rectennas

    Directory of Open Access Journals (Sweden)

    Manel Gasulla

    2017-07-01

    Full Text Available Rectennas, which mainly consist of an antenna, matching network, and rectifier, are used to harvest radiofrequency energy in order to power tiny sensor nodes, e.g., the nodes of the Internet of Things. This paper demonstrates for the first time, the existence of an optimum voltage gain for high-pass L-matching networks used in rectennas by deriving an analytical expression. The optimum gain is that which leads to maximum power efficiency of the rectenna. Here, apart from the L-matching network, a Schottky single-diode rectifier was used for the rectenna, which was optimized at 868 MHz for a power range from −30 dBm to −10 dBm. As the theoretical expression depends on parameters not very well-known a priori, an accurate search of the optimum gain for each power level was performed via simulations. Experimental results show remarkable power efficiencies ranging from 16% at −30 dBm to 55% at −10 dBm, which are for almost all the tested power levels the highest published in the literature for similar designs.

  10. Analysis of the Optimum Gain of a High-Pass L-Matching Network for Rectennas.

    Science.gov (United States)

    Gasulla, Manel; Jordana, Josep; Robert, Francesc-Josep; Berenguer, Jordi

    2017-07-25

    Rectennas, which mainly consist of an antenna, matching network, and rectifier, are used to harvest radiofrequency energy in order to power tiny sensor nodes, e.g., the nodes of the Internet of Things. This paper demonstrates for the first time, the existence of an optimum voltage gain for high-pass L-matching networks used in rectennas by deriving an analytical expression. The optimum gain is that which leads to maximum power efficiency of the rectenna. Here, apart from the L-matching network, a Schottky single-diode rectifier was used for the rectenna, which was optimized at 868 MHz for a power range from -30 dBm to -10 dBm. As the theoretical expression depends on parameters not very well-known a priori, an accurate search of the optimum gain for each power level was performed via simulations. Experimental results show remarkable power efficiencies ranging from 16% at -30 dBm to 55% at -10 dBm, which are for almost all the tested power levels the highest published in the literature for similar designs.

  11. Design of High Gain and Broadband Antennas at 60 GHz for Underground Communications Systems

    Directory of Open Access Journals (Sweden)

    Yacouba Coulibaly

    2012-01-01

    Full Text Available A new broadband and high gain dielectric resonator antenna for millimeter wave is presented. The investigated antenna configuration consists of a periodic square ring frequency selective surfaces on a superstrate, an aperture-coupled scheme feed, an intermediate substrate, and a cylindrical dielectric resonator. This antenna is designed to cover the ISM frequency band at 60 GHz (57 GHz–64 GHz. It was numerically designed using CST microwave Studio simulation software package. Another prototype with a plain dielectric superstrate is also studied for comparison purposes. A bandwidth of 13.56% at the centered frequency of 61.34 GHz and a gain of 11 dB over the entire ISM band have been achieved. A maximum gain of 14.26 dB is obtained at 60 GHz. This is an enhancement of 9 dB compared to a single DRA. HFSS is used to validate our antenna designs. Good agreement between the results of the two softwares is obtained. With these performances, these antennas promise to be useful in the design of future wireless underground communication systems operating in the unlicensed 60 GHz frequency band.

  12. 3D simulations on output power fluctuation in a short bunch rf-linac FEL

    Science.gov (United States)

    Sentoku, Y.; Furukawa, H.; Mima, K.; Taguchi, T.; Kuruma, S.; Yasuda, H.; Yamanaka, C.; Nakai, S.

    1995-04-01

    A space-time dependent 3D simulation code has been developed in order to analyze the RF-linac FEL oscillator dynamics. Our simulation code employed both the transverse mode spectral method and the longitudinal finite difference method. The electron beam is modeled by a group of super particles which have a density profile in the time domain. In this model the electron beam is able to determine the energy spread and the finite emittance. This simulation code enables us to describe the transverse mode competition and the slippage effects in the resonator cavity. In this paper, a high power infrared FEL with a short bunch electron beam is investigated. The output power fluctuation with cavity desynchronism is simulated with this code. Especially, we investigated the effects of the transverse mode competition, energy spread, and the finite emittance of the electron beam on the output fluctuation. Using FELIX parameters, the FEL oscillator is simulated for 300 passes. The output power oscillates periodically in the case of single transverse mode and not in the case of multi-transverse modes. In a warm beam with multi-transverse modes, the emission is higher than that with a single mode, and the optical pulse shape is almost the after 100 passes. Furthermore, the phase space motion of the laser field is periodic and stable. As a result of the simulation, we recommend that high power infrared FEL operation should include multi-transverse modes in order to get higher emission and a more stable optical pulse.

  13. Deposition of robust multilayer mirror coatings for storage ring FEL lasing at 176nm

    Science.gov (United States)

    Günster, St.; Ristau, D.; Trovó, M.; Danailov, M.; Gatto, A.; Kaiser, N.; Sarto, F.; Piegari, A.

    2005-09-01

    Progress was achieved in the last years in the development of multilayer mirrors used in storage ring Free Electron Lasers (FEL) operating in the vacuum ultraviolet spectral range. Based on dense oxide coatings deposited by Ion Beam Sputtering, a stable lasing at 190 nm was demonstrated. The extension towards shorter wavelengths had to overcome severe problems connected to the radiation resistance and the necessary reflectivity of the resonator mirrors. In this context, radiation resistance can be considered as the ability of the mirror materials to withstand the high power laser radiation and the intense energetic background radiation generated in the synchrotron source. The bombardment with high energetic photons leads to irreversible changes and a coloration on the specimen. Reflectivity requirements can be evaluated from the tolerable losses of FEL systems. At ELETTRA FEL the resonator mirror reflectivity must be above 95 %. Evaporated fluoride multilayer mirrors provide sufficient reflectivity, but they do not exhibit an adequate radiation resistance. Pure oxide multilayers show a sufficient radiation resistance, but they cannot reach the necessary reflectivity below 190 nm. A successful approach combines evaporated fluoride multilayer stack with a dense protection layer of silicon dioxide deposited by Ion Beam Sputtering. Such mirror systems were produced reaching a reflectivity of approximately 99 % at 180 nm. Lasing in the storage ring FEL at ELETTRA was realised in the range between 176 - 179 nm. The mirror reflectivity shows only a slight degradation after lasing, which could be fully restored after the lasing experiment.

  14. Numerical modeling of thermal loading of diamond crystal in X-ray FEL oscillators

    Science.gov (United States)

    Song, Mei-Qi; Zhang, Qing-Min; Guo, Yu-Hang; Li, Kai; Deng, Hai-Xiao

    2016-04-01

    Due to high reflectivity and high resolution of X-ray pulses, diamond is one of the most popular Bragg crystals serving as the reflecting mirror and mono-chromator in the next generation of free electron lasers (FELs). The energy deposition of X-rays will result in thermal heating, and thus lattice expansion of the diamond crystal, which may degrade the performance of X-ray FELs. In this paper, the thermal loading effect of diamond crystal for X-ray FEL oscillators has been systematically studied by combined simulation with Geant4 and ANSYS, and its dependence on the environmental temperature, crystal size, X-ray pulse repetition rate and pulse energy are presented. Our results show that taking the thermal loading effects into account, X-ray FEL oscillators are still robust and promising with an optimized design. Supported by National Natural Science Foundation of China (11175240, 11205234, 11322550) and Program for Changjiang Scholars and Innovative Research Team in University (IRT1280)

  15. Broadband microwave phase shifter based on high speed cross gain modulation in quantum dot semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Chen, Yaohui; Mørk, Jesper

    2009-01-01

    We present a scheme to achieve tunable ~180 degrees microwave phase shifts at frequencies exceeding 100 GHz based on high speed cross gain modulation in quantum dot semiconductor optical amplifiers.......We present a scheme to achieve tunable ~180 degrees microwave phase shifts at frequencies exceeding 100 GHz based on high speed cross gain modulation in quantum dot semiconductor optical amplifiers....

  16. Whey protein reduces early life weight gain in mice fed a high-fat diet.

    Directory of Open Access Journals (Sweden)

    Britt Tranberg

    Full Text Available An increasing number of studies indicate that dairy products, including whey protein, alleviate several disorders of the metabolic syndrome. Here, we investigated the effects of whey protein isolate (whey in mice fed a high-fat diet hypothesising that the metabolic effects of whey would be associated with changes in the gut microbiota composition. Five-week-old male C57BL/6 mice were fed a high-fat diet ad libitum for 14 weeks with the protein source being either whey or casein. Faeces were collected at week 0, 7, and 13 and the fecal microbiota was analysed by denaturing gradient gel electrophoresis analyses of PCR-derived 16S rRNA gene (V3-region amplicons. At the end of the study, plasma samples were collected and assayed for glucose, insulin and lipids. Whey significantly reduced body weight gain during the first four weeks of the study compared with casein (P<0.001-0.05. Hereafter weight gain was similar resulting in a 15% lower final body weight in the whey group relative to casein (34.0±1.0 g vs. 40.2±1.3 g, P<0.001. Food intake was unaffected by protein source throughout the study period. Fasting insulin was lower in the whey group (P<0.01 and glucose clearance was improved after an oral glucose challenge (P<0.05. Plasma cholesterol was lowered by whey compared to casein (P<0.001. The composition of the fecal microbiota differed between high- and low-fat groups at 13 weeks (P<0.05 whereas no difference was seen between whey and casein. In conclusion, whey initially reduced weight gain in young C57BL/6 mice fed a high-fat diet compared to casein. Although the effect on weight gain ceased, whey alleviated glucose intolerance, improved insulin sensitivity and reduced plasma cholesterol. These findings could not be explained by changes in food intake or gut microbiota composition. Further studies are needed to clarify the mechanisms behind the metabolic effects of whey.

  17. Photon-activated charge domain in high-gain photoconductive switches

    Institute of Scientific and Technical Information of China (English)

    Wei Shi(施卫); Huiying Dai(戴慧莹); Xiaowei Sun(孙小卫)

    2003-01-01

    We report our experimental observation of charge domain oscillation in semi-insulating GaAs photoconductive semiconductor switches (PCSSs). The high-gain PCSS is intrinsically a photon-activated charge domain device. It is the photon-activated carriers that satisfy the requirement of charge domain formation on carrier concentration and device length product of 1012 cm-2. We also show that, because of the repeated process of domain formation, the domain travels with a compromised speed of electron saturation velocity and the speed of light. As a result, the transit time of charge domains in PCSS is much shorter than that of traditional Gunn domains.

  18. High Gain Antenna System Deployment Mechanism Integration, Characterization, and Lessons Learned

    Science.gov (United States)

    Parong, Fil; Russell, Blair; Garcen, Walter; Rose, Chris; Johnson, Chris; Huber, Craig

    2014-01-01

    The integration and deployment testing of the High Gain Antenna System for the Global Precipitation Measurement mission is summarized. The HGAS deployment mechanism is described. The gravity negation system configuration and its influence on vertical, ground-based, deployment tests are presented with test data and model predictions. A focus is made on the late discovery and resolution of a potentially mission degrading deployment interference condition. The interaction of the flight deployment mechanism, gravity negation mechanism, and use of dynamic modeling is described and lessons learned presented.

  19. Single bunch injection system for storage ring FEL using an rf photoinjector

    Science.gov (United States)

    O'Shea, P. G.; Lancaster, J. A.; Madey, J. M. J.; Sachtschale, R.; Jones, R.

    1997-05-01

    RF photoinjectors have gained acceptance as the source of choice for high-brightness electron accelerators, but have been quite expensive to build and difficult to operate. In this paper we describe the successful operation of an inexpensive, simple and reliable rf photoinjector suitable for single bunch injection into storage rings. For optimum storage ring FEL and Compton Backscatter performance, we require that the electrons be injected to specified ring rf buckets and no others. The injector-linac electron gun is a single-cell s-band rf gun with a LaB6 cathode. The gun is followed by an a-magnet momentum filter and buncher. The LaB6 cathode can be operated in a pure thermionic mode, a laser switched photoemission mode, or in a combined mode. The laser is a near-UV TEA nitrogen laser with a 600 ps pulse, and 0-50 Hz repetition rate. We routinely inject 0.1 nC bunches at 270 MeV. The ratio of charge in the primary ring bucket to that in the other buckets is better than 1000.

  20. Start-To-End Simulations of the Energy Recovery Linac Prototype FEL

    CERN Document Server

    Gerth, Christopher; Muratori, Bruno; Owen, Hywel; Thompson, Neil R

    2004-01-01

    Daresbury Laboratory is currently building an Energy Recovery Linac Prototype (ERLP) that serves as a testbed for the study of beam dynamics and accelerator technology important for the design and construction of the proposed 4th Generation Light Source (4GLS) project. Two major objectives for the ERLP are the operation of an oscillator infra-red FEL and demonstration of energy recovery from an electron bunch with an energy spread induced by the FEL. In this paper we present start-to-end simulations including the FEL of the ERLP. The beam dynamics in the high-brightness injector, which consists of a DC photocathode gun and a super-conducting booster, have been modelled using the particle tracking code ASTRA. After the main linac, in which the particles are accelerated to 35 MeV, particles have been tracked with the code ELEGANT. The 3D code GENESIS was used to model the FEL interaction with the electron beam. Different modes of operation and their impact on the design of the ERLP are discussed.

  1. Study on wavelength shortening and upgrading of the free electron laser (FEL)

    Energy Technology Data Exchange (ETDEWEB)

    Yamazaki, Tetsuo; Yamada, Kawakatsu; Sei, Norihiro; Ohgaki, Hideaki; Sugiyama, Suguru; Mikado, Tomohisa [Electrotechnical Lab., Tsukuba, Ibaraki (Japan)

    1997-02-01

    This study is a task of ``Comprehensive study`` in ``nuclear energy basic technology research``, which is promoted under cooperation of four research institutes. The Electrotechnical Laboratory conducted, in 1991 in the first period of colaboration, on successful oscillation at visible region (598 nm) as the first case in Japan, construction of small type accumulation ring NIJI-IV for FEL, successful oscillation of visible range from 595 to 488 nm by installing optical krystron with maximum frequency in the world, and successful emittance lowering of accumulation beam by wide improvement of the ring. In the optical resonator, studies on minute loss measuring technique and on recovery from mirror deterioration were promoted. In the second period started from fiscal year of 1994, studies on FEL oscillation technique in short wavelength and upgrading of FEL corresponding to a frontier area were started, to succeed an oscillation experiment at 350 nm in ultraviolet area on April, 1994. Then, studies on generation of high luminescence x-ray owing to laser Compton scattering using FEL as a future plan, on design of a new accumulation ring and on the others as well as studies on further quality improvement of electron beam and on optical resonator have been promoted. (G.K.)

  2. Numerical Simulation of HGHG Operation for the SDUV-FEL

    CERN Document Server

    Li, D G; Gu, Q; Xu, Y; Zhao, X F; Zhao, Z

    2005-01-01

    In this paper, we present the numerical simulation for HGHG operation of the Shanghai deep ultra-violet free electron laser source (SDUV-FEL). In this operation, a 264nm seed laser interacts with a 277MeV, 400A, normalized emittance 4mm.rad and local energy spread 0.1% electron beam in the first wiggler(modulator) with period 5cm, total length 0.8m and parameter K=2.03, where the energy of the electron beam is modulated. Then through a dispersion section with dy/dg~6.3, the energy modulation is converted to spatial bunching. In the second wiggler (radiator) with period 2.5cm, total length 10m and parameter K=1.45, the 88nm coherent radiation is generated in the first two gain lengths and its radiation power is exponentially amplified after two gain lengths. The simulation indicates that about several hundred MW 88nm and about few MW 29.3nm radiation can be produced.

  3. Monopole Charge Domain in High-Gain Gallium Arsenide Photoconductive Switches

    Institute of Scientific and Technical Information of China (English)

    施卫; 陈二柱; 张显斌; 李琦

    2002-01-01

    Considering that semi-insulating gallium arsenide photoconductive switches can be triggered into the high gain mode and no reliable theories can account for the observed transient characteristics, we propose the monopole charge domain model to explain the peculiar switching phenomena occurring in the high gain mode and we discuss the requirements for the lock-on switching. During operation on this mode, the applied field across the switch and the lock-on field are all larger than the Gunn threshold field. Our developed monopole charge domain is based on the transferred-electron effect, but the domain is only composed of large numbers of electrons piled up due to the negative differential mobility. Using the model and taking the physical mechanism of the avalanche impact ionization and recombination radiation into consideration, we interpret the typical phenomena of the lock-on effect, such as the time delay between the beginning of optical illumination and turning-on of the switch, and the conduction mechanism of the sustaining phase. Under different conditions of bias field intensity and incident light energy, the time delay of the switching is calculated. The results show that the physical mechanisms of impact ionization and recombination radiation occurring in the monopole charge domain are responsible for the lock-on switching.

  4. Polarization beam combination technique for gain saturation effect compensation in high-energy systems

    Science.gov (United States)

    Chen, Junchi; Peng, Yujie; Su, Hongpeng; Leng, Yuxin

    2016-06-01

    To compensate for the gain saturation effect in the high-energy laser amplifier, a modified polarization beam combination (PBC) method is introduced to reshape temporal waveform of the injected laser pulse to obtain a controlled high-energy laser pulse shape after amplification. One linearly polarized beam is divided into two orthogonal polarized beams, which spatially recombine together collinearly after propagating different optical paths with relative time delay in PBC structure. The obtained beam with polarization direction being rotated by the following half wave plate is divided and combined again to reform a new beam in another modified polarization beam structure. The reformed beam is injected into three cascaded laser amplifiers. The amplified pulse shape can be controlled by the incident pulse shape and amplifier gain, which is agreeable to the simulation by the Frank-Nodvik equations. Based on the simple method, the various temporal waveform of output pulse with tunable 7 to 20 ns pulse duration can be obtained without interferometric fringes.

  5. Inflection point caustic problems and solutions for high-gain dual-shaped reflectors

    Science.gov (United States)

    Galindo-Israel, Victor; Veruttipong, Thavath; Imbriale, William; Rengarajan, Sembiam

    1990-01-01

    The singular nature of the uniform geometrical theory of diffraction (UTD) subreflector scattered field at the vicinity of the main reflector edge (for a high-gain antenna design) is investigated. It is shown that the singularity in the UTD edge-diffracted and slope-diffracted fields is due to the reflection distance parameter approaching infinity in the transition functions. While the geometrical optics (GO) and UTD edge-diffracted fields exhibit singularities of the same order, the edge slope-diffracted field singularity is more significant and is substantial for greater subreflector edge tapers. The diffraction analysis of such a subreflector in the vicinity of the main reflector edge has been carried out efficiently and accurately by a stationary phase evaluation of the phi-integral, whereas the theta-integral is carried out numerically. Computational results from UTD and physical optics (PO) analysis of a 34-m ground station dual-shaped reflector confirm the analytical formulations for both circularly symmetric and offset asymmetric subreflectors. It is concluded that the proposed PO(theta)GO(phi) technique can be used to study the spillover or noise temperature characteristics of a high-gain reflector antenna efficiently and accurately.

  6. First Results from the DUV-FEL Upgrade at BNL

    CERN Document Server

    Wang, Xijie; Murphy, James; Pinayev, Igor; Rakowsky, George; Rose, James; Shaftan, Timur; Sheehy, Brian; Skaritka, John; Wu, Zilu; Yu Li Hua

    2005-01-01

    The DUV-FEL at BNL is the world’s only facility dedicated to laser-seeded FEL R&D and its applications. Tremendous progress was made in both HGHG FEL and its applications in the last couple years.*,** In response to the requests of many users to study chemical science at the facility, the DUV-FEL linac was upgraded from 200 to 300 MeV to enable the HGHG FEL to produce 100 uJ pulses of 100 nm light. This will establish the DUV FEL as a premier user facility for ultraviolet radiation and enable state-of-the-art gas phase photochemistry research. The upgraded facility will also make possible key R&D experiments such as higher harmonic HGHG (n>5) that would lay the groundwork for future X-ray FEL based on HGHG. The upgraded HGHG FEL will operate at the 4th harmonic with the seed laser at either 800 nm or 400nm. The increase of the electron beam energy will be accomplished by installing a 5th linac cavity and two 45 MW klystrons. New HGHG modulator and dispersion sections vacuum chambers w...

  7. Observation of superradiance in a short-pulse FEL oscillator

    NARCIS (Netherlands)

    Jaroszynski, D. A.; Chaix, P.; Piovella, N.; Oepts, D.; Knippels, G.M.H.; van der Meer, A. F. G.; Weits, H. H.

    1997-01-01

    Superradiance has been experimentally studied, in a short-pulse free-electron laser (FEL) oscillator. Superradiance is the optimal way of extracting optical radiation from an FEL and can be characterised by the following scale laws: peak optical power P, scales as the square of electron charge, Q, (

  8. Study on laser characteristics of Ho:YLF regenerative amplifiers: Operation regimes, gain dynamics, and highly stable operation points

    Science.gov (United States)

    Kroetz, P.; Ruehl, A.; Calendron, A.-L.; Chatterjee, G.; Cankaya, H.; Murari, K.; Kärtner, F. X.; Hartl, I.; Miller, R. J. D.

    2017-04-01

    We present a comprehensive study of laser pulse amplification of Ho:YLF regenerative amplifiers (RAs) with respect to operation regimes, gain dynamics, and output pulse stability. The findings are expected to be more generic than for this specific gain material. Operation regimes are distinguished with respect to pulse energy and the appearance of pulse instability, and are studied as a function of the repetition rate, seed energy, and pump intensity. The corresponding gain dynamics are presented, identifying highly stable operation points related to high-gain build-up during pumping and high-gain depletion during pulse amplification. Such operation points are studied numerically and experimentally as a function of several parameters, thereby achieving, for our Ho:YLF RA, highly stable output pulses with measured fluctuations of only 0.19% (standard deviation).

  9. DFIG-Based Wind Turbine Robust Control Using High-Order Sliding Modes and a High Gain Observer

    OpenAIRE

    Beltran, Brice; Benbouzid, Mohamed; Ahmed-Ali, Tarek; Mangel, Hervé

    2011-01-01

    International audience; This paper deals with the power generation control in variable speed wind turbines. In this context, a control strategy is proposed to ensure power extraction optimization of a DFIG-based wind turbine. The proposed control strategy combines an MPPT using a high gain observer and second-order sliding mode for the DFIG control. This strategy presents attractive features such as chattering-free behavior, finite reaching time, robustness and unmodeled dynamics (generator a...

  10. Recent Results from the IR Upgrade FEL at Jefferson Lab

    CERN Document Server

    Benson, S V; Behre, C P; Biallas, G H; Boyce, J; Douglas, D; Dylla, H F D; Evans, R; Grippo, A G; Gubeli, J G; Hardy, D; Hernandez-Garcia, C; Jordan, K; Merminga, L; Neil, G; Preble, J P; Shinn, M D; Siggins, T; Walker, R L; Williams, G P; Zhang, S

    2005-01-01

    After demonstrating 10 kW operation with 1 second pulses, the Jefferson Lab program switched to demonstrating high power operation at short wavelengths using a new 8 cm period wiggler and a THz suppression chicane. We report here on the lasing results to date using this new configuration. We have demonstrated a large reduction in THz heating on the mirrors. We have also eliminated heating in the mirror steering assemblies, making operation at high power much more stable. Finally, we have greatly reduced astigmatism in the optical cavity, allowing operation with a very short Rayleigh range. The laser has been tuned from 0.9 to 3.1 microns using the new wiggler. User experiments commenced in April of 2005 with the FEL Upgrade operating over the 1-3 micron range. We are in the process of installing a 5.5 cm permanent magnet wiggler that will give us even larger tuning range and higher power.

  11. Redesign of a Variable-Gain Output Feedback Longitudinal Controller Flown on the High-Alpha Research Vehicle (HARV)

    Science.gov (United States)

    Ostroff, Aaron J.

    1998-01-01

    This paper describes a redesigned longitudinal controller that flew on the High-Alpha Research Vehicle (HARV) during calendar years (CY) 1995 and 1996. Linear models are developed for both the modified controller and a baseline controller that was flown in CY 1994. The modified controller was developed with three gain sets for flight evaluation, and several linear analysis results are shown comparing the gain sets. A Neal-Smith flying qualities analysis shows that performance for the low- and medium-gain sets is near the level 1 boundary, depending upon the bandwidth assumed, whereas the high-gain set indicates a sensitivity problem. A newly developed high-alpha Bode envelope criterion indicates that the control system gains may be slightly high, even for the low-gain set. A large motion-base simulator in the United Kingdom was used to evaluate the various controllers. Desired performance, which appeared to be satisfactory for flight, was generally met with both the low- and medium-gain sets. Both the high-gain set and the baseline controller were very sensitive, and it was easy to generate pilot-induced oscillation (PIO) in some of the target-tracking maneuvers. Flight target-tracking results varied from level 1 to level 3 and from no sensitivity to PIO. These results were related to pilot technique and whether actuator rate saturation was encountered.

  12. High gain 1.3-μm GaInNAs SOA with fast gain dynamics and enhanced temperature stability

    Science.gov (United States)

    Fitsios, D.; Giannoulis, G.; Iliadis, N.; Korpijärvi, V.-M.; Viheriälä, J.; Laakso, A.; Dris, S.; Spyropoulou, M.; Avramopoulos, H.; Kanellos, G. T.; Pleros, N.; Guina, M.

    2014-03-01

    Semiconductor optical amplifiers (SOAs) are a well-established solution of optical access networks. They could prove an enabling technology for DataCom by offering extended range of active optical functionalities. However, in such costand energy-critical applications, high-integration densities increase the operational temperatures and require powerhungry external cooling. Taking a step further towards improving the cost and energy effectiveness of active optical components, we report on the development of a GaInNAs/GaAs (dilute nitride) SOA operating at 1.3μm that exhibits a gain value of 28 dB and combined with excellent temperature stability owing to the large conduction band offset between GaInNAs quantum well and GaAs barrier. Moreover, the characterization results reveal almost no gain variation around the 1320 nm region for a temperature range from 20° to 50° C. The gain recovery time attained values as short as 100 ps, allowing implementation of various signal processing functionalities at 10 Gb/s. The combined parameters are very attractive for application in photonic integrated circuits requiring uncooled operation and thus minimizing power consumption. Moreover, as a result of the insensitivity to heating issues, a higher number of active elements can be integrated on chip-scale circuitry, allowing for higher integration densities and more complex optical on-chip functions. Such component could prove essential for next generation DataCom networks.

  13. Whey protein reduces early life weight gain in mice fed a high-fat diet

    DEFF Research Database (Denmark)

    Tranberg, Britt; Hellgren, Lars; Lykkesfeldt, Jens;

    2013-01-01

    be associated with changes in the gut microbiota composition. Five-week-old male C57BL/6 mice were fed a high-fat diet ad libitum for 14 weeks with the protein source being either whey or casein. Faeces were collected at week 0, 7, and 13 and the fecal microbiota was analysed by denaturing gradient gel...... weight gain was similar resulting in a 15% lower final body weight in the whey group relative to casein (34.0±1.0 g vs. 40.2±1.3 g, PFasting insulin was lower in the whey group (P... after an oral glucose challenge (Pmicrobiota differed between high- and low-fat groups at 13 weeks (P

  14. Millimeter-wave double-dipole antennas for high-gain integrated reflector illumination

    Science.gov (United States)

    Filipovic, Daniel F.; Ali-Ahmad, Walid Y.; Rebeiz, Gabriel M.

    1992-05-01

    A double-dipole antenna backed by a ground plane has been fabricated for submillimeter wavelengths. The double-dipole antenna is integrated on a thin dielectric membrane with a planar detector at its center. Measured feed patterns at 246 GHz agree well with theory and demonstrate a rotationally symmetric pattern with high coupling efficiency to Gaussian beams. The input impedance is around 50 ohms, and will match well to a Schottky diode or SIS detector. The double-dipole antenna served as the feed for a small machined parabolic reflector. The integrated reflector had a measured gain of 37 dB at 119 microns. This makes the double-dipole antenna ideally suited as a feed for high resolution tracking or for long focal length Cassegrain antenna systems.

  15. Whey protein reduces early life weight gain in mice fed a high-fat diet

    DEFF Research Database (Denmark)

    Tranberg, Britt; Hellgren, Lars; Lykkesfeldt, Jens

    2013-01-01

    An increasing number of studies indicate that dairy products, including whey protein, alleviate several disorders of the metabolic syndrome. Here, we investigated the effects of whey protein isolate (whey) in mice fed a high-fat diet hypothesising that the metabolic effects of whey would...... be associated with changes in the gut microbiota composition. Five-week-old male C57BL/6 mice were fed a high-fat diet ad libitum for 14 weeks with the protein source being either whey or casein. Faeces were collected at week 0, 7, and 13 and the fecal microbiota was analysed by denaturing gradient gel...... weight gain was similar resulting in a 15% lower final body weight in the whey group relative to casein (34.0±1.0 g vs. 40.2±1.3 g, Pprotein source throughout the study period. Fasting insulin was lower in the whey group (P

  16. High Gain Slot Array with Fabry-Perot Cavity Feeding Circuit

    Directory of Open Access Journals (Sweden)

    Halim Boutayeb

    2016-01-01

    Full Text Available A new approach for designing slot arrays using a Fabry-Perot cavity for the feeding circuit is presented. The proposed array has simpler and smaller feeding circuit compared to conventional feeding networks that have multiple dividers or combiners. The dividers and combiners are usually sources of losses. In addition, the profile of the proposed array is not limited by the half-wavelength resonance condition that exists for Fabry-Perot resonator antennas based on partially reflecting surfaces. The operating frequency is not sensitive to the profile of the antenna. A small profile can be achieved without the utilization of an artificial magnetic conductor or a substrate with high dielectric constant. To validate the proposed approach, full-wave numerical results are presented at 5.8 GHz showing good impedance matching, a high gain of about 22 dB, and an efficiency of 76%.

  17. Small sized high-gain PHEMT high-power amplifiers for X-band applications

    NARCIS (Netherlands)

    Hek, A.P. de; Hunneman, P.A.H.

    2000-01-01

    The development of two small sized broadband X-band high-power amplifiers is discussed. The amplifiers are realised with the help of the pseudomorphic HEMT technology of the Fraunhofer Institute for Applied Solid State Physics (FhG-IAF). With the help of this technology the feasibility of

  18. Small sized high-gain PHEMT high-power amplifiers for X-band applications

    NARCIS (Netherlands)

    Hek, A.P. de; Hunneman, P.A.H.

    2000-01-01

    The development of two small sized broadband X-band high-power amplifiers is discussed. The amplifiers are realised with the help of the pseudomorphic HEMT technology of the Fraunhofer Institute for Applied Solid State Physics (FhG-IAF). With the help of this technology the feasibility of integratin

  19. Transverse-coherence properties of the FEL at the LCLS

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Yuantao; Huang, Zhirong; /SLAC; Ocko, Samuel A.; /MIT, Cambridge, Dept. Phys.

    2010-09-02

    The recently commissioned Linac Coherent Light Source is an x-ray free-electron laser at the SLAC National Accelerator Laboratory, which is now operating at x-ray wavelengths of 20-1.2 Angstrom with peak brightness nearly ten orders of magnitude beyond conventional synchrotron sources. Understanding of coherence properties of the radiation from SASE FELs at LCLS is of great practical importance for some user experiments. We present the numerical analysis of the coherence properties at different wavelengths based on a fast algorithmusing ideal and start-end simulated FEL fields. The sucessful commissioning and operation of the linac coherent light source (LCLS) [1] has demonstrated that the x-ray free-electron laser (FEL) has come of age; these types of x-ray sources are poised to revolutionize the ultra-fast x-ray sciences. The LCLS and other hard x-ray FELs under construction are based on the principle of self-amplified spontaneous emission (SASE) [2, 3], where the amplification process starts from the shot noise in the electron beam. A large number of transverse radiation modes are also excited when the electron beam enters the undulator. The FEL collective instability in the electron beam causes the modulation of the electron density to increase exponentially, and after sufficient undulator distances, a single transverse mode starts to dominate. As a result, SASE FEL is almost fully coherent in the transverse dimension. Understanding of transverse coherence properties of the radiation from SASE FELs is of great practical importance. The longitudinal coherence properties of SASE FELs have been studied before [4]. Some studies on the transverse coherence can be found in previous papers, for example, in ref. [5, 6, 7, 8, 9]. In this paper, we first discuss a new numerical algorithm based on Markov chain Monte Carlo techniques to calculate the FEL transverse coherence. Then we focus on the numerical analysis of the LCLS FEL transverse coherence.

  20. Harmonic Generation at Lower Electron Energies for a Hard X-ray FEL

    Energy Technology Data Exchange (ETDEWEB)

    Marksteiner, Quinn R. [Los Alamos National Laboratory

    2011-01-01

    There are several schemes currently being investigated to pre-bunch the electron beam and step the coherent bunching up to higher harmonics, all which require modulator sections which introduce additional energy modulation. X-ray FELs operate in a regime where the FEL parameter, {rho} is equal to or less than the effective energy spread introduced from the emittance in the electron beam. Because of this large effective energy spread, the energy modulation introduced from harmonic generation schemes would seriously degrade FEL performance. This problem can be mitigated by incorporating the harmonic generation scheme at a lower electron kinetic energy than the energy at the final undulator. This will help because the effective energy spread from emittance is reduced at lower energies, and can be further reduced by making the beam transversely large. Then the beam can be squeezed down slowly enough in the subsequent accelerator sections so that geometric debunching is mitigated. The beam size inside the dispersive chicanes and in the accelerator sections must be carefully optimized to avoid debunching, and each subharmonic modulator section must generate enough energy modulation to overcome the SASE noise without significantly increasing the gain length in the final undulator. Here we show analytical results that demonstrate the feasibility of this harmonic pre-bunching scheme.

  1. Harmonic cascade FEL designs for LUX, a facility for ultrafast x-ray science

    Energy Technology Data Exchange (ETDEWEB)

    Corlett, John; Fawley, William; Penn, Gregory; Wan, Weishi; Zholents, A.; Reinsch, M.; Wurtele, Jonathan

    2004-08-25

    LUX is a design study to develop concepts for future ultrafast x-ray facilities. Presently, LUX is based on an electron beam accelerated to {approx}3-GeV energy in a superconducting, recirculating linac. Included in the design are multiple free-electron laser (FEL) beamlines which use the harmonic cascade approach to produce coherent XUV and soft X-ray emission beginning with a strong input seed at {approx}200-nm wavelength obtained from a ''conventional'' laser. Each cascade module generally operates in the low-gain regime and is composed of a radiator together with a modulator section, separated by a magnetic chicane. The chicane temporally delays the electron beam pulse in order that a ''virgin'' pulse region (with undegraded energy spread) be brought into synchronism with the radiation pulse. For a given cascade, the output photon energy can be selected over a wide range by varying the seed laser wavelength and the field strength in the undulators. We present numerical simulation results, as well as those from analytical models, to examine certain aspects of the predicted FEL performance. We also discuss lattice considerations pertinent to harmonic cascade FELs, some sensitivity studies and requirements on the undulator alignment, and temporal pulse evolution initiated by short input radiation seeds.

  2. Progress in laboratory high gain ICF (inertial confinement fusion): Prospects for the future

    Energy Technology Data Exchange (ETDEWEB)

    Storm, E.; Lindl, J.D.; Campbell, E.M.; Bernat, T.P.; Coleman, L.W.; Emmett, J.L.; Hogan, W.J.; Hunt, J.T.; Krupke, W.F.; Lowdermilk, W.H.

    1988-01-01

    Inertial confinement fusion (ICF), a thermonuclear reaction in a small (/approximately/5 mm diameter) fuel capsule filled with a few milligrams of deuterium and tritium, has been the subject of very fruitful experimentation since the early 1970's. High gain ICF is now on the threshold of practical applications. With a Laboratory Microfusion Facility (LMF), these applications will have major implications for national defense, basic and applied science, and power production. With a driver capable of delivering about 10 MJ in a 10-ns pulse at an intensity of /approximately/3 /times/ 10/sup 14/ W/cm/sup 2/, an appropriately configured cryogenic capsule could be compressed to a density of about 200 g/cm/sup 3/ and a temperature of 3--5 keV. Under these conditions, up to 10 mg of DT could be ignited, and with a burn efficiency of about 30%, release up to 1000 MJ of fusion energy, an energy gain of about 100. A thousand megajoules is equivalent to about one quarter ton of TNT, or about 7 gallons of oil--an amount of energy tractable under laboratory conditions and potentially very useful for a variety of applications. 61 refs., 33 figs.

  3. Undulators to FELs: Nanometers, Femtoseconds, Coherence and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Attwood, David [University of California Berkeley

    2011-11-30

    For scientists in many fields, from material science to the life sciences and archeology, synchrotron radiation, and in particular undulator radiation, has provide an intense source of x-rays which are tunable to the absorption edges of particular elements of interest, often permitting studies at high spatial and spectral resolution. Now a close cousin to the undulator, the x-ray free electron laser (XFEL) has emerged with improved spatial coherence and, perhaps more importantly, femtosecond pulse durations which permit dynamical studies. In the future attosecond x-ray capabilities are anticipated. In this colloqium we will describe some state of the art undulator studies, how undulators work, the evolution to FELs, their pulse and coherence properties, and the types of experiments envisioned.

  4. A high gain patch fed horn antenna for millimeter wave imaging receiver

    Science.gov (United States)

    Shireen, Rownak; Hwang, Timothy; Shi, Shouyuan; Prather, D. W.

    2005-11-01

    In this paper, antennas that combine transitions from microstrip line / coplanar waveguide (CPW) to horn antenna in a single unit are presented. Conventional single layer microstrip patch antennas inherently suffer narrow operation bandwidth; to widen the frequency bandwidth, stacked patch antennas are used and high gain is achieved from the horn antenna. Here, microstrip line / CPW directly feeds the bottom patch while the top patch couples parasitically to the bottom patch. For -10 dB return loss, 25% bandwidth is achieved for both microstrip line to horn antenna (MSLTHA) at center frequency f0=17.5 GHz and for CPW to horn antenna (CPWTHA) at f0=97 GHz. The designs were optimized using 3D Finite Element Method (FEM) software HFSS by Ansoft Corporation. The optimal design of MSLTHA has been fabricated and characterized. The return loss and far field radiation pattern are measured and has been found in very good agreement with the simulation results.

  5. Photovoltaic Response Characteristics of GaAs Photoconductive Switches Under High Gain Mode

    Institute of Scientific and Technical Information of China (English)

    DAI Hui-ying; SHI Wei

    2007-01-01

    Given is the experiment results in which the laser pulses of 1 046 nm and 532 nm are used to trigger the semi-insulation GaAs photoconductive semiconductor switch(PCSS) with an electrode distance of 4 mm. And made is an analysis of the switch's photovoltaic response characteristics under the high gain mode when the biased field is bigger than the Geng effect field. Also a theory is presented that the main reason for the photovoltaic pulse response delay is the transmission of charge domain, caused by the presence of EL2 energy level in the chip material. Finally, the transmission time of charge domain is calculated and a result that inosculates with the experiment is attained.

  6. CLOSED LOOP CONTROL OF THREE PORT CONVERTER WITH HIGH VOLTAGE GAIN

    Directory of Open Access Journals (Sweden)

    Santhi Mary Antony A

    2015-08-01

    Full Text Available Photovoltaic (PV system is one of the best renewable energy sources for power generation system due to their pollution free and low cost properties. The PV cells has less efficiency compared to other source of power generation. The system efficiency is improved by reducing components count, which reduces the losses. In this paper a new three port converter (TPC is proposed for stand-alone renewable power applications. The proposed converter has three switches to achieve the power flow control. Single inductor is used for common energy transfer element for two different sources. The coupled inductor is used to increase the voltage conversion ratio with reasonable duty cycle. Thus the proposed converter has high voltage gain with less components count. The output voltage is regulated through feedback network. The system performance is verified through simulation results.

  7. A new simpler way to obtain high fusion power gain in tandem mirrors

    Science.gov (United States)

    Fowler, T. K.; Moir, R. W.; Simonen, T. C.

    2017-05-01

    From the earliest days of fusion research, Richard F. Post and other advocates of magnetic mirror confinement recognized that mirrors favor high ion temperatures where nuclear reaction rates begin to peak for all fusion fuels. In this paper we review why high ion temperatures are favored, using Post’s axisymmetric Kinetically Stabilized Tandem Mirror as the example; and we offer a new idea that appears to greatly improve reactor prospects at high ion temperatures. The idea is, first, to take advantage of recent advances in superconducting magnet technology to minimize the size and cost of End Plugs; and secondly, to utilize parallel advances in gyrotrons that would enable intense electron cyclotron heating (ECH) in these high field End Plugs. The yin-yang magnets and thermal barriers that complicated earlier tandem mirror designs are not required. We find that, concerning end losses, intense ECH in symmetric End Plugs could increase the fusion power gain Q, for both DT and Catalyzed DD fuel cycles, to levels competitive with steady-state tokamaks burning DT fuel. Radial losses remain an issue that will ultimately determine reactor viability.

  8. Convergent Evolution towards High Net Carbon Gain Efficiency Contributes to the Shade Tolerance of Palms (Arecaceae).

    Science.gov (United States)

    Ma, Ren-Yi; Zhang, Jiao-Lin; Cavaleri, Molly A; Sterck, Frank; Strijk, Joeri S; Cao, Kun-Fang

    2015-01-01

    Most palm species occur in the shaded lower strata of tropical rain forests, but how their traits relate to shade adaptation is poorly understood. We hypothesized that palms are adapted to the shade of their native habitats by convergent evolution towards high net carbon gain efficiency (CGEn), which is given by the maximum photosynthetic rate to dark respiration rate ratio. Leaf mass per area, maximum photosynthetic rate, dark respiration and N and P concentrations were measured in 80 palm species grown in a common garden, and combined with data of 30 palm species growing in their native habitats. Compared to other species from the global leaf economics data, dicotyledonous broad-leaved trees in tropical rainforest or other monocots in the global leaf economics data, palms possessed consistently higher CGEn, achieved by lowered dark respiration and fairly high foliar P concentration. Combined phylogenetic analyses of evolutionary signal and trait evolution revealed convergent evolution towards high CGEn in palms. We conclude that high CGEn is an evolutionary strategy that enables palms to better adapt to shady environments than coexisting dicot tree species, and may convey advantages in competing with them in the tropical forest understory. These findings provide important insights for understanding the evolution and ecology of palms, and for understanding plant shade adaptations of lower rainforest strata. Moreover, given the dominant role of palms in tropical forests, these findings are important for modelling carbon and nutrient cycling in tropical forest ecosystems.

  9. Convergent Evolution towards High Net Carbon Gain Efficiency Contributes to the Shade Tolerance of Palms (Arecaceae.

    Directory of Open Access Journals (Sweden)

    Ren-Yi Ma

    Full Text Available Most palm species occur in the shaded lower strata of tropical rain forests, but how their traits relate to shade adaptation is poorly understood. We hypothesized that palms are adapted to the shade of their native habitats by convergent evolution towards high net carbon gain efficiency (CGEn, which is given by the maximum photosynthetic rate to dark respiration rate ratio. Leaf mass per area, maximum photosynthetic rate, dark respiration and N and P concentrations were measured in 80 palm species grown in a common garden, and combined with data of 30 palm species growing in their native habitats. Compared to other species from the global leaf economics data, dicotyledonous broad-leaved trees in tropical rainforest or other monocots in the global leaf economics data, palms possessed consistently higher CGEn, achieved by lowered dark respiration and fairly high foliar P concentration. Combined phylogenetic analyses of evolutionary signal and trait evolution revealed convergent evolution towards high CGEn in palms. We conclude that high CGEn is an evolutionary strategy that enables palms to better adapt to shady environments than coexisting dicot tree species, and may convey advantages in competing with them in the tropical forest understory. These findings provide important insights for understanding the evolution and ecology of palms, and for understanding plant shade adaptations of lower rainforest strata. Moreover, given the dominant role of palms in tropical forests, these findings are important for modelling carbon and nutrient cycling in tropical forest ecosystems.

  10. The Present Applications of IR FEL at Peking University

    CERN Document Server

    Yang Li Min; Zhao, Kui

    2004-01-01

    In this study the sections of human tissues were treated under 9.5 μm FEL in the BFEL based on the vibrational spectroscopic investigation that significant differences occur between normal and malignant tissues. Under the defocus condition, the burning of tissue section at some part while other part remains unchanged, suggesting that the FEL can selectively destroy some part of tissue. Vibrational spectroscopic and microscopic methods have shown that the FEL can induce decomposition of malignant tissues. The application of FEL whose wavelength is on the characteristic bands of malignant tissues may provide a new method to kill cancer cells with higher selectivity. For understanding the interactions between FEL and biological tissues, structure changes of substances under irradiation by FEL of 9.414 μm and 6.228 μm were measured using FTIR spectroscopy. The samples include ATP, ADP, AMP, and D-ribose, etc. The FTIR spectra of the molecules before and after irradiation of FEL indicate...

  11. A High Efficiency Variable Gain Amplifier Circuit with Controllable Transconductance Amp

    Science.gov (United States)

    Okura, Tetsuro; Okura, Shunsuke; Ido, Toru; Taniguchi, Kenji

    A novel power reduction technique for a variable gain amplifier (VGA) with a two-stage operational amplifier is proposed. The technique improves the power consumption of a VGA by optimizing the bandwidth and the phase margin dynamically on all gain range of the VGA through controlling the input transconductance of opamp. A VGA utilizing the proposed technique shows 40% reduction of power consumption against a conventional VGA at the best condition of VGA gain range.

  12. Transgenic Rescue of Adipocyte Glucose-dependent Insulinotropic Polypeptide Receptor Expression Restores High Fat Diet-induced Body Weight Gain

    DEFF Research Database (Denmark)

    Ugleholdt, Randi; Pedersen, Jens; Bassi, Maria Rosaria

    2011-01-01

    to adipose tissue have a similar high fat diet -induced body weight gain as control mice, significantly greater than the weight gain in mice with a general ablation of the receptor. Surprisingly, this difference was due to an increase in total lean body mass rather than a gain in total fat mass......The glucose-dependent insulinotropic polypeptide receptor (GIPr) has been implicated in high fat diet-induced obesity and is proposed as an anti-obesity target despite an uncertainty regarding the mechanism of action. To independently investigate the contribution of the insulinotropic effects...

  13. Active FEL-Klystrons as Formers of Femto-Second Clusters of Electromagnetic Field. Systems on the Basis of Two-Stream Instability

    Directory of Open Access Journals (Sweden)

    V.V. Kulish

    2012-05-01

    Full Text Available A general analysis of the two-stream cluster FEL-klystrons, as a new high efficient class of electronic devices, intended for generation of femto-second clusters of electromagnetic field has been performed. Three models are described firstly in the article. Detail weak-signal analysis of multi-harmonic processes within the FEL-klystron transition section is accomplished.

  14. Fluorene- and benzofluorene-cored oligomers as low threshold and high gain amplifying media

    Energy Technology Data Exchange (ETDEWEB)

    Kazlauskas, Karolis, E-mail: karolis.kazlauskas@ff.vu.lt; Kreiza, Gediminas; Bobrovas, Olegas; Adomėnienė, Ona; Adomėnas, Povilas; Juršėnas, Saulius [Institute of Applied Research, Vilnius University, Saulėtekio 9-III, LT-10222 Vilnius (Lithuania); Jankauskas, Vygintas [Department of Solid State Electronics, Vilnius University, Saulėtekio 9-III, LT-10222 Vilnius (Lithuania)

    2015-07-27

    Deliberate control of intermolecular interactions in fluorene- and benzofluorene-cored oligomers was attempted via introduction of different-length alkyl moieties to attain high emission amplification and low amplified spontaneous emission (ASE) threshold at high oligomer concentrations. Containing fluorenyl peripheral groups decorated with different-length alkyl moieties, the oligomers were found to express weak concentration quenching of emission, yet excellent carrier drift mobilities (close to 10{sup −2} cm{sup 2}/V/s) in the amorphous films. Owing to the larger radiative decay rates (>1.0 × 10{sup 9 }s{sup −1}) and smaller concentration quenching, fluorene-cored oligomers exhibited down to one order of magnitude lower ASE thresholds at higher concentrations as compared to those of benzofluorene counterparts. The lowest threshold (300 W/cm{sup 2}) obtained for the fluorene-cored oligomers at the concentration of 50 wt % in polymer matrix is among the lowest reported for solution-processed amorphous films in ambient conditions, what makes the oligomers promising for lasing application. Great potential in emission amplification was confirmed by high maximum net gain (77 cm{sup −1}) revealed for these compounds. Although the photostability of the oligomers was affected by photo-oxidation, it was found to be comparable to that of various organic lasing materials including some commercial laser dyes evaluated under similar excitation conditions.

  15. Lean rats gained more body weight than obese ones from a high-fibre diet.

    Science.gov (United States)

    Li, Shaoting; Zhang, Cheng; Gu, Yingyi; Chen, Long; Ou, Shiyi; Wang, Yong; Peng, Xichun

    2015-10-28

    There is controversy over previous findings that a high ratio of Firmicutes to Bacteriodetes helps obese animals harvest energy from the diet. To further investigate the relationship between microbial composition and energy harvest, microbial adaptation to diet and time should be considered. In this study, lean and obese rats were successfully induced with low-fat and high-fat diets. An 8-week high soyabean fibre (HSF)-containing diet was then fed to investigate the interaction between the diet and the rats' gut microbiota, as well as their influence on rats' growth. Rats' body weight (BW) was recorded weekly; their plasma lipids and their gut microbiota at week 11, 15 and 19 were analysed. After the consumption of the HSF diet, BW of lean rats increased significantly (Pdiet. There was no significant difference observed at each period between lean and obese rats. In the group of lean rats, the diversity of gut microbiota was elevated strongly (Pdiet control. In conclusion, the increased Firmicutes and Bacteriodetes might relate to lean rats' higher BW gain; 'obese microbiota' could not help the hosts harvest more energy from the HSF diet.

  16. Extension of the spectral range of the CLIO FEL

    Energy Technology Data Exchange (ETDEWEB)

    Marcouille, O.; Boyer, J.C.; Corlier, M. [LURE, Orsay (France)] [and others

    1995-12-31

    The CLIO FEL has been designed to lase between 2 and 20 {mu}m. The electrons are produced by a 32/50 MeV RF linear accelerator. The injector is a 100 keV thermoionic gun, followed by a subharmonic prebuncher at 0.5 GHz and a buncher at 3 GHz. The electron beam is then accelerated in a 4.5 m long travelling wave accelerating section, to the nominal energy. The undulator consisted of 48 periods of 40 mm and the optical cavity is 4.8 m long which corresponds to a 1.2 m Rayleigh length. The peak power extracted by a ZnSe Brewster plate is 10 MW at 10 {mu}. But, beyond 11{mu}m, the laser power decreases rapidely and no laser oscillation appears above 17 {mu}m. In order to lase at farther wavelengths, few changes have been made: First of all, the power limit is due to the diffraction losses of the undulator vaccuum chamber (7 mm height and 2 m long). Numerical calculations have been made and show that cavity losses reach 55 % at 15 {mu}m whereas the measured gain is 60 %. Consequently, the undulator vaccuum chamber have been replaced by a approximately twice bigger one. Then, the minimum gap is increased and the maximum deflection parameter K is reduced by a factor 2: laser tunability is greatly reduced. This why a new undulator has been built. The main characteristics are summarized.

  17. Experimental Characterization of the Seeded FEL Amplifier at the BNL SDL

    CERN Document Server

    Watanabe, T; Murphy, J B; Rose, J; Shaftan, T V; Tsang, Thomas; Wang, X J; Yu, L H

    2005-01-01

    A laser seeded near IR FEL amplifier experiment was initiated at the BNL SDL [1] to explore various schemes of FEL efficiency improvement and generation of short Rayleigh length (SRL) FEL output. The FEL achieved first SASE lasing at 0.8 μm on May 6, 2005. The experimental characterization of the laser seeded FEL output power, spectrum and transverse mode structure evolution will be presented.

  18. JLAMP: AN AMPLIFIER-BASED FEL IN THE JLAB SRF ERL DRIVER

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Jordan; Stephen V. Benson; David Douglas; Pavel Evtushenko; Carlos Hernandez-Garcia; George R. Neil

    2007-06-13

    Notional designs for energy-recovering linac (“ERL”) -driven high average power free electron lasers (“FEL”s) often invoke amplifier-based architectures. To date, however, amplifier FELs have been limited in average power output to values several orders of magnitude lower than those demonstrated in optical-resonator based systems; this is due at least in part to the limited electron beam powers available from their driver accelerators. In order to directly contrast the performance available from amplifiers to that provided by high-power cavity-based resonators, we have developed a scheme to test an amplifier FEL in the JLab SRF ERL driver. We describe an accelerator system design that can seamlessly and non-invasively integrate a 10 m wiggler into the existing system and which provides, at least in principle, performance that would support high-efficiency lasing in an amplifier configuration. Details of the design and an accelerator performance analysis will be presented

  19. Generation of a few femtoseconds pulses in seeded FELs using a seed laser with small transverse size

    Science.gov (United States)

    Li, Heting; Jia, Qika

    2016-09-01

    We propose a simple method to generate a few femtosecond pulses in seeded FELs. We use a longitudinal energy-chirped electron beam passing through a dogleg where transverse dispersion will generate a horizontal energy chirp, then in the modulator, a seed laser with narrow beam radius will only modulate the center portion of the electron beam and then short pulses at high harmonics will be generated in the radiator. Using a representative realistic set of parameters, we show that 30 nm XUV pulse based on the HGHG scheme and 9 nm soft x-ray pulse based on the EEHG scheme with duration of about 8 fs (FWHM) and peak power of GW level can be generated from a 180 nm UV seed laser with beam waist of 75 μm. This new scheme can provide an optional operation mode for the existing seeded FEL facilities to meet the requirement of short-pulse FEL.

  20. A scalable-low cost architecture for high gain beamforming antennas

    KAUST Repository

    Bakr, Omar

    2010-10-01

    Many state-of-the-art wireless systems, such as long distance mesh networks and high bandwidth networks using mm-wave frequencies, require high gain antennas to overcome adverse channel conditions. These networks could be greatly aided by adaptive beamforming antenna arrays, which can significantly simplify the installation and maintenance costs (e.g., by enabling automatic beam alignment). However, building large, low cost beamforming arrays is very complicated. In this paper, we examine the main challenges presented by large arrays, starting from electromagnetic and antenna design and proceeding to the signal processing and algorithms domain. We propose 3-dimensional antenna structures and hybrid RF/digital radio architectures that can significantly reduce the complexity and improve the power efficiency of adaptive array systems. We also present signal processing techniques based on adaptive filtering methods that enhance the robustness of these architectures. Finally, we present computationally efficient vector quantization techniques that significantly improve the interference cancellation capabilities of analog beamforming architectures. © 2010 IEEE.

  1. Transportation-cyber-physical-systems-oriented engine cylinder pressure estimation using high gain observer

    Science.gov (United States)

    Li, Yong-Fu; Xiao-Pei, Kou; Zheng, Tai-Xiong; Li, Yin-Guo

    2015-05-01

    In transportation cyber-physical-systems (T-CPS), vehicle-to-vehicle (V2V) communications play an important role in the coordination between individual vehicles as well as between vehicles and the roadside infrastructures, and engine cylinder pressure is significant for engine diagnosis on-line and torque control within the information exchange process under V2V communications. However, the parametric uncertainties caused from measurement noise in T-CPS lead to the dynamic performance deterioration of the engine cylinder pressure estimation. Considering the high accuracy requirement under V2V communications, a high gain observer based on the engine dynamic model is designed to improve the accuracy of pressure estimation. Then, the analyses about convergence, converge speed and stability of the corresponding error model are conducted using the Laplace and Lyapunov method. Finally, results from combination of Simulink with GT-Power based numerical experiments and comparisons demonstrate the effectiveness of the proposed approach with respect to robustness and accuracy. Project supported by the National Natural Science Foundation of China (Grant No. 61304197), the Scientific and Technological Talents of Chongqing, China (Grant No. cstc2014kjrc-qnrc30002), the Key Project of Application and Development of Chongqing, China (Grant No. cstc2014yykfB40001), the Natural Science Funds of Chongqing, China (Grant No. cstc2014jcyjA60003), and the Doctoral Start-up Funds of Chongqing University of Posts and Telecommunications, China (Grant No. A2012-26).

  2. Use of VUV Imaging to Evaluate COTR and Beam-Steering Effects in a SASE FEL at 130 nm

    CERN Document Server

    Lumpkin, Alex H; Dejus, Roger J; Erdmann, Mark; Lewellen, John W; Li, Yuelin

    2004-01-01

    We have continued to explore VUV operations on the Advanced Photon Source (APS) self-amplified spontaneous emission (SASE) free-electron laser (FEL). With the installation of a fifth VUV imaging station located after undulator 7 of an eight-undulator series, we have performed our most complete SASE gain curve measurements at 130 nm as well as obtaining beam profile, position, and divergence information. This is the shortest wavelength to date for our complementary coherent optical transition radiation (COTR) measurements. We have also done the first experimental test of Tanaka et al.’s analytical model for the effects of a single-kick error of the e-beam on gain and microbunching in a SASE FEL. In addition, we compared the e-beam image centroid positions with those of the alignment laser at the available cameras and the local rf BPM readings to sort out the effective trajectory and its effect on overall gain. The FEL performance was consistent with GENESIS simulations of the experiment described in detail in...

  3. Preliminary Design of a Synchronized Narrow Bandwidth FEL for Taiwan Light Source

    CERN Document Server

    Keung Lau Wai; Ching Fan, Tai; Zone Hsiao Feng; Tung Hsu Kuo; Hwang, Ching Shiang; Cheng Kuo Chin; Huei Luo Guo; Jen Wang Duan; Ping Wang Jau; Huey Wang Min

    2004-01-01

    Design study of a narrow line-width, high power IR-FEL facility has been carried out at NSRRC. This machine is designed to synchronize with the U9 undulator radiation of Taiwan Light Source and therefore provide new opportunity for chemical dynamics and condensed matter research. It has been proposed to use a super-conducting linac to provide a 60 MeV high quality electron beam to drive a 2.5-10 microns FEL oscillator with U5 undulator. Operating this linac in energy recovery mode will also be considered as an option to improve overall system effeciency and reduce heat loss and radiation dosage at the beam dump. Performance requirements and outcomes from this preliminary design study will be reported.

  4. Studies of relative gain and timing response of fine-mesh photomultiplier tubes in high magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Sulkosky, Vincent A. [Univ. of Virginia, Charlottesville, VA (United States); Allison-Russell, Lyndsey L. [Hampton Univ., Hampton, VA (United States); Barber, Corinne C. [Univ. of South Carolina, Columbia, SC (United States); Cao, Tongtong [Univ. of South Carolina, Columbia, SC (United States); Ilieva, Yordanka [Univ. of South Carolina, Columbia, SC (United States); Jin, Kai [Univ. of Virginia, Charlottesville, VA (United States); Kalicy, Grzegorz [Old Dominion Univ., Norfolk, VA (United States); Park, K. [Old Dominion Univ., Norfolk, VA (United States); Ton, N. [Univ. of Virginia, Charlottesville, VA (United States); Zheng, Xiaochao [Univ. of Virginia, Charlottesville, VA (United States)

    2016-05-01

    We investigated the use of Hamamatsu fine-mesh photomultiplier tube assemblies H6152-70 and H6614-70 with regards to their gain and timing resolution in magnetic fields up to 1.9 T. Our results show that the H6614-70 assembly can operate reliably in magnetic fields exceeding 1.5 T, while preserving a reasonable timing resolution even with a gain reduction of a factor of ~100. The reduction of the relative gain of the H6152-70 is similar to the H6614-70's near 1.5 T, but its timing resolution worsens considerably at this high field.

  5. Optical Amplifier with Flat-Gain and Wideband Operation Utilizing Highly Concentrated Erbium-Doped Fibers

    Science.gov (United States)

    Hamida, B. A.; Cheng, X. S.; Naji, A. W.; Ahmad, H.; Al-Khateeb, W.; Khan, S.; Harun, S. W.

    In this paper, we proposed a flat-gain and wide-band erbium doped fiber amplifier (EDFA) using two chirped fiber Bragg grating (CFBG) in serial configuration for double-pass operation. The amplifier consists of two sections of Erbium-doped fiber (EDF) operating in C-band and L-band respectively. A CFBG is used in each section to reflect the amplified signal back to the active area so that the overall gain spectrum can be enhanced and flattened. It is also observed that the gain of the amplifier produces a relatively higher gain with the Bismuth-based EDF (Bi-EDF) in the first stage compared to that of silica-based EDF (Si-EDF), especially in a longer wavelength region. The small signal gain of more than 19 dB is obtained within a wavelength region from 1545 to 1605 nm by the use of Bi-EDF with a small noise figure penalty. With a Si-EDF, the flat gain spectrum is observed within a wavelength region ranging from 1535 nm to 1605 nm with a gain variation of less than 2 dB at input signal of 0 dBm. This shows that the proposed serial double-pass amplifier may find its broad applications in wavelength division multiplexing long-haul systems as well as local optical networks.

  6. High-intensity resistance training amplifies muscle hypertrophy and functional gains in persons with Parkinson's disease.

    Science.gov (United States)

    Dibble, Leland E; Hale, Tessa F; Marcus, Robin L; Droge, John; Gerber, J Parry; LaStayo, Paul C

    2006-09-01

    Strength deficits in persons with Parkinson's disease (PD) have been identified as a contributor to bradykinesia. However, there is little research that examines the effect of resistance training on muscle size, muscle force production, and mobility in persons with PD. The purpose of this exploratory study was to examine, in persons with PD, the changes in quadriceps muscle volume, muscle force production, and mobility as a result of a 12-week high-force eccentric resistance training program and to compare the effects to a standard-care control. Nineteen individuals with idiopathic PD were recruited and consented to participate. Matched assignment for age and disease severity resulted in 10 participants in the eccentric group and 9 participants in the control group. All participants were tested prior to and following a 12-week intervention period with testing and training conducted at standardized times in their medication cycle. The eccentric group performed high-force quadriceps contractions on an eccentric ergometer 3 days a week for 12 weeks. The standard-care group exercise program encompassed standard exercise management of PD. The outcome variables were quadriceps muscle volume, muscle force, and mobility measures (6-minute walk, stair ascent/descent time). Each outcome variable was tested using separate one-way analyses of covariance on the difference scores. Muscle volume, muscle force, and functional status improvements occurred in persons with PD as a result of high-force eccentric resistance training. The eccentric group demonstrated significantly greater difference scores for muscle structure, stair descent, and 6-minute walk (P eccentric group consistently exceeded those in the standard-care group for all variables. To our knowledge, this is the first clinical trial to investigate and demonstrate the effects of eccentric resistance training on muscle hypertrophy, strength, and mobility in persons with PD. Additional research is needed to determine the

  7. Modeling of a planar FEL amplifier with a sheet relativistic electron beam

    CERN Document Server

    Ginzburg, N S; Peskov, N Yu; Arzhannikov, A V; Sinitsky, S L

    2002-01-01

    The paper is devoted to the modeling of a 75 GHz planar FEL-amplifier. This amplifier is driven by a sheet electron beam (1 MeV, 2 kA) produced by the U-3 accelerator (BINP). Different approaches based on non-averaged self-consistent system of equations as well as the averaged equations were used for the description of interaction between the electron beam and the TEM-mode of the planar waveguide. Both methods demonstrated similar results with maximum gains 24-25 db, corresponding to an output power of about 250-300 MW and an efficiency of 14-17%. The 2-D version of the PIC-code KARAT was used for additional modeling. KARAT-based simulations demonstrated a maximum gain up to 22 db, output power 160-170 MW and an efficiency of 9%. The reduction of gain can be explained by the space-charge effects.

  8. Spacecraft Angular Rates Estimation with Gyrowheel Based on Extended High Gain Observer

    Directory of Open Access Journals (Sweden)

    Xiaokun Liu

    2016-04-01

    Full Text Available A gyrowheel (GW is a kind of electronic electric-mechanical servo system, which can be applied to a spacecraft attitude control system (ACS as both an actuator and a sensor simultaneously. In order to solve the problem of two-dimensional spacecraft angular rate sensing as a GW outputting three-dimensional control torque, this paper proposed a method of an extended high gain observer (EHGO with the derived GW mathematical model to implement the spacecraft angular rate estimation when the GW rotor is working at large angles. For this purpose, the GW dynamic equation is firstly derived with the second kind Lagrange method, and the relationship between the measurable and unmeasurable variables is built. Then, the EHGO is designed to estimate and calculate spacecraft angular rates with the GW, and the stability of the designed EHGO is proven by the Lyapunov function. Moreover, considering the engineering application, the effect of measurement noise in the tilt angle sensors on the estimation accuracy of the EHGO is analyzed. Finally, the numerical simulation is performed to illustrate the validity of the method proposed in this paper.

  9. Spacecraft Angular Rates Estimation with Gyrowheel Based on Extended High Gain Observer.

    Science.gov (United States)

    Liu, Xiaokun; Yao, Yu; Ma, Kemao; Zhao, Hui; He, Fenghua

    2016-04-14

    A gyrowheel (GW) is a kind of electronic electric-mechanical servo system, which can be applied to a spacecraft attitude control system (ACS) as both an actuator and a sensor simultaneously. In order to solve the problem of two-dimensional spacecraft angular rate sensing as a GW outputting three-dimensional control torque, this paper proposed a method of an extended high gain observer (EHGO) with the derived GW mathematical model to implement the spacecraft angular rate estimation when the GW rotor is working at large angles. For this purpose, the GW dynamic equation is firstly derived with the second kind Lagrange method, and the relationship between the measurable and unmeasurable variables is built. Then, the EHGO is designed to estimate and calculate spacecraft angular rates with the GW, and the stability of the designed EHGO is proven by the Lyapunov function. Moreover, considering the engineering application, the effect of measurement noise in the tilt angle sensors on the estimation accuracy of the EHGO is analyzed. Finally, the numerical simulation is performed to illustrate the validity of the method proposed in this paper.

  10. Microlens array-based high-gain screen design for direct projection head-up displays.

    Science.gov (United States)

    Hedili, M Kivanc; Freeman, Mark O; Urey, Hakan

    2013-02-20

    Head-up display (HUD) systems have been used in recent car models to provide essential information to the drivers while keeping their eyes on the road. Virtual image HUD systems have been the preferred method, but they have the drawback of requiring a large volume of space in order to accommodate the relay optics that creates the virtual image. This is especially significant as the desired field of view increases. Direct projection HUD systems have been developed with a separate stand-alone microlens array (MLA)-based transparent screen on the dashboard, offering a compact solution. In this paper, we propose a direct projection HUD system based on a unique, windshield-embedded see-through screen that uses minimal space under the dashboard, offering an elegant and compact solution to the HUD problem. The screen is based on MLAs with varying surface normal angles such that the light from the projector is directed to the viewer's eyes from all positions across the field of view. Varying tilts provide an efficient relay and high brightness even with a low-lumen output projector. The calculated screen gain is about 69 and the eyebox area is about 30 cm×30 cm.

  11. High speed gain coupled DFB laser diode integrated with MQW electroabsorption modulator

    CERN Document Server

    Kim, M G; Park, S S; Oh, D K; Lee, H T; Kim, H M; Pyun, K E

    1998-01-01

    We have demonstrated stable modulation characteristics of the gain coupled distributed feedback(GC-DFB) laser diode integrated with butt-coupled InGaAsP/InGaAsP strain compensated MQW(multiple-Quantum-well) modulator for high speed optical transmission. For this purpose, we have adopted the InGaAsP/InGaAsP strain compensated MQW structure for the EA modulator and n-doped InGaAs absorptive grating for DFB laser. The typical threshold current and slope efficiency were about 15 mA and 0.1 mW/mA, respectively. The extinction ratio of fabricated integrated device was about 15 dB at -2 V, and the small signal bandwidth was shown to be around 17GHz. We also found that the alpha parameter becomes negative at below a -0.6 V bias voltage. We transmitted 10 Gbps NRZ electrical signal over 90 km of standard single mode optical fiber (SMF). A clearly opened eye diagram was observed in the modulated output.

  12. The SPARX Project R&D Activity towards X-rays FEL Sources

    CERN Document Server

    Alesini, David; Bertolucci, Sergio; Biagini, M E; Boni, R; Boscolo, Manuela; Castellano, Michele; Clozza, A; Di Pirro, G; Drago, A; Esposito, A; Ferrario, Massimo; Filippetto, D; Fusco, V; Gallo, A; Ghigo, A; Guiducci, Susanna; Incurvati, M; Ligi, C; Marcellini, F; Migliorati, Mauro; Mostacci, Andrea; Palumbo, Luigi; Pellegrino, L; Preger, Miro; Raimondi, Pantaleo; Ricci, R; Sanelli, C; Serio, Mario; Sgamma, F; Spataro, Bruno; Stecchi, A; Stella, A; Tazzioli, Franco; Vaccarezza, Cristina; Vescovi, Mario; Vicario, C

    2004-01-01

    SPARX is an evolutionary project proposed by a collaboration among ENEA-INFN-CNR-Università di Roma Tor Vergata aiming at the construction of a FEL-SASE X-ray source in the Tor Vergata Campus. The first phase of the SPARX project, funded by Government Agencies, will be focused on the R&D activity on critical components and techniques for future X-ray facilities. The R&D plans for the FEL source will be developped along two lines: (a) use of the SPARC high brightness photo-injector to develop experimental test on RF compression techniques and other beam physics issues, like emittance degradation in magnetic compressors due to CSR; (b) development of new undulator design concepts and up-grading of the FEL SPARC source to enhance the non linear harmonic generation mechanism, design and test of e-beam conditioning, prebunching and seeding. A parallel program will be aimed at the development of high repetition rate S-band gun, high Quantum Efficiency cathodes, high gradient X-band RF acceleratin...

  13. BiCMOS operational amplifier with precise and stable dc gain for high-frequency switched capacitor circuits

    Science.gov (United States)

    Baschirotto, A.; Alini, R.; Castello, R.

    1991-07-01

    A novel approach in the design of high-frequency switched capacitor (SC) circuits is presented. It is based on the use of simple and fast amplifiers with low but precisely controlled gain value. The effect of the precisely known and stable opamp gain is compensated for by changing the capacitor values during the synthesis of the SC cell. An example of an opamp with these features and the synthesis of a biquadratic filter based on this approach are given.

  14. Electron Beam Diagnostic Based on a Short Seeded FEL

    CERN Document Server

    Graves, W; Kaertner, Franz X; Zwart, T

    2005-01-01

    The optical properties of an FEL amplifier are sensitively dependent on the electron beam current profile, energy spread, and transverse emittance. In this paper we consider using a short FEL amplifier operating on a low harmonic of a visible-IR input seed as a mildly destructive electron beam diagnostic able to measure these properties for sub-ps time slices. The optical methods are described as well as a planned implementation of the device for the FERMI@Elettra XUV FEL under construction at Sincrotrone Trieste, including its fiber-based seed laser closely coupled with the facility timing system, undulator parameters, and requirements on the electron and FEL pulses. This diagnostic is conveniently integrated with a "laser heater" designed to increase the very low electron beam energy spread produced by a photoinjector in order to avoid space charge and coherent synchrotron radiation instabilities.

  15. Electro-Magnetic Quadrupole Magnets in the LCLS FEL Undulator

    Energy Technology Data Exchange (ETDEWEB)

    Emma, P.

    2005-01-31

    We discuss various aspects of electro-magnetic quadrupole (EMQ) magnets for the LCLS FEL undulator, including their utility in beam-based alignment (BBA), magnet design issues, and impact on tunnel environment, reliability, and cost.

  16. Optical properties of infrared FELs from the FELI Facility II

    Energy Technology Data Exchange (ETDEWEB)

    Saeki, K.; Okuma, S.; Oshita, E. [Free Electron Laser Institute, Osaka (Japan)] [and others

    1995-12-31

    The FELI Facility II has succeeded in infrared FEL oscillation at 1.91 {mu} m using a 68-MeV, 40-A electron beam from the FELI S-band linac in February 27, 1995. The FELI Facility II is composed of a 3-m vertical type undulator ({lambda}u=3.8cm, N=78, Km a x=1.4, gap length {ge}20mm) and a 6.72-m optical cavity. It can cover the wavelength range of 1-5{mu}m. The FELs can be delivered from the optical cavity to the diagnostics room through a 40-m evacuated optical pipeline. Wavelength and cavity length dependences of optical properties such as peak power, average power, spectrum width, FEL macropulse, FEL transverse profile are reported.

  17. Experimental Studies of Temporal Electron Beam Shaping at the DUV-FEL Accelerator

    CERN Document Server

    Loos, H; Doweel, D; Ferario, M; Petrarca, M; Serafini, L; Sheehy, B; Shen, Y; Tsang, Thomas; Vicario, C; Wang, X

    2005-01-01

    The photoinjectors for future short wavelength high brightness accelerator driven light sources need to produce an electron beam with ultra-low emittance. At the DUV-FEL facility at BNL, we studied the effect of longitudinally shaping the photocathode laser pulses on the electron beam dynamics. We report on measurements of transverse and longitudinal electron beam emittance and comparisons of the experimental results with simulations.

  18. Condensed matter research using the UCSB FEL. [Univ. of California, Santa Barbara Free Electron Laser project

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    The University of California, Santa Barbara (UCSB) Free Electron Laser (FEL) project was initiated in 1981 to test the idea of using an electrostatic accelerator in a recirculating beam mode to produce high-power, continuously tunable, coherent far infrared radiation. The development and application of this device to condensed matter research are briefly recounted. Emphasis was on semiconductor research and two-photon experiments. (RWR)

  19. Condensed matter research using the UCSB FEL. Final technical report, May 1, 1984--January 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-09-01

    The University of California, Santa Barbara (UCSB) Free Electron Laser (FEL) project was initiated in 1981 to test the idea of using an electrostatic accelerator in a recirculating beam mode to produce high-power, continuously tunable, coherent far infrared radiation. The development and application of this device to condensed matter research are briefly recounted. Emphasis was on semiconductor research and two-photon experiments. (RWR)

  20. Status of RF system for the JAERI energy-recovery linac FEL

    Science.gov (United States)

    Sawamura, Masaru; Nagai, Ryoji

    2006-02-01

    The two types of the RF sources are used for the JAERI ERL-FEL. One is an all-solid state amplifier and the other is an inductive output tube (IOT). There are advantages of little failure and wide bandwidth for the all-solid state amplifier, low cost and high efficiency for IOT. The property of low cost with the IOT is suitable for a large machine like an energy recovery linac (ERL).

  1. High Efficiency, Multi-Terawatt X-ray free electron lasers

    CERN Document Server

    Emma, Claudio; Wu, Juhao; Pellegrini, Claudio

    2015-01-01

    We study high efficiency, multi-terawatt peak power, few angstrom wavelength, X-ray Free Electron Lasers (X-ray FELs). To obtain these characteristics we consider an optimized undulator design: superconducting, helical, with short period and built-in strong focusing. This design reduces the length of the breaks between modules, decreasing diffraction effects, and allows using a stronger transverse electron focusing. Both effects reduce the gain length and the overall undulator length. The peak power and efficiency depend on the transverse electron beam distribution and on time dependent effects, like synchrotron sideband growth. The last effect is identified as the main cause for reduction of electron beam microbunching and FEL peak power. We show that the optimal functional form for the undulator magnetic field tapering profile, yielding the maximum output power, depends significantly on these effects. The output power achieved when neglecting time dependent effects for an LCLS-like X-ray FEL with a 100 m lo...

  2. Laser Phase Errors in Seeded FELs

    Energy Technology Data Exchange (ETDEWEB)

    Ratner, D.; Fry, A.; Stupakov, G.; White, W.; /SLAC

    2012-03-28

    Harmonic seeding of free electron lasers has attracted significant attention from the promise of transform-limited pulses in the soft X-ray region. Harmonic multiplication schemes extend seeding to shorter wavelengths, but also amplify the spectral phase errors of the initial seed laser, and may degrade the pulse quality. In this paper we consider the effect of seed laser phase errors in high gain harmonic generation and echo-enabled harmonic generation. We use simulations to confirm analytical results for the case of linearly chirped seed lasers, and extend the results for arbitrary seed laser envelope and phase.

  3. Comparison of a ZGP OPO with a Mark-III FEL as a Potential Replacement for Mid-Infrared Soft Tissue Ablation Applications

    CERN Document Server

    Mackanos, M A

    2005-01-01

    A Mark-III FEL, tuned to 6.45 μm has demonstrated minimal collateral damage and high ablation yield in soft tissue. Further clinical advances are limited due to the overhead associated with an FEL; alternative mid-IR sources are needed. The FEL parameters needed to carry out efficient ablation with minimal damage must be determined. Studies by this author have shown that the unique pulse structure of the FEL does not play a role in this process [1]. We focused on comparing the macropulse duration of the FEL with a ZGP-OPO. No difference in pulse structure between the two laser sources with respect to the ablation threshold of water and mouse dermis was seen. There is a difference between the sources with respect to the crater depths in gelatin and mouse dermis. At 6.1 μm, the OPO craters are 8 times the depth of the FEL ones. Brightfield imaging shows the classic ablation mechanism. The timescale of the crater formation, ejection, and collapse occurs on a faster scale for the OPO. Histology ...

  4. Design Concept for a Compact ERL to Drive a VUV/Soft X-Ray FEL

    Energy Technology Data Exchange (ETDEWEB)

    Christopher Tennant ,David Douglas

    2011-03-01

    We explore possible upgrades of the existing Jefferson Laboratory IR/UV FEL driver to higher electron beam energy and shorter wavelength through use of multipass recirculation to drive an amplifier FEL. The system would require beam energy at the wiggler of 600 MeV with 1 mA of average current. The system must generate a high brightness beam, configure it appropriately, and preserve beam quality through the acceleration cycle ? including multiple recirculations ? and appropriately manage the phase space during energy recovery. The paper will discuss preliminary design analysis of the longitudinal match, space charge effects in the linac, and recirculator design issues, including the potential for the microbunching instability. A design concept for the low energy recirculator and an emittance preserving lattice solution will be presented.

  5. Development of photon beam diagnostics for VUV radiation from a SASE FEL

    CERN Document Server

    Treusch, R; Xu, W; Jastrow, U; Hahn, U; Bittner, L; Feldhaus, J

    2000-01-01

    For the proof-of-principle experiment of self-amplified spontaneous emission (SASE) at short wavelengths on the VUV FEL at DESY a multi-facetted photon beam diagnostics experiment has been developed employing new detection concepts to measure all SASE specific properties on a single pulse basis. The present setup includes instrumentation for the measurement of the energy and the angular and spectral distribution of individual photon pulses. Different types of photon detectors such as PtSi-photodiodes and fast thermoelectric detectors based on YBaCuO-films are used to cover some five orders of magnitude of intensity from the level of spontaneous emission to FEL radiation at saturation. A 1 m normal incidence monochromator in combination with a fast intensified CCD camera allows to select single photon pulses and to record the full spectrum at high resolution to resolve the fine structure due to the start-up from noise.

  6. Dynamic Sliding Mode Evolution PWM Controller for a Novel High-Gain Interleaved DC-DC Converter in PV System

    Directory of Open Access Journals (Sweden)

    Taizhou Bei

    2014-01-01

    Full Text Available Considering the disadvantages of the traditional high-gain DC-DC converter such as big size, high voltage stress of switches, and large input current ripple, a novel high-gain interleaved boost converter with coupled-inductor and switched-capacitor was proposed correspondingly and the operation principle together with the steady-state analysis of this converter was also described. Besides, a new control approach-dynamic sliding mode evolution PWM controller (DSME PWM for the novel topological converter based on both dynamic evolution and sliding mode control was also presented. From the simulation results and experimental validation the proposed converter can fulfill high-gain boost, low ripple of both the input current and the output voltage. Furthermore, MPPT technique can be also achieved in a short time by simulation. The efficiency and stability of the converter proposed in this paper can be improved.

  7. Design and performance of an Automatic Gain Control system for the High Energy X-Ray Timing Experiment

    Science.gov (United States)

    Pelling, Michael R.; Rothschild, Richard E.; Macdonald, Daniel R.; Hertel, Robert; Nishiie, Edward

    1991-01-01

    The High Energy X-Ray Timing Experiment (HEXTE), currently under development for the X-Ray Timing Explorer (XTE) mission, employs a closed loop gain control system to attain 0.5 percent stabilization of each of eight-phoswich detector gains. This Automatic Gain Control (AGC) system utilizes a split window discriminator scheme to control the response of each detector pulse height analyzer to gated Am-241 X-ray events at 60 keV. A prototype AGC system has been implemented and tested within the gain perturbation environment expected to be experienced by the HEXTE instrument in flight. The AGC system and test configuration are described. Response, stability and noise characteristics are measured and compared with theoretical predictions. The system is found to be generally suitable for the HEXTE application.

  8. Design and performance of an Automatic Gain Control system for the High Energy X-Ray Timing Experiment

    Science.gov (United States)

    Pelling, Michael R.; Rothschild, Richard E.; Macdonald, Daniel R.; Hertel, Robert; Nishiie, Edward

    1991-01-01

    The High Energy X-Ray Timing Experiment (HEXTE), currently under development for the X-Ray Timing Explorer (XTE) mission, employs a closed loop gain control system to attain 0.5 percent stabilization of each of eight-phoswich detector gains. This Automatic Gain Control (AGC) system utilizes a split window discriminator scheme to control the response of each detector pulse height analyzer to gated Am-241 X-ray events at 60 keV. A prototype AGC system has been implemented and tested within the gain perturbation environment expected to be experienced by the HEXTE instrument in flight. The AGC system and test configuration are described. Response, stability and noise characteristics are measured and compared with theoretical predictions. The system is found to be generally suitable for the HEXTE application.

  9. The impact of stopping high-energy oral nutritional supplements on eating behaviour and weight gain.

    Science.gov (United States)

    Wright, Charlotte M; Chillingworth, Anna

    2015-11-01

    Many children referred to a tertiary feeding clinic are already taking high-energy oral nutritional supplements (HEOS), but these often seem not clinically useful. We undertook a retrospective review of all children on HEOS at the time of referral to the clinic in order to describe their subsequent progress in terms of growth and feeding behaviour. A total of 48 children were on HEOS at referral and withdrawal of HEOS was attempted in 38 children, aged median 3.0 years (range 0.7-10 years) who were taking volumes equivalent to 2/3 of total daily energy requirements. The children tended to be very short and slim (median height SD score (SDS) -2.0 (range -5.7 to 1.9); body mass index -2.0 (-5.1 to 1.9)). Half had normal neurodevelopment (ND) but 4 (11%) had learning disability and 4 (11%) severe ND problems. By last follow-up after 0.86 (0-2.9) years, 30 (79%) had stopped all feeds. Those who stopped had a mean (SD) change in weight of 0.08 (0.6) SDS (range -0.88 to +1.59). Five children (17%) showed significant catch-up weight gain after stopping feeds, of whom three had been referred for weight faltering and possible tube feeding. Improvement in feeding behaviour was documented in 76% (29). The use of HEOS in children suppresses appetite for solid food due to energy compensation. In some cases, HEOS may perpetuate or even cause weight faltering. It should not be assumed that failure to respond to HEOS is an indication for tube feeding. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  10. FERMI @ Elettra A Seeded Harmonic Cascade FEL for EUV and Soft X-Rays

    CERN Document Server

    Bocchetta, C J; Craievich, P; D'Auria, G; Danailov, M B; De Ninno, G; Di Mitri, S; Diviacco, B; Ferianis, M; Gomezel, A; Iazzourene, F; Karantzoulis, E; Penco, G; Trovò, M

    2005-01-01

    We describe the machine layout and major performance parameters for the FERMI FEL project funded for construction at Sincrotrone Trieste, Italy. The project will be the first user facility based on seeded harmonic cascade FELs, providing controlled, high peak-power pulses. With a high-brightness rf photocathode gun, and using the existing 1.2 GeV S-band linac, the facility will provide tunable output over a range from ~100 nm to ~10 nm, with pulse duration from 40 fs to ~ 1ps, and with fully variable output polarization. Initially, two FEL cascades are planned; a single-stage harmonic generation to operate > 40 nm, and a two-stage cascade operating from ~40 nm to ~10 nm or shorter wavelength. The output is spatially and temporally coherent, with peak power in the GW range. Lasers provide modulation to the electron beam, as well as driving the photocathode and other systems, and the facility will integrate laser systems with the accelerator infrastructure, including a state-of-the-art optical timing sys...

  11. FERMI @ Elettra -- A Seeded Harmonic Cascade FEL for EUV and SoftX-rays

    Energy Technology Data Exchange (ETDEWEB)

    Bocchetta, C.; Bulfone, D.; Craievich, P.; Danailov, M.B.; D' Auria,G.; DeNinno, G.; Di Mitri, S.; Diviacco, B.; Ferianis, M.; Gomezel, A.; Iazzourene, F.; Karantzoulis, E.; Parmigiani, F.; Penco, G.; Trovo, M.; Corlett, J.; Fawley, W.; Lidia, S.; Penn, G.; Ratti, A.; Staples, J.; Wilcox, R.; Zholents, A.; Graves, W.; Ilday, F.O.; Kaertner,F.; Wang, D.; Zwart, T.; Cornacchia, M.; Emma, P.; Huang, Z.; Wu, J.

    2005-09-01

    We describe the machine layout and major performance parameters for the FERMI FEL project funded for construction at Sincrotrone Trieste, Italy, within the next five years. The project will be the first user facility based on seeded harmonic cascade FELs, providing controlled, high peak-power pulses. With a high-brightness rf photocathode gun, and using the existing 1.2 GeV S-band linac, the facility will provide tunable output over a range from {approx}100 nm to {approx}10nm, with pulse duration from 40 fs to {approx} 1 ps, peak power GW, and with fully variable output polarization. Initially, two FEL cascades are planned; a single-stage harmonic generation to operate >40 nm, and a two stage cascade operating from {approx}40 nm to {approx}10 nm or shorter wavelength. The output is spatially and temporally coherent, with peak power in the GW range. Lasers provide modulation to the electron beam, as well as driving the photocathode and other systems, and the facility will integrate laser systems with the accelerator infrastructure, including a state-of-the-art optical timing system providing synchronization of rf signals, lasers, and x-ray pulses. Major systems and overall facility layout are described, and key performance parameters summarized.

  12. FERMI@Elettra: A Seeded Harmonic Cascade FEL for EUV and Soft X-Rays

    Energy Technology Data Exchange (ETDEWEB)

    Bocchetta, C.J.; Bulfone, D.; Craievich, P.; Danailov, M.B.; D' Auria, G.; De Ninno, G.; Di Mitri, S.; Diviacco, B.; Ferianis, M.; Gomezel, A.; Iazzourene, F.; Karantzoulis, E.; Parmigiani, F.; Penco, G.; Trovo, M.; /Sincrotrone Trieste; Corlett, J.; Fawley, W.; Lidia, S.; Penn, G.; Ratti, A.; Staples, J.; /LBL, Berkeley /MIT /SLAC

    2005-12-14

    We describe the machine layout and major performance parameters for the FERMI FEL project funded for construction at Sincrotrone Trieste, Italy, within the next five years. The project will be the first user facility based on seeded harmonic cascade FEL's, providing controlled, high peak-power pulses. With a high-brightness rf photocathode gun, and using the existing 1.2 GeV S-band linac, the facility will provide tunable output over a range from {approx}100 nm to {approx}10 nm, with pulse duration from 40 fs to {approx} 1ps, peak power {approx}GW, and with fully variable output polarization. Initially, two FEL cascades are planned; a single-stage harmonic generation to operate > 40 nm, and a two-stage cascade operating from {approx}40 nm to {approx}10 nm or shorter wavelength. The output is spatially and temporally coherent, with peak power in the GW range. Lasers provide modulation to the electron beam, as well as driving the photocathode and other systems, and the facility will integrate laser systems with the accelerator infrastructure, including a state-of-the-art optical timing system providing synchronization of rf signals, lasers, and x-ray pulses. Major systems and overall facility layout are described, and key performance parameters summarized.

  13. A high conversion-gain Q-band InP DHBT subharmonic mixer using LO frequency doubler

    DEFF Research Database (Denmark)

    Johansen, Tom Keinicke; Vidkjær, Jens; Krozer, Viktor;

    2008-01-01

    The paper presents analysis and design of a Q-band subharmonic mixer (SHM) with high conversion gain. The SHM consists of a local oscillator (LO) frequency doubler, RF pre-amplifier, and single-ended mixer. The SHM has been fabricated in a high-speed InP double heterojunction bipolar transistor...

  14. A PMT-like high gain avalanche photodiode based on GaN/AlN periodical stacked structure

    CERN Document Server

    Zheng, Ji-yuan; Yang, Di; Yu, Jia-dong; Meng, Xiao; E, Yan-xiong; Wu, Chao; Hao, Zhi-biao; Sun, Chang-zheng; Xiong, Bing; Luo, Yi; Han, Yan-jian; Wang, Jian; Li, Hong-tao; Brault, Julien; Matta, Samuel; Khalfioui, Mohamed Al; Yan, Jian-chang; Wei, Tong-bo; Zhang, Yun; Wang, Jun-xi

    2016-01-01

    Avalanche photodiode (APD) has been intensively investigated as a promising candidate to replace photomultiplier tubes (PMT) for weak light detection. However, in conventional APDs, a large portion of carrier energy drawn from the electric field is thermalized, and the multiplication efficiencies of electron and hole are low and close. In order to achieve high gain, the device should work under breakdown bias, where carrier multiplication proceeds bi-directionally to form a positive feedback multiplication circle. However, breakdown is hard to control, in practice, APDs should work under Geiger mode as a compromise between sustainable detection and high gain. The complexity of system seriously restricts the application. Here, we demonstrate an avalanche photodiode holding high gain without breakdown, which means no quenching circuit is needed for sustainable detection. The device is based on a GaN/AlN periodically-stacked-structure (PSS), wherein electron holds much higher efficiency than hole to draw energy ...

  15. Double-pass ytterbium-doped fiber amplifier with high gain coefficient and low noise figure

    Institute of Scientific and Technical Information of China (English)

    Anting Wang(王安廷); Meishu Xing(邢美术); Guanghui Chen(陈光辉); Wenkui Yang(杨文奎); Hai Ming(明海); Jianping Xie(谢建平); Yunxia Wu(吴云霞)

    2003-01-01

    We have proposed and demonstrated a double-pass ytterbium-doped fiber amplifier using an optical circulator and a fiber Bragg grating as reflector. When the signal has passed through the ytterbium-doped fiber once, it reflects off a 0.2-nm passive fiber Bragg grating filter. This reduces amplified spontaneous emission (ASE) noise from the first pass. The input signal light is amplified both forward and backward through ytterbium-doped fiber. With this double-pass configuration, 1053.15-nm unsaturated signal gain of 28 dB, gain coefficient of 1.1 dB/mW, and noise figure of less than 4 dB are achieved at 977-nm pump power of 68 mW. It is also found that this double-pass configure provides enhancing gain coefficient and improving noise figure by comparison with single-pass configuration.

  16. High energy gain in three-dimensional simulations of light sail acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Sgattoni, A., E-mail: andrea.sgattoni@polimi.it [Dipartimento di Energia, Politecnico di Milano, Milano (Italy); CNR, Istituto Nazionale di Ottica, u.o.s. “Adriano Gozzini,” Pisa (Italy); Sinigardi, S. [CNR, Istituto Nazionale di Ottica, u.o.s. “Adriano Gozzini,” Pisa (Italy); Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna (Italy); INFN sezione di Bologna, Bologna (Italy); Macchi, A. [CNR, Istituto Nazionale di Ottica, u.o.s. “Adriano Gozzini,” Pisa (Italy); Dipartimento di Fisica “Enrico Fermi,” Università di Pisa, Pisa (Italy)

    2014-08-25

    The dynamics of radiation pressure acceleration in the relativistic light sail regime are analysed by means of large scale, three-dimensional (3D) particle-in-cell simulations. Differently to other mechanisms, the 3D dynamics leads to faster and higher energy gain than in 1D or 2D geometry. This effect is caused by the local decrease of the target density due to transverse expansion leading to a “lighter sail.” However, the rarefaction of the target leads to an earlier transition to transparency limiting the energy gain. A transverse instability leads to a structured and inhomogeneous ion distribution.

  17. Highly anisotropic mobility in solution processed TIPS-pentacene film studied by independently driven four GaIn probes

    Science.gov (United States)

    Yoshimoto, Shinya; Takahashi, Kohtaro; Suzuki, Mitsuharu; Yamada, Hiroko; Miyahara, Ryosuke; Mukai, Kozo; Yoshinobu, Jun

    2017-08-01

    We have studied in-plane anisotropy in the field-effect mobility of solution-processed organic semiconductor 6,13-bis(triisopropylsilylethynyl)pentacene by using independently driven four gallium indium (Ga-In) probes. Liquid-metal Ga-In probes are highly effective for reproducible conductivity measurements of organic thin films. We demonstrated that a high mobility anisotropy of 44 was obtained by using a square four-probe method and a feedback circuit to keep the channel potential constant. The present method minimized the influences of the contact resistance and the insensitivity of anisotropy in a linear arrangement in two-dimensional field-effect transistors.

  18. Modelling Plant and Soil Nitrogen Feedbacks Affecting Forest Carbon Gain at High CO2

    Science.gov (United States)

    McMurtrie, R. E.; Norby, R. J.; Franklin, O.; Pepper, D. A.

    2007-12-01

    Short-term, direct effects of elevated atmospheric CO2 concentrations on plant carbon gain are relatively well understood. There is considerable uncertainty, however, about longer-term effects, which are influenced by various plant and ecosystem feedbacks. A key feedback in terrestrial ecosystems occurs through changes in plant carbon (C) allocation patterns. For instance, if high CO2 were to increase C allocation to roots, then plants may experience positive feedback through improved plant nutrition. A second type of feedback, associated with decomposition of soil-organic matter, may reduce soil-nutrient availability at high CO2. This paper will consider mechanistic models of both feedbacks. Effects of high CO2 on plant C allocation will be investigated using a simple model of forest net primary production (NPP) that incorporates the primary mechanisms of plant carbon and nitrogen (N) balance. The model called MATE (Model Any Terrestrial Ecosystem) includes an equation for annual C balance that depends on light- saturated photosynthetic rate and therefore on [CO2], and an equation for N balance incorporating an expression for N uptake as a function of root mass. The C-N model is applied to a Free Air CO2 Exchange (FACE) experiment at Oak Ridge National Laboratory (ORNL) in Tennessee, USA, where closed-canopy, monoculture stands of the deciduous hardwood sweetgum ( Liquidambar styraciflua) have been growing at [CO2] of 375 and 550 ppm for ten years. Features of this experiment are that the annual NPP response to elevated CO2 has averaged approximately 25% over seven years, but that annual fine-root production has almost doubled on average, with especially large increases in later years of the experiment (Norby et al. 2006). The model provides a simple graphical approach for analysing effects of elevated CO2 and N supply on leaf/root/wood C allocation and productivity. It simulates increases in NPP and fine-root production at the ORNL FACE site that are consistent

  19. Transient absorption spectroscopy in biology using the Super-ACO storage ring FEL and the synchrotron radiation combination

    CERN Document Server

    Renault, E; De Ninno, G; Garzella, D; Hirsch, M; Nahon, L; Nutarelli, D

    2001-01-01

    The Super-ACO storage ring FEL, covering the UV range down to 300 nm with a high average power (300 mW at 350 nm) together with a high stability and long lifetime, is a unique tool for the performance of users applications. We present here the first pump-probe two color experiments on biological species using a storage ring FEL coupled to the synchrotron radiation. The intense UV pulse of the Super-ACO FEL is used to prepare a high initial concentration of chromophores in their first singlet electronic excited state. The nearby bending magnet synchrotron radiation provides, on the other hand a pulsed, white light continuum (UV-IR), naturally synchronized with the FEL pulses and used to probe the photochemical subsequent events and the associated transient species. We have demonstrated the feasibility with a dye molecule (POPOP) observing a two-color effect, signature of excited state absorption and a temporal signature with Acridine. Applications on various chromophores of biological interest are carried out,...

  20. The Linguistic Gains and Acculturation of American High School Students on Exchange Programs in Germany

    Science.gov (United States)

    Lovitt, Ashli

    2013-01-01

    There has been a sharp rise in study abroad participation over the last few decades (Institute for International Education, 2011), which can largely be explained by the rise of short-term study abroad programs. While there is much to be gained from participation in such programs, mid-length and year programs may offer the greatest benefits for…

  1. Differences in Personality Characteristics between Groups Having High and Low Mathematical Achievement Gain under Individualized Instruction.

    Science.gov (United States)

    Neufeld, K. Allen

    The problem of this study was to determine the relationship of selected characteristics of pupils to achievement gain in elementary school mathematics classes using the Individualized Mathematics Curriculum Project (IMCP) approach. Analysis o f data was based primarily on pre-achievement and post-achievement scores. The hypothesis that there was…

  2. Primary experimental studies on mid-infrared FEL irradiation on dental substances at BFEL

    CERN Document Server

    Biao, Z J; Gao Xue Ju; He Wei; Huang Yu Ying; Li Yong Gui; LiuNianQing; Wang Min Kai; Wu Gan; Yan Xue Pin; Zhang Guo Qing

    2001-01-01

    A free electron laser (FEL) with its characteristics of wide wavelength tunability, ultrashort pulse time structure, and high peak power density is predominantly superior to all other conventional lasers in applications. Several experimental studies on mid-infrared FEL irradiation on dental enamel and dentine were performed at the Beijing FEL. Experimental aims were to investigate changes in the hardness, ratios of P to Ca and Cs before and after irradiation on samples with a characteristic absorption wavelength of 9.66 mu m, in the colors of these sample surfaces after irradiation with different wavelengths around the peak wavelength. The time dependence of temperature of the dentine sample was measured with its ps pulse effects compared to that with a continuous CO sub 2 laser. FTIR absorption spectra in the range of 2.5-15.4 mu m for samples of these hard dental substances and pure hydroxyapatite were first examined to decide their chemical components and absorption maximums. Primary experimental results w...

  3. FTIR Spectroscopy on Basic Materials in THz Region for Compact FEL-Based Imaging

    CERN Document Server

    Cha, H J; Lee, B C; Park, S H

    2005-01-01

    We are making experiments on THz(terahertz) imaging using a compact high power FEL (free-electron laser) which is operating as a users facility at KAERI. The wavelength range of output pulses is 100~1200 μm, which corresponds to 0.3~3 THz in the frequency region. We should select the optimum wavelength for the constituents of specimens to realize the imaging based on the THz FEL. A FTIR (Fourier-transform infrared) spectrometer was modified to measure the optical constants of the specimens in THz region. A polyester film of which thickness is 3.7 μm was used as a beam splitter of the spectrometer. In the case of normal incidence, the transmittance of the film was measured to be more than 90%, and the estimated loss by absorption was approximately 2% at the FEL frequency of 3 THz. Several tens of nanometer-thick-silver was coated on the polyester film to balance both transmission and reflection of THz waves in the beam splitter. We investigated FTIR spectroscopy on air, vapor and liquid water...

  4. Large delay tunable slow-light based on high-gain stimulated-Brillouin-scattering amplification in optical fibers

    Institute of Scientific and Technical Information of China (English)

    XING Liang; ZHAN Li; XIA YuXing

    2009-01-01

    Tunable stimulated-Brillouin-scattering (SBS)-based slow-light in optical fibers has potential applications in optical buffering in the future all-optical router commutation systems.However,due to the low SBS threshold and relatively high realistic signal power,the gain in the usual SBS systems is limited at~30 dB.This paper presents a high-gain SBS scheme to realize large delay slow-light,which benefits from avoiding the depletion of the pump power in a short fiber as SBS media.The experiment demon strates that,up to 50 dB non-saturated gain has been observed in the single-stage 591.8 m fiber SBS amplification.The slow-light delay can be obtained 52 ns,and the fractional delay can exceed 1.

  5. Modified unscented Kalman filter using modified filter gain and variance scale factor for highly maneuvering target tracking

    Institute of Scientific and Technical Information of China (English)

    Changyun Liu; Penglang Shui; Gang Wei; Song Li

    2014-01-01

    To improve the low tracking precision caused by lagged filter gain or imprecise state noise when the target highly maneu-vers, a modified unscented Kalman filter algorithm based on the improved filter gain and adaptive scale factor of state noise is pre-sented. In every filter process, the estimated scale factor is used to update the state noise covariance Qk, and the improved filter gain is obtained in the filter process of unscented Kalman filter (UKF) via predicted variance Pk|k-1, which is similar to the standard Kalman filter. Simulation results show that the proposed algorithm provides better accuracy and ability to adapt to the highly maneu-vering target compared with the standard UKF.

  6. High gain micro-channel plate multipliers for particle tracking or single photo-electron counting

    Energy Technology Data Exchange (ETDEWEB)

    Oba, K.; Rehak, P.; Smith, S.D.

    1980-01-01

    Micro-channel plate multipliers have been used to detect the passage of relativistic charged particles. Measurements of the detection efficiency and pulse height response versus micro-channel plate gain are presented for one, two and three micro-channel plate arrays. Values describing temporal response and transit time jitter are also given. In a separate measurement, the response of a single micro-channel plate to individual slow electrons (less than or equal to 1 keV) was studied. By using a special technique output bunches as small as three electrons may be seen for low average micro-channel plate gain. The results of attempts to improve the micro-channel plate response are also presented.

  7. High-power gain-switched Tm(3+)-doped fiber laser.

    Science.gov (United States)

    Tang, Yulong; Xu, Lin; Yang, Yi; Xu, Jianqiu

    2010-10-25

    Gain-switched by a 1.914-µm Tm:YLF crystal laser, a two-stage Tm(3+) fiber laser has been achieved 100-W level ~2-µm pulsed laser output with a slope efficiency of ~52%. With the 6-m length of Tm fiber, the laser wavelength was centered at 2020 nm with a bandwidth of ~25 nm. Based on an acousto-optic switch, the pulse repetition rate can be modulated from 500 Hz to 50 kHz, and the laser pulse width can be tuned between 75 ns and ~1 µs. The maximum pulse energy was over 10 mJ, and the maximum pulse peak power was 138 kW. By using the fiber-coiling-induced mode-filtering effect, laser beam quality of M2 = 1.01 was obtained. Further scaling the pulse energy and average power from such kind of gain-switched fiber lasers was also discussed.

  8. A numerical algorithm for optimal feedback gains in high dimensional LQR problems

    Science.gov (United States)

    Banks, H. T.; Ito, K.

    1986-01-01

    A hybrid method for computing the feedback gains in linear quadratic regulator problems is proposed. The method, which combines the use of a Chandrasekhar type system with an iteration of the Newton-Kleinman form with variable acceleration parameter Smith schemes, is formulated so as to efficiently compute directly the feedback gains rather than solutions of an associated Riccati equation. The hybrid method is particularly appropriate when used with large dimensional systems such as those arising in approximating infinite dimensional (distributed parameter) control systems (e.g., those governed by delay-differential and partial differential equations). Computational advantage of the proposed algorithm over the standard eigenvector (Potter, Laub-Schur) based techniques are discussed and numerical evidence of the efficacy of our ideas presented.

  9. A numerical algorithm for optimal feedback gains in high dimensional linear quadratic regulator problems

    Science.gov (United States)

    Banks, H. T.; Ito, K.

    1991-01-01

    A hybrid method for computing the feedback gains in linear quadratic regulator problem is proposed. The method, which combines use of a Chandrasekhar type system with an iteration of the Newton-Kleinman form with variable acceleration parameter Smith schemes, is formulated to efficiently compute directly the feedback gains rather than solutions of an associated Riccati equation. The hybrid method is particularly appropriate when used with large dimensional systems such as those arising in approximating infinite-dimensional (distributed parameter) control systems (e.g., those governed by delay-differential and partial differential equations). Computational advantages of the proposed algorithm over the standard eigenvector (Potter, Laub-Schur) based techniques are discussed, and numerical evidence of the efficacy of these ideas is presented.

  10. Quantum spatial correlations in high-gain parametric down-conversion measured by means of a CCD camera

    DEFF Research Database (Denmark)

    Jedrkiewicz, O.; Brambilla, E.; Bache, Morten

    2006-01-01

    We consider travelling-wave parametric down-conversion in the high-gain regime and present the experimental demonstration of the quantum character of the spatial fluctuations in the system. In addition to showing the presence of sub-shot noise fluctuations in the intensity difference, we demonstr...

  11. Investigation of hole-blocking contacts for high-conversion-gain amorphous selenium detectors for X-ray imaging

    NARCIS (Netherlands)

    Abbaszadeh, S.; Allec, N.; Ghanbarzadeh, S.; Shafique, U.; Karim, K.S.

    2012-01-01

    In this paper, we investigated different organic and inorganic hole-blocking contacts for amorphous selenium (a-Se)-based photodetectors: CeO2, TiO2, perylene tetracarboxylic bisbenzimidazole (PTCBI), and polyimide (PI). CeO2 has previously been used as a blocking layer for high-gain a-Se devices. T

  12. Eigenmodes and mode competition in a high-gain free-electron laser including alternating-gradient focusing

    CERN Document Server

    Wu Ju Ha

    2001-01-01

    We solve the eigenvalue problem for a high gain free-electron laser in the 'water-bag' model including alternating-gradient focusing by a variational-solution-based (VSB) expansion method. Such VSB expansion method is very efficient for finding the eigenvalue. The results agree with those obtained by numerical simulation quite well. We further discuss the mode degeneracy and mode competition.

  13. Gain-scheduled Linear Quadratic Control of Wind Turbines Operating at High Wind Speed

    DEFF Research Database (Denmark)

    Østergaard, Kasper Zinck; Stoustrup, Jakob; Brath, Per

    2007-01-01

    This paper addresses state estimation and linear quadratic (LQ) control of variable speed variable pitch wind turbines. On the basis of a nonlinear model of a wind turbine, a set of operating conditions is identified and a LQ controller is designed for each operating point. The controller gains....... Simulation results are given that display good performance of the observers and comparisons with a controller designed by classical methods displays the potential of the method.  ...

  14. Recent Advances on the Design of High-Gain Wideband Operational Transconductance Amplifiers

    Directory of Open Access Journals (Sweden)

    Rida Assaad

    2009-01-01

    greater than 90 dB DC gain, GBW of 325 MHz and better than 70∘ phase margin is discussed. The settling-time- of the NCFF topology can be faster than that of OTAs with Miller compensation. Experimental results for the recycling folded-cascode OTA fabricated in TSMC 0.18 m CMOS, and results of the NCFF demonstrate the efficiency and feasibility of the feed-forward schemes.

  15. Novel T-Z source inverter with high voltage gain and reduced transformer turn ratio

    DEFF Research Database (Denmark)

    Mostaan, Ali; Sharifi Malfejani, Saeed; Soltani, Mohsen

    2015-01-01

    Novel voltage source inverter based on the Z source inverter structure is introduced in this paper. In this new inverter, two inductors of the impedance network in conventional Z source inverter are replaced with two transformers or coupled inductors, but unlike the T-Z source inverter that it's ...... cost. The proposed inverter is analyzed in steady state and its voltage gain is obtained. The performance of the proposed inverter is verified with simulation results using the MATLAB/SIMULINK software....

  16. Pulse Combustor Driven Pressure Gain Combustion for High Efficiency Gas Turbine Engines

    KAUST Repository

    Lisanti, Joel

    2017-02-01

    The gas turbine engine is an essential component of the global energy infrastructure which accounts for a significant portion of the total fossil fuel consumption in transportation and electric power generation sectors. For this reason there is significant interest in further increasing the efficiency and reducing the pollutant emissions of these devices. Conventional approaches to this goal, which include increasing the compression ratio, turbine inlet temperature, and turbine/compressor efficiency, have brought modern gas turbine engines near the limits of what may be achieved with the conventionally applied Brayton cycle. If a significant future step increase in gas turbine efficiency is to be realized some deviation from this convention is necessary. The pressure gain gas turbine concept is a well established new combustion technology that promises to provide a dramatic increase in gas turbine efficiency by replacing the isobaric heat addition process found in conventional technology with an isochoric process. The thermodynamic benefit of even a small increase in stagnation pressure across a gas turbine combustor translates to a significant increase in cycle efficiency. To date there have been a variety of methods proposed for achieving stagnation pressure gains across a gas turbine combustor and these concepts have seen a broad spectrum of levels of success. The following chapter provides an introduction to one of the proposed pressure gain methods that may be most easily realized in a practical application. This approach, known as pulse combustor driven pressure gain combustion, utilizes an acoustically resonant pulse combustor to approximate isochoric heat release and thus produce a rise in stagnation pressure.

  17. High gain semiconductor optical amplifier — Laser diode at visible wavelength

    KAUST Repository

    Shen, Chao

    2017-02-07

    We reported on the first experimental demonstration of a two-section semipolar InGaN-based laser diode with monolithically integrated semiconductor optical amplifier (SOA-LD). The onset of amplification effect was measured at 4V SOA bias (VSOA). The SOA-LD shows a large gain of 5.32 dB at Vsoa = 6 V.

  18. Optimization of Drive Pulse Configuration for a High-Gain Transient X-Ray Laser at 19.6 nm

    Institute of Scientific and Technical Information of China (English)

    LU Xin; LI Ying-Jun; ZHANG Jie

    2001-01-01

    An Ne-like transient collisional excitation x-ray laser at 19.6nm (J = 0 → 1, 3p - 3s) was investigated numerically using a sophisticated hydrodynamic code for a l00μm thick Ge planar target irradiated by a nanosecond pre pulse followed by a picosecond main optical laser pulse. The simulations indicate that for a given peak intensity, the main pulse has an optimal duration to generate the maximum effective gain. An effective gain as high as 200 cma-1 was obtained for the optimized drive pulse configuration.

  19. Injection system for microtron-based terehertz FEL

    Energy Technology Data Exchange (ETDEWEB)

    Kazakevich, Grigory M.; Kuznetsov, Gennady I.; Pavlov, Viatcheslav M.; /Novosibirsk, IYF; Jeong, Young Uk; Park, Seong Hee; Lee, Byung Cheol; /KAERI, Taejon

    2005-09-01

    A reliable injection system of the widely tunable microtron-based terahertz Free Electron Laser (FEL) has been developed and during last few years provides stable operation of the FEL for users. The system is based on the long-life thermionic cathode assembly using 2.5 mm-in diameter monocrystalline LaB{sub 6} emitter, heated by the tungsten cylindrical filament with the power consumption less than 55 W. The cathode emits the macro-pulse current in the range of 1-1.4 A providing operation of the terahertz FEL during more than 1000 h. The cathode assembly is installed on the cover of the I-type microtron accelerating cavity in location providing an efficient injection for the acceleration with variable number of orbits. This variation widely changes the energy of the electron beam and allows on-the-fly retuning of the FEL in the range of 1-3 THz. Pulse-signal system stabilizing the emission current prevents randomized break-downs in the accelerating cavity and decreases fluctuations of the power of the FEL radiation. The standard deviation of the fluctuations was measured to be less than 10% during long-time operation.

  20. Injection System for Microtron-Based Terahertz FEL

    CERN Document Server

    Kazakevich, G M

    2005-01-01

    A reliable injection system of the widely tunable microtron-based terahertz Free Electron Laser (FEL) has been developed and during last few years provides stable operation of the FEL for users. The system is based on the long-life thermionic cathode assembly using 2.5 mm-in diameter monocrystalline LaB6 emitter, heated by the tungsten cylindrical filament with the power consumption less than 50 W. The cathode emits the macro-pulse current in the range of 1-1.4 A providing operation of the terahertz FEL during more than 1000 h. The cathode assembly is installed on the cover of the I-type microtron accelerating cavity in location providing an efficient injection for the acceleration with variable number of orbits. This variation widely changes the energy of the electron beam and allows on-the-fly retuning of the FEL in the range of 1-3 THz. Pulse-signal system stabilizing the emission current prevents randomized break-downs in the accelerating cavity and decreases macro-pulse power fluctuations of the FEL radi...

  1. High-gain dipole antenna using polydimethylsiloxane-glass microsphere (PDMS-GM) substrate for 5G applications

    Science.gov (United States)

    Muhamad, Wan Asilah Wan; Ngah, Razali; Jamlos, Mohd Faizal; Soh, Ping Jack; Ali, Mohd Tarmizi

    2017-01-01

    A new dipole antenna designed using polydimethylsiloxane-glass microsphere (PDMS-GM) substrate is presented. The PDMS-GM substrate offered a lower permittivity of 1.85 compared to pure PDMS of 2.7. This resulted in a wide operating frequency range from 19 GHz up to more than 45 GHz, indicating a bandwidth of more than 28 GHz. The proposed PDMS-GM antenna featured a gain of up to 13.3 dB compared to pure PDMS which only produced 13 GHz of bandwidth and 5.5 dB gain. Instead of wide bandwidth and high gain, the proposed antenna is capable of becoming water resistant by covering its radiator and SMA connector. Such capabilities of the new PDMS-GM antenna indicated suitability for the fifth-generation (5G) wireless communication systems.

  2. Compact tunable high power picosecond source based on Yb-doped fiber amplification of gain switch laser diode.

    Science.gov (United States)

    Liu, Hongjun; Gao, Cunxiao; Tao, Jintao; Zhao, Wei; Wang, Yishan

    2008-05-26

    A compact tunable high power picosecond source based on Yb-doped fiber amplification of gain switch laser diode is demonstrated. A multi-stage single mode Yb-doped fiber preamplifier was combined with a single mode double-clad Yb-doped fiber main amplifier to construct the amplification system, which is seeded by a gain switch laser diode. By optimizing preamplifier???s parameters to compensate the seed spectrum gain, a "flat top" broadband spectrum is obtained to realize wavelength tunable output with a self-made tunable filter. The tunable pulses were further amplified to 3.5 W average power 90 ps pulses at 1 MHz repetition rate, and the center wavelength was tunable in the ranges from 1053 nm to 1073 nm with excellent beam quality.

  3. Seasonal Variations of Polarization Diversity Gain in a Vegetated Area considering High Elevation Angles and a Nomadic User

    Directory of Open Access Journals (Sweden)

    Milan Kvicera

    2015-01-01

    Full Text Available Seasonal variations of the polarization diversity gain are addressed for a nomadic user in a vegetated area taking high elevation angles and nongeostationary satellites into consideration. Corresponding experimental data were obtained at a frequency of 2.0 GHz at Stromovka Park in Prague, the Czech Republic, within the full in-leaf and out-of-leaf periods of 2013 and 2014, respectively. By detecting copolarized and cross-polarized components of the transmitted left- and right-handed circularly polarized signals, the corresponding diversity gain was obtained for multiple-input single-output (MISO, single-input multiple-output (SIMO, and combined MISO/SIMO cases. It was found that tree defoliation results in a significant decrease of the polarization diversity gain achieved for low time percentages in particular scenarios.

  4. Wideband and flat-gain amplifier based on high concentration erbium-doped fibres in parallel double-pass configuration

    Science.gov (United States)

    Hamida, B. A.; Cheng, X. S.; Harun, S. W.; Naji, A. W.; Arof, H.; Al-Khateeb, W.; Khan, S.; Ahmad, H.

    2012-03-01

    A wideband and flat gain erbium-doped fibre amplifier (EDFA) is demonstrated using a hybrid gain medium of a zirconiabased erbium-doped fibre (Zr-EDF) and a high concentration erbium-doped fibre (EDF). The amplifier has two stages comprising a 2-m-long ZEDF and 9-m-long EDF optimised for C- and L-band operations, respectively, in a double-pass parallel configuration. A chirp fibre Bragg grating (CFBG) is used in both stages to ensure double propagation of the signal and thus to increase the attainable gain in both C- and L-band regions. At an input signal power of 0 dBm, a flat gain of 15 dB is achieved with a gain variation of less than 0.5 dB within a wide wavelength range from 1530 to 1605 nm. The corresponding noise figure varies from 6.2 to 10.8 dB within this wavelength region.

  5. Wideband and flat-gain amplifier based on high concentration erbium-doped fibres in parallel double-pass configuration

    Energy Technology Data Exchange (ETDEWEB)

    Hamida, B A; Cheng, X S; Harun, S W; Naji, A W; Arof, H; Al-Khateeb, W; Khan, S; Ahmad, H

    2012-03-31

    A wideband and flat gain erbium-doped fibre amplifier (EDFA) is demonstrated using a hybrid gain medium of a zirconiabased erbium-doped fibre (Zr-EDF) and a high concentration erbium-doped fibre (EDF). The amplifier has two stages comprising a 2-m-long ZEDF and 9-m-long EDF optimised for C- and L-band operations, respectively, in a double-pass parallel configuration. A chirp fibre Bragg grating (CFBG) is used in both stages to ensure double propagation of the signal and thus to increase the attainable gain in both C- and L-band regions. At an input signal power of 0 dBm, a flat gain of 15 dB is achieved with a gain variation of less than 0.5 dB within a wide wavelength range from 1530 to 1605 nm. The corresponding noise figure varies from 6.2 to 10.8 dB within this wavelength region.

  6. Orbital motion in generalized static fields of FELs accounting for axial magnetic field, beam forces, undulator and external focusing

    Energy Technology Data Exchange (ETDEWEB)

    Papadichev, V.A. [Lebedev Physical Institute, Moscow (Russian Federation)

    1995-12-31

    Various types of undulators with or without axial magnetic field are used in FELs. Supplementary beam focusing can be applied by wedging, inclining or profiling pole faces of plan undulators or superposing external focusing magnetic fields in addition to undulator own focusing. Space-charge forces influence significantly particle motion in high-current, low-energy electron beams. Finally, one can use simultaneously two or more different undulators for some specific purpose: more efficient and selective higher harmonics generation, changing polarization types and direction, gain enhancement in double-period undulator etc. All these cases can be treated by solving the generalized equations of transverse orbital motion in a linear approximation, which is widely used for orbit calculation, gives sufficient accuracy for practical purposes and allows to consider many variants and optimize the chosen one. The undulator field is described as a field of two plane undulators with mutually orthogonal fields and an arbitrary axial (phase) shift between them. Various values of the phase shift correspond to right- or left-handed helical undulators, plane undulator of different polarization etc. The general formulae are reduced to forms that allow easier examination of particular cases: planar or helical undulator combined with axial magnetic field or without it, gyroresonance, limiting beam current, polarization etc.

  7. Short note on undulator alignments and beam tolerances for the APS FEL at 220 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Dejus, R.J.; Vasserman, I.B.

    1999-10-08

    The APS FEL consists of a series of undulators that must be carefully aligned for optimum gain and high spectral output. In order to get a better understanding of acceptable tolerance levels for undulator alignments and for the electron beam, the authors have performed computer calculations to simulate misalignments of one undulator (undulator number 2) with respect to adjacent undulators and to check the sensitivity to unmatched beam parameters ({alpha} and {beta}) at the entrance and to a noncentered incident beam x{sub o}, x{sub o}{prime}, y{sub o}, y{sub o}{prime}. They have not simulated horizontal misalignments because the undulators focus only in the vertical direction and horizontal alignments are therefore much more relaxed than vertical alignments. The exact placement and strength of the quadrupoles in the breaks need also to be addressed in follow up studies and are not presented here. Further, inherent undulator magnetic field errors have not been investigated here and will also be the subject for another study. Note, the tolerances listed in this note may be used for guidance only and will need to be updated when they have updated beam parameters.

  8. Factors influencing individual variability in high fat diet-induced weight gain in out-bred MF1 mice.

    Science.gov (United States)

    Vaanholt, L M; Sinclair, R E; Mitchell, S E; Speakman, J R

    2015-05-15

    Easy access to high-energy palatable foods has been suggested to have contributed to the world-wide obesity epidemic. However, within these 'obesogenic' environments many people manage to remain lean. Mice also show variability in their weight gain responses to high-fat diet (HFD) feeding and their weight loss responses to calorically restricted (CR) feeding. In this study we investigated which factors contribute to determining susceptibility to HFD-induced obesity in mice, and whether the responses in weight gain on HFD are correlated with the responses to CR. One-hundred twenty four mice were exposed to 30% CR for 28days followed by a 14day recovery period, and subsequent exposure to 60% HFD for 28days. Responses in various metabolic factors were measured before and after each exposure (body mass; BM, body composition, food intake; FI, resting metabolic rate; RMR, physical activity, body temperature and glucose tolerance; GT). Weight changes on HFD ranged from -1 to 26%, equivalent to -0.2g to 10.5g in absolute mass. Multiple regression models showed that fat free mass (FFM) of the mice before exposure to HFD predicted 12% of the variability in weight gain on HFD (pweight gain. Weight gain on the HFD was significantly negatively correlated to weight loss on CR, indicating that animals that are poor at defending against weight gain on HFD, were also poor at defending against CR-induced weight loss. Changes in FM and FFM in response to HFD or CR were not correlated however. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Stability of Gain Scheduling Control for Aircraft with Highly Nonlinear Behavior

    Directory of Open Access Journals (Sweden)

    Fany Mendez-Vergara

    2014-01-01

    Full Text Available The main goal of this work is to study the stability properties of an aircraft with nonlinear behavior, controlled using a gain scheduled approach. An output feedback is proposed which is able to guarantee asymptotical stability of the task-coordinates origin and safety of the operation in the entire flight envelope. The results are derived using theory of hybrid and singular perturbed systems. It is demonstrated that both body velocity and orientation asymptotic tracking can be obtained in spite of nonlinearities and uncertainty. The results are illustrated using numerical simulations in F16 jet.

  10. An ultra-low voltage high gain operational transconductance amplifier for biomedical applications

    OpenAIRE

    Bautista, F.; Martınez, S.O.; Dieck, G.; Rossetto, O.

    2007-01-01

    special issue in one of the Eurasip journals (Hindawi Publishing Corporation); International audience; A novel differential-input single-output Operational Transconductance Amplifier (OTA) is presented in this paper. The topology proposed consists of an input stage based on a folded cascoded amplifier, and an output stage based on a current source amplifier and a bulk-driven current mirror. The simulations show that the amplifier has a 1.94¹W power dissipation, 92dB open-loop DC gain, a unit ...

  11. A Far-Infrared FEL for the Radiation Source ELBE

    CERN Document Server

    Seidel, W; Lehnert, U; Michel, P; Schlenk, R; Willkommen, U; Wohlfarth, D; Wünsch, R

    2005-01-01

    After successfully commissioning the mid-infrared FEL (U27) and adjoining a second accelerator unit (up to 35 MeV) at ELBE we have modified our plan how to produce radiation in the far infrared.To ensure the continuous variation of the wavelength up to 150 microns we want to complement the U27 undulator by a permanent magnet undulator with a period of 100 mm (U100). The minimum gap of 24 mm and the hybrid construction consisting of Sm/Co magnets and soft iron poles ensures sufficient radiation resistance and allows rms undulator parameters up to 2.7. The large field variation allows us to cover the whole wavelength range by only two different electron energies (e.g. 20 and 35 MeV). To reduce the transverse beam size we use a partial waveguide which is 10 mm high and wide enough to allow free propagation in horizontal direction. It spans from the last quadrupole in front of the undulator up to the downstream mirror and is somewhat longer than 8 m. To minimize the coupling losses between free propagation and th...

  12. Beam dynamics simulations for linacs driving short-wavelength FELs

    Energy Technology Data Exchange (ETDEWEB)

    Ferrario, M.; Tazzioli, F. [Istituto Nazionale di Fisica Nucleare, Frascati, RM (Italy). Laboratori nazionali di Frascati; Serafini, L. [Milan Univ., Milan (Italy); Istituto Nazionale di Fisica Nucleare, Milan (Italy)

    1999-07-01

    The fast code HOMDYN has been recently developed, in the framework of the TTF (Tesla test facility) collaboration, in order to study the beam dynamics of linacs delivering high brightness beams as those needed for short wavelength Fel experiments. These linacs are typically driven by radio-frequency photo-injectors, where correlated time dependent space charge effects are of great relevance: these effects cannot be studied by standard beam optics codes (TRACE3D, etc.) and they have been modeled so far by means of multi-particle (Pic or quasistatic) codes requiring heavy cpu time and memory allocations. HOMDYN is able to describe the beam generation at the photo-cathode and the emittance compensation process in the injector even running on a laptop with very modest running rimes (less than a minute). In this paper it is showed how this capability of the code is exploited so to model a whole linac up to the point where the space charge dominated regime is of relevance (200 MeV).

  13. FERMI@Elettra FEL Design Technical Optimization Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Fawley, William; Penn, Gregory; Allaria, Enrico; De Ninno,Giovanni; Graves, William

    2006-07-31

    This is the final report of the FEL Design Group for the Technical Optimization Study for the FERMI{at}ELETTRA project. The FERMI{at}ELETTRA project is based on the principle of harmonic upshifting of an initial ''seed'' signal in a single pass, FEL amplifier employing multiple undulators. There are a number of FEL physics principles which underlie this approach to obtaining short wavelength output: (1) the energy modulation of the electron beam via the resonant interaction with an external laser seed (2) the use of a chromatic dispersive section to then develop a strong density modulation with large harmonic overtones (3) the production of coherent radiation by the microbunched beam in a downstream radiator. Within the context of the FERMI project, we discuss each of these elements in turn.

  14. 93-133 GHz Band InP High-Electron-Mobility Transistor Amplifier with Gain-Enhanced Topology

    Science.gov (United States)

    Sato, Masaru; Shiba, Shoichi; Matsumura, Hiroshi; Takahashi, Tsuyoshi; Nakasha, Yasuhiro; Suzuki, Toshihide; Hara, Naoki

    2013-04-01

    In this study, we developed a new type of high-frequency amplifier topology using 75-nm-gate-length InP-based high-electron-mobility transistors (InP HEMTs). To enhance the gain for a wide frequency range, a common-source common-gate hybrid amplifier topology was proposed. A transformer-based balun placed at the input of the amplifier generates differential signals, which are fed to the gate and source terminals of the transistor. The amplified signal is outputted at the drain node. The simulation results show that the hybrid topology exhibits a higher gain from 90 to 140 GHz than that of the conventional common-source or common-gate amplifier. The two-stage amplifier fabricated using the topology exhibits a small signal gain of 12 dB and a 3-dB bandwidth of 40 GHz (93-133 GHz), which is the largest bandwidth and the second highest gain reported among those of published 120-GHz-band amplifiers. In addition, the measured noise figure was 5 dB from 90 to 100 GHz.

  15. Investigation of short pulse effects in IR FELs and new simulation results

    CERN Document Server

    Asgekar, Vivek; Brunken, M; Casper, Lars; Genz, Harald; Grigore, Maria; Hessler, Christoph; Khodyachykh, Sergiy; Richter, Achim; Van der Meer, Alex F G

    2003-01-01

    The Darmstadt IR FEL is designed to generate wavelengths between 3 and 10 mum and driven by the superconducting electron linear accelerator. The pulsed electron beam has a peak current of 2.7 A leading to a small signal gain of 5%. Currently, investigations of the energy transfer process inside the undulator are performed using the 1D time-dependent simulation code FAST1D-OSC. We present simulation results for the power vs. different desynchronization and tapering parameters as well as a comparison with experimental data from the S-DALINAC IR-FEL. Furthermore, a compact autocorrelation system assuring a background-free measurement of the optical pulse length is described. In a first test experiment at FELIX, the autocorrelator has been tested at wavelengths 5.7 less than approximately equals lambda less than approximately equals 9.0 mum. The frequency doubling in a 2 mm-long ZnGeP//2-crystal resulted in a time resolution of 300 fs and a conversion efficiency of 5%.

  16. Harmonic Cascade FEL Designs for LUX, a Facilty for Ultrafast X-ray Science

    CERN Document Server

    John, Corlett; Penn, Gregory; Zholents, Alexander A

    2004-01-01

    LUX is a proposed facility for ultrafast X-ray science, based on an electron beam accelerated to ~3-GeV energy in a superconducting, recirculating linac.Included in the design are multiple FEL beamlines which use the harmonic cascade approach to produce coherent XUV & soft X-ray emission beginning with a strong input external laser seed at ~200 nm wavelength. Each cascade module generally operates in the low-gain regime and is composed of a radiator together with a modulator section, separated by a magnetic chicane. The chicane temporally delays the electron beam pulse in order that a "virgin" pulse region (with undegraded energy spread) be brought into synchronism with the radiation pulse. For each cascade, the output photon energy can be selected over a wide range by varying the seed laser wavelength and the field strength in the undulators. We present numerical simulation results, as well as those from analytical models, to examine predicted FEL performance. We also discuss lattice considerations perti...

  17. High-gain step-profiled integrated diagonal horn-antennas

    Science.gov (United States)

    Eleftheriades, George V.; Rebeiz, Gabriel M.

    1992-05-01

    A new step-profiled integrated-horn antenna is proposed. The antenna allows gains in the range of 17-20 dB to be achieved using standard (100) silicon wafers. The antenna is diagonally fed and exhibits very good circular symmetry within the 10-dB beamwidth. It has a fundamental Gaussian coupling efficiency of 83 percent. It is demonstrated that the profiled antenna has a radiation pattern similar to that of its smooth envelope horn, provided that the discontinuity between successive wafers does not exceed 0.15 lambda. The integrated stepped-profile horn performs much better than a corresponding smooth 70 deg flare-angle integrated horn of the same aperture size. The integrated step-profile horn is very well-suited for radio-astonomical and remote-sensing millimeter-wave imaging arrays requiring a large number of focal-plane elements.

  18. High temperature and wavelength dependence of avalanche gain of AlAsSb avalanche photodiodes.

    Science.gov (United States)

    Sandall, Ian C; Xie, Shiyu; Xie, Jingjing; Tan, Chee Hing

    2011-11-01

    The evolution of the dark currents and breakdown at elevated temperatures of up to 450  K are studied using thin AlAsSb avalanche regions. While the dark currents increase rapidly as the temperature is increased, the avalanche gain is shown to only have a weak temperature dependence. Temperature coefficients of breakdown voltage of 0.93 and 1.93  mV/K were obtained from the diodes of 80 and 230  nm avalanche regions (i-regions), respectively. These values are significantly lower than for other available avalanche materials at these temperatures. The wavelength dependence of multiplication characteristics of AlAsSb p-i-n diodes has also been investigated, and it was found that the ionization coefficients for electrons and holes are comparable within the electric field and wavelength ranges measured.

  19. A novel broadband and high-gain microstrip reflectarray antenna with variable polarization

    Institute of Scientific and Technical Information of China (English)

    Zhihang WU; Wenxun ZHANG; Zhenguo LIU; Wei SHEN

    2008-01-01

    This article proposes a new kind of microstrip reflectarray antenna, of which the polarization could be reconfigured among all the polarization states instead of some fixed states in a dual- or multi-polarized antenna. The mechanism for polarized variability is so simple that only mechanical rotation is needed. Theoretical analysis shows that the refected polarization covers all states and that the dual- or multi-layered unit structure sandwiched with air-gaps can broaden the bandwidth efficiently. Moreover, it is demonstrated that adopting more elements can enhance antenna gain. With these advanta-geous features, this kind of antenna has the potential significance for engineering applications in radar, com-munication, etc. In this article, a complete theoretical analysis as well as a specific design sample is given to verify this method.

  20. Gain engineering for all-optical microwave and high speed pulse generation in mode-locked fiber lasers

    Science.gov (United States)

    Li, Fangxin; Helmy, Amr S.

    2014-03-01

    Pulsed sources based on approaches that employ only photonic components and no RF components will be discussed in this talk. Several technologies have been explored to generate actively mode-locked sources using electronically driven fiber ring cavities. However, for these sources the pulse repetition rate is usually limited by the bandwidth of the intracavity modulator. Filtering of highly-stable low repetition rate optical combs utilizing cavities such as Fabry-Perot etalons can be used to overcome this limitation. This scheme is not flexible as it requires highly precise control of ultrahigh finesse etalons which limits the repetition rate to the free spectral range of the filter. Pulsed sources based on semiconductor devices offer many advantages, including large gain bandwidth, rapid tunability, long-term stability. In this work we introduce a novel, simple method to generate optical clock with wavelength tunability using two continuous wave (CW) lasers. The lasers are injected into a conventional SOAs-based fiber ring laser. The beating signal generated by these two lasers causes the modulation of the SOA gain saturation inside the cavity. Thus, the SOA provides gain and functions as the modulator as well as the gain medium. When the lasing mode inside the cavity is amplified, it also results in gain-induced four wave mixing. The proposed technique is particularly versatile, overcoming the bandwidth limitation of other techniques, which require RF sources. Moreover, this technique provides the possibility for hybrid integration as it is comprised of semiconductor chips that can be heterogeneously integrated on a Si platform.

  1. Excess Folic Acid Increases Lipid Storage, Weight Gain, and Adipose Tissue Inflammation in High Fat Diet-Fed Rats

    Directory of Open Access Journals (Sweden)

    Karen B. Kelly

    2016-09-01

    Full Text Available Folic acid intake has increased to high levels in many countries, raising concerns about possible adverse effects, including disturbances to energy and lipid metabolism. Our aim was to investigate the effects of excess folic acid (EFA intake compared to adequate folic acid (AFA intake on metabolic health in a rodent model. We conducted these investigations in the setting of either a 15% energy low fat (LF diet or 60% energy high fat (HF diet. There was no difference in weight gain, fat mass, or glucose tolerance in EFA-fed rats compared to AFA-fed rats when they were fed a LF diet. However, rats fed EFA in combination with a HF diet had significantly greater weight gain and fat mass compared to rats fed AFA (p < 0.05. Gene expression analysis showed increased mRNA levels of peroxisome proliferator-activated receptor γ (PPARγ and some of its target genes in adipose tissue of high fat-excess folic acid (HF-EFA fed rats. Inflammation was increased in HF-EFA fed rats, associated with impaired glucose tolerance compared to high fat-adequate folic acid (HF-AFA fed rats (p < 0.05. In addition, folic acid induced PPARγ expression and triglyceride accumulation in 3T3-L1 cells. Our results suggest that excess folic acid may exacerbate weight gain, fat accumulation, and inflammation caused by consumption of a HF diet.

  2. Excess Folic Acid Increases Lipid Storage, Weight Gain, and Adipose Tissue Inflammation in High Fat Diet-Fed Rats

    Science.gov (United States)

    Kelly, Karen B.; Kennelly, John P.; Ordonez, Marta; Nelson, Randal; Leonard, Kelly; Stabler, Sally; Gomez-Muñoz, Antonio; Field, Catherine J.; Jacobs, René L.

    2016-01-01

    Folic acid intake has increased to high levels in many countries, raising concerns about possible adverse effects, including disturbances to energy and lipid metabolism. Our aim was to investigate the effects of excess folic acid (EFA) intake compared to adequate folic acid (AFA) intake on metabolic health in a rodent model. We conducted these investigations in the setting of either a 15% energy low fat (LF) diet or 60% energy high fat (HF) diet. There was no difference in weight gain, fat mass, or glucose tolerance in EFA-fed rats compared to AFA-fed rats when they were fed a LF diet. However, rats fed EFA in combination with a HF diet had significantly greater weight gain and fat mass compared to rats fed AFA (p adipose tissue of high fat-excess folic acid (HF-EFA) fed rats. Inflammation was increased in HF-EFA fed rats, associated with impaired glucose tolerance compared to high fat-adequate folic acid (HF-AFA) fed rats (p < 0.05). In addition, folic acid induced PPARγ expression and triglyceride accumulation in 3T3-L1 cells. Our results suggest that excess folic acid may exacerbate weight gain, fat accumulation, and inflammation caused by consumption of a HF diet. PMID:27669293

  3. High-gain direct-drive inertial confinement fusion for the Laser Mégajoule: recent progress

    Science.gov (United States)

    Canaud, B.; Garaude, F.; Ballereau, P.; Bourgade, J. L.; Clique, C.; Dureau, D.; Houry, M.; Jaouen, S.; Jourdren, H.; Lecler, N.; Masse, L.; Masson, A.; Quach, R.; Piron, R.; Riz, D.; Van der Vliet, J.; Temporal, M.; Delettrez, J. A.; McKenty, P. W.

    2007-12-01

    Recent progress in high-gain direct-drive inertial confinement fusion with the laser Mégajoule is reviewed. A new baseline direct-drive target design is presented which implodes with a two-cones irradiation pattern of indirect-drive beam configuration and zooming. Perturbation amplitudes and correlated growth rates of hydrodynamic instabilities in the compressed core of a directly driven inertial confinement fusion capsule are analyzed in planar and spherical geometries, with and without heat conduction, in the unsteady state regime of the deceleration. Shock propagation in heterogeneous media is addressed in the context of first shock. The neutron and photon emissions of high-gain direct-drive target are characterized. Numerical interpretations of directly driven homothetic cryogenic D2 target implosion experiments on the Omega facility are presented.

  4. High magnetic shear gain in a liquid sodium stable couette flow experiment A prelude to an alpha - omega dynamo

    Energy Technology Data Exchange (ETDEWEB)

    Colgate, Stirling [Los Alamos National Laboratory; Li, Jui [Los Alamos National Laboratory; Finn, John [Los Alamos National Laboratory; Pariev, Vladimir [Los Alamos National Laboratory; Beckley, Howard [NM INSTIT. OF MINING AND TECH; Si, Jiahe [NM INSTIT. OF MINING AND TECH.; Martinic, Joe [NM INSTIT. OF MINING AND TECH.; Westpfahl, David [NM INSTIT. OF TECH.; Slutz, James [NM INSTIT. OF MINING AND TECH.; Westrom, Zeb [NM INSTIT. OF TECH.; Klein, Brianna [NM INSTIT. OF MINING AND TECH.

    2010-11-08

    The {Omega}-phase of the liquid sodium {alpha}-{Omega} dynamo experiment at NMIMT in cooperation with LANL has successfully demonstrated the production of a high toroidal field, B{sub {phi}} {approx_equal} 8 x B{sub r} from the radial component of an applied poloidal magnetic field, B{sub r}. This enhanced toroidal field is produced by rotational shear in stable Couette Row within liquid sodium at Rm {approx_equal} 120. The small turbulence in stable Taylor-Couette Row is caused by Ekman Row where ({delta}v/v){sup 2} {approx} 10{sup -3}. This high {Omega}-gain in low turbulence flow contrasts with a smaller {Omega}-gain in higher turbulence, Helmholtz-unstable shear flows. This result supports the ansatz that large scale astrophysical magnetic fields are created within semi-coherent large scale motions in which turbulence plays a diffusive role that enables magnetic flux linkage.

  5. (-)-Epigallocatechin-3-gallate inhibits pancreatic lipase and reduces body weight gain in high fat-fed obese mice.

    Science.gov (United States)

    Grove, Kimberly A; Sae-tan, Sudathip; Kennett, Mary J; Lambert, Joshua D

    2012-11-01

    Tea (Camellia sinensis, Theaceae) has been shown to have obesity preventive effects in laboratory studies. We hypothesized that dietary epigallocatechin-3-gallate (EGCG) could reverse metabolic syndrome in high fat-fed obese C57bl/6J mice, and that these effects were related to inhibition of pancreatic lipase (PL). Following treatment with 0.32% EGCG for 6 weeks, a 44% decrease in body weight (BW) gain in high fat-fed, obese mice (P EGCG treatment increased fecal lipid content by 29.4% (P fat-fed control, whereas in vitro, EGCG dose-dependently inhibited PL (IC(50) = 7.5 µmol/l) in a noncompetitive manner with respect to substrate concentration. (-)-Epicatechin-3-gallate exhibited similar inhibitory activity, whereas the nonester-containing (-)-epigallocatechin did not. In conclusion, EGCG supplementation reduced final BW and BW gain in obese mice, and some of these effects may be due to inhibition of PL by EGCG.

  6. High Magnetic Shear Gain in a Liquid Sodium Stable Couette Flow Experiment; A Prelude to an alpha-Omega Dynamo

    CERN Document Server

    Colgate, Stirling A; Pariev, Vladimir; Finn, John; Beckley, Howard; Si, Jiahe; Martinic, Joe; Westpfahl, David; Slutz, James; Westrom, Cebastian; Klein, Brianna; Schendel, Paul; Scharle, Cletus; McKinney, Travis; Ginanni, Rocky; Bentley, Ian; Mickey, Timothy

    2010-01-01

    The $\\Omega$-phase of the liquid sodium $\\alpha$-$\\Omega$ dynamo experiment at NMIMT in cooperation with LANL has successfully demonstrated the production of a high toroidal field, $B_{\\phi} \\simeq 8\\times B_r$ from the radial component of an applied poloidal magnetic field, $B_r$. This enhanced toroidal field is produced by rotational shear in stable Couette flow within liquid sodium at $Rm \\simeq 120$. The small turbulence in stable Taylor-Couette flow is caused by Ekman flow where $ (\\delta v/v)^2 \\sim 10^{-3} $. This high $\\Omega$-gain in low turbulence flow contrasts with a smaller $\\Omega$-gain in higher turbulence, Helmholtz-unstable shear flows. This result supports the ansatz that large scale astrophysical magnetic fields are created within semi-coherent large scale motions in which turbulence plays only a smaller diffusive role that enables magnetic flux linkage.

  7. Single-shot measurement of free-electron laser polarization at SDUV-FEL

    CERN Document Server

    Feng, Lie; Zhang, Tong; Feng, Chao; Chen, Jianhui; Wang, Xingtao; Lan, Taihe; Shen, Lei; Zhang, Wenyan; Yao, Haifeng; Liu, Xiaoqing; Liu, Bo; Wang, Dong

    2014-01-01

    In this paper, a division-of-amplitude photopolarimeter (DOAP) for measuring the polarization state of free-electron laser (FEL) pulse is described. The incident FEL beam is divided into four separate beams, and four Stokes parameters can be measured in a single-shot. In the crossed-planar undulators experiment at Shanghai deep ultraviolet FEL test facility, this DOAP instrument constructed in house responses accurately and timely while the polarization-state of fully coherent FEL pulses are switched, which is helpful for confirming the crossed-planar undulators technique for short-wavelength FELs.

  8. On the Fielding of a High Gain, Shock-Ignited Target on the National Ignitiion Facility in the Near Term

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, L J; Betti, R; Schurtz, G P; Craxton, R S; Dunne, A M; LaFortune, K N; Schmitt, A J; McKenty, P W; Bailey, D S; Lambert, M A; Ribeyre, X; Theobald, W R; Strozzi, D J; Harding, D R; Casner, A; Atzemi, S; Erbert, G V; Andersen, K S; Murakami, M; Comley, A J; Cook, R C; Stephens, R B

    2010-04-12

    Shock ignition, a new concept for igniting thermonuclear fuel, offers the possibility for a near-term ({approx}3-4 years) test of high gain inertial confinement fusion on the National Ignition Facility at less than 1MJ drive energy and without the need for new laser hardware. In shock ignition, compressed fusion fuel is separately ignited by a strong spherically converging shock and, because capsule implosion velocities are significantly lower than those required for conventional hotpot ignition, fusion energy gains of {approx}60 may be achievable on NIF at laser drive energies around {approx}0.5MJ. Because of the simple all-DT target design, its in-flight robustness, the potential need for only 1D SSD beam smoothing, minimal early time LPI preheat, and use of present (indirect drive) laser hardware, this target may be easier to field on NIF than a conventional (polar) direct drive hotspot ignition target. Like fast ignition, shock ignition has the potential for high fusion yields at low drive energy, but requires only a single laser with less demanding timing and spatial focusing requirements. Of course, conventional symmetry and stability constraints still apply. In this paper we present initial target performance simulations, delineate the critical issues and describe the immediate-term R&D program that must be performed in order to test the potential of a high gain shock ignition target on NIF in the near term.

  9. Excess Folic Acid Increases Lipid Storage, Weight Gain, and Adipose Tissue Inflammation in High Fat Diet-Fed Rats.

    Science.gov (United States)

    Kelly, Karen B; Kennelly, John P; Ordonez, Marta; Nelson, Randal; Leonard, Kelly; Stabler, Sally; Gomez-Muñoz, Antonio; Field, Catherine J; Jacobs, René L

    2016-09-23

    Folic acid intake has increased to high levels in many countries, raising concerns about possible adverse effects, including disturbances to energy and lipid metabolism. Our aim was to investigate the effects of excess folic acid (EFA) intake compared to adequate folic acid (AFA) intake on metabolic health in a rodent model. We conducted these investigations in the setting of either a 15% energy low fat (LF) diet or 60% energy high fat (HF) diet. There was no difference in weight gain, fat mass, or glucose tolerance in EFA-fed rats compared to AFA-fed rats when they were fed a LF diet. However, rats fed EFA in combination with a HF diet had significantly greater weight gain and fat mass compared to rats fed AFA (p folic acid (HF-EFA) fed rats. Inflammation was increased in HF-EFA fed rats, associated with impaired glucose tolerance compared to high fat-adequate folic acid (HF-AFA) fed rats (p folic acid induced PPARγ expression and triglyceride accumulation in 3T3-L1 cells. Our results suggest that excess folic acid may exacerbate weight gain, fat accumulation, and inflammation caused by consumption of a HF diet.

  10. Quercetin decreases high-fat diet induced body weight gain and accumulation of hepatic and circulating lipids in mice.

    Science.gov (United States)

    Hoek-van den Hil, E F; van Schothorst, E M; van der Stelt, I; Swarts, H J M; Venema, D; Sailer, M; Vervoort, J J M; Hollman, P C H; Rietjens, I M C M; Keijer, J

    2014-09-01

    Dietary flavonoids may protect against cardiovascular diseases (CVD). Increased circulating lipid levels and hepatic lipid accumulation are known risk factors for CVD. The aim of this study was to investigate the effects and underlying molecular mechanisms of the flavonoid quercetin on hepatic lipid metabolism in mice with high-fat diet induced body weight gain and hepatic lipid accumulation. Adult male mice received a 40 energy% high-fat diet without or with supplementation of 0.33 % (w/w) quercetin for 12 weeks. Body weight gain was 29 % lower in quercetin fed mice (p lipid accumulation to 29 % of the amount present in the control mice (p lipid profiling revealed that the supplementation significantly lowered serum lipid levels. Global gene expression profiling of liver showed that cytochrome P450 2b (Cyp2b) genes, key target genes of the transcription factor constitutive androstane receptor (Car; official symbol Nr1i3), were downregulated. Quercetin decreased high-fat diet induced body weight gain, hepatic lipid accumulation and serum lipid levels. This was accompanied by regulation of cytochrome P450 2b genes in liver, which are possibly under transcriptional control of CAR. The quercetin effects are likely dependent on the fat content of the diet.

  11. Towards diffractive imaging with single pulses of FEL radiation. Dynamics within irradiatied samples and their influence on the analysis of imaging data

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Fenglin

    2010-08-15

    3D single particle coherent diffraction imaging (CDI) of bioparticles (such as proteins, macromolecules and viruses) is one of the main possible applications of the new generation of light sources: free-electron lasers (FELs), which are now available at FLASH (Hamburg, Germany) and LCLS (Stanford, U.S.A.). The extremely bright and ultrashort FEL pulses potentially enable CDI to achieve high resolution down to subnanometer length scale. However, intense FEL pulses cause serious radiation damage in bioparticles, even during single shots, which may set the resolution limits for CDI with FELs. Currently, since the signal-to-noise ratio is very low for small biological particles, direct experimental study of radiation damage in the single particle imaging is fairly difficult. Single atomic (noble gas) clusters become good objects to reveal effects of radiation damage processes on CDI with FEL radiation. This thesis studies three aspects of the radiation damage problem, which are treated in three independent chapters: (1) Molecular Dynamics simulations to quantitively describe radiation damage processes within irradiated atomic clusters during single pulses; (2) reconstruction analysis of single-shot CDI diffraction patterns of atomic clusters, which may potentially help to understand the radiation damage occurring in biological samples; and (3) testing the effects of coating water layers in CDI, which is supposed to minimize the radiation damage in irradiated bioparticles. (orig.)

  12. High-gain cryogenic amplifier assembly employing a commercial CMOS operational amplifier.

    Science.gov (United States)

    Proctor, J E; Smith, A W; Jung, T M; Woods, S I

    2015-07-01

    We have developed a cryogenic amplifier for the measurement of small current signals (10 fA-100 nA) from cryogenic optical detectors. Typically operated with gain near 10(7) V/A, the amplifier performs well from DC to greater than 30 kHz and exhibits noise level near the Johnson limit. Care has been taken in the design and materials to control heat flow and temperatures throughout the entire detector-amplifier assembly. A simple one-board version of the amplifier assembly dissipates 8 mW to our detector cryostat cold stage, and a two-board version can dissipate as little as 17 μW to the detector cold stage. With current noise baseline of about 10 fA/(Hz)(1/2), the cryogenic amplifier is generally useful for cooled infrared detectors, and using blocked impurity band detectors operated at 10 K, the amplifier enables noise power levels of 2.5 fW/(Hz)(1/2) for detection of optical wavelengths near 10 μm.

  13. Overexpression of Jazf1 reduces body weight gain and regulates lipid metabolism in high fat diet

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Woo Young; Bae, Ki Beom; Kim, Sung Hyun; Yu, Dong Hun; Kim, Hei Jung; Ji, Young Rae; Park, Seo Jin; Park, Si Jun; Kang, Min-Cheol; Jeong, Ja In [School of Life Science and Biotechnology, Kyungpook National University, 1370 Sankyuk-dong, Buk-ku, Daegu 702-701 (Korea, Republic of); Park, Sang-Joon [College of Veterinary Medicine, Kyungpook National University, 1370 Sankyuk-dong, Buk-ku, Daegu 702-701 (Korea, Republic of); Lee, Sang Gyu [School of Life Science and Biotechnology, Kyungpook National University, 1370 Sankyuk-dong, Buk-ku, Daegu 702-701 (Korea, Republic of); Lee, Inkyu [School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 700-842 (Korea, Republic of); Kim, Myoung Ok [School of Animal BT Sciences, Sangju Campus, Kyungpook National University, 386 Gajang-dong, Sangju, Gyeongsangbuk-do 742-211 (Korea, Republic of); Yoon, Duhak, E-mail: dhyoon@knu.ac.kr [School of Animal BT Sciences, Sangju Campus, Kyungpook National University, 386 Gajang-dong, Sangju, Gyeongsangbuk-do 742-211 (Korea, Republic of); Ryoo, Zae Young, E-mail: jaewoong64@hanmail.net [School of Life Science and Biotechnology, Kyungpook National University, 1370 Sankyuk-dong, Buk-ku, Daegu 702-701 (Korea, Republic of)

    2014-02-14

    Highlights: • The expression of Jazf1 in the liver suppressed lipid accumulation. • Jazf1 significantly increases transcription of fatty acid synthase. • Jazf1 plays a critical role in the regulation of energy and lipid homeostasis. • Jazf1 associates the development of metabolic disorder. • Jazf1 may provide a new therapeutic target in the management of metabolic disorder. - Abstract: Jazf1 is a 27 kDa nuclear protein containing three putative zinc finger motifs that is associated with diabetes mellitus and prostate cancer; however, little is known about the role that this gene plays in regulation of metabolism. Recent evidence indicates that Jazf1 transcription factors bind to the nuclear orphan receptor TR4. This receptor regulates PEPCK, the key enzyme involved in gluconeogenesis. To elucidate Jazf1’s role in metabolism, we fed a 60% fat diet for up to 15 weeks. In Jazf1 overexpression mice, weight gain was found to be significantly decreased. The expression of Jazf1 in the liver also suppressed lipid accumulation and decreased droplet size. These results suggest that Jazf1 plays a critical role in the regulation of lipid homeostasis. Finally, Jazf1 may provide a new therapeutic target in the management of obesity and diabetes.

  14. Towards imaging of ultrafast molecular dynamics using FELs

    NARCIS (Netherlands)

    Rouzee, A.; Johnsson, P.; Rading, L.; Siu, W.; Huismans, Y.; Duesterer, S.; Redlin, H.; Tavella, F.; Stojanovic, N.; Al-Shemmary, A.; Lepine, F.; Holland, D. M. P.; Schlathölter, Thomas; Hoekstra, R.; Fukuzawa, H.; Ueda, K.; Vrakking, M. J. J.; Hundertmark, A.

    2013-01-01

    The dissociation dynamics induced by a 100 fs, 400 nm laser pulse in a rotationally cold Br-2 sample was characterized by Coulomb explosion imaging (CEI) using a time-delayed extreme ultra-violet (XUV) FEL pulse, obtained from the Free electron LASer in Hamburg (FLASH). The momentum distribution of

  15. Optimization Studies of the FERMI at ELETTRA FEL Design

    CERN Document Server

    De Ninno, G

    2005-01-01

    The FERMI at ELETTRA project at Sincotrone Trieste involves two FEL's, each based upon the principle of a seeded harmonic cascade and using the existing ELETTRA injection linac at 1.2 GeV beam energy. Scheduled to be completed in 2008, FEL-1 will operate in the 40-100 nm wavelength range and will involve one stage of harmonic up-conversion. The second phase, FEL-2, will begin operation two years later in the 10-40 nm wavelength range and will involve two cascade stages. FEL design assumes wavelength tunability over the full wavelength range and polarization tunability of the output radiation including helical polarization. The design considers focusing properties and segmentation of realizable undulators and available input seed lasers. We discuss how the interplay between various limitations and self-consistent accelerator simulations [1,2] have led to our current design. We present results of simulations using GENESIS and GINGER simulation codes including studies of various shot-to-shot fluctuations and und...

  16. Investigation of 3d Effects on Fel Operation

    NARCIS (Netherlands)

    van Werkhoven, G. H. C.; Faatz, B.; Schep, T. J.

    1993-01-01

    An investigation is made of 3D effects on FEL operation by comparing the 3D simulation code TDA with a 1 1/2D model. In the latter model, the full spatial dependence of the radiation field is taken into account, whereas the electrons are treated as moving in a 1D, density-averaged ponderomotive pote

  17. Application of electro-optic sampling in FEL diagnostics

    NARCIS (Netherlands)

    Yan, X.; MacLeod, A. M.; Gillespie, W. A.; Knippels, G.M.H.; Oepts, D.; van der Meer, A. F. G.

    2001-01-01

    The electro-optic sampling technique has been used for the full characterization (both amplitude and phase) of freely propagating pulsed electromagnetic radiation (such as FEL pulses, transition radiation) and for the quasistatic electric field of relativistic electron bunches. Measurements of the e

  18. Ultrafast Coherent Control and Characterization of Surface Reactions using FELs

    Energy Technology Data Exchange (ETDEWEB)

    Ogasawara, Hirohito; Nordlund, Dennis a Nilsson, Anders; /SLAC, SSRL

    2005-09-30

    The microscopic understanding of reactions at surfaces requires an in-depth knowledge of the dynamics of elementary processes on an ultrafast timescale. This can be accomplished using an ultrafast excitation to initiate a chemical reaction and then probe the progression of the reaction with an ultrashort x-ray pulse from the FEL. There is a great potential to use atom-specific spectroscopy involving core levels to probe the chemical nature, structure and bonding of species on surfaces. The ultrashort electron pulse obtained in the linear accelerator to feed the X-ray FEL can also be used for generation of coherent synchrotron radiation in the low energy THz regime to be used as a pump. This radiation has an energy close to the thermal excitations of low-energy vibrational modes of molecules on surfaces and phonons in substrates. The coherent THz radiation will be an electric field pulse with a certain direction that can collectively manipulate atoms or molecules on surfaces. In this respect a chemical reaction can be initiated by collective atomic motion along a specific reaction coordinate. If the coherent THz radiation is generated from the same source as the X-ray FEL radiation, full-time synchronization for pump-probe experiments will be possible. The combination of THz and X-ray spectroscopy could be a unique opportunity for FEL facilities to conduct ultrafast chemistry studies at surfaces.

  19. Double-Undulator Fel for Governing by the Harmonics Generation

    NARCIS (Netherlands)

    Tulupov, A. V.

    1993-01-01

    Generation of harmonics in the double-undulator FEL based on the additional cyclotron resonance is considered. It is shown that efficient control of harmonics generation is feasible. Only one selected harmonic is generated while the others are suppressed. This effect takes place under a small value

  20. High indium content graded channel GainAs/AlinAs pseudomorphic MODFETs

    Science.gov (United States)

    Laskar, J.; Kolodzey, J.; Boor, S.; Hsieh, K. C.; Kalem, S.; Caracci, S.; Ketterson, A. A.; Brock, T.; Adesida, I.; Sivco, D.; Cho, A. Y.

    1990-03-01

    We report on the electrical and microstructural properties of InP/GaxIn 1 -xAs/Al0.48In0.52As modulation doped layers having compositionally graded active channels with different channel thicknesses. The layers were grown by solid source molecular beam epitaxy on Fe-doped InP substrates. The undoped GaInAs two dimensional electron gas channel layers were grown having indium compositions graded from x = 0.53 at the substrate buffer to x= 0.65 at the heterointerface by varying the Ga cell temperature during growth. Active channel thicknesses of 20 nm and 30 nm were compared with lattice matched layers. Transmission electron microscope image analysis indicates no misfit dislocations in these structures. Hall-effect measurements at 300 K show an increase in the mobility from 8,380 cm2/Vs for the lattice matched layer to 12,500 cm2/Vs for the 30 nm pseudomorphic layer. Small gate-length, 0.25 μn, MODFETs were fabricated to determine effective velocity values from transconductance ( g m ) and current gain ( h 21 ) measurements. The peak dc extrinsic g m increased from 367 mS/mm for the lattice matched layer to 668 mS/mm for the 30 nm pseudomorphic layer. The effective electron carrier velocity increased from 1.57 × 107 cm/s for the lattice matched layer to 1.88 × 107 cm/s for the 30 nm pseudomorphic layer. Our results show that compositional grading is a useful technique to obtain thick pseudomorphic layers with good transport properties.

  1. Modified High Gain APDs for Multi-beam Ladar Instrumentation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this effort, Radiation Monitoring Devices, Inc (RMD) addresses NASA's request for sensitive, high quantum efficiency (QE) optical detectors for space- and...

  2. "Gaining Power through Education": Experiences of Honduran Students from High Poverty Backgrounds

    Science.gov (United States)

    Mather, Peter C.; Zempter, Christy; Ngumbi, Elizabeth; Nakama, Yuki; Manley, David; Cox, Haley

    2017-01-01

    This is a study of students from high-poverty backgrounds attending universities in Honduras. Based on a series of individual and focus group interviews, the researchers found students from high-poverty backgrounds face numerous practical challenges in persisting in higher education. Despite these challenges, participants succeeded due to a…

  3. Field Plate Optimization in Low-Power High-Gain Source-Gated Transistors

    NARCIS (Netherlands)

    Sporea,R.A.; Trainor, M.J.; Young, N.D.; Shannon, J.M.; Silva, S.R.P.

    2012-01-01

    Source-gated transistors (SGTs) have potentially very high output impedance and low saturation voltages, which make them ideal as building blocks for high performance analog circuits fabricated in thin-film technologies. The quality of the saturation is greatly influenced by the design of the field-

  4. Simplified Method for Experimental Spectral Ratio Calculation of CHG-FEL

    CERN Document Server

    Chen Nian; Li, Ge; Li, Yuhui; Zhang, Pengfei; Zhang, Shancai

    2004-01-01

    The goal of the coherent harmonic generation free-electron laser (CHG-FEL) experiment in NSRL is to gain a 266nm coherent radiation and a large spectral ratio which is defined as the ratio of coherent intensity to incoherent intensity in infinitesimal bandwidth and solid angle aperture. The intensity measurements are made through a spectrometer whose spectral and angular aperture is much larger than the actual apertures of coherent radiation and smaller than those of incoherent radiation. So the measured ratio is integral ratio integrated over the actual apertures of the measurement system. This paper is mainly on giving a formula and designing a computer program to calculate the spectral ratio according to the bandwidth and solid angle aperture of the measurement system, taking into account the measured magnetic field of optical klystron and the energy spread of the electron beam. The code will soon be employed in our next turn experiment.

  5. A 4 to 0.1 nm FEL Based on the SLAC Linac

    Energy Technology Data Exchange (ETDEWEB)

    Pellegrini, C.; /UCLA

    2012-06-05

    The author show that using existing electron gun technology and a high energy linac like the one at SLAC, it is possible to build a Free Electron Laser operating around the 4 nm water window. A modest improvement in the gun performance would further allow to extend the FEL to the 0.1 nm region. Such a system would produce radiation with a brightness many order of magnitude above that of any synchrotron radiation source, existing or under construction, with laser power in the multigawatt region and subpicosecond pulse length.

  6. Design of energy-recovery transport for the JAERI FEL driven by a superconducting linac

    CERN Document Server

    Hajima, R; Nagai, R; Kikuzawa, N; Nishimori, N; Shizuma, T; Minehara, E J; Vinokurov, N A

    2000-01-01

    A high-average power free-electron laser driven by a superconducting linac has been developed in Japan Atomic Energy Research Institute (JAERI), and stable laser output over 0.1 kW in infrared region is now available. For further increasing of FEL output power, installing energy-recovery transport has been planned. The lattice design for the energy-recovery transport is discussed in the present paper. It is found that a recirculation transport, which fulfills the requirements for energy acceptance and isochronicity, can be realized by adding another triple-bend arc to the existing beam line.

  7. A novel 3-stage structure for a low-noise, high-gain and gain-flattened L-band erbium doped fiber amplifier

    Institute of Scientific and Technical Information of China (English)

    强则煊; 何赛灵; 张徐亮; 沈林放

    2004-01-01

    The configuration of the novel three-stage L-band erbium-doped fiber amplifier with very large and flat gain and very low noise figure presented in this paper uses the forward ASE (amplified spontaneous emission) from the first section of the EDF (erbium-doped fiber) and the backward ASE from the third section of the EDF (both serve as the secondary pump sources of energy) to pump the second EDF. To improve the pump efficiency, the power of the pump is split into two parts (with a ratio of e.g. 2:7). The characteristics of this L-band EDFA are studied on the basis of the Giles Model with ASE.

  8. A novel 3-stage structure for a low-noise, high-gain and gain-flattened L-band erbium doped fiber amplifier

    Institute of Scientific and Technical Information of China (English)

    强则煊; 何赛灵; 张徐亮; 沈林放

    2004-01-01

    The configuration of the novel three-stage L-band erbium-doped fiber amplifier with very large and flat gain and very low noise figure presented in this paper uses the forward ASE (amplified spontaneous emission) from the first section of the EDF (erbium-doped fiber) and the backward AS E from the third section of the EDF (both serve as the secondary pump sources of energy) to pump the second EDF. To improve the pump efficiency, the power of the pump is split into two parts(with a ratio of e.g. 2:7). The characteristics of this L-band EDFA are studied on the basis of the Giles Model with ASE.

  9. High Adherence to CPAP Treatment Does Not Prevent the Continuation of Weight Gain among Severely Obese OSAS Patients

    Science.gov (United States)

    Myllylä, Minna; Kurki, Samu; Anttalainen, Ulla; Saaresranta, Tarja; Laitinen, Tarja

    2016-01-01

    Study Objectives: Obstructive sleep apnea syndrome (OSAS) patients benefit from continuous positive airway pressure (CPAP) treatment in a dose-response manner. We determined adherence and weight control, as well as their predictors, among long-term CPAP users. Methods: Cohort of 1,023 OSAS patients had used CPAP on average of 6.6 ± 1.2 years. BMI was determined at baseline and at follow-up visits. There were 7.4 ± 1.7 BMI and 6.5 ± 1.8 CPAP usage measurements per patient on average. Using the Bayesian hierarchical model, we determined the patients' individual trends of BMI and adherence development. Patients with significantly increasing or decreasing trends were identified at the posterior probability level of > 90%. Results: The mean age in the cohort was 55.6 ± 9.8 years, BMI 33.5 ± 6.4 kg/m2, apnea-hypopnea index 33.7 ± 23.1, and CPAP usage 6.0 ± 1.8 h/day. The majority of patients had no significant change in BMI (mean annual weight gain 0.04 ± 0.29 kg/m2) or CPAP adherence (mean annual increase 11.4 ± 7.0 min/day). However, at the individual level, 10% of the patients showed significant annual weight gain (0.63 ± 0.35 kg/m2) during the 5-year follow-up period. At baseline these patients were already more severely obese (mean BMI 40.0 ± 5.9 kg/m2) despite being younger (mean 50.9 ± 9.5 years) than the rest of the cohort. Conclusions: In the majority of CPAP-treated OSAS patients, weight did not significantly change but gained slightly slower than in age-matched population in general. However, in 10% of patients, high adherence to CPAP treatment did not prevent the continuation of weight gain. These patients present a high-risk group for OSAS-related multimorbidity later in life. Citation: Myllylä M, Kurki S, Anttalainen U, Saaresranta T, Laitinen T. High adherence to CPAP treatment does not prevent the continuation of weight gain among severely obese OSAS patients. J Clin Sleep Med 2016;12(4):519–528. PMID:26888588

  10. Analog time-reversed ultrasonically encoded (TRUE) optical focusing inside scattering media with high power gain (Conference Presentation)

    Science.gov (United States)

    Ma, Cheng; Xu, Xiao; Wang, Lihong V.

    2016-03-01

    Focusing light deep inside scattering media plays a key role in such biomedical applications as high resolution optical imaging, control, and therapy. In recent years, wavefront shaping technologies have come a long way in controlling light propagation in complex media. A prominent example is time-reversed ultrasonically encoded (TRUE) focusing, which allows noninvasive introduction of "guide stars" inside biological tissue to guide light focusing. By measuring the optical wavefront emanating from an ultrasound focus created at the target location, TRUE determines the desired wavefront non-iteratively, and achieves focusing at the target position via a subsequent optical time reversal. Compared to digital counterparts that employ slow electronic spatial light modulators and cameras, analog TRUE focusing relies on nonlinear photorefractive crystals that inherently accommodate more spatial modes and eliminate the troublesome alignment and data transfer required by digital approaches. However, analog TRUE focusing suffers from its small gain, defined as the energy or power ratio between the focusing and probing beams in the focal volume. Here, by implementing a modified analog TRUE focusing scheme that squeezes the duration of the time-reversed photon packet below the carrier-recombination-limited hologram decay time of the crystal, we demonstrated a photon flux amplification much greater than unity at a preset focal voxel in between two scattering layers. Although the energy gain was still below unity, the unprecedented power gain will nevertheless benefit new biomedical applications.

  11. General and persistent effects of high-intensity sweeteners on body weight gain and caloric compensation in rats.

    Science.gov (United States)

    Swithers, Susan E; Baker, Chelsea R; Davidson, T L

    2009-08-01

    In an earlier work (S. E. Swithers & T. L. Davidson, 2008), rats provided with a fixed amount of a yogurt diet mixed with saccharin gained more weight and showed impaired caloric compensation relative to rats given the same amount of yogurt mixed with glucose. The present 4 experiments examined the generality of these findings and demonstrated that increased body weight gain was also demonstrated when animals consumed a yogurt diet sweetened with an alternative high-intensity sweetener (acesulfame potassium; AceK) as well as in animals given a saccharin-sweetened base diet (refried beans) that was calorically similar but nutritionally distinct from low-fat yogurt. These studies also extended earlier findings by showing that body weight differences persist after saccharin-sweetened diets are discontinued and following a shift to a diet sweetened with glucose. In addition, rats first exposed to a diet sweetened with glucose still gain additional weight when subsequently exposed to a saccharin-sweetened diet. The results of these experiments add support to the hypothesis that exposure to weak or nonpredictive relationships between sweet tastes and caloric consequences may lead to positive energy balance.

  12. Late effects of sleep restriction: Potentiating weight gain and insulin resistance arising from a high-fat diet in mice.

    Science.gov (United States)

    de Oliveira, Edson Mendes; Visniauskas, Bruna; Sandri, Silvana; Migliorini, Silene; Andersen, Monica Levy; Tufik, Sergio; Fock, Ricardo Ambrósio; Chagas, Jair Ribeiro; Campa, Ana

    2015-02-01

    Epidemiological studies show the association of sleep restriction (SR) with obesity and insulin resistance. Experimental studies are limited to the concurrent or short-term effects of SR. Here, we examined the late effects of SR regarding weight gain and metabolic alterations induced by a high-fat diet (HFD). C57BL/6 mice were subjected to a multiple platform method of SR for 15 days, 21 h daily, followed by 6 weeks of a 30% HFD. Just after SR, serum insulin and resistin concentrations were increased and glycerol content decreased. In addition, resistin, TNF-α, and IL-6 mRNA expression were notably increased in epididymal fat. At the end of the HFD period, mice previously submitted to SR gained more weight (32.3 ± 1.0 vs. 29.4 ± 0.7 g) with increased subcutaneous fat mass, had increments in the expression of the adipogenic genes PPARγ, C/EBPα, and C/EBPβ, and had macrophage infiltration in the epididymal adipose tissue. Furthermore, enhanced glucose tolerance and insulin resistance were also observed. The consequences of SR may last for a long period, characterizing SR as a predisposing factor for weight gain and insulin resistance. Metabolic changes during SR seem to prime adipose tissue, aggravating the harmful effects of diet-induced obesity. © 2014 The Obesity Society.

  13. Time Is Money: The Decision Making of Smartphone High Users in Gain and Loss Intertemporal Choice.

    Science.gov (United States)

    Tang, Zixuan; Zhang, Huijun; Yan, An; Qu, Chen

    2017-01-01

    Nowadays the smartphone plays an important role in our lives. While it brings us convenience and efficiency, its overuse can cause problems. Although a great number of studies have demonstrated that people affected by substance abuse, pathological gambling, and internet addiction disorder have lower self-control than average, scarcely any study has investigated the decision making of smartphone high users by using a behavioral paradigm. The present study employed an intertemporal task, the Smartphone Addiction Inventory (SPAI) and the Barratt Impulsiveness Scale 11th version (BIS-11) to explore the decision control of smartphone high users in a sample of 125 college students. Participants were divided into three groups according to their SPAI scores. The upper third (69 or higher), middle third (from 61 to 68) and lower third (60 or lower) of scores were defined as high smartphone users, medium users and low users, respectively. We compared the percentage of small immediate reward/penalty choices in different conditions between the three groups. Relative to the low users group, high users and medium users were more inclined to request an immediate monetary reward. Moreover, for the two dimensions of time and money in intertemporal choice, high users and medium users showed a bias in intertemporal choice task among most of the time points and value magnitude compared to low users. These findings demonstrated that smartphone overuse was associated with problematic decision-making, a pattern similar to that seen in persons affected by a variety of addictions.

  14. Time Is Money: The Decision Making of Smartphone High Users in Gain and Loss Intertemporal Choice

    Science.gov (United States)

    Tang, Zixuan; Zhang, Huijun; Yan, An; Qu, Chen

    2017-01-01

    Nowadays the smartphone plays an important role in our lives. While it brings us convenience and efficiency, its overuse can cause problems. Although a great number of studies have demonstrated that people affected by substance abuse, pathological gambling, and internet addiction disorder have lower self-control than average, scarcely any study has investigated the decision making of smartphone high users by using a behavioral paradigm. The present study employed an intertemporal task, the Smartphone Addiction Inventory (SPAI) and the Barratt Impulsiveness Scale 11th version (BIS-11) to explore the decision control of smartphone high users in a sample of 125 college students. Participants were divided into three groups according to their SPAI scores. The upper third (69 or higher), middle third (from 61 to 68) and lower third (60 or lower) of scores were defined as high smartphone users, medium users and low users, respectively. We compared the percentage of small immediate reward/penalty choices in different conditions between the three groups. Relative to the low users group, high users and medium users were more inclined to request an immediate monetary reward. Moreover, for the two dimensions of time and money in intertemporal choice, high users and medium users showed a bias in intertemporal choice task among most of the time points and value magnitude compared to low users. These findings demonstrated that smartphone overuse was associated with problematic decision-making, a pattern similar to that seen in persons affected by a variety of addictions. PMID:28344568

  15. Design of High Power FELS and the Effects of Diffraction on Detuning in an FEL Oscillator

    Science.gov (United States)

    2015-12-01

    surf” the RF wave . The electrons in the RF linac are accelerated to a typical energy of 100 MeV. Figure 2.1: Diagram of the components of an Energy ...collection of information, including suggestions for reducing this burden to Washington headquarters Services , Directorate for Information Operations and...also show the effects of emittance versus electron beam energy and mirror shift versus mirror tilt on extraction. Analysis of these results examine the

  16. Analysis and comparison between electric and magnetic power couplers for accelerators in Free Electron Lasers (FEL)

    Science.gov (United States)

    Serpico, C.; Grudiev, A.; Vescovo, R.

    2016-10-01

    Free-electron lasers represent a new and exciting class of coherent optical sources possessing broad wavelength tunability and excellent optical-beam quality. The FERMI seeded free-electron laser (FEL), located at the Elettra laboratory in Trieste, is driven by a 200 m long, S-band linac: the high energy part of the linac is equipped with 6 m long backward traveling wave (BTW) structures. The structures have small iris radius and a nose cone geometry which allows for high gradient operation. Development of new high-gradient, S-band accelerating structures for the replacement of the existing BTWs is under consideration. This paper investigates two possible solutions for the RF power couplers suitable for a linac driven FEL which require reduced wakefields effects, high operating gradient and very high reliability. The first part of the manuscript focuses on the reduction of residual field asymmetries, while in the second analyzes RF performances, the peak surface fields and the expected breakdown rate. In the conclusion, two solutions are compared and pros and cons are highlighted.

  17. Subthreshold Schottky-barrier thin-film transistors with ultralow power and high intrinsic gain

    Science.gov (United States)

    Lee, Sungsik; Nathan, Arokia

    2016-10-01

    The quest for low power becomes highly compelling in newly emerging application areas related to wearable devices in the Internet of Things. Here, we report on a Schottky-barrier indium-gallium-zinc-oxide thin-film transistor operating in the deep subthreshold regime (i.e., near the OFF state) at low supply voltages (400) that was both bias and geometry independent. The transistor reported here is useful for sensor interface circuits in wearable devices where high current sensitivity and ultralow power are vital for battery-less operation.

  18. The DarkLight Experiment at the JLab FEL

    Science.gov (United States)

    Fisher, Peter

    2013-10-01

    DarkLight will study the production of gauge bosons associated with Dark Forces theories in the scattering of 100 MeV electrons on proton a target. DarkLight is a spectrometer to measure all the final state particles in e- + p -->e- + p +e- +e+ . QED allows this process and the invariant mass distribution of the e+e- pair is a continuum from nearly zero to nearly the electron beam energy. Dark Forces theories, which allow the dark matter mass scale to be over 1 TeV, predict a gauge boson A' in the mass range of 10-1,000 MeV and decays to an electron-positron pair with an invariant mass of mA'. We aim to search for this process using the 100 MeV, 10 mA electron beam at the JLab Free Electron Laser impinging on a hydrogen target with a 1019 cm-2 density. The resulting luminosity of 6 ×1035/cm2-s gives the experiment enough sensitivity to probe A' couplings of 10-9 α . DarkLight is unique in its design to detect all four particles in the final state. The leptons will be measured in a large high-rate TPC and a silicon sensor will measure the protons. A 0.5 T solenoidal magnetic field provides the momentum resolution and focuses the copious Møller scattering background down the beam line, away from the detectors. A first beam test has shown the FEL beam is compatible with the target design and that the hall backgrounds are manageable. The experiment has been approved by Jefferson Lab for first running in 2017.

  19. Microwave control using a high-gain bias-free optoelectronic switch

    Science.gov (United States)

    Freeman, J. L.; Ray, S.; West, D. L.; Thompson, A. G.; Lagasse, M. J.

    1991-08-01

    We describe an optoelectronic microwave switch that exploits the high optical sensitivity of the air-GaAs interface. With an optical power of 100 micro-W, the switch has an insertion loss of 3.4 dB and an isolation of greater than 20 dB from 0 to 10 GHz. No electrical power is needed.

  20. Energy gain and spectral tailoring of ion beams using ultra-high intensity laser beams

    Science.gov (United States)

    Prasad, Rajendra; Swantusch, Marco; Cerchez, Mirela; Spickermann, Sven; Auorand, Bastian; Wowra, Thomas; Boeker, Juergen; Willi, Oswald

    2015-11-01

    The field of laser driven ion acceleration over the past decade has produced a huge amount of research. Nowadays, several multi-beam facilities with high rep rate system, e.g. ELI, are being developed across the world for different kinds of experiments. The study of interaction dynamics of multiple beams possessing ultra-high intensity and ultra-short pulse duration is of vital importance. Here, we present the first experimental results on ion acceleration using two ultra-high intensity beams. Thanks to the unique capability of Arcturus laser at HHU Düsseldorf, two almost identical, independent beams in laser parameters such as intensity (>1020 W/cm2), pulse duration (30 fs) and contrast (>1010), could be accessed. Both beams are focused onto a 5 μm thin Ti target. While ensuring spatial overlap of the two beams, at relative temporal delay of ~ 50 ps (optimum delay), the proton and carbon ion energies were enhanced by factor of 1.5. Moreover, strong modulation in C4+ions near the high energy cut-off is observed later than the optimum delay for the proton enhancement. This offers controlled tailoring of the spectral content of heavy ions.

  1. Simplification of Sun Tracking Mode to Gain High Concentration Solar Energy

    Directory of Open Access Journals (Sweden)

    Omar Aliman

    2007-01-01

    Full Text Available Power conversion from solar thermal energy to electrical energy is still very cost-intensive. Serious effort has to be given in the development of the concentrator or heliostat structure expenditure which contributing the most expensive component in a central receiver solar power plant. With current development to find alternatives and lower down the capital, a new mode of sun tracking has been developed and feasibility tested. As it applies a single stage collector replacing conventional double stages structure, the new technique has significantly benefits use in high temperature and high concentration solar energy applications. Meanwhile, the stationary or fixed target (receiver offers more convenient working environment for various applications. Large and heavy solar powered Stirling Engine could be placed at the stationary location. On the other advantage offers by the new technique, the optical alignment was reasonably easier and less time consuming.

  2. The Design of High-Q Sallen-Key Biquads with Unity-Gain Buffer Amplifiers

    DEFF Research Database (Denmark)

    Gaunholt, Hans; Guldbrandsen, Birthe

    1997-01-01

    analog filters in voltage-mode as well as current-mode technology. As an example we will choose the band-pass biquad as biquads of this type often has to be designed with high-Q values. The results in the band-pass case may readily be transferred to the low-pass and high-pass cases.......In the design of active biquads with negative feedback frequently referred to as Sallen-Key networks the assumption of a low quality- or Q-factor is recommended in order to keep the active sensitivities at a reasonable low value. In this paper it will be shown that it is possible to design...

  3. Time Is Money: The Decision Making of Smartphone High Users in Gain and Loss Intertemporal Choice

    OpenAIRE

    Tang, Zixuan; Zhang, Huijun; Yan, An; Qu, Chen

    2017-01-01

    Nowadays the smartphone plays an important role in our lives. While it brings us convenience and efficiency, its overuse can cause problems. Although a great number of studies have demonstrated that people affected by substance abuse, pathological gambling, and internet addiction disorder have lower self-control than average, scarcely any study has investigated the decision making of smartphone high users by using a behavioral paradigm. The present study employed an intertemporal task, the Sm...

  4. Ultrahigh gain AlGaN/GaN high energy radiation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Howgate, J.D.; Schoell, S.J.; Schaefer, S.; Stutzmann, M.; Sharp, I.D. [Walter Schottky Institut and Physik Department, Technische Universitaet Muenchen, Am Coulombwall 4, 85748 Garching (Germany); Hofstetter, M.; Schmid, M.; Thalhammer, S. [Helmholtz Zentrum Muenchen, Ingolstaedter Landstrasse 1, 85764 Neuherberg (Germany); Zizak, I. [Helmholtz Zentrum Berlin, Albert-Einstein-Str. 15, 12489 Berlin (Germany); Hable, V.; Greubel, C.; Dollinger, G. [Institut fuer Angewandte Physik und Messtechnik LRT2, Werner-Heisenberg-Weg 39, 85577 Neubiberg (Germany)

    2012-08-15

    Due to its remarkable tolerance to high energy ionizing radiation, GaN has recently attracted attention as a promising material for dosimetry applications. However, materials issues that lead to persistent photoconductivity, poor sensitivity, and requirements for large operational voltages have been hurdles to realization of the full potential of this material. Here we demonstrate that the introduction of a two-dimensional electron gas channel, through the addition of AlGaN/GaN heterointerfaces, can be used to create intrinsic amplification of the number of electrons that can be collected from single ionization events, yielding exceptionally large sensitivities in ultralow dose rate regimes. Furthermore, anomalous photo-responses, which severely limit response times of GaN-based devices, can be eliminated using these heterostructures. Measurements using focused monochromatic synchrotron radiation at 1-20 keV, as well as focused 20 MeV protons, reveal that these devices provide the capability for high sensitivity and resolution real time monitoring, which is competitive with and complementary to state-of-the-art detectors. Therefore, AlGaN/GaN heterostructure devices are extremely promising for future applications in fields ranging from high energy physics to medical imaging. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Electron Gun and Injector Designs for State-of-the-Art FELs

    CERN Document Server

    Blüm, H P; Christina, V; Cole, M D; Falletta, M; Holmes, D; Peterson, E; Rathke, J; Schultheiss, T; Todd, A M M; Wong, R

    2005-01-01

    Reliable, high-brightness, high-power injector operation is a critical technology issue for energy recovery linac drivers of high-power free electron lasers (FEL). Advanced Energy Systems is involved in three ongoing injector programs that target up to 0.5 Ampere current levels at emittance values consistent with the requirements of the FEL. One is a DC photocathode gun and superconducting RF (SRF) booster cryomodule. A 748.5 MHz injector of this type is being assembled and will be tested up to 100 mA at the Thomas Jefferson National Accelerator Facility (JLAB) beginning in 2007. The second approach being explored is a high-current normal-conducting RF photoinjector. A 700 MHz gun, presently under fabrication, will undergo thermal test in 2006 at Los Alamos National Laboratory (LANL). Finally, a half-cell 703.75 MHz SRF gun is presently being designed and will be tested to 0.5 Ampere at Brookhaven National Laboratory (BNL) in 2007. The status and projected performance for each of these injector projects is pr...

  6. High-gain adaptive regulator for a string equation with uncertain harmonic disturbance under boundary output feedback control

    Institute of Scientific and Technical Information of China (English)

    Baozhu GUO; Wei GUO

    2003-01-01

    This paper considers the boundary stabilization and parameter estimation of a one-dimensional wave equation in the case when one end is fixed and control and harmonic disturbance with uncertain amplitude are input at another end. A high-gain adaptive regulator is designed in terms of measured collocated end velocity. The existence and uniqueness of the classical solution of the closed-loop system is proven. It is shown that the state of the system approaches the standstill as time goes to infitv and meanwhile, the estimated parameter converges to the unknown parameter.

  7. Transverse and temporal characteristics of a high-gain free-electron laser in the saturation regime

    CERN Document Server

    Huang Zhi Rong

    2002-01-01

    The transverse and the temporal characteristics of a high-gain free-electron laser are governed by refractive guiding and sideband instability, respectively. Using the self-consistent Vlasov-Maxwell equations, we explicitly determine the effective index of refraction and the guided radiation mode for an electron beam with arbitrary transverse size. Electrons trapped by the guided radiation execute synchrotron oscillation and hence are susceptible to the sideband instability. We explain the spectral evolution and determine the sideband growth rate. These theoretical predictions agree well with GINGER simulation results.

  8. Novel Interleaved Converter with Extra-High Voltage Gain to Process Low-Voltage Renewable-Energy Generation

    Directory of Open Access Journals (Sweden)

    Chih-Lung Shen

    2016-10-01

    Full Text Available This paper presents a novel interleaved converter (NIC with extra-high voltage gain to process the power of low-voltage renewable-energy generators such as photovoltaic (PV panel, wind turbine, and fuel cells. The NIC can boost a low input voltage to a much higher voltage level to inject renewable energy to DC bus for grid applications. Since the NIC has two circuit branches in parallel at frond end to share input current, it is suitable for high power applications. In addition, the NIC is controlled in an interleaving pattern, which has the advantages that the NIC has lower input current ripple, and the frequency of the ripple is twice the switching frequency. Two coupled inductors and two switched capacitors are incorporated to achieve a much higher voltage gain than conventional high step-up converters. The proposed NIC has intrinsic features such as leakage energy totally recycling and low voltage stress on power semiconductor. Thorough theoretical analysis and key parameter design are presented in this paper. A prototype is built for practical measurements to validate the proposed NIC.

  9. High-pass filtering and dynamic gain regulation enhance vertical bursts transmission along the mossy fiber pathway of cerebellum

    Directory of Open Access Journals (Sweden)

    Jonathan Mapelli

    2010-05-01

    Full Text Available Signal elaboration in the cerebellum mossy fiber input pathway presents controversial aspects, especially concerning gain regulation and the spot-like (rather than beam-like appearance of granular-to-molecular layer transmission. By using voltage-sensitive dye (VSD imaging in rat cerebellar slices (Mapelli et al., 2010, we found that mossy fiber bursts optimally excited the granular layer above ~50 Hz and the overlaying molecular layer above ~100 Hz, thus generating a cascade of high-pass filters. NMDA receptors enhanced transmission in the granular, while GABA-A receptors depressed transmission in both the granular and molecular layer. Burst transmission gain was controlled through a dynamic frequency-dependent involvement of these receptors. Moreover, while high-frequency transmission was enhanced along vertical lines connecting the granular to molecular layer, no high-frequency enhancement was observed along the parallel fiber axis in the molecular layer. This was probably due to the stronger effect of Purkinje cell GABA-A receptor-mediated inhibition occurring along the parallel fibers than along the granule cell axon ascending branch. The consequent amplification of burst responses along vertical transmission lines could explain the spot-like activation of Purkinje cells observed following punctuate stimulation in vivo .

  10. Yield gains of coffee plants from phosphorus fertilization may not be generalized for high density planting

    Directory of Open Access Journals (Sweden)

    Samuel Vasconcelos Valadares

    2014-06-01

    Full Text Available Inconclusive responses of the adult coffee plant to phosphorus fertilization have been reported in the literature, especially when dealing with application of this nutrient in high density planting systems. Thus, this study was carried out for the purpose of assessing the response of adult coffee plants at high planting density in full production (in regard to yield and their biennial cycle/stability to the addition of different sources and application rates of P in the Zona da Mata region of Minas Gerais, Brazil. The experiment with coffee plants of the Catucaí Amarelo 6/30 variety was carried out over four growing seasons. Treatments were arranged in a full factorial design [(4 × 3 + 1] consisting of four P sources (monoammonium phosphate, simple superphosphate, natural reactive rock phosphate from Algeria (Djebel-Onk, and FH 550®, three P rates (100, 200, and 400 kg ha-1 year-1 of P2O5, and an additional treatment without application of the nutrient (0 kg ha-¹ year-¹. A randomized block experimental design was used with three replicates. The four seasons were evaluated as subplots in a split plot experiment. The P contents in soil and leaves increased with increased rates of P application. However, there was no effect from P application on the yield and its biennial cycle/stability regardless of the source used over the four seasons assessed.

  11. Field Encapsulation Library The FEL 2.2 User Guide

    Science.gov (United States)

    Moran, Patrick J.; Henze, Chris; Ellsworth, David

    1999-01-01

    This document describes version 2.2 of the Field Encapsulation Library (FEL), a library of mesh and field classes. FEL is a library for programmers - it is a "building block" enabling the rapid development of applications by a user. Since FEL is a library intended for code development, it is essential that enough technical detail be provided so that one can make full use of the code. Providing such detail requires some assumptions with respect to the reader's familiarity with the library implementation language, C++, particularly C++ with templates. We have done our best to make the explanations accessible to those who may not be completely C++ literate. Nevertheless, familiarity with the language will certainly help one's understanding of how and why things work the way they do. One consolation is that the level of understanding essential for using the library is significantly less than the level that one should have in order to modify or extend the library. One more remark on C++ templates: Templates have been a source of both joy and frustration for us. The frustration stems from the lack of mature or complete implementations that one has to work with. Template problems rear their ugly head particularly when porting. When porting C code, successfully compiling to a set of object files typically means that one is almost done. With templated C++ and the current state of the compilers and linkers, generating the object files is often only the beginning of the fun. On the other hand, templates are quite powerful. Used judiciously, templates enable more succinct designs and more efficient code. Templates also help with code maintenance. Designers can avoid creating objects that are the same in many respects, but not exactly the same. For example, FEL fields are templated by node type, thus the code for scalar fields and vector fields is shared. Furthermore, node type templating allows the library user to instantiate fields with data types not provided by the FEL

  12. A High-Gain Passive UHF-RFID Tag with Increased Read Range

    Science.gov (United States)

    Zuffanelli, Simone; Aguila, Pau; Zamora, Gerard; Paredes, Ferran; Martin, Ferran; Bonache, Jordi

    2016-01-01

    In this work, a passive ultra-high frequency radio-frequency identification UHF-RFID tag based on a 1.25 wavelengths thin dipole antenna is presented for the first time. The length of the antenna is properly chosen in order to maximize the tag read range, while maintaining a reasonable tag size and radiation pattern. The antenna is matched to the RFID chip by means of a very simple matching network based on a shunt inductance. A tag prototype, based on the Alien Higgs-3 chip, is designed and fabricated. The overall dimensions are 400 mm × 14.6 mm, but the tag width for most of its length is delimited by the wire diameter (0.8 mm). The measured read range exhibits a maximum value of 17.5 m at the 902–928 MHz frequency band. This represents an important improvement over state-of-the-art passive UHF-RFID tags. PMID:27455274

  13. A High-Gain Passive UHF-RFID Tag with Increased Read Range

    Directory of Open Access Journals (Sweden)

    Simone Zuffanelli

    2016-07-01

    Full Text Available In this work, a passive ultra-high frequency radio-frequency identification UHF-RFID tag based on a 1.25 wavelengths thin dipole antenna is presented for the first time. The length of the antenna is properly chosen in order to maximize the tag read range, while maintaining a reasonable tag size and radiation pattern. The antenna is matched to the RFID chip by means of a very simple matching network based on a shunt inductance. A tag prototype, based on the Alien Higgs-3 chip, is designed and fabricated. The overall dimensions are 400 mm × 14.6 mm, but the tag width for most of its length is delimited by the wire diameter (0.8 mm. The measured read range exhibits a maximum value of 17.5 m at the 902–928 MHz frequency band. This represents an important improvement over state-of-the-art passive UHF-RFID tags.

  14. 3 kA Power Supplies for the Duke OK-5 FEL Wigglers

    CERN Document Server

    Popov, Victor; Mikhailov, Stepan; Oakeley, Owen; Wallace, Patrick W; Wu, Y K

    2005-01-01

    The next generation electromagnetic OK-5/Duke storage ring FEL wigglers require three 3kA/70V power supplies with current stability about 20 ppm and current ripples less than 20ppm in their full operating range. Duke FEL Laboratory acquired three out-of-service thyristor controllable power supplies (Transrex, 5kA/100V) which was built almost 30 years ago. The existing archaic firing circuit, lack of any output voltage filtering and outdated DCCT, would not be able to meet the above requirements.To deliver the desirable high performance with very limited funds, all three T-Rex power supplies have been completely rebuilt in house at DFELL. Modern high stability electronic components and a Danfysik DCCT with a high current stability have been used. New symmetrical firing circuit, efficient passive LC filter and reliable transformer-coupled active filter are used to reduce output current ripples to an appropriate level. At the present time, the first refurbished power supply in operation since August, 2004 with g...

  15. Imaging at soft X-ray wavelengths with high-gain microchannel plate detector systems

    Science.gov (United States)

    Timothy, J. Gethyn

    1986-01-01

    Multianode microchannel array (MAMA) detector systems with formats of 256 x 1024 pixels and active areas of 6 x 26 mm are now under evaluation at visible, UV and soft X-ray wavelengths. Very-large-format versions of the MAMA detectors with formats of 2048 x 2048 pixels and active areas of 52 x 52 mm are under development for use in the NASA Goddard Space Telescope Imaging Spectrograph (STIS). Open-structure versions of these detectors with Cs I photocathodes can provide a high-resolution imaging capability at EUV and soft X-ray wavelengths and can deliver a maximum count rate from each array in excess of 10 to the 6th counts/s. In addition, these detector systems have the unique capability to determine the arrival time of a detected photon to an accuracy of 100 ns or better. The construction, mode of operation, and performance characteristics of the MAMA detectors are described, and the program for the development of the very-large-format detectors is outlined.

  16. Semi-global robust output regulation of minimum-phase nonlinear systems based on high-gain nonlinear internal model

    Science.gov (United States)

    Wei, Xile; Lu, Meili; Wang, Jiang; Tsang, K. M.; Deng, Bin; Che, Yanqiu

    2010-05-01

    We consider the assumption of existence of the general nonlinear internal model that is introduced in the design of robust output regulators for a class of minimum-phase nonlinear systems with rth degree (r ≥ 2). The robust output regulation problem can be converted into a robust stabilisation problem of an augmented system consisting of the given plant and a high-gain nonlinear internal model, perfectly reproducing the bounded including not only periodic but also nonperiodic exogenous signal from a nonlinear system, which satisfies some general immersion assumption. The state feedback controller is designed to guarantee the asymptotic convergence of system errors to zero manifold. Furthermore, the proposed scheme makes use of output feedback dynamic controller that only processes information from the regulated output error by using high-gain observer to robustly estimate the derivatives of the regulated output error. The stabilisation analysis of the resulting closed-loop systems leads to regional as well as semi-global robust output regulation achieved for some appointed initial condition in the state space, for all possible values of the uncertain parameter vector and the exogenous signal, ranging over an arbitrary compact set.

  17. Sensitivity gains, linearity, and spectral reproducibility in nonuniformly sampled multidimensional MAS NMR spectra of high dynamic range

    Science.gov (United States)

    Suiter, Christopher L.; Paramasivam, Sivakumar; Hou, Guangjin; Sun, Shangjin; Rice, David; Hoch, Jeffrey C.; Rovnyak, David

    2014-01-01

    Recently, we have demonstrated that considerable inherent sensitivity gains are attained in MAS NMR spectra acquired by nonuniform sampling (NUS) and introduced maximum entropy interpolation (MINT) processing that assures the linearity of transformation between the time and frequency domains. In this report, we examine the utility of the NUS/MINT approach in multidimensional datasets possessing high dynamic range, such as homonuclear 13C–13C correlation spectra. We demonstrate on model compounds and on 1–73-(U-13C, 15N)/74–108-(U-15N) E. coli thioredoxin reassembly, that with appropriately constructed 50 % NUS schedules inherent sensitivity gains of 1.7–2.1-fold are readily reached in such datasets. We show that both linearity and line width are retained under these experimental conditions throughout the entire dynamic range of the signals. Furthermore, we demonstrate that the reproducibility of the peak intensities is excellent in the NUS/MINT approach when experiments are repeated multiple times and identical experimental and processing conditions are employed. Finally, we discuss the principles for design and implementation of random exponentially biased NUS sampling schedules for homonuclear 13C–13C MAS correlation experiments that yield high-quality artifact-free datasets. PMID:24752819

  18. Sensitivity Gains, Linearity, and Spectral Reproducibility in Nonuniformly Sampled Multidimensional MAS NMR Spectra of High Dynamic Range.

    Energy Technology Data Exchange (ETDEWEB)

    Suiter, Christopher L.; Paramasivam, Sivakumar; Hou, Guangjin; Sun, Shangjin; Rice, David M.; Hoch, Jeffrey C.; Rovnyak, David S.; Polenova, Tatyana E.

    2014-04-22

    Recently, we have demonstrated that considerable inherent sensitivity gains are attained in MAS NMR spectra acquired by nonuniform sampling (NUS) and introduced maximum entropy interpolation (MINT) processing that assures the linearity of transformation between the time and frequency domains. In this report, we examine the utility of the NUS/MINT approach in multidimensional datasets possessing high dynamic range, such as homonuclear 13C–13C correlation spectra. We demonstrate on model compounds and on 1–73-(U-13C,15N)/74–108-(U-15N) E. coli thioredoxin reassembly, that with appropriately constructed 50 % NUS schedules inherent sensitivity gains of 1.7–2.1-fold are readily reached in such datasets. We show that both linearity and line width are retained under these experimental conditions throughout the entire dynamic range of the signals. Furthermore, we demonstrate that the reproducibility of the peak intensities is excellent in the NUS/MINT approach when experiments are repeated multiple times and identical experimental and processing conditions are employed. Finally, we discuss the principles for design and implementation of random exponentially biased NUS sampling schedules for homonuclear 13C–13C MAS correlation experiments that yield high quality artifact-free datasets.

  19. The formation of transverse coherence in SASE FELs

    CERN Document Server

    Saldin, E L; Yurkov, M V

    1999-01-01

    This report presents a fully three-dimensional study of the amplification process in the self amplified spontaneous emission (SASE) free electron laser. Investigations are based on the data obtained with the three-dimensional, time-dependent FEL simulation code FAST. Analysis of the data shows that the statistical properties of the radiation can be described with Gaussian statistics. In particular, fluctuations of the instantaneous radiation intensity at one space point follow the negative exponential law, while the finite-time integrals of the radiation intensity (both in space and in time) follow a gamma-distribution. Numerical examples presented in the paper correspond to the 70 nm SASE FEL under construction at the TESLA test facility at DESY.

  20. Ultrafast Coherent Control and Characterization of Surface Reactions using FELs

    CERN Document Server

    Ogasawara, Hirohito; Nordlund, Dennis

    2005-01-01

    The microscopic understanding of surface chemistry requires a detailed understanding of the dynamics of elementary processes at surfaces. The ultrashort electron pulse obtained in the linear accelerator to feed the FEL can be used for generation of coherent synchrotron radiation in the low energy THz regime. With the current parameters for LCLS this corresponds to radiation with energy corresponding to excitations of low-energy vibrational modes of molecules on surfaces or phonons in substrates. The coherent radiation can coherently manipulate atoms or molecules on surfaces. In this respect a chemical reaction can be initiated by coherent atomic motion along a specific reaction coordinate. Since the THz radiation is generated from the same source as the FEL radiation full-time synchronization for pump-probe experiments will be possible. The possibility to perform time-resolved X-ray Emission Spectroscopy (XES) and X-ray Photoelectron Spectroscopy (XPS) measurements as a probe of chemical dynamics is an exciti...