Electromagnetic Modelling of MMIC CPWs for High Frequency Applications
Sinulingga, E. P.; Kyabaggu, P. B. K.; Rezazadeh, A. A.
2018-02-01
Realising the theoretical electrical characteristics of components through modelling can be carried out using computer-aided design (CAD) simulation tools. If the simulation model provides the expected characteristics, the fabrication process of Monolithic Microwave Integrated Circuit (MMIC) can be performed for experimental verification purposes. Therefore improvements can be suggested before mass fabrication takes place. This research concentrates on development of MMIC technology by providing accurate predictions of the characteristics of MMIC components using an improved Electromagnetic (EM) modelling technique. The knowledge acquired from the modelling and characterisation process in this work can be adopted by circuit designers for various high frequency applications.
High frequency modeling of power transformers. Stresses and diagnostics
Bjerkan, Eilert
2005-05-15
In this thesis a reliable, versatile and rigorous method for high frequency power transformer modeling is searched and established. The purpose is to apply this model to sensitivity analysis of FRA (Frequency Response Analysis) which is a quite new diagnostic method for assessing the mechanical integrity of power transformer windings on-site. The method should be versatile in terms of being able to estimate internal and external over voltages and resonances. Another important aspect is that the method chosen is suitable for real transformer geometries. In order to verify the suitability of the model for real transformers, a specific test-object is used. This is a 20MVA transformer, and details are given in chapter 1.4. The high frequency power transformer model is established from geometrical and constructional information from the manufacturer, together with available material characteristics. All circuit parameters in the lumped circuit representation are calculated based on these data. No empirical modifications need to be performed. Comparison shows capability of reasonable accuracy in the range from 10 khz to 1 MHz utilizing a disc-to-disc representation. A compromise between accuracy of model due to discretization and complexity of the model in a turn-to-turn representation is inevitable. The importance of the iron core is emphasized through a comparison of representations with/without the core included. Frequency-dependent phenomena are accurately represented using an isotropic equivalent for windings and core, even with a coarse mesh for the FEM-model. This is achieved through a frequency-dependent complex permeability representation of the materials. This permeability is deduced from an analytical solution of the frequency-dependent magnetic field inside the conductors and the core. The importance of dielectric losses in a transformer model is also assessed. Since published data on the high frequency properties of press board are limited, some initial
Modeling the dielectric logging tool at high frequency
Chew, W.C.
1987-01-01
The high frequency dielectric logging tool has been used widely in electromagnetic well logging, because by measuring the dielectric constant at high frequencies (1 GHz), the water saturation of rocks could be known without measuring the water salinity in the rocks. As such, it could be used to delineate fresh water bearing zones, as the dielectric constant of fresh water is much higher than that of oil while they may have the same resistivity. The authors present a computer model, though electromagnetic field analysis, the response of such a measurement tool in a well logging environment. As the measurement is performed at high frequency, usually with small separation between the transmitter and receivers, some small geological features could be measured by such a tool. They use the computer model to study the behavior of such a tool across geological bed boundaries, and also across thin geological beds. Such a study could be very useful in understanding the limitation on the resolution of the tool. Furthermore, they could study the standoff effect and the depth of investigation of such a tool. This could delineate the range of usefulness of the measurement
Modelling financial high frequency data using point processes
Hautsch, Nikolaus; Bauwens, Luc
In this chapter written for a forthcoming Handbook of Financial Time Series to be published by Springer-Verlag, we review the econometric literature on dynamic duration and intensity processes applied to high frequency financial data, which was boosted by the work of Engle and Russell (1997...
F. Coccetti
2003-01-01
Full Text Available In this contribution we present an accurate investigation of three different techniques for the modeling of complex planar circuits. The em analysis is performed by means of different electromagnetic full-wave solvers in the timedomain and in the frequency-domain. The first one is the Transmission Line Matrix (TLM method. In the second one the TLM method is combined with the Integral Equation (IE method. The latter is based on the Generalized Transverse Resonance Diffraction (GTRD. In order to test the methods we model different structures and compare the calculated Sparameters to measured results, with good agreement.
Modeling High Frequency Semiconductor Devices Using Maxwell's Equations
El-Ghazaly, Samier
1999-01-01
.... In this research, we first replaced the conventional semiconductor device models, which are based on Poisson's Equation as a semiconductor model, with a new one that uses the full-wave electro...
Bos, Charles S.
2008-01-01
When analysing the volatility related to high frequency financial data, mostly non-parametric approaches based on realised or bipower variation are applied. This article instead starts from a continuous time diffusion model and derives a parametric analog at high frequency for it, allowing
Modeling High Frequency Data with Long Memory and Structural Change: A-HYEGARCH Model
Yanlin Shi
2018-03-01
Full Text Available In this paper, we propose an Adaptive Hyperbolic EGARCH (A-HYEGARCH model to estimate the long memory of high frequency time series with potential structural breaks. Based on the original HYGARCH model, we use the logarithm transformation to ensure the positivity of conditional variance. The structural change is further allowed via a flexible time-dependent intercept in the conditional variance equation. To demonstrate its effectiveness, we perform a range of Monte Carlo studies considering various data generating processes with and without structural changes. Empirical testing of the A-HYEGARCH model is also conducted using high frequency returns of S&P 500, FTSE 100, ASX 200 and Nikkei 225. Our simulation and empirical evidence demonstrate that the proposed A-HYEGARCH model outperforms various competing specifications and can effectively control for structural breaks. Therefore, our model may provide more reliable estimates of long memory and could be a widely useful tool for modelling financial volatility in other contexts.
Tian, Lizhi; Xiong, Zhenhua; Wu, Jianhua; Ding, Han
2017-05-01
Feedforward-feedback control is widely used in motion control of piezoactuator systems. Due to the phase lag caused by incomplete dynamics compensation, the performance of the composite controller is greatly limited at high frequency. This paper proposes a new rate-dependent model to improve the high-frequency tracking performance by reducing dynamics compensation error. The rate-dependent model is designed as a function of the input and input variation rate to describe the input-output relationship of the residual system dynamics which mainly performs as phase lag in a wide frequency band. Then the direct inversion of the proposed rate-dependent model is used to compensate the residual system dynamics. Using the proposed rate-dependent model as feedforward term, the open loop performance can be improved significantly at medium-high frequency. Then, combining the with feedback controller, the composite controller can provide enhanced close loop performance from low frequency to high frequency. At the frequency of 1 Hz, the proposed controller presents the same performance as previous methods. However, at the frequency of 900 Hz, the tracking error is reduced to be 30.7% of the decoupled approach.
MODELLING AND SIMULATION OF HIGH FREQUENCY INVERTER FOR INDUCTION HEATING APPLICATION
SACHIN S. BANKAR; Dr. PRASAD M. JOSHI
2016-01-01
This paper presents modelling and simulation of high frequency inverter for induction heating applications. Induction heating has advantages like higher efficiency, controlled heating, safety and pollution free therefore this technology is used in industrial, domestic and medical applications. The high frequency full bridge inverter is used for induction heating, also MOSFET is used as a switching device for inverter and the control strategy used for inverter is Bipolar PWM control. The size ...
A study on thermal characteristics analysis model of high frequency switching transformer
Yoo, Jin-Hyung; Jung, Tae-Uk
2015-05-01
Recently, interest has been shown in research on the module-integrated converter (MIC) in small-scale photovoltaic (PV) generation. In an MIC, the voltage boosting high frequency transformer should be designed to be compact in size and have high efficiency. In response to the need to satisfy these requirements, this paper presents a coupled electromagnetic analysis model of a transformer connected with a high frequency switching DC-DC converter circuit while considering thermal characteristics due to the copper and core losses. A design optimization procedure for high efficiency is also presented using this design analysis method, and it is verified by the experimental result.
A cervid vocal fold model suggests greater glottal efficiency in calling at high frequencies.
Ingo R Titze
2010-08-01
Full Text Available Male Rocky Mountain elk (Cervus elaphus nelsoni produce loud and high fundamental frequency bugles during the mating season, in contrast to the male European Red Deer (Cervus elaphus scoticus who produces loud and low fundamental frequency roaring calls. A critical step in understanding vocal communication is to relate sound complexity to anatomy and physiology in a causal manner. Experimentation at the sound source, often difficult in vivo in mammals, is simulated here by a finite element model of the larynx and a wave propagation model of the vocal tract, both based on the morphology and biomechanics of the elk. The model can produce a wide range of fundamental frequencies. Low fundamental frequencies require low vocal fold strain, but large lung pressure and large glottal flow if sound intensity level is to exceed 70 dB at 10 m distance. A high-frequency bugle requires both large muscular effort (to strain the vocal ligament and high lung pressure (to overcome phonation threshold pressure, but at least 10 dB more intensity level can be achieved. Glottal efficiency, the ration of radiated sound power to aerodynamic power at the glottis, is higher in elk, suggesting an advantage of high-pitched signaling. This advantage is based on two aspects; first, the lower airflow required for aerodynamic power and, second, an acoustic radiation advantage at higher frequencies. Both signal types are used by the respective males during the mating season and probably serve as honest signals. The two signal types relate differently to physical qualities of the sender. The low-frequency sound (Red Deer call relates to overall body size via a strong relationship between acoustic parameters and the size of vocal organs and body size. The high-frequency bugle may signal muscular strength and endurance, via a 'vocalizing at the edge' mechanism, for which efficiency is critical.
Vogl, Gregory W.; Harper, Kari K.; Payne, Bev
2010-01-01
Piezoelectric shakers have been developed and used at the National Institute of Standards and Technology (NIST) for decades for high-frequency calibration of accelerometers. Recently, NIST researchers built new piezoelectric shakers in the hopes of reducing the uncertainties in the calibrations of accelerometers while extending the calibration frequency range beyond 20 kHz. The ability to build and measure piezoelectric shakers invites modeling of these systems in order to improve their design for increased performance, which includes a sinusoidal motion with lower distortion, lower cross-axial motion, and an increased frequency range. In this paper, we present a model of piezoelectric shakers and match it to experimental data. The equations of motion for all masses are solved along with the coupled state equations for the piezoelectric actuator. Finally, additional electrical elements like inductors, capacitors, and resistors are added to the piezoelectric actuator for matching of experimental and theoretical frequency responses.
Yanli Xin
2016-12-01
Full Text Available This paper presents a comprehensive investigation on high frequency (HF switching transients due to energization of vacuum circuit breakers (VCBs in offshore wind farms (OWFs. This research not only concerns the modeling of main components in collector grids of an OWF for transient analysis (including VCBs, wind turbine transformers (WTTs, submarine cables, but also compares the effectiveness between several mainstream switching overvoltage (SOV protection methods and a new mitigation method called smart choke. In order to accurately reproduce such HF switching transients considering the current chopping, dielectric strength (DS recovery capability and HF quenching capability of VCBs, three models are developed, i.e., a user–defined VCB model, a HF transformer terminal model and a three-core (TC frequency dependent model of submarine cables, which are validated through simulations and compared with measurements. Based on the above models and a real OWF configuration, a simulation model is built and several typical switching transient cases are investigated to analyze the switching transient process and phenomena. Subsequently, according to the characteristics of overvoltages, appropriate parameters of SOV mitigation methods are determined to improve their effectiveness. Simulation results indicate that the user–defined VCB model can satisfactorily simulate prestrikes and the proposed component models display HF characteristics, which are consistent with onsite measurement behaviors. Moreover, the employed protection methods can suppress induced SOVs, which have a steep front, a high oscillation frequency and a high amplitude, among which the smart choke presents a preferable HF damping effect.
Towards a High Temporal Frequency Grass Canopy Thermal IR Model for Background Signatures
Ballard, Jerrell R., Jr.; Smith, James A.; Koenig, George G.
2004-01-01
In this paper, we present our first results towards understanding high temporal frequency thermal infrared response from a dense plant canopy and compare the application of our model, driven both by slowly varying, time-averaged meteorological conditions and by high frequency measurements of local and within canopy profiles of relative humidity and wind speed, to high frequency thermal infrared observations. Previously, we have employed three-dimensional ray tracing to compute the intercepted and scattered radiation fluxes and for final scene rendering. For the turbulent fluxes, we employed simple resistance models for latent and sensible heat with one-dimensional profiles of relative humidity and wind speed. Our modeling approach has proven successful in capturing the directional and diurnal variation in background thermal infrared signatures. We hypothesize that at these scales, where the model is typically driven by time-averaged, local meteorological conditions, the primary source of thermal variance arises from the spatial distribution of sunlit and shaded foliage elements within the canopy and the associated radiative interactions. In recent experiments, we have begun to focus on the high temporal frequency response of plant canopies in the thermal infrared at 1 second to 5 minute intervals. At these scales, we hypothesize turbulent mixing plays a more dominant role. Our results indicate that in the high frequency domain, the vertical profile of temperature change is tightly coupled to the within canopy wind speed In the results reported here, the canopy cools from the top down with increased wind velocities and heats from the bottom up at low wind velocities. .
Rawid Banchuin
2013-01-01
Full Text Available The novel probabilistic models of the random variations in nanoscale MOSFET's high frequency performance defined in terms of gate capacitance and transition frequency have been proposed. As the transition frequency variation has also been considered, the proposed models are considered as complete unlike the previous one which take only the gate capacitance variation into account. The proposed models have been found to be both analytic and physical level oriented as they are the precise mathematical expressions in terms of physical parameters. Since the up-to-date model of variation in MOSFET's characteristic induced by physical level fluctuation has been used, part of the proposed models for gate capacitance is more accurate and physical level oriented than its predecessor. The proposed models have been verified based on the 65 nm CMOS technology by using the Monte-Carlo SPICE simulations of benchmark circuits and Kolmogorov-Smirnov tests as highly accurate since they fit the Monte-Carlo-based analysis results with 99% confidence. Hence, these novel models have been found to be versatile for the statistical/variability aware analysis/design of nanoscale MOSFET-based analog/mixed signal circuits and systems.
Frequency-Domain Maximum-Likelihood Estimation of High-Voltage Pulse Transformer Model Parameters
Aguglia, D; Martins, C.D.A.
2014-01-01
This paper presents an offline frequency-domain nonlinear and stochastic identification method for equivalent model parameter estimation of high-voltage pulse transformers. Such kinds of transformers are widely used in the pulsed-power domain, and the difficulty in deriving pulsed-power converter optimal control strategies is directly linked to the accuracy of the equivalent circuit parameters. These components require models which take into account electric fields energies represented by stray capacitance in the equivalent circuit. These capacitive elements must be accurately identified, since they greatly influence the general converter performances. A nonlinear frequency-based identification method, based on maximum-likelihood estimation, is presented, and a sensitivity analysis of the best experimental test to be considered is carried out. The procedure takes into account magnetic saturation and skin effects occurring in the windings during the frequency tests. The presented method is validated by experim...
Model Equation for Acoustic Nonlinear Measurement of Dispersive Specimens at High Frequency
Zhang, Dong; Kushibiki, Junichi; Zou, Wei
2006-10-01
We present a theoretical model for acoustic nonlinearity measurement of dispersive specimens at high frequency. The nonlinear Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation governs the nonlinear propagation in the SiO2/specimen/SiO2 multi-layer medium. The dispersion effect is considered in a special manner by introducing the frequency-dependant sound velocity in the KZK equation. Simple analytic solutions are derived by applying the superposition technique of Gaussian beams. The solutions are used to correct the diffraction and dispersion effects in the measurement of acoustic nonlinearity of cottonseed oil in the frequency range of 33-96 MHz. Regarding two different ultrasonic devices, the accuracies of the measurements are improved to ±2.0% and ±1.3% in comparison with ±9.8% and ±2.9% obtained from the previous plane wave model.
Finite-Element Modeling of Viscoelastic Cells During High-Frequency Cyclic Strain
David W. Holdsworth
2012-03-01
Full Text Available Mechanotransduction refers to the mechanisms by which cells sense and respond to local loads and forces. The process of mechanotransduction plays an important role both in maintaining tissue viability and in remodeling to repair damage; moreover, it may be involved in the initiation and progression of diseases such as osteoarthritis and osteoporosis. An understanding of the mechanisms by which cells respond to surrounding tissue matrices or artificial biomaterials is crucial in regenerative medicine and in influencing cellular differentiation. Recent studies have shown that some cells may be most sensitive to low-amplitude, high-frequency (i.e., 1–100 Hz mechanical stimulation. Advances in finite-element modeling have made it possible to simulate high-frequency mechanical loading of cells. We have developed a viscoelastic finite-element model of an osteoblastic cell (including cytoskeletal actin stress fibers, attached to an elastomeric membrane undergoing cyclic isotropic radial strain with a peak value of 1,000 µstrain. The results indicate that cells experience significant stress and strain amplification when undergoing high-frequency strain, with peak values of cytoplasmic strain five times higher at 45 Hz than at 1 Hz, and peak Von Mises stress in the nucleus increased by a factor of two. Focal stress and strain amplification in cells undergoing high-frequency mechanical stimulation may play an important role in mechanotransduction.
Development of a cloud model to generate high-frequency solar irradiance and power data
Brower, Michael C.; Beaucage, Philippe; Frank, Jaclyn D.; Freedman, Jeffrey M. [AWS Truepower, Albany, NY (United States); Vidal, Jose [AWS Truepower, Barcelona (Spain)
2012-07-01
This paper describes a new method to synthesize high-frequency ({proportional_to}2 second) solar irradiance and photovoltaic output data for grid integration studies. The method couples a numerical weather prediction model with a newly developed stochastic-kinematic cloud model. The coupled model is shown to match the mean profiles as well as ramping characteristics of measured data on Oahu, Hawaii. This model was used to synthesize 2 years of 2-second irradiance and PV data for over 800 MW of hypothetical utility-scale and residential rooftop sites for the Hawaii Solar Integration Study. (orig.)
a High-Frequency Three-Dimensional Tyre Model Based on Two Coupled Elastic Layers
LARSSON, K.; KROPP, W.
2002-06-01
Road traffic noise is today a serious environmental problem in urban areas. The dominating noise source at speeds greater than 50 km/h is car tyres. In order to achieve a reduction of traffic noise tyres have to become quieter. To reduce tyre/road noise a deep understanding of the noise generation mechanisms is of major importance. An existing tyre/road noise simulation model consists of a smooth tyre rolling at a constant speed on a rough road surface. It is composed of three separate modules: a tyre model, a contact model and a radiation model. The major drawback with the contact model is that it only takes the radial component of the contact forces into account. To improve this model, a description of the tangential motion at high frequencies is necessary. Most of the models for the structure-borne sound behaviour of tyres are designed for the low-frequency range (i.e., below 400 Hz). Above this frequency range, the curvature of the tyre is unimportant, while the internal structure (multi-layers of steel and rubber) increases in importance. For the high-frequency range, a double-layer tyre model is proposed, which is based on the general field equations, to take into account the tangential motion and the local deformation of the tread. Both propagating waves and mode shapes have been investigated by the use of this model. Calculations of the response of the tyre to an external excitation show relatively good agreement with measurements on a smooth tyre.
Modelling switching-time effects in high-frequency power conditioning networks
Owen, H. A.; Sloane, T. H.; Rimer, B. H.; Wilson, T. G.
1979-01-01
Power transistor networks which switch large currents in highly inductive environments are beginning to find application in the hundred kilohertz switching frequency range. Recent developments in the fabrication of metal-oxide-semiconductor field-effect transistors in the power device category have enhanced the movement toward higher switching frequencies. Models for switching devices and of the circuits in which they are imbedded are required to properly characterize the mechanisms responsible for turning on and turning off effects. Easily interpreted results in the form of oscilloscope-like plots assist in understanding the effects of parametric studies using topology oriented computer-aided analysis methods.
Offset, tilted dipole models of Uranian smooth high-frequency radio emission
Schweitzer, A.E.; Romig, J.H.; Evans, D.R.; Sawyer, C.B.; Warwick, J.W.
1990-01-01
During the Voyager 2 encounter with Uranus in January 1986, the Planetary Radio Astronomy (PRA) experiment detected a complex pattern of radio emissions. Two types of emissions were seen: smooth and bursty. The smooth emission has been divided into smooth high-frequency (SHF) and smooth low-frequency (SLF) components which are presumed to come from different sources because of their distinctly different characteristics. The SHF component is considered in this paper. The SHF emission has been modeled by many authors on OTD (offset, tilted dipole (Ness et al., 1986)) L shells ranging from 5 to 40. However, the bursts have been modeled at much higher L shells. The authors complete an OTD investigation of the SHF emission at high L shells within the range of the bursty source locations, and present a viable high L shell model. This model has fundamentally the same longitudinally symmetric net emission pattern in space as the L shell 5 model presented in Romig et al. (1987) and Barbosa (1988). However, they were unable to produce an acceptable model on intermediate L shells without restricting source longitude. They discuss the similarities and distinctions between their two models and the models of other authors. They believe that the high L shell model (and others similar to it) cannot account for the observed smoothness and periodicity of the SHF emissions because it has open field lines containing untrapped particles, which should produce more variable emission than that seen in the SHF data. Therefore, the authors prefer models at L shells less than 18, the boundary for closed field lines (Ness et al., 1986). They then discuss and contrast two models within this boundary: the L = 5 model and an L ∼ 12 model by Kaiser et al. (1987) and Farrell and Calvert (1989b). The main distinction between these two models is the longitudinal extent of the source location
High-frequency autonomic modulation: a new model for analysis of autonomic cardiac control.
Champéroux, Pascal; Fesler, Pierre; Judé, Sebastien; Richard, Serge; Le Guennec, Jean-Yves; Thireau, Jérôme
2018-05-03
Increase in high-frequency beat-to-beat heart rate oscillations by torsadogenic hERG blockers appears to be associated with signs of parasympathetic and sympathetic co-activation which cannot be assessed directly using classic methods of heart rate variability analysis. The present work aimed to find a translational model that would allow this particular state of the autonomic control of heart rate to be assessed. High-frequency heart rate and heart period oscillations were analysed within discrete 10 s intervals in a cohort of 200 healthy human subjects. Results were compared to data collected in non-human primates and beagle dogs during pharmacological challenges and torsadogenic hERG blockers exposure, in 127 genotyped LQT1 patients on/off β-blocker treatment and in subgroups of smoking and non-smoking subjects. Three states of autonomic modulation, S1 (parasympathetic predominance) to S3 (reciprocal parasympathetic withdrawal/sympathetic activation), were differentiated to build a new model of heart rate variability referred to as high-frequency autonomic modulation. The S2 state corresponded to a specific state during which both parasympathetic and sympathetic systems were coexisting or co-activated. S2 oscillations were proportionally increased by torsadogenic hERG-blocking drugs, whereas smoking caused an increase in S3 oscillations. The combined analysis of the magnitude of high-frequency heart rate and high-frequency heart period oscillations allows a refined assessment of heart rate autonomic modulation applicable to long-term ECG recordings and offers new approaches to assessment of the risk of sudden death both in terms of underlying mechanisms and sensitivity. © 2018 The Authors. British Journal of Pharmacology published by John Wiley & Sons Ltd on behalf of British Pharmacological Society.
Periodic Properties of 1D FE Discrete Models in High Frequency Dynamics
A. Żak
2016-01-01
Full Text Available Finite element discrete models of various engineering 1D structures may be considered as structures of certain periodic characteristics. The source of this periodicity comes from the discontinuity of stress/strain field between the elements. This behaviour remains unnoticeable, when low frequency dynamics of these structures is investigated. At high frequency regimes, however, its influence may be strong enough to dominate calculated structural responses distorting or even falsifying them completely. In this paper, certain computational aspects of structural periodicity of 1D FE discrete models are discussed by the authors. In this discussion, the authors focus their attention on an exemplary problem of 1D rod modelled according to the elementary theory.
A guinea pig model of selective severe high-frequency hearing loss.
Havenith, Sarah; Klis, Sjaak F L; Versnel, Huib; Grolman, Wilko
2013-10-01
Using an appropriate dose of an aminoglycoside antibiotic cotreated with a loop diuretic a guinea pig model of high-frequency loss can be obtained mimicking cochlear implant candidates with low-frequency residual hearing. We examined the stability of this model over time. A well-established method to create an animal model for profound deafness is cotreatment with an aminoglycoside antibiotic and a loop diuretic. Recent data indicated that reduction of the aminoglycoside dose might yield selective high-frequency hearing loss. Such a model is relevant for studies related to hybrid cochlear implant devices, for example, with respect to preservation of residual hearing. Guinea pigs received an electrode for chronic recording of compound action potentials to tones to assess thresholds. They were treated with a coadministration of kanamycin (200 mg/kg) and furosemide (100 mg/kg), after which, the animals were sacrificed for histologic analysis at 2, 4, or 7 weeks. After 2 to 7 weeks threshold shifts were greater than 50 dB for 8 to 16 kHz in 15 of 17 animals, whereas threshold shifts at 2 kHz or lower were less than 50 dB in 13 animals. Major threshold shifts occurred the first 2 to 4 days; subsequently, some spontaneous recovery occurred and, after 2-3 weeks thresholds, remained stable. Inner hair cell loss still progressed between 2 and 4 weeks in the most basal cochlear region; thereafter, hair cell loss was stable. An appropriate animal model for selective severe high-frequency hearing loss was obtained, which is stable at 4 weeks after ototoxic treatment.
A low-frequency asymptotic model of seismic reflection from a high-permeability layer
Silin, Dmitriy; Goloshubin, Gennady
2009-03-01
Analysis of compression wave propagation through a high-permeability layer in a homogeneous poroelastic medium predicts a peak of reflection in the low-frequency end of the spectrum. An explicit formula expresses the resonant frequency through the elastic moduli of the solid skeleton, the permeability of the reservoir rock, the fluid viscosity and compressibility, and the reservoir thickness. This result is obtained through a low-frequency asymptotic analysis of the Biot's model of poroelasticity. A new physical interpretation of some coefficients of the classical poroelasticity is a result of the derivation of the main equations from the Hooke's law, momentum and mass balance equations, and the Darcy's law. The velocity of wave propagation, the attenuation factor, and the wave number, are expressed in the form of power series with respect to a small dimensionless parameter. The latter is equal to the product of the kinematic reservoir fluid mobility, an imaginary unit, and the frequency of the signal. Retaining only the leading terms of the series leads to explicit and relatively simple expressions for the reflection and transmission coefficients for a planar wave crossing an interface between two permeable media, as well as wave reflection from a thin highly-permeable layer (a lens). The practical implications of the theory developed here are seismic modeling, inversion, and attribute analysis.
IMITATION MODEL OF A HIGH-SPEED INDUCTION MOTOR WITH FREQUENCY CONTROL
V. E. Pliugin
2017-12-01
Full Text Available Purpose. To develop the imitation model of the frequency converter controlled high-speed induction motor with a squirrel-cage rotor in order to determine reasons causes electric motor vibrations and noises in starting modes. Methodology. We have applied the mathematical simulation of electromagnetic field in transient mode and imported obtained field model as an independent object in frequency converter circuit. We have correlated the simulated result with the experimental data obtained by means of the PID regulator factors. Results. We have made the simulation model of the high-speed induction motor with a squirrel-cage rotor speed control in AnsysRMxprt, Ansys Maxwell and Ansys Simplorer, approximated to their physical prototype. We have made models modifications allows to provide high-performance computing (HPC in dedicated server and computer cluster to reduce the simulation time. We have obtained motor characteristics in starting and rated modes. This allows to make recommendations on determination of high-speed electric motor optimal deign, having minimum indexes of vibrations and noises. Originality. For the first time, we have carried out the integrated research of induction motor using simultaneously simulation models both in Ansys Maxwell (2D field model and in Ansys Simplorer (transient circuit model with the control low realization for the motor soft start. For the first time the correlation between stator and rotor slots, allows to obtain minimal vibrations and noises, was defined. Practical value. We have tested manufactured high-speed motor based on the performed calculation. The experimental studies have confirmed the adequacy of the model, which allows designing such motors for new high-speed construction, and upgrade the existing ones.
Cimpan, Emil
2004-09-15
This work is concerned with the development of a new on-line measuring technique to be used in measurements of the water concentration in a two component oil/water or three component (i.e. multiphase) oil/water/gas flow. The technique is based on using non-intrusive coil detectors and experiments were performed both statically (medium at rest) and dynamically (medium flowing through a flow rig). The various coil detectors were constructed with either one or two coils and specially designed electronics were used. The medium was composed by air, machine oil, and water having different conductivity values, i.e. seawater and salt water with various conductivities (salt concentrations) such as 1 S/m, 4.9 S/m and 9.3 S/m. The experimental measurements done with the different mixtures were further used to mathematically model the physical principle used in the technique. This new technique is based on measuring the coil impedance and signal frequency at the self-resonance frequency of the coil to determine the water concentration in the mix. By using numerous coils it was found, experimentally, that generally both the coil impedance and the self-resonance frequency of the coil decreased as the medium conductivity increased. Both the impedance and the self-resonance frequency of the coil depended on the medium loss due to the induced eddy currents within the conductive media in the mixture, i.e. water. In order to detect relatively low values of the medium loss, the self-resonance frequency of the coil and also of the magnetic field penetrating the media should be relatively high (within the MHz range and higher). Therefore, the technique was called and referred to throughout the entire work as the high frequency magnetic field technique (HFMFT). To practically use the HFMFT, it was necessary to circumscribe an analytical frame to this technique. This was done by working out a mathematical model that relates the impedance and the self-resonance frequency of the coil to the
Botrel, J L [CEA-LETI 17, rue des Martyrs 38054 Grenoble (France); IMEP 23, rue des Martyrs 38016 Grenoble (France)], E-mail: jean-loius.botrel@cea.fr; Savry, O; Rozeau, O; Templier, F [CEA-LETI 17, rue des Martyrs 38054 Grenoble (France); Jomaah, J [IMEP 23, rue des Martyrs 38016 Grenoble (France)
2007-07-16
Laser Crystallised Polysilicon Thin Film Transistors have now sufficient good conduction properties to be used in high-frequency applications. In this work, we report the results for 5 {mu}m long polysilicon TFTs obtained at frequencies up to several hundred MHz for applications such as RFID tags or System-On-Panel. In order to investigate the device operation, DC and AC two-dimensional simulations of these devices in the Effective Medium framework have been performed. In the light of simulation results, the effects of carrier trapping and carrier transit on the device capacitances as a function of dimensions are analysed and compared. An equivalent small-signal circuit which accounts for the behaviour of these transistors in all regions of operation is proposed and a model for the most relevant elements of this circuit is presented. To validate our simulation results, scattering-parameters (S-parameters) measurements are performed for several structures such as multi-finger, serpentine and linear architectures and the most meaningful parameters will be given. Cut-off frequencies as high as 300 MHz and maximum oscillation frequencies of about 600 MHz have been extracted.
High Frequency Oscillatory Ventilation
AC Bryan
1996-01-01
Full Text Available High frequency oscillatory (HFO ventilation using low tidal volume and peak airway pressures is extremely efficient at eliminating carbon dioxide and raising pH in the newborn infant with acute respiratory failure. Improvement in oxygenation requires a strategy of sustained or repetitive inflations to 25 to 30 cm H2O in order to place the lung on the deflation limb of the pressure-volume curve. This strategy has also been shown to decrease the amount of secondary lung injury in animal models. Experience of the use of HFO ventilation as a rescue therapy as well as several published controlled trials have shown improved outcomes and a decrease in the use of extracorporeal membrane oxygenation when it has been used in newborns.
Modeling of low- and high-frequency noise by slow and fast fluctuators
Nesterov, Alexander I.; Berman, Gennady P.
2012-05-01
We study the dynamics of dephasing in a quantum two-level system by modeling both 1/f and high-frequency noise by random telegraph processes. Our approach is based on a so-called spin-fluctuator model in which a noisy environment is modeled by a large number of fluctuators. In the continuous limit we obtain an effective random process (ERP) that is described by a distribution function of the fluctuators. In a simplified model, we reduce the ERP to the two (slow and fast) ensembles of fluctuators. Using this model, we study decoherence in a superconducting flux qubit and we compare our theoretical results with the available experimental data. We demonstrate good agreement of our theoretical predictions with the experiments. Our approach can be applied to many quantum systems, such as biological complexes, semiconductors, superconducting, and spin qubits, where the effects of interaction with the environment are essential.
Rawid Banchuin
2014-01-01
Full Text Available In this research, the analysis of statistical variations in subthreshold MOSFET's high frequency characteristics defined in terms of gate capacitance and transition frequency, have been shown and the resulting comprehensive analytical models of such variations in terms of their variances have been proposed. Major imperfection in the physical level properties including random dopant fluctuation and effects of variations in MOSFET's manufacturing process, have been taken into account in the proposed analysis and modeling. The up to dated comprehensive analytical model of statistical variation in MOSFET's parameter has been used as the basis of analysis and modeling. The resulting models have been found to be both analytic and comprehensive as they are the precise mathematical expressions in terms of physical level variables of MOSFET. Furthermore, they have been verified at the nanometer level by using 65~nm level BSIM4 based benchmarks and have been found to be very accurate with smaller than 5 % average percentages of errors. Hence, the performed analysis gives the resulting models which have been found to be the potential mathematical tool for the statistical and variability aware analysis and design of subthreshold MOSFET based VHF circuits, systems and applications.
Verónica Adriana Galván Sánchez
2012-07-01
Full Text Available La función de un transformador es cambiar el nivel de tensión a través de un acoplamiento magnético. Debido a su construcción física, su representación como un circuito y su modelo matemático son muy complejos. El comportamiento electromagnético del transformador, al igual que todos los elementos de la red eléctrica de potencia, depende de la frecuencia involucrada. Por esta razón cuando se tienen fenómenos de alta frecuencia su modelo debe ser muy detallado para que reproduzca el comportamientodel estado transitorio. En este trabajo se analiza cómo se pasa de un modelo muy simple, a un modelo muy detallado para hacer simulación de eventos de alta frecuencia. Los eventos que se simulan son la operación de un interruptor por una falla en el sistema y el impacto de una descarga atmosférica sobre la línea de transmisión a una distancia de 5 km de una subestación de potencia. The transformer’s function is to change the voltage level through a magnetic coupling. Due to its physical construction, its representation as a circuit and its mathematical model are very complex. The electromagnetic behavior and all the elements in the power network depend on the involved frequency. So, for high frequency events, its model needs to be very detailed to reproduce the electromagnetic transient behavior. This work analyzes how to pass from a simple model to a very detailed model to simulated high frequency events. The simulated events are the switch operation due to a fault in the system and the impact of an atmospheric discharge (direct stroke in the transmission line, five km far away from the substation.
Data and modelling requirements for CO2 inversions using high-frequency data
Law, R.M.; Rayner, P.J.; Steele, L.P.; Enting, I.G.
2003-01-01
We explore the future possibilities for CO 2 source estimation from atmospheric concentration data by performing synthetic data experiments. Synthetic data are used to test seasonal CO 2 inversions using high-frequency data. Monthly CO 2 sources over the Australian region are calculated for inversions with data at 4-hourly frequency and averaged over 1 d, 2.5 d, 5 d, 12.17 d and 1 month. The inversion quality, as determined by bias and uncertainty, is degraded when averaging over longer periods. This shows the value of the strong but relatively short-lived signals present in high-frequency records that are removed in averaged and particularly filtered records. Sensitivity tests are performed in which the synthetic data are 'corrupted' to simulate systematic measurement errors such as intercalibration differences or to simulate transport modelling errors. The inversion is also used to estimate the effect of calibration offsets between sites. We find that at short data-averaging periods the inversion is reasonably robust to measurement-type errors. For transport-type errors, the best results are achieved for synoptic (2-5 d) timescales. Overall the tests indicate that improved source estimates should be possible by incorporating continuous measurements into CO 2 inversions
ALMA High Frequency Techniques
Meyer, J. D.; Mason, B.; Impellizzeri, V.; Kameno, S.; Fomalont, E.; Chibueze, J.; Takahashi, S.; Remijan, A.; Wilson, C.; ALMA Science Team
2015-12-01
The purpose of the ALMA High Frequency Campaign is to improve the quality and efficiency of science observing in Bands 8, 9, and 10 (385-950 GHz), the highest frequencies available to the ALMA project. To this end, we outline observing modes which we have demonstrated to improve high frequency calibration for the 12m array and the ACA, and we present the calibration of the total power antennas at these frequencies. Band-to-band (B2B) transfer and bandwidth switching (BWSW), techniques which improve the speed and accuracy of calibration at the highest frequencies, are most necessary in Bands 8, 9, and 10 due to the rarity of strong calibrators. These techniques successfully enable increased signal-to-noise on the calibrator sources (and better calibration solutions) by measuring the calibrators at lower frequencies (B2B) or in wider bandwidths (BWSW) compared to the science target. We have also demonstrated the stability of the bandpass shape to better than 2.4% for 1 hour, hidden behind random noise, in Band 9. Finally, total power observing using the dual sideband receivers in Bands 9 and 10 requires the separation of the two sidebands; this procedure has been demonstrated in Band 9 and is undergoing further testing in Band 10.
High frequency energy measurements
Stotlar, S.C.
1981-01-01
High-frequency (> 100 MHz) energy measurements present special problems to the experimenter. Environment or available electronics often limit the applicability of a given detector type. The physical properties of many detectors are frequency dependent and in some cases, the physical effect employed can be frequency dependent. State-of-the-art measurements generally involve a detection scheme in association with high-speed electronics and a method of data recording. Events can be single or repetitive shot requiring real time, sampling, or digitizing data recording. Potential modification of the pulse by the detector and the associated electronics should not be overlooked. This presentation will review typical applications, methods of choosing a detector, and high-speed detectors. Special considerations and limitations of some applications and devices will be described
Tamura, Tetsuro; Kawaguchi, Masaharu; Kawai, Hidenori; Tao, Tao
2017-11-01
The connection between a meso-scale model and a micro-scale large eddy simulation (LES) is significant to simulate the micro-scale meteorological problem such as strong convective events due to the typhoon or the tornado using LES. In these problems the mean velocity profiles and the mean wind directions change with time according to the movement of the typhoons or tornadoes. Although, a fine grid micro-scale LES could not be connected to a coarse grid meso-scale WRF directly. In LES when the grid is suddenly refined at the interface of nested grids which is normal to the mean advection the resolved shear stresses decrease due to the interpolation errors and the delay of the generation of smaller scale turbulence that can be resolved on the finer mesh. For the estimation of wind gust disaster the peak wind acting on buildings and structures has to be correctly predicted. In the case of meteorological model the velocity fluctuations have a tendency of diffusive variation without the high frequency component due to the numerically filtering effects. In order to predict the peak value of wind velocity with good accuracy, this paper proposes a LES-based method for generating the higher frequency components of velocity and temperature fields obtained by meteorological model.
Modelling stock order flows with non-homogeneous intensities from high-frequency data
Gorshenin, Andrey K.; Korolev, Victor Yu.; Zeifman, Alexander I.; Shorgin, Sergey Ya.; Chertok, Andrey V.; Evstafyev, Artem I.; Korchagin, Alexander Yu.
2013-10-01
A micro-scale model is proposed for the evolution of such information system as the limit order book in financial markets. Within this model, the flows of orders (claims) are described by doubly stochastic Poisson processes taking account of the stochastic character of intensities of buy and sell orders that determine the price discovery mechanism. The proposed multiplicative model of stochastic intensities makes it possible to analyze the characteristics of the order flows as well as the instantaneous proportion of the forces of buyers and sellers, that is, the imbalance process, without modelling the external information background. The proposed model gives the opportunity to link the micro-scale (high-frequency) dynamics of the limit order book with the macro-scale models of stock price processes of the form of subordinated Wiener processes by means of limit theorems of probability theory and hence, to use the normal variance-mean mixture models of the corresponding heavy-tailed distributions. The approach can be useful in different areas with similar properties (e.g., in plasma physics).
High frequency electromagnetic dosimetry
Sánchez-Hernández, David A
2009-01-01
Along with the growth of RF and microwave technology applications, there is a mounting concern about the possible adverse effects over human health from electromagnetic radiation. Addressing this issue and putting it into perspective, this groundbreaking resource provides critical details on the latest advances in high frequency electromagnetic dosimetry.
Analytical high frequency GaN HEMT model for noise simulations
Eshetu Muhea, Wondwosen; Mulugeta Yigletu, Fetene; Lazaro, Antonio; Iñiguez, Benjamin
2017-12-01
A compact high frequency model for AlGaN/GaN HEMT device valid for noise simulations is presented in this paper. The model is developed based on active transmission line approach and linear two port noise theory that makes it applicable for quasi static as well as non-quasi static device operation. The effects of channel length modulation and velocity saturation are discussed. Moreover, the effect of the gate leakage current on the noise performance of the device is investigated. It is shown that there is an apparent increase in noise generated in the device due to the gate current related shot noise. The common noise figures of merit for HFET are calculated and verified with experimental data.
Meisner, Aaron M.; Finkbeiner, Douglas P.
2015-01-01
We apply the Finkbeiner et al. two-component thermal dust emission model to the Planck High Frequency Instrument maps. This parameterization of the far-infrared dust spectrum as the sum of two modified blackbodies (MBBs) serves as an important alternative to the commonly adopted single-MBB dust emission model. Analyzing the joint Planck/DIRBE dust spectrum, we show that two-component models provide a better fit to the 100-3000 GHz emission than do single-MBB models, though by a lesser margin than found by Finkbeiner et al. based on FIRAS and DIRBE. We also derive full-sky 6.'1 resolution maps of dust optical depth and temperature by fitting the two-component model to Planck 217-857 GHz along with DIRBE/IRAS 100 μm data. Because our two-component model matches the dust spectrum near its peak, accounts for the spectrum's flattening at millimeter wavelengths, and specifies dust temperature at 6.'1 FWHM, our model provides reliable, high-resolution thermal dust emission foreground predictions from 100 to 3000 GHz. We find that, in diffuse sky regions, our two-component 100-217 GHz predictions are on average accurate to within 2.2%, while extrapolating the Planck Collaboration et al. single-MBB model systematically underpredicts emission by 18.8% at 100 GHz, 12.6% at 143 GHz, and 7.9% at 217 GHz. We calibrate our two-component optical depth to reddening, and compare with reddening estimates based on stellar spectra. We find the dominant systematic problems in our temperature/reddening maps to be zodiacal light on large angular scales and the cosmic infrared background anisotropy on small angular scales
Analysis of the high frequency longitudinal instability of bunched beams using a computer model
Messerschmid, E.; Month, M.
1976-01-01
The effects of high frequency longitudinal forces on bunched beams are investigated using a computer model. These forces are thought to arise from the transfer of energy between the beam and various structures in the vacuum chamber, this coupling being characterized by a longitudinal impedance function. The simulation is performed with a passive cavity-like element. It is found that the instability can be generated if three conditions are fulfilled: (1) the impedance must be sufficiently large, (2) the induced field must have a fast wake, and (3) the frequency of the induced field must be high enough. In particular, it is shown that the coasting beam threshold criterion for the longitudinal impedance accurately describes the onset of instability, if local values along the bunch of energy spread and current are used. It is also found that the very fast initial growth rate is in good agreement with linear theory and that the coasting beam overshoot expression may be used as a rough guide of the limiting growth for unstable bunches. Concerning the wake field, it is shown how the instability tends to disappear as the fields persist longer. It is furthermore demonstrated that as the wavelength of the unstable mode is increased, initially unstable conditions begin to weaken and vanish. This, it should be emphasized, is primarily a result of the strong correlation between the unstable mode frequency and the time rate of attenuation of the induced fields. ISR parameters are used throughout and a correspondence between the microwave instability observed in the ISR bunches and the simulated instability is suggested. (Auth.)
Verónica Adriana – Galván Sanchez
2012-07-01
Full Text Available La función de un transformador es cambiar el nivel de tensión a través de un acoplamiento magnético.Debido a su construcción física, su representación como un circuito y su modelo matemático son muycomplejos. El comportamiento electromagnético del transformador, al igual que todos los elementos de lared eléctrica de potencia, depende de la frecuencia involucrada. Por esta razón cuando se tienenfenómenos de alta frecuencia su modelo debe ser muy detallado para que reproduzca el comportamientodel estado transitorio. En este trabajo se analiza cómo se pasa de un modelo muy simple, a un modelo muydetallado para hacer simulación de eventos de alta frecuencia. Los eventos que se simulan son la operaciónde un interruptor por una falla en el sistema y el impacto de una descarga atmosférica sobre la línea detransmisión a una distancia de 5 km de una subestación de potencia.The transformer’s function is to change the voltage level through a magnetic coupling. Due to its physicalconstruction, its representation as a circuit and its mathematical model are very complex. Theelectromagnetic behavior and all the elements in the power network depend on the involved frequency. So,for high frequency events, its model needs to be very detailed to reproduce the electromagnetic transientbehavior. This work analyzes how to pass from a simple model to a very detailed model to simulated highfrequency events. The simulated events are the switch operation due to a fault in the system and the impactof an atmospheric discharge (direct stroke in the transmission line, five km far away from the substation.
Simo Janjanin
2016-01-01
Simulation model of Tesla coil has been successfully completed, and has been verified the procedure and functioning. The literature and documentation for the model were taken from the rich sources, especially the copies of Tesla patents. The oscillating system‟s electrical scheme consists of the voltage supply 220/50 Hz, Fe transformer, capacitor and belonging chosen electrical components, the air gap in the primary Tesla coil (air transformer) and spark gap in the exit of the coil. The inves...
A PK-PD model of ketamine-induced high-frequency oscillations
Flores, Francisco J.; Ching, ShiNung; Hartnack, Katharine; Fath, Amanda B.; Purdon, Patrick L.; Wilson, Matthew A.; Brown, Emery N.
2015-10-01
Objective. Ketamine is a widely used drug with clinical and research applications, and also known to be used as a recreational drug. Ketamine produces conspicuous changes in the electrocorticographic (ECoG) signals observed both in humans and rodents. In rodents, the intracranial ECoG displays a high-frequency oscillation (HFO) which power is modulated nonlinearly by ketamine dose. Despite the widespread use of ketamine there is no model description of the relationship between the pharmacokinetic-pharmacodynamics (PK-PDs) of ketamine and the observed HFO power. Approach. In the present study, we developed a PK-PD model based on estimated ketamine concentration, its known pharmacological actions, and observed ECoG effects. The main pharmacological action of ketamine is antagonism of the NMDA receptor (NMDAR), which in rodents is accompanied by an HFO observed in the ECoG. At high doses, however, ketamine also acts at non-NMDAR sites, produces loss of consciousness, and the transient disappearance of the HFO. We propose a two-compartment PK model that represents the concentration of ketamine, and a PD model based in opposing effects of the NMDAR and non-NMDAR actions on the HFO power. Main results. We recorded ECoG from the cortex of rats after two doses of ketamine, and extracted the HFO power from the ECoG spectrograms. We fit the PK-PD model to the time course of the HFO power, and showed that the model reproduces the dose-dependent profile of the HFO power. The model provides good fits even in the presence of high variability in HFO power across animals. As expected, the model does not provide good fits to the HFO power after dosing the pure NMDAR antagonist MK-801. Significance. Our study provides a simple model to relate the observed electrophysiological effects of ketamine to its actions at the molecular level at different concentrations. This will improve the study of ketamine and rodent models of schizophrenia to better understand the wide and divergent
Development of high frequency spice models for ferrite core inductors and transformers
Muyshondt, G. Patrick; Portnoy, William M.
In this work high frequency SPICE models were developed to simulate the hysteresis and saturation effects of toroidal shaped ferrite core inductors and transformers. The models include the nonlinear, multi-valued B-H characteristic of the core material, leakage flux, stray capacitances, and core losses. The saturation effects were modeled using two diode clamping arrangements in conjunction with nonlinear dependent sources. Two possible controlling schemes were developed for the saturation switch. One of the arrangements used the current flowing through a series RC branch to control the switch, while the other used a NAND gate. The NAND gate implementation of the switch proved to be simpler and the parameters associated with it were easier to determine from the measurements and the B-H characteristics of the material. Lumped parameters were used to simulate the parasitic effects. Techniques for measuring these effects are described. The models were verified using manganese-zinc ferrite-type toroidal cores and they have general applicability to all circuit analysis codes equivalent function blocks such as multipliers, adders, and logic components.
Allardet-Servent, Jérôme; Bregeon, Fabienne; Delpierre, Stéphane; Steinberg, Jean-Guillaume; Payan, Marie-José; Ravailhe, Sylvie; Papazian, Laurent
2008-01-01
To test the effects of high-frequency percussive ventilation (HFPV) compared with high-frequency oscillatory ventilation (HFOV) and low-volume conventional mechanical ventilation (LVCMV), on lung injury course in a gastric juice aspiration model. Prospective, randomized, controlled, in-vivo animal study. University animal research laboratory. Forty-three New Zealand rabbits. Lung injury was induced by intratracheal instillation of human gastric juice in order to achieve profound hypoxaemia (PaO2/FIO2ventilated for 4h after randomization in one of the following four groups: HFPV (median pressure 15cmH2O); LVCMV (VT 6mlkg(-1) and PEEP set to reach 15cmH2O plateau pressure); HFOV (mean pressure 15cmH2O); and a high-volume control group HVCMV (VT 12ml kg(-1) and ZEEP). Static respiratory compliance increased after the ventilation period in the HFPV, LVMCV and HFOV groups, in contrast with the HVCMV group. PaO2/FIO2 improved similarly in the HFPV, LVCMV and HFOV groups, and remained lower in the HVCMV group than in the three others. Lung oedema, myeloperoxidase and histological lung injury score were higher in the HVCMV group, but not different among all others. Arterial lactate markedly increased after 4h of ventilation in the HVCMV group, while lower but similar levels were observed in the three other groups. HFPV, like HFOV and protective CMV, improves respiratory mechanics and oxygenation, and attenuates lung damage. The HFPV provides attractive lung protection, but further studies should confirm these results before introducing HFPV into the clinical arena.
A Model of High-Frequency Self-Mixing in Double-Barrier Rectifier
Palma, Fabrizio; Rao, R.
2018-03-01
In this paper, a new model of the frequency dependence of the double-barrier THz rectifier is presented. The new structure is of interest because it can be realized by CMOS image sensor technology. Its application in a complex field such as that of THz receivers requires the availability of an analytical model, which is reliable and able to highlight the dependence on the parameters of the physical structure. The model is based on the hydrodynamic semiconductor equations, solved in the small signal approximation. The model depicts the mechanisms of the THz modulation of the charge in the depleted regions of the double-barrier device and explains the self-mixing process, the frequency dependence, and the detection capability of the structure. The model thus substantially improves the analytical models of the THz rectification available in literature, mainly based on lamped equivalent circuits.
High frequency asymptotic methods
Bouche, D.; Dessarce, R.; Gay, J.; Vermersch, S.
1991-01-01
The asymptotic methods allow us to compute the interaction of high frequency electromagnetic waves with structures. After an outline of their foundations with emphasis on the geometrical theory of diffraction, it is shown how to use these methods to evaluate the radar cross section (RCS) of complex tri-dimensional objects of great size compared to the wave-length. The different stages in simulating phenomena which contribute to the RCS are reviewed: physical theory of diffraction, multiple interactions computed by shooting rays, research for creeping rays. (author). 7 refs., 6 figs., 3 insets
Langevin modelling of high-frequency Hang-Seng index data
Tang, Lei-Han
2003-06-01
Accurate statistical characterization of financial time series, such as compound stock indices, foreign currency exchange rates, etc., is fundamental to investment risk management, pricing of derivative products and financial decision making. Traditionally, such data were analyzed and modeled from a purely statistics point of view, with little concern on the specifics of financial markets. Increasingly, however, attention has been paid to the underlying economic forces and the collective behavior of investors. Here we summarize a novel approach to the statistical modeling of a major stock index (the Hang Seng index). Based on mathematical results previously derived in the fluid turbulence literature, we show that a Langevin equation with a variable noise amplitude correctly reproduces the ubiquitous fat tails in the probability distribution of intra-day price moves. The form of the Langevin equation suggests that, despite the extremely complex nature of financial concerns and investment strategies at the individual's level, there exist simple universal rules governing the high-frequency price move in a stock market.
Williams, George J.; Kojima, Jun J.; Arrington, Lynn A.; Deans, Matthew C.; Reed, Brian D.; Kinzbach, McKenzie I.; McLean, Christopher H.
2015-01-01
The Green Propellant Infusion Mission (GPIM) will demonstrate the capability of a green propulsion system, specifically, one using the monopropellant, AF-M315E. One of the risks identified for GPIM is potential contamination of sensitive areas of the spacecraft from the effluents in the plumes of AF-M315E thrusters. Plume characterization of a laboratory-model 22 N thruster via optical diagnostics was conducted at NASA GRC in a space-simulated environment. A high-frequency pulsed laser was coupled with an electron-multiplied ICCD camera to perform Raman spectroscopy in the near-field, low-pressure plume. The Raman data yielded plume constituents and temperatures over a range of thruster chamber pressures and as a function of thruster (catalyst) operating time. Schlieren images of the near-field plume enabled calculation of plume velocities and revealed general plume structure of the otherwise invisible plume. The measured velocities are compared to those predicted by a two-dimensional, kinetic model. Trends in data and numerical results are presented from catalyst mid-life to end-of-life. The results of this investigation were coupled with the Raman and Schlieren data to provide an anchor for plume impingement analysis presented in a companion paper. The results of both analyses will be used to improve understanding of the nature of AF-M315E plumes and their impacts to GPIM and other future missions.
Haojie Chai
2018-06-01
Full Text Available In the process of applying high-frequency heating technology to wood drying, controlling the material temperature affects both drying speed and drying quality. Therefore, research on the heat transfer mechanism of high-frequency heating of wood is of great significance. To study the heat transfer mechanism of high-frequency heating, the finite element method was used to establish and solve the wood high-frequency heating model, and experimental verification was carried out. With a decrease in moisture content, the heating rate decreased, then increased, and then decreased again. There was no obvious linear relationship between the moisture content and heating rate; the simulation accuracy of the heating rate was higher in the early and later drying stages and slightly lower near the fiber saturation point. For the central section temperature distribution, the simulation and actual measurement results matched poorly in the early drying stage because the model did not fully consider the differences in the moisture content distribution of the actual test materials. In the later drying stage, the moisture content distribution of the test materials became uniform, which was consistent with the model assumptions. Considering the changes in heating rate and temperature distribution, the accuracy of the model is good under the fiber saturation point, and it can be used to predict the high-frequency heating process of wood.
Khojandi, Anahita; Shylo, Oleg; Mannini, Lucia; Kopell, Brian H; Ramdhani, Ritesh A
2017-07-01
High frequency stimulation (HFS) of the subthalamic nucleus (STN) is a well-established therapy for Parkinson's disease (PD), particularly the cardinal motor symptoms and levodopa induced motor complications. Recent studies have suggested the possible role of 60 Hz stimulation in STN-deep brain stimulation (DBS) for patients with gait disorder. The objective of this study was to develop a computational model, which stratifies patients a priori based on symptomatology into different frequency settings (i.e., high frequency or 60 Hz). We retrospectively analyzed preoperative MDS-Unified Parkinson's Disease Rating Scale III scores (32 indicators) collected from 20 PD patients implanted with STN-DBS at Mount Sinai Medical Center on either 60 Hz stimulation (ten patients) or HFS (130-185 Hz) (ten patients) for an average of 12 months. Predictive models using the Random Forest classification algorithm were built to associate patient/disease characteristics at surgery to the stimulation frequency. These models were evaluated objectively using leave-one-out cross-validation approach. The computational models produced, stratified patients into 60 Hz or HFS (130-185 Hz) with 95% accuracy. The best models relied on two or three predictors out of the 32 analyzed for classification. Across all predictors, gait and rest tremor of the right hand were consistently the most important. Computational models were developed using preoperative clinical indicators in PD patients treated with STN-DBS. These models were able to accurately stratify PD patients into 60 Hz stimulation or HFS (130-185 Hz) groups a priori, offering a unique potential to enhance the utilization of this therapy based on clinical subtypes. © 2017 International Neuromodulation Society.
High-Frequency Seafloor Acoustics
Jackson, Darrell R
2007-01-01
High-Frequency Seafloor Acoustics is the first book in a new series sponsored by the Office of Naval Research on the latest research in underwater acoustics. This exciting new title provides ready access to experimental data, theory, and models relevant to high-frequency seafloor acoustics and will be of interest to sonar engineers and researchers working in underwater acoustics. The physical characteristics of the seafloor affecting acoustic propagation and scattering are covered, including physical and geoacoustic properties and surface roughness. Current theories for acoustic propagation in sediments are presented along with corresponding models for reflection, scattering, and seafloor penetration. The main text is backed up by an extensive bibliography and technical appendices.
High frequency breakdown voltage
Chu, Thanh Duy.
1992-03-01
This report contains information about the effect of frequency on the breakdown voltage of an air gap at standard pressure and temperature, 76 mm Hg and O degrees C, respectively. The frequencies of interest are 47 MHz and 60 MHz. Additionally, the breakdown in vacuum is briefly considered. The breakdown mechanism is explained on the basis of collision and ionization. The presence of the positive ions produced by ionization enhances the field in the gap, and thus determines the breakdown. When a low-frequency voltage is applied across the gap, the breakdown mechanism is the same as that caused by the DC or static voltage. However, when the frequency exceeds the first critical value f c , the positive ions are trapped in the gap, increasing the field considerably. This makes the breakdown occur earlier; in other words, the breakdown voltage is lowered. As the frequency increases two decades or more, the second critical frequency, f ce , is reached. This time the electrons start being trapped in the gap. Those electrons that travel multiple times across the gap before reaching the positive electrode result in an enormous number of electrons and positive ions being present in the gap. The result is a further decrease of the breakdown voltage. However, increasing the frequency does not decrease the breakdown voltage correspondingly. In fact, the associated breakdown field intensity is almost constant (about 29 kV/cm).The reason is that the recombination rate increases and counterbalances the production rate, thus reducing the effect of the positive ions' concentration in the gap. The theory of collision and ionization does not apply to the breakdown in vacuum. It seems that the breakdown in vacuum is primarily determined by the irregularities on the surfaces of the electrodes. Therefore, the effect of frequency on the breakdown, if any, is of secondary importance
David, Hamilton P; Carey, Cayelan C.; Arvola, Lauri; Arzberger, Peter; Brewer, Carol A.; Cole, Jon J; Gaiser, Evelyn; Hanson, Paul C.; Ibelings, Bas W; Jennings, Eleanor; Kratz, Tim K; Lin, Fang-Pang; McBride, Christopher G.; de Motta Marques, David; Muraoka, Kohji; Nishri, Ami; Qin, Boqiang; Read, Jordan S.; Rose, Kevin C.; Ryder, Elizabeth; Weathers, Kathleen C.; Zhu, Guangwei; Trolle, Dennis; Brookes, Justin D
2014-01-01
A Global Lake Ecological Observatory Network (GLEON; www.gleon.org) has formed to provide a coordinated response to the need for scientific understanding of lake processes, utilising technological advances available from autonomous sensors. The organisation embraces a grassroots approach to engage researchers from varying disciplines, sites spanning geographic and ecological gradients, and novel sensor and cyberinfrastructure to synthesise high-frequency lake data at scales ranging from local to global. The high-frequency data provide a platform to rigorously validate process- based ecological models because model simulation time steps are better aligned with sensor measurements than with lower-frequency, manual samples. Two case studies from Trout Bog, Wisconsin, USA, and Lake Rotoehu, North Island, New Zealand, are presented to demonstrate that in the past, ecological model outputs (e.g., temperature, chlorophyll) have been relatively poorly validated based on a limited number of directly comparable measurements, both in time and space. The case studies demonstrate some of the difficulties of mapping sensor measurements directly to model state variable outputs as well as the opportunities to use deviations between sensor measurements and model simulations to better inform process understanding. Well-validated ecological models provide a mechanism to extrapolate high-frequency sensor data in space and time, thereby potentially creating a fully 3-dimensional simulation of key variables of interest.
Camp, D. W.
1977-01-01
The derivation of simulated Jimsphere wind profiles from low-frequency rawinsonde data and a generated set of white noise data are presented. A computer program is developed to model high-resolution wind profiles based on the statistical properties of data from the Kennedy Space Center, Florida. Comparison of the measured Jimsphere data, rawinsonde data, and the simulated profiles shows excellent agreement.
Barchanski, A; Gersem, H de; Gjonaj, E; Weiland, T
2005-01-01
We present a comparison of simulated low-frequency electromagnetic fields in the human body, calculated by means of the electro-quasistatic formulation. The geometrical data in these simulations were provided by an anatomically realistic, high-resolution human body model, while the dielectric properties of the various body tissues were modelled by the parametric Cole-Cole equation. The model was examined under two different excitation sources and various spatial resolutions in a frequency range from 10 Hz to 1 MHz. An analysis of the differences in the computed fields resulting from a neglect of the permittivity was carried out. On this basis, an estimation of the impact of the displacement current on the simulated low-frequency electromagnetic fields in the human body is obtained. (note)
Jonsson, Ulf; Lindahl, Olof; Andersson, Britt
2014-12-01
To gain an understanding of the high-frequency elastic properties of silicone rubber, a finite element model of a cylindrical piezoelectric element, in contact with a silicone rubber disk, was constructed. The frequency-dependent elastic modulus of the silicone rubber was modeled by a fourparameter fractional derivative viscoelastic model in the 100 to 250 kHz frequency range. The calculations were carried out in the range of the first radial resonance frequency of the sensor. At the resonance, the hyperelastic effect of the silicone rubber was modeled by a hyperelastic compensating function. The calculated response was matched to the measured response by using the transitional peaks in the impedance spectrum that originates from the switching of standing Lamb wave modes in the silicone rubber. To validate the results, the impedance responses of three 5-mm-thick silicone rubber disks, with different radial lengths, were measured. The calculated and measured transitional frequencies have been compared in detail. The comparison showed very good agreement, with average relative differences of 0.7%, 0.6%, and 0.7% for the silicone rubber samples with radial lengths of 38.0, 21.4, and 11.0 mm, respectively. The average complex elastic moduli of the samples were (0.97 + 0.009i) GPa at 100 kHz and (0.97 + 0.005i) GPa at 250 kHz.
Detailed High Frequency Models of Various Winding Types in Power Transformers
Pedersen, Kenneth; Lunow, Morten Erlandsson; Holbøll, Joachim
2005-01-01
Abstract--In this paper, techniques are described which demonstrate how a highly detailed internal transformer model can be obtained systematically with Matlab and how it can be prepared for subsequent transient analysis. The input of such a model will mainly be the description of the cross secti...... equivalent circuit. Finally a new circuit extraction technique is proposed for vector fitted impedance matrices for more efficient computation....
Smith, Andrew; LaVerde, Bruce; Teague, David; Gardner, Bryce; Cotoni, Vincent
2010-01-01
This presentation further develops the orthogrid vehicle panel work. Employed Hybrid Module capabilities to assess both low/mid frequency and high frequency models in the VA One simulation environment. The response estimates from three modeling approaches are compared to ground test measurements. Detailed Finite Element Model of the Test Article -Expect to capture both the global panel modes and the local pocket mode response, but at a considerable analysis expense (time & resources). A Composite Layered Construction equivalent global stiffness approximation using SEA -Expect to capture response of the global panel modes only. An SEA approximation using the Periodic Subsystem Formulation. A finite element model of a single periodic cell is used to derive the vibroacoustic properties of the entire periodic structure (modal density, radiation efficiency, etc. Expect to capture response at various locations on the panel (on the skin and on the ribs) with less analysis expense
Mario Cvetković
2017-01-01
Full Text Available The paper presents the numerical results for the induced electric field in the various models of the human eye and the head. The comparison between the extracted or the single organ models and the compound organ models placed inside realistic head models obtained from the magnetic resonance imaging scans is presented. The numerical results for several frequencies and polarizations of the incident electromagnetic (EM plane wave are obtained using the hybrid finite element method/boundary element method (FEM/BEM formulation and the surface integral equation (SIE based formulation featuring the use of method of moments, respectively. Although some previous analysis showed the similar distribution of the induced electric field along the pupillary axis obtained in both eye models, this study showed this not to be the case in general. The analysis showed that the compound eye model is much more suitable when taking into account the polarization of the incident EM wave. The numerical results for the brain models showed much better agreement in the maximum values and distributions of the induced surface field between detailed models, while homogeneous brain model showed better agreement with the compound model in the distribution along selected sagittal axis points. The analysis could provide some helpful insights when carrying out the dosimetric analysis of the human eye and the head/brain exposed to high frequency EM radiation.
Khodabandeloo, Babak; Landrø, Martin
2017-04-01
Sound is deployed by marine mammals for variety of vital purposes such as finding food, communication, echolocation, etc. On the other hand human activities generate underwater noise. One major type of acoustic source is marine seismic acquisition which is carried out to image layers beneath the seabed exploiting reflected acoustic and elastic waves. Air-gun arrays are the most common and efficient marine seismic sources. Field measurements using broad band hydrophones have revealed that acoustic energies emitted by air-gun arrays contains frequencies from a few Hz up to tens of kHz. Frequencies below 200 Hz benefit seismic imaging and the rest is normally considered as wasted energy. On the other hand, the high frequency range (above 200 Hz) overlaps with hearing curves of many marine mammals and especially toothed whales and may have an impact on their behavior. A phenomenon called ghost cavitation is recently recognized to be responsible for a major part of these high frequencies (> 5 kHz). Acoustic pressure waves of individual air guns reflected from sea surface can cause the hydrostatic pressure to drop towards zero close to the source array. In these regions there is a high probability for water vapor cavity growth and subsequent collapse. We have simulated ghost cavitation cloud using numerical modelling and the results are validated by comparing with field measurements. The model is used to compare the amount of high frequency noise due to ghost cavitation for two different air gun arrays. Both of the arrays have three subarrays but the array distance for the one with 2730 in3 air volume is 6 meters and for the slightly bigger array (3250 in3 in air volume) the subarrays are separated by 8 meters. Simulation results indicate that the second array, despite larger subarray distance, generates stronger ghost cavitation signal.
Time versus frequency domain measurements: layered model ...
... their high frequency content while among TEM data sets with low frequency content, the averaging times for the FEM ellipticity were shorter than the TEM quality. Keywords: ellipticity, frequency domain, frequency electromagnetic method, model parameter, orientation error, time domain, transient electromagnetic method
Binaural beats at high frequencies.
McFadden, D; Pasanen, E G
1975-10-24
Binaural beats have long been believed to be audible only at low frequencies, but an interaction reminiscent of a binaural beat can sometimes be heard when different two-tone complexes of high frequency are presented to the two ears. The primary requirement is that the frequency separation in the complex at one ear be slightly different from that in the other--that is, that there be a small interaural difference in the envelope periodicities. This finding is in accord with other recent demonstrations that the auditory system is not deaf to interaural time differences at high frequencies.
Development and validation of a low-frequency modeling code for high-moment transmitter rod antennas
Jordan, Jared Williams; Sternberg, Ben K.; Dvorak, Steven L.
2009-12-01
The goal of this research is to develop and validate a low-frequency modeling code for high-moment transmitter rod antennas to aid in the design of future low-frequency TX antennas with high magnetic moments. To accomplish this goal, a quasi-static modeling algorithm was developed to simulate finite-length, permeable-core, rod antennas. This quasi-static analysis is applicable for low frequencies where eddy currents are negligible, and it can handle solid or hollow cores with winding insulation thickness between the antenna's windings and its core. The theory was programmed in Matlab, and the modeling code has the ability to predict the TX antenna's gain, maximum magnetic moment, saturation current, series inductance, and core series loss resistance, provided the user enters the corresponding complex permeability for the desired core magnetic flux density. In order to utilize the linear modeling code to model the effects of nonlinear core materials, it is necessary to use the correct complex permeability for a specific core magnetic flux density. In order to test the modeling code, we demonstrated that it can accurately predict changes in the electrical parameters associated with variations in the rod length and the core thickness for antennas made out of low carbon steel wire. These tests demonstrate that the modeling code was successful in predicting the changes in the rod antenna characteristics under high-current nonlinear conditions due to changes in the physical dimensions of the rod provided that the flux density in the core was held constant in order to keep the complex permeability from changing.
High frequency ignition arrangement
Canup, R E
1977-03-03
The invention concerns an HF ignition arrangement for combustion engines with a transistor oscillator. As this oscillator requires a current of 10A, with peak currents up to about 50A, it is not sensible to take this current through the remote ignition switch for switching it on and off. According to the invention the HF high voltage transformer of the ignition is provided with a control winding, which only requires a few milliamps DC and which can therefore be switched via the ignition switch. If the ignition switch is in the 'running' position, then a premagnetising DC current flows through the control winding, which suppresses the oscillation of the oscillator which has current flowing through it, until this current is interrupted by the interruptor contacts controlled by the combustion engine, so that the oscillations of the oscillator start immediately; the oscillator only continues to oscillate during the period during which the interruptor contacts controlled by the machine are open and interrupt the premagnetisation current. The control winding is short circuited in the 'off' position of the ignition switch.
Modeling of large aperture third harmonic frequency conversion of high power Nd:glass laser systems
Henesian, M.A.; Wegner, P.J.; Speck, D.R.; Bibeau, C.; Ehrlich, R.B.; Laumann, C.W.; Lawson, J.K.; Weiland, T.L.
1991-01-01
To provide high-energy, high-power beams at short wavelengths for inertial-confinement-fusion experiments, we routinely convert the 1.053-μm output of the Nova, Nd:phosphate-glass, laser system to its third-harmonic wavelength. We describe performance and conversion efficiency modeling of the 3 x 3 arrays potassium-dihydrogen-phosphate crystal plates used for type II/type II phase-matched harmonic conversion of Nova 0.74-m diameter beams, and an alternate type I/type II phase-matching configuration that improves the third-harmonic conversion efficiency. These arrays provide energy conversion of up to 65% and intensity conversion to 70%. 19 refs., 11 figs
Luo, Y.; Xia, J.; Xu, Y.; Zeng, C.; Liu, J.
2010-01-01
Love-wave propagation has been a topic of interest to crustal, earthquake, and engineering seismologists for many years because it is independent of Poisson's ratio and more sensitive to shear (S)-wave velocity changes and layer thickness changes than are Rayleigh waves. It is well known that Love-wave generation requires the existence of a low S-wave velocity layer in a multilayered earth model. In order to study numerically the propagation of Love waves in a layered earth model and dispersion characteristics for near-surface applications, we simulate high-frequency (>5 Hz) Love waves by the staggered-grid finite-difference (FD) method. The air-earth boundary (the shear stress above the free surface) is treated using the stress-imaging technique. We use a two-layer model to demonstrate the accuracy of the staggered-grid modeling scheme. We also simulate four-layer models including a low-velocity layer (LVL) or a high-velocity layer (HVL) to analyze dispersive energy characteristics for near-surface applications. Results demonstrate that: (1) the staggered-grid FD code and stress-imaging technique are suitable for treating the free-surface boundary conditions for Love-wave modeling, (2) Love-wave inversion should be treated with extra care when a LVL exists because of a lack of LVL information in dispersions aggravating uncertainties in the inversion procedure, and (3) energy of high modes in a low-frequency range is very weak, so that it is difficult to estimate the cutoff frequency accurately, and "mode-crossing" occurs between the second higher and third higher modes when a HVL exists. ?? 2010 Birkh??user / Springer Basel AG.
Mork, B; Nelson, R; Kirkendall, B; Stenvig, N
2009-11-30
Application of BPL technologies to existing overhead high-voltage power lines would benefit greatly from improved simulation tools capable of predicting performance - such as the electromagnetic fields radiated from such lines. Existing EMTP-based frequency-dependent line models are attractive since their parameters are derived from physical design dimensions which are easily obtained. However, to calculate the radiated electromagnetic fields, detailed current distributions need to be determined. This paper presents a method of using EMTP line models to determine the current distribution on the lines, as well as a technique for using these current distributions to determine the radiated electromagnetic fields.
Time-Frequency Analysis Using Warped-Based High-Order Phase Modeling
Ioana Cornel
2005-01-01
Full Text Available The high-order ambiguity function (HAF was introduced for the estimation of polynomial-phase signals (PPS embedded in noise. Since the HAF is a nonlinear operator, it suffers from noise-masking effects and from the appearance of undesired cross-terms when multicomponents PPS are analyzed. In order to improve the performances of the HAF, the multi-lag HAF concept was proposed. Based on this approach, several advanced methods (e.g., product high-order ambiguity function (PHAF have been recently proposed. Nevertheless, performances of these new methods are affected by the error propagation effect which drastically limits the order of the polynomial approximation. This phenomenon acts especially when a high-order polynomial modeling is needed: representation of the digital modulation signals or the acoustic transient signals. This effect is caused by the technique used for polynomial order reduction, common for existing approaches: signal multiplication with the complex conjugated exponentials formed with the estimated coefficients. In this paper, we introduce an alternative method to reduce the polynomial order, based on the successive unitary signal transformation, according to each polynomial order. We will prove that this method reduces considerably the effect of error propagation. Namely, with this order reduction method, the estimation error at a given order will depend only on the performances of the estimation method.
Geographies of High Frequency Trading
Grindsted, Thomas Skou
2016-01-01
This paper investigates the geographies of high frequency trading. Today shares shift hands within micro seconds, giving rise to a form of financial geographies termed algorithmic capitalism. This notion refers to the different spatio-temporalities produced by high frequency trading, under...... the valuation of time. As high frequency trading accelerates financial markets, the paper examines the spatio-temporalities of automated trading by the ways in which the speed of knowledge exploitation in financial markets is not only of interest, but also the expansion between different temporalities....... The paper demonstrates how the intensification of time-space compression produces radical new dynamics in the financial market and develops information rent in HFT as convertible to a time rent and a spatio-temporal rent. The final section discusses whether high frequency trading only responds to crises...
Thongchart Kerdphol
2017-05-01
Full Text Available Renewable energy sources (RESs, such as wind and solar generations, equip inverters to connect to the microgrids. These inverters do not have any rotating mass, thus lowering the overall system inertia. This low system inertia issue could affect the microgrid stability and resiliency in the situation of uncertainties. Today’s microgrids will become unstable if the capacity of RESs become larger and larger, leading to the weakening of microgrid stability and resilience. This paper addresses a new concept of a microgrid control incorporating a virtual inertia system based on the model predictive control (MPC to emulate virtual inertia into the microgrid control loop, thus stabilizing microgrid frequency during high penetration of RESs. The additional controller of virtual inertia is applied to the microgrid, employing MPC with virtual inertia response. System modeling and simulations are carried out using MATLAB/Simulink® software. The simulation results confirm the superior robustness and frequency stabilization effect of the proposed MPC-based virtual inertia control in comparison to the fuzzy logic system and conventional virtual inertia control in a system with high integration of RESs. The proposed MPC-based virtual inertia control is able to improve the robustness and frequency stabilization of the microgrid effectively.
Guangyi Zhang
2016-09-01
Full Text Available In this paper, a utility piezoelectric energy harvester with low frequency and high-output voltage is presented. Firstly, the harvester’s three theoretical models are presented, namely the static model, the quasi static model and the dynamic vibration model. By analyzing the influence of the mass ratio of the mass block to the beam on output characteristics of the harvester, we compare the quasi static model and the dynamic vibration model and then define their applicable ranges. Secondly, simulation and experiments are done to verify the models, using the harvester with PZT-5H piezoelectric material, which are proved to be consistent with each other. The experimental results show that the output open-circuit voltage and the output power can reach up to 86.36V and 27.5mW respectively. The experiments are conducted when this harvester system is excited by the first modal frequency (58.90Hz with the acceleration 10m/s2. In this low frequency vibration case, it is easy to capture the energy in the daily environment. In addition, LTC 3588-1 chip (Linear Technology Corporation is used as the medium energy circuit to transfer charges from the PZT-5H electrode to the 0.22F 5V super capacitor and ML621 rechargeable button battery. For this super-capacitor, it takes about 100min for the capacitor voltage to rise from 0V to 3.6V. For this button battery, it takes about 200min to increase the battery voltage from 2.5V to 3.48V.
Frequency control modelling - basics
Hansen, Anca Daniela; Sørensen, Poul Ejnar; Zeni, Lorenzo
2016-01-01
The purpose of this report is to provide an introduction on how the system balance in an island system can be maintained by controlling the frequency. The power balance differential equation, which is fundamental in understanding the effect on the system frequency of the unbalance between...
Omi, Takahiro; Hirata, Yoshito; Aihara, Kazuyuki
2017-07-01
A Hawkes process model with a time-varying background rate is developed for analyzing the high-frequency financial data. In our model, the logarithm of the background rate is modeled by a linear model with a relatively large number of variable-width basis functions, and the parameters are estimated by a Bayesian method. Our model can capture not only the slow time variation, such as in the intraday seasonality, but also the rapid one, which follows a macroeconomic news announcement. By analyzing the tick data of the Nikkei 225 mini, we find that (i) our model is better fitted to the data than the Hawkes models with a constant background rate or a slowly varying background rate, which have been commonly used in the field of quantitative finance; (ii) the improvement in the goodness-of-fit to the data by our model is significant especially for sessions where considerable fluctuation of the background rate is present; and (iii) our model is statistically consistent with the data. The branching ratio, which quantifies the level of the endogeneity of markets, estimated by our model is 0.41, suggesting the relative importance of exogenous factors in the market dynamics. We also demonstrate that it is critically important to appropriately model the time-dependent background rate for the branching ratio estimation.
Omi, Takahiro; Hirata, Yoshito; Aihara, Kazuyuki
2017-07-01
A Hawkes process model with a time-varying background rate is developed for analyzing the high-frequency financial data. In our model, the logarithm of the background rate is modeled by a linear model with a relatively large number of variable-width basis functions, and the parameters are estimated by a Bayesian method. Our model can capture not only the slow time variation, such as in the intraday seasonality, but also the rapid one, which follows a macroeconomic news announcement. By analyzing the tick data of the Nikkei 225 mini, we find that (i) our model is better fitted to the data than the Hawkes models with a constant background rate or a slowly varying background rate, which have been commonly used in the field of quantitative finance; (ii) the improvement in the goodness-of-fit to the data by our model is significant especially for sessions where considerable fluctuation of the background rate is present; and (iii) our model is statistically consistent with the data. The branching ratio, which quantifies the level of the endogeneity of markets, estimated by our model is 0.41, suggesting the relative importance of exogenous factors in the market dynamics. We also demonstrate that it is critically important to appropriately model the time-dependent background rate for the branching ratio estimation.
Gang, Tingting; Hu, Manli; Rong, Qiangzhou; Qiao, Xueguang; Liang, Lei; Liu, Nan; Tong, Rongxin; Liu, Xiaobo; Bian, Ce
2016-12-14
A micro-fiber-optic Fabry-Perot interferometer (FPI) is proposed and demonstrated experimentally for ultrasonic imaging of seismic physical models. The device consists of a micro-bubble followed by the end of a single-mode fiber (SMF). The micro-structure is formed by the discharging operation on a short segment of hollow-core fiber (HCF) that is spliced to the SMF. This micro FPI is sensitive to ultrasonic waves (UWs), especially to the high-frequency (up to 10 MHz) UW, thanks to its ultra-thin cavity wall and micro-diameter. A side-band filter technology is employed for the UW interrogation, and then the high signal-to-noise ratio (SNR) UW signal is achieved. Eventually the sensor is used for lateral imaging of the physical model by scanning UW detection and two-dimensional signal reconstruction.
Yu Qingjuan; Lu Youjun; Mohayaee, Roya; Colin, Jacques
2011-01-01
Dual active galactic nuclei (AGNs) are natural byproducts of hierarchical mergers of galaxies in the ΛCDM cosmogony. Recent observations have shown that only a small fraction (∼0.1%-2.5%) of AGNs at redshift z ∼< 0.3 are dual with kpc-scale separations, which is rather low compared to the high merger rate of galaxies. Here we construct a phenomenological model to estimate the number density of dual AGNs and its evolution according to the observationally estimated major merger rates of galaxies and various scaling relations on the properties of galaxies and their central massive black holes. We show that our model reproduces the observed frequency and separation distribution of dual AGNs provided that significant nuclear activities are triggered only in gas-rich progenitor galaxies with central massive black holes and only when the nuclei of these galaxies are roughly within the half-light radii of their companion galaxies. Under these constraints, the observed low dual AGN frequency is consistent with the relatively high merger rate of galaxies and supports the hypothesis that major mergers lead to AGN/QSO activities. We also predict that the number of kpc-scale dual AGNs decreases with increasing redshift and only about 0.02%-0.06% of AGNs are dual AGNs with double-peaked narrow line features at redshifts of z ∼ 0.5-1.2. Future observations of high-redshift dual AGNs would provide a solid test for this prediction.
Sun Ya-Bin; Li Xiao-Jin; Zhang Jin-Zhong; Shi Yan-Ling
2017-01-01
In this paper, we present an improved high-frequency equivalent circuit for SiGe heterojunction bipolar transistors (HBTs) with a CBE layout, where we consider the distributed effects along the base region. The actual device structure is divided into three parts: a link base region under a spacer oxide, an intrinsic transistor region under the emitter window, and an extrinsic base region. Each region is considered as a two-port network, and is composed of a distributed resistance and capacitance. We solve the admittance parameters by solving the transmission-line equation. Then, we obtain the small-signal equivalent circuit depending on the reasonable approximations. Unlike previous compact models, in our proposed model, we introduce an additional internal base node, and the intrinsic base resistance is shifted into this internal base node, which can theoretically explain the anomalous change in the intrinsic bias-dependent collector resistance in the conventional compact model. (paper)
Rayson, Matthew D.; Ivey, Gregory N.; Jones, Nicole L.; Fringer, Oliver B.
2018-02-01
We apply the unstructured grid hydrodynamic model SUNTANS to investigate the internal wave dynamics around Scott Reef, Western Australia, an isolated coral reef atoll located on the edge of the continental shelf in water depths of 500,m and more. The atoll is subject to strong semi-diurnal tidal forcing and consists of two relatively shallow lagoons separated by a 500 m deep, 2 km wide and 15 km long channel. We focus on the dynamics in this channel as the internal tide-driven flow and resulting mixing is thought to be a key mechanism controlling heat and nutrient fluxes into the reef lagoons. We use an unstructured grid to discretise the domain and capture both the complex topography and the range of internal wave length scales in the channel flow. The model internal wave field shows super-tidal frequency lee waves generated by the combination of the steep channel topography and strong tidal flow. We evaluate the model performance using observations of velocity and temperature from two through water-column moorings in the channel separating the two reefs. Three different global ocean state estimate datasets (global HYCOM, CSIRO Bluelink, CSIRO climatology atlas) were used to provide the model initial and boundary conditions, and the model outputs from each were evaluated against the field observations. The scenario incorporating the CSIRO Bluelink data performed best in terms of through-water column Murphy skill scores of water temperature and eastward velocity variability in the channel. The model captures the observed vertical structure of the tidal (M2) and super-tidal (M4) frequency temperature and velocity oscillations. The model also predicts the direction and magnitude of the M2 internal tide energy flux. An energy analysis reveals a net convergence of the M2 energy flux and a divergence of the M4 energy flux in the channel, indicating the channel is a region of either energy transfer to higher frequencies or energy loss to dissipation. This conclusion is
Shiba, Naoki; Nagano, Osamu; Hirayama, Takahiro; Ichiba, Shingo; Ujike, Yoshihito
2012-01-01
In adult high-frequency oscillatory ventilation (HFOV) with an R100 artificial ventilator, exhaled gas from patient's lung may warm the temperature probe and thereby disturb the humidification of base flow (BF) gas. We measured the humidity of BF gas during HFOV with frequencies of 6, 8 and 10 Hz, maximum stroke volumes (SV) of 285, 205, and 160 ml at the respective frequencies, and, BFs of 20, 30, 40 l/min using an original lung model. The R100 device was equipped with a heated humidifier, Hummax Ⅱ, consisting of a porous hollow fiber in circuit. A 50-cm length of circuit was added between temperature probe (located at 50 cm proximal from Y-piece) and the hollow fiber. The lung model was made of a plastic container and a circuit equipped with another Hummax Ⅱ. The lung model temperature was controlled at 37℃. The Hummax Ⅱ of the R100 was inactivated in study-1 and was set at 35℃ or 37℃ in study-2. The humidity was measured at the distal end of the added circuit in study-1 and at the proximal end in study-2. In study-1, humidity was detected at 6 Hz (SV 285 ml) and BF 20 l/min, indicating the direct reach of the exhaled gas from the lung model to the temperature probe. In study-2 the absolute humidity of the BF gas decreased by increasing SV and by increasing BF and it was low with setting of 35℃. In this study setting, increasing the SV induced significant reduction of humidification of the BF gas during HFOV with R100.
Modeling the coupled return-spread high frequency dynamics of large tick assets
Curato, Gianbiagio; Lillo, Fabrizio
2015-01-01
Large tick assets, i.e. assets where one tick movement is a significant fraction of the price and bid-ask spread is almost always equal to one tick, display a dynamics in which price changes and spread are strongly coupled. We present an approach based on the hidden Markov model, also known in econometrics as the Markov switching model, for the dynamics of price changes, where the latent Markov process is described by the transitions between spreads. We then use a finite Markov mixture of logit regressions on past squared price changes to describe temporal dependencies in the dynamics of price changes. The model can thus be seen as a double chain Markov model. We show that the model describes the shape of the price change distribution at different time scales, volatility clustering, and the anomalous decrease of kurtosis. We calibrate our models based on Nasdaq stocks and we show that this model reproduces remarkably well the statistical properties of real data.
High-frequency Trader Subjectivity
Borch, Christian; Lange, Ann-Christina
2017-01-01
In this article, we examine the recent shift in financial markets toward high-frequency trading (HFT). This turn is being legitimized with reference to how algorithms are allegedly more rational and efficient than human traders, and less prone to emotionally motivated decisions. We argue......-techniques of the ideal high-frequency trader. We demonstrate that these traders face the challenge of avoiding emotional interference in their algorithms and that they deploy a set of disciplinary self-techniques to curb the importance of emotional attachment....
Low frequency phase signal measurement with high frequency squeezing
Zhai, Zehui; Gao, Jiangrui
2011-01-01
We calculate the utility of high-frequency squeezed-state enhanced two-frequency interferometry for low-frequency phase measurement. To use the high-frequency sidebands of the squeezed light, a two-frequency intense laser is used in the interferometry instead of a single-frequency laser as usual. We find that the readout signal can be contaminated by the high-frequency phase vibration, but this is easy to check and avoid. A proof-of-principle experiment is in the reach of modern quantum optic...
Hydrologic Modeling and Flood Frequency Analysis for Ordinary High Water Mark Delineation
2016-02-01
variable ); X, Y, and Z are watershed or climatic characteristics used as independent varia - bles; and a, b, c, and d are regression coefficients. The number...use to characterize the variability of streamflow, and recur- rence intervals provide context for understanding the OHWM. This docu- ment tests...1.01-year to 32-year recurrence-interval floods. The variability in bankfull discharge recurrence intervals highlights the highly variable
Species-Independent Modeling of High-Frequency Ultrasound Backscatter in Hyaline Cartilage.
Männicke, Nils; Schöne, Martin; Liukkonen, Jukka; Fachet, Dominik; Inkinen, Satu; Malo, Markus K; Oelze, Michael L; Töyräs, Juha; Jurvelin, Jukka S; Raum, Kay
2016-06-01
Apparent integrated backscatter (AIB) is a common ultrasound parameter used to assess cartilage matrix degeneration. However, the specific contributions of chondrocytes, proteoglycan and collagen to AIB remain unknown. To reveal these relationships, this work examined biopsies and cross sections of human, ovine and bovine cartilage with 40-MHz ultrasound biomicroscopy. Site-matched estimates of collagen concentration, proteoglycan concentration, collagen orientation and cell number density were employed in quasi-least-squares linear regression analyses to model AIB. A positive correlation (R(2) = 0.51, p 70°) to the sound beam direction. These findings indicate causal relationships between AIB and cartilage structural parameters and could aid in more sophisticated future interpretations of ultrasound backscatter. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
High-frequency electroacupuncture versus carprofen in an incisional pain model in rats
Teixeira, F.M.; Castro, L.L.; Ferreira, R.T.; Pires, P.A.; Vanderlinde, F.A.; Medeiros, M.A. [Departamento de Ciências Fisiológicas, Universidade Federal Rural do Rio de Janeiro, Rio de Janeiro, RJ (Brazil)
2012-08-24
The objective of the present study was to compare the effect of electroacupuncture (EA) and carprofen (CP) on postoperative incisional pain using the plantar incision (PI) model in rats. A 1-cm longitudinal incision was made through skin, fascia and muscles of a hind paw of male Wistar rats and the development of mechanical and thermal hypersensitivity was determined over 4 days using the von Frey and Hargreaves methods, respectively. Based on the experimental treatments received on the third postoperative day, the animals were divided into the following groups: PI+CP (CP, 2 mg/kg, po); PI+EAST36 (100-Hz EA applied bilaterally at the Zusanli point (ST36)); PI+EANP (EA applied to a non-acupoint region); PI+IMMO (immobilization only); PI (vehicle). In the von Frey test, the PI+EAST36 group had higher withdrawal force thresholds in response to mechanical stimuli than the PI, PI+IMMO and PI+EANP groups at several times studied. Furthermore, the PI+EAST36 group showed paw withdrawal thresholds in response to mechanical stimuli that were similar to those of the PI+CP group. In the Hargreaves test, all groups had latencies higher than those observed with PI. The PI+EAST36 group was similar to the PI+IMMO, PI+EANP and PI+CP groups. We conclude that 100-Hz EA at the ST36 point, but not at non-acupoints, can reduce mechanical nociception in the rat model of incisional pain, and its effectiveness is comparable to that of carprofen.
High-frequency electroacupuncture versus carprofen in an incisional pain model in rats
F.M. Teixeira
2012-12-01
Full Text Available The objective of the present study was to compare the effect of electroacupuncture (EA and carprofen (CP on postoperative incisional pain using the plantar incision (PI model in rats. A 1-cm longitudinal incision was made through skin, fascia and muscles of a hind paw of male Wistar rats and the development of mechanical and thermal hypersensitivity was determined over 4 days using the von Frey and Hargreaves methods, respectively. Based on the experimental treatments received on the third postoperative day, the animals were divided into the following groups: PI+CP (CP, 2 mg/kg, po; PI+EAST36 (100-Hz EA applied bilaterally at the Zusanli point (ST36; PI+EANP (EA applied to a non-acupoint region; PI+IMMO (immobilization only; PI (vehicle. In the von Frey test, the PI+EAST36 group had higher withdrawal force thresholds in response to mechanical stimuli than the PI, PI+IMMO and PI+EANP groups at several times studied. Furthermore, the PI+EAST36 group showed paw withdrawal thresholds in response to mechanical stimuli that were similar to those of the PI+CP group. In the Hargreaves test, all groups had latencies higher than those observed with PI. The PI+EAST36 group was similar to the PI+IMMO, PI+EANP and PI+CP groups. We conclude that 100-Hz EA at the ST36 point, but not at non-acupoints, can reduce mechanical nociception in the rat model of incisional pain, and its effectiveness is comparable to that of carprofen.
High-frequency electroacupuncture versus carprofen in an incisional pain model in rats
Teixeira, F.M.; Castro, L.L.; Ferreira, R.T.; Pires, P.A.; Vanderlinde, F.A.; Medeiros, M.A.
2012-01-01
The objective of the present study was to compare the effect of electroacupuncture (EA) and carprofen (CP) on postoperative incisional pain using the plantar incision (PI) model in rats. A 1-cm longitudinal incision was made through skin, fascia and muscles of a hind paw of male Wistar rats and the development of mechanical and thermal hypersensitivity was determined over 4 days using the von Frey and Hargreaves methods, respectively. Based on the experimental treatments received on the third postoperative day, the animals were divided into the following groups: PI+CP (CP, 2 mg/kg, po); PI+EAST36 (100-Hz EA applied bilaterally at the Zusanli point (ST36)); PI+EANP (EA applied to a non-acupoint region); PI+IMMO (immobilization only); PI (vehicle). In the von Frey test, the PI+EAST36 group had higher withdrawal force thresholds in response to mechanical stimuli than the PI, PI+IMMO and PI+EANP groups at several times studied. Furthermore, the PI+EAST36 group showed paw withdrawal thresholds in response to mechanical stimuli that were similar to those of the PI+CP group. In the Hargreaves test, all groups had latencies higher than those observed with PI. The PI+EAST36 group was similar to the PI+IMMO, PI+EANP and PI+CP groups. We conclude that 100-Hz EA at the ST36 point, but not at non-acupoints, can reduce mechanical nociception in the rat model of incisional pain, and its effectiveness is comparable to that of carprofen
High-frequency electroacupuncture versus carprofen in an incisional pain model in rats.
Teixeira, F M; Castro, L L; Ferreira, R T; Pires, P A; Vanderlinde, F A; Medeiros, M A
2012-12-01
The objective of the present study was to compare the effect of electroacupuncture (EA) and carprofen (CP) on postoperative incisional pain using the plantar incision (PI) model in rats. A 1-cm longitudinal incision was made through skin, fascia and muscles of a hind paw of male Wistar rats and the development of mechanical and thermal hypersensitivity was determined over 4 days using the von Frey and Hargreaves methods, respectively. Based on the experimental treatments received on the third postoperative day, the animals were divided into the following groups: PI+CP (CP, 2 mg/kg, po); PI+EAST36 (100-Hz EA applied bilaterally at the Zusanli point (ST36)); PI+EANP (EA applied to a non-acupoint region); PI+IMMO (immobilization only); PI (vehicle). In the von Frey test, the PI+EAST36 group had higher withdrawal force thresholds in response to mechanical stimuli than the PI, PI+IMMO and PI+EANP groups at several times studied. Furthermore, the PI+EAST36 group showed paw withdrawal thresholds in response to mechanical stimuli that were similar to those of the PI+CP group. In the Hargreaves test, all groups had latencies higher than those observed with PI. The PI+EAST36 group was similar to the PI+IMMO, PI+EANP and PI+CP groups. We conclude that 100-Hz EA at the ST36 point, but not at non-acupoints, can reduce mechanical nociception in the rat model of incisional pain, and its effectiveness is comparable to that of carprofen.
High-frequency, high-intensity photoionization
Reiss, H. R.
1996-02-01
Two analytical methods for computing ionization by high-frequency fields are compared. Predicted ionization rates compare well, but energy predictions for the onset of ionization differ radically. The difference is shown to arise from the use of a transformation in one of the methods that alters the zero from which energy is measured. This alteration leads to an apparent energy threshold for ionization that can, especially in the stabilization regime, differ strongly from the laboratory measurement. It is concluded that channel closings in intense-field ionization can occur at high as well as low frequencies. It is also found that the stabilization phenomenon at high frequencies, very prominent for hydrogen, is absent in a short-range potential.
Joshi, D. R.; Groves, K. M.
2015-12-01
The Air Force Research Laboratory (AFRL) launched two sounding rockets in the Kwajalein Atoll, Marshall Islands, in May 2013 known as the Metal Oxide Space Cloud (MOSC) experiment to study the interactions of artificial ionization and the background plasma. The rockets released samarium metal vapor in the lower F-region of the ionosphere that ionized forming a plasma cloud. A host of diagnostic instruments were used to probe and characterize the cloud including the ALTAIR incoherent scatter radar, multiple GPS and optical instruments, satellite radio beacons, and a dedicated network of high frequency (HF) radio links. Data from ALTAIR incoherent scatter radar and HF radio links have been analyzed to understand the impacts of the artificial ionization on radio wave propagation. During the first release the ionosphere was disturbed, rising rapidly and spread F formed within minutes after the release. To address the disturbed conditions present during the first release, we have developed a new method of assimilating oblique ionosonde data to generate the background ionosphere that can have numerous applications for HF systems. The link budget analysis of the received signals from the HF transmitters explains the missing low frequencies in the received signals along the great circle path. Observations and modeling confirm that the small amounts of ionized material injected in the lower-F region resulted in significant changes to the natural propagation environment.
Aminy, Akramullah
2014-07-30
The formation of persistent scales in pipes causes lower flow rates and therefore represents an economic problem. The contamination of scales - which usually is the case in most industrial applications - also poses a problem with respect to the scales' environmental compatibility. The currently applied techniques for the removal of these scales involve the use of auxiliary materials which accumulate large quantities of secondary waste that is costly to be disposed of. In this research, an environmentally friendly removal method for tubing scales was developed and qualified. The analysis of the currently used technologies formed the basis for the analysis and systematic evaluation of different principles of removal action methods. Consequently, a concept for a new impact based removal method was established. The mechanism of this technique is the application of a high-frequency percussive action by a geometrically defined tool. The impact on the scales cracks their surface and causes their fracture and thus the detachment from the pipes. Compared to alternative removal methods this proposed technique works without any auxiliary material and thus prevents the production of secondary waste. The investigation of the impact process was carried out in a newly developed test rig. In this test rig, the maximum forces of the percussive tool were measured with shear force sensors on the tubing surface and the resulting stress on the tube was obtained. The evaluation of the measured values using the method of descriptive statistics demonstrated that the high dynamic stress of the tubing due to the complex tool motion is based on a normal distribution. Based on this evaluation, the effects of the influencing factors on the stress of the tubings were systematically measured and outlined in a mathematical model. This model describes the dependency of the tool and the process of related factors that influences the tubing stress. According to this model, this stress is
Chang, Andrew D; Berges, Victoria A; Chung, Sunho J; Fridman, Gene Y; Baraban, Jay M; Reti, Irving M
2016-06-01
Approximately one quarter of individuals with an autism spectrum disorder (ASD) display self-injurious behavior (SIB) ranging from head banging to self-directed biting and punching. Sometimes, these behaviors are extreme and unresponsive to pharmacological and behavioral therapies. We have found electroconvulsive therapy (ECT) can produce life-changing results, with more than 90% suppression of SIB frequency. However, these patients typically require frequent maintenance ECT (mECT), as often as every 5 days, to sustain the improvement gained during the acute course. Long-term consequences of such frequent mECT started as early as childhood in some cases are unknown. Accordingly, there is a need for alternative forms of chronic stimulation for these patients. To explore the feasibility of deep brain stimulation (DBS) for intractable SIB seen in some patients with an ASD, we utilized two genetically distinct mouse models demonstrating excessive self-grooming, namely the Viaat-Mecp2(-/y) and Shank3B(-/-) lines, and administered high-frequency stimulation (HFS) via implanted electrodes at the subthalamic nucleus (STN-HFS). We found that STN-HFS significantly suppressed excessive self-grooming in both genetic lines. Suppression occurs both acutely when stimulation is switched on, and persists for several days after HFS is stopped. This effect was not explained by a change in locomotor activity, which was unaffected by STN-HFS. Likewise, social interaction deficits were not corrected by STN-HFS. Our data show STN-HFS suppresses excessive self-grooming in two autism-like mouse models, raising the possibility DBS might be used to treat intractable SIB associated with ASDs. Further studies are required to explore the circuitry engaged by STN-HFS, as well as other potential stimulation sites. Such studies might also yield clues about pathways, which could be modulated by non-invasive stimulatory techniques.
High-frequency magnetic components
Kazimierczuk, Marian K
2013-01-01
A unique text on the theory and design fundaments of inductors and transformers, updated with more coverage on the optimization of magnetic devices and many new design examples The first edition is popular among a very broad audience of readers in different areas of engineering and science. This book covers the theory and design techniques of the major types of high-frequency power inductors and transformers for a variety of applications, including switching-mode power supplies (SMPS) and resonant dc-to-ac power inverters and dc-to-dc power converters. It describes eddy-current phenomena (su
Leonardo Cedeño Rodríguez
2015-04-01
Full Text Available En este trabajo se desarrolla el modelado dinámico de lámparas de descarga de alta intensidad (HID en inglés, de manera que pueda contribuir al desarrollo posterior de un sistema de control avanzado sobre la etapa de potencia de un balasto electrónico, que permita operar este tipo de lámparas en alta frecuencia. El modelo tiene en cuenta la presencia del fenómeno de la resonancia acústica (RA, que usualmente se presenta en las lámparas HID a frecuencias elevadas. Para el modelado se emplean técnicas híbridas, teniendo como punto de partida las ecuaciones de balance de energía en el interior de la lámpara, en tanto para la parametrización, se aplica identificación de sistemas y optimización mediante algoritmos genéticos. La implementación del modelo se realiza con el software Matlab R2011a. Como resultado se obtiene un modelo dinámico para lámparas HID en alta frecuencia, validado para lámparas de alta presión de sodio.In this paper the dynamic modeling of high intensity discharge lamps (HID is developed. This will contribute to the further development of an advanced control system on the power stage of an electronic ballast, which allows these lamps operate at high frequency. The model must take into account the presence of the acoustic resonance’s phenomenon (AR, which usually occurs when HID lamps operates at high frequency. Hybrid modeling techniques were employed, the balance equations and the empirical expressions were obtained and the model was parameterized by identification techniques and optimization based on genetic algorithms. The implementation of the model has performed using Simulink tool of Matlab R2011a software. As a result, a dynamic model for HID lamps in high frequency has achieved and validated for high-pressure sodium lamps (HPS.
Extremely high frequency RF effects on electronics.
Loubriel, Guillermo Manuel; Vigliano, David; Coleman, Phillip Dale; Williams, Jeffery Thomas; Wouters, Gregg A.; Bacon, Larry Donald; Mar, Alan
2012-01-01
The objective of this work was to understand the fundamental physics of extremely high frequency RF effects on electronics. To accomplish this objective, we produced models, conducted simulations, and performed measurements to identify the mechanisms of effects as frequency increases into the millimeter-wave regime. Our purpose was to answer the questions, 'What are the tradeoffs between coupling, transmission losses, and device responses as frequency increases?', and, 'How high in frequency do effects on electronic systems continue to occur?' Using full wave electromagnetics codes and a transmission-line/circuit code, we investigated how extremely high-frequency RF propagates on wires and printed circuit board traces. We investigated both field-to-wire coupling and direct illumination of printed circuit boards to determine the significant mechanisms for inducing currents at device terminals. We measured coupling to wires and attenuation along wires for comparison to the simulations, looking at plane-wave coupling as it launches modes onto single and multiconductor structures. We simulated the response of discrete and integrated circuit semiconductor devices to those high-frequency currents and voltages, using SGFramework, the open-source General-purpose Semiconductor Simulator (gss), and Sandia's Charon semiconductor device physics codes. This report documents our findings.
Essays on high frequency financial econometrics
Yang, X.
2015-01-01
It has long been demonstrated that continuous-time methods are powerful tools in financial modeling. Yet only in recent years, their counterparts in empirical analysis—high frequency econometrics—began to emerge with the availability of intra-day data and relevant statistical tools. This
High-frequency plasma oscillations
Akhiezer, A I; Fainberg, Y B; Sitenko, A G; Stepanov, K; Kurilko, V; Gorbatenko, M; Kirochkin, U [Academy of Sciences of the Ukrainian SSR (USSR)
1958-07-01
It is well known that the electrical conductivity of a plasma, the ion-electron equilibration time, and the time required to heat the electron component of the plasma all increase greatly with increasing temperature. Consequently, the usual method of Joule heating a plasma may be difficult to apply in the region of high temperatures (> 10{sup 6}K), especially if the plasma current alone, without any additional measures, is used to generate magnetic fields for the confinement of the plasma. Therefore, it is of interest to study methods of plasma heating that do not directly use Joule heat, especially methods by which energy is directly supplied to the ion component during the time between collisions. Some of these methods make use of ionic resonance as well as other resonance phenomena which can occur in plasma in an external magnetic field. This paper deals with certain aspects of the theory of high-frequency plasma oscillations.
Veeramany, Arun; Unwin, Stephen D.; Coles, Garill A.; Dagle, Jeffery E.; Millard, W. David; Yao, Juan; Glantz, Clifford S.; Gourisetti, Sri Nikhil Gup
2015-12-03
Natural and man-made hazardous events resulting in loss of grid infrastructure assets challenge the electric power grid’s security and resilience. However, the planning and allocation of appropriate contingency resources for such events requires an understanding of their likelihood and the extent of their potential impact. Where these events are of low likelihood, a risk-informed perspective on planning can be problematic as there exists an insufficient statistical basis to directly estimate the probabilities and consequences of their occurrence. Since risk-informed decisions rely on such knowledge, a basis for modeling the risk associated with high-impact low frequency events (HILFs) is essential. Insights from such a model can inform where resources are most rationally and effectively expended. The present effort is focused on development of a HILF risk assessment framework. Such a framework is intended to provide the conceptual and overarching technical basis for the development of HILF risk models that can inform decision makers across numerous stakeholder sectors. The North American Electric Reliability Corporation (NERC) 2014 Standard TPL-001-4 considers severe events for transmission reliability planning, but does not address events of such severity that they have the potential to fail a substantial fraction of grid assets over a region, such as geomagnetic disturbances (GMD), extreme seismic events, and coordinated cyber-physical attacks. These are beyond current planning guidelines. As noted, the risks associated with such events cannot be statistically estimated based on historic experience; however, there does exist a stable of risk modeling techniques for rare events that have proven of value across a wide range of engineering application domains. There is an active and growing interest in evaluating the value of risk management techniques in the State transmission planning and emergency response communities, some of this interest in the context of
Ye. V. Dmitriev
2007-01-01
Full Text Available Analysis of the Over-Voltage Limiter (OVL influence on electromagnetic high-frequency over-voltages at commutations with isolators of unloaded sections of wires and possibility of application of a frequency-dependent resistor in case of necessity to facilitate OVL operation conditions is provided in the paper.It is shown that it is necessary to take into account characteristics of OVL by IEEE circuit and its modifications at computer modeling of high-frequency over-voltages.
Dzyuba, A; Romanenko, A; Cooley, L D
2010-01-01
A model for the onset of the reduction in superconducting radio-frequency (SRF) cavity quality factor, the so-called Q-drop, at high accelerating electric fields is presented. Since magnetic fields at the cavity equator are tied to accelerating electric fields by a simple geometric factor, the onset of magnetic flux penetration determines the onset of Q-drop. We consider breakdown of the surface barrier at triangular grooves to predict the magnetic field of first flux penetration H pen . Such defects were argued to be the worst case by Buzdin and Daumens (1998 Physica C 294 257), whose approach, moreover, incorporates both the geometry of the groove and local contamination via the Ginzburg-Landau parameter κ. Since previous Q-drop models focused on either topography or contamination alone, the proposed model allows new comparisons of one effect in relation to the other. The model predicts equivalent reduction of H pen when either roughness or contamination were varied alone, so smooth but dirty surfaces limit cavity performance about as much as rough but clean surfaces do. Still lower H pen was predicted when both effects were combined, i.e. contamination should exacerbate the negative effects of roughness and vice versa. To test the model with actual data, coupons were prepared by buffered chemical polishing and electropolishing, and stylus profilometry was used to obtain distributions of angles. From these data, curves for surface resistance generated by simple flux flow as a function of magnetic field were generated by integrating over the distribution of angles for reasonable values of κ. This showed that combined effects of roughness and contamination indeed reduce the Q-drop onset field by ∼ 20%, and that contamination contributes to Q-drop as much as roughness. The latter point may be overlooked by SRF cavity research, since access to the cavity interior by spectroscopy tools is very difficult, whereas optical images have become commonplace. The model
Dzyuba, A.; Romanenko, A.; Cooley, L. D.
2010-12-01
A model for the onset of the reduction in superconducting radio-frequency (SRF) cavity quality factor, the so-called Q-drop, at high accelerating electric fields is presented. Since magnetic fields at the cavity equator are tied to accelerating electric fields by a simple geometric factor, the onset of magnetic flux penetration determines the onset of Q-drop. We consider breakdown of the surface barrier at triangular grooves to predict the magnetic field of first flux penetration Hpen. Such defects were argued to be the worst case by Buzdin and Daumens (1998 Physica C 294 257), whose approach, moreover, incorporates both the geometry of the groove and local contamination via the Ginzburg-Landau parameter κ. Since previous Q-drop models focused on either topography or contamination alone, the proposed model allows new comparisons of one effect in relation to the other. The model predicts equivalent reduction of Hpen when either roughness or contamination were varied alone, so smooth but dirty surfaces limit cavity performance about as much as rough but clean surfaces do. Still lower Hpen was predicted when both effects were combined, i.e. contamination should exacerbate the negative effects of roughness and vice versa. To test the model with actual data, coupons were prepared by buffered chemical polishing and electropolishing, and stylus profilometry was used to obtain distributions of angles. From these data, curves for surface resistance generated by simple flux flow as a function of magnetic field were generated by integrating over the distribution of angles for reasonable values of κ. This showed that combined effects of roughness and contamination indeed reduce the Q-drop onset field by ~ 20%, and that contamination contributes to Q-drop as much as roughness. The latter point may be overlooked by SRF cavity research, since access to the cavity interior by spectroscopy tools is very difficult, whereas optical images have become commonplace. The model was
High Temperature Radio Frequency Loads
Federmann, S; Grudiev, A; Montesinos, E; Syratchev, I
2011-01-01
In the context of energy saving and recovery requirements the design of reliable and robust RF power loads which permit a high outlet temperature and high pressure of the cooling water is desirable. Cooling water arriving at the outlet withmore than 150 ◦C and high pressure has a higher value than water with 50 ◦C under low pressure. Conventional RF power loads containing dielectric and magnetic materials as well as sensitive ceramic windows usually do not permit going much higher than 90 ◦C. Here we present and discuss several design concepts for "metal only" RF high power loads. One concept is the application of magnetic steel corrugated waveguides near cutoff – this concept could find practical use above several GHz. Another solution are resonant structures made of steel to be installed in large waveguides for frequencies of 500 MHz or lower. Similar resonant structures above 100 MHz taking advantage of the rather high losses of normal steel may also be used in coaxial line geometries with large di...
High-frequency Rayleigh-wave method
Xia, J.; Miller, R.D.; Xu, Y.; Luo, Y.; Chen, C.; Liu, J.; Ivanov, J.; Zeng, C.
2009-01-01
High-frequency (???2 Hz) Rayleigh-wave data acquired with a multichannel recording system have been utilized to determine shear (S)-wave velocities in near-surface geophysics since the early 1980s. This overview article discusses the main research results of high-frequency surface-wave techniques achieved by research groups at the Kansas Geological Survey and China University of Geosciences in the last 15 years. The multichannel analysis of surface wave (MASW) method is a non-invasive acoustic approach to estimate near-surface S-wave velocity. The differences between MASW results and direct borehole measurements are approximately 15% or less and random. Studies show that simultaneous inversion with higher modes and the fundamental mode can increase model resolution and an investigation depth. The other important seismic property, quality factor (Q), can also be estimated with the MASW method by inverting attenuation coefficients of Rayleigh waves. An inverted model (S-wave velocity or Q) obtained using a damped least-squares method can be assessed by an optimal damping vector in a vicinity of the inverted model determined by an objective function, which is the trace of a weighted sum of model-resolution and model-covariance matrices. Current developments include modeling high-frequency Rayleigh-waves in near-surface media, which builds a foundation for shallow seismic or Rayleigh-wave inversion in the time-offset domain; imaging dispersive energy with high resolution in the frequency-velocity domain and possibly with data in an arbitrary acquisition geometry, which opens a door for 3D surface-wave techniques; and successfully separating surface-wave modes, which provides a valuable tool to perform S-wave velocity profiling with high-horizontal resolution. ?? China University of Geosciences (Wuhan) and Springer-Verlag GmbH 2009.
Susan A Novotny
Full Text Available The objective of the study was to determine if low intensity, high frequency vibration training impacted the musculoskeletal system in a mouse model of Duchenne muscular dystrophy, relative to healthy mice. Three-week old wildtype (n = 26 and mdx mice (n = 22 were randomized to non-vibrated or vibrated (45 Hz and 0.6 g, 15 min/d, 5 d/wk groups. In vivo and ex vivo contractile function of the anterior crural and extensor digitorum longus muscles, respectively, were assessed following 8 wks of vibration. Mdx mice were injected 5 and 1 days prior to sacrifice with Calcein and Xylenol, respectively. Muscles were prepared for histological and triglyceride analyses and subcutaneous and visceral fat pads were excised and weighed. Tibial bones were dissected and analyzed by micro-computed tomography for trabecular morphometry at the metaphysis, and cortical geometry and density at the mid-diaphysis. Three-point bending tests were used to assess cortical bone mechanical properties and a subset of tibiae was processed for dynamic histomorphometry. Vibration training for 8 wks did not alter trabecular morphometry, dynamic histomorphometry, cortical geometry, or mechanical properties (P ≥ 0.34. Vibration did not alter any measure of muscle contractile function (P ≥ 0.12; however the preservation of muscle function and morphology in mdx mice indicates vibration is not deleterious to muscle lacking dystrophin. Vibrated mice had smaller subcutaneous fat pads (P = 0.03 and higher intramuscular triglyceride concentrations (P = 0.03. These data suggest that vibration training at 45 Hz and 0.6 g did not significantly impact the tibial bone and the surrounding musculature, but may influence fat distribution in mice.
Tien Bui, Dieu; Pradhan, Biswajeet; Nampak, Haleh; Bui, Quang-Thanh; Tran, Quynh-An; Nguyen, Quoc-Phi
2016-09-01
This paper proposes a new artificial intelligence approach based on neural fuzzy inference system and metaheuristic optimization for flood susceptibility modeling, namely MONF. In the new approach, the neural fuzzy inference system was used to create an initial flood susceptibility model and then the model was optimized using two metaheuristic algorithms, Evolutionary Genetic and Particle Swarm Optimization. A high-frequency tropical cyclone area of the Tuong Duong district in Central Vietnam was used as a case study. First, a GIS database for the study area was constructed. The database that includes 76 historical flood inundated areas and ten flood influencing factors was used to develop and validate the proposed model. Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Receiver Operating Characteristic (ROC) curve, and area under the ROC curve (AUC) were used to assess the model performance and its prediction capability. Experimental results showed that the proposed model has high performance on both the training (RMSE = 0.306, MAE = 0.094, AUC = 0.962) and validation dataset (RMSE = 0.362, MAE = 0.130, AUC = 0.911). The usability of the proposed model was evaluated by comparing with those obtained from state-of-the art benchmark soft computing techniques such as J48 Decision Tree, Random Forest, Multi-layer Perceptron Neural Network, Support Vector Machine, and Adaptive Neuro Fuzzy Inference System. The results show that the proposed MONF model outperforms the above benchmark models; we conclude that the MONF model is a new alternative tool that should be used in flood susceptibility mapping. The result in this study is useful for planners and decision makers for sustainable management of flood-prone areas.
Econometrics of financial high-frequency data
Hautsch, Nikolaus
2011-01-01
This book covers major approaches in high-frequency econometrics. It discusses implementation details, provides insights into properties of high-frequency data as well as institutional settings and presents applications.
Schmid, Gernot; Ueberbacher, Richard; Samaras, Theodoros; Jappel, Alexandra; Baumgartner, Wolf-Dieter; Tschabitscher, Manfred; Mazal, Peter R
2007-01-01
In order to enable a detailed analysis of radio frequency (RF) absorption in the human middle and inner ear organs, a numerical model of these organs was developed at a spatial resolution of 0.1 mm, based on a real human tissue sample. The dielectric properties of the liquids (perilymph and endolymph) inside the bony labyrinth were measured on samples of ten freshly deceased humans. After inserting this model into a commercially available numerical head model, FDTD-based computations for exposure scenarios with generic models of handheld devices operated close to the head in the frequency range 400-3700 MHz were carried out. For typical output power values of real handheld mobile communication devices the obtained results showed only very small amounts of absorbed RF power in the middle and inner ear organs. Highest absorption in the middle and inner ear was found for the 400 MHz irradiation. In this case, the RF power absorbed inside the labyrinth and the vestibulocochlear nerve was as low as 166 μW and 12 μW, respectively, when considering a device of 500 mW output power operated close to the ear. For typical mobile phone frequencies (900 MHz and 1850 MHz) and output power values (250 mW and 125 mW) the corresponding values of absorbed RF power were found to be more than one order of magnitude lower than the values given above. These results indicate that temperature-related biologically relevant effects on the middle and inner ear, induced by the RF emissions of typical handheld mobile communication devices, are unlikely
High-Order Frequency-Locked Loops
Golestan, Saeed; Guerrero, Josep M.; Quintero, Juan Carlos Vasquez
2017-01-01
In very recent years, some attempts for designing high-order frequency-locked loops (FLLs) have been made. Nevertheless, the advantages and disadvantages of these structures, particularly in comparison with a standard FLL and high-order phase-locked loops (PLLs), are rather unclear. This lack...... study, and its small-signal modeling, stability analysis, and parameter tuning are presented. Finally, to gain insight about advantages and disadvantages of high-order FLLs, a theoretical and experimental performance comparison between the designed second-order FLL and a standard FLL (first-order FLL...
Stössel, Achim; von Storch, Jin-Song; Notz, Dirk; Haak, Helmuth; Gerdes, Rüdiger
2018-03-01
This study is on high-frequency temporal variability (HFV) and meso-scale spatial variability (MSV) of winter sea-ice drift in the Southern Ocean simulated with a global high-resolution (0.1°) sea ice-ocean model. Hourly model output is used to distinguish MSV characteristics via patterns of mean kinetic energy (MKE) and turbulent kinetic energy (TKE) of ice drift, surface currents, and wind stress, and HFV characteristics via time series of raw variables and correlations. We find that (1) along the ice edge, the MSV of ice drift coincides with that of surface currents, in particular such due to ocean eddies; (2) along the coast, the MKE of ice drift is substantially larger than its TKE and coincides with the MKE of wind stress; (3) in the interior of the ice pack, the TKE of ice drift is larger than its MKE, mostly following the TKE pattern of wind stress; (4) the HFV of ice drift is dominated by weather events, and, in the absence of tidal currents, locally and to a much smaller degree by inertial oscillations; (5) along the ice edge, the curl of the ice drift is highly correlated with that of surface currents, mostly reflecting the impact of ocean eddies. Where ocean eddies occur and the ice is relatively thin, ice velocity is characterized by enhanced relative vorticity, largely matching that of surface currents. Along the ice edge, ocean eddies produce distinct ice filaments, the realism of which is largely confirmed by high-resolution satellite passive-microwave data.
Ockenden, Mary C.; Tych, Wlodek; Beven, Keith J.; Collins, Adrian L.; Evans, Robert; Falloon, Peter D.; Forber, Kirsty J.; Hiscock, Kevin M.; Hollaway, Michael J.; Kahana, Ron; Macleod, Christopher J. A.; Villamizar, Martha L.; Wearing, Catherine; Withers, Paul J. A.; Zhou, Jian G.; Benskin, Clare McW. H.; Burke, Sean; Cooper, Richard J.; Freer, Jim E.; Haygarth, Philip M.
2017-12-01
Excess nutrients in surface waters, such as phosphorus (P) from agriculture, result in poor water quality, with adverse effects on ecological health and costs for remediation. However, understanding and prediction of P transfers in catchments have been limited by inadequate data and over-parameterised models with high uncertainty. We show that, with high temporal resolution data, we are able to identify simple dynamic models that capture the P load dynamics in three contrasting agricultural catchments in the UK. For a flashy catchment, a linear, second-order (two pathways) model for discharge gave high simulation efficiencies for short-term storm sequences and was useful in highlighting uncertainties in out-of-bank flows. A model with non-linear rainfall input was appropriate for predicting seasonal or annual cumulative P loads where antecedent conditions affected the catchment response. For second-order models, the time constant for the fast pathway varied between 2 and 15 h for all three catchments and for both discharge and P, confirming that high temporal resolution data are necessary to capture the dynamic responses in small catchments (10-50 km2). The models led to a better understanding of the dominant nutrient transfer modes, which will be helpful in determining phosphorus transfers following changes in precipitation patterns in the future.
Pulsed-High Field/High-Frequency EPR Spectroscopy
Fuhs, Michael; Moebius, Klaus
Pulsed high-field/high-frequency electron paramagnetic resonance (EPR) spectroscopy is used to disentangle many kinds of different effects often obscured in continuous wave (cw) EPR spectra at lower magnetic fields/microwave frequencies. While the high magnetic field increases the resolution of G tensors and of nuclear Larmor frequencies, the high frequencies allow for higher time resolution for molecular dynamics as well as for transient paramagnetic intermediates studied with time-resolved EPR. Pulsed EPR methods are used for example for relaxation-time studies, and pulsed Electron Nuclear DOuble Resonance (ENDOR) is used to resolve unresolved hyperfine structure hidden in inhomogeneous linewidths. In the present article we introduce the basic concepts and selected applications to structure and mobility studies on electron transfer systems, reaction centers of photosynthesis as well as biomimetic models. The article concludes with an introduction to stochastic EPR which makes use of an other concept for investigating resonance systems in order to increase the excitation bandwidth of pulsed EPR. The limited excitation bandwidth of pulses at high frequency is one of the main limitations which, so far, made Fourier transform methods hardly feasible.
High Frequency Components Recovery in Music Signals
V. Sebesta
1999-04-01
Full Text Available A new technique is presented which improves the subjective quality of band-limited music by recovery of high frequency components. Sequences of harmonics are found in the band-limited signal and these sequences are expanded to the high frequency band to estimate the lost part of spectrum. High frequency signal is generated to match this estimation and is added to the band-limited signal.
Parametric nanomechanical amplification at very high frequency.
Karabalin, R B; Feng, X L; Roukes, M L
2009-09-01
Parametric resonance and amplification are important in both fundamental physics and technological applications. Here we report very high frequency (VHF) parametric resonators and mechanical-domain amplifiers based on nanoelectromechanical systems (NEMS). Compound mechanical nanostructures patterned by multilayer, top-down nanofabrication are read out by a novel scheme that parametrically modulates longitudinal stress in doubly clamped beam NEMS resonators. Parametric pumping and signal amplification are demonstrated for VHF resonators up to approximately 130 MHz and provide useful enhancement of both resonance signal amplitude and quality factor. We find that Joule heating and reduced thermal conductance in these nanostructures ultimately impose an upper limit to device performance. We develop a theoretical model to account for both the parametric response and nonequilibrium thermal transport in these composite nanostructures. The results closely conform to our experimental observations, elucidate the frequency and threshold-voltage scaling in parametric VHF NEMS resonators and sensors, and establish the ultimate sensitivity limits of this approach.
Gianbiagio Curato
2014-01-01
Full Text Available Modeling financial time series at different time scales is still an open challenge. The choice of a suitable indicator quantifying the distance between the model and the data is therefore of fundamental importance for selecting models. In this paper, we propose a multiscale model selection method based on the Jensen–Shannon distance in order to select the model that is able to better reproduce the distribution of price changes at different time scales. Specifically, we consider the problem of modeling the ultra high frequency dynamics of an asset with a large tick-to-price ratio. We study the price process at different time scales and compute the Jensen–Shannon distance between the original dataset and different models, showing that the coupling between spread and returns is important to model return distribution at different time scales of observation, ranging from the scale of single transactions to the daily time scale.
Lightweight, high-frequency transformers
Schwarze, G. E.
1983-01-01
The 25-kVA space transformer was developed under contract by Thermal Technology Laboratory, Buffalo, N. Y. The NASA Lewis transformer technology program attempted to develop the baseline technology. For the 25-kVA transformer the input voltage was chosen as 200 V, the output voltage as 1500 V, the input voltage waveform as square wave, the duty cycle as continuous, the frequency range (within certain constraints) as 10 to 40 kHz, the operating temperatures as 85 deg. and 130 C, the baseplate temperature as 50 C, the equivalent leakage inductance as less than 10 micro-h, the operating environment as space, and the life expectancy as 10 years. Such a transformer can also be used for aircraft, ship and terrestrial applications.
Dubrovský, Martin; Buchtele, Josef; Žalud, Z.
2004-01-01
Roč. 63, 1-2 (2004), s. 145-179 ISSN 0165-0009 R&D Projects: GA ČR GA205/99/1561; GA AV ČR IAA3060002 Institutional research plan: CEZ:AV0Z3042911 Keywords : Weather Generator * Agricultural Modelling * Hydrologic Modelling Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 2.035, year: 2004
Simulation model for studying low frequency microinstabilities
Lee, W.W.; Okuda, H.
1976-03-01
A 2 1 / 2 dimensional, electrostatic particle code in a slab geometry has been developed to study low frequency oscillations such as drift wave and trapped particle instabilities in a nonuniform bounded plasma. A drift approximation for the electron transverse motion is made which eliminates the high frequency oscillations at the electron gyrofrequency and its multiples. It is, therefore, possible to study the nonlinear effects such as the anomalous transport of plasmas within a reasonable computing time using a real mass ratio. Several examples are given to check the validity and usefulness of the model
Derkevorkian, Armen; Peterson, Lee; Kolaini, Ali R.; Hendricks, Terry J.; Nesmith, Bill J.
2016-01-01
An analytic approach is demonstrated to reveal potential pyroshock -driven dynamic effects causing power losses in the Thermo -Electric (TE) module bars of the Mars Science Laboratory (MSL) Multi -Mission Radioisotope Thermoelectric Generator (MMRTG). This study utilizes high- fidelity finite element analysis with SIERRA/PRESTO codes to estimate wave propagation effects due to large -amplitude suddenly -applied pyro shock loads in the MMRTG. A high fidelity model of the TE module bar was created with approximately 30 million degrees -of-freedom (DOF). First, a quasi -static preload was applied on top of the TE module bar, then transient tri- axial acceleration inputs were simultaneously applied on the preloaded module. The applied input acceleration signals were measured during MMRTG shock qualification tests performed at the Jet Propulsion Laboratory. An explicit finite element solver in the SIERRA/PRESTO computational environment, along with a 3000 processor parallel super -computing framework at NASA -AMES, was used for the simulation. The simulation results were investigated both qualitatively and quantitatively. The predicted shock wave propagation results provide detailed structural responses throughout the TE module bar, and key insights into the dynamic response (i.e., loads, displacements, accelerations) of critical internal spring/piston compression systems, TE materials, and internal component interfaces in the MMRTG TE module bar. They also provide confidence on the viability of this high -fidelity modeling scheme to accurately predict shock wave propagation patterns within complex structures. This analytic approach is envisioned for modeling shock sensitive hardware susceptible to intense shock environments positioned near shock separation devices in modern space vehicles and systems.
Liu, Xinran; Kofman, Jonathan
2017-07-10
A new fringe projection method for surface-shape measurement was developed using four high-frequency phase-shifted background modulation fringe patterns. The pattern frequency is determined using a new fringe-wavelength geometry-constraint model that allows only two corresponding-point candidates in the measurement volume. The correct corresponding point is selected with high reliability using a binary pattern computed from intensity background encoded in the fringe patterns. Equations of geometry-constraint parameters permit parameter calculation prior to measurement, thus reducing measurement computational cost. Experiments demonstrated the ability of the method to perform 3D shape measurement for a surface with geometric discontinuity, and for spatially isolated objects.
Contact resistance measurement structures for high frequencies
Roy, Deepu; Pijper, Ralf M.T.; Tiemeijer, Luuk F.; Wolters, Robertus A.M.
2011-01-01
Knowledge of the interfacial contact impedance offered by the device at its operating frequency range is crucial for accurate modelling and understanding of the device. In this article, a novel modified TLM test-structure has been devised to extract interfacial contact parameters at frequencies upto
High-frequency conductivity of photoionized plasma
Anakhov, M. V.; Uryupin, S. A., E-mail: uryupin@sci.lebedev.ru [National Research Nuclear University “MEPhI,” (Russian Federation)
2016-08-15
The tensor of the high-frequency conductivity of a plasma created via tunnel ionization of atoms in the field of linearly or circularly polarized radiation is derived. It is shown that the real part of the conductivity tensor is highly anisotropic. In the case of a toroidal velocity distribution of photoelectrons, the possibility of amplification of a weak high-frequency field polarized at a sufficiently large angle to the anisotropy axis of the initial nonequilibrium distribution is revealed.
Cooking Appliances Using High-Frequency Heating
木村, 秀行; Hideyuki, KIMURA; (株)日立製作所機械研究所
2007-01-01
We have produced a guide suitable for people with no technical knowledge of cooking appliances that use high-frequency heating. In general, cooking appliances that use an electric heat source are popular since, they are simple to use because the offer easy heat control, are safe because they do not have naked flames, and do not make kitchens dirty because there is no exhaust. In recent years, high-efficiency cooking appliances using high-frequency heating technology have surged in popularity....
High frequency oscillations in brain hemodynamic response
Akin, Ata; Bolay, Hayrunnisa
2007-07-01
Tight autoregulation of vessel tone guarantees proper delivery of nutrients to the tissues. This regulation is maintained at a more delicate level in the brain since any decrease in the supply of glucose and oxygen to neuronal tissues might lead to unrecoverable injury. Functional near infrared spectroscopy has been proposed as a new tool to monitor the cerebrovascular response during cognitive activity. We have observed that during a Stroop task three distinct oscillatory patterns govern the control of the cerebrovascular reactivity: very low frequency (0.02-0.05 Hz), low frequency (0.08-0.12 Hz) and high frequency (0.12-0.18 Hz). High frequency oscillations have been shown to be related to stress level of the subjects. Our findings indicate that as the stress level is increased so does the energy of the high frequency component indicating a higher stimulation from the autonomic nervous system.
2010-12-27
... Frequency and Ultra High Frequency Active SONAR Technology; Draft Programmatic Environmental Assessment and... Programmatic Environmental Assessment (PEA) for the Nationwide Use of High Frequency (HF) and Ultra High... potential impacts of each alternative on the human and natural environments. DATES: Comments and related...
High frequency dynamics in centrifugal compressors
Twerda, A.; Meulendijks, D.; Smeulers, J.P.M.; Handel, R. van den; Lier, L.J. van
2008-01-01
Problems with centrifugal compressors relating to high frequency, i.e. Blade passing frequency (BPF) are increasing. Pulsations and vibrations generated in centrifugal compressors can lead to nuisance, due to strong tonal noise, and even breakdown. In several cases the root cause of a failure or a
Superconducting high frequency high power resonators
Hobbis, C.; Vardiman, R.; Weinman, L.
1974-01-01
A niobium superconducting quarter-wave helical resonator has been designed and built. The resonator has been electron-beam welded and electropolished to produce a smooth flaw-free surface. This has been followed by an anodization to produce a 1000 A layer of Nb 2 0 5 . At the resonant frequency of approximately 15 MHz the unloaded Q was approximately equal to 4.6x10 6 with minimal dielectric support. With the resonator open to the helium bath to provide cooling, and rigidly supported by a teflon cylinder, 350 V of power were transferred at a doubly loaded Q of 3500. The extrapolation of the results to a Qsub(DL) of 1000 meet the power handling criteria of one kilowatt for the intended application. (author)
GPU-accelerated FDTD modeling of radio-frequency field-tissue interactions in high-field MRI.
Chi, Jieru; Liu, Feng; Weber, Ewald; Li, Yu; Crozier, Stuart
2011-06-01
The analysis of high-field RF field-tissue interactions requires high-performance finite-difference time-domain (FDTD) computing. Conventional CPU-based FDTD calculations offer limited computing performance in a PC environment. This study presents a graphics processing unit (GPU)-based parallel-computing framework, producing substantially boosted computing efficiency (with a two-order speedup factor) at a PC-level cost. Specific details of implementing the FDTD method on a GPU architecture have been presented and the new computational strategy has been successfully applied to the design of a novel 8-element transceive RF coil system at 9.4 T. Facilitated by the powerful GPU-FDTD computing, the new RF coil array offers optimized fields (averaging 25% improvement in sensitivity, and 20% reduction in loop coupling compared with conventional array structures of the same size) for small animal imaging with a robust RF configuration. The GPU-enabled acceleration paves the way for FDTD to be applied for both detailed forward modeling and inverse design of MRI coils, which were previously impractical.
Johnsen, Bjørn Helge; Westli, Heidi Kristina; Espevik, Roar; Wisborg, Torben; Brattebø, Guttorm
2017-11-10
High quality team leadership is important for the outcome of medical emergencies. However, the behavioral marker of leadership are not well defined. The present study investigated frequency of behavioral markers of shared mental models (SMM) on quality of medical management. Training video recordings of 27 trauma teams simulating emergencies were analyzed according to team -leader's frequency of shared mental model behavioral markers. The results showed a positive correlation of quality of medical management with leaders sharing information without an explicit demand for the information ("push" of information) and with leaders communicating their situational awareness (SA) and demonstrating implicit supporting behavior. When separating the sample into higher versus lower performing teams, the higher performing teams had leaders who displayed a greater frequency of "push" of information and communication of SA and supportive behavior. No difference was found for the behavioral marker of team initiative, measured as bringing up suggestions to other teammembers. The results of this study emphasize the team leader's role in initiating and updating a team's shared mental model. Team leaders should also set expectations for acceptable interaction patterns (e.g., promoting information exchange) and create a team climate that encourages behaviors, such as mutual performance monitoring, backup behavior, and adaptability to enhance SMM.
Overview of the Advanced High Frequency Branch
Miranda, Felix A.
2015-01-01
This presentation provides an overview of the competencies, selected areas of research and technology development activities, and current external collaborative efforts of the NASA Glenn Research Center's Advanced High Frequency Branch.
Nanostructures for Very High Frequency Electronics
Gelmont, Boris
2002-01-01
The study of a new class of mesoscopic high frequency semi-conductor devices based on resonant tunneling in staggered-bandgap heterostructures with III-V semi-conductor ternary alloys such as AlGaSb...
High frequency system project implementation plan
Moon, L.L.
1976-01-01
The High Frequency System is a new mobile, digital diagnostic recording system for use at the Nevada Test Site. Many different kinds of event data will be digitized in real-time by this system, and these data will be recorded and stored for later read-out and transmission to NADCEN. The hardware and software requirements of the High Frequency System are examined, and the parameters of the system are proposed
High frequency conductivity in carbon nanotubes
S. S. Abukari
2012-12-01
Full Text Available We report on theoretical analysis of high frequency conductivity in carbon nanotubes. Using the kinetic equation with constant relaxation time, an analytical expression for the complex conductivity is obtained. The real part of the complex conductivity is initially negative at zero frequency and become more negative with increasing frequency, until it reaches a resonance minimum at ω ∼ ωB for metallic zigzag CNs and ω < ωB for armchair CNs. This resonance enhancement is indicative for terahertz gain without the formation of current instabilities induced by negative dc conductivity. We noted that due to the high density of states of conduction electrons in metallic zigzag carbon nanotubes and the specific dispersion law inherent in hexagonal crystalline structure result in a uniquely high frequency conductivity than the corresponding values for metallic armchair carbon nanotubes. We suggest that this phenomenon can be used to suppress current instabilities that are normally associated with a negative dc differential conductivity.
Xin-Xin Zhang
2017-01-01
Conclusions: Echocardiography could identify the consecutive changes of coronary artery in KD mice. Echocardiography is more convenient and direct in evaluating the coronary abnormalities in this animal model.
High-Frequency Percussive Ventilation Revisited
2010-01-01
be implemented. ‡ Follow the reverse of the ventilation sequence if respiratory alkalosis develops—however, start at ventilation goal sequence 1 not at...High-frequency percussive ventilation (HFPV) has demonstrated a potential role as a rescue option for refractory acute respiratory distress syndrome...frequency percussive ventilation (HFPV) has demon- strated a potential role as a salvage option for refrac- tory acute respiratory distress syndrome
High Frequency Traders and Market Structure
Menkveld, A.J.
2014-01-01
The arrival of high-frequency traders (HFTs) coincided with the entry of new markets and, subsequently, strong fragmentation of the order flow. These trends might be related as new markets serve HFTs who seek low fees and high speed. New markets only thrive on competitive price quotes that
High-frequency and microwave circuit design
Nelson, Charles
2007-01-01
An integral part of any communications system, high-frequency and microwave design stimulates major progress in the wireless world and continues to serve as a foundation for the commercial wireless products we use every day. The exceptional pace of advancement in developing these systems stipulates that engineers be well versed in multiple areas of electronics engineering. With more illustrations, examples, and worked problems, High-Frequency and Microwave Circuit Design, Second Edition provides engineers with a diverse body of knowledge they can use to meet the needs of this rapidly progressi
High frequency and pulse scattering physical acoustics
Pierce, Allan D
1992-01-01
High Frequency and Pulse Scattering investigates high frequency and pulse scattering, with emphasis on the phenomenon of echoes from objects. Geometrical and catastrophe optics methods in scattering are discussed, along with the scattering of sound pulses and the ringing of target resonances. Caustics and associated diffraction catastrophes are also examined.Comprised of two chapters, this volume begins with a detailed account of geometrically based approximation methods in scattering theory, focusing on waves transmitted through fluid and elastic scatterers and glory scattering; surface ray r
Ranganathan, Kavitha; Hong, Xiaowei; Cholok, David; Habbouche, Joe; Priest, Caitlin; Breuler, Christopher; Chung, Michael; Li, John; Kaura, Arminder; Hsieh, Hsiao Hsin Sung; Butts, Jonathan; Ucer, Serra; Schwartz, Ean; Buchman, Steven R; Stegemann, Jan P; Deng, Cheri X; Levi, Benjamin
2018-04-01
Early treatment of heterotopic ossification (HO) is currently limited by delayed diagnosis due to limited visualization at early time points. In this study, we validate the use of spectral ultrasound imaging (SUSI) in an animal model to detect HO as early as one week after burn tenotomy. Concurrent SUSI, micro CT, and histology at 1, 2, 4, and 9weeks post-injury were used to follow the progression of HO after an Achilles tenotomy and 30% total body surface area burn (n=3-5 limbs per time point). To compare the use of SUSI in different types of injury models, mice (n=5 per group) underwent either burn/tenotomy or skin incision injury and were imaged using a 55MHz probe on VisualSonics VEVO 770 system at one week post injury to evaluate the ability of SUSI to distinguish between edema and HO. Average acoustic concentration (AAC) and average scatterer diameter (ASD) were calculated for each ultrasound image frame. Micro CT was used to calculate the total volume of HO. Histology was used to confirm bone formation. Using SUSI, HO was visualized as early as 1week after injury. HO was visualized earliest by 4weeks after injury by micro CT. The average acoustic concentration of HO was 33% more than that of the control limb (n=5). Spectroscopic foci of HO present at 1week that persisted throughout all time points correlated with the HO present at 9weeks on micro CT imaging. SUSI visualizes HO as early as one week after injury in an animal model. SUSI represents a new imaging modality with promise for early diagnosis of HO. Copyright © 2018 Elsevier Inc. All rights reserved.
Hann, Raiford E.
1991-01-01
An equivalent circuit model (ECM) approach is used to predict the scattering behavior of temperature-activated, electrically lossy dielectric layers. The total electrical response of the dielectric (relaxation + conductive) is given by the ECM and used in combination with transmission line theory to compute reflectance spectra for a Dallenbach layer configuration. The effects of thermally-activated relaxation processes on the scattering properties is discussed. Also, the effect of relaxation and conduction activation energy on the electrical properties of the dielectric is described.
Ielpo, Florian; Sevi, Benoit
2013-09-01
Forecasting the density of returns is useful for many purposes in finance, such as risk management activities, portfolio choice or derivative security pricing. Existing methods to forecast the density of returns either use prices of the asset of interest or option prices on this same asset. The latter method needs to convert the risk-neutral estimate of the density into a physical measure, which is computationally cumbersome. In this paper, we take the view of a practitioner who observes the implied volatility under the form of an index, namely the recent OVX, to forecast the density of oil futures returns for horizons going from 1 to 60 days. Using the recent methodology in Maheu and McCurdy (2011) to compute density predictions, we compare the performance of time series models using implied volatility and either daily or intra-daily futures prices. Our results indicate that models based on implied volatility deliver significantly better density forecasts at all horizons, which is in line with numerous studies delivering the same evidence for volatility point forecast. (authors)
Trujillo, Francisco Javier; Knoerzer, Kai
2011-11-01
High power ultrasound reactors have gained a lot of interest in the food industry given the effects that can arise from ultrasonic-induced cavitation in liquid foods. However, most of the new food processing developments have been based on empirical approaches. Thus, there is a need for mathematical models which help to understand, optimize, and scale up ultrasonic reactors. In this work, a computational fluid dynamics (CFD) model was developed to predict the acoustic streaming and induced heat generated by an ultrasonic horn reactor. In the model it is assumed that the horn tip is a fluid inlet, where a turbulent jet flow is injected into the vessel. The hydrodynamic momentum rate of the incoming jet is assumed to be equal to the total acoustic momentum rate emitted by the acoustic power source. CFD velocity predictions show excellent agreement with the experimental data for power densities higher than W(0)/V ≥ 25kWm(-3). This model successfully describes hydrodynamic fields (streaming) generated by low-frequency-high-power ultrasound. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.
Salomon, M; Conklin, J W; Kozaczuk, J; Berberian, J E; Keiser, G M; Silbergleit, A S; Worden, P; Santiago, D I
2011-12-01
In this paper, we present a method to measure the frequency and the frequency change rate of a digital signal. This method consists of three consecutive algorithms: frequency interpolation, phase differencing, and a third algorithm specifically designed and tested by the authors. The succession of these three algorithms allowed a 5 parts in 10(10) resolution in frequency determination. The algorithm developed by the authors can be applied to a sampled scalar signal such that a model linking the harmonics of its main frequency to the underlying physical phenomenon is available. This method was developed in the framework of the gravity probe B (GP-B) mission. It was applied to the high frequency (HF) component of GP-B's superconducting quantum interference device signal, whose main frequency f(z) is close to the spin frequency of the gyroscopes used in the experiment. A 30 nHz resolution in signal frequency and a 0.1 pHz/s resolution in its decay rate were achieved out of a succession of 1.86 s-long stretches of signal sampled at 2200 Hz. This paper describes the underlying theory of the frequency measurement method as well as its application to GP-B's HF science signal.
Yi Tang
2017-11-01
Full Text Available With increasing penetration of wind power into the power system, wind power participation in frequency regulation is regarded as a beneficial strategy to improve the dynamic frequency response characteristics of power systems. The traditional power system frequency response (SFR model, which only includes synchronous generators, is no longer suitable for power systems with high penetrated wind power. An extended SFR model, based on the reduced-order model of wind turbine generator (WTG and the traditional SFR model, is presented in this paper. In the extended SFR model, the reduced-order model of WTG with combined frequency control is deduced by employing small signal analysis theory. Afterwards, the stability analysis of a closed-loop control system for the extended SFR model is carried out. Time-domain simulations using a test system are performed to validate the effectiveness of the extended SFR model; this model can provide a simpler, clearer and faster way to analyze the dynamic frequency response characteristic for a high-wind integrated power systems. The impact of additional frequency control parameters and wind speed disturbances on the system dynamic frequency response characteristics are investigated.
Dry friction damping couple at high frequencies
Půst, Ladislav; Pešek, Luděk; Košina, Jan; Radolfová, Alena
2014-01-01
Roč. 8, č. 1 (2014), s. 91-100 ISSN 1802-680X Institutional support: RVO:61388998 Keywords : dry friction * damping * high frequencies Subject RIV: BI - Acoustics http://www.kme.zcu.cz/acm/acm/article/view/239/265
High Frequency Trading, Information, and Takeovers
Humphery-Jenner, M.
2011-01-01
This paper (1) proposes new variables to detect informed high-frequency trading (HFT), (2) shows that HFT can help to predict takeover targets, and (3) shows that HFT in uences target announcement announcement returns. Prior literature suggests that informed trade may occur before takeovers, but has
Nagaoka, Tomoaki; Watanabe, Soichi; Sakurai, Kiyoko; Kunieda, Etsuo; Watanabe, Satoshi; Taki, Masao; Yamanaka, Yukio
2004-01-01
With advances in computer performance, the use of high-resolution voxel models of the entire human body has become more frequent in numerical dosimetries of electromagnetic waves. Using magnetic resonance imaging, we have developed realistic high-resolution whole-body voxel models for Japanese adult males and females of average height and weight. The developed models consist of cubic voxels of 2 mm on each side; the models are segmented into 51 anatomic regions. The adult female model is the first of its kind in the world and both are the first Asian voxel models (representing average Japanese) that enable numerical evaluation of electromagnetic dosimetry at high frequencies of up to 3 GHz. In this paper, we will also describe the basic SAR characteristics of the developed models for the VHF/UHF bands, calculated using the finite-difference time-domain method
Evolution of Very High Frequency Power Supplies
Knott, Arnold; Andersen, Toke Meyer; Kamby, Peter
2013-01-01
The ongoing demand for smaller and lighter power supplies is driving the motivation to increase the switching frequencies of power converters. Drastic increases however come along with new challenges, namely the increase of switching losses in all components. The application of power circuits used...... in radio frequency transmission equipment helps to overcome those. However those circuits were not designed to meet the same requirements as power converters. This paper summarizes the contributions in recent years in application of very high frequency (VHF) technologies in power electronics, shows results...... of the recent advances and describes the remaining challenges. The presented results include a self-oscillating gate-drive, air core inductor optimizations, an offline LED driver with a power density of 8.9 W/cm3 and a 120 MHz, 9 W DC powered LED driver with 89 % efficiency as well as a bidirectional VHF...
Integrated Very High Frequency Switch Mode Power Supplies: Design Considerations
Hertel, Jens Christian; Nour, Yasser; Knott, Arnold
2017-01-01
simulations. The required spiral inductors was modeled, and simulations show Q values of as high as 14 at a switching frequency of 250 MHz. Simulations of the converter show an efficiency of 55 % with a self oscillating gate drive. However the modeled inductor was not adequate for operating with the self...
High Temperature, High Frequency Fuel Metering Valve, Phase I
National Aeronautics and Space Administration — Active Signal Technologies and its subcontractor Moog propose to develop a high-frequency actuator driven valve intended to achieve TRL 6 by the end of Phase II....
Forecasting Value-at-Risk Using High-Frequency Information
Huiyu Huang
2013-06-01
Full Text Available in the prediction of quantiles of daily Standard&Poor’s 500 (S&P 500 returns we consider how to use high-frequency 5-minute data. We examine methods that incorporate the high frequency information either indirectly, through combining forecasts (using forecasts generated from returns sampled at different intraday interval, or directly, through combining high frequency information into one model. We consider subsample averaging, bootstrap averaging, forecast averaging methods for the indirect case, and factor models with principal component approach, for both direct and indirect cases. We show that in forecasting the daily S&P 500 index return quantile (Value-at-Risk or VaR is simply the negative of it, using high-frequency information is beneficial, often substantially and particularly so, in forecasting downside risk. Our empirical results show that the averaging methods (subsample averaging, bootstrap averaging, forecast averaging, which serve as different ways of forming the ensemble average from using high-frequency intraday information, provide an excellent forecasting performance compared to using just low-frequency daily information.
2013-11-26
... Frequency and Ultra High Frequency Active SONAR Technology; Final Programmatic Environmental Assessment and... each alternative on the human and natural environments. FOR FURTHER INFORMATION CONTACT: If you have... Programmatic Environmental Assessment The scope of the PEA focuses on potential impacts associated with the...
Worthmann, Brian M; Song, H C; Dowling, David R
2015-12-01
Matched field processing (MFP) is an established technique for source localization in known multipath acoustic environments. Unfortunately, in many situations, particularly those involving high frequency signals, imperfect knowledge of the actual propagation environment prevents accurate propagation modeling and source localization via MFP fails. For beamforming applications, this actual-to-model mismatch problem was mitigated through a frequency downshift, made possible by a nonlinear array-signal-processing technique called frequency difference beamforming [Abadi, Song, and Dowling (2012). J. Acoust. Soc. Am. 132, 3018-3029]. Here, this technique is extended to conventional (Bartlett) MFP using simulations and measurements from the 2011 Kauai Acoustic Communications MURI experiment (KAM11) to produce ambiguity surfaces at frequencies well below the signal bandwidth where the detrimental effects of mismatch are reduced. Both the simulation and experimental results suggest that frequency difference MFP can be more robust against environmental mismatch than conventional MFP. In particular, signals of frequency 11.2 kHz-32.8 kHz were broadcast 3 km through a 106-m-deep shallow ocean sound channel to a sparse 16-element vertical receiving array. Frequency difference MFP unambiguously localized the source in several experimental data sets with average peak-to-side-lobe ratio of 0.9 dB, average absolute-value range error of 170 m, and average absolute-value depth error of 10 m.
Inverter design for high frequency power distribution
King, R. J.
1985-01-01
A class of simple resonantly commutated inverters are investigated for use in a high power (100 KW - 1000 KW) high frequency (10 KHz - 20 KHz) AC power distribution system. The Mapham inverter is found to provide a unique combination of large thyristor turn-off angle and good utilization factor, much better than an alternate 'current-fed' inverter. The effects of loading the Mapham inverter entirely with rectifier loads are investigated by simulation and with an experimental 3 KW 20 KHz inverter. This inverter is found to be well suited to a power system with heavy rectifier loading.
Wunder Christian
2006-06-01
Full Text Available Abstract Background To compare the effect of a sustained inflation followed by an incremental mean airway pressure trial during conventional and high-frequency oscillatory ventilation on oxygenation and hemodynamics in a large porcine model of early acute respiratory distress syndrome. Methods Severe lung injury (Ali was induced in 18 healthy pigs (55.3 ± 3.9 kg, mean ± SD by repeated saline lung lavage until PaO2 decreased to less than 60 mmHg. After a stabilisation period of 60 minutes, the animals were randomly assigned to two groups: Group 1 (Pressure controlled ventilation; PCV: FIO2 = 1.0, PEEP = 5 cmH2O, VT = 6 ml/kg, respiratory rate = 30/min, I:E = 1:1; group 2 (High-frequency oscillatory ventilation; HFOV: FIO2 = 1.0, Bias flow = 30 l/min, Amplitude = 60 cmH2O, Frequency = 6 Hz, I:E = 1:1. A sustained inflation (SI; 50 cmH2O for 60s followed by an incremental mean airway pressure (mPaw trial (steps of 3 cmH2O every 15 minutes were performed in both groups until PaO2 no longer increased. This was regarded as full lung inflation. The mPaw was decreased by 3 cmH2O and the animals reached the end of the study protocol. Gas exchange and hemodynamic data were collected at each step. Results The SI led to a significant improvement of the PaO2/FiO2-Index (HFOV: 200 ± 100 vs. PCV: 58 ± 15 and TAli: 57 ± 12; p 2-reduction (HFOV: 42 ± 5 vs. PCV: 62 ± 13 and TAli: 55 ± 9; p Ali: 6.1 ± 1 vs. T75: 3.4 ± 0.4; PCV: TAli: 6.7 ± 2.4 vs. T75: 4 ± 0.5; p Conclusion A sustained inflation followed by an incremental mean airway pressure trial in HFOV improved oxygenation at a lower mPaw than during conventional lung protective ventilation. HFOV but not PCV resulted in normocapnia, suggesting that during HFOV there are alternatives to tidal ventilation to achieve CO2-elimination in an "open lung" approach.
High and low spatial frequencies in website evaluations.
Thielsch, Meinald T; Hirschfeld, Gerrit
2010-08-01
Which features of websites are important for users' perceptions regarding aesthetics or usability? This study investigates how evaluations of aesthetic appeal and usability depend on high vs. low spatial frequencies. High spatial frequencies convey information on fine details, whereas low spatial frequencies convey information about the global layout. Participants rated aesthetic appeal and usability of 50 website screenshots from different domains. Screenshots were presented unfiltered, low-pass filtered with blurred targets or high-pass filtered with high-pass filtered targets. The main result is that low spatial frequencies can be seen to have a unique contribution in perceived website aesthetics, thus confirming a central prediction from processing fluency theory. There was no connection between low spatial frequencies and usability evaluations, whereas strong correlations were found between ratings of high-pass filtered websites and those of unfiltered websites in aesthetics and usability. This study thus offers a new perspective on the biological basis of users' website perceptions. This research links ergonomics to neurocognitive models of visual processing. This paper investigates how high and low spatial frequencies, which are neurologically processed in different visual pathways, independently contribute to users' perceptions of websites. This is very relevant for theories of website perceptions and for practitioners of web design.
Advances in Very High Frequency Power Conversion
Kovacevic, Milovan
Resonant and quasi-resonant converters operated at frequencies above 30 MHz have attracted special attention in the last two decades. Compared to conventional converters operated at ~100 kHz, they offer significant advantages: smaller volume and weight, lower cost, and faster transient performance....... Excellent performance and small size of magnetic components and capacitors at very high frequencies, along with constant advances in performance of power semiconductor devices, suggests a sizable shift in consumer power supplies market into this area in the near future. To operate dc-dc converter power...... method provides low complexity and low gate loss simultaneously. A direct design synthesis method is provided for resonant SEPIC converters employing this technique. Most experimental prototypes were developed using low cost, commercially available power semiconductors. Due to very fast transient...
Payne, J.R. [Payne Environmental Consultants Inc., Encinitas, CA (United States); Terrill, E.; Carter, M.; Otero, M.; Middleton, W.; Chen, A. [Scripps Inst. of Oceanography, La Jolla, CA (United States); French McCay, D.; Mueller, C.; Jayko, K. [Applied Science Associates Inc., Narragansett, RI (United States); Nordhausen, W.; Lewis, R.; Lampinen, M.; Evans, T. [California Dept. of Fish and Game, San Diego, CA (United States). Office of Spill Prevention and Response; Ohlmann, C. [California Univ., Santa Barbara, CA (United States); Via, G.L.; Ruiz-Santana, H.; Maly, M.; Willoughby, B.; Varela, C. [United States Coast Guard Pacific Strike Team, Novato, CA (United States); Lynch, P.; Sanchez, P. [Marine Spill Response Corp., San Diego, CA (United States)
2007-07-01
Extensive coastal areas in the United States have been designated as pre-approved zones for dispersant applications in the event of an oil spill. Although the use of dispersants may reduce impacts to wildlife and shoreline habitats, it is recognized that the dispersed oil may cause impacts to organisms in the water column. The State of California Department of Fish and Game Office of Spill Prevention and Response is currently using oil spill fate and transport modeling to address this issue. The purpose is to develop the time and spatial scales, and equipment needs for a formal dispersed oil monitoring plan (DOMP) to document hydrocarbon water column concentrations, potentially exposed zooplankton, and the impact of the oil spills with and without dispersant use. A series of 7 fluorescein dye releases were completed off the coast of San Diego, California in order to test the operational framework for repeated sampling of dispersed oil plumes as outlined in the DOMP. The ability of high-frequency radar to provide surface current input data to oil spill models was also evaluated. The dye concentrations were measured over three spatial dimensions and time in order to verify the model-predicted movement of subsurface dye. Surface current fields at varying depths were also measured and the subsurface dye plume structure was mapped using a GPS coupled towed-fluorometer equipped with pressure sensors. Measurements were compared with data from traditional special monitoring of applied response technology (SMART). The database acquired through this program represents a technical resource that can help physical and chemical oceanographers, modelers, spill response and contingency planners involved in the debate of whether or not to use dispersants to mitigate near shore and open ocean marine oil spills. 14 refs., 2 tabs., 14 figs.
Senapati, Nimai; Chabbi, Abad; Giostri, André Faé; Yeluripati, Jagadeesh B; Smith, Pete
2016-12-01
The DailyDayCent biogeochemical model was used to simulate nitrous oxide (N 2 O) emissions from two contrasting agro-ecosystems viz. a mown-grassland and a grain-cropping system in France. Model performance was tested using high frequency measurements over three years; additionally a local sensitivity analysis was performed. Annual N 2 O emissions of 1.97 and 1.24kgNha -1 year -1 were simulated from mown-grassland and grain-cropland, respectively. Measured and simulated water filled pore space (r=0.86, ME=-2.5%) and soil temperature (r=0.96, ME=-0.63°C) at 10cm soil depth matched well in mown-grassland. The model predicted cumulative hay and crop production effectively. The model simulated soil mineral nitrogen (N) concentrations, particularly ammonium (NH 4 + ), reasonably, but the model significantly underestimated soil nitrate (NO 3 - ) concentration under both systems. In general, the model effectively simulated the dynamics and the magnitude of daily N 2 O flux over the whole experimental period in grain-cropland (r=0.16, ME=-0.81gNha -1 day -1 ), with reasonable agreement between measured and modelled N 2 O fluxes for the mown-grassland (r=0.63, ME=-0.65gNha -1 day -1 ). Our results indicate that DailyDayCent has potential for use as a tool for predicting overall N 2 O emissions in the study region. However, in-depth analysis shows some systematic discrepancies between measured and simulated N 2 O fluxes on a daily basis. The current exercise suggests that the DailyDayCent may need improvement, particularly the sub-module responsible for N transformations, for better simulating soil mineral N, especially soil NO 3 - concentration, and N 2 O flux on a daily basis. The sensitivity analysis shows that many factors such as climate change, N-fertilizer use, input uncertainty and parameter value could influence the simulation of N 2 O emissions. Sensitivity estimation also helped to identify critical parameters, which need careful estimation or site
Modeling the frequency response of photovoltaic inverters
Ernauli Christine Aprilia, A.; Cuk, V.; Cobben, J.F.G.; Ribeiro, P.F.; Kling, W.L.
2012-01-01
The increased presence of photovoltaic (PV) systems inevitably affects the power quality in the grid. This new reality demands grid power quality studies involving PV inverters. This paper proposes several frequency response models in the form of equivalent circuits. Models are based on laboratory
Nonlinear Modelling of Low Frequency Loudspeakers
Olsen, Erling Sandermann
1997-01-01
In the Danish LoDist project on distortion from dynamic low frequency loudspeakers a detailed nonlinear model of loudspeakers has been developed. The model has been implemented in a PC program so that it can be used to create signals for listening tests and analysis. Also, different methods...
Nonlinear Modelling of Low Frequency Loudspeakers
Olsen, Erling Sandermann
1997-01-01
In the Danish LoDist project on distortion from dynamic low-frequency loudspeakers, a detailed nonlinear model of loudspeakers has been developed. The model has been implemented in a PC program so that it can be used to create signals for listening tests and analysis. Also, different methods...
Tha AGS Booster high frequency rf system
Sanders, R.; Cameron, P.; Damn, R.
1988-01-01
A high level rf system, including a power amplifier and cavity has been designed for the AGS Booster. It covers a frequency range of 2.4 to 4.2 Mhz and will be used to accelerate high intensity proton, and low intensity polarized proton beams to 1.5 GeV and heavy ions to 0.35 GeV per nucleon. A total accelerating voltage of up to 90kV will be provided by two cavities, each having two gaps. The internally cross-coupled, pushpull cavities are driven by an adjacently located power amplifier. In order to accommodate the high beam intensity, up to 0.75 /times/ 10 13 protons per bunch, a low plate resistance power tetrode is used. The tube anode is magnetically coupled to one of the cavity's two paralleled cells. The amplifier is a grounded cathode configuration driven by a remotely located solid state amplifier
Cultures of High-frequency Trading
Lange, Ann-Christina; Lenglet, Marc; Seyfert, Robert
2016-01-01
As part of ongoing work to lay a foundation for social studies of high-frequency trading (HFT), this paper introduces the culture(s) of HFT as a sociological problem relating to knowledge and practice. HFT is often discussed as a purely technological development, where all that matters is the speed...... of allocating, processing and transmitting data. Indeed, the speed at which trades are executed and data transmitted is accelerating, and it is fair to say that algorithms are now the primary interacting agents operating in the financial markets. However, we contend that HFT is first and foremost a cultural...
Grombein, Thomas; Seitz, Kurt; Heck, Bernhard
2017-03-01
National height reference systems have conventionally been linked to the local mean sea level, observed at individual tide gauges. Due to variations in the sea surface topography, the reference levels of these systems are inconsistent, causing height datum offsets of up to ±1-2 m. For the unification of height systems, a satellite-based method is presented that utilizes global geopotential models (GGMs) derived from ESA's satellite mission Gravity field and steady-state Ocean Circulation Explorer (GOCE). In this context, height datum offsets are estimated within a least squares adjustment by comparing the GGM information with measured GNSS/leveling data. While the GNSS/leveling data comprises the full spectral information, GOCE GGMs are restricted to long wavelengths according to the maximum degree of their spherical harmonic representation. To provide accurate height datum offsets, it is indispensable to account for the remaining signal above this maximum degree, known as the omission error of the GGM. Therefore, a combination of the GOCE information with the high-resolution Earth Gravitational Model 2008 (EGM2008) is performed. The main contribution of this paper is to analyze the benefit, when high-frequency topography-implied gravity signals are additionally used to reduce the remaining omission error of EGM2008. In terms of a spectral extension, a new method is proposed that does not rely on an assumed spectral consistency of topographic heights and implied gravity as is the case for the residual terrain modeling (RTM) technique. In the first step of this new approach, gravity forward modeling based on tesseroid mass bodies is performed according to the Rock-Water-Ice (RWI) approach. In a second step, the resulting full spectral RWI-based topographic potential values are reduced by the effect of the topographic gravity field model RWI_TOPO_2015, thus, removing the long to medium wavelengths. By using the latest GOCE GGMs, the impact of topography
Elastic Modulus at High Frequency of Polymerically Stabilized Suspensions
Nommensen, P.A.; Duits, Michael H.G.; van den Ende, Henricus T.M.; Mellema, J.
2000-01-01
The elastic moduli of polymerically stabilized suspensions consisting of colloidal silica particles coated with endgrafted PDMS (Mn = 80 000) in heptane, were measured as a function of concentration. And the elastic modulus at high frequency G'.. was quantitatively described by model calculations
The JET high frequency pellet injector project
Geraud, Alain; Dentan, M.; Whitehead, A.; Butcher, P.; Communal, D.; Faisse, F.; Gedney, J.; Gros, G.; Guillaume, D.; Hackett, L.; Hennion, V.; Homfray, D.; Lucock, R.; McKivitt, J.; Sibbald, M.; Portafaix, C.; Perin, J.P.; Reade, M.; Sands, D.; Saille, A.
2007-01-01
A new deuterium ice pellet injector is in preparation for JET. It is designed to inject both small pellets (variable volume within 1-2 mm 3 ) at high frequency (up to 60 Hz) for ELM mitigation experiments and large pellets (volume within 35-70 mm 3 ) at moderate frequency (up to 15 Hz) for plasma fuelling. It is based on the screw extruder technology developed by PELIN and pneumatic acceleration. An injection line will connect the injector to the flight tubes already in place to convey the pellets toward the plasma either from the low field side or from the high field side of the torus. This injection line enables: (i) the pumping of the propellant gas, (ii) the provision of the vacuum interface with the torus and (iii) the selection of the flight tube to be used via a fast selector. All the interfaces have been designed and a prototype injector is being built, to demonstrate that the required performance is achievable
High Tc superconductors at microwave frequencies
Gruener, G.
1991-01-01
The author discusses various experiments conducted in the micro- and millimeter wave spectral range on thin film and single crystal specimens of the high temperature oxide superconductors. For high quality film the surface resistance R s is, except at low temperatures, due to thermally excited carriers, with extrinsic effects playing only a secondary role. Because of the low loss various passive microwave components, such as resonators, delay lines and filters, with performance far superior to those made of normal metals can be fabricated. The conductivity measured at millimeter wave frequencies displays a peak below T c . Whether this is due to coherence factors or due to the change of the relaxation rate when the materials enter the superconducting state remains to be seen
High-frequency behavior of magnetic composites
Lagarkov, Andrey N.; Rozanov, Konstantin N.
2009-01-01
The paper reviews recent progress in the field of microwave magnetic properties of composites. The problem under discussion is developing composites with high microwave permeability that are needed in many applications. The theory of magnetic composites is briefly sketched with the attention paid to the laws governing the magnetic frequency dispersion in magnetic materials and basic mixing rules for composites. Recent experimental reports on the microwave performance of magnetic composites, as well as data on the agreement of the mixing rules with the measured permeability of composites that are available from the literature are discussed. From the data, a conclusion is made that the validity of a mixing rule is determined by the permeability contrast in the composite, i.e., the difference between permeability of inclusions and that of the host matrix. When the contrast is low, the Maxwell Garnet mixing rule is frequently valid. When the contrast is high, which is of the most interest for obtaining high microwave permeability of a composite, no conventionally accepted theory is capable of accurately predicting the permeability of the composites. Therefore, the mixing rules do not allow the microwave properties of magnetic composites to be predicted when the permeability of inclusions is high, that is the case of the most interest. Because of that, general limitations to the microwave performance of composites are of importance. In particular, an important relation constraining the microwave permeability of composites follows from Kittel's theory of ferromagnetic resonance and analytical properties of frequency dependence of permeability. Another constraint concerning the bandwidth of electromagnetic wave absorbers follows from the Kramers-Kronig relations for the reflection coefficient. The constraints are of importance in design and analysis of electromagnetic wave absorbers and other devices that employ the microwave magnetic properties of composites, such as
Ricardo Luiz Cordioli
Full Text Available To investigate whether performing alveolar recruitment or adding inspiratory pauses could promote physiologic benefits (VT during moderately-high-frequency positive pressure ventilation (MHFPPV delivered by a conventional ventilator in a porcine model of severe acute respiratory distress syndrome (ARDS.Prospective experimental laboratory study with eight pigs. Induction of acute lung injury with sequential pulmonary lavages and injurious ventilation was initially performed. Then, animals were ventilated on a conventional mechanical ventilator with a respiratory rate (RR = 60 breaths/minute and PEEP titrated according to ARDS Network table. The first two steps consisted of a randomized order of inspiratory pauses of 10 and 30% of inspiratory time. In final step, we removed the inspiratory pause and titrated PEEP, after lung recruitment, with the aid of electrical impedance tomography. At each step, PaCO2 was allowed to stabilize between 57-63 mmHg for 30 minutes.The step with RR of 60 after lung recruitment had the highest PEEP when compared with all other steps (17 [16,19] vs 14 [10, 17]cmH2O, but had lower driving pressures (13 [13,11] vs 16 [14, 17]cmH2O, higher P/F ratios (212 [191,243] vs 141 [105, 184] mmHg, lower shunt (23 [20, 23] vs 32 [27, 49]%, lower dead space ventilation (10 [0, 15] vs 30 [20, 37]%, and a more homogeneous alveolar ventilation distribution. There were no detrimental effects in terms of lung mechanics, hemodynamics, or gas exchange. Neither the addition of inspiratory pauses or the alveolar recruitment maneuver followed by decremental PEEP titration resulted in further reductions in VT.During MHFPPV set with RR of 60 bpm delivered by a conventional ventilator in severe ARDS swine model, neither the inspiratory pauses or PEEP titration after recruitment maneuver allowed reduction of VT significantly, however the last strategy decreased driving pressures and improved both shunt and dead space.
Carbon nanotube transistor based high-frequency electronics
Schroter, Michael
At the nanoscale carbon nanotubes (CNTs) have higher carrier mobility and carrier velocity than most incumbent semiconductors. Thus CNT based field-effect transistors (FETs) are being considered as strong candidates for replacing existing MOSFETs in digital applications. In addition, the predicted high intrinsic transit frequency and the more recent finding of ways to achieve highly linear transfer characteristics have inspired investigations on analog high-frequency (HF) applications. High linearity is extremely valuable for an energy efficient usage of the frequency spectrum, particularly in mobile communications. Compared to digital applications, the much more relaxed constraints for CNT placement and lithography combined with already achieved operating frequencies of at least 10 GHz for fabricated devices make an early entry in the low GHz HF market more feasible than in large-scale digital circuits. Such a market entry would be extremely beneficial for funding the development of production CNTFET based process technology. This talk will provide an overview on the present status and feasibility of HF CNTFET technology will be given from an engineering point of view, including device modeling, experimental results, and existing roadblocks. Carbon nanotube transistor based high-frequency electronics.
Cosmic microwave background distortions at high frequencies
Peter, W.; Peratt, A.L.
1988-01-01
The authors analyze the deviation of the cosmic background radiation spectrum from the 2.76+-0.02 0 Κ blackbody curve. If the cosmic background radiation is due to absorption and re-emission of synchrotron radiation from galactic-width current filaments, higher-order synchrotron modes are less thermalized than lower-order modes, causing a distortion of the blackbody curve at higher frequencies. New observations of the microwave background spectrum at short wavelengths should provide an indication of the number of synchrotron modes thermalized in this process. The deviation of the spectrum from that of a perfect blackbody can thus be correlated with astronomical observations such as filament temperatures and electron energies. The results are discussed and compared with the theoretical predictions of other models which assume the presence of intergalactic superconducting cosmic strings
Thermal history of the plasma and high-frequency gravitons
Giovannini, Massimo
2009-01-01
Possible deviations from a radiation-dominated evolution, occurring prior the synthesis of light nuclei, impacted on the spectral energy density of high-frequency gravitons. For a systematic scrutiny of this situation, the $\\Lambda$CDM paradigm must be complemented by (at least two) physical parameters describing, respectively, a threshold frequency and a slope. The supplementary frequency scale sets the lower border of a high-frequency domain where the spectral energy grows with a slope which depends, predominantly, upon the total sound speed of the plasma right after inflation. While the infra-red region of the graviton energy spectrum is nearly scale-invariant, the expected signals for typical frequencies larger than 0.01 nHz are hereby analyzed in a model-independent framework by requiring that the total sound speed of the post-inflationary plasma is smaller than the speed of light. Current (e.g. low-frequency) upper limits on the tensor power spectra (determined from the combined analysis of the three la...
Effect of high-frequency excitation on natural frequencies of spinning discs
Hansen, Morten Hartvig
2000-01-01
The effect of high-frequency, non-resonant parametric excitation on the low-frequency response of spinning discs is considered. The parametric excitation is obtained through a non-constant rotation speed, where the frequency of the pulsating overlay is much higher than the lowest natural frequenc......The effect of high-frequency, non-resonant parametric excitation on the low-frequency response of spinning discs is considered. The parametric excitation is obtained through a non-constant rotation speed, where the frequency of the pulsating overlay is much higher than the lowest natural...
Goudot, G.; Mirault, T.; Arnal, B.; Boisson-Vidal, C.; Le Bonniec, B.; Gaussem, P.; Galloula, A.; Tanter, M.; Messas, E.; Pernot, M.
2017-12-01
Post-thrombotic syndrome, a frequent complication of deep venous thrombosis, can be reduced with early vein recanalization. Pulsed cavitational therapy (PCT) using ultrasound is a recent non-invasive approach. We propose to test the efficacy and safety of high-frequency focused PCT for drug-free thrombolysis (thrombotripsy) in a realistic in vitro model of venous thrombosis. To reproduce venous thrombosis conditions, human whole blood was allowed to clot by stasis in silicone tubes (6 mm internal diameter) at a 30 cm H2O pressure, maintained during the whole experiment. We engineered an ultrasound device composed of dual 2.25 MHz transducers centered around a 6 MHz imaging probe. A therapeutic focus was generated at a 3.2 cm depth from the probe. Thrombotripsy was performed by longitudinally scanning the thrombus at three different speeds: 1 mm s-1 (n = 6) 2 mm s-1 (n = 6) 3 mm s-1 (n = 12). Restored outflow was measured every three passages. Filters were placed to evaluate the debris size. Twenty-four occlusive thrombi, of 2.5 cm mean length and 4.4 kPa mean stiffness, were studied. Flow restoration was systematically obtained by nine subsequent passages (4.5 min maximum). By varying the device’s speed, we found an optimal speed of 1 mm s-1 to be efficient for effective recanalization with 90 s (three passages). Within 90 s, flow restoration was of 80, 62 and 74% at respectively 1, 2 and 3 mm s-1. For all groups, cavitation cloud drilled a 1.7 mm mean diameter channel throughout the clot. Debris analysis showed 92% of debris 200 µm.
High frequency CARM driver for rf linacs
Danly, B.G.
1993-01-01
This CARM program has successfully demonstrated the first ever long-pulse CARM oscillator operation; these results demonstrate the potential of CARMs as an alternative source of millimeter waves to the gyrotron for ECRH plasma heating. The result of 1.8 MW at 27.8 GHz and 0.5 μs pulse width in the TE 11 mode represent a clear demonstration of the capabilities of the CARM oscillator for the production of high powers with large frequency upshift. It is hoped that this successful proof-of-principle demonstration.will lead to further development of the CARM as an ECRH source by the DOE Office of Fusion Energy, Development and Technology Division. This success is a direct outcome of this support of the Advanced Energy Projects Office of DOE in the form of this program. The CARM amplifier component of the program, although unsuccessful at obtaining CARM amplifier operation at 17 GHz, has succeeded by furthering the understanding of the limitations and difficulties that lie ahead for continued CARM amplifier development. The amplifier component of the program has successfully demonstrated a high power second and third harmonic gyro-TWT amplifier. Up to 5 MW of power at 17.1 GHz and >50dB gain have been obtained. These results should be viewed as an important contribution of this program to the development of viable microwave sources for powering the next linear collider. Indeed, the present gyro-amplifier, which resulted from this program, is presently being used in ongoing high-gradient accelerator research at MIT under a DOE High Energy Physics grant. As a result of both the oscillator and amplifier advances made during this program, the CARM and harmonic gyro-TWT have reached a significantly more mature level; their future role in specific applications of benefit to DOEs OFE and HEP offices may now be pursued
The AGS Booster high frequency rf system
Sanders, R.T.; Cameron, P.; Eng, W.; Goldman, M.A.; Jablonski, E.; Kasha, D.; Keane, J.; McNerney, A.; Meth, M.; Plotkin, M.; Puglisi, M.; Ratti, A.; Spitz, R.
1991-01-01
A high level rf system, including a power amplifier and cavity, has been designed and built for the AGS Booster. It covers a frequency range of 2.4 to 4.2 MHz and will be used to accelerate high intensity protons. Low intensity polarized protons and heavy ions, to the 1.5 GeV level. A total accelerating voltage of up to 90 kV will be provided by two cavities, each having two gaps. The internally cross coupled, pushpull cavities are driven by an adjacently located power amplifier. In order to accommodate beam intensities up to 0.75 x 10 13 protons per bunch, a low plate resistance power tetrode is used. The tube anode is magnetically coupled to one of the cavity's two parallel cells. The amplifier is a grounded cathode configuration driven by a remotely located solid-state amplifier. It has been tested in the laboratory at full gap voltage with satisfactory results. 5 refs., 2 figs., 1 tab
HIGH FREQUENCY ELECTROSTATIC INSTABILITIES IN A PLASMA
Klein, M W; Auer, P L
1963-06-15
The dispersion relation is examined for a collisionless infinite plasma in the presence of an anisotropic Maxwellian velocity distribution and a uniform external magnetic field. Unstable solutions exist below the muitiples of the electron cyclotron frequency provided the temperature anisotropy is sufficiently large. The dependence of the growth rate upon harmonic number, density, angle of propagation with respect to the magnetic field, and frequency is discussed for zero as well as non-zero parallel temperatures. In the latter case, the waves are strongly damped as their frequency approaches a multiple of the gyro- frequency. (auth)
Chaos in high-power high-frequency gyrotrons
Airila, M.
2004-01-01
Gyrotron interaction is a complex nonlinear dynamical process, which may turn chaotic in certain circumstances. The emergence of chaos renders dynamical systems unpredictable and causes bandwidth broadening of signals. Such effects would jeopardize the prospect of advanced gyrotrons in fusion. Therefore, it is important to be aware of the possibility of chaos in gyrotrons. There are three different chaos scenarios closely related to the development of high-power gyrotrons: First, the onset of chaos in electron trajectories would lead to difficulties in the design and efficient operation of depressed potential collectors, which are used for efficiency enhancement. Second, the radio-frequency signal could turn chaotic, decreasing the output power and the spectral purity of the output signal. As a result, mode conversion, transmission, and absorption efficiencies would be reduced. Third, spatio-temporal chaos in the resonator field structure can set a limit for the use of large-diameter interaction cavities and high-order TE modes (large azimuthal index) allowing higher generated power. In this thesis, the issues above are addressed with numerical modeling. It is found that chaos in electron residual energies is practically absent in the parameter region corresponding to high efficiency. Accordingly, depressed collectors are a feasible solution also in advanced high-power gyrotrons. A new method is presented for straightforward numerical solution of the one-dimensional self-consistent time-dependent gyrotron equations, and the method is generalized to two dimensions. In 1D, a chart of gyrotron oscillations is calculated. It is shown that the regions of stationary oscillations, automodulation, and chaos have a complicated topology in the plane of generalized gyrotron variables. The threshold current for chaotic oscillations exceeds typical operating currents by a factor of ten. However, reflection of the output signal may significantly lower the threshold. 2D
Iwaki, A.; Fujiwara, H.
2012-12-01
Broadband ground motion computations of scenario earthquakes are often based on hybrid methods that are the combinations of deterministic approach in lower frequency band and stochastic approach in higher frequency band. Typical computation methods for low-frequency and high-frequency (LF and HF, respectively) ground motions are the numerical simulations, such as finite-difference and finite-element methods based on three-dimensional velocity structure model, and the stochastic Green's function method, respectively. In such hybrid methods, LF and HF wave fields are generated through two different methods that are completely independent of each other, and are combined at the matching frequency. However, LF and HF wave fields are essentially not independent as long as they are from the same event. In this study, we focus on the relation among acceleration envelopes at different frequency bands, and attempt to synthesize HF ground motion using the information extracted from LF ground motion, aiming to propose a new method for broad-band strong motion prediction. Our study area is Kanto area, Japan. We use the K-NET and KiK-net surface acceleration data and compute RMS envelope at four frequency bands: 0.5-1.0 Hz, 1.0-2.0 Hz, 2.0-4.0 Hz, .0-8.0 Hz, and 8.0-16.0 Hz. Taking the ratio of the envelopes of adjacent bands, we find that the envelope ratios have stable shapes at each site. The empirical envelope-ratio characteristics are combined with low-frequency envelope of the target earthquake to synthesize HF ground motion. We have applied the method to M5-class earthquakes and a M7 target earthquake that occurred in the vicinity of Kanto area, and successfully reproduced the observed HF ground motion of the target earthquake. The method can be applied to a broad band ground motion simulation for a scenario earthquake by combining numerically-computed low-frequency (~1 Hz) ground motion with the empirical envelope ratio characteristics to generate broadband ground motion
Contactless or High Frequency Conductometry or Oscillometry of Electrolytes
Kiumars Ghowsi; Hosein Ghowsi
2013-01-01
Circuit models are used to express the behavior of the conductometric cells in the radio frequency to microwave region .The capacitive cell has two era classic era and modern era as a detector for Capillary Zone Electrophoresis . Capacitive Cell where electrodes are outside the Cells and frequency of the electric signal is in the cell the radio frequency range is modeled. Both microscopic phenomena occurring at radio frequencies in electrolytes and macroscopic phenomena the circuit model for ...
High-Frequency Axial Fatigue Test Procedures for Spectrum Loading
2016-07-20
cycle runout limit. PURPOSE 2. To develop the capability to perform High-Frequency (H-F) Spectrum Fatigue tests, an in- house Basic and...response of the test specimen to the command input signal for load cycling . These cycle -by- cycle errors accumulate over the life of the test specimen...fatigue life model. It is expected that the cycle -by- cycle P-V error may vary substantially depending on the load spectrum content, the compensation
High-frequency modulation of ion-acoustic waves.
Albright, N. W.
1972-01-01
A large amplitude, high-frequency electromagnetic oscillation is impressed on a nonrelativistic, collisionless plasma from an external source. The frequency is chosen to be far from the plasma frequency (in fact, lower). The resulting electron velocity distribution function strongly modifies the propagation of ion-acoustic waves parallel to the oscillating electric field. The complex frequency is calculated numerically.
Sheath impedance effects in very high frequency plasma experiments
Schwarzenbach, W.; Howling, A.A.; Fivaz, M.; Brunner, S.; Hollenstein, C.
1995-05-01
The frequency dependence (13.56 MHz to 70 MHz) of the ion energy distribution at the ground electrode was measured by mass spectrometry in a symmetrical capacitive argon discharge. Reduced sheath impedance at Very High Frequency allows high levels of plasma power and substrate ion flux whilst maintaining low levels of ion energy and electrode voltage. The lower limit of ion bombardment energy is fixed by the sheath floating potential at high frequency, in contrast to low frequencies where only the rf voltage amplitude is determinant. The capacitive sheaths are thinner at high frequencies which accentuates the high frequency reduction in sheath impedance. It is argued that the frequency dependence of sheath impedance is responsible for the principal characteristics of Very High Frequency plasmas. The measurements are summarised by simple physical descriptions and compared with a Particle-In-Cell simulation. (author) figs., tabs., refs
Toulabi, Mohammadreza; Bahrami, Shahab; Ranjbar, Ali Mohammad
2018-03-01
In most of the existing studies, the frequency response in the variable speed wind turbines (VSWTs) is simply realized by changing the torque set-point via appropriate inputs such as frequency deviations signal. However, effective dynamics and systematic process design have not been comprehensively discussed yet. Accordingly, this paper proposes a proportional-derivative frequency controller and investigates its performance in a wind farm consisting of several VSWTs. A band-pass filter is deployed before the proposed controller to avoid responding to either steady state frequency deviations or high rate of change of frequency. To design the controller, the frequency model of the wind farm is first characterized. The proposed controller is then designed based on the obtained open loop system. The stability region associated with the controller parameters is analytically determined by decomposing the closed-loop system's characteristic polynomial into the odd and even parts. The performance of the proposed controller is evaluated through extensive simulations in MATLAB/Simulink environment in a power system comprising a high penetration of VSWTs equipped with the proposed controller. Finally, based on the obtained feasible area and appropriate objective function, the optimal values associated with the controller parameters are determined using the genetic algorithm (GA). Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
HIGH FREQUENCY INDUCTION WELDING OF HIGH SILICON STEEL TUBES
Ricardo Miranda Alé
2012-06-01
Full Text Available High-Si steel is a low cost alternative for the fabrication of tubular structures resistant to atmospheric corrosion. However, the literature has often pointed out that steels presenting a higher Si content and/or a lower Mn/Si ratio have higher susceptibility to defects at the weld bond line during HFIW (High Frequency Induction Welding process, which has been widely used for manufacturing small diameter tubes. In this study the effect of the HFIW conditions on the quality of steel tubes with high-Si content and low Mn/Si ratio is investigated. The quality of welded tubes was determined by flare test and the defects in the bond line were identified by SEM. It has been found that higher welding speeds, V-convergence angles and power input should be applied in welding of high-Si steel, when compared to similar strength C-Mn steel.
Modulated convection at high frequencies and large modulation amplitudes
Swift, J.B.; Hohenberg, P.C.
1987-01-01
Modulated Rayleigh-Benard convection is analyzed for high frequencies and large modulation amplitudes. The linear theory of Gershuni and Zhukhovitskii is generalized to the nonlinear domain, and a subcritical bifurcation to convection is found in agreement with the experiments of Niemela and Donnelly. The crossover between the high-frequency (''Stokes layer'') regime and the low-frequency regime studied previously is analyzed
Calculation of Leakage Inductance for High Frequency Transformers
Ouyang, Ziwei; Jun, Zhang; Hurley, William Gerard
2015-01-01
Frequency dependent leakage inductance is often observed. High frequency eddy current effects cause a reduction in leakage inductance. The proximity effect between adjacent layers is responsible for the reduction of leakage inductance. This paper gives a detailed analysis of high frequency leakag...
High Frequency Longitudinal Damped Vibrations of a Cylindrical Ultrasonic Transducer
Mihai Valentin Predoi
2014-01-01
Full Text Available Ultrasonic piezoelectric transducers used in classical nondestructive testing are producing in general longitudinal vibrations in the MHz range. A simple mechanical model of these transducers would be very useful for wave propagation numerical simulations, avoiding the existing complicated models in which the real components of the transducer are modeled by finite elements. The classical model for longitudinal vibrations is not adequate because the generated longitudinal wave is not dispersive, the velocity being the same at any frequency. We have adopted the Rayleigh-Bishop model, which avoids these limitations, even if it is not converging to the first but to the second exact longitudinal mode in an elastic rod, as obtained from the complicated Pochhammer-Chree equations. Since real transducers have significant vibrations damping, we have introduced a damping term in the Rayleigh-Bishop model, increasing the imaginary part and keeping almost identical real part of the wavenumber. Common transducers produce amplitude modulated signals, completely attenuated after several periods. This can be modeled by two close frequencies, producing a “beat” phenomenon, superposed on the high damping. For this reason, we introduce a two-rod Rayleigh-Bishop model with damping. Agreement with measured normal velocity on the transducer free surface is encouraging for continuation of the research.
A Lagrangian mixing frequency model for transported PDF modeling
Turkeri, Hasret; Zhao, Xinyu
2017-11-01
In this study, a Lagrangian mixing frequency model is proposed for molecular mixing models within the framework of transported probability density function (PDF) methods. The model is based on the dissipations of mixture fraction and progress variables obtained from Lagrangian particles in PDF methods. The new model is proposed as a remedy to the difficulty in choosing the optimal model constant parameters when using conventional mixing frequency models. The model is implemented in combination with the Interaction by exchange with the mean (IEM) mixing model. The performance of the new model is examined by performing simulations of Sandia Flame D and the turbulent premixed flame from the Cambridge stratified flame series. The simulations are performed using the pdfFOAM solver which is a LES/PDF solver developed entirely in OpenFOAM. A 16-species reduced mechanism is used to represent methane/air combustion, and in situ adaptive tabulation is employed to accelerate the finite-rate chemistry calculations. The results are compared with experimental measurements as well as with the results obtained using conventional mixing frequency models. Dynamic mixing frequencies are predicted using the new model without solving additional transport equations, and good agreement with experimental data is observed.
An inkjet vision measurement technique for high-frequency jetting
Kwon, Kye-Si; Jang, Min-Hyuck; Park, Ha Yeong; Ko, Hyun-Seok
2014-01-01
Inkjet technology has been used as manufacturing a tool for printed electronics. To increase the productivity, the jetting frequency needs to be increased. When using high-frequency jetting, the printed pattern quality could be non-uniform since the jetting performance characteristics including the jetting speed and droplet volume could vary significantly with increases in jet frequency. Therefore, high-frequency jetting behavior must be evaluated properly for improvement. However, it is difficult to measure high-frequency jetting behavior using previous vision analysis methods, because subsequent droplets are close or even merged. In this paper, we present vision measurement techniques to evaluate the drop formation of high-frequency jetting. The proposed method is based on tracking target droplets such that subsequent droplets can be excluded in the image analysis by focusing on the target droplet. Finally, a frequency sweeping method for jetting speed and droplet volume is presented to understand the overall jetting frequency effects on jetting performance
An inkjet vision measurement technique for high-frequency jetting
Kwon, Kye-Si, E-mail: kskwon@sch.ac.kr; Jang, Min-Hyuck; Park, Ha Yeong [Department of Mechanical Engineering, Soonchunhyang University 22, Soonchunhyang-Ro, Shinchang, Asan Chungnam 336-745 (Korea, Republic of); Ko, Hyun-Seok [Department of Electrical and Robot Engineering, Soonchunhyang University, 22, Soonchunhyang-Ro, Shinchang, Asan Chungnam 336-745 (Korea, Republic of)
2014-06-15
Inkjet technology has been used as manufacturing a tool for printed electronics. To increase the productivity, the jetting frequency needs to be increased. When using high-frequency jetting, the printed pattern quality could be non-uniform since the jetting performance characteristics including the jetting speed and droplet volume could vary significantly with increases in jet frequency. Therefore, high-frequency jetting behavior must be evaluated properly for improvement. However, it is difficult to measure high-frequency jetting behavior using previous vision analysis methods, because subsequent droplets are close or even merged. In this paper, we present vision measurement techniques to evaluate the drop formation of high-frequency jetting. The proposed method is based on tracking target droplets such that subsequent droplets can be excluded in the image analysis by focusing on the target droplet. Finally, a frequency sweeping method for jetting speed and droplet volume is presented to understand the overall jetting frequency effects on jetting performance.
Factors controlling high-frequency radiation from extended ruptures
Beresnev, Igor A.
2017-09-01
Small-scale slip heterogeneity or variations in rupture velocity on the fault plane are often invoked to explain the high-frequency radiation from earthquakes. This view has no theoretical basis, which follows, for example, from the representation integral of elasticity, an exact solution for the radiated wave field. The Fourier transform, applied to the integral, shows that the seismic spectrum is fully controlled by that of the source time function, while the distribution of final slip and rupture acceleration/deceleration only contribute to directivity. This inference is corroborated by the precise numerical computation of the full radiated field from the representation integral. We compare calculated radiation from four finite-fault models: (1) uniform slip function with low slip velocity, (2) slip function spatially modulated by a sinusoidal function, (3) slip function spatially modulated by a sinusoidal function with random roughness added, and (4) uniform slip function with high slip velocity. The addition of "asperities," both regular and irregular, does not cause any systematic increase in the spectral level of high-frequency radiation, except for the creation of maxima due to constructive interference. On the other hand, an increase in the maximum rate of slip on the fault leads to highly amplified high frequencies, in accordance with the prediction on the basis of a simple point-source treatment of the fault. Hence, computations show that the temporal rate of slip, not the spatial heterogeneity on faults, is the predominant factor forming the high-frequency radiation and thus controlling the velocity and acceleration of the resulting ground motions.
High-frequency analog integrated circuit design
1995-01-01
To learn more about designing analog integrated circuits (ICs) at microwave frequencies using GaAs materials, turn to this text and reference. It addresses GaAs MESFET-based IC processing. Describes the newfound ability to apply silicon analog design techniques to reliable GaAs materials and devices which, until now, was only available through technical papers scattered throughout hundred of articles in dozens of professional journals.
Coplanar stripline components for high frequency application
Goverdhanam, Kavita; Simons, Rainee N.; Dib, Nihad; Katehi, Linda P. B.
1996-01-01
In this paper, coplanar stripline discontinuities such as a slit, a right angle bend and a T-junction are characterized and their performance is parameterized with respect to frequency and geometry. Lumped equivalent circuits are presented for some of them. The element values are obtained from the measured discontinuity scattering (S) parameters. The experimental results are compared with theoretical data obtained using the Finite Difference Time Domain (FD-TD) technique for validation and show very good agreement.
Low velocity target detection based on time-frequency image for high frequency ground wave radar
YAN Songhua; WU Shicai; WEN Biyang
2007-01-01
The Doppler spectral broadening resulted from non-stationary movement of target and radio-frequency interference will decrease the veracity of target detection by high frequency ground wave(HEGW)radar.By displaying the change of signal energy on two dimensional time-frequency images based on time-frequency analysis,a new mathematical morphology method to distinguish target from nonlinear time-frequency curves is presented.The analyzed results from the measured data verify that with this new method the target can be detected correctly from wide Doppler spectrum.
Direct excitation of a high frequency wave by a low frequency wave in a plasma
Tanaka, Takayasu
1993-01-01
A new mechanism is presented of an excitation of a high frequency wave by a low frequency wave in a plasma. This mechanism works when the low frequency wave varies in time in a manner deviated from a usual periodic motion with a constant amplitude. The conversion rate is usually not large but the conversion is done without time delay after the variation of the low frequency wave. The Manley Rowe relation in the usual sense does not hold in this mechanism. This mechanism can excite also waves with same or lower frequencies. (author)
High frequency electromagnetic processes in induction motors supplied from PWM inverters
Ioan Ţilea
2010-12-01
Full Text Available The paper presents the electromagnetic interference between induction motors and inverters when at high frequency electromagnetic process appears in induction motors having a parallel resonant effect because of parasitic capacitive coupling between windings and ground, using a numerical model in simulink and a high frequency induction motor equivalent circuit model this effect is shown.
High-frequency homogenization of zero frequency stop band photonic and phononic crystals
Antonakakis, Tryfon; Guenneau, Sebastien
2013-01-01
We present an accurate methodology for representing the physics of waves, for periodic structures, through effective properties for a replacement bulk medium: This is valid even for media with zero frequency stop-bands and where high frequency phenomena dominate. Since the work of Lord Rayleigh in 1892, low frequency (or quasi-static) behaviour has been neatly encapsulated in effective anisotropic media. However such classical homogenization theories break down in the high-frequency or stop band regime. Higher frequency phenomena are of significant importance in photonics (transverse magnetic waves propagating in infinite conducting parallel fibers), phononics (anti-plane shear waves propagating in isotropic elastic materials with inclusions), and platonics (flexural waves propagating in thin-elastic plates with holes). Fortunately, the recently proposed high-frequency homogenization (HFH) theory is only constrained by the knowledge of standing waves in order to asymptotically reconstruct dispersion curves an...
The effect of high-frequency ground motion on the MAPLE-X10 reactor
Bhan, S.; Dunbar, S.
1989-06-01
The effect of high-frequency ground motion on structures and equipment in nuclear reactors is examined by subjecting simple linear models to selected recorded ground motions which exhibit low and high frequencies. Computed damage measures indicate that high-frequency short-duration ground motion, such as that observed in eastern North America, have a minimal effect on structures with low natural frequencies. Response spectra of high-frequency ground motion indicate that higher forces are induced in structures with high natural frequencies as compared to those induced by low-frequency ground motion. However, reported observations of earthquake damage in eastern North America suggest that high-frequency ground motion causes little of no damage to structures. This may be due to the energy absorption capability of structures. It is concluded that the response spectrum representative of ground motion observed in eastern North America may give an over-conservative measure of the response of structures with high natural frequencies, since it does not account for the typically observed short duration of high-frequency ground motion and for the energy absorption capability of structures. Detailed nonlinear analysis of specific structures with high natural frequencies should be performed to better predict the actual response. Recommendations for a nonlinear analysis of typical structures with high natural frequencies are made
High Frequency Acoustic Propagation using Level Set Methods
2007-01-01
solution of the high frequency approximation to the wave equation. Traditional solutions to the Eikonal equation in high frequency acoustics are...the Eikonal equation derived from the high frequency approximation to the wave equation, ucuH ∇±=∇ )(),( xx , with the nonnegative function c(x...For simplicity, we only consider the case ucuH ∇+=∇ )(),( xx . Two difficulties must be addressed when solving the Eikonal equation in a fixed
Sources for high frequency heating. Performance and limitations
Le Gardeur, R.
1976-01-01
The various problems encountered in high frequency heating of plasmas can be decomposed into three spheres of action: theoretical development, antenna designing, and utilization of power sources. By classifying heating into three spectral domains, present and future needs are enumerated. Several specific antenna designs are treated. High frequency power sources are reviewed. The actual development of the gyratron is discussed in view of future needs in very high frequency heating of plasmas [fr
Calibration of High Frequency MEMS Microphones
Shams, Qamar A.; Humphreys, William M.; Bartram, Scott M.; Zuckewar, Allan J.
2007-01-01
Understanding and controlling aircraft noise is one of the major research topics of the NASA Fundamental Aeronautics Program. One of the measurement technologies used to acquire noise data is the microphone directional array (DA). Traditional direction array hardware, consisting of commercially available condenser microphones and preamplifiers can be too expensive and their installation in hard-walled wind tunnel test sections too complicated. An emerging micro-machining technology coupled with the latest cutting edge technologies for smaller and faster systems have opened the way for development of MEMS microphones. The MEMS microphone devices are available in the market but suffer from certain important shortcomings. Based on early experiments with array prototypes, it has been found that both the bandwidth and the sound pressure level dynamic range of the microphones should be increased significantly to improve the performance and flexibility of the overall array. Thus, in collaboration with an outside MEMS design vendor, NASA Langley modified commercially available MEMS microphone as shown in Figure 1 to meet the new requirements. Coupled with the design of the enhanced MEMS microphones was the development of a new calibration method for simultaneously obtaining the sensitivity and phase response of the devices over their entire broadband frequency range. Over the years, several methods have been used for microphone calibration. Some of the common methods of microphone calibration are Coupler (Reciprocity, Substitution, and Simultaneous), Pistonphone, Electrostatic actuator, and Free-field calibration (Reciprocity, Substitution, and Simultaneous). Traditionally, electrostatic actuators (EA) have been used to characterize air-condenser microphones for wideband frequency ranges; however, MEMS microphones are not adaptable to the EA method due to their construction and very small diaphragm size. Hence a substitution-based, free-field method was developed to
Felipe S. Rossi
2008-01-01
Full Text Available INTRODUCTION: Studies comparing high frequency oscillatory and conventional ventilation in acute respiratory distress syndrome have used low values of positive end-expiratory pressure and identified a need for better recruitment and pulmonary stability with high frequency. OBJECTIVE: To compare conventional and high frequency ventilation using the lower inflection point of the pressure-volume curve as the determinant of positive end-expiratory pressure to obtain similar levels of recruitment and alveolar stability. METHODS: After lung lavage of adult rabbits and lower inflection point determination, two groups were randomized: conventional (positive end-expiratory pressure = lower inflection point; tidal volume=6 ml/kg and high frequency ventilation (mean airway pressures= lower inflection point +4 cmH2O. Blood gas and hemodynamic data were recorded over 4 h. After sacrifice, protein analysis from lung lavage and histologic evaluation were performed. RESULTS: The oxygenation parameters, protein and histological data were similar, except for the fact that significantly more normal alveoli were observed upon protective ventilation. High frequency ventilation led to lower PaCO2 levels. DISCUSSION: Determination of the lower inflection point of the pressure-volume curve is important for setting the minimum end expiratory pressure needed to keep the airways opened. This is useful when comparing different strategies to treat severe respiratory insufficiency, optimizing conventional ventilation, improving oxygenation and reducing lung injury. CONCLUSIONS: Utilization of the lower inflection point of the pressure-volume curve in the ventilation strategies considered in this study resulted in comparable efficacy with regards to oxygenation and hemodynamics, a high PaCO2 level and a lower pH. In addition, a greater number of normal alveoli were found after protective conventional ventilation in an animal model of acute respiratory distress syndrome.
Model validity and frequency band selection in operational modal analysis
Au, Siu-Kui
2016-12-01
Experimental modal analysis aims at identifying the modal properties (e.g., natural frequencies, damping ratios, mode shapes) of a structure using vibration measurements. Two basic questions are encountered when operating in the frequency domain: Is there a mode near a particular frequency? If so, how much spectral data near the frequency can be included for modal identification without incurring significant modeling error? For data with high signal-to-noise (s/n) ratios these questions can be addressed using empirical tools such as singular value spectrum. Otherwise they are generally open and can be challenging, e.g., for modes with low s/n ratios or close modes. In this work these questions are addressed using a Bayesian approach. The focus is on operational modal analysis, i.e., with 'output-only' ambient data, where identification uncertainty and modeling error can be significant and their control is most demanding. The approach leads to 'evidence ratios' quantifying the relative plausibility of competing sets of modeling assumptions. The latter involves modeling the 'what-if-not' situation, which is non-trivial but is resolved by systematic consideration of alternative models and using maximum entropy principle. Synthetic and field data are considered to investigate the behavior of evidence ratios and how they should be interpreted in practical applications.
Favier, Mathieu; Carcenac, Carole; Drui, Guillaume; Boulet, Sabrina; El Mestikawy, Salah; Savasta, Marc
2013-12-05
It has been suggested that glutamatergic system hyperactivity may be related to the pathogenesis of Parkinson's disease (PD). Vesicular glutamate transporters (VGLUT1-3) import glutamate into synaptic vesicles and are key anatomical and functional markers of glutamatergic excitatory transmission. Both VGLUT1 and VGLUT2 have been identified as definitive markers of glutamatergic neurons, but VGLUT 3 is also expressed by non glutamatergic neurons. VGLUT1 and VGLUT2 are thought to be expressed in a complementary manner in the cortex and the thalamus (VL/VM), in glutamatergic neurons involved in different physiological functions. Chronic high-frequency stimulation (HFS) of the subthalamic nucleus (STN) is the neurosurgical therapy of choice for the management of motor deficits in patients with advanced PD. STN-HFS is highly effective, but its mechanisms of action remain unclear. This study examines the effect of STN-HFS on VGLUT1-3 expression in different brain nuclei involved in motor circuits, namely the basal ganglia (BG) network, in normal and 6-hydroxydopamine (6-OHDA) lesioned rats. Here we report that: 1) Dopamine(DA)-depletion did not affect VGLUT1 and VGLUT3 expression but significantly decreased that of VGLUT2 in almost all BG structures studied; 2) STN-HFS did not change VGLUT1-3 expression in the different brain areas of normal rats while, on the contrary, it systematically induced a significant increase of their expression in DA-depleted rats and 3) STN-HFS reversed the decrease in VGLUT2 expression induced by the DA-depletion. These results show for the first time a comparative analysis of changes of expression for the three VGLUTs induced by STN-HFS in the BG network of normal and hemiparkinsonian rats. They provide evidence for the involvement of VGLUT2 in the modulation of BG cicuits and in particular that of thalamostriatal and thalamocortical pathways suggesting their key role in its therapeutic effects for alleviating PD motor symptoms.
Articulated pipes conveying fluid pulsating with high frequency
Jensen, Jakob Søndergaard
1999-01-01
Stability and nonlinear dynamics of two articulated pipes conveying fluid with a high-frequency pulsating component is investigated. The non-autonomous model equations are converted into autonomous equations by approximating the fast excitation terms with slowly varying terms. The downward hanging...... pipe position will lose stability if the mean flow speed exceeds a certain critical value. Adding a pulsating component to the fluid flow is shown to stabilize the hanging position for high values of the ratio between fluid and pipe-mass, and to marginally destabilize this position for low ratios....... An approximate nonlinear solution for small-amplitude flutter oscillations is obtained using a fifth-order multiple scales perturbation method, and large-amplitude oscillations are examined by numerical integration of the autonomous model equations, using a path-following algorithm. The pulsating fluid component...
Prediction of high frequency core loss for electrical steel using the data provided by manufacturer
Roy, Rakesh; Dalal, Ankit; Kumar, Praveen
2016-07-01
This paper describes a technique to determine the core loss data, at high frequencies, using the loss data provided by the lamination manufacturer. Steinmetz equation is used in this proposed method to determine core loss at high frequency. This Steinmetz equation consists of static hysteresis and eddy current loss. The presented technique considers the coefficients of Steinmetz equation as variable with frequency and peak magnetic flux density. The high frequency core loss data, predicted using this model is compared with the catalogue data given by manufacturer and very good accuracy has been obtained for a wide range of frequency.
High frequency noise studies at the Hartousov mofette area (CZE)
Schmidt, Andreas; Flores-Estrella, Hortencia; Pommerencke, Julia; Umlauft, Josefine
2014-05-01
Ambient noise analysis has been used as a reliable tool to investigate sub-surface structures at seismological quiet regions with none or less specific seismic events. Here, we consider the acoustic signals from a single mofette at the Hartoušov area (CZE) as a noise-like high frequency source caused by multiple near surface degassing processes in a restricted location. From this assumption we have used different array geometries for recording at least one hour of continuous noise. We installed triangular arrays with 3 component geophones: the first deployment consisted on two co-centric triangles with side length of 30 and 50 m with the mofette in the center; the second deployment consisted on two triangular arrays, both with side length of 30 m, co-directional to the mofette. Furthermore, we also installed profiles with 24 channels and vertical geophones locating them in different positions with respect to the mofette. In this work, we present preliminary results from the data analysis dependent on the geometry, to show the characteristics of the noise wave-field referring to frequency content and propagation features, such as directionality and surface wave velocity. The spectral analysis shows that the energy is concentrated in a frequency band among 10 and 40 Hz. However, in this interval there is no evidence of any exclusive fundamental frequencies. From this, man-induced influences can be identified as intermittent signal peaks in narrow frequency bands and can be separated to receive the revised mofette wave-field record. The inversion of dispersive surface waves, that were detected by interferometric methods, provides a velocity model down to 12 m with an S-wave velocity between 160 and 180 m/s on the uppermost layer. Furthermore, the interferometric signal properties indicate that it is not possible to characterize the mofette as a punctual source, but rather as a conglomerate of multiple sources with time and location variations.
Effective High-Frequency Permeability of Compacted Metal Powders
Volkovskaya, I. I.; Semenov, V. E.; Rybakov, K. I.
2018-03-01
We propose a model for determination of the effective complex permeability of compacted metal-powder media. It is based on the equality of the magnetic moment in a given volume of the media with the desired effective permeability to the total magnetic moment of metal particles in the external high-frequency magnetic field, which arises due to excitation of electric eddy currents in the particles. Calculations within the framework of the proposed model allow us to refine the values of the real and imaginary components of the permeability of metal powder compacts in the microwave band. The conditions of applicability of the proposed model are formulated, and their fulfillment is verified for metal powder compacts in the microwave and millimeter wavelength bands.
High frequency response of open quantum dots
Brunner, R.; Meisels, R.; Kuchar, F.; Ferry, D.; Elhassan, M.; Ishibashi, K.
2002-01-01
Full text: We investigate the response of the transport through open quantum dots to millimeterwave radiation (up to 55 GHz). In the low-field region ( 11 cm -2 and a mobility of 1.2 10 6 cm 2 /Vs. By applying a sufficiently negative voltage to the gates the 2DES is split into two regions connected only by a dot-like region (about 350 nm diameter) between them. The DC data exhibit backscattering peaks at fields of a few tenth of a Tesla. Shubnikovde- Haas (SdH) oscillations appear above 0.5 T. While the SdH oscillations show the usual temperature dependence, the backscattering peaks are temperature independent up to 2.5 K. The backscattering peak shows a reduction of 10 percent due to the millimeterwave irradiation. However, due to the temperature independence of this peak, this reduction cannot simply be attributed to electron heating. This conclusion is supported by the observation of a strong frequency dependence of the reduction of the peak height. (author)
Design and modeling of inductors, capacitors and coplanar waveguides at tens of GHz frequencies
Aryan, Naser Pour
2015-01-01
This book describes the basic principles of designing and modelling inductors, MIM capacitors and coplanar waveguides at frequencies of several tens of GHz. The author explains the design and modelling of key, passive elements, such as capacitors, inductors and transmission lines that enable high frequency MEMS operating at frequencies in the orders of tens of GHz.
Donai, Jeremy J; Halbritter, Rachel M
The purpose of this study was to investigate the ability of normal-hearing listeners to use high-frequency energy for gender identification from naturally produced speech signals. Two experiments were conducted using a repeated-measures design. Experiment 1 investigated the effects of increasing high-pass filter cutoff (i.e., increasing the low-frequency spectral limit) on gender identification from naturally produced vowel segments. Experiment 2 studied the effects of increasing high-pass filter cutoff on gender identification from naturally produced sentences. Confidence ratings for the gender identification task were also obtained for both experiments. Listeners in experiment 1 were capable of extracting talker gender information at levels significantly above chance from vowel segments high-pass filtered up to 8.5 kHz. Listeners in experiment 2 also performed above chance on the gender identification task from sentences high-pass filtered up to 12 kHz. Cumulatively, the results of both experiments provide evidence that normal-hearing listeners can utilize information from the very high-frequency region (above 4 to 5 kHz) of the speech signal for talker gender identification. These findings are at variance with current assumptions regarding the perceptual information regarding talker gender within this frequency region. The current results also corroborate and extend previous studies of the use of high-frequency speech energy for perceptual tasks. These findings have potential implications for the study of information contained within the high-frequency region of the speech spectrum and the role this region may play in navigating the auditory scene, particularly when the low-frequency portion of the spectrum is masked by environmental noise sources or for listeners with substantial hearing loss in the low-frequency region and better hearing sensitivity in the high-frequency region (i.e., reverse slope hearing loss).
Nonlinear Modelling of Low Frequency Loudspeakers
Olsen, Erling Sandermann; Christensen, Knud Bank
1996-01-01
A central part of the Danish LoDist project has been the derivation of an extended equivalent circuit and a corresponding set of differential equations suitable for the simulation of high-fidelity woofers under large and very large (clipping) signal conditions. A model including suspension creep ...
Building a good initial model for full-waveform inversion using frequency shift filter
Wang, Guanchao; Wang, Shangxu; Yuan, Sanyi; Lian, Shijie
2018-05-01
Accurate initial model or available low-frequency data is an important factor in the success of full waveform inversion (FWI). The low-frequency helps determine the kinematical relevant components, low-wavenumber of the velocity model, which are in turn needed to avoid FWI trap in local minima or cycle-skipping. However, in the field, acquiring data that common point of low- and high-frequency signal, then utilize the high-frequency data to obtain the low-wavenumber velocity model. It is well known that the instantaneous amplitude envelope of a wavelet is invariant under frequency shift. This means that resolution is constant for a given frequency bandwidth, and independent of the actual values of the frequencies. Based on this property, we develop a frequency shift filter (FSF) to build the relationship between low- and high-frequency information with a constant frequency bandwidth. After that, we can use the high-frequency information to get a plausible recovery of the low-wavenumber velocity model. Numerical results using synthetic data from the Marmousi and layer model demonstrate that our proposed envelope misfit function based on the frequency shift filter can build an initial model with more accurate long-wavelength components, when low-frequency signals are absent in recorded data.
A high-switching-frequency flyback converter in resonant mode
Li, Jianting; van Horck, Frank B.M.; Daniel, Bobby J.; Bergveld, Henk Jan
2017-01-01
The demand of miniaturization of power systems has accelerated the research on high-switching-frequency power converters. A flyback converter in resonant mode that features low switching losses, less transformer losses, and low switching noise at high switching frequency is investigated in this
Long range ultra-high frequency (UHF) radio frequency identification (RFID) antenna design
Reynolds, Nathan D.
There is an ever-increasing demand for radio frequency identification (RFID) tags that are passive, long range, and mountable on multiple surfaces. Currently, RFID technology is utilized in numerous applications such as supply chain management, access control, and public transportation. With the combination of sensory systems in recent years, the applications of RFID technology have been extended beyond tracking and identifying. This extension includes applications such as environmental monitoring and healthcare applications. The available sensory systems usually operate in the medium or high frequency bands and have a low read range. However, the range limitations of these systems are being overcome by the development of RFID sensors focused on utilizing tags in the ultra-high frequency (UHF) band. Generally, RFID tags have to be mounted to the object that is being identified. Often the objects requiring identification are metallic. The inherent properties of metallic objects have substantial effects on nearby electromagnetic radiation; therefore, the operation of the tag antenna is affected when mounted on a metallic surface. This outlines one of the most challenging problems for RFID systems today: the optimization of tag antenna performance in a complex environment. In this research, a novel UHF RFID tag antenna, which has a low profile, long range, and is mountable on metallic surfaces, is designed analytically and simulated using a 3-D electromagnetic simulator, ANSYS HFSS. A microstrip patch antenna is selected as the antenna structure, as patch antennas are low profile and suitable for mounting on metallic surfaces. Matching and theoretical models of the microstrip patch antenna are investigated. Once matching and theory of a microstrip patch antenna is thoroughly understood, a unique design technique using electromagnetic band gap (EBG) structures is explored. This research shows that the utilization of an EBG structure in the patch antenna design yields
Shell structure in superdeformed nuclei at high rotational frequencies
Ploszajczak, M.
1980-01-01
Properties of the shell structure in superdeformed nuclei at high rotational frequencies are discussed. Moreover, stability of the high spin compound nucleus with respect to the fission and the emission of light particles is investigated. (author)
Ionospheric heating with oblique high-frequency waves
Field, E.C. Jr.; Bloom, R.M.; Kossey, P.A.
1990-01-01
This paper presents calculations of ionospheric electron temperature and density perturbations and ground-level signal changes produced by intense oblique high-frequency (HF) radio waves. The analysis takes into account focusing at caustics, the consequent Joule heating of the surrounding plasma, heat conduction, diffusion, and recombination processes, these being the effects of a powerful oblique modifying wave. It neglects whatever plasma instabilities might occur. The authors then seek effects on a secondary test wave that is propagated along the same path as the first. The calculations predict ground-level field strength reductions of several decibels in the test wave for modifying waves having effective radiated power (ERP) in the 85- to 90-dBW range. These field strength changes are similar in sign, magnitude, and location to ones measured in Soviet experiments. The location of the signal change is sensitive to the frequency and the model ionosphere assumed; so future experiments should employ the widest possible range of frequencies and propagation conditions. An ERP of 90 dBW seems to be a sort of threshold that, if exceeded, might result in substantial rather than small signal changes. The conclusions are based solely on Joule heating and subsequent refraction of waves passing through caustic regions
Application of high Tc superconductors as frequency selective surfaces: Experiment and theory
Dawei Zhang; Yahya Rahmat-Samii; Fetterman, H.R.
1993-01-01
YBa 2 Cu 3 O 7-x and Tl 2 CaBa 2 Cu 2 O 8 high temperature superconducting thin films were utilized to fabricate frequency selective surfaces (FSS) at millimeter-wave frequencies (75--110 GHz). An analytical/numerical model was applied, using a Floquet expansion and the Method of Moments, to analyze bandstop superconducting frequency selective surfaces. Experimental results were compared with the model, and showed a good agreement with resonant frequency prediction with an accuracy of better than 1%. The use of the superconducting frequency selective surfaces as quasi-optical millimeter-wave bandpass filters was also demonstrated
A MEMS-based high frequency x-ray chopper
Siria, A; Schwartz, W; Chevrier, J [Institut Neel, CNRS-Universite Joseph Fourier Grenoble, BP 166, F-38042 Grenoble Cedex 9 (France); Dhez, O; Comin, F [ESRF, 6 rue Jules Horowitz, F-38043 Grenoble Cedex 9 (France); Torricelli, G [Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom)
2009-04-29
Time-resolved x-ray experiments require intensity modulation at high frequencies (advanced rotating choppers have nowadays reached the kHz range). We here demonstrate that a silicon microlever oscillating at 13 kHz with nanometric amplitude can be used as a high frequency x-ray chopper. We claim that using micro-and nanoelectromechanical systems (MEMS and NEMS), it will be possible to achieve higher frequencies in excess of hundreds of megahertz. Working at such a frequency can open a wealth of possibilities in chemistry, biology and physics time-resolved experiments.
High Accelerating Field Superconducting Radio Frequency Cavities
Orr, R. S.; Saito, K.; Furuta, F.; Saeki, T.; Inoue, H.; Morozumi, Y.; Higo, T.; Higashi, Y.; Matsumoto, H.; Kazakov, S.; Yamaoka, H.; Ueno, K.; Sato, M.
2008-06-01
We have conducted a study of a series of single cell superconducting RF cavities at KEK. These tests were designed to investigate the effect of surface treatment on the maximum accelerating field attainable. All of these cavities are of the ICHIRO shape, based on the Low Loss shape. Our results indicate that accelerating fields as high as the theoretical maximum of 50MV/m are attainable.
Simulation of pulmonary ventilation at high frequency
Dhawan, A.P.; LeRoyer, E.
1986-01-01
X-ray mammography is the only breast cancer detection technique presently available with proven efficacy. Mammographic detection of early breast cancer requires optimal radiological or image processing techniques to show the smallest details clearly. The present research is focused on the image processing techniques that may be applied on low-dose film mammograms to enhance mammographic features. The method is based on the optimal adaptive neighborhood processing technique using a suitable contrast enhancement function. This processing allows to enhance the mammographic features without enhancing the noise and undesired background variations. The authors developed an optimal adaptive neighborhood processing technique for mammographic feature enhancement using geometrical enhancement functions. In their previous approach, the selection of a suitable geometrical contrast enhancement function was difficult. The authors now developed a generalized mathematical model to enhance the contrast in optimal adaptive neighborhood processing. This model is based on the statistics of the image and also tunable to suit the visual perception of the radiologist. The overall evaluation of the technique with ROC analysis using the clinical film-mammograms is in progress
Improving mental task classification by adding high frequency band information.
Zhang, Li; He, Wei; He, Chuanhong; Wang, Ping
2010-02-01
Features extracted from delta, theta, alpha, beta and gamma bands spanning low frequency range are commonly used to classify scalp-recorded electroencephalogram (EEG) for designing brain-computer interface (BCI) and higher frequencies are often neglected as noise. In this paper, we implemented an experimental validation to demonstrate that high frequency components could provide helpful information for improving the performance of the mental task based BCI. Electromyography (EMG) and electrooculography (EOG) artifacts were removed by using blind source separation (BSS) techniques. Frequency band powers and asymmetry ratios from the high frequency band (40-100 Hz) together with those from the lower frequency bands were used to represent EEG features. Finally, Fisher discriminant analysis (FDA) combining with Mahalanobis distance were used as the classifier. In this study, four types of classifications were performed using EEG signals recorded from four subjects during five mental tasks. We obtained significantly higher classification accuracy by adding the high frequency band features compared to using the low frequency bands alone, which demonstrated that the information in high frequency components from scalp-recorded EEG is valuable for the mental task based BCI.
High frequency characterization of Galfenol minor flux density loops
Ling Weng
2017-05-01
Full Text Available This paper presents the first measurement of ring-shaped Galfenol’s high frequency-dependent minor flux density loops. The frequencies of applied AC magnetic field are 1k, 5k, 10k, 50k, 100k, 200k, 300k, 500 kHz. The measurements show that the cycle area between the flux density and magnetic field curves increase with increasing frequency. High frequency-dependent characterization, including coercivity, specific power loss, residual induction, and maximum relative permeability are discussed. Minor loops for different max induction are also measured and discussed at the same frequency 100 kHz. Minor loops with the same max induction 0.05 T for different frequencies 50, 100, 200, 300, 400 kHz are measured and specific power loss are discussed.
High-frequency multimodal atomic force microscopy
Adrian P. Nievergelt
2014-12-01
Full Text Available Multifrequency atomic force microscopy imaging has been recently demonstrated as a powerful technique for quickly obtaining information about the mechanical properties of a sample. Combining this development with recent gains in imaging speed through small cantilevers holds the promise of a convenient, high-speed method for obtaining nanoscale topography as well as mechanical properties. Nevertheless, instrument bandwidth limitations on cantilever excitation and readout have restricted the ability of multifrequency techniques to fully benefit from small cantilevers. We present an approach for cantilever excitation and deflection readout with a bandwidth of 20 MHz, enabling multifrequency techniques extended beyond 2 MHz for obtaining materials contrast in liquid and air, as well as soft imaging of delicate biological samples.
High quality factor gigahertz frequencies in nanomechanical diamond resonators
Gaidarzhy, Alexei; Imboden, Matthias; Mohanty, Pritiraj; Rankin, Janet; Sheldon, Brian W.
2007-01-01
We report actuation and detection of gigahertz-range resonance frequencies in nano-crystalline diamond mechanical resonators. High order transverse vibration modes are measured in coupled-beam resonators exhibiting frequencies up to 1.441 GHz. The cantilever-array design of the resonators translates the gigahertz-range resonant motion of micron-long cantilever elements to the displacement of the central supporting structure. Use of nano-crystalline diamond further increases the frequency comp...
High-frequency energy in singing and speech
Monson, Brian Bruce
While human speech and the human voice generate acoustical energy up to (and beyond) 20 kHz, the energy above approximately 5 kHz has been largely neglected. Evidence is accruing that this high-frequency energy contains perceptual information relevant to speech and voice, including percepts of quality, localization, and intelligibility. The present research was an initial step in the long-range goal of characterizing high-frequency energy in singing voice and speech, with particular regard for its perceptual role and its potential for modification during voice and speech production. In this study, a database of high-fidelity recordings of talkers was created and used for a broad acoustical analysis and general characterization of high-frequency energy, as well as specific characterization of phoneme category, voice and speech intensity level, and mode of production (speech versus singing) by high-frequency energy content. Directionality of radiation of high-frequency energy from the mouth was also examined. The recordings were used for perceptual experiments wherein listeners were asked to discriminate between speech and voice samples that differed only in high-frequency energy content. Listeners were also subjected to gender discrimination tasks, mode-of-production discrimination tasks, and transcription tasks with samples of speech and singing that contained only high-frequency content. The combination of these experiments has revealed that (1) human listeners are able to detect very subtle level changes in high-frequency energy, and (2) human listeners are able to extract significant perceptual information from high-frequency energy.
The Influence of High-Frequency Envelope Information on Low-Frequency Vowel Identification in Noise.
Wiebke Schubotz
Full Text Available Vowel identification in noise using consonant-vowel-consonant (CVC logatomes was used to investigate a possible interplay of speech information from different frequency regions. It was hypothesized that the periodicity conveyed by the temporal envelope of a high frequency stimulus can enhance the use of the information carried by auditory channels in the low-frequency region that share the same periodicity. It was further hypothesized that this acts as a strobe-like mechanism and would increase the signal-to-noise ratio for the voiced parts of the CVCs. In a first experiment, different high-frequency cues were provided to test this hypothesis, whereas a second experiment examined more closely the role of amplitude modulations and intact phase information within the high-frequency region (4-8 kHz. CVCs were either natural or vocoded speech (both limited to a low-pass cutoff-frequency of 2.5 kHz and were presented in stationary 3-kHz low-pass filtered masking noise. The experimental results did not support the hypothesized use of periodicity information for aiding low-frequency perception.
The Influence of High-Frequency Envelope Information on Low-Frequency Vowel Identification in Noise.
Schubotz, Wiebke; Brand, Thomas; Kollmeier, Birger; Ewert, Stephan D
2016-01-01
Vowel identification in noise using consonant-vowel-consonant (CVC) logatomes was used to investigate a possible interplay of speech information from different frequency regions. It was hypothesized that the periodicity conveyed by the temporal envelope of a high frequency stimulus can enhance the use of the information carried by auditory channels in the low-frequency region that share the same periodicity. It was further hypothesized that this acts as a strobe-like mechanism and would increase the signal-to-noise ratio for the voiced parts of the CVCs. In a first experiment, different high-frequency cues were provided to test this hypothesis, whereas a second experiment examined more closely the role of amplitude modulations and intact phase information within the high-frequency region (4-8 kHz). CVCs were either natural or vocoded speech (both limited to a low-pass cutoff-frequency of 2.5 kHz) and were presented in stationary 3-kHz low-pass filtered masking noise. The experimental results did not support the hypothesized use of periodicity information for aiding low-frequency perception.
High frequency single mode traveling wave structure for particle acceleration
Ivanyan, M.I.; Danielyan, V.A.; Grigoryan, B.A.; Grigoryan, A.H. [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); Tsakanian, A.V. [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); Technische Universität Darmstadt, Institut TEMF, 64289 Darmstadt (Germany); Tsakanov, V.M., E-mail: tsakanov@asls.candle.am [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); Vardanyan, A.S.; Zakaryan, S.V. [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia)
2016-09-01
The development of the new high frequency slow traveling wave structures is one of the promising directions in accomplishment of charged particles high acceleration gradient. The disc and dielectric loaded structures are the most known structures with slowly propagating modes. In this paper a large aperture high frequency metallic two-layer accelerating structure is studied. The electrodynamical properties of the slowly propagating TM{sub 01} mode in a metallic tube with internally coated low conductive thin layer are examined.
Photoinduced High-Frequency Charge Oscillations in Dimerized Systems
Yonemitsu, Kenji
2018-04-01
Photoinduced charge dynamics in dimerized systems is studied on the basis of the exact diagonalization method and the time-dependent Schrödinger equation for a one-dimensional spinless-fermion model at half filling and a two-dimensional model for κ-(bis[ethylenedithio]tetrathiafulvalene)2X [κ-(BEDT-TTF)2X] at three-quarter filling. After the application of a one-cycle pulse of a specifically polarized electric field, the charge densities at half of the sites of the system oscillate in the same phase and those at the other half oscillate in the opposite phase. For weak fields, the Fourier transform of the time profile of the charge density at any site after photoexcitation has peaks for finite-sized systems that correspond to those of the steady-state optical conductivity spectrum. For strong fields, these peaks are suppressed and a new peak appears on the high-energy side, that is, the charge densities mainly oscillate with a single frequency, although the oscillation is eventually damped. In the two-dimensional case without intersite repulsion and in the one-dimensional case, this frequency corresponds to charge-transfer processes by which all the bonds connecting the two classes of sites are exploited. Thus, this oscillation behaves as an electronic breathing mode. The relevance of the new peak to a recently found reflectivity peak in κ-(BEDT-TTF)2X after photoexcitation is discussed.
Design and development of ITER high-frequency magnetic sensor
Ma, Y.; Vayakis, G.; Begrambekov, L. B.; Cooper, J.J.; Duran, I.; Hirsch, M.; Laqua, H.P.; Moreau, Ph.; Oosterbeek, J.W.; Spuig, P.; Stange, T.; Walsh, M.
2016-01-01
High-frequency (HF) inductive magnetic sensors are the primary ITER diagnostic set for Toroidal Alfvén Eigenmodes (TAE) detection, while they also supplement low-frequency MHD and plasma equilibrium measurements. These sensors will be installed on the inner surface of ITER vacuum vessel, operated in
Modelling of word usage frequency dynamics using artificial neural network
Maslennikova, Yu S; Bochkarev, V V; Voloskov, D S
2014-01-01
In this paper the method for modelling of word usage frequency time series is proposed. An artificial feedforward neural network was used to predict word usage frequencies. The neural network was trained using the maximum likelihood criterion. The Google Books Ngram corpus was used for the analysis. This database provides a large amount of data on frequency of specific word forms for 7 languages. Statistical modelling of word usage frequency time series allows finding optimal fitting and filtering algorithm for subsequent lexicographic analysis and verification of frequency trend models
High density terahertz frequency comb produced by coherent synchrotron radiation
Tammaro, S.; Pirali, O.; Roy, P.; Lampin, J.-F.; Ducournau, G.; Cuisset, A.; Hindle, F.; Mouret, G.
2015-07-01
Frequency combs have enabled significant progress in frequency metrology and high-resolution spectroscopy extending the achievable resolution while increasing the signal-to-noise ratio. In its coherent mode, synchrotron radiation is accepted to provide an intense terahertz continuum covering a wide spectral range from about 0.1 to 1 THz. Using a dedicated heterodyne receiver, we reveal the purely discrete nature of this emission. A phase relationship between the light pulses leads to a powerful frequency comb spanning over one decade in frequency. The comb has a mode spacing of 846 kHz, a linewidth of about 200 Hz, a fractional precision of about 2 × 10-10 and no frequency offset. The unprecedented potential of the comb for high-resolution spectroscopy is demonstrated by the accurate determination of pure rotation transitions of acetonitrile.
High Energy Single Frequency Resonant Amplifier, Phase I
National Aeronautics and Space Administration — This SBIR phase I project proposes a single frequency high energy resonant amplifier for remote sensing. Current state-of-art technologies can not provide all...
Oscillographic Chronopotentiometry with High and Low Frequency Current
无
2000-01-01
A novel electroanalytical method, oscillographic chronopotentiometry with high and low frequency current, is presented in this paper. With this method, the sensitivity of almost all kinds of oscillographic chronopotentiometry can be enhanced about one order.
High-Frequency Microwave Processing of Materials Laboratory
Federal Laboratory Consortium — FUNCTION: Conducts research on high-frequency microwave processing of materials using a highpower, continuous-wave (CW), 83-GHz, quasi-optical beam system for rapid,...
High-frequency matrix converter with square wave input
Carr, Joseph Alexander; Balda, Juan Carlos
2015-03-31
A device for producing an alternating current output voltage from a high-frequency, square-wave input voltage comprising, high-frequency, square-wave input a matrix converter and a control system. The matrix converter comprises a plurality of electrical switches. The high-frequency input and the matrix converter are electrically connected to each other. The control system is connected to each switch of the matrix converter. The control system is electrically connected to the input of the matrix converter. The control system is configured to operate each electrical switch of the matrix converter converting a high-frequency, square-wave input voltage across the first input port of the matrix converter and the second input port of the matrix converter to an alternating current output voltage at the output of the matrix converter.
Instrumentation for high-frequency meteorological observations from research vessel
VijayKumar, K.; Khalap, S.; Mehra, P.
Ship provides an attractive platform from which high-frequency meteorological observations (e.g., wind components, water vapor density, and air temperature) can be made accurately. However, accurate observations of meteorological variables depend...
Computation of High-Frequency Waves with Random Uncertainty
Malenova, Gabriela; Motamed, Mohammad; Runborg, Olof; Tempone, Raul
2016-01-01
or nonlinear functionals of the wave solution and its spatial/temporal derivatives. The numerical scheme combines two techniques: a high-frequency method based on Gaussian beams [2, 3], a sparse stochastic collocation method [4]. The fast spectral
Yu, Jiao; Takanari, Keisuke; Hong, Yi; Lee, Kee-Won; Amoroso, Nicholas J; Wang, Yadong; Wagner, William R; Kim, Kang
2013-04-01
The evaluation of candidate materials and designs for soft tissue scaffolds would benefit from the ability to monitor the mechanical remodeling of the implant site without the need for periodic animal sacrifice and explant analysis. Toward this end, the ability of non-invasive ultrasound elasticity imaging (UEI) to assess temporal mechanical property changes in three different types of porous, biodegradable polyurethane scaffolds was evaluated in a rat abdominal wall repair model. The polymers utilized were salt-leached scaffolds of poly(carbonate urethane) urea, poly(ester urethane) urea and poly(ether ester urethane) urea at 85% porosity. A total of 60 scaffolds (20 each type) were implanted in a full thickness muscle wall replacement in the abdomens of 30 rats. The constructs were ultrasonically scanned every 2 weeks and harvested at weeks 4, 8 and 12 for compression testing or histological analysis. UEI demonstrated different temporal stiffness trends among the different scaffold types, while the stiffness of the surrounding native tissue remained unchanged. The changes in average normalized strains developed in the constructs from UEI compared well with the changes of mean compliance from compression tests and histology. The average normalized strains and the compliance for the same sample exhibited a strong linear relationship. The ability of UEI to identify herniation and to characterize the distribution of local tissue in-growth with high resolution was also investigated. In summary, the reported data indicate that UEI may allow tissue engineers to sequentially evaluate the progress of tissue construct mechanical behavior in vivo and in some cases may reduce the need for interim time point animal sacrifice. Copyright © 2013 Elsevier Ltd. All rights reserved.
Reach/frequency for printed media: Personal probabilities or models
Mortensen, Peter Stendahl
2000-01-01
The author evaluates two different ways of estimating reach and frequency of plans for printed media. The first assigns reading probabilities to groups of respondents and calculates reach and frequency by simulation. the second estimates parameters to a model for reach/frequency. It is concluded ...... and estiamtes from such models are shown to be closer to panel data. the problem, however, is to get valid input for such models from readership surveys. Means for this are discussed....
Prediction of high frequency core loss for electrical steel using the data provided by manufacturer
Roy, Rakesh [National Institute of Technology Meghalaya, Shillong (India); Dalal, Ankit; Kumar, Praveen [Indian Institute of Technology Guwahati, Assam (India)
2016-07-15
This paper describes a technique to determine the core loss data, at high frequencies, using the loss data provided by the lamination manufacturer. Steinmetz equation is used in this proposed method to determine core loss at high frequency. This Steinmetz equation consists of static hysteresis and eddy current loss. The presented technique considers the coefficients of Steinmetz equation as variable with frequency and peak magnetic flux density. The high frequency core loss data, predicted using this model is compared with the catalogue data given by manufacturer and very good accuracy has been obtained for a wide range of frequency. - Highlights: • A curve fitting algorithm is proposed to predict core loss at high frequency. • The loss data given by the steel manufacturers are used in curve fitting algorithm. • The algorithm is tested on nine different material’s data set given by the manufacturer.
Prediction of high frequency core loss for electrical steel using the data provided by manufacturer
Roy, Rakesh; Dalal, Ankit; Kumar, Praveen
2016-01-01
This paper describes a technique to determine the core loss data, at high frequencies, using the loss data provided by the lamination manufacturer. Steinmetz equation is used in this proposed method to determine core loss at high frequency. This Steinmetz equation consists of static hysteresis and eddy current loss. The presented technique considers the coefficients of Steinmetz equation as variable with frequency and peak magnetic flux density. The high frequency core loss data, predicted using this model is compared with the catalogue data given by manufacturer and very good accuracy has been obtained for a wide range of frequency. - Highlights: • A curve fitting algorithm is proposed to predict core loss at high frequency. • The loss data given by the steel manufacturers are used in curve fitting algorithm. • The algorithm is tested on nine different material’s data set given by the manufacturer.
High Order Differential Frequency Hopping: Design and Analysis
Yong Li
2015-01-01
Full Text Available This paper considers spectrally efficient differential frequency hopping (DFH system design. Relying on time-frequency diversity over large spectrum and high speed frequency hopping, DFH systems are robust against hostile jamming interference. However, the spectral efficiency of conventional DFH systems is very low due to only using the frequency of each channel. To improve the system capacity, in this paper, we propose an innovative high order differential frequency hopping (HODFH scheme. Unlike in traditional DFH where the message is carried by the frequency relationship between the adjacent hops using one order differential coding, in HODFH, the message is carried by the frequency and phase relationship using two-order or higher order differential coding. As a result, system efficiency is increased significantly since the additional information transmission is achieved by the higher order differential coding at no extra cost on either bandwidth or power. Quantitative performance analysis on the proposed scheme demonstrates that transmission through the frequency and phase relationship using two-order or higher order differential coding essentially introduces another dimension to the signal space, and the corresponding coding gain can increase the system efficiency.
Ariko Fukushima
Full Text Available The hypersonic effect is a phenomenon in which sounds containing significant quantities of non-stationary high-frequency components (HFCs above the human audible range (max. 20 kHz activate the midbrain and diencephalon and evoke various physiological, psychological and behavioral responses. Yet important issues remain unverified, especially the relationship existing between the frequency of HFCs and the emergence of the hypersonic effect. In this study, to investigate the relationship between the hypersonic effect and HFC frequencies, we divided an HFC (above 16 kHz of recorded gamelan music into 12 band components and applied them to subjects along with an audible component (below 16 kHz to observe changes in the alpha2 frequency component (10-13 Hz of spontaneous EEGs measured from centro-parieto-occipital regions (Alpha-2 EEG, which we previously reported as an index of the hypersonic effect. Our results showed reciprocal directional changes in Alpha-2 EEGs depending on the frequency of the HFCs presented with audible low-frequency component (LFC. When an HFC above approximately 32 kHz was applied, Alpha-2 EEG increased significantly compared to when only audible sound was applied (positive hypersonic effect, while, when an HFC below approximately 32 kHz was applied, the Alpha-2 EEG decreased (negative hypersonic effect. These findings suggest that the emergence of the hypersonic effect depends on the frequencies of inaudible HFC.
Fukushima, Ariko; Yagi, Reiko; Kawai, Norie; Honda, Manabu; Nishina, Emi; Oohashi, Tsutomu
2014-01-01
The hypersonic effect is a phenomenon in which sounds containing significant quantities of non-stationary high-frequency components (HFCs) above the human audible range (max. 20 kHz) activate the midbrain and diencephalon and evoke various physiological, psychological and behavioral responses. Yet important issues remain unverified, especially the relationship existing between the frequency of HFCs and the emergence of the hypersonic effect. In this study, to investigate the relationship between the hypersonic effect and HFC frequencies, we divided an HFC (above 16 kHz) of recorded gamelan music into 12 band components and applied them to subjects along with an audible component (below 16 kHz) to observe changes in the alpha2 frequency component (10-13 Hz) of spontaneous EEGs measured from centro-parieto-occipital regions (Alpha-2 EEG), which we previously reported as an index of the hypersonic effect. Our results showed reciprocal directional changes in Alpha-2 EEGs depending on the frequency of the HFCs presented with audible low-frequency component (LFC). When an HFC above approximately 32 kHz was applied, Alpha-2 EEG increased significantly compared to when only audible sound was applied (positive hypersonic effect), while, when an HFC below approximately 32 kHz was applied, the Alpha-2 EEG decreased (negative hypersonic effect). These findings suggest that the emergence of the hypersonic effect depends on the frequencies of inaudible HFC.
Real-time and high accuracy frequency measurements for intermediate frequency narrowband signals
Tian, Jing; Meng, Xiaofeng; Nie, Jing; Lin, Liwei
2018-01-01
Real-time and accurate measurements of intermediate frequency signals based on microprocessors are difficult due to the computational complexity and limited time constraints. In this paper, a fast and precise methodology based on the sigma-delta modulator is designed and implemented by first generating the twiddle factors using the designed recursive scheme. This scheme requires zero times of multiplications and only half amounts of addition operations by using the discrete Fourier transform (DFT) and the combination of the Rife algorithm and Fourier coefficient interpolation as compared with conventional methods such as DFT and Fast Fourier Transform. Experimentally, when the sampling frequency is 10 MHz, the real-time frequency measurements with intermediate frequency and narrowband signals have a measurement mean squared error of ±2.4 Hz. Furthermore, a single measurement of the whole system only requires approximately 0.3 s to achieve fast iteration, high precision, and less calculation time.
THE RELATION OF FREQUENCY TO THE PHYSIOLOGICAL EFFECTS OF ULTRA-HIGH FREQUENCY CURRENTS.
Christie, R V; Loomis, A L
1929-01-31
1. Biological effects of electromagnetic waves emitted by a vacuum tube oscillator have been studied at frequencis ranging from 8,300,000 to 158,000,000 cycles per second (1.9 to 38 meters wave-length). 2. The effects produced on animals can be fully explained on the basis of the heat generated by high frequency currents which are induced in them. 3. No evidence was obtained to support the theory that certain wave-lengths have a specific action on living cells. 4. At frequencies below 50,000,000 cycles, the effect of these radiations on animals is proportionate to the intensity of the electro-magnetic field. As the frequency is increased beyond this point, the amount of induced current is diminished and the apparent lethality of the radiation is decreased. This can be explained by changes occurring in the dielectric properties of tissues at low wave-lengths.
Mishra, Rinku; Dey, M.
2018-04-01
An analytical model is developed that explains the propagation of a high frequency electrostatic surface wave along the interface of a plasma system where semi-infinite electron-ion plasma is interfaced with semi-infinite dusty plasma. The model emphasizes that the source of such high frequency waves is inherent in the presence of ion acoustic and dust ion acoustic/dust acoustic volume waves in electron-ion plasma and dusty plasma region. Wave dispersion relation is obtained for two distinct cases and the role of plasma parameters on wave dispersion is analyzed in short and long wavelength limits. The normalized surface wave frequency is seen to grow linearly for lower wave number but becomes constant for higher wave numbers in both the cases. It is observed that the normalized frequency depends on ion plasma frequencies when dust oscillation frequency is neglected.
Statistical modeling of total crash frequency at highway intersections
Arash M. Roshandeh
2016-04-01
Full Text Available Intersection-related crashes are associated with high proportion of accidents involving drivers, occupants, pedestrians, and cyclists. In general, the purpose of intersection safety analysis is to determine the impact of safety-related variables on pedestrians, cyclists and vehicles, so as to facilitate the design of effective and efficient countermeasure strategies to improve safety at intersections. This study investigates the effects of traffic, environmental, intersection geometric and pavement-related characteristics on total crash frequencies at intersections. A random-parameter Poisson model was used with crash data from 357 signalized intersections in Chicago from 2004 to 2010. The results indicate that out of the identified factors, evening peak period traffic volume, pavement condition, and unlighted intersections have the greatest effects on crash frequencies. Overall, the results seek to suggest that, in order to improve effective highway-related safety countermeasures at intersections, significant attention must be focused on ensuring that pavements are adequately maintained and intersections should be well lighted. It needs to be mentioned that, projects could be implemented at and around the study intersections during the study period (7 years, which could affect the crash frequency over the time. This is an important variable which could be a part of the future studies to investigate the impacts of safety-related works at intersections and their marginal effects on crash frequency at signalized intersections.
Three essays on the econometric analysis of high frequency financial data
OOMEN, Roel C. A.
2003-01-01
Defence date: 13 June 2003 Examining Board: Prof. H. Peter Boswijk, University of Amsterdam ; Prof. Søren Johansen, University of Copenhagen, Supervisor ; Prof. Helmut Lütkepohl, EUI ; Prof. Stephen Taylor, Lancaster University This thesis is motivated by the observation that the time series properties of financial security prices can vary fundamentally with their sampling frequency. Econometric models developed for low frequency data may thus be unsuitable for high frequency data and v...
On temporal correlations in high-resolution frequency counting
Dunker, Tim; Hauglin, Harald; Rønningen, Ole Petter
2016-01-01
We analyze noise properties of time series of frequency data from different counting modes of a Keysight 53230A frequency counter. We use a 10 MHz reference signal from a passive hydrogen maser connected via phase-stable Huber+Suhner Sucoflex 104 cables to the reference and input connectors of the counter. We find that the high resolution gap-free (CONT) frequency counting process imposes long-term correlations in the output data, resulting in a modified Allan deviation that is characteristic...
On the Ongoing Evolution of Very High Frequency Power Supplies
Knott, Arnold; Andersen, Toke Meyer; Kamby, Peter
2013-01-01
The ongoing demand for smaller and lighter power supplies is driving the motivation to increase the switching frequencies of power converters. Drastic increases however come along with new challenges, namely the increase of switching losses in all components. The application of power circuits used...... in radio frequency transmission equipment helps to overcome those. However those circuits were not designed to meet the same requirements as power converters. This paper summarizes the contributions in recent years in application of very high frequency (VHF) technologies in power electronics, describes...
Moral, A. del; Azanza, María J.
2015-01-01
A biomagnetic-electrical model is presented that explains rather well the experimentally observed synchronization of the bioelectric potential firing rate (“frequency”), f, of single unit neurons of Helix aspersa mollusc under the application of extremely low frequency (ELF) weak alternating (AC) magnetic fields (MF). The proposed model incorporates to our widely experimentally tested model of superdiamagnetism (SD) and Ca 2+ Coulomb explosion (CE) from lipid (LP) bilayer membrane (SD–CE model), the electrical quadrupolar long range interaction between the bilayer LP membranes of synchronized neuron pairs, not considered before. The quadrupolar interaction is capable of explaining well the observed synchronization. Actual extension of our SD–CE-model shows that the neuron firing frequency field, B, dependence becomes not modified, but the bioelectric frequency is decreased and its spontaneous temperature, T, dependence is modified. A comparison of the model with synchronization experimental results of pair of neurons under weak (B 0 ≅0.2–15 mT) AC-MF of frequency f M =50 Hz is reported. From the deduced size of synchronized LP clusters under B, is suggested the formation of small neuron networks via the membrane lipid correlation. - Highlights: • Neuron pair synchronization under low frequency alternating (AC) magnetic field (MF). • Superdiamagnetism and Ca 2+ Coulomb explosion for AC MF effect in synchronized frequency. • Membrane lipid electrical quadrupolar pair interaction as synchronization mechamism. • Good agreement of model with electrophysiological experiments on mollusc Helix neurons
Moral, A. del, E-mail: delmoral@unizar.es [Laboratorio de Magnetismo, Departamento de Física de Materia Condensada and Instituto de Ciencia de Materiales, Universidad de Zaragoza and Consejo Superior de Investigaciones Científicas, 50009 Zaragoza (Spain); Laboratorio de Magnetobiología, Departamento de Anatomía e Histología, Facultad de Medicina, Universidad de Zaragoza, 50009 Zaragoza (Spain); Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Madrid (Spain); Azanza, María J., E-mail: mjazanza@unizar.es [Laboratorio de Magnetobiología, Departamento de Anatomía e Histología, Facultad de Medicina, Universidad de Zaragoza, 50009 Zaragoza (Spain); Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Madrid (Spain)
2015-03-01
A biomagnetic-electrical model is presented that explains rather well the experimentally observed synchronization of the bioelectric potential firing rate (“frequency”), f, of single unit neurons of Helix aspersa mollusc under the application of extremely low frequency (ELF) weak alternating (AC) magnetic fields (MF). The proposed model incorporates to our widely experimentally tested model of superdiamagnetism (SD) and Ca{sup 2+} Coulomb explosion (CE) from lipid (LP) bilayer membrane (SD–CE model), the electrical quadrupolar long range interaction between the bilayer LP membranes of synchronized neuron pairs, not considered before. The quadrupolar interaction is capable of explaining well the observed synchronization. Actual extension of our SD–CE-model shows that the neuron firing frequency field, B, dependence becomes not modified, but the bioelectric frequency is decreased and its spontaneous temperature, T, dependence is modified. A comparison of the model with synchronization experimental results of pair of neurons under weak (B{sub 0}≅0.2–15 mT) AC-MF of frequency f{sub M}=50 Hz is reported. From the deduced size of synchronized LP clusters under B, is suggested the formation of small neuron networks via the membrane lipid correlation. - Highlights: • Neuron pair synchronization under low frequency alternating (AC) magnetic field (MF). • Superdiamagnetism and Ca{sup 2+} Coulomb explosion for AC MF effect in synchronized frequency. • Membrane lipid electrical quadrupolar pair interaction as synchronization mechamism. • Good agreement of model with electrophysiological experiments on mollusc Helix neurons.
A kinetic-MHD model for low frequency phenomena
Cheng, C.Z.
1991-07-01
A hybrid kinetic-MHD model for describing low-frequency phenomena in high beta anisotropic plasmas that consist of two components: a low energy core component and an energetic component with low density. The kinetic-MHD model treats the low energy core component by magnetohydrodynamic (MHD) description, the energetic component by kinetic approach such as the gyrokinetic equation, and the coupling between the dynamics of these two components through plasma pressure in the momentum equation. The kinetic-MHD model optimizes both the physics contents and the theoretical efforts in studying low frequency MHD waves and transport phenomena in general magnetic field geometries, and can be easily modified to include the core plasma kinetic effects if necessary. It is applicable to any magnetized collisionless plasma system where the parallel electric field effects are negligibly small. In the linearized limit two coupled eigenmode equations for describing the coupling between the transverse Alfven type and the compressional Alfven type waves are derived. The eigenmode equations are identical to those derived from the full gyrokinetic equation in the low frequency limit and were previously analyzed both analytically nd numerically to obtain the eigenmode structure of the drift mirror instability which explains successfully the multi-satellite observation of antisymmetric field-aligned structure of the compressional magnetic field of Pc 5 waves in the magnetospheric ring current plasma. Finally, a quadratic form is derived to demonstrate the stability of the low-frequency transverse and compressional Alfven type instabilities in terms of the pressure anisotropy parameter τ and the magnetic field curvature-pressure gradient parameter. A procedure for determining the stability of a marginally stable MHD wave due to wave-particle resonances is also presented
Research on the Vibration Insulation of High-Speed Train Bogies in Mid and High Frequency
Jia Liu
2018-01-01
Full Text Available According to a large amount of the test data, the mid and high frequency vibrations of high-speed bogies are very notable, especially in the 565~616 Hz range, which are just the passing frequencies corresponding to the 22nd to 24th polygonal wear of the wheel. In order to investigate the main cause of wheel higher-order polygon formation, a 3D flexible model of a Chinese high-speed train bogie is developed using the explicit finite element method. The results show that the couple vibration of bogie and wheelset may lead to the high-order wears of wheel. In order to reduce the coupled resonance of the wheelset and the bogie frame, the effects of the stiffness and damping of the primary suspensions, wheelset axle radius, and bogie frame strength on the vibration transmissibility are discussed carefully. The numerical results show that the resonance peaks in high frequency range can be reduced by reducing the stiffness of axle box rotary arm joint, reducing the wheelset axle radius or strengthening the bogie frame location. The related results may provide a reference for structure improvement of the existing bogies and structure design of the new high-speed bogies.
Yun Wang; Renhai Hua; Zongcheng Zhang
2011-01-01
Purpose-The purpose of this paper is to examine whether the futures volatility could attect the investor behavior and what trading strategy different investors could adopt when they meet different information conditions.Design/methodology/approach-This study introduces a two-period overlapping generation model (OLG) model into the future market and set the investor behavior model based on the future contract price,which can also be extended to complete and incomplete information.It provides the equilibrium solution and uses cuprum tick data in SHFE to conduct the empirical analysis.Findings-The two-period OLG model based on the future market is consistent with the practical situation;second,the sufficient information investors such as institutional adopt reversal trading patterns generally;last,the insufficient information investors such as individual investors adopt momentum trading patterns in general.Research limitations/implications-Investor trading behavior is always an important issue in the behavioral finance and market supervision,but the related research is scarce.Practical implications-The conclusion shows that the investors' behavior in Chinese future market is different from the Chinese stock market.Originality/value-This study empirically analyzes and verifies the different types of trading strategies investors could;investors such as institutional ones adopt reversal trading patterns generally;while investors such as individual investors adopt momentum trading patterns in general.
Extended High Frequency Audiometry in Polycystic Ovary Syndrome
Cuneyt Kucur
2013-01-01
and BMI of PCOS and control groups were comparable. Each subject was tested with low (250–2000 Hz, high (4000–8000 Hz, and extended high frequency audiometry (8000–20000. Hormonal and biochemical values including LH, LH/FSH, testosterone, fasting glucose, fasting insulin, HOMA-I, and CRP were calculated. Results. PCOS patients showed high levels of LH, LH/FSH, testosterone, fasting insulin, glucose, HOMA-I, and CRP levels. The hearing thresholds of the groups were similar at frequencies of 250, 500, 1000, 2000, and 4000 Hz; statistically significant difference was observed in 8000–14000 Hz in PCOS group compared to control group. Conclusion. PCOS patients have hearing impairment especially in extended high frequencies. Further studies are needed to help elucidate the mechanism behind hearing impairment in association with PCOS.
Planck 2013 results. VI. High Frequency Instrument data processing
Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.
2013-01-01
We describe the processing of the 531 billion raw data samples from the High Frequency Instrument (HFI), which we performed to produce six temperature maps from the first 473 days of Planck-HFI survey data. These maps provide an accurate rendition of the sky emission at 100, 143,217, 353, 545......, these two high frequency channels are calibrated to within 5% and the 353 GHz channel to the percent level. The 100 and217 GHz channels, which together with the 143 GHz channel determine the high-multipole part of the CMB power spectrum (50
HOM frequency control of SRF cavity in high current ERLs
Xu, Chen; Ben-Zvi, Ilan
2018-03-01
The acceleration of high-current beam in Superconducting Radio Frequency (SRF) cavities is a challenging but essential for a variety of advanced accelerators. SRF cavities should be carefully designed to minimize the High Order Modes (HOM) power generated in the cavities by the beam current. The reduction of HOM power we demonstrate in a particular case can be quite large. This paper presents a method to systematically control the HOM resonance frequencies in the initial design phase to minimize the HOM power generation. This method is expected to be beneficial for the design of high SRF cavities addressing a variety of Energy Recovery Linac (ERL) applications.
Gerges, Meana; Foldes, Emily L.; Ackermann, D. Michael; Bhadra, Narendra; Bhadra, Niloy; Kilgore, Kevin L.
2010-12-01
High-frequency alternating currents (HFAC) have proven to be a reversible and rapid method of blocking peripheral nerve conduction, holding promise for treatment of disorders associated with undesirable neuronal activity. The delivery of HFAC is characterized by a transient period of neural firing at its inception, termed the 'onset response'. The onset response is minimized for higher frequencies and higher amplitudes, but requires larger currents. However, the complete block can be maintained at lower frequencies and amplitudes, using lower currents. In this in vivo study on whole mammalian peripheral nerves, we demonstrate a method to minimize the onset response by initiating the block using a stimulation paradigm with a high frequency and large amplitude, and then transitioning to a low-frequency and low-amplitude waveform, reducing the currents required to maintain the conduction block. In five of six animals, it was possible to transition from a 30 kHz to a 10 kHz waveform without inducing any transient neural firing. The minimum transition time was 0.03 s. Transition activity was minimized or eliminated with longer transition times. The results of this study show that this method is feasible for achieving a nerve block with minimal onset responses and current amplitude requirements.
Extension of White's layered model to the full frequency range
Vogelaar, Bouko; Smeulders, D.M.J.
2007-01-01
The low-frequency theory of the White model to predict the dispersion and intrinsic attenuation in a single porous skeleton saturated with periodic layers of two immiscible fluids is extended to the full frequency range using the Biot theory. The extension is similar to the Dutta–Odé model for
Efficient estimation for ergodic diffusions sampled at high frequency
Sørensen, Michael
A general theory of efficient estimation for ergodic diffusions sampled at high fre- quency is presented. High frequency sampling is now possible in many applications, in particular in finance. The theory is formulated in term of approximate martingale estimating functions and covers a large class...
High-frequency microinstabilities in hot-electron plasmas
Chen, Y.J.; Nevins, W.M.; Smith, G.R.
1981-01-01
Instabilities with frequencies in the neighborhood of the electron cyclotron frequency are of interest in determining stable operating regimes of hot-electron plasmas in EBT devices and in tandem mirrors. Previous work used model distributions significantly different than those suggested by recent Fokker-Planck studies. We use much more realistic model distributions in a computer code that solves the full electromagnetic dispersion relation governing longitudinal and transverse waves in a uniform plasma. We allow for an arbitrary direction of wave propagation. Results for the whistler and upper-hybrid loss-cone instabilities are presented
Gerasimov, A.V.; Kirpichnikov, A.P.
2000-01-01
On the basis of analysis of the equation system for energy balance within near-the-axis range of HF-plasmatron inductor in terms of a two-temperature model one derived the analytical dependences to calculate temperature fields within that range in a two-dimensional definition of the problem. Paper presents the results of calculations carried out for various cross sections of HF-discharge plasmoid. The calculations were carried out for the air plasma under the atmospheric pressure. The derived formulae describe rather accurately distribution of temperature fields near the plasmoid axis and may be applied to tackle rather wide scope of problems dealing with heat transfer [ru
Music students: conventional hearing thresholds and at high frequencies.
Lüders, Débora; Gonçalves, Cláudia Giglio de Oliveira; Lacerda, Adriana Bender de Moreira; Ribas, Ângela; Conto, Juliana de
2014-01-01
Research has shown that hearing loss in musicians may cause difficulty in timbre recognition and tuning of instruments. To analyze the hearing thresholds from 250 Hz to 16,000 Hz in a group of music students and compare them to a non-musician group in order to determine whether high-frequency audiometry is a useful tool in the early detection of hearing impairment. Study design was a retrospective observational cohort. Conventional and high-frequency audiometry was performed in 42 music students (Madsen Itera II audiometer and TDH39P headphones for conventional audiometry, and HDA 200 headphones for high-frequency audiometry). Of the 42 students, 38.1% were female students and 61.9% were male students, with a mean age of 26 years. At conventional audiometry, 92.85% had hearing thresholds within normal limits; but even within the normal limits, the worst results were observed in the left ear for all frequencies, except for 4000 Hz; compared to the non-musician group, the worst results occurred at 500 Hz in the left ear, and at 250 Hz, 6000 Hz, 9000 Hz, 10,000 Hz, and 11,200 Hz in both the ears. The periodic evaluation of high-frequency thresholds may be useful in the early detection of hearing loss in musicians. Copyright © 2014 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.
Music students: conventional hearing thresholds and at high frequencies
Débora Lüders
2014-07-01
Full Text Available INTRODUCTION: Research has shown that hearing loss in musicians may cause difficulty in timbre recognition and tuning of instruments. AIM: To analyze the hearing thresholds from 250 Hz to 16,000 Hz in a group of music students and compare them to a non-musician group in order to determine whether high-frequency audiometry is a useful tool in the early detection of hearing impairment. METHODS: Study design was a retrospective observational cohort. Conventional and high-frequency audiometry was performed in 42 music students (Madsen Itera II audiometer and TDH39P headphones for conventional audiometry, and HDA 200 headphones for high-frequency audiometry. RESULTS: Of the 42 students, 38.1% were female students and 61.9% were male students, with a mean age of 26 years. At conventional audiometry, 92.85% had hearing thresholds within normal limits; but even within the normal limits, the worst results were observed in the left ear for all frequencies, except for 4000 Hz; compared to the non-musician group, the worst results occurred at 500 Hz in the left ear, and at 250 Hz, 6000 Hz, 9000 Hz, 10,000 Hz, and 11,200 Hz in both the ears. CONCLUSION: The periodic evaluation of high-frequency thresholds may be useful in the early detection of hearing loss in musicians.
Control of high frequency microactuators using active structures
Kreth, P A; Alvi, F S; Reese, B M; Oates, W S
2015-01-01
A fluidically driven microactuator that generates supersonic, pulsed microjets has been implemented with smart materials to actively and precisely control the frequency of the microjets in a closed-loop manner. Since this actuator relies on a number of microscale flow and acoustic phenomena to produce the pulsed microjets, its resonant frequency is determined by its geometry and other flow parameters. The design discussed in this paper integrates piezoelectric stacks by connecting them to movable sidewalls within the actuator such that the microactuator's internal geometry can be controlled by varying the voltage across the piezo-stacks. An open-loop control scheme demonstrates the frequency modulation capabilities that are enabled with this design: very large frequency deviations (up to ±500 Hz) around the actuator design frequency are attained at very high rates (up to 1 kHz). Closed-loop control of the microactuator's frequency was also demonstrated, and the results indicate that (combined with appropriate sensors) this actuator could be used effectively for active, feedback control in high-speed, resonance-dominated flowfields. This proof of concept study clearly illustrates the ability of this robust and compact actuator to produce perturbations that can be modulated and controlled based on the desired control objective. (paper)
Frequency and temperature dependence of high damping elastomers
Kulak, R.F.; Hughes, T.H.
1993-01-01
High damping steel-laminated elastomeric seismic isolation bearings are one of the preferred devices for isolating large buildings and structures. In the US, the current reference design for the Advanced Liquid Metal Reactor (ALMR) uses laminated bearings for seismic isolation. These bearings are constructed from alternating layers of high damping rubber and steel plates. They are typically designed for shear strains between 50 and 100% and are expected to sustain two to three times these levels for beyond design basis loading conditions. Elastomeric bearings are currently designed to provide a system frequency between 0.4 and 0.8 Hz and expected to operate between -20 and 40 degrees Centigrade. To assure proper performance of isolation bearings, it is necessary to characterize the elastomer's response under expected variations of frequency and temperature. The dynamic response of the elastomer must be characterized within the frequency range that spans the bearing acceptance test frequency, which may be as low as 0.005 Hz, and the design frequency. Similarly, the variation in mechanical characteristics of the elastomer must be determined over the design temperature range, which is between -20 and 40 degrees Centigrade. This paper reports on (1) the capabilities of a testing facility at ANL for testing candidate elastomers, (2) the variation with frequency and temperature of the stiffness and damping of one candidate elastomer, and (3) the effect of these variations on bearing acceptance testing criteria and on the choice of bearing design values for stiffness and damping
High frequency ultrasound imaging in pupillary block glaucoma.
Aslanides, I M; Libre, P E; Silverman, R H; Reinstein, D Z; Lazzaro, D R; Rondeau, M J; Harmon, G K; Coleman, D J
1995-01-01
BACKGROUND--The diagnosis of pupillary block glaucoma requires sufficient clarity of the ocular media. This is particularly important for assessment of both the presence and patency of an iridotomy, and the determination of central anterior chamber depth. METHODS--High frequency ultrasonography was used in three patients with suspected pupillary block to determine iris configuration, posterior chamber volume, and ciliary body conformation. RESULTS--All patients demonstrated high frequency ultrasonographic findings consistent with pupillary block: iris bombé, a formed posterior chamber, and a lack of anterior rotation of the ciliary processes. CONCLUSION--High frequency ultrasound imaging appears to be a valuable adjunct in making or corroborating the diagnosis of pupillary block glaucoma. Images PMID:8534666
High Frequency Amplitude Detector for GMI Magnetic Sensors
Aktham Asfour
2014-12-01
Full Text Available A new concept of a high-frequency amplitude detector and demodulator for Giant-Magneto-Impedance (GMI sensors is presented. This concept combines a half wave rectifier, with outstanding capabilities and high speed, and a feedback approach that ensures the amplitude detection with easily adjustable gain. The developed detector is capable of measuring high-frequency and very low amplitude signals without the use of diode-based active rectifiers or analog multipliers. The performances of this detector are addressed throughout the paper. The full circuitry of the design is given, together with a comprehensive theoretical study of the concept and experimental validation. The detector has been used for the amplitude measurement of both single frequency and pulsed signals and for the demodulation of amplitude-modulated signals. It has also been successfully integrated in a GMI sensor prototype. Magnetic field and electrical current measurements in open- and closed-loop of this sensor have also been conducted.
High frequency conductivity of hot electrons in carbon nanotubes
Amekpewu, M., E-mail: mamek219@gmail.com [Department of Applied Physics, University for Development Studies, Navrongo (Ghana); Mensah, S.Y. [Department of Physics, College of Agriculture and Natural Sciences, U.C.C. (Ghana); Musah, R. [Department of Applied Physics, University for Development Studies, Navrongo (Ghana); Mensah, N.G. [Department of Mathematics, College of Agriculture and Natural Sciences, U.C.C. (Ghana); Abukari, S.S.; Dompreh, K.A. [Department of Physics, College of Agriculture and Natural Sciences, U.C.C. (Ghana)
2016-05-01
High frequency conductivity of hot electrons in undoped single walled achiral Carbon Nanotubes (CNTs) under the influence of ac–dc driven fields was considered. We investigated semi-classically Boltzmann's transport equation with and without the presence of the hot electrons’ source by deriving the current densities in CNTs. Plots of the normalized current density versus frequency of ac-field revealed an increase in both the minimum and maximum peaks of normalized current density at lower frequencies as a result of a strong injection of hot electrons. The applied ac-field plays a twofold role of suppressing the space-charge instability in CNTs and simultaneously pumping an energy for lower frequency generation and amplification of THz radiations. These have enormous promising applications in very different areas of science and technology.
Anomalous high-frequency resistivity of a plasma
Kruer, W.L.; Dawson, J.M.
1971-06-01
In one- and two-dimensional computer simulations we investigate anomalous high-frequency resistivity in a plasma driven by a large electric field oscillating near the electron plasma frequency. The large field excites the oscillating two-stream and the ion-acoustic decay instabilities in agreement with the linear theory. When the ion and electron fluctuations saturate, a strong anomalous heating of the plasma sets in. This strong heating is due to an efficient coupling of the externally imposed large electric field to the plasma by ion fluctuations. We determine the anomalous collision frequency and the saturation fluctuation amplitudes as a function of the external field amplitude and frequency, and the electron-ion mass ratio. A simple nonlinear theory gives results in reasonable agreement with simulations. 24 refs., 10 figs
High frequency relay protection channels on super high voltage lines
Mikutskii, G V
1964-08-01
General aspects of high voltage transmission line design are discussed. The relationships between line voltage and length and line dimensions and power losses are explained. Electrical interference in the line is classified under three headings: interference under normal operating conditions, interference due to insulation faults, and interference due to variations in operating conditions of the high-voltage network.
Bernstein, Leslie R.; Trahiotis, Constantine
2003-06-01
An acoustic pointing task was used to determine whether interaural temporal disparities (ITDs) conveyed by high-frequency ``transposed'' stimuli would produce larger extents of laterality than ITDs conveyed by bands of high-frequency Gaussian noise. The envelopes of transposed stimuli are designed to provide high-frequency channels with information similar to that conveyed by the waveforms of low-frequency stimuli. Lateralization was measured for low-frequency Gaussian noises, the same noises transposed to 4 kHz, and high-frequency Gaussian bands of noise centered at 4 kHz. Extents of laterality obtained with the transposed stimuli were greater than those obtained with bands of Gaussian noise centered at 4 kHz and, in some cases, were equivalent to those obtained with low-frequency stimuli. In a second experiment, the general effects on lateral position produced by imposed combinations of bandwidth, ITD, and interaural phase disparities (IPDs) on low-frequency stimuli remained when those stimuli were transposed to 4 kHz. Overall, the data were fairly well accounted for by a model that computes the cross-correlation subsequent to known stages of peripheral auditory processing augmented by low-pass filtering of the envelopes within the high-frequency channels of each ear.
Bernstein, Leslie R.; Trahiotis, Constantine
2005-09-01
Our purpose in this study was to determine whether across-frequency binaural interference would occur if ITD-based extents of laterality were measured using high-frequency transposed stimuli as targets. The results of an earlier study [L. R. Bernstein and C. Trahiotis, J. Acoust. Soc. Am. 116, 3062-3069 (2004)], which focused on threshold-ITDs, rather than extents of laterality, suggested that high-frequency transposed stimuli might be ``immune'' to binaural interference effects resulting from the addition of a spectrally remote, low-frequency interferer. In contrast to the earlier findings, the data from this study indicate that high-frequency transposed targets are susceptible to binaural interference. Nevertheless, high-frequency transposed targets, even when presented along with an interferer, yielded greater extents of ITD-based laterality than did high-frequency Gaussian noise targets presented in isolation. That is, the ``enhanced potency'' of ITDs conveyed by transposed stimuli persisted, even in the presence of a low-frequency interferer. Predictions made using an extension of the model of Heller and Trahiotis [L. M. Heller and C. Trahiotis, J. Acoust. Soc. Am. 99, 3632-3637 (1996)] accounted well for across-frequency binaural interference obtained with conventional Gaussian noise targets but, in all but one case, overpredicted the amounts of interference found with the transposed targets.
High-frequency dynamics in a molten binary alloy
Alvarez, M.; Bermejo, F.J.; Verkerk, P.; Roessli, B.
1999-01-01
The nature of the finite wavelength collective excitations in liquid binary mixtures composed of atoms of very different masses has been of interest for more than a decade. The most prominent fact is the high frequencies at which they appear, well above those expected for a continuation to large wave vector of hydrodynamic sound. To better understand the microscopic dynamics of such systems, an inelastic neutron scattering experiment was performed on the molten alloy Li 4 Pb. We present the high-frequency excitations of molten Li 4 Pb which indeed show features substantially deviating from those expected for the propagation of an acoustic mode. (authors)
Upadhyay, Puja; Gustavsson, Jonas P. R.; Alvi, Farrukh S.
2016-05-01
For flow control applications requiring high-frequency excitation, very few actuators have sufficient dynamic response and/or control authority to be useful in high-speed flows. Due to this reason, experiments involving high-frequency excitation, attempted in the past, have been limited to either low-frequency actuation with reasonable control authority or moderate-frequency actuation with limited control authority. The current work expands on the previous development of the resonance-enhanced microactuators to design actuators that are capable of producing high-amplitude pulses at much higher frequencies [{O} (10 kHz)]. Using lumped element modeling, two actuators have been designed with nominal frequencies of 20 and 50 kHz. Extensive benchtop characterization using acoustic measurements as well as optical diagnostics using a high-resolution micro-schlieren setup is employed to characterize the dynamic response of these actuators. The actuators performed at a range of frequencies, 20.3-27.8 and 54.8-78.2 kHz, respectively. In addition to providing information on the actuator flow physics and performance at various operating conditions, this study serves to develop easy-to-integrate high-frequency actuators for active control of high-speed jets. Preliminary testing of these actuators is performed by implementing the 20-kHz actuator on a Mach 0.9 free jet flow field for noise reduction. Acoustic measurements in the jet near field demonstrate attenuation of radiated noise at all observation angles.
Piezoelectric Nanotube Array for Broadband High-Frequency Ultrasonic Transducer.
Liew, Weng Heng; Yao, Kui; Chen, Shuting; Tay, Francis Eng Hock
2018-03-01
Piezoelectric materials are vital in determining ultrasonic transducer and imaging performance as they offer the function for conversion between mechanical and electrical energy. Ultrasonic transducers with high-frequency operation suffer from performance degradation and fabrication difficulty of the demanded piezoelectric materials. Hence, we propose 1-D polymeric piezoelectric nanostructure with controlled nanoscale features to overcome the technical limitations of high-frequency ultrasonic transducers. For the first time, we demonstrate the integration of a well-aligned piezoelectric nanotube array to produce a high-frequency ultrasonic transducer with outstanding performance. We find that nanoconfinement-induced polarization orientation and unique nanotube structure lead to significantly improved piezoelectric and ultrasonic transducing performance over the conventional piezoelectric thin film. A large bandwidth, 126% (-6 dB), is achieved at high center frequency, 108 MHz. Transmission sensitivity of nanotube array is found to be 46% higher than that of the monolithic thin film transducer attributed to the improved electromechanical coupling effectiveness and impedance match. We further demonstrate high-resolution scanning, ultrasonic imaging, and photoacoustic imaging using the obtained nanotube array transducers, which is valuable for biomedical imaging applications in the future.
High frequency vibration analysis by the complex envelope vectorization.
Giannini, O; Carcaterra, A; Sestieri, A
2007-06-01
The complex envelope displacement analysis (CEDA) is a procedure to solve high frequency vibration and vibro-acoustic problems, providing the envelope of the physical solution. CEDA is based on a variable transformation mapping the high frequency oscillations into signals of low frequency content and has been successfully applied to one-dimensional systems. However, the extension to plates and vibro-acoustic fields met serious difficulties so that a general revision of the theory was carried out, leading finally to a new method, the complex envelope vectorization (CEV). In this paper the CEV method is described, underlying merits and limits of the procedure, and a set of applications to vibration and vibro-acoustic problems of increasing complexity are presented.
A simple, tunable, and highly sensitive radio-frequency sensor.
Cui, Yan; Sun, Jiwei; He, Yuxi; Wang, Zheng; Wang, Pingshan
2013-08-05
We report a radio frequency (RF) sensor that exploits tunable attenuators and phase shifters to achieve high-sensitivity and broad band frequency tunability. Three frequency bands are combined to enable sensor operations from ∼20 MHz to ∼38 GHz. The effective quality factor ( Q eff ) of the sensor is as high as ∼3.8 × 10 6 with 200 μ l of water samples. We also demonstrate the measurement of 2-proponal-water-solution permittivity at 0.01 mole concentration level from ∼1 GHz to ∼10 GHz. Methanol-water solution and de-ionized water are used to calibrate the RF sensor for the quantitative measurements.
High-frequency microrheology reveals cytoskeleton dynamics in living cells
Rigato, Annafrancesca; Miyagi, Atsushi; Scheuring, Simon; Rico, Felix
2017-08-01
Living cells are viscoelastic materials, dominated by an elastic response on timescales longer than a millisecond. On shorter timescales, the dynamics of individual cytoskeleton filaments are expected to emerge, but active microrheology measurements on cells accessing this regime are scarce. Here, we develop high-frequency microrheology experiments to probe the viscoelastic response of living cells from 1 Hz to 100 kHz. We report the viscoelasticity of different cell types under cytoskeletal drug treatments. On previously inaccessible short timescales, cells exhibit rich viscoelastic responses that depend on the state of the cytoskeleton. Benign and malignant cancer cells revealed remarkably different scaling laws at high frequencies, providing a unique mechanical fingerprint. Microrheology over a wide dynamic range--up to the frequency characterizing the molecular components--provides a mechanistic understanding of cell mechanics.
Very High Frequency Switch-Mode Power Supplies
Madsen, Mickey Pierre
The importance of technology and electronics in our daily life is constantly increasing. At the same time portability and energy efficiency are currently some of the hottest topics. This creates a huge need for power converters in a compact form factor and with high efficiency, which can supply...... these electronic devices. This calls for new technologies in order to miniaturize the power electronics of today. One way to do this is by increasing the switching frequency dramatically and develop very high frequency switch mode power supplies. If these converters can be designed to operate efficiently, a huge...... size, weight and cost reduction can be achieved due to the smaller energy storing elements needed at these frequencies. The research presented in this thesis focuses on exactly this. First various technologies for miniaturization of power supplies are studied, e.g. piezo electric transformers, wide...
Very High Frequency Galvanic Isolated Offline Power Supply
Pedersen, Jeppe Arnsdorf
During the last decades many researchers have turned their attention to raising the operation frequency of power converters to the very high frequency (VHF) range going from 30 MHz to 300 MHz. Increasing the operating frequency of a power converter leads to smaller energy storing components...... inverters with a single combined rectiﬁer. The converter designed to deliver 9 W to a 60 V LED load and is achieving an eﬃciency of 89.4% and a power density of 2.14 W3 . The development of this converter proof that oﬄine VHF converter can be implemented with high eﬃciencies even for low power applications...... are described together with the possibility of using capacitors as the power galvanic isolation, both methods of creating galvanic isolation are implemented in converters. Regarding EMC a series of converters with diﬀerent ﬁlter implementations are examined. The results from the conducted mea-surement from 150...
Computation of High-Frequency Waves with Random Uncertainty
Malenova, Gabriela
2016-01-06
We consider the forward propagation of uncertainty in high-frequency waves, described by the second order wave equation with highly oscillatory initial data. The main sources of uncertainty are the wave speed and/or the initial phase and amplitude, described by a finite number of random variables with known joint probability distribution. We propose a stochastic spectral asymptotic method [1] for computing the statistics of uncertain output quantities of interest (QoIs), which are often linear or nonlinear functionals of the wave solution and its spatial/temporal derivatives. The numerical scheme combines two techniques: a high-frequency method based on Gaussian beams [2, 3], a sparse stochastic collocation method [4]. The fast spectral convergence of the proposed method depends crucially on the presence of high stochastic regularity of the QoI independent of the wave frequency. In general, the high-frequency wave solutions to parametric hyperbolic equations are highly oscillatory and non-smooth in both physical and stochastic spaces. Consequently, the stochastic regularity of the QoI, which is a functional of the wave solution, may in principle below and depend on frequency. In the present work, we provide theoretical arguments and numerical evidence that physically motivated QoIs based on local averages of |uE|2 are smooth, with derivatives in the stochastic space uniformly bounded in E, where uE and E denote the highly oscillatory wave solution and the short wavelength, respectively. This observable related regularity makes the proposed approach more efficient than current asymptotic approaches based on Monte Carlo sampling techniques.
Global Model for Asymmetric, Diode-Type Dual Frequency Capacitive Discharge
Kim, Jisoo; Lieberman, M. A.; Lichtenberg, A. J.
2003-10-01
Dual frequency capacitive reactors can have desirable properties for dielectric etch: low cost, robust uniformity over large areas, and control of dissociation. In the ideal case, the high frequency power controls the plasma density (ion flux) and the low frequency voltage controls the ion bombarding energy. Typical operating conditions are: discharge radius 15-30 cm, length 1-3 cm, pressure 30-200 mTorr, high frequency 27.1-160 MHz, low frequency 2-13.6 MHz, and powers of 500-3000 W for both high and low frequencies. The decoupling of the high and low frequencies is an important feature of dual frequency capacitive discharges. In this work, we describe a global (volume-averaged) model having different top and bottom plate areas that incorporates particle balance, and ohmic and stochastic heating for high and low frequencies. The model is used to obtain the decoupling of high and low frequencies and to investigate limitations to ideal decoupling. Support provided by Lam Research, NSF Grant ECS-0139956, California industries, and UC-SMART Contract SM99-10051.
Frequency-Wavenumber (FK)-Based Data Selection in High-Frequency Passive Surface Wave Survey
Cheng, Feng; Xia, Jianghai; Xu, Zongbo; Hu, Yue; Mi, Binbin
2018-04-01
Passive surface wave methods have gained much attention from geophysical and civil engineering communities because of the limited application of traditional seismic surveys in highly populated urban areas. Considering that they can provide high-frequency phase velocity information up to several tens of Hz, the active surface wave survey would be omitted and the amount of field work could be dramatically reduced. However, the measured dispersion energy image in the passive surface wave survey would usually be polluted by a type of "crossed" artifacts at high frequencies. It is common in the bidirectional noise distribution case with a linear receiver array deployed along roads or railways. We review several frequently used passive surface wave methods and derive the underlying physics for the existence of the "crossed" artifacts. We prove that the "crossed" artifacts would cross the true surface wave energy at fixed points in the f-v domain and propose a FK-based data selection technique to attenuate the artifacts in order to retrieve the high-frequency information. Numerical tests further demonstrate the existence of the "crossed" artifacts and indicate that the well-known wave field separation method, FK filter, does not work for the selection of directional noise data. Real-world applications manifest the feasibility of the proposed FK-based technique to improve passive surface wave methods by a priori data selection. Finally, we discuss the applicability of our approach.
Frequency-Wavenumber (FK)-Based Data Selection in High-Frequency Passive Surface Wave Survey
Cheng, Feng; Xia, Jianghai; Xu, Zongbo; Hu, Yue; Mi, Binbin
2018-07-01
Passive surface wave methods have gained much attention from geophysical and civil engineering communities because of the limited application of traditional seismic surveys in highly populated urban areas. Considering that they can provide high-frequency phase velocity information up to several tens of Hz, the active surface wave survey would be omitted and the amount of field work could be dramatically reduced. However, the measured dispersion energy image in the passive surface wave survey would usually be polluted by a type of "crossed" artifacts at high frequencies. It is common in the bidirectional noise distribution case with a linear receiver array deployed along roads or railways. We review several frequently used passive surface wave methods and derive the underlying physics for the existence of the "crossed" artifacts. We prove that the "crossed" artifacts would cross the true surface wave energy at fixed points in the f- v domain and propose a FK-based data selection technique to attenuate the artifacts in order to retrieve the high-frequency information. Numerical tests further demonstrate the existence of the "crossed" artifacts and indicate that the well-known wave field separation method, FK filter, does not work for the selection of directional noise data. Real-world applications manifest the feasibility of the proposed FK-based technique to improve passive surface wave methods by a priori data selection. Finally, we discuss the applicability of our approach.
Grid Frequency Extreme Event Analysis and Modeling: Preprint
Florita, Anthony R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Clark, Kara [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gevorgian, Vahan [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Folgueras, Maria [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wenger, Erin [National Renewable Energy Laboratory (NREL), Golden, CO (United States)
2017-11-01
Sudden losses of generation or load can lead to instantaneous changes in electric grid frequency and voltage. Extreme frequency events pose a major threat to grid stability. As renewable energy sources supply power to grids in increasing proportions, it becomes increasingly important to examine when and why extreme events occur to prevent destabilization of the grid. To better understand frequency events, including extrema, historic data were analyzed to fit probability distribution functions to various frequency metrics. Results showed that a standard Cauchy distribution fit the difference between the frequency nadir and prefault frequency (f_(C-A)) metric well, a standard Cauchy distribution fit the settling frequency (f_B) metric well, and a standard normal distribution fit the difference between the settling frequency and frequency nadir (f_(B-C)) metric very well. Results were inconclusive for the frequency nadir (f_C) metric, meaning it likely has a more complex distribution than those tested. This probabilistic modeling should facilitate more realistic modeling of grid faults.
High-frequency asymptotics of the local vertex function. Algorithmic implementations
Tagliavini, Agnese; Wentzell, Nils [Institut fuer Theoretische Physik, Eberhard Karls Universitaet, 72076 Tuebingen (Germany); Institute for Solid State Physics, Vienna University of Technology, 1040 Vienna (Austria); Li, Gang; Rohringer, Georg; Held, Karsten; Toschi, Alessandro [Institute for Solid State Physics, Vienna University of Technology, 1040 Vienna (Austria); Taranto, Ciro [Institute for Solid State Physics, Vienna University of Technology, 1040 Vienna (Austria); Max Planck Institute for Solid State Research, D-70569 Stuttgart (Germany); Andergassen, Sabine [Institut fuer Theoretische Physik, Eberhard Karls Universitaet, 72076 Tuebingen (Germany)
2016-07-01
Local vertex functions are a crucial ingredient of several forefront many-body algorithms in condensed matter physics. However, the full treatment of their frequency dependence poses a huge limitation to the numerical performance. A significant advancement requires an efficient treatment of the high-frequency asymptotic behavior of the vertex functions. We here provide a detailed diagrammatic analysis of the high-frequency asymptotic structures and their physical interpretation. Based on these insights, we propose a frequency parametrization, which captures the whole high-frequency asymptotics for arbitrary values of the local Coulomb interaction and electronic density. We present its algorithmic implementation in many-body solvers based on parquet-equations as well as functional renormalization group schemes and assess its validity by comparing our results for the single impurity Anderson model with exact diagonalization calculations.
High frequency oscillations evoked by peripheral magnetic stimulation.
Biller, S; Simon, L; Fiedler, P; Strohmeier, D; Haueisen, J
2011-01-01
The analysis of somatosensory evoked potentials (SEP) and / or fields (SEF) is a well-established and important tool for investigating the functioning of the peripheral and central human nervous system. A standard technique to evoke SEPs / SEFs is the stimulation of the median nerve by using a bipolar electrical stimulus. We aim at an alternative stimulation technique enabling stimulation of deep nerve structures while reducing patient stress and error susceptibility. In the current study, we apply a commercial transcranial magnetic stimulation system for peripheral magnetic stimulation of the median nerve. We compare the results of simultaneously recorded EEG signals to prove applicability of our technique to evoke SEPs including low frequency components (LFC) as well as high frequency oscillations (HFO). Therefore, we compare amplitude, latency and time-frequency characteristics of the SEP of 14 healthy volunteers after electric and magnetic stimulation. Both low frequency components and high frequency oscillations were detected. The HFOs were superimposed onto the primary cortical response N20. Statistical analysis revealed significantly lower amplitudes and increased latencies for LFC and HFO components after magnetic stimulation. The differences indicate the inability of magnetic stimulation to elicit supramaximal responses. A psycho-perceptual evaluation showed that magnetic stimulation was less unpleasant for 12 out of the 14 volunteers. In conclusion, we showed that LFC and HFO components related to median nerve stimulation can be evoked by peripheral magnetic stimulation.
High-frequency strontium vapor laser for biomedical applications
Hvorostovsky, A.; Kolmakov, E.; Kudashev, I.; Redka, D.; Kancer, A.; Kustikova, M.; Bykovskaya, E.; Mayurova, A.; Stupnikov, A.; Ruzankina, J.; Tsvetkov, K.; Lukyanov, N.; Paklinov, N.
2018-02-01
Sr-laser with high pulse repetition rate and high peak radiation power is a unique tool for studying rapidly occurring processes in time (plasma diagnostics, photoablation, etc.). In addition, the study of the frequency characteristics of the active medium of the laser helps to reveal the physics of the formation of an inverse medium in metal vapor lasers. In this paper, an experimental study of an Sr-laser with an active volume of 5.8 cm3 in the pulse repetition frequency range from 25 to 200 kHz is carried out, and a comparison with the frequency characteristics of media with large active volumes is given. We considered the frequency characteristics of the active medium in two modes: at a constant energy in the excitation pulse CU2 / 2 and at a constant average power consumed by the rectifier. In the presented work with a small-volume GRT using the TASITR-5/12 TASITRON switch, a laser was generated for Pairs of strontium at a CSF of 200 kHz. The behavior of the characteristics of the generation lines of 6.456 μm, 1 μm, and 3 μm at increased repetition frequencies is considered. Using the example of large-volume GRT, it is shown that tubes with a large active volume increase their energy characteristics with the growth of the CSF. The possibility of laser operation at pulse repetition rates above 200 kHz is shown.
High precision pulsar timing and spin frequency second derivatives
Liu, X. J.; Bassa, C. G.; Stappers, B. W.
2018-05-01
We investigate the impact of intrinsic, kinematic and gravitational effects on high precision pulsar timing. We present an analytical derivation and a numerical computation of the impact of these effects on the first and second derivative of the pulsar spin frequency. In addition, in the presence of white noise, we derive an expression to determine the expected measurement uncertainty of a second derivative of the spin frequency for a given timing precision, observing cadence and timing baseline and find that it strongly depends on the latter (∝t-7/2). We show that for pulsars with significant proper motion, the spin frequency second derivative is dominated by a term dependent on the radial velocity of the pulsar. Considering the data sets from three Pulsar Timing Arrays, we find that for PSR J0437-4715 a detectable spin frequency second derivative will be present if the absolute value of the radial velocity exceeds 33 km s-1. Similarly, at the current timing precision and cadence, continued timing observations of PSR J1909-3744 for about another eleven years, will allow the measurement of its frequency second derivative and determine the radial velocity with an accuracy better than 14 km s-1. With the ever increasing timing precision and observing baselines, the impact of the, largely unknown, radial velocities of pulsars on high precision pulsar timing can not be neglected.
A Time-Frequency Auditory Model Using Wavelet Packets
Agerkvist, Finn
1996-01-01
A time-frequency auditory model is presented. The model uses the wavelet packet analysis as the preprocessor. The auditory filters are modelled by the rounded exponential filters, and the excitation is smoothed by a window function. By comparing time-frequency excitation patterns it is shown...... that the change in the time-frequency excitation pattern introduced when a test tone at masked threshold is added to the masker is approximately equal to 7 dB for all types of maskers. The classic detection ratio therefore overrates the detection efficiency of the auditory system....
Kiuchi, R.; Mori, J. J.
2015-12-01
As a way to understand the characteristics of the earthquake source, studies of source parameters (such as radiated energy and stress drop) and their scaling are important. In order to estimate source parameters reliably, often we must use appropriate source spectrum models and the omega-square model is most frequently used. In this model, the spectrum is flat in lower frequencies and the falloff is proportional to the angular frequency squared. However, Some studies (e.g. Allmann and Shearer, 2009; Yagi et al., 2012) reported that the exponent of the high frequency falloff is other than -2. Therefore, in this study we estimate the source parameters using a spectral model for which the falloff exponent is not fixed. We analyze the mainshock and larger aftershocks of the 2008 Iwate-Miyagi Nairiku earthquake. Firstly, we calculate the P wave and SH wave spectra using empirical Green functions (EGF) to remove the path effect (such as attenuation) and site effect. For the EGF event, we select a smaller earthquake that is highly-correlated with the target event. In order to obtain the stable results, we calculate the spectral ratios using a multitaper spectrum analysis (Prieto et al., 2009). Then we take a geometric mean from multiple stations. Finally, using the obtained spectra ratios, we perform a grid search to determine the high frequency falloffs, as well as corner frequency of both of events. Our results indicate the high frequency falloff exponent is often less than 2.0. We do not observe any regional, focal mechanism, or depth dependencies for the falloff exponent. In addition, our estimated corner frequencies and falloff exponents are consistent between the P wave and SH wave analysis. In our presentation, we show differences in estimated source parameters using a fixed omega-square model and a model allowing variable high-frequency falloff.
Design and development of ITER high-frequency magnetic sensor
Ma, Y.; Vayakis, G.; Begrambekov, L.B.; Cooper, J.-J.; Ďuran, Ivan; Hirsch, M.; Laqua, H.P.; Moreau, P.; Oosterbeek, J.W.; Spuig, P.; Stange, T.; Walsh, M.
2016-01-01
Roč. 112, November (2016), s. 594-612 ISSN 0920-3796 Institutional support: RVO:61389021 Keywords : ITER * High-frequency * Magnetic diagnostics * ECHa Subject RIV: JF - Nuclear Energetics OBOR OECD: Nuclear related engineering Impact factor: 1.319, year: 2016
Very High Frequency Half Bridge DC/DC Converter
Madsen, Mickey Pierre; Knott, Arnold; Andersen, Michael A. E.
2014-01-01
This paper presents the first, off chip, class DE (resonant half bridge) converter working in the Very High Frequency (VHF) range. The benefits of using half bridge circuits both in the inverter and rectifier part of a VHF resonant dc/dc converter are analyzed and design equations for all...
Strange effects of strong high-frequency excitation
Thomsen, Jon Juel
2003-01-01
Three general effects of mechanical high-frequency excitation (HFE) are described: Stiffening - an apparent change in the stiffness associated with an equilibrium; Biasing - a tendency for a system to move towards a particular state which does not exist or is unstable without HFE; and Smoothening...
High frequency MOSFET gate drivers technologies and applications
Zhang, Zhiliang
2017-01-01
This book describes high frequency power MOSFET gate driver technologies, including gate drivers for GaN HEMTs, which have great potential in the next generation of switching power converters. Gate drivers serve as a critical role between control and power devices.
Surface modification of lignocellulosic fibers using high-frequency ultrasound
Jayant B. Gadhe; Ram B. Gupta; Thomas Elder
2005-01-01
Enzymatic and chemical oxidation of fiber surfaces has been reported in the literature as a method for producing medium density fiberboards without using synthetic adhesives. This work focuses on modifying the surface properties of wood fibers by the generation of free radicals using high-frequency ultrasound. A sonochemical reactor operating at 610 kHz is used to...
High frequency ground temperature fluctuation in a Convective Boundary Layer
Garai, A.; Kleissl, J.; Lothon, M.; Lohou, F.; Pardyjak, E.; Saïd, F.; Cuxart, J.; Steeneveld, G.J.; Yaguë, C.; Derrien, S.; Alexander, D.; Villagrasa, D.M.
2012-01-01
To study influence of the turbulent structures in the convective boundary layer (CBL) on the ground temperature, during the Boundary Layer Late Afternoon and Sunset Turbulence (BLLAST) observational campaign, high frequency ground temperature was recorded through infra-red imagery from 13 June - 8
Vacuum amplification of the high-frequency electromagnetic radiation
Vilkovisky, G. A.
1998-01-01
When an electrically charged source is capable of both emitting the electromagnetic waves and creating charged particles from the vacuum, its radiation gets so much amplified that only the backreaction of the vacuum makes it finite. The released energy and charge are calculated in the high-frequency approximation. The technique of expectation values is advanced and employed.
Collocations of High Frequency Noun Keywords in Prescribed Science Textbooks
Menon, Sujatha; Mukundan, Jayakaran
2012-01-01
This paper analyses the discourse of science through the study of collocational patterns of high frequency noun keywords in science textbooks used by upper secondary students in Malaysia. Research has shown that one of the areas of difficulty in science discourse concerns lexis, especially that of collocations. This paper describes a corpus-based…
High resolution mid-infrared spectroscopy based on frequency upconversion
Dam, Jeppe Seidelin; Hu, Qi; Tidemand-Lichtenberg, Peter
2013-01-01
signals can be analyzed. The obtainable frequency resolution is usually in the nm range where sub nm resolution is preferred in many applications, like gas spectroscopy. In this work we demonstrate how to obtain sub nm resolution when using upconversion. In the presented realization one object point...... high resolution spectral performance by observing emission from hot water vapor in a butane gas burner....
Risks and injuries in laser and high-frequency applications
Giering, K.; Philipp, Carsten M.; Berlien, Hans-Peter
1995-01-01
An analysis of injuries and risks using high frequency (HF) and lasers in medicine based on a literature search with MEDLINE was performed. The cases reported in the literature were classified according to the following criteria: (1) Avoidable in an optimal operational procedure. These kind of injuries are caused by a chain of unfortunate incidents. They are in principle avoidable by the 'right action at the right time' which presupposes an appropriate training of the operating team, selection of the optimal parameters for procedure and consideration of all safety instructions. (2) Avoidable, caused by malfunction of the equipment and/or accessories. The injuries classified into this group are avoidable if all safety regulations were fulfilled. This includes a pre-operational check-up and the use of medical lasers and high frequency devices only which meet the international safety standards. (3) Avoidable, caused by misuse/mistake. Injuries of this group were caused by an inappropriate selection of the procedure, wrong medical indication or mistakes during application. (4) Unavoidable, fateful. These injuries can be caused by risks inherent to the type of energy used, malfunction of the equipment and/or accessories though a pre-operational check-up was done. Some risks and complications are common to high frequency and laser application. But whereas these risks can be excluded easily in laser surgery there is often a great expenditure necessary or they are not avoidable if high frequency if used. No unavoidable risks due to laser energy occur.
High-frequency Trading, Algorithmic Finance, and the Flash Crash
Borch, Christian
2016-01-01
The Flash Crash of 6 May 2010 has an interesting status in discussions of high-frequency trading, i.e. fully automated, superfast computerized trading: it is invoked both as an important illustration of how this field of algorithmic trading operates and, more often, as an example of how fully aut...... about resonance in quantitative finance....
High-frequency signal and noise estimates of CSR GRACE RL04
Bonin, Jennifer A.; Bettadpur, Srinivas; Tapley, Byron D.
2012-12-01
A sliding window technique is used to create daily-sampled Gravity Recovery and Climate Experiment (GRACE) solutions with the same background processing as the official CSR RL04 monthly series. By estimating over shorter time spans, more frequent solutions are made using uncorrelated data, allowing for higher frequency resolution in addition to daily sampling. Using these data sets, high-frequency GRACE errors are computed using two different techniques: assuming the GRACE high-frequency signal in a quiet area of the ocean is the true error, and computing the variance of differences between multiple high-frequency GRACE series from different centers. While the signal-to-noise ratios prove to be sufficiently high for confidence at annual and lower frequencies, at frequencies above 3 cycles/year the signal-to-noise ratios in the large hydrological basins looked at here are near 1.0. Comparisons with the GLDAS hydrological model and high frequency GRACE series developed at other centers confirm CSR GRACE RL04's poor ability to accurately and reliably measure hydrological signal above 3-9 cycles/year, due to the low power of the large-scale hydrological signal typical at those frequencies compared to the GRACE errors.
Active Control of High-Speed Free Jets Using High-Frequency Excitation
Upadhyay, Puja
Control of aerodynamic noise generated by high-performance jet engines continues to remain a serious problem for the aviation community. Intense low frequency noise produced by large-scale coherent structures is known to dominate acoustic radiation in the aft angles. A tremendous amount of research effort has been dedicated towards the investigation of many passive and active flow control strategies to attenuate jet noise, while keeping performance penalties to a minimum. Unsteady excitation, an active control technique, seeks to modify acoustic sources in the jet by leveraging the naturally-occurring flow instabilities in the shear layer. While excitation at a lower range of frequencies that scale with the dynamics of large-scale structures, has been attempted by a number of studies, effects at higher excitation frequencies remain severely unexplored. One of the major limitations stems from the lack of appropriate flow control devices that have sufficient dynamic response and/or control authority to be useful in turbulent flows, especially at higher speeds. To this end, the current study seeks to fulfill two main objectives. First, the design and characterization of two high-frequency fluidic actuators (25 and 60 kHz) are undertaken, where the target frequencies are guided by the dynamics of high-speed free jets. Second, the influence of high-frequency forcing on the aeroacoustics of high-speed jets is explored in some detail by implementing the nominally 25 kHz actuator on a Mach 0.9 (Re D = 5 x 105) free jet flow field. Subsequently, these findings are directly compared to the results of steady microjet injection experiments performed in the same rig and to prior jet noise control studies, where available. Finally, limited acoustic measurements were also performed by implementing the nominally 25 kHz actuators on jets at higher Mach numbers, including shock containing jets, and elevated temperatures. Using lumped element modeling as an initial guide, the current
[High-frequency components of occlusal sound in sliding movement].
Nagai, K
1990-03-01
We postulated that high-frequency components of the occlusal sound occurring due to the characteristic vibration of teeth can be useful data for confirmation of the stability in occlusion, and studied the high-frequency components in the cases both of an experimental sliding movement and a normal occlusion. The results obtained were as follows. 1. A study on high-frequency components of the occlusal sound in an experimental sliding movement. 1) A study on wave type of the occlusal sound revealed one damped oscillation in an impact form and two in a slide form. 2) Spectrum analysis of the damped oscillation showed a similar spectrum pattern with a peak existing between 16KHz or more and 17KHz or less in both impact and slide cases. 2. A study on high-frequency components of the occlusal sound in a normal occlusion case. 1) The wave type in occlusal sound we have observed in a normal occlusion group and in a prosthetic or operative group was as follows: One damped oscillation shown in an impact form and two damped oscillation in a slide form which were the same as those shown in the case where an interference device was attached. 2) Duration of the sliding movement was short in a normal occlusion group, but was prolonged in a prosthetic or operative group. 3) The incidence of the wave type in occlusal sound was 56.7% in a prosthetic or operative group as compared to 87.8% in a normal occlusion group in an impact form. In contrast, the incidence was 43.3% in a prosthetic or operative group as compared to 12.2% in a normal occlusion group in a slide form. Such difference in the incidence between the wave types suggested that high-frequency components of occlusal sound can be an index for judgement of the stability in occlusion.
High-power non linear frequency converted laser diodes
Jensen, Ole Bjarlin; Andersen, Peter E.; Hansen, Anders Kragh
2015-01-01
We present different methods of generating light in the blue-green spectral range by nonlinear frequency conversion of tapered diode lasers achieving state-of-the-art power levels. In the blue spectral range, we show results using single-pass second harmonic generation (SHG) as well as cavity enh...... enhanced sum frequency generation (SFG) with watt-level output powers. SHG and SFG are also demonstrated in the green spectral range as a viable method to generate up to 4 W output power with high efficiency using different configurations....
High frequency guided wave propagation in monocrystalline silicon wafers
Pizzolato, M.; Masserey, B.; Robyr, J. L.; Fromme, P.
2017-01-01
Monocrystalline silicon wafers are widely used in the photovoltaic industry for solar panels with high conversion efficiency. The cutting process can introduce micro-cracks in the thin wafers and lead to varying thickness. High frequency guided ultrasonic waves are considered for the structural monitoring of the wafers. The anisotropy of the monocrystalline silicon leads to variations of the wave characteristics, depending on the propagation direction relative to the crystal orientation. Full...
Predicting High Frequency Exchange Rates using Machine Learning
Palikuca, Aleksandar; Seidl,, Timo
2016-01-01
This thesis applies a committee of Artificial Neural Networks and Support Vector Machines on high-dimensional, high-frequency EUR/USD exchange rate data in an effort to predict directional market movements on up to a 60 second prediction horizon. The study shows that combining multiple classifiers into a committee produces improved precision relative to the best individual committee members and outperforms previously reported results. A trading simulation implementing the committee classifier...
Millimeter Wave Radio Frequency Propagation Model Development
2014-08-28
be not be exceeded due to rain could be 95%. However, if the location were in a tropical rain forest , then then threshold might not be exceeded for...molecules grows. Approved for Public Release; Distribution is Unlimited. 14 Figure 3. Specific Attenuation Due to Water Vapor and Dry Air 3.1.1.2 Rain ... rain being the most detrimental and uncertain. Predictive models of rain attenuation claim some degree of accuracy up to 55 GHz, although they are
Electromagnetic interference modeling and suppression techniques in variable-frequency drive systems
Yang, Le; Wang, Shuo; Feng, Jianghua
2017-11-01
Electromagnetic interference (EMI) causes electromechanical damage to the motors and degrades the reliability of variable-frequency drive (VFD) systems. Unlike fundamental frequency components in motor drive systems, high-frequency EMI noise, coupled with the parasitic parameters of the trough system, are difficult to analyze and reduce. In this article, EMI modeling techniques for different function units in a VFD system, including induction motors, motor bearings, and rectifierinverters, are reviewed and evaluated in terms of applied frequency range, model parameterization, and model accuracy. The EMI models for the motors are categorized based on modeling techniques and model topologies. Motor bearing and shaft models are also reviewed, and techniques that are used to eliminate bearing current are evaluated. Modeling techniques for conventional rectifierinverter systems are also summarized. EMI noise suppression techniques, including passive filter, Wheatstone bridge balance, active filter, and optimized modulation, are reviewed and compared based on the VFD system models.
Calibration of semi-stochastic procedure for simulating high-frequency ground motions
Seyhan, Emel; Stewart, Jonathan P.; Graves, Robert
2013-01-01
Broadband ground motion simulation procedures typically utilize physics-based modeling at low frequencies, coupled with semi-stochastic procedures at high frequencies. The high-frequency procedure considered here combines deterministic Fourier amplitude spectra (dependent on source, path, and site models) with random phase. Previous work showed that high-frequency intensity measures from this simulation methodology attenuate faster with distance and have lower intra-event dispersion than in empirical equations. We address these issues by increasing crustal damping (Q) to reduce distance attenuation bias and by introducing random site-to-site variations to Fourier amplitudes using a lognormal standard deviation ranging from 0.45 for Mw 100 km).
Advances in high frequency ultrasound separation of particulates from biomass.
Juliano, Pablo; Augustin, Mary Ann; Xu, Xin-Qing; Mawson, Raymond; Knoerzer, Kai
2017-03-01
In recent years the use of high frequency ultrasound standing waves (megasonics) for droplet or cell separation from biomass has emerged beyond the microfluidics scale into the litre to industrial scale applications. The principle for this separation technology relies on the differential positioning of individual droplets or particles across an ultrasonic standing wave field within the reactor and subsequent biomass material predisposition for separation via rapid droplet agglomeration or coalescence into larger entities. Large scale transducers have been characterised with sonochemiluminescence and hydrophones to enable better reactor designs. High frequency enhanced separation technology has been demonstrated at industrial scale for oil recovery in the palm oil industry and at litre scale to assist olive oil, coconut oil and milk fat separation. Other applications include algal cell dewatering and milk fat globule fractionation. Frequency selection depends on the material properties and structure in the biomass mixture. Higher frequencies (1 and 2MHz) have proven preferable for better separation of materials with smaller sized droplets such as milk fat globules. For palm oil and olive oil, separation has been demonstrated within the 400-600kHz region, which has high radical production, without detectable impact on product quality. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.
Design and development of ITER high-frequency magnetic sensor
Ma, Y., E-mail: Yunxing.Ma@iter.org [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Fircroft Engineering, Lingley House, 120 Birchwood Point, Birchwood Boulevard, Warrington, WA3 7QH (United Kingdom); Vayakis, G. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Begrambekov, L.B. [National Research Nuclear University (MEPhI), 115409, Moscow, Kashirskoe shosse 31 (Russian Federation); Cooper, J.-J. [Culham Centre for Fusion Energy (CCFE), Abingdon, Oxfordshire OX14 3DB (United Kingdom); Duran, I. [IPP Prague, Za Slovankou 1782/3, 182 00 Prague 8 (Czech Republic); Hirsch, M.; Laqua, H.P. [Max-Planck-Institut für Plasmaphysik, Teilinstitut Greifswald, Wendelsteinstraße 1, D-17491 Greifswald (Germany); Moreau, Ph. [CEA Cadarache, 13108 Saint Paul lez Durance Cedex (France); Oosterbeek, J.W. [Eindhoven University of Technology (TU/e), PO Box 513, 5600 MB Eindhoven (Netherlands); Spuig, P. [CEA Cadarache, 13108 Saint Paul lez Durance Cedex (France); Stange, T. [Max-Planck-Institut für Plasmaphysik, Teilinstitut Greifswald, Wendelsteinstraße 1, D-17491 Greifswald (Germany); Walsh, M. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France)
2016-11-15
Highlights: • ITER high-frequency magnetic sensor system has been designed. • Prototypes have been successfully manufactured. • Manufactured prototypes have been tested in various labs. • Test results experimentally validated the design. - Abstract: High-frequency (HF) inductive magnetic sensors are the primary ITER diagnostic set for Toroidal Alfvén Eigenmodes (TAE) detection, while they also supplement low-frequency MHD and plasma equilibrium measurements. These sensors will be installed on the inner surface of ITER vacuum vessel, operated in a harsh environment with considerable neutron/nuclear radiation and high thermal load. Essential components of the HF sensor system, including inductive coil, electron cyclotron heating (ECH) shield, electrical cabling and termination load, have been designed to meet ITER measurement requirements. System performance (e.g. frequency response, thermal conduction) has been assessed. A prototyping campaign was initiated to demonstrate the manufacturability of the designed components. Prototypes have been produced according to the specifications. A series of lab tests have been performed to examine assembly issues and validate electrical and thermo-mechanical aspects of the design. In-situ microwave radiation test has been conducted in the MISTRAL test facility at IPP-Greifswald to experimentally examine the microwave shielding efficiency and structural integrity of the ECH shield. Low-power microwave attenuation measurement and scanning electron microscopic inspection were conducted to probe and examine the quality of the metal coating on the ECH shield.
Occupational hearing loss: tonal audiometry X high frequencies audiometry
Lauris, José Roberto Pereira
2009-09-01
Full Text Available Introduction: Studies on the occupational exposure show that noise has been reaching a large part of the working population around the world, and NIHL (noise-induced hearing loss is the second most frequent disease of the hearing system. Objective: To review the audiometry results of employees at the campus of the University of São Paulo, Bauru. Method: 40 audiometry results were analyzed between 2007 and 2008, whose ages comprised between 32 and 59 years, of both sexes and several professions: gardeners, maintenance technicians, drivers etc. The participants were divided into 2 groups: those with tonal thresholds within acceptable thresholds and those who presented auditory thresholds alterations, that is tonal thresholds below 25 dB (NA in any frequency (Administrative Rule no. 19 of the Ministry of Labor 1998. In addition to the Conventional Audiologic Evaluation (250Hz to 8.000Hz we also carried out High Frequencies Audiometry (9000Hz, 10000Hz, 11200Hz, 12500Hz, 14000Hz and 16000Hz. Results: According to the classification proposed by FIORINI (1994, 25.0% (N=10 they presented with NIHL suggestive audiometric configurations. The results of high frequencies Audiometry confirmed worse thresholds than those obtained in the conventional audiometry in the 2 groups evaluated. Conclusion: The use of high frequencies audiometry proved to be an important register as a hearing alteration early detection method.
Reghu, T; Mandloi, V; Shrivastava, Purushottam
2016-04-01
The design and development of a compact high voltage, high peak power, high frequency transformer for a converter type modulator of klystron amplifiers is presented. The transformer has been designed to operate at a frequency of 20 kHz and at a flux swing of ±0.6 T. Iron (Fe) based nanocrystalline material has been selected as a core for the construction of the transformer. The transformer employs a specially designed solid Teflon bobbin having 120 kV insulation for winding the high voltage secondary windings. The flux swing of the core has been experimentally found by plotting the hysteresis loop at actual operating conditions. Based on the design, a prototype transformer has been built which is per se a unique combination of high voltage, high frequency, and peak power specifications. The transformer was able to provide 58 kV (pk-pk) at the secondary with a peak power handling capability of 700 kVA. The transformation ratio was 1:17. The performance of the transformer is also presented and discussed.
GaN-based High Power High Frequency Wide Range LLC Resonant Converter, Phase I
National Aeronautics and Space Administration — SET Group will design, build and demonstrate a Gallium Nitride (GaN) based High Power High Frequency Wide Range LLC Resonant Converter capable of handling high power...
Software for Displaying High-Frequency Test Data
Elmore, Jason L.
2003-01-01
An easy-to-use, intuitive computer program was written to satisfy a need of test operators and data requestors to quickly view and manipulate high-frequency test data recorded at the East and West Test Areas at Marshall Space Flight Center. By enabling rapid analysis, this program makes it possible to reduce times between test runs, thereby potentially reducing the overall cost of test operations. The program can be used to perform quick frequency analysis, using multiple fast- Fourier-transform windowing and amplitude options. The program can generate amplitude-versus-time plots with full zoom capabilities, frequency-component plots at specified time intervals, and waterfall plots (plots of spectral intensity versus frequency at successive small time intervals, showing the changing frequency components over time). There are options for printing of the plots and saving plot data as text files that can be imported into other application programs. The program can perform all of the aforementioned plotting and plot-data-handling functions on a relatively inexpensive computer; other software that performs the same functions requires computers with large amounts of power and memory.
Oh, Yu Whan; Kim, Jung Kyuk; Suh, Won Hyuck
1994-01-01
To date, the high spatial frequency algorithm (HSFA) which reduces image smoothing and increases spatial resolution has been used for the evaluation of parenchymal lung diseases in thin-section high-resolution CT. In this study, we compared the ultrahigh spatial frequency algorithm (UHSFA) with the high spatial frequency algorithm in the assessment of thin section images of the lung parenchyma. Three radiologists compared the UHSFA and HSFA on identical CT images in a line-pair resolution phantom, one lung specimen, 2 patients with normal lung and 18 patients with abnormal lung parenchyma. Scanning of a line-pair resolution phantom demonstrated no difference in resolution between two techniques but it showed that outer lines of the line pairs with maximal resolution looked thicker on UHSFA than those on HSFA. Lung parenchymal detail with UHSFA was judged equal or superior to HSFA in 95% of images. Lung parenchymal sharpness was improved with UHSFA in all images. Although UHSFA resulted in an increase in visible noise, observers did not found that image noise interfered with image interpretation. The visual CT attenuation of normal lung parenchyma is minimally increased in images with HSFA. The overall visual preference of the images reconstructed on UHSFA was considered equal to or greater than that of those reconstructed on HSFA in 78% of images. The ultrahigh spatial frequency algorithm improved the overall visual quality of the images in pulmonary parenchymal high-resolution CT
Paloma Merello
2018-01-01
Full Text Available The characterization of the microclimatic conditions is fundamental for the preventive conservation of archaeological sites. In this context, the identification of the factors that influence the thermo-hygrometric equilibrium is key to determine the causes of cultural heritage deterioration. In this work, a characterization of the thermo-hygrometric conditions of Casa di Diana (Ostia Antica, Italy is carried out analyzing the data of temperature and relative humidity recorded by a system of sensors with high monitoring frequency. Sensors are installed in parallel, calibrated and synchronized with a microcontroller. A data set of 793,620 data, arranged in a matrix with 66,135 rows and 12 columns, was used. Furthermore, the influence of human impact (visitors is evaluated through a multiple linear regression model and a logistic regression model. The visitors do not affect the environmental humidity as it is very high and constant all the year. The results show a significant influence of the visitors in the upset of the thermal balance. When a tourist guide takes place, the probability that the hourly temperature variation reaches values higher than its monthly average is 10.64 times higher than it remains equal or less to its monthly average. The analysis of the regression residuals shows the influence of outdoor climatic variables in the thermal balance, such as solar radiation or ventilation.
Merello, Paloma; García-Diego, Fernando-Juan; Beltrán, Pedro; Scatigno, Claudia
2018-01-25
The characterization of the microclimatic conditions is fundamental for the preventive conservation of archaeological sites. In this context, the identification of the factors that influence the thermo-hygrometric equilibrium is key to determine the causes of cultural heritage deterioration. In this work, a characterization of the thermo-hygrometric conditions of Casa di Diana (Ostia Antica, Italy) is carried out analyzing the data of temperature and relative humidity recorded by a system of sensors with high monitoring frequency. Sensors are installed in parallel, calibrated and synchronized with a microcontroller. A data set of 793,620 data, arranged in a matrix with 66,135 rows and 12 columns, was used. Furthermore, the influence of human impact (visitors) is evaluated through a multiple linear regression model and a logistic regression model. The visitors do not affect the environmental humidity as it is very high and constant all the year. The results show a significant influence of the visitors in the upset of the thermal balance. When a tourist guide takes place, the probability that the hourly temperature variation reaches values higher than its monthly average is 10.64 times higher than it remains equal or less to its monthly average. The analysis of the regression residuals shows the influence of outdoor climatic variables in the thermal balance, such as solar radiation or ventilation.
Simple model for low-frequency guitar function
Christensen, Ove; Vistisen, Bo B.
1980-01-01
- frequency guitar function. The model predicts frequency responce of sound pressure and top plate mobility which are in close quantitative agreement with experimental responses. The absolute sound pressure level and mobility level are predicted to within a few decibels, and the equivalent piston area......The frequency response of sound pressure and top plate mobility is studied around the two first resonances of the guitar. These resonances are shown to result from a coupling between the fundamental top plate mode and the Helmholtz resonance of the cavity. A simple model is proposed for low...
Li, Wei; Kong, Li-hong; Wang, Hui; Shen, Feng; Wang, Ya-wen; Zhou, Hua; Sun, Guo-jie
2016-01-01
The frequency range of electroacupuncture in treatment of Alzheimer's disease in rats is commonly 2–5 Hz (low frequency) and 50–100 Hz (high frequency). We established a rat model of Alzheimer's disease by injecting β-amyloid 1–42 (Aβ1–42) into the bilateral hippocampal dentate gyrus to verify which frequency may be better suited in treatment. Electroacupuncture at 2 Hz or 50 Hz was used to stimulate Baihui (DU20) and Shenshu (BL23) acupoints. The water maze test and electrophysiological studies demonstrated that spatial memory ability was apparently improved, and the ranges of long-term potentiation and long-term depression were increased in Alzheimer's disease rats after electroacupuncture treatment. Moreover, the effects of electroacupuncture at 50 Hz were better than that at 2 Hz. These findings suggest that high-frequency electroacupuncture may enhance hippocampal synaptic transmission and potentially improve memory disorders in Alzheimer's disease rats. PMID:27335565
Assessing the utility of frequency dependent nudging for reducing biases in biogeochemical models
Lagman, Karl B.; Fennel, Katja; Thompson, Keith R.; Bianucci, Laura
2014-09-01
Bias errors, resulting from inaccurate boundary and forcing conditions, incorrect model parameterization, etc. are a common problem in environmental models including biogeochemical ocean models. While it is important to correct bias errors wherever possible, it is unlikely that any environmental model will ever be entirely free of such errors. Hence, methods for bias reduction are necessary. A widely used technique for online bias reduction is nudging, where simulated fields are continuously forced toward observations or a climatology. Nudging is robust and easy to implement, but suppresses high-frequency variability and introduces artificial phase shifts. As a solution to this problem Thompson et al. (2006) introduced frequency dependent nudging where nudging occurs only in prescribed frequency bands, typically centered on the mean and the annual cycle. They showed this method to be effective for eddy resolving ocean circulation models. Here we add a stability term to the previous form of frequency dependent nudging which makes the method more robust for non-linear biological models. Then we assess the utility of frequency dependent nudging for biological models by first applying the method to a simple predator-prey model and then to a 1D ocean biogeochemical model. In both cases we only nudge in two frequency bands centered on the mean and the annual cycle, and then assess how well the variability in higher frequency bands is recovered. We evaluate the effectiveness of frequency dependent nudging in comparison to conventional nudging and find significant improvements with the former.
Very high frequency (beyond 100 MHz) PZT kerfless linear arrays.
Wu, Da-Wei; Zhou, Qifa; Geng, Xuecang; Liu, Chang-Geng; Djuth, Frank; Shung, K Kirk
2009-10-01
This paper presents the design, fabrication, and measurements of very high frequency kerfless linear arrays prepared from PZT film and PZT bulk material. A 12-microm PZT thick film fabricated from PZT-5H powder/solution composite and a piece of 15-microm PZT-5H sheet were used to fabricate 32-element kerfless high-frequency linear arrays with photolithography. The PZT thick film was prepared by spin-coating of PZT sol-gel composite solution. The thin PZT-5H sheet sample was prepared by lapping a PZT-5H ceramic with a precision lapping machine. The measured results of the 2 arrays were compared. The PZT film array had a center frequency of 120 MHz, a bandwidth of 60% with a parylene matching layer, and an insertion loss of 41 dB. The PZT ceramic sheet array was found to have a center frequency of 128 MHz with a poorer bandwidth (40% with a parylene matching layer) but a better sensitivity (28 dB insertion loss).
High-frequency ultrasound-responsive block copolymer micelle.
Wang, Jie; Pelletier, Maxime; Zhang, Hongji; Xia, Hesheng; Zhao, Yue
2009-11-17
Micelles of a diblock copolymer composed of poly(ethylene oxide) and poly(2-tetrahydropyranyl methacrylate) (PEO-b-PTHPMA) in aqueous solution could be disrupted by high-frequency ultrasound (1.1 MHz). It was found that, upon exposure to a high-intensity focused ultrasound (HIFU) beam at room temperature, the pH value of the micellar solution decreased over irradiation time. The infrared spectroscopic analysis of solid block copolymer samples collected from the ultrasound irradiated micellar solution revealed the formation of carboxylic acid dimers and hydroxyl groups. These characterization results suggest that the high-frequency HIFU beam could induce the hydrolysis reaction of THPMA at room temperature resulting in the cleavage of THP groups. The disruption of PEO-b-PTHPMA micelles by ultrasound was investigated by using dynamic light scattering, atomic force microscopy, and fluorescence spectroscopy. On the basis of the pH change, it was found that the disruption process was determined by a number of factors such as the ultrasound power, the micellar solution volume and the location of the focal spot of the ultrasound beam. This study shows the potential to develop ultrasound-sensitive block copolymer micelles by having labile chemical bonds in the polymer structure, and to use the high-frequency HIFU to trigger a chemical reaction for the disruption of micelles.
Development of high frequency tungsten inert gas welding method
Morisada, Yoshiaki; Fujii, Hidetoshi; Inagaki, Fuminori; Kamai, Masayoshi
2013-01-01
Highlights: ► A new ultrasonic wave TIG welding method was developed. ► The area of the blowholes decreased to less than about 1/8 in the normal TIG weld. ► The number of blowholes decreased with the decreasing frequency. ► The number of blowholes increased when the frequency was less than 15 kHz. ► The microstructure of the weld was refined by ultrasonic wave. -- Abstract: A new welding method, called high frequency tungsten inert gas (TIG) welding, was developed to decrease blowholes in a weld. A1050 aluminum alloy plates (100 mm l × 50 mm w × 5 mm t ) were welded at a frequency from 10 to 40 kHz. An Ar-1% hydrogen mixture was used as the shielding gas to generate blowholes in the experiments. The welding was performed in the horizontal position so that the blowholes can easily be a problem. For comparison, a normal TIG welding was also performed at 60 Hz. After welding, the distribution of the blowholes in the welds was observed in order to evaluate the effect of the sonic wave. The number of blowholes changed with the frequency. A frequency near 15 kHz is the most suitable to decrease the blowholes. Using this new method, the area of blowholes is decreased to less than about 1/8 of the normal TIG weld. This method is much more effective for decreasing the number of blowholes, compared with an ultrasonic wave vibrator which is directly fixed to the sample.
Fiber lightguide-coupled high frequency analog data system
Davies, T.J.; Nelson, M.A.; Morton, J.R.; Pruett, B.
1976-06-01
An experimental system is described for measuring the time history of a high voltage, high frequency electrical pulse from a radiation detector. The system employs several fibers of a 500-m graded index light-guide cable to carry modelocked laser pulses from a safe location to an electro-optical Kerr cell located near the detector. These 200-ps pulses are widened to 500 ps at the cell by fiber dispersion. They are intensity-modulated in the cell by the electrical signal and returned over other cable fibers to an optical detector and recorder located near the laser. System frequency response exceeds 500 MHz over an amplitude dynamic range of 1000:1
Peripheral Circulatory Features during High-Frequency Jet Ventilation
M. B. Kontorovich
2010-01-01
Full Text Available The paper gives the results of a study of peripheral circulatory features during high-frequency jet ventilation (HFJV. The main specific features of peripheral circulation and oxygen transport during HFJV are formulated on the basis of a study of cardiac output (impedance cardiography, peripheral vascular resistance, peripheral vascular blood filling (photoplethysmogram analysis, adaptive peripheral blood flow reactions (spectral analysis of peripheral vascular pulsation. HFJV gives rise to the peculiar pattern of peripheral hemodynamics and tissue gas exchange, which is characterized by higher oxygen uptake without a decrease in mixed venous blood saturation, with normal extraction coefficient and preserved low peripheral vascular resistance. During HFJV, unlike traditional ventilation, the main peripheral hemodynamic feature is the increased capillary bed blood volume caused by the blood flow involvement of reserve capillaries under control of volume (parasympathetic regulation of adaptive peripheral hemodynamic reactions. Key words: high-frequency jet ventilation, oxygen transport, peripheral hemodynamics.
A comparison of high-frequency cross-correlation measures
Precup, Ovidiu V.; Iori, Giulia
2004-12-01
On a high-frequency scale the time series are not homogeneous, therefore standard correlation measures cannot be directly applied to the raw data. There are two ways to deal with this problem. The time series can be homogenised through an interpolation method (An Introduction to High-Frequency Finance, Academic Press, NY, 2001) (linear or previous tick) and then the Pearson correlation statistic computed. Recently, methods that can handle raw non-synchronous time series have been developed (Int. J. Theor. Appl. Finance 6(1) (2003) 87; J. Empirical Finance 4 (1997) 259). This paper compares two traditional methods that use interpolation with an alternative method applied directly to the actual time series.
Generation of sheet currents by high frequency fast MHD waves
Núñez, Manuel, E-mail: mnjmhd@am.uva.es
2016-07-01
The evolution of fast magnetosonic waves of high frequency propagating into an axisymmetric equilibrium plasma is studied. By using the methods of weakly nonlinear geometrical optics, it is shown that the perturbation travels in the equatorial plane while satisfying a transport equation which enables us to predict the time and location of formation of shock waves. For plasmas of large magnetic Prandtl number, this would result into the creation of sheet currents which may give rise to magnetic reconnection and destruction of the original equilibrium. - Highlights: • Regular solutions of quasilinear hyperbolic systems may evolve into shocks. • The shock location is found for high frequency fast MHD waves. • The result is applied to static axisymmetric equilibria. • The previous process may lead to the formation of sheet currents and destruction of the equilibrium.
Ultra high frequency induction welding of powder metal compacts
Cavdar, U.; Gulsahin, I.
2014-10-01
The application of the iron based Powder Metal (PM) compacts in Ultra High Frequency Induction Welding (UHFIW) were reviewed. These PM compacts are used to produce cogs. This study investigates the methods of joining PM materials enforceability with UHFIW in the industry application. Maximum stress and maximum strain of welded PM compacts were determined by three point bending and strength tests. Microhardness and microstructure of induction welded compacts were determined. (Author)
Ultra high frequency induction welding of powder metal compacts
Cavdar, U.; Gulsahin, I.
2014-01-01
The application of the iron based Powder Metal (PM) compacts in Ultra High Frequency Induction Welding (UHFIW) were reviewed. These PM compacts are used to produce cogs. This study investigates the methods of joining PM materials enforceability with UHFIW in the industry application. Maximum stress and maximum strain of welded PM compacts were determined by three point bending and strength tests. Microhardness and microstructure of induction welded compacts were determined. (Author)
Investigation of Combined High-Frequency and Arc Discharges
Taran, V.S.; Nezovibatko, Yu.N.; Marinin, V.G.; Shvets, O.M.; Ridozub, V.N.; Gasilin, V.V.
2001-01-01
In this paper we analyze experiment with arc and high-frequency (HF) plasma sources carried out in modified devise of the ''Bulat'' type. The HF-sources and combined discharges have attracted considerable attention for surface cleaning and coating. The utilization of such discharges allows decreasing droplet fraction formation and providing better adhesion and microhardness values. The existence of HF-field in plasma allows obtaining either conductive or dielectric coatings and they can be deposited on any substrates. (author)
A novel high-frequency encoding algorithm for image compression
Siddeq, Mohammed M.; Rodrigues, Marcos A.
2017-12-01
In this paper, a new method for image compression is proposed whose quality is demonstrated through accurate 3D reconstruction from 2D images. The method is based on the discrete cosine transform (DCT) together with a high-frequency minimization encoding algorithm at compression stage and a new concurrent binary search algorithm at decompression stage. The proposed compression method consists of five main steps: (1) divide the image into blocks and apply DCT to each block; (2) apply a high-frequency minimization method to the AC-coefficients reducing each block by 2/3 resulting in a minimized array; (3) build a look up table of probability data to enable the recovery of the original high frequencies at decompression stage; (4) apply a delta or differential operator to the list of DC-components; and (5) apply arithmetic encoding to the outputs of steps (2) and (4). At decompression stage, the look up table and the concurrent binary search algorithm are used to reconstruct all high-frequency AC-coefficients while the DC-components are decoded by reversing the arithmetic coding. Finally, the inverse DCT recovers the original image. We tested the technique by compressing and decompressing 2D images including images with structured light patterns for 3D reconstruction. The technique is compared with JPEG and JPEG2000 through 2D and 3D RMSE. Results demonstrate that the proposed compression method is perceptually superior to JPEG with equivalent quality to JPEG2000. Concerning 3D surface reconstruction from images, it is demonstrated that the proposed method is superior to both JPEG and JPEG2000.
Profiling high frequency accident locations using associations rules
GEURTS, Karolien; WETS, Geert; BRIJS, Tom; VANHOOF, Koen
2002-01-01
In Belgium, traffic safety is currently one of the government’s highest priorities. Identifying and profiling black spots and black zones in terms of accident related data and location characteristics must provide new insights into the complexity and causes of road accidents which, in turn, provide valuable input for government actions. In this paper, association rules are used to identify accident circumstances that frequently occur together at high frequency accident locations. Furthermore,...
Profiling high-frequency accident locations using association rules
GEURTS, Karolien; WETS, Geert; BRIJS, Tom; VANHOOF, Koen
2003-01-01
In Belgium, traffic safety is currently one of the government's highest priorities. Identifying and profiling black spots and black zones in terms of accident related data and location characteristics must provide new insights into the complexity and causes of road accidents, which, in ram, provide valuable input for government actions. In this paper, association rules are used to identify accident circumstances that frequently occur together at high frequency accident locations. Furthermore...
Design of 1 MHz Solid State High Frequency Power Supply
Parmar, Darshan; Singh, N. P.; Gajjar, Sandip; Thakar, Aruna; Patel, Amit; Raval, Bhavin; Dhola, Hitesh; Dave, Rasesh; Upadhay, Dishang; Gupta, Vikrant; Goswami, Niranjan; Mehta, Kush; Baruah, Ujjwal
2017-04-01
High Frequency Power supply (HFPS) is used for various applications like AM Transmitters, metallurgical applications, Wireless Power Transfer, RF Ion Sources etc. The Ion Source for a Neutral beam Injector at ITER-India uses inductively coupled power source at High Frequency (∼1 MHz). Switching converter based topology used to generate 1 MHz sinusoidal output is expected to have advantages on efficiency and reliability as compared to traditional RF Tetrode tubes based oscillators. In terms of Power Electronics, thermal and power coupling issues are major challenges at such a high frequency. A conceptual design for a 200 kW, 1 MHz power supply and a prototype design for a 600 W source been done. The prototype design is attempted with Class-E amplifier topology where a MOSFET is switched resonantly. The prototype uses two low power modules and a ferrite combiner to add the voltage and power at the output. Subsequently solution with Class-D H-Bridge configuration have been evaluated through simulation where module design is stable as switching device do not participate in resonance, further switching device voltage rating is substantially reduced. The rating of the modules is essentially driven by the maximum power handling capacity of the MOSFETs and ferrites in the combiner circuit. The output passive network including resonance tuned network and impedance matching network caters for soft switching and matches the load impedance to 50ohm respectively. This paper describes the conceptual design of a 200 kW high frequency power supply and experimental results of the prototype 600 W, 1 MHz source.
High frequency microseismic noise as possible earthquake precursor
Ivica Sović; Kristina Šariri; Mladen Živčić
2013-01-01
Before an earthquake occurs, microseismic noise in high frequency (HF) range, i.e. 2-25 Hz, is being generated during preparation process. These signals change the microseismic noise and, consequently, the spectrum of microseismic noise. Time variation of spectra recorded at the same seismological station could imply the change of the state of noise source. We propose the image moment analysis approach to objectively compare microseismic noise spectra. The result could be used for earthquake ...
Zhao Yiguang
1991-01-01
The method of obtaining self-consistent solutions of the field equation and the rate equations of photon density and carrier concentration has been used to study frequecny locking, quasiperiodicity, subharmonic bifurcations and chaos in high frequency modulated stripe geometry DH semiconductor lasers. The results show that the chaotic behavior arises in self-pulsing stripe geometry semiconductor lasers. The route to chaos is not period-double, but quasiperiodicity to chaos. All of the results agree with the experiments. Some obscure points in previous theory about chaos have been cleared up
Planck 2013 results. VI. High Frequency Instrument data processing
Ade, P.A.R.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J. -P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J.J.; Bond, J.R.; Borrill, J.; Bouchet, F.R.; Boulanger, F.; Bowyer, J.W.; Bridges, M.; Bucher, M.; Burigana, C.; Cardoso, J. -F.; Catalano, A.; Chamballu, A.; Chary, R. -R.; Chen, X.; Chiang, L. -Y; Chiang, H.C.; Christensen, P.R.; Church, S.; Clements, D.L.; Colombi, S.; Colombo, L.P.L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B.P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R.D.; Davis, R.J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J. -M.; Désert, F. -X.; Dickinson, C.; Diego, J.M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Enßlin, T.A.; Eriksen, H.K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A.A.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.; Girard, D.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K.M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J.E.; Hansen, F.K.; Hanson, D.; Harrison, D.; Helou, G.; Henrot-Versillé, S.; Herent, O.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S.R.; Hivon, E.; Hobson, M.; Holmes, W.A.; Hornstrup, A.; Hou, Z.; Hovest, W.; Huffenberger, K.M.; Hurier, G.; Jaffe, T.R.; Jaffe, A.H.; Jones, W.C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T.S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J. -M.; Lasenby, A.; Laureijs, R.J.; Lawrence, C.R.; Jeune, M. Le; Leonardi, R.; Leroy, C.; Lesgourgues, J.; Liguori, M.; Lilje, P.B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P.M.; Macías-Pérez, J.F.; MacTavish, C.J.; Maffei, B.; Mandolesi, N.; Maris, M.; Marshall, D.J.; Martin, P.G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Matthai, F.; Mazzotta, P.; McGehee, P.; Meinhold, P.R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M. -A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Mottet, S.; Munshi, D.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C.B.; Nørgaard-Nielsen, H.U.; North, C.; Noviello, F.; Novikov, D.; Novikov, I.; Orieux, F.; Osborne, S.; Oxborrow, C.A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G.W.; Prézeau, G.; Prunet, S.; Puget, J. -L.; Rachen, J.P.; Racine, B.; Reach, W.T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rusholme, B.; Sanselme, L.; Santos, D.; Sauvé, A.; Savini, G.; Shellard, E.P.S.; Spencer, L.D.; Starck, J. -L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sureau, F.; Sutton, D.; Suur-Uski, A. -S.; Sygnet, J. -F.; Tauber, J.A.; Tavagnacco, D.; Techene, S.; Terenzi, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vibert, L.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L.A.; Wandelt, B.D.; White, S.D.M.; Yvon, D.; Zacchei, A.; Zonca, A.
2014-01-01
We describe the processing of the 531 billion raw data samples from the High Frequency Instrument (hereafter HFI), which we performed to produce six temperature maps from the first 473 days of Planck-HFI survey data. These maps provide an accurate rendition of the sky emission at 100, 143, 217, 353, 545, and 857 GHz with an angular resolution ranging from 9.7 to 4.6 arcmin. The detector noise per (effective) beam solid angle is respectively, 10, 6, 12 and 39 microKelvin in HFI four lowest frequency channel (100--353 GHz) and 13 and 14 kJy/sr for the 545 and 857 GHz channels. Using the 143 GHz channel as a reference, these two high frequency channels are intercalibrated within 5% and the 353 GHz relative calibration is at the percent level. The 100 and 217 GHz channels, which together with the 143 GHz channel determine the high-multipole part of the CMB power spectrum (50 < l <2500), are intercalibrated at better than 0.2 %.
High-frequency hearing loss among mobile phone users.
Velayutham, P; Govindasamy, Gopala Krishnan; Raman, R; Prepageran, N; Ng, K H
2014-01-01
The objective of this study is to assess high frequency hearing (above 8 kHz) loss among prolonged mobile phone users is a tertiary Referral Center. Prospective single blinded study. This is the first study that used high-frequency audiometry. The wide usage of mobile phone is so profound that we were unable to find enough non-users as a control group. Therefore we compared the non-dominant ear to the dominant ear using audiometric measurements. The study was a blinded study wherein the audiologist did not know which was the dominant ear. A total of 100 subjects were studied. Of the subjects studied 53% were males and 47% females. Mean age was 27. The left ear was dominant in 63%, 22% were dominant in the right ear and 15% did not have a preference. This study showed that there is significant loss in the dominant ear compared to the non-dominant ear (P mobile phone revealed high frequency hearing loss in the dominant ear (mobile phone used) compared to the non dominant ear.
High-frequency EPR on high-spin transition-metal sites
Mathies, Guinevere
2012-01-01
The electronic structure of transition-metal sites can be probed by electron-paramagnetic-resonance (EPR) spectroscopy. The study of high-spin transition-metal sites benefits from EPR spectroscopy at frequencies higher than the standard 9.5 GHz. However, high-frequency EPR is a developing field. In
National High Frequency Radar Network (hfrnet) and Pacific Research Efforts
Hazard, L.; Terrill, E. J.; Cook, T.; de Paolo, T.; Otero, M. P.; Rogowski, P.; Schramek, T. A.
2016-12-01
The U.S. High Frequency Radar Network (HFRNet) has been in operation for over ten years with representation from 31 organizations spanning academic institutions, state and local government agencies, and private organizations. HFRNet currently holds a collection from over 130 radar installations totaling over 10 million records of surface ocean velocity measurements. HFRNet is a primary example of inter-agency and inter-institutional partnerships for improving oceanographic research and operations. HF radar derived surface currents have been used in several societal applications including coastal search and rescue, oil spill response, water quality monitoring and marine navigation. Central to the operational success of the large scale network is an efficient data management, storage, access, and delivery system. The networking of surface current mapping systems is characterized by a tiered structure that extends from the individual field installations to local regional operations maintaining multiple sites and on to centralized locations aggregating data from all regions. The data system development effort focuses on building robust data communications from remote field locations (sites) for ingestion into the data system via data on-ramps (Portals or Site Aggregators) to centralized data repositories (Nodes). Centralized surface current data enables the aggregation of national surface current grids and allows for ingestion into displays, management tools, and models. The Coastal Observing Research and Development Center has been involved in international relationships and research in the Philippines, Palau, and Vietnam. CORDC extends this IT architecture of surface current mapping data systems leveraging existing developments and furthering standardization of data services for seamless integration of higher level applications. Collaborations include the Philippine Atmospheric Geophysical and Astronomical Services Administration (PAGASA), The Coral Reef Research
Tsunami Arrival Detection with High Frequency (HF Radar
Donald Barrick
2012-05-01
Full Text Available Quantitative real-time observations of a tsunami have been limited to deep-water, pressure-sensor observations of changes in the sea surface elevation and observations of sea level fluctuations at the coast, which are essentially point measurements. Constrained by these data, models have been used for predictions and warning of the arrival of a tsunami, but to date no system exists for local detection of an actual incoming wave with a significant warning capability. Networks of coastal high frequency (HF-radars are now routinely observing surface currents in many countries. We report here on an empirical method for the detection of the initial arrival of a tsunami, and demonstrate its use with results from data measured by fourteen HF radar sites in Japan and USA following the magnitude 9.0 earthquake off Sendai, Japan, on 11 March 2011. The distance offshore at which the tsunami can be detected, and hence the warning time provided, depends on the bathymetry: the wider the shallow continental shelf, the greater this time. We compare arrival times at the radars with those measured by neighboring tide gauges. Arrival times measured by the radars preceded those at neighboring tide gauges by an average of 19 min (Japan and 15 min (USA The initial water-height increase due to the tsunami as measured by the tide gauges was moderate, ranging from 0.3 to 2 m. Thus it appears possible to detect even moderate tsunamis using this method. Larger tsunamis could obviously be detected further from the coast. We find that tsunami arrival within the radar coverage area can be announced 8 min (i.e., twice the radar spectral time resolution after its first appearance. This can provide advance warning of the tsunami approach to the coastline locations.
ON THE HIGH-FREQUENCY QUASI-PERIODIC OSCILLATIONS FROM BLACK HOLES
Erkut, M. Hakan
2011-01-01
We apply the global mode analysis, which has been recently developed for the modeling of kHz quasi-periodic oscillations (QPOs) from neutron stars, to the inner region of an accretion disk around a rotating black hole. Within a pseudo-Newtonian approach that keeps the ratio of the radial epicyclic frequency κ to the orbital frequency Ω the same as the corresponding ratio for a Kerr black hole, we determine the innermost disk region where the hydrodynamic modes grow in amplitude. We find that the radiation flux emerging from the inner disk has the highest values within the same region. Using the flux-weighted averages of the frequency bands over this region we identify the growing modes with highest frequency branches Ω + κ and Ω to be the plausible candidates for the high-frequency QPO pairs observed in black hole systems. The observed frequency ratio around 1.5 can therefore be understood naturally in terms of the global free oscillations in the innermost region of a viscous accretion disk around a black hole without invoking a particular resonance to produce black hole QPOs. Although the frequency ratio (Ω + κ)/(Ω) is found to be not sensitive to the black hole's spin which is good for explaining the high-frequency QPOs, it may work as a limited diagnostic of the spin parameter to distinguish black holes with very large spin from the slowly rotating ones. Within our model we estimate the frequency ratio of a high-frequency QPO pair to be greater than 1.5 if the black hole is a slow rotator. For fast rotating black holes, we expect the same ratio to be less than 1.5.
Harnessing high-dimensional hyperentanglement through a biphoton frequency comb
Xie, Zhenda; Zhong, Tian; Shrestha, Sajan; Xu, Xinan; Liang, Junlin; Gong, Yan-Xiao; Bienfang, Joshua C.; Restelli, Alessandro; Shapiro, Jeffrey H.; Wong, Franco N. C.; Wei Wong, Chee
2015-08-01
Quantum entanglement is a fundamental resource for secure information processing and communications, and hyperentanglement or high-dimensional entanglement has been separately proposed for its high data capacity and error resilience. The continuous-variable nature of the energy-time entanglement makes it an ideal candidate for efficient high-dimensional coding with minimal limitations. Here, we demonstrate the first simultaneous high-dimensional hyperentanglement using a biphoton frequency comb to harness the full potential in both the energy and time domain. Long-postulated Hong-Ou-Mandel quantum revival is exhibited, with up to 19 time-bins and 96.5% visibilities. We further witness the high-dimensional energy-time entanglement through Franson revivals, observed periodically at integer time-bins, with 97.8% visibility. This qudit state is observed to simultaneously violate the generalized Bell inequality by up to 10.95 standard deviations while observing recurrent Clauser-Horne-Shimony-Holt S-parameters up to 2.76. Our biphoton frequency comb provides a platform for photon-efficient quantum communications towards the ultimate channel capacity through energy-time-polarization high-dimensional encoding.
Liu, Su; Sha, Zhiyi; Sencer, Altay; Aydoseli, Aydin; Bebek, Nerse; Abosch, Aviva; Henry, Thomas; Gurses, Candan; Ince, Nuri Firat
2016-04-01
High frequency oscillations (HFOs) in intracranial electroencephalography (iEEG) recordings are considered as promising clinical biomarkers of epileptogenic regions in the brain. The aim of this study is to improve and automatize the detection of HFOs by exploring the time-frequency content of iEEG and to investigate the seizure onset zone (SOZ) detection accuracy during the sleep, awake and pre-ictal states in patients with epilepsy, for the purpose of assisting the localization of SOZ in clinical practice. Ten-minute iEEG segments were defined during different states in eight patients with refractory epilepsy. A three-stage algorithm was implemented to detect HFOs in these segments. First, an amplitude based initial detection threshold was used to generate a large pool of HFO candidates. Then distinguishing features were extracted from the time and time-frequency domain of the raw iEEG and used with a Gaussian mixture model clustering to isolate HFO events from other activities. The spatial distribution of HFO clusters was correlated with the seizure onset channels identified by neurologists in seven patient with good surgical outcome. The overlapping rates of localized channels and seizure onset locations were high in all states. The best result was obtained using the iEEG data during sleep, achieving a sensitivity of 81%, and a specificity of 96%. The channels with maximum number of HFOs identified epileptogenic areas where the seizures occurred more frequently. The current study was conducted using iEEG data collected in realistic clinical conditions without channel pre-exclusion. HFOs were investigated with novel features extracted from the entire frequency band, and were correlated with SOZ in different states. The results indicate that automatic HFO detection with unsupervised clustering methods exploring the time-frequency content of raw iEEG can be efficiently used to identify the epileptogenic zone with an accurate and efficient manner.
Grazioli, Serge; Karam, Oliver; Rimensberger, Peter C
2015-03-01
Several new generation neonatal ventilators that incorporate conventional as well as high frequency ventilation (HFOV) have appeared on the market. Most of them offer the possibility to use HFOV in a volume-targeted mode, despite absence of any preclinical data. With a bench test, we evaluated the performances of 4 new neonatal HFOV devices and compared them to the SensorMedics HFOV device. Expiratory tidal volumes (V(T)) were measured for various ventilator settings and lung characteristics (ie, modifications of compliance and resistance of the system), to mimic several clinical conditions of pre-term and term infants. Increasing the frequency proportionally decreased the V(T) for all the ventilators, although the magnitude of the decrease was highly variable between ventilators. At 15 Hz and a pressure amplitude of 60 cm H2O, the delivered V(T) ranged from 3.5 to 5.9 mL between devices while simulating pre-term infant conditions and from 2.6 to 6.3 mL while simulating term infant conditions. Activating the volume-targeted mode in the 3 machines that offer this mode allowed the V(T) to remain constant over the range of frequencies and with changes of lung mechanical properties, for pre-term infant settings only while targeting a V(T) of 1 mL. These new generation neonatal ventilators were able to deliver adequate V(T) under pre-term infant, but not term infant respiratory system conditions. The clinical relevance of these findings will need to be determined by further studies. Copyright © 2015 by Daedalus Enterprises.
PCB Embedded Inductor for High-Frequency ZVS SEPIC Converter
Dou, Yi; Ouyang, Ziwei; Thummala, Prasanth
2018-01-01
The volume and temperature rise of passive components, especially inductors, limit the momentum toward high power density in high-frequency power converters. To address the limitations, PCB integration of passive components should be considered with the benefit of low profile, excellent thermal...... characteristic and cost reduction. This paper investigates an embedded structure of inductors to further increase the power density of a low power DC-DC converter. A pair of coupling inductors have been embedded into the PCB. The detailed embedded process has been described and the characteristics of embedded...
High-frequency harmonic imaging of the eye
Silverman, Ronald H.; Coleman, D. Jackson; Ketterling, Jeffrey A.; Lizzi, Frederic L.
2005-04-01
Purpose: Harmonic imaging has become a well-established technique for ultrasonic imaging at fundamental frequencies of 10 MHz or less. Ophthalmology has benefited from the use of fundamentals of 20 MHz to 50 MHz. Our aim was to explore the ability to generate harmonics for this frequency range, and to generate harmonic images of the eye. Methods: The presence of harmonics was determined in both water and bovine vitreous propagation media by pulse/echo and hydrophone at a series of increasing excitation pulse intensities and frequencies. Hydrophone measurements were made at the focal point and in the near- and far-fields of 20 MHz and 40 MHz transducers. Harmonic images of the anterior segment of the rabbit eye were obtained by a combination of analog filtering and digital post-processing. Results: Harmonics were generated nearly identically in both water and vitreous. Hydrophone measurements showed the maximum second harmonic to be -5 dB relative to the 35 MHz fundamental at the focus, while in pulse/echo the maximum harmonic amplitude was -15dB relative to the fundamental. Harmonics were absent in the near-field, but present in the far-field. Harmonic images of the eye showed improved resolution. Conclusion: Harmonics can be readily generated at very high frequencies, and at power levels compliant with FDA guidelines for ophthalmology. This technique may yield further improvements to the already impressive resolutions obtainable in this frequency range. Improved imaging of the macular region, in particular, may provide significant improvements in diagnosis of retinal disease.
High-frequency high-voltage high-power DC-to-DC converters
Wilson, T. G.; Owen, H. A.; Wilson, P. M.
1982-09-01
A simple analysis of the current and voltage waveshapes associated with the power transistor and the power diode in an example current-or-voltage step-up (buck-boost) converter is presented. The purpose of the analysis is to provide an overview of the problems and design trade-offs which must be addressed as high-power high-voltage converters are operated at switching frequencies in the range of 100 kHz and beyond. Although the analysis focuses on the current-or-voltage step-up converter as the vehicle for discussion, the basic principles presented are applicable to other converter topologies as well.
Wideband Radar Echo Frequency-domain Simulation and Analysis for High Speed Moving Targets
Ning Chao
2014-04-01
Full Text Available A frequency-domain method is proposed for wideband radar echo simulation of high-speed moving targets. Based on the physical process of electromagnetic waves observing a moving target, a frequency-domain echo model of wideband radar is constructed, and the block diagram of the radar echo simulation in frequency-domain is presented. Then, the impacts of radial velocity and slant range on the matching filtering of LFM radar are analyzed, and some quantitative conclusions on the shift and expansion of the radar profiles are obtained. Simulation results illustrate the correctness and efficiency of the proposed method.
High-resolution mid-IR spectrometer based on frequency upconversion
Hu, Qi; Dam, Jeppe Seidelin; Pedersen, Christian
2012-01-01
We demonstrate a novel approach for high-resolution spectroscopy based on frequency upconversion and postfiltering by means of a scanning Fabryx2013;Perot interferometer. The system is based on sum-frequency mixing, shifting the spectral content from the mid-infrared to the near-visible region al......-frequency 1064xA0;nm laser. We investigate water vapor emission lines from a butane burner and compare the measured results to model data. The presented method we suggest to be used for real-time monitoring of specific gas lines and reference signals....
Dielectric and acoustical high frequency characterisation of PZT thin films
Conde, Janine; Muralt, Paul
2010-01-01
Pb(Zr, Ti)O 3 (PZT) is an interesting material for bulk acoustic wave resonator applications due to its high electromechanical coupling constant, which would enable fabrication of large bandwidth frequency filters. The major challenge of the PZT solid solution system is to overcome mechanical losses generally observed in PZT ceramics. To increase the understanding of these losses in textured thin films, thin film bulk acoustic resonators (TFBAR's) based on PZT thin films with compositions either in the tetragonal region or at the morphotropic phase boundary and (111) or {100} textures were fabricated and studied up to 2 GHz. The dielectric and elastic materials coefficients were extracted from impedance measurements at the resonance frequency. The dispersion of the dielectric constant was obtained from impedance measurements up to 2 GHz. The films with varying compositions, textures and deposition methods (sol-gel or sputtering) were compared in terms of dielectric and acoustical properties.
Dielectric and acoustical high frequency characterisation of PZT thin films
Conde, Janine; Muralt, Paul
2010-02-01
Pb(Zr, Ti)O3 (PZT) is an interesting material for bulk acoustic wave resonator applications due to its high electromechanical coupling constant, which would enable fabrication of large bandwidth frequency filters. The major challenge of the PZT solid solution system is to overcome mechanical losses generally observed in PZT ceramics. To increase the understanding of these losses in textured thin films, thin film bulk acoustic resonators (TFBAR's) based on PZT thin films with compositions either in the tetragonal region or at the morphotropic phase boundary and (111) or {100} textures were fabricated and studied up to 2 GHz. The dielectric and elastic materials coefficients were extracted from impedance measurements at the resonance frequency. The dispersion of the dielectric constant was obtained from impedance measurements up to 2 GHz. The films with varying compositions, textures and deposition methods (sol-gel or sputtering) were compared in terms of dielectric and acoustical properties.
Slow high-frequency effects in mechanics: problems, solutions, potentials
Thomsen, Jon Juel
2005-01-01
– an apparent change in the stiffness associated with an equilibrium; Biasing – a tendency for a system to move towards a particular state which does not exist or is unstable without HFE; and Smoothening – a tendency for discontinuities to be apparently smeared out by HFE. The effects and a method for analyzing...... and compared: The Method of Direct Separation of Motions, the Method of Averaging, and the Method of Multiple Scales. The tutorial concludes by suggesting that more vibration experts, researchers and students should know about HFE effects, for the benefit not only of general vibration troubleshooting, but also......Strong high-frequency excitation (HFE) may change the ‘slow’ (i.e. effective or average) properties of mechanical systems, e.g. their stiffness, natural frequencies, equilibriums, equilibrium stability, and bifurcation paths. This tutorial describes three general HFE effects: Stiffening...
Slow high-frequency effects in mechanics: problems, solutions, potentials
Thomsen, Jon Juel
– an apparent change in the stiffness associated with an equilibrium; Biasing – a tendency for a system to move towards a particular state which does not exist or is unstable without HFE; and Smoothening – a tendency for discontinuities to be apparently smeared out by HFE. The effects and a method for analyzing...... and compared: The Method of Direct Separation of Motions, the Method of Averaging, and the Method of Multiple Scales. The tutorial concludes by suggesting that more vibration experts, researchers and students should know about HFE effects, for the benefit not only of general vibration troubleshooting, but also......Strong high-frequency excitation (HFE) may change the ‘slow’ (i.e. effective or average) properties of mechanical systems, e.g. their stiffness, natural frequencies, equilibriums, equilibrium stability, and bifurcation paths. This tutorial describes three general HFE effects: Stiffening...
High field high frequency EPR techniques and their application to single molecule magnets
Edwards, R.S.; Hill, S.; Goy, P.; Wylde, R.; Takahashi, S.
2004-01-01
We present details of a new high-field/high-frequency EPR technique, and its application to measurements of single-molecule magnets (SMMs). By using a quasi-optical set-up and microwave sources covering a continuous frequency range from 170 to 600 GHz, in conjunction with a millimetre-wave vector network analyser, we are able to measure EPR to high magnetic fields. For example, a g=2 system will exhibit EPR at about 14 T at a frequency of 400 GHz. We illustrate the technique by presenting details of recent high-frequency experiments on several SMMs which are variations of the well-known SMM Mn 12 -Ac. This material has a spin ground state of S=10 and large uniaxial anisotropy, hence frequencies above 300 GHz are required in order to observe EPR from the ground state
The Influence of High-Frequency Gravitational Waves Upon Muscles
Moy, Lawrence S.; Baker, Robert M. L. Jr
2007-01-01
The objective of this paper is to present a theory for the possible influence of high-frequency gravitational waves or HFGWs and pulsed micro-current electromagnetic waves or EMs on biological matter specifically on muscle cells and myofibroblasts. The theory involves consideration of the natural frequency of contractions and relaxations of muscles, especially underlying facial skin, and the possible influence of HFGWs on that process. GWs pass without attenuation through all material thus conventional wisdom would dictate that GWs would have no influence on biological matter. On the other hand, GWs can temporarily modify a gravitational field in some locality if they are of high frequency and such a modification might have an influence in changing the skin muscles' natural frequency. Prior to the actual laboratory generation of HFGWs their influence can be emulated by micro-current EM pulses to the skin and some evidence presented here on that effect may predict the influence of HFGWs. We believe that the HFGW pulsations lead to increased muscle activity and may serve to reverse the aging process. A novel theoretical framework concerning these relaxation phenomena is one result of the paper. Another result is the analysis of the possible delivery system of the FBAR-generated HFGWs, the actual power of the generated HFGWs, and the system's application to nanostructural modification of the skin or muscle cells. It is concluded that a series of non-evasive experiments, which are identified, will have the potential to test theory by detecting and analyzing the possible HFGWs change in polarization, refraction, etc. after their interaction with the muscle cells
Efficient 3D frequency response modeling with spectral accuracy by the rapid expansion method
Chu, Chunlei
2012-07-01
Frequency responses of seismic wave propagation can be obtained either by directly solving the frequency domain wave equations or by transforming the time domain wavefields using the Fourier transform. The former approach requires solving systems of linear equations, which becomes progressively difficult to tackle for larger scale models and for higher frequency components. On the contrary, the latter approach can be efficiently implemented using explicit time integration methods in conjunction with running summations as the computation progresses. Commonly used explicit time integration methods correspond to the truncated Taylor series approximations that can cause significant errors for large time steps. The rapid expansion method (REM) uses the Chebyshev expansion and offers an optimal solution to the second-order-in-time wave equations. When applying the Fourier transform to the time domain wavefield solution computed by the REM, we can derive a frequency response modeling formula that has the same form as the original time domain REM equation but with different summation coefficients. In particular, the summation coefficients for the frequency response modeling formula corresponds to the Fourier transform of those for the time domain modeling equation. As a result, we can directly compute frequency responses from the Chebyshev expansion polynomials rather than the time domain wavefield snapshots as do other time domain frequency response modeling methods. When combined with the pseudospectral method in space, this new frequency response modeling method can produce spectrally accurate results with high efficiency. © 2012 Society of Exploration Geophysicists.
Design of 1 MHz solid state high frequency power supply
Parmar, Darshan Kumar; Singh, N.P.; Gajjar, Sandip
2015-01-01
A High Voltage High Frequency (HVHF) Power supply is used for various applications, like AM Transmitters, metallurgical applications, Wireless Power Transfer, RF Ion Sources, etc. The Ion Source for a Neutral beam Injector at ITER-India uses inductively coupled power source at High Frequency (∼ 1 MHz). Switching converter based topology used to generate 1 MHz sinusoidal output is expected to have advantages on efficiency and reliability as compared to traditional RF Tetrode tubes based oscillators. In terms of Power Electronics, thermal and power coupling issues are major challenges at such a high frequency. A conceptual design for a 200 kW, 1 MHz power supply and a prototype design for a 600W source been done. The prototype design is attempted with Class-E amplifier topology where a MOSFET is switched resonantly. The prototype uses two low power modules and a ferrite combiner to add the voltage and power at the output. Subsequently solution with class-D H-Bridge configuration have been evaluated through simulation where module design is stable as switching device do not participate in resonance, further switching device voltage rating is substantially reduced. The rating of the modules is essentially driven by the maximum power handling capacity of the MOSFETs and ferrites in the combiner circuit. The output passive network including resonance tuned network and impedance matching network caters for soft switching and matches the load impedance to 50 ohm respectively. This paper describes the conceptual design of a 200 kW power supply and experimental results of the prototype 600 W, 1 MHz source. (author)
Local regression type methods applied to the study of geophysics and high frequency financial data
Mariani, M. C.; Basu, K.
2014-09-01
In this work we applied locally weighted scatterplot smoothing techniques (Lowess/Loess) to Geophysical and high frequency financial data. We first analyze and apply this technique to the California earthquake geological data. A spatial analysis was performed to show that the estimation of the earthquake magnitude at a fixed location is very accurate up to the relative error of 0.01%. We also applied the same method to a high frequency data set arising in the financial sector and obtained similar satisfactory results. The application of this approach to the two different data sets demonstrates that the overall method is accurate and efficient, and the Lowess approach is much more desirable than the Loess method. The previous works studied the time series analysis; in this paper our local regression models perform a spatial analysis for the geophysics data providing different information. For the high frequency data, our models estimate the curve of best fit where data are dependent on time.
Shell model in-water frequencies of the core barrel
Takeuchi, K.; De Santo, D.F.
1980-01-01
Natural frequencies of a 1/24th-scale core barrel/vessel model in air and in water are measured by determining frequency responses to applied forces. The measured data are analyzed by the use of the one-dimensional fluid-structure computer code, MULTIFLEX, developed to calculate the hydraulic force. The fluid-structure interaction in the downcomer annulus is computed with a one-dimensional network model formed to be equivalent to two-dimensional fluid-structure interaction. The structural model incorporated in MULTIFLEX is substantially simpler than that necessary for structural analyses. Proposed for computation of structural dynamics is the projector method than can deal with the beam mode by modal analysis and the other shell modes by a direct integration method. Computed in-air and in-water frequencies agree fairly well with the experimental data, verifying the above MULTIFLEX technique
Stochastic scalar mixing models accounting for turbulent frequency multiscale fluctuations
Soulard, Olivier; Sabel'nikov, Vladimir; Gorokhovski, Michael
2004-01-01
Two new scalar micromixing models accounting for a turbulent frequency scale distribution are investigated. These models were derived by Sabel'nikov and Gorokhovski [Second International Symposium on Turbulence and Shear FLow Phenomena, Royal Institute of technology (KTH), Stockholm, Sweden, June 27-29, 2001] using a multiscale extension of the classical interaction by exchange with the mean (IEM) and Langevin models. They are, respectively, called Extended IEM (EIEM) and Extended Langevin (ELM) models. The EIEM and ELM models are tested against DNS results in the case of the decay of a homogeneous scalar field in homogeneous turbulence. This comparison leads to a reformulation of the law governing the mixing frequency distribution. Finally, the asymptotic behaviour of the modeled PDF is discussed
Theory of the high-frequency limiting viscosity of a dilute polymer solution. Pt. 2
Doi, M; Nakajima, H; Wada, Y
1976-06-01
High-frequency limiting viscosities of dilute polymer solutions are calculated on the basis of the author's previous theory for (1) necklace model of a chain with constant bond length and bond angle under a hindering rotational potential, and (2) broken rod model consisting of N rods with equal length connected by universal joints. Exact treatment is possible for a once-broken rod model, but the Monte Carlo method is used in the other calculations.
Frequency Constrained ShiftCP Modeling of Neuroimaging Data
Mørup, Morten; Hansen, Lars Kai; Madsen, Kristoffer H.
2011-01-01
The shift invariant multi-linear model based on the CandeComp/PARAFAC (CP) model denoted ShiftCP has proven useful for the modeling of latency changes in trial based neuroimaging data[17]. In order to facilitate component interpretation we presently extend the shiftCP model such that the extracted...... components can be constrained to pertain to predefined frequency ranges such as alpha, beta and gamma activity. To infer the number of components in the model we propose to apply automatic relevance determination by imposing priors that define the range of variation of each component of the shiftCP model...
Low Frequency Turbulence as the Source of High Frequency Waves in Multi-Component Space Plasmas
Khazanov, George V.; Krivorutsky, Emmanuel N.; Uritsky, Vadim M.
2011-01-01
Space plasmas support a wide variety of waves, and wave-particle interactions as well as wavewave interactions are of crucial importance to magnetospheric and ionospheric plasma behavior. High frequency wave turbulence generation by the low frequency (LF) turbulence is restricted by two interconnected requirements: the turbulence should be strong enough and/or the coherent wave trains should have the appropriate length. These requirements are strongly relaxed in the multi-component plasmas, due to the heavy ions large drift velocity in the field of LF wave. The excitation of lower hybrid waves (LHWs), in particular, is a widely discussed mechanism of interaction between plasma species in space and is one of the unresolved questions of magnetospheric multi-ion plasmas. It is demonstrated that large-amplitude Alfven waves, in particular those associated with LF turbulence, may generate LHW s in the auroral zone and ring current region and in some cases (particularly in the inner magnetosphere) this serves as the Alfven wave saturation mechanism. We also argue that the described scenario can playa vital role in various parts of the outer magnetosphere featuring strong LF turbulence accompanied by LHW activity. Using the data from THEMIS spacecraft, we validate the conditions for such cross-scale coupling in the near-Earth "flow-braking" magnetotail region during the passage of sharp injection/dipolarization fronts, as well as in the turbulent outflow region of the midtail reconnection site.
High Frequency Supercapacitors for Piezo-based Energy Harvesting
Ervin, Matthew; Pereira, Carlos; Miller, John; Outlaw, Ronald; Rastegar, Jay; Murray, Richard
2013-03-01
Energy harvesting is being investigated as an alternative to batteries for powering munition guidance and fuzing functions during flight. A piezoelectric system that generates energy from the oscillation of a mass on a spring (set in motion by the launch acceleration) is being developed. Original designs stored this energy in an electrolytic capacitor for use during flight. Here we replace the electrolytic capacitor with a smaller, lighter, and potentially more reliable electrochemical double layer capacitor (aka, supercapacitor). The potential problems with using supercapacitors in this application are that the piezoelectric output greatly exceeds the supercapacitor electrolyte breakdown voltage, and the frequency greatly exceeds the operating frequency of commercial supercapacitors. Here we have investigated the use of ultrafast vertically oriented graphene array-based supercapacitors for storing the energy in this application. We find that the electrolyte breakdown is not a serious limitation as it is either kinetically limited by the relatively high frequency of the piezoelectric output, or it is overcome by the self-healing nature of supercapacitors. We also find that these supercapacitors have sufficient dynamic response to efficiently store the generated energy.
Planck early results. VI. The High Frequency Instrument data processing
Colley, J.-M.; Bartlett, J.G.; Bucher, M.
2011-01-01
We describe the processing of the 336 billion raw data samples from the High Frequency Instrument (HFI) which we performed to produce six temperature maps from the first 295 days of Planck-HFI survey data. These maps provide an accurate rendition of the sky emission at 100, 143, 217, 353, 545...... and 857 GHz with an angular resolution ranging from 9.9 to 4.4′. The white noise level is around 1.5 μK degree or less in the 3 main CMB channels (100-217 GHz). The photometric accuracy is better than 2% at frequencies between 100 and 353 GHz and around 7% at the two highest frequencies. The maps created...... by the HFI Data Processing Centre reach our goals in terms of sensitivity, resolution, and photometric accuracy. They are already sufficiently accurate and well-characterised to allow scientific analyses which are presented in an accompanying series of early papers. At this stage, HFI data appears...
Electron energy distributions and excitation rates in high-frequency argon discharges
Ferreira, C.M.; Loureiro, J.
1983-06-01
The electron energy distribution functions and rate coefficients for excitation and ionisation in argon under the action of an uniform high-frequency electric field were calculated by numerically solving the homogeneous Boltzmann equation. Analytic calculations in the limiting cases ω>>νsub(c) and ω<<νsub(c), where ω is the wave angular frequency and νsub(c) is the electron-neutral collision frequency for momentum transfer, are also presented and shown to be in very good agreement with the numerical computations. The results reported here are relevant for the modelling of high-frequency discharges in argon and, in particular, for improving recent theoretical descriptions of a plasma column sustained by surface microwaves. The properties of surface wave produced plasmas make them interesting as possible substitutes for other more conventional plasma sources for such important applications as plasma chemistry laser excitation, plasma etching spectroscopic sources etc...
Elemans, Coen; Muller, Mees; Larsen, Ole Næsbye
2009-01-01
membrane and generate a wide variety of ‘syllables' with simple sweeps of the control parameters. We show that the membrane exhibits high frequency, self-sustained oscillations in the audio range (>600 Hz fundamental frequency) using laser Doppler vibrometry, and systematically explore the conditions...... for sound production of the model in its control space. The fundamental frequency of the sound increases with tension in three membranes with different stiffness and mass. The lowerbound fundamental frequency increases with membrane mass. The membrane vibrations are strongly coupled to the resonance...
Improvement of the low frequency oscillation model for Hall thrusters
Wang, Chunsheng, E-mail: wangcs@hit.edu.cn; Wang, Huashan [Yanshan University, College of Vehicles and Energy, Qinhuangdao 066004, Hebei (China)
2016-08-15
The low frequency oscillation of the discharge current in Hall thrusters is a major aspect of these devices that requires further study. While the existing model captures the ionization mechanism of the low frequency oscillation, it unfortunately fails to express the dynamic characteristics of the ion acceleration. The analysis in this paper shows this is because of the simplification of the electron equation, which affects both the electric field distribution and the ion acceleration process. Additionally, the electron density equation is revised and a new model that is based on the physical properties of ion movement is proposed.
Low power very high frequency resonant converter with high step down ratio
Madsen, Mickey Pierre; Knott, Arnold; Andersen, Michael A. E.
2013-01-01
This paper presents the design of a resonant converter with a switching frequency in the very high frequency range (30-300MHz), a large step down ratio and low output power. This gives the designed converters specifications which are far from previous results. The class E inverter and rectifier...
High Frequency Vibration Based Fatigue Testing of Developmental Alloys
Holycross, Casey M.; Srinivasan, Raghavan; George, Tommy J.; Tamirisakandala, Seshacharyulu; Russ, Stephan M.
Many fatigue test methods have been previously developed to rapidly evaluate fatigue behavior. This increased test speed can come at some expense, since these methods may require non-standard specimen geometry or increased facility and equipment capability. One such method, developed by George et al, involves a base-excited plate specimen driven into a high frequency bending resonant mode. This resonant mode is of sufficient frequency (typically 1200 to 1700 Hertz) to accumulate 107 cycles in a few hours. One of the main limitations of this test method is that fatigue cracking is almost certainly guaranteed to be surface initiated at regions of high stress. This brings into question the validity of the fatigue test results, as compared to more traditional uniaxial, smooth-bar testing, since high stresses are subjecting only a small volume to fatigue damage. This limitation also brings into question the suitability of this method to screen developmental alloys, should their initiation life be governed by subsurface flaws. However, if applicable, the rapid generation of fatigue data using this method would facilitate faster design iterations, identifying more quickly, material and manufacturing process deficiencies. The developmental alloy used in this study was a powder metallurgy boron-modified Ti-6Al-4V, a new alloy currently being considered for gas turbine engine fan blades. Plate specimens were subjected to fully reversed bending fatigue. Results are compared with existing data from commercially available Ti-6Al-4V using both vibration based and more traditional fatigue test methods.
High-frequency shear-horizontal surface acoustic wave sensor
Branch, Darren W
2013-05-07
A Love wave sensor uses a single-phase unidirectional interdigital transducer (IDT) on a piezoelectric substrate for leaky surface acoustic wave generation. The IDT design minimizes propagation losses, bulk wave interferences, provides a highly linear phase response, and eliminates the need for impedance matching. As an example, a high frequency (.about.300-400 MHz) surface acoustic wave (SAW) transducer enables efficient excitation of shear-horizontal waves on 36.degree. Y-cut lithium tantalate (LTO) giving a highly linear phase response (2.8.degree. P-P). The sensor has the ability to detect at the pg/mm.sup.2 level and can perform multi-analyte detection in real-time. The sensor can be used for rapid autonomous detection of pathogenic microorganisms and bioagents by field deployable platforms.
Resonator as high frequency electromagnetic field oscillation generator
Svoroba, O.V.; Scherbina, V.O.
2007-01-01
The problem of finding the u(x-vector) field potential in a specific waveguide with generalized corrugated core geometry is considered. The perturbation is brought to the system by high energy electron beam, injected in a waveguide. It is shown that the Neumann spectral problem can be reduced to finding Green approximation solution, and how it can be solved by the discretization technique. Considered parameterization allow to optimize the u(x-vector) field for specific frequency tuning. This method can be used as plasma heating method for thermonuclear temperature control
A detector for high frequency modulation in auroral particle fluxes
Spiger, R. J.; Oehme, D.; Loewenstein, R. F.; Murphree, J.; Anderson, H. R.; Anderson, R.
1974-01-01
A high time resolution electron detector has been developed for use in sounding rocket studies of the aurora. The detector is used to look for particle bunching in the range 50 kHz-10 MHz. The design uses an electron multiplier and an onboard frequency spectrum analyzer. By using the onboard analyzer, the data can be transmitted back to ground on a single 93-kHz voltage-controlled oscillator. The detector covers the 50 kHz-10 MHz range six times per second and detects modulation on the order of a new percent of the total electron flux. Spectra are presented for a flight over an auroral arc.
Low-frequency oscillations at high density in JFT-2
Maeno, Masaki; Katagiri, Masaki; Suzuki, Norio; Fujisawa, Noboru
1977-12-01
Low-frequency oscillations in a plasma were measured with magnetic probes and Si surface-barrier detectors, and behaviour of the high density plasmas was studied. The plasma current profile in the phase of decreasing density after the interruption of gas input is more peaked than during gas input. The introduction of hydrogen during a discharge results in a reduction of the impurities flux. The increase of density by fast gas input is limited with a negative voltage spike. Immediately before a negative voltage spike, oscillations of m=1,2 grow, leading to the spike. (auth.)
High-efficiency ventilated metamaterial absorber at low frequency
Wu, Xiaoxiao; Au-Yeung, Ka Yan; Li, Xin; Roberts, Robert Christopher; Tian, Jingxuan; Hu, Chuandeng; Huang, Yingzhou; Wang, Shuxia; Yang, Zhiyu; Wen, Weijia
2018-03-01
We demonstrate a ventilated metamaterial absorber operating at low frequency (90%) has been achieved in both simulations and experiments. This high-efficiency absorption under the ventilation condition originates from the weak coupling of two identical split tube resonators constituting the absorber, which leads to the hybridization of the degenerate eigenmodes and breaks the absorption upper limit of 50% for conventional transmissive symmetric acoustic absorbers. The absorber can also be extended to an array and work in free space. The absorber should have potential applications in acoustic engineering where both noise reduction and ventilation are required.
RF MEMS Fractal Capacitors With High Self-Resonant Frequencies
Elshurafa, Amro M.
2012-07-23
This letter demonstrates RF microelectromechanical systems (MEMS) fractal capacitors possessing the highest reported self-resonant frequencies (SRFs) in PolyMUMPS to date. Explicitly, measurement results show SRFs beyond 20 GHz. Furthermore, quality factors higher than 4 throughout a band of 1-15 GHz and reaching as high as 28 were achieved. Additional benefits that are readily attainable from implementing fractal capacitors in MEMS are discussed, including suppressing residual stress warping, eliminating the need for etching holes, and reducing parasitics. The latter benefits were acquired without any fabrication intervention. © 2011 IEEE.
Kapitza thermal resistance studied by high-frequency photothermal radiometry
Horny, Nicolas; Chirtoc, Mihai; Hamaoui, Georges; Fleming, Austin; Ban, Heng
2016-01-01
Kapitza thermal resistance is determined using high-frequency photothermal radiometry (PTR) extended for modulation up to 10 MHz. Interfaces between 50 nm thick titanium coatings and silicon or stainless steel substrates are studied. In the used configuration, the PTR signal is not sensitive to the thermal conductivity of the film nor to its optical absorption coefficient, thus the Kapitza resistance is directly determined from single thermal parameter fits. Results of thermal resistances show the significant influence of the nature of the substrate, as well as of the presence of free electrons at the interface.
HIGH-RESOLUTION RADIO OBSERVATIONS OF THE REMNANT OF SN 1987A AT HIGH FREQUENCIES
Zanardo, Giovanna; Staveley-Smith, L.; Potter, T. M.; Ng, C.-Y.; Gaensler, B. M.; Manchester, R. N.; Tzioumis, A. K.
2013-01-01
We present new imaging observations of the remnant of Supernova (SN) 1987A at 44 GHz, performed in 2011 with the Australia Telescope Compact Array (ATCA). The 0.''35 × 0.''23 resolution of the diffraction-limited image is the highest achieved to date in high-dynamic range. We also present a new ATCA image at 18 GHz derived from 2011 observations, which is super-resolved to 0.''25. The flux density is 40 ± 2 mJy at 44 GHz and 81 ± 6 mJy at 18 GHz. At both frequencies, the remnant exhibits a ring-like emission with two prominent lobes, and an east-west brightness asymmetry that peaks on the eastern lobe. A central feature of fainter emission appears at 44 GHz. A comparison with previous ATCA observations at 18 and 36 GHz highlights higher expansion velocities of the remnant's eastern side. The 18-44 GHz spectral index is α = –0.80 (S ν ∝ν α ). The spectral index map suggests slightly steeper values at the brightest sites on the eastern lobe, whereas flatter values are associated with the inner regions. The remnant morphology at 44 GHz generally matches the structure seen with contemporaneous X-ray and Hα observations. Unlike the Hα emission, both the radio and X-ray emission peaks on the eastern lobe. The regions of flatter spectral index align and partially overlap with the optically visible ejecta. Simple free-free absorption models suggest that emission from a pulsar wind nebula or a compact source inside the remnant may now be detectable at high frequencies or at low frequencies if there are holes in the ionized component of the ejecta.
Identifying missing dictionary entries with frequency-conserving context models
Williams, Jake Ryland; Clark, Eric M.; Bagrow, James P.; Danforth, Christopher M.; Dodds, Peter Sheridan
2015-10-01
In an effort to better understand meaning from natural language texts, we explore methods aimed at organizing lexical objects into contexts. A number of these methods for organization fall into a family defined by word ordering. Unlike demographic or spatial partitions of data, these collocation models are of special importance for their universal applicability. While we are interested here in text and have framed our treatment appropriately, our work is potentially applicable to other areas of research (e.g., speech, genomics, and mobility patterns) where one has ordered categorical data (e.g., sounds, genes, and locations). Our approach focuses on the phrase (whether word or larger) as the primary meaning-bearing lexical unit and object of study. To do so, we employ our previously developed framework for generating word-conserving phrase-frequency data. Upon training our model with the Wiktionary, an extensive, online, collaborative, and open-source dictionary that contains over 100 000 phrasal definitions, we develop highly effective filters for the identification of meaningful, missing phrase entries. With our predictions we then engage the editorial community of the Wiktionary and propose short lists of potential missing entries for definition, developing a breakthrough, lexical extraction technique and expanding our knowledge of the defined English lexicon of phrases.
Multivariate Frequency-Severity Regression Models in Insurance
Edward W. Frees
2016-02-01
Full Text Available In insurance and related industries including healthcare, it is common to have several outcome measures that the analyst wishes to understand using explanatory variables. For example, in automobile insurance, an accident may result in payments for damage to one’s own vehicle, damage to another party’s vehicle, or personal injury. It is also common to be interested in the frequency of accidents in addition to the severity of the claim amounts. This paper synthesizes and extends the literature on multivariate frequency-severity regression modeling with a focus on insurance industry applications. Regression models for understanding the distribution of each outcome continue to be developed yet there now exists a solid body of literature for the marginal outcomes. This paper contributes to this body of literature by focusing on the use of a copula for modeling the dependence among these outcomes; a major advantage of this tool is that it preserves the body of work established for marginal models. We illustrate this approach using data from the Wisconsin Local Government Property Insurance Fund. This fund offers insurance protection for (i property; (ii motor vehicle; and (iii contractors’ equipment claims. In addition to several claim types and frequency-severity components, outcomes can be further categorized by time and space, requiring complex dependency modeling. We find significant dependencies for these data; specifically, we find that dependencies among lines are stronger than the dependencies between the frequency and average severity within each line.
Mixed Frequency Data Sampling Regression Models: The R Package midasr
Eric Ghysels
2016-08-01
Full Text Available When modeling economic relationships it is increasingly common to encounter data sampled at different frequencies. We introduce the R package midasr which enables estimating regression models with variables sampled at different frequencies within a MIDAS regression framework put forward in work by Ghysels, Santa-Clara, and Valkanov (2002. In this article we define a general autoregressive MIDAS regression model with multiple variables of different frequencies and show how it can be specified using the familiar R formula interface and estimated using various optimization methods chosen by the researcher. We discuss how to check the validity of the estimated model both in terms of numerical convergence and statistical adequacy of a chosen regression specification, how to perform model selection based on a information criterion, how to assess forecasting accuracy of the MIDAS regression model and how to obtain a forecast aggregation of different MIDAS regression models. We illustrate the capabilities of the package with a simulated MIDAS regression model and give two empirical examples of application of MIDAS regression.
Fundamental Frequency and Model Order Estimation Using Spatial Filtering
Karimian-Azari, Sam; Jensen, Jesper Rindom; Christensen, Mads Græsbøll
2014-01-01
extend this procedure to account for inharmonicity using unconstrained model order estimation. The simulations show that beamforming improves the performance of the joint estimates of fundamental frequency and the number of harmonics in low signal to interference (SIR) levels, and an experiment......In signal processing applications of harmonic-structured signals, estimates of the fundamental frequency and number of harmonics are often necessary. In real scenarios, a desired signal is contaminated by different levels of noise and interferers, which complicate the estimation of the signal...... parameters. In this paper, we present an estimation procedure for harmonic-structured signals in situations with strong interference using spatial filtering, or beamforming. We jointly estimate the fundamental frequency and the constrained model order through the output of the beamformers. Besides that, we...
The thermal history of the plasma and high-frequency gravitons
Giovannini, Massimo
2009-01-01
Possible deviations from a radiation-dominated evolution, occurring prior to the synthesis of light nuclei, impacted on the spectral energy density of high-frequency gravitons. For a systematic scrutiny of this situation, the ΛCDM paradigm must be complemented by (at least two) physical parameters describing, respectively, a threshold frequency and a slope. The supplementary frequency scale sets the lower border of a high-frequency domain where the spectral energy grows with a slope which depends, predominantly, upon the total sound speed of the plasma right after inflation. While the infrared region of the graviton energy spectrum is nearly scale invariant, the expected signals for typical frequencies larger than 0.01 nHz are hereby analyzed in a model-independent framework by requiring that the total sound speed of the post-inflationary plasma be smaller than the speed of light. Current (e.g., low-frequency) upper limits on the tensor power spectra (determined from the combined analysis of the three large-scale data sets) are shown to be compatible with a detectable signal in the frequency range of wideband interferometers. In the present context, the scrutiny of the early evolution of the sound speed of the plasma can then be mapped onto a reliable strategy of parameter extraction including not only the well-established cosmological observables but also the forthcoming data from wideband interferometers.
Corrosion monitoring using high-frequency guided ultrasonic waves
Fromme, Paul
2014-02-01
Corrosion develops due to adverse environmental conditions during the life cycle of a range of industrial structures, e.g., offshore oil platforms, ships, and desalination plants. Both pitting corrosion and generalized corrosion leading to wall thickness loss can cause the degradation of the structural integrity. The nondestructive detection and monitoring of corrosion damage in difficult to access areas can be achieved using high frequency guided waves propagating along the structure from accessible areas. Using standard ultrasonic transducers with single sided access to the structure, guided wave modes were generated that penetrate through the complete thickness of the structure. The wave propagation and interference of the different guided wave modes depends on the thickness of the structure. Laboratory experiments were conducted and the wall thickness reduced by consecutive milling of the steel structure. Further measurements were conducted using accelerated corrosion in a salt water bath and the damage severity monitored. From the measured signal change due to the wave mode interference the wall thickness reduction was monitored. The high frequency guided waves have the potential for corrosion damage monitoring at critical and difficult to access locations from a stand-off distance.
Corrosion monitoring using high-frequency guided waves
Fromme, P.
2016-04-01
Corrosion can develop due to adverse environmental conditions during the life cycle of a range of industrial structures, e.g., offshore oil platforms, ships, and desalination plants. Generalized corrosion leading to wall thickness loss can cause the reduction of the strength and thus degradation of the structural integrity. The monitoring of corrosion damage in difficult to access areas can be achieved using high frequency guided waves propagating along the structure from accessible areas. Using standard ultrasonic wedge transducers with single sided access to the structure, guided wave modes were selectively generated that penetrate through the complete thickness of the structure. The wave propagation and interference of the different guided wave modes depends on the thickness of the structure. Laboratory experiments were conducted for wall thickness reduction due to milling of the steel structure. From the measured signal changes due to the wave mode interference the reduced wall thickness was monitored. Good agreement with theoretical predictions was achieved. The high frequency guided waves have the potential for corrosion damage monitoring at critical and difficult to access locations from a stand-off distance.
Iridoschisis: high frequency ultrasound imaging. Evidence for a genetic defect?
Danias, J; Aslanides, I M; Eichenbaum, J W; Silverman, R H; Reinstein, D Z; Coleman, D J
1996-01-01
AIMS: To elucidate changes in the anatomy of the anterior chamber associated with iridoschisis, a rare form of iris atrophy, and their potential contribution to angle closure glaucoma. METHODS: Both eyes of a 71-year-old woman with bilateral iridoschisis and fibrous dysplasia and her asymptomatic 50-year-old daughter were scanned with a very high frequency (50 MHz) ultrasound system. RESULTS: The symptomatic patient exhibited diffuse changes in the iris stoma with an intact posterior iris pigmented layer in both eyes. These changes were clinically compatible with the lack of iris transillumination defects. Additionally, iris bowing with a resultant narrowing of the angle occurred. The asymptomatic daughter showed discrete, but less severe iris stromal changes. CONCLUSION: This is the first detailed study of high frequency ultrasonic imaging of the iris in iridoschisis. The observed structural changes suggest angle narrowing by forward bowing of the anterior iris stroma may be a mechanism of IOP elevation in this condition. The ultrasonic detection of iris changes in the asymptomatic daughter of the symptomatic patient and the association of iridoschisis with fibrous dysplasia suggest a possible genetic component in the pathogenesis of this condition. Images PMID:9059271
[High frequency electrocoagulation for treating noninvoluting congenital hemangioma].
Zhongqiang, Wang; Yafei, Wang; Jiashuang, Zhou; Quan, Zhou; Lijuan, Yang; Li, Wang
2015-11-01
To investigate the clinical efficiency of electrocoagulation for the treatment of noninvoluting congenital hemangioma. Sixteen infants with noninvoluting congenital hemangioma who were admitted to our hospital from January 2011 to June 2013 were included in this study. Color Doppler ultrasound was used to determine the hemangioma location, as well as its size and depth. High frequency electrocoagulation was adopted for the treatment. The output power was set at 10-20 W. The probes were inserted around the tumor or at the surface of the tumor. After switching on for 1-2 seconds, the direction and position of the probe was modulated until covering the whole tumor. After the treatment, the absorption of tumor was about 3-6 months. The efficiency was evaluated during the follow-up. Tumor atrophy was obvious after treatment in all patients. The temperature around the tumor mass was decreased, and the aberrant blood signals were decreased under the ultrasonic examination. Complete or partial atrophy were observed. The efficiency was graded as level I, II, III, IV in 0, 2, 9 and 5 patients, respectively. One patient showed local infection due to improper nursing, which was completely relieved after corresponding treatment. No severe adverse events were observed. High-frequency electrocoagulation is effective for treating noninvoluting congenital hemangioma through coagulating the aberrant blood vessels in the tumor, interrupting the vascular endothelial cell, blocking the aberrant blood flow, as well as leading to atrophy and absorption of tumor mass. Besides, no obvious scar is observed after the surgery.
High relative frequency of thyroid papillary carcinoma in northern Portugal.
Sambade, M C; Gonçalves, V S; Dias, M; Sobrinho-Simões, M A
1983-05-01
Two hundred and twelve papillary and 40 follicular carcinomas were found in 3002 thyroid glands examined from 1931 to 1975 in four Laboratories of Pathology that fairly cover northern Portugal. There was a striking preponderance of women both in papillary (female:male = 6.9:1) and follicular carcinoma (5.7:1). Sex-specific frequency of malignancy was significantly greater in men (13.3%) than in women (8.8%). The overall papillary/follicular ratio was 5.3:1 and did not significantly change throughout the study period. Papillary/follicular ratio was not significantly greater in litoral (5.5:1) than in regions with a low iodine intake and a relatively high prevalence of goiter (3.5:1). It is advanced that this high relative frequency of papillary carcinoma in northern Portugal, even in goiter areas, may reflect the existence of a racial factor since there is not enough evidence to support the influence of dietary iodine, previous irradiation and concurrent thyroiditis.
High-frequency behavior of amorphous microwires and its applications
Marin, P.; Cortina, D.; Hernando, A.
2005-01-01
A magnetic microwire is a continuous filament of total diameter less than 100 μm consisting of an inner metallic magnetic nuclei covered by a glassy outer shell, usually obtained by Taylor's technique, with interesting magnetic properties connected with its high axial magnetic anisotropy. Magnetic sensors based on microwires used, as operating principle, the strong connection between the composition and the uniaxial anisotropy through a magnetostriction constant such as the large Barkhausen effect, Mateucci effect and giant magneto-impedance effect. The study of the microwave properties is also very promising technologically. In the microwave region (approaching GHz range), the ferromagnetic resonance (FMR) occurs and it is connected with the spin precession of the magnetisation vector due to the effect of the high-frequency electromagnetic field applied such that the magnetic component is perpendicular to the magnetisation vector. The natural ferromagnetic resonance (NFMR) has been also observed. The frequency depends upon the value of magnetic anisotropy and it is characterised by the single well-distinguished line in the 2-10 GHz range. Tags detector based on the microwires FMR and a new kind of electromagnetic radiation absorbers based on the microwires NFMR have been developed
Calibration of ultra-high frequency (UHF) partial discharge sensors using FDTD method
Ishak, Asnor Mazuan; Ishak, Mohd Taufiq
2018-02-01
Ultra-high frequency (UHF) partial discharge sensors are widely used for conditioning monitoring and defect location in insulation system of high voltage equipment. Designing sensors for specific applications often requires an iterative process of manufacturing, testing and mechanical modifications. This paper demonstrates the use of finite-difference time-domain (FDTD) technique as a tool to predict the frequency response of UHF PD sensors. Using this approach, the design process can be simplified and parametric studies can be conducted in order to assess the influence of component dimensions and material properties on the sensor response. The modelling approach is validated using gigahertz transverse electromagnetic (GTEM) calibration system. The use of a transient excitation source is particularly suitable for modeling using FDTD, which is able to simulate the step response output voltage of the sensor from which the frequency response is obtained using the same post-processing applied to the physical measurement.
Kapaev, V. V.; Kopaev, Yu. V.; Savinov, S. A.; Murzin, V. N.
2013-01-01
The characteristics of the high-frequency response of single- and double-well resonant tunneling structures in a dc electric field are investigated on the basis of the numerical solution of a time-dependent Schrödinger equation with open boundary conditions. The frequency dependence of the real part of high frequency conductivity (high-frequency response) in In 0.53 Ga 0.47 As/AlAs/InP structures is analyzed in detail for various values of the dc voltage V dc in the negative differential resistance (NDR) region. It is shown that double-well three-barrier structures are promising for the design of terahertz-band oscillators. The presence of two resonant states with close energies in such structures leads to a resonant (in frequency) response whose frequency is determined by the energy difference between these levels and can be controlled by varying the parameters of the structure. It is shown that, in principle, such structures admit narrow-band amplification, tuning of the amplification frequency, and a fine control of the amplification (oscillation) frequency in a wide range of terahertz frequencies by varying a dc electric voltage applied to the structure. Starting from a certain width of the central intermediate barrier in double-well structures, one can observe a collapse of resonances, where the structure behaves like a single-well system. This phenomenon imposes a lower limit on the oscillation frequency in three-barrier resonant tunneling structures.
A High Energy and High Efficiency Spectral Shaping Single Frequency Fiber Laser, Phase I
National Aeronautics and Space Administration — This SBIR phase I project proposes a tunable single frequency high energy fiber laser system for coherent Lidar systems for remote sensing. Current state-of-art...
A High Energy and High Efficiency Spectral Shaping Single Frequency Fiber Laser, Phase II
National Aeronautics and Space Administration — This SBIR phase II project proposes a single frequency high energy fiber laser system for coherent Lidar systems for remote sensing. Current state-of-art...
Mechanisms and factors that influence high frequency retroviral recombination
Delviks-Frankenberry, Krista; Galli, Andrea; Nikolaitchik, Olga
2011-01-01
With constantly changing environmental selection pressures, retroviruses rely upon recombination to reassort polymorphisms in their genomes and increase genetic diversity, which improves the chances for the survival of their population. Recombination occurs during DNA synthesis, whereby reverse...... transcriptase undergoes template switching events between the two copackaged RNAs, resulting in a viral recombinant with portions of the genetic information from each parental RNA. This review summarizes our current understanding of the factors and mechanisms influencing retroviral recombination, fidelity...... of the recombination process, and evaluates the subsequent viral diversity and fitness of the progeny recombinant. Specifically, the high mutation rates and high recombination frequencies of HIV-1 will be analyzed for their roles in influencing HIV-1 global diversity, as well as HIV-1 diagnosis, drug treatment...
Mechanisms and Factors that Influence High Frequency Retroviral Recombination
Delviks-Frankenberry, Krista; Galli, Andrea; Nikolaitchik, Olga; Mens, Helene; Pathak, Vinay K.; Hu, Wei-Shau
2011-01-01
With constantly changing environmental selection pressures, retroviruses rely upon recombination to reassort polymorphisms in their genomes and increase genetic diversity, which improves the chances for the survival of their population. Recombination occurs during DNA synthesis, whereby reverse transcriptase undergoes template switching events between the two copackaged RNAs, resulting in a viral recombinant with portions of the genetic information from each parental RNA. This review summarizes our current understanding of the factors and mechanisms influencing retroviral recombination, fidelity of the recombination process, and evaluates the subsequent viral diversity and fitness of the progeny recombinant. Specifically, the high mutation rates and high recombination frequencies of HIV-1 will be analyzed for their roles in influencing HIV-1 global diversity, as well as HIV-1 diagnosis, drug treatment, and vaccine development. PMID:21994801
Frequency selective surfaces based high performance microstrip antenna
Narayan, Shiv; Jha, Rakesh Mohan
2016-01-01
This book focuses on performance enhancement of printed antennas using frequency selective surfaces (FSS) technology. The growing demand of stealth technology in strategic areas requires high-performance low-RCS (radar cross section) antennas. Such requirements may be accomplished by incorporating FSS into the antenna structure either in its ground plane or as the superstrate, due to the filter characteristics of FSS structure. In view of this, a novel approach based on FSS technology is presented in this book to enhance the performance of printed antennas including out-of-band structural RCS reduction. In this endeavor, the EM design of microstrip patch antennas (MPA) loaded with FSS-based (i) high impedance surface (HIS) ground plane, and (ii) the superstrates are discussed in detail. The EM analysis of proposed FSS-based antenna structures have been carried out using transmission line analogy, in combination with the reciprocity theorem. Further, various types of novel FSS structures are considered in desi...
High frequency modulation circuits based on photoconductive wide bandgap switches
Sampayan, Stephen
2018-02-13
Methods, systems, and devices for high voltage and/or high frequency modulation. In one aspect, an optoelectronic modulation system includes an array of two or more photoconductive switch units each including a wide bandgap photoconductive material coupled between a first electrode and a second electrode, a light source optically coupled to the WBGP material of each photoconductive switch unit via a light path, in which the light path splits into multiple light paths to optically interface with each WBGP material, such that a time delay of emitted light exists along each subsequent split light path, and in which the WBGP material conducts an electrical signal when a light signal is transmitted to the WBGP material, and an output to transmit the electrical signal conducted by each photoconductive switch unit. The time delay of the photons emitted through the light path is substantially equivalent to the time delay of the electrical signal.
Development of high frequency and wide bandwidth Johnson noise thermometry
Crossno, Jesse; Liu, Xiaomeng; Kim, Philip; Ohki, Thomas A.; Fong, Kin Chung
2015-01-01
We develop a high frequency, wide bandwidth radiometer operating at room temperature, which augments the traditional technique of Johnson noise thermometry for nanoscale thermal transport studies. Employing low noise amplifiers and an analog multiplier operating at 2 GHz, auto- and cross-correlated Johnson noise measurements are performed in the temperature range of 3 to 300 K, achieving a sensitivity of 5.5 mK (110 ppm) in 1 s of integration time. This setup allows us to measure the thermal conductance of a boron nitride encapsulated monolayer graphene device over a wide temperature range. Our data show a high power law (T ∼ 4) deviation from the Wiedemann-Franz law above T ∼ 100 K
Modeling the frequency response of microwave radiometers with QUCS
Zonca, A; Williams, B; Rubin, I; Meinhold, P; Lubin, P; Roucaries, B; D'Arcangelo, O; Franceschet, C; Mennella, A; Bersanelli, M; Jahn, S
2010-01-01
Characterization of the frequency response of coherent radiometric receivers is a key element in estimating the flux of astrophysical emissions, since the measured signal depends on the convolution of the source spectral emission with the instrument band shape. Laboratory Radio Frequency (RF) measurements of the instrument bandpass often require complex test setups and are subject to a number of systematic effects driven by thermal issues and impedance matching, particularly if cryogenic operation is involved. In this paper we present an approach to modeling radiometers bandpasses by integrating simulations and RF measurements of individual components. This method is based on QUCS (Quasi Universal Circuit Simulator), an open-source circuit simulator, which gives the flexibility of choosing among the available devices, implementing new analytical software models or using measured S-parameters. Therefore an independent estimate of the instrument bandpass is achieved using standard individual component measurements and validated analytical simulations. In order to automate the process of preparing input data, running simulations and exporting results we developed the Python package python-qucs and released it under GNU Public License. We discuss, as working cases, bandpass response modeling of the COFE and Planck Low Frequency Instrument (LFI) radiometers and compare results obtained with QUCS and with a commercial circuit simulator software. The main purpose of bandpass modeling in COFE is to optimize component matching, while in LFI they represent the best estimation of frequency response, since end-to-end measurements were strongly affected by systematic effects.
Frequency-domain thermal modelling of power semiconductor devices
Ma, Ke; Blaabjerg, Frede; Andresen, Markus
2015-01-01
to correctly predict the device temperatures, especially when considering the thermal grease and heat sink attached to the power semiconductor devices. In this paper, the frequency-domain approach is applied to the modelling of thermal dynamics for power devices. The limits of the existing RC lump...
Hybrid time/frequency domain modeling of nonlinear components
Wiechowski, Wojciech Tomasz; Lykkegaard, Jan; Bak, Claus Leth
2007-01-01
This paper presents a novel, three-phase hybrid time/frequency methodology for modelling of nonlinear components. The algorithm has been implemented in the DIgSILENT PowerFactory software using the DIgSILENT Programming Language (DPL), as a part of the work described in [1]. Modified HVDC benchmark...
Vainer, B.V.; Nasel'skii, P.D.
1983-01-01
Equations for the correlation functions of fluctuations in the spectra of relativistic collisionless particles are obtained from the combined system of Einstein's equations and the Vlasov equation. It is shown that the interaction of high-frequency gravitational waves with collisionless particles leads to diffusion of their spectrum in the momentum space. The distortions in the spectrum of the microwave background radiation in a cosmological model with high-frequency gravitational waves are discussed. Bounds are obtained on the spectral characteristics of background gravitational waves
First Measurements of High Frequency Cross-Spectra from a Pair of Large Michelson Interferometers
Chou, Aaron S.; Gustafson, Richard; Hogan, Craig; Kamai, Brittany; Kwon, Ohkyung; Lanza, Robert; McCuller, Lee; Meyer, Stephan S.; Richardson, Jonathan; Stoughton, Chris; Tomlin, Raymond; Waldman, Samuel; Weiss, Rainer
2016-09-01
Measurements are reported of high frequency cross-spectra of signals from the Fermilab Holometer, a pair of co-located 39 m, high power Michelson interferometers. The instrument obtains differential position sensitivity to cross-correlated signals far exceeding any previous measurement in a broad frequency band extending to the 3.8 MHz inverse light crossing time of the apparatus. A model of universal exotic spatial shear correlations that matches the Planck scale holographic information bound of space-time position states is excluded to 4.6{\\sigma} significance.
Raychaudhuri, A.K.; Hunklinger, S.
1984-01-01
We have measured the low frequency elastic properties of dielectric, normal conducting and superconducting metallic glasses at audio-frequencies (fapprox.=1 kHz) and temperatures down to 10 mK. Our results are discussed in the framework of the tunneling model of glasses. The major assumption of the tunneling model regarding the tunneling states with long relaxation time has been verified, but discrepancies to high frequency measurements have been found. In addition, our experiments on superconducting metallic glasses seem to indicate that the present treatment of the electron-tunneling state interaction is not sufficient. (orig.)
Test the mergers of the primordial black holes by high frequency gravitational-wave detector
Li, Xin; Wang, Li-Li; Li, Jin [Chongqing University, Department of Physics, Chongqing (China)
2017-09-15
The black hole could have a primordial origin if its mass is less than 1M {sub CircleDot}. The mergers of these black hole binaries generate stochastic gravitational-wave background (SGWB). We investigate the SGWB in high frequency band 10{sup 8}-10{sup 10} Hz. It can be detected by high frequency gravitational-wave detector. Energy density spectrum and amplitude of the SGWB are derived. The upper limit of the energy density spectrum is around 10{sup -7}. Also, the upper limit of the amplitude ranges from 10{sup -31.5} to 10{sup -29.5}. The fluctuation of spacetime origin from gravitational wave could give a fluctuation of the background electromagnetic field in a high frequency gravitational-wave detector. The signal photon flux generated by the SGWB in the high frequency band 10{sup 8}-10{sup 10} Hz is derived, which ranges from 1 to 10{sup 2} s{sup -1}. The comparison between the signal photon flux generated by relic gravitational waves (RGWs) and the SGWB is also discussed in this paper. It is shown that the signal photon flux generated by the RGW, which is predicted by the canonical single-field slow-roll inflation models, is sufficiently lower than the one generated by the SGWB in the high frequency band 10{sup 8}-10{sup 10} Hz. Our results indicate that the SGWB in the high frequency band 10{sup 8}-10{sup 10} Hz is more likely to be detected by the high frequency gravitational-wave detector. (orig.)
Adaptive Maneuvering Frequency Method of Current Statistical Model
Wei Sun; Yongjian Yang
2017-01-01
Current statistical model(CSM) has a good performance in maneuvering target tracking. However, the fixed maneuvering frequency will deteriorate the tracking results, such as a serious dynamic delay, a slowly converging speedy and a limited precision when using Kalman filter(KF) algorithm. In this study, a new current statistical model and a new Kalman filter are proposed to improve the performance of maneuvering target tracking. The new model which employs innovation dominated subjection function to adaptively adjust maneuvering frequency has a better performance in step maneuvering target tracking, while a fluctuant phenomenon appears. As far as this problem is concerned, a new adaptive fading Kalman filter is proposed as well. In the new Kalman filter, the prediction values are amended in time by setting judgment and amendment rules,so that tracking precision and fluctuant phenomenon of the new current statistical model are improved. The results of simulation indicate the effectiveness of the new algorithm and the practical guiding significance.
High frequency vibration characteristics of electric wheel system under in-wheel motor torque ripple
Mao, Yu; Zuo, Shuguang; Wu, Xudong; Duan, Xianglei
2017-07-01
With the introduction of in-wheel motor, the electric wheel system encounters new vibration problems brought by motor torque ripple excitation. In order to analyze new vibration characteristics of electric wheel system, torque ripple of in-wheel motor based on motor module and vector control system is primarily analyzed, and frequency/order features of the torque ripple are discussed. Then quarter vehicle-electric wheel system (QV-EWS) dynamics model based on the rigid ring tire assumption is established and the main parameters of the model are identified according to tire free modal test. Modal characteristics of the model are further analyzed. The analysis indicates that torque excitation of in-wheel motor is prone to arouse horizontal vibration, in which in-phase rotational, anti-phase rotational and horizontal translational modes of electric wheel system mainly participate. Based on the model, vibration responses of the QV-EWS under torque ripple are simulated. The results show that unlike vertical low frequency (lower than 20 Hz) vibration excited by road roughness, broadband torque ripple will arouse horizontal high frequency (50-100 Hz) vibration of electric wheel system due to participation of the three aforementioned modes. To verify the theoretical analysis, the bench experiment of electric wheel system is conducted and vibration responses are acquired. The experiment demonstrates the high frequency vibration phenomenon of electric wheel system and the measured order features as well as main resonant frequencies agree with simulation results. Through theoretical modeling, analysis and experiments this paper reveals and explains the high frequency vibration characteristics of electric wheel system, providing references for the dynamic analysis, optimal design of QV-EWS.
A Solvatochromic Model Calibrates Nitriles’ Vibrational Frequencies to Electrostatic Fields
Bagchi, Sayan; Fried, Stephen D.; Boxer, Steven G.
2012-01-01
Electrostatic interactions provide a primary connection between a protein’s three-dimensional structure and its function. Infrared (IR) probes are useful because vibrational frequencies of certain chemical groups, such as nitriles, are linearly sensitive to local electrostatic field, and can serve as a molecular electric field meter. IR spectroscopy has been used to study electrostatic changes or fluctuations in proteins, but measured peak frequencies have not been previously mapped to total electric fields, because of the absence of a field-frequency calibration and the complication of local chemical effects such as H-bonds. We report a solvatochromic model that provides a means to assess the H-bonding status of aromatic nitrile vibrational probes, and calibrates their vibrational frequencies to electrostatic field. The analysis involves correlations between the nitrile’s IR frequency and its 13C chemical shift, whose observation is facilitated by a robust method for introducing isotopes into aromatic nitriles. The method is tested on the model protein Ribonuclease S (RNase S) containing a labeled p-CN-Phe near the active site. Comparison of the measurements in RNase S against solvatochromic data gives an estimate of the average total electrostatic field at this location. The value determined agrees quantitatively with MD simulations, suggesting broader potential for the use of IR probes in the study of protein electrostatics. PMID:22694663
High-frequency homogenization for travelling waves in periodic media.
Harutyunyan, Davit; Milton, Graeme W; Craster, Richard V
2016-07-01
We consider high-frequency homogenization in periodic media for travelling waves of several different equations: the wave equation for scalar-valued waves such as acoustics; the wave equation for vector-valued waves such as electromagnetism and elasticity; and a system that encompasses the Schrödinger equation. This homogenization applies when the wavelength is of the order of the size of the medium periodicity cell. The travelling wave is assumed to be the sum of two waves: a modulated Bloch carrier wave having crystal wavevector [Formula: see text] and frequency ω 1 plus a modulated Bloch carrier wave having crystal wavevector [Formula: see text] and frequency ω 2 . We derive effective equations for the modulating functions, and then prove that there is no coupling in the effective equations between the two different waves both in the scalar and the system cases. To be precise, we prove that there is no coupling unless ω 1 = ω 2 and [Formula: see text] where Λ =(λ 1 λ 2 …λ d ) is the periodicity cell of the medium and for any two vectors [Formula: see text] the product a ⊙ b is defined to be the vector ( a 1 b 1 , a 2 b 2 ,…, a d b d ). This last condition forces the carrier waves to be equivalent Bloch waves meaning that the coupling constants in the system of effective equations vanish. We use two-scale analysis and some new weak-convergence type lemmas. The analysis is not at the same level of rigour as that of Allaire and co-workers who use two-scale convergence theory to treat the problem, but has the advantage of simplicity which will allow it to be easily extended to the case where there is degeneracy of the Bloch eigenvalue.
High-Frequency Neuromuscular Electrical Stimulation Increases Anabolic Signaling.
Mettler, Joni A; Magee, Dillon M; Doucet, Barbara M
2018-03-16
Neuromuscular electrical stimulation (NMES) is commonly used in rehabilitation settings to increase muscle mass and strength. However, the effects of NMES on muscle growth are not clear and no human studies have compared anabolic signaling between low-frequency (LF-) and high-frequency (HF-) NMES. The purpose of this study was to determine the skeletal muscle anabolic signaling response to an acute bout of LF- and HF-NMES. Eleven young healthy volunteers (6 men; 5 women) received an acute bout of LF- (20 Hz) and HF- (60 Hz) NMES. Muscle biopsies were obtained from the vastus lateralis muscle prior to the first NMES treatment and 30-mins following each NMES treatment. Phosphorylation of the following key anabolic signaling proteins was measured by Western blot and proteins are expressed as a ratio of phosphorylated to total: mammalian target of rapamycin (mTOR), p70-S6 kinase 1 (S6K1), and eukaryotic initiation factor 4E binding protein 1 (4E-BP1). Compared to Pre-NMES, phosphorylation of mTOR was upregulated 40.2% for LF-NMES (P = 0.018) and 68.4% for HF-NMES (P 0.05). There were no differences between treatment conditions for 4E-BP1 phosphorylation (P > 0.05). An acute bout of LF- and HF-NMES upregulated anabolic signaling with HF-NMES producing a greater anabolic response compared to LF-NMES, suggesting that HF-stimulation may provide a stronger stimulus for processes that initiate muscle hypertrophy. Additionally, the stimulation frequency parameter should be considered by clinicians in the design of optimal NMES treatment protocols.
Shamray, A V; Kozlov, A S; Il'ichev, I V; Petrov, M P
2008-01-01
A new type of an integrated optical modulator for the frequency coding of optical signals is developed and fabricated. The modulator operation is based on the original technology of the electric control of a Bragg grating. The frequency modulation of an optical signal with the frequency deviation of 25 GHz is demonstrated experimentally. The modular was used to transfer the ASCII code through an optical fibre. (optical communication)
A Model for Low-Frequency Earthquake Slip
Chestler, S. R.; Creager, K. C.
2017-12-01
Using high-resolution relative low-frequency earthquake (LFE) locations, we calculate the patch areas (Ap) of LFE families. During episodic tremor and slip (ETS) events, we define AT as the area that slips during LFEs and ST as the total amount of summed LFE slip. Using observed and calculated values for AP, AT, and ST, we evaluate two end-member models for LFE slip within an LFE family patch. In the ductile matrix model, LFEs produce 100% of the observed ETS slip (SETS) in distinct subpatches (i.e., AT ≪ AP). In the connected patch model, AT = AP, but ST ≪ SETS. LFEs cluster into 45 LFE families. Spatial gaps (˜10 to 20 km) between LFE family clusters and smaller gaps within LFE family clusters serve as evidence that LFE slip is heterogeneous on multiple spatial scales. We find that LFE slip only accounts for ˜0.2% of the slip within the slow slip zone. There are depth-dependent trends in the characteristic (mean) moment and in the number of LFEs during both ETS events (only) and the entire ETS cycle (Mcets and NTets and Mcall and NTall, respectively). During ETS, Mc decreases with downdip distance but NT does not change. Over the entire ETS cycle, Mc decreases with downdip distance, but NT increases. These observations indicate that deeper LFE slip occurs through a larger number (800-1,200) of small LFEs, while updip LFE slip occurs primarily during ETS events through a smaller number (200-600) of larger LFEs. This could indicate that the plate interface is stronger and has a higher stress threshold updip.
Modeling metro users' travel behavior in Tehran: Frequency of Use
Amir Reza Mamdoohi
2016-10-01
Full Text Available Transit-oriented development (TOD, as a sustainable supporting strategy, emphasizes the improvement of public transportation coverage and quality, land use density and diversity of around public transportation stations and priority of walking and cycling at station areas. Traffic, environmental and economic problems arising from high growth of personal car, inappropriate distribution of land use, and car-orientation of metropolitan area, necessitate adoption of TOD. In recent years, more researches on urban development and transportation have focused on this strategy. This research considering metro stations as base for development, aims to model metro users' travel behavior and decision-making procedures. In this regard, research question is: what are the parameters or factors affecting in the frequency of travel by metro in half-mile radius from stations. The radius was determine based on TOD definitions and 5 minute walking time to metro stations. A questionnaire was designed in three sections that including travel features by metro, attitudes toward metro, economic and social characteristics of respondents. Ten stations were selected based on their geographic dispersion in Tehran and a sample of 450 respondents was determined. The questionnaires were surveyed face to face in (half-mile vicinity of metro stations. Based on a refined sample on 400 questionnaires ordered discrete choice models were considered. Results of descriptive statistics show that 38.5 percent of the sample used metro more than 4 times per week. Trip purpose for 45.7 percent of metro users is work. Access mode to the metro stations for nearly half of the users (47.6 percent is bus. Results of ordered logit models show a number of significant variables including: habit of using the metro, waiting time in station, trip purpose (working, shopping and recreation, personal car access mode to the metro station, walking access mode to the metro station and being a housewife.
Experimental test of models of radio-frequency plasma sheaths
Sobolewski, M.A.
1997-01-01
The ion current and sheath impedance were measured at the radio-frequency-powered electrode of an asymmetric, capacitively coupled plasma reactor, for discharges in argon at 1.33 endash 133 Pa. The measurements were used to test the models of the radio frequency sheath derived by Lieberman [IEEE Trans. Plasma Sci. 17, 338 (1989)] and Godyak and Sternberg [Phys. Rev. A 42, 2299 (1990)], and establish the range of pressure and sheath voltage in which they are valid. copyright 1997 American Institute of Physics
High-frequency underwater plasma discharge application in antibacterial activity
Ahmed, M. W.; Choi, S.; Lyakhov, K.; Shaislamov, U.; Mongre, R. K.; Jeong, D. K.; Suresh, R.; Lee, H. J.
2017-01-01
Plasma discharge is a novel disinfection and effectual inactivation approach to treat microorganisms in aqueous systems. Inactivation of Gram-negative Escherichia coli (E. coli) by generating high-frequency, high-voltage, oxygen (O_2) injected and hydrogen peroxide (H_2O_2) added discharge in water was achieved. The effect of H_2O_2 dose and oxygen injection rate on electrical characteristics of discharge and E. coli disinfection has been reported. Microbial log reduction dependent on H_2O_2 addition with O_2 injection was observed. The time variation of the inactivation efficiency quantified by the log reduction of the initial E. coli population on the basis of optical density measurement was reported. The analysis of emission spectrum recorded after discharge occurrence illustrated the formation of oxidant species (OH"•, H, and O). Interestingly, the results demonstrated that O_2 injected and H_2O_2 added, underwater plasma discharge had fabulous impact on the E. coli sterilization. The oxygen injection notably reduced the voltage needed for generating breakdown in flowing water and escalated the power of discharge pulses. No impact of hydrogen peroxide addition on breakdown voltage was observed. A significant role of oxidant species in bacterial inactivation also has been identified. Furthermore the E. coli survivability in plasma treated water with oxygen injection and hydrogen peroxide addition drastically reduced to zero. The time course study also showed that the retardant effect on E. coli colony multiplication in plasma treated water was favorable, observed after long time. High-frequency underwater plasma discharge based biological applications is technically relevant and would act as baseline data for the development of novel antibacterial processing strategies.
High-frequency underwater plasma discharge application in antibacterial activity
Ahmed, M. W.; Choi, S.; Lyakhov, K.; Shaislamov, U. [Jeju National University, Department of Nuclear and Energy Engineering (Korea, Republic of); Mongre, R. K.; Jeong, D. K. [Jeju National University, Faculty of Biotechnology (Korea, Republic of); Suresh, R.; Lee, H. J., E-mail: hjlee@jejunu.ac.kr [Jeju National University, Department of Nuclear and Energy Engineering (Korea, Republic of)
2017-03-15
Plasma discharge is a novel disinfection and effectual inactivation approach to treat microorganisms in aqueous systems. Inactivation of Gram-negative Escherichia coli (E. coli) by generating high-frequency, high-voltage, oxygen (O{sub 2}) injected and hydrogen peroxide (H{sub 2}O{sub 2}) added discharge in water was achieved. The effect of H{sub 2}O{sub 2} dose and oxygen injection rate on electrical characteristics of discharge and E. coli disinfection has been reported. Microbial log reduction dependent on H{sub 2}O{sub 2} addition with O{sub 2} injection was observed. The time variation of the inactivation efficiency quantified by the log reduction of the initial E. coli population on the basis of optical density measurement was reported. The analysis of emission spectrum recorded after discharge occurrence illustrated the formation of oxidant species (OH{sup •}, H, and O). Interestingly, the results demonstrated that O{sub 2} injected and H{sub 2}O{sub 2} added, underwater plasma discharge had fabulous impact on the E. coli sterilization. The oxygen injection notably reduced the voltage needed for generating breakdown in flowing water and escalated the power of discharge pulses. No impact of hydrogen peroxide addition on breakdown voltage was observed. A significant role of oxidant species in bacterial inactivation also has been identified. Furthermore the E. coli survivability in plasma treated water with oxygen injection and hydrogen peroxide addition drastically reduced to zero. The time course study also showed that the retardant effect on E. coli colony multiplication in plasma treated water was favorable, observed after long time. High-frequency underwater plasma discharge based biological applications is technically relevant and would act as baseline data for the development of novel antibacterial processing strategies.
Earless toads sense low frequencies but miss the high notes
Womack, Molly C; Christensen-Dalsgaard, Jakob; Coloma, Luis A
2017-01-01
Sensory losses or reductions are frequently attributed to relaxed selection. However, anuran species have lost tympanic middle ears many times, despite anurans' use of acoustic communication and the benefit of middle ears for hearing airborne sound. Here we determine whether pre-existing alternat......Sensory losses or reductions are frequently attributed to relaxed selection. However, anuran species have lost tympanic middle ears many times, despite anurans' use of acoustic communication and the benefit of middle ears for hearing airborne sound. Here we determine whether pre......-existing alternative sensory pathways enable anurans lacking tympanic middle ears (termed earless anurans) to hear airborne sound as well as eared species or to better sense vibrations in the environment. We used auditory brainstem recordings to compare hearing and vibrational sensitivity among 10 species (six eared......, four earless) within the Neotropical true toad family (Bufonidae). We found that species lacking middle ears are less sensitive to high-frequency sounds, however, low-frequency hearing and vibrational sensitivity are equivalent between eared and earless species. Furthermore, extratympanic hearing...
Ultra High-Speed Radio Frequency Switch Based on Photonics.
Ge, Jia; Fok, Mable P
2015-11-26
Microwave switches, or Radio Frequency (RF) switches have been intensively used in microwave systems for signal routing. Compared with the fast development of microwave and wireless systems, RF switches have been underdeveloped particularly in terms of switching speed and operating bandwidth. In this paper, we propose a photonics based RF switch that is capable of switching at tens of picoseconds speed, which is hundreds of times faster than any existing RF switch technologies. The high-speed switching property is achieved with the use of a rapidly tunable microwave photonic filter with tens of gigahertz frequency tuning speed, where the tuning mechanism is based on the ultra-fast electro-optics Pockels effect. The RF switch has a wide operation bandwidth of 12 GHz and can go up to 40 GHz, depending on the bandwidth of the modulator used in the scheme. The proposed RF switch can either work as an ON/OFF switch or a two-channel switch, tens of picoseconds switching speed is experimentally observed for both type of switches.
Dielectric and acoustical high frequency characterisation of PZT thin films
Conde, Janine; Muralt, Paul, E-mail: janine.conde@epfl.ch [Department of Materials Science, EPFL (Switzerland)
2010-02-15
Pb(Zr, Ti)O{sub 3} (PZT) is an interesting material for bulk acoustic wave resonator applications due to its high electromechanical coupling constant, which would enable fabrication of large bandwidth frequency filters. The major challenge of the PZT solid solution system is to overcome mechanical losses generally observed in PZT ceramics. To increase the understanding of these losses in textured thin films, thin film bulk acoustic resonators (TFBAR's) based on PZT thin films with compositions either in the tetragonal region or at the morphotropic phase boundary and (111) or {l_brace}100{r_brace} textures were fabricated and studied up to 2 GHz. The dielectric and elastic materials coefficients were extracted from impedance measurements at the resonance frequency. The dispersion of the dielectric constant was obtained from impedance measurements up to 2 GHz. The films with varying compositions, textures and deposition methods (sol-gel or sputtering) were compared in terms of dielectric and acoustical properties.
Dynamics of microresonator frequency comb generation: models and stability
Hansson Tobias
2016-06-01
Full Text Available Microresonator frequency combs hold promise for enabling a new class of light sources that are simultaneously both broadband and coherent, and that could allow for a profusion of potential applications. In this article, we review various theoretical models for describing the temporal dynamics and formation of optical frequency combs. These models form the basis for performing numerical simulations that can be used in order to better understand the comb generation process, for example helping to identify the universal combcharacteristics and their different associated physical phenomena. Moreover, models allow for the study, design and optimization of comb properties prior to the fabrication of actual devices. We consider and derive theoretical formalisms based on the Ikeda map, the modal expansion approach, and the Lugiato-Lefever equation. We further discuss the generation of frequency combs in silicon resonators featuring multiphoton absorption and free-carrier effects. Additionally, we review comb stability properties and consider the role of modulational instability as well as of parametric instabilities due to the boundary conditions of the cavity. These instability mechanisms are the basis for comprehending the process of frequency comb formation, for identifying the different dynamical regimes and the associated dependence on the comb parameters. Finally, we also discuss the phenomena of continuous wave bi- and multistability and its relation to the observation of mode-locked cavity solitons.
Dupoyet, B.; Fiebig, H. R.; Musgrove, D. P.
2010-01-01
We report on initial studies of a quantum field theory defined on a lattice with multi-ladder geometry and the dilation group as a local gauge symmetry. The model is relevant in the cross-disciplinary area of econophysics. A corresponding proposal by Ilinski aimed at gauge modeling in non-equilibrium pricing is implemented in a numerical simulation. We arrive at a probability distribution of relative gains which matches the high frequency historical data of the NASDAQ stock exchange index.
Methods of Improving High Frequency Direct Injection Testing
Lehr, Jane
1997-01-01
.... A major problem has been the frequency response of the voltage probes. This effort has identified the cause of the degradation of the voltage dividing ratio with frequency, through experiment and circuit simulation, as a capacitive effect...
High-Frequency Antenna Arrays and Coupling Structures
National Aeronautics and Space Administration — We are fabricating antenna arrays and coupling structure for frequencies in the 200-300 GHz frequency bands. The primary motivation of this work is to develop...
Frequency, thermal and voltage supercapacitor characterization and modeling
Rafik, F.; Gualous, H.; Gallay, R.; Crausaz, A.; Berthon, A.
A simple electrical model has been established to describe supercapacitor behaviour as a function of frequency, voltage and temperature for hybrid vehicle applications. The electrical model consists of 14 RLC elements, which have been determined from experimental data using electrochemical impedance spectroscopy (EIS) applied on a commercial supercapacitor. The frequency analysis has been extended for the first time to the millihertz range to take into account the leakage current and the charge redistribution on the electrode. Simulation and experimental results of supercapacitor charge and discharge have been compared and analysed. A good correlation between the model and the EIS results has been demonstrated from 1 mHz to 1 kHz, from -20 to 60 °C and from 0 to 2.5 V.
Modeling of Doppler frequency shift in multipath radio channels
Penzin M.S.
2016-06-01
Full Text Available We discuss the modeling of propagation of a quasi-monochromatic radio signal, represented by a coherent pulse sequence, in a non-stationary multipath radio channel. In such a channel, signal propagation results in the observed frequency shift for each ray (Doppler effect. The modeling is based on the assumption that during propagation of a single pulse a channel can be considered stationary. A phase variation in the channel transfer function is shown to cause the observed frequency shift in the received signal. Thus, instead of measuring the Doppler frequency shift, we can measure the rate of variation in the mean phase of one pulse relative to another. The modeling is carried out within the framework of the method of normal waves. The method enables us to model the dynamics of the electromagnetic field at a given point with the required accuracy. The modeling reveals that a local change in ionospheric conditions more severely affects the rays whose reflection region is in the area where the changes occur.
Low-frequency versus high-frequency synchronisation in chirp-evoked auditory brainstem responses
Rønne, Filip Munch; Gøtsche-Rasmussen, Kristian
2011-01-01
This study investigates the frequency specific contribution to the auditory brainstem response (ABR) of chirp stimuli. Frequency rising chirps were designed to compensate for the cochlear traveling wave delay, and lead to larger wave-V amplitudes than for click stimuli as more auditory nerve fibr...
Heh, Ding Yu; Tan, Eng Leong
2011-04-12
This paper presents the modeling of hemoglobin at optical frequency (250 nm - 1000 nm) using the unconditionally stable fundamental alternating-direction-implicit finite-difference time-domain (FADI-FDTD) method. An accurate model based on complex conjugate pole-residue pairs is proposed to model the complex permittivity of hemoglobin at optical frequency. Two hemoglobin concentrations at 15 g/dL and 33 g/dL are considered. The model is then incorporated into the FADI-FDTD method for solving electromagnetic problems involving interaction of light with hemoglobin. The computation of transmission and reflection coefficients of a half space hemoglobin medium using the FADI-FDTD validates the accuracy of our model and method. The specific absorption rate (SAR) distribution of human capillary at optical frequency is also shown. While maintaining accuracy, the unconditionally stable FADI-FDTD method exhibits high efficiency in modeling hemoglobin.
Pereira, Luiz Antonio Alcantara [Federal University of Itajuba (UNIFEI), MG (Brazil). Inst. of Mechanical Engineering], E-mail: luizantp@unifei.edu.br; Hirata, Miguel Hiroo [State University of Rio de Janeiro (FAT/UERJ), Resende, RJ (Brazil). Fac. de Tecnologia], E-mail: hirata@fat.uerj.br
2010-07-01
Understanding vortex induced vibrations is of great importance in the design of a variety of offshore engineering structures, nuclear plant components and cylindrical elements in tube-bank heat exchangers, for example. If a body is placed in a flow, it experiences alternating lift and drag forces caused by the asymmetric formation of vortices, which can cause a structure to vibrate. One of the most interesting features of this flow is the phenomenon of lock-in which is observed when the vortex shedding frequency is close to the body oscillation frequency. This paper presents the results of numerical experiments on vortex shedding from a circular cylinder vibrating in-line or transversely with an incident uniform flow at Reynolds number of 1.0 x 10{sup 5}. The frequencies of the lift and drag coefficients are compared with the body motion frequency when the frequency ratio is about unity. (author)
Complex correlation approach for high frequency financial data
Wilinski, Mateusz; Ikeda, Yuichi; Aoyama, Hideaki
2018-02-01
We propose a novel approach that allows the calculation of a Hilbert transform based complex correlation for unevenly spaced data. This method is especially suitable for high frequency trading data, which are of a particular interest in finance. Its most important feature is the ability to take into account lead-lag relations on different scales, without knowing them in advance. We also present results obtained with this approach while working on Tokyo Stock Exchange intraday quotations. We show that individual sectors and subsectors tend to form important market components which may follow each other with small but significant delays. These components may be recognized by analysing eigenvectors of complex correlation matrix for Nikkei 225 stocks. Interestingly, sectorial components are also found in eigenvectors corresponding to the bulk eigenvalues, traditionally treated as noise.
High Frequency QPOs due to Black Hole Spin
Kazanas, Demos; Fukumura, K.
2009-01-01
We present detailed computations of photon orbits emitted by flares at the innermost stable circular orbit (ISCO) of accretion disks around rotating black holes. We show that for sufficiently large spin parameter, i.e. a > 0.94 M, flare a sufficient number of photons arrive at an observer after multiple orbits around the black hole, to produce an "photon echo" of constant lag, i.e. independent of the relative phase between the black hole and the observer, of T approximates 14 M. This constant time delay, then, leads to a power spectrum with a QPO at a frequency nu approximates 1/14M, even for a totally random ensemble of such flares. Observation of such a QPO will provide incontrovertible evidence for the high spin of the black hole and a very accurate, independent, measurement of its mass.
High-Performance Control in Radio Frequency Power Amplification Systems
Høyerby, Mikkel Christian Kofod
. It is clearly shown that single-phase switch-mode control systems based on oscillation (controlled unstable operation) of the whole power train provide the highest possible control bandwidth. A study of the limitations of cartesian feedback is also included. It is shown that bandwidths in excess of 4MHz can...... frequency power amplifiers (RFPAs) in conjunction with cartesian feedback (CFB) used to linearize the overall transmitter system. On a system level, it is demonstrated how envelope tracking is particularly useful for RF carriers with high peak-to-average power ratios, such as TEDS with 10dB. It is also...... demonstrated how the envelope tracking technique introduces a number of potential pitfalls to the system, namely in the form of power supply ripple intermodulation (PSIM), reduced RFPA linearity and a higherimpedance supply rail for the RFPA. Design and analysis techniques for these three issues are introduced...
Ultra-high Frequency Linear Fiber Optic Systems
Lau, Kam
2011-01-01
This book provides an in-depth treatment of both linear fiber-optic systems and their key enabling devices. It presents a concise but rigorous treatment of the theory and practice of analog (linear) fiber-optics links and systems that constitute the foundation of Hybrid Fiber Coax infrastructure in present-day CATV distribution and cable modem Internet access. Emerging applications in remote fiber-optic feed for free-space millimeter wave enterprise campus networks are also described. Issues such as dispersion and interferometric noise are treated quantitatively, and means for mitigating them are explained. This broad but concise text will thus be invaluable not only to students of fiber-optics communication but also to practicing engineers. To the second edition of this book important new aspects of linear fiber-optic transmission technologies are added, such as high level system architectural issues, algorithms for deriving the optimal frequency assignment, directly modulated or externally modulated laser t...
Communication Characteristics of Faulted Overhead High Voltage Power Lines at Low Radio Frequencies
Nermin Suljanović
2017-11-01
Full Text Available This paper derives a model of high-voltage overhead power line under fault conditions at low radio frequencies. The derived model is essential for design of communication systems to reliably transfer information over high voltage power lines. In addition, the model can also benefit advanced systems for power-line fault detection and classification exploiting the phenomenon of changed conditions on faulted power line, resulting in change of low radio frequency signal propagation. The methodology used in the paper is based on the multiconductor system analysis and propagation of electromagnetic waves over the power lines. The model for the high voltage power line under normal operation is validated using actual measurements obtained on 400 kV power line. The proposed model of faulted power lines extends the validated power-line model under normal operation. Simulation results are provided for typical power line faults and typical fault locations. Results clearly indicate sensitivity of power-line frequency response on different fault types.
2017-02-13
Precipitation has also increased, and climate models project increased precipitation as snow, a longer snow-free season, and increased frequency... model ( ARIMA ) to differenced data in the package forecast. Given the short (15-minute) time steps in these datasets, exploring autocorrelation...those resulting from fire and climate regimes. Alternatively, installation at a particular location downstream of training activities or
High-efficiency water-loaded microwave antenna in ultra-high-frequency band
Gong, Zilun; Bartone, Chris; Yang, Fuyi; Yao, Jie
2018-03-01
High-index dielectrics are widely used in microwave antennas to control the radiation characteristics. Liquid water, with a high dielectric index at microwave frequency, is an interesting material to achieving tunable functionalities. Here, we demonstrate a water-loaded microwave antenna system that has high loss-tolerance and wideband tunability enabled by fluidity. Our simulation and experimental results show that the resonance frequency can be effectively tuned by the size of loading water. Furthermore, the antenna systems with water loading can achieve high radiation efficiency (>90%) in the ultra-high-frequency (0.3-3 GHz) band. This work brings about opportunities in realistic tunable microwave antenna designs enabled by liquid.
Low and High-Frequency Field Potentials of Cortical Networks ...
Neural networks grown on microelectrode arrays (MEAs) have become an important, high content in vitro assay for assessing neuronal function. MEA experiments typically examine high- frequency (HF) (>200 Hz) spikes, and bursts which can be used to discriminate between different pharmacological agents/chemicals. However, normal brain activity is additionally composed of integrated low-frequency (0.5-100 Hz) field potentials (LFPs) which are filtered out of MEA recordings. The objective of this study was to characterize the relationship between HF and LFP neural network signals, and to assess the relative sensitivity of LFPs to selected neurotoxicants. Rat primary cortical cultures were grown on glass, single-well MEA chips. Spontaneous activity was sampled at 25 kHz and recorded (5 min) (Multi-Channel Systems) from mature networks (14 days in vitro). HF (spike, mean firing rate, MFR) and LF (power spectrum, amplitude) components were extracted from each network and served as its baseline (BL). Next, each chip was treated with either 1) a positive control, bicuculline (BIC, 25μM) or domoic acid (DA, 0.3μM), 2) or a negative control, acetaminophen (ACE, 100μM) or glyphosate (GLY, 100μM), 3) a solvent control (H2O or DMSO:EtOH), or 4) a neurotoxicant, (carbaryl, CAR 5, 30μM ; lindane, LIN 1, 10μM; permethrin, PERM 25, 50μM; triadimefon, TRI 5, 65μM). Post treatment, 5 mins of spontaneous activity was recorded and analyzed. As expected posit
High-frequency heating of plasma with two ion species
Klima, R.; Longinov, A.V.; Stepanov, K.N.
1975-01-01
The authors consider the penetration of electromagnetic waves with a frequency of the order of the ion cyclotron frequencies and with a fixed longitudinal wave number ksub(long), so that Nsub(long)=ksub(long)c/ω>>1 deep into an inhomogeneous plasma with two ion species. The propagation of two kinds of waves (fast and slow) with widely differing polarization and transverse refraction index is possible. For both types of waves there is an evanescence region at the plasma periphery. The evanescence region is narrow for slow waves and they easily penetrate the plasma. In a dense plasma they become electrostatic and can reach the ion-ion hybrid resonance region. However, the damping of these waves due to Cherenkov interaction with electrons in a high-temperature plasma is strong and therefore they are not suitable for heating plasma of large dimensions, as they are absorbed at the plasma periphery. The fast waves have a wider evanescence region and can be excited effectively only if N 2 is not too high. These waves can be completely absorbed in the plasma (due to Cherenkov interaction with electrons) if xi approximately (v 2 sub(Ti)/v 2 sub(A))Zsub(e)(ωsub(pi)a/c)exp(-Zsub(e) 2 ) > 1, where a is the plasma radius and Zsub(e) = ω/(√2 ksub(long)vsub(Te)). Fast waves can also reach the region where they are transformed into slow waves. In this region their damping increases considerably. It is shown that the transformation region in an inhomogeneous plasma with two ion species in a non-uniform magnetic field may be at the centre of the plasma. Fast waves can be used effectively for heating plasma of large dimensions. (author)
High frequency oscillatory ventilation in meconium aspiration syndrome
José Nona
2009-03-01
Full Text Available Objective: To evaluate and compare the management and associated morbidity in inborn and outborn babies with meconium aspiration syndrome admitted to the Neonatal Intensive Care Unit and ventilated with high frequency oscillatory ventilation. Methods: A retrospective cohort study with a review of clinical data from newborns, admitted to the Neonatal Intensive Care Unit during a six-year period (from 1999 to 2004 and ventilated with early high frequency oscillatory ventilation, first intention in inborns and immediately after Neonatal Intensive Care Unit arrival in outborns. Rresults: In the present study, 27 newborns were included: 12 inborn and 15 outborn infants. Severity criteria were similar in both groups. The pulmonary morbidity associated was severe persistent pulmonary hypertension - 12 (seven outborns, pneumothorax - five (three outborns, interstitial emphysema – two (one outborn and pulmonary hemorrhage – one outborn. Hypoxic-ischemic encephalopathy II-III occurred in six newborns (four outborns. The therapeutic procedures were surfactant administration in 22 newborns (13 outborns, nitric oxide in 12 newborns (7 outborns and magnesium sulphate in four newborns (three outborns. The median length of ventilation was six days (inborn infants: four and half days; outborn infants: ten days and the median length of oxygenation supply was ten days (inborn infants: four and half days; outborn infants: 15 days. The median length of stay was 13 days (inborn infants: 11 days; outborn infants: 16 days. One outborn infant died. Cconclusions: With this ventilation strategy, we have found no significant statistical differences between the two newborn groups, except for the length of oxygenation supply that was longer in the Outborn Group.
Frequency conversion of high-intensity, femtosecond laser pulses
Banks, P S
1997-06-01
Almost since the invention of the laser, frequency conversion of optical pulses via non- linear processes has been an area of active interest. However, third harmonic generation using ~(~1 (THG) in solids is an area that has not received much attention because of ma- terial damage limits. Recently, the short, high-intensity pulses possible with chirped-pulse amplification (CPA) laser systems allow the use of intensities on the order of 1 TW/cm2 in thin solids without damage. As a light source to examine single-crystal THG in solids and other high field inter- actions, the design and construction of a Ti:sapphire-based CPA laser system capable of ultimately producing peak powers of 100 TW is presented. Of special interest is a novel, all-reflective pulse stretcher design which can stretch a pulse temporally by a factor of 20,000. The stretcher design can also compensate for the added material dispersion due to propagation through the amplifier chain and produce transform-limited 45 fs pulses upon compression. A series of laser-pumped amplifiers brings the peak power up to the terawatt level at 10 Hz, and the design calls for additional amplifiers to bring the power level to the 100 TW level for single shot operation. The theory for frequency conversion of these short pulses is presented, focusing on conversion to the third harmonic in single crystals of BBO, KD*P, and d-LAP (deuterated I-arginine phosphate). Conversion efficiencies of up to 6% are obtained with 500 fs pulses at 1053 nm in a 3 mm thick BBO crystal at 200 GW/cm 2. Contributions to this process by unphasematched, cascaded second harmonic generation and sum frequency generation are shown to be very significant. The angular relationship between the two orders is used to measure the tensor elements of C = xt3)/4 with Crs = -1.8 x 1O-23 m2/V2 and .15Cri + .54Crs = 4.0 x 1O-23 m2/V2. Conversion efficiency in d-LAP is about 20% that in BBO and conversion efficiency in KD*P is 1% that of BBO. It is calculated
Jensen, Eric J.
2016-01-01
Recent investigations of the influence of atmospheric waves on ice nucleation in cirrus have identified a number of key processes and sensitivities: (1) ice concentrations produced by homogeneous freezing are strongly dependent on cooling rates, with gravity waves dominating upper tropospheric cooling rates; (2) rapid cooling driven by high-frequency waves are likely responsible for the rare occurrences of very high ice concentrations in cirrus; (3) sedimentation and entrainment tend to decrease ice concentrations as cirrus age; and (4) in some situations, changes in temperature tendency driven by high-frequency waves can quench ice nucleation events and limit ice concentrations. Here we use parcel-model simulations of ice nucleation driven by long-duration, constant-pressure balloon temperature time series, along with an extensive dataset of cold cirrus microphysical properties from the recent ATTREX high-altitude aircraft campaign, to statistically examine the importance of high-frequency waves as well as the consistency between our theoretical understanding of ice nucleation and observed ice concentrations. The parcel-model simulations indicate common occurrence of peak ice concentrations exceeding several hundred per liter. Sedimentation and entrainment would reduce ice concentrations as clouds age, but 1-D simulations using a wave parameterization (which underestimates rapid cooling events) still produce ice concentrations higher than indicated by observations. We find that quenching of nucleation events by high-frequency waves occurs infrequently and does not prevent occurrences of large ice concentrations in parcel simulations of homogeneous freezing. In fact, the high-frequency variability in the balloon temperature data is entirely responsible for production of these high ice concentrations in the simulations.
Stachiv, I.; Sittner, P.; Olejnicek, J.; Landa, M.; Heller, L.
2017-11-01
Shape memory alloy (SMA) films are very attractive materials for microactuators because of their high energy density. However, all currently developed SMA actuators utilize martensitic transformation activated by periodically generated heating and cooling; therefore, they have a slow actuation speed, just a few Hz, which restricts their use in most of the nanotechnology applications such as high frequency microcantilever based physical and chemical sensors, atomic force microscopes, or RF filters. Here, we design tunable high frequency SMA microcantilevers for nanotechnology applications. They consist of a phase transforming NiTi SMA film sputtered on the common elastic substrate material; in our case, it is a single-crystal silicon. The reversible tuning of microcantilever resonant frequencies is then realized by intentionally changing the Young's modulus and the interlayer stress of the NiTi film by temperature, while the elastic substrate guarantees the high frequency actuation (up to hundreds of kHz) of the microcantilever. The experimental results qualitatively agree with predictions obtained from the dedicated model based on the continuum mechanics theory and a phase characteristic of NiTi. The present design of SMA microcantilevers expands the capability of current micro-/nanomechanical resonators by enabling tunability of several consecutive resonant frequencies.
Darius Žižys
2017-04-01
Full Text Available Frequency up-conversion is a promising technique for energy harvesting in low frequency environments. In this approach, abundantly available environmental motion energy is absorbed by a Low Frequency Resonator (LFR which transfers it to a high frequency Piezoelectric Vibration Energy Harvester (PVEH via impact or magnetic coupling. As a result, a decaying alternating output signal is produced, that can later be collected using a battery or be transferred directly to the electric load. The paper reports an impact-coupled frequency up-converting tandem setup with different LFR to PVEH natural frequency ratios and varying contact point location along the length of the harvester. RMS power output of different frequency up-converting tandems with optimal resistive values was found from the transient analysis revealing a strong relation between power output and LFR-PVEH natural frequency ratio as well as impact point location. Simulations revealed that higher power output is obtained from a higher natural frequency ratio between LFR and PVEH, an increase of power output by one order of magnitude for a doubled natural frequency ratio and up to 150% difference in power output from different impact point locations. The theoretical results were experimentally verified.
Modeling the Frequency of Cyclists’ Red-Light Running Behavior Using Bayesian PG Model and PLN Model
Yao Wu
2016-01-01
Full Text Available Red-light running behaviors of bicycles at signalized intersection lead to a large number of traffic conflicts and high collision potentials. The primary objective of this study is to model the cyclists’ red-light running frequency within the framework of Bayesian statistics. Data was collected at twenty-five approaches at seventeen signalized intersections. The Poisson-gamma (PG and Poisson-lognormal (PLN model were developed and compared. The models were validated using Bayesian p values based on posterior predictive checking indicators. It was found that the two models have a good fit of the observed cyclists’ red-light running frequency. Furthermore, the PLN model outperformed the PG model. The model estimated results showed that the amount of cyclists’ red-light running is significantly influenced by bicycle flow, conflict traffic flow, pedestrian signal type, vehicle speed, and e-bike rate. The validation result demonstrated the reliability of the PLN model. The research results can help transportation professionals to predict the expected amount of the cyclists’ red-light running and develop effective guidelines or policies to reduce red-light running frequency of bicycles at signalized intersections.
High frequency flow-structural interaction in dense subsonic fluids
Liu, Baw-Lin; Ofarrell, J. M.
1995-01-01
Prediction of the detailed dynamic behavior in rocket propellant feed systems and engines and other such high-energy fluid systems requires precise analysis to assure structural performance. Designs sometimes require placement of bluff bodies in a flow passage. Additionally, there are flexibilities in ducts, liners, and piping systems. A design handbook and interactive data base have been developed for assessing flow/structural interactions to be used as a tool in design and development, to evaluate applicable geometries before problems develop, or to eliminate or minimize problems with existing hardware. This is a compilation of analytical/empirical data and techniques to evaluate detailed dynamic characteristics of both the fluid and structures. These techniques have direct applicability to rocket engine internal flow passages, hot gas drive systems, and vehicle propellant feed systems. Organization of the handbook is by basic geometries for estimating Strouhal numbers, added mass effects, mode shapes for various end constraints, critical onset flow conditions, and possible structural response amplitudes. Emphasis is on dense fluids and high structural loading potential for fatigue at low subsonic flow speeds where high-frequency excitations are possible. Avoidance and corrective measure illustrations are presented together with analytical curve fits for predictions compiled from a comprehensive data base.
High-frequency monitoring of stream water physicochemistry on sub ...
2018-04-03
Apr 3, 2018 ... The island's climate is strongly influenced by its hyperoceanic position ... with these conditions are high relative humidity, cloud-cover and strong westerly .... weather systems have on sub-surface soil temperature dynamics on the ..... integration of telemetered data with process models for glacial meltwater ...
Proton-irradiation technology for high-frequency high-current silicon welding diode manufacturing
Lagov, P B; Drenin, A S; Zinoviev, M A
2017-01-01
Different proton irradiation regimes were tested to provide more than 20 kHz-frequency, soft reverse recovery “snap-less” behavior, low forward voltage drop and leakage current for 50 mm diameter 7 kA/400 V welding diode Al/Si/Mo structure. Silicon diode with such parameters is very suitable for high frequency resistance welding machines of new generation for robotic welding. (paper)
Proton-irradiation technology for high-frequency high-current silicon welding diode manufacturing
Lagov, P. B.; Drenin, A. S.; Zinoviev, M. A.
2017-05-01
Different proton irradiation regimes were tested to provide more than 20 kHz-frequency, soft reverse recovery “snap-less” behavior, low forward voltage drop and leakage current for 50 mm diameter 7 kA/400 V welding diode Al/Si/Mo structure. Silicon diode with such parameters is very suitable for high frequency resistance welding machines of new generation for robotic welding.
Thaker, Urmil; Saurabh Kumar; Amal, S.; Baruah, U.K.; Bhatt, Animesh
2015-01-01
A High Voltage center tapped transformer for high frequency application had been designed, fabricated, and tested. It was designed as a part of 200 kV HVDC Test Generator. The High Frequency operation of transformer increases power density. Therefore it is possible to reduce power supply volume. The step up ratio in High Voltage transformer is limited due to stray capacitance and leakage inductance. The limit was overcome by winding multi secondary outputs. Switching frequency of transformer was 15.8 kHz. Input and output voltages of transformer were 270V and 16.5kV-0V-16.5kV respectively. Power rating of transformer is 7kVA. High Voltage transformer with various winding and core arrangement was fabricated to check variation in electrical characteristics. The transformer used a ferrite core (E Type) and nylon insulated primary and secondary bobbins. Two set of E-E geometry cores had been stacked in order to achieve the estimated core volume. Compared with traditional high voltage transformer, this transformer had good thermal behavior, good line insulation properties and a high power density. In this poster, design procedures, development stages and test results of high voltage and high frequency transformer are presented. Results of various parameters such as transformer loss, temperature rise, insulation properties, impedance of primary and secondary winding, and voltage regulation are discussed. (author)
Ground Radar Polarimetric Observations of High-Frequency Earth-Space Communication Links
Bolen, Steve; Chandrasekar, V.; Benjamin, Andrew
2002-01-01
Strategic roadmaps for NASA's Human Exploration and Development of Space (REDS) enterprise support near-term high-frequency communication systems that provide moderate to high data rates with dependable service. Near-earth and human planetary exploration will baseline Ka-Band, but may ultimately require the use of even higher frequencies. Increased commercial demand on low-frequency earth-space bands has also led to increased interest in the use of higher frequencies in regions like K u - and K,- band. Data is taken from the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR), which operates at 13.8 GHz, and the true radar reflectivity profile is determined along the PR beam via low-frequency ground based polarimetric observations. The specific differential phase (Kdp) is measured along the beam and a theoretical model is used to determine the expected specific attenuation (k). This technique, called the k-Kdp method, uses a Fuzzy-Logic model to determine the hydrometeor type along the PR beam from which the appropriate k-Kdp relationship is used to determine k and, ultimately, the total path-integrated attenuation (PIA) on PR measurements. Measurements from PR and the NCAR S-POL radar were made during the TEFLUN-B experiment that took place near Melbourne, FL in 1998, and the TRMM-LBA campaign near Ji-Parana, Brazil in 1999.
High frequency of functional extinctions in ecological networks.
Säterberg, Torbjörn; Sellman, Stefan; Ebenman, Bo
2013-07-25
Intensified exploitation of natural populations and habitats has led to increased mortality rates and decreased abundances of many species. There is a growing concern that this might cause critical abundance thresholds of species to be crossed, with extinction cascades and state shifts in ecosystems as a consequence. When increased mortality rate and decreased abundance of a given species lead to extinction of other species, this species can be characterized as functionally extinct even though it still exists. Although such functional extinctions have been observed in some ecosystems, their frequency is largely unknown. Here we use a new modelling approach to explore the frequency and pattern of functional extinctions in ecological networks. Specifically, we analytically derive critical abundance thresholds of species by increasing their mortality rates until an extinction occurs in the network. Applying this approach on natural and theoretical food webs, we show that the species most likely to go extinct first is not the one whose mortality rate is increased but instead another species. Indeed, up to 80% of all first extinctions are of another species, suggesting that a species' ecological functionality is often lost before its own existence is threatened. Furthermore, we find that large-bodied species at the top of the food chains can only be exposed to small increases in mortality rate and small decreases in abundance before going functionally extinct compared to small-bodied species lower in the food chains. These results illustrate the potential importance of functional extinctions in ecological networks and lend strong support to arguments advocating a more community-oriented approach in conservation biology, with target levels for populations based on ecological functionality rather than on mere persistence.
A model of frequency tuning in the basilar papilla of the Tokay gecko, Gekko gecko.
Authier, S; Manley, G A
1995-01-01
This paper uses the quantitative details of the anatomy of the auditory papilla in the Tokay gecko Gekko gecko (as described in the companion paper) to make a quantitative model predicting the tonotopic organization of two of the three papillar areas. Assuming that hair-cell bundle stiffness is similar to that of other species, a model of resonance frequencies for the apical areas of the papilla was constructed, taking into account factors such as the number of hair cells per resonant unit, their bundle dimensions, the volume of the tectorial mass, etc. The model predicts that the apical pre- and postaxial areas, although anatomically adjacent, respond to different frequency ranges, a phenomenon not yet reported from any vertebrate. The model predicts that together, these areas respond best to frequencies between 1.1 and 5.3 kHz, close to the range found physiologically [Eatock et al. (1981) J. Comp. Physiol. 142, 203-218] (0.8 to 5 kHz) for the high-frequency range for this species. Only physiological experiments tracing responses to specific papillar nerve fibres can confirm or refute these interesting predictions of the model. The model also indicates that, compared to free-standing hair-cell bundles, the semi-isolated tectorial structures called sallets not only lower the range of characteristic frequencies but also increase the frequency selectivity of the attached hair cells.
Low-frequency scaling applied to stochastic finite-fault modeling
Crane, Stephen; Motazedian, Dariush
2014-01-01
Stochastic finite-fault modeling is an important tool for simulating moderate to large earthquakes. It has proven to be useful in applications that require a reliable estimation of ground motions, mostly in the spectral frequency range of 1 to 10 Hz, which is the range of most interest to engineers. However, since there can be little resemblance between the low-frequency spectra of large and small earthquakes, this portion can be difficult to simulate using stochastic finite-fault techniques. This paper introduces two different methods to scale low-frequency spectra for stochastic finite-fault modeling. One method multiplies the subfault source spectrum by an empirical function. This function has three parameters to scale the low-frequency spectra: the level of scaling and the start and end frequencies of the taper. This empirical function adjusts the earthquake spectra only between the desired frequencies, conserving seismic moment in the simulated spectra. The other method is an empirical low-frequency coefficient that is added to the subfault corner frequency. This new parameter changes the ratio between high and low frequencies. For each simulation, the entire earthquake spectra is adjusted, which may result in the seismic moment not being conserved for a simulated earthquake. These low-frequency scaling methods were used to reproduce recorded earthquake spectra from several earthquakes recorded in the Pacific Earthquake Engineering Research Center (PEER) Next Generation Attenuation Models (NGA) database. There were two methods of determining the stochastic parameters of best fit for each earthquake: a general residual analysis and an earthquake-specific residual analysis. Both methods resulted in comparable values for stress drop and the low-frequency scaling parameters; however, the earthquake-specific residual analysis obtained a more accurate distribution of the averaged residuals.
High-frequency TRNS reduces BOLD activity during visuomotor learning.
Catarina Saiote
Full Text Available Transcranial direct current stimulation (tDCS and transcranial random noise stimulation (tRNS consist in the application of electrical current of small intensity through the scalp, able to modulate perceptual and motor learning, probably by changing brain excitability. We investigated the effects of these transcranial electrical stimulation techniques in the early and later stages of visuomotor learning, as well as associated brain activity changes using functional magnetic resonance imaging (fMRI. We applied anodal and cathodal tDCS, low-frequency and high-frequency tRNS (lf-tRNS, 0.1-100 Hz; hf-tRNS 101-640 Hz, respectively and sham stimulation over the primary motor cortex (M1 during the first 10 minutes of a visuomotor learning paradigm and measured performance changes for 20 minutes after stimulation ceased. Functional imaging scans were acquired throughout the whole experiment. Cathodal tDCS and hf-tRNS showed a tendency to improve and lf-tRNS to hinder early learning during stimulation, an effect that remained for 20 minutes after cessation of stimulation in the late learning phase. Motor learning-related activity decreased in several regions as reported previously, however, there was no significant modulation of brain activity by tDCS. In opposition to this, hf-tRNS was associated with reduced motor task-related-activity bilaterally in the frontal cortex and precuneous, probably due to interaction with ongoing neuronal oscillations. This result highlights the potential of lf-tRNS and hf-tRNS to differentially modulate visuomotor learning and advances our knowledge on neuroplasticity induction approaches combined with functional imaging methods.
Grid Cell Relaxation Effects on the High Frequency Vibration Characteristics
Ryu, Joo-Young; Eom, Kyong-Bo; Jeon, Sang-Youn; Kim, Jae-Ik
2015-01-01
The plate structure of the grid of fuel assembly is always exposed to serious vortex induced vibration. Also, High Frequency flow induced Vibration (HFV) is primarily generated by vortex-shedding effect. When it comes to grid design as a fuel assembly component, HFV should be considered in advance since it is one of the critical factors. Excessive HFV has a possibility of making degradation of the fuel reliability that is directly related to the fuel robustness and operating performance. KEPCO NF (KNF) has performed HFV tests with various grid designs. While studying the HFV characteristics through the HFV tests, it has been observed that HFV amplitudes show different levels according to grid cell relaxation. It means that the testing could give different interpretations due to the condition of grid cell. Since the amount of relaxation is different under operating conditions and environments in a reactor, test specimens should be modified as much as possible to the real state of the fuel. Therefore, in order to consider the grid cell relaxation effects on the HFV tests, it is important to use cell sized or non-cell sized grids. The main focus of this study is to find out how the HFV characteristics such as amplitude and frequency are affected by grid cell relaxation. Three cases of the grid cell sized specimen which is nickel alloy were prepared and tested. Through the comparison of the test results, it could be concluded that HFV amplitudes show decreasing trend according to the grid cell relaxation in the case of nickel alloy grid. It is also possible to expect the tendency of grid cell relaxation of a zirconium alloy grid based on test results
Boumaaraf, Abdelâali, E-mail: aboumaaraf@yahoo.fr [Université Abbès Laghrour, Laboratoire des capteurs, Instrumentations et procédés (LCIP), Khenchela (Algeria); University of Farhat Abbas Setif1, Sétif, 19000 (Algeria); Mohamadi, Tayeb [University of Farhat Abbas Setif1, Sétif, 19000 (Algeria); Gourmat, Laïd [Université Abbès Laghrour, Khenchela, 40000 (Algeria)
2016-07-25
In this paper, we present the FPGA implementation of the multiple pulse width modulation (MPWM) signal generation with repetition of data segments, applied to the variable frequency variable voltage systems and specially at to the photovoltaic water pumping system, in order to generate a signal command very easily between 10 Hz to 60 Hz with a small frequency and reduce the cost of the control system.
High frequency electromagnetic characterization of NEG properties for the CLIC damping rings
Koukovini-Platia, E; Zannini, C
2014-01-01
Coating materials will be used in the CLIC damping rings (DR) to suppress two-stream effects. In particular, NEG coating is necessary to suppress fast beam ion instabilities in the electron damping ring (EDR). The electromagnetic (EM) characterization of the material properties up to high frequencies is required for the impedance modeling of the CLIC DR components. The EM properties for frequencies of few GHz are determined with the waveguide method, based on a combination of experimental measurements of the complex transmission coefficient S21 and CST 3D EM simulations. The results obtained from a NEG-coated copper (Cu) waveguide are presented in this paper.
Applying model predictive control to power system frequency control
Ersdal, AM; Imsland, L; Cecilio, IM; Fabozzi, D; Thornhill, NF
2013-01-01
16.07.14 KB Ok to add accepted version to Spiral Model predictive control (MPC) is investigated as a control method which may offer advantages in frequency control of power systems than the control methods applied today, especially in presence of increased renewable energy penetration. The MPC includes constraints on both generation amount and generation rate of change, and it is tested on a one-area system. The proposed MPC is tested against a conventional proportional-integral (PI) cont...
MFAM: Multiple Frequency Adaptive Model-Based Indoor Localization Method.
Tuta, Jure; Juric, Matjaz B
2018-03-24
This paper presents MFAM (Multiple Frequency Adaptive Model-based localization method), a novel model-based indoor localization method that is capable of using multiple wireless signal frequencies simultaneously. It utilizes indoor architectural model and physical properties of wireless signal propagation through objects and space. The motivation for developing multiple frequency localization method lies in the future Wi-Fi standards (e.g., 802.11ah) and the growing number of various wireless signals present in the buildings (e.g., Wi-Fi, Bluetooth, ZigBee, etc.). Current indoor localization methods mostly rely on a single wireless signal type and often require many devices to achieve the necessary accuracy. MFAM utilizes multiple wireless signal types and improves the localization accuracy over the usage of a single frequency. It continuously monitors signal propagation through space and adapts the model according to the changes indoors. Using multiple signal sources lowers the required number of access points for a specific signal type while utilizing signals, already present in the indoors. Due to the unavailability of the 802.11ah hardware, we have evaluated proposed method with similar signals; we have used 2.4 GHz Wi-Fi and 868 MHz HomeMatic home automation signals. We have performed the evaluation in a modern two-bedroom apartment and measured mean localization error 2.0 to 2.3 m and median error of 2.0 to 2.2 m. Based on our evaluation results, using two different signals improves the localization accuracy by 18% in comparison to 2.4 GHz Wi-Fi-only approach. Additional signals would improve the accuracy even further. We have shown that MFAM provides better accuracy than competing methods, while having several advantages for real-world usage.
MFAM: Multiple Frequency Adaptive Model-Based Indoor Localization Method
Jure Tuta
2018-03-01
Full Text Available This paper presents MFAM (Multiple Frequency Adaptive Model-based localization method, a novel model-based indoor localization method that is capable of using multiple wireless signal frequencies simultaneously. It utilizes indoor architectural model and physical properties of wireless signal propagation through objects and space. The motivation for developing multiple frequency localization method lies in the future Wi-Fi standards (e.g., 802.11ah and the growing number of various wireless signals present in the buildings (e.g., Wi-Fi, Bluetooth, ZigBee, etc.. Current indoor localization methods mostly rely on a single wireless signal type and often require many devices to achieve the necessary accuracy. MFAM utilizes multiple wireless signal types and improves the localization accuracy over the usage of a single frequency. It continuously monitors signal propagation through space and adapts the model according to the changes indoors. Using multiple signal sources lowers the required number of access points for a specific signal type while utilizing signals, already present in the indoors. Due to the unavailability of the 802.11ah hardware, we have evaluated proposed method with similar signals; we have used 2.4 GHz Wi-Fi and 868 MHz HomeMatic home automation signals. We have performed the evaluation in a modern two-bedroom apartment and measured mean localization error 2.0 to 2.3 m and median error of 2.0 to 2.2 m. Based on our evaluation results, using two different signals improves the localization accuracy by 18% in comparison to 2.4 GHz Wi-Fi-only approach. Additional signals would improve the accuracy even further. We have shown that MFAM provides better accuracy than competing methods, while having several advantages for real-world usage.
Low temperature high frequency coaxial pulse tube for space application
Charrier, Aurelia; Charles, Ivan; Rousset, Bernard; Duval, Jean-Marc [SBT, UMR-E CEA / UJF-Grenoble 1, INAC, 17, rue des Martyrs, Grenoble, F-38054 (France); Daniel, Christophe [CNES, 18, avenue Edouard Belin, Toulouse, F-31401 (France)
2014-01-29
The 4K stage is a critical step for space missions. The Hershel mission is using a helium bath, which is consumed day by day (after depletion, the space mission is over) while the Plank mission is equipped with one He4 Joule-Thomson cooler. Cryogenic chain without helium bath is a challenge for space missions and 4.2K Pulse-Tube working at high frequency (around 30Hz) is one option to take it up. A low temperature Pulse-Tube would be suitable for the ESA space mission EChO (Exoplanet Characterisation Observatory, expected launch in 2022), which requires around 30mW cooling power at 6K; and for the ESA space mission ATHENA (Advanced Telescope for High ENergy Astrophysics), to pre-cool the sub-kelvin cooler (few hundreds of mW at 15K). The test bench described in this paper combines a Gifford-McMahon with a coaxial Pulse-Tube. A thermal link is joining the intercept of the Pulse-Tube and the second stage of the Gifford-McMahon. This intercept is a separator between the hot and the cold regenerators of the Pulse-Tube. The work has been focused on the cold part of this cold finger. Coupled with an active phase shifter, this Pulse-Tube has been tested and optimized and temperatures as low as 6K have been obtained at 30Hz with an intercept temperature at 20K.
Fantoni’s Tracheostomy using Catheter High Frequency Jet Ventilation
P. Török
2012-01-01
Full Text Available Background: It has been shown previously that conventional ventilation delivered through a long cuffed endotracheal tube is associated with a high flow-resistance and frequent perioperative complications. Aim: We attempted to supersede the conventional ventilation by high-frequency jet ventilation through a catheter (HFJV-C and assess safety of the procedure. Material and methods: Using a translaryngeal tracheostomy kit, we performed a translaryngeal (Fantoni tracheostomy (TLT. Subsequently, we introduced a special 2-way prototype ventilatory catheter into the trachea via the TLT under bronchoscopic control. Satisfactory HFJV-C ventilation through the catheter was achieved in 218 patients. Results: There were no significant adverse effects on vital signs observed in the cohort during the study. The pH, SpO2, PaO2, and PaCO2 did not change significantly following the HFJV-C. The intrinsic PEEPi measured in trachea did not exceed 4—5 cm H2O during its application, which was significantly less than during the classical ventilation via the endotracheal tube fluctuating between 12 and 17 cm H2O. No serious medical complications occurred. Conclusion: The HFJV during Fantoni’s tracheostomy using the catheter HFJV-C proved to be a safe and effective method of lung ventilation at the intensive care unit. Key words: Translaryngeal tracheostomy, HFJV via catheter.
Velocity field measurements on high-frequency, supersonic microactuators
Kreth, Phillip A.; Ali, Mohd Y.; Fernandez, Erik J.; Alvi, Farrukh S.
2016-05-01
The resonance-enhanced microjet actuator which was developed at the Advanced Aero-Propulsion Laboratory at Florida State University is a fluidic-based device that produces pulsed, supersonic microjets by utilizing a number of microscale, flow-acoustic resonance phenomena. The microactuator used in this study consists of an underexpanded source jet that flows into a cylindrical cavity with a single, 1-mm-diameter exhaust orifice through which an unsteady, supersonic jet issues at a resonant frequency of 7 kHz. The flowfields of a 1-mm underexpanded free jet and the microactuator are studied in detail using high-magnification, phase-locked flow visualizations (microschlieren) and two-component particle image velocimetry. These are the first direct measurements of the velocity fields produced by such actuators. Comparisons are made between the flow visualizations and the velocity field measurements. The results clearly show that the microactuator produces pulsed, supersonic jets with velocities exceeding 400 m/s for roughly 60 % of their cycles. With high unsteady momentum output, this type of microactuator has potential in a range of ow control applications.
High frequency guided wave propagation in monocrystalline silicon wafers
Pizzolato, Marco; Masserey, Bernard; Robyr, Jean-Luc; Fromme, Paul
2017-04-01
Monocrystalline silicon wafers are widely used in the photovoltaic industry for solar panels with high conversion efficiency. The cutting process can introduce micro-cracks in the thin wafers and lead to varying thickness. High frequency guided ultrasonic waves are considered for the structural monitoring of the wafers. The anisotropy of the monocrystalline silicon leads to variations of the wave characteristics, depending on the propagation direction relative to the crystal orientation. Full three-dimensional Finite Element simulations of the guided wave propagation were conducted to visualize and quantify these effects for a line source. The phase velocity (slowness) and skew angle of the two fundamental Lamb wave modes (first anti-symmetric mode A0 and first symmetric mode S0) for varying propagation directions relative to the crystal orientation were measured experimentally. Selective mode excitation was achieved using a contact piezoelectric transducer with a custom-made wedge and holder to achieve a controlled contact pressure. The out-of-plane component of the guided wave propagation was measured using a noncontact laser interferometer. Good agreement was found with the simulation results and theoretical predictions based on nominal material properties of the silicon wafer.
Large scale modulation of high frequency acoustic waves in periodic porous media.
Boutin, Claude; Rallu, Antoine; Hans, Stephane
2012-12-01
This paper deals with the description of the modulation at large scale of high frequency acoustic waves in gas saturated periodic porous media. High frequencies mean local dynamics at the pore scale and therefore absence of scale separation in the usual sense of homogenization. However, although the pressure is spatially varying in the pores (according to periodic eigenmodes), the mode amplitude can present a large scale modulation, thereby introducing another type of scale separation to which the asymptotic multi-scale procedure applies. The approach is first presented on a periodic network of inter-connected Helmholtz resonators. The equations governing the modulations carried by periodic eigenmodes, at frequencies close to their eigenfrequency, are derived. The number of cells on which the carrying periodic mode is defined is therefore a parameter of the modeling. In a second part, the asymptotic approach is developed for periodic porous media saturated by a perfect gas. Using the "multicells" periodic condition, one obtains the family of equations governing the amplitude modulation at large scale of high frequency waves. The significant difference between modulations of simple and multiple mode are evidenced and discussed. The features of the modulation (anisotropy, width of frequency band) are also analyzed.
Upgrading a high-throughput spectrometer for high-frequency (<400 kHz) measurements
Nishizawa, T.; Nornberg, M. D.; Den Hartog, D. J.; Craig, D.
2016-11-01
The upgraded spectrometer used for charge exchange recombination spectroscopy on the Madison Symmetric Torus resolves emission fluctuations up to 400 kHz. The transimpedance amplifier's cutoff frequency was increased based upon simulations comparing the change in the measured photon counts for time-dynamic signals. We modeled each signal-processing stage of the diagnostic and scanned the filtering frequency to quantify the uncertainty in the photon counting rate. This modeling showed that uncertainties can be calculated based on assuming each amplification stage is a Poisson process and by calibrating the photon counting rate with a DC light source to address additional variation.
Upgrading a high-throughput spectrometer for high-frequency (<400 kHz) measurements
Nishizawa, T.; Nornberg, M. D.; Den Hartog, D. J.; Craig, D.
2016-01-01
The upgraded spectrometer used for charge exchange recombination spectroscopy on the Madison Symmetric Torus resolves emission fluctuations up to 400 kHz. The transimpedance amplifier’s cutoff frequency was increased based upon simulations comparing the change in the measured photon counts for time-dynamic signals. We modeled each signal-processing stage of the diagnostic and scanned the filtering frequency to quantify the uncertainty in the photon counting rate. This modeling showed that uncertainties can be calculated based on assuming each amplification stage is a Poisson process and by calibrating the photon counting rate with a DC light source to address additional variation.
Upgrading a high-throughput spectrometer for high-frequency (<400 kHz) measurements
Nishizawa, T., E-mail: nishizawa@wisc.edu; Nornberg, M. D.; Den Hartog, D. J. [University of Wisconsin–Madison, Madison, Wisconsin 53706 (United States); Craig, D. [Wheaton College, Wheaton, Illinois 60187 (United States)
2016-11-15
The upgraded spectrometer used for charge exchange recombination spectroscopy on the Madison Symmetric Torus resolves emission fluctuations up to 400 kHz. The transimpedance amplifier’s cutoff frequency was increased based upon simulations comparing the change in the measured photon counts for time-dynamic signals. We modeled each signal-processing stage of the diagnostic and scanned the filtering frequency to quantify the uncertainty in the photon counting rate. This modeling showed that uncertainties can be calculated based on assuming each amplification stage is a Poisson process and by calibrating the photon counting rate with a DC light source to address additional variation.
Frequency weighted model predictive control of wind turbine
Klauco, Martin; Poulsen, Niels Kjølstad; Mirzaei, Mahmood
2013-01-01
This work is focused on applying frequency weighted model predictive control (FMPC) on three blade horizontal axis wind turbine (HAWT). A wind turbine is a very complex, non-linear system influenced by a stochastic wind speed variation. The reduced dynamics considered in this work are the rotatio...... predictive controller are presented. Statistical comparison between frequency weighted MPC, standard MPC and baseline PI controller is shown as well.......This work is focused on applying frequency weighted model predictive control (FMPC) on three blade horizontal axis wind turbine (HAWT). A wind turbine is a very complex, non-linear system influenced by a stochastic wind speed variation. The reduced dynamics considered in this work...... are the rotational degree of freedom of the rotor and the tower for-aft movement. The MPC design is based on a receding horizon policy and a linearised model of the wind turbine. Due to the change of dynamics according to wind speed, several linearisation points must be considered and the control design adjusted...
Optical Transmitter Terminal for Selective RF High Frequency Bans
National Aeronautics and Space Administration — Recent improvements in multiplexing systems and tunable laser semiconductor diodes make the use of Wavelength Division Multiplexing to combine multiple frequency...
Salim Lahmiri
2014-07-01
Full Text Available This paper presents a forecasting model that integrates the discrete wavelet transform (DWT and backpropagation neural networks (BPNN for predicting financial time series. The presented model first uses the DWT to decompose the financial time series data. Then, the obtained approximation (low-frequency and detail (high-frequency components after decomposition of the original time series are used as input variables to forecast future stock prices. Indeed, while high-frequency components can capture discontinuities, ruptures and singularities in the original data, low-frequency components characterize the coarse structure of the data, to identify the long-term trends in the original data. As a result, high-frequency components act as a complementary part of low-frequency components. The model was applied to seven datasets. For all of the datasets, accuracy measures showed that the presented model outperforms a conventional model that uses only low-frequency components. In addition, the presented model outperforms both the well-known auto-regressive moving-average (ARMA model and the random walk (RW process.
Relics in galaxy clusters at high radio frequencies
Kierdorf, M.; Beck, R.; Hoeft, M.; Klein, U.; van Weeren, R. J.; Forman, W. R.; Jones, C.
2017-04-01
Aims: We investigated the magnetic properties of radio relics located at the peripheries of galaxy clusters at high radio frequencies, where the emission is expected to be free of Faraday depolarization. The degree of polarization is a measure of the magnetic field compression and, hence, the Mach number. Polarization observations can also be used to confirm relic candidates. Methods: We observed three radio relics in galaxy clusters and one radio relic candidate at 4.85 and 8.35 GHz in total emission and linearly polarized emission with the Effelsberg 100-m telescope. In addition, we observed one radio relic candidate in X-rays with the Chandra telescope. We derived maps of polarization angle, polarization degree, and Faraday rotation measures. Results: The radio spectra of the integrated emission below 8.35 GHz can be well fitted by single power laws for all four relics. The flat spectra (spectral indices of 0.9 and 1.0) for the so-called Sausage relic in cluster CIZA J2242+53 and the so-called Toothbrush relic in cluster 1RXS 06+42 indicate that models describing the origin of relics have to include effects beyond the assumptions of diffuse shock acceleration. The spectra of the radio relics in ZwCl 0008+52 and in Abell 1612 are steep, as expected from weak shocks (Mach number ≈2.4). Polarization observations of radio relics offer a method of measuring the strength and geometry of the shock front. We find polarization degrees of more than 50% in the two prominent Mpc-sized radio relics, the Sausage and the Toothbrush, which are among the highest percentages of linear polarization detected in any extragalactic radio source to date. This is remarkable because the large beam size of the Effelsberg single-dish telescope corresponds to linear extensions of about 300 kpc at 8.35 GHz at the distances of the relics. The high degree of polarization indicates that the magnetic field vectors are almost perfectly aligned along the relic structure, as expected for shock
High-frequency measurements of aeolian saltation flux: Field-based methodology and applications
Martin, Raleigh L.; Kok, Jasper F.; Hugenholtz, Chris H.; Barchyn, Thomas E.; Chamecki, Marcelo; Ellis, Jean T.
2018-02-01
Aeolian transport of sand and dust is driven by turbulent winds that fluctuate over a broad range of temporal and spatial scales. However, commonly used aeolian transport models do not explicitly account for such fluctuations, likely contributing to substantial discrepancies between models and measurements. Underlying this problem is the absence of accurate sand flux measurements at the short time scales at which wind speed fluctuates. Here, we draw on extensive field measurements of aeolian saltation to develop a methodology for generating high-frequency (up to 25 Hz) time series of total (vertically-integrated) saltation flux, namely by calibrating high-frequency (HF) particle counts to low-frequency (LF) flux measurements. The methodology follows four steps: (1) fit exponential curves to vertical profiles of saltation flux from LF saltation traps, (2) determine empirical calibration factors through comparison of LF exponential fits to HF number counts over concurrent time intervals, (3) apply these calibration factors to subsamples of the saltation count time series to obtain HF height-specific saltation fluxes, and (4) aggregate the calibrated HF height-specific saltation fluxes into estimates of total saltation fluxes. When coupled to high-frequency measurements of wind velocity, this methodology offers new opportunities for understanding how aeolian saltation dynamics respond to variability in driving winds over time scales from tens of milliseconds to days.
Marijn Van Dongen
2015-03-01
Full Text Available This paper investigates the efficacy of high frequency switched-mode neural stimulation. Instead of using a constant stimulation amplitude, the stimulus is switched on and off repeatedly with a high frequency (up to 100kHz duty cycled signal. By means of tissue modeling that includes the dynamic properties of both the tissue material as well as the axon membrane, it is first shown that switched-mode stimulation depolarizes the cell membrane in a similar way as classical constant amplitude stimulation.These findings are subsequently verified using in vitro experiments in which the response of a Purkinje cell is measured due to a stimulation signal in the molecular layer of the cerebellum of a mouse. For this purpose a stimulator circuit is developed that is able to produce a monophasic high frequency switched-mode stimulation signal. The results confirm the modeling by showing that switched-mode stimulation is able to induce similar responses in the Purkinje cell as classical stimulation using a constant current source. This conclusion opens up possibilities for novel stimulation designs that can improve the performance of the stimulator circuitry. Care has to be taken to avoid losses in the system due to the higher operating frequency.
Proposal for a high frequency of cyclotron DC-72 CCSR
Hudak, M.
2009-01-01
Two half-wave RF systems with vertical resonators tanks located in a yoke of a magnet will be used for acceleration of charged particles in range from H- to Xe +1 8 with energy 72 - 2 MeV/u. The range of frequency from 18.25 MHz up to 32 MHz is provided by changing of the length of resonators. The calculated quality-factor of RF system is equal from 5000 to 6000. At a voltage rating of 60 kV on two dees it is necessary to use the HF generator with an output power about 25 kW. The basic parameters of a HF system of a cyclotron DC - 72 are shown in the given article. The results are obtained on the basis of numerical calculations conducted with the software package POISSON SUPERFISH and MicroCap and they were checked by the series of measurements using the cyclotron built in Joint Institute for Nuclear Research. Measurements of the resonance system confirm the correctness of the new calculation methods and procedures for designing and optimizing various parts of HF circuits used in accelerators technology. By using of these methods it is possible to create a complete model of the entire accelerator HF system. The HF system consists of power generator, transmission lines, resonant system and monitoring and controlling system. (Author)
Adequacy of Frequency Reserves for High Wind Power Generation
Das, Kaushik; Litong-Palima, Marisciel; Maule, Petr
2017-01-01
In this article, a new methodology is developed to assess the adequacy of frequency reserves to handle power imbalances caused by wind power forecast errors. The goal of this methodology is to estimate the adequate volume and speed of activation of frequency reserves required to handle power...
A high frequency, high power CARM proposal for the DEMO ECRH system
Mirizzi, Francesco; Spassovsky, Ivan; Ceccuzzi, Silvio; Dattoli, Giuseppe; Di Palma, Emanuele; Doria, Andrea; Gallerano, Gianpiero; Lampasi, Alessandro; Maffia, Giuseppe; Ravera, GianLuca; Sabia, Elio; Tuccillo, Angelo Antonio; Zito, Pietro
2015-01-01
Highlights: • ECRH system for DEMO. • Cyclotron Auto-Resonance Maser (CARM) devices. • Relativistic electron beams. • Bragg reflectors. • High voltage pulse modulators. - Abstract: ECRH&CD systems are extensively used on tokamak plasmas due to their capability of highly tailored power deposition, allowing very localised heating and non-inductive current drive, useful for MHD and profiles control. The high electron temperatures expected in DEMO will require ECRH systems with operating frequency in the 200–300 GHz range, equipped with a reasonable number of high power (P ≥ 1 MW) CW RF sources, for allowing central RF power deposition. In this frame the ENEA Fusion Department (Frascati) is coordinating a task force aimed at the study and realisation of a suitable high power, high frequency reliable source.
A high frequency, high power CARM proposal for the DEMO ECRH system
Mirizzi, Francesco, E-mail: francesco.mirizzi@enea.it [Consorzio CREATE, Via Claudio 21, I-80125 Napoli (Italy); Spassovsky, Ivan [Unità Tecnica Applicazioni delle Radiazioni – ENEA, C.R. Frascati, via E. Fermi 45, I-00044 Frascati (Italy); Ceccuzzi, Silvio [Unità Tecnica Fusione – ENEA C. R. Frascati, via E. Fermi 45, 00044 Frascati, Roma (Italy); Dattoli, Giuseppe; Di Palma, Emanuele; Doria, Andrea; Gallerano, Gianpiero [Unità Tecnica Applicazioni delle Radiazioni – ENEA, C.R. Frascati, via E. Fermi 45, I-00044 Frascati (Italy); Lampasi, Alessandro; Maffia, Giuseppe; Ravera, GianLuca [Unità Tecnica Fusione – ENEA C. R. Frascati, via E. Fermi 45, 00044 Frascati, Roma (Italy); Sabia, Elio [Unità Tecnica Applicazioni delle Radiazioni – ENEA, C.R. Frascati, via E. Fermi 45, I-00044 Frascati (Italy); Tuccillo, Angelo Antonio; Zito, Pietro [Unità Tecnica Fusione – ENEA C. R. Frascati, via E. Fermi 45, 00044 Frascati, Roma (Italy)
2015-10-15
Highlights: • ECRH system for DEMO. • Cyclotron Auto-Resonance Maser (CARM) devices. • Relativistic electron beams. • Bragg reflectors. • High voltage pulse modulators. - Abstract: ECRH&CD systems are extensively used on tokamak plasmas due to their capability of highly tailored power deposition, allowing very localised heating and non-inductive current drive, useful for MHD and profiles control. The high electron temperatures expected in DEMO will require ECRH systems with operating frequency in the 200–300 GHz range, equipped with a reasonable number of high power (P ≥ 1 MW) CW RF sources, for allowing central RF power deposition. In this frame the ENEA Fusion Department (Frascati) is coordinating a task force aimed at the study and realisation of a suitable high power, high frequency reliable source.
Construction of a dog training device with high frequency and high power pulses
Viaud Trejos, Rafael Alfonso
2013-01-01
An electronic device is built to produce high frequency and high power sound. The device is used in training and control of dogs. Commercial ultrasonic devices used for dog training are analyzed. The best strategies and components of the design are determined from an electronic device to produce sounds in frequency from 15kHz to 50Khz. Effectiveness tests are performed to establish the adequate design of the ultrasonic electronic device. The test results are analyzed to find opportunities of improvement in the design or construction of the device [es
Modeling of Low Frequency MHD Induced Beam Ion Transport In NSTX
Gorelenkov, N.N.; Medley, S.S.
2004-01-01
Beam ion transport in the presence of low frequency MHD activity in National Spherical Tokamak Experiment (NSTX) plasma is modeled numerically and analyzed theoretically in order to understand basic underlying physical mechanisms responsible for the observed fast ion redistribution and losses. Numerical modeling of the beam ions flux into the NPA in NSTX shows that after the onset of low frequency MHD activity high energy part of beam ion distribution, E b > 40keV, is redistributed radially due to stochastic diffusion. Such diffusion is caused by high order harmonics of the transit frequency resonance overlap in the phase space. Large drift orbit radial width induces such high order resonances. Characteristic confinement time is deduced from the measured NPA energy spectrum and is typically ∼ 4msec. Considered MHD activity may induce losses on the order of 10% at the internal magnetic field perturbation (delta)B/B = Ο (10 -3 ), which is comparable to the prompt orbit losses
The potential for very high-frequency gravitational wave detection
Cruise, A M
2012-01-01
The science case for observing gravitational waves at frequencies in the millihertz-kilohertz range using LIGO, VIRGO, GEO600 or LISA is very strong and the first results are expected at these frequencies. However, as gravitational wave astronomy progresses beyond the first detections, other frequency bands may be worth exploring. Early predictions of gravitational wave emission from discrete sources at very much higher frequencies (megahertz and above) have been published and more recent studies of cosmological signals from inflation, Kaluza-Klein modes from gravitational interactions in brane worlds and plasma instabilities surrounding violent astrophysical events, are all possible sources. This communication examines current observational possibilities and the detector technology required to make meaningful observations at these frequencies. (paper)
Challenges in graphene integration for high-frequency electronics
Giannazzo, F.; Fisichella, G.; Greco, G.; Roccaforte, F.
2016-06-01
This paper provides an overview of the state-of-the-art research on graphene (Gr) for high-frequency (RF) devices. After discussing current limitations of lateral Gr RF transistors, novel vertical devices concepts such as the Gr Base Hot Electron Transistor (GBHET) will be introduced and the main challenges in Gr integration within these architectures will be discussed. In particular, a GBHET device based on Gr/AlGaN/GaN heterostructure will be considered. An approach to the fabrication of this heterostructure by transfer of CVD grown Gr on copper to the AlGaN surface will be presented. The morphological and electrical properties of this system have been investigated at nanoscale by atomic force microscopy (AFM) and conductive atomic force microscopy (CAFM). In particular, local current-voltage measurements by the CAFM probe revealed the formation of a Schottky contact with low barrier height (˜0.41 eV) and excellent lateral uniformity between Gr and AlGaN. Basing on the electrical parameters extracted from this characterization, the theoretical performances of a GBHET formed by a metal/Al2O3/Gr/AlGaN/GaN stack have been evaluated.
Three-Dimensional Electromagnetic High Frequency Axisymmetric Cavity Scars.
Warne, Larry Kevin; Jorgenson, Roy Eberhardt
2014-10-01
This report examines the localization of high frequency electromagnetic fi elds in three-dimensional axisymmetric cavities along periodic paths between opposing sides of the cavity. The cases where these orbits lead to unstable localized modes are known as scars. This report treats both the case where the opposing sides, or mirrors, are convex, where there are no interior foci, and the case where they are concave, leading to interior foci. The scalar problem is treated fi rst but the approximations required to treat the vector fi eld components are also examined. Particular att ention is focused on the normalization through the electromagnetic energy theorem. Both projections of the fi eld along the scarred orbit as well as point statistics are examined. Statistical comparisons are m ade with a numerical calculation of the scars run with an axisymmetric simulation. This axisymmetric cas eformstheoppositeextreme(wherethetwomirror radii at each end of the ray orbit are equal) from the two -dimensional solution examined previously (where one mirror radius is vastly di ff erent from the other). The enhancement of the fi eldontheorbitaxiscanbe larger here than in the two-dimensional case. Intentionally Left Blank
Algorithmic and high-frequency trading in Borsa Istanbul
Oguz Ersan
2016-12-01
Full Text Available This paper investigates the levels of algorithmic trading (AT and high-frequency trading (HFT in an emerging market, Borsa Istanbul (BIST, utilizing a dataset of 354 trading days between January 2013 and May 2014. We find an upward trend in AT by using common proxies: number of messages per minute and algo_trad of Hendershott et al. (2011. Mean algo_trad for BIST 100 index constituents varies between −18 and −13 which is parallel to 2003–2005 levels of NASDAQ large cap stocks. Initially, we measure HFT involvement by detecting linked messages as in the way proposed in Hasbrouck and Saar (2013. Next, we propose an extended HFT measure which captures various HFT strategies. This measure attributes approximately 6% of the orders to HFT. HFT involvement is higher in large orders (11.96%, in orders submitted by portfolio/fund management firms (10.40%, after improvement of BIST's order submission platform and tick size reduction for certain stocks.
High-Frequency Chest Compression: A Summary of the Literature
Cara F Dosman
2005-01-01
Full Text Available The purpose of the present literature summary is to describe high-frequency chest compression (HFCC, summarize its history and outline study results on its effect on mucolysis, mucus transport, pulmonary function and quality of life. HFCC is a mechanical method of self-administered chest physiotherapy, which induces rapid air movement in and out of the lungs. This mean oscillated volume is an effective method of mucolysis and mucus clearance. HFCC can increase independence. Some studies have shown that HFCC leads to more mucus clearance and better lung function compared with conventional chest physiotherapy. However, HFCC also decreases end-expiratory lung volume, which can lead to increased airway resistance and a decreased oscillated volume. Adding positive end-expiratory pressure to HFCC has been shown to prevent this decrease in end-expiratory lung volume and to increase the oscillated volume. It is possible that the HFCC-induced decrease in end-expiratory lung volume may result in more mucus clearance in airways that remain open by reducing airway size. Adjunctive methods, such as positive end-expiratory pressure, may not always be needed to make HFCC more effective.
High-frequency, transient magnetic susceptibility of ferroelectrics
Grimes, Craig A.
1996-10-01
A significant high-frequency magnetic susceptibility was measured both in weakly polarized and nonpolarized samples of barium titanate, lead zirconate titanate, and carnauba wax. Magnetic susceptibility measurements were made from 10 to 500 MHz using a thin film permeameter at room temperature; initial susceptibilities ranged from 0.1 to 2.5. These values are larger than expected for paramagnets and smaller than expected for ferromagnets. It was found that the magnetic susceptibility decreases rapidly with exposure to the exciting field. The origin of the magnetic susceptibility is thought to originate with the applied time varying electric field associated with the susceptibility measurements. An electric field acts to rotate an electric dipole, creating a magnetic quadrupole if the two moments are balanced, and a net magnetic dipole moment if imbalanced. It is thought that local electrostatic fields created at ferroelectric domain discontinuities associated with grain boundaries create an imbalance in the anion rotation that results in a net, measurable, magnetic moment. The origin of the magnetic aftereffect may be due to the local heating of the material through the moving charges associated with the magnetic moment.
Improving NASICON Sinterability through Crystallization under High Frequency Electrical Fields
Ilya eLisenker
2016-03-01
Full Text Available The effect of high frequency (HF electric fields on the crystallization and sintering rates of a lithium aluminum germanium phosphate (LAGP ion conducting ceramic was investigated. LAGP with the nominal composition Li1.5Al0.5Ge1.5(PO43 was crystallized and sintered, both conventionally and under effect of electrical field. Electrical field application, of 300V/cm at 1MHz, produced up to a 40% improvement in sintering rate of LAGP that was crystallized and sintered under the HF field. Heat sink effect of the electrodes appears to arrest thermal runaway and subsequent flash behavior. Sintered pellets were characterized using XRD, SEM, TEM and EIS to compare conventionally and field sintered processes. The as-sintered structure appears largely unaffected by the field as the sintering curves tend to converge beyond initial stages of sintering. Differences in densities and microstructure after 1 hour of sintering were minor with measured sintering strains of 31% vs. 26% with and without field, respectively . Ionic conductivity of the sintered pellets was evaluated and no deterioration due to the use of HF field was noted, though capacitance of grain boundaries due to secondary phases was significantly increased.