WorldWideScience

Sample records for high frequency miniature

  1. High-Resolution and Frequency, Printed Miniature Magnetic Probes

    Science.gov (United States)

    Prager, James; Ziemba, Timothy; Miller, Kenneth; Picard, Julian

    2013-10-01

    Eagle Harbor Technologies, Inc. (EHT) is developing a technique to significantly reduce the cost and development time of producing magnetic field diagnostics. EHT is designing probes that can be printed on flexible PCBs thereby allowing for extremely small coils to be produced while essentially eliminating the time to wind the coils. The coil size can be extremely small when coupled with the EHT Hybrid Integrator, which is capable of high bandwidth measurements over short and long pulse durations. This integrator is currently being commercialized with the support of a DOE SBIR. Additionally, the flexible PCBs allow probes to be attached to complex surface and/or probes that have a complex 3D structure to be designed and fabricated. During the Phase I, EHT will design and construct magnetic field probes on flexible PCBs, which will be tested at the University of Washington's HIT-SI experiment and in EHT's material science plasma reactor. Funding provided by DOE SBIR/STTR Program.

  2. Very High Frequency Switch-Mode Power Supplies.:Miniaturization of Power Electronics.

    OpenAIRE

    Madsen, Mickey Pierre; Andersen, Michael A. E.; Knott, Arnold

    2015-01-01

    The importance of technology and electronics in our daily life is constantly increasing. At the same time portability and energy efficiency are currently some of the hottest topics. This creates a huge need for power converters in a compact form factor and with high efficiency, which can supply these electronic devices. This calls for new technologies in order to miniaturize the power electronics of today. One way to do this is by increasing the switching frequency dramatically and develop ve...

  3. Microfluidic pumping through miniaturized channels driven by ultra-high frequency surface acoustic waves

    Energy Technology Data Exchange (ETDEWEB)

    Shilton, Richie J., E-mail: richard.shilton@iit.it [Center for Nanotechnology Innovation @ NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa (Italy); Travagliati, Marco [Center for Nanotechnology Innovation @ NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa (Italy); NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza San Silvestro 12, 56127 Pisa (Italy); Beltram, Fabio [NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza San Silvestro 12, 56127 Pisa (Italy); Center for Nanotechnology Innovation @ NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa (Italy); Cecchini, Marco, E-mail: marco.cecchini@nano.cnr.it [NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza San Silvestro 12, 56127 Pisa (Italy)

    2014-08-18

    Surface acoustic waves (SAWs) are an effective means to pump fluids through microchannel arrays within fully portable systems. The SAW-driven acoustic counterflow pumping process relies on a cascade phenomenon consisting of SAW transmission through the microchannel, SAW-driven fluid atomization, and subsequent coalescence. Here, we investigate miniaturization of device design, and study both SAW transmission through microchannels and the onset of SAW-driven atomization up to the ultra-high-frequency regime. Within the frequency range from 47.8 MHz to 754 MHz, we show that the acoustic power required to initiate SAW atomization remains constant, while transmission through microchannels is most effective when the channel widths w ≳ 10 λ, where λ is the SAW wavelength. By exploiting the enhanced SAW transmission through narrower channels at ultra-high frequencies, we discuss the relevant frequency-dependent length scales and demonstrate the scaling down of internal flow patterns and discuss their impact on device miniaturization strategies.

  4. Carbon Nanofiber-Based, High-Frequency, High-Q, Miniaturized Mechanical Resonators

    Science.gov (United States)

    Kaul, Anupama B.; Epp, Larry W.; Bagge, Leif

    2011-01-01

    High Q resonators are a critical component of stable, low-noise communication systems, radar, and precise timing applications such as atomic clocks. In electronic resonators based on Si integrated circuits, resistive losses increase as a result of the continued reduction in device dimensions, which decreases their Q values. On the other hand, due to the mechanical construct of bulk acoustic wave (BAW) and surface acoustic wave (SAW) resonators, such loss mechanisms are absent, enabling higher Q-values for both BAW and SAW resonators compared to their electronic counterparts. The other advantages of mechanical resonators are their inherently higher radiation tolerance, a factor that makes them attractive for NASA s extreme environment planetary missions, for example to the Jovian environments where the radiation doses are at hostile levels. Despite these advantages, both BAW and SAW resonators suffer from low resonant frequencies and they are also physically large, which precludes their integration into miniaturized electronic systems. Because there is a need to move the resonant frequency of oscillators to the order of gigahertz, new technologies and materials are being investigated that will make performance at those frequencies attainable. By moving to nanoscale structures, in this case vertically oriented, cantilevered carbon nanotubes (CNTs), that have larger aspect ratios (length/thickness) and extremely high elastic moduli, it is possible to overcome the two disadvantages of both bulk acoustic wave (BAW) and surface acoustic wave (SAW) resonators. Nano-electro-mechanical systems (NEMS) that utilize high aspect ratio nanomaterials exhibiting high elastic moduli (e.g., carbon-based nanomaterials) benefit from high Qs, operate at high frequency, and have small force constants that translate to high responsivity that results in improved sensitivity, lower power consumption, and im - proved tunablity. NEMS resonators have recently been demonstrated using topdown

  5. High-Frequency Flush Mounted Miniature LOX Fiber-Optic Pressure Sensor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Luna Innovations is teaming with the University of Alabama, Huntsville, to develop a miniature flush-mounted fiber-optic pressure sensor that will allow accurate,...

  6. High-Frequency Flush Mounted Miniature LOX Fiber-Optic Pressure Sensor II Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Luna Innovations has teamed with the University of Alabama, Huntsville, to develop a miniature flush-mounted fiber-optic pressure sensor that will allow accurate,...

  7. Fully Integrated, Miniature, High-Frequency Flow Probe Utilizing MEMS Leadless SOI Technology

    Science.gov (United States)

    Ned, Alex; Kurtz, Anthony; Shang, Tonghuo; Goodman, Scott; Giemette. Gera (d)

    2013-01-01

    This work focused on developing, fabricating, and fully calibrating a flowangle probe for aeronautics research by utilizing the latest microelectromechanical systems (MEMS), leadless silicon on insulator (SOI) sensor technology. While the concept of angle probes is not new, traditional devices had been relatively large due to fabrication constraints; often too large to resolve flow structures necessary for modern aeropropulsion measurements such as inlet flow distortions and vortices, secondary flows, etc. Mea surements of this kind demanded a new approach to probe design to achieve sizes on the order of 0.1 in. (.3 mm) diameter or smaller, and capable of meeting demanding requirements for accuracy and ruggedness. This approach invoked the use of stateof- the-art processing techniques to install SOI sensor chips directly onto the probe body, thus eliminating redundancy in sensor packaging and probe installation that have historically forced larger probe size. This also facilitated a better thermal match between the chip and its mount, improving stability and accuracy. Further, the leadless sensor technology with which the SOI sensing element is fabricated allows direct mounting and electrical interconnecting of the sensor to the probe body. This leadless technology allowed a rugged wire-out approach that is performed at the sensor length scale, thus achieving substantial sensor size reductions. The technology is inherently capable of high-frequency and high-accuracy performance in high temperatures and harsh environments.

  8. High-frequency Operation and Miniaturization aspects of Pulse-tube Cryocoolers

    NARCIS (Netherlands)

    Vanapalli, Srinivas

    2008-01-01

    Cryocoolers are small refrigerators capable of achieving useful refrigeration below 120 K. Recent developments in the field of high Tc superconductors spawned a wide range of applications such as terahertz sensors, SQUIDS, low noise amplifiers, filters for microwave applications and many more. These

  9. High-frequency Operation and Miniaturization aspects of Pulse-tube Cryocoolers

    OpenAIRE

    Vanapalli, Srinivas

    2008-01-01

    Cryocoolers are small refrigerators capable of achieving useful refrigeration below 120 K. Recent developments in the field of high Tc superconductors spawned a wide range of applications such as terahertz sensors, SQUIDS, low noise amplifiers, filters for microwave applications and many more. These devices are typically, nondissipating and require a cryocooler delivering refrigeration power of about 10 mW operating at 80 K. The existing commercial closed loop cryocoolers are huge, less relia...

  10. A miniature tactical Rb frequency standard

    Science.gov (United States)

    Kwon, T. M.; Dagle, R.; Debley, W.; Dellamano, H.; Hahn, T.; Horste, J.; Lam, L. K.; Magnuson, R.; Mcclelland, T.

    1984-01-01

    Work on an innovative design for miniature rubidium frequency standards has reached the pre-production demonstration stage at Litton Guidance and Control Systems. Pre-production units were built and tested under contract to the Rome Air Development Center of the U.S. Air Force Systems Command. The units, which are designed for use in tactical military applications, feature fast warm-up, low power consumption, and vibration insensitivity. The output stability under vibration is maintained without the need for external shock-mounts. The design objectives and test results are discussed.

  11. High Performance Miniature Bandpass Filters Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal is submitted for developing low impedance, miniature bandpass RF frequency filter via MEMS technique, in applications of SMAP, Aquarius follow-on,...

  12. Technologies for highly miniaturized autonomous sensor networks

    NARCIS (Netherlands)

    Baert, K.; Gyselinckx, B.; Torfs, T.; Leonov, V.; Yazicioglu, F.; Brebels, S.; Donnay, S.; Vanfleteren, J.; Beyne, E.; Hoof, C. van

    2006-01-01

    Recent results of the autonomous sensor research program HUMAN++ will be summarized in this paper. The research program aims to achieve highly miniaturized and (nearly) autonomous sensor systems that assist our health and comfort. Although the application examples are dedicated to human

  13. Multifunctional Magnetodielectric Composites for Antenna and High Frequency Applications

    National Research Council Canada - National Science Library

    Zhang, Xiaokai; Golt, Michael C; Ekiert, Jr., Thomas F; Yarlagadda, Shridhar; Unruh, Karl M; Xaio, John Q

    2006-01-01

    Miniaturization of high frequency antennas while maintaining desirable bandwidth, impedance, and loss characteristics has recently attracted great attention in part due to the development of metamaterials...

  14. Development and Characterization of a 171Yb+ Miniature Ion Trap Frequency Standard

    CERN Document Server

    Partner, Heather L

    2012-01-01

    This dissertation reports on the development of a low-power, high-stability miniature atomic frequency standard based on 171Yb+ ions. The ions are buffer-gas cooled and held in a linear quadrupole trap that is integrated into a sealed, getter-pumped vacuum package, and interrogated on the 12.6 GHz hyperfine transition. We hope to achieve a long-term fractional frequency stability of 10^-14 with a miniature clock that consumes only 50 mW of power and occupies a volume of 5 cm^3. I discuss our progress over several years of work on this project. We began by building a conventional tabletop clock to use as a test bed while developing several designs of miniature ion-trap vacuum packages, while also developing techniques for various aspects of the clock operation, including ion loading, laser and magnetic field stabilization, and a low power ion trap drive. The ion traps were modeled using boundary element software to assist with the design and parameter optimization of new trap geometries. We expect a novel trap...

  15. Miniaturized High Performance Optical Gyroscope Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a new approach for to the design and fabrication of miniaturized Interferometric Fiber Optical Gyroscope (FOG) that enables the production of smaller IRU...

  16. A Circuit to Improve Power Amplitude Stability in Miniature Rubidium Atomic Frequency Standard

    Directory of Open Access Journals (Sweden)

    LUO Qi

    2017-12-01

    Full Text Available The radiofrequency circuit of traditional miniature rubidium atomic frequency standard (RAFS uses saturated output, which can stabilize the amplitude, but not the waveform, of the radiofrequency signal. This would lead to insufficient microwave power stability. In this study, an improved circuit for stabilizing power amplitude in miniature rubidium atomic frequency standard was described. The circuit took the bias voltage of step recovery diode (SRD as a reference to achieve automatic gain control (AGC through controlling the gain of the variable gain amplifier (VGA. This scheme controlled both the amplitude and the waveform of the radiofrequency signal. The results showed that this scheme can effectively improve power stability of the microwave signal in miniature rubidium atomic frequency standard.

  17. Novel Dual-Band Miniaturized Frequency Selective Surface based on Fractal Structures

    Science.gov (United States)

    Zhong, Tao; Zhang, Hou; Wu, Rui; Min, Xueliang

    2017-01-01

    A novel single-layer dual-band miniaturized frequency selective surface (FSS) based on fractal structures is proposed and analyzed in this paper. A prototype with enough dimensions is fabricated and measured in anechoic chamber, and the measured results provide good agreement with the simulated. The simulations and measurements indicate that the dual-band FSS with bandstop selectivity center at 3.95 GHz and 7.10 GHz, and the whole dimension of the proposed FSS cell is only 7×7 mm2, amount to 0.092λ0×0.092λ0, that λ0 is free space wavelength at first resonant frequency. In addition, the center frequencies have scarcely any changes for different polarizations and incidences. What's more, dual-band mechanism is analyzed clearly and it provides a new way to design novel miniaturized FSS structures.

  18. Single-frequency, fully integrated, miniature DPSS laser based on monolithic resonator

    Science.gov (United States)

    Dudzik, G.; Sotor, J.; Krzempek, K.; Soboń, G.; Abramski, K. M.

    2014-02-01

    We present a single frequency, stable, narrow linewidth, miniature laser sources operating at 532 nm (or 1064 nm) based on a monolithic resonators. Such resonators utilize birefringent filters formed by YVO4 beam displacer and KTP or YVO4 crystals to force single frequency operation at 532 nm or 1064 nm, respectively. In both configurations Nd:YVO4 gain crystal is used. The resonators dimensions are 1x1x10.5 mm3 and 1x1x8.5 mm3 for green and infrared configurations, respectively. Presented laser devices, with total dimensions of 40x52x120 mm3, are fully equipped with driving electronics, pump diode, optical and mechanical components. The highly integrated (36x15x65 mm3) low noise driving electronics with implemented digital PID controller was designed. It provides pump current and resonator temperature stability of ±30 μA@650 mA and ±0,003ºC, respectively. The laser parameters can be set and monitored via the USB interface by external application. The developed laser construction is universal. Hence, the other wavelengths can be obtained only by replacing the monolithic resonator. The optical output powers in single frequency regime was at the level of 42 mW@532 nm and 0.5 W@1064 nm with the long-term fluctuations of ±0.85 %. The linewidth and the passive frequency stability under the free running conditions were Δν < 100 kHz and 3ṡ10-9@1 s integration time, respectively. The total electrical power supply consumption of laser module was only 4 W. Presented compact, single frequency laser operating at 532 nm and 1064 nm may be used as an excellent source for laser vibrometry, interferometry or seed laser for fiber amplifiers.

  19. Numerical study of a high-speed miniature centrifugal compressor

    Science.gov (United States)

    Li, Xiaoyi

    A miniature centrifugal compressor is a key component of reverse Brayton cycle cryogenic cooling system. The system is commonly used to generate a low cryogenic temperature environment for electronics to increase their efficiency, or generate, store and transport cryogenic liquids, such as liquid hydrogen and oxygen, where space limit is also an issue. Because of space limitation, the compressor is composed of a radial IGV, a radial impeller and an axial-direction diffuser (which reduces the radial size because of smaller diameter). As a result of reduction in size, rotating speed of the impeller is as high as 313,000 rpm, and Helium is used as the working fluid, in order to obtain the required static pressure ratio/rise. Two main characteristics of the compressor---miniature and high-speed, make it distinct from conventional compressors. Higher compressor efficiency is required to obtain a higher COP (coefficient of performance) system. Even though miniature centrifugal compressors start to draw researchers' attention in recent years, understanding of the performance and loss mechanism is still lacking. Since current experimental techniques are not advanced enough to capture details of flow at miniature scale, numerical methods dominate miniature turbomachinery study. This work numerically studied a high speed miniature centrifugal compressor with commercial CFD code. The overall performance of the compressor was predicted with consideration of interaction between blade rows by using sliding mesh model. The law of similarity of turbomachinery was validated for small scale machines. It was found that the specific ratio effect needs to be considered when similarity law is applied. But Reynolds number effect can be neglected. The loss mechanism of each component was analyzed. Loss due to turning bend was significant in each component. Tip leakage loss of small scale turbomachines has more impact on the impeller performance than that of large scale ones. Because the

  20. Miniature high-performance infrared spectrometer for space applications

    Science.gov (United States)

    Kruzelecky, Roman V.; Haddad, Emile; Wong, Brian; Lafrance, Denis; Jamroz, Wes; Ghosh, Asoke K.; Zheng, Wanping; Phong, Linh

    2017-11-01

    Infrared spectroscopy probes the characteristic vibrational and rotational modes of chemical bonds in molecules to provide information about both the chemical composition and the bonding configuration of a sample. The significant advantage of the Infrared spectral technique is that it can be used with minimal consumables to simultaneously detect a large variety of chemical and biochemical species with high chemical specificity. To date, relatively large Fourier Transform (FT-IR) spectrometers employing variations of the Michelson interferometer have been successfully employed in space for various IR spectroscopy applications. However, FT-IR systems are mechanically complex, bulky (> 15 kg), and require considerable processing. This paper discusses the use of advanced integrated optics and smart optical coding techniques to significantly extend the performance of miniature IR spectrometers by several orders of magnitude in sensitivity. This can provide the next generation of compact, high-performance IR spectrometers with monolithically integrated optical systems for robust optical alignment. The entire module can weigh under 3 kg to minimize the mass penalty for space applications. Miniaturized IR spectrometers are versatile and very convenient for small and micro satellite based missions. They can be dedicated to the monitoring of the CO2 in an Earth Observation mission, to Mars exobiology exploration, as well as to vital life support in manned space system; such as the cabin air quality and the quality of the recycled water supply.

  1. Miniature cryocooler developments for high operating temperatures at Thales Cryogenics

    Science.gov (United States)

    Arts, R.; Martin, J.-Y.; Willems, D.; Seguineau, C.; Van Acker, S.; Mullié, J. C.; Göbel, A.; Tops, M.; Le Bordays, J.; Etchanchu, T.; Benschop, A. A. J.

    2015-05-01

    In recent years there has been a drive towards miniaturized cooled IDCA solutions for low-power, low-mass, low-size products (SWaP). To support this drive, coolers are developed optimized for high-temperature, low heat load dewar-detector assemblies. In this paper, Thales Cryogenics development activities supporting SWaP are presented. Design choices are discussed and compared to various key requirements. Trade-off analysis results are presented on drive voltage, cold finger definition (length, material, diameter and sealing concept), and other interface considerations, including cold finger definition. In parallel with linear and rotary cooler options, designs for small-size high-efficiency drive electronics based on state-of-the-art architectures are presented.

  2. Piezo-based miniature high resolution stabilized gimbal

    Science.gov (United States)

    Karasikov, Nir; Peled, Gal; Yasinov, Roman; Yetkariov, Rita

    2016-05-01

    Piezo motors are characterized by higher mechanical power density, fast response and direct drive. These features are beneficial for miniature gimbals. A gimbal based on such motors was developed. Diameter is 58 mm, weight is 190 grams. The gimbal carries two cameras: a Flir Quark and an HD day camera. The dynamic performance is as high as 3 rad/sec velocity and 100 rad/secΛ2 acceleration. A two axes stabilization algorithm was developed, yielding 80 micro radian stabilization. Further, a panoramic image capture, at a rate of six stabilized field of views per second, was developed. The manuscript reviews the gimbal structure and open architecture, allowing adaptation to other cameras (SWIR etc.), the control algorithm and presents experimental results of stabilization and of panoramic views taken on a vibration platform and on a UAV.

  3. High Q, Miniaturized LCP-Based Passive Components

    KAUST Repository

    Shamim, Atif

    2014-10-16

    Various methods and systems are provided for high Q, miniaturized LCP-based passive components. In one embodiment, among others, a spiral inductor includes a center connection and a plurality of inductors formed on a liquid crystal polymer (LCP) layer, the plurality of inductors concentrically spiraling out from the center connection. In another embodiment, a vertically intertwined inductor includes first and second inductors including a first section disposed on a side of the LCP layer forming a fraction of a turn and a second section disposed on another side of the LCP layer. At least a portion of the first section of the first inductor is substantially aligned with at least a portion of the second section of the second inductor and at least a portion of the first section of the second inductor is substantially aligned with at least a portion of the second section of the first inductor.

  4. Miniature, high efficiency transducers for use in ultrasonic flow meters

    Science.gov (United States)

    Saikia, Meghna

    This thesis is concerned with the development of a new type of miniature, high efficiency transducer for use in ultrasonic flow meters. The proposed transducer consists of a thin plate of a suitable piezoelectric material on which an inter-digital transducer is fabricated for the generation and detection of plate acoustic waves. When immersed in a fluid medium, this device can convert energy from plate acoustic waves (PAWs) into bulk acoustic waves (BAWs) and vice versa. It is shown that this mode coupling principle can be used to realize efficient transducers for use in ultrasonic flow meters. This transducer can be mounted flush with the walls of the pipe through which fluid is flowing, resulting in minimal disturbance of fluid flow. A prototype flow cell using these transducers has been designed and fabricated. The characteristics of this device have been measured over water flow rates varying from 0 to 7.5 liters per minute and found to be in good agreement with theory. Another attractive property of the new transducers is that they can be used to realize remotely read, passive, wireless flow meters. Details of methods that can be used to develop this wireless capability are described. The research carried out in this thesis has applications in several other areas such as ultrasonic nondestructive evaluation (NDE), noncontact or air coupled ultrasonics, and for developing wireless capability in a variety of other acoustic wave sensors.

  5. Micro-miniature radio frequency transmitter for communication and tracking applications

    Energy Technology Data Exchange (ETDEWEB)

    Crutcher, R.I.; Emery, M.S.; Falter, K.G.; Nowlin, C.H. [Oak Ridge National Lab., TN (United States); Rochelle, J.M.; Clonts, L.G. [Univ. of Tennessee, Knoxville, TN (United States). Electrical Engineering Dept.

    1996-12-31

    A micro-miniature radio frequency (rf) transmitter has been developed and demonstrated by the Oak Ridge National Laboratory. The objective of the rf transmitter development was to maximize the transmission distance while drastically shrinking the overall transmitter size, including antenna. Based on analysis and testing, an application-specific integrated circuit (ASIC) with a 16-GHz gallium arsenide (GaAs) oscillator and integrated on-chip antenna was designed and fabricated using microwave monolithic integrated circuit (MMIC) technology. Details of the development and the results of various field tests will be discussed. The rf transmitter is applicable to covert surveillance and tracking scenarios due to its small size of 2.2 x 2.2 mm, including the antenna. Additionally, the 16-GHz frequency is well above the operational range of consumer-grade radio scanners, providing a degree of protection from unauthorized interception. Variations of the transmitter design have been demonstrated for tracking and tagging beacons, transmission of digital data, and transmission of real-time analog video from a surveillance camera. Preliminary laboratory measurements indicate adaptability to direct-sequence spread-spectrum transmission, providing a low probability of intercept and/or detection. Concepts related to law enforcement applications will be presented.

  6. High frequency electromagnetic dosimetry

    CERN Document Server

    Sánchez-Hernández, David A

    2009-01-01

    Along with the growth of RF and microwave technology applications, there is a mounting concern about the possible adverse effects over human health from electromagnetic radiation. Addressing this issue and putting it into perspective, this groundbreaking resource provides critical details on the latest advances in high frequency electromagnetic dosimetry.

  7. High Accuracy, Miniature Pressure Sensor for Very High Temperatures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — SiWave proposes to develop a compact, low-cost MEMS-based pressure sensor for very high temperatures and low pressures in hypersonic wind tunnels. Most currently...

  8. Miniaturized MEMS-Based Gas Chromatograph for High Inertial Loads Associated with Planetary Missions Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Thorleaf Research, Inc. proposes to develop a rugged, miniaturized, low power MEMS-based gas chromatograph (GC) capable of handling the high inertial loads...

  9. Miniaturized, High Flow, Low Dead Volume Preconcentrator for Trace Contaminants in Water under Microgravity Conditions Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Thorleaf Research, Inc. has demonstrated feasibility in Phase I and now proposes a Phase II effort to develop a miniaturized high flow, low dead-volume...

  10. Miniaturized high-resolution wide-field contact lens for panretinal photocoagulation

    Directory of Open Access Journals (Sweden)

    Koushan K

    2014-04-01

    Full Text Available Keyvan Koushan, KV Chalam Department of Ophthalmology, University of Florida College of Medicine, Jacksonville, FL, USA Background and objective: We describe a miniaturized lightweight high-refractive-index panretinal contact lens for diagnostic and therapeutic visualization of the peripheral retina. Instrument design: The miniaturized high-resolution wide-field contact lens includes three optical elements in a light (15 g and miniaturized (16 mm footplate, 24 mm external aperture, and 21 mm vertical height casing contributing to a total dioptric power of +171 diopters. This lens provides up to 165° visualization of the retina for diagnostic and therapeutic applications while allowing easier placement due to its miniaturization. Conclusion: This new lens (50% lighter and 89% smaller improves upon earlier contact lenses for visualization of the peripheral retina. Keywords: contact lens, panretinal photocoagulation, retinal examination, peripheral retina, high resolution view, wide-angle lens, lens

  11. Rad-Hard, Miniaturized, Scalable, High-Voltage Switching Module for Power Applications Rad-Hard, Miniaturized

    Science.gov (United States)

    Adell, Philippe C.; Mojarradi, Mohammad; DelCastillo, Linda Y.; Vo, Tuan A.

    2011-01-01

    A paper discusses the successful development of a miniaturized radiation hardened high-voltage switching module operating at 2.5 kV suitable for space application. The high-voltage architecture was designed, fabricated, and tested using a commercial process that uses a unique combination of 0.25 micrometer CMOS (complementary metal oxide semiconductor) transistors and high-voltage lateral DMOS (diffusion metal oxide semiconductor) device with high breakdown voltage (greater than 650 V). The high-voltage requirements are achieved by stacking a number of DMOS devices within one module, while two modules can be placed in series to achieve higher voltages. Besides the high-voltage requirements, a second generation prototype is currently being developed to provide improved switching capabilities (rise time and fall time for full range of target voltages and currents), the ability to scale the output voltage to a desired value with good accuracy (few percent) up to 10 kV, to cover a wide range of high-voltage applications. In addition, to ensure miniaturization, long life, and high reliability, the assemblies will require intensive high-voltage electrostatic modeling (optimized E-field distribution throughout the module) to complete the proposed packaging approach and test the applicability of using advanced materials in a space-like environment (temperature and pressure) to help prevent potential arcing and corona due to high field regions. Finally, a single-event effect evaluation would have to be performed and single-event mitigation methods implemented at the design and system level or developed to ensure complete radiation hardness of the module.

  12. The Miniature Radio Frequency Instruments (Mini-RF) Global Observations of Earth's Moon

    Science.gov (United States)

    Cahill, Joshua T. S.; Thomson, B. J.; Patterson, G. Wesley; Bussey, D. Benjamin J.; Neish, Catherine D.; Lopez, Norberto R.; Turner, F. Scott; Aldridge, T.; McAdam, M.; Meyer, H. M.; hide

    2014-01-01

    Radar provides a unique means to analyze the surface and subsurface physical properties of geologic deposits, including their wavelength-scale roughness, the relative depth of the deposits, and some limited compositional information. The NASA Lunar Reconnaissance Orbiter's (LRO) Miniature Radio Frequency (Mini-RF) instrument has enabled these analyses on the Moon at a global scale. Mini-RF has accumulated 67% coverage of the lunar surface in S-band (12.6 cm) radar with a resolution of 30 m/pixel. Here we present new Mini-RF global orthorectified uncontrolled S-band maps of the Moon and use them for analysis of lunar surface physical properties. Reported here are readily apparent global- and regional-scale differences in lunar surface physical properties that suggest three distinct terranes, namely: a (1) Nearside Radar Dark Region; (2) Orientale basin and continuous ejecta; and the (3) Highlands Radar Bright Region. Integrating these observations with new data from LRO's Diviner Radiometer rock abundance maps, as well Clementine and Lunar Prospector derived compositional values show multiple distinct lunar surface terranes and sub-terranes based upon both physical and compositional surface properties. Previous geochemical investigations of the Moon suggested its crust is best divided into three to four basic crustal provinces or terranes (Feldspathic Highlands Terrane (-An and -Outer), Procellarum KREEP Terrane, and South Pole Aitken Terrane) that are distinct from one another. However, integration of these geochemical data sets with new geophysical data sets allows us to refine these terranes. The result shows a more complex view of these same crustal provinces and provides valuable scientific and hazard perspectives for future targeted human and robotic exploration.

  13. Miniaturized high-precision piezo driven two axes stepper goniometer.

    Science.gov (United States)

    Zhong, H; Schwarz, A; Wiesendanger, R

    2014-04-01

    A miniaturized inertial stepper goniometer with two orthogonal axes (θ and φ axes) has been realized using four shear piezo based actuators arranged in a tetrahedral configuration tangent with a polished sapphire spherical rotor. The measured sensitivity is about 11.5 microdegree (μ°) per Volt. The smallest angular step size, achieved with a minimal peak-to-peak voltage Upp of 200 V is about 0.6 millidegree (m°). The crosstalk between both axes is below 10%. Our specific design is used to accurately position a glass fiber, but the concept can be utilized for many different applications as well.

  14. Effects of sea-anemone toxin (ATX-II) on the frequency of miniature endplate potentials at rat neuromuscular junctions.

    Science.gov (United States)

    Harris, J. B.; Tesseraux, I.

    1984-01-01

    Soleus and extensor digitorum longus muscles were isolated from rats. The muscles were exposed to ATX-II, a toxin isolated from extracts of the sea-anemone Anemonia sulcata . The toxin caused a dose-dependent increase in the frequency of miniature endplate potentials in both types of muscle. The increase in frequency could be reversed by the application of tetrodotoxin (TTX), and could be prevented by prior exposure of the muscles to TTX. It is concluded that ATX-II causes a sodium-dependent depolarization of the nerve-terminal membrane. PMID:6144341

  15. High resolution miniaturized stepper ultrasonic motor using differential composite motion.

    Science.gov (United States)

    Chu, Xiangcheng; Xing, Zengping; Li, Longtu; Gui, Zhilun

    2004-03-01

    Experiments show that there is a limited minimum stepped angle in ultrasonic motors (USM). The research on the minimum angle of stepper USM with 15 mm in diameter and wobbling mode is being carried out. This paper presents a novel way to decrease the minimum stepped angle of USM based on the principle of differential composite motion (DCM), i.e. clockwise and counterclockwise rotation. The prototype was fabricated and experiments proved that this method is useful and also keeps a high torque for a large stepped angle. The stator of the prototype is steel, and rotor is fiberglass, antifriction material or steel. The prototype can operate well over 150 h with a 5 kHz wide frequency band. The minimum stepped angle is 46" using a coventional method while 12" using DCM method proposed in this paper.

  16. High-throughput methods for miniaturization and automation of monoclonal antibody purification processes.

    Science.gov (United States)

    Treier, Katrin; Hansen, Sigrid; Richter, Carolin; Diederich, Patrick; Hubbuch, Jürgen; Lester, Philip

    2012-01-01

    In the last decade, high-throughput downstream process development techniques have entered the biopharmaceutical industry. As chromatography is the standard downstream purification method, several high-throughput chromatographic methods have been developed and applied including miniaturized chromatographic columns for utilization on liquid handling stations. These columns were used to setup a complete downstream process on a liquid handling station for the first time. In this article, a monoclonal antibody process was established in lab-scale and miniaturized afterwards. The scale-down methodology is presented and discussed. Liquid handling in miniaturized single and multicolumn processes was improved and applicability was demonstrated by volume balances. The challenges of absorption measurement are discussed and strategies were shown to improve volume balances and mass balances in 96-well microtiter plates. The feasibility of miniaturizing a complete downstream process was shown. In the future, analytical bottlenecks should be addressed to gain the full benefit from miniaturized complete process development. Copyright © 2012 American Institute of Chemical Engineers (AIChE).

  17. High spectral purity Kerr frequency comb radio frequency photonic oscillator.

    Science.gov (United States)

    Liang, W; Eliyahu, D; Ilchenko, V S; Savchenkov, A A; Matsko, A B; Seidel, D; Maleki, L

    2015-08-11

    Femtosecond laser-based generation of radio frequency signals has produced astonishing improvements in achievable spectral purity, one of the basic features characterizing the performance of an radio frequency oscillator. Kerr frequency combs hold promise for transforming these lab-scale oscillators to chip-scale level. In this work we demonstrate a miniature 10 GHz radio frequency photonic oscillator characterized with phase noise better than -60 dBc Hz(-1) at 10 Hz, -90 dBc Hz(-1) at 100 Hz and -170 dBc Hz(-1) at 10 MHz. The frequency stability of this device, as represented by Allan deviation measurements, is at the level of 10(-10) at 1-100 s integration time-orders of magnitude better than existing radio frequency photonic devices of similar size, weight and power consumption.

  18. High frequency nanotube oscillator

    Science.gov (United States)

    Peng, Haibing [Houston, TX; Zettl, Alexander K [Kensington, TX

    2012-02-21

    A tunable nanostructure such as a nanotube is used to make an electromechanical oscillator. The mechanically oscillating nanotube can be provided with inertial clamps in the form of metal beads. The metal beads serve to clamp the nanotube so that the fundamental resonance frequency is in the microwave range, i.e., greater than at least 1 GHz, and up to 4 GHz and beyond. An electric current can be run through the nanotube to cause the metal beads to move along the nanotube and changing the length of the intervening nanotube segments. The oscillator can operate at ambient temperature and in air without significant loss of resonance quality. The nanotube is can be fabricated in a semiconductor style process and the device can be provided with source, drain, and gate electrodes, which may be connected to appropriate circuitry for driving and measuring the oscillation. Novel driving and measuring circuits are also disclosed.

  19. Miniature Earthmover

    Science.gov (United States)

    1996-01-01

    International Machinery Corporation (IMC) developed a miniature earthmover, the 1/8 scale Caterpillar D11N Track-type Tractor, with trademark product approval and manufacturing/marketing license from Caterpillar, Inc. Through Marshall Space Flight Center assistance, the company has acquired infrared remote control technology, originally developed for space exploration. The technology is necessary for exports because of varying restrictions on radio frequency in foreign countries. The Cat D11N weighs only 340 pounds and has the world's first miniature industrial internal combustion engine. The earthmover's uses include mining, construction and demolition work, and hazardous environment work. IMC also has designs of various products for military use and other Caterpillar replicas.

  20. Miniaturized Stretchable and High-Rate Linear Supercapacitors

    Science.gov (United States)

    Zhu, Wenjun; Zhang, Yang; Zhou, Xiaoshuang; Xu, Jiang; Liu, Zunfeng; Yuan, Ningyi; Ding, Jianning

    2017-07-01

    Linear stretchable supercapacitors have attracted much attention because they are well suited to applications in the rapidly expanding field of wearable electronics. However, poor conductivity of the electrode material, which limits the transfer of electrons in the axial direction of the linear supercapacitors, leads to a serious loss of capacity at high rates. To solve this problem, we use gold nanoparticles to decorate aligned multiwall carbon nanotube to fabricate stretchable linear electrodes. Furthermore, we have developed fine stretchable linear supercapacitors, which exhibited an extremely high elasticity up to 400% strain with a high capacitance of about 8.7 F g-1 at the discharge current of 1 A g-1.

  1. Miniaturization of High-Throughput Epigenetic Methyltransferase Assays with Acoustic Liquid Handling.

    Science.gov (United States)

    Edwards, Bonnie; Lesnick, John; Wang, Jing; Tang, Nga; Peters, Carl

    2016-02-01

    Epigenetics continues to emerge as an important target class for drug discovery and cancer research. As programs scale to evaluate many new targets related to epigenetic expression, new tools and techniques are required to enable efficient and reproducible high-throughput epigenetic screening. Assay miniaturization increases screening throughput and reduces operating costs. Echo liquid handlers can transfer compounds, samples, reagents, and beads in submicroliter volumes to high-density assay formats using only acoustic energy-no contact or tips required. This eliminates tip costs and reduces the risk of reagent carryover. In this study, we demonstrate the miniaturization of a methyltransferase assay using Echo liquid handlers and two different assay technologies: AlphaLISA from PerkinElmer and EPIgeneous HTRF from Cisbio. © 2015 Society for Laboratory Automation and Screening.

  2. Miniature high speed compressor having embedded permanent magnet motor

    Science.gov (United States)

    Zhou, Lei (Inventor); Zheng, Liping (Inventor); Chow, Louis (Inventor); Kapat, Jayanta S. (Inventor); Wu, Thomas X. (Inventor); Kota, Krishna M. (Inventor); Li, Xiaoyi (Inventor); Acharya, Dipjyoti (Inventor)

    2011-01-01

    A high speed centrifugal compressor for compressing fluids includes a permanent magnet synchronous motor (PMSM) having a hollow shaft, the being supported on its ends by ball bearing supports. A permanent magnet core is embedded inside the shaft. A stator with a winding is located radially outward of the shaft. The PMSM includes a rotor including at least one impeller secured to the shaft or integrated with the shaft as a single piece. The rotor is a high rigidity rotor providing a bending mode speed of at least 100,000 RPM which advantageously permits implementation of relatively low-cost ball bearing supports.

  3. Characterisation of a highly symmetrical miniature capacitive triaxial accelerometer

    NARCIS (Netherlands)

    Lotters, Joost Conrad; Lötters, Joost Conrad; Olthuis, Wouter; Veltink, Petrus H.; Bergveld, Piet

    1997-01-01

    A highly symmetrical cubic capacitive triaxial accelerometer for biomedical applications has been designed, realised and tested. The sensors are available in two outer dimensions, namely 2×2×2 and 5×5×5 mm3. The devices are mounted on a standard IC package for easy testing. Features of the sensor

  4. Geographies of High Frequency Trading

    DEFF Research Database (Denmark)

    Grindsted, Thomas Skou

    2016-01-01

    This paper investigates the geographies of high frequency trading. Today shares shift hands within micro seconds, giving rise to a form of financial geographies termed algorithmic capitalism. This notion refers to the different spatio-temporalities produced by high frequency trading, under...... the valuation of time. As high frequency trading accelerates financial markets, the paper examines the spatio-temporalities of automated trading by the ways in which the speed of knowledge exploitation in financial markets is not only of interest, but also the expansion between different temporalities....... The paper demonstrates how the intensification of time-space compression produces radical new dynamics in the financial market and develops information rent in HFT as convertible to a time rent and a spatio-temporal rent. The final section discusses whether high frequency trading only responds to crises...

  5. High-Sensitivity Low-Noise Miniature Fluxgate Magnetometers Using a Flip Chip Conceptual Design

    Directory of Open Access Journals (Sweden)

    Chih-Cheng Lu

    2014-07-01

    Full Text Available This paper presents a novel class of miniature fluxgate magnetometers fabricated on a print circuit board (PCB substrate and electrically connected to each other similar to the current “flip chip” concept in semiconductor package. This sensor is soldered together by reversely flipping a 5 cm × 3 cm PCB substrate to the other identical one which includes dual magnetic cores, planar pick-up coils, and 3-D excitation coils constructed by planar Cu interconnections patterned on PCB substrates. Principles and analysis of the fluxgate sensor are introduced first, and followed by FEA electromagnetic modeling and simulation for the proposed sensor. Comprehensive characteristic experiments of the miniature fluxgate device exhibit favorable results in terms of sensitivity (or “responsivity” for magnetometers and field noise spectrum. The sensor is driven and characterized by employing the improved second-harmonic detection technique that enables linear V-B correlation and responsivity verification. In addition, the double magnitude of responsivity measured under very low frequency (1 Hz magnetic fields is experimentally demonstrated. As a result, the maximum responsivity of 593 V/T occurs at 50 kHz of excitation frequency with the second harmonic wave of excitation; however, the minimum magnetic field noise is found to be 0.05 nT/Hz1/2 at 1 Hz under the same excitation. In comparison with other miniature planar fluxgates published to date, the fluxgate magnetic sensor with flip chip configuration offers advances in both device functionality and fabrication simplicity. More importantly, the novel design can be further extended to a silicon-based micro-fluxgate chip manufactured by emerging CMOS-MEMS technologies, thus enriching its potential range of applications in modern engineering and the consumer electronics market.

  6. High-sensitivity low-noise miniature fluxgate magnetometers using a flip chip conceptual design.

    Science.gov (United States)

    Lu, Chih-Cheng; Huang, Jeff; Chiu, Po-Kai; Chiu, Shih-Liang; Jeng, Jen-Tzong

    2014-07-30

    This paper presents a novel class of miniature fluxgate magnetometers fabricated on a print circuit board (PCB) substrate and electrically connected to each other similar to the current "flip chip" concept in semiconductor package. This sensor is soldered together by reversely flipping a 5 cm × 3 cm PCB substrate to the other identical one which includes dual magnetic cores, planar pick-up coils, and 3-D excitation coils constructed by planar Cu interconnections patterned on PCB substrates. Principles and analysis of the fluxgate sensor are introduced first, and followed by FEA electromagnetic modeling and simulation for the proposed sensor. Comprehensive characteristic experiments of the miniature fluxgate device exhibit favorable results in terms of sensitivity (or "responsivity" for magnetometers) and field noise spectrum. The sensor is driven and characterized by employing the improved second-harmonic detection technique that enables linear V-B correlation and responsivity verification. In addition, the double magnitude of responsivity measured under very low frequency (1 Hz) magnetic fields is experimentally demonstrated. As a result, the maximum responsivity of 593 V/T occurs at 50 kHz of excitation frequency with the second harmonic wave of excitation; however, the minimum magnetic field noise is found to be 0.05 nT/Hz(1/2) at 1 Hz under the same excitation. In comparison with other miniature planar fluxgates published to date, the fluxgate magnetic sensor with flip chip configuration offers advances in both device functionality and fabrication simplicity. More importantly, the novel design can be further extended to a silicon-based micro-fluxgate chip manufactured by emerging CMOS-MEMS technologies, thus enriching its potential range of applications in modern engineering and the consumer electronics market.

  7. Miniaturized, High Flow, Low Dead Volume Pre-Concentrator for Trace Contaminants in Water under Microgravity Conditions Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Thorleaf Research, Inc. proposes to develop a miniaturized high flow, low dead-volume pre-concentrator for monitoring trace levels of contaminants in water under...

  8. A miniature fiber-optic sensor for high-resolution and high-speed temperature sensing in ocean environment

    Science.gov (United States)

    Liu, Guigen; Han, Ming; Hou, Weilin; Matt, Silvia; Goode, Wesley

    2015-05-01

    Temperature measurement is one of the key quantifies in ocean research. Temperature variations on small and large scales are key to air-sea interactions and climate change, and also regulate circulation patterns, and heat exchange. The influence from rapid temperature changes within microstructures are can have strong impacts to optical and acoustical sensor performance. In this paper, we present an optical fiber sensor for the high-resolution and high-speed temperature profiling. The developed sensor consists of a thin piece of silicon wafer which forms a Fabry-Pérot interferometer (FPI) on the end of fiber. Due to the unique properties of silicon, such as large thermal diffusivity, notable thermo-optic effects and thermal expansion coefficients of silicon, the proposed sensor exhibits excellent sensitivity and fast response to temperature variation. The small mass of the tiny probe also contributes to a fast response due to the large surface-tovolume ratio. The high reflective index at infrared wavelength range and surface flatness of silicon endow the FPI a spectrum with high visibilities, leading to a superior temperature resolution along with a new data processing method developed by us. Experimental results indicate that the fiber-optic temperature sensor can achieve a temperature resolution better than 0.001°C with a sampling frequency as high as 2 kHz. In addition, the miniature footprint of the senor provide high spatial resolutions. Using this high performance thermometer, excellent characterization of the realtime temperature profile within the flow of water turbulence has been realized.

  9. High-throughput miniaturized bioreactors for cell culture process development: reproducibility, scalability, and control.

    Science.gov (United States)

    Rameez, Shahid; Mostafa, Sigma S; Miller, Christopher; Shukla, Abhinav A

    2014-01-01

    Decreasing the timeframe for cell culture process development has been a key goal toward accelerating biopharmaceutical development. Advanced Microscale Bioreactors (ambr™) is an automated micro-bioreactor system with miniature single-use bioreactors with a 10-15 mL working volume controlled by an automated workstation. This system was compared to conventional bioreactor systems in terms of its performance for the production of a monoclonal antibody in a recombinant Chinese Hamster Ovary cell line. The miniaturized bioreactor system was found to produce cell culture profiles that matched across scales to 3 L, 15 L, and 200 L stirred tank bioreactors. The processes used in this article involve complex feed formulations, perturbations, and strict process control within the design space, which are in-line with processes used for commercial scale manufacturing of biopharmaceuticals. Changes to important process parameters in ambr™ resulted in predictable cell growth, viability and titer changes, which were in good agreement to data from the conventional larger scale bioreactors. ambr™ was found to successfully reproduce variations in temperature, dissolved oxygen (DO), and pH conditions similar to the larger bioreactor systems. Additionally, the miniature bioreactors were found to react well to perturbations in pH and DO through adjustments to the Proportional and Integral control loop. The data presented here demonstrates the utility of the ambr™ system as a high throughput system for cell culture process development. © 2014 American Institute of Chemical Engineers.

  10. Improving the luminance and luminous efficacy of miniature fluorescent lamps for liquid crystal display backlighting by using a double frequency drive

    Science.gov (United States)

    Shiga, T.; Mikoshiba, S.; Curzon, F. L.; Shinada, S.

    1998-09-01

    A new method of driving miniature fluorescent tubes for liquid crystal display backlighting, with diameters as small as 2 mm, has been devised with the objective of improving the luminance and luminous efficacies of such lamps. The driver voltage wave form consists of high frequency oscillations at the leading and trailing edges of conventional square-wave form voltage pulses of relatively low frequency. The wave form is produced simply by inserting coils between low frequency square-wave pulse generators and the lamp electrodes. A lamp driven in this way operates in a different discharge mode from the conventional glow discharge obtained in the absence of the coils. The twofold intensity increase of visible emission from the positive column region indicates that the vacuum ultraviolet emission increases, enhancing the excitation of the phosphor in the lamp. There is evidence that the luminous efficacy is also increased by a factor of 2 as a result of more efficient use of the input energy. The minimum voltage needed to maintain a discharge is reduced.

  11. Powering autonomous sensors with miniaturized piezoelectric based energy harvesting devices operating at very low frequency

    Science.gov (United States)

    Ferin, G.; Bantignies, C.; Le Khanh, H.; Flesch, E.; Nguyen-Dinh, A.

    2015-12-01

    Harvesting energy from ambient mechanical vibrations is a smart and efficient way to power autonomous sensors and support innovative developments in IoT (Internet of Things), WSN (Wireless Sensor Network) and even implantable medical devices. Beyond the environmental operating conditions, efficiency of such devices is mainly related to energy source properties like the amplitude of vibrations and its spectral contain and some of these applications exhibit a quite low frequency spectrum where harvesting surrounding mechanical energy make sense, typically 5-50Hz for implantable medical devices or 50Hz-150Hz for industrial machines. Harvesting such low frequency vibrations is a challenge since it leads to adapt the resonator geometries to the targeted frequency or to use out-off band indirect harvesting strategies. In this paper we present a piezoelectric based vibrational energy harvesting device (PEH) which could be integrated into a biocompatible package to power implantable sensor or therapeutic medical devices. The presented architecture is a serial bimorph laminated with ultra-thinned (ranging from 15μm to 100μm) outer PZT “skins” that could operate at a “very low frequency”, below 25Hz typically. The core process flow is disclosed and performances highlighted with regards to other low frequency demonstrations.

  12. High-frequency Trader Subjectivity

    DEFF Research Database (Denmark)

    Borch, Christian; Lange, Ann-Christina

    2017-01-01

    In this article, we examine the recent shift in financial markets toward high-frequency trading (HFT). This turn is being legitimized with reference to how algorithms are allegedly more rational and efficient than human traders, and less prone to emotionally motivated decisions. We argue......-techniques of the ideal high-frequency trader. We demonstrate that these traders face the challenge of avoiding emotional interference in their algorithms and that they deploy a set of disciplinary self-techniques to curb the importance of emotional attachment....

  13. Low frequency phase signal measurement with high frequency squeezing

    OpenAIRE

    Zhai, Zehui; Gao, Jiangrui

    2011-01-01

    We calculate the utility of high-frequency squeezed-state enhanced two-frequency interferometry for low-frequency phase measurement. To use the high-frequency sidebands of the squeezed light, a two-frequency intense laser is used in the interferometry instead of a single-frequency laser as usual. We find that the readout signal can be contaminated by the high-frequency phase vibration, but this is easy to check and avoid. A proof-of-principle experiment is in the reach of modern quantum optic...

  14. High-Frequency Seafloor Acoustics

    CERN Document Server

    Jackson, Darrell R

    2007-01-01

    High-Frequency Seafloor Acoustics is the first book in a new series sponsored by the Office of Naval Research on the latest research in underwater acoustics. This exciting new title provides ready access to experimental data, theory, and models relevant to high-frequency seafloor acoustics and will be of interest to sonar engineers and researchers working in underwater acoustics. The physical characteristics of the seafloor affecting acoustic propagation and scattering are covered, including physical and geoacoustic properties and surface roughness. Current theories for acoustic propagation in sediments are presented along with corresponding models for reflection, scattering, and seafloor penetration. The main text is backed up by an extensive bibliography and technical appendices.

  15. A transcription-dependent increase in miniature EPSC frequency accompanies late-phase plasticity in cultured hippocampal neurons

    Directory of Open Access Journals (Sweden)

    Hofmann Frank

    2009-09-01

    Full Text Available Abstract Background The magnitude and longevity of synaptic activity-induced changes in synaptic efficacy is quantified by measuring evoked responses whose potentiation requires gene transcription to persist for more than 2-3 hours. While miniature EPSCs (mEPSCs are also increased in amplitude and/or frequency during long-term potentiation (LTP, it is not known how long such changes persist or whether gene transcription is required. Results We use whole-cell patch clamp recordings from dissociated hippocampal cultures to characterise for the first time the persistence and transcription dependency of mEPSC upregulation during synaptic potentiation. The persistence of recurrent action potential bursting in these cultures is transcription-, translation- and NMDA receptor-dependent thus providing an accessible model for long-lasting plasticity. Blockade of GABAA-receptors with bicuculline for 15 minutes induced action potential bursting in all neurons and was maintained in 50-60% of neurons for more than 6 hours. Throughout this period, the frequency but neither the amplitude of mEPSCs nor whole-cell AMPA currents was markedly increased. The transcription blocker actinomycin D abrogated, within 2 hours of burst induction, both action potential bursting and the increase in mEPSCs. Reversible blockade of action potentials during, but not after this 2 hour transcription period suppressed the increase in mEPSC frequency and the recovery of burst activity at a time point 6 hours after induction. Conclusion These results indicate that increased mEPSC frequency persists well beyond the 2 hour transcription-independent phase of plasticity in this model. This long-lasting mEPSC upregulation is transcription-dependent and requires ongoing action potential activity during the initial 2 hour period but not thereafter. Thus mEPSC upregulation may underlie the long term, transcription-dependent persistence of action potential bursting. This provides mechanistic

  16. High Content Imaging (HCI) on Miniaturized Three-Dimensional (3D) Cell Cultures.

    Science.gov (United States)

    Joshi, Pranav; Lee, Moo-Yeal

    2015-12-14

    High content imaging (HCI) is a multiplexed cell staining assay developed for better understanding of complex biological functions and mechanisms of drug action, and it has become an important tool for toxicity and efficacy screening of drug candidates. Conventional HCI assays have been carried out on two-dimensional (2D) cell monolayer cultures, which in turn limit predictability of drug toxicity/efficacy in vivo; thus, there has been an urgent need to perform HCI assays on three-dimensional (3D) cell cultures. Although 3D cell cultures better mimic in vivo microenvironments of human tissues and provide an in-depth understanding of the morphological and functional features of tissues, they are also limited by having relatively low throughput and thus are not amenable to high-throughput screening (HTS). One attempt of making 3D cell culture amenable for HTS is to utilize miniaturized cell culture platforms. This review aims to highlight miniaturized 3D cell culture platforms compatible with current HCI technology.

  17. Self-contained high-authority control for miniature flight systems

    Science.gov (United States)

    Knowles, Gareth J.; Bird, Ross W.; Barrett, Ron

    2004-07-01

    UAV's, UCAV's, miniaturized munitions and smart bombs have a variety of objectives clamoring for easement of weight/volume restrictions. These include anti-jam, explosive, servo control, electronics packaging, GPS and other required functions. The possibility of freeing up valuable real estate in the missile itself is most attractive for such applications. QorTek has developed the first self-contained high authority control surface to replace externally activated steering fins or canards. These flight actuation systems require only external control signal and power. Moreover, the technology easily scales to micro munitions. Because of their unique composite structure, these powerful solid-state devices offer exceptional performance in a durable package suitable for miniature munitions. The purpose of this paper is to discuss new breakthroughs in piezo-actuated technology that minimize vol./weight enabling a self-contained flight control actuation system that eliminates the need for servo controls. The presentation will focus on the new design that enables integration into high angular displacement actuation into a graphite epoxy fabricated RALA flight control actuator that can handle the aerodynamic loading conditions.

  18. Guided-wave high-performance spectrometers for the MEOS miniature earth observation satellite

    Science.gov (United States)

    Kruzelecky, Roman V.; Wong, Brian; Zou, Jing; Jamroz, Wes; Sloan, James; Cloutis, Edward

    2017-11-01

    The MEOS Miniature Earth Observing Satellite is a low-cost mission being developed for the Canadian Space Agency with international collaborations that will innovatively combine remote correlated atmospheric/land-cover measurements with the corresponding atmospheric and ecosystem modelling in near real-time to obtain simultaneous variations in lower tropospheric GHG mixing ratios and the resulting responses of the surface ecosystems. MEOS will provide lower tropospheric CO2, CH4, CO, N2O, H2O and aerosol mixing ratios over natural sources and sinks using two kinds of synergistic observations; a forward limb measurement and a follow-on nadir measurement over the same geographical tangent point. The measurements will be accomplished using separate limb and nadir suites of innovative miniature line-imaging spectrometers and will be spatially coordinated such that the same air mass is observed in both views within a few minutes. The limb data will consist of 16-pixel vertical spectral line imaging to provide 1-km vertical resolution, while the corresponding nadir measurements will view sixteen 5 by 10 km2 ground pixels with a 160-km East-West swath width. To facilitate the mission accommodation on a low-cost microsat with a net payload mass under 22 kg, groundbreaking miniature guided-wave spectrometers with advanced optical filtering and coding technologies will be employed based on MPBC's patented IOSPEC technologies. The data synergy requirements for each view will be innovatively met using two complementary miniature line-imaging spectrometers to provide broad-band measurements from 1200 to 2450 nm at about 1.2 nm/pixel bandwidth using a multislit binary-coded MEMS-IOSPEC and simultaneous high-resolution multiple microchannels at 0.03 nm FWHM using the revolutionary FP-IOSPEC Fabry-Perot guided-wave spectrometer concept. The guided-wave spectrometer integration provides an order of magnitude reduction in the mass and volume relative to traditional bulk

  19. Miniaturized resonant sensors for harsh environments

    Science.gov (United States)

    Schmidtchen, Silja; Richter, Denny; Sauerwald, Jan; Fritze, Holger

    2013-05-01

    Miniaturized active structures for operation temperatures between 500 and 1000 °C are presented. They base on langasite single crystals (La3Ga5SiO14) which exhibit piezoelectrically excited bulk acoustic waves up to at least 1000 °C. Those devices enable new high-temperature sensing approaches. Resonant microbalances are of particular interest since they correlate very small gas composition-dependent mass changes of thin films already deposited onto the resonators with the resonance frequency shift of such devices. Thereby, high-temperature processes as occurring in combustion systems can be monitored in-situ. Miniaturization of those sensor devices improves the sensitivity due to higher operation frequencies. Arrays consisting preferably of miniaturized devices increase the selectivity. Miniaturization of high-temperature devices requires even more stable materials due to the increased effect of e. g. diffusion processes. Further, the resonator design, the arrangement of electrodes and sensor films, the vibration profiles etc. must be reviewed critically in order to take account for their miniaturization. Beside the characterization of the electromechanical properties such as temperature dependent resonance frequency and loss, the specific vibration profiles of devices like membranes of different shape, cantilevers and tuning forks are determined. For this purpose a novel measurement system based on a laser Doppler vibrometer is used to characterize different types of resonant sensor devices in-situ at high temperatures and in different atmospheres. Mapping of the sample surfaces provides the spatial distribution of the mechanical displacement and, thereby, the vibration modes.

  20. High-frequency magnetic components

    CERN Document Server

    Kazimierczuk, Marian K

    2013-01-01

    A unique text on the theory and design fundaments of inductors and transformers, updated with more coverage on the optimization of magnetic devices and many new design examples The first edition is popular among a very broad audience of readers in different areas of engineering and science. This book covers the theory and design techniques of the major types of high-frequency power inductors and transformers for a variety of applications, including switching-mode power supplies (SMPS) and resonant dc-to-ac power inverters and dc-to-dc power converters. It describes eddy-current phenomena (su

  1. High-frequency complex pitch

    DEFF Research Database (Denmark)

    Santurette, Sébastien; Dau, Torsten

    2012-01-01

    Harmonics in a complex tone are typically considered unresolved when they interact with neighboring harmonics in the cochlea and cannot be heard out separately. Recent studies have suggested that the low pitch evoked by unresolved high-frequency harmonics may be coded via temporal fine-structure ......Harmonics in a complex tone are typically considered unresolved when they interact with neighboring harmonics in the cochlea and cannot be heard out separately. Recent studies have suggested that the low pitch evoked by unresolved high-frequency harmonics may be coded via temporal fine......-structure cues. However, these conclusions rely on the assumptions that combination tones were properly masked and that the ability of listeners to hear out individual partials provides an adequate measure of resolvability. Those assumptions were tested by measuring the audibility of combination tones...... and their effects on pitch matches, the effects of relative component phases and of dichotic presentation, and listeners' ability to hear out individual partials. The results confirmed that combination tones affected pitch, but pitch remained salient when they were masked. The lack of dependence of pitch...

  2. High Temperature Radio Frequency Loads

    CERN Document Server

    Federmann, S; Grudiev, A; Montesinos, E; Syratchev, I

    2011-01-01

    In the context of energy saving and recovery requirements the design of reliable and robust RF power loads which permit a high outlet temperature and high pressure of the cooling water is desirable. Cooling water arriving at the outlet withmore than 150 ◦C and high pressure has a higher value than water with 50 ◦C under low pressure. Conventional RF power loads containing dielectric and magnetic materials as well as sensitive ceramic windows usually do not permit going much higher than 90 ◦C. Here we present and discuss several design concepts for "metal only" RF high power loads. One concept is the application of magnetic steel corrugated waveguides near cutoff – this concept could find practical use above several GHz. Another solution are resonant structures made of steel to be installed in large waveguides for frequencies of 500 MHz or lower. Similar resonant structures above 100 MHz taking advantage of the rather high losses of normal steel may also be used in coaxial line geometries with large di...

  3. A 3-D miniaturized high selectivity bandpass filter in LTCC technology

    KAUST Repository

    Arabi, Eyad A.

    2014-01-01

    Transmission zeros are used to improve the roll-off factors of filters but as a consequence, the out-of-band rejection decreases. In this work, an LTCC filter design is presented which employs a series inductor (implemented as a via hole) to improve the out-of-band rejection by introducing a third transmission zero. The filter, designed for GPS band (1.57 GHz), has one of the smallest reported foot prints ((0.063×0.048×0.005)λg) and demonstrates the highest roll off factor (16.7 dB/100 MHz) for this band. With only four LTCC layers, the design is cost effective and thus highly suitable for miniaturized, ultra-thin system-on-package applications. © 2001-2012 IEEE.

  4. Climate change effects on a miniature ocean: the highly diverse, highly impacted Mediterranean Sea.

    Science.gov (United States)

    Lejeusne, Christophe; Chevaldonné, Pierre; Pergent-Martini, Christine; Boudouresque, Charles F; Pérez, Thierry

    2010-04-01

    Little doubt is left that climate change is underway, strongly affecting the Earth's biodiversity. Some of the greatest challenges ahead concern the marine realm, but it is unclear to what extent changes will affect marine ecosystems. The Mediterranean Sea could give us some of the answers. Data recovered from its shores and depths have shown that sea temperatures are steadily increasing, extreme climatic events and related disease outbreaks are becoming more frequent, faunas are shifting, and invasive species are spreading. This miniature ocean can serve as a giant mesocosm of the world's oceans, with various sources of disturbances interacting synergistically and therefore providing an insight into a major unknown: how resilient are marine ecosystems, and how will their current functioning be modified? Copyright 2009 Elsevier Ltd. All rights reserved.

  5. Econometrics of financial high-frequency data

    CERN Document Server

    Hautsch, Nikolaus

    2011-01-01

    This book covers major approaches in high-frequency econometrics. It discusses implementation details, provides insights into properties of high-frequency data as well as institutional settings and presents applications.

  6. Technique for the residual life assessment of high temperature components based on creep-rupture testing on welded miniature specimens

    Energy Technology Data Exchange (ETDEWEB)

    Garzillo, A.; Guardamagna, C.; Moscotti, L.; Ranzani, L. [Ente Nazionale per l`Energia Elettrica, Milan (Italy)

    1995-06-01

    Following the present trend in the development of advanced methodologies for residual life assessment of high temperature components operating in power plants, particularly in non destructive methods, a testing technique has been set up at ENEL-CRAM based on creep-rupture testa in an argon on welded miniature specimens. Five experimental systems for creep-rupture tests in an argon atmosphere have been set up which include high accuracy systems, vacuum chambers and exrwnsometer devices. With the aim of establishing and validating the suitability of the experimental methodology, creep-rupture and interrupted creep testing programmes have been performed on miniature specimens (2 mm diameter and 10 mm gauge lenght). On the basis of experience gathered by various European research laboratories, a miniature specimen construction procedure has been developed using a laser welding technique for joining threaded heads to sample material. Low alloy ferritic steels, such as virgin 2.25CrlMo, 0.5Cr 0.5Mo 0.25V, and IN 738 superalloy miniature specimens have been investigated and the results, compared with those from standard specimens, show a regular trend in deformation vs time. Additional efforts to provide guidelines for material sampling from each plant component will be required in order to reduce uncertainties in residual life prediction.

  7. Bacterial Motility Measured by a Miniature Chamber for High-Pressure Microscopy

    Directory of Open Access Journals (Sweden)

    Seiji Kojima

    2012-07-01

    Full Text Available Hydrostatic pressure is one of the physical stimuli that characterize the environment of living matter. Many microorganisms thrive under high pressure and may even physically or geochemically require this extreme environmental condition. In contrast, application of pressure is detrimental to most life on Earth; especially to living organisms under ambient pressure conditions. To study the mechanism of how living things adapt to high-pressure conditions, it is necessary to monitor directly the organism of interest under various pressure conditions. Here, we report a miniature chamber for high-pressure microscopy. The chamber was equipped with a built-in separator, in which water pressure was properly transduced to that of the sample solution. The apparatus developed could apply pressure up to 150 MPa, and enabled us to acquire bright-field and epifluorescence images at various pressures and temperatures. We demonstrated that the application of pressure acted directly and reversibly on the swimming motility of Escherichia coli cells. The present technique should be applicable to a wide range of dynamic biological processes that depend on applied pressures.

  8. Highly efficient miniaturized coprecipitation screening (MiCoS) for amorphous solid dispersion formulation development.

    Science.gov (United States)

    Hu, Qingyan; Choi, Duk Soon; Chokshi, Hitesh; Shah, Navnit; Sandhu, Harpreet

    2013-06-25

    Microprecipitated bulk powder (MBP) is a novel solid dispersion technology to manufacture amorphous formulations of poorly soluble compounds that cannot be processed by spray drying or melt extrusion. An efficient high-throughput screening method has been developed to aid the selection of polymer type, drug loading and antisolvent to solvent ratio for MBP formulation development. With a 96-well platform, the miniaturized coprecipitation screening (MiCoS) includes mixing of drug and polymer in dimethylacetamide, controlled precipitation to generate MBP, filtration/washing, drying and high throughput characterization. The integrated MiCoS approach has been demonstrated with a model compound, glybenclamide. Based on the solid state stability and kinetic solubility of the MBP, hydroxypropylmethylcellulose acetate succinate polymer with 40% or lower drug loading, and antisolvent (0.01 N HCl) to solvent (dimethylacetamide) ratio of 5:1 or higher were selected to make glybenclamide MBP. MiCoS can be applied to both early and late stage formulation processing. In early stage research programs, the system can be used to enable efficacy, pharmacokinetics or mini-toxicology studies for poorly water soluble molecules using minimal amount of drug substance (2-10mg). In late stage development programs, MiCoS can be used to optimize MBP formulation by expanding the experimental design space to include additional formulation variants. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Highly Sensitive and Miniaturized Fluorescence Detection System with an Autonomous Capillary Fluid Manipulation Chip

    Directory of Open Access Journals (Sweden)

    Ji Fang

    2012-05-01

    Full Text Available This paper presents a novel, highly sensitive and ultra-small fluorescent detection system, including an autonomous capillary fluid manipulation chip. The optical detector integrates a LED light source, all necessary optical components, and a photodiode with preamplifier into one package of about 2 cm × 2 cm × 2 cm. Also, the low-cost and simple pumpless microfluidic device works well in sample preparation and manipulation. This chip consists of capillary stop valves and trigger valves which are fabricated by lithography and then bonded with a polydimethylsiloxane-ethylene oxide polymer polydimethylsiloxane (PEO-PDMS cover. The contact angle of the PEO-PDMS can be adjusted by changing the concentration of the PEO. Hence, the fluidic chip can achieve functionalities such as timing features and basic logical functions. The prototype has been tested by fluorescence dye 5-Carboxyfluorescein (5-FAM dissolved into the solvent DMSO (Dimethyl Sulfoxide. The results prove a remarkable sensitivity at a pico-scale molar, around 1.08 pM. The low-cost and miniaturized optical detection system, with a self-control capillary-driven microfluidic chip developed in this work, can be used as the crucial parts in portable biochemical detection applications and point of care testing.

  10. A Highly Miniaturized, Wireless Inertial Measurement Unit for Characterizing the Dynamics of Pitched Baseballs and Softballs

    Directory of Open Access Journals (Sweden)

    Noel C. Perkins

    2012-08-01

    Full Text Available Baseball and softball pitch types are distinguished by the path and speed of the ball which, in turn, are determined by the angular velocity of the ball and the velocity of the ball center at the instant of release from the pitcher’s hand. While radar guns and video-based motion capture (mocap resolve ball speed, they provide little information about how the angular velocity of the ball and the velocity of the ball center develop and change during the throwing motion. Moreover, mocap requires measurements in a controlled lab environment and by a skilled technician. This study addresses these shortcomings by introducing a highly miniaturized, wireless inertial measurement unit (IMU that is embedded in both baseballs and softballs. The resulting “ball-embedded” sensor resolves ball dynamics right on the field of play. Experimental results from ten pitches, five thrown by one softball pitcher and five by one baseball pitcher, demonstrate that this sensor technology can deduce the magnitude and direction of the ball’s velocity at release to within 4.6% of measurements made using standard mocap. Moreover, the IMU directly measures the angular velocity of the ball, which further enables the analysis of different pitch types.

  11. Hepatic differentiation of human pluripotent stem cells in miniaturized format suitable for high-throughput screen

    Directory of Open Access Journals (Sweden)

    Arnaud Carpentier

    2016-05-01

    Full Text Available The establishment of protocols to differentiate human pluripotent stem cells (hPSCs including embryonic (ESC and induced pluripotent (iPSC stem cells into functional hepatocyte-like cells (HLCs creates new opportunities to study liver metabolism, genetic diseases and infection of hepatotropic viruses (hepatitis B and C viruses in the context of specific genetic background. While supporting efficient differentiation to HLCs, the published protocols are limited in terms of differentiation into fully mature hepatocytes and in a smaller-well format. This limitation handicaps the application of these cells to high-throughput assays. Here we describe a protocol allowing efficient and consistent hepatic differentiation of hPSCs in 384-well plates into functional hepatocyte-like cells, which remain differentiated for more than 3 weeks. This protocol affords the unique opportunity to miniaturize the hPSC-based differentiation technology and facilitates screening for molecules in modulating liver differentiation, metabolism, genetic network, and response to infection or other external stimuli.

  12. High frequency pressure oscillator for microcryocoolers

    NARCIS (Netherlands)

    Vanapalli, Srinivas; ter Brake, Hermanus J.M.; Jansen, Henricus V.; Zhao, Yiping; Holland, Herman J.; Burger, Johannes Faas; Elwenspoek, Michael Curt

    2008-01-01

    Microminiature pulse tube cryocoolers should operate at a frequency of an order higher than the conventional macro ones because the pulse tube cryocooler operating frequency scales inversely with the square of the pulse tube diameter. In this paper, the design and experiments of a high frequency

  13. Highly sensitive miniature fluidic flowmeter based on an FBG heated by Co2+-doped fiber

    NARCIS (Netherlands)

    Liu, Z.; Htein, L.; Cheng, L.K.; Martina, Q.; Jansen, R.; Tam, H.Y.

    2017-01-01

    In this paper, we present a miniature fluidic flow sensor based on a short fiber Bragg grating inscribed in a single mode fiber and heated by Co2+-doped multimode fibers. The proposed flow sensor was employed to measure the flow rates of oil and water, showing good sensitivity of 0.339 nm/(m/s) and

  14. A miniature high voltage plasma interaction flight experiment - Project MINX. [for measuring solar cell array parasitic current drain

    Science.gov (United States)

    Riley, T. J.; Triner, J. E.; Sater, B. L.; Cohen, D.; Somberg, H.

    1974-01-01

    A miniature high-voltage array was fabricated, incorporating the multi-junction edge illuminated (MJC) cell technique. The array consists of 32 2x2.2 cm MJCs, series connected, capable of 1600 V open circuit at 1 AMO and 1.2 mA short circuit. A solid state, high-voltage relay is connected across each 4-cell subgroup of the array. It was built to test plasma current drain on space systems using high voltage as might occur when a high-voltage solar array is operated from low to synchronous orbit.

  15. Integrated and miniaturized endoscopic devices for use during high power infrared fiber laser surgery

    Science.gov (United States)

    Wilson, Christopher Ryan

    The Thulium Fiber Laser (TFL) is currently being studied as a potential alternative to the conventional, solid-state Holmium:YAG laser (Ho:YAG) for the treatment of kidney stones. The TFL is an ideal candidate to replace the Ho:YAG for laser lithotripsy due to a higher absorption coefficient in water of the emitted wavelength, an ability to operate at high pulse rates, and a near single mode, Gaussian spatial beam profile. The higher absorption of the TFL wavelength by water translates to a decrease in ablation threshold by a factor of four. High pulse rate operation allows higher ablation rates than the Ho:YAG, thus decreasing operation time necessary to ablate the urinary stone. The Gaussian spatial beam profile allows the TFL to couple higher laser power into smaller optical fibers than those currently being used for Ho:YAG lithotripsy. This decrease in fiber diameter translates into a potential decrease in the size of ureteroscope working channel, higher saline irrigation rates for improved visibility and safety, and may also extend to a decrease in overall ureteroscope diameter. Furthermore, the improved spatial beam profile reduces the risk of damage to the input end of the fiber. Therefore, the trunk fiber, minus the distal fiber tip, may be preserved and re-used, resulting in significant cost savings. This thesis details rapid TFL lithotripsy at high pulse rates up to 500 Hz, both with and without the aid of a stone retrieval basket, in order to demonstrate the TFL's superior ablation rates over the Ho:YAG. Collateral damage testing of the TFL effect on the ureter wall and Nitinol stone baskets were conducted to ensure patient safety for future clinical use. Proximal fiber end damage testing was conducted to demonstrate fiber preservation, critical for permanent fiber integration. Optical fibers were fitted with fabricated hollow steel tips and integrated with stone retrieval baskets for testing. Ball tipped optical fibers were tested to maintain ablation

  16. High frequency pressure oscillator for microcryocoolers

    OpenAIRE

    Vanapalli, Srinivas; ter Brake, Hermanus J.M.; Jansen, Henricus V.; Zhao, Yiping; Holland, Herman J.; Burger, Johannes Faas; Elwenspoek, Michael Curt

    2008-01-01

    Microminiature pulse tube cryocoolers should operate at a frequency of an order higher than the conventional macro ones because the pulse tube cryocooler operating frequency scales inversely with the square of the pulse tube diameter. In this paper, the design and experiments of a high frequency pressure oscillator is presented with the aim to power a micropulse tube cryocooler operating between 300 and 80 K, delivering a cooling power of 10 mW. Piezoelectric actuators operate efficiently at ...

  17. High frequency pressure oscillator for microcryocoolers

    Science.gov (United States)

    Vanapalli, S.; ter Brake, H. J. M.; Jansen, H. V.; Zhao, Y.; Holland, H. J.; Burger, J. F.; Elwenspoek, M. C.

    2008-04-01

    Microminiature pulse tube cryocoolers should operate at a frequency of an order higher than the conventional macro ones because the pulse tube cryocooler operating frequency scales inversely with the square of the pulse tube diameter. In this paper, the design and experiments of a high frequency pressure oscillator is presented with the aim to power a micropulse tube cryocooler operating between 300 and 80K, delivering a cooling power of 10mW. Piezoelectric actuators operate efficiently at high frequencies and have high power density making them good candidates as drivers for high frequency pressure oscillator. The pressure oscillator described in this work consists of a membrane driven by a piezoelectric actuator. A pressure ratio of about 1.11 was achieved with a filling pressure of 2.5MPa and compression volume of about 22.6mm3 when operating the actuator with a peak-to-peak sinusoidal voltage of 100V at a frequency of 1kHz. The electrical power input was 2.73W. The high pressure ratio and low electrical input power at high frequencies would herald development of microminiature cryocoolers.

  18. Design of a miniaturized high quality power switching converter for space application

    Science.gov (United States)

    Clemans, D. W.; Thibodeaux, R. J.

    Power Distribution System (PDS) requirements for space applications are becoming more demanding. Desired PDS architectures consists of a high voltage (270) dc distribution bus for low power loss with local switching regulators to provide high quality power at the load interface. There are difficult performance requirements that these local switching regulators must meet in terms of size, weight, efficiency, transient response, and wide input voltage range. The design of a hybridized switching regulator is realized with a series resonant half-bridge topology employing a high switching frequency. This paper describes the design, analysis, and fabrication of a breadboard power converter for a local rlegulator scheme in a PDS for space applications.

  19. High Energy Single Frequency Resonant Amplifier Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR phase I project proposes a single frequency high energy resonant amplifier for remote sensing. Current state-of-art technologies can not provide all...

  20. Overview of the Advanced High Frequency Branch

    Science.gov (United States)

    Miranda, Felix A.

    2015-01-01

    This presentation provides an overview of the competencies, selected areas of research and technology development activities, and current external collaborative efforts of the NASA Glenn Research Center's Advanced High Frequency Branch.

  1. A miniature bidirectional RF communication system for micro gastrointestinal robots.

    Science.gov (United States)

    Wang, Wenxing; Yan, Guozheng; Ding, Guoqing

    2003-01-01

    This paper reports a miniature, low power, two-channel, bidirectional wireless communication system that can be used in the first generation of micro gastrointestinal (GI) robots. The system consists of a miniature RF transceiver embedded in the GI robot and a control station outside the body. ISM band radio frequency (approx. 433 MHz) was used to achieve half duplex communication between the GI robot and the control station. The Frequency Shift Keying (FSK) modulation scheme was adopted to ensure a reliable and high-speed digital RF link. Animal tests have been carried out to prove the performance of the communication system.

  2. High frequency conductivity in carbon nanotubes

    Directory of Open Access Journals (Sweden)

    S. S. Abukari

    2012-12-01

    Full Text Available We report on theoretical analysis of high frequency conductivity in carbon nanotubes. Using the kinetic equation with constant relaxation time, an analytical expression for the complex conductivity is obtained. The real part of the complex conductivity is initially negative at zero frequency and become more negative with increasing frequency, until it reaches a resonance minimum at ω ∼ ωB for metallic zigzag CNs and ω < ωB for armchair CNs. This resonance enhancement is indicative for terahertz gain without the formation of current instabilities induced by negative dc conductivity. We noted that due to the high density of states of conduction electrons in metallic zigzag carbon nanotubes and the specific dispersion law inherent in hexagonal crystalline structure result in a uniquely high frequency conductivity than the corresponding values for metallic armchair carbon nanotubes. We suggest that this phenomenon can be used to suppress current instabilities that are normally associated with a negative dc differential conductivity.

  3. Extremely high frequency RF effects on electronics.

    Energy Technology Data Exchange (ETDEWEB)

    Loubriel, Guillermo Manuel; Vigliano, David; Coleman, Phillip Dale; Williams, Jeffery Thomas; Wouters, Gregg A.; Bacon, Larry Donald; Mar, Alan

    2012-01-01

    The objective of this work was to understand the fundamental physics of extremely high frequency RF effects on electronics. To accomplish this objective, we produced models, conducted simulations, and performed measurements to identify the mechanisms of effects as frequency increases into the millimeter-wave regime. Our purpose was to answer the questions, 'What are the tradeoffs between coupling, transmission losses, and device responses as frequency increases?', and, 'How high in frequency do effects on electronic systems continue to occur?' Using full wave electromagnetics codes and a transmission-line/circuit code, we investigated how extremely high-frequency RF propagates on wires and printed circuit board traces. We investigated both field-to-wire coupling and direct illumination of printed circuit boards to determine the significant mechanisms for inducing currents at device terminals. We measured coupling to wires and attenuation along wires for comparison to the simulations, looking at plane-wave coupling as it launches modes onto single and multiconductor structures. We simulated the response of discrete and integrated circuit semiconductor devices to those high-frequency currents and voltages, using SGFramework, the open-source General-purpose Semiconductor Simulator (gss), and Sandia's Charon semiconductor device physics codes. This report documents our findings.

  4. Novel high-frequency air transducers

    Science.gov (United States)

    Schiller, S.; Hsieh, C.-K.; Chou, C.-H.; Khuri-Yakub, B. T.

    The properties of ligneous materials have been evaluated in order to improve the insertion loss and bandwidth of air-based ultrasonic transducers. It is found that cork and balsa wood have the appropriate impedance to match with air, though their attenuation coefficients are prohibitive for high-frequency operation. For multiple matching layer devices, ligneous materials could be made useful in the 1-10 MHz frequency range.

  5. Frequency Estimation Techniques For High Dynamic Trajectories

    Science.gov (United States)

    Vilnrotter, V. A.; Hinedi, S. M.; Kumar, R.

    1989-01-01

    Report presents comparative study of four techniques for estimating frequency of sinusoidal signal received in presence of noise when transmitter and/or receiver experiencing very high dynamics. Four techniques involve approximate-maximum-likelihood estimator, extended Kalman filter, cross-product automatic frequency control loop, and digital phase locked loop, respectively. In numerical simulations, each technique applied to signal from transmitter maneuvering along common trajectory; performance of each examined to determine its useful operating range, and performances compared.

  6. Cobalt Nanoparticle Inks for Printed High Frequency Applications on Polycarbonate

    Science.gov (United States)

    Nelo, Mikko; Myllymäki, Sami; Juuti, Jari; Uusimäki, Antti; Jantunen, Heli

    2015-12-01

    In this work the high frequency properties of low curing temperature cobalt nanoparticle inks printed on polycarbonate substrates were investigated. The inks consisted of 30-70 vol.% metallic cobalt nanoparticles and poly (methylene methacrylate) polymer, having excellent adhesion on polycarbonate and a curing temperature of 110°C. The influence of binder material content on the electromagnetic properties of the ink was investigated using the shorted microstrip transmission-line perturbation method. Changes in mechanical properties were evaluated with adhesion tests using the pull-out strength test and the ASTM D 3359-B cross-hatch tape peel test. The microstructure of the printed patterns was investigated with field emission scanning electron microscopy (FESEM). The inks remained mechanically durable with metal contents up to 60 vol.%, achieving pull-off strength of up to 5.2 MPa and the highest marks in adhesion of the tape peel test. The inks obtained a relative permeability of 1.5-3 in the 45 MHz-10 GHz band with a magnetic loss tangent of 0.01-0.06. The developed inks can be utilized in various printed electronics applications such as antenna miniaturization, antenna substrates and magnetic sensors or sensing.

  7. High frequency and pulse scattering physical acoustics

    CERN Document Server

    Pierce, Allan D

    1992-01-01

    High Frequency and Pulse Scattering investigates high frequency and pulse scattering, with emphasis on the phenomenon of echoes from objects. Geometrical and catastrophe optics methods in scattering are discussed, along with the scattering of sound pulses and the ringing of target resonances. Caustics and associated diffraction catastrophes are also examined.Comprised of two chapters, this volume begins with a detailed account of geometrically based approximation methods in scattering theory, focusing on waves transmitted through fluid and elastic scatterers and glory scattering; surface ray r

  8. An efficient miniature 120 Hz pulse tube cryocooler using high porosity regenerator material

    Science.gov (United States)

    Yu, Huiqin; Wu, Yinong; Ding, Lei; Jiang, Zhenhua; Liu, Shaoshuai

    2017-12-01

    A 1.22 kg coaxial miniature pulse tube cryocooler (MPTC) has been fabricated and tested in our laboratory to provide cooling for cryogenic applications demanding compactness, low mass and rapid cooling rate. The geometrical parameters of regenerator, pulse tube and phase shifter are optimized. The investigation demonstrates that using higher mesh number and thinner wire diameter of stainless steel screen (SSS) can promote the coefficient of performance (COP) when the MPTC operates at 120 Hz. In this study, the 604 mesh SSS with 17 μm diameter of mesh wire is constructed as filler of regenerator. The experimental results show the MPTC operating at 120 Hz achieves a no-load temperature of 53.5 K with 3.8 MPa charging pressure, and gets a cooling power of 2 W at 80 K with 55 W input electric power which has a relative Carnot efficiency of 9.68%.

  9. Miniature capacitive accelerometer is especially applicable to telemetry

    Science.gov (United States)

    Coon, G. W.; Harrison, D. R.

    1966-01-01

    Capacitive accelerometer design enables the construction of highly miniaturized instruments having full-scale ranges from 1 g to several hundred g. This accelerometer is applicable to telemetry and can be tailored to cover any of a large number of acceleration ranges and frequency responses.

  10. Advances in Very High Frequency Power Conversion

    DEFF Research Database (Denmark)

    Kovacevic, Milovan

    . Excellent performance and small size of magnetic components and capacitors at very high frequencies, along with constant advances in performance of power semiconductor devices, suggests a sizable shift in consumer power supplies market into this area in the near future. To operate dc-dc converter power...... devices at very high frequencies, switching loss needs to reduced or eliminated, as it would become prohibitively large. In addition, as the frequency increases, hard-switched gate driving becomes less and less of an option, as it embodies the same loss mechanism. A low-loss gate drive methods may need...... drive solution, which is applicable in cases when there are at least two power stages, and with minimal additional hardware requirements. It is experimentally confirmed that the method is suitable for both parallel and serial input configurations. Compared to state-of-the-art solutions, the proposed...

  11. The LASI high-frequency ellipticity system

    Energy Technology Data Exchange (ETDEWEB)

    Sternberg, B.K.; Poulton, M.M. [Univ. of Arizona, Tucson, AZ (United States)

    1995-10-01

    A high-frequency, high-resolution, electromagnetic (EM) imaging system has been developed for environmental geophysics surveys. Some key features of this system include: (1) rapid surveying to allow dense spatial sampling over a large area, (2) high-accuracy measurements which are used to produce a high-resolution image of the subsurface, (3) measurements which have excellent signal-to-noise ratio over a wide bandwidth (31 kHz to 32 MHz), (4) large-scale physical modeling to produce accurate theoretical responses over targets of interest in environmental geophysics surveys, (5) rapid neural network interpretation at the field site, and (6) visualization of complex structures during the survey.

  12. High-frequency Rayleigh-wave method

    Science.gov (United States)

    Xia, J.; Miller, R.D.; Xu, Y.; Luo, Y.; Chen, C.; Liu, J.; Ivanov, J.; Zeng, C.

    2009-01-01

    High-frequency (???2 Hz) Rayleigh-wave data acquired with a multichannel recording system have been utilized to determine shear (S)-wave velocities in near-surface geophysics since the early 1980s. This overview article discusses the main research results of high-frequency surface-wave techniques achieved by research groups at the Kansas Geological Survey and China University of Geosciences in the last 15 years. The multichannel analysis of surface wave (MASW) method is a non-invasive acoustic approach to estimate near-surface S-wave velocity. The differences between MASW results and direct borehole measurements are approximately 15% or less and random. Studies show that simultaneous inversion with higher modes and the fundamental mode can increase model resolution and an investigation depth. The other important seismic property, quality factor (Q), can also be estimated with the MASW method by inverting attenuation coefficients of Rayleigh waves. An inverted model (S-wave velocity or Q) obtained using a damped least-squares method can be assessed by an optimal damping vector in a vicinity of the inverted model determined by an objective function, which is the trace of a weighted sum of model-resolution and model-covariance matrices. Current developments include modeling high-frequency Rayleigh-waves in near-surface media, which builds a foundation for shallow seismic or Rayleigh-wave inversion in the time-offset domain; imaging dispersive energy with high resolution in the frequency-velocity domain and possibly with data in an arbitrary acquisition geometry, which opens a door for 3D surface-wave techniques; and successfully separating surface-wave modes, which provides a valuable tool to perform S-wave velocity profiling with high-horizontal resolution. ?? China University of Geosciences (Wuhan) and Springer-Verlag GmbH 2009.

  13. High-Order Frequency-Locked Loops

    DEFF Research Database (Denmark)

    Golestan, Saeed; Guerrero, Josep M.; Quintero, Juan Carlos Vasquez

    2017-01-01

    In very recent years, some attempts for designing high-order frequency-locked loops (FLLs) have been made. Nevertheless, the advantages and disadvantages of these structures, particularly in comparison with a standard FLL and high-order phase-locked loops (PLLs), are rather unclear. This lack...... study, and its small-signal modeling, stability analysis, and parameter tuning are presented. Finally, to gain insight about advantages and disadvantages of high-order FLLs, a theoretical and experimental performance comparison between the designed second-order FLL and a standard FLL (first-order FLL...

  14. Frequency dependence of lung volume changes during superimposed high-frequency jet ventilation and high-frequency jet ventilation.

    Science.gov (United States)

    Sütterlin, R; Priori, R; Larsson, A; LoMauro, A; Frykholm, P; Aliverti, A

    2014-01-01

    Superimposed high-frequency jet ventilation (SHFJV) has proved to be safe and effective in clinical practice. However, it is unclear which frequency range optimizes ventilation and gas exchange. The aim of this study was to systematically compare high-frequency jet ventilation (HFJV) with HFJV by assessing chest wall volume variations (ΔEEV(CW)) and gas exchange in relation to variable high frequency. SHFJV or HFJV were used alternatively to ventilate the lungs of 10 anaesthetized pigs (21-25 kg). The low-frequency component was kept at 16 min(-1) in SHFJV. In both modes, high frequencies ranging from 100 to 1000 min(-1) were applied in random order and ventilation was maintained for 5 min in all modalities. Chest wall volume variations were obtained using opto-electronic plethysmography. Airway pressures and arterial blood gases were measured repeatedly. SHFJV increased ΔEEV(CW) compared with HFJV; the difference ranged from 43 to 68 ml. Tidal volume (V(T)) was always >240 ml during SHFJV whereas during HFJV ranged from 92 ml at the ventilation frequency of 100 min(-1) to negligible values at frequencies >300 min(-1). We observed similar patterns for Pa(O₂) and Pa(CO₂). SHFJV provided generally higher, frequency-independent oxygenation (Pa(O₂) at least 32.0 kPa) and CO₂ removal (Pa(CO₂) ∼5.5 kPa), whereas HFJV led to hypoxia and hypercarbia at higher rates (Pa(O₂) 10 kPa at f(HF)>300 min(-1)). In a porcine model, SHFJV was more effective in increasing end-expiratory volume than single-frequency HFJV, but both modes may provide adequate ventilation in the absence of airway obstruction and respiratory disease, except for HFJV at frequencies ≥300 min(-1).

  15. High Temperature, High Frequency Fuel Metering Valve Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Active Signal Technologies and its subcontractor Moog propose to develop a high-frequency actuator driven valve intended to achieve TRL 6 by the end of Phase II....

  16. Miniature pigs.

    Science.gov (United States)

    Van Metre, D C; Angelos, S M

    1999-09-01

    Miniature pigs have become popular pets in North America, and veterinarians of a variety of clinical specialties may be called on for their care. Successful collection of blood from these animals requires familiarity with the location of sites for venipuncture and knowledge of adequate methods of restraint. In this article, restraint and techniques for venipuncture are described, as well as techniques for cerebrospinal fluid collection, semen collection, and vaginal cytologic examination. Interpretation of hematologic, serum biochemical, and urinalysis data are also discussed. Methods for diagnosis of skin diseases, gastrointestinal parasitism, and enteric infectious diseases are included in order to provide the practitioner with the essential knowledge and skills for a variety of clinical pathologic studies of this unique pet.

  17. Miniaturizing RFID for magnamosis.

    Science.gov (United States)

    Jiang, Hao; Chen, Shijie; Kish, Shad; Loh, Lokkee; Zhang, Junmin; Zhang, Xiaorong; Kwiat, Dillon; Harrison, Michael; Roy, Shuvo

    2014-01-01

    Anastomosis is a common surgical procedure using staples or sutures in an open or laparoscopic surgery. A more effective and much less invasive alternative is to apply the mechanical pressure on the tissue over a few days [1]. Since the pressure is produced by the attractive force between two permanent magnets, the procedure is called magnamosis[1]. To ensure the two magnets are perfectly aligned during the surgery, a miniaturized batteryless Radio Frequency IDentification (RFID) tag is developed to wirelessly telemeter the status of a pressure sensitive mechanical switch. Using the multi-layer circular spiral coil design, the diameter of the RFID tag is shrunk to 10, 15, 19 and 27 mm to support the magnamosis for children as well as adults. With the impedance matching network, the operating distance of these four RFID tags are longer than 10 cm in a 20 × 22 cm(2) area, even when the tag's normal direction is 45° off the antenna's normal direction. Measurement results also indicate that there is no noticeable degradation on the operating distance when the tag is immersed in saline or placed next to the rare-earth magnet. The miniaturized RFID tag presented in this paper is able to support the magnamosis and other medical applications that require the miniaturized RFID tag.

  18. High frequency impedances in European XFEL

    Energy Technology Data Exchange (ETDEWEB)

    Dohlus, Martin; Zagorodnov, Igor; Zagorodnova, Olga

    2010-06-15

    The method of the optical approximation is used to estimate the high frequency impedances of different vacuum chamber transitions of the European XFEL beam line. The approximations of the longitudinal impedances are obtained in terms of simple one-dimensional integrals. The transverse impedances are written in analytical closed form. The analytical results are compared with the results obtained by numerical solution of Maxwell's equations. (orig.)

  19. High Frequency Guided Wave Virtual Array SAFT

    Science.gov (United States)

    Roberts, R.; Pardini, A.; Diaz, A.

    2003-03-01

    The principles of the synthetic aperture focusing technique (SAFT) are generalized for application to high frequency plate wave signals. It is shown that a flaw signal received in long-range plate wave propagation can be analyzed as if the signals were measured by an infinite array of transducers in an unbounded medium. It is shown that SAFT-based flaw sizing can be performed with as few as three or less actual measurement positions.

  20. High-Frequency Percussive Ventilation Revisited

    Science.gov (United States)

    2010-01-01

    Landstuhl Regional Medical Center, Germany; and †United States Army Institute of Surgical Research, Fort Sam Houston, Texas. The author does not have...AND ADDRESS(ES) United States Army Institute of Surgical Research, JBSA Fort Sam Houston, TX 8. PERFORMING ORGANIZATION REPORT NUMBER 9...Engl J Med 1981;305:1375–9. 25. Pillow JJ. High-frequency oscillatory ventilation: mecha- nisms of gas exchange and lung mechanics. Crit Care Med

  1. High Frequency Components in Bottlenose Dolphin Echolocation Signals

    National Research Council Canada - National Science Library

    Toland, Ronald

    1998-01-01

    .... To assess the importance of these high frequencies in dolphin echolocation and target identification, experiments were performed in which an acoustic filter, used to suppress the high frequencies...

  2. Parametric nanomechanical amplification at very high frequency.

    Science.gov (United States)

    Karabalin, R B; Feng, X L; Roukes, M L

    2009-09-01

    Parametric resonance and amplification are important in both fundamental physics and technological applications. Here we report very high frequency (VHF) parametric resonators and mechanical-domain amplifiers based on nanoelectromechanical systems (NEMS). Compound mechanical nanostructures patterned by multilayer, top-down nanofabrication are read out by a novel scheme that parametrically modulates longitudinal stress in doubly clamped beam NEMS resonators. Parametric pumping and signal amplification are demonstrated for VHF resonators up to approximately 130 MHz and provide useful enhancement of both resonance signal amplitude and quality factor. We find that Joule heating and reduced thermal conductance in these nanostructures ultimately impose an upper limit to device performance. We develop a theoretical model to account for both the parametric response and nonequilibrium thermal transport in these composite nanostructures. The results closely conform to our experimental observations, elucidate the frequency and threshold-voltage scaling in parametric VHF NEMS resonators and sensors, and establish the ultimate sensitivity limits of this approach.

  3. High frequency image-based flow detection

    Energy Technology Data Exchange (ETDEWEB)

    Chung, R [National Heart and Lung Institute, Royal Brompton Hospital, London SW3 6NP (United Kingdom); Prager, R W [Dept. of Engineering, University of Cambridge, Cambridge CB2 1PZ (United Kingdom); Gee, A H [Dept. of Engineering, University of Cambridge, Cambridge CB2 1PZ (United Kingdom); Treece, G M [Dept. of Engineering, University of Cambridge, Cambridge CB2 1PZ (United Kingdom)

    2004-01-01

    Tumour angiogenesis refers to neovascular development on a microvascular scale and is an early indicator of cancer. Prototype high frequency pulsed Doppler systems using 50 MHz transducers have been reported to detect microvascular flow in vessels 0.02 mm to 0.5 mm in diameter at superficial depths of 0.5 mm. Detecting flow in microvasculature at deeper depths requires lower frequency transducers with a resulting tradeoff in spatial resolution. Using a 22 MHz transducer, we demonstrate a speckle decorrelation technique to detect in vitro flow in soft tubing of 0.5 mm diameter at a depth of 2 cm. This image-based decorrelation technique is capable of detecting flow in significantly narrower diameters down to 0.125 mm by decreasing the region of interest.

  4. Asynchronous BCI control using high-frequency SSVEP

    National Research Council Canada - National Science Library

    Diez, Pablo F; Mut, Vicente A; Avila Perona, Enrique M; Laciar Leber, Eric

    2011-01-01

    ...) and high frequency (> 30 Hz). SSVEP-based Brain-Computer Interfaces (BCI) are principally focused on the low and medium range of frequencies whereas there are only a few projects in the high-frequency range...

  5. High-power femtosecond Raman frequency shifter.

    Science.gov (United States)

    Vicario, Carlo; Shalaby, Mostafa; Konyashchenko, Aleksandr; Losev, Leonid; Hauri, Christoph P

    2016-10-15

    We report on the generation of broadband, high-energy femtosecond pulses centered at 1.28 μm by stimulated Raman scattering in a pressurized hydrogen cell. Stimulated Raman scattering is performed by two chirped and delayed pulses originating from a multi-mJ Ti:sapphire amplifier. The Stokes pulse carries record-high energy of 4.4 mJ and is recompressed down to 66 fs by a reflective grating pair. We characterized the short-wavelength mid-infrared source in view of energy stability, beam profile, and conversion efficiency at repetition rates of 100 and 10 Hz. The demonstrated high-energy frequency shifter will benefit intense THz sources based on highly nonlinear organic crystals.

  6. Cultures of High-frequency Trading

    DEFF Research Database (Denmark)

    Lange, Ann-Christina; Lenglet, Marc; Seyfert, Robert

    2016-01-01

    As part of ongoing work to lay a foundation for social studies of high-frequency trading (HFT), this paper introduces the culture(s) of HFT as a sociological problem relating to knowledge and practice. HFT is often discussed as a purely technological development, where all that matters is the speed...... of allocating, processing and transmitting data. Indeed, the speed at which trades are executed and data transmitted is accelerating, and it is fair to say that algorithms are now the primary interacting agents operating in the financial markets. However, we contend that HFT is first and foremost a cultural...

  7. Miniaturized UHF, S-, and Ka-band RF MEMS Filters for Small Form Factor, High Performance EVA Radio Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In Phase II of this SBIR, Harmonic Devices (HDI) proposes to develop miniaturized MEMS filters at UHF, S-band and Ka-band to address the requirements of NASA's...

  8. Miniaturization in Biocatalysis

    Directory of Open Access Journals (Sweden)

    Pedro Fernandes

    2010-03-01

    Full Text Available The use of biocatalysts for the production of both consumer goods and building blocks for chemical synthesis is consistently gaining relevance. A significant contribution for recent advances towards further implementation of enzymes and whole cells is related to the developments in miniature reactor technology and insights into flow behavior. Due to the high level of parallelization and reduced requirements of chemicals, intensive screening of biocatalysts and process variables has become more feasible and reproducibility of the bioconversion processes has been substantially improved. The present work aims to provide an overview of the applications of miniaturized reactors in bioconversion processes, considering multi-well plates and microfluidic devices, update information on the engineering characterization of the hardware used, and present perspective developments in this area of research.

  9. The miniature accelerator

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    The image that most people have of CERN is of its enormous accelerators and their capacity to accelerate particles to extremely high energies. But thanks to some cutting-edge studies on beam dynamics and radiofrequency technology, along with innovative construction techniques, teams at CERN have now created the first module of a brand-new accelerator, which will be just 2 metres long. The potential uses of this miniature accelerator will include deployment in hospitals for the production of medical isotopes and the treatment of cancer. It’s a real David-and-Goliath story.   Serge Mathot, in charge of the construction of the "mini-RFQ", pictured with the first of the four modules that will make up the miniature accelerator. The miniature accelerator consists of a radiofrequency quadrupole (RFQ), a component found at the start of all proton accelerator chains around the world, from the smallest to the largest. The LHC is designed to produce very high-intensity beams ...

  10. Liquid Marbles Stabilized by Fluorine-Bearing Cyclomatrix Polyphosphazene Particles and Their Application as High-Efficiency Miniature Reactors.

    Science.gov (United States)

    Wei, Wei; Lu, Rongjie; Ye, Weitao; Sun, Jianhua; Zhu, Ye; Luo, Jing; Liu, Xiaoya

    2016-02-23

    Increasing attention has been paid to fabricate multifunctional stabilizers of liquid marbles for expanding their application. Here, a kind of hydrophobic cyclomatrix polyphosphazene particles (PZAF) were facilely prepared using a one-step precipitation polycondensation of hexachlorocyclotriphosphazene and 4,4'-(hexafluoroisopropylidene)diphenol, and their ability to stabilize liquid marbles was first investigated. The Ag nanoparticle-decorated PZAF particles (Ag/PZAF) were then fabricated by an in situ reduction of silver nitrate onto PZAF particles and used to construct catalytic liquid marbles. The results revealed that the reduction of methylene blue (MB) in aqueous solution by sodium borohydride could be highly efficiently catalyzed in the catalytic liquid marbles, even with a large volume. An excellent cycle use performance of the catalytic liquid marbles without losing catalytic efficiency was also present. The high catalytic activity is mainly attributed to the uniform immobilization of Ag nanoparticles onto PZAF particles and the adsorption behavior of PZAF particles toward MB, which may play an effect on allowing high catalytic surface area and effective accelerating the mass transfer of MB to the Ag catalytic active sites, respectively. Therefore, the combination of Ag nanoparticles with PZAF particles has been demonstrated clearly to be a facile and effective strategy to obtain the functional stabilizer for preparing the catalytic liquid marbles as promising miniature reactors used in heterogeneous catalytic reactions.

  11. Performances of miniature microstrip detectors made on oxygen enriched p-type substrates after very high proton irradiation

    CERN Document Server

    Casse, G; Lozano, M; Martí i García, S; Turner, P R

    2004-01-01

    Silicon microstrip detectors with n-type implant read-out strips on FZ p-type bulk (n-in-p) show superior charge collection properties, after heavy irradiation, to the more standard p-strips in n-type silicon (p-in-n). It is also well established that oxygen-enriched n- type silicon substrates show better performance, in terms of degradation of the full depletion voltage after charged hadron irradiation, than the standard FZ silicon used for high energy physics detectors. Silicon microstrip detectors combining both the advantages of oxygenation and of n-strip read-out (n-in-n) have achieved high radiation tolerance to charged hadrons. The manufacturing of n-in-n detectors though requires double-sided processing, resulting in more complicated and expensive devices than standard p-in-n. A cheaper single-sided option, that still combines these advantages, is to use n-in-p devices. P-type FZ wafers have been oxygen-enriched by high temperature diffusion from an oxide layer and succesfully used to process miniatur...

  12. High-frequency behavior of magnetic composites

    Science.gov (United States)

    Lagarkov, Andrey N.; Rozanov, Konstantin N.

    2009-07-01

    The paper reviews recent progress in the field of microwave magnetic properties of composites. The problem under discussion is developing composites with high microwave permeability that are needed in many applications. The theory of magnetic composites is briefly sketched with the attention paid to the laws governing the magnetic frequency dispersion in magnetic materials and basic mixing rules for composites. Recent experimental reports on the microwave performance of magnetic composites, as well as data on the agreement of the mixing rules with the measured permeability of composites that are available from the literature are discussed. From the data, a conclusion is made that the validity of a mixing rule is determined by the permeability contrast in the composite, i.e., the difference between permeability of inclusions and that of the host matrix. When the contrast is low, the Maxwell Garnet mixing rule is frequently valid. When the contrast is high, which is of the most interest for obtaining high microwave permeability of a composite, no conventionally accepted theory is capable of accurately predicting the permeability of the composites. Therefore, the mixing rules do not allow the microwave properties of magnetic composites to be predicted when the permeability of inclusions is high, that is the case of the most interest. Because of that, general limitations to the microwave performance of composites are of importance. In particular, an important relation constraining the microwave permeability of composites follows from Kittel's theory of ferromagnetic resonance and analytical properties of frequency dependence of permeability. Another constraint concerning the bandwidth of electromagnetic wave absorbers follows from the Kramers-Kronig relations for the reflection coefficient. The constraints are of importance in design and analysis of electromagnetic wave absorbers and other devices that employ the microwave magnetic properties of composites, such as

  13. Use of a miniature diamond-anvil cell in high-pressure single-crystal neutron Laue diffraction

    Directory of Open Access Journals (Sweden)

    Jack Binns

    2016-05-01

    Full Text Available The first high-pressure neutron diffraction study in a miniature diamond-anvil cell of a single crystal of size typical for X-ray diffraction is reported. This is made possible by modern Laue diffraction using a large solid-angle image-plate detector. An unexpected finding is that even reflections whose diffracted beams pass through the cell body are reliably observed, albeit with some attenuation. The cell body does limit the range of usable incident angles, but the crystallographic completeness for a high-symmetry unit cell is only slightly less than for a data collection without the cell. Data collections for two sizes of hexamine single crystals, with and without the pressure cell, and at 300 and 150 K, show that sample size and temperature are the most important factors that influence data quality. Despite the smaller crystal size and dominant parasitic scattering from the diamond-anvil cell, the data collected allow a full anisotropic refinement of hexamine with bond lengths and angles that agree with literature data within experimental error. This technique is shown to be suitable for low-symmetry crystals, and in these cases the transmission of diffracted beams through the cell body results in much higher completeness values than are possible with X-rays. The way is now open for joint X-ray and neutron studies on the same sample under identical conditions.

  14. Use of a miniature diamond-anvil cell in high-pressure single-crystal neutron Laue diffraction.

    Science.gov (United States)

    Binns, Jack; Kamenev, Konstantin V; McIntyre, Garry J; Moggach, Stephen A; Parsons, Simon

    2016-05-01

    The first high-pressure neutron diffraction study in a miniature diamond-anvil cell of a single crystal of size typical for X-ray diffraction is reported. This is made possible by modern Laue diffraction using a large solid-angle image-plate detector. An unexpected finding is that even reflections whose diffracted beams pass through the cell body are reliably observed, albeit with some attenuation. The cell body does limit the range of usable incident angles, but the crystallographic completeness for a high-symmetry unit cell is only slightly less than for a data collection without the cell. Data collections for two sizes of hexamine single crystals, with and without the pressure cell, and at 300 and 150 K, show that sample size and temperature are the most important factors that influence data quality. Despite the smaller crystal size and dominant parasitic scattering from the diamond-anvil cell, the data collected allow a full anisotropic refinement of hexamine with bond lengths and angles that agree with literature data within experimental error. This technique is shown to be suitable for low-symmetry crystals, and in these cases the transmission of diffracted beams through the cell body results in much higher completeness values than are possible with X-rays. The way is now open for joint X-ray and neutron studies on the same sample under identical conditions.

  15. Effect of high-frequency excitation on natural frequencies of spinning discs

    DEFF Research Database (Denmark)

    Hansen, Morten Hartvig

    2000-01-01

    The effect of high-frequency, non-resonant parametric excitation on the low-frequency response of spinning discs is considered. The parametric excitation is obtained through a non-constant rotation speed, where the frequency of the pulsating overlay is much higher than the lowest natural frequenc...

  16. A practical strategy for using miniature chromatography columns in a standardized high-throughput workflow for purification development of monoclonal antibodies.

    Science.gov (United States)

    Welsh, John P; Petroff, Matthew G; Rowicki, Patricia; Bao, Haiying; Linden, Thomas; Roush, David J; Pollard, Jennifer M

    2014-01-01

    The emergence of monoclonal antibody (mAb) therapies has created a need for faster and more efficient bioprocess development strategies in order to meet timeline and material demands. In this work, a high-throughput process development (HTPD) strategy implementing several high-throughput chromatography purification techniques is described. Namely, batch incubations are used to scout feasible operating conditions, miniature columns are then used to determine separation of impurities, and, finally, a limited number of lab scale columns are tested to confirm the conditions identified using high-throughput techniques and to provide a path toward large scale processing. This multistep approach builds upon previous HTPD work by combining, in a unique sequential fashion, the flexibility and throughput of batch incubations with the increased separation characteristics for the packed bed format of miniature columns. Additionally, in order to assess the applicability of using miniature columns in this workflow, transport considerations were compared with traditional lab scale columns, and performances were mapped for the two techniques. The high-throughput strategy was utilized to determine optimal operating conditions with two different types of resins for a difficult separation of a mAb monomer from aggregates. Other more detailed prediction models are cited, but the intent of this work was to use high-throughput strategies as a general guide for scaling and assessing operating space rather than as a precise model to exactly predict performance. © 2014 American Institute of Chemical Engineers.

  17. High frequency oscillations and high frequency functional network characteristics in the intraoperative electrocorticogram in epilepsy

    NARCIS (Netherlands)

    Zweiphenning, W. J E M; van 't Klooster, M. A.; van Diessen, E.; van Klink, N. E C; Huiskamp, G. J M; Gebbink, T. A.; Leijten, F. S S; Gosselaar, P. H.; Otte, W. M.; Stam, C. J.; Braun, K. P J; Zijlmans, G. J M

    2016-01-01

    OBJECTIVE: High frequency oscillations (HFOs; > 80 Hz), especially fast ripples (FRs, 250-500 Hz), are novel biomarkers for epileptogenic tissue. The pathophysiology suggests enhanced functional connectivity within FR generating tissue. Our aim was to determine the relation between brain areas

  18. High frequency oscillations and high frequency functional network characteristics in the intraoperative electrocorticogram in epilepsy

    Directory of Open Access Journals (Sweden)

    W.J.E.M. Zweiphenning

    2016-01-01

    Significance: ‘Baseline’ high-frequency network parameters might help intra-operative recognition of epileptogenic tissue without the need for waiting for events. These findings can increase our understanding of the ‘architecture’ of epileptogenic networks and help unravel the pathophysiology of HFOs.

  19. Plant Responses to High Frequency Electromagnetic Fields

    Directory of Open Access Journals (Sweden)

    Alain Vian

    2016-01-01

    Full Text Available High frequency nonionizing electromagnetic fields (HF-EMF that are increasingly present in the environment constitute a genuine environmental stimulus able to evoke specific responses in plants that share many similarities with those observed after a stressful treatment. Plants constitute an outstanding model to study such interactions since their architecture (high surface area to volume ratio optimizes their interaction with the environment. In the present review, after identifying the main exposure devices (transverse and gigahertz electromagnetic cells, wave guide, and mode stirred reverberating chamber and general physics laws that govern EMF interactions with plants, we illustrate some of the observed responses after exposure to HF-EMF at the cellular, molecular, and whole plant scale. Indeed, numerous metabolic activities (reactive oxygen species metabolism, α- and β-amylase, Krebs cycle, pentose phosphate pathway, chlorophyll content, terpene emission, etc. are modified, gene expression altered (calmodulin, calcium-dependent protein kinase, and proteinase inhibitor, and growth reduced (stem elongation and dry weight after low power (i.e., nonthermal HF-EMF exposure. These changes occur not only in the tissues directly exposed but also systemically in distant tissues. While the long-term impact of these metabolic changes remains largely unknown, we propose to consider nonionizing HF-EMF radiation as a noninjurious, genuine environmental factor that readily evokes changes in plant metabolism.

  20. Plant Responses to High Frequency Electromagnetic Fields

    Science.gov (United States)

    Vian, Alain; Davies, Eric; Gendraud, Michel; Bonnet, Pierre

    2016-01-01

    High frequency nonionizing electromagnetic fields (HF-EMF) that are increasingly present in the environment constitute a genuine environmental stimulus able to evoke specific responses in plants that share many similarities with those observed after a stressful treatment. Plants constitute an outstanding model to study such interactions since their architecture (high surface area to volume ratio) optimizes their interaction with the environment. In the present review, after identifying the main exposure devices (transverse and gigahertz electromagnetic cells, wave guide, and mode stirred reverberating chamber) and general physics laws that govern EMF interactions with plants, we illustrate some of the observed responses after exposure to HF-EMF at the cellular, molecular, and whole plant scale. Indeed, numerous metabolic activities (reactive oxygen species metabolism, α- and β-amylase, Krebs cycle, pentose phosphate pathway, chlorophyll content, terpene emission, etc.) are modified, gene expression altered (calmodulin, calcium-dependent protein kinase, and proteinase inhibitor), and growth reduced (stem elongation and dry weight) after low power (i.e., nonthermal) HF-EMF exposure. These changes occur not only in the tissues directly exposed but also systemically in distant tissues. While the long-term impact of these metabolic changes remains largely unknown, we propose to consider nonionizing HF-EMF radiation as a noninjurious, genuine environmental factor that readily evokes changes in plant metabolism. PMID:26981524

  1. High Specific Power Dual-Metal-Ion Rechargeable Microbatteries Based on LiMn2O4 and Zinc for Miniaturized Applications.

    Science.gov (United States)

    Trócoli, Rafael; Morata, Alex; Fehse, Marcus; Stchakovsky, Michel; Sepúlveda, Alfonso; Tarancón, Albert

    2017-09-27

    Miniaturized rechargeable batteries with high specific power are required for substitution of the large sized primary batteries currently prevalent in integrated systems since important implications in dimensions and power are expected in future miniaturized applications. Commercially available secondary microbatteries are based on lithium metal which suffers from several well-known safety and manufacturing issues and low specific power when compared to (super) capacitors. A high specific power and novel dual-metal-ion microbattery based on LiMn2O4, zinc, and an aqueous electrolyte is presented in this work. Specific power densities similar to the ones exhibited by typical electrochemical supercapacitors (3400 W kg-1) while maintaining specific energies in the range of typical Li-ion batteries are measured (∼100 Wh kg-1). Excellent stability with very limited degradation (99.94% capacity retention per cycle) after 300 cycles is also presented. All of these features, together with the intrinsically safe nature of the technology, allow anticipation of this alternative micro power source to have high impact, particularly in the high demand field of newly miniaturized applications.

  2. A miniaturized flexible antenna printed on a high dielectric constant nanopaper composite.

    Science.gov (United States)

    Inui, Tetsuji; Koga, Hirotaka; Nogi, Masaya; Komoda, Natsuki; Suganuma, Katsuaki

    2015-02-01

    A high-dielectric-constant and flexible cellulose nanopaper composite is prepared by mixing a small amount of silver nanowires with cellulose nanofibers. The nanopaper antenna is downsized by about a half when using the nanopaper substrate. The nanopaper antenna has potential in wearable wireless communication devices. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Post-explant visualization of thrombi in outflow grafts and their junction to a continuous-flow total artificial heart using a high-definition miniaturized camera.

    Science.gov (United States)

    Karimov, Jamshid H; Horvath, David; Sunagawa, Gengo; Byram, Nicole; Moazami, Nader; Golding, Leonard A R; Fukamachi, Kiyotaka

    2015-12-01

    Post-explant evaluation of the continuous-flow total artificial heart in preclinical studies can be extremely challenging because of the device's unique architecture. Determining the exact location of tissue regeneration, neointima formation, and thrombus is particularly important. In this report, we describe our first successful experience with visualizing the Cleveland Clinic continuous-flow total artificial heart using a custom-made high-definition miniature camera.

  4. Miniaturization of high spectral spatial resolution hyperspectral imagers on unmanned aerial systems

    Science.gov (United States)

    Hill, Samuel L.; Clemens, Peter

    2015-06-01

    Traditional airborne environmental monitoring has frequently deployed hyperspectral imaging as a leading tool for characterizing and analyzing a scene's critical spectrum-based signatures for applications in agriculture genomics and crop health, vegetation and mineral monitoring, and hazardous material detection. As the acceptance of hyperspectral evaluation grows in the airborne community, there has been a dramatic trend in moving the technology from use on midsize aircraft to Unmanned Aerial Systems (UAS). The use of UAS accomplishes a number of goals including the reduction in cost to run multiple seasonal evaluations over smaller but highly valuable land-areas, the ability to use frequent data collections to make rapid decisions on land management, and the improvement of spatial resolution by flying at lower altitudes (GIS datasets.

  5. A High Power Frequency Doubled Fiber Laser

    Science.gov (United States)

    Thompson, Rob; Tu, Meirong; Aveline, Dave; Lundblad, Nathan; Maleki, Lute

    2003-01-01

    This slide presentation reviews the power frequencies for the doubled fiber laser. It includes information on the 780 nm laser, second harmonic generation in one crystal, cascading crystals, the tenability of laser systems, laser cooling, and directions for future work.

  6. High frequency oscillations and high frequency functional network characteristics in the intraoperative electrocorticogram in epilepsy.

    Science.gov (United States)

    Zweiphenning, W J E M; van 't Klooster, M A; van Diessen, E; van Klink, N E C; Huiskamp, G J M; Gebbink, T A; Leijten, F S S; Gosselaar, P H; Otte, W M; Stam, C J; Braun, K P J; Zijlmans, G J M

    2016-01-01

    High frequency oscillations (HFOs; > 80 Hz), especially fast ripples (FRs, 250-500 Hz), are novel biomarkers for epileptogenic tissue. The pathophysiology suggests enhanced functional connectivity within FR generating tissue. Our aim was to determine the relation between brain areas showing FRs and 'baseline' functional connectivity within EEG networks, especially in the high frequency bands. We marked FRs, ripples (80-250 Hz) and spikes in the electrocorticogram of 14 patients with refractory temporal lobe epilepsy. We assessed 'baseline' functional connectivity in epochs free of epileptiform events within these recordings, using the phase lag index. We computed the Eigenvector Centrality (EC) per channel in the FR and gamma band network. We compared EC between channels that did or did not show events at other moments in time. FR-band EC was higher in channels with than without spikes. Gamma-band EC was lower in channels with ripples and FRs. We confirmed previous findings of functional isolation in the gamma-band and found a first proof of functional integration in the FR-band network of channels covering presumed epileptogenic tissue. 'Baseline' high-frequency network parameters might help intra-operative recognition of epileptogenic tissue without the need for waiting for events. These findings can increase our understanding of the 'architecture' of epileptogenic networks and help unravel the pathophysiology of HFOs.

  7. Scalable polymer-based ferrite composites with matching permeability and permittivity for high-frequency applications

    Science.gov (United States)

    Wang, Yunqi; Edwards, Eleanor; Hooper, Ian; Clow, Nathan; Grant, Patrick S.

    2015-08-01

    Materials with relatively high and equal permeability and permittivity are promising for applications in telecommunications, but so far, few practical candidates have been identified. In this work, functional composites consisting of epoxy resin and Ni0.4Zn0.6Fe2O4 ferrite particles have been fabricated by a scalable and flexible casting route. It has been experimentally demonstrated that at frequencies in the 100 MHz range, the composite with ferrite loading of 53 vol% can achieve broadband impedance matching to free space with a refractive index of approximately 6, giving antenna miniaturization, which has been demonstrated by the casting of the impedance-matched composite into hemispheres suitable for electrically small antennas.

  8. High-frequency nanofluidics: a universal formulation of the fluid dynamics of MEMS and NEMS.

    Science.gov (United States)

    Ekinci, K L; Yakhot, V; Rajauria, S; Colosqui, C; Karabacak, D M

    2010-11-21

    A solid body undergoing oscillatory motion in a fluid generates an oscillating flow. Oscillating flows in Newtonian fluids were first treated by G.G. Stokes in 1851. Since then, this problem has attracted much attention, mostly due to its technological significance. Recent advances in micro- and nanotechnology require that this problem be revisited: miniaturized mechanical resonators with linear dimensions in microns and sub-microns-microelectromechanical systems (MEMS) and nanoelectromechanical systems (NEMS), respectively-give rise to oscillating flows when operated in fluids. Yet flow parameters for these devices, such as the characteristic flow time and length scales, may deviate greatly from those in Stokes' solution. As a result, new and interesting physics emerges with important consequences to device applications. In this review, we shall provide an introduction to this area of fluid dynamics, called high-frequency nanofluidics, with emphasis on both theory and experiments.

  9. Chromatophore activity during natural pattern expression by the squid Sepioteuthis lessoniana: contributions of miniature oscillation.

    Directory of Open Access Journals (Sweden)

    Mamiko Suzuki

    Full Text Available Squid can rapidly change the chromatic patterns on their body. The patterns are created by the expansion and retraction of chromatophores. The chromatophore consists of a central pigment-containing cell surrounded by radial muscles that are controlled by motor neurons located in the central nervous system (CNS. In this study we used semi-intact squid (Sepioteuthis lessoniana displaying centrally controlled natural patterns to analyze spatial and temporal activities of chromatophores located on the dorsal mantle skin. We found that chromatophores oscillated with miniature expansions/retractions at various frequencies, even when the chromatic patterns appear macroscopically stable. The frequencies of this miniature oscillation differed between "feature" and "background" areas of chromatic patterns. Higher frequencies occurred in feature areas, whereas lower frequencies were detected in background areas. We also observed synchronization of the oscillation during chromatic pattern expression. The expansion size of chromatophores oscillating at high frequency correlated with the number of synchronized chromatophores but not the oscillation frequency. Miniature oscillations were not observed in denervated chromatophores. These results suggest that miniature oscillations of chromatophores are driven by motor neuronal activities in the CNS and that frequency and synchrony of this oscillation determine the chromatic pattern and the expansion size, respectively.

  10. Novel Modified Optical Fibers for High Temperature In-Situ Miniaturized Gas Sensors in Advanced Fossil Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Pickrell, Gary [Virginia Polytechnic Institute & State University, Blacksburg, VA (United States); Scott, Brian [Virginia Polytechnic Institute & State University, Blacksburg, VA (United States)

    2014-06-30

    This report covers the technical progress on the program “Novel Modified Optical Fibers for High Temperature In-Situ Miniaturized Gas Sensors in Advanced Fossil Energy Systems”, funded by the National Energy Technology Laboratory of the U.S. Department of Energy, and performed by the Materials Science & Engineering and Electrical & Computer Engineering Departments at Virginia Tech, and summarizes technical progress from July 1st, 2005 –June 30th, 2014. The objective of this program was to develop novel fiber materials for high temperature gas sensors based on evanescent wave absorption in optical fibers. This project focused on two primary areas: the study of a sapphire photonic crystal fiber (SPCF) for operation at high temperature and long wavelengths, and a porous glass based fiber optic sensor for gas detection. The sapphire component of the project focused on the development of a sapphire photonic crystal fiber, modeling of the new structures, fabrication of the optimal structure, development of a long wavelength interrogation system, testing of the optical properties, and gas and temperature testing of the final sensor. The fabrication of the 6 rod SPCF gap bundle (diameter of 70μm) with a hollow core was successfully constructed with lead-in and lead-out 50μm diameter fiber along with transmission and gas detection testing. Testing of the sapphire photonic crystal fiber sensor capabilities with the developed long wavelength optical system showed the ability to detect CO2 at or below 1000ppm at temperatures up to 1000°C. Work on the porous glass sensor focused on the development of a porous clad solid core optical fiber, a hollow core waveguide, gas detection capabilities at room and high temperature, simultaneous gas species detection, suitable joining technologies for the lead-in and lead-out fibers and the porous sensor, sensor system sensitivity improvement, signal processing improvement, relationship between pore structure and fiber

  11. Magneto-dielectric properties of doped ferrite based nanosized ceramics over very high frequency range

    Directory of Open Access Journals (Sweden)

    Ashish Saini

    2016-06-01

    Full Text Available In the present study, indium doped nano sized nickel zinc cobalt based ferrite ceramics with composition Ni0.5Zn0.3Co0.2InxFe2-xO4 (x = 0.2 and 0.4 were synthesized by a co-precipitation technique. Powdered sample has been pre-sintered at 800 °C, pressed into toroids and finally sintered at 1000 °C. The single phase formation of the presintered powder has been confirmed by X ray diffraction (XRD. The average particle size of the presintered powder has been estimated by field emission scanning electron microscope (FESEM and found to be about ~60 nm for x = 0.2 and ~80 nm at x = 0.4. The electromagnetic characterization has been made using vector network analyzer. High value of permeability (17.3 and 15.2 for x = 0.2 and 0.4 respectively with low magnetic loss tangent of 10−1 order were obtained. Permittivity of 8.2 and 10, and dielectric loss tangent of the order of 10−2 were also achieved. With the measured electromagnetic parameters, miniaturization factor of 12.32 and normalized characteristic impedance close to unity (1.23 were obtained up to 100 MHz frequency. These fascinating parameters definitely propose Ni0.5Zn0.3Co0.2In0.4Fe1.6O4 ceramics as a substrate material for miniaturized antenna in very high frequency band. Possible reasons and mechanisms of electromagnetic properties for different concentrations of indium are discussed in the paper.

  12. Calculation of Leakage Inductance for High Frequency Transformers

    DEFF Research Database (Denmark)

    Ouyang, Ziwei; Jun, Zhang; Hurley, William Gerard

    2015-01-01

    Frequency dependent leakage inductance is often observed. High frequency eddy current effects cause a reduction in leakage inductance. The proximity effect between adjacent layers is responsible for the reduction of leakage inductance. This paper gives a detailed analysis of high frequency leakage...

  13. Development of a Flow Injection Based High Frequency Dual Channel Quartz Crystal Microbalance

    Directory of Open Access Journals (Sweden)

    Jinxing Liang

    2017-05-01

    Full Text Available When the quartz crystal microbalance (QCM is used in liquid for adsorption or desorption monitoring based bio- or chemical sensing applications, the frequency shift is not only determined by the surface mass change, but also by the change of liquid characteristics, such as density and viscosity, which are greatly affected by the liquid environmental temperature. A monolithic dual-channel QCM is designed and fabricated by arranging two QCM resonators on one single chip for cancelling the fluctuation induced by environmental factors. In actual applications, one QCM works as a specific sensor by modifying with functional membranes and the other acts as a reference, only measuring the liquid property. The dual-channel QCM is designed with an inverted-mesa structure, aiming to realize a high frequency miniaturized chip and suppress the frequency interference between the neighbored QCM resonators. The key problem of dual-channel QCMs is the interference between two channels, which is influenced by the distance of adjacent resonators. The diameter of the reference electrode has been designed into several values in order to find the optimal parameter. Experimental results demonstrated that the two QCMs could vibrate individually and the output frequency stability and drift can be greatly improved with the aid of the reference QCM.

  14. An inkjet vision measurement technique for high-frequency jetting

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Kye-Si, E-mail: kskwon@sch.ac.kr; Jang, Min-Hyuck; Park, Ha Yeong [Department of Mechanical Engineering, Soonchunhyang University 22, Soonchunhyang-Ro, Shinchang, Asan Chungnam 336-745 (Korea, Republic of); Ko, Hyun-Seok [Department of Electrical and Robot Engineering, Soonchunhyang University, 22, Soonchunhyang-Ro, Shinchang, Asan Chungnam 336-745 (Korea, Republic of)

    2014-06-15

    Inkjet technology has been used as manufacturing a tool for printed electronics. To increase the productivity, the jetting frequency needs to be increased. When using high-frequency jetting, the printed pattern quality could be non-uniform since the jetting performance characteristics including the jetting speed and droplet volume could vary significantly with increases in jet frequency. Therefore, high-frequency jetting behavior must be evaluated properly for improvement. However, it is difficult to measure high-frequency jetting behavior using previous vision analysis methods, because subsequent droplets are close or even merged. In this paper, we present vision measurement techniques to evaluate the drop formation of high-frequency jetting. The proposed method is based on tracking target droplets such that subsequent droplets can be excluded in the image analysis by focusing on the target droplet. Finally, a frequency sweeping method for jetting speed and droplet volume is presented to understand the overall jetting frequency effects on jetting performance.

  15. Evolution of Very High Frequency Power Supplies

    DEFF Research Database (Denmark)

    Knott, Arnold; Andersen, Toke Meyer; Kamby, Peter

    2013-01-01

    The ongoing demand for smaller and lighter power supplies is driving the motivation to increase the switching frequencies of power converters. Drastic increases however come along with new challenges, namely the increase of switching losses in all components. The application of power circuits use...

  16. High-frequency analog integrated circuit design

    CERN Document Server

    1995-01-01

    To learn more about designing analog integrated circuits (ICs) at microwave frequencies using GaAs materials, turn to this text and reference. It addresses GaAs MESFET-based IC processing. Describes the newfound ability to apply silicon analog design techniques to reliable GaAs materials and devices which, until now, was only available through technical papers scattered throughout hundred of articles in dozens of professional journals.

  17. Miniaturized Analytical Platforms From Nanoparticle Components: Studies in the Construction, Characterization, and High-Throughput Usage of These Novel Architectures

    Energy Technology Data Exchange (ETDEWEB)

    Pris, Andrew David [Iowa State Univ., Ames, IA (United States)

    2003-01-01

    The scientific community has recently experienced an overall effort to reduce the physical size of many experimental components to the nanometer size range. This size is unique as the characteristics of this regime involve aspects of pure physics, biology, and chemistry. One extensively studied example of a nanometer sized experimental component, which acts as a junction between these three principle scientific theologies, is deoxyribonucleic acid (DNA) or ribonucleic acid (RNA). These biopolymers not only contain the biological genetic guide to code for the production of life-sustaining materials, but are also being probed by physicists as a means to create electrical circuits and furthermore as controllable architectural and sensor motifs in the chemical disciplines. Possibly the most common nano-sized component between these sciences are nanoparticles composed of a variety of materials. The cross discipline employment of nanoparticles is evident from the vast amount of literature that has been produced from each of the individual communities within the last decade. Along these cross-discipline lines, this dissertation examines the use of several different types of nanoparticles with a wide array of surface chemistries to understand their adsorption properties and to construct unique miniaturized analytical and immunoassay platforms. This introduction will act as a literature review to provide key information regarding the synthesis and surface chemistries of several types of nanoparticles. This material will set the stage for a discussion of assembling ordered arrays of nanoparticles into functional platforms, architectures, and sensors. The introduction will also include a short explanation of the atomic force microscope that is used throughout the thesis to characterize the nanoparticle-based structures. Following the Introduction, four research chapters are presented as separate manuscripts. Chapter 1 examines the self-assembly of polymeric nanoparticles

  18. Miniature EVA Software Defined Radio

    Science.gov (United States)

    Pozhidaev, Aleksey

    2012-01-01

    As NASA embarks upon developing the Next-Generation Extra Vehicular Activity (EVA) Radio for deep space exploration, the demands on EVA battery life will substantially increase. The number of modes and frequency bands required will continue to grow in order to enable efficient and complex multi-mode operations including communications, navigation, and tracking applications. Whether conducting astronaut excursions, communicating to soldiers, or first responders responding to emergency hazards, NASA has developed an innovative, affordable, miniaturized, power-efficient software defined radio that offers unprecedented power-efficient flexibility. This lightweight, programmable, S-band, multi-service, frequency- agile EVA software defined radio (SDR) supports data, telemetry, voice, and both standard and high-definition video. Features include a modular design, an easily scalable architecture, and the EVA SDR allows for both stationary and mobile battery powered handheld operations. Currently, the radio is equipped with an S-band RF section. However, its scalable architecture can accommodate multiple RF sections simultaneously to cover multiple frequency bands. The EVA SDR also supports multiple network protocols. It currently implements a Hybrid Mesh Network based on the 802.11s open standard protocol. The radio targets RF channel data rates up to 20 Mbps and can be equipped with a real-time operating system (RTOS) that can be switched off for power-aware applications. The EVA SDR's modular design permits implementation of the same hardware at all Network Nodes concept. This approach assures the portability of the same software into any radio in the system. It also brings several benefits to the entire system including reducing system maintenance, system complexity, and development cost.

  19. Implementation of Low Frequency Ac to High Frequency Ac with Single Stage Zvs-Pwm Inverter

    OpenAIRE

    S. Arumugam S. Ramareddy M. Sridhar

    2011-01-01

    This paper presents a novel soft-switching pulse width modulation (PWM) utility frequency AC to high frequency (HF) AC power conversion circuit incorporating boost-active clamp single stage inverter topology. This power converter is more suitable and acceptable for cost effective HF consumer induction heating applications. Its operating principle is presented. The operating performances of this high frequency inverter using the latest insulated gate bipolar transistors are illustrated, which ...

  20. Computational imaging for miniature cameras

    Science.gov (United States)

    Salahieh, Basel

    Miniature cameras play a key role in numerous imaging applications ranging from endoscopy and metrology inspection devices to smartphones and head-mount acquisition systems. However, due to the physical constraints, the imaging conditions, and the low quality of small optics, their imaging capabilities are limited in terms of the delivered resolution, the acquired depth of field, and the captured dynamic range. Computational imaging jointly addresses the imaging system and the reconstructing algorithms to bypass the traditional limits of optical systems and deliver better restorations for various applications. The scene is encoded into a set of efficient measurements which could then be computationally decoded to output a richer estimate of the scene as compared with the raw images captured by conventional imagers. In this dissertation, three task-based computational imaging techniques are developed to make low-quality miniature cameras capable of delivering realistic high-resolution reconstructions, providing full-focus imaging, and acquiring depth information for high dynamic range objects. For the superresolution task, a non-regularized direct superresolution algorithm is developed to achieve realistic restorations without being penalized by improper assumptions (e.g., optimizers, priors, and regularizers) made in the inverse problem. An adaptive frequency-based filtering scheme is introduced to upper bound the reconstruction errors while still producing more fine details as compared with previous methods under realistic imaging conditions. For the full-focus imaging task, a computational depth-based deconvolution technique is proposed to bring a scene captured by an ordinary fixed-focus camera to a full-focus based on a depth-variant point spread function prior. The ringing artifacts are suppressed on three levels: block tiling to eliminate boundary artifacts, adaptive reference maps to reduce ringing initiated by sharp edges, and block-wise deconvolution or

  1. High-frequency homogenization of zero frequency stop band photonic and phononic crystals

    CERN Document Server

    Antonakakis, Tryfon; Guenneau, Sebastien

    2013-01-01

    We present an accurate methodology for representing the physics of waves, for periodic structures, through effective properties for a replacement bulk medium: This is valid even for media with zero frequency stop-bands and where high frequency phenomena dominate. Since the work of Lord Rayleigh in 1892, low frequency (or quasi-static) behaviour has been neatly encapsulated in effective anisotropic media. However such classical homogenization theories break down in the high-frequency or stop band regime. Higher frequency phenomena are of significant importance in photonics (transverse magnetic waves propagating in infinite conducting parallel fibers), phononics (anti-plane shear waves propagating in isotropic elastic materials with inclusions), and platonics (flexural waves propagating in thin-elastic plates with holes). Fortunately, the recently proposed high-frequency homogenization (HFH) theory is only constrained by the knowledge of standing waves in order to asymptotically reconstruct dispersion curves an...

  2. High-Speed Low-Jitter Frequency Multiplication in CMOS

    NARCIS (Netherlands)

    van de Beek, R.C.H.

    2004-01-01

    This thesis deals with high-speed Clock and Frequency Multiplication. The term `high-speedù applies to both the output and the reference frequency of the multiplier. Much emphasis is placed on analysis and optimization of the total timing inaccuracies, and on implementing a high-speed feedback

  3. Optical Transmitter Terminal for Selective RF High Frequency Bans Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the proposal work is to investigate the highly innovative conceptual design of an optical communication selective frequency transmitter terminal...

  4. On the synthesis of multiple frequency tone burst stimuli for efficient high frequency auditory brainstem response.

    Science.gov (United States)

    Ellingson, Roger M; Dille, Marilyn L; Leek, Marjorie R; Fausti, Stephen A

    2008-01-01

    The development and digital waveform synthesis of a multiple-frequency tone-burst (MFTB) stimulus is presented. The stimulus is designed to improve the efficiency of monitoring high-frequency auditory-brainstem-response (ABR) hearing thresholds. The pure-tone-based, fractional-octave-bandwidth MFTB supports frequency selective ABR audiometry with a bandwidth that falls between the conventional click and single-frequency tone-burst stimuli. The MFTB is being used to identify high frequency hearing threshold change due to ototoxic medication which most generally starts at the ultra-highest hearing frequencies and progresses downwards but could be useful in general limited-bandwidth testing applications. Included is a Mathcad implementation and analysis of our MFTB synthesis technique and sample performance measurements of the MFTB stimulus configuration used in a clinical research ABR system.

  5. Oscillations of the Boundary Layer and High-frequency QPOs

    Directory of Open Access Journals (Sweden)

    Blinova A. A.

    2014-01-01

    Full Text Available We observed persistent high-frequency oscillations of the boundary layer near an accreting, weakly-magnetized star in global 3D MHD simulations. The tilted dipole magnetic field is not strong enough to open a gap between the star and the disk. Instead, it forms a highly-wrapped azimuthal field near the surface of the star which slows down rotation of the disk matter, while a small tilt of the field excites oscillations of the boundary layer with a frequency below the Keplerian frequency. This mechanism may be responsible for the high-frequency oscillations in accreting neutron stars, white dwarfs and classical T Tauri stars.

  6. A miniature turbocompressor system

    Energy Technology Data Exchange (ETDEWEB)

    Zwyssig, C.; Kraehenbuehl, D.; Kolar, J. W. [Swiss Federal Institute of Technology, Power Electronic Systems Laboratory, Zuerich (Switzerland); Weser, H. [High Speed Turbomaschinen GmbH, Wolfsburg (Germany)

    2008-07-01

    The trend in compressors for fuel cells, heat pumps, aerospace and automotive air pressurization, heating, ventilation and air conditioning systems, is towards ultra-compact size and high efficiency. This can be achieved by increasing the rotational speed and employing new electrical drive system technology and materials. This paper presents a miniature, electrically driven turbocompressor system running at a speed of 500,000 rpm. The design includes the thermodynamics, the electric motor, the inverter, the control and the system integration with rotor dynamics and thermal considerations. In the experimental setup, the specified pressure ratio of 1.6 is achieved at a speed of 550,000 rpm, which is slightly higher than the design speed. (author)

  7. High frequency plant regeneration from desiccated calli of indica rice

    African Journals Online (AJOL)

    An efficient and reproducible protocol is required to achieve high frequency transformation from transformed calli. We report here high frequency plant regeneration from mature seed derived embryogenic calli of two recalcitrant indica rice cultivars HKR-46 and HKR-126 after partial desiccation treatment. Embryogenic and ...

  8. Micromachined high frequency PMN-PT/epoxy 1-3 composite ultrasonic annular array.

    Science.gov (United States)

    Liu, Changgeng; Djuth, Frank; Li, Xiang; Chen, Ruimin; Zhou, Qifa; Shung, K Kirk

    2012-04-01

    This paper reports the design, fabrication, and performance of miniature micromachined high frequency PMN-PT/epoxy 1-3 composite ultrasonic annular arrays. The PMN-PT single crystal 1-3 composites were made with micromachining techniques. The area of a single crystal pillar was 9×9 μm. The width of the kerf among pillars was ∼5 μm and the kerfs were filled with a polymer. The composite thickness was 25 μm. A six-element annular transducer of equal element area of 0.2 mm(2) with 16 μm kerf widths between annuli was produced. The aperture size the array transducer is about 1.5 mm in diameter. A novel electrical interconnection strategy for high density array elements was implemented. After the transducer was attached to the electric connection board and packaged, the array transducer was tested in a pulse/echo arrangement, whereby the center frequency, bandwidth, two-way insertion loss (IL), and cross talk between adjacent elements were measured for each annulus. The center frequency was 50 MHz and -6 dB bandwidth was 90%. The average insertion loss was 19.5 dB at 50 MHz and the crosstalk between adjacent elements was about -35 dB. The micromachining techniques described in this paper are promising for the fabrication of other types of high frequency transducers, e.g. 1D and 2D arrays. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Effective properties of mechanical systems under high-frequency excitation at multiple frequencies

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    2008-01-01

    Effects of strong high-frequency excitation at multiple frequencies (multi-HFE) are analyzed for a class of generally nonlinear systems. The effects are illustrated for a simple pendulum system with a vibrating support, and for a parametrically excited flexible beam. For the latter, theoretical...

  10. Computing effective properties of nonlinear structures exposed to strong high-frequency loading at multiple frequencies

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    2006-01-01

    Effects of strong high-frequency excitation at multiple frequencies (multi-HFE) are analyzed for a class of generally nonlinear systems. The effects are illustrated for a simple pendulum system with a vibrating support, and for a parametrically excited flexible beam. For the latter, theoretical...

  11. Development of high frequency focused transducers for single beam acoustic tweezers

    Science.gov (United States)

    Hsu, Hsiu-Sheng

    Contactless particle trapping and manipulation have found many potential applications in diverse fields, especially in biological and medical research. Among the various methods, optical tweezers is the most well-known and extensively investigated technique. However, there are some limitations for particle manipulation based on optical tweezers. Due to the conceptual similarity with the optical tweezers and recent advances in high frequency ultrasonic transducer, a single beam acoustic tweezer using high frequency (≥ 20 MHz) focused transducer has recently been considered, and its feasibility was theoretically and experimentally investigated. This dissertation mainly describes the development of high frequency focused ultrasonic transducers for single beam acoustic tweezers applications. Three different types of transducers were fabricated. First, a 60 MHz miniature focused transducer (rabbit eye was also obtained with this device. Second approach is to build a 200 MHz self-focused ZnO transducer by sputtering ZnO film on a curved surface of the aluminum backing material. An individual 10 microm microsphere was effectively manipulated in two dimensions by this type of transducer. Another ultrahigh frequency focused transducer based on silicon lens design has also been developed, where a 330 MHz silicon lens transducer was fabricated and evaluated. Microparticle trapping experiment was carried out to demonstrate that silicon lens transducer can manipulate a single microsphere as small as 5 microm. The realization of single beam acoustic tweezers using high frequency focused transducers can offer wide range of applications in biomedical and chemical sciences including intercellular kinetics studies and cell stimulation. Additionally, we propose a simple and efficient approach to prepare xPMN-PT-(1-x)PZT (where x is 0.1, 0.3, 0.5, 0.7 and 0.9) composite films with controllable dielectric constant that offers better performance for high frequency ultrasonic

  12. FREQUENCY DETERMINATION OF HIGH-FREQUENCY LINK FOR PERCPECTIVE ELECTRIC ROLLING STOCK

    Directory of Open Access Journals (Sweden)

    D. O. Zabarylo

    2014-12-01

    Full Text Available Purpose. Total mileage of Ukrainian electric railways is distributed approximately equally between the areas of direct and alternating current. A double system of electric rolling stock is used to pass jointing places of different current kinds without train’s stop. Therefore introduction of such rolling stock of a new concept that is using an asynchronous traction drive is prospective for Ukrainian railways. Apart from advantages a rolling stock of similar concept has significant disadvantages, it is pulse energy consumption from the power supply, and it can affect the reliability of track automatic devices, and consequently, the train traffic safety. In addition the specific power of traction transformer is considerably inferior to the power density of other traction elements. The promising schemes using an intermediary link of increased frequency, which consist of a transformer and inverter, have been proposed for disadvantages amendments. The main task for the further introduction of prospective circuit is to determine the operating frequency for high frequency link. Methodology. The method of thermal parameters calculation of semiconductor devices has been used for determination switching transistors of maximum operating frequency. To obtain analytical expressions curves of energy, released during the IGBT (insulated-gate bipolar transistor switching from its current load approximation method is used. Findings. The permissible frequency of low-frequency link is determinated by load current of intermediate transformer. Operating frequency range of a link depending on load current has been determined. A comparative analysis of the switching characteristics of 65 class IGBT production by companies Infineon and ABB has been performed. Originality. The further determination method of the maximum operating frequency of intermediate link for circuit with high-frequency transformer has been developed. Practical value. The established operating

  13. Modelling and measurement of high switching frequency conducted EMI

    CSIR Research Space (South Africa)

    Grobler, Inus

    2013-11-01

    Full Text Available High density high switching frequency power converter conducted EMC had been analysed, modelling the noise source and noise path, while providing accurate conducted EMC noise levels comparable to accredited noise measurements up to 100 MHz...

  14. Miniaturized Airborne Imaging Central Server System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation is a miniaturized airborne imaging central server system (MAICSS). MAICSS is designed as a high-performance computer-based electronic backend that...

  15. Miniaturized Airborne Imaging Central Server System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation is a miniaturized airborne imaging central server system (MAICSS). MAICSS is designed as a high-performance-computer-based electronic backend that...

  16. Condenser Microphone Protective Grid Correction for High Frequency Measurements

    Science.gov (United States)

    Lee, Erik; Bennett, Reginald

    2010-01-01

    Use of a protective grid on small diameter microphones can prolong the lifetime of the unit, but the high frequency effects can complicate data interpretation. Analytical methods have been developed to correct for the grid effect at high frequencies. Specifically, the analysis pertains to quantifying the microphone protective grid response characteristics in the acoustic near field of a rocket plume noise source. A frequency response function computation using two microphones will be explained. Experimental and instrumentation setup details will be provided. The resulting frequency response function for a B&K 4944 condenser microphone protective grid will be presented, along with associated uncertainties

  17. A MEMS-based high frequency x-ray chopper

    Energy Technology Data Exchange (ETDEWEB)

    Siria, A; Schwartz, W; Chevrier, J [Institut Neel, CNRS-Universite Joseph Fourier Grenoble, BP 166, F-38042 Grenoble Cedex 9 (France); Dhez, O; Comin, F [ESRF, 6 rue Jules Horowitz, F-38043 Grenoble Cedex 9 (France); Torricelli, G [Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom)

    2009-04-29

    Time-resolved x-ray experiments require intensity modulation at high frequencies (advanced rotating choppers have nowadays reached the kHz range). We here demonstrate that a silicon microlever oscillating at 13 kHz with nanometric amplitude can be used as a high frequency x-ray chopper. We claim that using micro-and nanoelectromechanical systems (MEMS and NEMS), it will be possible to achieve higher frequencies in excess of hundreds of megahertz. Working at such a frequency can open a wealth of possibilities in chemistry, biology and physics time-resolved experiments.

  18. A MEMS-based high frequency x-ray chopper.

    Science.gov (United States)

    Siria, A; Dhez, O; Schwartz, W; Torricelli, G; Comin, F; Chevrier, J

    2009-04-29

    Time-resolved x-ray experiments require intensity modulation at high frequencies (advanced rotating choppers have nowadays reached the kHz range). We here demonstrate that a silicon microlever oscillating at 13 kHz with nanometric amplitude can be used as a high frequency x-ray chopper. We claim that using micro-and nanoelectromechanical systems (MEMS and NEMS), it will be possible to achieve higher frequencies in excess of hundreds of megahertz. Working at such a frequency can open a wealth of possibilities in chemistry, biology and physics time-resolved experiments.

  19. Advanced Extremely High Frequency Satellite (AEHF)

    Science.gov (United States)

    2015-12-01

    resistant communications for high priority military ground, sea, and air assets. The system consists of four satellites in Geosynchronous Earth Orbit that...submarine terminals, and airborne terminals. The mission control segment controls satellites on orbit , monitors satellite health, and provides...Schriever Air Force Base (AFB). Due to the proprietary nature of the AEHF Space Satellite (on- orbit ) Segment, this segment is not considered core and the

  20. Extended high frequency audiometry in users of personal listening devices.

    Science.gov (United States)

    Kumar, Poornima; Upadhyay, Prabhakar; Kumar, Ashok; Kumar, Sunil; Singh, Gautam Bir

    Noise exposure leads to high frequency hearing loss. Use of Personal Listening Devices may lead to decline in high frequency hearing sensitivity because of prolonged exposure to these devices at high volume. This study explores the changes in hearing thresholds by Extended High Frequency audiometry in users of personal listening devices. A descriptive, hospital based observational study was performed with total 100 subjects in age group of 15-30years. Subjects were divided in two groups consisting of 30 subjects (Group A) with no history of Personal Listening Devices use and (Group B) having 70 subjects with history of use of Personal Listening Devices. Conventional pure tone audiometry with extended high frequency audiometry was performed in all the subjects. Significant differences in hearing thresholds of Personal Listening Device users were seen at high frequencies (3kHz, 4kHz and 6kHz) and extended high frequencies (9kHz, 10kHz, 11kHz, 13kHz, 14kHz, 15kHz and 16kHz) with p value 5years usage at high volume. Thus, it can be reasonably concluded that extended high frequencies can be used for early detection of NIHL in PLD users. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. The contribution of high frequencies to human brain activity underlying horizontal localization of natural spatial sounds

    Directory of Open Access Journals (Sweden)

    Alku Paavo

    2007-09-01

    Full Text Available Abstract Background In the field of auditory neuroscience, much research has focused on the neural processes underlying human sound localization. A recent magnetoencephalography (MEG study investigated localization-related brain activity by measuring the N1m event-related response originating in the auditory cortex. It was found that the dynamic range of the right-hemispheric N1m response, defined as the mean difference in response magnitude between contralateral and ipsilateral stimulation, reflects cortical activity related to the discrimination of horizontal sound direction. Interestingly, the results also suggested that the presence of realistic spectral information within horizontally located spatial sounds resulted in a larger right-hemispheric N1m dynamic range. Spectral cues being predominant at high frequencies, the present study further investigated the issue by removing frequencies from the spatial stimuli with low-pass filtering. This resulted in a stepwise elimination of direction-specific spectral information. Interaural time and level differences were kept constant. The original, unfiltered stimuli were broadband noise signals presented from five frontal horizontal directions and binaurally recorded for eight human subjects with miniature microphones placed in each subject's ear canals. Stimuli were presented to the subjects during MEG registration and in a behavioral listening experiment. Results The dynamic range of the right-hemispheric N1m amplitude was not significantly affected even when all frequencies above 600 Hz were removed. The dynamic range of the left-hemispheric N1m response was significantly diminished by the removal of frequencies over 7.5 kHz. The subjects' behavioral sound direction discrimination was only affected by the removal of frequencies over 600 Hz. Conclusion In accord with previous psychophysical findings, the current results indicate that frontal horizontal sound localization and related right

  2. Noise in miniature microphones.

    Science.gov (United States)

    Thompson, Stephen C; LoPresti, Janice L; Ring, Eugene M; Nepomuceno, Henry G; Beard, John J; Ballad, William J; Carlson, Elmer V

    2002-02-01

    The internal noise spectrum in miniature electret microphones of the type used in the manufacture of hearing aids is measured. An analogous circuit model of the microphone is empirically fit to the measured data and used to determine the important sources of noise within the microphone. The dominant noise source is found to depend on the frequency. Below 40 Hz and above 9 kHz, the dominant source is electrical noise from the amplifier circuit needed to buffer the electrical signal from the microphone diaphragm. Between approximately 40 Hz and 1 kHz, the dominant source is thermal noise originating in the acoustic flow resistance of the small hole pierced in the diaphragm to equalize barometric pressure. Between approximately 1 kHz and 9 kHz, the noise originates in the acoustic flow resistances of sound entering the microphone and propagating to the diaphragm. To further reduce the microphone internal noise in the audio band requires attacking these sources. A prototype microphone having reduced acoustical noise is measured and discussed.

  3. High-frequency multimodal atomic force microscopy

    Directory of Open Access Journals (Sweden)

    Adrian P. Nievergelt

    2014-12-01

    Full Text Available Multifrequency atomic force microscopy imaging has been recently demonstrated as a powerful technique for quickly obtaining information about the mechanical properties of a sample. Combining this development with recent gains in imaging speed through small cantilevers holds the promise of a convenient, high-speed method for obtaining nanoscale topography as well as mechanical properties. Nevertheless, instrument bandwidth limitations on cantilever excitation and readout have restricted the ability of multifrequency techniques to fully benefit from small cantilevers. We present an approach for cantilever excitation and deflection readout with a bandwidth of 20 MHz, enabling multifrequency techniques extended beyond 2 MHz for obtaining materials contrast in liquid and air, as well as soft imaging of delicate biological samples.

  4. Intramuscular Contributions to Low-Frequency Force Potentiation Induced by a High-Frequency Conditioning Stimulation

    Directory of Open Access Journals (Sweden)

    Arthur J. Cheng

    2017-09-01

    Full Text Available Electrically-evoked low-frequency (submaximal force is increased immediately following high-frequency stimulation in human skeletal muscle. Although central mechanisms have been suggested to be the major cause of this low-frequency force potentiation, intramuscular factors might contribute. Thus, we hypothesized that two intramuscular Ca2+-dependent mechanisms can contribute to the low-frequency force potentiation: increased sarcoplasmic reticulum Ca2+ release and increased myofibrillar Ca2+ sensitivity. Experiments in humans were performed on the plantar flexor muscles at a shortened, intermediate, and long muscle length and electrically evoked contractile force and membrane excitability (i.e., M-wave amplitude were recorded during a stimulation protocol. Low-frequency force potentiation was assessed by stimulating with a low-frequency tetanus (25 Hz, 2 s duration, followed by a high-frequency tetanus (100 Hz, 2 s duration, and finally followed by another low-frequency (25 Hz, 2 s duration tetanus. Similar stimulation protocols were performed on intact mouse single fibers from flexor digitorum brevis muscle, whereby force and myoplasmic free [Ca2+] ([Ca2+]i were assessed. Our data show a low-frequency force potentiation that was not muscle length-dependent in human muscle and it was not accompanied by any increase in M-wave amplitude. A length-independent low-frequency force potentiation could be replicated in mouse single fibers, supporting an intramuscular mechanism. We show that at physiological temperature (31°C this low-frequency force potentiation in mouse fibers corresponded with an increase in sarcoplasmic reticulum (SR Ca2+ release. When mimicking the slower contractile properties of human muscle by cooling mouse single fibers to 18°C, the low-frequency force potentiation was accompanied by minimally increased SR Ca2+ release and hence it could be explained by increased myofibrillar Ca2+ sensitivity. Finally, introducing a brief 200

  5. Intramuscular Contributions to Low-Frequency Force Potentiation Induced by a High-Frequency Conditioning Stimulation.

    Science.gov (United States)

    Cheng, Arthur J; Neyroud, Daria; Kayser, Bengt; Westerblad, Håkan; Place, Nicolas

    2017-01-01

    Electrically-evoked low-frequency (submaximal) force is increased immediately following high-frequency stimulation in human skeletal muscle. Although central mechanisms have been suggested to be the major cause of this low-frequency force potentiation, intramuscular factors might contribute. Thus, we hypothesized that two intramuscular Ca2+-dependent mechanisms can contribute to the low-frequency force potentiation: increased sarcoplasmic reticulum Ca2+ release and increased myofibrillar Ca2+ sensitivity. Experiments in humans were performed on the plantar flexor muscles at a shortened, intermediate, and long muscle length and electrically evoked contractile force and membrane excitability (i.e., M-wave amplitude) were recorded during a stimulation protocol. Low-frequency force potentiation was assessed by stimulating with a low-frequency tetanus (25 Hz, 2 s duration), followed by a high-frequency tetanus (100 Hz, 2 s duration), and finally followed by another low-frequency (25 Hz, 2 s duration) tetanus. Similar stimulation protocols were performed on intact mouse single fibers from flexor digitorum brevis muscle, whereby force and myoplasmic free [Ca2+] ([Ca2+]i) were assessed. Our data show a low-frequency force potentiation that was not muscle length-dependent in human muscle and it was not accompanied by any increase in M-wave amplitude. A length-independent low-frequency force potentiation could be replicated in mouse single fibers, supporting an intramuscular mechanism. We show that at physiological temperature (31°C) this low-frequency force potentiation in mouse fibers corresponded with an increase in sarcoplasmic reticulum (SR) Ca2+ release. When mimicking the slower contractile properties of human muscle by cooling mouse single fibers to 18°C, the low-frequency force potentiation was accompanied by minimally increased SR Ca2+ release and hence it could be explained by increased myofibrillar Ca2+ sensitivity. Finally, introducing a brief 200 ms pause

  6. Probing High Frequency Noise with Macroscopic Resonant Tunneling

    OpenAIRE

    Lanting, T.; Amin, M. H. S.; Johnson, M. W.; Altomare, F.; Berkley, A. J.; Gildert, S.; Harris, R; Johansson, J; Bunyk, P.; Ladizinsky, E.; Tolkacheva, E.; Averin, D. V.

    2011-01-01

    We have developed a method for extracting the high-frequency noise spectral density of an rf-SQUID flux qubit from macroscopic resonant tunneling (MRT) rate measurements. The extracted noise spectral density is consistent with that of an ohmic environment up to frequencies ~ 4 GHz. We have also derived an expression for the MRT lineshape expected for a noise spectral density consisting of such a broadband ohmic component and an additional strongly peaked low-frequency component. This hybrid m...

  7. High-frequency energy in singing and speech

    Science.gov (United States)

    Monson, Brian Bruce

    While human speech and the human voice generate acoustical energy up to (and beyond) 20 kHz, the energy above approximately 5 kHz has been largely neglected. Evidence is accruing that this high-frequency energy contains perceptual information relevant to speech and voice, including percepts of quality, localization, and intelligibility. The present research was an initial step in the long-range goal of characterizing high-frequency energy in singing voice and speech, with particular regard for its perceptual role and its potential for modification during voice and speech production. In this study, a database of high-fidelity recordings of talkers was created and used for a broad acoustical analysis and general characterization of high-frequency energy, as well as specific characterization of phoneme category, voice and speech intensity level, and mode of production (speech versus singing) by high-frequency energy content. Directionality of radiation of high-frequency energy from the mouth was also examined. The recordings were used for perceptual experiments wherein listeners were asked to discriminate between speech and voice samples that differed only in high-frequency energy content. Listeners were also subjected to gender discrimination tasks, mode-of-production discrimination tasks, and transcription tasks with samples of speech and singing that contained only high-frequency content. The combination of these experiments has revealed that (1) human listeners are able to detect very subtle level changes in high-frequency energy, and (2) human listeners are able to extract significant perceptual information from high-frequency energy.

  8. High-frequency broadband modulation of electroencephalographic spectra

    Directory of Open Access Journals (Sweden)

    Julie A Onton

    2009-12-01

    Full Text Available High-frequency cortical potentials in electroencephalographic (EEG scalp recordings have low amplitudes and may be confounded with scalp muscle activities. EEG data from an eyes-closed emotion imagination task were linearly decomposed using independent component analysis (ICA into maximally independent component (IC processes. Joint decomposition of IC log spectrograms into source- and frequency-independent modulator (IM processes revealed three distinct classes of IMs that separately modulated broadband high-frequency (~15-200 Hz power of brain, scalp muscle, and likely ocular motor IC processes. Multi-dimensional scaling revealed significant but spatially complex relationships between mean broadband brain IM effects and the valence of the imagined emotions. Thus, contrary to prevalent assumption, unitary modes of spectral modulation of frequencies encompassing the beta, gamma, and high gamma frequency ranges can be isolated from scalp-recorded EEG data and may be differentially associated with brain sources and cognitive activities.

  9. Rapid determination of lipophilic vitamins in human serum by ultra-high performance liquid chromatography using a fluorinated column and high-throughput miniaturized liquid-liquid extraction.

    Science.gov (United States)

    Cervinkova, Barbora; Krcmova, Lenka Kujovska; Klabackova, Sava; Solichova, Dagmar; Solich, Petr

    2017-09-01

    A high-throughput miniaturized liquid-liquid extraction procedure followed by a simple ultra-high performance liquid chromatography method coupled with fluorescence detection for bioanalytical analysis of all tocopherol isomers and retinol in human serum has been developed and validated. In the extraction procedure, a synthetic internal standard tocol was used, which does not occur in the human body. The separation of structurally related vitamins was achieved using a new generation of pentafluorophenyl propyl core-shell stationary phase with elution using methanol and an aqueous solution of ammonium acetate. The fluorescence of retinol and tocopherol isomers was detected at λex  = 325, 295 nm and λem  = 480, 325 nm, respectively. The rapid baseline separation of all analytes was accomplished within 4.0 min. The sensitivity of method was demonstrated with lower limits of quantification: retinol 0.01 μM, α-tocopherol 0.38 μM, β-tocopherol 0.18 μM, γ-tocopherol 0.14 μM, and δ-tocopherol 0.01 μM. Possible application of this method in clinical practice was confirmed by the analysis of human serum samples from healthy volunteers. Finally, the simultaneous determination of retinol and all tocopherol isomers in human serum can enable the clarification of their role in metabolism and in diseases such as cancer. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. The Influence of High-Frequency Envelope Information on Low-Frequency Vowel Identification in Noise.

    Science.gov (United States)

    Schubotz, Wiebke; Brand, Thomas; Kollmeier, Birger; Ewert, Stephan D

    2016-01-01

    Vowel identification in noise using consonant-vowel-consonant (CVC) logatomes was used to investigate a possible interplay of speech information from different frequency regions. It was hypothesized that the periodicity conveyed by the temporal envelope of a high frequency stimulus can enhance the use of the information carried by auditory channels in the low-frequency region that share the same periodicity. It was further hypothesized that this acts as a strobe-like mechanism and would increase the signal-to-noise ratio for the voiced parts of the CVCs. In a first experiment, different high-frequency cues were provided to test this hypothesis, whereas a second experiment examined more closely the role of amplitude modulations and intact phase information within the high-frequency region (4-8 kHz). CVCs were either natural or vocoded speech (both limited to a low-pass cutoff-frequency of 2.5 kHz) and were presented in stationary 3-kHz low-pass filtered masking noise. The experimental results did not support the hypothesized use of periodicity information for aiding low-frequency perception.

  11. The Influence of High-Frequency Envelope Information on Low-Frequency Vowel Identification in Noise.

    Directory of Open Access Journals (Sweden)

    Wiebke Schubotz

    Full Text Available Vowel identification in noise using consonant-vowel-consonant (CVC logatomes was used to investigate a possible interplay of speech information from different frequency regions. It was hypothesized that the periodicity conveyed by the temporal envelope of a high frequency stimulus can enhance the use of the information carried by auditory channels in the low-frequency region that share the same periodicity. It was further hypothesized that this acts as a strobe-like mechanism and would increase the signal-to-noise ratio for the voiced parts of the CVCs. In a first experiment, different high-frequency cues were provided to test this hypothesis, whereas a second experiment examined more closely the role of amplitude modulations and intact phase information within the high-frequency region (4-8 kHz. CVCs were either natural or vocoded speech (both limited to a low-pass cutoff-frequency of 2.5 kHz and were presented in stationary 3-kHz low-pass filtered masking noise. The experimental results did not support the hypothesized use of periodicity information for aiding low-frequency perception.

  12. Global Transcriptomic Profiling of Cardiac Hypertrophy and Fatty Heart Induced by Long-Term High-Energy Diet in Bama Miniature Pigs.

    Science.gov (United States)

    Xia, Jihan; Zhang, Yuanyuan; Xin, Leilei; Kong, Siyuan; Chen, Yaoxing; Yang, Shulin; Li, Kui

    2015-01-01

    A long-term high-energy diet affects human health and leads to obesity and metabolic syndrome in addition to cardiac steatosis and hypertrophy. Ectopic fat accumulation in the heart has been demonstrated to be a risk factor for heart disorders, but the molecular mechanism of heart disease remains largely unknown. Bama miniature pigs were fed a high-fat, high-sucrose diet (HFHSD) for 23 months. These pigs developed symptoms of metabolic syndrome and showed cardiac steatosis and hypertrophy with a greatly increased body weight (2.73-fold, Pcardiac steatosis and hypertrophy, nine pig heart cRNA samples were hybridized to porcine GeneChips. Microarray analyses revealed that 1,022 genes were significantly differentially expressed (Pcardiac steatosis, and hypertrophy and provides insights into the molecular mechanisms of hypertrophy and fatty heart to facilitate further research.

  13. Earless toads sense low frequencies but miss the high notes

    DEFF Research Database (Denmark)

    Womack, Molly C; Christensen-Dalsgaard, Jakob; Coloma, Luis A

    2017-01-01

    , four earless) within the Neotropical true toad family (Bufonidae). We found that species lacking middle ears are less sensitive to high-frequency sounds, however, low-frequency hearing and vibrational sensitivity are equivalent between eared and earless species. Furthermore, extratympanic hearing...

  14. Factors Affecting the Benefits of High-Frequency Amplification

    Science.gov (United States)

    Horwitz, Amy R.; Ahlstrom, Jayne B.; Dubno, Judy R.

    2008-01-01

    Purpose: This study was designed to determine the extent to which high-frequency amplification helped or hindered speech recognition as a function of hearing loss, gain-frequency response, and background noise. Method: Speech recognition was measured monaurally under headphones for nonsense syllables low-pass filtered in one-third-octave steps…

  15. Automated Screening for High-Frequency Hearing Loss

    NARCIS (Netherlands)

    Vlaming, M.S.M.G.; MacKinnon, R.C.; Jansen, M.; Moore, D.R.

    2014-01-01

    OBJECTIVE: Hearing loss at high frequencies produces perceptual difficulties and is often an early sign of a more general hearing loss. This study reports the development and validation of two new speech-based hearing screening tests in English that focus on detecting hearing loss at frequencies

  16. Miniature Release Mechanism Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective is to design, build and functionally test a miniature release mechanism for CubeSats and other small satellites. The WFF 6U satellite structure will be...

  17. Miniature oxygen resuscitator

    Science.gov (United States)

    Johnson, G.; Teegen, J. T.; Waddell, H.

    1969-01-01

    Miniature, portable resuscitation system is used during evacuation of patients to medical facilities. A carrying case contains a modified resuscitator head, cylinder of oxygen, two-stage oxygen regulator, low pressure tube, and a mask for mouth and nose.

  18. Instrumentation for high-frequency meteorological observations from research vessel

    Digital Repository Service at National Institute of Oceanography (India)

    VijayKumar, K.; Khalap, S.; Mehra, P.

    Ship provides an attractive platform from which high-frequency meteorological observations (e.g., wind components, water vapor density, and air temperature) can be made accurately. However, accurate observations of meteorological variables depend...

  19. Music students: conventional hearing thresholds and at high frequencies

    National Research Council Canada - National Science Library

    Lüders, Débora; Gonçalves, Cláudia Giglio de Oliveira; Lacerda, Adriana Bender de Moreira; Ribas, Ângela; Conto, Juliana de

    2014-01-01

    .... To analyze the hearing thresholds from 250 Hz to 16,000 Hz in a group of music students and compare them to a non-musician group in order to determine whether high-frequency audiometry is a useful...

  20. BIOLOGICAL EFFECTS OF HIGH-FREQUENCY ELECTROMAGNETIC WAVES

    Science.gov (United States)

    In this report the author discusses the influence of high-frequency electromagnetic waves on living matter, especially in the field of microwaves. He...of electromagnetic waves . Symptoms of damage are listed and methods of protection discussed.

  1. High-frequency matrix converter with square wave input

    Science.gov (United States)

    Carr, Joseph Alexander; Balda, Juan Carlos

    2015-03-31

    A device for producing an alternating current output voltage from a high-frequency, square-wave input voltage comprising, high-frequency, square-wave input a matrix converter and a control system. The matrix converter comprises a plurality of electrical switches. The high-frequency input and the matrix converter are electrically connected to each other. The control system is connected to each switch of the matrix converter. The control system is electrically connected to the input of the matrix converter. The control system is configured to operate each electrical switch of the matrix converter converting a high-frequency, square-wave input voltage across the first input port of the matrix converter and the second input port of the matrix converter to an alternating current output voltage at the output of the matrix converter.

  2. High-Frequency Microwave Processing of Materials Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Conducts research on high-frequency microwave processing of materials using a highpower, continuous-wave (CW), 83-GHz, quasi-optical beam system for rapid,...

  3. Gender & High Frequency vs. Low Frequency tasks in a context of Joint-Liability Incentives.

    OpenAIRE

    Marianne Bernatzky; José María Cabrera; Alejandro Cid

    2014-01-01

    We study the impact of high and low frequency incentives in a joint-liability framework on six academic outcomes of undergraduate students using a randomized field experiment. As recently documented in health literature, incentives to exercise are effective in developing healthy habits. Therefore, we design groups of three students and provide a premium to the homework’s grade if all the members of the group (three) meet some requirements. We investigate how the frequency of these take home t...

  4. Gene Expression Analysis of Escherichia Coli Grown in Miniaturized Bioreactor Platforms for High-Throughput Analysis of Growth and genomic Data

    DEFF Research Database (Denmark)

    Boccazzi, P.; Zanzotto, A.; Szita, Nicolas

    2005-01-01

    Combining high-throughput growth physiology and global gene expression data analysis is of significant value for integrating metabolism and genomics. We compared global gene expression using 500 ng of total RNA from Escherichia coli cultures grown in rich or defined minimal media in a miniaturized....... In general, these changes in gene expression levels were similar to those observed in 1,000-fold larger cultures. The increasing rate at which complete genomic sequences of microorganisms are becoming available offers an unprecedented opportunity for investigating these organisms. Our results from microscale...... cultures using just 500 ng of total RNA indicate that high-throughput integration of growth physiology and genomics will be possible with novel biochemical platforms and improved detection technologies....

  5. Low-Cost Miniaturized Laser Heterodyne Radiometer for Highly Sensitive Detection of CO2 and CH4 in the Atmospheric Column

    Science.gov (United States)

    Wilson, Emily L.; McLinden, Matthew L.; Miller, J. Houston

    2011-01-01

    We present a new passive ground-network instrument capable of measuring carbon dioxide (CO2) at 1.57 microns and methane (CH4) at 1.62 microns -- key for validation of OCO-2, ASCENDS, OCO-3, and GOSAT. Designed to piggy-back on an AERONET sun tracker (AERONET is a global network of more than 450 aerosol sensing instruments), this instrument could be rapidly deployed into the established AERONET network of ground sensors. Because aerosols induce a radiative effect that influences terrestrial carbon exchange, this simultaneous measure of aerosols and carbon cycle gases offers a uniquely comprehensive approach. This instrument is a variation of a laser heterodyne radiometer (LHR) that leverages recent advances in telecommunications lasers to miniaturize the instrument (the current version fits in a carry-on suitcase). In this technique, sunlight that has undergone absorption by the trace gas is mixed with laser light at a frequency matched to a trace gas absorption feature in the infrared (IR). Mixing results in a beat signal in the RF (radio frequency) region that can be related to the atmospheric concentration. By dividing this RF signal into a filter bank, concentrations at different altitudes can be resolved. For a one second integration, we estimate column sensitivities of 0.1 ppmv for CO2, and <1 ppbv for CH4.

  6. Music students: conventional hearing thresholds and at high frequencies

    OpenAIRE

    Lüders,Débora; Gonçalves, Cláudia Giglio de Oliveira; de Moreira Lacerda, Adriana Bender; Ribas,Ângela; Conto,Juliana de

    2014-01-01

    INTRODUCTION: Research has shown that hearing loss in musicians may cause difficulty in timbre recognition and tuning of instruments. AIM: To analyze the hearing thresholds from 250 Hz to 16,000 Hz in a group of music students and compare them to a non-musician group in order to determine whether high-frequency audiometry is a useful tool in the early detection of hearing impairment. METHODS: Study design was a retrospective observational cohort. Conventional and high-frequency audio...

  7. Efficacy of Conventional and High-Frequency Ventilation at Altitude

    Science.gov (United States)

    1988-12-01

    evacuation; Mechanical ventilation ;--andL If.’jJI t’ 06 I 12 i ~High-Frequency ventilation ’& ~.~.- 19 ABSTRACT (Continue on reverse If neesry and identify by...The inspired gas and the subsequent rate of appearance of these gases in arterial blood were monitored. With conventional mechanical ventilation (CMV...AND HIGH-FREQUENCY VENTILATION AT ALTITUDE INTRODUCTION The logistics of aeromedical evacuation of patients requiring mechanical ventilation is

  8. Testing the efficiency of high-frequency foreign exchange market

    Directory of Open Access Journals (Sweden)

    Václav Mastný

    2004-01-01

    Full Text Available This paper deals with the efficiency of the high-frequency foreign exchange market. The objective of this paper is to investigate whether standard statistical tests give the same results for time series resampled at intervals of 15.30 and 60 min. The data used for the purpose of this paper contain major currency pairs such as EUR/USD, GBP/USD and JPY/USD. The results of statistical tests indicate that the high frequency intervals (15-minute are not random and should not be considered independent. On the other hand, tests with lower frequency rates (30 and 60 min indicate rising randomness of the market.

  9. MODIFIED EDGE FED SIERPINSKI CARPET MINIATURIZED ...

    African Journals Online (AJOL)

    This paper presented a modified edge fed Sierpinski carpet microstrip patch antenna for antenna miniaturization. The proposed design was etched as Sierpinski carpet to lower the antenna resonant frequency, which is used to reduce the conventional patch antenna size. After the Sierpinski carpet second iteration, the ...

  10. Miniature Chemical Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Andrew C. R. Pipino

    2004-12-13

    A new chemical detection technology has been realized that addresses DOE environmental management needs. The new technology is based on a variant of the sensitive optical absorption technique, cavity ring-down spectroscopy (CRDS). Termed evanescent-wave cavity ring-down spectroscopy (EW-CRDS), the technology employs a miniature solid-state optical resonator having an extremely high Q-factor as the sensing element, where the high-Q is achieved by using ultra-low-attenuation optical materials, ultra-smooth surfaces, and ultra-high reflectivity coatings, as well as low-diffraction-loss designs. At least one total-internal reflection (TIR) mirror is integral to the resonator permitting the concomitant evanescent wave to probe the ambient environment. Several prototypes have been designed, fabricated, characterized, and applied to chemical detection. Moreover, extensions of the sensing concept have been explored to enhance selectivity, sensitivity, and range of application. Operating primarily in the visible and near IR regions, the technology inherently enables remote detection by optical fiber. Producing 11 archival publications, 5 patents, 19 invited talks, 4 conference proceedings, a CRADA, and a patent-license agreement, the project has realized a new chemical detection technology providing >100 times more sensitivity than comparable technologies, while also providing practical advantages.

  11. Frequencies of inaudible high-frequency sounds differentially affect brain activity: positive and negative hypersonic effects.

    Directory of Open Access Journals (Sweden)

    Ariko Fukushima

    Full Text Available The hypersonic effect is a phenomenon in which sounds containing significant quantities of non-stationary high-frequency components (HFCs above the human audible range (max. 20 kHz activate the midbrain and diencephalon and evoke various physiological, psychological and behavioral responses. Yet important issues remain unverified, especially the relationship existing between the frequency of HFCs and the emergence of the hypersonic effect. In this study, to investigate the relationship between the hypersonic effect and HFC frequencies, we divided an HFC (above 16 kHz of recorded gamelan music into 12 band components and applied them to subjects along with an audible component (below 16 kHz to observe changes in the alpha2 frequency component (10-13 Hz of spontaneous EEGs measured from centro-parieto-occipital regions (Alpha-2 EEG, which we previously reported as an index of the hypersonic effect. Our results showed reciprocal directional changes in Alpha-2 EEGs depending on the frequency of the HFCs presented with audible low-frequency component (LFC. When an HFC above approximately 32 kHz was applied, Alpha-2 EEG increased significantly compared to when only audible sound was applied (positive hypersonic effect, while, when an HFC below approximately 32 kHz was applied, the Alpha-2 EEG decreased (negative hypersonic effect. These findings suggest that the emergence of the hypersonic effect depends on the frequencies of inaudible HFC.

  12. Advanced waveforms and frequency with spinal cord stimulation: burst and high-frequency energy delivery.

    Science.gov (United States)

    Pope, Jason E; Falowski, Steven; Deer, Tim R

    2015-07-01

    In recent years, software development has been key to the next generation of neuromodulation devices. In this review, we will describe the new strategies for electrical waveform delivery for spinal cord stimulation. A systematic literature review was performed using bibliographic databases, limited to the English language and human data, between 2010 and 2014. The literature search yielded three articles on burst stimulation and four articles on high-frequency stimulation. High-frequency and burst stimulation may offer advantages over tonic stimulation, as data suggest improved patient tolerance, comparable increase in function and possible success with a subset of patients refractory to tonic spinal cord stimulation. High-frequency and burst stimulation are new ways to deliver energy to the spinal cord that may offer advantages over tonic stimulation. These may offer new salvage strategies to mitigate spinal cord stimulation failure and improve cost-effectiveness by reducing explant rate.

  13. Adequacy of Frequency Reserves for High Wind Power Generation

    DEFF Research Database (Denmark)

    Das, Kaushik; Litong-Palima, Marisciel; Maule, Petr

    2017-01-01

    are developed through this methodology. Furthermore, the probability of reducing this frequency containment reserve requirement is investigated through this methodology with activation of different volumes and speed of frequency restoration reserve. Wind power generation for 2020 and 2030 scenarios......In this article, a new methodology is developed to assess the adequacy of frequency reserves to handle power imbalances caused by wind power forecast errors. The goal of this methodology is to estimate the adequate volume and speed of activation of frequency reserves required to handle power...... imbalances caused due to high penetration of wind power. An algorithm is proposed and developed to estimate the power imbalances due to wind power forecast error following activation of different operating reserves. Frequency containment reserve requirements for mitigating these power imbalances...

  14. A new species of Hoplomyzon (Siluriformes: Aspredinidae from Maracaibo Basin, Venezuela: osteological description using high-resolution computed microtomography of a miniature species

    Directory of Open Access Journals (Sweden)

    Tiago P. Carvalho

    2017-03-01

    Full Text Available ABSTRACT A new miniature species of banjo catfish of the genus Hoplomyzon is described from the Lake Maracaibo Basin in Venezuela. The new species is distinguished from all its congeners by the straight anterior margin of the mesethmoid (vs. a medial notch; a smooth and straight ventral surface of the premaxilla (vs. presence of bony knobs on the ventral surface of premaxilla; absence of teeth on dentary (vs. teeth present on dentary; configuration of ventral vertebral processes anterior to anal fin, which are composed of single processes anterior to anal-fin pterygiophore (vs. paired process; presence of several filamentous barbel-like structures on the ventral surface of head of adults (vs. small papillous structures in the ventral surface of head of adults; and 8 anal-fin rays (vs. 6 or 7. An extensive osteological description is made of the holotype using high-resolution x-ray computed microtomography (HRXCT.

  15. Unusual Solar Decameter Radio Bursts with High Frequency Cut off

    Science.gov (United States)

    Brazhenko, A. I.; Melnik, V. M.; Frantsuzenko, A. V.; Rucker, H. O.; Panchenko, M.

    2015-03-01

    Solar bursts with high frequency cut off were observed by the URAN-2 radio telescope (Poltava, Ukraine) on 18 August, 2012 in the frequency range 8-32 MHz. Durations of these bursts changed from 30 to 70 s. It is much longer than that for standard type III bursts. Drift rates are much smaller than those of type III bursts are, though much larger than those for decameter type II bursts. In some cases, the drift rate sign changes from the negative to positive one. Some of these bursts have fine structures. Stripes of the fine structures have small drift rates of 20-40 kHz/s. Polarizations of these bursts made about 10 % that apparently indicates that they are generated at the second harmonic of the local plasma frequency. The connection of bursts with the high frequency cut off with compact ejections from the behind-limb active regions is confirmed.

  16. Extended high frequency audiometry in polycystic ovary syndrome.

    Science.gov (United States)

    Kucur, Cuneyt; Kucur, Suna Kabil; Gozukara, Ilay; Seven, Ali; Yuksel, Kadriye Beril; Keskin, Nadi; Oghan, Fatih

    2013-01-01

    Polycystic ovarian syndrome (PCOS) is the most common endocrine disorder affecting 5-10% of women in reproductive age. Insulin resistance, dyslipidemia, glucose intolerance, hypertension, and obesity are metabolic disorders accompanying the syndrome. PCOS is a chronic proinflammatory state and the disease is associated with endothelial dysfunction. In diseases with endothelial damage, hearing in high frequencies are mostly effected in early stages. We evaluated extended high frequency hearing loss in PCOS patients. Forty women diagnosed as PCOS and 25 healthy controls were included in this study. Age and BMI of PCOS and control groups were comparable. Each subject was tested with low (250-2000 Hz), high (4000-8000 Hz), and extended high frequency audiometry (8000-20000). Hormonal and biochemical values including LH, LH/FSH, testosterone, fasting glucose, fasting insulin, HOMA-I, and CRP were calculated. PCOS patients showed high levels of LH, LH/FSH, testosterone, fasting insulin, glucose, HOMA-I, and CRP levels. The hearing thresholds of the groups were similar at frequencies of 250, 500, 1000, 2000, and 4000 Hz; statistically significant difference was observed in 8000-14000 Hz in PCOS group compared to control group. PCOS patients have hearing impairment especially in extended high frequencies. Further studies are needed to help elucidate the mechanism behind hearing impairment in association with PCOS.

  17. Probing high-frequency noise with macroscopic resonant tunneling

    Science.gov (United States)

    Lanting, T.; Amin, M. H. S.; Johnson, M. W.; Altomare, F.; Berkley, A. J.; Gildert, S.; Harris, R.; Johansson, J.; Bunyk, P.; Ladizinsky, E.; Tolkacheva, E.; Averin, D. V.

    2011-05-01

    We have developed a method for extracting the high-frequency noise spectral density of an rf-SQUID flux qubit from macroscopic resonant tunneling (MRT) rate measurements. The extracted noise spectral density is consistent with that of an ohmic environment up to frequencies ~4 GHz. We have also derived an expression for the MRT line shape expected for a noise spectral density consisting of such a broadband ohmic component and an additional strongly peaked low-frequency component. This hybrid model provides an excellent fit to experimental data across a range of tunneling amplitudes and temperatures.

  18. Integrated Very High Frequency Switch Mode Power Supplies: Design Considerations

    DEFF Research Database (Denmark)

    Hertel, Jens Christian; Nour, Yasser; Knott, Arnold

    2017-01-01

    This paper presents a power supply using an increased switching frequency to minimize the size of energy storing components, thereby addressing the demands for increased power densities in power supplies. 100 MHz and higher switching frequencies have been used in resonant power converters, which...... simulations. The required spiral inductors was modeled, and simulations show Q values of as high as 14 at a switching frequency of 250 MHz. Simulations of the converter show an efficiency of 55 % with a self oscillating gate drive. However the modeled inductor was not adequate for operating with the self...

  19. Presynaptic miniature GABAergic currents in developing interneurons.

    Science.gov (United States)

    Trigo, Federico F; Bouhours, Brice; Rostaing, Philippe; Papageorgiou, George; Corrie, John E T; Triller, Antoine; Ogden, David; Marty, Alain

    2010-04-29

    Miniature synaptic currents have long been known to represent random transmitter release under resting conditions, but much remains to be learned about their nature and function in central synapses. In this work, we describe a new class of miniature currents ("preminis") that arise by the autocrine activation of axonal receptors following random vesicular release. Preminis are prominent in gabaergic synapses made by cerebellar interneurons during the development of the molecular layer. Unlike ordinary miniature postsynaptic currents in the same cells, premini frequencies are strongly enhanced by subthreshold depolarization, suggesting that the membrane depolarization they produce belongs to a feedback loop regulating neurotransmitter release. Thus, preminis could guide the formation of the interneuron network by enhancing neurotransmitter release at recently formed synaptic contacts. Copyright 2010 Elsevier Inc. All rights reserved.

  20. Compact Miniaturized Antenna for 210 MHz RFID

    Science.gov (United States)

    Lee, Richard Q.; Chun, Kue

    2008-01-01

    This paper describes the design and simulation of a miniaturized square-ring antenna. The miniaturized antenna, with overall dimensions of approximately one tenth of a wavelength (0.1 ), was designed to operate at around 210 MHz, and was intended for radio-frequency identification (RFID) application. One unique feature of the design is the use of a parasitic element to improve the performance and impedance matching of the antenna. The use of parasitic elements to enhance the gain and bandwidth of patch antennas has been demonstrated and reported in the literature, but such use has never been applied to miniaturized antennas. In this work, we will present simulation results and discuss design parameters and their impact on the antenna performance.

  1. Extended High Frequency Audiometry in Polycystic Ovary Syndrome

    Directory of Open Access Journals (Sweden)

    Cuneyt Kucur

    2013-01-01

    and BMI of PCOS and control groups were comparable. Each subject was tested with low (250–2000 Hz, high (4000–8000 Hz, and extended high frequency audiometry (8000–20000. Hormonal and biochemical values including LH, LH/FSH, testosterone, fasting glucose, fasting insulin, HOMA-I, and CRP were calculated. Results. PCOS patients showed high levels of LH, LH/FSH, testosterone, fasting insulin, glucose, HOMA-I, and CRP levels. The hearing thresholds of the groups were similar at frequencies of 250, 500, 1000, 2000, and 4000 Hz; statistically significant difference was observed in 8000–14000 Hz in PCOS group compared to control group. Conclusion. PCOS patients have hearing impairment especially in extended high frequencies. Further studies are needed to help elucidate the mechanism behind hearing impairment in association with PCOS.

  2. High-efficiency cross-beam magnetic electron-impact source for improved miniature Mattauch-Herzog mass spectrometer performance

    Science.gov (United States)

    Hadjar, O.; Fowler, W. K.

    2012-06-01

    We describe a newly designed cross-beam magnetic electron-impact ion source (CBM-EI). We demonstrate its superiority in comparison with a conventional source (CB-EI) when used with a commercial miniature sector-field-type, non-scanning mass spectrometer featuring Mattauch-Herzog geometry (MH-MS) and a permanent sector-field magnet. This paper clearly shows the value of the CBM-EI for enhancing MH-MS sensitivity. Unlike secondary electron-multiplier type detectors, the pixelated detector (IonCCD™) used in the commercial MH-MS has no gain. The MH-MS/IonCCD system is therefore challenged to compete with time-of-flight and quadrupole MS systems due to their higher ion transmissions and detector gains. Using the new CBM-EI, we demonstrate an instrument sensitivity increase of 20-fold to 100-fold relative to the CB-EI-equipped instrument. This remarkable signal increase by the simple addition of the magnet assembly arises from the magnet-induced gyromotion of the thermionic electrons, which vastly increases the effective path length of the electrons through the ionization region, and the collimated nature of the electron flux, which optimizes the ion transmission through the 100-μm object slit of the MH-MS. Some or all of the realized sensitivity increase may be exchanged for an increase in resolution and/or mass range through the use of a narrower object slit, or for a reduction in ion-source pressure to limit quenching. The CBM-EI should facilitate development of a differentially pumped ion source to extend the lifetime of the filament, especially in otherwise intractable applications associated with oxidizing and corrosive samples.

  3. Carbon nanotube transistor based high-frequency electronics

    Science.gov (United States)

    Schroter, Michael

    At the nanoscale carbon nanotubes (CNTs) have higher carrier mobility and carrier velocity than most incumbent semiconductors. Thus CNT based field-effect transistors (FETs) are being considered as strong candidates for replacing existing MOSFETs in digital applications. In addition, the predicted high intrinsic transit frequency and the more recent finding of ways to achieve highly linear transfer characteristics have inspired investigations on analog high-frequency (HF) applications. High linearity is extremely valuable for an energy efficient usage of the frequency spectrum, particularly in mobile communications. Compared to digital applications, the much more relaxed constraints for CNT placement and lithography combined with already achieved operating frequencies of at least 10 GHz for fabricated devices make an early entry in the low GHz HF market more feasible than in large-scale digital circuits. Such a market entry would be extremely beneficial for funding the development of production CNTFET based process technology. This talk will provide an overview on the present status and feasibility of HF CNTFET technology will be given from an engineering point of view, including device modeling, experimental results, and existing roadblocks. Carbon nanotube transistor based high-frequency electronics.

  4. High frequency in vitro shoot regeneration of Momordica balsamina ...

    African Journals Online (AJOL)

    A protocol was developed for in vitro propagation by multiple shoot induction of Momordica balsamina (Cucurbitaceae), a climber with high medicinal and nutritional values. High frequencies of multiple shoot regeneration were achieved from auxillary bud of nodal explants. The bud explants were cultured on MS media ...

  5. A redescription of Carrolla craddocki (Lepospondyli: Brachystelechidae) based on high-resolution CT, and the impacts of miniaturization and fossoriality on morphology.

    Science.gov (United States)

    Maddin, Hillary C; Olori, Jennifer C; Anderson, Jason S

    2011-06-01

    Some recent morphological analyses have brought into question the monophyly of Lissamphibia (frogs, salamanders, and caecilians). In these analyses, brachystelechid "microsaurs" are found to be sister group to caecilians. To test this hypothesis, the holotype specimen of the brachystelechid Carrolla craddocki was submitted to high-resolution X-ray computed tomography to gain insight into the nature of the morphology supporting the potential relationship between brachystelechids and caecilians. This analysis enabled us to conduct a detailed description of the internal anatomy such as the braincase and otic capsule endocast (the first of its kind for a lepospondyl), and new information regarding the architecture of the skull. Our results suggest brachystelechid cranial morphology is strongly influenced by miniaturization (enlarged sensory organs, anterior placement of the jaw articulation, and combination of both reduced- and hyper-ossifications) and burrowing habits (co-ossified braincase with broad, sloping occipital surface, overlapping joints between skull roof bones, and well-ossified anterior braincase). Characteristics of brachystelechids that appear unrelated to size-reduction and burrowing are the diamond-shaped skull and possible pedicellate dentition. We provide a revised diagnosis for Carrolla and identify possible new characters within the anatomy of the braincase and inner ear. Several characters currently uniting caecilians and "microsaurs" are among those associated with either miniaturization or burrowing, demonstrating that future efforts should continue to focus on fine details of anatomy minimally affected by these influences to contribute to the resolution of the question of the origin of caecilians. Copyright © 2011 Wiley-Liss, Inc.

  6. Occupational exposure to anaesthetic gases and high-frequency audiometry.

    Science.gov (United States)

    Giorgianni, Concetto; Gangemi, Silvia; Tanzariello, Maria Giuseppina; Barresi, Gaetano; Miceli, Ludovica; D'Arrigo, Graziella; Spatari, Giovanna

    2015-09-01

    Occupational exposure to anaestethic gases has been suggested to induce auditory damages. The aim of this study is to investigate high-frequency audiometric responses in subjects exposed to anaesthetic gases, in order to highlight the possible effects on auditory system. The study was performed on a sample of 30 medical specialists of Messina University Anaesthesia and Intensive care. We have used tonal audiometry as well as high-frequency one. We have compared the responses with those obtained in a similar control group not exposed to anaesthetic gases. Results were compared statistically. Results show a strong correlation (p = 0.000) between left and right ear responses to all the audiometric tests. The exposed and the control group run though the standard audiometry analysis plays different audiometric responses up only to higher frequencies (2000 HZ p = 0.009 and 4000 Hz p = 0.04); in high-frequency audiometry, as all other frequencies, the attention is drew to the fact that the sample groups distinguish themselves in a significantly statistic way (10,000 Hz p = 0.025, 12,000 Hz p = 0.008, 14,000 Hz p = 0.026, 16,000 Hz p = 0.08). The highest values are the ones related to exposed subjects both in standard (2000 Hz p = 0.01, 4000 Hz p = 0.02) and in high-frequency audiometry (10,000 Hz p = 0.011, 12,000 Hz p = 0.004, 14,000 Hz p = 0.012, 16,000 Hz p = 0.004). Results, even if preliminary and referred to a low-range sample, show an involvement of the anatomic structure responsible for the perception of high-frequency audiometric responses in subjects exposed to anaesthetic gases. © The Author(s) 2012.

  7. Music students: conventional hearing thresholds and at high frequencies

    Directory of Open Access Journals (Sweden)

    Débora Lüders

    2014-07-01

    Full Text Available INTRODUCTION: Research has shown that hearing loss in musicians may cause difficulty in timbre recognition and tuning of instruments. AIM: To analyze the hearing thresholds from 250 Hz to 16,000 Hz in a group of music students and compare them to a non-musician group in order to determine whether high-frequency audiometry is a useful tool in the early detection of hearing impairment. METHODS: Study design was a retrospective observational cohort. Conventional and high-frequency audiometry was performed in 42 music students (Madsen Itera II audiometer and TDH39P headphones for conventional audiometry, and HDA 200 headphones for high-frequency audiometry. RESULTS: Of the 42 students, 38.1% were female students and 61.9% were male students, with a mean age of 26 years. At conventional audiometry, 92.85% had hearing thresholds within normal limits; but even within the normal limits, the worst results were observed in the left ear for all frequencies, except for 4000 Hz; compared to the non-musician group, the worst results occurred at 500 Hz in the left ear, and at 250 Hz, 6000 Hz, 9000 Hz, 10,000 Hz, and 11,200 Hz in both the ears. CONCLUSION: The periodic evaluation of high-frequency thresholds may be useful in the early detection of hearing loss in musicians.

  8. Music students: conventional hearing thresholds and at high frequencies.

    Science.gov (United States)

    Lüders, Débora; Gonçalves, Cláudia Giglio de Oliveira; Lacerda, Adriana Bender de Moreira; Ribas, Ângela; Conto, Juliana de

    2014-01-01

    Research has shown that hearing loss in musicians may cause difficulty in timbre recognition and tuning of instruments. To analyze the hearing thresholds from 250 Hz to 16,000 Hz in a group of music students and compare them to a non-musician group in order to determine whether high-frequency audiometry is a useful tool in the early detection of hearing impairment. Study design was a retrospective observational cohort. Conventional and high-frequency audiometry was performed in 42 music students (Madsen Itera II audiometer and TDH39P headphones for conventional audiometry, and HDA 200 headphones for high-frequency audiometry). Of the 42 students, 38.1% were female students and 61.9% were male students, with a mean age of 26 years. At conventional audiometry, 92.85% had hearing thresholds within normal limits; but even within the normal limits, the worst results were observed in the left ear for all frequencies, except for 4000 Hz; compared to the non-musician group, the worst results occurred at 500 Hz in the left ear, and at 250 Hz, 6000 Hz, 9000 Hz, 10,000 Hz, and 11,200 Hz in both the ears. The periodic evaluation of high-frequency thresholds may be useful in the early detection of hearing loss in musicians. Copyright © 2014 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  9. High Frequency Amplitude Detector for GMI Magnetic Sensors

    Directory of Open Access Journals (Sweden)

    Aktham Asfour

    2014-12-01

    Full Text Available A new concept of a high-frequency amplitude detector and demodulator for Giant-Magneto-Impedance (GMI sensors is presented. This concept combines a half wave rectifier, with outstanding capabilities and high speed, and a feedback approach that ensures the amplitude detection with easily adjustable gain. The developed detector is capable of measuring high-frequency and very low amplitude signals without the use of diode-based active rectifiers or analog multipliers. The performances of this detector are addressed throughout the paper. The full circuitry of the design is given, together with a comprehensive theoretical study of the concept and experimental validation. The detector has been used for the amplitude measurement of both single frequency and pulsed signals and for the demodulation of amplitude-modulated signals. It has also been successfully integrated in a GMI sensor prototype. Magnetic field and electrical current measurements in open- and closed-loop of this sensor have also been conducted.

  10. Optimized tissue heating by adopting high frequency electrotherapy

    Directory of Open Access Journals (Sweden)

    Jae-cheol Lee

    2015-11-01

    Full Text Available We have developed an electronics circuit that generates a high voltage with a frequency of 0.3–2 MHz to build an electro therapy system that can optimize tissue heating characteristics. These characteristics are used in medical applications. This paper is focused on the analysis of high frequency electro-therapy system to optimize tissue heating with the help of a high voltage pulse signal, which peak voltage is almost 2 kV. This optimized tissue heating between the inner tissue and the thermal distributions has examined in terms of frequency and voltage. The target tissue heating is composed of a single electrode in an experiment that has especially conducted to find the tissue heating characteristics. In the end, a new method for electro-therapy is developed, which is applicable to a specific tissue depth.

  11. [The treatment of glottic carcinoma with high-frequency electrotome].

    Science.gov (United States)

    Mao, Huadong; Xie, Hongwu; Wang, Yakang; Liang, Suqing

    2014-02-01

    To investigate the surgery management of glottic carcinoma with high-frequency electrotome. Twenty cases of patients with glottic carcinoma were treated by cordectomy under micro-laryngoscopy with high-frequency electrotome. The 20 patients were followed up from 5 months to 6 years, retained good laryngeal function and structure: 1 case had local recurrences after 6 months, underwent total laryngectomy, and now no recurrence had been found: 19 cases (mild adhesions of vocal cords formed in 2 cases) had no local recurrence nor lymph node metastasis. It is unnecessary to invest in expensive equipment in the cordectomy under micro-laryngoscopy with high frequency electrotome under general anesthesia and the result is satisfactory.

  12. High frequency conductivity of hot electrons in carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Amekpewu, M., E-mail: mamek219@gmail.com [Department of Applied Physics, University for Development Studies, Navrongo (Ghana); Mensah, S.Y. [Department of Physics, College of Agriculture and Natural Sciences, U.C.C. (Ghana); Musah, R. [Department of Applied Physics, University for Development Studies, Navrongo (Ghana); Mensah, N.G. [Department of Mathematics, College of Agriculture and Natural Sciences, U.C.C. (Ghana); Abukari, S.S.; Dompreh, K.A. [Department of Physics, College of Agriculture and Natural Sciences, U.C.C. (Ghana)

    2016-05-01

    High frequency conductivity of hot electrons in undoped single walled achiral Carbon Nanotubes (CNTs) under the influence of ac–dc driven fields was considered. We investigated semi-classically Boltzmann's transport equation with and without the presence of the hot electrons’ source by deriving the current densities in CNTs. Plots of the normalized current density versus frequency of ac-field revealed an increase in both the minimum and maximum peaks of normalized current density at lower frequencies as a result of a strong injection of hot electrons. The applied ac-field plays a twofold role of suppressing the space-charge instability in CNTs and simultaneously pumping an energy for lower frequency generation and amplification of THz radiations. These have enormous promising applications in very different areas of science and technology.

  13. Lead extraction experience with high frequency excimer laser.

    Science.gov (United States)

    Tanawuttiwat, Tanyanan; Gallego, Daniel; Carrillo, Roger G

    2014-09-01

    A higher frequency Excimer laser sheath using an 80-Hz pulse repetitive rate was approved by the Food and Drug Administration in April 2012. We reported our initial clinical experience with a high-frequency Excimer laser sheath and compared it with lower-frequency laser sheaths which have been previously used. In this single center, retrospective cohort study, we evaluated patients who underwent lead extraction from December 2008 to May 2013. Those who underwent lead removal without using a laser sheath or with approaches other than subclavian were excluded. Primary endpoints included total laser time, number of pulses, and complications. Data on clinical characteristics, lead type, indications, and outcomes were prospectively collected and analyzed. A total of 427 patients were included in the study (72.6% male; age 67.9 ± 15.23 years). Lower frequency and higher frequency laser sheaths were used in 315 and 112 patients, respectively. A total of 821 leads were removed with 765 leads (93.2%) extracted using the Excimer laser sheath. Lead age was 5.71 ± 4.96 years. Complete extraction was seen in all patients. A higher-frequency laser sheath was associated with a lower laser time and a lower total number of laser pulses even after adjustments for the number of leads, type of leads, and lead age. In the higher frequency group, mortality rate was 0.9% and minor complication rate was 3.6%. When compared with the lower-frequency laser sheath, the higher-frequency laser sheath requires less laser times and more efficient amount of pulses for lead extraction with comparable success rate. Due to the rarity of major and minor complications, no statistical significance was found between the two groups. ©2014 Wiley Periodicals, Inc.

  14. Early deactivation of slower muscle fibres at high movement frequencies.

    Science.gov (United States)

    Blake, Ollie M; Wakeling, James M

    2014-10-01

    Animals produce rapid movements using fast cyclical muscle contractions. These types of movements are better suited to faster muscle fibres within muscles of mixed fibre types as they can shorten at faster velocities and achieve higher activation-deactivation rates than their slower counterparts. Preferential recruitment of faster muscle fibres has previously been shown during high velocity contractions. Additionally, muscle deactivation takes longer than activation and therefore may pose a limitation to fast cyclical contractions. It has been speculated that slower fibres may be deactivated before faster fibres to accommodate their longer deactivation time. This study aimed to test whether shifts in muscle fibre recruitment occur with derecruitment of slow fibres before faster fibres at high cycle frequencies. Electromyographic (EMG) signals were collected from the medial gastrocnemius at an extreme range of cycle frequencies and workloads. Wavelets were used to resolve the EMG signals into time and frequency space and the primary sources of variability within the EMG frequency spectra were identified through principal component analysis. Early derecruitment of slower fibres was evident at the end of muscle excitation at higher cycle frequencies, as determined by reduced low-frequency EMG content, and additional slower fibre recruitment was present at the highest cycle frequency. The duration of muscle excitation reached a minimum of about 150 ms and did not change for the three highest cycle frequencies, suggesting a duration limit for the medial gastrocnemius. This study provides further evidence of modifications of muscle fibre recruitment strategies to meet the mechanical demands of movement. © 2014. Published by The Company of Biologists Ltd.

  15. Extracting cardiac myofiber orientations from high frequency ultrasound images

    Science.gov (United States)

    Qin, Xulei; Cong, Zhibin; Jiang, Rong; Shen, Ming; Wagner, Mary B.; Kirshbom, Paul; Fei, Baowei

    2013-03-01

    Cardiac myofiber plays an important role in stress mechanism during heart beating periods. The orientation of myofibers decides the effects of the stress distribution and the whole heart deformation. It is important to image and quantitatively extract these orientations for understanding the cardiac physiological and pathological mechanism and for diagnosis of chronic diseases. Ultrasound has been wildly used in cardiac diagnosis because of its ability of performing dynamic and noninvasive imaging and because of its low cost. An extraction method is proposed to automatically detect the cardiac myofiber orientations from high frequency ultrasound images. First, heart walls containing myofibers are imaged by B-mode high frequency (pig hearts.

  16. Asynchronous BCI control using high-frequency SSVEP

    Directory of Open Access Journals (Sweden)

    Laciar Leber Eric

    2011-07-01

    Full Text Available Abstract Background Steady-State Visual Evoked Potential (SSVEP is a visual cortical response evoked by repetitive stimuli with a light source flickering at frequencies above 4 Hz and could be classified into three ranges: low (up to 12 Hz, medium (12-30 and high frequency (> 30 Hz. SSVEP-based Brain-Computer Interfaces (BCI are principally focused on the low and medium range of frequencies whereas there are only a few projects in the high-frequency range. However, they only evaluate the performance of different methods to extract SSVEP. Methods This research proposed a high-frequency SSVEP-based asynchronous BCI in order to control the navigation of a mobile object on the screen through a scenario and to reach its final destination. This could help impaired people to navigate a robotic wheelchair. There were three different scenarios with different difficulty levels (easy, medium and difficult. The signal processing method is based on Fourier transform and three EEG measurement channels. Results The research obtained accuracies ranging in classification from 65% to 100% with Information Transfer Rate varying from 9.4 to 45 bits/min. Conclusions Our proposed method allows all subjects participating in the study to control the mobile object and to reach a final target without prior training.

  17. Sustainable limitation of high-frequency oscillations of elevator cabin

    Science.gov (United States)

    Kaytukov, Batraz

    2017-10-01

    In this paper, a problem of sustainable limitation of vertical high-frequency oscillations of elevator cabin in buildings with various number of storeys is considered. To solve this problem, dynamic model of the elevator movement was developed. In the course of analytical and experimental studies, the main cause for emergence of undesirable high-frequency oscillations of a cabin was defined. The amplification factor which is the function of λ and length of cable was determined. The λ parameter is variable, and length of the cable changes depending on length passed by the cabin and is an amplification factor argument. For sustainable limitation of oscillations, use of dynamic dumper of lever type is proposed. Adjustment of the dumper natural vibration frequency in such a way that it is equal to the excitation frequency allows limiting of oscillations of the cabin and the elevator machine to reasonable value irrespective to position of a moving cabin in the shaft. Using dependences and plots which were obtained in the course of scientific analysis and experimental studies, reasonability of dumper application for sustainable limitation of high-frequency influence of the elevator machine on the base and obtaining of solutions of inertial forces equilibration problem was proved.

  18. Computation of High-Frequency Waves with Random Uncertainty

    KAUST Repository

    Malenova, Gabriela

    2016-01-06

    We consider the forward propagation of uncertainty in high-frequency waves, described by the second order wave equation with highly oscillatory initial data. The main sources of uncertainty are the wave speed and/or the initial phase and amplitude, described by a finite number of random variables with known joint probability distribution. We propose a stochastic spectral asymptotic method [1] for computing the statistics of uncertain output quantities of interest (QoIs), which are often linear or nonlinear functionals of the wave solution and its spatial/temporal derivatives. The numerical scheme combines two techniques: a high-frequency method based on Gaussian beams [2, 3], a sparse stochastic collocation method [4]. The fast spectral convergence of the proposed method depends crucially on the presence of high stochastic regularity of the QoI independent of the wave frequency. In general, the high-frequency wave solutions to parametric hyperbolic equations are highly oscillatory and non-smooth in both physical and stochastic spaces. Consequently, the stochastic regularity of the QoI, which is a functional of the wave solution, may in principle below and depend on frequency. In the present work, we provide theoretical arguments and numerical evidence that physically motivated QoIs based on local averages of |uE|2 are smooth, with derivatives in the stochastic space uniformly bounded in E, where uE and E denote the highly oscillatory wave solution and the short wavelength, respectively. This observable related regularity makes the proposed approach more efficient than current asymptotic approaches based on Monte Carlo sampling techniques.

  19. A simple, tunable, and highly sensitive radio-frequency sensor.

    Science.gov (United States)

    Cui, Yan; Sun, Jiwei; He, Yuxi; Wang, Zheng; Wang, Pingshan

    2013-08-05

    We report a radio frequency (RF) sensor that exploits tunable attenuators and phase shifters to achieve high-sensitivity and broad band frequency tunability. Three frequency bands are combined to enable sensor operations from ∼20 MHz to ∼38 GHz. The effective quality factor (Qeff ) of the sensor is as high as ∼3.8 × 10(6) with 200 μl of water samples. We also demonstrate the measurement of 2-proponal-water-solution permittivity at 0.01 mole concentration level from ∼1 GHz to ∼10 GHz. Methanol-water solution and de-ionized water are used to calibrate the RF sensor for the quantitative measurements.

  20. High-frequency microrheology reveals cytoskeleton dynamics in living cells

    Science.gov (United States)

    Rigato, Annafrancesca; Miyagi, Atsushi; Scheuring, Simon; Rico, Felix

    2017-08-01

    Living cells are viscoelastic materials, dominated by an elastic response on timescales longer than a millisecond. On shorter timescales, the dynamics of individual cytoskeleton filaments are expected to emerge, but active microrheology measurements on cells accessing this regime are scarce. Here, we develop high-frequency microrheology experiments to probe the viscoelastic response of living cells from 1 Hz to 100 kHz. We report the viscoelasticity of different cell types under cytoskeletal drug treatments. On previously inaccessible short timescales, cells exhibit rich viscoelastic responses that depend on the state of the cytoskeleton. Benign and malignant cancer cells revealed remarkably different scaling laws at high frequencies, providing a unique mechanical fingerprint. Microrheology over a wide dynamic range--up to the frequency characterizing the molecular components--provides a mechanistic understanding of cell mechanics.

  1. Self-integrating inductive loop for measuring high frequency pulses.

    Science.gov (United States)

    Rojas-Moreno, Mónica V; Robles, Guillermo; Martínez-Tarifa, Juan M; Sanz-Feito, Javier

    2011-08-01

    High frequency pulses can be measured by means of inductive sensors. The main advantage of these sensors consists of non-contact measurements that isolate and protect measuring equipment. The objective of this paper is to present the implementation of an inductive sensor for measuring rapidly varying currents. It consists of a rectangular loop with a resistor at its terminals. The inductive loop gives the derivative of the current according to Faraday's law and the resistor connected to the loop modifies the sensor's frequency response to obtain an output proportional to the current pulse. The self-integrating inductive sensor was validated with two sensors, a non-inductive resistor and a commercial high frequency current transformer. The results were compared to determine the advantages and drawbacks of the probe as an adequate inductive transducer.

  2. Automated screening for high-frequency hearing loss.

    Science.gov (United States)

    Vlaming, Marcel S M G; MacKinnon, Robert C; Jansen, Marije; Moore, David R

    2014-01-01

    Hearing loss at high frequencies produces perceptual difficulties and is often an early sign of a more general hearing loss. This study reports the development and validation of two new speech-based hearing screening tests in English that focus on detecting hearing loss at frequencies above 2000 Hz. The Internet-delivered, speech-in noise tests used closed target-word sets of digit triplets or consonant-vowel-consonant (CVC) words presented against a speech-shaped noise masker. The digit triplet test uses the digits 0 to 9 (excluding the disyllabic 7), grouped in quasi-random triplets. The CVC test uses simple words (e.g., "cat") selected for the high-frequency spectral content of the consonants. During testing, triplets or CVC words were identified in an adaptive procedure to obtain the speech reception threshold (SRT) in noise. For these new, high-frequency (HF) tests, the noise was low-pass filtered to produce greater masking of the low-frequency speech components, increasing the sensitivity of the test for HF hearing loss. Individual test tokens (digits, CVCs) were first homogenized using a group of 10 normal-hearing (NH) listeners by equalizing intelligibility across tokens at several speech-in-noise levels. Both tests were then validated and standardized using groups of 24 NH listeners and 50 listeners with hearing impairment. Performance on the new high frequency digit triplet (HF-triplet) and CVC (HF-CVC) tests was compared with audiometric hearing loss, and with that on the unfiltered, broadband digit triplet test (BB-triplet) test, and the ASL (Adaptive Sentence Lists) speech-in-noise test. The HF-triplet and HF-CVC test results (SRT) both correlated positively and highly with high-frequency audiometric hearing loss and with the ASL test. SRT for both tests as a function of high-frequency hearing loss increased at nearly three times the rate as that of the BB-triplet test. The intraindividual variability (SD) on the tests was about 2.1 (HF-triplet) and 1

  3. Pigeons use high spatial frequencies when memorizing pictures.

    Science.gov (United States)

    Murphy, Matthew S; Brooks, Daniel I; Cook, Robert G

    2015-07-01

    The ability of animals to visually memorize and categorize a large number of pictures is well established. Determining the kinds of information animals use to accomplish these goals has been more difficult. This experiment examined the contribution of spatial frequency information to picture memorization by pigeons. A series of grayscale pictures were notch-filtered to eliminate different portions of the spatial frequency spectrum of memorized pictures. The results indicated that the higher spatial frequencies in the pictures were most important to accurate recognition, suggesting that the detection of fine detail at the high range of pigeon visual acuity was a critical component to their memorized representations. Subsequent tests with band-pass and hybrid conflict stimuli confirmed this conclusion. It is suggested that cognitive and task demands may determine how spatial frequency is used by pigeons, with higher frequencies more important to item memorization, while lower spatial frequencies may contribute to categorization in other types of discrimination tasks. (c) 2015 APA, all rights reserved).

  4. Features of the high frequency power transformer calculation

    Directory of Open Access Journals (Sweden)

    D.A. Zabarilo

    2013-06-01

    Full Text Available Purpose. The windings of power transformers have low resistance value and a most inductance, which reduces the rate of rise of current in the windings. Therefore, when the estimated amount of current is set one should make sure of the possibility of achieving it. As inductance is characterized by a short-circuit voltage, it is necessary to develop a technique for determining the maximum magnitude of the current in the windings of the transformer according to the short-circuit voltage and operating frequency. Methodology. The classical method of calculation of transient processes to determine the value of the transient current of the transformer windings to achieve purpose is used. Findings. The nature of the transient current in the windings of high-frequency transformer, which is powered by a voltage inverter is investigated and analyzed. Originality. The method for determining the maximum amount of current depending on the short-circuit voltage and frequency of the applied voltage with other set-up parameters was proposed. Practical value. The proposed method allows determining the maximum value of the current in the windings of the high-frequency transformer including its RL-parameters. This will let compare the value of a given current with possible depending on short-circuit voltage and frequency of the applied voltage. Research material may be applied for power transformers design.

  5. Fact or friction: jumps at ultra high frequency

    NARCIS (Netherlands)

    Christensen, K.; Oomen, R.; Podolskij, M.

    2011-01-01

    In this paper, we demonstrate that jumps in financial asset prices are not nearly as common as generally thought, and that they account for only a very small proportion of total return variation. We base our investigation on an extensive set of ultra high-frequency equity and foreign exchange rate

  6. High frequency plant regeneration from shoot tip explants of ...

    African Journals Online (AJOL)

    A high frequency and rapid regeneration protocol was developed from shoot tip explants of Citrullus colocynthis on Murashige and Skoog (MS) medium supplemented with N6-benzylamino-purine (BAP, 0.5 mg/l) and α-naphthalene acetic acid (NAA, 0.5 mg/l). Highest number of shoots (23.0 ± 0.567) was obtained on MS ...

  7. High frequency MOSFET gate drivers technologies and applications

    CERN Document Server

    Zhang, Zhiliang

    2017-01-01

    This book describes high frequency power MOSFET gate driver technologies, including gate drivers for GaN HEMTs, which have great potential in the next generation of switching power converters. Gate drivers serve as a critical role between control and power devices.

  8. Collocations of High Frequency Noun Keywords in Prescribed Science Textbooks

    Science.gov (United States)

    Menon, Sujatha; Mukundan, Jayakaran

    2012-01-01

    This paper analyses the discourse of science through the study of collocational patterns of high frequency noun keywords in science textbooks used by upper secondary students in Malaysia. Research has shown that one of the areas of difficulty in science discourse concerns lexis, especially that of collocations. This paper describes a corpus-based…

  9. Development and Testing of Adaptive HF (High Frequency) Radio Techniques

    Science.gov (United States)

    1984-10-01

    December 1980). 2. HFDM : AN/USQ-83(XH-1)(V), The High Frequency Digital Modem, Opera- tion and Maintenance Manual, Sylvania Systems Group, Needham Heights...the HF digital modem ( HFDM ) 2 that per- mits implementing of different modulaticn formats simply by changing the program code. The sounding signal can

  10. Frequency of Guns in the Households of High School Seniors

    Science.gov (United States)

    Coker, Ann L.; Bush, Heather M.; Follingstad, Diane R.; Brancato, Candace J.

    2017-01-01

    Background: In 2013, President Obama lifted the federal ban on gun violence research. The current study provides one of the first reports to estimate household gun ownership as reported by youth. Methods: In this cohort study of 3,006 high school seniors from 24 schools, we examined the frequency of household guns ownership. Results: About 65%…

  11. Modelling financial high frequency data using point processes

    DEFF Research Database (Denmark)

    Hautsch, Nikolaus; Bauwens, Luc

    In this chapter written for a forthcoming Handbook of Financial Time Series to be published by Springer-Verlag, we review the econometric literature on dynamic duration and intensity processes applied to high frequency financial data, which was boosted by the work of Engle and Russell (1997...

  12. High resolution mid-infrared spectroscopy based on frequency upconversion

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin; Hu, Qi; Tidemand-Lichtenberg, Peter

    2013-01-01

    We present high resolution upconversion of incoherent infrared radiation by means of sum-frequency mixing with a laser followed by simple CCD Si-camera detection. Noise associated with upconversion is, in strong contrast to room temperature direct mid-IR detection, extremely small, thus very faint...

  13. Current barriers to confine high frequency common mode currents

    NARCIS (Netherlands)

    Moonen, Dominicus Johannes Guilielmus; Buesink, Frederik Johannes Karel; Leferink, Frank Bernardus Johannes

    2016-01-01

    A commercially produced three phase power line filter is submitted to a Current Barrier (CB) Electro-Magnetic Compatibility (EMC) zoning strategy as an attempt to confine high frequency common mode currents. The intent of the paper is not to show how to build a ’perfect’ filter, since this is known.

  14. Practical techniques for enhancing the high-frequency MASW method

    Science.gov (United States)

    For soil exploration in the vadose zone, a high-frequency multi-channel analysis of surface waves (HF-MASW) method has been developed. In the study, several practical techniques were applied to enhance the overtone image of the HF-MASW method. They included (1) the self-adaptive MASW method using a ...

  15. High frequency ultrasound imaging of a single-species biofilm

    NARCIS (Netherlands)

    Shemesh, H.; Goertz, D. E.; van der Sluis, L. W. M.; de Jong, N.; Wu, M. K.; Wesselink, P. R.

    Objective: This study evaluated the feasibility of a high frequency ultrasound scan to examine the 3D morphology of Streptococcus mutans biofilms grown in vitro. Methods: Six 2-day S. mutans biofilms and six 7-day biofilms were grown on tissue culture membranes and on bovine dentine discs. A sterile

  16. Planck 2013 results. VI. High Frequency Instrument data processing

    DEFF Research Database (Denmark)

    Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.

    2013-01-01

    We describe the processing of the 531 billion raw data samples from the High Frequency Instrument (HFI), which we performed to produce six temperature maps from the first 473 days of Planck-HFI survey data. These maps provide an accurate rendition of the sky emission at 100, 143,217, 353, 545...

  17. High-frequency Trading, Algorithmic Finance, and the Flash Crash

    DEFF Research Database (Denmark)

    Borch, Christian

    2016-01-01

    The Flash Crash of 6 May 2010 has an interesting status in discussions of high-frequency trading, i.e. fully automated, superfast computerized trading: it is invoked both as an important illustration of how this field of algorithmic trading operates and, more often, as an example of how fully aut...

  18. A Miniature Recording Cardiotachometer

    DEFF Research Database (Denmark)

    Zsombor-Murray, Paul J; Vroomen, Louis J.; Hendriksen, Nils Thedin

    1981-01-01

    The design of a miniature, recording cardiotachometer is described. It is simple and can store digital data. Bench and field tests, using a hand-held display, are presented. Construction and principles of operation are discussed. Applications, with performing athlete subjects, are outlined....

  19. High-frequency Oscillations in Eyewalls of Tropical Cyclones

    Science.gov (United States)

    Li, Weibiao; Chen, Shumin

    2017-04-01

    High-frequency oscillations, with periods of about 2 hours, are first identified by applying wavelet analysis to observed minutely wind speeds around the eye and eyewall of tropical cyclones (TCs). Analysis of a model simulation of Typhoon Hagupit (2008) shows that the oscillations also occur in the intensity of TC, vertical motion, convergence activity and air density around the eyewall. Sequences of oscillations in these variables follow a certain order. In a typical cycle, the drop of density in the planetary boundary layer (PBL) is followed by an increase in the inward radial wind; this enhanced frictional convergence causes increase in density, followed by a decrease in the inward radial wind. The increase in convergence in the PBL causes increase of updraft at the top of the PBL, followed by high vertical velocity at high altitude of 8-10 km, then the increase of the maximum wind speed, and vice versa. Key words: tropical cyclone, high-frequency oscillations, eyewall, intensity

  20. Very High Frequency Switch-Mode Power Supplies

    DEFF Research Database (Denmark)

    Madsen, Mickey Pierre

    The importance of technology and electronics in our daily life is constantly increasing. At the same time portability and energy efficiency are currently some of the hottest topics. This creates a huge need for power converters in a compact form factor and with high efficiency, which can supply...... band gap semiconductors and integrated power supplies. Afterwards a wide range of topologies suited for operation at very high frequencies is investigated and the most promising ones are tested experimentally. Through a comparison of these topologies the class DE inverter is found to be superior...... to the other alternatives, at least for converters with hundreds of volts as input and a few tens of watts output power. A class DE inverter does however require a high side gate drive, which have never been presented before for these frequencies and voltages. This thesis presents the worlds first high side...

  1. Automated Screening for High-Frequency Hearing Loss

    OpenAIRE

    Vlaming, Marcel S M G; Mackinnon, Robert C.; Jansen, Marije; Moore, David R.

    2014-01-01

    OBJECTIVE: Hearing loss at high frequencies produces perceptual difficulties and is often an early sign of a more general hearing loss. This study reports the development and validation of two new speech-based hearing screening tests in English that focus on detecting hearing loss at frequencies above 2000 Hz. DESIGN: The Internet-delivered, speech-in noise tests used closed target-word sets of digit triplets or consonant-vowel-consonant (CVC) words presented against a speech-shaped noise mas...

  2. High-power non linear frequency converted laser diodes

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Andersen, Peter E.; Hansen, Anders Kragh

    2015-01-01

    We present different methods of generating light in the blue-green spectral range by nonlinear frequency conversion of tapered diode lasers achieving state-of-the-art power levels. In the blue spectral range, we show results using single-pass second harmonic generation (SHG) as well as cavity...... enhanced sum frequency generation (SFG) with watt-level output powers. SHG and SFG are also demonstrated in the green spectral range as a viable method to generate up to 4 W output power with high efficiency using different configurations....

  3. Planck 2013 results. VI. High Frequency Instrument data processing

    OpenAIRE

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.

    2013-01-01

    We describe the processing of the 531 billion raw data samples from the High Frequency Instrument (HFI), which we performed to produce six temperature maps from the first 473 days of Planck-HFI survey data. These maps provide an accurate rendition of the sky emission at 100, 143, 217, 353, 545, and 857GHz with an angular resolution ranging from 9.́7 to 4.́6. The detector noise per (effective) beam solid angle is respectively, 10, 6 , 12, and 39 μK in the four lowest HFI frequency channels (10...

  4. Occupational hearing loss: tonal audiometry X high frequencies audiometry

    Directory of Open Access Journals (Sweden)

    Lauris, José Roberto Pereira

    2009-09-01

    Full Text Available Introduction: Studies on the occupational exposure show that noise has been reaching a large part of the working population around the world, and NIHL (noise-induced hearing loss is the second most frequent disease of the hearing system. Objective: To review the audiometry results of employees at the campus of the University of São Paulo, Bauru. Method: 40 audiometry results were analyzed between 2007 and 2008, whose ages comprised between 32 and 59 years, of both sexes and several professions: gardeners, maintenance technicians, drivers etc. The participants were divided into 2 groups: those with tonal thresholds within acceptable thresholds and those who presented auditory thresholds alterations, that is tonal thresholds below 25 dB (NA in any frequency (Administrative Rule no. 19 of the Ministry of Labor 1998. In addition to the Conventional Audiologic Evaluation (250Hz to 8.000Hz we also carried out High Frequencies Audiometry (9000Hz, 10000Hz, 11200Hz, 12500Hz, 14000Hz and 16000Hz. Results: According to the classification proposed by FIORINI (1994, 25.0% (N=10 they presented with NIHL suggestive audiometric configurations. The results of high frequencies Audiometry confirmed worse thresholds than those obtained in the conventional audiometry in the 2 groups evaluated. Conclusion: The use of high frequencies audiometry proved to be an important register as a hearing alteration early detection method.

  5. Design and development of ITER high-frequency magnetic sensor

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Y., E-mail: Yunxing.Ma@iter.org [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Fircroft Engineering, Lingley House, 120 Birchwood Point, Birchwood Boulevard, Warrington, WA3 7QH (United Kingdom); Vayakis, G. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Begrambekov, L.B. [National Research Nuclear University (MEPhI), 115409, Moscow, Kashirskoe shosse 31 (Russian Federation); Cooper, J.-J. [Culham Centre for Fusion Energy (CCFE), Abingdon, Oxfordshire OX14 3DB (United Kingdom); Duran, I. [IPP Prague, Za Slovankou 1782/3, 182 00 Prague 8 (Czech Republic); Hirsch, M.; Laqua, H.P. [Max-Planck-Institut für Plasmaphysik, Teilinstitut Greifswald, Wendelsteinstraße 1, D-17491 Greifswald (Germany); Moreau, Ph. [CEA Cadarache, 13108 Saint Paul lez Durance Cedex (France); Oosterbeek, J.W. [Eindhoven University of Technology (TU/e), PO Box 513, 5600 MB Eindhoven (Netherlands); Spuig, P. [CEA Cadarache, 13108 Saint Paul lez Durance Cedex (France); Stange, T. [Max-Planck-Institut für Plasmaphysik, Teilinstitut Greifswald, Wendelsteinstraße 1, D-17491 Greifswald (Germany); Walsh, M. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France)

    2016-11-15

    Highlights: • ITER high-frequency magnetic sensor system has been designed. • Prototypes have been successfully manufactured. • Manufactured prototypes have been tested in various labs. • Test results experimentally validated the design. - Abstract: High-frequency (HF) inductive magnetic sensors are the primary ITER diagnostic set for Toroidal Alfvén Eigenmodes (TAE) detection, while they also supplement low-frequency MHD and plasma equilibrium measurements. These sensors will be installed on the inner surface of ITER vacuum vessel, operated in a harsh environment with considerable neutron/nuclear radiation and high thermal load. Essential components of the HF sensor system, including inductive coil, electron cyclotron heating (ECH) shield, electrical cabling and termination load, have been designed to meet ITER measurement requirements. System performance (e.g. frequency response, thermal conduction) has been assessed. A prototyping campaign was initiated to demonstrate the manufacturability of the designed components. Prototypes have been produced according to the specifications. A series of lab tests have been performed to examine assembly issues and validate electrical and thermo-mechanical aspects of the design. In-situ microwave radiation test has been conducted in the MISTRAL test facility at IPP-Greifswald to experimentally examine the microwave shielding efficiency and structural integrity of the ECH shield. Low-power microwave attenuation measurement and scanning electron microscopic inspection were conducted to probe and examine the quality of the metal coating on the ECH shield.

  6. 75 FR 81284 - Nationwide Use of High Frequency and Ultra High Frequency Active SONAR Technology; Draft...

    Science.gov (United States)

    2010-12-27

    ... such as Hurricanes Katrina and Rita of 2005; established security areas around high-value vessels... appropriate location for inspection would be at a water depth that would preclude seafloor disturbance. As... technology during times of extreme weather, such as hurricanes, could be required for onshore areas that...

  7. Highly flexible distributions to fit multiple frequency financial returns

    Science.gov (United States)

    BenSaïda, Ahmed; Slim, Skander

    2016-01-01

    Financial data are usually studied via low flexible distributions, independently of the frequency of the data, due to their simplicity and analytical tractability. In this paper we analyze two highly flexible five-parameter distributions into fitting financial returns, these are the skewed generalized t (SGT) and the generalized hyperbolic (GH). Applications carried on two exchange rates (Euro-Dollar and Dollar-Yen), and two indexes (S&P 500 and Nikkei 225) over four frequencies: weekly, daily, 30-min and 5-min, confirm the superiority of the SGT and GH in approximating the distribution of a given data at a remarkable precision. Moreover, as we move from higher to lower frequency, the distribution's overall shape does indeed change radically, and the estimated parameters refute the tendency to normality, which calls into question the aggregational Gaussianity's stylized fact.

  8. Graphene Quantum Capacitors for High Frequency Tunable Analog Applications.

    Science.gov (United States)

    Moldovan, Clara F; Vitale, Wolfgang A; Sharma, Pankaj; Tamagnone, Michele; Mosig, Juan R; Ionescu, Adrian M

    2016-08-10

    Graphene quantum capacitors (GQC) are demonstrated to be enablers of radio-frequency (RF) functions through voltage-tuning of their capacitance. We show that GQC complements MEMS and MOSFETs in terms of performance for high frequency analog applications and tunability. We propose a CMOS compatible fabrication process and report the first experimental assessment of their performance at microwaves frequencies (up to 10 GHz), demonstrating experimental GQCs in the pF range with a tuning ratio of 1.34:1 within 1.25 V, and Q-factors up to 12 at 1 GHz. The figures of merit of graphene variable capacitors are studied in detail from 150 to 350 K. Furthermore, we describe a systematic, graphene specific approach to optimize their performance and predict the figures of merit achieved if such a methodology is applied.

  9. High temporal frequency measurements of greenhouse gas emissions from soils

    Science.gov (United States)

    Savage, K.; Phillips, R.; Davidson, E.

    2014-05-01

    Carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) are the most important anthropogenic greenhouse gases (GHGs). Variation in soil moisture can be very dynamic, and it is one of the dominant factors controlling the net exchange of these three GHGs. Although technologies for high-frequency, precise measurements of CO2 have been available for years, methods for measuring soil fluxes of CH4 and N2O at high temporal frequency have been hampered by lack of appropriate technology for in situ real-time measurements. A previously developed automated chamber system for measuring CO2 flux from soils was configured to run in line with a new quantum cascade laser (QCLAS) instrument that measures N2O and CH4. Here we present data from a forested wetland in Maine and an agricultural field in North Dakota, which provided examples of both net uptake and production for N2O and CH4. The objective was to provide a range of conditions in which to run the new system and to compare results to a traditional manual static-chamber method. The high-precision and more-than-10-times-lower minimum detectable flux of the QCLAS system, compared to the manual system, provided confidence in measurements of small N2O uptake in the forested wetland. At the agricultural field, the greatest difference between the automated and manual sampling systems came from the effect of the relatively infrequent manual sampling of the high spatial variation, or "hot spots", in GHG fluxes. Hot spots greatly influenced the seasonal estimates, particularly for N2O, over one 74-day alfalfa crop cycle. The high temporal frequency of the automated system clearly characterized the transient response of all three GHGs to precipitation and demonstrated a clear diel pattern related to temperature for GHGs. A combination of high-frequency automated and spatially distributed chambers would be ideal for characterizing hot spots and "hot moments" of GHG fluxes.

  10. Cross-education after high-frequency versus low-frequency volume-matched handgrip training.

    Science.gov (United States)

    Boyes, Natasha G; Yee, Peter; Lanovaz, Joel L; Farthing, Jonathan P

    2017-10-01

    Cross-education training programs cause interlimb asymmetry of strength and hypertrophy. We examined the cross-education effects from a high-frequency (HF) versus a low-frequency (LF) volume-matched handgrip training program on interlimb asymmetry. Right-handed participants completed either HF (n = 10; 2 × 6 repetitions 10 times per week) or LF (n = 9; 5 × 8 repetitions 3 times per week) training. Testing occurred twice before and once after 4 weeks of right-handed isometric handgrip training totaling 120 weekly repetitions. Measures were maximal isometric handgrip and wrist flexion torque, muscle thickness, and muscle activation (electromyography; EMG). Grip strength was greater in both limbs posttraining, pooled across groups (P 0.103). Both LF and HF induced cross-education of grip strength to the untrained limb, but HF did not reduce asymmetry. These findings have implications for injury rehabilitation. Muscle Nerve 56: 689-695, 2017. © 2017 Wiley Periodicals, Inc.

  11. A Laser Interferometric Miniature Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Carr, Dustin W., PhD.; Baldwin, Patrick C.; Milburn, Howard; Robinson, David

    2011-09-12

    This is the second year of a Phase II Small Business Innovation Research (SBIR) contract geared towards the development of a new seismic sensor. Ground-based seismic monitoring systems have proven to be very capable in identifying nuclear tests, and can provide somewhat precise information on the location and yield of the explosive device. Making these measurements, however, currently requires very expensive and bulky seismometers that are difficult to deploy in places where they are most needed. A high performance, compact device can enable rapid deployment of large scale arrays, which can in turn be used to provide higher quality data during times of critical need. The use of a laser interferometer-based device has shown considerable promise, while also presenting significant challenges. The greatest strength of this optical readout technique is the ability to decouple the mechanical design from the transducer, thus enabling a miniaturized design that is not accessible with conventional sensing techniques. However, the nonlinearity in the optical response must be accounted for in the sensor output. Previously, we had proposed using a force-feedback approach to position the sensor at a point of maximum linearity. However, it can be shown that the combined nonlinearities of the optical response and the force-feedback curve necessarily results in a significant amount of unwanted noise at low frequencies. Having realized this, we have developed a new approach that eliminates force feedback, allowing the proof mass to move freely at all times. This takes advantage of some advanced optical spatial filtering that was developed at Symphony Acoustics for other types of sensors, and was recently adapted to this work. After processing the signals in real time, the digital output of the device is intrinsically linear, and the sensor can operate at any orientation with the same level of resolution, while instantly adapting to significant changes in orientation. Ultimately, we

  12. Advances in miniature spectrometer and sensor development

    Science.gov (United States)

    Malinen, Jouko; Rissanen, Anna; Saari, Heikki; Karioja, Pentti; Karppinen, Mikko; Aalto, Timo; Tukkiniemi, Kari

    2014-05-01

    Miniaturization and cost reduction of spectrometer and sensor technologies has great potential to open up new applications areas and business opportunities for analytical technology in hand held, mobile and on-line applications. Advances in microfabrication have resulted in high-performance MEMS and MOEMS devices for spectrometer applications. Many other enabling technologies are useful for miniature analytical solutions, such as silicon photonics, nanoimprint lithography (NIL), system-on-chip, system-on-package techniques for integration of electronics and photonics, 3D printing, powerful embedded computing platforms, networked solutions as well as advances in chemometrics modeling. This paper will summarize recent work on spectrometer and sensor miniaturization at VTT Technical Research Centre of Finland. Fabry-Perot interferometer (FPI) tunable filter technology has been developed in two technical versions: Piezoactuated FPIs have been applied in miniature hyperspectral imaging needs in light weight UAV and nanosatellite applications, chemical imaging as well as medical applications. Microfabricated MOEMS FPIs have been developed as cost-effective sensor platforms for visible, NIR and IR applications. Further examples of sensor miniaturization will be discussed, including system-on-package sensor head for mid-IR gas analyzer, roll-to-roll printed Surface Enhanced Raman Scattering (SERS) technology as well as UV imprinted waveguide sensor for formaldehyde detection.

  13. High frequency modeling of power transformers. Stresses and diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Bjerkan, Eilert

    2005-05-15

    In this thesis a reliable, versatile and rigorous method for high frequency power transformer modeling is searched and established. The purpose is to apply this model to sensitivity analysis of FRA (Frequency Response Analysis) which is a quite new diagnostic method for assessing the mechanical integrity of power transformer windings on-site. The method should be versatile in terms of being able to estimate internal and external over voltages and resonances. Another important aspect is that the method chosen is suitable for real transformer geometries. In order to verify the suitability of the model for real transformers, a specific test-object is used. This is a 20MVA transformer, and details are given in chapter 1.4. The high frequency power transformer model is established from geometrical and constructional information from the manufacturer, together with available material characteristics. All circuit parameters in the lumped circuit representation are calculated based on these data. No empirical modifications need to be performed. Comparison shows capability of reasonable accuracy in the range from 10 khz to 1 MHz utilizing a disc-to-disc representation. A compromise between accuracy of model due to discretization and complexity of the model in a turn-to-turn representation is inevitable. The importance of the iron core is emphasized through a comparison of representations with/without the core included. Frequency-dependent phenomena are accurately represented using an isotropic equivalent for windings and core, even with a coarse mesh for the FEM-model. This is achieved through a frequency-dependent complex permeability representation of the materials. This permeability is deduced from an analytical solution of the frequency-dependent magnetic field inside the conductors and the core. The importance of dielectric losses in a transformer model is also assessed. Since published data on the high frequency properties of press board are limited, some initial

  14. Design of Plasma Generator Driven by High-frequency High-voltage Power Supply

    OpenAIRE

    Yong-Nong, C.; K. Chih-Ming

    2013-01-01

    In this research, a high-frequency high-voltage power supply designed for plasma generator is presented. The power supply mainly consists of a series resonant converter with a high-frequency high-voltage boost transformer. Due to the indispensable high-voltage inheritance in the operation of plasma generator, the analysis of transformer need considering not only winding resistance, leakage inductance, magnetizing inductance, and core-loss resistance, but also parasitic capacitance resulted fr...

  15. Robust Optimization Design Algorithm for High-Frequency TWTs

    Science.gov (United States)

    Wilson, Jeffrey D.; Chevalier, Christine T.

    2010-01-01

    Traveling-wave tubes (TWTs), such as the Ka-band (26-GHz) model recently developed for the Lunar Reconnaissance Orbiter, are essential as communication amplifiers in spacecraft for virtually all near- and deep-space missions. This innovation is a computational design algorithm that, for the first time, optimizes the efficiency and output power of a TWT while taking into account the effects of dimensional tolerance variations. Because they are primary power consumers and power generation is very expensive in space, much effort has been exerted over the last 30 years to increase the power efficiency of TWTs. However, at frequencies higher than about 60 GHz, efficiencies of TWTs are still quite low. A major reason is that at higher frequencies, dimensional tolerance variations from conventional micromachining techniques become relatively large with respect to the circuit dimensions. When this is the case, conventional design- optimization procedures, which ignore dimensional variations, provide inaccurate designs for which the actual amplifier performance substantially under-performs that of the design. Thus, this new, robust TWT optimization design algorithm was created to take account of and ameliorate the deleterious effects of dimensional variations and to increase efficiency, power, and yield of high-frequency TWTs. This design algorithm can help extend the use of TWTs into the terahertz frequency regime of 300-3000 GHz. Currently, these frequencies are under-utilized because of the lack of efficient amplifiers, thus this regime is known as the "terahertz gap." The development of an efficient terahertz TWT amplifier could enable breakthrough applications in space science molecular spectroscopy, remote sensing, nondestructive testing, high-resolution "through-the-wall" imaging, biomedical imaging, and detection of explosives and toxic biochemical agents.

  16. Design of 1 MHz Solid State High Frequency Power Supply

    Science.gov (United States)

    Parmar, Darshan; Singh, N. P.; Gajjar, Sandip; Thakar, Aruna; Patel, Amit; Raval, Bhavin; Dhola, Hitesh; Dave, Rasesh; Upadhay, Dishang; Gupta, Vikrant; Goswami, Niranjan; Mehta, Kush; Baruah, Ujjwal

    2017-04-01

    High Frequency Power supply (HFPS) is used for various applications like AM Transmitters, metallurgical applications, Wireless Power Transfer, RF Ion Sources etc. The Ion Source for a Neutral beam Injector at ITER-India uses inductively coupled power source at High Frequency (∼1 MHz). Switching converter based topology used to generate 1 MHz sinusoidal output is expected to have advantages on efficiency and reliability as compared to traditional RF Tetrode tubes based oscillators. In terms of Power Electronics, thermal and power coupling issues are major challenges at such a high frequency. A conceptual design for a 200 kW, 1 MHz power supply and a prototype design for a 600 W source been done. The prototype design is attempted with Class-E amplifier topology where a MOSFET is switched resonantly. The prototype uses two low power modules and a ferrite combiner to add the voltage and power at the output. Subsequently solution with Class-D H-Bridge configuration have been evaluated through simulation where module design is stable as switching device do not participate in resonance, further switching device voltage rating is substantially reduced. The rating of the modules is essentially driven by the maximum power handling capacity of the MOSFETs and ferrites in the combiner circuit. The output passive network including resonance tuned network and impedance matching network caters for soft switching and matches the load impedance to 50ohm respectively. This paper describes the conceptual design of a 200 kW high frequency power supply and experimental results of the prototype 600 W, 1 MHz source.

  17. Study of switching transients in high frequency converters

    Science.gov (United States)

    Zinger, Donald S.; Elbuluk, Malik E.; Lee, Tony

    1993-01-01

    As the semiconductor technologies progress rapidly, the power densities and switching frequencies of many power devices are improved. With the existing technology, high frequency power systems become possible. Use of such a system is advantageous in many aspects. A high frequency ac source is used as the direct input to an ac/ac pulse-density-modulation (PDM) converter. This converter is a new concept which employs zero voltage switching techniques. However, the development of this converter is still in its infancy stage. There are problems associated with this converter such as a high on-voltage drop, switching transients, and zero-crossing detecting. Considering these problems, the switching speed and power handling capabilities of the MOS-Controlled Thyristor (MCT) makes the device the most promising candidate for this application. A complete insight of component considerations for building an ac/ac PDM converter for a high frequency power system is addressed. A power device review is first presented. The ac/ac PDM converter requires switches that can conduct bi-directional current and block bi-directional voltage. These bi-directional switches can be constructed using existing power devices. Different bi-directional switches for the converter are investigated. Detailed experimental studies of the characteristics of the MCT under hard switching and zero-voltage switching are also presented. One disadvantage of an ac/ac converter is that turn-on and turn-off of the switches has to be completed instantaneously when the ac source is at zero voltage. Otherwise shoot-through current or voltage spikes can occur which can be hazardous to the devices. In order for the devices to switch softly in the safe operating area even under non-ideal cases, a unique snubber circuit is used in each bi-directional switch. Detailed theory and experimental results for circuits using these snubbers are presented. A current regulated ac/ac PDM converter built using MCT's and IGBT's is

  18. High frequency plant regeneration from mature seedderived callus ...

    African Journals Online (AJOL)

    In the present study, we have developed a high-frequency plant regeneration system for Italian ryegrass via callus culture using mature seeds as explants. Optimal embryogenic callus induction was found to occur in MS medium containing 5 mg l-1 2,4-D, 0.5 mg l-1 BA, 500 mg l-1 L-proline, 1 g l-1 casein hydrolysate, 30 g ...

  19. High frequency plant regeneration from mature seed- derived callus ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-12-15

    Dec 15, 2009 ... In the present study, we have developed a high-frequency plant regeneration system for Italian ryegrass via callus culture using mature seeds as explants. Optimal embryogenic callus induction was found to occur in MS medium containing 5 mg l-1 2,4-D, 0.5 mg l-1 BA, 500 mg l-1 L-proline, 1 g l-1 casein.

  20. DISTRIBUTION OF HIGH-FREQUENCY VOLTAGE IN DISTRIBUTION NETWORK

    Directory of Open Access Journals (Sweden)

    M. I. Polujanov

    2005-01-01

    Full Text Available The paper reveals a method for remote determination of a location of single-phase short circuit on the ground in distribution networks with isolated neutral point. The method is based on measurement of high-frequency (a tone  range inter-phase voltage at all transformer substations and it creates preconditions for automation of searching process.  

  1. Unbalanced heat isolation in high-frequency electrothermics of polymers

    OpenAIRE

    A. V. Livshits

    2014-01-01

    The polymeric materials are widely applied in many industries because they have a number of advantages, which allow their use instead of traditional materials. Nevertheless, the issues of manufacturing products from polymeric materials and their applications are insufficiently studied. The same can be said about high-frequency (HF) electrothermics of polymers. Therefore, mathematical simulation of electrothermic processes is of interest both in terms of science and in terms of applications.Tr...

  2. Automated composite ellipsoid modelling for high frequency GTD analysis

    Science.gov (United States)

    Sze, K. Y.; Rojas, R. G.; Klevenow, F. T.; Scheick, J. T.

    1991-01-01

    The preliminary results of a scheme currently being developed to fit a composite ellipsoid to the fuselage of a helicopter in the vicinity of the antenna location are discussed under the assumption that the antenna is mounted on the fuselage. The parameters of the close-fit composite ellipsoid would then be utilized as inputs into NEWAIR3, a code programmed in FORTRAN 77 for high frequency Geometrical Theory of Diffraction (GTD) Analysis of the radiation of airborne antennas.

  3. A novel high-frequency encoding algorithm for image compression

    Science.gov (United States)

    Siddeq, Mohammed M.; Rodrigues, Marcos A.

    2017-12-01

    In this paper, a new method for image compression is proposed whose quality is demonstrated through accurate 3D reconstruction from 2D images. The method is based on the discrete cosine transform (DCT) together with a high-frequency minimization encoding algorithm at compression stage and a new concurrent binary search algorithm at decompression stage. The proposed compression method consists of five main steps: (1) divide the image into blocks and apply DCT to each block; (2) apply a high-frequency minimization method to the AC-coefficients reducing each block by 2/3 resulting in a minimized array; (3) build a look up table of probability data to enable the recovery of the original high frequencies at decompression stage; (4) apply a delta or differential operator to the list of DC-components; and (5) apply arithmetic encoding to the outputs of steps (2) and (4). At decompression stage, the look up table and the concurrent binary search algorithm are used to reconstruct all high-frequency AC-coefficients while the DC-components are decoded by reversing the arithmetic coding. Finally, the inverse DCT recovers the original image. We tested the technique by compressing and decompressing 2D images including images with structured light patterns for 3D reconstruction. The technique is compared with JPEG and JPEG2000 through 2D and 3D RMSE. Results demonstrate that the proposed compression method is perceptually superior to JPEG with equivalent quality to JPEG2000. Concerning 3D surface reconstruction from images, it is demonstrated that the proposed method is superior to both JPEG and JPEG2000.

  4. Airway Humidification During High-Frequency Percussive Ventilation

    Science.gov (United States)

    2009-03-01

    Association for Respi- ratory Care (AARC) recommendations for the minimum acceptable heating and humidification during mechanical ventilation ( 30°C...Care. AARC clinical practice guideline: humidification during mechanical ventilation . Respir Care 1992;37(8):887-890. 3. Branson RD. The effects of...Airway Humidification During High-Frequency Percussive Ventilation Patrick F Allan MD, Michael J Hollingsworth CRT, Gordon C Maniere CRT, Anthony K

  5. High-Frequency-Trading: Zwischen Nutzeffekten und Risiken

    OpenAIRE

    Gomber, Peter

    2011-01-01

    Die Mehrheit der auf High Frequency Trading basierenden Strategien trägt zur Marktliquidität (Market-Making-Strategien) oder zur Preisfindung und Markteffizienz (Arbitrage-Strategien) bei. Eine ungeeignete Regulierung dieser Strategien oder eine Beeinträchtigung der zugrunde liegenden Geschäftsmodelle durch übermäßige Belastungen kann kontraproduktiv sein und unvorhergesehene Auswirkungen auf die Marktqualität haben. Allerdings muss jede missbräuchliche Strategie effektiv durch die Aufsichtsb...

  6. High-frequency EPR on high-spin transition-metal sites

    NARCIS (Netherlands)

    Mathies, Guinevere

    2012-01-01

    The electronic structure of transition-metal sites can be probed by electron-paramagnetic-resonance (EPR) spectroscopy. The study of high-spin transition-metal sites benefits from EPR spectroscopy at frequencies higher than the standard 9.5 GHz. However, high-frequency EPR is a developing field. In

  7. Miniaturized Environmental Monitoring Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    C. B. Freidhoff

    1997-09-01

    The objective of the Mass Spectrograph on a Chip (MSOC) program is the development of a miniature, multi-species gas sensor fabricated using silicon micromachining technology which will be orders of magnitude smaller and lower power consumption than a conventional mass spectrometer. The sensing and discrimination of this gas sensor are based on an ionic mass spectrograph, using magnetic and/or electrostatic fields. The fields cause a spatial separation of the ions according to their respective mass-to-charge ratio. The fabrication of this device involves the combination of microelectronics with micromechanically built sensors and, ultimately, vacuum pumps. The prototype of a chemical sensor would revolutionize the method of performing environmental monitoring for both commercial and government applications. The portable unit decided upon was the miniaturized gas chromatograph with a mass spectrometer detector, referred to as a GC/MS in the analytical marketplace.

  8. Miniature mass analyzer

    CERN Document Server

    Cuna, C; Lupsa, N; Cuna, S; Tuzson, B

    2003-01-01

    The paper presents the concept of different mass analyzers that were specifically designed as small dimension instruments able to detect with great sensitivity and accuracy the main environmental pollutants. The mass spectrometers are very suited instrument for chemical and isotopic analysis, needed in environmental surveillance. Usually, this is done by sampling the soil, air or water followed by laboratory analysis. To avoid drawbacks caused by sample alteration during the sampling process and transport, the 'in situ' analysis is preferred. Theoretically, any type of mass analyzer can be miniaturized, but some are more appropriate than others. Quadrupole mass filter and trap, magnetic sector, time-of-flight and ion cyclotron mass analyzers can be successfully shrunk, for each of them some performances being sacrificed but we must know which parameters are necessary to be kept unchanged. To satisfy the miniaturization criteria of the analyzer, it is necessary to use asymmetrical geometries, with ion beam obl...

  9. High Sensitivity Very Low Frequency Receiver for Earthquake Data Acquisition.

    Science.gov (United States)

    Munir, A.; Najmurrokhman, A.

    2017-03-01

    high sensitivity very low frequency (VLF) receiver is developed based on AD744 monolithic operational amplifier (Op-Amp) for earthquake data acquisition. In research related natural phenomena such as atmospheric noise, lightning and earthquake, a VLF receiver particularly with high sensitivity is utterly required due to the low power of VLF wave signals received by the antenna. The developed receiver is intended to have high sensitivity reception for the signals in frequency range of 10-30kHz allocated for earthquake observation. The VLF receiver which is portably designed is also equipped with an output port connectable to the soundcard of personal computer for further data acquisition. After obtaining the optimum design, the hardware realization is implemented on a printed circuit board (PCB) for experimental characterization. It shows that the sensitivity of realized VLF receiver is almost linear in the predefined frequency range for the input signals lower than -12dBm and to be quadratic for the higher level input signals.

  10. Planck 2013 results. VI. High Frequency Instrument data processing

    CERN Document Server

    Ade, P.A.R.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J. -P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J.J.; Bond, J.R.; Borrill, J.; Bouchet, F.R.; Boulanger, F.; Bowyer, J.W.; Bridges, M.; Bucher, M.; Burigana, C.; Cardoso, J. -F.; Catalano, A.; Chamballu, A.; Chary, R. -R.; Chen, X.; Chiang, L. -Y; Chiang, H.C.; Christensen, P.R.; Church, S.; Clements, D.L.; Colombi, S.; Colombo, L.P.L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B.P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R.D.; Davis, R.J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J. -M.; Désert, F. -X.; Dickinson, C.; Diego, J.M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Enßlin, T.A.; Eriksen, H.K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A.A.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.; Girard, D.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K.M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J.E.; Hansen, F.K.; Hanson, D.; Harrison, D.; Helou, G.; Henrot-Versillé, S.; Herent, O.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S.R.; Hivon, E.; Hobson, M.; Holmes, W.A.; Hornstrup, A.; Hou, Z.; Hovest, W.; Huffenberger, K.M.; Hurier, G.; Jaffe, T.R.; Jaffe, A.H.; Jones, W.C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T.S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J. -M.; Lasenby, A.; Laureijs, R.J.; Lawrence, C.R.; Jeune, M. Le; Leonardi, R.; Leroy, C.; Lesgourgues, J.; Liguori, M.; Lilje, P.B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P.M.; Macías-Pérez, J.F.; MacTavish, C.J.; Maffei, B.; Mandolesi, N.; Maris, M.; Marshall, D.J.; Martin, P.G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Matthai, F.; Mazzotta, P.; McGehee, P.; Meinhold, P.R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M. -A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Mottet, S.; Munshi, D.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C.B.; Nørgaard-Nielsen, H.U.; North, C.; Noviello, F.; Novikov, D.; Novikov, I.; Orieux, F.; Osborne, S.; Oxborrow, C.A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G.W.; Prézeau, G.; Prunet, S.; Puget, J. -L.; Rachen, J.P.; Racine, B.; Reach, W.T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rusholme, B.; Sanselme, L.; Santos, D.; Sauvé, A.; Savini, G.; Shellard, E.P.S.; Spencer, L.D.; Starck, J. -L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sureau, F.; Sutton, D.; Suur-Uski, A. -S.; Sygnet, J. -F.; Tauber, J.A.; Tavagnacco, D.; Techene, S.; Terenzi, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vibert, L.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L.A.; Wandelt, B.D.; White, S.D.M.; Yvon, D.; Zacchei, A.; Zonca, A.

    2014-01-01

    We describe the processing of the 531 billion raw data samples from the High Frequency Instrument (hereafter HFI), which we performed to produce six temperature maps from the first 473 days of Planck-HFI survey data. These maps provide an accurate rendition of the sky emission at 100, 143, 217, 353, 545, and 857 GHz with an angular resolution ranging from 9.7 to 4.6 arcmin. The detector noise per (effective) beam solid angle is respectively, 10, 6, 12 and 39 microKelvin in HFI four lowest frequency channel (100--353 GHz) and 13 and 14 kJy/sr for the 545 and 857 GHz channels. Using the 143 GHz channel as a reference, these two high frequency channels are intercalibrated within 5% and the 353 GHz relative calibration is at the percent level. The 100 and 217 GHz channels, which together with the 143 GHz channel determine the high-multipole part of the CMB power spectrum (50 < l <2500), are intercalibrated at better than 0.2 %.

  11. High-frequency instability of the sheath-plasma resonance

    Science.gov (United States)

    Stenzel, R. L.

    1989-01-01

    Coherent high frequency oscillations near the electron plasma frequency (omega approx. less than omega sub p) are generated by electrodes with positive dc bias immersed in a uniform Maxwellian afterglow plasma. The instability occurs at the sheath-plasma resonance and is driven by a negative RF sheath resistance associated with the electron inertia in the diode-like electron-rich sheath. With increasing dc bias, i.e., electron transit time, the instability exhibits a hard threshold, downward frequency pulling, line broadening and copious harmonics. The fundamental instability is a bounded oscillation due to wave evanescence, but the harmonics are radiated as electromagnetic waves from the electrodes acting like antennas. Wavelength and polarization measurements confirm the emission process. Electromagnetic waves are excited by electrodes of various geometries (planes, cylinders, spheres) which excludes other radiation mechanisms such as orbitrons or beam-plasma instabilities. The line broadening mechanism was identified as a frequency modulation via the electron transit time by dynamic ions. Ion oscillations at the sheath edge give rise to burst-like RF emissions. These laboratory observations of a new instability are important for antennas in space plasmas, generation of coherent beams with diodes, and plasma diagnostics.

  12. Miniaturized photoacoustic spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Okandan, Murat; Robinson, Alex; Nielson, Gregory N.; Resnick, Paul J.

    2016-08-09

    A low-power miniaturized photoacoustic sensor uses an optical microphone made by semiconductor fabrication techniques, and optionally allows for all-optical communication to and from the sensor. This allows integration of the photoacoustic sensor into systems with special requirements, such as those that would be reactive in an electrical discharge condition. The photoacoustic sensor can also be operated in various other modes with wide application flexibility.

  13. Global Transcriptomic Profiling of Cardiac Hypertrophy and Fatty Heart Induced by Long-Term High-Energy Diet in Bama Miniature Pigs.

    Directory of Open Access Journals (Sweden)

    Jihan Xia

    Full Text Available A long-term high-energy diet affects human health and leads to obesity and metabolic syndrome in addition to cardiac steatosis and hypertrophy. Ectopic fat accumulation in the heart has been demonstrated to be a risk factor for heart disorders, but the molecular mechanism of heart disease remains largely unknown. Bama miniature pigs were fed a high-fat, high-sucrose diet (HFHSD for 23 months. These pigs developed symptoms of metabolic syndrome and showed cardiac steatosis and hypertrophy with a greatly increased body weight (2.73-fold, P<0.01, insulin level (4.60-fold, P<0.01, heart weight (1.82-fold, P<0.05 and heart volume (1.60-fold, P<0.05 compared with the control pigs. To understand the molecular mechanisms of cardiac steatosis and hypertrophy, nine pig heart cRNA samples were hybridized to porcine GeneChips. Microarray analyses revealed that 1,022 genes were significantly differentially expressed (P<0.05, ≥1.5-fold change, including 591 up-regulated and 431 down-regulated genes in the HFHSD group relative to the control group. KEGG analysis indicated that the observed heart disorder involved the signal transduction-related MAPK, cytokine, and PPAR signaling pathways, energy metabolism-related fatty acid and oxidative phosphorylation signaling pathways, heart function signaling-related focal adhesion, axon guidance, hypertrophic cardiomyopathy and actin cytoskeleton signaling pathways, inflammation and apoptosis pathways, and others. Quantitative RT-PCR assays identified several important differentially expressed heart-related genes, including STAT3, ACSL4, ATF4, FADD, PPP3CA, CD74, SLA-8, VCL, ACTN2 and FGFR1, which may be targets of further research. This study shows that a long-term, high-energy diet induces obesity, cardiac steatosis, and hypertrophy and provides insights into the molecular mechanisms of hypertrophy and fatty heart to facilitate further research.

  14. Tunable-frequency high-field electron paramagnetic resonance

    Science.gov (United States)

    Krzystek, J.; Zvyagin, S. A.; Ozarowski, Andrew; Trofimenko, S.; Telser, Joshua

    2006-02-01

    A tunable-frequency methodology based on backward wave oscillator sources in high-frequency and -field EPR (HFEPR) is described. This methodology is illustrated by an application to three non-Kramers transition metal ion complexes and one Kramers ion complex. The complexes are of: Ni(II) ( S = 1) as found in dichlorobistriphenylphosphanenickel(II), Mn(III) ( S = 2) as found in mesotetrasulfonatoporphyrinatomanganese(III) chloride, Fe(II) ( S = 2) as found in ferrous sulfate tetrahydrate, and Co(II) ( S = 3/2) as found in azido(tris(3- tert-butylpyrazol-1-yl)hydroborate)cobalt(II). The above Ni(II) and Mn(III) complexes have been studied before by HFEPR using the multifrequency methodology based on Gunn oscillator sources, but not by the present method, while the Fe(II) and Co(II) complexes presented here have not been studied by any form of HFEPR. Highly accurate spin Hamiltonian parameters can be obtained by the experimental methodology described here, in combination with automated fitting procedures. This method is particularly successful in determining g-matrix parameters, which are very difficult to extract for high-spin systems from single frequency (or a very limited set of multi-frequency) HFEPR spectra, but is also able to deliver equally accurate values of the zero-field splitting tensor. The experimental methods involve either conventional magnetic field modulation or an optical modulation of the sub-THz wave beam. The relative merits of these and other experimental methods are discussed.

  15. Phosphorus geochemical cycling inferences from high frequency lake monitoring

    Science.gov (United States)

    Crockford, Lucy; Jordan, Philip; Taylor, David

    2013-04-01

    Freshwater bodies in Europe are required to return to good water quality status under the Water Framework Directive by 2015. A small inter-drumlin lake in the northeast of Ireland has been susceptible to eutrophic episodes and the presence of algal blooms during summer since annual monitoring began in 2002. While agricultural practice has been controlled by the implementation of the Nitrates Directive in 2006, the lake is failing to recover to good water quality status to meet with the Water Framework Directive objectives. Freshwaters in Ireland are regarded, in the main, as phosphorus (P) limited so identifying the sources of P possibly fuelling the algal blooms may provide an insight into how to improve water quality conditions. In a lake, these sources are divided between external catchment driven loads, as a result of farming and point sources, and P released from sediments made available to photic waters through internal lake mechanisms. High frequency sensors on data-sondes, installed on the lake in three locations, have provided chlorophyll a, redox potential, dissolved oxygen, temperature, pH, conductivity and turbidity data since March 2010. A data-sonde was installed in the hypolimnion to observe the change in lake conditions as P is released from lake sediments as a result of geochemical cycling with iron during anoxic periods. As compact high frequency sampling equipment for P analysis is still in its infancy for freshwaters, a proxy measurement of geochemical cycling in lakes would be useful to determine fully the extent of P contribution from sediments to the overall P load. Phosphorus was analysed once per month along with a number of other parameters and initial analysis of the high frequency data has shown changes in readings when known P release from lake sediments has occurred. Importantly, these data have shown when these P enriched hypolimnetic waters may be re-introduced to shallower waters in the photic zone, by changes in dissolved oxygen

  16. High Frequency Modulation Method for Measuring of Birefringence

    Directory of Open Access Journals (Sweden)

    Šulc M.

    2013-05-01

    Full Text Available A method of optical birefringence measurement is presented. It uses an el ectro-optic modulator for the high frequency modulation of polarization of the laser beam. The developed optical apparatus exhibits high sensitivity. It is able to measure very small birefringence of samples down to 10-3 rad. The accuracy and sensitivity of the method was checked by measurement of calibrated Sol eil – Babi net compensator. Method can be also used for online and accurate measurement of an optical components birefringence. This application was developed with the aim to measure Cotton-Mouton effect in air and nitrogen.

  17. Long range ultra-high frequency (UHF) radio frequency identification (RFID) antenna design

    Science.gov (United States)

    Reynolds, Nathan D.

    There is an ever-increasing demand for radio frequency identification (RFID) tags that are passive, long range, and mountable on multiple surfaces. Currently, RFID technology is utilized in numerous applications such as supply chain management, access control, and public transportation. With the combination of sensory systems in recent years, the applications of RFID technology have been extended beyond tracking and identifying. This extension includes applications such as environmental monitoring and healthcare applications. The available sensory systems usually operate in the medium or high frequency bands and have a low read range. However, the range limitations of these systems are being overcome by the development of RFID sensors focused on utilizing tags in the ultra-high frequency (UHF) band. Generally, RFID tags have to be mounted to the object that is being identified. Often the objects requiring identification are metallic. The inherent properties of metallic objects have substantial effects on nearby electromagnetic radiation; therefore, the operation of the tag antenna is affected when mounted on a metallic surface. This outlines one of the most challenging problems for RFID systems today: the optimization of tag antenna performance in a complex environment. In this research, a novel UHF RFID tag antenna, which has a low profile, long range, and is mountable on metallic surfaces, is designed analytically and simulated using a 3-D electromagnetic simulator, ANSYS HFSS. A microstrip patch antenna is selected as the antenna structure, as patch antennas are low profile and suitable for mounting on metallic surfaces. Matching and theoretical models of the microstrip patch antenna are investigated. Once matching and theory of a microstrip patch antenna is thoroughly understood, a unique design technique using electromagnetic band gap (EBG) structures is explored. This research shows that the utilization of an EBG structure in the patch antenna design yields

  18. Very High Frequency Galvanic Isolated Offline Power Supply

    DEFF Research Database (Denmark)

    Pedersen, Jeppe Arnsdorf

    inverters with a single combined rectifier. The converter designed to deliver 9 W to a 60 V LED load and is achieving an efficiency of 89.4% and a power density of 2.14 W3 . The development of this converter proof that offline VHF converter can be implemented with high efficiencies even for low power applications...... converters. During this Ph.D. thesis, different areas of an offline VHF converters are described, dur-ing the project different areas have been investigated such as, gate drive, synchronous rectifiers, PCB transformers, control of a resonant converter, galvanic isolation, EMC performance, power factor......During the last decades many researchers have turned their attention to raising the operation frequency of power converters to the very high frequency (VHF) range going from 30 MHz to 300 MHz. Increasing the operating frequency of a power converter leads to smaller energy storing components...

  19. High-Frequency Quantitative Ultrasound Imaging of Cancerous Lymph Nodes

    Science.gov (United States)

    Mamou, Jonathan; Coron, Alain; Hata, Masaki; Machi, Junji; Yanagihara, Eugene; Laugier, Pascal; Feleppa, Ernest J.

    2009-07-01

    High-frequency ultrasound (HFU) offers a means of investigating biological tissue at the microscopic level. High-frequency, quantitative-ultrasound (QUS) methods were developed to characterize freshly-dissected lymph nodes of cancer patients. Three-dimensional (3D) ultrasound data were acquired from lymph nodes using a 25.6-MHz center-frequency transducer. Each node was inked prior to 3D histological fixation to recover orientation after sectioning. Backscattered echo signals were processed to yield two QUS estimates associated with tissue microstructure: scatterer size and acoustic concentration. The QUS estimates were computed following established methods using a Gaussian scattering model. Four lymph nodes from a patient with stage-3 colon cancer were evaluated as an illustrative case. QUS images were generated for this patient by expressing QUS estimates as color-encoded pixels and overlaying them on conventional gray-scale B-mode images. The single metastatic node had an average scatterer size that was significantly larger than the average scatterer size of the other nodes, and the statistics of both QUS estimates in the metastatic node showed greater variance than the statistics of the other nodes. Results indicate that the methods may provide a useful means of identifying small metastatic foci in dissected lymph nodes that might not be detectable using current standard pathology procedures.

  20. Slow high-frequency effects in mechanics: problems, solutions, potentials

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    2005-01-01

    them are introduced first in terms of simple physical examples, and then in generalized form for mathematical models covering broad classes of discrete and continuous mechanical systems. Several application examples are summarized. Three mathematical tools for analyzing HFE effects are described......Strong high-frequency excitation (HFE) may change the ‘slow’ (i.e. effective or average) properties of mechanical systems, e.g. their stiffness, natural frequencies, equilibriums, equilibrium stability, and bifurcation paths. This tutorial describes three general HFE effects: Stiffening...... – an apparent change in the stiffness associated with an equilibrium; Biasing – a tendency for a system to move towards a particular state which does not exist or is unstable without HFE; and Smoothening – a tendency for discontinuities to be apparently smeared out by HFE. The effects and a method for analyzing...

  1. High frequency microphone measurements for transition detection on airfoils

    Energy Technology Data Exchange (ETDEWEB)

    Doessing, M.

    2008-05-15

    Time series of pressure fluctuations has been obtained using high frequency microphones distributed over the surface of airfoils undergoing wind tunnel tests in the LM Windtunnel, owned by 'LM Glasfiber', Denmark. The present report describes the dataanalysis, with special attention given to transition detection. It is argued that the transition point can be detected by observing the increase in the mean of the Fourier spectre and that thismethod is very stable froma numerical point of view. Other important issues are also discussed, e.g. the variation of pressure standard deviations (sound pressure) and Tollmien-Schlichting frequencies. The tests were made at Reynolds and Mach numbers corresponding to the operating conditions of a typical horizontal axis wind turbine (HAWT). The Risoe B1-18, Risoe C2-18 and NACA0015 profiles were tested and the measured transition points are reported. (au)

  2. Measurement of high-intensity focused ultrasound fields using miniaturized all-silica fiber-optic Fabry-Perot hydrophones

    Science.gov (United States)

    Jia, Ping-Gang; Ke, Ding; Wang, Dai-Hua; Zeng, Lu-Yu; Jiang, Xin-Yin; Liu, Lei

    2014-11-01

    High-intensity focused ultrasounds (HIFUs), as a novel non-invasive surgery technology, have been used effectively for cancer therapy. In order to ensure the HIFU treatment safety, the acoustic pressure distributions and the size of the focal regions of HIFU fields need to be measured accurately. In this paper, the lateral sensitive and tip-sensitive all-silica fiberoptic Fabry-Perot ultrasonic hydrophone systems and the corresponding experimental setups are established to measure HIFU fields, respectively. The acoustic pressure distributions of the HIFU field along the X-axis, Y-axis, and Z-axis are compared in the degassed water by the lateral sensitive and tip-sensitive fiber-optic Fabry-Perot ultrasonic hydrophones. Experimental results show that the tip-sensitive configuration can measure the acoustic pressure distribution in the focal region with high accuracy than the lateral-sensitive configuration.

  3. Electrochemical growth of high-aspect ratio nanostructured silver chloride on silver and its application to miniaturized reference electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Safari, S; Selvaganapathy, P R [Department of Mechanical Engineering, McMaster University, Hamilton, ON, L8S 4L7 (Canada); Derardja, A [Faculty of Science and Engineering, University of Batna (Algeria); Deen, M J, E-mail: selvaga@mcmaster.ca, E-mail: jamal@mcmaster.ca [Electrical and Computer Engineering, McMaster University, Hamilton, ON, L8S 4L8 (Canada)

    2011-08-05

    The sensitivity of many biological and chemical sensors is critically dependent on the stability of the potential of the reference electrode being used. The stability of a reference electrode's potential is highly influenced by the properties of its surface. In this paper, for the first time, the formation of nanosheets of silver chloride on silver wire is observed and controlled using high anodic constant potential (>0.5 V) and pulsed electrodeposition. The resulting nanostructured morphology substantially improves the electrode's potential stability in comparison with the conventional globular surface structure. The increased stability is attributed to the increase in the surface area of the silver chloride produced by the nanosheet formation.

  4. Quality ratings of frequency-compressed speech by participants with extensive high-frequency dead regions in the cochlea.

    Science.gov (United States)

    Salorio-Corbetto, Marina; Baer, Thomas; Moore, Brian C J

    2017-02-01

    The objective was to assess the degradation of speech sound quality produced by frequency compression for listeners with extensive high-frequency dead regions (DRs). Quality ratings were obtained using values of the starting frequency (Sf) of the frequency compression both below and above the estimated edge frequency, fe, of each DR. Thus, the value of Sf often fell below the lowest value currently used in clinical practice. Several compression ratios were used for each value of Sf. Stimuli were sentences processed via a prototype hearing aid based on Phonak Exélia Art P. Five participants (eight ears) with extensive high-frequency DRs were tested. Reductions of sound-quality produced by frequency compression were small to moderate. Ratings decreased significantly with decreasing Sf and increasing CR. The mean ratings were lowest for the lowest Sf and highest CR. Ratings varied across participants, with one participant rating frequency compression lower than no frequency compression even when Sf was above fe. Frequency compression degraded sound quality somewhat for this small group of participants with extensive high-frequency DRs. The degradation was greater for lower values of Sf relative to fe, and for greater values of CR. Results varied across participants.

  5. Saltating Snow Mechanics: High Frequency Particle Response to Mountain Wind

    Science.gov (United States)

    Aksamit, N. O.; Pomeroy, J. W.

    2015-12-01

    Blowing snow transport theory is currently limited by its dependency on the coupling of time-averaged measurements of particle saltation and suspension and wind speed. Details of the stochastic process of particle transport and complex bed interactions in the saltation layer, along with the influence of boundary-layer turbulence are unobservable with classic measurement techniques. In contrast, recent advances in two-phase sand transport understanding have been spurred by development of high-frequency wind and particle velocity measurement techniques. To advance the understanding of blowing snow, laser illuminated high-speed videography and ultrasonic anemometry were deployed in a mountain environment to examine saltation of snow over a natural snowpack in detail. A saltating snow measurement site was established at the Fortress Mountain Snow Laboratory, Alberta, Canada and instrumented with two Campbell CSAT3 ultrasonic anemometers, four Campbell SR50 ultrasonic snow depth sounders and a two dimensional Particle Tracking Velocimetry (PTV) system. Measurements were collected during nighttime blowing snow events, quantifying snow particle response to high frequency wind gusts. This novel approach permits PTV to step beyond mean statistics of snow transport by identifying sub-species of saltation motion in the first 20 mm above the surface, as well as previously overlooked initiation processes, such as tumbling aggregate snow crystals ejecting smaller grains, then eventually disintegrating and bouncing into entrainment. Spectral characteristics of snow particle ejection and saltation dynamics were also investigated. These unique observations are starting to inform novel conceptualizations of saltating snow transport mechanisms.

  6. BBO sapphire compound for high-power frequency conversion

    Science.gov (United States)

    Rothhardt, Carolin; Rothhardt, Jan; Klenke, Arno; Peschel, Thomas; Eberhardt, Ramona; Limpert, Jens; Tünnermann, Andreas

    2015-02-01

    Lasers used for diverse applications from industry to fundamental science tend to increasing output powers. Some applications require frequency conversion via nonlinear optical crystals, which suffer from the formation of temperature gradients at high power operation which causes thermal lensing or destruction of the crystal due to tensile stresses. To avoid these unwanted effects we joined a beta barium borate (BBO) crystal with sapphire disks serving as effective heat spreaders due to their high thermal conductivity (thermal conductivity κ = 42 W/Km). Therefore, smooth and flat crystal surfaces were joined by plasma-activated bonding. The joining relies on covalent bonds, which are formed via a condensation reaction of the surfaces which are first connected by Van der Waals forces. The cleaned surfaces are activated by plasma and brought into contact, pressed together and heat treated at a temperature of about 100°C. Special attention has been paid to the cleaning of the surfaces. Therefor the surfaces have been evaluated before and after treatment by means of atomic force microscopy. A stable connection has been formed successfully, which has been tested in a proof of principle experiment and demonstrated efficient second harmonic generation at up to 253 W of input power. Compared to a bare single BBO crystal it could be shown that the temperature within the crystal compound is significantly reduced. Such hybrid structures pave the way for frequency conversion at kilowatts of average power for future high power lasers.

  7. High Frequency Vibration Based Fatigue Testing of Developmental Alloys

    Science.gov (United States)

    Holycross, Casey M.; Srinivasan, Raghavan; George, Tommy J.; Tamirisakandala, Seshacharyulu; Russ, Stephan M.

    Many fatigue test methods have been previously developed to rapidly evaluate fatigue behavior. This increased test speed can come at some expense, since these methods may require non-standard specimen geometry or increased facility and equipment capability. One such method, developed by George et al, involves a base-excited plate specimen driven into a high frequency bending resonant mode. This resonant mode is of sufficient frequency (typically 1200 to 1700 Hertz) to accumulate 107 cycles in a few hours. One of the main limitations of this test method is that fatigue cracking is almost certainly guaranteed to be surface initiated at regions of high stress. This brings into question the validity of the fatigue test results, as compared to more traditional uniaxial, smooth-bar testing, since high stresses are subjecting only a small volume to fatigue damage. This limitation also brings into question the suitability of this method to screen developmental alloys, should their initiation life be governed by subsurface flaws. However, if applicable, the rapid generation of fatigue data using this method would facilitate faster design iterations, identifying more quickly, material and manufacturing process deficiencies. The developmental alloy used in this study was a powder metallurgy boron-modified Ti-6Al-4V, a new alloy currently being considered for gas turbine engine fan blades. Plate specimens were subjected to fully reversed bending fatigue. Results are compared with existing data from commercially available Ti-6Al-4V using both vibration based and more traditional fatigue test methods.

  8. Miniature Ground Mapping LADAR Project

    Data.gov (United States)

    National Aeronautics and Space Administration — System & Processes Engineering Corporation (SPEC) proposes a miniature solid state surface imaging LADAR, for imaging the landing areas providing precision...

  9. RF MEMS Fractal Capacitors With High Self-Resonant Frequencies

    KAUST Repository

    Elshurafa, Amro M.

    2012-07-23

    This letter demonstrates RF microelectromechanical systems (MEMS) fractal capacitors possessing the highest reported self-resonant frequencies (SRFs) in PolyMUMPS to date. Explicitly, measurement results show SRFs beyond 20 GHz. Furthermore, quality factors higher than 4 throughout a band of 1-15 GHz and reaching as high as 28 were achieved. Additional benefits that are readily attainable from implementing fractal capacitors in MEMS are discussed, including suppressing residual stress warping, eliminating the need for etching holes, and reducing parasitics. The latter benefits were acquired without any fabrication intervention. © 2011 IEEE.

  10. Very High Frequency Half Bridge DC/DC Converter

    DEFF Research Database (Denmark)

    Madsen, Mickey Pierre; Knott, Arnold; Andersen, Michael A. E.

    2014-01-01

    This paper presents the first, off chip, class DE (resonant half bridge) converter working in the Very High Frequency (VHF) range. The benefits of using half bridge circuits both in the inverter and rectifier part of a VHF resonant dc/dc converter are analyzed and design equations for all...... components in the power stage are given. The circuit has been simulated to verify the accuracy of the presented equations and an efficiency of 89% has been shown. A prototype has been implemented with self-oscillating resonant gate drives driving the switches. The prototype has been used to drive an LED...

  11. High frequency microphone measurements for transition detection on airfoils

    DEFF Research Database (Denmark)

    Døssing, Mads

    Time series of pressure fluctuations has been obtained using high frequency microphones distributed over the surface of airfoils undergoing wind tunnel tests in the LM Windtunnel, owned by ’LM Glasfiber’, Denmark. The present report describes the dataanalysis, with special attention given...... to transition detection. It is argued that the transition point can be detected by observing the increase in the mean of the Fourier spectre and that thismethod is very stable froma numerical point of view. Other important issues are also discussed, e.g. the variation of pressure standard deviations (sound...

  12. Very High Frequency Interleaved Self-Oscillating Resonant SEPIC Converter

    DEFF Research Database (Denmark)

    Kovacevic, Milovan; Knott, Arnold; Andersen, Michael A. E.

    2013-01-01

    This paper describes analysis and design procedure of an interleaved, self-oscillating resonant SEPIC converter, suitable for operation at very high frequencies (VHF) ranging from 30 MHz to 300 MHz. The presented circuit consists of two resonant SEPIC DC-DC converters, and a capacitive...... interconnection network between the switches which provides self-oscillating and interleaved operation. A design approach to ensure zero voltage switching (ZVS) condition of the MOSFET devices is provided. To verify the proposed method, an 11 W, 50 MHz prototype was built using low-cost VDMOS devices...

  13. Transcriptomic analysis of hepatic responses to testosterone deficiency in miniature pigs fed a high-cholesterol diet.

    Science.gov (United States)

    Cai, Zhaowei; Jiang, Xiaoling; Pan, Yongming; Chen, Liang; Zhang, Lifan; Zhu, Keyan; Cai, Yueqin; Ling, Yun; Chen, Fangming; Xu, Xiaoping; Chen, Minli

    2015-02-06

    Recent studies have indicated that low serum testosterone levels are associated with increased risk of developing hepatic steatosis; however, the mechanisms mediating this phenomenon have not been fully elucidated. To gain insight into the role of testosterone in modulating hepatic steatosis, we investigated the effects of testosterone on the development of hepatic steatosis in pigs fed a high-fat and high-cholesterol (HFC) diet and profiled hepatic gene expression by RNA-Seq in HFC-fed intact male pigs (IM), castrated male pigs (CM), and castrated male pigs with testosterone replacement (CMT). Serum testosterone levels were significantly decreased in CM pigs, and testosterone replacement attenuated castration-induced testosterone deficiency. CM pigs showed increased liver injury accompanied by increased hepatocellular steatosis, inflammation, and elevated serum alanine aminotransferase levels compared with IM pigs. Moreover, serum levels of total cholesterol, low-density lipoprotein cholesterol, and triglycerides were markedly increased in CM pigs. Testosterone replacement decreased serum and hepatic lipid levels and improved liver injury in CM pigs. Compared to IM and CMT pigs, CM pigs had lower serum levels of superoxide dismutase but higher levels of malondialdehyde. Gene expression analysis revealed that upregulated genes in the livers of CM pigs were mainly enriched for genes mediating immune and inflammatory responses, oxidative stress, and apoptosis. Surprisingly, the downregulated genes mainly included those that regulate metabolism-related processes, including fatty acid oxidation, steroid biosynthesis, cholesterol and bile acid metabolism, and glucose metabolism. KEGG analysis showed that metabolic pathways, fatty acid degradation, pyruvate metabolism, the tricarboxylic acid cycle, and the nuclear factor-kappaB signaling pathway were the major pathways altered in CM pigs. This study demonstrated that testosterone deficiency aggravated

  14. Development of a miniaturized deformable mirror controller

    Science.gov (United States)

    Bendek, Eduardo; Lynch, Dana; Pluzhnik, Eugene; Belikov, Ruslan; Klamm, Benjamin; Hyde, Elizabeth; Mumm, Katherine

    2016-07-01

    High-Performance Adaptive Optics systems are rapidly spreading as useful applications in the fields of astronomy, ophthalmology, and telecommunications. This technology is critical to enable coronagraphic direct imaging of exoplanets utilized in ground-based telescopes and future space missions such as WFIRST, EXO-C, HabEx, and LUVOIR. We have developed a miniaturized Deformable Mirror controller to enable active optics on small space imaging mission. The system is based on the Boston Micromachines Corporation Kilo-DM, which is one of the most widespread DMs on the market. The system has three main components: The Deformable Mirror, the Driving Electronics, and the Mechanical and Heat management. The system is designed to be extremely compact and have lowpower consumption to enable its use not only on exoplanet missions, but also in a wide-range of applications that require precision optical systems, such as direct line-of-sight laser communications, and guidance systems. The controller is capable of handling 1,024 actuators with 220V maximum dynamic range, 16bit resolution, and 14bit accuracy, and operating at up to 1kHz frequency. The system fits in a 10x10x5cm volume, weighs less than 0.5kg, and consumes less than 8W. We have developed a turnkey solution reducing the risk for currently planned as well as future missions, lowering their cost by significantly reducing volume, weight and power consumption of the wavefront control hardware.

  15. Excitation and Ionisation dynamics in high-frequency plasmas

    Science.gov (United States)

    O'Connell, D.

    2008-07-01

    Non-thermal low temperature plasmas are widely used for technological applications. Increased demands on plasma technology have resulted in the development of various discharge concepts based on different power coupling mechanisms. Despite this, power dissipation mechanisms in these discharges are not yet fully understood. Of particular interest are low pressure radio-frequency (rf) discharges. The limited understanding of these discharges is predominantly due to the complexity of the underlying mechanisms and difficult diagnostic access to important parameters. Optical measurements are a powerful diagnostic tool offering high spatial and temporal resolution. Optical emission spectroscopy (OES) provides non-intrusive access, to the physics of the plasma, with comparatively simple experimental requirements. Improved advances in technology and modern diagnostics now allow deeper insight into fundamental mechanisms. In low pressure rf discharges insight into the electron dynamics within the rf cycle can yield vital information. This requires high temporal resolution on a nano-second time scale. The optical emission from rf discharges exhibits temporal variations within the rf cycle. These variations are particularly strong, in for example capacitively coupled plasmas (CCPs), but also easily observable in inductively coupled plasmas (ICPs), and can be exploited for insight into power dissipation. Interesting kinetic and non-linear coupling effects are revealed in capacitive systems. The electron dynamics exhibits a complex spatio-temporal structure. Excitation and ionisation, and, therefore, plasma sustainment is dominated through directed energetic electrons created through the dynamics of the plasma boundary sheath. In the relatively simple case of an asymmetric capacitively coupled rf plasma the complexity of the power dissipation is exposed and various mode transitions can be clearly observed and investigated. At higher pressure secondary electrons dominate the

  16. Growth of high {Tc} superconducting fibers using a miniaturized laser-heated float zone process. Progress report, November 6, 1990--December 31, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Feigelson, R.S.; Route, R.K.; DeMattei, R.C.

    1991-12-31

    This report summarizes the progress made on the project ``Growth of High {Tc} Superconducting Fibers Using a Miniaturized Laser-Heated Float Zone Process`` during the 14 month period from Nov. 6, 1990 to Dec. 31, 1991. The studies during this period focused primarily on phase diagram studies, phase relations in the calcium aluminate system and on Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} (BSCCO). Some work was also done on the Advanced Fiber Growing Station. Because of the complicated phase relationships found in the incongruently melting BSCCO system, the incongruently melting CA{sub 3}Al{sub 2}O{sub 6} phase of the calcium oxide-aluminum oxide system was studied as a model material. The data obtained was in agreement with well known solidification theory. Fibers grown from calcium oxide rich sources contained calcium oxide nodules which transported from the melting source interface to the growth interface, while those grown from aluminum oxide rich sources contained continuous inclusions of a divorced eutectic. The melt compositions were also found to follow theoretical predictions. The agreement of this data with the phase diagram and solidification theory demonstrates that phase equilibrium information can be extracted from fiber growth experiments. BSCCO feed rods were made from 12 different compositions. Fibers were grown from these rods and the melts were abruptly quenched which preserves the as-grown 2212 fiber, a glassy frozen melt and the source. A future study of these sections will reveal the phase relationships that exist in the BSCCO system. Melt temperature gradients of 500--1,000 C/cm were measured near the interface in these experiments. During this reporting period, work continued on the mechanical components of the Advanced Fiber Growth Station.

  17. High-frequency fatigue after alpine slalom skiing.

    Science.gov (United States)

    Tomazin, Katja; Dolenec, Ales; Strojnik, Vojko

    2008-05-01

    The aim of the study was to examine the presence of high-frequency fatigue (HFF) after simulated alpine slalom skiing race. Eight male alpine skiers (18.4+/-1.2 y.a., 182.3+/-3.5 cm, 80.5+/-3.4 kg) completed the study. Their average FIS points in slalom were 30.1+/-5.4. After the special skiing warm up, the following initial tests were performed: blood lactate concentration, twitch response of the relaxed VL muscle, knee torque during low- (20 Hz) and high-frequency (100 Hz) electrical stimulation of vastus lateralis muscle, and maximum, voluntary isometric knee extension torque. Then, subjects performed slalom with 45 gates, whose duration was approximately 45 s. The same test sequence, except blood lactate test was used after slalom and the measurements started exactly 60 and 180 s after slalom. Blood lactate concentration measurement started exactly 3 and 5 min after slalom. A 1x3 repeated measures; time-series design was used with one within factor of time (before 60 s, and 180 s after skiing). The average blood lactate level increased from 1.6 (0.6) pre-slalom to 7.1(1.6) mmol(-l) 15 min post-slalom (F2,14=70.1; P<0.001). Sixty seconds after slalom, twitch contraction time shortened from 78.2 (5.7) pre-slalom to 66.0 (7.2) ms post-slalom (F1.19,8.3=9.9; P<0.05). Peak twitch torque was potentiated from 21.6 (3.8) to 26.4 (5.3) Nm (F2,14=16.7; P<0.05). Slalom reduced high-frequency torque from 64.4 (35) to 58.2 (34.2) Nm 60 s post-slalom (F2,14=3.8; P<0.05), while low-frequency torque stayed virtually the same. Slalom induced HFF, which is typical of SSC exercises of maximum intensity and short duration.

  18. Material control and surveillance for high frequency access vaults project

    Energy Technology Data Exchange (ETDEWEB)

    Longmire, V. L. (Victoria L.); Stevens, R. S. (Rebecca S.); Martinez, B. J. (Benny J.); Butler, G. W. (Gilbert W.); Huang, J. Y. (John Y.); Pickett, C. (Chris); Younkin, J. (James); Dunnigan, Janelle; Gaby, Jane; Lawson, R. (Roger)

    2004-01-01

    The 'Material Control and Surveillance for High Frequency Access Vaults' project sponsored by United States Department of Energy's Office of Security Policy, Policy Integration and Technical Support Program (SO-20.3) focuses on enhancing nuclear materials control and surveillance in vaults that are frequently accessed. The focus of this effort is to improve materials control and accountability (MC&A) while decreasing the operational impact of these activities. Los Alamos and Y-12 have developed a testbed at the Los Alamos National Laboratory for evaluating and demonstrating integrated technologies for use in enhancing materials control and accountability in active nuclear material storage vaults. An update will be provided on the new systems demonstrated in the test-bed including a 'confirmatory cart' for expediting the performance of inventory and radio-frequency actuated video that demonstrates the concept of automated data entry for materials moving between MBA's. The United States Department of Energy's Office of Security Policy, Policy Integration and Technical Support Program (SO-20.3) has sponsored a project where nuclear material inventory, control and surveillance systems are evaluated, developed, and demonstrated in an effort to provide technologies that reduce risk, increase material assurance, and provide cost-efficient alternatives to manpower-intensive physical inventory and surveillance approaches for working (high-frequency-access) vaults. This Fiscal Year has been largely focused on evaluating and developing components of two sub-systems that could be used either separately in nuclear material vaults or as part of a larger integrated system for nuclear materials accountability, control and surveillance.

  19. Electrokinetic particle-electrode interactions at high frequencies

    Science.gov (United States)

    Yariv, Ehud; Schnitzer, Ory

    2013-01-01

    We provide a macroscale description of electrokinetic particle-electrode interactions at high frequencies, where chemical reactions at the electrodes are negligible. Using a thin-double-layer approximation, our starting point is the set of macroscale equations governing the “bounded” configuration comprising of a particle suspended between two electrodes, wherein the electrodes are governed by a capacitive charging condition and the imposed voltage is expressed as an integral constraint. In the large-cell limit the bounded model is transformed into an effectively equivalent “unbounded” model describing the interaction between the particle and a single electrode, where the imposed-voltage condition is manifested in a uniform field at infinity together with a Robin-type condition applying at the electrode. This condition, together with the standard no-flux condition applying at the particle surface, leads to a linear problem governing the electric potential in the fluid domain in which the dimensionless frequency ω of the applied voltage appears as a governing parameter. In the high-frequency limit ω≫1 the flow is dominated by electro-osmotic slip at the particle surface, the contribution of electrode electro-osmosis being O(ω-2) small. That simplification allows for a convenient analytical investigation of the prevailing case where the clearance between the particle and the adjacent electrode is small. Use of tangent-sphere coordinates allows to calculate the electric and flows fields as integral Hankel transforms. At large distances from the particle, along the electrode, both fields decay with the fourth power of distance.

  20. A High Energy and High Efficiency Spectral Shaping Single Frequency Fiber Laser Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR phase II project proposes a single frequency high energy fiber laser system for coherent Lidar systems for remote sensing. Current state-of-art...

  1. A High Energy and High Efficiency Spectral Shaping Single Frequency Fiber Laser Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR phase I project proposes a tunable single frequency high energy fiber laser system for coherent Lidar systems for remote sensing. Current state-of-art...

  2. Articulated pipes conveying fluid pulsating with high frequency

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard

    1999-01-01

    Stability and nonlinear dynamics of two articulated pipes conveying fluid with a high-frequency pulsating component is investigated. The non-autonomous model equations are converted into autonomous equations by approximating the fast excitation terms with slowly varying terms. The downward hangin...... is shown to affect the nonlinear behavior of the system, e.g. bifurcation types can change from supercritical to subcritical, creating several coexisting stable solutions and also anti-symmetrical flutter may appear.......Stability and nonlinear dynamics of two articulated pipes conveying fluid with a high-frequency pulsating component is investigated. The non-autonomous model equations are converted into autonomous equations by approximating the fast excitation terms with slowly varying terms. The downward hanging....... An approximate nonlinear solution for small-amplitude flutter oscillations is obtained using a fifth-order multiple scales perturbation method, and large-amplitude oscillations are examined by numerical integration of the autonomous model equations, using a path-following algorithm. The pulsating fluid component...

  3. Breast tissue characterization with high-frequency scanning acoustic microscopy

    Science.gov (United States)

    Kumon, R. E.; Bruno, I.; Heartwell, B.; Maeva, E.

    2004-05-01

    We have performed imaging of breast tissue using scanning acoustic microscopy (SAM) in the range of 25-50 MHz with the goal of accurately and rapidly determining the structure and composition throughout the volume of the samples. In contrast to traditional histological slides, SAM images can be obtained without special preparation, sometimes even without sectioning, but with sufficiently high spatial resolution to give information comparable to surface optical images. As a result, the use of high-frequency SAM at the time of breast lumpectomy to identify disease-free margins has the potential to reduce reoperative rates, patient anxiety, and local recurrence. However, only limited work has been performed to characterize breast tissue in the frequency range above clinical ultrasound devices. The samples are 4-cm2-thick sections (2-3 mm) taken from mastectomies and preserved in formalin. They are placed between two plates and immersed in water during imaging. Attenuation images are acquired by focusing the acoustic beam at the top and bottom of the samples, although better results were obtained for bottom focusing. For purposes of comparison and identification of histological features, acoustical images will be presented along with optical images obtained from the same samples. [Work supported by CIHR.

  4. High-frequency ultrasonic arrays for ocular imaging

    Science.gov (United States)

    Jaeger, M. D.; Kline-Schoder, R. J.; Douville, G. M.; Gagne, J. R.; Morrison, K. T.; Audette, W. E.; Kynor, D. B.

    2007-03-01

    High-resolution ultrasound imaging of the anterior portion of the eye has been shown to provide important information for sizing of intraocular lens implants, diagnosis of pathological conditions, and creation of detailed maps of corneal topography to guide refractive surgery. Current ultrasound imaging systems rely on mechanical scanning of a single acoustic element over the surface of the eye to create the three-dimensional information needed by clinicians. This mechanical scanning process is time-consuming and subject to errors caused by eye movement during the scanning period. This paper describes development of linear ultrasound imaging arrays intended to increase the speed of image acquisition and reduce problems associated with ocular motion. The arrays consist of a linear arrangement of high-frequency transducer elements designed to operate in the 50 - 75 MHz frequency range. The arrays are produced using single-crystal lithium niobate piezoelectric material, thin film electrodes, and epoxy-based acoustic layers. The array elements have been used to image steel test structures and bovine cornea.

  5. Normocapnic high frequency oscillatory hyperventilation increases oxygenation in pigs.

    Science.gov (United States)

    Roubík, K; Pachl, J; Zábrodský, V

    2011-01-01

    High frequency oscillatory ventilation (HFOV), contrary to conventional ventilation, enables a safe increase in tidal volume (V(T)) without endangering alveoli by volutrauma or barotrauma. The aim of the study is to introduce the concept of normocapnic high frequency oscillatory hyperventilation and to assess its effect upon oxygen gain under experimental conditions. Laboratory pigs (n = 9) were investigated under total intravenous anesthesia in three phases. Phase 1: Initial volume controlled HFOV period. Phase 2: Hyperventilation--V(T) was increased by (46 +/- 12) % when compared to normocapnic V(T) during phase 1. All other ventilatory parameters were unchanged. A significant increase in PaO(2) (by 3.75 +/- 0.52 kPa, p hyperventilation was achieved by an iterative increase in the CO(2) fraction in the inspiratory gas by a CO(2) admixture. All ventilatory parameters were unchanged. A significant increase in PaO(2) (by 3.79 +/- 0.73 kPa, p hyperventilation offers a lung protective strategy that significantly improves oxygenation whilst preserving normocapnia.

  6. Resent developments in high-frequency surface-wave techniques

    Science.gov (United States)

    Xia, J.; Pan, Y.; Zeng, C.

    2012-12-01

    High-frequency Rayleigh-wave methods, such as Multi-channel Analysis of Surface Waves (MASW), are getting increasingly attention in the near-surface geophysics and geotechnique community in the last 20 years because of their non-invasive, non-destructive, efficient, and low-cost advantages and their success in environmental and engineering applications. They are viewed by near-surface geophysics community as the one of most promise techniques in the future. However, they face unique problems related to extremely irregular velocity variations in near-surface geology or man-made constructions, for example, highway, foundation, dam, levee, jetty, etc., which are not solvable by techniques or algorithms widely used in earthquake seismology or oil/gas seismic exploration. We present solutions to the problems associated with near-surface materials that possess velocity inverse and high Poisson's ratio. Calculation of dispersion curves by existing algorithms may fail for some special velocity models due to velocity inverse (a high-velocity layer on the top of a low-velocity layer). Two velocity models are most common in near-surface applications. One is a low-velocity half space model and the other a high-velocity topmost layer. The former model results in a complex matrix that no roots can be found in the real number domain, which implies that no phase velocities can be calculated in certain frequency ranges based on current exist algorithms. A solution is to use the real part of the root of the complex number. It is well-known that phase velocities approach about 91% of the shear (S)-wave velocity of the topmost layer when wavelengths are much shorter than the thickness of the topmost layer. The later model, however, results in that phase velocities in a high-frequency range calculated using the current algorithms approach a velocity associated with the S-wave velocity of the second layer NOT the topmost layer. A solution to this problem is to use a two-layer model to

  7. Tesla’s high voltage and high frequency generators with oscillatory circuits

    OpenAIRE

    Cvetić Jovan M.

    2016-01-01

    The principles that represent the basics of the work of the high voltage and high frequency generator with oscillating circuits will be discussed. Until 1891, Tesla made and used mechanical generators with a large number of extruded poles for the frequencies up to about 20 kHz. The first electric generators based on a new principle of a weakly coupled oscillatory circuits he used for the wireless signal transmission, for the study of the discharges in vacuu...

  8. Mechanisms and factors that influence high frequency retroviral recombination

    DEFF Research Database (Denmark)

    Delviks-Frankenberry, Krista; Galli, Andrea; Nikolaitchik, Olga

    2011-01-01

    With constantly changing environmental selection pressures, retroviruses rely upon recombination to reassort polymorphisms in their genomes and increase genetic diversity, which improves the chances for the survival of their population. Recombination occurs during DNA synthesis, whereby reverse...... transcriptase undergoes template switching events between the two copackaged RNAs, resulting in a viral recombinant with portions of the genetic information from each parental RNA. This review summarizes our current understanding of the factors and mechanisms influencing retroviral recombination, fidelity...... of the recombination process, and evaluates the subsequent viral diversity and fitness of the progeny recombinant. Specifically, the high mutation rates and high recombination frequencies of HIV-1 will be analyzed for their roles in influencing HIV-1 global diversity, as well as HIV-1 diagnosis, drug treatment...

  9. Frequency selective surfaces based high performance microstrip antenna

    CERN Document Server

    Narayan, Shiv; Jha, Rakesh Mohan

    2016-01-01

    This book focuses on performance enhancement of printed antennas using frequency selective surfaces (FSS) technology. The growing demand of stealth technology in strategic areas requires high-performance low-RCS (radar cross section) antennas. Such requirements may be accomplished by incorporating FSS into the antenna structure either in its ground plane or as the superstrate, due to the filter characteristics of FSS structure. In view of this, a novel approach based on FSS technology is presented in this book to enhance the performance of printed antennas including out-of-band structural RCS reduction. In this endeavor, the EM design of microstrip patch antennas (MPA) loaded with FSS-based (i) high impedance surface (HIS) ground plane, and (ii) the superstrates are discussed in detail. The EM analysis of proposed FSS-based antenna structures have been carried out using transmission line analogy, in combination with the reciprocity theorem. Further, various types of novel FSS structures are considered in desi...

  10. High frequency modulation circuits based on photoconductive wide bandgap switches

    Energy Technology Data Exchange (ETDEWEB)

    Sampayan, Stephen

    2018-02-13

    Methods, systems, and devices for high voltage and/or high frequency modulation. In one aspect, an optoelectronic modulation system includes an array of two or more photoconductive switch units each including a wide bandgap photoconductive material coupled between a first electrode and a second electrode, a light source optically coupled to the WBGP material of each photoconductive switch unit via a light path, in which the light path splits into multiple light paths to optically interface with each WBGP material, such that a time delay of emitted light exists along each subsequent split light path, and in which the WBGP material conducts an electrical signal when a light signal is transmitted to the WBGP material, and an output to transmit the electrical signal conducted by each photoconductive switch unit. The time delay of the photons emitted through the light path is substantially equivalent to the time delay of the electrical signal.

  11. Planck early results. VI. The High Frequency Instrument data processing

    DEFF Research Database (Denmark)

    Colley, J.-M.; Bartlett, J.G.; Bucher, M.

    2011-01-01

    We describe the processing of the 336 billion raw data samples from the High Frequency Instrument (HFI) which we performed to produce six temperature maps from the first 295 days of Planck-HFI survey data. These maps provide an accurate rendition of the sky emission at 100, 143, 217, 353, 545...... by the HFI Data Processing Centre reach our goals in terms of sensitivity, resolution, and photometric accuracy. They are already sufficiently accurate and well-characterised to allow scientific analyses which are presented in an accompanying series of early papers. At this stage, HFI data appears...... to be of high quality and we expect that with further refinements of the data processing we should be able to achieve, or exceed, the science goals of the Planck project. © ESO, 2011....

  12. Very high frequency plasma reactant for atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Il-Kwon; Yoo, Gilsang; Yoon, Chang Mo [School of Electrical and Electronic Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Kim, Tae Hyung; Yeom, Geun Young [Department of Advanced Materials Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Kim, Kangsik; Lee, Zonghoon [School Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919 (Korea, Republic of); Jung, Hanearl; Lee, Chang Wan [School of Electrical and Electronic Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Kim, Hyungjun, E-mail: hyungjun@yonsei.ac.kr [School of Electrical and Electronic Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Lee, Han-Bo-Ram, E-mail: hbrlee@inu.ac.kr [Department of Materials Science and Engineering, Incheon National University, 406-840 Incheon (Korea, Republic of)

    2016-11-30

    Highlights: • Fundamental research plasma process for thin film deposition is presented. • VHF plasma source for PE-ALD Al{sub 2}O{sub 3} was employed to reduce plasma damage. • The use of VHF plasma improved all of the film qualities and growth characteristics. - Abstract: Although plasma-enhanced atomic layer deposition (PE-ALD) results in several benefits in the formation of high-k dielectrics, including a low processing temperature and improved film properties compared to conventional thermal ALD, energetic radicals and ions in the plasma cause damage to layer stacks, leading to the deterioration of electrical properties. In this study, the growth characteristics and film properties of PE-ALD Al{sub 2}O{sub 3} were investigated using a very-high-frequency (VHF) plasma reactant. Because VHF plasma features a lower electron temperature and higher plasma density than conventional radio frequency (RF) plasma, it has a larger number of less energetic reaction species, such as radicals and ions. VHF PE-ALD Al{sub 2}O{sub 3} shows superior physical and electrical properties over RF PE-ALD Al{sub 2}O{sub 3}, including high growth per cycle, excellent conformality, low roughness, high dielectric constant, low leakage current, and low interface trap density. In addition, interlayer-free Al{sub 2}O{sub 3} on Si was achieved in VHF PE-ALD via a significant reduction in plasma damage. VHF PE-ALD will be an essential process to realize nanoscale devices that require precise control of interfaces and electrical properties.

  13. High efficiency coupling of radio frequency beams from the dual frequency gyrotron with a corrugated waveguide transmission system.

    Science.gov (United States)

    Oda, Yasuhisa; Kajiwara, Ken; Takahashi, Koji; Mitsunaka, Yoshika; Sakamoto, Keishi

    2013-01-01

    High efficiency coupling of the millimeter-wave output of the dual-frequency gyrotron with the transmission line was demonstrated. The dual-frequency gyrotron was design to produce similar beam profiles for two operation frequencies (170 GHz and 137 GHz). Using two RF beam reflecting mirrors in a matching optics unit (MOU), which are designed to transform the beam profile of the gyrotron output to the fundamental waveguide mode (HE(11) mode) at 170 GHz, high efficiency coupling was demonstrated for two frequencies. The measured mode purity of HE(11) mode was 96% at 170 GHz and 94% at 137 GHz operations with the identical mirrors at the fixed mirror position and angle. The results indicate that the significantly simple dual frequency system is realized by the gyrotron designed to output the similar beam profiles at different frequency operation.

  14. Overview of the miniaturization technologies

    Science.gov (United States)

    Warrington, Robert O., Jr.

    1995-09-01

    This overview paper will cover the miniaturization technologies as applied to microelectromechanical systems (MEMS) or micromanufacturing. Technologies reviewed will include bulk and surface micromachining of silicon, the high-aspect ratio technologies including deep X-ray lithography (LIGA) and photo sensitive polyimide, and the complementary processes which include micro-drilling, milling, turning, and electrical discharge machining, laser based micromachining and focussed ion beam micromachining. Examples of each of the process technologies will be given and a capabilities comparison among the technologies will be presented. A historical comparison of MEMS with the vlsi industry will be made and the current status and market forecast for these technologies will be presented. A brief comparison of US research with current research in Japan and Europe will be made along with comments about the status of US research, including current research projects at the Institute for Micromanufacturing.

  15. High-frequency underwater plasma discharge application in antibacterial activity

    Science.gov (United States)

    Ahmed, M. W.; Choi, S.; Lyakhov, K.; Shaislamov, U.; Mongre, R. K.; Jeong, D. K.; Suresh, R.; Lee, H. J.

    2017-03-01

    Plasma discharge is a novel disinfection and effectual inactivation approach to treat microorganisms in aqueous systems. Inactivation of Gram-negative Escherichia coli ( E. coli) by generating high-frequency, high-voltage, oxygen (O2) injected and hydrogen peroxide (H2O2) added discharge in water was achieved. The effect of H2O2 dose and oxygen injection rate on electrical characteristics of discharge and E. coli disinfection has been reported. Microbial log reduction dependent on H2O2 addition with O2 injection was observed. The time variation of the inactivation efficiency quantified by the log reduction of the initial E. coli population on the basis of optical density measurement was reported. The analysis of emission spectrum recorded after discharge occurrence illustrated the formation of oxidant species (OH•, H, and O). Interestingly, the results demonstrated that O2 injected and H2O2 added, underwater plasma discharge had fabulous impact on the E. coli sterilization. The oxygen injection notably reduced the voltage needed for generating breakdown in flowing water and escalated the power of discharge pulses. No impact of hydrogen peroxide addition on breakdown voltage was observed. A significant role of oxidant species in bacterial inactivation also has been identified. Furthermore the E. coli survivability in plasma treated water with oxygen injection and hydrogen peroxide addition drastically reduced to zero. The time course study also showed that the retardant effect on E. coli colony multiplication in plasma treated water was favorable, observed after long time. High-frequency underwater plasma discharge based biological applications is technically relevant and would act as baseline data for the development of novel antibacterial processing strategies.

  16. High-frequency underwater plasma discharge application in antibacterial activity

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, M. W.; Choi, S.; Lyakhov, K.; Shaislamov, U. [Jeju National University, Department of Nuclear and Energy Engineering (Korea, Republic of); Mongre, R. K.; Jeong, D. K. [Jeju National University, Faculty of Biotechnology (Korea, Republic of); Suresh, R.; Lee, H. J., E-mail: hjlee@jejunu.ac.kr [Jeju National University, Department of Nuclear and Energy Engineering (Korea, Republic of)

    2017-03-15

    Plasma discharge is a novel disinfection and effectual inactivation approach to treat microorganisms in aqueous systems. Inactivation of Gram-negative Escherichia coli (E. coli) by generating high-frequency, high-voltage, oxygen (O{sub 2}) injected and hydrogen peroxide (H{sub 2}O{sub 2}) added discharge in water was achieved. The effect of H{sub 2}O{sub 2} dose and oxygen injection rate on electrical characteristics of discharge and E. coli disinfection has been reported. Microbial log reduction dependent on H{sub 2}O{sub 2} addition with O{sub 2} injection was observed. The time variation of the inactivation efficiency quantified by the log reduction of the initial E. coli population on the basis of optical density measurement was reported. The analysis of emission spectrum recorded after discharge occurrence illustrated the formation of oxidant species (OH{sup •}, H, and O). Interestingly, the results demonstrated that O{sub 2} injected and H{sub 2}O{sub 2} added, underwater plasma discharge had fabulous impact on the E. coli sterilization. The oxygen injection notably reduced the voltage needed for generating breakdown in flowing water and escalated the power of discharge pulses. No impact of hydrogen peroxide addition on breakdown voltage was observed. A significant role of oxidant species in bacterial inactivation also has been identified. Furthermore the E. coli survivability in plasma treated water with oxygen injection and hydrogen peroxide addition drastically reduced to zero. The time course study also showed that the retardant effect on E. coli colony multiplication in plasma treated water was favorable, observed after long time. High-frequency underwater plasma discharge based biological applications is technically relevant and would act as baseline data for the development of novel antibacterial processing strategies.

  17. Network Analyses for Space-Time High Frequency Wind Data

    Science.gov (United States)

    Laib, Mohamed; Kanevski, Mikhail

    2017-04-01

    Recently, network science has shown an important contribution to the analysis, modelling and visualization of complex time series. Numerous existing methods have been proposed for constructing networks. This work studies spatio-temporal wind data by using networks based on the Granger causality test. Furthermore, a visual comparison is carried out with several frequencies of data and different size of moving window. The main attention is paid to the temporal evolution of connectivity intensity. The Hurst exponent is applied on the provided time series in order to explore if there is a long connectivity memory. The results explore the space time structure of wind data and can be applied to other environmental data. The used dataset presents a challenging case study. It consists of high frequency (10 minutes) wind data from 120 measuring stations in Switzerland, for a time period of 2012-2013. The distribution of stations covers different geomorphological zones and elevation levels. The results are compared with the Person correlation network as well.

  18. Tecnologia radio cognitiva en la banda ultra high frequency (UHF

    Directory of Open Access Journals (Sweden)

    Hernán Paz Penagos

    2014-01-01

    Full Text Available Mobile cellular communication companies in Colombia require more spectrum resources to expand their portfolio of services. However, additional frequency bands for that particular purpose are scarce, yet it is well known that there are many underutilized licensed bands. Therefore new radio technologies are being studied in order to solve this problem, e.g. Software Defined Radio SDR Cognitive Radio CR and Dynamic Spectrum Access DSA. These strategies recommend mobility across the radio spectrum to meet various needs and achieve greater efficiency when managing such a scarce resource. In this context, a case study is presented in an attempt to examine the require¬ments that must be met for the implementation of cognitive radio networks in Bogota. The case study includes evaluation for the possibility of migration from cellular communications to cognitive radio since the bands assigned to UltraHigh Frequency UHF television offer possible free-of-interference coexistence between the two services (i.e. Cellular and TV. The study shows feasibility to migration; however, the implementations of cognitive radio need availability of hardware, software and flexible radio platforms.

  19. High Frequency Longitudinal Damped Vibrations of a Cylindrical Ultrasonic Transducer

    Directory of Open Access Journals (Sweden)

    Mihai Valentin Predoi

    2014-01-01

    Full Text Available Ultrasonic piezoelectric transducers used in classical nondestructive testing are producing in general longitudinal vibrations in the MHz range. A simple mechanical model of these transducers would be very useful for wave propagation numerical simulations, avoiding the existing complicated models in which the real components of the transducer are modeled by finite elements. The classical model for longitudinal vibrations is not adequate because the generated longitudinal wave is not dispersive, the velocity being the same at any frequency. We have adopted the Rayleigh-Bishop model, which avoids these limitations, even if it is not converging to the first but to the second exact longitudinal mode in an elastic rod, as obtained from the complicated Pochhammer-Chree equations. Since real transducers have significant vibrations damping, we have introduced a damping term in the Rayleigh-Bishop model, increasing the imaginary part and keeping almost identical real part of the wavenumber. Common transducers produce amplitude modulated signals, completely attenuated after several periods. This can be modeled by two close frequencies, producing a “beat” phenomenon, superposed on the high damping. For this reason, we introduce a two-rod Rayleigh-Bishop model with damping. Agreement with measured normal velocity on the transducer free surface is encouraging for continuation of the research.

  20. Refractivity variations and propagation at Ultra High Frequency

    Science.gov (United States)

    Alam, I.; Najam-Ul-Islam, M.; Mujahid, U.; Shah, S. A. A.; Ul Haq, Rizwan

    Present framework is established to deal with the refractivity variations normally affected the radio waves propagation at different frequencies, ranges and different environments. To deal such kind of effects, many researchers proposed several methodologies. One method is to use the parameters from meteorology to investigate these effects of variations in refractivity on propagation. These variations are region specific and we have selected a region of one kilometer height over the English Channel. We have constructed different modified refractivity profiles based on the local meteorological data. We have recorded more than 48 million received signal strength from a communication links of 50 km operating at 2015 MHz in the Ultra High Frequency band giving path loss between transmitting and receiving stations of the experimental setup. We have used parabolic wave equation method to simulate an hourly value of signal strength and compared the obtained simulated loss to the experimental loss. The analysis is made to compute refractivity distribution of standard (STD) and ITU (International Telecommunication Union) refractivity profiles for various evaporation ducts. It is found that a standard refractivity profile is better than the ITU refractivity profiles for the region at 2015 MHz. Further, it is inferred from the analysis of results that 10 m evaporation duct height is the dominant among all evaporation duct heights considered in the research.

  1. Non-invasive high-frequency vascular ultrasound elastography

    Energy Technology Data Exchange (ETDEWEB)

    Maurice, Roch L [Laboratory of Biorheology and Medical Ultrasonics, Research Center, University of Montreal Hospital, Quebec (Canada); Daronat, Michel [Laboratory of Biorheology and Medical Ultrasonics, Research Center, University of Montreal Hospital, Quebec (Canada); Ohayon, Jacques [Laboratory TIMC-IMAG, UMR CNRS 5525, Institut A. Bonniot, 38706 La Tronche (France); Stoyanova, Ekatherina [Laboratory of Biorheology and Medical Ultrasonics, Research Center, University of Montreal Hospital, Quebec (Canada); Foster, F Stuart [Department of Medical Biophysics, Sunnybrook and Women' s College Health Sciences Centre, University of Toronto, Ontario (Canada); Cloutier, Guy [Laboratory of Biorheology and Medical Ultrasonics, Research Center, University of Montreal Hospital, Quebec (Canada); Department of Radiology, Radio-oncology and Nuclear Medicine, University of Montreal, Quebec (Canada)

    2005-04-07

    Non-invasive vascular elastography (NIVE) was recently introduced to characterize mechanical properties of superficial arteries. In this paper, the feasibility of NIVE and its applicability in the context of high-frequency ultrasound imaging is investigated. First, experiments were performed in vitro on vessel-mimicking phantoms. Polyvinyl alcohol cryogel was used to create two double-layer vessels with different mechanical properties. In both cases, the stiffness of the inner layer was made softer. Radial stress was applied within the lumen of the phantoms by applying incremental static pressure steps with a column of a flowing mixture of water-glycerol. The vessel phantoms were insonified at 32 MHz with an ultrasound biomicroscope to provide cross-section sequences of radio-frequency (RF) ultrasound data. The Lagrangian speckle model estimator (LSME) was used to assess the two-dimensional-strain tensors, and the composite Von Mises elastograms were computed. A new implementation of the LSME based on the optical flow equations was introduced. Deformation parameters were estimated using an inversion algorithm. For each in vitro experiment, both layers of approximately 1 mm were distinguished. Second, the use of the method for the purpose of studying small vessels (MicroNIVE) in genetically engineered rodents was introduced. Longitudinal scans of the carotid artery were performed at 40 MHz. The in vivo results give confidence in the feasibility of MicroNIVE as a potential tool to non-invasively study the impact of targeted genes on vascular remodelling in rodents.

  2. The multi-frequency sodar with high temporal resolution

    Directory of Open Access Journals (Sweden)

    Rostislav D. Kouznetsov

    2009-05-01

    Full Text Available The new sodar LATAN-3M with a frequency-coded sounding signal was developed, manufactured, and successfully tested at the Obukhov Institute for Atmospheric Physics. The sodar emits a sequence of sounding pulses at different frequencies and then averages the Doppler spectra for each range gate over the ensemble of frequencies. The field tests have proved the significant advantages of a multi-frequency technique in comparison with a single-frequency one. The use of eight different frequencies halves the minimal acceptable signal to noise ratio compared to single-frequency sounding. Moreover, the multi-frequency mode improves the accuracy of instantaneous values of measured parameters and significantly increases the reliability in recognizing noisy echo-signals.

  3. Propagation Impact on Modern HF (High Frequency) Communications System Design

    Science.gov (United States)

    1986-03-01

    terminal to choose the best frequency. These efforts were aborted in the early 1970s with the expectation of satellite systems. Furthermore, concern...traditional diffic communications and including selectiv connectivity. The frequency selectio ionospheric predic of channel interfe an

  4. Structural Health Monitoring Using High-Frequency Electromechanical Impedance Signatures

    Directory of Open Access Journals (Sweden)

    Wei Yan

    2010-01-01

    Full Text Available An overview of recent advances in electromechanical impedance- (EMI- based structural health monitoring is presented in this paper. The basic principle of the EMI method is to use high-frequency excitation to sense the local area of a structure. Changes in impedance indicate changes in the structure, which in turn indicate that damages appear. An accurate EMI model based on the method of reverberation-ray matrix is introduced to correlate changes in the signatures to physical parameters of structures for damage detection. Comparison with other numerical results and experimental data validates the present model. A brief remark of the feasibility of implementing the EMI method is considered and the effects of some physical parameters on EMI technique are also discussed.

  5. High Frequency QPOs due to Black Hole Spin

    Science.gov (United States)

    Kazanas, Demos; Fukumura, K.

    2009-01-01

    We present detailed computations of photon orbits emitted by flares at the innermost stable circular orbit (ISCO) of accretion disks around rotating black holes. We show that for sufficiently large spin parameter, i.e. a > 0.94 M, flare a sufficient number of photons arrive at an observer after multiple orbits around the black hole, to produce an "photon echo" of constant lag, i.e. independent of the relative phase between the black hole and the observer, of T approximates 14 M. This constant time delay, then, leads to a power spectrum with a QPO at a frequency nu approximates 1/14M, even for a totally random ensemble of such flares. Observation of such a QPO will provide incontrovertible evidence for the high spin of the black hole and a very accurate, independent, measurement of its mass.

  6. Ultra-high Frequency Linear Fiber Optic Systems

    CERN Document Server

    Lau, Kam

    2011-01-01

    This book provides an in-depth treatment of both linear fiber-optic systems and their key enabling devices. It presents a concise but rigorous treatment of the theory and practice of analog (linear) fiber-optics links and systems that constitute the foundation of Hybrid Fiber Coax infrastructure in present-day CATV distribution and cable modem Internet access. Emerging applications in remote fiber-optic feed for free-space millimeter wave enterprise campus networks are also described. Issues such as dispersion and interferometric noise are treated quantitatively, and means for mitigating them are explained. This broad but concise text will thus be invaluable not only to students of fiber-optics communication but also to practicing engineers. To the second edition of this book important new aspects of linear fiber-optic transmission technologies are added, such as high level system architectural issues, algorithms for deriving the optimal frequency assignment, directly modulated or externally modulated laser t...

  7. The wave buoy analogy - estimating high-frequency wave excitations

    DEFF Research Database (Denmark)

    Nielsen, Ulrik Dam

    2008-01-01

    The paper deals with the wave buoy analogy where a ship is considered as a wave buoy, so that measured ship responses are used as a basis to estimate wave spectra and associated sea state parameters. The study presented follows up on a previous paper, Nielsen [Nielsen UD. Response-based estimation...... of sea state parameters — influence of filtering. Ocean Engineering 2007;34:1797–810.], where time series of ship responses were generated from a known wave spectrum for the purpose of the inverse process — the estimation of the underlying wave excitations. Similar response generations and vice versa...... be estimated reasonably well, even considering high-frequency wave components of a wind sea wave spectrum....

  8. High frequency ultrasound evaluation of traumatic peripheral nerve injuries.

    Science.gov (United States)

    Hollister, Anne M; Simoncini, Alberto; Sciuk, Adam; Jordan, Jenee'

    2012-01-01

    Accurate diagnosis and localization of peripheral nerve traumatic injury remains difficult. Early diagnosis and repair of nerve discontinuity lesions lead to better outcome than delayed repair. We used new high frequency ultrasound to evaluate 24 patients with 29 traumatic nerve injuries. There were a variety of causes including gunshot wounds, blunt injuries, burns, stabbings, and motor vehicle accidents. The patients were then either treated surgically with nerve status directly observed or followed clinically for recovery of nerve function. The ultrasound findings correspond with the clinical outcome of 28 of the 29 nerves. While this is a study limited by a small patient number, ultrasound evaluation should be considered in the evaluation of nerve injury and can lead to early diagnosis and treatment of surgical nerve injuries.

  9. Dynamical structures of high-frequency financial data

    Science.gov (United States)

    Kim, Kyungsik; Yoon, Seong-Min; Kim, SooYong; Chang, Ki-Ho; Kim, Yup; Hoon Kang, Sang

    2007-03-01

    We study the dynamical behavior of high-frequency data from the Korean Stock Price Index (KOSPI) using the movement of returns in Korean financial markets. The dynamical behavior of a binarized series of our models is not completely random. In addition, the conditional probability is numerically estimated from a return series of KOSPI tick data. Non-trivial probability structures can be constituted from binary time series of autoregressive (AR), logit, and probit models, for which the Akaike Information Criterion shows a minimum value at the 15th order. From our results, we find that the value of the correct match ratio for the AR model is slightly larger than that derived by other models.

  10. High-Performance Control in Radio Frequency Power Amplification Systems

    DEFF Research Database (Denmark)

    Høyerby, Mikkel Christian Kofod

    This thesis presents a broad study of methods for increasing the efficiency of narrow-band radio transmitters. The study is centered around the base station application and TETRA/TEDS networks. The general solution space studied is that of envelope tracking applied to linear class-A/B radio...... frequency power amplifiers (RFPAs) in conjunction with cartesian feedback (CFB) used to linearize the overall transmitter system. On a system level, it is demonstrated how envelope tracking is particularly useful for RF carriers with high peak-to-average power ratios, such as TEDS with 10dB. It is also...... and ripple voltage. It is found that the simple fourth-order filter buck converter is ideal for TETRA and TEDS envelope tracking power supplies. The problem of extracting maximum control bandwidth from a given power topology is given particular attention, with a range of, arguably new, insights resulting...

  11. High Security Chipless RFID Tags Using Frequency Shift Coding Technique

    Directory of Open Access Journals (Sweden)

    M. Sumi

    2017-09-01

    Full Text Available A high security chipless RFID tag designed using E shaped resonator is presented in this paper. The tag identity is encoded using Frequency Shift Coding technique. 144 different code words are possible in 2.78 to 3.85 GHz band using two E shaped resonators. The tag identity can be decoded from either amplitude or group delay information. The resonators are designed and fabricated on substrate C-MET LK4.3 of dielectric constant 4.3 and loss tangent 0.0018. Different tag combinations are designed and tested using bistatic measurement setup. Measurement results on realized prototypes are provided to ensure the reliability of the proposed design.

  12. High frequency techniques an introduction to RF and microwave engineering

    CERN Document Server

    White, Joseph F

    2004-01-01

    A practical guide for today's wireless engineerHigh Frequency Techniques: An Introduction to RF and Microwave Engineering is a clearly written classical circuit and field theory text illustrated with modern computer simulation software. The book's ten chapters cover: *The origins and current uses of wireless transmission *A review of AC analysis, Kirchhoff's laws, RLC elements, skin effect, and introduction to the use of computer simulation software*Resonators, Q definitions, and Q-based impedance matching *Transmission lines, waves, VSWR, reflection phenomena, Fano's reflection bandwidth limits, telegrapher, and impedance transformation equations*Development and in-depth use of the Smith Chart *Matrix algebra with Z, Y, ABCD, S, and T matrix applications*An unusually thorough introduction to electromagnetic field theory, step-by-step development of vector calculus, Maxwell's equations, waveguides, propagation, and antennas*Backward wave, branch line, rat race and Wilkinson couplers, impedance measurements, a...

  13. Low-frequency versus high-frequency synchronisation in chirp-evoked auditory brainstem responses

    DEFF Research Database (Denmark)

    Rønne, Filip Munch; Gøtsche-Rasmussen, Kristian

    2011-01-01

    This study investigates the frequency specific contribution to the auditory brainstem response (ABR) of chirp stimuli. Frequency rising chirps were designed to compensate for the cochlear traveling wave delay, and lead to larger wave-V amplitudes than for click stimuli as more auditory nerve fibres...

  14. Miniature Reaction Wheel for Small Satellite Control Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall goal of this project is to design, develop, demonstrate, and deliver a miniature, high torque, low-vibration reaction wheel for use on small satellites....

  15. Miniaturized Thermal-Cooler for IC Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal is submitted for research on using MEMS technology to make unique, highly reliable, miniaturized capillary pumped coolers in the application of Thermal...

  16. Low and High-Frequency Field Potentials of Cortical Networks ...

    Science.gov (United States)

    Neural networks grown on microelectrode arrays (MEAs) have become an important, high content in vitro assay for assessing neuronal function. MEA experiments typically examine high- frequency (HF) (>200 Hz) spikes, and bursts which can be used to discriminate between different pharmacological agents/chemicals. However, normal brain activity is additionally composed of integrated low-frequency (0.5-100 Hz) field potentials (LFPs) which are filtered out of MEA recordings. The objective of this study was to characterize the relationship between HF and LFP neural network signals, and to assess the relative sensitivity of LFPs to selected neurotoxicants. Rat primary cortical cultures were grown on glass, single-well MEA chips. Spontaneous activity was sampled at 25 kHz and recorded (5 min) (Multi-Channel Systems) from mature networks (14 days in vitro). HF (spike, mean firing rate, MFR) and LF (power spectrum, amplitude) components were extracted from each network and served as its baseline (BL). Next, each chip was treated with either 1) a positive control, bicuculline (BIC, 25μM) or domoic acid (DA, 0.3μM), 2) or a negative control, acetaminophen (ACE, 100μM) or glyphosate (GLY, 100μM), 3) a solvent control (H2O or DMSO:EtOH), or 4) a neurotoxicant, (carbaryl, CAR 5, 30μM ; lindane, LIN 1, 10μM; permethrin, PERM 25, 50μM; triadimefon, TRI 5, 65μM). Post treatment, 5 mins of spontaneous activity was recorded and analyzed. As expected posit

  17. A Compact High Frequency Doppler Radio Scatterometer for Coastal Oceanography

    Science.gov (United States)

    Flament, P. J.; Harris, D.; Flament, M.; Fernandez, I. Q.; Hlivak, R.; Flores-vidal, X.; Marié, L.

    2016-12-01

    A low-power High Frequency Doppler Radar has been designed for large series production. The use of commercial-off-the-shelf components is maximized to minimize overall cost. Power consumption is reduced to 130W in full duty and 20W in stand-by under 20-36 V-DC, thus enabling solar/wind and/or fuel cell operation by default. For 8 channels, commercial components and sub-assemblies cost less than k20 excluding coaxial antenna cables, and less than four man-weeks of technician suffice for integration, testing and calibration, suggesting a final cost of about k36, based on production batches of 25 units. The instrument is integrated into passively-cooled 90x60x20 cm3 field-deployable enclosures, combining signal generation, transmitter, received, A/D converter and computer, alleviating the need for additional protection such as a container or building. It uses frequency-ramped continuous wave signals, and phased-array transmissions to decouple the direct path to the receivers. Five sub-assemblies are controlled by a Linux embedded computer: (i) direct digital synthesis of transmit and orthogonal local oscillator signals, derived from a low phase noise oven-controlled crystal; (ii) distributed power amplifiers totaling 5 W, integrated into λ/8 passive transmit antenna monopoles; (iii) λ/12 compact active receive antenna monopoles with embedded out-of-band rejection filters; (iv) analog receivers based on complex demodulation by double-balanced mixers, translating the HF spectrum to the audio band; (v) 24-bit analog-to-digital sigma-delta conversion at 12 kHz with 512x oversampling, followed by decimation to a final sampling frequency of 750 Hz. Except for the HF interference rejection filters, the electronics can operate between 3 and 50 MHz with no modification. At 13.5 MHz, 5 W transmit power, 15 min integration time, the high signal-to-noise ratio permits a typical range of 120 km for currents measurements with 8-antenna beam-forming. The University of Hawaii HFR

  18. Synchronization of vortex formation frequency with the body motion frequency at high Reynolds numbers

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Luiz Antonio Alcantara [Federal University of Itajuba (UNIFEI), MG (Brazil). Inst. of Mechanical Engineering], E-mail: luizantp@unifei.edu.br; Hirata, Miguel Hiroo [State University of Rio de Janeiro (FAT/UERJ), Resende, RJ (Brazil). Fac. de Tecnologia], E-mail: hirata@fat.uerj.br

    2010-07-01

    Understanding vortex induced vibrations is of great importance in the design of a variety of offshore engineering structures, nuclear plant components and cylindrical elements in tube-bank heat exchangers, for example. If a body is placed in a flow, it experiences alternating lift and drag forces caused by the asymmetric formation of vortices, which can cause a structure to vibrate. One of the most interesting features of this flow is the phenomenon of lock-in which is observed when the vortex shedding frequency is close to the body oscillation frequency. This paper presents the results of numerical experiments on vortex shedding from a circular cylinder vibrating in-line or transversely with an incident uniform flow at Reynolds number of 1.0 x 10{sup 5}. The frequencies of the lift and drag coefficients are compared with the body motion frequency when the frequency ratio is about unity. (author)

  19. Proton-irradiation technology for high-frequency high-current silicon welding diode manufacturing

    Science.gov (United States)

    Lagov, P. B.; Drenin, A. S.; Zinoviev, M. A.

    2017-05-01

    Different proton irradiation regimes were tested to provide more than 20 kHz-frequency, soft reverse recovery “snap-less” behavior, low forward voltage drop and leakage current for 50 mm diameter 7 kA/400 V welding diode Al/Si/Mo structure. Silicon diode with such parameters is very suitable for high frequency resistance welding machines of new generation for robotic welding.

  20. A novel 2nd-order bandpass MFSS filter with miniaturized structure

    Directory of Open Access Journals (Sweden)

    C. Y. Fang

    2015-08-01

    Full Text Available In order to effectively obtain a miniaturized structure and good filtering properties, we propose a novel 2nd-order bandpass metamaterial frequency selective surface (MFSS filter which contains two capacitive layers and one inductive layer, where there are multi-loop metallic patches as shunt capacitor C and planar wire grids as series inductor L respectively. Unlike the traditional operation way—the tuned elements used in resonant surface approximately equal to one wavelength in circumference and the structure thickness with a spacing of a quarter wavelength apart, by changing the value of L and C and matching multilayer dielectric to adjust the LC coupling resonance and the resonance impedance respectively, the proposed MFSS filter can achieves a miniatured structure with ideal bandpass properties. Measurement results of the fabricated prototype of the bandpass filter (BPF indicate that the dimension of the tuned element on resonant surface is approximately 0.025 wavelength, i.e., 0.025λ. At the same time, the filter has the stable center frequency of f0 = 1.53GHz and the transmittance of T ⩾ 96.3% and high Q-value for the TE/TM wave polarization at various incidence angles. The novel 2nd-order bandpass MFSS filter with miniaturized structure not only can decrease structure dimension, but also has a wide range of applications to microwave and infrared band.

  1. High-frequency TRNS reduces BOLD activity during visuomotor learning.

    Directory of Open Access Journals (Sweden)

    Catarina Saiote

    Full Text Available Transcranial direct current stimulation (tDCS and transcranial random noise stimulation (tRNS consist in the application of electrical current of small intensity through the scalp, able to modulate perceptual and motor learning, probably by changing brain excitability. We investigated the effects of these transcranial electrical stimulation techniques in the early and later stages of visuomotor learning, as well as associated brain activity changes using functional magnetic resonance imaging (fMRI. We applied anodal and cathodal tDCS, low-frequency and high-frequency tRNS (lf-tRNS, 0.1-100 Hz; hf-tRNS 101-640 Hz, respectively and sham stimulation over the primary motor cortex (M1 during the first 10 minutes of a visuomotor learning paradigm and measured performance changes for 20 minutes after stimulation ceased. Functional imaging scans were acquired throughout the whole experiment. Cathodal tDCS and hf-tRNS showed a tendency to improve and lf-tRNS to hinder early learning during stimulation, an effect that remained for 20 minutes after cessation of stimulation in the late learning phase. Motor learning-related activity decreased in several regions as reported previously, however, there was no significant modulation of brain activity by tDCS. In opposition to this, hf-tRNS was associated with reduced motor task-related-activity bilaterally in the frontal cortex and precuneous, probably due to interaction with ongoing neuronal oscillations. This result highlights the potential of lf-tRNS and hf-tRNS to differentially modulate visuomotor learning and advances our knowledge on neuroplasticity induction approaches combined with functional imaging methods.

  2. A Fluorescence Based Miniaturized Detection Module for Toxin Producing Algae

    Science.gov (United States)

    Zieger, S. E.; Mistlberger, G.; Troi, L.; Lang, A.; Holly, C.; Klimant, I.

    2016-12-01

    Algal blooms are sensitive to external environmental conditions and may pose a serious threat to marine and human life having an adverse effect on the ecosystem. Harmful algal blooms can produce different toxins, which can lead to massive fish kills or to human disorders. Facing these problems, miniaturized and low-cost instrumentation for an early detection and identification of harmful algae classes has become more important over the last years. 1,2Based on the characteristic pigment pattern of different algae classes, we developed a miniaturized detection module, which is able to detect and identify algae classes after analyzing their spectral behavior. Our device combines features of a flow-cytometer and fluorimeter and is build up as a miniaturized and low-cost device of modular design. Similar to a fluorimeter, it excites cells in the capillary with up to 8 different excitation wavelengths recording the emitted fluorescence at 4 different emission channels. Furthermore, the device operates in a flow-through mode similar to a flow-cytometer, however, using only low-cost elements such as LEDs and photodiodes. Due to its miniaturized design, the sensitivity and selectivity increase, whereas background effects are reduced. With a sampling frequency of 140 Hz, we try to detect and count particular cell events even at a concentration of 2 cells / 7.3 µL illuminated volume. Using a self-learning multivariate algorithm, the data are evaluated autonomously on the device enabling an in-situ analysis. The flexibility in choosing excitation and emission wavelengths as well as the high sampling rate enables laboratory applications such as measuring induction kinetics. However, in its first application, the device is part of an open and modular monitoring system enabling the sensing of chemical compounds such as toxic and essential Hg, Cd, Pb, As and Cu trace metal species, nutrients and species related to the carbon cycle, VOCs and potentially toxic algae classes (FP7

  3. Fantoni’s Tracheostomy using Catheter High Frequency Jet Ventilation

    Directory of Open Access Journals (Sweden)

    P. Török

    2012-01-01

    Full Text Available Background: It has been shown previously that conventional ventilation delivered through a long cuffed endotracheal tube is associated with a high flow-resistance and frequent perioperative complications. Aim: We attempted to supersede the conventional ventilation by high-frequency jet ventilation through a catheter (HFJV-C and assess safety of the procedure. Material and methods: Using a translaryngeal tracheostomy kit, we performed a translaryngeal (Fantoni tracheostomy (TLT. Subsequently, we introduced a special 2-way prototype ventilatory catheter into the trachea via the TLT under bronchoscopic control. Satisfactory HFJV-C ventilation through the catheter was achieved in 218 patients. Results: There were no significant adverse effects on vital signs observed in the cohort during the study. The pH, SpO2, PaO2, and PaCO2 did not change significantly following the HFJV-C. The intrinsic PEEPi measured in trachea did not exceed 4—5 cm H2O during its application, which was significantly less than during the classical ventilation via the endotracheal tube fluctuating between 12 and 17 cm H2O. No serious medical complications occurred. Conclusion: The HFJV during Fantoni’s tracheostomy using the catheter HFJV-C proved to be a safe and effective method of lung ventilation at the intensive care unit. Key words: Translaryngeal tracheostomy, HFJV via catheter.

  4. High Frequency Mechanical Pyroshock Simulations for Payload Systems

    Energy Technology Data Exchange (ETDEWEB)

    BATEMAN,VESTA I.; BROWN,FREDERICK A.; CAP,JEROME S.; NUSSER,MICHAEL A.

    1999-12-15

    Sandia National Laboratories (SNL) designs mechanical systems with components that must survive high frequency shock environments including pyrotechnic shock. These environments have not been simulated very well in the past at the payload system level because of weight limitations of traditional pyroshock mechanical simulations using resonant beams and plates. A new concept utilizing tuned resonators attached to the payload system and driven with the impact of an airgun projectile allow these simulations to be performed in the laboratory with high precision and repeatability without the use of explosives. A tuned resonator has been designed and constructed for a particular payload system. Comparison of laboratory responses with measurements made at the component locations during actual pyrotechnic events show excellent agreement for a bandwidth of DC to 4 kHz. The bases of comparison are shock spectra. This simple concept applies the mechanical pyroshock simulation simultaneously to all components with the correct boundary conditions in the payload system and is a considerable improvement over previous experimental techniques and simulations.

  5. High frequency guided wave propagation in monocrystalline silicon wafers

    Science.gov (United States)

    Pizzolato, Marco; Masserey, Bernard; Robyr, Jean-Luc; Fromme, Paul

    2017-04-01

    Monocrystalline silicon wafers are widely used in the photovoltaic industry for solar panels with high conversion efficiency. The cutting process can introduce micro-cracks in the thin wafers and lead to varying thickness. High frequency guided ultrasonic waves are considered for the structural monitoring of the wafers. The anisotropy of the monocrystalline silicon leads to variations of the wave characteristics, depending on the propagation direction relative to the crystal orientation. Full three-dimensional Finite Element simulations of the guided wave propagation were conducted to visualize and quantify these effects for a line source. The phase velocity (slowness) and skew angle of the two fundamental Lamb wave modes (first anti-symmetric mode A0 and first symmetric mode S0) for varying propagation directions relative to the crystal orientation were measured experimentally. Selective mode excitation was achieved using a contact piezoelectric transducer with a custom-made wedge and holder to achieve a controlled contact pressure. The out-of-plane component of the guided wave propagation was measured using a noncontact laser interferometer. Good agreement was found with the simulation results and theoretical predictions based on nominal material properties of the silicon wafer.

  6. Theory of High Frequency Rectification by Silicon Crystals

    Science.gov (United States)

    Bethe, H. A.

    1942-10-29

    The excellent performance of British "red dot" crystals is explained as due to the knife edge contact against a polished surface. High frequency rectification depends critically on the capacity of the rectifying boundary layer of the crystal, C. For high conversion efficiency, the product of this capacity and of the "forward" (bulk) resistance R {sub b} of the crystal must be small. For a knife edge, this product depends primarily on the breadth of the knife edge and very little upon its length. The contact can therefore have a rather large area which prevents burn-out. For a wavelength of 10 cm. the computations show that the breadth of the knife edge should be less than about 10 {sup -3} cm. For a point contact the radius must be less than 1.5 x 10 {sup -3} cm. and the resulting small area is conducive to burn-out. The effect of "tapping" is probably to reduce the area of contact. (auth)

  7. FPGA implementation of high-frequency multiple PWM for variable voltage variable frequency controller

    Energy Technology Data Exchange (ETDEWEB)

    Boumaaraf, Abdelâali, E-mail: aboumaaraf@yahoo.fr [Université Abbès Laghrour, Laboratoire des capteurs, Instrumentations et procédés (LCIP), Khenchela (Algeria); University of Farhat Abbas Setif1, Sétif, 19000 (Algeria); Mohamadi, Tayeb [University of Farhat Abbas Setif1, Sétif, 19000 (Algeria); Gourmat, Laïd [Université Abbès Laghrour, Khenchela, 40000 (Algeria)

    2016-07-25

    In this paper, we present the FPGA implementation of the multiple pulse width modulation (MPWM) signal generation with repetition of data segments, applied to the variable frequency variable voltage systems and specially at to the photovoltaic water pumping system, in order to generate a signal command very easily between 10 Hz to 60 Hz with a small frequency and reduce the cost of the control system.

  8. DEVELOPMENT OF HIGH-VOLTAGE HIGH-FREQUENCY POWER SUPPLY FOR OZONE GENERATION

    Directory of Open Access Journals (Sweden)

    NACERA HAMMADI

    2016-05-01

    Full Text Available A high-voltage high-frequency power supply for ozone generation is presented in this paper. Ozone generation is intended to be used in air and in water disinfection. A power stage consisting of a single-phase full bridge inverter for regulating the output power, a current push-pull inverter (driver and a control circuit are described and analyzed. This laboratory build power supply using a high voltage ferrite transformer and a PIC microcontroller was employed to energize a dielectric barrier discharge (DBD ozone generator. The inverter working on the basis of control strategy is of simple structure and has a variation range of the working frequency in order to obtain the optimal frequency value. The experimental results concerning electrical characterization and water treatment using a cylindrical DBD ozone generator supplied by this power supply are given in the end.

  9. High aspect ratio MEMS capacitor for high frequency impedance matching applications

    DEFF Research Database (Denmark)

    Yalcinkaya, Arda Deniz; Jensen, Søren; Hansen, Ole

    2003-01-01

    We present a microelectromechanical tunable capacitor with a low control voltage, a wide tuning range and adequate electrical quality factor. The device is fabricated in a single-crystalline silicon layer using deep reactive ion etching (DRIE) for obtaining high-aspect ratio (> 20) parallel comb......-drive structures with vertical sidewalls. The process sequence for fabrication of the devices uses only one lithographic masking step and can be completed in a short time. The fabricated device was characterized with respect to electrical quality factor, tuning range, self-resonance frequency and transient...... response and it was found that the device is a suitable passive component to be used in impedance matching applications, band-pass filtering or voltage controlled oscillators in the Very High Frequency (VHF) and Ultra High Frequency (UHF) bands....

  10. Design of Plasma Generator Driven by High-frequency High-voltage Power Supply

    Directory of Open Access Journals (Sweden)

    C. Yong-Nong

    2013-04-01

    Full Text Available In this research, a high-frequency high-voltage power supply designed for plasma generator is presented. The power supply mainly consists of a series resonant converter with a high-frequency high-voltage boost transformer. Due to the indispensable high-voltage inheritance in the operation of plasma generator, the analysis of transformer need considering not only winding resistance, leakage inductance, magnetizing inductance, and core-loss resistance, but also parasitic capacitance resulted from the insulation wrappings on the high-voltage side. This research exhibits a simple approach to measuring equivalent circuit parameters of the high-frequency, high-voltage transformer with stray capacitance being introduced into the conventional modeling. The proposed modeling scheme provides not only a precise measurement procedure but also effective design information for series-load resonant converter. The plasma discharging plate is designed as part of the electric circuit in the series load-resonant converter and the circuit model of the plasma discharging plate is also conducted as well. Thus, the overall model of the high-voltage plasma generator is built and the designing procedures for appropriate selections of the corresponding resonant-circuit parameters can be established. Finally, a high-voltage plasma generator with 220V, 60Hz, and 1kW input, along with a 22 kHz and over 8kV output, is realized and implemented.

  11. Design of Plasma Generator Driven by High-frequency High-voltage Power Supply

    Directory of Open Access Journals (Sweden)

    C. Yong-Nong

    2013-03-01

    Full Text Available In this research, a high-frequency high-voltage power supply designed for plasma generator is presented. The powersupply mainly consists of a series resonant converter with a high-frequency high-voltage boost transformer. Due to theindispensable high-voltage inheritance in the operation of plasma generator, the analysis of transformer needconsidering not only winding resistance, leakage inductance, magnetizing inductance, and core-loss resistance, butalso parasitic capacitance resulted from the insulation wrappings on the high-voltage side. This research exhibits asimple approach to measuring equivalent circuit parameters of the high-frequency, high-voltage transformer with straycapacitance being introduced into the conventional modeling. The proposed modeling scheme provides not only aprecise measurement procedure but also effective design information for series-load resonant converter. The plasmadischarging plate is designed as part of the electric circuit in the series load-resonant converter and the circuit modelof the plasma discharging plate is also conducted as well. Thus, the overall model of the high-voltage plasmagenerator is built and the designing procedures for appropriate selections of the corresponding resonant-circuitparameters can be established. Finally, a high-voltage plasma generator with 220V, 60Hz, and 1kW input, along witha 22 kHz and over 8kV output, is realized and implemented.

  12. Collective Thomson scattering measurements with high frequency resolution at TEXTOR

    DEFF Research Database (Denmark)

    Stejner Pedersen, Morten; Nielsen, Stefan Kragh; Korsholm, Søren Bang

    2010-01-01

    We discuss the development and first results of a receiver system for the collective Thomson scattering (CTS) diagnostic at TEXTOR with frequency resolution in the megahertz range or better. The improved frequency resolution expands the diagnostic range and utility of CTS measurements in general...

  13. High-Frequency Chest Compression: A Summary of the Literature

    Directory of Open Access Journals (Sweden)

    Cara F Dosman

    2005-01-01

    Full Text Available The purpose of the present literature summary is to describe high-frequency chest compression (HFCC, summarize its history and outline study results on its effect on mucolysis, mucus transport, pulmonary function and quality of life. HFCC is a mechanical method of self-administered chest physiotherapy, which induces rapid air movement in and out of the lungs. This mean oscillated volume is an effective method of mucolysis and mucus clearance. HFCC can increase independence. Some studies have shown that HFCC leads to more mucus clearance and better lung function compared with conventional chest physiotherapy. However, HFCC also decreases end-expiratory lung volume, which can lead to increased airway resistance and a decreased oscillated volume. Adding positive end-expiratory pressure to HFCC has been shown to prevent this decrease in end-expiratory lung volume and to increase the oscillated volume. It is possible that the HFCC-induced decrease in end-expiratory lung volume may result in more mucus clearance in airways that remain open by reducing airway size. Adjunctive methods, such as positive end-expiratory pressure, may not always be needed to make HFCC more effective.

  14. Algorithmic and high-frequency trading in Borsa Istanbul

    Directory of Open Access Journals (Sweden)

    Oguz Ersan

    2016-12-01

    Full Text Available This paper investigates the levels of algorithmic trading (AT and high-frequency trading (HFT in an emerging market, Borsa Istanbul (BIST, utilizing a dataset of 354 trading days between January 2013 and May 2014. We find an upward trend in AT by using common proxies: number of messages per minute and algo_trad of Hendershott et al. (2011. Mean algo_trad for BIST 100 index constituents varies between −18 and −13 which is parallel to 2003–2005 levels of NASDAQ large cap stocks. Initially, we measure HFT involvement by detecting linked messages as in the way proposed in Hasbrouck and Saar (2013. Next, we propose an extended HFT measure which captures various HFT strategies. This measure attributes approximately 6% of the orders to HFT. HFT involvement is higher in large orders (11.96%, in orders submitted by portfolio/fund management firms (10.40%, after improvement of BIST's order submission platform and tick size reduction for certain stocks.

  15. Three-Dimensional Electromagnetic High Frequency Axisymmetric Cavity Scars.

    Energy Technology Data Exchange (ETDEWEB)

    Warne, Larry Kevin; Jorgenson, Roy Eberhardt

    2014-10-01

    This report examines the localization of high frequency electromagnetic fi elds in three-dimensional axisymmetric cavities along periodic paths between opposing sides of the cavity. The cases where these orbits lead to unstable localized modes are known as scars. This report treats both the case where the opposing sides, or mirrors, are convex, where there are no interior foci, and the case where they are concave, leading to interior foci. The scalar problem is treated fi rst but the approximations required to treat the vector fi eld components are also examined. Particular att ention is focused on the normalization through the electromagnetic energy theorem. Both projections of the fi eld along the scarred orbit as well as point statistics are examined. Statistical comparisons are m ade with a numerical calculation of the scars run with an axisymmetric simulation. This axisymmetric cas eformstheoppositeextreme(wherethetwomirror radii at each end of the ray orbit are equal) from the two -dimensional solution examined previously (where one mirror radius is vastly di ff erent from the other). The enhancement of the fi eldontheorbitaxiscanbe larger here than in the two-dimensional case. Intentionally Left Blank

  16. Ultra high frequency induction welding of powder metal compacts

    Directory of Open Access Journals (Sweden)

    Çavdar, Uǧur

    2014-06-01

    Full Text Available The application of the iron based Powder Metal (PM compacts in Ultra High Frequency Induction Welding (UHFIW were reviewed. These PM compacts are used to produce cogs. This study investigates the methods of joining PM materials enforceability with UHFIW in the industry application. Maximum stress and maximum strain of welded PM compacts were determined by three point bending and strength tests. Microhardness and microstructure of induction welded compacts were determined.Soldadura por inducción de ultra alta frecuencia de polvos de metal compactados. Se ha realizado un estudio de la aplicación de polvos de metal (PM de base hierro compactados por soldadura por inducción de ultra alta frecuencia (UHFIW. Estos polvos de metal compactados se utilizan para producir engranajes. Este estudio investiga los métodos de uni.n de los materiales de PM con UHFIW en su aplicación en la industria. La máxima tensión y la máxima deformación de los polvos de metal compactados soldados fueron determinadas por flexión en tres puntos y prueba de resistencia. Se determinó la microdureza y la microestructura de los polvos compactados por soldadura por inducción.

  17. Challenges in graphene integration for high-frequency electronics

    Science.gov (United States)

    Giannazzo, F.; Fisichella, G.; Greco, G.; Roccaforte, F.

    2016-06-01

    This paper provides an overview of the state-of-the-art research on graphene (Gr) for high-frequency (RF) devices. After discussing current limitations of lateral Gr RF transistors, novel vertical devices concepts such as the Gr Base Hot Electron Transistor (GBHET) will be introduced and the main challenges in Gr integration within these architectures will be discussed. In particular, a GBHET device based on Gr/AlGaN/GaN heterostructure will be considered. An approach to the fabrication of this heterostructure by transfer of CVD grown Gr on copper to the AlGaN surface will be presented. The morphological and electrical properties of this system have been investigated at nanoscale by atomic force microscopy (AFM) and conductive atomic force microscopy (CAFM). In particular, local current-voltage measurements by the CAFM probe revealed the formation of a Schottky contact with low barrier height (˜0.41 eV) and excellent lateral uniformity between Gr and AlGaN. Basing on the electrical parameters extracted from this characterization, the theoretical performances of a GBHET formed by a metal/Al2O3/Gr/AlGaN/GaN stack have been evaluated.

  18. Disentangling seasonal bacterioplankton population dynamics by high-frequency sampling.

    Science.gov (United States)

    Lindh, Markus V; Sjöstedt, Johanna; Andersson, Anders F; Baltar, Federico; Hugerth, Luisa W; Lundin, Daniel; Muthusamy, Saraladevi; Legrand, Catherine; Pinhassi, Jarone

    2015-07-01

    Multiyear comparisons of bacterioplankton succession reveal that environmental conditions drive community shifts with repeatable patterns between years. However, corresponding insight into bacterioplankton dynamics at a temporal resolution relevant for detailed examination of variation and characteristics of specific populations within years is essentially lacking. During 1 year, we collected 46 samples in the Baltic Sea for assessing bacterial community composition by 16S rRNA gene pyrosequencing (nearly twice weekly during productive season). Beta-diversity analysis showed distinct clustering of samples, attributable to seemingly synchronous temporal transitions among populations (populations defined by 97% 16S rRNA gene sequence identity). A wide spectrum of bacterioplankton dynamics was evident, where divergent temporal patterns resulted both from pronounced differences in relative abundance and presence/absence of populations. Rates of change in relative abundance calculated for individual populations ranged from 0.23 to 1.79 day(-1) . Populations that were persistently dominant, transiently abundant or generally rare were found in several major bacterial groups, implying evolution has favoured a similar variety of life strategies within these groups. These findings suggest that high temporal resolution sampling allows constraining the timescales and frequencies at which distinct populations transition between being abundant or rare, thus potentially providing clues about physical, chemical or biological forcing on bacterioplankton community structure. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  19. Improving NASICON Sinterability through Crystallization under High Frequency Electrical Fields

    Directory of Open Access Journals (Sweden)

    Ilya eLisenker

    2016-03-01

    Full Text Available The effect of high frequency (HF electric fields on the crystallization and sintering rates of a lithium aluminum germanium phosphate (LAGP ion conducting ceramic was investigated. LAGP with the nominal composition Li1.5Al0.5Ge1.5(PO43 was crystallized and sintered, both conventionally and under effect of electrical field. Electrical field application, of 300V/cm at 1MHz, produced up to a 40% improvement in sintering rate of LAGP that was crystallized and sintered under the HF field. Heat sink effect of the electrodes appears to arrest thermal runaway and subsequent flash behavior. Sintered pellets were characterized using XRD, SEM, TEM and EIS to compare conventionally and field sintered processes. The as-sintered structure appears largely unaffected by the field as the sintering curves tend to converge beyond initial stages of sintering. Differences in densities and microstructure after 1 hour of sintering were minor with measured sintering strains of 31% vs. 26% with and without field, respectively . Ionic conductivity of the sintered pellets was evaluated and no deterioration due to the use of HF field was noted, though capacitance of grain boundaries due to secondary phases was significantly increased.

  20. Refraction of high frequency noise in an arbitrary jet flow

    Science.gov (United States)

    Khavaran, Abbas; Krejsa, Eugene A.

    1994-01-01

    Refraction of high frequency noise by mean flow gradients in a jet is studied using the ray-tracing methods of geometrical acoustics. Both the two-dimensional (2D) and three-dimensional (3D) formulations are considered. In the former case, the mean flow is assumed parallel and the governing propagation equations are described by a system of four first order ordinary differential equations. The 3D formulation, on the other hand, accounts for the jet spreading as well as the axial flow development. In this case, a system of six first order differential equations are solved to trace a ray from its source location to an observer in the far field. For subsonic jets with a small spreading angle both methods lead to similar results outside the zone of silence. However, with increasing jet speed the two prediction models diverge to the point where the parallel flow assumption is no longer justified. The Doppler factor of supersonic jets as influenced by the refraction effects is discussed and compared with the conventional modified Doppler factor.

  1. Bottomside Ionospheric Electron Density Specification using Passive High Frequency Signals

    Science.gov (United States)

    Kaeppler, S. R.; Cosgrove, R. B.; Mackay, C.; Varney, R. H.; Kendall, E. A.; Nicolls, M. J.

    2016-12-01

    The vertical bottomside electron density profile is influenced by a variety of natural sources, most especially traveling ionospheric disturbances (TIDs). These disturbances cause plasma to be moved up or down along the local geomagnetic field and can strongly impact the propagation of high frequency radio waves. While the basic physics of these perturbations has been well studied, practical bottomside models are not well developed. We present initial results from an assimilative bottomside ionosphere model. This model uses empirical orthogonal functions based on the International Reference Ionosphere (IRI) to develop a vertical electron density profile, and features a builtin HF ray tracing function. This parameterized model is then perturbed to model electron density perturbations associated with TIDs or ionospheric gradients. Using the ray tracing feature, the model assimilates angle of arrival measurements from passive HF transmitters. We demonstrate the effectiveness of the model using angle of arrival data. Modeling results of bottomside electron density specification are compared against suitable ancillary observations to quantify accuracy of our model.

  2. Exposure to high-frequency transient electromagnetic fields.

    Science.gov (United States)

    Skotte, J H

    1996-02-01

    The purpose of this study was to assess exposure to high-frequency transient (HFT) electromagnetic fields in occupational and residential environments. Exposure to HFT electromagnetic fields was measured with personal dosimeters for 301 volunteers (396 measurements) in periods of 24 h in both occupational and residential environments. The study included electrical utility workers (generation, transmission, distribution, substation), office and industrial workers, and people living near high-power transmission lines. The measure of exposure to HFT fields was specified as the proportion of time (parts per million) in which the electric field exceeds a nominal threshold level of 200 V.m-1 at 5-20 MHz. Recently the specification of the HFT channel of the dosimeter has been found to be incomplete; therefore a testing of the threshold level and the sensitivity to electromagnetic fields from radio-telephones was carried out. The percentage of measurements with a mean workday exposure above 0.1 ppm was 6.5-9.4% for the utility groups and 0.9% for all the nonwork measurements. It is likely that the use of radio-telephones has contributed significantly to the number of HFT events in some of the measurements, especially for the generation workers. The nominal threshold level of the dosimeter was found to vary considerably depending on the polarization of the field (20-400 V.m-1 at 13.56 MHz for one instrument). Generally speaking, HFT fields appeared infrequently. The workday exposure to HFT fields and 50 Hz magnetic fields ranked the groups differently. There is a need for developing instrumentation for HFT field measurements further.

  3. High shock, high frequency characteristics of a mechanical isolator for a piezoresistive accelerometer

    Energy Technology Data Exchange (ETDEWEB)

    Bateman, V.I.; Brown, F.A.; Davie, N.T. [and others

    1995-07-01

    A mechanical isolator has been developed for a piezoresistive accelerometer. The purpose of the isolator is to mitigate high frequency shocks before they reach the accelerometer because the high frequency shocks may cause the accelerometer to resonate. Since the accelerometer is undamped, it often breaks when it resonates. The mechanical isolator was developed in response to impact test requirements for a variety of structures at Sandia National Laboratories. An Extended Technical Assistance Program with the accelerometer manufacturer has resulted in a commercial isolator that will be available to the general public. This mechanical isolator has ten times the bandwidth of any other commercial isolator and has acceptable frequency domain performance from DC to 10 kHz ({plus_minus} 10%) over a temperature range of -65{degrees}F to +185{degrees}F as demonstrated in this paper.

  4. Miniature Laser Magnetometer (MLM) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This 2009 NASA SBIR Phase 2 proposal for an innovative Miniature Laser Magnetometer (MLM) is a response to subtopic S1.06 Particles and Field Sensors and Instrument...

  5. Miniature Laser Magnetometer (MLM) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This 2009 NASA SBIR Phase 1 proposal for an innovative Miniature Laser Magnetometer (MLM) is a response to subtopic S1.06 Particles and Field Sensors and Instrument...

  6. A New High Frequency Injection Method Based on Duty Cycle Shifting without Maximum Voltage Magnitude Loss

    DEFF Research Database (Denmark)

    Wang, Dong; Lu, Kaiyuan; Rasmussen, Peter Omand

    2015-01-01

    The conventional high frequency signal injection method is to superimpose a high frequency voltage signal to the commanded stator voltage before space vector modulation. Therefore, the magnitude of the voltage used for machine torque production is limited. In this paper, a new high frequency...

  7. High frequency acoustic propagation under variable sea surfaces

    Science.gov (United States)

    Senne, Joseph

    This dissertation examines the effects of rough sea surfaces and sub-surface bubbles on high frequency acoustic transmissions. Owing to the strong attenuation of electromagnetic waves in seawater, acoustic waves are used in the underwater realm much in the same way that electromagnetic waves are used in the atmosphere. The transmission and reception of acoustic waves in the underwater environment is important for a variety of fields including navigation, ocean observation, and real-time communications. Rough sea surfaces and sub-surface bubbles alter the acoustic signals that are received not only in the near-surface water column, but also at depth. This dissertation demonstrates that surface roughness and sub-surface bubbles notably affect acoustic transmissions with frequency ranges typical of underwater communications systems (10-50 kHz). The influence of rough surfaces on acoustic transmissions is determined by modeling forward propagation subject to sea surface dynamics that vary with time scales of less than a second to tens of seconds. A time-evolving rough sea surface model is combined with a rough surface formulation of a parabolic equation model for predicting time-varying acoustic fields. Linear surface waves are generated from surface wave spectra, and evolved in time using a Runge-Kutta integration technique. This evolving, range-dependent surface information is combined with other environmental parameters and fed into the acoustic model, giving an approximation of the time-varying acoustic field. The wide-angle parabolic equation model manages the rough sea surfaces by molding them into the boundary conditions for calculations of the near-surface acoustic field. The influence of sub-surface bubbles on acoustic transmissions is determined by modeling the population of bubbles near the surface and using those populations to approximate the effective changes in sound speed and attenuation. Both range-dependent and range-independent bubble models are

  8. Extremely high frequency sensitivity in a ‘simple’ ear

    OpenAIRE

    Moir, Hannah M.; Jackson, Joseph C.; Windmill, James F. C.

    2013-01-01

    An evolutionary war is being played out between the bat, which uses ultrasonic calls to locate insect prey, and the moth, which uses microscale ears to listen for the approaching bat. While the highest known frequency of bat echolocation calls is 212 kHz, the upper limit of moth hearing is considered much lower. Here, we show that the greater wax moth, Galleria mellonella, is capable of hearing ultrasonic frequencies approaching 300 kHz; the highest frequency sensitivity of any animal. With a...

  9. Compact printed two dipole array antenna with a high front-back ratio for ultra-high-frequency radio-frequency identification handheld reader applications

    DEFF Research Database (Denmark)

    Liu, Qi; Zhang, Shuai; He, Sailing

    2015-01-01

    A printed two-dipole array antenna with a high front-back ratio is proposed for ultra-high-frequency (UHF) radio-frequency identification handheld readers. The proposed antenna is a parasitic dual-element array with the ends of both elements folded back towards each other for additional coupling...

  10. The Whole new world of miniature technology

    Energy Technology Data Exchange (ETDEWEB)

    Gillespie, L.K.

    1980-07-01

    In the past ten years, miniaturization of both electrical and mechanical parts has significantly increased. Documentation of the design and production capabilities of miniaturization in the electronics industry is well-defined. Literature on the subject of miniaturization of metal piece parts, however, is hard to find. Some of the current capabilities in the manufacture of miniature metal piece parts or miniature features in larger piece parts are discussed.

  11. Effect of skin dielectric properties on the read range of epidermal ultra-high frequency radio-frequency identification tags.

    Science.gov (United States)

    Oyeka, Dumtoochukwu O; Batchelor, John C; Ziai, Ali Mohamad

    2017-04-01

    This Letter presents an investigation of the effect of human tissue conductivity and permittivity on the performance of epidermal transfer tattoo ultra-high frequency radio-frequency identification (RFID) tags. The measurements were carried out on 20 individuals and the variations in the measured dielectric properties correlate well with variations in the measured tag read range on the individuals and to a lesser extent with their body mass index values. Simulation results also showed the effects of permittivity and conductivity on the designed resonance frequency of the RFID tag.

  12. Effect of skin dielectric properties on the read range of epidermal ultra-high frequency radio-frequency identification tags

    Science.gov (United States)

    Batchelor, John C.; Ziai, Ali Mohamad

    2017-01-01

    This Letter presents an investigation of the effect of human tissue conductivity and permittivity on the performance of epidermal transfer tattoo ultra-high frequency radio-frequency identification (RFID) tags. The measurements were carried out on 20 individuals and the variations in the measured dielectric properties correlate well with variations in the measured tag read range on the individuals and to a lesser extent with their body mass index values. Simulation results also showed the effects of permittivity and conductivity on the designed resonance frequency of the RFID tag. PMID:28461902

  13. Miniature, Variable-Speed Control Moment Gyroscope

    Science.gov (United States)

    Bilski, Steve; Kline-Schoder, Robert; Sorensen, Paul

    2011-01-01

    The Miniature Variable-Speed Control Moment Gyroscope (MVS-CMG) was designed for small satellites (mass from less than 1 kg up to 500 kg). Currently available CMGs are too large and heavy, and available miniature CMGs do not provide sufficient control authority for use on practical satellites. This primarily results from the need to greatly increase the speed of rotation of the flywheel in order to reduce the flywheel size and mass. This goal was achieved by making use of a proprietary, space-qualified, high-speed (100,000 rpm) motor technology to spin the flywheel at a speed ten times faster than other known miniature CMGs under development. NASA is supporting innovations in propulsion, power, and guidance and navigation systems for low-cost small spacecraft. One of the key enabling technologies is attitude control mechanisms. CMGs are particularly attractive for spacecraft attitude control since they can achieve higher torques with lower mass and power than reaction wheels, and they provide continuous torque capability that enables precision pointing (in contrast to on-off thruster control). The aim of this work was to develop a miniature, variable-speed CMG that is sized for use on small satellites. To achieve improved agility, these spacecraft must be able to slew at high rate, which requires attitude control actuators that can apply torques on the order of 5 N-m. The MVS-CMG is specifically designed to achieve a high-torque output with a minimum flywheel and system mass. The flywheel can be run over a wide range of speeds, which is important to help reduce/eliminate potential gimbal lock, and can be used to optimize the operational envelope of the CMG.

  14. Extremely high frequency sensitivity in a 'simple' ear.

    Science.gov (United States)

    Moir, Hannah M; Jackson, Joseph C; Windmill, James F C

    2013-08-23

    An evolutionary war is being played out between the bat, which uses ultrasonic calls to locate insect prey, and the moth, which uses microscale ears to listen for the approaching bat. While the highest known frequency of bat echolocation calls is 212 kHz, the upper limit of moth hearing is considered much lower. Here, we show that the greater wax moth, Galleria mellonella, is capable of hearing ultrasonic frequencies approaching 300 kHz; the highest frequency sensitivity of any animal. With auditory frequency sensitivity that is unprecedented in the animal kingdom, the greater wax moth is ready and armed for any echolocation call adaptations made by the bat in the on-going bat-moth evolutionary war.

  15. Extremely high frequency sensitivity in a ‘simple’ ear

    Science.gov (United States)

    Moir, Hannah M.; Jackson, Joseph C.; Windmill, James F. C.

    2013-01-01

    An evolutionary war is being played out between the bat, which uses ultrasonic calls to locate insect prey, and the moth, which uses microscale ears to listen for the approaching bat. While the highest known frequency of bat echolocation calls is 212 kHz, the upper limit of moth hearing is considered much lower. Here, we show that the greater wax moth, Galleria mellonella, is capable of hearing ultrasonic frequencies approaching 300 kHz; the highest frequency sensitivity of any animal. With auditory frequency sensitivity that is unprecedented in the animal kingdom, the greater wax moth is ready and armed for any echolocation call adaptations made by the bat in the on-going bat–moth evolutionary war. PMID:23658005

  16. The Textile Elements in Ottoman Miniatures

    Directory of Open Access Journals (Sweden)

    Kevser Gürcan Y A R D I M C I

    2015-07-01

    Full Text Available With the value given to the art and the artist, high quality works of art in many fields were produced in the Ottoman Era. The art of weaving also lived its brightest period in terms of color, design, and weaving techniques in the Ottoman Empire in XVI. Ce ntury. The weaving products shaped the lifestyles of the people in those times and received great interest in the Palace as well. Silk woven fabrics had become such a great power in those times that it became the greatest symbol showing the power of the Ot toman Empire to the foreigners, and the determiner of the social standing within the society. The Ottoman Sultans used their clothing, which they made to become flamboyant with embroideries, to distinguish themselves from the public, and make them accept t heir power. Among the presents that were presented to the Sultans, clothes, kaftans, and similar fabrics as well as other precious presents, were frequent. The miniature manuscripts that were produced in the Palace are in the quality of unique documents t hat transfer yesterday’s knowledge to the modern age. It is easy to decode the dimensions of the clothing habits, decoration elements and hierarchy concepts of the Ottoman Era, as well as the weaving activities by using the miniature manuscripts. On the ot her hand, these elements constitute a rich alphabet in transferring the emotional structure of the society in those times, the traditions and habits to our world today. The greatest share in this effort belongs to the artists who depicted the miniatures by staying loyal to the texts in the manuscripts as well as to their active participation in the events of those times and their narrating the events as the very first observers. In addition, the muralists depicting the manuscripts and their undertaking the job of drawing the designs on the original fabric helped them to reflect the richness in the design of those times to the miniatures. In this study, the weavings and the accessories

  17. Achieving High-Frequency Optical Control of Synaptic Transmission

    Science.gov (United States)

    Jackman, Skyler L.; Beneduce, Brandon M.; Drew, Iain R.

    2014-01-01

    The optogenetic tool channelrhodopsin-2 (ChR2) is widely used to excite neurons to study neural circuits. Previous optogenetic studies of synapses suggest that light-evoked synaptic responses often exhibit artificial synaptic depression, which has been attributed to either the inability of ChR2 to reliably fire presynaptic axons or to ChR2 elevating the probability of release by depolarizing presynaptic boutons. Here, we compare light-evoked and electrically evoked synaptic responses for high-frequency stimulation at three synapses in the mouse brain. At synapses from Purkinje cells to deep cerebellar nuclei neurons (PC→DCN), light- and electrically evoked synaptic currents were remarkably similar for ChR2 expressed transgenically or with adeno-associated virus (AAV) expression vectors. For hippocampal CA3→CA1 synapses, AAV expression vectors of serotype 1, 5, and 8 led to light-evoked synaptic currents that depressed much more than electrically evoked currents, even though ChR2 could fire axons reliably at up to 50 Hz. The disparity between optical and electrical stimulation was eliminated when ChR2 was expressed transgenically or with AAV9. For cerebellar granule cell to stellate cell (grc→SC) synapses, AAV1 also led to artificial synaptic depression and AAV9 provided superior performance. Artificial synaptic depression also occurred when stimulating over presynaptic boutons, rather than axons, at CA3→CA1 synapses, but not at PC→DCN synapses. These findings indicate that ChR2 expression methods and light stimulation techniques influence synaptic responses in a neuron-specific manner. They also identify pitfalls associated with using ChR2 to study synapses and suggest an approach that allows optogenetics to be applied in a manner that helps to avoid potential complications. PMID:24872574

  18. Tsunami Arrival Detection with High Frequency (HF Radar

    Directory of Open Access Journals (Sweden)

    Donald Barrick

    2012-05-01

    Full Text Available Quantitative real-time observations of a tsunami have been limited to deep-water, pressure-sensor observations of changes in the sea surface elevation and observations of sea level fluctuations at the coast, which are essentially point measurements. Constrained by these data, models have been used for predictions and warning of the arrival of a tsunami, but to date no system exists for local detection of an actual incoming wave with a significant warning capability. Networks of coastal high frequency (HF-radars are now routinely observing surface currents in many countries. We report here on an empirical method for the detection of the initial arrival of a tsunami, and demonstrate its use with results from data measured by fourteen HF radar sites in Japan and USA following the magnitude 9.0 earthquake off Sendai, Japan, on 11 March 2011. The distance offshore at which the tsunami can be detected, and hence the warning time provided, depends on the bathymetry: the wider the shallow continental shelf, the greater this time. We compare arrival times at the radars with those measured by neighboring tide gauges. Arrival times measured by the radars preceded those at neighboring tide gauges by an average of 19 min (Japan and 15 min (USA The initial water-height increase due to the tsunami as measured by the tide gauges was moderate, ranging from 0.3 to 2 m. Thus it appears possible to detect even moderate tsunamis using this method. Larger tsunamis could obviously be detected further from the coast. We find that tsunami arrival within the radar coverage area can be announced 8 min (i.e., twice the radar spectral time resolution after its first appearance. This can provide advance warning of the tsunami approach to the coastline locations.

  19. High-frequency oscillations (HFOs) in clinical epilepsy

    Science.gov (United States)

    Jacobs, J.; Staba, R.; Asano, E.; Otsubo, H.; Wu, J.Y.; Zijlmans, M.; Mohamed, I.; Kahane, P.; Dubeau, F.; Navarro, V.; Gotman, J.

    2013-01-01

    Epilepsy is one of the most frequent neurological diseases. In focal medically refractory epilepsies, successful surgical treatment largely depends on the identification of epileptogenic zone. High-frequency oscillations (HFOs) between 80 and 500 Hz, which can be recorded with EEG, may be novel markers of the epileptogenic zone. This review discusses the clinical importance of HFOs as markers of epileptogenicity and their application in different types of epilepsies. HFOs are clearly linked to the seizure onset zone, and the surgical removal of regions generating them correlates with a seizure free post-surgical outcome. Moreover, HFOs reflect the seizure-generating capability of the underlying tissue, since they are more frequent after the reduction of antiepileptic drugs. They can be successfully used in pediatric epilepsies such as epileptic spasms and help to understand the generation of this specific type of seizures. While mostly recorded on intracranial EEGs, new studies suggest that identification of HFOs on scalp EEG or magnetoencephalography (MEG) is possible as well. Thus not only patients with refractory epilepsies and invasive recordings but all patients might profit from the analysis of HFOs. Despite these promising results, the analysis of HFOs is not a routine clinical procedure; most results are derived from relatively small cohorts of patients and many aspects are not yet fully understood. Thus the review concludes that even if HFOs are promising biomarkers of epileptic tissue, there are still uncertainties about mechanisms of generation, methods of analysis, and clinical applicability. Large multicenter prospective studies are needed prior to widespread clinical application. PMID:22480752

  20. National High Frequency Radar Network (hfrnet) and Pacific Research Efforts

    Science.gov (United States)

    Hazard, L.; Terrill, E. J.; Cook, T.; de Paolo, T.; Otero, M. P.; Rogowski, P.; Schramek, T. A.

    2016-12-01

    The U.S. High Frequency Radar Network (HFRNet) has been in operation for over ten years with representation from 31 organizations spanning academic institutions, state and local government agencies, and private organizations. HFRNet currently holds a collection from over 130 radar installations totaling over 10 million records of surface ocean velocity measurements. HFRNet is a primary example of inter-agency and inter-institutional partnerships for improving oceanographic research and operations. HF radar derived surface currents have been used in several societal applications including coastal search and rescue, oil spill response, water quality monitoring and marine navigation. Central to the operational success of the large scale network is an efficient data management, storage, access, and delivery system. The networking of surface current mapping systems is characterized by a tiered structure that extends from the individual field installations to local regional operations maintaining multiple sites and on to centralized locations aggregating data from all regions. The data system development effort focuses on building robust data communications from remote field locations (sites) for ingestion into the data system via data on-ramps (Portals or Site Aggregators) to centralized data repositories (Nodes). Centralized surface current data enables the aggregation of national surface current grids and allows for ingestion into displays, management tools, and models. The Coastal Observing Research and Development Center has been involved in international relationships and research in the Philippines, Palau, and Vietnam. CORDC extends this IT architecture of surface current mapping data systems leveraging existing developments and furthering standardization of data services for seamless integration of higher level applications. Collaborations include the Philippine Atmospheric Geophysical and Astronomical Services Administration (PAGASA), The Coral Reef Research

  1. Achieving high-frequency optical control of synaptic transmission.

    Science.gov (United States)

    Jackman, Skyler L; Beneduce, Brandon M; Drew, Iain R; Regehr, Wade G

    2014-05-28

    The optogenetic tool channelrhodopsin-2 (ChR2) is widely used to excite neurons to study neural circuits. Previous optogenetic studies of synapses suggest that light-evoked synaptic responses often exhibit artificial synaptic depression, which has been attributed to either the inability of ChR2 to reliably fire presynaptic axons or to ChR2 elevating the probability of release by depolarizing presynaptic boutons. Here, we compare light-evoked and electrically evoked synaptic responses for high-frequency stimulation at three synapses in the mouse brain. At synapses from Purkinje cells to deep cerebellar nuclei neurons (PC→DCN), light- and electrically evoked synaptic currents were remarkably similar for ChR2 expressed transgenically or with adeno-associated virus (AAV) expression vectors. For hippocampal CA3→CA1 synapses, AAV expression vectors of serotype 1, 5, and 8 led to light-evoked synaptic currents that depressed much more than electrically evoked currents, even though ChR2 could fire axons reliably at up to 50 Hz. The disparity between optical and electrical stimulation was eliminated when ChR2 was expressed transgenically or with AAV9. For cerebellar granule cell to stellate cell (grc→SC) synapses, AAV1 also led to artificial synaptic depression and AAV9 provided superior performance. Artificial synaptic depression also occurred when stimulating over presynaptic boutons, rather than axons, at CA3→CA1 synapses, but not at PC→DCN synapses. These findings indicate that ChR2 expression methods and light stimulation techniques influence synaptic responses in a neuron-specific manner. They also identify pitfalls associated with using ChR2 to study synapses and suggest an approach that allows optogenetics to be applied in a manner that helps to avoid potential complications. Copyright © 2014 the authors 0270-6474/14/347704-11$15.00/0.

  2. Engineered miniaturized models of musculoskeletal diseases.

    Science.gov (United States)

    Bersini, Simone; Arrigoni, Chiara; Lopa, Silvia; Bongio, Matilde; Martin, Ivan; Moretti, Matteo

    2016-09-01

    The musculoskeletal system is an incredible machine that protects, supports and moves the human body. However, several diseases can limit its functionality, compromising patient quality of life. Designing novel pathological models would help to clarify the mechanisms driving such diseases, identify new biomarkers and screen potential drug candidates. Miniaturized models in particular can mimic the structure and function of basic tissue units within highly controlled microenvironments, overcoming the limitations of traditional macroscale models and complementing animal studies, which despite being closer to the in vivo situation, are affected by species-specific differences. Here, we discuss the miniaturized models engineered over the past few years to analyze osteochondral and skeletal muscle pathologies, demonstrating how the rationale design of novel systems could provide key insights into the pathological mechanisms behind diseases of the musculoskeletal system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Switching transients in high-frequency high-power converters using power MOSFET's

    Science.gov (United States)

    Sloane, T. H.; Owen, H. A., Jr.; Wilson, T. G.

    1979-01-01

    The use of MOSFETs in a high-frequency high-power dc-to-dc converter is investigated. Consideration is given to the phenomena associated with the paralleling of MOSFETs and to the effect of stray circuit inductances on the converter circuit performance. Analytical relationships between various time constants during the turning-on and turning-off intervals are derived which provide estimates of plateau and peak levels during these intervals.

  4. Apparent Attenuation at High Frequencies in Southern California

    Science.gov (United States)

    Lin, Y. P.; Jordan, T. H.

    2016-12-01

    Accurately simulating strong motions for seismic hazard analysis requires accurate 3D models of crustal structure. At low frequencies (job of accounting 3D elastic scattering on wavefield amplitudes. At higher frequencies, however, anelastic attenuation becomes more important, and the elastic scattering depends on unresolved small-scale heterogeneities, giving rise to a complex apparent attenuation structure that depends on both position and frequency. We place constraints on this structure in the band 1-10 Hz through the analysis of earthquake waveforms recorded by the Southern California Seismic Network (SCSN). We localize signals in frequency and time using wavelet transforms, and we account for source structure and geometrical spreading by referencing the spectral amplitudes to values computed from synthetic seismograms. Inversions of large datasets recover an attenuation structure that, when averaged laterally and over frequency, is generally consistent with the tomographic study of Hauksson & Shearer (2006). In particular, we find that the apparent quality factor for P waves (QP) is less than the apparent quality factor for S waves (QS), in contradiction with the classical relation QP 2QS that has been used for most wavefield modeling at low frequencies. The data are consistent with QP anomalies being strongest in the low-Q, near-surface waveguide, suggesting that strong scattering from small-scale heterogeneities may play a role in explaining this discrepancy. The data also require that the apparent attenuation be strongly frequency dependent across the 1-10 Hz band. We use 3D tomographic inversions conditioned on the 3D velocity models to test the hypothesis that the lateral variations in apparent attenuation structure are strongly correlated with velocity variations.

  5. Cluster observations of high-frequency waves in the exterior cusp

    Directory of Open Access Journals (Sweden)

    Y. Khotyaintsev

    2004-07-01

    Full Text Available We study wave emissions, in the frequency range from above the lower hybrid frequency up to the plasma frequency, observed during one of the Cluster crossings of a high-beta exterior cusp region on 4 March 2003. Waves are localized near narrow current sheets with a thickness a few times the ion inertial length; currents are strong, of the order of 0.1-0.5μA/m2 (0.1-0.5mA/m2 when mapped to ionosphere. The high frequency part of the waves, frequencies above the electron-cyclotron frequency, is analyzed in more detail. These high frequency waves can be broad-band, can have spectral peaks at the plasma frequency or spectral peaks at frequencies below the plasma frequency. The strongest wave emissions usually have a spectral peak near the plasma frequency. The wave emission intensity and spectral character change on a very short time scale, of the order of 1s. The wave emissions with strong spectral peaks near the plasma frequency are usually seen on the edges of the narrow current sheets. The most probable generation mechanism of high frequency waves are electron beams via bump-on-tail or electron two-stream instability. Buneman and ion-acoustic instability can be excluded as a possible generation mechanism of waves. We suggest that high frequency waves are generated by electron beams propagating along the separatrices of the reconnection region.

  6. Attenuation Characteristics of High Frequency Seismic Waves in Southern India

    Science.gov (United States)

    Sivaram, K.; Utpal, Saikia; Kanna, Nagaraju; Kumar, Dinesh

    2017-07-01

    observed low- Q P and Q S values. Additionally, the enrichment of coda waves and significance of scattering mechanisms is evidenced in our observation of Q C > Q S estimates. Lapse time study shows Q C values increasing with lapse time. High Q C values at 40 s lapse times in WDC indicate that it may be a relatively stable region. In the absence of detailed body wave attenuation studies in this region, the frequency dependent Q relationships developed here are useful for the estimation of earthquake source parameters of the region. Also, these relations may be used for the simulation of earthquake strong ground motions which are required for the estimation of seismic hazard, geotechnical and retrofitting analysis of critical structures in the region.

  7. In Vivo Demonstration of Addressable Microstimulators Powered by Rectification of Epidermically Applied Currents for Miniaturized Neuroprostheses.

    Directory of Open Access Journals (Sweden)

    Laura Becerra-Fajardo

    Full Text Available Electrical stimulation is used in order to restore nerve mediated functions in patients with neurological disorders, but its applicability is constrained by the invasiveness of the systems required to perform it. As an alternative to implantable systems consisting of central stimulation units wired to the stimulation electrodes, networks of wireless microstimulators have been devised for fine movement restoration. Miniaturization of these microstimulators is currently hampered by the available methods for powering them. Previously, we have proposed and demonstrated a heterodox electrical stimulation method based on electronic rectification of high frequency current bursts. These bursts can be delivered through textile electrodes on the skin. This approach has the potential to result in an unprecedented level of miniaturization as no bulky parts such as coils or batteries are included in the implant. We envision microstimulators designs based on application-specific integrated circuits (ASICs that will be flexible, thread-like (diameters < 0.5 mm and not only with controlled stimulation capabilities but also with sensing capabilities for artificial proprioception. We in vivo demonstrate that neuroprostheses composed of addressable microstimulators based on this electrical stimulation method are feasible and can perform controlled charge-balanced electrical stimulation of muscles. We developed miniature external circuit prototypes connected to two bipolar probes that were percutaneously implanted in agonist and antagonist muscles of the hindlimb of an anesthetized rabbit. The electronic implant architecture was able to decode commands that were amplitude modulated on the high frequency (1 MHz auxiliary current bursts. The devices were capable of independently stimulating the target tissues, accomplishing controlled dorsiflexion and plantarflexion joint movements. In addition, we numerically show that the high frequency current bursts comply with

  8. Multi-frequency klystron designed for high efficiency

    Science.gov (United States)

    Jensen, Aaron

    2017-07-04

    A multi-frequency klystron has an electron gun which generates a beam, a circuit of bunch-align-collect (BAC) tuned cavities that bunch the beam and amplify an RF signal, a collector where the beam is collected and dumped, and a standard output cavity and waveguide coupled to a window to output RF power at a fundamental mode to an external load. In addition, the klystron has additional bunch-align-collect (BAC) cavities tuned to a higher harmonic frequency, and a harmonic output cavity and waveguide coupled via a window to an additional external load.

  9. Detecting high-frequency gravitational waves with optically levitated sensors.

    Science.gov (United States)

    Arvanitaki, Asimina; Geraci, Andrew A

    2013-02-15

    We propose a tunable resonant sensor to detect gravitational waves in the frequency range of 50-300 kHz using optically trapped and cooled dielectric microspheres or microdisks. The technique we describe can exceed the sensitivity of laser-based gravitational wave observatories in this frequency range, using an instrument of only a few percent of their size. Such a device extends the search volume for gravitational wave sources above 100 kHz by 1 to 3 orders of magnitude, and could detect monochromatic gravitational radiation from the annihilation of QCD axions in the cloud they form around stellar mass black holes within our galaxy due to the superradiance effect.

  10. Accurate modeling of high frequency microelectromechanical systems (MEMS switches in time- and frequency-domainc

    Directory of Open Access Journals (Sweden)

    F. Coccetti

    2003-01-01

    Full Text Available In this contribution we present an accurate investigation of three different techniques for the modeling of complex planar circuits. The em analysis is performed by means of different electromagnetic full-wave solvers in the timedomain and in the frequency-domain. The first one is the Transmission Line Matrix (TLM method. In the second one the TLM method is combined with the Integral Equation (IE method. The latter is based on the Generalized Transverse Resonance Diffraction (GTRD. In order to test the methods we model different structures and compare the calculated Sparameters to measured results, with good agreement.

  11. Characteristics of a piezoresistive accelerometer in high frequency, high shock environments

    Energy Technology Data Exchange (ETDEWEB)

    Bateman, V.I.; Davie, N.T.; Brown, F.A.

    1993-12-31

    The characteristics of a piezoresistive accelerometer in shock environments are being studied at Sandia National Laboratories in the Mechanical Shock Testing Laboratory. A Hopkinson bar capability has been developed to extend our understanding of the piezoresistive accelerometer with and without mechanical isolation in the high frequency, high shock environments where measurements are being made. Two different Hopkinson bar materials are being used: titanium and beryllium. The characteristics of the piezoresistive accelerometer for frequencies of DC-10 kHz and shock magnitudes of up to 4,000 g as determined from measurements with a titanium Hopkinson bar are presented. The SNL uniaxial shock isolation technique has demonstrated acceptable characteristics for a temperature range of {minus}50{degree}F to +186{degree}F and a frequency bandwidth of DC to 10 kHz. These characteristics have been verified by the calibration of the Hopkinson bar used for accelerometer testing. The beryllium Hopkinson bar configuration is described. Preliminary characteristics of the piezoresistive accelerometer at a nominal shock level of 17,000 g for a frequency range of DC-50 kHz are presented.

  12. Unbalanced heat isolation in high-frequency electrothermics of polymers

    Directory of Open Access Journals (Sweden)

    A. V. Livshits

    2014-01-01

    Full Text Available The polymeric materials are widely applied in many industries because they have a number of advantages, which allow their use instead of traditional materials. Nevertheless, the issues of manufacturing products from polymeric materials and their applications are insufficiently studied. The same can be said about high-frequency (HF electrothermics of polymers. Therefore, mathematical simulation of electrothermic processes is of interest both in terms of science and in terms of applications.Traditionally, the technological scheme with one insulator made of cardboard is used to implement the HF heating processes for welding of polymers without analyzing their insulating properties. For welding of polymer parts with various thickness it is interesting to consider the scheme with two heat insulators in the form of five-layer plate, including electrodes, insulators, and processed material. As a result of the conducted research activities the article presents a mathematical model in the form of a system of differential equations of unsteady heat conductivity taking into account internal sources of heat with appropriate boundary conditions, and software to implement it.The software that implements a mathematical model enables to study the mutual influence between the geometrical and electro-physical parameters of technological system of HF heating of the thermoplastics. From the calculations presented in numerical and graphic form the following areas of heating polymer are identified: uniform heating, regional zones of thermal influence of insulators.The article presents the research results of influence of heat insulators with different thickness on the distribution of thermoplastics temperature field. It is determined that the zone of maximum value of heating polymer can be displaced by modifying the parameters of insulating layers, thereby improving the welding quality of polymeric items.According to research results, we can conclude that there is a

  13. Miniature thermoelectric coolers for semiconductor lasers

    Energy Technology Data Exchange (ETDEWEB)

    Semenyuk, V.A. [Odessa State Academy of Refrigeration, Odessa (Ukraine); Pilipenko, T.V. [EDO Corp./Barnes Engineering Division, 88 Long Hill Cross Rd., Shelton, Connecticut 06484 (United States); Albright, G.C.; Ioffe, L.A.; Rolls, W.H. [Odessa State Academy of Refrigeration, Odessa (Ukraine)

    1994-08-10

    The problem of matching thermoelectric coolers and semiconductor lasers with respect to heat flow densities and electrical currents is discussed. It is shown that the solution of this problem is accomplished by the reduction of thermoelement dimensions to the submillimeter level. Assembled with extruded thermoelectric materials, miniature coolers with a thermoelement length as short as 0.1 mm and a cross section of 0.2{times}0.2 mm{sup 2} are demonstrated. Using 0.5 mm thick aluminum ceramic plates, the overall height of these miniature coolers can be as low as 1.1 mm. The devices are designed for cooling and thermally stabilizing miniature optoelectronic elements, especially semiconductor lasers. The results of device testing over a wide range of temperature and heat loads are given. This novel approach in thermoelectric cooler design represents a new step in miniaturization and reduced current requirements, with little or no loss in maximum attainable temperature difference. A {Delta}{ital T}{sub max} of 68 K is demonstrated with input current of 200 mA. Due to the small thermoelement length, extremely large heat flow densities at cold junctions are practical (up to 100 W/cm{sup 2} at {Delta}{ital T}=0), making these devices ideal for heat intensive local sources such as injection laser diodes. Due to the extremely small sizes, these coolers have a high speed of response where a {Delta}{ital T} of 35 K in specimens with the thermoelement length of 0.1 mm is approximately 150 milliseconds. These micro coolers are ideal for use within the semiconductor device housing and under conditions where limitations of power, size, and electrical current predominate. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  14. Miniaturized LEDs for flat-panel displays

    Science.gov (United States)

    Radauscher, Erich J.; Meitl, Matthew; Prevatte, Carl; Bonafede, Salvatore; Rotzoll, Robert; Gomez, David; Moore, Tanya; Raymond, Brook; Cok, Ronald; Fecioru, Alin; Trindade, António Jose; Fisher, Brent; Goodwin, Scott; Hines, Paul; Melnik, George; Barnhill, Sam; Bower, Christopher A.

    2017-02-01

    Inorganic light emitting diodes (LEDs) serve as bright pixel-level emitters in displays, from indoor/outdoor video walls with pixel sizes ranging from one to thirty millimeters to micro displays with more than one thousand pixels per inch. Pixel sizes that fall between those ranges, roughly 50 to 500 microns, are some of the most commercially significant ones, including flat panel displays used in smart phones, tablets, and televisions. Flat panel displays that use inorganic LEDs as pixel level emitters (μILED displays) can offer levels of brightness, transparency, and functionality that are difficult to achieve with other flat panel technologies. Cost-effective production of μILED displays requires techniques for precisely arranging sparse arrays of extremely miniaturized devices on a panel substrate, such as transfer printing with an elastomer stamp. Here we present lab-scale demonstrations of transfer printed μILED displays and the processes used to make them. Demonstrations include passive matrix μILED displays that use conventional off-the shelf drive ASICs and active matrix μILED displays that use miniaturized pixel-level control circuits from CMOS wafers. We present a discussion of key considerations in the design and fabrication of highly miniaturized emitters for μILED displays.

  15. Miniature standoff Raman probe for neurosurgical applications

    Science.gov (United States)

    Stevens, Oliver A. C.; Hutchings, Joanne; Gray, William; Vincent, Rosa Louise; Day, John C.

    2016-08-01

    Removal of intrinsic brain tumors is a delicate process, where a high degree of specificity is required to remove all of the tumor tissue without damaging healthy brain. The accuracy of this process can be greatly enhanced by intraoperative guidance. Optical biopsies using Raman spectroscopy are a minimally invasive and lower-cost alternative to current guidance methods. A miniature Raman probe for performing optical biopsies of human brain tissue is presented. The probe allows sampling inside a conventional stereotactic brain biopsy system: a needle of length 200 mm and inner diameter of 1.8 mm. By employing a miniature stand-off Raman design, the probe removes the need for any additional components to be inserted into the brain. Additionally, the probe achieves a very low internal silica background while maintaining good collection of Raman signal. To illustrate this, the probe is compared with a Raman probe that uses a pair of optical fibers for collection. The miniature stand-off Raman probe is shown to collect a comparable number of Raman scattered photons, but the Raman signal to background ratio is improved by a factor of five at Raman shifts below ˜500 cm-1. The probe's suitability for use on tissue is demonstrated by discriminating between different types of healthy porcine brain tissue.

  16. Design of a Ku band miniature multiple beam klystron

    Energy Technology Data Exchange (ETDEWEB)

    Bandyopadhyay, Ayan Kumar, E-mail: ayan.bandyopadhyay@gmail.com; Pal, Debasish; Kant, Deepender [Microwave Tubes Division, CSIR-CEERI, Pilani, Rajasthan-333031 (India); Saini, Anil; Saha, Sukalyan; Joshi, Lalit Mohan

    2016-03-09

    The design of a miniature multiple beam klystron (MBK) working in the Ku-band frequency range is presented in this article. Starting from the main design parameters, design of the electron gun, the input and output couplers and radio frequency section (RF-section) are presented. The design methodology using state of the art commercial electromagnetic design tools, analytical formulae as well as noncommercial design tools are briefly presented in this article.

  17. Low Loss High Isolation NEMS/MEMS Switch for High Frequency RF Applications

    Directory of Open Access Journals (Sweden)

    Elangovan R.

    2015-03-01

    Full Text Available MEMS switches are advantageous in terms of low power consumption, switching times, high isolation, low insertion loss and many more. This paper proposes a MEMS switch with high isolation and low insertion loss. The model used is a CPW configuration with a cantilever series switch built on a silicon substrate. The switch parameters are optimized for the lowest insertion loss and return loss. An insertion loss values of -0.1305 dB in the down state with return loss of -38 dB and -75 dB of isolation have been observed in the high frequency range.

  18. High frequency of celiac disease in Down syndrome

    NARCIS (Netherlands)

    George, EK; Mearin, ML; Bouquet, J; vonBlomberg, ME; Stapel, SO; vanElburg, RM; deGraaf, EAB

    We screened 115 children with Down syndrome for celiac disease, using antigliadin, antiendomysium, and antireticulin serum antibodies and an intestinal permeability test, Celiac disease was diagnosed in eight children, giving a frequency of 7.0%. We recommend screening for celiac disease in all

  19. High frequency of celiac disease in Down syndrome

    NARCIS (Netherlands)

    George, E. K.; Mearin, M. L.; Bouquet, J.; von Blomberg, B. M.; Stapel, S. O.; van Elburg, R. M.; de Graaf, E. A.

    1996-01-01

    We screened 115 children with Down syndrome for celiac disease, using antigliadin, antiendomysium, and antireticulin serum antibodies and an intestinal permeability test, Celiac disease was diagnosed in eight children, giving a frequency of 7.0%. We recommend screening for celiac disease in all

  20. On the Ongoing Evolution of Very High Frequency Power Supplies

    DEFF Research Database (Denmark)

    Knott, Arnold; Andersen, Toke Meyer; Kamby, Peter

    2013-01-01

    The ongoing demand for smaller and lighter power supplies is driving the motivation to increase the switching frequencies of power converters. Drastic increases however come along with new challenges, namely the increase of switching losses in all components. The application of power circuits use...

  1. Numerical description of high frequency ignition of fluorescent tubes

    Science.gov (United States)

    Brok, W. J. M.; Gendre, M. F.; Haverlag, M.; van der Mullen, J. J. A. M.

    2007-07-01

    The effect of the frequency on the breakdown time in a straight discharge tube is investigated by means of a fluid model. The discharge tube is similar to a compact fluorescent lamp tube, containing argon at 3 Torr and mercury at a few Torr. The mechanism of breakdown at frequencies of the order of several 10 kHz is considered and related to breakdown at a dc voltage. During a negative potential on the powered electrode, an ionization wave traverses the tube in a way similar to that in a dc operated tube. During a positive potential on the powered electrode, the electric field in the part of the tube already traversed by the ionization wave is enhanced by negative charge on the inner wall of the tube. Although the ionized region does not extend during this phase, the ionization density increases substantially. Furthermore, we investigated the dependence of the breakdown time on the applied frequency and found that the breakdown voltage is independent of the frequency. This is shown to be consistent with experimental data.

  2. Stress Recovery Effects of High- and Low-Frequency Amplified Music on Heart Rate Variability

    OpenAIRE

    Yoshie Nakajima; Naofumi Tanaka; Tatsuya Mima; Shin-Ichi Izumi

    2016-01-01

    Sounds can induce autonomic responses in listeners. However, the modulatory effect of specific frequency components of music is not fully understood. Here, we examined the role of the frequency component of music on autonomic responses. Specifically, we presented music that had been amplified in the high- or low-frequency domains. Twelve healthy women listened to white noise, a stress-inducing noise, and then one of three versions of a piece of music: original, low-, or high-frequency amplifi...

  3. Influence of high frequency electric field on the dispersion of ion-acoustic waves in plasma

    Energy Technology Data Exchange (ETDEWEB)

    Turky, A.; Cercek, M.; Tavzes, R.

    1981-01-01

    The modification of the ion-acoustic wave dispersion under the action of a high frequency electric field was studied experimentally, the wave propagating along and against the plasma stream. The frequency of the field amounted to approximately half the electron plasma frequency. It was found that the phase velocity of the ion wave and the plasma drift velocity decrease as the effective high frequency field power increases.

  4. Optimized shielded-gate trench MOSFET technology for high-frequency, high-efficiency power supplies

    Science.gov (United States)

    Challa, Ashok; Sarkar, Tirthajyoti; Sapp, Steven

    2012-10-01

    Shielded-gate trench-MOSFETs yield superior performance compared to conventional gate trench devices by allowing higher doping density in the drift region and providing a `shielding effect' for the gate by placing an intermediate electrode between gate and drain. However, further design optimizations can be done for a shieldedgate trench-MOSFET to improve performance parameters particularly suited for next-generation high-frequency computing power supply applications and they have been outlined in this article. Channel optimization, substrate thinning and intrinsic gate resistance reduction (by layout enhancements) have been discussed along with their impact on cost-performance benefit on the device. Further, effects of these design optimizations on the power loss and efficiency of a high-frequency switching converter have been demonstrated by mixed device-circuit simulations.

  5. Stress Recovery Effects of High- and Low-Frequency Amplified Music on Heart Rate Variability

    Directory of Open Access Journals (Sweden)

    Yoshie Nakajima

    2016-01-01

    Full Text Available Sounds can induce autonomic responses in listeners. However, the modulatory effect of specific frequency components of music is not fully understood. Here, we examined the role of the frequency component of music on autonomic responses. Specifically, we presented music that had been amplified in the high- or low-frequency domains. Twelve healthy women listened to white noise, a stress-inducing noise, and then one of three versions of a piece of music: original, low-, or high-frequency amplified. To measure autonomic response, we calculated the high-frequency normalized unit (HFnu, low-frequency normalized unit, and the LF/HF ratio from the heart rate using electrocardiography. We defined the stress recovery ratio as the value obtained after participants listened to music following scratching noise, normalized by the value obtained after participants listened to white noise after the stress noise, in terms of the HFnu, low-frequency normalized unit, LF/HF ratio, and heart rate. Results indicated that high-frequency amplified music had the highest HFnu of the three versions. The stress recovery ratio of HFnu under the high-frequency amplified stimulus was significantly larger than that under the low-frequency stimulus. Our results suggest that the high-frequency component of music plays a greater role in stress relief than low-frequency components.

  6. Stress Recovery Effects of High- and Low-Frequency Amplified Music on Heart Rate Variability.

    Science.gov (United States)

    Nakajima, Yoshie; Tanaka, Naofumi; Mima, Tatsuya; Izumi, Shin-Ichi

    Sounds can induce autonomic responses in listeners. However, the modulatory effect of specific frequency components of music is not fully understood. Here, we examined the role of the frequency component of music on autonomic responses. Specifically, we presented music that had been amplified in the high- or low-frequency domains. Twelve healthy women listened to white noise, a stress-inducing noise, and then one of three versions of a piece of music: original, low-, or high-frequency amplified. To measure autonomic response, we calculated the high-frequency normalized unit (HFnu), low-frequency normalized unit, and the LF/HF ratio from the heart rate using electrocardiography. We defined the stress recovery ratio as the value obtained after participants listened to music following scratching noise, normalized by the value obtained after participants listened to white noise after the stress noise, in terms of the HFnu, low-frequency normalized unit, LF/HF ratio, and heart rate. Results indicated that high-frequency amplified music had the highest HFnu of the three versions. The stress recovery ratio of HFnu under the high-frequency amplified stimulus was significantly larger than that under the low-frequency stimulus. Our results suggest that the high-frequency component of music plays a greater role in stress relief than low-frequency components.

  7. Using very high frequencies with very low lung volumes during high-frequency oscillatory ventilation to protect the immature lung. A pilot study.

    Science.gov (United States)

    González-Pacheco, N; Sánchez-Luna, M; Ramos-Navarro, C; Navarro-Patiño, N; de la Blanca, A R-S

    2016-04-01

    High-frequency oscillatory ventilation (HFOV) has been described as a rescue therapy in severe respiratory distress syndrome (RDS) with a potential protective effect in immature lungs. In recent times, HFOV combined with the use of volume guarantee (VG) strategy has demonstrated an independent effect of the frequency on tidal volume to increase carbon-dioxide (CO2) elimination. The aim of this study was to demonstrate the feasibility of using the lowest tidal volume on HFOV+VG to prevent lung damage, maintaining a constant CO2 elimination by increasing the frequency. Newborn infants with RDS on HFOV were prospectively included. After adequate and stable ventilation using a standard HFOV strategy, the tidal volume was fixed using VG and decreased while the frequency was increased to the highest possible to maintain a constant CO2 elimination. Pre- and post-PCO2, delta pressure and tidal volume obtained in each situation were compared. Twenty-three newborn infants were included. It was possible to increase the frequency while decreasing the tidal volume in all patients, maintaining a similar CO2 elimination, with a tendency to a lower mean PCO2 after reaching the highest frequency. High-frequency tidal volume was significantly lower, 2.20 ml kg(-1) before vs 1.59 ml kg(-1) at the highest frequency. It is possible to use lower delivered tidal volumes during HFOV combined with VG and higher frequencies with adequate ventilation to allow minimizing lung injury.

  8. All solid-state high power microwave source with high repetition frequency

    Science.gov (United States)

    Bragg, J.-W. B.; Sullivan, W. W.; Mauch, D.; Neuber, A. A.; Dickens, J. C.

    2013-05-01

    An all solid-state, megawatt-class high power microwave system featuring a silicon carbide (SiC) photoconductive semiconductor switch (PCSS) and a ferrimagnetic-based, coaxial nonlinear transmission line (NLTL) is presented. A 1.62 cm2, 50 kV 4H-SiC PCSS is hard-switched to produce electrical pulses with 7 ns full width-half max (FWHM) pulse widths at 2 ns risetimes in single shot and burst-mode operation. The PCSS resistance drops to sub-ohm when illuminated with approximately 3 mJ of laser energy at 355 nm (tripled Nd:YAG) in a single pulse. Utilizing a fiber optic based optical delivery system, a laser pulse train of four 7 ns (FWHM) signals was generated at 65 MHz repetition frequency. The resulting electrical pulse train from the PCSS closely follows the optical input and is utilized to feed the NLTL generating microwave pulses with a base microwave-frequency of about 2.1 GHz at 65 MHz pulse repetition frequency (prf). Under typical experimental conditions, the NLTL produces sharpened output risetimes of 120 ps and microwave oscillations at 2-4 GHz that are generated due to damped gyromagnetic precession of the ferrimagnetic material's axially pre-biased magnetic moments. The complete system is discussed in detail with its output matched into 50 Ω, and results covering MHz-prf in burst-mode operation as well as frequency agility in single shot operation are discussed.

  9. Thin-Film Microtransformer for High Frequency Power Applications

    Directory of Open Access Journals (Sweden)

    Dinulovic Dragan

    2014-07-01

    Full Text Available This paper describes a development of a microtransformer device fabricated using thin film technology. The device is designed for higher switching frequencies beyond to 50 MHz power applications. A especially by the microtransformer is a design, which allows wide flexibility of a device by choosing a different values of an inductance and of a windings ratio. The microtransformer device is integrated on silicon substrate consisting of a closed magnetic core and six coils. Both, primary and secondary device side consist three coils. Therefore, this design allows using of a device for different switching frequencies. As a magnetic material for transformer core a permalloy NiFe45/55 was chosen.

  10. Benefits and Drawbacks of A High Frequency Gan Zvzcps Converter

    Directory of Open Access Journals (Sweden)

    Blanes J. M.

    2017-01-01

    Full Text Available This paper presents the benefits and drawbacks of replacing the traditional Si Mosfets transistors with enhancement mode GaN transistors in a Half-Bridge Zero Voltage and Zero Current Switching Power Switching (ZVZCPS converter. This type of converters is usually used as Electronic Power Converters (EPC for telecommunication satellites travelling-wave tube amplifiers (TWTAs. In this study, firstly the converter is theoretically analysed, obtaining its operation, losses and efficiency equations. From these equations, optimizations maps based on the main system parameters are obtained. These optimization maps are the key to quantify the potential benefits of GaN transistors in this type of converters. Theoretical results show that using GaN transistors, the frequency of the converter can be pushed from 125kHz to 830kHz without sacrificing the converter efficiency. This frequency increase is directly related to reduction on the EPC size and weight.

  11. High frequency of +1 programmed ribosomal frameshifting in Euplotes octocarinatus

    OpenAIRE

    Wang, Ruanlin; Xiong, Jie; Wang, Wei; Miao, Wei; Liang, Aihua

    2016-01-01

    Programmed ?1 ribosomal frameshifting (?1 PRF) has been identified as a mechanism to regulate the expression of many viral genes and some cellular genes. The slippery site of ?1 PRF has been well characterized, whereas the +1 PRF signal and the mechanism involved in +1 PRF remain poorly understood. Previous study confirmed that +1 PRF is required for the synthesis of protein products in several genes of ciliates from the genus Euplotes. To accurately assess the frequency of genes requiring fr...

  12. Frequency loss induced quench protection system for high temperature superconductors

    Science.gov (United States)

    Ijagbemi, K.; Noyes, P.; Stiers, E.; Pamidi, S.

    2017-12-01

    A novel circuit design for Frequency Loss Induced Quench (FLIQ) protection system for safely driving REBCO coated conductor superconducting coils to quench is reported. The details of the H-bridge circuit design with Insulated Gate Bipolar Transistor (IGBT)s and the various elements used to build a prototype are reported. The results of a successful test of the circuit conducted to demonstrate the validity of the circuit design is presented.

  13. Miniaturized Mid-Infrared Sensor Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S; Young, C; Mizaikoff, B

    2007-08-16

    Fundamental vibrational and rotational modes associated with most inorganic and organic molecules are spectroscopically accessible within the mid-infrared (MIR; 3-20 {micro}m) regime of the electromagnetic spectrum. The interaction between MIR photons and organic molecules provides particularly sharp transitions, which - despite the wide variety of organic molecules - provide unique MIR absorption spectra reflecting the molecularly characteristic arrangement of chemical bonds within the probed molecules via the frequency position of the associated vibrational and rotational transitions. Given the inherent molecular selectivity and achievable sensitivity, MIR spectroscopy provides an ideal platform for optical sensing applications. Despite this potential, early MIR sensing applications were limited to localized applications due to the size of the involved instrumentation, and limited availability of appropriately compact MIR optical components including light sources, detectors, waveguides, and spectrometers. During the last decades, engineering advances in photonics and optical engineering have facilitated the translation of benchtop-style MIR spectroscopy into miniaturized optical sensing schemes providing a footprint compatible with portable instrumentation requirements for field deployable analytical tools. In this trend article, we will discuss recent advances and future strategies for miniaturizing MIR sensor technology. The Beer-Lambert law implies that achievable limit of detection (LOD) for any optical sensor system improves by increasing the interaction length between photons and target analyte species such as e.g., folding the optical path multiple times as in multi-pass gas phase sensing; however, this governing paradigm naturally leads to an increase in system dimensions. Hence, miniaturization of optical sensing system requires scaling down of each optical component, yet improving the performance of each optical element within a smaller form factor for

  14. Effects of met-enkephalin on GABAergic spontaneous miniature IPSPs in organotypic slice cultures of the rat hippocampus

    DEFF Research Database (Denmark)

    Rekling, J C

    1993-01-01

    The action of met-enkephalin on GABAergic spontaneous miniature IPSPs (smIPSPs) was investigated in CA1 neurons from hippocampal slice cultures. In the presence of excitatory amino acid blockers (2,3-dihydroxy-6-nitro-7-sulphamoyl-benzo(F)quinoxaline, DL-2-amino-5-phosphonovaleric acid) and TTX......, a continuous high-frequency bombardment of smIPSPs was recorded. The smIPSPs were blocked by the GABAA antagonist bicuculline. The occurrence of the smIPSPs was random and their amplitude distribution was skewed toward larger smIPSPs. Met-enkephalin (10-20 microM) reversibly reduced the frequency and changed...

  15. Scene content is predominantly conveyed by high spatial frequencies in scene-selective visual cortex.

    Science.gov (United States)

    Berman, Daniel; Golomb, Julie D; Walther, Dirk B

    2017-01-01

    In complex real-world scenes, image content is conveyed by a large collection of intertwined visual features. The visual system disentangles these features in order to extract information about image content. Here, we investigate the role of one integral component: the content of spatial frequencies in an image. Specifically, we measure the amount of image content carried by low versus high spatial frequencies for the representation of real-world scenes in scene-selective regions of human visual cortex. To this end, we attempted to decode scene categories from the brain activity patterns of participants viewing scene images that contained the full spatial frequency spectrum, only low spatial frequencies, or only high spatial frequencies, all carefully controlled for contrast and luminance. Contrary to the findings from numerous behavioral studies and computational models that have highlighted how low spatial frequencies preferentially encode image content, decoding of scene categories from the scene-selective brain regions, including the parahippocampal place area (PPA), was significantly more accurate for high than low spatial frequency images. In fact, decoding accuracy was just as high for high spatial frequency images as for images containing the full spatial frequency spectrum in scene-selective areas PPA, RSC, OPA and object selective area LOC. We also found an interesting dissociation between the posterior and anterior subdivisions of PPA: categories were decodable from both high and low spatial frequency scenes in posterior PPA but only from high spatial frequency scenes in anterior PPA; and spatial frequency was explicitly decodable from posterior but not anterior PPA. Our results are consistent with recent findings that line drawings, which consist almost entirely of high spatial frequencies, elicit a neural representation of scene categories that is equivalent to that of full-spectrum color photographs. Collectively, these findings demonstrate the

  16. Scene content is predominantly conveyed by high spatial frequencies in scene-selective visual cortex.

    Directory of Open Access Journals (Sweden)

    Daniel Berman

    Full Text Available In complex real-world scenes, image content is conveyed by a large collection of intertwined visual features. The visual system disentangles these features in order to extract information about image content. Here, we investigate the role of one integral component: the content of spatial frequencies in an image. Specifically, we measure the amount of image content carried by low versus high spatial frequencies for the representation of real-world scenes in scene-selective regions of human visual cortex. To this end, we attempted to decode scene categories from the brain activity patterns of participants viewing scene images that contained the full spatial frequency spectrum, only low spatial frequencies, or only high spatial frequencies, all carefully controlled for contrast and luminance. Contrary to the findings from numerous behavioral studies and computational models that have highlighted how low spatial frequencies preferentially encode image content, decoding of scene categories from the scene-selective brain regions, including the parahippocampal place area (PPA, was significantly more accurate for high than low spatial frequency images. In fact, decoding accuracy was just as high for high spatial frequency images as for images containing the full spatial frequency spectrum in scene-selective areas PPA, RSC, OPA and object selective area LOC. We also found an interesting dissociation between the posterior and anterior subdivisions of PPA: categories were decodable from both high and low spatial frequency scenes in posterior PPA but only from high spatial frequency scenes in anterior PPA; and spatial frequency was explicitly decodable from posterior but not anterior PPA. Our results are consistent with recent findings that line drawings, which consist almost entirely of high spatial frequencies, elicit a neural representation of scene categories that is equivalent to that of full-spectrum color photographs. Collectively, these findings

  17. Hours of high-frequency stimulations reveal intracellular neuronal trends in vivo

    Science.gov (United States)

    Brama, H.; Goldental, A.; Vardi, R.; Stern, E. A.; Kanter, I.

    2016-11-01

    The neuronal response to controlled stimulations in vivo has been classically estimated using a limited number of events. Here we show that hours of high-frequency stimulations and recordings of neurons in vivo reveal previously unknown response phases of neurons in the intact brain. Results indicate that for stimulation frequencies below a critical neuronal characteristic frequency, f c, response timings are stabilized to tens-of-microseconds accuracy. For stimulation frequencies exceeding f c the firing frequency is saturated and independent of the stimulation frequency, as a result of random neuronal response failures. This neuronal plasticity, previously shown in vitro, supports a robust mechanism for low firing rates on a network level.

  18. Relics in galaxy clusters at high radio frequencies

    Science.gov (United States)

    Kierdorf, M.; Beck, R.; Hoeft, M.; Klein, U.; van Weeren, R. J.; Forman, W. R.; Jones, C.

    2017-04-01

    Aims: We investigated the magnetic properties of radio relics located at the peripheries of galaxy clusters at high radio frequencies, where the emission is expected to be free of Faraday depolarization. The degree of polarization is a measure of the magnetic field compression and, hence, the Mach number. Polarization observations can also be used to confirm relic candidates. Methods: We observed three radio relics in galaxy clusters and one radio relic candidate at 4.85 and 8.35 GHz in total emission and linearly polarized emission with the Effelsberg 100-m telescope. In addition, we observed one radio relic candidate in X-rays with the Chandra telescope. We derived maps of polarization angle, polarization degree, and Faraday rotation measures. Results: The radio spectra of the integrated emission below 8.35 GHz can be well fitted by single power laws for all four relics. The flat spectra (spectral indices of 0.9 and 1.0) for the so-called Sausage relic in cluster CIZA J2242+53 and the so-called Toothbrush relic in cluster 1RXS 06+42 indicate that models describing the origin of relics have to include effects beyond the assumptions of diffuse shock acceleration. The spectra of the radio relics in ZwCl 0008+52 and in Abell 1612 are steep, as expected from weak shocks (Mach number ≈2.4). Polarization observations of radio relics offer a method of measuring the strength and geometry of the shock front. We find polarization degrees of more than 50% in the two prominent Mpc-sized radio relics, the Sausage and the Toothbrush, which are among the highest percentages of linear polarization detected in any extragalactic radio source to date. This is remarkable because the large beam size of the Effelsberg single-dish telescope corresponds to linear extensions of about 300 kpc at 8.35 GHz at the distances of the relics. The high degree of polarization indicates that the magnetic field vectors are almost perfectly aligned along the relic structure, as expected for shock

  19. Planck 2015 results: VII. High Frequency Instrument data processing: Time-ordered information and beams

    DEFF Research Database (Denmark)

    Adam, R.; Ade, P. A R; Aghanim, N.

    2016-01-01

    The Planck High Frequency Instrument (HFI) has observed the full sky at six frequencies (100, 143, 217, 353, 545, and 857 GHz) in intensity and at four frequencies in linear polarization (100, 143, 217, and 353 GHz). In order to obtain sky maps, the time-ordered information (TOI) containing the d...

  20. Research of the Electron Cyclotron Emission with Vortex Property excited by high power high frequency Gyrotron

    Science.gov (United States)

    Goto, Yuki; Kubo, Shin; Tsujimura, Tohru; Takubo, Hidenori

    2017-10-01

    Recently, it has been shown that the radiation from a single electron in cyclotron motion has vortex property. Although the cyclotron emission exists universally in nature, the vortex property has not been featured because this property is normally cancelled out due to the randomness in gyro-phase of electrons and the development of detection of the vortex property has not been well motivated. In this research, we are developing a method to generate the vortex radiation from electrons in cyclotron motion with controlled gyro-phase. Electron that rotates around the uniform static magnetic field is accelerated by right-hand circular polarized (RHCP) radiation resonantly when the cyclotron frequency coincides with the applied RHCP radiation frequency. A large number of electrons can be coherently accelerated in gyro-phase by a RHCP high power radiation so that these electrons can radiate coherent emission with vortex feature. We will show that vortex radiation created by purely rotating electrons for the first time.

  1. Low power very high frequency resonant converter with high step down ratio

    DEFF Research Database (Denmark)

    Madsen, Mickey Pierre; Knott, Arnold; Andersen, Michael A. E.

    2013-01-01

    This paper presents the design of a resonant converter with a switching frequency in the very high frequency range (30-300MHz), a large step down ratio and low output power. This gives the designed converters specifications which are far from previous results. The class E inverter and rectifier...... have been selected for the prototype and the circuits are analyzed and simulated. Three different power stages are implemented based on different design parameters. The first prototype is with a switch with small capacitances, the second one is with a switch with low on resistance and the last one...... is with a large input inductor. The power stages are designed with the same specs and efficiencies from 60.7−82.9% are achieved....

  2. High brightness, high SNR radio-frequency signal generated by an all-fibered linear-polarization single-mode dual-frequency fiber laser.

    Science.gov (United States)

    Zhao, Xiang; Shen, Hui; Bai, Gang; Zhang, Jingpu; Chen, Xiaolong; Yang, Yifeng; Qi, Yunfeng; He, Bing; Zhou, Jun

    2017-10-30

    A high brightness, high signal-to-noise ratio (SNR) linear-polarization optically generated radio-frequency signal is demonstrated based on an all-fibered master oscillator power amplifier (MOPA) configuration. The seed signal is generated by beating two different frequency beams which are split from the same single frequency laser source. One beam has initial frequency and the other beam is shifted by 200 MHz using an acoustic-optical modulator. The combined beam contains two frequency components with a frequency difference of 200 MHz and this dual-frequency laser signal is then amplified by a three-stage all-fibered amplifier. In order to obtain high brightness output, a single mode fiber with 10 μm core diameter is adopted in the amplifier chain. A designed step-distribution strain is applied on the active fiber for the suppression of stimulated Brillouin scattering (SBS) effect. As a result, up to 143 W output power is achieved with the slop efficiency of 81.4%. The beam quality factors (M 2 ) are measured to 1.06 (Mx2) and 1.04 (My2) and the SNR is up to 54.7 dB. These two frequency components with a certain frequency gap can be identically amplified via the fiber amplifier and the beat note stability, modulation depth as well as SNR are well maintained before and after amplification. To the best of our knowledge, this is the highest reported brightness of the optically generated radio-frequency signal.

  3. Miniaturized cathodic arc plasma source

    Science.gov (United States)

    Anders, Andre; MacGill, Robert A.

    2003-04-15

    A cathodic arc plasma source has an anode formed of a plurality of spaced baffles which extend beyond the active cathode surface of the cathode. With the open baffle structure of the anode, most macroparticles pass through the gaps between the baffles and reflect off the baffles out of the plasma stream that enters a filter. Thus the anode not only has an electrical function but serves as a prefilter. The cathode has a small diameter, e.g. a rod of about 1/4 inch (6.25 mm) diameter. Thus the plasma source output is well localized, even with cathode spot movement which is limited in area, so that it effectively couples into a miniaturized filter. With a small area cathode, the material eroded from the cathode needs to be replaced to maintain plasma production. Therefore, the source includes a cathode advancement or feed mechanism coupled to cathode rod. The cathode also requires a cooling mechanism. The movable cathode rod is housed in a cooled metal shield or tube which serves as both a current conductor, thus reducing ohmic heat produced in the cathode, and as the heat sink for heat generated at or near the cathode. Cooling of the cathode housing tube is done by contact with coolant at a place remote from the active cathode surface. The source is operated in pulsed mode at relatively high currents, about 1 kA. The high arc current can also be used to operate the magnetic filter. A cathodic arc plasma deposition system using this source can be used for the deposition of ultrathin amorphous hard carbon (a-C) films for the magnetic storage industry.

  4. High-temperature, high-frequency fretting fatigue of a single crystal nickel alloy

    Science.gov (United States)

    Matlik, John Frederick

    Fretting is a structural damage mechanism arising from a combination of wear, corrosion, and fatigue between two nominally clamped surfaces subjected to an oscillatory loading. A critical location for fretting induced damage has been identified at the blade/disk and blade/damper interfaces of gas turbine engine turbomachinery and space propulsion components. The high-temperature, high-frequency loading environment seen by these components lead to severe stress gradients at the edge-of-contact that could potentially foster crack growth leading to component failure. These contact stresses drive crack nucleation in fretting and are very sensitive to the geometry of the contacting bodies, the contact loads, materials, temperature, and contact surface tribology (friction). To diagnose the threat that small and relatively undetectable fretting fatigue cracks pose to damage tolerance and the ensuing structural integrity of aerospace components, a strong motivation exists to develop a quantitative mechanics based understanding of fretting crack nucleation in advanced aerospace alloys. In response to this need, the objective of this work is to characterize the fretting behavior exhibited by a polycrystalline/single crystal nickel contact subjected to elevated frequency and temperature. The effort to meet this objective is two fold: (1) to develop a well-characterized experimental fretting rig to investigate fretting behavior of advanced aerospace alloys at high frequency and high temperature, and (2) to develop the associated contact modeling tools for calculating contact stresses given in-situ experimentally measured remote contact loads. By coupling the experimental results and stress analysis, this effort aims to correlate the fretting crack nucleation behavior with the local contact stresses calculated from the devised three dimensional, anisotropic, dissimilar material contact model. The experimental effort is first motivated by a survey of recent fretting issues and

  5. The freshwater dolphin Inia geoffrensis geoffrensis produces high frequency whistles.

    Science.gov (United States)

    May-Collado, Laura J; Wartzok, Douglas

    2007-02-01

    Because whistles are most commonly associated with social delphinids, they have been largely overlooked, ignored, or presumed absent, in solitary freshwater dolphin species. Whistle production in the freshwater dolphin, the boto (Inia geoffrensis geoffrensis), has been controversial. Because of its sympatry with tucuxi dolphins (Sotalia fluviatilis), a whistling species, some presume tucuxi whistles might have been erroneously assigned to the boto. Using a broadband recording system, we recorded over 100 whistles from boto dolphins in the Yasunf River, Ecuador, where the tucuxi dolphins are absent. Our results therefore provide conclusive evidence for whistle production in Inia geoffrensis geoffrensis. Furthermore, boto whistles are significantly different from tucuxi whistles recorded in nearby rivers. The Ecuadorian boto whistle has a significantly greater frequency range (5.30-48.10 kHz) than previously reported in other populations (Peru and Colombia) that were recorded with more bandwidth limited equipment. In addition, the top frequency and the range are greater than in any other toothed whale species recorded to date. Whistle production was higher during resting activities, alone or in the presence of other animals. The confirmation of whistles in the boto has important implications for the evolution of whistles in Cetacea and their association with sociality.

  6. The high frequency of variegated forms after in vitro mutagenesis in Saintpaulia ionantha Wendl.

    Directory of Open Access Journals (Sweden)

    Marek Gaj

    2014-01-01

    Full Text Available The leaf-explants of Saintpaulia ionantha Wendl. var.'miniature' were treated by different doses of MNH and cultured on shoot regeneration medium. A strong toxic effect of some MNH doses on explant survival during the first two subcultures was noticed. The explants surviving treatment regenerated shoots with the efficiency comparable to the control. The high number of shoots regenerated from mutagenised leaves showed chlorophyll chimerism (so-called variegated forms. The use of 5 mM MNH for 1.5 or 2 h was found very effective, as 100% of survived explants regenerated variegated shoots. Besides hundreds of variegated forms also leaf-shape and flower-colour variants were observed in MNH-treated culture. Somaclonal variation was not observed in the control culture. The results indicate the great efficiency of in vitro applied MNH for in-duction of morphological variants of Saintpaulia, and especially variegated forms.

  7. A study and classification of non-linear high frequency ionospheric instabilities by coupled mode theory.

    Science.gov (United States)

    Harker, K. J.

    1972-01-01

    Two basic high-frequency ionospheric instabilities are discussed - i.e., the three-wave parametric interaction, and the oscillating two-stream instability. In the parametric instability, the ion-acoustic wave has a complex frequency, whereas in the oscillating two-stream instability the ion-acoustic frequency is purely imaginary. The parametric instability is shown to be the only one whose threshold depends on the ion collision frequency. A coupled-mode theory is proposed which permits study and classification of high-frequency instabilities on a unified basis.

  8. High-Performance Radio Frequency Passive Devices on Plastic Substrates for Radio Frequency Integrated Circuit Application

    Science.gov (United States)

    Hung, Bing-Fang; Chen, Chia-Chung; Kao, Hsuan-Ling; Chin, Albert

    2007-04-01

    High-performance passive RF devices were fabricated on insulating plastic substrates. These passive devices included inductors, low-loss coplanar waveguide (CPW) and microstrip transmission lines, 30 GHz narrow-band filters, and 25 GHz CPW ring resonators. The characteristics of these devices agreed well with those of ideal devices, as predicted by electro-magnetic simulations.

  9. Efficient generation of 3.5W laser light at 515nm by frequency doubling a single-frequency high power DBR tapered diode laser

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Hansen, Anders Kragh; Müller, André

    2017-01-01

    More than 3.5 W of green light at 515 nm is generated by frequency doubling a single-frequency high power DBR tapered diode laser. The frequency doubling is performed in a cascade of PPMgLN and PPMgSLT crystals in order to reach high power and avoid thermal effects present in PPMgLN at high power...

  10. Electric Field Simulations and Analysis for High Voltage High Power Medium Frequency Transformer

    Directory of Open Access Journals (Sweden)

    Pei Huang

    2017-03-01

    Full Text Available The electronic power transformer (EPT raises concerns for its notable size and volume reduction compared with traditional line frequency transformers. Medium frequency transformers (MFTs are important components in high voltage and high power energy conversion systems such as EPTs. High voltage and high power make the reliable insulation design of MFT more difficult. In this paper, the influence of wire type and interleaved winding structure on the electric field distribution of MFT is discussed in detail. The electric field distributions for six kinds of typical non-interleaved windings with different wire types are researched using a 2-D finite element method (FEM. The electric field distributions for one non-interleaved winding and two interleaved windings are also studied using 2-D FEM. Furthermore, the maximum electric field intensities are obtained and compared. The results show that, in this case study, compared with foil conductor, smaller maximum electric field intensity can be achieved using litz wire in secondary winding. Besides, interleaving can increase the maximum electric field intensity when insulation distance is constant. The proposed method of studying the electric field distribution and analysis results are expected to make a contribution to the improvement of electric field distribution in transformers.

  11. High Frequency High Spectral Resolution Focal Plane Arrays for AtLAST

    Science.gov (United States)

    Baryshev, Andrey

    2018-01-01

    Large collecting area single dish telescope such as ATLAST will be especially effective for medium (R 1000) and high (R 50000) spectral resolution observations. Large focal plane array is a natural solution to increase mapping speed. For medium resolution direct detectors with filter banks (KIDs) and or heterodyne technology can be employed. We will analyze performance limits of comparable KID and SIS focal plane array taking into account quantum limit and high background condition of terrestrial observing site. For large heterodyne focal plane arrays, a high current density AlN junctions open possibility of large instantaneous bandwidth >40%. This and possible multi frequency band FPSs presents a practical challenge for spatial sampling and scanning strategies. We will discuss phase array feeds as a possible solution, including a modular back-end system, which can be shared between KID and SIS based FPA. Finally we will discuss achievable sensitivities and pixel co unts for a high frequency (>500 GHz) FPAs and address main technical challenges: LO distribution, wire counts, bias line multiplexing, and monolithic vs. discrete mixer component integration.

  12. Killer whale (Orcinus orca) whistles from the western South Atlantic Ocean include high frequency signals.

    Science.gov (United States)

    Andriolo, Artur; Reis, Sarah S; Amorim, Thiago O S; Sucunza, Federico; de Castro, Franciele R; Maia, Ygor Geyer; Zerbini, Alexandre N; Bortolotto, Guilherme A; Dalla Rosa, Luciano

    2015-09-01

    Acoustic parameters of killer whale (Orcinus orca) whistles were described for the western South Atlantic Ocean and highlight the occurrence of high frequency whistles. Killer whale signals were recorded on December of 2012, when a pod of four individuals was observed harassing a group of sperm whales. The high frequency whistles were highly stereotyped and were modulated mostly at ultrasonic frequencies. Compared to other contour types, the high frequency whistles are characterized by higher bandwidths, shorter durations, fewer harmonics, and higher sweep rates. The results add to the knowledge of vocal behavior of this species.

  13. A High Reliability Frequency Stabilized Semiconductor Laser Source Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Ultrastable, narrow linewidth, high reliability MOPA sources are needed for high performance LIDARs in NASA for, wind speed measurement, surface topography and earth...

  14. A New Fractal-Based Miniaturized Dual Band Patch Antenna for RF Energy Harvesting

    Directory of Open Access Journals (Sweden)

    Sika Shrestha

    2014-01-01

    Full Text Available The growth of wireless communications in recent years has made it necessary to develop compact, lightweight multiband antennas. Compact antennas can achieve the same performance as large antennas do with low price and with greater system integration. Dual-frequency microstrip antennas for transmission and reception represent promising approach for doubling the system capacity. In this work, a miniaturized dual band antenna operable at 2.45 and 5.8 GHz is constructed by modifying the standard microstrip patch antenna geometry into a fractal structure. In addition to miniaturization and dual band nature, the proposed antenna also removes unwanted harmonics without the use of additional filter component. Using a finite-element-method-based high frequency structure simulator (HFSS, the antenna is designed and its performance in terms of return loss, impedance matching, radiation pattern, and voltage standing wave ratio (VSWR is demonstrated. Simulation results are shown to be in close agreement with performance measurements from an actual antenna fabricated on an FR4 substrate. The proposed antenna can be integrated with a rectifier circuit to develop a compact rectenna that can harvest RF energy in both of these frequency bands at a reduction in size of 25.98% relative to a conventional rectangular patch antenna.

  15. Radar and Laser Sensors for High Frequency Ocean Wave Measurement.

    Science.gov (United States)

    Kennedy, C. R.

    2016-02-01

    Experimental measurement of air-sea fluxes invariably take place using shipbourne instrumentation and simultaneous measurement of wave height and direction is desired. A number of researchers have shown that range measuring sensors combined with inertial motion compensation can be successful on board stationary or very slowly moving ships. In order to measure wave characteristics from ships moving at moderate to full speed the sensors are required to operate at higher frequency so as to overcome the Doppler shift caused by ship motion. This work presents results from some preliminary testing of laser, radar and ultrasonic range sensors in the laboratory and on board ship. The characteristics of the individual sensors are discussed and comparison of the wave spectra produced by each is presented.

  16. Simulation Model solves exact the Enigma named Generating high Voltages and high Frequencies by Tesla Coil

    Directory of Open Access Journals (Sweden)

    Simo Janjanin

    2016-11-01

    Full Text Available Simulation model of Tesla coil has been successfully completed, and has been verified the procedure and functioning. The literature and documentation for the model were taken from the rich sources, especially the copies of Tesla patents. The oscillating system‟s electrical scheme consists of the voltage supply 220/50 Hz, Fe transformer, capacitor and belonging chosen electrical components, the air gap in the primary Tesla coil (air transformer and spark gap in the exit of the coil. The investigation of the oscillating process Tesla coil‟s system using the simulation model in MATLAB & SIMULINK have given the exact solution the enigma named the generating high voltage and high frequency the Tesla‟s coil. The inductance voltage from the spark current in the primary (coil with its high voltage impulse excites the oscillating series circuit Ce-L3-R3 on the secondary of the air transformer to its own damped oscillations

  17. Miniature Angle Measuring Interferometer (MIAMI)

    Science.gov (United States)

    Bauer, Robert J.

    The miniature Angle Measuring Interferometer (MIAMI) is a compact laser interferometer that was developed by Ball to satisfy the sensor needs of various pointing and tracking applications. These include: (1) attitude sensing for fast-steering mirrors and other optical elements, (2) structural monitoring and control for optical benches and other structures requiring micro-positioning, and (3) high-precision encoders for use in measuring the angular position of gimballed payloads and drives. MIAMI is constructed from off-the-shelf optical elements, using the inherent precision of the optical faces for alignment when feasible. In the present configuration, the laser light makes eight passes between the sensor head and the retroreflective target, amplifying the sensitivity of this device by a factor of eight. The interference of the two laser beams create fringe patterns, and the separation between fringes is equivalent to one wavelength of laser light (0.6328 micrometers). MIAMI uses interpolation to further subdivide each fringe spacing by a factor of 8 or 16, depending on configuration. MIAMI exhibits excellent performance characteristics, Its angular resolution is 175 nanoradians, and it achieves this with incremental data rates exceeding 5 MHz. MIAMI can accommodate rapid slew rates (greater than 50 deg/sec) and large angular travel (greater than +/- 20 deg). When used as a linear calibration sensor, MIAMI is capable of approxiamtely 10 nanometer linear resolution. The compact design (approximately 5 cubic in.) and light weight (approximately 8 oz) for the sensor head optics make it a very attractive candidate for space sensor applications.

  18. Miniature Bipolar Electrostatic Ion Thruster

    Science.gov (United States)

    Hartley, Frank T.

    2006-01-01

    The figure presents a concept of a bipolar miniature electrostatic ion thruster for maneuvering a small spacecraft. The ionization device in the proposed thruster would be a 0.1-micron-thick dielectric membrane with metal electrodes on both sides. Small conical holes would be micromachined through the membrane and electrodes. An electric potential of the order of a volt applied between the membrane electrodes would give rise to an electric field of the order of several mega-volts per meter in the submicron gap between the electrodes. An electric field of this magnitude would be sufficient to ionize all the molecules that enter the holes. In a thruster-based on this concept, one or more propellant gases would be introduced into such a membrane ionizer. Unlike in larger prior ion thrusters, all of the propellant molecules would be ionized. This thruster would be capable of bipolar operation. There would be two accelerator grids - one located forward and one located aft of the membrane ionizer. In one mode of operation, which one could denote the forward mode, positive ions leaving the ionizer on the backside would be accelerated to high momentum by an electric field between the ionizer and an accelerator grid. Electrons leaving the ionizer on the front side would be ejected into free space by a smaller accelerating field. The equality of the ion and electron currents would eliminate the need for an additional electron- or ion-emitting device to keep the spacecraft charge-neutral. In another mode of operation, which could denote the reverse mode, the polarities of the voltages applied to the accelerator grids and to the electrodes of the membrane ionizer would be the reverse of those of the forward mode. The reversal of electric fields would cause the ion and electrons to be ejected in the reverse of their forward mode directions, thereby giving rise to thrust in the direction opposite that of the forward mode.

  19. High frequency study of nutrient fluxes variability in a small river

    Science.gov (United States)

    Zongo, S. B.; Schmitt, F. G.

    2012-04-01

    We consider here high frequency nutrient fluxes recorded during two one month duration campaigns in 2010 and 2011 in the Wimereux river (North of France). During these campaigns, the river flow is recorded every 10 minutes, simultaneously with NO3, NH4, PO4 and COT data. High frequency fluxes are computed. We first compare these high frequency estimations with low frequency (1 measurement every month) estimations in order to quantify the error in the latter. We also consider the pdf of the ratio of high frequency fluxes ("true" values) to low frequency estimation. We finally consider the scaling properties of the fluctuations of the nutrient data, flow data, and of the fluxes. This study was supported by a grant from Agence de l'Eau Artois Picardie.

  20. Photonic radio-frequency dissemination via optical fiber with high-phase stability.

    Science.gov (United States)

    Wang, Xiaocheng; Liu, Zhangweiyi; Wang, Siwei; Sun, Dongning; Dong, Yi; Hu, Weisheng

    2015-06-01

    We demonstrate a photonic radio-frequency transmission system via optical fiber. Optical radio-frequency signal is generated utilizing a Mach-Zehnder modulator based on double-side-band with carrier suppression modulation scheme. The phase error induced by optical fiber transmission is transferred to an intermediate frequency signal by the dual-heterodyne phase error transfer scheme, and then canceled by a phase locked loop. With precise phase compensation, a radio frequency with high-phase stability can be obtained at the remote end. We performed 20.07-GHz radio-frequency transfer over 100-km optical fiber, and achieved residual phase noise of -65  dBc/Hz at 1-Hz offset frequency, and the RMS timing jitter in the frequency range from 0.01 Hz to 1 MHz reaches 110 fs. The long-term frequency stability also achieves 8×10(-17) at 10,000 s averaging time.

  1. HG2006 Workshop on High-Gradient Radio Frequency

    CERN Multimedia

    2006-01-01

    Meeting to be held at CERN on 25-27 September 2006 in Room 40/S2-B01 (Building 40). The objective of the workshop is to bring the high-gradient RF community together to present and discuss recent theoretical and experimental developments. Significant progress has recently been made in understanding the basic physics of rf breakdown and developing techniques for achieving higher gradients. This workshop should contribute to maintaining these efforts and to promoting contacts and collaboration. The scientific programme will be organized in half day sessions dedicated to: High-gradient rf experimental results Theory and computation High-gradient technology, materials and processing Specialized experiments on related high-gradient or high-power phenomenon like dc discharge and pulsed surface heating Reports from collaborations and projects. Each session will consist of selected presentations followed by a dedicated discussion. Information about the meeting and participant registration is available at http...

  2. High-Frequency Percussive Ventilation: Pneumotachograph Validation and Tidal Volume Analysis

    Science.gov (United States)

    2010-06-01

    percussive ventilation (HFPV) is an increasingly used mode of mechanical ventilation , for which there is no proven real-time means of measuring delivered... mechanical ventilation ; tidal volume; VT; pneumotachography. [Respir Care 2010;55(6):734–740] Introduction Clinical application of high-frequency percussive...conventional mechanical ventilation (Fig. 1). How- ever, neither the low-frequency nor the high-frequency volumes administered by HFPV are measured by the

  3. High frequency dynamics and structural relaxation process in liquid ammonia

    Science.gov (United States)

    Giura, P.; Angelini, R.; Datchi, F.; Ruocco, G.; Sette, F.

    2007-08-01

    The dynamic structure factor S(Q,ω) of liquid ammonia has been measured by inelastic x-ray scattering in the terahertz frequency region as a function of the temperature in the range of 220-298K at a pressure P =85bars. The data have been analyzed using the generalized hydrodynamic formalism with a three term memory function to take into account the thermal, the structural, (α) and the microscopic (μ) relaxation processes affecting the dynamics of the liquid. This allows to extract the temperature dependence of the structural relaxation time (τα) and strength (Δα). The former quantity follows an Arrhenius behavior with an activation energy Ea=2.6±0.2kcal/mol, while the latter is temperature independent suggesting that there are no changes in the interparticle potential and arrangement with T. The obtained results, compared with those already existing in liquid water and liquid hydrogen fluoride, suggest the strong influence of the connectivity of the molecular network on the structural relaxation.

  4. High-frequency monitoring of quasars with absorption lines

    Science.gov (United States)

    Cegłowski, Maciej; Hayashi, Takayuki J.; Kunert-Bajraszewska, Magdalena; Katarzyński, Krzysztof

    2017-10-01

    An investigation of the origin of the broad absorption lines observed in some quasars was performed. We selected a sample of the most luminous objects and observed them with the VERA interferometer at 22 GHz. We also used a single 32-meter antenna, located near Toruń in Poland, to monitor variability of these quasars at 30 GHz. We succeed in detecting 16 out of 19 initially selected objects. The main aim of our observations was to determine the spacial orientation of the observed sources and their evolutionary status. We investigated their radio maps, performed the variability studies, and examined their radio spectra as well as the emission in the broadband frequency range. Most of the quasars from our sample seem to evolve in a similar way to young radio objects. However, radio structures of two sources may suggest that these objects are restarted active galactic nuclei. This may indicate a diversity of evolutionary stages in our sample. Six of the investigated sources were classified as candidates for the variable objects.

  5. A High Reliability Frequency Stabilized Semiconductor Laser Source Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA needs high stability laser source of 1W output power for Lidar applications. Princeton Optronics has developed ultra-stable, narrow linewidth diode pumped solid...

  6. High-power high-frequency DC-to-DC converters

    Energy Technology Data Exchange (ETDEWEB)

    Kheraluwala, M.H.

    1991-01-01

    Three new dc-to-dc converter topologies aimed at high-power high-frequency applications are introduced. Major system parasitics, namely, the leakage inductance of the transformer and the device output capacitance are efficiently utilized. All circuits operate at a constant switching frequency, thus simplifying design of the reactive elements. Of the three circuits the single-phase and three-phase versions of the dual-active-bridge topology demonstrate minimal electrical stresses, better utilization of the transformer, bi-directional and buck-boost model of operation. The power-transfer characteristics and soft-switching regions on the Vout-Iout plane are identified. Two coaxial transformers with different cross-sections were built for a rating of 50 kVA. The measured leakage inductance at 50 kHz is seen to be in the vicinity of 150-250 nH, with power density of approximately 0.1 kg/kW. Based on the single-phase dual-active-bridge topology, a 50kW, 50-kHz converter operating at an input voltage of 200V dc and an output voltage of 1,600V dc was fabricated.

  7. Miniaturization of Multiple-Layer Folded Patch Antennas

    DEFF Research Database (Denmark)

    Zhang, Jiaying; Breinbjerg, Olav

    2009-01-01

    A new folded patch antenna with multiple layers was developed in this paper, by folding the patch in a proper way, and a highly miniaturized antenna can be realized. The multiple layer patch with 4-layer and 6-layer are designed and evaluated at 2.4 GHz, 915 MHz, and 415 MHz respectively. Then a 4...... layer patch is fabricated and measured to validate the design method. The theoretical analysis, design and simulations, fabrications, as well as the measurements are presented in this paper. All the results show that the folded patch antenna is a good candidate in making a highly miniaturized compact...... antenna....

  8. Miniaturized Planar Split-Ring Resonator Antenna

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.; Breinbjerg, Olav

    2009-01-01

    A miniaturized planar antenna based on a broadside-coupled split ring resonator excited by an arc-shaped dipole is presented. The excitation dipole acts as a small tuning capacitor in series with a parallel RLC circuit represented by the SRR. The antenna resonance frequency and dimensions...... a essentially determined by the SRR, while by varying the dipole arm length the input resistance is changed in a wide range, thus matching the antenna to a feed line and compensating for simulation and manufacturing inaccuracies. No additional matching network is required. Theoretically, there is no limit...... on how small this antenna can be. In practice, the lower bound is set by losses in utilized materials and manufacturing inaccuracies. As an example, an antenna of ka=0.09 was designed, fabricated and tested. Although the initially fabricated antenna prototype had the input impedance of 43 ohms...

  9. Model-based Estimation of High Frequency Jump Diffusions with Microstructure Noise and Stochastic Volatility

    NARCIS (Netherlands)

    Bos, Charles S.

    2008-01-01

    When analysing the volatility related to high frequency financial data, mostly non-parametric approaches based on realised or bipower variation are applied. This article instead starts from a continuous time diffusion model and derives a parametric analog at high frequency for it, allowing

  10. Outphasing control of gallium nitride based very high frequency resonant converters

    DEFF Research Database (Denmark)

    Madsen, Mickey Pierre; Knott, Arnold; Andersen, Michael A. E.

    2015-01-01

    In this paper an outphasing modulation control method suitable for line regulation of very high frequency resonant converters is described. The pros and cons of several control methods suitable for very high frequency resonant converters are described and compared to outphasing modulation...

  11. Lessons Learned in High Frequency Data Transmissions Design

    CERN Document Server

    Sullivan, Stephanie W; The ATLAS collaboration

    2016-01-01

    Requirements of HEP experiments lead to highly integrated systems with many electrical, mechanical and thermal constraints. A complex performance optimisation is therefore required. High speed data transmission lines are designed, while simultaneously minimising radiation length. Methods to improve the signal integrity of point to point links and multi-drop configurations are described. FEA calculations are an essential guide to the optimisation which allow data rates of 640 Mbps for point to point links over a length of up to 1.4m, as well as 160 Mbps for multi-drop configuration. The designs were validated using laboratory measurements of S-parameters and direct BER tests.

  12. Low and High-Frequency Field Potentials of Cortical Networks Exhibit Distinct Responses to Chemicals

    Science.gov (United States)

    Neural networks grown on microelectrode arrays (MEAs) have become an important, high content in vitro assay for assessing neuronal function. MEA experiments typically examine high- frequency (HF) (>200 Hz) spikes, and bursts which can be used to discriminate between differ...

  13. Highly efficient deep ultraviolet generation by sum-frequency mixing ...

    Indian Academy of Sciences (India)

    enhancement in the generated energy realized is 2.0 over the single crystal arrangement and 1.25 relative to the NWOC arrangement. The energy conversion efficiency as high as 36.4% has been obtained with two BBO crystals under WOC arrangements with the pump energy as low as 1.66 mJ for the dye laser radiation ...

  14. Highly efficient deep ultraviolet generation by sum-frequency mixing ...

    Indian Academy of Sciences (India)

    Generation of deep ultraviolet radiation at 210 nm by Type-I third harmonic generation is achieved in a pair of BBO crystals with conversion efficiency as high as 36%. The fundamental source is the dye laser radiation pumped by the second harmonic of a Q-switched Nd : YAG laser. A walk-off compensated configuration ...

  15. High-field (high-frequency) EPR spectroscopy and structural characterization of a novel manganese(III) corrole

    OpenAIRE

    Bendix, Jesper; Gray, Harry B.; Golubkov, Galina; Gross, Zeev

    2000-01-01

    The X-ray structure, magnetic susceptibility, and high-field (high-frequency) EPR spectrum of manganese 5,10,15-tris(pentafluorophenyl) corrole unambiguously establish that the complex contains an isolated, slightly rhombic, manganese(III) center.

  16. Thrombolysis using multi-frequency high intensity focused ultrasound at MHz range: an in vitro study.

    Science.gov (United States)

    Suo, Dingjie; Guo, Sijia; Lin, Weili; Jiang, Xiaoning; Jing, Yun

    2015-09-21

    High intensity focused ultrasound (HIFU) based thrombolysis has emerged as a promising drug-free treatment approach for ischemic stroke. The large amount of acoustic power required by this approach, however, poses a critical challenge to the future clinical translation. In this study, multi-frequency acoustic waves at MHz range (near 1.5 MHz) were introduced as HIFU excitations to reduce the required power for treatment as well as the treatment time. In vitro bovine blood clots weighing around 150 mg were treated by single-frequency and multi-frequency HIFU. The pulse length was 2 ms for all experiments except the ones where the duty cycle was changed. It was found that dual-frequency thrombolysis efficiency was statistically better than single-frequency under the same acoustic power and excitation condition. When varying the acoustic power but fixing the duty cycle at 5%, it was found that dual-frequency ultrasound can save almost 30% power in order to achieve the same thrombolysis efficiency. In the experiment where the duty cycle was increased from 0.5% to 10%, it was shown that dual-frequency ultrasound can achieve the same thrombolysis efficiency with only half of the duty cycle of single-frequency. Dual-frequency ultrasound could also accelerate the thrombolysis by a factor of 2-4 as demonstrated in this study. No significant differences were found between dual-frequencies with different frequency differences (0.025, 0.05, and 0.1 MHz) and between dual-frequency and triple-frequency. The measured cavitation doses of dual-frequency and triple-frequency excitations were at about the same level but both were significantly higher than that of single-frequency.

  17. Simulation study of high-frequency energetic particle driven geodesic acoustic mode

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hao, E-mail: wanghao@nifs.ac.jp; Ido, Takeshi; Osakabe, Masaki [National Institute for Fusion Science, Toki 509-5292 (Japan); Todo, Yasushi [National Institute for Fusion Science, Toki 509-5292 (Japan); The Graduate University for Advanced Studies, Toki 509-5292 (Japan)

    2015-09-15

    High-frequency energetic particle driven geodesic acoustic modes (EGAM) observed in the large helical device plasmas are investigated using a hybrid simulation code for energetic particles and magnetohydrodynamics (MHD). Energetic particle inertia is incorporated in the MHD momentum equation for the simulation where the beam ion density is comparable to the bulk plasma density. Bump-on-tail type beam ion velocity distribution created by slowing down and charge exchange is considered. It is demonstrated that EGAMs have frequencies higher than the geodesic acoustic modes and the dependence on bulk plasma temperature is weak if (1) energetic particle density is comparable to the bulk plasma density and (2) charge exchange time (τ{sub cx}) is sufficiently shorter than the slowing down time (τ{sub s}) to create a bump-on-tail type distribution. The frequency of high-frequency EGAM rises as the energetic particle pressure increases under the condition of high energetic particle pressure. The frequency also increases as the energetic particle pitch angle distribution shifts to higher transit frequency. It is found that there are two kinds of particles resonant with EGAM: (1) trapped particles and (2) passing particles with transit frequency close to the mode frequency. The EGAMs investigated in this work are destabilized primarily by the passing particles whose transit frequencies are close to the EGAM frequency.

  18. Pricing of miniature vehicles made from telephone card waste

    Science.gov (United States)

    Puspitasari, N. B.; Pujotomo, D.; Muhardiansyah, H.

    2017-12-01

    The number of electronic devices in Indonesia in the last 10 years has been increasing quite drastically which contributes to more electronic waste. E-waste or electronic waste have different characteristics from other kinds of waste. Components of electronic waste often poisonous, consisting dangerous chemicals. The telephone card wasted is also an electronic waste. One alternative to handle and manage telephone card waste is to recycle it into collectible miniature vehicles. But the price of these miniatures is quite high, causing low interest in buying them. A research on the price of miniature vehicles in relation to consumers’ Ability to Pay (ATP) and Willingness to Pay (WTP) needs to be done. Segmentation analysis data, target, product positioning and product marketing mix are needed before commencing the research. Data collection is done through a survey by spreading questionnaire to 100 miniature vehicle collectors in Semarang, questioning their ability and willingness to pay recycled miniature vehicles. Calculations showed average ATP of Rp.112.520, 24 and average WTP of Rp.76.870. The last result showed the estimate pricing according to ATP and WTP which is Rp.66.000 with 58% of the respondents claiming to be willing and able to pay that price.

  19. High-frequency audiometry reveals high prevalence of aminoglycoside ototoxicity in children with cystic fibrosis.

    Science.gov (United States)

    Al-Malky, Ghada; Dawson, Sally J; Sirimanna, Tony; Bagkeris, Emmanouil; Suri, Ranjan

    2015-03-01

    Intravenous aminoglycoside (IV AG) antibiotics, widely used in patients with cystic fibrosis (CF), are known to have ototoxic complications. Despite this, audiological monitoring is not commonly performed and if performed, uses only standard pure-tone audiometry (PTA). The aim of this study was to investigate ototoxicity in CF children, to determine the most appropriate audiological tests and to identify possible risk factors. Auditory assessment was performed in CF children using standard pure tone audiometry (PTA), extended high-frequency (EHF) audiometry and distortion-product otoacoustic emissions (DPOAE). 70 CF children, mean (SD) age 10.7 (3.5) years, were recruited. Of the 63 children who received IV AG, 15 (24%) children had ototoxicity detected by EHF audiometry and DPOAE. Standard PTA only detected ototoxicity in 13 children. Eleven of these children had received at least 10 courses of IV AG courses. A 25 to 85 dBHL hearing loss (mean±SD: 57.5±25.7 dBHL) across all EHF frequencies and a significant drop in DPOAE amplitudes at frequencies 4 to 8 kHz were detected. However, standard PTA detected a significant hearing loss (>20 dBHL) only at 8 kHz in 5 of these 15 children and none in 2 subjects who had significantly elevated EHF thresholds. The number of courses of IV AG received, age and lower lung function were shown to be risk factors for ototoxicity. CF children who had received at least 10 courses of IV AG had a higher risk of ototoxicity. EHF audiometry identified 2 more children with ototoxicity than standard PTA and depending on facilities available, should be the test of choice for detecting ototoxicity in children with CF receiving IV AG. Copyright © 2014 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

  20. Enhanced magnetic domain relaxation frequency and low power losses in Zn2+ substituted manganese ferrites potential for high frequency applications

    Science.gov (United States)

    Praveena, K.; Chen, Hsiao-Wen; Liu, Hsiang-Lin; Sadhana, K.; Murthy, S. R.

    2016-12-01

    Nowadays electronic industries prerequisites magnetic materials, i.e., iron rich materials and their magnetic alloys. However, with the advent of high frequency applications, the standard techniques of reducing eddy current losses, using iron cores, were no longer efficient or cost effective. Current market trends of the switched mode power supplies industries required even low energy losses in power conversion with maintenance of adequate initial permeability. From the above point of view, in the present study we aimed at the production of Manganese-Zinc ferrites prepared via solution combustion method using mixture of fuels and achieved low loss, high saturation magnetization, high permeability, and high magnetic domain relaxation frequency. The as-synthesized Zn2+ substituted MnFe2O4 were characterized by X-ray diffractometer (XRD) and transmission electron microscopy (TEM). The fractions of Mn2+, Zn2+ and Fe2+ cations occupying tetrahedral sites along with Fe occupying octahedral sites within the unit cell of all ferrite samples were estimated by Raman scattering spectroscopy. The magnetic domain relaxation was investigated by inductance spectroscopy (IS) and the observed magnetic domain relaxation frequency (fr) was increased with the increase in grain size. The real and imaginary part of permeability (μ‧ and μ″) increased with frequency and showed a maximum above 100 MHz. This can be explained on the basis of spin rotation and domain wall motion. The saturation magnetization (Ms), remnant magnetization (Mr) and magneton number (μB) decreased gradually with increasing Zn2+ concentration. The decrease in the saturation magnetization was discussed with Yafet-Kittel (Y-K) model. The Zn2+ concentration increases the relative number of ferric ions on the A sites, reduces the A-B interactions. The frequency dependent total power losses decreased as the zinc concentration increased. At 1 MHz, the total power loss (Pt) changed from 358 mW/cm3 for x=0-165 mW/cm3

  1. Development of a Sheathed Miniature Aerothermal Reentry Thermocouple for Thermal Protection System Materials

    Science.gov (United States)

    Martinez, Edward R.; Weber, Carissa Tudryn; Oishi, Tomo; Santos, Jose; Mach, Joseph

    2011-01-01

    The Sheathed Miniature Aerothermal Reentry Thermocouple is a micro-miniature thermocouple for high temperature measurement in extreme environments. It is available for use in Thermal Protection System materials for ground testing and flight. This paper discusses the heritage, and design of the instrument. Experimental and analytical methods used to verify its performance and limitations are described.

  2. Self-oscillating Galvanic Isolated Bidirectional Very High Frequency DC-DC Converter

    DEFF Research Database (Denmark)

    Pedersen, Jeppe Arnsdorf; Madsen, Mickey Pierre; Knott, Arnold

    2015-01-01

    This paper describes a galvanic isolated bidirectional Very High Frequency (VHF = 30 MHz - 300MHz) ClassE converter. The reason for increasing the switching frequency is to minimize the passive components in the converter. To make the converter topology bidirectional the rectifier has to be synch......This paper describes a galvanic isolated bidirectional Very High Frequency (VHF = 30 MHz - 300MHz) ClassE converter. The reason for increasing the switching frequency is to minimize the passive components in the converter. To make the converter topology bidirectional the rectifier has...

  3. High precision frequency estimation for harpsichord tuning classification

    OpenAIRE

    Tidhar, D.; Mauch, M.; Dixon, S

    2010-01-01

    We present a novel music signal processing task of classifying the tuning of a harpsichord from audio recordings of standard musical works. We report the results of a classification experiment involving six different temperaments, using real harpsichord recordings as well as synthesised audio data. We introduce the concept of conservative transcription, and show that existing high-precision pitch estimation techniques are sufficient for our task if combined with conservative transcription. In...

  4. Tsunami Arrival Detection with High Frequency (HF) Radar

    OpenAIRE

    Lipa, Belinda; Isaacson, James; Nyden, Bruce; Barrick, Donald

    2012-01-01

    Quantitative real-time observations of a tsunami have been limited to deep-water, pressure-sensor observations of changes in the sea surface elevation and observations of sea level fluctuations at the coast, which are essentially point measurements. Constrained by these data, models have been used for predictions and warning of the arrival of a tsunami, but to date no system exists for local detection of an actual incoming wave with a significant warning capability. Networks of coastal high f...

  5. Consequences of high-frequency operation on EUV source efficiency

    Science.gov (United States)

    Sizyuk, Tatyana

    2017-08-01

    A potential problem of future extreme ultraviolet (EUV) sources, required for high volume manufacture regimes, can be related to the contamination of the chamber environment by products of preceding laser pulse/droplet interactions. Implementation of high, 100 kHz and higher, repetition rate of EUV sources using Sn droplets ignited with laser pulses can cause high accumulation of tin in the chamber in the form of vapor, fine mist, or fragmented clusters. In this work, the effects of the residual tin accumulation in the EUV chamber in dependence on laser parameters and mitigation system efficiency were studied. The effect of various pressures of tin vapor on the CO2 and Nd:YAG laser beam propagation and on the size, the intensity, and the resulting efficiency of the EUV sources was analyzed. The HEIGHTS 3D package was used for this analysis to study the effect of residual background pressure and spatial distribution on EUV photon emission and collection. It was found that background pressure in the range of 1-5 Pa does not significantly influence the EUV source produced by CO2 lasers. A larger volume with this pressure condition, however, can reduce the efficiency of the source. However, an optimized volume of mix with proper density could increase the efficiency of the sources produced by CO2 lasers.

  6. Tesla’s high voltage and high frequency generators with oscillatory circuits

    Directory of Open Access Journals (Sweden)

    Cvetić Jovan M.

    2016-01-01

    Full Text Available The principles that represent the basics of the work of the high voltage and high frequency generator with oscillating circuits will be discussed. Until 1891, Tesla made and used mechanical generators with a large number of extruded poles for the frequencies up to about 20 kHz. The first electric generators based on a new principle of a weakly coupled oscillatory circuits he used for the wireless signal transmission, for the study of the discharges in vacuum tubes, the wireless energy transmission, for the production of the cathode rays, that is x-rays and other experiments. Aiming to transfer the signals and the energy to any point of the surface of the Earth, in the late of 19th century, he had discovered and later patented a new type of high frequency generator called a magnifying transmitter. He used it to examine the propagation of electromagnetic waves over the surface of the Earth in experiments in Colorado Springs in the period 1899-1900. Tesla observed the formation of standing electromagnetic waves on the surface of the Earth by measuring radiated electric field from distant lightning thunderstorm. He got the idea to generate the similar radiation to produce the standing waves. On the one hand, signal transmission, i.e. communication at great distances would be possible and on the other hand, with more powerful and with at least three magnifying transmitters the wireless transmission of energy without conductors at any point of the Earth surface could also be achieved. The discovery of the standing waves on the surface of the Earth and the invention of the magnifying transmitter he claimed his greatest inventions. Less than two years later, at the end of 1901, he designed and started to build a much stronger magnifying transmitter on Long Island near New York City (the Wardenclyffe tower wishing to become a world telecommunication center. During the tower construction, he elaborated the plans for an even stronger transmitter based on

  7. Novel, high sensitivity and high frequency instruments for in-situ measurements of volcanic gases

    Science.gov (United States)

    Burton, Mike; Chiarugi, Antonio; D'Amato, Francesco; Viciani, Silvia; Queisser, Manuel; La Spina, Alessandro

    2017-04-01

    The accurate, precise and traceable measurement of volcanic gas compositions and fluxes is a key pillar upon which our understanding of volcanic processes and geological volatile cycles rests. While enormous progress has been made in the quality and quantity of in-situ gas composition measurements in recent years, the number of instruments which are both field deployable and able to accurately measure magmatic gas compositions remains quite limited. This makes intercomparisons and validations, key activities for any quantitative field study, challenging. Furthermore, the potential of UAV and airborne technology can only be fully realised when we have high frequency measurements of volcanic gases from several gas sensors simultaneously, as gas concentrations can vary quickly during flight, and any frequency response delay between individual gas sensors may introduce significant artifacts in retrieved gas ratios. For these reasons, within the European Research Council project CO2Volc, we have produced and field-tested new, custom-built TDLS- and LED-based in-situ gas sensing systems, capable of measuring H2O, CO2, SO2, HCl and HF at 5-10 Hz and sub-ppm precision for CO2 and SO2, and 50 ppb detection limit for HCl and HF. Here, we report results from the field tests, and examine the potential new applications they offer.

  8. Lateralization of high frequency sounds as a function of interaural amplitude disparity.

    Science.gov (United States)

    Rule, S J; Nickolaychuk, B R

    1995-09-01

    Twenty-five subjects made graphic ratings of the perceived lateral position within the head of sounds presented through headphones. The stimuli were high frequency, pure tones and amplitude modulated sounds. For the amplitude modulated sounds, a 200 HZ modulation frequency was combined with carrier frequencies of 2200 HZ, 3200 HZ, 4200 HZ, and 5200 HZ, which were also the pure tone frequencies. Interaural level differences in the signals ranged from zero to 12 dB. The rate of lateralization was defined as the slope of the linear trend relating laterality ratings to interaural level differences. The rate of lateralization was found to be a decreasing function of frequency. The laterality ratings of amplitude modulated signals were nearly identical to those for pure tones. This result suggests that, for high frequency signals, conflicting temporal information that a source is centered is suppressed in favor of information from level differences that the source is off-center.

  9. The effect of high voltage, high frequency pulsed electric field on slain ovine cortical bone.

    Science.gov (United States)

    Asgarifar, Hajarossadat; Oloyede, Adekunle; Zare, Firuz

    2014-04-01

    High power, high frequency pulsed electric fields known as pulsed power (PP) has been applied recently in biology and medicine. However, little attention has been paid to investigate the application of pulse power in musculoskeletal system and its possible effect on functional behavior and biomechanical properties of bone tissue. This paper presents the first research investigating whether or not PP can be applied safely on bone tissue as a stimuli and what will be the possible effect of these signals on the characteristics of cortical bone by comparing the mechanical properties of this type of bone pre and post expose to PP and in comparison with the control samples. A positive buck-boost converter was applied to generate adjustable high voltage, high frequency pulses (up to 500 V and 10 kHz). The functional behavior of bone in response to pulse power excitation was elucidated by applying compressive loading until failure. The stiffness, failure stress (strength) and the total fracture energy (bone toughness) were determined as a measure of the main bone characteristics. Furthermore, an ultrasonic technique was applied to determine and comprise bone elasticity before and after pulse power stimulation. The elastic property of cortical bone samples appeared to remain unchanged following exposure to pulse power excitation for all three orthogonal directions obtained from ultrasonic technique and similarly from the compression test. Nevertheless, the compressive strength and toughness of bone samples were increased when they were exposed to 66 h of high power pulsed electromagnetic field compared to the control samples. As the toughness and the strength of the cortical bone tissue are directly associated with the quality and integrity of the collagen matrix whereas its stiffness is primarily related to bone mineral content these overall results may address that although, the pulse power stimulation can influence the arrangement or the quality of the collagen network

  10. Miniaturization of Spherical Magnetodielectric Antennas

    DEFF Research Database (Denmark)

    Hansen, Troels Vejle

    The fundamental limitations in performance of electrically small antennas (ESAs) - and how far these may be approached - have been of great interest for over a century. Particularly over the past few decades, it has become increasingly relevant and important, to approach these limits in view...... to the important antenna parameters of radiation efficiency e and impedance bandwidth. For single-mode antennas the fundamental minimum Q is the Chu lower bound. In this Ph.D. dissertation, the topic is miniaturization of spherical antennas loaded by an internal magnetodielectric core. The goal is to determine......, quantify, and assess the effects of an internal material loading upon antenna performance, including its potentials towards miniaturization. Emphasis have been upon performing an exhaustive and exact analysis of rigorous validity covering a large class of spherical antennas. In the context of this study...

  11. A microelectromechanical systems-enabled, miniature triple quadrupole mass spectrometer.

    Science.gov (United States)

    Wright, Steven; Malcolm, Andrew; Wright, Christopher; O'Prey, Shane; Crichton, Edward; Dash, Neil; Moseley, Richard W; Zaczek, Wojciech; Edwards, Peter; Fussell, Richard J; Syms, Richard R A

    2015-03-17

    Miniaturized mass spectrometers are becoming increasingly capable, enabling the development of many novel field and laboratory applications. However, to date, triple quadrupole tandem mass spectrometers, the workhorses of quantitative analysis, have not been significantly reduced in size. Here, the basis of a field-deployable triple quadrupole is described. The key development is a highly miniaturized ion optical assembly in which a sequence of six microengineered components is employed to generate ions at atmospheric pressure, provide a vacuum interface, effect ion guiding, and perform fragmentation and mass analysis. Despite its small dimensions, the collision cell efficiently fragments precursor ions and yields product ion spectra that are very similar to those recorded using conventional instruments. The miniature triple quadrupole has been used to detect thiabendazole, a common pesticide, in apples at a level of 10 ng/g.

  12. Evaluation of the Frequency for Gas Sampling for the High Burnup Confirmatory Data Project

    Energy Technology Data Exchange (ETDEWEB)

    Stockman, Christine T. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Alsaed, Halim A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bryan, Charles R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Marschman, Steven C. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Scaglione, John M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-05-01

    This report provides a technically based gas sampling frequency strategy for the High Burnup (HBU) Confirmatory Data Project. The evaluation of: 1) the types and magnitudes of gases that could be present in the project cask and, 2) the degradation mechanisms that could change gas compositions culminates in an adaptive gas sampling frequency strategy. This adaptive strategy is compared against the sampling frequency that has been developed based on operational considerations.

  13. High-frequency, three-phase current controller implementation in an FPGA

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, M.; Round, S. D.; Kolar, J. W.

    2008-07-01

    Three phase rectifiers with switching frequencies of 500 kHz or more require high speed current controllers. At such high switching frequencies analog controllers as well as high speed digital signal processing (DSP) systems have limited performance. In this paper, two high speed current controller implementations using two different field-programmable gate arrays (FPGA) - one for switching frequencies up to 1 MHz and one for switching frequencies beyond 1 MHz - are presented to overcome this performance limitation. Starting with the digital system design all the blocks of the signal chain, containing analog-to-digital (A/D) interface, digital controller implementation using HW-multipliers and implementation of a novel high speed, high resolution pulse width modulation (PWM) are discussed and compared. Final measurements verify the performance of the controllers. (author)

  14. Miniature Biometric Sensor Project

    Science.gov (United States)

    Falker, John; Terrier, Douglas; Clayton, Ronald; Hanson, Andrea; Cooper, Tommy; Downs, Meghan; Flint, Stephanie; Reyna, Baraquiel; Simon, Cory; Wilt, Grier

    2015-01-01

    Heart rate monitoring (HRM) is a critical need during exploration missions. Unlike the four separate systems used on ISS today, the single HRM system should perform as a diagnostic tool, perform well during exercise or high level activity, and be suitable for use during EVA. Currently available HRM technologies are dependent on uninterrupted contact with the skin and are prone to data drop-out and motion artifact when worn in the spacesuit or during exercise. Here, we seek an alternative to the chest strap and electrode based sensors currently in use on ISS today. This project aims to develop a single, high performance, robust biosensor with focused efforts on improved heart rate data quality collection during high intensity activity such as exercise or EVA.

  15. Combinational light emitting diode-high frequency focused ultrasound treatment for HeLa cell.

    Science.gov (United States)

    Choe, Se-Woon; Park, Kitae; Park, Chulwoo; Ryu, Jaemyung; Choi, Hojong

    2017-12-01

    Light sources such as laser and light emitting diode or ultrasound devices have been widely used for cancer therapy and regenerative medicines, since they are more cost-effective and less harmful than radiation therapy, chemotherapy or magnetic treatment. Compared to laser and low intensity ultrasound techniques, light emitting diode and high frequency focused ultrasound shows enhanced therapeutic effects, especially for small tumors. We propose combinational light emitting diode-high frequency focused ultrasound treatment for human cervical cancer HeLa cells. Individual red, green, and blue light emitting diode light only, high frequency focused ultrasound only, or light emitting diode light combined with high frequency focused ultrasound treatments were applied in order to characterize the responses of HeLa cells. Cell density exposed by blue light emitting diode light combined with high frequency focused ultrasound (2.19 ± 0.58%) was much lower than that of cells exposed by red and green light emitting diode lights (81.71 ± 9.92% and 61.81 ± 4.09%), blue light emitting diode light (11.19 ± 2.51%) or high frequency focused ultrasound only (9.72 ± 1.04%). We believe that the proposed combinational blue light emitting diode-high frequency focused ultrasound treatment could have therapeutic benefits to alleviate cancer cell proliferation.

  16. Test the mergers of the primordial black holes by high frequency gravitational-wave detector

    Science.gov (United States)

    Li, Xin; Wang, Li-Li; Li, Jin

    2017-09-01

    The black hole could have a primordial origin if its mass is less than 1M_⊙. The mergers of these black hole binaries generate stochastic gravitational-wave background (SGWB). We investigate the SGWB in high frequency band 108-10^{10} Hz. It can be detected by high frequency gravitational-wave detector. Energy density spectrum and amplitude of the SGWB are derived. The upper limit of the energy density spectrum is around 10^{-7}. Also, the upper limit of the amplitude ranges from 10^{-31.5} to 10^{-29.5}. The fluctuation of spacetime origin from gravitational wave could give a fluctuation of the background electromagnetic field in a high frequency gravitational-wave detector. The signal photon flux generated by the SGWB in the high frequency band 108-10^{10} Hz is derived, which ranges from 1 to 10^2 s^{-1}. The comparison between the signal photon flux generated by relic gravitational waves (RGWs) and the SGWB is also discussed in this paper. It is shown that the signal photon flux generated by the RGW, which is predicted by the canonical single-field slow-roll inflation models, is sufficiently lower than the one generated by the SGWB in the high frequency band 108-10^{10} Hz. Our results indicate that the SGWB in the high frequency band 108-10^{10} Hz is more likely to be detected by the high frequency gravitational-wave detector.

  17. Treatment of Acne Scars With High Intensity Focused Radio Frequency.

    Science.gov (United States)

    Ibrahimi, Omar A; Weiss, Robert A; Weiss, Margaret A; Halvorson, Christian R; Mayoral, Flor; Ross, E Victor; Cohen, Joel L

    2015-09-01

    In this multi-site case series, the efficacy of high intensity focused radiofrequency (RF) delivered to the dermis was evaluated for treating acne scars. A novel delivery system that uses insulated microneedles to deliver a desired thermal effect to multiple depths of the dermis while sparing the epidermis from RF injury was used. Four (4) healthy subjects from four different practices were evaluated and used in this case report. The subjects were treated between 3 or 4 times depending on the severity of the acne scars presented. The depth of thermal delivery was adjusted before each pass and all subjects received at a minimum, three passes to the treated area. Before and after photographs along with adverse effects were recorded. The theory behind the use of insulated needles with the active RF delivery at the distal tip is to allow for significant thermal injury to several layers of the dermis while avoiding thermal injury to the epidermis. This case report demonstrates significant improvement on acne scars and that all skin types should be safely treatable with minimum downtime realized.

  18. Miniaturized fiber-optic ultrasound probes for endoscopic tissue analysis by micro-opto-mechanical technology.

    Science.gov (United States)

    Vannacci, E; Belsito, L; Mancarella, F; Ferri, M; Veronese, G P; Roncaglia, A; Biagi, E

    2014-06-01

    A new Micro-Opto-Mechanical System (MOMS) technology for the fabrication of optoacoustic probes on optical fiber is presented. The technology is based on the thermoelastic emission of ultrasonic waves from patterned carbon films for generation and on extrinsic polymer Fabry-Perot acousto-optical transducers for detection, both fabricated on miniaturized single-crystal silicon frames used to mount the ultrasonic transducers on the tip of an optical fiber. Thanks to the fabrication process adopted, high miniaturization levels are reached in the MOMS devices, demonstrating fiber-optic emitters and detectors with minimum diameter around 350 and 250 μm respectively. A thorough functional testing of the ultrasound emitters mounted on 200 and 600 μm diameter optical fibers is presented, in which the fiber-optic emitter with a diameter of 200 μm shows generated acoustic pressures with peak-to-peak value up to 2.8 MPa with rather flat emission spectra extended beyond 150 MHz. The possibility to use the presented optoacoustic sources in conjunction with the fiber-optic acousto-optical detectors within a minimally invasive probe is also demonstrated by successfully measuring the ultrasonic echo reflected from a rigid surface immersed in water with various concentration of scatterers. The resulting spectra highlight the possibility to discriminate the effects due to frequency selective attenuation in a very wide range of frequencies within a biological medium using the presented fiber-optic probes.

  19. Price duration versus trading volume in high-frequency data for selected DAX companies

    OpenAIRE

    Christoph Mitterer; Henryk Gurgul; Robert Syrek

    2016-01-01

    The properties of the time series of durations between consecutive trades of a particular stock have been studied by many contributors in the literature of financial econometrics. Among them are highly prominent scientists like Engle (2000) and Gourieroux and Jasiak (2001). The importance of this topic, accompanied by the growing availability of (ultra-)high-frequency data, has prompted an increase of contributions in recent years. Intensive research based on high-frequency data has several ...

  20. Advanced High-Frequency Electronic Ballasting Techniques for Gas Discharge Lamps

    OpenAIRE

    Tao, Fengfeng

    2001-01-01

    Small size, light weight, high efficacy, longer lifetime and controllable output are the main advantages of high-frequency electronic ballasts for gas discharge lamps. However, power line quality and electromagnetic interference (EMI) issues arise when a simple peak rectifying circuit is used. To suppress harmonic currents and improve power factor, input-current-shaping (ICS) or power-factor-correction (PFC) techniques are necessary. This dissertation addresses advanced high-frequency elec...

  1. Financial system loss as an example of high consequence, high frequency events

    Energy Technology Data Exchange (ETDEWEB)

    McGovern, D.E.

    1996-07-01

    Much work has been devoted to high consequence events with low frequency of occurrence. Characteristic of these events are bridge failure (such as that of the Tacoma Narrows), building failure (such as the collapse of a walkway at a Kansas City hotel), or compromise of a major chemical containment system (such as at Bhopal, India). Such events, although rare, have an extreme personal, societal, and financial impact. An interesting variation is demonstrated by financial losses due to fraud and abuse in the money management system. The impact can be huge, entailing very high aggregate costs, but these are a result of the contribution of many small attacks and not the result of a single (or few) massive events. Public awareness is raised through publicized events such as the junk bond fraud perpetrated by Milikin or gross mismanagement in the failure of the Barings Bank through unsupervised trading activities by Leeson in Singapore. These event,s although seemingly large (financial losses may be on the order of several billion dollars), are but small contributors to the estimated $114 billion loss to all types of financial fraud in 1993. This paper explores the magnitude of financial system losses and identifies new areas for analysis of high consequence events including the potential effect of malevolent intent.

  2. High frequency, realtime measurements of stable isotopes in liquid water

    Science.gov (United States)

    Weiler, M.; Herbstritt, B.; Gralher, B.

    2012-04-01

    We developed a method to measure in-situ the isotopic composition of liquid water with minimal supervision and, most important, with a temporal resolution of less than a minute. For this purpose a off-the-shelf microporous hydrophobic membrane contactor for under 200€ was combined with an isotope laser spectrometer (Picarro). The contactor, originally designed for degassing liquids, was used with nitrogen as carrier gas in order to transform a small fraction of liquid water to water vapor. The generated water vapor was then analyzed continuously by the isotope laser spectrometer. To prove the membrane's applicability we determined the specific isotope fractionation factor for the phase change through the contactor's membrane for a common temperature range and with different waters of known isotopic compositions. This fractionation factor is then used to derive the liquid water isotope ratio from the measured water vapor isotope ratios and the measured temperature at the phase change. The system was compared for breakthrough curves of isotopically enriched water and the isotope values corresponded very well with those of liquid water samples taken simultaneously and analyzed with a conventional method (CRDS). The introduced method supersedes taking liquid samples and employs only relative cheap and readily available components. This makes it a relatively inexpensive, fast, user-friendly and easily reproducible method. It can be applied in both the field and laboratory wherever a water vapor isotope analyzer can be run and whenever real-time isotope data of liquid water are required at high temporal resolution with the same accuracy as collecting individual water samples.

  3. High frequency electromagnetic interference shielding magnetic polymer nanocomposites

    Science.gov (United States)

    He, Qingliang

    Electromagnetic interference is one of the most concerned pollution and problem right now since more and more electronic devices have been extensively utilized in our daily lives. Besides the interference, long time exposure to electromagnetic radiation may also result in severe damage to human body. In order to mitigate the undesirable part of the electromagnetic wave energy and maintain the long term sustainable development of our modern civilized society, new technology development based researches have been made to solve this problem. However, one of the major challenges facing to the electromagnetic interference shielding is the relatively low shielding efficiency and the high cost as well as the complicated shielding material manufacture. From the materials science point of view, the key solutions to these challenges are strongly depended on the breakthrough of the current limit of shielding material design and manufacture (such as hierarchical material design with controllable and predictable arrangement in nanoscale particle configuration via an easy in-situ manner). From the chemical engineering point of view, the upgrading of advanced material shielding performance and the enlarged production scale for shielding materials (for example, configure the effective components in the shielding material in order to lower their usage, eliminate the "rate-limiting" step to enlarge the production scale) are of great importance. In this dissertation, the design and preparation of morphology controlled magnetic nanoparticles and their reinforced polypropylene polymer nanocomposites will be covered first. Then, the functionalities of these polymer nanocomposites will be demonstrated. Based on the innovative materials design and synergistic effect on the performance advancement, the magnetic polypropylene polymer nanocomposites with desired multifunctionalities are designed and produced targeting to the electromagnetic interference shielding application. In addition

  4. Design and Measurement of Planar Toroidal Transformers for Very High Frequency Power Applications

    DEFF Research Database (Denmark)

    Knott, Arnold; Pejtersen, Jens

    2012-01-01

    -core toroidal transformer configuration for use in very high frequency power conversion applications. Two prototype transformers (10:10 and 12:12) have been implemented using conventional four layer printed circuit board technology. The transformers have been characterized by two port Z-parameters, which have...... power converters for very high frequencies. The magnetic coupling factor of both transformers is approx. 60 % and the mutual coupling inductance is dominant up to a frequency of 50 MHz.......The quest for higher power density has led to research of very high frequency (30-300 MHz) power converters. Magnetic components based on ferrite cores have limited application within this frequency range due to increased core loss. Air-core magnetics is a viable alternative as they do not exhibit...

  5. Carbon fiber and void detection using high-frequency electromagnetic induction techniques

    Science.gov (United States)

    Barrowes, Benjamin E.; Sigman, John B.; Wang, YinLin; O'Neill, Kevin A.; Shubitidze, Fridon; Simms, Janet; Bennett, Hollis J.; Yule, Donald E.

    2016-05-01

    Ultrawide band electromagnetic induction (EMI) instruments have been traditionally used to detect high electric conductivity discrete targets such as metal unexploded ordnance. The frequencies used for this EMI regime have typically been less than 100 kHz. To detect intermediate conductivity objects like carbon fiber, even less conductive saturated salts, and even voids embedded in conducting soils, higher frequencies up to the low megahertz range are required in order to capture characteristic responses. To predict EMI phenomena at frequencies up to 15 MHz, we first modeled the response of intermediate conductivity targets using a rigorous, first-principles approach, the Method of Auxiliary Sources. A newly fabricated benchtop high-frequency electromagnetic induction instrument produced EMI data at frequencies up to that same high limit. Modeled and measured characteristic relaxation signatures compare favorably and indicate new sensing possibilities in a variety of scenarios.

  6. Monitoring uniform and localized corrosion in reinforced mortar using high-frequency guided longitudinal wages

    Science.gov (United States)

    Ervin, Benjamin L.; Reis, Henrique; Bernhard, Jennifer T.; Kuchma, Daniel A.

    2008-03-01

    High-frequency guided longitudinal waves have been used in a through-transmission arrangement to monitor reinforced mortar specimens undergoing both accelerated uniform and localized corrosion. High-frequency guided longitudinal waves were chosen because they have the fastest propagation velocity and lowest theoretical attenuation for the rebar/mortar system. This makes the modes easily discernible and gives them the ability to travel over long distances. The energy of the high-frequency longitudinal waves is located primarily in the center of the rebar, leading to less leakage into the surrounding mortar. The results indicate that the guided mechanical waves are sensitive to both forms of corrosion attack in the form of attenuation, with less sensitivity at higher frequencies. Also promising is the ability to discern uniform corrosion from localized corrosion in a through-transmission arrangement by examination of the frequency domain.

  7. Excitation of plasma waves by nonlinear currents induced by a high-frequency electromagnetic pulse

    Energy Technology Data Exchange (ETDEWEB)

    Grishkov, V. E.; Uryupin, S. A., E-mail: uryupin@sci.lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

    2017-03-15

    Excitation of plasma waves by nonlinear currents induced by a high-frequency electromagnetic pulse is analyzed within the kinetic approach. It is shown that the most efficient source of plasma waves is the nonlinear current arising due to the gradient of the energy density of the high-frequency field. Generation of plasma waves by the drag current is usually less efficient but not negligibly small at relatively high frequencies of electron–ion collisions. The influence of electron collisions on the excitation of plasma waves by pulses of different duration is described quantitatively.

  8. Econometric analysis of realized covariation: high frequency based covariance, regression, and correlation in financial economics

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole Eiler; Shephard, N.

    2004-01-01

    This paper analyses multivariate high frequency financial data using realized covariation. We provide a new asymptotic distribution theory for standard methods such as regression, correlation analysis, and covariance. It will be based on a fixed interval of time (e.g., a day or week), allowing...... the number of high frequency returns during this period to go to infinity. Our analysis allows us to study how high frequency correlations, regressions, and covariances change through time. In particular we provide confidence intervals for each of these quantities....

  9. Tidally-modulated high frequency internal waves in Gautami-Godavari estuary, East coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Sridevi, B.; Murty, T.V.R.; Sadhuram, Y.; Sarma, V.V.S.S.; Murty, V.S.N.; Prasad, K.V.S.R.

    of Internal waves (IWs) and to infer their generation mechanism Based on the stability criteria, two High Frequency (HF) significant modes in the Internal Wave (IW) field at frequencies 96.67 cph (10 m depth) and 71.15 cph (14 m depth) have been identified...

  10. The role of high-frequency audiometry in early detection of ototoxicity

    NARCIS (Netherlands)

    Dreschler, W. A.; vd Hulst, R. J.; Tange, R. A.; Urbanus, N. A.

    1985-01-01

    Ototoxicity is one of the unwanted side-effects of a number of medical drugs. As ototoxicity appears to be most pronounced in the higher frequencies, it can be assessed at an earlier stage by using high-frequency audiometry from 8 to 20 kHz. We have investigated the precision of these measurements.

  11. Discovery of high-frequency iron K lags in Ark 564 and Mrk 335

    NARCIS (Netherlands)

    Kara, E.; Fabian, A.C.; Cackett, E.M.; Uttley, P.; Wilkins, D.R.; Zoghbi, A.

    2013-01-01

    We use archival XMM-Newton observations of Ark 564 and Mrk 335 to calculate the frequency-dependent time lags for these two well-studied sources. We discover high-frequency Fe K lags in both sources, indicating that the red wing of the line precedes the rest-frame energy by roughly 100 and 150 s for

  12. Suppression of high-frequency perturbations in pulse-width modulation

    DEFF Research Database (Denmark)

    2008-01-01

    A method suppresses high-frequency perturbations in a pulse-width modulated signal. The pulse-width modulation may superpose a carrier signal onto an input signal having a predetermined modulation frequency. The carrier signals may be phase-shifted. The resulting modulated signals may...

  13. Suppression of high-frequency perturbations in pulse-width modulation

    OpenAIRE

    Knott, Arnold

    2008-01-01

    A method suppresses high-frequency perturbations in a pulse-width modulated signal. The pulse-width modulation may superpose a carrier signal onto an input signal having a predetermined modulation frequency. The carrier signals may be phase-shifted. The resulting modulated signals may then be filtered and combined.

  14. The Event-Related Low-Frequency Activity of Highly and Average Intelligent Children

    Science.gov (United States)

    Liu, Tongran; Shi, Jiannong; Zhao, Daheng; Yang, Jie

    2008-01-01

    Using time-frequency analysis techniques to investigate the event-related low-frequency (delta: 0.5-4 Hz; theta: 4-8 Hz) activity of auditory event-related potentials (ERPs) data of highly and average intelligent children, 18 intellectually gifted children, and 18 intellectually average children participated the present study. Present findings…

  15. Miniaturized Ion Mobility Spectrometer

    Science.gov (United States)

    Kaye, William J (Inventor); Stimac, Robert M. (Inventor)

    2017-01-01

    By utilizing the combination of a unique electronic ion injection control circuit in conjunction with a particularly designed drift cell construction, the instantly disclosed ion mobility spectrometer (IMS) achieves increased levels of sensitivity, while achieving significant reductions in size and weight. The instant IMS is of a much simpler and easy to manufacture design, rugged and hermetically sealed, capable of operation at high temperatures to at least 250 degrees Centigrade, and is uniquely sensitive, particularly to explosive chemicals.

  16. High frequency mass transfer responses with polyaniline modified electrodes by using new ac-electrogravimetry device

    Energy Technology Data Exchange (ETDEWEB)

    Torres, R. [Escuela de Ingenieria de Antioquia Calle 25 Sur No. 42-73, Envigado (Colombia); Jimenez, Y.; Arnau, A. [Departamento Ingenieria Electronica, ETSI de Telecomunicacion, Universidad Politecnica de Valencia, Camino de Vera s/n, C.P. 46022, Valencia (Spain); Gabrielli, C.; Joiret, S. [CNRS, UPR 15 du CNRS, Laboratoire Interfaces et Systemes Electrochimiques-LISE, 4, place Jussieu, 75005 Paris (France)] [UPMC, Universite Pierre et Marie Curie-Paris 6, Laboratoire Interfaces et Systemes Electrochimiques-LISE, 4, place Jussieu, 75005 Paris (France); Perrot, H., E-mail: hubert.perrot@upmc.f [CNRS, UPR 15 du CNRS, Laboratoire Interfaces et Systemes Electrochimiques-LISE, 4, place Jussieu, 75005 Paris (France)] [UPMC, Universite Pierre et Marie Curie-Paris 6, Laboratoire Interfaces et Systemes Electrochimiques-LISE, 4, place Jussieu, 75005 Paris (France); To, T.K.L.; Wang, X. [CNRS, UPR 15 du CNRS, Laboratoire Interfaces et Systemes Electrochimiques-LISE, 4, place Jussieu, 75005 Paris (France)] [UPMC, Universite Pierre et Marie Curie-Paris 6, Laboratoire Interfaces et Systemes Electrochimiques-LISE, 4, place Jussieu, 75005 Paris (France)

    2010-08-30

    For many years, polyaniline films have appeared to be one of the most studied conducting polymers. At the same time, ac-electrogravimetry has been used as a powerful technique for different polymer films but in general for slow perturbation rates. Two reasons for that: on the one hand, high frequency mass transfer responses are not expected and on the other hand, the electronic interfaces dedicated for ac-electrogravimetry are not prepared to follow, without distortion, high rate frequency shifts, faster than a few hertz. This paper shows that high ionic transfer responses can be detected by using a new ac-electrogravimetry concept. The experiments conducted with PANI tried to verify whether high frequency responses in conducting polymers are possible or not. The main interest of the new device is to reach the high frequency values directly and to demonstrate an ionic transfer contribution at 1 kHz which was not predicted with old systems.

  17. Empty substrate integrated waveguide technology for E plane high-frequency and high-performance circuits

    Science.gov (United States)

    Belenguer, Angel; Cano, Juan Luis; Esteban, Héctor; Artal, Eduardo; Boria, Vicente E.

    2017-01-01

    Substrate integrated circuits (SIC) have attracted much attention in the last years because of their great potential of low cost, easy manufacturing, integration in a circuit board, and higher-quality factor than planar circuits. A first suite of SIC where the waves propagate through dielectric have been first developed, based on the well-known substrate integrated waveguide (SIW) and related technological implementations. One step further has been made with a new suite of empty substrate integrated waveguides, where the waves propagate through air, thus reducing the associated losses. This is the case of the empty substrate integrated waveguide (ESIW) or the air-filled substrate integrated waveguide (air-filled SIW). However, all these SIC are H plane structures, so classical H plane solutions in rectangular waveguides have already been mapped to most of these new SIC. In this paper a novel E plane empty substrate integrated waveguide (ESIW-E) is presented. This structure allows to easily map classical E plane solutions in rectangular waveguide to this new substrate integrated solution. It is similar to the ESIW, although more layers are needed to build the structure. A wideband transition (covering the frequency range between 33 GHz and 50 GHz) from microstrip to ESIW-E is designed and manufactured. Measurements are successfully compared with simulation, proving the validity of this new SIC. A broadband high-frequency phase shifter (for operation from 35 GHz to 47 GHz) is successfully implemented in ESIW-E, thus proving the good performance of this new SIC in a practical application.

  18. High-performance radio frequency transistors based on diameter-separated semiconducting carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Yu; Che, Yuchi; Zhou, Chongwu, E-mail: chongwuz@usc.edu [Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089 (United States); Seo, Jung-Woo T.; Hersam, Mark C. [Department of Materials Science and Engineering and Department of Chemistry, Northwestern University, Evanston, Illinois 60208 (United States); Gui, Hui [Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089 (United States)

    2016-06-06

    In this paper, we report the high-performance radio-frequency transistors based on the single-walled semiconducting carbon nanotubes with a refined average diameter of ∼1.6 nm. These diameter-separated carbon nanotube transistors show excellent transconductance of 55 μS/μm and desirable drain current saturation with an output resistance of ∼100 KΩ μm. An exceptional radio-frequency performance is also achieved with current gain and power gain cut-off frequencies of 23 GHz and 20 GHz (extrinsic) and 65 GHz and 35 GHz (intrinsic), respectively. These radio-frequency metrics are among the highest reported for the carbon nanotube thin-film transistors. This study provides demonstration of radio frequency transistors based on carbon nanotubes with tailored diameter distributions, which will guide the future application of carbon nanotubes in radio-frequency electronics.

  19. Miniaturized integration of a fluorescence microscope

    Science.gov (United States)

    Ghosh, Kunal K.; Burns, Laurie D.; Cocker, Eric D.; Nimmerjahn, Axel; Ziv, Yaniv; Gamal, Abbas El; Schnitzer, Mark J.

    2013-01-01

    The light microscope is traditionally an instrument of substantial size and expense. Its miniaturized integration would enable many new applications based on mass-producible, tiny microscopes. Key prospective usages include brain imaging in behaving animals towards relating cellular dynamics to animal behavior. Here we introduce a miniature (1.9 g) integrated fluorescence microscope made from mass-producible parts, including semiconductor light source and sensor. This device enables high-speed cellular-level imaging across ∼0.5 mm2 areas in active mice. This capability allowed concurrent tracking of Ca2+ spiking in >200 Purkinje neurons across nine cerebellar microzones. During mouse locomotion, individual microzones exhibited large-scale, synchronized Ca2+ spiking. This is a mesoscopic neural dynamic missed by prior techniques for studying the brain at other length scales. Overall, the integrated microscope is a potentially transformative technology that permits distribution to many animals and enables diverse usages, such as portable diagnostics or microscope arrays for large-scale screens. PMID:21909102

  20. Miniaturized integration of a fluorescence microscope.

    Science.gov (United States)

    Ghosh, Kunal K; Burns, Laurie D; Cocker, Eric D; Nimmerjahn, Axel; Ziv, Yaniv; Gamal, Abbas El; Schnitzer, Mark J

    2011-09-11

    The light microscope is traditionally an instrument of substantial size and expense. Its miniaturized integration would enable many new applications based on mass-producible, tiny microscopes. Key prospective usages include brain imaging in behaving animals for relating cellular dynamics to animal behavior. Here we introduce a miniature (1.9 g) integrated fluorescence microscope made from mass-producible parts, including a semiconductor light source and sensor. This device enables high-speed cellular imaging across ∼0.5 mm2 areas in active mice. This capability allowed concurrent tracking of Ca2+ spiking in >200 Purkinje neurons across nine cerebellar microzones. During mouse locomotion, individual microzones exhibited large-scale, synchronized Ca2+ spiking. This is a mesoscopic neural dynamic missed by prior techniques for studying the brain at other length scales. Overall, the integrated microscope is a potentially transformative technology that permits distribution to many animals and enables diverse usages, such as portable diagnostics or microscope arrays for large-scale screens.